MPR602UMU-01 MPC602UM/AD
11/95

PowerPC 602

RISC Microprocessor User's Manual

r PewerpP @ MOTOROLA



Overview

PowerPC 602 Microprocessor Programming Model
Instruction and Data Cache Operation

Exceptions

Memory Management

Instruction Timing

Signal Descriptions

System Interface Operation

Power Management

PowerPC Instruction Set Listings
Instructions Not Implemented

Boundary-Scan Testing Support

Glossary of Terms and Abbreviations

Index

@

L

— ~ ol e w N -
pd



CONTENTS

Paragraph : Page
Number Title Number
About This Book
F 0o (1= oo SO XXViii
(@407 0 .= 1o o OO XXiX
Additional REBAING .......coveviiieiieiseieire e se e seenens XXX
Motorola EleCtroNiC SUPPOIT.........cueeirererreriiresieree et XXX
IBM EI€CtrONiC SUPPOIT.....c.veveieiesiesiesiesiesieseesiesteseeseesseseeseessessessessessessnssessesees XXXi
CONVENEIONS ...ttt ettt et b bbbttt b bt e eb e es XXXi
Acronyms and ADDIEVIBLiONS .........ccueiriiereirreese s XXXii
Terminology CONVENLIONS ........cciviiiiiesesesiesesiesiesseseesse e sse e ssessessessessassessens XXXV
Chapter 1
Overview
11 PowerPC 602 MiCroproCeSSOr OVENVIEW. .......ceuevrierreereriererseseesesensessesessesessessenes 1-1
111 PowerPC 602 MiCroproCeSSOr FEALUIES...........ccvivereirereereirerenieeee s sesnenene 1-3
112 2] Fole: gl BT o = o FO PR 1-5
113 INSEFUCEON PIPEIINE......vieeeiciees e 1-7
1131 INSEFUCHTON UNIT....coieiiiee e 1-8
11311 Instruction Queue (IQ) and Dispatch Unit.........ccccvvevvivvivninninninnnnnnnnens 1-8
11312 Branch Processing Unit (BPU)........cccccceovieninieninenen e seeseses s seenas 1-8
11313 ComPIEtioN UNIt ......ocoiieiiiicee e 1-9
114 Independent EXECULiON UNITS.......cccuviiiienenenesesieseseeseesieseesse e seeseeseeseeseenes 1-9
1141 INteger UNIt (TU) cuoieieeceseesese ettt s 1-9
1142 Floating-Point UNit (FPU) .........ccoiiiiniineeesesise s 1-10
1143 Load/Store UNit (LSU) ..ouvceceesiesiesiesiesie e e e siesie et sne s 1-10
115 MEMOTY SUDSYSEEIM ...veuviieeeriesiesie et sie e ste st te s see sttt st st seeseeseeneas 1-11
1151 Memory Management Units (MMUS)........cccooveiinnneinnnece s 1-11
1152 CaCNE UNITS....c ettt et 1-13
116 Processor BUS INTEITACE ........ccuoeiieriiieeiee e 1-13
117 System SUPPOIt FUNCLIONS ........cueiriereiireriieiee et 1-14
1171 Power Management ........cccoveeierneiie e s s 1-14
1172 Time Base/DECTEMENLE ........ccoirrireeerieesieesie ettt seeneseenes 1-15
11.7.3 |EEE 1149.1 (JTAG)/Common On-Chip Processor (COP) Test Interfacel-15
1174 ClOCK MUIIPIIEF ...t 1-15
Contents iii



CONTENTS

Paragraph . Page

Number Title Number

1175 LAV ol 0o (oo 12T R 1-15
12 PowerPC 602 Microprocessor: Implementation...........c.oveierneennneenenennns 1-16
121 FEALUIES. ..ottt bbbttt st et 1-17
122 PowerPC Registers and Programming Model ...........cccoeevvvrniineivneinsnnnsnnns 1-17
1221 General-Purpose RegiSters (GPRS) ..o 1-20
1222 Floating-Point REQISLErS (FPRS).......ccciiiirierienesiesesiesesiese e siese e seeseenes 1-20
1223 Condition REGISLEr (CR)...c.vivervriireeieieeesieeseneseseseseeseseessenessesasssssesesennens 1-20
1224 Floating-Point Status and Control Register (FPSCR) .........ccccovvvneririnennes 1-20
1225 Machine State RegiSter (MSR)........coviirerenesesesesese e e e e seeseeses 1-21
1226 Segment REGISIEIS (SRS) ...vvv it 1-21
1227 Specia-Purpose RegiSters (SPRS) .......cvoiveiirieeinnieeeses s 1-21
12271 USEr-LEVEl SPRS.....ciiiiieiieiiete ettt e 1-21
12272 SUPENVISOr-Level SPRS ... 1-21
123 Instruction Set and Addressing MOGES..........ccueveirriereinenineee s 1-23
1231 PowerPC Instruction Set and Addressing ModEes..........cccovvveresesenesennn 1-23
12311 POWErPC INSIIUCLION SEL ......vieeeiieesieeeeee e 1-23
12312 Calculating Effective AddreSSES .........oeveirereeieinriece e 1-25
1232 PowerPC 602 Microprocessor INStruction Set ........cocvveveveseseseeseneenn 1-25
124 Cache IMplementation.........cui s 1-26
1241 PowerPC Cache CharaCteriStiCS......uievieereereneeeneee e seenas 1-26
1242 PowerPC 602 Microprocessor Cache Implementation ..........c.cccceevveerenne. 1-27
125 EXCEPLION MOUE .....ocviiiiiiecieic e nne s 1-28
1251 PowerPC EXCeption MOGE! ...........oeveirrieieiniiceie et 1-28
1252 PowerPC 602 Microprocessor Exception Model ...........ccccooeevenrenncnenne. 1-30
126 MemOory Management ........cocoeiiierinee ettt 1-32
126.1 PowerPC Memory Management ........cocoevereneneneneesieseesee e seeseeseeseesensens 1-33
1.26.2 PowerPC 602 Microprocessor Memory Management ...........ccccoeeveeerenne. 1-33
1.26.2.1 Protection-Only MOE.........couiiirieiiriesiesiese e 1-34
127 S 0o o T I 0T o RS 1-35
128 SYSIEM INEEITACE .....ceiieiecec e 1-36
1281 IMEIMOIY ACCESSES. ...cteeiiiueerieesiesieesteeseesaee st e sbe e sbe et st e sbe et saeesbeenbesaeesrean 1-37
1.2.8.2 PowerPC 602 Microprocessor SIgNalS.........cueveereeereeesenesenesenessesseseseenes 1-37
1283 Signal CoNFIQUIALION ......vevieireiereiresie ettt 1-38

Chapter 2
PowerPC 602 Microprocessor Programming Model

21 PowerPC 602 Processor REQISLEr SEL.......c.cceevrereriereeereeeseeesieeseseseeseeseseenesennens 2-1
211 PowerPC Registers with Implementation-Specific Bits.........ccoccovvenrivnncnnnne. 2-7
2111 Machine State REJISLEN ........cciiueirieireeriereet e e 2-7
2112 Machine Status Save/Restore REgIStEr 1........cccovveeeverereneeereeseeeseeseenens 2-8
2113 Processor Version REQISLEN ........cocoeieririerieireee e et 2-9
iv PowerPC 602 RISC Microprocessor User's Manual



CONTENTS

2114 BAT ROGISIENS. ...ttt vttt 2-9
212 PowerPC 602 Processor-Specific REQISIENS.......oovrrirrereereeseeseseee e 2-11
2121 Configuration REQISIENS ....ccuvvviiiirisese et 2-12
21211 Hardware Implementation Register 0 (HIDO) .......ccoveeinrinieinerinienee 2-12
21212 Hardware Implementation Register 1 (HID1)—PLL Configuration.....2-14
2122 PowerPC 602 Processor Memory Management Registers ..o, 2-15
21221 Dataand Instruction TLB Miss Address Registers

(] T ESSEE s N LY TS S [ 2-15
21222 Data and Instruction PTE Compare Registers (DCMP and ICMP)....... 2-15
21223 Primary and Secondary Hash Address Registers

(HASHL 8N HASH2) ......oooeeeeeeeeeeeseees s 2-16
21224 Required Physical Address Register (RPA).......ccccvivvviiniinninninsinsennnen 2-17
21225 RPA Register in Protection-Only Mode..........cccoevveeeninneecnecsieesinens 2-17
2123 ESA Supervisor ACCESS REGISLENS.........cvvrerieririrerierei et 2-18
21231 ESA Save and Restore Register (ESASRR) ......o.cvevrevireieneverieenenenienene 2-19
21232 ESA Enable Base Register (SEBR) (Protection-Only Mode) ............... 2-19
21233 ESA Enable Register (SER) (Protection-Only Mode) ...........cccveerveeee 2-20
2124 Miscellaneous PowerPC 602 Processor—Specific Registers..........ovvnene.. 2-21
21241 Floating-Point Tag Registers (SPand LT)......ccocvvvvviniininnennninesnnienens 2-21
21242 Timer Control RegiSter (TCR) ......cvevrreereiiireriereesesee et 2-21
21243 Interrupt Base Register (IBR) .......cccoviviviviisicecese e 2-22
21244 Instruction Address Breakpoint Register (IABR) .......cccccvcvvvviiniennnnnne. 2-24
213 Saving and Restoring FPRS and the FPSCR...........cccovevieinnnec s 2-25
214 Synchronization Requirements for SPRS........cccccocvvvvivevnnnsece e 2-26
2.2 Operand CONVENTIONS........ceiiieriereriesiese e sse e ssesseseesseseeses 2-26
221 Floating-Point Execution ModelS—UISA ..o 2-26
222 Data Organization in Memory and Data Transfers.........ccooeoveerennenneneene. 2-27
223 Alignment and Misaligned ACCESSES.......cccuiviiiiiiiiienisiesie e seeseeseens 2-28
224 Floating-PoiNt OPErand............ceoiiiiereirerieieinesieieere e 2-28
225 Effect of Operand Placement on Performance...........coceovveevvennenncncceenne. 2-29
23 INSLrUCION SEt SUMIMEAIY ..c.viviiiiiesiesiesese ettt s seesre e 2-29
231 ClasSeS Of INSITUCHIONS........cceiriiereiririeieene sttt 2-30
2311 Definition of Boundedly Undefined .............cccooeoiinninninec e 2-31
2312 Defined INSLrUCtioN CIaSS........c.coeiiieieriineniniee e 2-31
2313 Ilegal INSrUCLION ClaSS .......coveiieeeririseneee e 2-31
2314 Reserved INStruction Class..........covieerirrerne et 2-32
232 AdAressing MOES.........coviiiiiiiiii st snens 2-33
2321 MEMOTY AAArESSING.....ccvereerireeeirieeririesiereseseeseseeeseesresesseseeseseesesseessenenns 2-33
2322 MEMOIY OPEIrANGS......c.ooerereeireririerie ettt 2-33
2323 Effective Address CalCulation ... 2-33
2324 SYNCAIONIZALTON 1..viviiiiiisiesie et re e see s 2-34
23241 Context SYNCArONIZBLION. ........cccivereireriereeire e 2-34
23242 EXecution Synchronization ... 2-34
Contents v



CONTENTS

Paragraph . Page

Number Title Number

23243 Instruction-Related EXCEPLIONS .........cooevieevrereseneseseee e seee e 2-35
23244 Self-Modifying Code ReqUIreMents .........ccoeoverrerneseneseneseseeee e 2-35
233 INSIFUCEION SEL OVEIVIEW ...ttt s 2-36
234 POWErPC UISA INSIIUCHIONS......cviviiiieieeie et 2-36
2341 INteger INSIIUCLIONS.......veuiiieietc e 2-36
23411 Integer Arithmetic INSTUCLIONS ......ccveciiececesece s 2-36
23412 Integer Compare INSErUCHIONS.........covevreeerrieeseeseses e 2-37
23413 Integer Logical INSLIUCLIONS........c.voveeiririeerii st 2-38
23414 Integer Rotate and Shift INSIrUCIONS.........ccocvvviivinececeree e 2-39
2342 Floating-Point INSLIUCHIONS........ovviierieriesiesie e 2-40
23421 Denormalized NUMbDEr SUPPOIT..........cvoireriereinerieieene et 2-40
23422 IEEE Mode (FPSCRINI]T = 0) c.cciveeeeierenieieeserie e es 2-41
23423 Non-1EEE Mode (FPSCRINIT = 1) ....ceoirririeirnieieeneresieiee e 2-41
23424 Time-Critical Floating-Point Operations.............couoveinerenerenenenereenes 2-42
23425 Floating-Point Arithmetic INSLrUCtiONS........cccovviereresesese e 2-42
23426 Floating-Point Multiply-Add INSLIUCLIONS.......ccovrirenenineniesese s 2-43
23427 Floating-Point Rounding and Conversion INstructions............ccc.ovueeee. 2-44
23428 Floating-Point Compare INStrUCtionS.........ccccvvevevesesesesese e e 2-45
23429 Floating-Point Status and Control Register Instructions..........cc.ccoveene. 2-45
2.3.4.2.10 Floating-Point MOVeE INSLIUCLIONS.........cccovivereirieeieine i 2-46
2343 Load and StOre INSLTUCLIONS......c..couruiieeeiiieesiecsiesesie e 2-47
23431 Integer Load and Store Address GEneration .........ccocucvvenenenesesnneenens 2-47
23432 Register Indirect Integer Load INStrUCtioNnS..........ccvvvveeeeeinereneerinenenienee 2-47
23433 Integer StOre INSLIUCHIONS ......c.veeivieeeiereeec e e 2-48
23434 Integer Load and Store with Byte-Reverse Instructions.............cccceee.e.. 2-49
2.3.4.35 Integer Load and Store Multiple INStructions...........coeevveevvereseresnenns 2-50
23436 Integer Load and Store String INStructions...........cocoveevreeeveeesienenienene 2-50
23437 Floating-Point Load and Store Address Generation...........ccocvvvveneneenn. 2-51
2.3.4.3.8 Floating-Point Load INStrUCLIONS.........ccccvrieireerieerseneseneseseereseeeseenens 2-51
2.34.3.9 Floating-Point Store INSrUCLIONS .......c.ccvvvivereinerieeene e 2-52
2344 Branch and Flow Control INSrUCtioNS ..........ccvirrenncieieneeseeseseee e 2-53
23441 Branch Instruction Address CalCulation...........oeeerrrieenenenierenesenienene 2-54
23442 Branch INStrUCHIONS ......ccouieiriree e 2-54
23443 Condition Register Logical INStructions ..........ccocvvvvivvvninnnsinnesesenenns 2-55
2345 TraP INSEFUCLIONS.....eviveiesiesiesie sttt sttt see e sre e 2-55
2346 Processor Control INStrUCLIONS ...........cvieerenreree e 2-55
2346.1 Move to/from Condition Register INStructions.........ccccecvvevvcenieseseneenn 2-56
2347 Memory Synchronization Instructions—UISA ........ccccvvvvivennnnnnnnnienens 2-56
2348 Preferred NO-OpP INSIIUCHION.........coviveviieece e 2-58
235 POWEIrPC VEA INSIIUCHIONS.......citeueiieeiiecsiesesie sttt st 2-58
2351 Processor Control INStrUCHIONS ...........cvieirierinineeeseee s 2-58
2352 Memory Synchronization INStructions—VEA ... 2-59
2353 Memory Control INStruCtioNS—VEA .......coooececesesesese e 2-59
Vi PowerPC 602 RISC Microprocessor User's Manual



CONTENTS

2354 External Control INStrUCLIONS.........cc.eeviireeireee e 2-61
236 POWErPC OEA INSITUCHIONS......cveteieteererieieesesesieseseseseesese e eeseneseseeseneseseesens 2-62
2361 System Linkage INSITUCLIONS. .......viviiniiiresesesesie s 2-62
23.6.2 Processor Control INstructions—OEA ..........cccvveevviensieree e 2-62
236.21 Move to/from Machine State Register Instructions............ccoccevveeerienene 2-62
23.6.2.2 Move to/from Special-Purpose Register INstructions.............cc.ccevveenne. 2-62
2.36.3 Memory Control INStruCtioNS—OEA ...........ccccevieevrieerenere s 2-63
23631 Supervisor-Level Cache Management Instruction............cc.cceeovreeneee. 2-64
2.3.6.32 Segment Register Manipulation INStruCtionsS.........c..cvvvviinenennnnnenns 2-64
2.36.33 Translation Lookaside Buffer Management Instructions...........c........... 2-64
237 PowerPC 602 Implementation-Specific INStructions...........ccccevveveerennenee 2-65
238 Recommended Simplified MNEMONICS..........cvoviinivnieniennnenese e 2-71
239 Using the esa Instruction for Supervisor-Level ACCESS.......coouvvvvreevneeeerenne. 2-71
2391 €58/dSA INSIIUCHIONS. ..ot seenas 2-72
2392 ESA Supervisor-AcCess REQISIEIS .....ccviviviiiiiisise s se e see s 2-73
239.21 Enabling the €sa INSIrUCLION..........cooiiiiiiii e 2-73
23922 Executing the €5a INSLrUCLION.........ocvieirriereirree e 2-74
239.23 Returning to User-Level Operation...........ccocvvvviineninsnsnnnsnsesnsennns 2-74
2.3.10 Differences between Using the esa Instruction and Taking a System Call

EXCEPLION ..ottt 2-75

Chapter 3
Instruction and Data Cache Operation

31 PowerPC 602 Processor Cache Implementation OVENVIEeW ..........ccocvevverenieneenns 31
32 Instruction Cache Organization and CONtrol.............coeeirrnieinnenieie e 34
321 Instruction Cache Organi ZatioN...........c.ceerereerieierienrereee e 34
322 Instruction Cache Fill OperationS........c..cooviiiiiiinininese s seeses 35
323 Instruction Cache CONLIO .........c.ceevieririreeere e 35
3231 Instruction Cache INvalidation ............cccooeiieeiinnene e 35
3232 Locking the INStruction CaChe..........ccovvviiiiiiiinisn e 35
33 Data Cache Organization and CONtrol .........c.ccoevieeerenesienesesee e e seenas 3-6
331 Data Cache OrganiZation ...........coeeeeerenerenereneee et e et seee e 3-6
332 Data Cache Fill OperationS.......cccuuiiiiiiiiiniiesesesesese s e sse e e seeseessenes 3-6
333 Data Cathe CONLIO .........cuiireieieiirerieiei ettt 3-6
3331 Data Cache INValidation..........cccoeoiirriieee e 3-6
3332 Disabling the Data CaChe............cccvviviiiiiiiiiins e 37
3333 Locking the Data CaCh..........ccuieerireeiree e seenens 3-7
34 Basic Data Cache OPerations..........covueveirrrnreinrenieie e es 3-7
341 Data Cache Line-Fill Operation.........ccccuoiiiiieninnieninnnsnseseseseseeseseeseeseenes 37
34.2 Data Cache Cast-Out OPEration.........ccccuiirereneniesesesesesiesesiesseseesseseeseesseses 3-8
343 Cache BIock PUSh OPEration ...........ccovueveeirriereinniseenesesieee e 3-8
Contents Vi



CONTENTS

Paragraph . Page

Number Title Number

35 Data Cache TransaCtionS ON BUS.........cccoiueueiriiieieinisisieinesesiesee e seens 3-8
351 NONDUISt TraNSACtIONS.......ccui ettt seenes 3-8
352 BUFSE TranSaCHiONS......ccciuieriirieie ettt 3-8
35.3 ACCESS 10 Direct-Store SEgMENLS ........coviereeireeerieresieeseeseseseeseeseseeseseeseseeneas 39
36 Memory Management/Cache Access Mode Bits—W, I, M, and G...........ccoee..e. 39
36.1 Write-Through AttriDULE (W) ....eeeeecececsee e 3-10
3.6.2 Caching-Inhibited AtHBULE (1)....vcveeeeirer e 311
3.6.3 Memory Coherency AttHDULE (M) ...cccoveveiriieeiirieeeese s 311
364 Guarded AETHBULE (G) .....eeereereeieeirieiee et e 312
3.65 W, I, and M Bit COMDINGLIONS .......cccevireeiirieesieenereseseee e 312
3651 Out-of-Order Execution and Guarded Memory ..........cocoeevrnreenerennereenes 3-13
3.6.5.2 Effects of Out-0f-Order Data ACCESSES.........courvireriereririeesiesesiesesie s seenas 3-13
3.6.5.3 Effects of Out-of-Order Instruction FE{Ches ...........coceovveirenninninecne, 314
3.7 Cache Coherency—MEI ProtoCol ..........ccouvvieinnneinneecseses e 314
371 MEI State DefiNitiONS.......ccoirererieesieesieesieresie e e 3-15
372 MEI SEAE DIBGIraM.....c.eiieieeeiiririeieiere ettt 3-15
373 Compatibility With MESI ProtoCol ..........ccceoirrieieinnnieienseee s 3-16
374 Resource Collisions and RELES. ........ccoueoiirrinne e 317
375 Page Table AlIaSiNg......cccuiiiiiiiii s 317
3.7.6 MEI Hardware CONSIAEratioNS..........covvererereeerene e seeseseseses e saensseenesennens 3-17
3.7.7 COoherency PreCaULIONS..........cccouiriiriririee et 3-18
3771 Internal CoherenCy ParadOXES.........cocuverererieneniesiesiesiesesee e seeseeseeseeseeses 3-18
3.7.8 Load and Store CONErency SUMMEIY ........ccovvereireriereinenesresene e seseesesenes 3-19
3.7.9 AtomMiC MemOry REFEIENCES........c..ooiirei e 3-19
3.7.10 Cache Reaction to Specific BuS Operations.........cc.cuviviinenieninninnesesnneenes 3-19
3.7.11 Operations CausiNg ARTRY ASSEItiON ........coeeerrenreinirnreie e 321
38 Cache Control INSIIUCLIONS........ccoiieiieeirieesees st 321
381 Data Cache Block Touch (dcbt) INStruction ...........ceeevvveinvneincnnieeene 3-22
382 Data Cache Block Touch for Store (dcbtst) Instruction .........ccccceeeevieeeiencne 322
383 Data Cache Block Set to Zero (dcbz) INStruction ........cccvvvveveienennsnsnnenns 322
3.84 Data Cache Block Invalidate (dchi) INStruction...........ccevveveneeieneesseniesennns 3-23
385 Data Cache Block Store (dchst) INStruCtion ...........cccveeeverninnienec e 3-23
3.8.6 Data Cache Block Flush (dcbf) INSErUCtiON.........cccviviiinniniiniin e 3-23
3.8.7 Enforce In-Order Execution of 1/O Instruction (E1€10) .......cccccvvvvvreevreeinrennns 3-24
388 Instruction Cache Block Invalidate (ichi) Instruction...........ccccoveverrcreenne. 324
3.8.9 Instruction Synchronize (isync) INSrUCLION ..o 3-24
3.8.10 Synchronize (SYNC) INSITUCHION. .......evevireeriee e e seenas 3-24
39 Bus Operations Caused by Cache Control INStructions...........c.coveveerneeeinennns 3-24
3.10 BUS INEEITACE. ....cveeeieeteee e b e e e 3-25
311 MEI State TranSACiONS ......ecveveieeeerieerieseseesesre e es e e e 3-26

Viii PowerPC 602 RISC Microprocessor User's Manual



41
411
412
4.2
421
422
4.2.3
424
4.3
4.4
45
451
4511
4512
452
4521
4522
453
454
455
456
456.1
456.2
456.3
457
4571
4572

458
459
4.5.10
4511
45111
45112
4512
4513
4514
45.15

CONTENTS

Chapter 4
Exceptions

EXCEPION ClASSES.... vttt 4-2
EXCEPLION PriOMitiES. .. .c.ieeei ettt 4-7
Summary of Front-End Exception Handling ........ccccoovvvnivnienieninninnennnnnnninns 4-8
EXCEPLION PrOCESSING ....cvveveeiiieieiinesiieetse sttt st 4-9
Enabling and Disabling EXCEPLIONS........cccoeiieririerrierere e 4-14
Steps for EXCEPLioN PrOCESSING......civiiriririesesiesiesiesieseesieseeseesseseeseeseeseeseenes 4-14
SEtiNG MSRIRIT ..ttt e 4-15
Returning from an Exception Handler ... 4-15
[ (01005 RS V] (11 oo ORI 4-16
EXCEPLION LALENCIES ....ovevvieeeeceesesee et ee s saese s seenens 4-16
EXCEPtioN DEfINITIONS......coviveviireriereiee et 4-17
Reset EXCeptions (OX0L00) .....ccvevvriierieriesiesiesesenseesessessessessessessessessessessessesees 4-18
Hard Reset and POWer-On RESEL...........couvirieiinirenieict e 4-19
S i (== T 4-20
Machine Check Exception (0X0200)........ccccuivrvrerennnenenenesesesesseseesensees 4-21
Machine Check Exception Enabled (MSRIME] = 1) ....cccocvvvvvvninnineninnnn, 4-22
Checkstop State (MSRIME] = 0)...cvevevirererieriiresiereineseeieese s 4-22
DSI EXCeption (0X0300) .....couueuererererreererintenenesenieseseseseesenesesessenesessesenssesessens 4-23
IS EXCEPLion (OX0400) .......cceiviriiiiiiiiniesiesiesiesiesiesieseesieseessessessessessessessessessens 4-25
External Interrupt (OX0500)........cccrvrrereirmrrereinereeresinesesrerese s sesnenens 4-25
Alignment Exception (0X0600)..........cccceivieienmieieienesesesesesessesesesensens 4-26
Integer Alignment EXCEPLIONS .......coovviiiiiiiiiininese s 4-27
Page Address Translation ACCESS .........cueirieririrnierine st 4-28
Floating-Point Alignment EXCEPLIONS...........cccovviviiieiiesesese e sesese e 4-28
Program EXception (OXO0700) .......cocvrirenenenennsesesesiessesseseessessessessesseseesees 4-29
| EEE Floating-Point Exception Program EXceptions..........c.cocceevnvevencne. 4-29

Illegal, Reserved, and Unimplemented Instructions
Program EXCEPLIONS.......ccccuiiiiiiiiiese s sie st see e sseseeseeseas 4-30
Floating-Point Unavailable Exception (OX0800) ..........ccrrereerirerermerenerereenene 4-30
Decrementer Interrupt (0X0900) ........cereeeereeererrerienesiereree e seees e seeseseenas 4-30
System Call Exception (0X0C00)......ccuiurerererenenieseneeseeseeseesseseesseseesseseenes 4-31
Trace EXCeption (OXOD00) ........ccuiererererrereereseesesieneseesesseseesessesessesessessessssnnens 4-31
Single-Step INstruction TraCe MO ..........cvevveireriereinrierece s 4-32
Branch TraCe MOGE.........cocireiiieerieeesteeee e e 4-32
Instruction TLB Miss Exception (0X1000) .......cccovreererernneseenenreseeesensesenens 4-33
Data TLB Misson Load Exception (OX1100).........covrrererermrmerinenesmereenernenens 4-33
Data TLB Miss on Store Exception (0X1200).......cccuuevivrenernnennsnsesnsnnes 4-34
Instruction Address Breakpoint Exception (0X1300)........cccvcvreeereerrenrerenens 4-34

Contents



CONTENTS

Paragraph . Page
Number Title Number
45.16 System Management Interrupt (0X1400).........ccervrereeereeereerernresenesesenseseens 4-36
45.17 Watchdog Timer Interrupt (OX1500) ......cevueeereererenenereee e seeneseenens 4-37
45.18 Emulation Trap Exception (0X1600) .......cc.ccuiviriiiiiinninninnnnenesesesesseseseens 4-39
Chapter 5
Memory Management

51 MIMU FEALUIES. ... .oieeeieiiiesieeie ettt n e s nesneenreens 53
511 Overview of PowerPC 602 Processor-Specific Features.........coceovveevveccrienne 5-6
5111 Instruction-Related Protection Bits—NE and SE ... 5-6
5112 ESA Access and Memory Management........c.ovveveerrmereeneneniereneneneereenenens 5-6
5113 Protection-Only Mode OVEIVIEW .........ccceeeirriieereerieneee e 5-8
512 MEMOY AQUrESSING .....ceiiiiiiiiiiiisise st sre e sresreses 5-8
513 MMU OFganiZatiON ........ceeeuereeeiieeseneseseseseeseseeesesessesesseseesessesessessssesessesseses 5-8
514 Address Tranglation MeChaniSMS...........cccoeoeirrrerneree e 5-13
515 Memory Protection FaCilitieS.........cuvviiiiiiiiiiiiiic s 5-15
516 Page History INfOrMation ............cccvieevieninineisee e e e seene e 5-17
517 Genera Flow of MMU Address Translation..........coccoeeeeieeereneneneneneneneenes 5-17
51.7.1 Real Addressing Mode and Block Address Trandation Selection............. 5-17
5172 Page Address Translation SElECtioN.........ccccvvveireciree e 5-18
518 MMU EXCEPLIONS SUMIMEIY ......cvviviereierieresier et sesnesese s 5-20
519 MMU Instructions and Register SUMMEIY..........coovviviviinnieninnnsesnsesnsenens 5-23
52 Real Addressing MOOE ..o s see s 5-25
53 Block Address Tranglation .........cccoeeeirrireisee e 5-26
54 Memory Segment MOEL ........cccviiiiiiiiiii i 5-28
54.1 PTE Format in the PowerPC 602 MiCroproCESSOr ........c.cuvvriiesineneseseneens 5-28
54.2 Page HiStory RECOIAING.........curiiereirerinieiie et 5-29
5421 S = 1= 0100 o I 2] ST STRTSTPN 5-30
5422 ChanGEd Bil.....c.couiueiiirerietcererie ettt s 5-31
5423 Scenarios for Referenced and Changed Bit Recording .........coocvevvevvevenne. 5-31
54.3 Page MemOory ProteClioN ..........ccccviviiieieiie e se e see e e 5-32
544 TLB DESCIPLION . ..etitiiesiesiesiesie e ie st e te st seeste st seeseesteseeseeseessesseseans 5-33
54.4.1 TLB OrQaniZatioN........c.ceuiueueeinererieriesesieree st sesnenens 5-33
5442 TLB Entry INValidation ..........cccoeeeienninneseee e 5-35
545 Page Address Trangalion SUMMETY ... sesesesessessens 5-35
55 Page Table Search Operation ... 5-37
551 Page Table Search Operation—Conceptual FIOW ..........ccccooeireiiieicieeenene 5-37
552 Table Search Operation with the PowerPC 602 MiCroprocessor.........cc.vein. 5-40
55.2.1 Resources for Table Search OpPerations........c.ccvvevvevseneseneseneseseeeseens 5-40
55211 Dataand Instruction TLB Miss Address Registers

(DMISS AN IMISS)....cviiiiiriirieiinirerieiee et s 5-43
55.2.1.2 Data and Instruction PTE Compare Registers (DCMP and ICMP) ....... 5-43
X PowerPC 602 RISC Microprocessor User's Manual



CONTENTS

55213 Primary and Secondary Hash Address Registers

(HASHZL @and HASH2) ...ttt s 5-44
55214 Required Physical Address (RPA) REQISIEN.........ccvvvviviviininnnnnsnnienens 5-44
55.2.2 Software Table Search Operation ... 5-45
55221 Flow for Example Exception Handlers...........cccooeoieininniennc e 5-46
55222 Code for Example Exception Handlers.........ccoovovvvninnninnininninnnnnnenns 5-50
55.3 Page Table UPAaLeS........c.covveiieerrinineeesee e e ee s sesseseenas 5-58
554 Segment RegiSter UPateS ........ocovieeiieeiereeereee e 5-58
5.6 Protection-Only MO ........ccuiiiiiiresiesese et ses 5-58
56.1 Use of Trandlation Resourcesin Protection-Only Mode........cccccvvevnevnenee. 5-59
56.1.1 TLB Missesin Protection-Only Mode...........cvvvrereinnneinenneeenenene 5-60
56.1.2 Access Protection in Protection-Only Mode........cccovvevenennnnnesnsenennen, 5-61
5.6.1.3 Required Physical Address Register in Protection-Only Mode................. 5-61
56.2 ESA Enable Protection (Instruction Space Only) ........ccccceveeinrneenenennenee 5-62
5.6.3 Trandation Flow in Protection-Only MOGE.........cccoovviiiiieninnnnesesesesnnenns 5-63

Chapter 6
Instruction Timing

6.1 INSLruCtion TiMIiNG OVEIVIEW ........ccoveviiieiieieiresieie sttt 6-1
6.2 PowerPC 602 Microprocessor Pipeline Organization............ccccccveeevennennenenne. 6-4
6.3 TimMIiNG CONSIAEIELIONS .....ccueiiiiiiiiiiiie st sre st sreseens 6-7
6.3.1 INSLruction FELCh TiMING.....c.coiiieiiiec e 6-8
6.3.1.1 CaChe ArDItraHION.......cueeeieeee e e 6-8
6.3.1.2 CAChE Hit..oece bbb b b 6-8
6.3.1.3 CaChE MISS ...ttt e 6-10
6.3.2 Instruction Dispatch and Completion Considerations..............coeeeererenrereenn 6-11
6.3.3 Rename RegiSter OPEralion ......ccocuvviiiiiinesesesesesesesese e sse e sseseessesseses 6-12
6.4 EXECUtiON UNIt TIMINGS ...oieeieieireee e seeseesees s seesesteseseses e saeseseesessenens 6-12
6.4.1 Branch Processing Unit EXeCUtion TiMiNg.........cccovrereinnneinenenereenennenns 6-12
6.4.1.1 (212101 o e o ] oo AR 6-13
6.4.1.2 Static Branch PrediCtion.........cceininecnesieecseseeie s 6-14
64121 Predicted Branch Timing EXamMples ..........cceovreeinnneinnenece e 6-15
6.4.2 Integer Unit EXECUtION TiMING ....ooviviiiiieiesesesesieseseseseese e ssessesessseseens 6-16
6.4.3 Floating-Point UNit.........cccooiiinininininesesese s s seeseessesenseas 6-16
6.4.4 Floating-Point Unit EXeCUtion TimMiNg.........cccovereinimneinnneine e 6-17
6.4.5 Load/Store Unit EXeCUtion TimMiNG.......cccovviienienieninneneseseseseseseeseeseesennes 6-18
6.5 Memory Performance CONSIAEralionS..........cuuurereneneneneneseseseseeseeseesseseenees 6-18
6.5.1 CopY-BaCk MOUE.......c.ciriieriireriie e 6-18
6.5.2 Wte-Through MOGE.........ccccviiiiiiie e 6-19
6.5.3 Caching-1NNiDITEd ACCESSES.....ccuiirieriiriesie et 6-19
6.6 Instruction Scheduling GUIEIINES ...........ccvirreinie e 6-20
Contents Xi



CONTENTS

Paragraph . Page

Number Title Number

6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements.................. 6-20
6.6.1.1 Branch Resolution Resource REqUIFEMENS...........covvreirrnerereneneereenennns 6-20
6.6.1.2 Dispatch Unit Resource REQUIFEMENLS........ccvivvererienienesiesieseeseseeseeseeses 6-21
6.6.1.3 Completion Unit Resource REQUIFEMENES........ccoevveerereseneseneeeseeesennens 6-21
6.7 Instruction Serialization MOUES...........coorireiiee e 6-21
6.7.1 Completion SErialiZatioN........c.cuiviiiiniieiie e 6-21
6.7.2 DispatCh SerialiZatioN.........ccvvueererieeseeseree s see e e seeseseeneas 6-22
6.7.3 Refetch SerialiZation ... 6-22
6.7.4 FPU SerialiZatiOn........ccoiieieeeinerieieiene ettt 6-22
6.8 INStruction Latency SUMIMEIY .......c..coiviiiininininesiesie s sie s see s seeseeseeseeseesenseens 6-22
6.8.1 BPU INStruction TIMINGS.....c.cveruereirerenieiesesiereesesee e es 6-23
6.8.2 Integer Unit INStruction TiMIiNGS.......cccovivieieiinnieieiesesese e sseseseseesnens 6-23
6.8.3 Synchronization INSIFUCLIONS. .......civiiiiiiiine e 6-26
6.8.4 FPU INStrUCtion TIMINGS......cccveeriereineresresie s es 6-26
6.8.5 Load/Store Unit INStruction TiMIiNgS.......c..ccoovivieiiniennniesiesesesesesesesennens 6-28
6.8.6 Effect of Operand Placement on Performance..........ccocvviniiineniennnennnns 6-30
6.8.7 Effect of Floating-Point Exceptions on Performance...........cccoveevnrniceeene. 6-31

Chapter 7
Signal Descriptions

7.1 SigNal CONFIQUIBLTON. ......ceiviereireeie ettt er e 7-2
711 Time-Multiplexed SyStem BUS...........ccovierererrineeesieeseeseese s seeseseesesennens 7-4
7.2 SigNal DESCIIPLIONS......cviertierierieie ettt st ae e see et e st se e seenas 7-4
721 BUS ATDItration SIgNaIS ......ccoueiiieiiisieee e s 7-4
7.21.1 BUS REQUESt (BR)——OULPUL ........veeveeeeeeeeseeecesssesssseesessesssssessssssssssssesssssnes 7-5
7.2.1.2 BUS Grant (BG)—INPUL ........couoveeeirereiereeieeeeieeeeseeessee e sssesssssesessessssessssesns 7-5
722 TrANSFEr SEAT (TS) .ouucvucvecieeieereieie sttt s sttt 7-6
7.22.1 Transfer Start (TS)—OULPUL........c.ovurvereereerereessesssssesessssessesssssessesssssssssssssens 7-6
7222 Transfer Start (TS)—INPUL ....c.cvveveeceeeceeeceeee et sesseseas 7-6
7.2.3 Address Transfer SIGNaIS.......ooeireiieeierere e 7-7
7231 Address SIgNalS (AD—A3BL) .....ccooeirerreeseeseres et seenas 7-7
72311 Address Signals (AO—A3L)—OULPUL ......c.coeeereereriererieeenee e 7-7
72312 Address Signals (AO—A3L)—INPUL ......cceereirieerenreeee e 7-7
72313 Prefetch Line-Fill Address (PFADDRO-PFADDR20)—Outptt............. 7-8
724 Transfer AttrbULE SIgNaAIS ......ooveiiee e 7-8
7241 Transfer TYPE (TTO-TT4) ..o et e 7-8
7.24.1.1 Transfer Type (TTO=TT4A)—OULPUL........ccoceevrereriererirneneeseeeseeeseneseenenns 7-9
72412 Transfer Type (TTO-TT4A)—INPUL ..o s 7-9
7242 Transfer Size (TSIZ0-TSIZ2)—OULPUL........cueueireriririnerineene s 7-10
7243 Byte ENable (BEG-BET) ......cucuiiriieieirerieieere ettt 7-11
7244 Transfer BUurst (TBST)....coueirrieiiirieierese e 7-12
Xii PowerPC 602 RISC Microprocessor User's Manual



CONTENTS

72441 Transfer Burst (TBST)—OULPUL .........courvevirirerieriinereeieere e 7-12
72442 Transfer Burst (TBST)—INPUL.......cccorriieireeereere e 7-12
7.245 Transfer Code (TCO-TCL)—OULPUL......c.courerueueirererieeneresieiee e seseeeene 7-12
7.24.6 Cache INNiDit (CT)—OULPUL .......cvueveveerrercieieiisesee s ssessessssas 7-13
7.24.7 Write-Through (WT)—OULPUL ........ceeveeeeeceeeeeereeeeseeees s tessesse s sessesseneas 7-13
7.24.8 GIODE (GBL) ..ottt sttt sansaees 7-13
7.24.8.1 Global (GBL)—OULPUL...........cvvrerecreresiseeisssesse s sessessss e sssssesss s 7-13
72482 GlobEl (GBL)—INPUL......oocveeeereeeeeereeeeeteeteesesee e sestessessesse s s senenes 7-14
7.25 Address Transfer Termination SIgNalS..........ccoevviviiiiiiiiiiniee s 7-14
7251 Address Acknowledge (AACK)—INPUL ........ccoeinrneinineeenesiereeseens 7-14
7.25.2 Address RETY (ARTRY) ...cocveueirereeieinerieieenesesieseneseseesenesesessenesesessesesesens 7-15
72521 Address Retry (ARTRY)—OULPUL .....ccoveveererieeeereririeene s sesieeenees 7-15
72522 Address Retry (ARTRY)—INPUL.......ccoieirirrieriinereeine s 7-17
7.2.6 Data Phase SigNal.......coceueeeriiirieieresieiee et s 7-19
7.26.1 BUSBUSY (BB)....oucvuieiicicieiiesscete sttt 7-19
7.26.11 BUS BUSY (BB)——OULPUL .....vevreereireenenrseessseesssssssssessssessssessssssssssssseens 7-19
7.26.1.2 BUS BUSY (BB)—INPUL ....ooeeeecteereeeeceeec ettt senanee 7-20
7.2.7 Data Transfer SIgNalS......ccuiviiiiiiiisisise s ses 7-20
7271 Data Signals (DO-DB3) .......cerirurreririririeiine et 7-20
72711 Data Signals (DO-DB3)—OULPUL........ccceuererrireriereeerieesiereeeesesee e seeneas 7-21
72712 Data Signals (DO-DB3)—INPUL .......ccccviiiiiinininisnsesese e seeseseeseeseas 7-21
7272 Target Data Bus 32 (T32)—INPUL......ucveieieeicieieseieee st 7-22
7.2.8 Data Transfer Termination SIgNalS.........ccuoeeierrinnenine e 7-22
7.28.1 Transfer AcKnowledge (TA)—INPUL ..o esesseeseenes 7-22
7.28.2 Transfer Error Acknowledge (TEA)—INPUL .........ccocveverreerreeeresiesinians 7-23
7.2.9 SYStEM SEAEUS SIGNAIS ...ttt 7-23
7.29.1 INEFPUPE (TNT)—TNPUL ©.vocvieeceeceeeeeesses st ssesss st sstsssssss s tessessans 7-23
7.29.2 System Management Interrupt (SMI)—INpUL.........c.ccoevvevrrevreieresiesieians 7-24
7.29.3 Machine Check Interrupt (MCP)—INPUL .......cc.oveeveereceereereeeeseesesiessesseneas 7-24
7.29.4 Checkstop Input (CKSTP_IN)—INPUL.......ccrirmiriniieeseesieseseeseee s 7-24
7.295 Checkstop Output (CKSTP_OUT)—OUPUL .......coeerererreriererierienereereees 7-25
7.29.6 S < IS o 7= ST 7-25
7.296.1 Hard Reset (HRESET)—INPUL ........ceioirinieineriiecne e 7-25
7.296.2 Soft ReSet (SRESET)—INPUL.......corveereeerereenesesesseesesessesssesssesssessneseons 7-25
7.29.6.3 Reset Out (RESETO)—OULPUL.......ccueueirerireeeireresieeeneseseeseeseseeeeneseseeeens 7-26
7.29.7 Quiescent Request (QREQ)—OULPUL.....c..oueveirerirrerereririeiene s seseeeenees 7-26
7.29.8 Quiescent Acknowledge (QACK)—INPUL ......cccoveveirrinieinerneee s 7-26
7.29.9 Time Base Enable (TBEN)—INPUL........ccccoreirieierieneneee e 7-27
7.2.10 JTAG/Scan INterface SigNalS......ooeveererenesesese e 7-27
7.2.10.1 Test Data Output (TDO)—OULPUL ........eeveuireiereeirererieiee e 7-28
7.2.10.2 Test Data Input (TDD)—INPUL .....c.ooveeieiee e 7-28
7.2.10.3 Test ClOcK (TCK)—INPUL ..ot e 7-28
7.2.104 Test Mode Select (TMS)—INPUL .....ccoovreeireeer e seenas 7-28
Contents Xiii



CONTENTS

Paragraph . Page

Number Title Number

7.2.10.5 Test RESEL (TRST)—INPUL .....vviieecteee ettt 7-28
7.2.11 (@100 o 7= 3RS 7-29
72111 System Clock (SY SCLK)—INPUL ......cerirerieiiirerieieeneresieesese e 7-29
7.211.2 Test Clock (CLK_OUT)—OULPUL.......ccvevieireiereeinerieieiinesesieiee e 7-29
72113 PLL Configuration (PLL_CFGO-PLL_CFG3)—Input.......cccceererrererurrenne. 7-30
7.2.12 Power and Ground SIgNalS.......c.ccuiviiiiiiiinninieese s 7-30

Chapter 8
System Interface Operation

8.1 PowerPC 602 Microprocessor System Interface OVerview ............ccoevveenenenes 81
811 Operation of the Instruction and Data Caches............ccoevrererenrennie e 8-2
8.1.2 32-Bit DataBUS MOGE........cociiirieiierieice et 85
8.13 (ot 8-5
814 Operation of the System INterface..........ocoovveoienrinne e 85
8.2 MemMOry ACCESS PrOtOCOL........ccccviiiiiiiiiiesiisie sttt s see s 8-6
8.3 AdAress BUS PhaSE........ccoouiieiiiriiieise ettt e 8-7
831 210y 4 o] (= (o o ST 8-7
8311 Bus Arbitration—Nonparked Case ........cccvervrenenenesesesese e sese e 8-9
8312 Bus Arbitration—Parked Case...........cccoreieininieinisieee e 8-10
8.3.2 Address Transfer SUDPhEASE ... s 811
8321 Address Phase Signal ConfigurationS ..........ccccuuvvviennninnnnnnnnesesesnneens 8-13
8.3.22 Transfer AfHDULES ..o e 8-14
83221 Transfer TYPe ENCOAINGS .......cevrriereinerinieie e 8-15
83222 Transfer Size and BUrst Ordering.......c..coovvviviienieninnnninsiesnsnsesnseneens 8-16
83223 ATTGNMENT ...t 8-18
83224 LI 05 1 SO0 o L 8-20
83225 Address/Transfer Attribute SUMMArY .......cccceevvvnienieninninsesenese e 8-21
8.3.23 Address Phase TermiNation.........cccoeerireireeneeseesieseeie e 8-22
8.3.3 D 1 1S SR 8-23
8331 Dt B = = SO STR 8-23
8.3.3.2 Data Phase TErmMIiNation .........ccoiveiieiieeneneseseseee e 8-24
8.3.33 Normal Single-Beat TermMiNation ...........coeeirrinieinnnieine e 8-24
8.4 Memory Coherency and BUS ProtOCOL...........c.cccvvivieieiiie e sie e 8-25
84.1 Effect 0N Read OPerationS....... ..o siessessesssseeseens 8-25
8.4.2 Qualified SNOOP CONAITIONS........cueiririereeiririreere et 8-26
843 INtErNal SNOOP SOUICES......couiierueieeierieesteesiereete et seeae et e st se st e s seeneseeneas 8-26
844 Reaction on Qualified SNOOPS........cuuiiiiiiiiiiiini e 8-26
8.45 SPECIAl INSTUCLIONS ...ttt e 8-27
85 BUS TimiNg EXAMPIES ......c.ooeiieeeieeriereeiee et 8-28
85.1 64-Bit Data Bus Mode BasiC Transactions ...........ccoeeveereeenienenieneneneseeneenes 8-29
85.1.1 Nonburst Read Transaction—~64-Bit Mode ...........ccoveinrnieinnenieeienenns 8-29
Xiv PowerPC 602 RISC Microprocessor User's Manual



CONTENTS

85.1.2 Burst Read Transaction with a Single-Cycle Address Phase—

B4-Bit MOE......cuieieeeeie ettt st st 8-31
85.1.3 Burst Read Transaction with a Single-Cycle

Address Phase/Shortest Data Phase—64-Bit Mode...........c..ccevvveerinee. 8-32
85.14 Burst Read Transaction with a Multicycle Address Phase—64-Bit Mode8-33
85.15 Nonburst Write Transaction—~64-Bit Mode............ccccoerrereiienenenenicne 8-33
85.1.6 Burst Write Transaction—=64-Bit MO ..........ccoveenirneininneeeseseiees 8-34
85.1.7 Slower Burst Write Transaction—~64-Bit Mode...........cccoovireneicieicnnens 8-36
85.2 32-Bit Bus Mode BasiC TranSaCtions............cueeereeeriererienesieseeeseeeseeeseenenne 8-37
8521 Single-Beat Read Transactions—32-Bit Only .........cccveevvvrnvneeseiesnnns 8-37
8522 Double-Beat Read Transactions—32-Bit ONlY .........ccccoeverneeeineneerenns 8-38
85.2.3 Burst Read Operations—32-Bit........ccccoiviiviiiiiniiniinsinsnsese e 8-39
85.24 Burst Read Transaction with a Multicycle Address Phase—32-Bit Mode8-40
85.25 Write Transactions in 32-Bit MOUe .........cccovreireire e 8-40
85.251 Fastest Single-Beat Write Transaction—32-Bit Mode...........cc.ccceveenee. 8-41
85.25.2 Fastest Double-Beat Write Transaction—32-Bit Mode Only................ 8-41
85.253 Fastest Burst Write Transaction—32-Bit Mode..........ccccoeovveeiieecrinnene 8-42
85.3 CONSECULIVE OPEIAiONS ....veveieiesiesiesiesiesie e siestestesteseste e ste e sseseessessesseseenes 8-43
8531 Consecutive Nonburst Write-Read Transaction ...........cccoeevereeneiesieens 8-43
85.3.2 Consecutive Nonburst Read-Write TransaCtion ...........cccoeeeeereereienenens 8-44
8.5.3.3 Consecutive Burst Write-Read TransaCtion..........ccoceeeveeeienenenncseieninens 8-45
8534 Consecutive Burst Read-Write TransaCtion..........coevvererensineeneienieens 8-46
854 SNOOPING +.veeterereeeserier ettt ettt b bt b bbbttt b bt e 8-47
8.5.4.1 Fastest Burst Write Transaction with Asserted GBL Signal...................... 8-48
854.2 Address Retry During 602 Read Transaction—

Single-Cycle Address Phase ... 8-49
8.54.3 Address Retry During 602 Read Transaction—

Multicycle AdAress Phase.........ccovveriirniereineneiecne s 8-50
8544 ARTRY During Other Master Read Transaction—

Single-Cycle AdAress Phase ... 8-51
8545 ARTRY During Other Master Read Transaction—

Multicycle Address Phase..........cooeiierienerienee e 8-51
8.5.4.6 Snoop Hit—Write-Back TranSaCtion..........cccvvvvvninnnnneseseseseseeseesenes 8-52
8547 Injected SNOOP TIMINGS ....veveriierieriireier ettt 8-54
854.7.1 First Injected Snoop in the Injected Snoop Window ...........cccccceeeeereenee 8-54
85.4.7.2 Last Injected Snoop in the Injected Snoop Window............cceevvvrvnennne. 8-55
855 Address-Only TranSaCliONS.........ccoviervrererereeireeeseeeseesesesessesesesseseseesessenens 8-56
8551 Single-Cycle Address-Only Transaction ..........coccceeeeeeererensenneseereens 8-56
8.5.5.2 Multicycle Address-Only TranSaCtion ..........cccvvvvieninsennsiesiesieseseseenes 8-57
Contents XV



CONTENTS

Paragraph . Page
Number Title Number
Chapter 9
Power Management

9.1 DynamiC POWEr ManagemENt ...........cuoireriereinmnieieineseeresese e sesnenee e 9-1
9.2 Programmable POWEr MOGES..........ooiirriieeseereereere e 9-1
921 Power Management MOOES ..o see s seas 9-2
9211 Full-Power Mode with Dynamic Power Management Disabled.................. 9-2
9212 Full-Power Mode with Dynamic Power Management Enabled................... 9-2
9213 DOZE MOUE......ceeiiieeeeiees ettt b e et 9-3
9214 NN o T oo 1= S 9-3
9.2.15 SIEED MOUE. ...ttt 9-4
922 Power Management Software ConSiderations...........ccocvuviviieneninnienesnsnnenens 9-4

Appendix A

PowerPC Instruction Set Listings

Al Instructions Sorted by MNEMONIC........c.ccviieuinirneiie s A-1
A2 Instructions Sorted DBy OPCOTE ........cccruirruirieirieereesie e A-9
A3 Instructions Grouped by Functional Calegories. .........cocuurireereierenenereneneenes A-17
A4 INstructions Sorted By FOMM ..........cvieiiireree e A-27
A5 INSLrUCEiON Set LegeN.......ccoioeeeeeeee e A-38

Appendix B

Instructions Not Implemented
Appendix C
Boundary-Scan Testing Support
Cl Boundary-Scan Interface DESCription ..o C-1
Cl1 BouNndary-SCan SIgNalS .......cuovieriirniereinseeene e C-1
C.lz2 Boundary-Scan Registers and Scan Chains............ccoverrennerieiesenesenesienenne Cc-2
c.l21 BYPaSS REQISIEN .....veieieieieriesie ettt sttt sttt C-2
Cl22 Boundary-Scan REQISLENS ........cuiiieirriieiee et C-2
C.123 Compliance-Enable SIgNalS .......coceeieeeriererre e e C-3
C.13 INSITUCLION REGISLEY ...vvviiiiiiiecie s C-3
Cl4 TAP CONFOIEN ...ttt e C-3
C2 Unimplemented |EEE 1149.1 FEAIUIES........cccovireririneriereinesiereeene e sesnenenees C-3
C3 Boundary-Scan INSITUCHIONS .......ccvviiiiiiiinse e C-4
Glossary of Terms and Abbreviations
Index

XVi PowerPC 602 RISC Microprocessor User's Manual



ILLUSTRATIONS

Figure . Page

Number Title Number
1-1. PowerPC 602 Microprocessor BIock Diagram..........ccceveerervreeerereseereseneseenenns 1-6
1-2. PIPEliNE DIagram ......c.cooiiieiiiece e e 1-7
1-3. PowerPC 602 Microprocessor Programming Model—Registers..........ccou.... 1-19
1-4. (@ 11T @0 o (o 1-27
1-5. SYSIEM INEEITACE. ..ot 1-36
1-6. PowerPC 602 Microprocessor Signal GrOUPS .......ccuvereresesesesesesessesessenes 1-39
2-1. PowerPC 602 Processor Programming Model ...........cccoevvivneivneeseesenenees 2-3
2-2. Machine State Register (MSR) ..o 2-7
2-3. Format of Upper BAT Registers—32-Bit Implementations............ccccvevvevinnene 2-9
2-4. Format of Lower BAT Registers—32-Bit Implementations...........cc.ccoevveeneniene 2-9
2-5. Hardware Implementation Register 0 (HIDO) .......ccccuovrrieinrneiineneeeseneene 2-12
2-6. HID1—PLL Configuration REJISLEN........ccocereriereieriese e e e e e 2-14
2-7. DMISS and IMISS REQISIEIS......cueuireerieririririeienesisieiee et 2-15
2-8. DCMP and ICMP REGISLENS.....c.veveeiereieiiiririeiee st 2-15
2-9. HASH1 and HASH2 REQISLENS......c.ooveeeeeieririeeene it 2-16
2-10. Required Physical Address Register (RPA)—Default Configuration.............. 2-17
2-11. RPA for ITLB Loads—Protection-Only MOde............ccveinrneininneiineneenee 2-18
2-12. RPA for DTLB Loads—Protection-Only Mode.........ccccceevvivreivnesenesesnnenns 2-18
2-13. ESASRR—ESA Save and Restore REQISIEr .......cocvvvvererenenienienenie e 2-19
2-14. ESA Enable Base Register (SEBR) .......ccooviveiniiiicirsece e 2-19
2-15. ESA Enable REGISIEr (SER)...ccciurueuirererieteniresieeenesesietee et seseseeneseseeseneseseseens 2-20
2-16. Timer Control REGISLEr (TCR)...ocviviiriiiiisise e sie e see s seeseas 2-21
2-17. INErTUPL BaSE REGISIES .....vvieieeeieiire ittt 2-23
2-18. Instruction Address Breakpoint Register (IABR).......cccooeiiererenneneseeeeeee 2-24
3-1. PowerPC 602 Processor Instruction and Data Cache Organization.................... 31
3-2. Double-Word Address Ordering—Critical Double Word First.........c.c.cceuevenee. 39
3-3. MEI Cache Coherency Protocol—State Diagram (WIM = 001).........cccccueneeee. 3-16
3-4. Bus Interface Address BUFFEN'S..........ooiireineireneneseee e 3-26
4-1. Machine Status Save/ReStore REGISLEr 0.......ccovevveevieeeseeseree e e 4-9
4-2. Machine Status Save/Restore REGISLEN L ........ccccvvvvereinrnreinereeeee e 4-9
4-3. Machine State RegiSter (MSR) ......cceoeierieresesesesie e se e 4-11
4-4, RESEL SEQUENCE ...ttt et b e r e e nre e 4-18
4-5, Timer Control REQIStEr (TCR).....covvveviireriereirerieieese s 4-37
5-1. MMU Conceptual Block Diagram—32-Bit Implementations............cc.ccceeee. 5-10
5-2. PowerPC 602 Microprocessor IMMU Block Diagram ........c.ccoceveveneneneneens 511
5-3. PowerPC 602 Microprocessor DMMU Block Diagram...........cceevveeenenennene 5-12

Illustrations XVii



ILLUSTRATIONS

Figure . Page
Nt?mber Title Numbger
5-4. Address Trangation TYPES ......c.vcireriereireirereiresieieiese et ier e 5-14
5-5. General Flow of Address Trandation (Real Addressing Mode and Block) ..... 5-18
5-6. Address Tranglation with Segment DESCIiPLOr ........c.cuvvvrerenerienieseseseseeseenens 5-19
5-7. Flow for @aBAT Array Hit .....cccv et 5-27
5-8. Page Table Entry Format—PowerPC 602 ProCeSSOr .........c.cccvveeeresesesieneenns 5-28
5-9. Segment Register and TLB Organization...........cocvvviviininninninninsnsesesesnnnnns 5-34
5-10. Page Address Translation Flow for PowerPC 602 Processor—TLB Hit.......... 5-36
5-11. Primary Page Table Search—Conceptual FIOW ..........cccoevvricininnieiinenenes 5-39
5-12. Secondary Page Table Search Flow—Conceptual FIow .........cccccoevvivviviiiinnnne 5-40
5-13. Derivation of KEY bit fOr SRRL .......cceiriirieiniiece e 5-42
5-14. DMISS and IMISS REQISLEN'S. .......eoereeeeeireeeesieesieesenesie e ee e ne e seseeseenas 5-43
5-15. DCMP and ICMP REGISLENS.....c.ccueuieerieieirinieiee sttt st s 5-43
5-16. HASH1 and HASH2 REQISLENS.......c.covierieiiiririeeee sttt 5-44
5-17. Required Physical Address (RPA) Register—Default Configuration.............. 5-45
5-18. Flow for Example Software Table Search Operation..........ccccvcvvvvviiviivsenennn 5-47
5-19. Check and Set R, C Bit FIOW .......ouciiiiiieiiiierieie et 5-48
5-20. Page Fault SELUP FIOW .......c.cviiieie e 5-49
5-21. Setup for Protection Violation EXCEPLIONS ........c..cveviviiviieninsniese e 5-50
5-22. TLB Lookup Operation in Protection-Only Mode..........ccoouveviininiennninnnnnnen 5-60
5-23. RPA for ITLB Load Operationsin Protection-Only Mode............c.coevevrernnnee 5-61
5-24, RPA for DTLB Load Operations in Protection-Only Mode.........c..ccccceevrvenene. 5-62
5-25. ESA Enable Base Register (SEBR) .......cccovririniineinre e 5-62
5-26. ESA Enable REGISLEr (SER).....ccuvveeiriririerieririetet st 5-63
5-27. Tranglation Flow in Protection-Only Mode..........ccccoiirninniieeneeseseneene 5-64
5-28. Protection Checking with Key = 0in Protection-Only Mode. .........c.ccccvvveene. 5-65
6-1. INSrUCtiON FIOW DIagram ......c.cccoveviiierieriisesieieesesesresee st 6-2
6-2. Pipelined EXECUtiON UNit.........ccoiiiiiee e 6-3
6-3. Pipeline Diagrams for the PowerPC 602 Processor Execution Units................. 6-5
6-4. Instruction Timing—Cache Hit ..........ccccvieeiiinniree e 6-9
6-5. Instruction TimiNg—Cache MiSS........ccoiieiieirereree s 6-10
6-6. Branch INStruCtion TimMiNgG......coeceeereriesesesesiesiessesse e sse e seessessessessessessessenes 6-15
6-7. [ O I =] oo QD 1T | - o SR 6-17
7-1. PowerPC 602 Microprocessor Signal GroUPS .........c.eeeerrreeeneresrerinesesneseeseneenens 7-3
7-2. Address Format/Data Format Using Byte Enable Signals...........cccccocvvevvvninnen. 7-11
7-3. ARTRY During Other Master Read—Single-Cycle Address Phase................ 7-16
7-4. ARTRY During Other Master Read Transaction—Multicycle Address Phase 7-17
7-5. ARTRY During Read Transaction—Single-Cycle Address Phase................... 7-18
7-6. ARTRY During PowerPC 602 Processor Read Transaction—
Multicycle AdAress Phase..........ouueirrenieinisenieree s 7-19
7-7. Boundary-Scan INtErfaCe .......ceveiereiesese e 7-27
8-1. PowerPC 602 Microprocessor BIOCK Diagram........ccccuverererenenenesesesnseneens 84
8-2. Timing Diagram Legend..........cccuviurieinrineriinsieree s 8-6
8-3. Address and Data Phases of a Memory Transaction ..........cc.ccocvvvreresenennnnnns 87
Xviii PowerPC 602 RISC Microprocessor User's Manual



ILLUSTRATIONS

Figure . Page
Nl?mber Title Numbger
8-4. Bus Arbitration—Nonparked CaSe..........ccuvererierenenenesesesesieseseseeseseesseseens 89
8-5. Bus Arbitration Showing Bus Parking...........cccveeevvnninnnseinseneseneseseee e 8-11
8-6. AdAress BUS TraNSFEr .......ccviuiiireee e 8-13
8-7. Data Format Using Byte Enable SIgnalS .......cccvvininenenenienenesesese s 8-14
8-8. Snooped Address Cycle With ARTRY .....cooevieniriinrrnee e e seee e 8-23
8-9. Normal Single-Beat Read Termination ............cocoveerirneinenneienene s 8-24
8-10. Normal BUrst TranSaCtioN..........cceeiuiririerieiriee sttt 8-25
8-11. Nonburst Read Transaction, Single-Cycle Address Phase—64-Bit Mode....... 8-30
8-12. Burst Read Transaction with a Single-Cycle Address Phase—64-Bit Mode... 8-31
8-13. Burst Read Transaction with a Single-Cycle
Address Phase/Shortest Data Phase—64-Bit MOdE...........ccccoevreviciennenens 8-32
8-14. Burst Read Transaction with a Multicycle Address Phase—64-Bit Mode....... 8-33
8-15. Fastest Nonburst Write Transaction—64-Bit Mode...........cocccviininninncnnne, 8-34
8-16. Fastest Burst Write Transaction with Negated GBL Signal
(Single-Cycle Address Phase)—64-Bit Mode..........ccocoerrinniiccnicienen 8-35
8-17. Slow Burst Write TranSaCtioN..........coeeereeirieerieneseseseseeee e 8-36
8-18. Single-Beat Read Transactions—32-Bit ONlY........cccovveieinnineinsneieseeas 8-37
8-19. Double-Beat Read Transactions—32-Bit ONlY .........ccccoeeiieierrncnenneneeesene, 8-38
8-20. Burst Read Transaction with a Single-Cycle Address Phase—32-Bit ............. 8-39
8-21. Burst Read Transaction with a Multicycle Address Phase—32-Bit Mode....... 8-40
8-22. Fastest Single-Beat Write Transaction—32-Bit Mode..........cccoceererervrencnenne. 8-41
8-23. Fastest Double-Beat Write Transaction—32-Bit Mode...........c.cceverereriecnnnne. 8-42
8-24. Fastest Burst Write Transaction—32-Bit MOde..........coeevrneininenieineine 8-43
8-25. Consecutive Nonburst Write-Read Transaction ...........coccccveeerenrenniesceeneens 8-44
8-26. Consecutive Nonburst Read-Write TransaCtion ..........c.ccoeereereeenenenenenenene 8-45
8-27. Consecutive Burst Write-Read TranSaCtion...........ocevvreeeinneneenesenieenenenens 8-46
8-28. Consecutive Burst Read-Write TranSaCtion...........cceevveerereneneeeneeeseeesenens 8-47
8-29. Fastest Burst Write Transaction with Asserted GBL Signal ..........cccceveeereene. 8-48
8-30. ARTRY During Read Transaction—Single-Cycle Address Phase................... 8-49
8-31. ARTRY During 602 Read Transaction—M ulticycle Address Phase. ............... 8-50
8-32. ARTRY During Other Master Read—Single-Cycle Address Phase................. 8-51
8-33. ARTRY During Other Master Read Transaction—M ulticycle Address Phase 8-52
8-34. Snoop Hit—Write-Back TranSaction...........ccoevveeieoeiencniense e 8-53
8-35. First Injected Snoop in the Injected SNoop Window .........cccecvvvrenenienennnnnnn 8-54
8-36. Last Injected Snoop in the Injected SNOOP WIindow...........cccoveeerirnieeneneneenn. 8-55
8-37. Single-Cycle Address-Only TranSaction ..........ccoeevoeeerennenereneee e 8-56
8-38. Multicycle Address-Only TranSaCtioN.........ccoevererenenesesieseseseseseseseseenes 8-57
C-1 Boundary-Scan Interface BIOCK Diagram .........ccvvevvererenesieneeeseee e seneseeens C-2
Illustrations XiX



XX

PowerPC 602 RISC Microprocessor User’'s Manual



TABLES

Table . Page
Number Title Number
i Acronyms and Abbreviated TEMMS........cccvvrriinniireir e XXXii
ii Terminology CONVENLIONS .........couruiieeirieeriereeeeseeeeseeesieses e seseesee e seeeseeseseeseenas XXXV
iii Instruction Field CONVENLIONS.........c.coririeirieirieeseses e XXXV
1-1 PowerPC 602 Microprocessor Exception Classifications..........ccccocoveevrennene. 1-30
1-2 Exceptions and CoNAitioNS .........c.ccvrerreinrenreie e 1-30
2-1 Machine State Regi ster—Implementation-Specific BitS........cccccoevvcvvivvivivinninns 2-7
2-2 SRR1—PowerPC 602-Specific Bits for Software Table Search Operations..... 2-8
2-3 SRR1—PowerPC 602-Specific Bits for Machine Check Handling.................... 29
2-4 BAT Registers—Field and Bit DESCIPLiONS........ccovereresesenenieseseeseseseeseens 2-10
2-5 BAT AreaLengths.........oooiiiiieieese et 2-11
2-6 PowerPC 602 Processor-Specific SPRS........ccvieinreee e 2-11
2-7 HIDO Bit SEHINGS.....ecveeeeeeeeenerieieienesesiesese et be e e b e s s seeeene 2-12
2-8 CLK_OUT Signal Configuralion.........c.cuueuririresieseseseseseseseseseseseseseens 2-14
2-9 HIDL Bit SEINGS.....ecveeeierrereiirerieieiene ettt 2-14
2-10 DCMP and ICMP Bit SELINGS......cucoerereeuereririeienesesieeee et see e 2-16
2-11 HASH1 and HASH2 Bit SELINGS .....ccveveverirerieieniririeiee e 2-16
2-12 RPA Bit Settings—Default Configuration............c.ceeeerrierenennerieneneeeseseenne 2-17
2-13 ESA SRR Bit SEHINGS....ecveveeerereeeeerereriesenereseeieneseseesenesesaesene e seseseseseeseneseseseens 2-19
2-14 Timer Control Register Bit SEttingS .....ccocvvvvviniiniinininisene s ss s see s 2-22
2-15 Determining the Exception Vector AdAress..........ocvevreennneeienenieee s 2-23
2-16 Instruction Address Breakpoint Register Bit Settings.........ccocvvevvivvereriesnnnnnn 2-25
2-17 MEMOFY OPEIANAS ......eeveeeieiesiesee et te e te ettt ste et testesteseeseeseeseees 2-29
2-18 Integer Arithmetic INSrUCHIONS. ........coviveiriririe e 2-36
2-19 Integer Compare INSIIUCHIONS. .......cociuiririerieiiee et 2-37
2-20 Integer Logical INSITUCHIONS.....ccvoiveieieiesesie et 2-38
2-21 Integer ROtate INSEIUCHIONS.......ccviveeiieeieriee e siee st seenas 2-39
2-22 Integer Shift INSIIUCHIONS..........cov e e 2-39
2-23 NON-ITEEE MOOE RESUILS........oeiiieerieirtieee et 2-41
2-24 Floating-Point Arithmetic INStrUCtIONS..........coviereeireiree e 2-42
2-25 Floating-Point Multiply-Add INStrUCLIONS .........coveirieienee e 2-43
2-26 Floating-Point Rounding and Conversion INStructions...........coceeevevesesnneenn 2-45
2-27 Floating-Point Compare INSLrUCHIONS.........ccvievienereneseseeesee e e seenas 2-45
2-28 Floating-Point Status and Control Register INStructions............cccovveerereneenee 2-46
2-29 Floating-Point MOVE INSIFUCLIONS ........oceieieiesiecesesie e 2-46
2-30 Integer Load INSLIUCLIONS......ccuiriiieieiesiesie et 2-48
2-31 INteger SLOre INSIIUCHIONS. ......cccivereeireriiee et 2-49
Tables XXi



TABLES

Table . Page
Number Title Numbger
2-32 Integer Load and Store with Byte-Reverse Instructions............ccccvveeeirennnee 2-49
2-33 Integer Load and Store Multiple INStructionsS........cocooevevenenenenese e 2-50
2-34 Integer Load and Store String INStrUCtioNS.........ccovevreereeesee e e seenas 2-51
2-35 Floating-Point Load INSLIUCIONS .........c.ciririnreieriiee et 2-51
2-36 Floating-Point Store INSLrUCLIONS.......c.ciereresesie e 2-52
2-37 Branch INSLIUCLIONS........coviveueiiririieiere sttt 2-54
2-38 Condition Register Logical INSrUCLIONS...........cvovverieieinreneinenseiee e 2-55
2-39 Trap INSEIUCLIONS......veveiiciesiesie ettt sttt sreste st seesresrenes 2-55
2-40 Move to/from Condition Register INSIrUCtIONS........cccoverenenenineneseseseneee 2-56
2-41 Memory Synchronization InStructions—UISA .......ccccoieinineinnneecnenens 2-58
2-42 Move from Time Base INSTUCLION.........cooeirieirieirereseeee e 2-59
2-43 Memory Synchronization INStructionS—VEA ... 2-59
2-44 User-Level Cache INSIIUCHIONS........covoeiireeireesees e 2-60
2-45 System Linkage INSITUCLIONS.........oiviiiiiiieie s 2-62
2-46 Move to/from Machine State Register INSLrUCtiONS........cccovvvrerenenenieneseniens 2-62
2-47 Move to/from Special-Purpose Register INStructions...........c.coeeevvevveverereneene 2-63
2-48 Supervisor-Level Cache Management INStruCtion............ccoovvvvvvvnesesiesnnennns 2-64
2-49 Segment Register Manipulation INSIrUCLIONS.........ccocvviiiiinininnnenesesesenens 2-64
2-50 Trandation Lookaside Buffer Management INStructions ...........c.coceveevvieeenene. 2-65
31 Combinations of W, I, @nd M BitS.........ccceeiieeeienninnenee e 312
32 MEI State DEfiNitiONS......cccciiieirieeriesieree e 3-15
33 Memory Coherency Actions on Load Operations.........cccvvevrerereneneerenenennes 3-19
34 Memory Coherency Actions on Store Operations...........ccvoeerererenesereneseenes 3-19
35 Response t0 BUS TraNSaCtioNS .......cvevverieriesiesiesiesiesie e seesieseeseessesseseessesseseessees 3-20
3-6 Bus Operations Caused by Cache Control Instructions (WIM = 001) ............. 3-25
37 MEI St TranSItiONS ....c.eieeeiieeeeieceieeeie ettt eeseenas 3-27
4-1 PowerPC 602 Microprocessor Exception Classifications..........ccocvevvviivninnnnenns 4-3
4-2 Exceptions and CoNAItiONS ........cccvveirierieeseneseseee e see e seeseenees 4-4
4-3 EXCEPLION PriOMTiES. ....c.ciieeieeie ettt 4-7
4-4 SRR1 Bit Settings for Machine Check EXCEPLIONS.........coovvvveiieneniesnnnnnnnnns 4-10
4-5 SRR1 Bit Settings for Software Table Search Operations...........c.ccoceevveevrinnns 4-10
4-6 MSR Bit SEINGS ... veveveerereieresieieiere et 4-11
4-7 |EEE Floating-Point Exception Mode BitS........ccccviveivnenienesenesesesesesees 4-13
4-8 MSR Setting DUE t0 EXCEPLION. .....cveiveieieieniesiesiesie e 4-17
4-9 Settings Caused by Hard RESEL ..........cvcvvriricirec e 4-19
4-10 Soft Reset EXception—Register SEttingS.........cvvivivinnniinnieseseseseseseseneens 4-20
4-11 Machine Check Exception—Register SEttings........ccocvvvvinieninnienienenienennnes 4-22
4-12 DSI Exception—Register SEttiNGS........c et 4-24
4-13 External Interrupt Exception—Register SEttings........ccoovvvvvievienivniennsiesinsenees 4-25
4-14 Alignment Exception—Register SEttingS......c.cvvvvrininenenenenene e seenees 4-26
4-15 ACCESS TYPES ...t s 4-27
4-16 Trace Exception—Register SEttiNgS........cvvvvevieiienieiesesese e 4-32
4-17 Instruction and Data TLB Miss Exceptions—Register Settings.........c.cvvvene 4-33
XXii PowerPC 602 RISC Microprocessor User's Manual



TABLES

4-18 Instruction Address Breakpoint Exception—Register Settings..........cc.cccveee. 4-35
4-19 Breakpoint Action for Multiple Modes Enabled for the Same Address........... 4-35
4-20 System Management Interrupt—Register SEttings.........cooeevvveeeinrneininennns 4-36
4-21 Timer Control Register Bit SEttiNGS .......cccoevrireiiererreree e 4-37
4-22 Watchdog Timer Interrupt—Register SEttingS.......c.cvvvvvrivnieninnieninninnenenennens 4-39
4-23 Emulation Trap Exception—Register SEttingsS........cvvvvevreeesinnesieneseneeeseenns 4-39
51 MMU FEALUIES SUMIMAIY .....cviieeeieeeneereeseereeseeseeseessessessesseseessessessessessessessessens 54
52 Instruction Space ACCeSS PErMISSIONS.......cccuviiiieninisenenesesiese e e seseesseseens 5-6
5-3 PowerPC 602 Microprocessor Feature Mapping........cccveevreerenesenesseseeeseenes 5-15
5-4 Access Protection Options for PAGES.........coccvveeininein e 5-15
55 Trandation Exception ConditioNS.........cc.cuvvreieinneneneseseseseseseeseeseseeseenes 5-21
5-6 Other MMU Exception Conditions for the PowerPC 602 Processor ............... 5-22
5-7 PowerPC 602 Microprocessor |nstruction Summary—Control MMUSs........... 5-23
5-8 PowerPC 602 Microprocessor MMU REQISIErS .....cccovvervrenenenesenenesenseens 5-24
5-9 PTE Bit Definitions—PowerPC 602 PrOCESSO ........cccvvrrererreerreresresesrenesreneenes 5-29
5-10 Table Search Operations to Update History Bits—TLB Hit Case.................... 5-30
511 Model for Guaranteed R and C Bit SettingS........ccoevvevenenienienienenenesesenenns 5-32
5-12 Implementation-Specific Resourcesfor ~ Search Operations...........c.ccoceeee. 5-41
5-13 SRR1 Bits Specific to the PowerPC 602 MiCroproCessor .........c.covvererererrerens 5-42
5-14 DCMP and ICMP Bit SELINGS......c.eoerereeeererenieienesesieeenesesietene e seseeeeneseseeeens 5-44
5-15 HASH1 and HASH2 Bit SELINGS .....ccveveveriririeiiniririeiee et 5-44
5-16 RPA Bit Settings—Default Configuration............coeeeevrierennnereenenieeeneseeeene 5-45
6-1 BPU OPErationS........ccuevieiierieriesiesiesiesiestesessessessessessessessessessessessessessessessessessenes 6-23
6-2 INteger UNit OPErationS.........coeierierierieriesiesiesee e sie e see e ssessessessessessessessessesseses 6-23
6-3 Condition Register Logical OPerations ...........cvorreereinerenreenesesierenesesieseesenens 6-26
6-4 Synchronization INSFUCLIONS .........ccviiiiiiieie s 6-26
6-5 FPU OPEIatioNS......c.ceiueieieeieiesieneesieseeseessestessessessessessessesssssessessessessessessessessenes 6-27
6-6 Load/Store Unit INSruction TimMIiNgS.........coeeirrereininnieineneseee s 6-28
7-1 Time-Multiplexed Signal ASSIGNMENES .......ceieirerrererereee e 7-4
7-2 Alternate Uses for PFADDRO—PFADDRZ0.........ccccoieieinerinieenerenieee e 7-8
7-3 TTO-TTA ENCOAINGS....cceeerieerireerriresienesieseeseseesessesessesessesesseseesessesessensssessnsesseses 7-9
7-4 D B I = = S = ST 7-11
7-5 Encodingsfor TCO-TCL SIgNalS......cccurererenierieniesiesiesieseeseeseesseseeseessesseseessenes 7-13
7-6 Data Lane ASSIQNMENES ......cviueriiereriereeiseeeeseee e enessesesseseeseseesessenessesensesseses 7-20
7-7 Alternate Uses of the Data Signals (DO-DB3) .........ccoeveirrmrreenernrerenenenieneens 7-21
7-8 o I @o o) 110 101 1T o HO P 7-30
81 Input Conditions for a Qualified Bus Grant............cccceevvererineeiseesee e 8-8
82 Time-Multiplexed Signal ASSIGNMENES .......ccoviereinreeie s 8-14
8-3 Transfer TYPE ENCOAING ..ocvviviiieiisise s se et seas 8-15
8-4 DA TranSfer SIZE.......ccviveeirieeseesees e s 8-16
85 Burst Ordering—64-Bit MOGE. .........c.coeueirrnieiirseiie e 8-17
8-6 Burst Ordering—=32-Bit MOUE..........coeieriereieniesesiesie e se e see e se s 8-17
8-7 Data Transfers—64-Bit MOGE ..ot 8-18
Tables XXiii



TABLES

Table . Page
Number Title Numbger
8-8 Data Transfers—32-Bit MOGE .......ccouvreiieieeeeseee s 8-19
8-9 Transfer Code Signal ENCOTING .......ccviiiiiinininnnesesesesiesieseseeseeseeseeseeseesens 8-21
8-10 Address/Transfer Attribute SUMMEY .........ccoeivreeieierienesesee e seenes 8-21
811 Bus Impact for Special INSIrUCLIONS..........coiveeirirnieiiece e 8-27
9-1 PowerPC 602 Microprocessor Programmable Power Modes..........ccoovvvvviennene 9-2
A-1 Complete Instruction List Sorted by MNemonic.........ccoccevvenrieneesecesereneens A-1
A-2 Complete Instruction List Sorted by Opcode...........cvvvrrrereeernereenreeesernes A-9
A-3 Integer Arithmetic INSITUCLIONS.......c.oceiiieceses e A-17
A-4 Integer Compare INSIIUCLIONS. ........ooveierierieresiesee e seens A-18
A-5 Integer Logical INSEIUCLIONS..........cioiiiieriirerieiecse s A-18
A-6 Integer ROLALE INSLIUCTIONS.......cveieieiesiese e sie e sie e e sttt see e A-18
A-7 Integer Shift INSIIUCHIONS.......ooviiiieieieese e A-19
A-8 Floating-Point Arithmetic INStruCtioNS............cvovieeinincc s A-19
A-9 Floating-Point Multiply-Add INStrUCLIONS .......cceceieseiesesesesesiesese e A-20
A-10 Floating-Point Rounding and Conversion INStructions...........ccovvevenenennnenns A-20
A-11 Floating-Point Compare INSIUCLIONS. ........c.oueveinriereine e A-20
A-12 Floating-Point Status and Control Register INStructions...........ccocvvevvevivinnnnns A-20
A-13 Integer Load INSLIUCHIONS......ccviiviierieiesiesiesie et seesse e A-21
A-14 INteger SLOre INSIIUCHIONS. ......ccivveeii et A-21
A-15 Integer Load and Store with Byte-Reverse Instructions............ccocevvvvivinnnnns A-22
A-16 Integer Load and Store Multiple INStrUCtioNS........oovverinenenisesesesesesieneens A-22
A-17 Integer Load and Store String INStrUCtiONS. ......c.covvveveirrinieinerenieeee e A-22
A-18 Memory Synchronization INStrUCLIONS............cccveeiierereneneneee e A-22
A-19 Floating-Point Load INSITUCLIONS ......ccceieiiieieesesesese s A-23
A-20 Floating-Point StOre INSTUCHIONS..........ceviiriereiresieieese e A-23
A-21 Floating-Point Move INSLrUCHIONS........c..ooiiiei e A-23
A-22 Branch INSLIUCHIONS.......cooriiiiieiiecieer e A-24
A-23 Condition Register Logical INStrUCtIONS........ccccceeviereeireerseeeseeseneseseere e A-24
A-24 System Linkage INSIFUCLIONS........ccov et s A-24
A-25 Trap INSEIUCLIONS......veviiiiciesiesie ettt sttt sre e sre e e s A-25
A-26 Processor CoNntrol INSLIUCLIONS........c.civveriireriereine st A-25
A-27 Cache Management INSIIUCLIONS...........cvorrieeenernierie e A-25
A-28 Segment Register Manipulation INSIrUCtioNS...........ccvviviinininninneseseseseens A-25
A-29 Lookaside Buffer Management INSIrUCLIONS.........oovrerenenenenenenesieseneeneens A-26
A-30 External Control INSIFUCLIONS.........ccoueririireeeree e A-26
A-31 o4 o TSRS A-27
A-32 B-FOMM et bbb bbb A-27
A-33 SC-FOMM. bbb nre A-27
A-34 D -FOIMN.. e b r e r e nrenre A-27
A-35 DS FOMT .ttt bbbttt bbbt A-29
A-36 D 0] 1 1 PP TR PP PSP A-29
A-37 D o4 o TS A-33
A-38 XX O et bbb bbb A-34
XXivV PowerPC 602 RISC Microprocessor User's Manual



TABLES

A-39 D I o o SRS A-34
A-40 XS FOMM e bbb bbb A-34
A-41 DO T o] 1 o o S A-34
A-42 N 0] 1 1 T PSP UP P UPRUUPPPN A-35
A-43 V0TI et r e r e renre A-36
A-44 Y e o SO T ST SO P A-36
A-45 D 1 e o U A-37
A-46 PowerPC Instruction Set Legend........oovveverenenenenesesesesiese e seseeseeneens A-38
B-1 32-Bit Instructions Not Implemented by the PowerPC 602 Microprocessor .....B-1
B-2 64-Bit Instructions Not Implemented by the PowerPC 602 Microprocessor .....B-1
B-3 64-Bit SPR Encoding Not Implemented by the PowerPC 602 Microprocessor.B-3
Tables XXV



XXVi PowerPC 602 RISC Microprocessor User’'s Manual



About This Book

The primary objective of this manual is to help hardware and software designers who are
working with the PowerPC 602™ microprocessor. This book is intended as a companion
to the Power PC™ Microprocessor Family: The Programming Environments, referred to as
The Programming Environments Manual. Because the PowerPC architectureis designed to
beflexibleto support abroad range of processors, The Programming Environments Manual
provides a general description of features that are common to PowerPC processors and
indicates those features that are optional or that may be implemented differently in the
design of each processor. Contact your local sales representative to obtain a copy of The
Programming Environments Manual.

The PowerPC 602 RISC Microprocessor User’s Manual summarizes features of the 602
that are not defined by the architecture. This document and The Programming
Environments Manual distinguish between the three levels, or programming environments,
of the PowerPC architecture, which are as follows:

« PowerPC user instruction set architecture (UISA)—The UISA definesthe level of
the architecture to which user-level software should conform. The UISA definesthe
base user-level instruction set, user-level registers, datatypes, memory conventions,
and the memory and programming models seen by application programmers.

» PowerPC virtual environment architecture (VEA)—TheVEA, whichisthe smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processorsor other devicescan
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resourcesin
an environment in which other processors and other devices can access external
memory.

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

About This Book XXVii



It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

Note also that the PowerPC architecture does not specify whether certain functionality be
implemented in hardware or software. Similarly, a PowerPC implementation may provide
functionality that offers alternatives to the PowerPC architecture in addition to that defined
by the PowerPC architecture.

For ease in reference, this book has arranged topics described by the architecture
information into topics that build upon one another, beginning with a description and
complete summary of 602-specific registers and progressing to more specialized topics
such as 602-specific details regarding the cache, exception, and memory management
models. As such, chapters may include information from multiple levels of the architecture.
(For example, the discussion of the cache model uses information from both the VEA and
the OEA.)

The Power PC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 602. It is assumed that the reader
understands operating systems, microprocessor system design, the basic principlesof RISC
processing, and details of the PowerPC architecture.

XXViii PowerPC 602 RISC Microprocessor User's Manual



Organization
Following is a summary and a brief description of the major sections of this manual:

Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition, and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

Chapter 2, “PowerPC 602 Microprocessor Programming Model,” is useful for
software engineers who need to understand the 602-specific registers, operand
conventions, and details regarding how PowerPC instructions are implemented on
the 602.

Chapter 3, “Instruction and Data Cache Operation,” provides a discussion of the
cache and memory model as implemented on the 602.

Chapter 4, “Exceptions,” describes the exception model asimplemented on the 602.

Chapter 5, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as implemented on the 602.

Chapter 6, “Instruction Timing,” describes instruction timing in the 602.
Chapter 7, “Signal Descriptions,” describes individual signals defined for the 602.
Chapter 8, “ System Interface Operation,” describes interface operations on the 602.

Chapter 9, “Power Management,” describesthe operation of the power management
hardware and software facilities incorporated in the 602.

Appendix A, “ PowerPC Instruction Set Listings,” listsall the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

Appendix B, “Instructions Not Implemented,” describes the 32-bit and 64-bit
PowerPC instructions that are not implemented in the 602.

Appendix C, “Boundary-Scan Testing Support,” provides aboundary-scan interface
for board-level testing.

This manual also includes a glossary and an index.

In this document, the term “602” is used as an abbreviation for the phrase, “ PowerPC 602
Microprocessor.” The PowerPC 602 microprocessors are available from IBM as PPC602
and from Motorola as MPC602.

About This Book XXiX



Additional Reading

This section lists additional reading that provides background for the information in this
manual.

PowerPC Microprocessor Family: The Programming Environments, MPCFPE/AD
(Motorola Order Number) and MPRPPCFPE-01 (IBM Order Number)

The Power PC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, CA

John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA

PowerPC 602 RISC Microprocessor Technical Summary, Rev 1

MPC602/D (Motorola Order Number) and MPR602TSU-02 (IBM Order Number)
PowerPC 603™ RISC Microprocessor Technical Summary, Rev 3

MPC603/D (Motorola order number) and MPR603TSU-03 (IBM order number)
Power PC 603e™ RISC Microprocessor Technical Summary, Rev 0

MPC603E/D (Motorola order number) and MPR603TSU-04 (IBM order number)
PowerPC 603e RISC Microprocessor User’s Manual (with Supplement for
PowerPC 603 Microprocessor), MPC603EUM/AD (Motorola order number) and
MPR603EUM-01 (IBM order number)

PowerPC 604™ RISC Microprocessor Technical Summary, Rev 1

MPC604/D (Motorola order number) and MPR604TSU-02 (IBM order number)
PowerPC 604 RISC Microprocessor User’s Manual, Rev 0

MPC604UM/AD (Motorola order #) and MPR604UMU-01 (IBM order #)

Additional literature on PowerPC implementations is being released as new processors
become available.

XXX

PowerPC 602 RISC Microprocessor User's Manual



Motorola Electronic Support

Motorola provides electronic support through the following channels. The technical
support BBS, known as AESOP (Application Engineering Support through On-Line
Productivity), can be reached by modem or the I nternet.

M odem: Call 1-800-843-3451 (outside U.S. or Canada, call (512) 891-3650) on a modem
that runs at 14,400 bps or slower. Set your software to C/8/1/F emulating aV T100.

Internet: Thisaccessis provided viatelnet at pirs.aus.sps.mot.com [129.38.233];
or through the world-wide web at http://pirs.aus.sps.mot.com and
http://www.mot.com/powerpc/.

Notethat the code for implementing the software table search routines can be acquired from
Motorola's home page:
http://www.mot.com/pub/SPS/powerpc/library/user_man/602mmu.txt.

AppsFAX Line: You may FAX questionsto 1-800-248-8567.

IBM Electronic Support
IBM provides electronic support through the following channels:
Internet: This accessis provided through the following world-wide web locations:

IBM world-wide web home page at http://www.ibm.com
IBM Microel ectronics world-wide web home page at http://www/chips.ibm.com

FAX: IBM Microelectronics FAX service at (415) 855-4121

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

ACTIVE LOW A bar over asignal name indicates that the signal is active low—for
example, ARTRY (addressretry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
APO-AP3 (address bus parity signals) and TTO-TT4 (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

mnemonics Instruction mnemonics are shown in lowercase bold.

OPERATIONS Address-only bus operations that are named for the instructions that
generate them areidentified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.

About This Book XXXIi



italics

0x0

(0/¢[0)

rA,rB

rA|0

rD

frA, frB, frC
frD
REG[FIELD]

mtspr (SPR_NAME)

n

Italics indicate variable command parameters, for example, beetrx
Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR

The contents of a specified GPR or the value 0.

Instruction syntax used to identify a destination GPR

Instruction syntax used to identify a source FPR

Instruction syntax used to identify a destination FPR

Abbreviations or acronymsfor registersare shown in uppercasetext.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refersto the little-endian mode enable bit in the machine
state register.

In text, the SPR accessed by an mtspr or mfspr instruction is
identified in parenthesis after the instruction. This should not be
confused with the instruction syntax for these instructions.

In certain contexts, such as asignal encoding, thisindicates adon’t
care.

Used to express an undefined numerical value.

Acronyms and Abbreviations

Tablei contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BPU Branch processing unit
COP Common on-chip processor
CR Condition register
CTR Count register
DAR Data address register
DBAT Data BAT
DEC Decrementer (register)

XXXii

PowerPC 602 RISC Microprocessor User's Manual



Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
EA Effective address
EAR External access register
ESASRR ESA save and restore register
FIFO First-in-first-out
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HIDO(1) Hardware implementation dependent (register) 0(1)
IABR Instruction address breakpoint register
IBAT Instruction BAT
IBR Interrupt base register
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation lookaside buffer
[0) Instruction queue
U Integer unit
JTAG Joint Test Action Group
L2 Secondary cache
LR Link register
LRU Least-recently used
LSB Least-significant byte
Isb Least-significant bit
LSuU Load/store unit
LT Integer tag register
MEI Modified/exclusive/ invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register

About This Book

XXXiii




Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

NaN Not a number

No-op No operation

OEA Operating environment architecture

PLL Phase-locked loop

POWER Performance Optimized with Enhanced RISC architecture
PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing/computer

RPA Required physical address (register)

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SER ESA enable register

SEBR ESA enable base register

SIMM Signed immediate value

SP Single-precision tag register

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRRO (Machine status) save/restore register 0

SRR1 (Machine status) save/restore register 1

B Time base register

TCR Timer control register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VEA Virtual environment architecture

XER Register used for indicating conditions such as carries and overflows for integer operations
XXXIV PowerPC 602 RISC Microprocessor User's Manual




Terminology Conventions

Tableii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSl exception

Extended mnemonics

Simplified mnemonics

Instruction storage interrupt (ISI)

ISI exception

Interrupt*

Exception

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access

* For a detailed discussion of how the terms interrupt and exception are used in this

document, see the introduction to Chapter 4, “Exceptions.”

Tableiii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)
Sl SIMM

U IMM

ul UIMM

1,00, 10 0...0 (shaded)

About This Book

XXXV



XXXVi PowerPC 602 RISC Microprocessor User's Manual



Chapter 1
Overview

This chapter provides an overview of the PowerPC 602™ microprocessor features,
including a block diagram showing the major functional components. It provides
information about how the 602 implementation complies with the PowerPC™ architecture
definition.

1.1 PowerPC 602 Microprocessor Overview

This section describes features of the 602, provides a block diagram showing the major
functional units, and describes in a general way how the 602 operates.

The 602 is alow-cost, low-power implementation of the PowerPC microprocessor family
of reduced instruction set computer (RISC) microprocessors. The 602 implements the 32-
bit portion of the PowerPC architecture, which provides 32-hit effective addresses, integer
data types of 8, 16, and 32 hits, and floating-point data types of 32 and 64 bits. Floating-
point operations involving either 32- or 64-hit data types in single-precision format are
supported; however, floating-point operations involving 64-bit data types in double-
precision format are not implemented in hardware and areinstead trapped for emulation in
software. For more information about how the architecture defines addressing and data
types, see PowerPC Microprocessor Family: The Programming Environments (also
referred to as The Programming Environments Manual).

The 602 provides dynamic and static power-saving modes. The three static modes—nap,
doze, and sleep—progressively reduce the amount of power required by the processor.
Dynamic power management mode allows the processor to reduce power consumption by
providing clocking only to those functional units that are active, without affecting
operational performance, software execution, or external hardware.

The 602 can simultaneously fold one branch instruction and dispatch one nonbranch
instruction per clock cycle to any one of three execution units. Instructions can execute out
of order; however, the instructions complete and write back in program order.

The 602 has four execution units—an integer unit (1U), a floating-point unit (FPU), a
branch processing unit (BPU), and a load/store unit (LSU). The ability to execute four
instructions in parallel and the use of simple instructions with rapid execution times yield
high efficiency and throughput for 602-based systems. Most integer instructions execute in

Chapter 1. Overview 1-1



one clock cycle. The FPU is pipelined such that typically when the FPU pipelineis full a
single-precision instruction can complete on each clock cycle.

The 602 provides independent on-chip, 4-Kbyte, two-way set-associative, physicaly
addressed caches for instructions and data and on-chip instruction and data memory
management units (MMUSs). The 602 MMUSs contain 32-entry, two-way set-associative,
data and instruction translation lookaside buffers (DTLB and ITLB). The TLBs cache the
trandations for the most recently used pages. The 602 also supports block address
trandation through the use of two independent instruction and data block address
trandation (IBAT and DBAT) arrays of four entries each. Effective addresses are compared
simultaneously with all four entries in the BAT array during block trandlation. If an
effective address matches any entry in the BATS, the BAT entry takes priority over any
potential matchesin the TLBs. In real addressing mode, the MMU trandlation is disabled.

The 602 provides an additional memory protection mechanism not defined by the PowerPC
architecture. The 602's protection-only mode can control whether instructions can be
fetched from 4-Kbyte instruction pages and whether data can be written to 4-Kbyte data
pages. Protection-only mode also controls the ability to execute the 602-specific esa
(Enable Supervisor Access) instruction on a per-page basis. When this instruction is
enabled, its execution causes the processor to enter supervisor mode. In protection-only
mode, the effective address is also used as the physical address just as in real addressing
mode, but the MMU page addressing mechanism is enabled to enforce this protection. For
details, refer to Section 1.1.5.1, “Memory Management Units (MMUS).”

The 602 has asingle bus interface for transferring 32-bit addresses and either 32- or 64-bit
data. Thisbusistime-multiplexed, asdescribed in Section 1.2.8, “ System Interface.” When
the busisin the data phase, it can be configured dynamically to perform as a 32- or 64-hit
data bus.

The 602 interface protocol allows multiple masters to compete for system resources
through a central external arbiter. The 602 provides a three-state coherency protocol that
supports the modified, exclusive, and invalid (MEI) cache states. This protocol is a
compatible subset of the MESI (modified/exclusive/shared/invalid) four-state protocol and
operates coherently in systems that contain four-state caches.

The amount of datathat can be transferred per bus clock cycle depends on whether the bus
is configured as a 32- or 64-hit bus. In 64-bit mode, the bus can transfer up to 64 bitsin a
single-beat (nonburst) transaction and an entire eight-word cache block in afour-beat burst
transaction. In 32-bit mode, there are two types of nonburst transactions. A single-beat
transaction transfers up to 32 bits and a double-beat transaction transfers 64 bits. In 32-bit
mode, the burst transaction requires eight beats to transfer a cache block of data.

The 602 uses an advanced, 3.3-V CMOS process technology and maintains full interface
compatibility with TTL devices.

1-2 PowerPC 602 RISC Microprocessor User's Manual



1.1.1 PowerPC 602 Microprocessor Features

This section describes details of the 602's implementation of the PowerPC architecture.
Major features of the 602 are as follows:

* High-performance microprocessor with parallel execution units
— Oneinstruction is fetched from the instruction queue per clock cycle
— Oneinstruction can be issued and one retired per clock cycle
— Asmany as four instructions in execution per clock cycle
— Single-cycle execution for most instructions
« Four independent execution units and two register files
— Branch processing unit (BPU)
— Zero-cycle branch capability (branch folding)
— Programmable static branch prediction on unresolved conditional branches
— BPU that performs CR-lookahead operations

— A 32-bit integer unit (1U)

— Thirty-two 32-bit general -purpose registers (GPRs) for integer operands
— A 32-hit floating-point unit (FPU)
Fully IEEE 754-compliant FPU for single-precision operations
Emulation support for double-precision operations
An implementation of the non-1EEE floating-point mode

Thirty-two 32-hit floating-point registers (FPRs) for single-precision
operands

— Aload/store unit (L SU) for datatransfer between data cache and GPRs and FPRs

¢ Rename registersto alow data-dependent instructions to access source data before
it has been written back to architected registers

— Four GPR rename buffers
— Four FPR rename buffers

— One rename buffer each for the condition register (CR), link register (LR), and
count register (CTR)

* Instruction pipelining

— Instruction unit capable of simultaneously folding out a branch instruction and
dispatching one instruction per clock cycle from the instruction queue

— A four-entry instruction queue that provides lookahead capability

— Independent pipelines with feed-forwarding that reduces data dependenciesin
hardware

Chapter 1. Overview 1-3



Separate caches for instructions and data (Harvard architecture)

— 4-Kbyte data cache—two-way set-associative, physically addressed; LRU
replacement algorithm

— 4-Kbyteinstruction cache—two-way set-associative, physically addressed; LRU
replacement algorithm
— Eight-word cache block can be updated by a burst operation

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

Memory management features

— Address trangdlation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— A 32-entry, two-way set-associative ITLB

— A 32-entry, two-way set-associative DTLB

— 52-hit virtual address; 32-hit physical address

— Four-entry data and instruction BAT arrays providing 128-Kbyte to 256-Mbyte
blocks

— Efficient software table search operation aided by hardware assistance

— Ability to inhibit instruction fetching on a page or block basis. Thisis provided
by the 602-specific NE bit that provides the sameinstruction fetching control as
the SR[N] bit for smaller units of memory.

— Additional MSR bit (MSR[AP]) that can limit supervisor-level softwareto
accessing supervisor-level memory space only

— Programmable default cache control attributes available (HIDO[WIMG]) for use
when the processor isin real addressing mode or in protection-only mode

— Protection-only mode

— Usesthe TLB translation mechanism to control instruction fetching for
instruction pages, writing to data pages, and enabling the 602-specific esa
instruction, which when executed puts the processor in supervisor mode

— Control isdefined for 4-Kbyte pages (32, 4-Kbyte pages defined in each TLB
entry)

— Thetranslation mechanism is not used to determine the physical address
(effective address generated by the code is used for the physical addressasin
real-addressing mode).

1-4

PowerPC 602 RISC Microprocessor User's Manual



» Facilitiesfor enhanced system performance
— A 64-bit (address and data multiplexed) external data bus with burst transfers
— Dynamic bus sizing allows the data bus to function as either a 32- or 64-bit bus
— Support for injected snoops by other devices during burst read operations

— Ability to broadcast aline-fill address, during the address phase of awrite-back
transaction on the bus

« Alternative method for entering supervisor mode without synchronizing the
processor. The Enable Supervisor Access (esa) instruction is defined by the 602 to
cause the processor to enter supervisor mode without taking an exception. The
ability to execute thisinstruction isadministered by the MMU on aper block or page
basis, depending on the type of address trandation used.

¢ Integrated power management
— Low-power 3.3-volt design
— Internal processor/bus clock multiplier that provides 2/1 and 3/1 ratios
— Three static power-saving modes—doze, nap, and sleep

— Automatic dynamic power reduction on an internal subunit level of granularity,
on aper clock cycle basis, when the subunits areidle

* In-system testability and debugging features through JTAG boundary-scan
capability

1.1.2 Block Diagram

The 602 block diagram in Figure 1-1 illustrates how the execution units—IU, FPU, BPU,
and L SU—operate independently and in parallel.

Chapter 1. Overview 1-5



32 BIT

\
| sEQUENTIAL | S32BIT BRANCH
FETCHER ~| PROCESSING
32BIT UNIT
/ CTR
INSTRUCTION CR
QUEUE LR
32 BIT
Dispatch Unit = INSTRUCTION UNIT
32 BIT
/
¥ v 32 BIT ¥ 32 BIT ¥ 32 BIT v
INTEGER |_ | GPRFile | _ | LOAD/STORE [_. _| FPRFile | . _| FLOATING-
UNIT UNIT POINT UNIT
GP FP
_/ * + Rename Rename /| « +
- Registers Registers
XER -
| | |
32 BIT
COMPLETION \ v
UNIT
D MMU I MMU
B 32 BIT
SRS | | peat SRS | | |gat
Arra Arra
DTLB 4 ITLB 4
Power Time Base
Dissipation Counter/
Control Decrementer 4-Kb 4-Kb
Tags | 4-Kbyte 1 | Tags | #Kbyte | |
JTAG/COP Clock D Cache | Cache
Interface Multiplier
] A A
\
PROCESSOR BUS
INTERFACE

Time-Multiplexed, 32-Bit Address Bus, 32-/64-Bit Data Bus y

Figure 1-1. PowerPC 602 Microprocessor Block Diagram

PowerPC 602 RISC Microprocessor User's Manual



1.1.3 Instruction Pipeline
Asshown in Figure 1-2, the instruction pipeline in the 602 has four stages:
¢ Fetch—During this stage, instructions are fetched from the instruction cache.

« Decode and dispatch—During this stage, instructions are decoded, branch
instructions are folded out, and instructions are dispatched for execution once al the
resources needed for execution are available.

» Execute—During this stage, instructions are executed in the LSU, U, or FPU.

« Complete and write-back—During this stage, al results are committed to the
architectural registers.

Execute Stage

Complete/Write-back

Figure 1-2. Pipeline Diagram

Note that an instruction may remain in asingle pipeline stage for multiple processor cycles
and may simultaneously occupy more than one pipeline stage.

If an exception is taken during the execute or the complete/write-back stages, all following
instructions are flushed, any execution resultsin rename buffers are discarded, and fetching
begins at the appropriate target address. For an overview and definition of exceptions
supported in the 602, see Section 1.2.5.1, “PowerPC Exception Model.”

The 602 provides address trand ation and protection facilities, includingan ITLB, aDTLB
and IBAT and DBAT arrays. Instruction fetching and dispatch are handled by the
instruction unit. The MMUs translate effective addresses for fetching instructions and for
reading and writing data to and from the physically addressed caches or external memory.
For more information, see Sections 1.1.3.1, “Instruction Unit,” and 1.1.5.1, “Memory
Management Units (MMUSs).”

Chapter 1. Overview 1-7



1.1.3.1 Instruction Unit

As shown in Figure 1-1, the 602 instruction unit, which contains a fetch unit, instruction
gueue, dispatch unit, and BPU, provides centralized control of instruction flow to the
execution units. The instruction unit determines the address of the next instruction to be
fetched based on information from the sequential fetcher and from the BPU.

The instruction unit fetches the instructions from the instruction cache into the instruction
queue (1Q). The BPU extracts branch instructions from the instruction queue and uses the
static branch prediction defined by the PowerPC architecture specification on unresolved
conditional branches. Thisallows the instruction unit to fetch instructions from a predicted
target instruction stream while a conditional branchisevauated. The BPU folds out branch
instructions for unconditional branches or for conditional branches unaffected by
instructions in progress in the execution pipeline.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If any of these
instructions are to be executed in the BPU, they are decoded but not issued. Instructions to
be executed by the FPU, |U, and LSU are issued and allowed to complete up to the register
write-back stage. Write-back is allowed when a correctly predicted branch is resolved, and
instruction execution continues without interruption along the predicted path. An
instruction is dispatched only if there is an entry available for it in the completion unit. If
no completion buffers are available, instruction dispatch stalls until an entry is available.

If branch prediction is incorrect, the instruction unit flushes all predicted path instructions
and instructions are issued from the correct path.

1.1.3.1.1 Instruction Queue (IQ) and Dispatch Unit

The instruction queue, shown in Figure 1-1, holds as many as four instructions and loads
one instruction from the instruction cache during a single cycle. The instruction fetch unit
continuously loads as many instructions as space in the | Q allows. If one of the instructions
loaded is a branch instruction, it is dispatched to the BPU. One nonbranch instruction per
cycle can be dispatched to any one of the three other execution units. Dispatching is
facilitated to the U, FPU, and LSU by the provision of a reservation station at each unit.
The dispatch unit checks for source and destination register dependencies, determines
dispatch serializations, and inhibits subsequent instruction dispatching as required.

For a more detailed overview of instruction dispatch, see Section 1.2.7, “Instruction
Timing.”

1.1.3.1.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the fetch unit and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a zero-
cycle branch in many cases.

1-8 PowerPC 602 RISC Microprocessor User's Manual



The BPU uses a hit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered, the
602 fetches instructions from the predicted target stream until the conditional branch is
resolved.

The BPU contains an adder for computing branch target addresses and three user-control
registers—the link register (LR), the count register (CTR), and the condition register (CR).
The BPU calculates the return pointer for subroutine calls and saves it into the LR for
certain types of branch instructions. The LR also contains the branch target address for the
Branch Conditional to Link Register (bclrx) instruction. The CTR contains the branch
target address for the Branch Conditional to Count Register (bcctrx) instruction. The
contents of the LR and CTR can be copied to or from any GPR. Because the BPU uses
dedicated registers rather than GPRs or FPRs, execution of branch instructions is largely
independent from execution of integer and floating-point instructions.

1.1.3.1.3 Completion Unit

When an instruction is dispatched, a place is reserved in the completion buffer, which
ensuresthat instructions completein program order. Completing an instruction commitsthe
602 to any architectural register changes caused by that instruction. In-order completion
ensures the correct architectural state when the 602 must recover from a mispredicted
branch or an exception.

Instruction state and other information required for completion is kept in afirst-in-first-out
(FIFO) queue of four completion buffers. A single completion buffer is allocated for each
instruction as it enters the dispatch unit. If no completion buffers are available, instruction
dispatch stalls. A maximum of one instruction per cycle is completed in order from the
queue.

This unit isresponsible for ensuring that exceptions are handled in an orderly way.

1.1.4 Independent Execution Units

The PowerPC architecture’'s support for independent execution units alows the
implementation of processors with out-of-order instruction execution. For example,
because branch instructions do not depend on GPRs or FPRs, branches can often be
resolved early, eliminating stalls caused by taken branches.

Branch instructions do not execute in the same sense that arithmetic, logical, or load/store
instructions do. As shown in Figure 1-1, the IU, FPU, and LSU are arranged in paralel to
one another. The execution units are described in the following sections.

1.1.4.1 Integer Unit (1U)

The IU executes al integer instructions. The U executes one integer instruction at atime,
performing computations with its arithmetic logic unit (ALU), multiplier, divider, and the
XER register. Most integer instructions are single-cycle instructions. Thirty-two 32-bit
GPRs are provided to support integer operations. Four rename registers are implemented

Chapter 1. Overview 1-9



for the GPRs. These rename registers allow instructions that have finished execution to
make their results available to subsequent instructions before those results can be sent to
the architected GPR. Rename registers also eliminate stalls due to contention for GPRs.
The 602 writes the contents of the rename registers to the appropriate GPR when integer
instructions are retired by the completion unit.

The U executes all integer arithmetic instructions, condition register logical instructions,
synchronization, and move to/from instructions.

1.1.4.2 Floating-Point Unit (FPU)

The FPU contains a single-precision multiply-add array and the floating-point status and
control register (FPSCR). The multiply-add array allows the 602 to efficiently implement
multiply, add, and multiply-add operations. The FPU is pipelined so that single-precision
instructions can be issued back-to-back. Thirty-two 32-bit FPRs support single-precision
floating-point operations. Four rename registers are implemented for the FPRs. These
rename registers allow instructions that have finished execution to make their results
available to subsequent instructions before those results can be sent to the architected FPR.
Rename registers also eliminate stalls due to contention for FPRs. The 602 writes the
contents of the rename registersto the appropriate FPR when floating-point instructions are
retired by the completion unit.

In the 602, al double-precision arithmetic operations, floating-point load or store
operations that involve double-precision operands that cannot be expressed as single-
precision values, and operations producing denormalized numbers are handled by
emulation software. The 602 traps to an exception handler when it encounters these
operands or operations.

The 602 can aso be operated in the non-1EEE floating-point mode. For a result of divide
by zero, invalid, overflow, or underflow, this mode allowsthe 602 to produce predetermined
values that may not conform to |EEE 754. The non-IEEE maode is useful for time-critical
applications such as graphics applications.

1.1.4.3 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface
between the GPRs, FPRs, and the cache/memory subsystem. The LSU calcul ates effective
addresses, performs data alignment, and traps on load/store string instructions. L oad/store
string instructions are emulated in software.

Load and store instructions are issued and translated in program order; however, the actual
memory accesses can occur out of order. Synchronizing instructions are provided to
enforce strict ordering.

Cacheable loads, when free of data dependencies, execute with a maximum throughput of
one per cycle and atwo-cycletota latency. Datareturned from the cacheisheld in arename
register until the completion logic commits the value to a GPR or FPR. Data in a rename
register can be used by an executing instruction before that data has been written to a

1-10 PowerPC 602 RISC Microprocessor User's Manual



register file. Store instructions cannot be executed out of order and are held in the store
gueue until the completion logic signals that the store operation is to be completed to
memory. The time required to perform the actual load or store operation depends on
whether the operation involves the cache or the system memory.

The LSU executes all load, store, cache control, and memory control instructions.

1.1.5 Memory Subsystem

The 602 provides support for cache and memory management through separate instruction
and data memory management units. The 602 also provides separate 4-Khbyte instruction
and data caches and an efficient processor bus interface to facilitate access to main memory
and other bus subsystems. The memory subsystem support functions are described in the
following sections.

1.1.5.1 Memory Management Units (MMUS)

The 602's MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory (referred to as real memory in the architecture specification) for
instruction and data. The MMUs aso control access privileges for these spaces on block
and page granularities. Referenced and changed status is maintained by the processor for
each page to assist implementation of a demand-paged virtual memory system.

The LSU calculates effective addresses for data load and store operations, and performs
data alignment to and from cache memory. The instruction unit calculates the effective
addresses for instruction fetching.

After an addressis generated, the higher-order bits of the effective address are trandated by
the appropriate MMU into physical address bits. Simultaneously, the lower-order address
bits (which are untranslated and the same for both logical and physical addresses), are
directed to the on-chip caches where they form the index into the two-way set-associative
tag array. After trandating the address, the MMU passes the higher-order bits of the
physical address to the cache, and the cache lookup completes. For cache-inhibited
accesses or accesses that miss in the cache, the untranslated lower-order address bits are
concatenated with the trandated higher-order address bits; the resulting 32-bit physica
address is then used by the memory unit and the system interface, which accesses externa
memory.

The MMU aso translates addresses and enforces memory protection supervisor/user
privilege level of the accessin relation to whether the accessis aload or store.

For instruction accesses, the MMU performs an address lookup in the 32 entries of the
ITLB, and in the IBAT array. If an effective address hits in both the ITLB and the IBAT
array, the IBAT array translation takes priority. Data accesses cause alookup in the DTLB
and DBAT array for the physical address trandation. In most cases, the physical address
tranglation resides in one of the TLBs or BATSs, and the physical address bits are readily
available to the on-chip cache.

Chapter 1. Overview 1-11



If an access misses in the BATSs, the OEA-defined page address trandation is used unless
HIDO[PQ] is set, in which case the 602-specific protection-only mode is used.

The 602-specific protection-only mode enables each TLB to protect up to 128 Kbytes per
entry (4 Mbytes per TLB). Effective address trandation is not performed for TLBs in
protection-only mode. Protection-only mode is used if the effective address misses in the
BATSs and the protection-only mode is enabled (HIDO[PQ] = 1), otherwise, page address
trandation is used. In protection-only mode, the MMU is not used to trandate the effective
address (the effective address is used for the physical address), and is used only to enforce
protection for each 4-Kbyte page. The protection consists of the following:

* Write enabling—The WE bit determines whether data pages can be written to.

¢ Instruction fetching—The NE bit controls whether instructions (including the esa
instruction) can be fetched from the current page.

« Enabling execution of the esa instruction—The SE bit controls whether the esa
instruction can be executed from the current page. If fetching is disabled, the SE hit
isadon’t care.

In either page address translation mode or protection-only mode, when the address misses
in the TLBs, the 602 provides hardware assistance for software to perform a search of the
tranglation tables in memory. The hardware assist consists of the following features:

» Separate exception vectors defined for instruction translation miss, data load
tranglation miss, and data store trans ation miss

« Automatic storage of the missed effective address in the 602-specific IMISS and
DMISS registers

< Automatic generation of the primary and secondary hashed real address of the page
tableentry group (PTEG), which arereadable from the HASH1 and HASH2 register
locations. The HASH datais generated from the contents of the IMISS or DMISS
register. The register selected depends on whether an instruction or data miss was
acknowledged last.

« Automatic generation of the first word of the page table entry (PTE) for which the
tables are being searched

« A required physical address (RPA) register that matches the format of the lower
word of the PTE

¢ Two 602-specific TLB access instructions (tlbli and tlbld) that are used to load an
address trand ation into the instruction or data TLBs

e Shadow registers for GPRO-GPR3 that allow missed code to execute without
corrupting the state of any of the GPRs. These shadow registers are used only for
servicing aTLB miss.

For details about the architecturally-defined transl ation and protection mechanism, see The
Programming Environments Manual .

1-12 PowerPC 602 RISC Microprocessor User's Manual



See Section 1.2.6.2, “PowerPC 602 Microprocessor Memory Management,” for more
information about memory management for the 602.

1.1.5.2 Cache Units

The 602 provides independent 4-Kbyte, two-way set-associative instruction and data
caches. The cache block size is 32 bytes (eight words). The caches adhere to a write-back
policy, but, as defined by the PowerPC architecture, the 602 allows control of cacheability,
write policy, and memory coherency at the page and memory block levels. The caches use
an LRU replacement policy.

As shown in Figure 1-1, the caches provide a 32-bit interface to the instruction fetch unit
and load/store unit. The surrounding logic selects, organizes, and forwards the requested
information to the requesting unit. Store operations to the cache can be performed on abyte
basis, and a complete read-modify-write operation to the cache can occur in each cycle.

Theload/store unit and instruction fetch unit provide the caches with the address of the data
or instruction to be fetched. In the case of a cache hit, the cache returns two words to the
reguesting unit.

Since the 602 data cache tags are single-ported, simultaneous load or store and snoop
accesses cause resource contention. Snoop accesses have the highest priority and are given
first access to the tags, unless the snoop access coincides with atag write. In this case the
snoop is retried and must rearbitrate for access to the cache. Load or store operations that
are deferred due to snoop accesses are executed on the clock cycle following the snoop.

1.1.6 Processor Bus Interface

The 602 bus interface is a time-multiplexed, 32-bit address, 64-bit data interface. Data
transfers consist of two phases—the address phase, during which the address and transfer
attributes are broadcast on the bus, and the data phase, during which the bus can function
as either a 32-hit or 64-bit data bus. The address phase consists of subphases that are
required for the processor to arbitrate and be granted mastership of the bus as well as the
actual address transfer itself. The data phase consists of subphases that include the actua
data transfer as well as an acknowledgment that each beat of data has been transferred
successfully.

The 602 on-chip caches can be configured in the write-through or write-back modes. In the
write-back mode, the predominant type of transaction for most applications is burst-read
memory operations, followed by burst-write memory operations and single-beat
(noncacheable or write-through) operations. Additionally, there can be address-only
operations, variants of the burst and nonburst operations, (for example, global memory
operations that are snooped and atomic memory operations), and address retry activity (for
example, when a snooped read access hits a modified block in the cache).

Chapter 1. Overview 1-13



Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism allows the 602
to beintegrated into systemsthat implement various fairness and bus parking proceduresto
avoid arbitration overhead.

The amount of datathat can be transferred per bus clock cycle depends on whether the bus
is configured as a 32- or 64-bit bus. In 64-bit mode, the bus can transfer up to 64 bitsin a
single-beat (nonburst) transaction and an entire 8-word cache block in a four-beat burst
transaction. In 32-bit mode, there are two types of nonburst transactions. A single-beat
transaction transfers up to 32 bits and a double-beat transaction transfers 64 bits. In 32-bit
mode, the burst transaction requires eight beats to transfer a cache block of data.

Typically, 602 memory accesses are weakly-ordered—sequences of operations, including
load/store multiple instructions, do not necessarily complete in the order they begin. This
maximizes the efficiency of the bus without sacrificing data integrity. The 602 allows read
operations to precede store operations (except when a dependency exists). Because the
processor can dynamically optimize run-time ordering of load/store traffic, overall
performance isimproved.

1.1.7 System Support Functions

The 602 implements several support functions that include power management, time base/
decrementer registers for system timing tasks, a watchdog timer, an |EEE 1149.1(JTAG)/
common on-chip processor (COP) test interface, and a phase-locked loop (PLL) clock
multiplier. These system support functions are described in the following subsections.

1.1.7.1 Power Management

The 602 provides four power modes sel ectabl e by setting the appropriate control bitsin the
machine state register (MSR) and hardware implementation register 0 (HIDO) registers.
The four power modes are as follows:

« Full-power-Thisisthe default power state of the 602. The 602 isfully powered and
the internal functional units are operating at the full processor clock speed. If the
dynamic power management mode is enabled, functional unitsthat areidle
automatically enters alow-power state without affecting performance, software
execution, or external hardware.

¢ Doze-All the functional units of the 602 are disabled except for the time base/
decrementer registers and the bus snooping logic. The 602 returns to the full-power
state upon the occurrence of any asynchronous exception. Asynchronous exceptions
implemented on the 602 arelisted in Table 1-1. The 602 in doze mode maintainsthe
PLL in afully-powered state and locked to the system external clock input
(SYSCLK) so atransition to the full-power state takes only a few processor clock
cycles.

1-14 PowerPC 602 RISC Microprocessor User's Manual



* Nap-The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. The 602 returns
to the full-power state upon the occurrence of any asynchronous exception.
Asynchronous exceptions implemented on the 602 are listed in Table 1-1. A return
to full-power state from a nap state takes only a few processor clock cycles.

»  Sleep-Sleep mode reduces power consumption to a minimum by disabling all
internal functional units, after which external system logic may disablethe PLL and
SY SCLK. Returning the 602 to the full-power state requiresthe enabling of the PLL
and SYSCLK, followed by any external exception after the time required to relock
the PLL.

1.1.7.2 Time Base/Decrementer

Thetimebase (TB) isa64-bit register (accessed astwo 32-hit registers) that isincremented
once every four bus clock cycles; external control of the time baseis provided through the
time base enable (TBEN) signal. The decrementer is a 32-bit register that generates a
decrementer exception after a programmable delay. The contents of the decrementer
register are decremented once every four bus clock cycles, and the decrementer exception
condition is generated as the count passes through zero.

1.1.7.3 IEEE 1149.1 (JTAG)/Common On-Chip Processor (COP) Test
Interface

The 602 provides IEEE 1149.1 and COP functions for facilitating board testing and chip
debug. Thetest interface provides ameans for boundary-scan testing the 602 and the board
to which it is attached. The COP function shares the IEEE 1149.1 test port, provides a
means for executing test routines, and facilitates chip and software debugging.

1.1.7.4 Clock Multiplier

Theinternal clocking of the 602 is generated from and synchronized to the external clock
signal, SYSCLK, by means of a voltage-controlled, oscillator-based PLL. The PLL
provides programmable internal processor clock rates of either two or three times the
externally supplied clock frequency. The bus clock is the same frequency and is
synchronous with SY SCLK.

1.1.7.5 Watchdog Timer

The 602-specific watchdog timer can be used to generate a periodic exception based on the
operation of thetime base register. The watchdog timer is enabled and programmed through
the timer control register (TCR), which is a supervisor-level SPR specific to the 602.
Supervisor-level software can set bitsin the TCR to select one of four time periods for the
interrupts, and other aspects of the watchdog timer operations. When a watchdog timer
exception occurs, instruction fetching begins at vector offset 0x1500 (as shown in
Table 1-2). The watchdog timer can be programmed such that if the exception handler does
not reset the timer, a second watchdog timer interrupt condition will cause a soft reset
(system reset exception).

Chapter 1. Overview 1-15



1.2 PowerPC 602 Microprocessor: Implementation

The PowerPC architecture is derived from the IBM POWER architecture (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
PowerPC architecture design facilitates parallel instruction execution and is scalableto take
advantage of future technological gains.

This section describes the PowerPC architecture in general, and gives specific details about
the implementation of the 602 as a low-power, 32-bit member of the PowerPC processor
family.

» Features—Section 1.2.1, “Features,” describes general features that the 602 shares
with the PowerPC microprocessor family.

* Registers and programming model—Section 1.2.2, “ PowerPC Registers and
Programming Model,” describes the registers for the operating environment
architecture common among PowerPC processors and describes the programming
model. It also describes the additional registers that are unique to the 602.

¢ Instruction set and addressing modes—Section 1.2.3, “Instruction Set and
Addressing Modes,” describes the PowerPC instruction set and addressing modes
for the PowerPC operating environment architecture, and defines and describes the
PowerPC instructions implemented in the 602.

¢ Cache implementation—Section 1.2.4, “ Cache Implementation,” describes the
cache model that is defined generally for PowerPC processors by the virtual
environment architecture. It also provides specific details about the 602 cache
implementation.

« Exception model—Section 1.2.5, “Exception Model,” describes the exception
model of the PowerPC operating environment architecture and the differencesin the
602 exception model.

* Memory management—Section 1.2.6, “Memory Management,” describesgenerally
the conventions for memory management among the PowerPC processors. This
section also describes the 602's implementation of the 32-bit PowerPC memory
management specification.

e Instruction timing—Section 1.2.7, “Instruction Timing,” provides a general
description of theinstruction timing provided by the parallel execution supported by
the PowerPC architecture and the 602.

e System interface—Section 1.2.8, “ System Interface,” describes the signals
implemented on the 602.

1-16 PowerPC 602 RISC Microprocessor User's Manual



1.2.1 Features

The 602 is a high-performance, low-cost microprocessor for consumer electronics and
computers. It is designed for use in advanced home entertainment and educational devices
with audio/video, multimedia, and complex graphics requirements. The 602 is also
applicable for low-power business and commercial devices with speech recognition and
synthesis, wireless communications, or handwriting recognition.

The following sections summarize the features of the 602, including both those that are
defined by the architecture and those that are unique to the 602 implementation.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
isimplemented:

« PowerPC user instruction set architecture (Ul SA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

e PowerPC virtual environment architecture (V EA)—Describes the memory model
for amultiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. |mplementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

« PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. I mplementations that conform to the OEA aso adhere to the
UISA and the VEA.

The 602 does not implement the double-precision floating-point instructions and the load/
store string instructions in hardware. Barring these exceptions, the 602 implements the
levels of architecture as mentioned above. Specific features of the 602 are listed in
Section 1.1.1, “PowerPC 602 Microprocessor Features.”

For more information, see The Programming Environments Manual.

1.2.2 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

PowerPC processors have two levels of privilege—supervisor level (typicaly used by the
operating system) and user level (used by the application software). The programming
models incorporate 32 GPRs, 32 FPRs, specia-purpose registers (SPRs), and several
miscellaneous registers. Each PowerPC microprocessor may also have its own unique set
of implementation-specific registers. The registers implemented in the 602 are shown in

Chapter 1. Overview 1-17



Figure 1-3 and described in the following sections. Registers defined by the PowerPC
architecture are described in The Programming Environments Manual.

Access to supervisor-level instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating system and critical machine resources). Instructions that control the state of the
processor, the address transl ation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.

Figure 1-3 showsthe registersimplemented in the 602 and indicates whether these registers
are accessible to user- or supervisor-level software. The numbers to the right of the SPRs
indicate the number that is used in the syntax of the instruction operands to access the
register.

1-18 PowerPC 602 RISC Microprocessor User's Manual



PLL Configuration
Register

SPR1009
/ USER MODEL \

General-Purpose
Registers

GPRO
GPR1

GPR31

Single-Precision
Floating-Point Registers

FPRO
FPR1

FPR31

Condition Register
Cl

I

Floating-Point Status
and Control Register

FPSCR

XER

XER SPR 1

Link Register

LR SPR 8

Count Register

CTR SPR 9

Time Base Facility
(For Reading)

TBR 268
TBR 269

TBL
TBU

\ )

SUPERVISOR MODEL

Machine State
Register

Memory Management Registers

Instruction BAT

Registers
IBATOU | SPR528
IBATOL SPR 529
IBAT1U SPR 530
IBAT1L SPR 531
IBAT2U SPR 532
IBAT2L | SPR533
IBAT3U | SPR534
IBAT3L | SPR535
ESA Access
Registers
ESA Enable
Register
SER SPR 991

ESA Enable Base
Registerl

ESA Savia/Restore

Register

SPR 987

Configuration Registers

Checkstop Enables
Register!

HIDO SPR 1008

Data BAT Registers

DBATOU | SPR 536
DBATOL | SPR 537
DBAT1U | SPR 538
DBAT1L | SPR 539
DBAT2U | SPR 540
DBAT2L | SPR 541
DBAT3U | SPR 542
DBAT3L | SPR 543
SDR1

SDR1 SPR 25

Exception Handling Registers

Data Address Register
DAR SPR 19
SPRGs
SPRGO | SPR 272
SPRG1 | SPR273
SPRG2 | SPR 274
SPRG3 | SPR 275

Miscellaneous Registers

Time Base Facility
(For Writing)

TBL SPR 284

SPR 285

TBU

Instruction Address
Breakpoint Register

IABR SPR 1010

Single-Precision
Tag Register

SP SPR 1021

Integer Tag Register!

Decrementer

DEC SPR 22

~

Processor Version
Register

Software Table
Search Registers®

DMISS SPR 976
DCMP SPR 977
HASH1 [ SPR 978
HASH2 | SPR 979
IMISS SPR 980
ICMP SPR 981

RPA SPR 982

Segment Registers
SRO
SR1

SR15

DSISR

DSISR SPR 18

Save and Restore

Registers
SRRO SPR 26
SRR1 SPR 27

Timer Contro)
Register!

TCR SPR 984

Interrupt Base
Register

SPR 986

/

1 These registers are 602—specific registers. They may not be supported by other PowerPC processors.

Figure 1-3. PowerPC 602 Microprocessor Programming Model—Registers

Chapter 1. Overview

1-19



The following sections summarize the PowerPC registers that are implemented in the 602.

1.2.2.1 General-Purpose Registers (GPRs)

The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs) that
serve as the data source or destination for all integer instructions. The 602 also implements
four GPR rename registers, which are used to make the results of executing an instruction
available to subsequent instructions before they are written back to the architected GPR
(during the complete/write-back stage).

The 602 also defines four GPR shadow registers to support the software table search
operations. MSR[TGPR] is set whenever the 602 takes an instruction TLB miss, data read
miss, or data write miss exception. When MSR[TGPR] is set, all instruction accesses to
GPRO-GPRS3 are to be mapped to TGPRO-TGPRS3. The contents of GPRO-GPR3 remain
unchanged while MSR[TGPR] is set. Attempts to use GPR4-GPR31 with MSR[TGPR] set
yields undefined results. MSR[TGPR] is cleared when an rfi instruction is executed.

1.2.2.2 Floating-Point Registers (FPRS)

The UISA portion of the PowerPC architecture defines 32 user-level, 64-bit floating-point
registers (FPRs). The FPRs serve as the data source or destination for floating-point
instructions. These registers can contain data objects of either single- or double-precision
floating-point formats. However, because the 602 is optimized for systems that perform
single- and not double-precision floating-point arithmetic, the 602 implements 32 user-
level, 32-bit FPRs. Double-precision arithmetic instructions and operations that employ
double-precision operands that cannot be represented in single-precision are trapped for
emulation in software. Single-precision operations can execute instructions using double-
precision operands without taking an exception aslong as the double-precision operand can
be represented as a single-precision value without loss of accuracy.

The 602 aso implements four FPR rename registers, which are used to make the results of
executing a floating-point instruction available to subsequent instructions before those
results are written back to the architected FPR (during the complete/write-back stage).

1.2.2.3 Condition Register (CR)

The CRisa32-bit, user-level register that consists of eight 4-bit fields that reflect the results
of certain operations, such as move, integer and floating-point compare, arithmetic, and
logical instructions, and provide a mechanism for testing and branching.

1.2.2.4 Floating-Point Status and Control Register (FPSCR)

The floating-point status and control register (FPSCR) is a user-level register that contains
al exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard.

1-20 PowerPC 602 RISC Microprocessor User's Manual



1.2.2.5 Machine State Register (MSR)

The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and typically
restored when the exception handling completes. The 602 implements the M SR as a 32-hit
register. The 602 defines additional bits in the MSR to support 602-specific functionality.
For example, MSR[SA] indicates whether the esa instruction has been executed to put the
processor in supervisor mode. MSR[AP] controls whether supervisor-level software can
access memory at user level or at supervisor level.

1.2.2.6 Segment Registers (SRs)

For memory management, 32-bit PowerPC microprocessors implement sixteen 32-bit
segment registers (SRs). To speed access, the 602 implements the segment registers astwo
arrays—a main array (for data memory accesses) and a shadow array (for instruction
memory accesses). Loading a segment entry with the Move to Segment Register (mtsr)
instruction loads both arrays.

1.2.2.7 Special-Purpose Registers (SPRs)

The PowerPC operating environment architecture defines numerous SPRs that serve a
variety of functions, such as providing controls, indicating status, configuring the
processor, and performing special operations. During normal execution, a program can
access the registers, shown in Figure 1-3, depending on the program’s access privilege
(supervisor or user, determined by the privilege level (PR) bit in the MSR). Note that
registers such as the GPRs and FPRs are accessed through operands that are part of the
instructions. Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as Move to Special-Purpose Register (mtspr) and Move
from Specia -Purpose Register (mfspr) instructions) or implicit, asthe part of the execution
of an instruction. Some registers are accessed both explicitly and implicitly.

1.2.2.7.1 User-Level SPRs
The following SPRs are accessible by user-level software:

« Link register (LR)—The 32-bit link register can be used to provide the branch target
address and to hold the return address after branch and link instructions.

e Count register (CTR)—The 32-bit CTR is decremented and tested automatically as
aresult of branch and count instructions.

¢ The XER register—The 32-bit XER contains the summary overflow bit, integer
carry bit, and overflow bit.

1.2.2.7.2 Supervisor-Level SPRs

The 602 contains SPRs that can be accessed only by supervisor-level software. See
Figure 1-3 for alist of the SPR numbers. The 602 implements both those supervisor-level
SPRs defined by the PowerPC architecture as well as several additional SPRs required for
supporting 602-specific features such as the software table search, the watchdog timer, and
the esa supervisor access.

Chapter 1. Overview 1-21



The following registers are defined by the PowerPC architecture, athough some of these
registers implement additional bits to support 602 functionality:

The 32-bit DSISR defines the cause of data access and alignment exceptions.

The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or DSI exception.

Decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

The 32-bit SDR1 specifies the page table format used in virtual-to-physical address
tranglation for pages. (Note that physical addressisreferred to asreal addressin the
architecture specification.)

The machine status save/restore register 0 (SRRO) isa 32-bit register that is used by
the 602 for saving the address of the instruction that caused the exception, and the
address to return to when a Return from Interrupt (rfi) instruction is executed.

The machine status save/restore register 1 (SRR1) is a 32-hit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed. The 602 defines additional bits in the M SR to support 602-specific
functionality.

The 32-bit SPRGO-SPRG3 registers are provided for operating system use.

Thetime baseregisters (TBL and TBU) together provide a 64-bit time base register.
Theregistersareimplemented asa64-bit counter, with the least-significant bit being
the most frequently incremented.

The processor version register (PVR) isa32-bit, read-only register that identifiesthe
version (model) and revision level of the PowerPC processor.

Block address trandation (BAT) registers—The PowerPC architecture defines 16
BAT registers, divided into four pairs of data BATs (DBATS) and four pairs of
instruction BATs (IBATS). The IBAT registersimplement two additional bits—the
NE bit controls whether instructions can be fetched from the block and the SE bit
controls whether an esa instruction fetched from the block can be executed.

The following supervisor-level SPRs are 602-specific:

The hardware implementati on-dependent register 0 (HIDO) provides means for
enabling the 602’s checkstops and features, such as protection-only mode.

Hardware implementation-dependent register 1 (HID1) is aread-only register that
stores the PLL configuration bits.

The DMISS and IMISS registers are read-only registers that are loaded
automatically upon an instruction or data TLB miss.

TheHASH1 and HASH2 registers contain the physical addresses of the primary and
secondary page table entry groups (PTEGS).

ThelCMP and DCM P registers contain aduplicate of thefirst word in the pagetable
entry (PTE) for which the table search islooking.

1-22

PowerPC 602 RISC Microprocessor User's Manual



» Therequired physical address (RPA) register isloaded by the processor with the
second word of the correct PTE during a page table search.

« Theinstruction address breakpoint register (IABR) isloaded with an instruction
address that is compared to instruction addresses in the dispatch queue. When an
address match occurs, an instruction address breakpoint exception is generated.

* TheESA enableregister (SER) isa32-bit register used in the protection-only mode.
Each bit controls esa execution privileges for a 4-Kbyte page.

» The ESA enable base register (SEBR) contains the base address of the 128-Kbyte
region that is protected by the special execute (SE) bitsin SER.

* TheESA save and restoreregister (ESASRR) isa 32-bit register that saves selected
MSR bits (PR, AP, SA, EE) when the esa instruction is executed. Executing the dsa
instruction restores these bits to the MSR.

» Thesingle-precision tag register (SP) is a 32-hit register for which each bit (SPO-
SP31) corresponds to one of the 32, 32-bit FPRs (FPRO—FPR31). An SPbit isset if
the corresponding FPR holds a single-precision vaue.

» Theinteger tag register (LT) is a32-bit register for which each bit (LTO-LT31)
corresponds to one of the 32, 32-hit FPRs (FPRO—FPR31). An LT bit is set if the
corresponding FPR holds an integer value.

» Thetimer control register (TCR) provides bits for enabling and programming the
watchdog timer.

» Theinterrupt baseregister (IBR) contains an exception vector offset address used by
exception handlersif the MSR[IP] is cleared when an exception occurs; if MSR[1P]
is set, the default offset address OxFFFO0000 is used.

1.2.3 Instruction Set and Addressing Modes

The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.2.3.1 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. Thisfixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.2.3.1.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:
« Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions

Chapter 1. Overview 1-23



* Foating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR.
— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point status and control instructions
e Load/store instructions—These include integer and floating-point load and store
instructions.
— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store instructions
— Primitives used to construct atomic memory operations (Iwar x and stwcx.
instructions)

« Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— Condition register logical instructions

» Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.
— Moveto/from SPR instructions
— Moveto/from M SR instructions
— Synchronize instruction
— Instruction synchronize

* Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers.

— Supervisor-level cache management instructions

— User-level cacheinstructions

— Segment register manipulation instructions

— Trandation lookaside buffer management instructions

Note that this grouping of the instructions does not indicate the execution unit that executes
aparticular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) operands. Floating-point double-
precision operations are trapped for emulation in software. The PowerPC architecture uses
instructions that are four bytes long and word-aligned. It provides for byte, half-word, and

1-24 PowerPC 602 RISC Microprocessor User's Manual



word operand load and store operations between memory and 32 GPRs. It also providesfor
word and double-word operand loads and stores between memory and 32 FPRs.

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction causing an exception, or by an asynchronous event. Either kind of exception
may cause one of several components of the system software to be invoked.

1.2.3.1.2 Calculating Effective Addresses

The effective address (EA) isthe 32-bit address computed by the processor when executing
amemory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

e EA =(rA|0) + offset (including offset = 0) (register indirect with immediate index)
« EA =(rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occursin asingle clock cycle.

For amemory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored in 32-bit implementations.

1.2.3.2 PowerPC 602 Microprocessor Instruction Set
The 602 instruction set is defined as follows:
e The 602 provides hardware support for most 32-bit PowerPC instructions. The 602

does not support double-precision floating-point, |oad/store string, eciwx, and
ecowx instructionsin hardware.

e The 602 provides two implementation-specific instructions used for software table
search operations following TLB misses:
— TLB Load Data (tlbld)
— TLB Load Instruction (tlbli)

Chapter 1. Overview 1-25



* The 602 provides two implementation-specific instructions that enable/disable
access into the supervisor mode (without having to branch or invoking a system
cal):

— Enable Supervisor Access (esa) instruction. When the esa instruction is
executed, the processor enters supervisor mode without incurring the
additional latency due to synchronizing the processor and refetching from the
exception vector. The ability to execute the esa instruction on ablock or page
is controlled by the SE bit, which is configured through the IBATs and the
ITLBs. Thisfunctionality is not available in real addressing mode.

— Disable Supervisor Access (dsa) instruction. Executing the dsa instruction
restores the processor to the state it was in prior to the execution of the esa
instruction.

» The 602 implements the following instructions that are defined as optional by the
PowerPC architecture:

— Floating Select (fsel) instruction

— Floating Reciprocal Estimate Single-Precision (fres) instruction. On the 602,
fresisimplemented as a divide rather than an estimate.

— Floating Convert to I nteger Word with Round toward Zero (fctiwz) instruction

1.2.4 Cache Implementation

The following subsections describe the PowerPC architecture’s treatment of cache in
general, and the 602-specific implementation, respectively.

1.2.4.1 PowerPC Cache Characteristics

The PowerPC architecture does not define hardware aspects of cacheimplementations. For
example, some PowerPC processors, including the 602, have separate instruction and data
caches (Harvard architecture), while others, such as the PowerPC 601™ microprocessor,
implement a unified cache.

PowerPC microprocessors control the following memory access modes on a page or block
basis:

*  Write-back/write-through mode

« Caching-inhibited mode

¢ Memory coherency
Note that in the 602, a cache block is defined as being eight words wide. The VEA defines

cache management instructions that application programmers can use to affect the cache
contents and coherency state.

1-26 PowerPC 602 RISC Microprocessor User's Manual



1.2.4.2 PowerPC 602 Microprocessor Cache Implementation

The 602 has two 4-Kbyte, two-way set-associative (instruction and data) caches. The
caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as specified by the PowerPC architecture. Cache organization is shown

in Figure 1-4.

64 Sets . , , . ®
[ ] T T [ U} T T T T
[ ] [ ]
| : [ I I
T T T T T T T
Block 0| Address Tag 0 :|: State Words 0-7 :|:
f f f f f f f
Block 1| Address Tag 1 State Words 0-7
|«—— 8 Words/Block————— |

Figure 1-4. Cache Organization

Thedatacacheis configured as 64 sets of two cache blocks each. Each cache block consists
of eight 32-bit words, two state bits, and an address tag. The two state bits implement the
three-state MEI (modified/exclusive/invalid) protocol. Note that the PowerPC architecture
defines the term block as the cacheable unit. For the 602, the block size is equivalent to a
cache block.

The instruction cache differs in that it maintains only one state bit that indicates only
whether the datais valid, because the instruction caches do not support the MEI coherency
protocol. Because the instruction cache may not be written to except through a line-fill
operation it is not snooped, and cache coherency must be maintained by software. A fast
hardware invalidation capability is provided to support cache maintenance.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27-A31 of the effective addresses are zero); thus, a
cache block never crosses a page boundary. Accesses that cross a page boundary can incur
a performance penalty.

The 602's cache blocks are loaded in four beats of 64 bits each when the bus is in 64-bit
mode (and in eight 32-bit beats in 32-bit mode). The burst load is performed as critical
double word first and the requested datain that double word is forwarded to the requesting
processor unit as an instruction or as an operand. The caches are nonblocking, so additional
dataor instructions can be accessed by the requesting unit as soon asit arrivesin the cache.

Chapter 1. Overview 1-27



To ensure coherency among caches in a multiprocessor (or multiple caching-device)
implementation, the 602 implements the MEI protocol in the data caches. These three
states, modified, exclusive, and invalid, indicate the state of the cache block as follows:

* Modified—The cache block is modified with respect to system memory; that is, data
for this addressis valid only in the cache and not in system memory.

» Exclusive—This cache block holds valid data that isidentical to the data at this
address in system memory. No other device has this data.

* |nvalid—This cache block does not hold valid data.

Cache coherency is enforced by on-chip bus snooping logic. Sincethe 602’ s data cache tags
are single-ported, a simultaneous load or store and snoop access represent a resource
contention. The snoop accessis given first access to the tags. The load or store then occurs
on the clock following the snoop. All read operations on the bus are treated as read-with-
intent-to-modify operations, as are all burst read operations from a snooping perspective.
Injected snooping, that is snooping between beats in a burst read operation, provides an
additional snooping opportunity.

1.2.5 Exception Model

The following subsections describe the PowerPC exception model and the 602
implementation, respectively.

1.2.5.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to change to supervisor state asa
result of external signals, errors, or unusual conditions arising in the execution of
instructions, and differ from the arithmetic exceptions defined by the IEEE for floating-
point operations. When exceptions occur, information about the state of the processor is
saved to certain registers and the processor begins execution at an address (exception
vector) predetermined for each exception. Processing of exceptions occurs in supervisor
mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionaly, some exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that a processor be able to handle instruction-caused
exceptions in program order; therefore, although a particular implementation may
recognize exception conditions out of order, they are presented strictly in order. When an
instruction-caused exception is recognized, any unexecuted instructions that appear in the
instruction stream prior to the instruction causing the interrupt are required to complete
before the exception istaken. Any exceptions caused by those instructions are handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until the instruction currently in the completion stage successfully
compl etes execution or generates an exception, and the completed store queue is emptied.

1-28 PowerPC 602 RISC Microprocessor User's Manual



Unless acatastrophic condition causes a system reset or machine check exception, only one
exceptionishandled at atime. If, for example, an instruction encounters multiple exception
conditions, those conditions are processed sequentially. After the exception handler handles
an exception, the instruction execution continues until the next exception condition is
encountered. However, in many cases, thereis no attempt to re-execute the instruction. This
method of recognizing and handling exception conditions sequentially guarantees that
exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset and machine check exception or to
an instruction-caused exception in the exception handler, and before enabling externa
interrupts.

The PowerPC architecture supports four types of exceptions:

» Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occursisknown and can be completely restored. This meansthat (excluding thetrap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream completes execution before the exception is taken.
Once the exception is processed, execution resumes at the address of the faulting
instruction (or at an aternate address provided by the exception handler). When an
exception is taken due to atrap or system call instruction, execution resumes at an
address provided by the handler.

* Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
602 provides a means to enable the imprecise modes, it implements these modes
identically to the precise mode (that is, all enabled floating-point exceptions are
aways precise on the 602).

¢ Asynchronous, maskable—The external, system management, and decrementer
interrupts are maskabl e asynchronous exceptions. When these exceptions occur,
their handling is postponed until the next instruction, and any exceptions associated
with that instruction, completes execution. If there are no instructionsin the
execution units, the exception is taken immediately upon determination of the
correct restart address (for loading SRRO).

¢ Asynchronous, nonmaskable—There are two nonmaskabl e asynchronous
exceptions, system reset and the machine check exception. These exceptions may
not be recoverable, or may provide alimited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.

Chapter 1. Overview 1-29



1.2.5.2 PowerPC 602 Microprocessor Exception Model

As specified by the PowerPC architecture, all 602 exceptions can be described as either
precise or imprecise and either synchronous or asynchronous. Asynchronous exceptions
(some of which are maskable) are caused by events external to the processor’s execution;
synchronous exceptions, which are al handled precisely by the 602, are caused by
instructions. The 602 exception classes are shown in Table 1-1.

Table 1-1. PowerPC 602 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/lmprecise Exception Type

Asynchronous, nonmaskable Imprecise Machine check
System reset

Asynchronous, maskable Precise External interrupt
Decrementer interrupt

System management interrupt
Watchdog timer interrupt

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Table 1-1 define categories of exceptionsthat the
602 handles uniquely. Note that Table 1-1 includes no synchronous imprecise instructions.
Although the PowerPC architecture supports imprecise handling of floating-point
exceptions, the 602 implements these exception modes as precise exceptions.

The 602's exceptions, and conditions that cause them, are listed in Table 1-2. The vector
column indicates how to determine the vector address from the vector offset and a
combination of the setting of M SR[IP] and the contents of the interrupt baseregister (IBR).

Exceptions that are specific to the 602 are indicated.

Table 1-2. Exceptions and Conditions

Vector (hexadecimal)

Exception Type Prefix Causing Conditions
Offset
IP=0|IP=1
Reserved — — 0000 —
System reset FFFO 0100 Assertion of HRESET

(Hard reset)

System reset 0000 FFFO | 0100 Assertion of SRESET
(Soft reset)

Machine check 0000 FFFO | 0200 Assertion of TEA during a data transaction; assertion of MCP.

1-30 PowerPC 602 RISC Microprocessor User's Manual



Table 1-2. Exceptions and Conditions (Continued)

Vector (hexadecimal)

Exception Type

Prefix

Offset

Causing Conditions

DSI

0300

Determined by the bit settings in the DSISR, as follows:

4 Setif a memory access is not permitted by the page or
DBAT protection mechanism; otherwise cleared.

5 Setif memory access is attempted and SR[T] = 1;
otherwise cleared. The 602 does not support direct-store
memory.

6 Set for a store operation and cleared for a load operation.

ISI

IBR

FFFO

0400

An instruction cannot be fetched for one of the following

reasons:

* The EA cannot be translated and an ISI exception must be
taken to load the PTE (and possibly the page) into memory.

* The fetch access violates memory protection. If SR[Ks] and
SR[Kp] and PTE[PP] are set to prohibit read access,
instructions cannot be fetched from this location.

External interrupt

IBR

FFFO

0500

MSR[EE] = 1 and the INT signal is asserted.

Alignment

IBR

FFFO

0600

Memory cannot be accessed for one of the following reasons:

* The operand of a floating-point load or store is not word-
aligned.

¢ The operand of Imw, stmw, Iwarx, or stwcx. is not word-
aligned.

¢ The operand of dcbz is in a page marked write-through or
caching-inhibited, for a virtual mode access.

« Alittle-endian access is misaligned, or a multiple access is
attempted with the little-endian bit set.

Program

IBR

FFFO

0700

The following conditions correspond to bit settings in SRR1

and arise during execution of an instruction:

« Floating-point enabled exception—The following is met:
(MSR[FEOQ] | MSR[FE1]) & FPSCR[FEX] is 1
FPSCRIFEX] is set by a floating-point instruction that
causes an enabled exception or by the execution of one of
the “move to FPSCR” instructions that results in both an
exception condition bit and its corresponding enable bit
being set in the FPSCR.

« lllegal instruction—Execution of an instruction is attempted
with an illegal opcode or combination of opcode and
extended opcode (including PowerPC instructions not
implemented in the 602 but not including those optional
instructions treated as no-ops).

« Privileged instruction—Execution of a privileged instruction
is attempted and MSR[PR] = 1. In the 602, this exception is
generated for mtspr or mfspr with an invalid SPR field if
SPR[0] = 1 and MSR[PR] = 1. This may not be true for all
PowerPC processors.

¢ Trap— Generated when a trap instruction condition is met.

Floating-point
unavailable

IBR

FFFO

0800

An attempt to execute a floating-point instruction (including
floating-point load, store, or move instructions) when the
floating-point available bit is disabled, (MSR[FP] = 0)

Chapter 1. Overview

1-31




Table 1-2. Exceptions and Conditions (Continued)

Vector (hexadecimal)
Exception Type Prefix Causing Conditions
Offset
IP=0|IP=1
Decrementer IBR FFFO | 0900 The most significant bit of the decrementer (DEC) register
changes from 0 to 1. Must be enabled with the MSR[EE] bit.
Reserved IBR FFFO | OA0O- [ —
OBFF
System call IBR FFFO | 0C00 Execution of the System Call (sc) instruction
Trace IBR FFFO | 0DOO MSRI[SE] =1 or when a completing instruction is a branch and
MSR[BE] =1
Floating-point assist IBR FFFO | OEOO Not implemented in the 602
Reserved — — OE10- | —
OFFF
Instruction translation | IBR FFFO | 1000 The ITLB cannot translate the EA for an instruction fetch.
miss
Data load translation IBR FFFO | 1100 An EA for a data load cannot be translated by the DTLB.
miss
Data store translation | IBR FFFO | 1200 An EA for a data store cannot be translated by the DTLB; or
miss when a DTLB hit occurs and the change bit in the PTE must be
set due to a data store operation.
Instruction address 0000 FFFO | 1300 The address (bits 0—29) in the instruction address breakpoint
breakpoint register (IABR) matches the next instruction to complete in the
completion unit and the IABR enable bit (bit 30) is set.
System management | IBR FFFO | 1400 MSR[EE] = 1 and the SMI input signal is asserted.
interrupt
Watchdog timer IBR FFFO | 1500 A carry occurs out of a bit specified by the user. If the watchdog
timer is not reset by the interrupt service routine, a second
watchdog timer exception forces an internal reset.
Emulation trap IBR FFFO | 1600 Either a double-precision floating-point instruction or a load/
store string instruction is encountered.
Reserved — — 1700- | —
2FFF

1.2.6 Memory Management

The following subsections describe the memory management features of the PowerPC
architecture, and the 602 implementation, respectively.

1-32

PowerPC 602 RISC Microprocessor User's Manual




1.2.6.1 PowerPC Memory Management

The primary functions of the MMU areto trandate logical (effective) addressesto physical
addresses for memory accesses, 1/0 accesses (/O accesses are assumed to be memory-
mapped), and to provide access protection on blocks and pages of memory.

There are two types of accesses generated by the 602 that require address translation—
instruction accesses and data accesses to memory generated by load and store instructions.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtua
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table sizeis a power of 2, and
its starting address is a multiple of its size.

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight page table entries (PTES) of 8 bytes each; therefore, each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations.

Address tranglations are enabled by setting bitsin the MSR—M SR[IR] enablesinstruction
address trandations and MSR[DR] enables data address translations.

1.2.6.2 PowerPC 602 Microprocessor Memory Management

Instruction and data TLBs provide address trandation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of aTLB hit. A TLB is a cache of
the most recently used page table entries. Software is responsible for maintaining the
consistency of the TLB with memory. The 602's TLBs are 32-entry, two-way set-
associative caches that contain instruction and data address tranglations. The 602 provides
hardware assist for software table search operations through the hashed page table on TLB
misses. Supervisor software can invalidate TLB entries selectively.

The instruction and data memory management units provide 4 Gbytes of logical address
space accessible to supervisor and user programs with a 4-Kbyte page size and 256-Mbyte
segment size. Block sizes range from 128 Kbytes to 256 Mbytes and are software-
selectable. In addition, the 602 uses an interim 52-bit virtual address and hashed pagetables
for generating 32-bit physical addresses. The MMUs in the 602 rely on the exception
processing mechanism for the implementation of the paged virtual memory environment
and for enforcing protection of designated memory areas.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data
structure that defines the mapping between virtual page numbers and physica page
numbers. The pagetable sizeisapower of 2, and its starting addressisamultiple of itssize.

Chapter 1. Overview 1-33



Also as specified by the PowerPC architecture, the page table contains a number of page
table entry groups (PTEGs). A PTEG contains eight page table entries (PTES) of 8 bytes
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table
search operations.

For applications requiring protection for areas of memory larger than 256 Kbytes, the 602
provides an optional configuration of its TLBs. Upon reset, the operating system can
configure the TLBs in the protection-only mode, which is described in detail in
Section 1.2.6.2.1, “Protection-Only Mode.”

The 602 also provides independent four-entry BAT arrays for instructions and data that
maintain address tranglations for blocks of memory. These entries define blocks that can
vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system software.
An address match with an entry in the BATSs takes priority over a hit in the TLBs for the
same effective address.

1.2.6.2.1 Protection-Only Mode

Protection-only mode is provided for special-purpose implementations that do not require
the more extensive paging functionality required for multipurpose persona computers, but
need memory protection not offered by the OEA -defined real addressing mode.

Protection-only mode is described as follows:

» Protection-only mode is used when an effective address missesin the BAT registers
and HIDO[PQ] is set.

¢« When HIDO[PQ] is set, the TLBs are configured differently than the configuration
for the OEA-defined page address trangl ation. In protection-only mode, each TLB is
configured to provide protection for 32, 4-Kbyte pages per TLB entry. A total of
4 Mbytes of memory can be protected in each TLB at one time. Protection consists
of 1 bit per 4-Kbyte page to control execution (NE bit) in instruction pages and
control write access (WE bit) in the data pages.

« Thisprotection is provided by the NE bit, which provides no-execute protection on
apagelevel, the SE bit, which controls the use of esa/dsa supervisor access, and the
WE bit, which controls whether memory can be written to on a page basis. In
protection-only mode, these additional bits are defined in the TLBs and are
propagated and managed through portions of the architecturally-defined page
trangl ation mechanism.

* Although the page translation mechanism is used to enforce memory protection, it
isnot used to determine the physical address (that is, the effective addressis used as
the physical address). In protection-only mode only the 24-bit virtual segment ID
(VSID) in SROisused. ThisVSID also functions as aprocess ID in protection-only
mode.

¢ Only the settings for the page from segment register 0 are used in this mode. Other
entries can be written to, but are not used.

1-34 PowerPC 602 RISC Microprocessor User's Manual



The 602 provides programmable default cache control bits (WIMG) in the HIDO
register to be used when the processor is running in real addressing mode or
protection-only mode.

The SEBR and SER registers control the execution of the 602-specific esa
instruction for each of the 32, 4-K byte pages of a 128-Kbyte block of memory at any
onetime.

1.2.7 Instruction Timing

The 602 is a pipelined processor with parallel execution units. A pipelined processor is one
in which the processing of an instruction is reduced into discrete stages. Because the
processing of an instruction is broken into a series of stages, an instruction does not require
the entire resources of an execution unit. For example, after an instruction completes the
decode stage, it can pass on to the next stage, while the subsequent instruction can advance
into the decode stage. This improves the throughput of the instruction flow. For example, it
may take three cycles for a floating-point instruction to complete, but if there are no stalls
in the floating-point pipeline, a series of floating-point instructions can have a throughput
of one instruction per cycle.

Theinstruction pipelinein the 602 has four major pipeline stages, described as follows:

Thefetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. Additionally, the
BPU decodes branches during the fetch stage and folds out branch instructions
before the dispatch stage if possible.

The decode and dispatch pipeline stage is responsible for decoding the instructions
supplied by theinstruction fetch stage and determining which of theinstructionsare
eligibleto be dispatched in the current cycle. In addition, the source operands of the
instructions are read from the appropriate register file and dispatched with the
instruction to the execute pipeline stage. At the end of the dispatch pipeline stage,
the dispatched instructions and their operands are latched by the appropriate
execution unit.

During the execute pipeline stage each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notifies the

compl etion stage that theinstruction hasfinished execution. In the case of aninterna
exception, the execution unit reports the exception to the compl etion/write-back
pipeline stage and discontinuesinstruction execution until the exception is handled.
The exception is not signaled until that instruction is the next to be compl eted.
Execution of most floating-point instructions is pipelined within the FPU allowing
up to three instructions to be executing in the FPU concurrently. The pipeline stages
for the floating-point unit are multiply, add, and round-convert. Execution of most
load/store instructions is also pipelined. The load/store unit has two pipeline stages.
Thefirst stage is for effective address calculation and MMU trandation and the
second stage is for accessing the datain the cache.

Chapter 1. Overview 1-35



» The complete/write-back pipeline stage maintains the correct architectural machine
state and transfers the contents of the rename registers to the GPRs and FPRs as
instructions are retired. If the completion logic detects an instruction causing an
exception, al following instructions are flushed, any execution results in rename
registers are discarded, and instructions are fetched from the correct instruction
stream.

The 602 has four independent execution units, one each for integer instructions, floating-
point instructions, branch instructions, and load/store instructions. The IU and the FPU
each have dedicated register files for maintaining operands (GPRs and FPRs, respectively),
allowing integer calculations and floating-point calculations to occur simultaneously
without interference.

Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing among various PowerPC processors varies
accordingly.

1.2.8 System Interface
The system interface is specific for each PowerPC microprocessor implementation.

The 602 interface includes a time-multiplexed, 32-bit address and 64-bit data bus, and 56
control and information signals (see Figure 1-5). The system interface allows for address-
only transactions aswell as address and data transactions. The 602 control and information
signalsinclude the bus arbitration, address start, address transfer, transfer attribute, address
termination, data transfer, data termination, and processor state signals. Test and control
signals provide diagnostics for selected internal circuits.

ADDRESS (32-BIT)/DATA (32-BIT) <——»| l«—» BUS ARBITRATION
l«—» BUS CONTROLS
ATTRIBUTES/DATA (32-BIT) <—» 602 l«——» INTERRUPTS, RESETS
«—» PROCESSOR STATE

CLOCKS <-—> l«——> TEST AND CONTROL

I
+3.3V

11H

Figure 1-5. System Interface

The 602 supports multiple masters through a bus arbitration scheme that allows various
devicesto competefor the shared busresource. The arbitration logic can implement priority
protocols, such as fairness, and can park masters to avoid arbitration overhead. The MEI
protocol ensures coherency among multiple devices and system memory. Also, the 602's
on-chip caches and TLBs and optional second-level caches can be controlled externaly.

1-36 PowerPC 602 RISC Microprocessor User's Manual



The 602's clocking structure allows the bus to operate at integer multiples of the processor
cycletime.

The following sections describe the 602 bus support for memory. Note that some signals
perform different functions depending upon the addressing protocol used.

1.2.8.1 Memory Accesses

The 602 memory accesses allow transfer sizes of 8, 16, 24, 32, or 64 bits in one bus clock
cycle. In 64-bit mode, data transfers occur in either single-beat transactions (up to 64 bits)
or four-beat burst (8 words) transactions. In 64-bit mode, nonburst data transfers occur in
either single- or double-beat (up to 32 or 64 bits, respectively) transactions or eight-beat
burst transactions.

Nonburst transactions are caused by noncached accesses that access memory directly (that
is, read and write operations when caching is disabled, caching-inhibited accesses, and
storesin write-through mode). Four-beat burst transactions, which alwaystransfer an entire
32-byte cache block, areinitiated when ablock isread from or written to memory. The 602
initiates two distinct bus transactions in cases of misaligned accesses.

1.2.8.2 PowerPC 602 Microprocessor Signals
The 602 signals are grouped as follows:

« Busarbitration signals—The 602 uses these signals to arbitrate for address bus
mastership.

* Addresstransfer start signals—These signalsindicate that a bus master has begun a
transaction on the address bus.

» Addresstransfer signals—These signals consist of the address, and prefetch line-fill
address buses.

e Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is a burst, write-
through, or caching-inhibited transaction.

e Addresstransfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

« Datatransfer signals—These signals consist of the 64-bit data bus.

« Datatransfer termination signals—Data termination signals are required after each
data beat in adatatransfer. In a nonburst transaction, the data termination signals
aso indicate the end of the phase, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the data phase only after the
final data beat.

» Systemstatussignals—These signal sincludetheinterrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

Chapter 1. Overview 1-37



» Processor state signals—These signals enabl e the time base and control the ability
to put the 602 in quiescent mode.

« |EEE 1149.1(JTAG)/COP interface signals—The |EEE 1149.1 test unit and the
common on-chip processor (COP) unit are accessed through a shared set of input,
output, and clocking signals. The IEEE 1149.1/COP interface provides ameans for
boundary-scan testing and internal debugging of the 602.

» Test interface signals—These signals are used for production testing.

e Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE

A bar over a signal name indicates that the signa is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
are not active low, for example, TTO-TT4 (transfer type
signals), are referred to as asserted when they are high and
negated when they are low.

1.2.8.3 Signal Configuration
Figure 1-6 illustrates the 602's logical pin configuration, showing how the signals are
grouped.

1-38 PowerPC 602 RISC Microprocessor User's Manual



602

< A0-A31/D0-D31 »| 32 TS > ]
PFADDRO-PFADDR7/ —
D32-D39 8 BB -
BEO-BE7/D40-D47/
___ PFADDR8-PFADDRI15 8 ARTRY -
DATA
PFADDR16-PFADDR17/ __ TRANSFER
- D45-D49 > 2 1A TERMINATION
TSIZ0-TSIZ2/D50-D52/ .
. PFADDR18-PFADDR20 3 TA
ADDRESS/ - TBST/D53 ol 1 AACK |
TRANSFER
ATTRIBUTES/ TTO-TT4/D54-D58 5 INT —
DATA
_ GBL/D59 o1 SMI
B CI/D60 . MCP.
- INTERRUPT,
. WT/D61 o1 CKSTP_IN CHECKSTOPS,
AND RESETS
TCO-TC1/D62-D63 ) CKSTP_OUT
T32 o1 HRESET, SRESET
RESETO -
- BR 1 QREQ ]
BUS . SYSTEM
ARBITRATION BG o1 QACK STATUS
SIGNALS
TBEN
SYSCLK »| 1
JTAG/COP
L TEST CLOCK JTAG/COP. -
CLOCKS ! g :I INTERFACE
PLL_CFGO-PLL_CFG3 4
TEST :I LSSD TEST
CONTROL
Figure 1-6. PowerPC 602 Microprocessor Signal Groups
Chapter 1. Overview 1-39



1-40 PowerPC 602 RISC Microprocessor User's Manual



Chapter 2
PowerPC 602 Microprocessor
Programming Model

This chapter describes the PowerPC programming model with respect to the PowerPC 602
microprocessor. It consists of three major sections that describe the following:

* Registersimplemented in the 602
* Operand conventions
e The 602 instruction set

2.1 PowerPC 602 Processor Register Set

This section describes the registers implemented in the 602. These registers can be grouped
into three types:

* Registersthat are implemented as they are defined by the PowerPC architecture.
These registers are identified in this chapter, but are described more fully in
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

« Registersthat are defined by the PowerPC architecture that have been altered
somewhat from the PowerPC architecture definition. Typically thisisthe result of
implementing additional bitsin bit locationsreserved for use by individual PowerPC
processors. This chapter describes the differences.

» Registersthat are defined for the 602 that are not defined by the PowerPC
architecture. For example, the timer control register (TCR) is used to configure and
control the 602's watchdog timer facility, and the ESA save and restore register
(ESASRR) provides a place to save and restore state information when the 602-
specific esa instruction is used to put the processor in supervisor mode.

Someregisters are updated as the result of instruction execution. The PowerPC architecture
defines register-to-register operations for all computational instructions. Source operands
are accessed from the on-chip registers—primarily the 32 general -purpose registers (GPRS)
and the 32 floating-point registers (FPRs)—or is provided as an immediate val ue embedded
in the opcode. The three-register instruction format allows specification of atarget register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required. Data is transferred between
memory and registerswith explicit load and store instructions only. In addition to the GPRs

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-1



and FPRs, other registers can be affected directly by instructions; for example, the counter
register (CTR) and condition registers (CRs). Special conditions and errors are reflected in
the XER register and the floating-point status and control register (FPSCR).

Some registers are used for a variety of specific purposes, such as time keeping,
configuration, and support for exception handling. These registers are caled special-
purpose registers (SPRs). The SPRs can be read by using the Move from Special-Purpose
Register (mfspr) instruction and written to by using the Move to Special-Purpose Register
(mfspr) instruction. Some SPRs are also affected by other operations as well.

When the 602 detects SPR encodings other than those defined in this document, it takes an
illegal instruction-type program exception. (Note that the term, ‘ exception,” isa so referred
to as ‘interrupt’ in the architecture specification.) Conversely, some SPRs in the 602 may
not be implemented in other PowerPC processors, or may not be implemented in the same
way in other PowerPC processors. In general, for registers with reserved bits,
implementations return zeros or return the value last written to those bits.

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user- and supervisor-
level as problem state and privileged state, respectively). The number to the right of the
register name indicates the number used in the syntax of the instruction operands to access
the register (for example, the number used to access the XER is SPR1).

2-2 PowerPC 602 RISC Microprocessor User's Manual



PLL Conf|gurat|on
Register’

HID1 SPR 1009

General-Purpose
Registers

GPRO
GPR1

GPR31

Single-Precision
Floating-Point Registers

FPRO
FPR1

FPR31

Condition Register
R

I

Floating-Point Status
and Control Register

FPSCR

XER

XER SPR 1

Link Register

LR SPR 8

Count Register
CTR SPR9
Time Base Facility
(For Reading)
TBL TBR 268
TBU TBR 269

/ USER MODEL \

%

-

SUPERVISOR MODEL

Configuration Registers

Machine State
Register

Memory Management Registers

Instruction BAT

Registers
IBATOU | SPR 528
IBATOL | SPR 529
IBATIU | SPR 530
IBATIL | SPR531
IBAT2U | SPR532
IBAT2L | SPR533
IBAT3U | SPR534
IBAT3L | SPR535
ESA Access
Registers
ESA Enable
Register!
SER SPR 991
ESA Enable

Base Registert

ESA Save/Restore
Register

SPR 987

Time Base Facility
(For Writing)

Instruction Address
Breakpoint Register

IABR SPR 1010

Checkstop Enables
Register

HIDO SPR 1008

Data BAT Registers

DBATOU | SPR 536
DBATOL | SPR 537
DBAT1U | SPR 538
DBATIL | SPR539
DBAT2U | SPR 540
DBAT2L | SPR 541
DBAT3U | SPR 542
DBAT3L | SPR 543
SDR1

SDR1 SPR 25

Processor Version
Register

Software Table
Search Registers®

DMISS SPR 976
DCMP SPR 977
HASH1 | SPR978
HASH2 | SPR 979
IMISS SPR 980
ICMP SPR 981

RPA SPR 982

Segment Registers
SRO
SR1

SR15

Exception Handling Registers

Data Address Register

DAR SPR 19
SPRGs
SPRGO | SPR 272
SPRG1 | SPR 273
SPRG2 | SPR 274
SPRG3 | SPR 275

Miscellaneous Registers

Single- PreC|S|0n
Tag Reglster

TBL SPR 284 SPR 1021
TBU SPR 285 Integer Tag Register!

Decrementer

SPR 1022
1

DEC SPR 22

DSISR

DSISR SPR 18

Save and Restore

Registers
SRRO | SPR 26
SRR1 | SPR27

Timer Contro)
Register®

Interrupt Base
Register

SPR 986

1 These registers are 602—specific registers. They may not be supported by other PowerPC processors.

Figure 2-1. PowerPC 602 Processor Programming Model

~

/

Chapter 2. PowerPC 602 Microprocessor Programming Model

2-3



The 602's user-level registers are described as follows:

User-level registers (Ul SA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— Genera -purpose registers (GPRs). The general-purpose register file consists of
thirty-two 32-bit GPRs designated as GPRO-GPR3L. This register file serves as
the data source or destination for all integer instructions and provides data for
generating addresses.

— Floating-point registers (FPRs). The floating-point register file implemented in
hardware in the 602 consists of thirty-two 32-bit FPRs designated as FPRO—
FPR31, which serve as the data source or destination for al floating-point
instructions. The UISA specifies that FPRs be 64 bits wide, to accommodate
double-precision operands, however, because the 602 does not support double-
precision arithmetic in hardware, the architected 64-bit FPRs are emulated in
software for double-precision instructions that require them.

The smaller single-precision registers need status bits to recognize avalid
floating-point operand in the hardware (rather than in a memory image) or an
integer value moved from the FPSCR or generated by the fctiwz instruction.
These status bits are implemented in SPRs (the SP and LT registers) and are
accessed and reloaded using the mfspr/mtspr instructions. For information
about the SP and LT registers, see Section 2.1.2.4.1, “Floating-Point Tag
Registers (SPand LT).”

For information on saving and restoring the contents of the FPRs, see
Section 2.1.3, “ Saving and Restoring FPRs and the FPSCR.”

— Condition register (CR). The CR consists of eight 4-bit fields, CRO-CR7, that
reflect the results of certain arithmetic operations and are used for testing and
branching.

— Floating-point status and control register (FPSCR). The FPSCR is used to
configure how floating-point operations are handled and to register the results of
certain floating-point operations. The FPSCR contains all floating-point
exception signal bits, exception summary bits, exception enable bits, and
rounding control bits needed for compliance with the |EEE 754 standard.

Theremaining user-level registers are SPRs. Theseinstructionsaretypically used to
explicitly access certain registers, while other SPRs may be more commonly
accessed as the side effect of executing other instructions.

— XER register. Bitsin the 32-bit XER are set as the result of specific integer
conditions, such as underflows and carries.

— Link register (LR). The 32-hit link register providesthe branch target addressfor
the Branch Conditional to Link Register (bclrx) instruction, and can optionally
be used to hold the logical address (referred to as the effective addressin the
architecture specification) of the instruction that follows a branch and link
instruction, typically used for linking to subroutines.

2-4

PowerPC 602 RISC Microprocessor User's Manual



— Count register (CTR). The CTR isa 32-hit register for holding aloop count that
can be decremented during execution of appropriately coded branchinstructions.
The CTR can also provide the branch target address for the Branch Conditional
to Count Register (bcctrx) instruction.

e User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB). The TB is a64-hit structure that maintains the time of day and operates
interval timers. The TB consists of two 32-hit registers—time base upper (TBU) and
time base lower (TBL). Note that the time base registers can be accessed by both
user- and supervisor-level registers.

e Supervisor-level registers (OEA)—The OEA defines the registersthat are
typically used by an operating system for such operations as memory management,
configuration, and exception handling. The 602 implements the supervisor-level
registers defined by the PowerPC architecture as follows:

— Configuration registers

— Machine state register (MSR). The M SR defines the state of the processor.
The M SR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Interrupt (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. The 602
implements additional bitsin the MSR for configuring functionality not
defined by the PowerPC architecture. Section 2.1.1.1, “Machine State
Register,” of this manual describes 602-specific MSR hits.

— Processor version register (PVR). This read-only register identifies the
version (model) and revision level of the PowerPC processor. Section 2.1.1.3,
“Processor Version Register,” describes how the PVR is used to show the
processor version number for 602.

— Memory management registers

— Block-address translation (BAT) registers. The 602 includes the four pairs of
instruction BATs (IBATOU-BAT3U and IBATOL—IBAT3L) and four pairs of
data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L) defined by the
OEA.. The 602 implements two additional bitsin the lower BAT registersto
support 602-specific functionality. These bitsare described in Section 2.1.1.4,
“BAT Registers”

— SDRL1. The SDR1 register specifiesthe page table base address used in virtual -
to-physical address trandlation.

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15) for 32-hit implementations only.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-5



— Exception-handling registers

Data address register (DAR). After a data access or an alignment exception,
the DAR is set to the effective address generated by the faulting instruction.

SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use.

DSISR. The DSISR defines the cause of data access and alignment
exceptions.

Machine status savelrestore register 0 (SRR0). The SRRO is used to save the
address of the instruction that should be executed after an rfi instruction is
executed. Theinstruction address saved to the SRRO depends on the exception
taken.

Machine status savelrestore register 1 (SRR1). The SRR1 is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed. The bits saved to SRR1 depend on the exception
taken. See Section 2.1.1.2, “Machine Status Save/Restore Register 1,” for
information on how SRR1 isimplemented in the 602.

— Miscellaneousregisters

Thetime base facility (TB). The TB is a 64-hit structure that maintains the
time of day and operatesinterval timers. The TB consists of two 32-hit
registers—time base upper (TBU) and time base lower (TBL). Note that the
time base registers can be accessed by both user- and supervisor-level
registers.

The 602's time base is incremented once every four bus clocks. Additional

time base control is achieved through the time base enable (TBEN) signal
which serves as a count enable.

Decrementer register (DEC). Thisregister is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmabl e delay; the frequency is a subdivision of the processor clock.

External accessregister (EAR). The EAR isan optional 32-bit register that is
defined by the PowerPC architecture but not implemented in the 602.

For more information about PowerPC architecture-defined registers refer to Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

2-6

PowerPC 602 RISC Microprocessor User's Manual



2.1.1 PowerPC Registers with Implementation-Specific Bits

A number of registers defined by the PowerPC architecture have additiona
implementation-specific bits defined for the 602. These registers are described in the
following sections.

2.1.1.1 Machine State Register

The 602’ simplementation of the M SR includes bits described by the PowerPC architecture
as well as additional bits that support 602-specific functionality. The MSR is shown in
Figure 2-2.

TGPR Reserved
pow l O

000O0O0O0OOO |AP|SA| 000 | | ||LE| EE|PR|FP|ME|FEO|SE|BE|FE1| 0 | |P| IR|DR| 0 0 |R||LE|

0 7 8 910 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-2. Machine State Register (MSR)

The following additional 602-specific bits (shown in Table 2-1) are implemented in the
MSR.

Table 2-1. Machine State Register—Implementation-Specific Bits

Bit Name Function

8 AP Access privilege state. This bit is checked only when MSR[PR] = 0; if AP is set, the
processor has user-level access to instruction and data space. If AP is cleared, the
processor has supervisor-level access to memory.

9 SA Supervisor access mode. If set, this bit allows execution of supervisor instructions without
entering supervisor mode.

13 POW Activates power management. This bit is defined by the PowerPC architecture, but may not
be implemented in all processors. MSR[POW] may be altered with an mtmsr instruction
only. Also, when altering the POW bit, software may alter only this bit in the MSR and no
others. The mtmsr instruction must be followed by a context-synchronizing instruction. See
Chapter 9, “Power Management,” for more information about power management.

14 TGPR Temporarily replaces TGPRO-TGPR3 with GPRO-GPR3 for use by TLB miss routines.
When this bit is set, all instruction accesses to GPRO-GPR3 are mapped to TGPRO—
TGPR3, respectively. The contents of GPRO-GPR3 are unchanged as long as this bit
remains set. Attempts to use GPR4-GPR31 when this bit is set yields undefined results.The
TGPR bit is set when either an instruction TLB miss, data read miss, or data write miss
exception is taken. The TGPR bit is cleared by an rfi instruction.

20 FEO IEEE floating-point exception mode. This bit is implemented as defined by the PowerPC
architecture; however, if either FEO or FE1 are set, the 602 operates in precise mode. As
defined by the architecture, if both bits are cleared, floating-point exceptions are disabled.
For more information, see Section 4.5.7, “Program Exception (0x0700).” These modes
operate regardless of the setting of FPSCR[NI].

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-7



Table 2-1. Machine State Register—Implementation-Specific Bits (Continued)

Bit Name Function

23 FE1 IEEE floating-point exception mode. This bit is implemented as defined by the PowerPC
architecture; however, if either FEO or FE1 are set, the 602 operates in precise mode. As
defined by the architecture, if both bits are cleared, floating-point exceptions are disabled.
For more information, see Section 4.5.7, “Program Exception (0x0700).” These modes
operate regardless of the setting of FPSCR[NI].

25 1P The IP bit, defined by the PowerPC architecture, is implemented differently in the 602. How

the IP bit is interpreted depends on the exception.

« If a soft reset, machine check, or instruction address breakpoint exception is taken, the IP
is used as it is defined by the PowerPC architecture. That is, if IP = 0, the vector address
is determined by prefixing 0's to the vector offset. If IP is set, the vector address is
determined by prefixing the vector offset with OXFFF.

« If a hard reset is taken, the vector address is always OXFFFO_0100.

« For all other exceptions, if the IP bit is cleared, the vector address is determined by
prefixing the contents of the IBR to the vector offset. If IP is set, the vector address is
determined by prefixing OxFFF to the vector offset.

The 602-specific interrupt base register can be used to program the top 16 bits or exception
addresses. See Section 2.1.2.4.3, “Interrupt Base Register (IBR).”

26 IR This bit is implemented as defined by the PowerPC architecture. Turns on instruction
address translation, protections, and cache control. The DR and IR bits operate as defined
by the PowerPC architecture. If IR or DR bits are set, the BAT/TLB hit mechanisms take
priority.

27 DR This bit is implemented as defined by the PowerPC architecture. Turns on data address
translation, protections, and cache control. The DR and IR bits operate as defined by the
PowerPC architecture. If IR or DR bits are set, the BAT/TLB hit mechanisms take priority.

2.1.1.2 Machine Status Save/Restore Register 1

Table 2-3 shows the 602-specific bits implemented in SRR1 as implemented for table
search operations.

Table 2-2. SRR1—PowerPC 602-Specific Bits for Software Table Search Operations

Bit(s) Name Function
0-3 CRFO Condition register field 0 bits
12 KEY TLB miss protection key
13 I/D Instruction TLB miss
14 WAY Specifies which TLB set should be replaced
15 S/L TLB miss was on a store or load operation

2-8 PowerPC 602 RISC Microprocessor User's Manual



When the 602 takes a machine check exception, it sets one or more error bits in SRR1.
Table 2-3 shows the 602-specific bits implemented in SRR1 as implemented for machine
check handling.

Table 2-3. SRR1—PowerPC 602-Specific Bits for Machine Check Handling

Bit Name Function

12 MCPIN | If set, the exception was caused by the assertion of the machine check interrupt (MCP) signal.

13 TEA If set, the exception was caused by the assertion of the transfer error acknowledge (TEA) signal.

2.1.1.3 Processor Version Register

The processor version number is 0x0005 for the 602. The processor revision level starts at
0x0100 and is incremented for each revision of the processor. The PVR is described in
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

2.1.1.4 BAT Registers

The PowerPC OEA defines the BAT registers as eight instruction block-address translation
(IBAT) registers, consisting of four pairs of instruction BATSs, or IBATs (IBATOU- BAT3U
and IBATOL-IBAT3L) and eight data BATs, or DBATs, (DBATOU-DBAT3U and
DBATOL-DBAT3L). The BAT registers (BATS) maintain the address trandation
information for four instruction blocks and four data blocks in memory. BAT registers
define the starting addresses and sizes of BAT areas as well as other characteristics of each
block.

Figure 2-3 and Figure 2-4 show the format of the upper and lower BAT registers for
32-bit PowerPC processors.

[] Reserved

BEPI 0000 BL |Vs|Vp|

0 14 15 18 19 29 30 31

Figure 2-3. Format of Upper BAT Registers—32-Bit Implementations

|:| Reserved
BRPN 000000 |NE|SE| 00 | WIMG* |0| PP |
0 14 15 20 21 22 23 24 25 28 29 30 31

*W and G bits are reserved (not defined) for IBAT registers

Figure 2-4. Format of Lower BAT Registers—32-Bit Implementations

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-9



Table 2-4 describes the bits in the BAT registers.

Table 2-4. BAT Registers—Field and Bit Descriptions

Register Bit(s) Name Description
Upper 0-14 BEPI Block effective page index. This field is compared with high-order bits of the logical
BAT address to determine if there is a hit in that BAT array entry. (Note that the
register architecture specification refers to logical address as effective address.)
15-18 — Reserved
19-29 BL Block length. BL is a mask that encodes the size of the block. Values for BL are
listed in Table 2-5.
30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if there is a
match with the logical address. For more information, see Section 5.3, “Block
Address Translation."
31 Vp User mode valid bit. This bit and MSR[PR] determine if there is a match with the
logical address. See Section 5.3, “Block Address Translation.”
Lower 0-14 BRPN | This field is used with BL to generate high-order bits of the physical address of the
BAT block.
register
15-20 — Reserved
21 NE No execute. This bit controls execute privileges for the block. When this bit is set,
instructions cannot be fetched from this block. Note that setting SR[N] also inhibits
execute privileges on a 256-Mbyte basis and overrides a setting of zero for the NE
bit. The NE bit is valid only in the IBATs and is specific to the 602.
22 SE ESA enable. This bit controls whether the esa instruction, which puts the
processor in supervisor mode, can execute from this block.The SE bit is valid only
in the IBATs and is specific to the 602.
23-24 — Reserved
25-28 WIMG | Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
G Guarded
For detailed information about the WIMG bits, see Section 3.6, “Memory
Management/Cache Access Mode Bits—W, I, M, and G."
29 — Reserved
30-31 PP Protection bits for block. This field determines the protection for the block as

described in Section 5.3, “Block Address Translation."

Thevalueloaded into BL determines both the length and alignment of the BAT areain both
logical and physical address space. The values loaded into BEPI and BRPN must have at
least as many low-order zeros as there are onesin BL. Table 2-5 lists the BAT arealengths
encoded in BAT[BL].

For more information on the BAT registers, refer to The Programming Environments
Manual. Use of BAT registersis described in Chapter 5, “Memory Management.”

2-10

PowerPC 602 RISC Microprocessor User's Manual



Table 2-5. BAT Area Lengths

BLA;—ng:Ea BL Encoding Blirn';:ﬁa BL Encoding
128 Kbytes 000_0000_0000 8 Mbytes 000_0011_1111
256 Kbytes 000_0000_0001 16 Mbytes 000_0111_1111
512 Kbytes 000_0000_0011 32 Mbytes 000_1111_1111
1 Mbyte 000_0000_0111 64 Mbytes 001_1111 1111
2 Mbytes 000_0000_1111 128 Mbytes 011_1111_1111
4 Mbytes 000_0001_1111 256 Mbytes 111 1111 1111

2.1.2 PowerPC 602 Processor-Specific Registers

The 602 includes severa implementation-specific, supervisor-level SPRs not defined by the
PowerPC architecture, as shown in Table 2-6.

Table 2-6. PowerPC 602 Processor-Specific SPRs

Rl(\elgi;teer Function (DeScl?lf:aI) spr ;Pspr 0-4 RIW
HIDO Checkstop/miscellaneous enables 1008 11111 | 10000 | R/W

HID1 PLL configuration values 1009 11111 | 10001 | Read-only
IABR Instruction address breakpoint register 1010 11111 | 10010 | R/W

SP FPU single-precision tags 102 11111 | 11101 | R/IW

LT FPU integer tags 1022 11111 | 11110 | RIW
DMISS DTLB miss address register 976 11110 | 10000 | R/W
DCMP DTLB miss compare register 977 11110 | 10001 | R/IW
HASH1 Primary hash address 978 11110 | 10010 | Read-only
HASH2 Secondary hash address 979 11110 | 10011 | Read-only
IMISS ITLB miss address register 980 11110 | 10100 | R/IW
ICMP ITLB miss compare register 981 11110 | 10101 | R/IW

RPA Required physical address register 982 11110 | 10110 | R/W

TCR Timer control register 984 11110 | 11000 | R/IW

IBR Interrupt base register 986 11110 | 11010 | RIW
ESASRR | ESA save and restore register 987 11110 | 11011 | RIW

SER ESA enable register 991 11110 | 11111 | RIW
SEBR ESA enable base register 990 11110 | 11110 | RIW

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-11



DMISS, IMISS, DCMP, ICMP, HASH1, HASHZ2, and RPA are used for software table
search operations and should be accessed only when address trandlation is disabled (that is,
MSR[IR] = 0 and MSR[DR] = 0). For a complete discussion of software table search
operations, refer to Section 5.5, “Page Table Search Operation.”

2.1.2.1 Configuration Registers

The 602 provides additional configuration registers for enabling and disabling 602-specific
functions, such as power management, cache control, protection-only mode, and PLL
configuration. These registers are described in the following sections.

2.1.2.1.1 Hardware Implementation Register 0 (HIDO)

The hardware implementation register 0 (HIDO), shown in Figure 2-5, defines enable bits
for various 602-specific features.

DLOCK DCFI I:l Reserved
EMCP SBCLK ECLK DOZE SLEEP RISEG ILOCKl l
[ [ oo [ [of Jof ol o] [0 fssfofoed [ for] 00 [~ =fo] wmwe |
01 3 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 31
Figure 2-5. Hardware Implementation Register 0 (HIDO)
Table 2-7 shows the bit definitions for HIDO.
Table 2-7. HIDO Bit Settings
Bit(s) Name Description
0 EMCP Enable machine check pin. EMCP is used to mask machine check interrupts caused by the

assertion of MCP. Setting EMCP enables the MCP signal to cause a checkstop if MSR[ME] is
cleared or a machine check interrupt if MSR[ME] is set. Clearing EMCP prevents the MCP
signal from causing either a machine check interrupt or a checkstop.

1-3 — Not used

4 SBCLK | Select bus clock for test clock pin.

1  The test clock, CLK_OUT, runs at the bus frequency.

0  The test clock, CLK_OUT, runs at the processor frequency.

Used in combination with SBCLK to determine configure the CLK_OUT signal. SeeTable 2-8.

5 — Not used

6 ECLK Enable external test clock pin. Used in combination with SBCLK to configure the CLK_OUT
signal. SeeTable 2-8.

7 — Not used

8 DOZE Doze mode—PLL, time base, and snooping active. See Chapter 9, “Power Management.”

9 NAP Nap mode—PLL and time base active. See Chapter 9, “Power Management.”

10 SLEEP | Sleep mode—no external clock required. See Chapter 9, “Power Management.”

11 DPM Enable dynamic power management. See Chapter 9, “Power Management.”

2-12 PowerPC 602 RISC Microprocessor User's Manual




Table 2-7. HIDO Bit Settings (Continued)

Bit(s) Name Description

12 RISEG Reserved for test.

13-14 | — Not used

15 NHR Not hard reset. Software can set this bit at start up to indicate that soft reset can be
distinguished from hard reset. This bit is subsequently cleared by a hard reset.

16 — Not used

17 DCE Data cache enable. To prevent a cache from being disabled in the middle of an access the
setting of this bit must be preceded by a sync instruction. To guarantee that instructions are
cleared from the instruction queue after the cache is disabled, an isync instruction should follow
the mtspr instruction that updates HIDO.

18 ILOCK Instruction cache lock. A locked cache can supply data normally on a hit, but a miss operation is
treated as a caching-inhibited transaction. The setting of the ILOCK must be preceded by an
isync instruction to prevent the cache from being locked while it is being accessed.

19 DLOCK | Data cache lock. A locked cache can supply data normally on a hit, but a miss operation is
treated as a caching-inhibited transaction.

A snoop hit to a locked data cache performs as if the cache were not locked. A cache block
invalidated by a snoop remains invalid until the cache is unlocked.

The setting of the DLOCK bit must be preceded by a sync instruction to prevent the cache from
being locked while it is being accessed.

20 ICFI Instruction cache flash invalidate. Setting this bit causes the instruction cache to be invalidated.
Both caches are invalidated automatically upon power-up (hard reset). Soft reset does not
invalidate the caches automatically, so ICFI must be set if invalidation is desired after a soft
reset. Proper use of this bit is to set it and clear it in two consecutive mtspr operations. This
creates an adequate window for the operation to be performed. Between the two stores, the
tags are continuously invalidated.

21 DCFI Data cache flash invalidate. Setting this bit causes the data cache to be invalidated after a soft
reset. Both caches are invalidated automatically upon power-up (hard reset). Soft reset does
not invalidate the caches automatically, so DCFI must be set if invalidation is desired after a soft
reset. Proper use of this bit is to set it and clear it in two consecutive mtspr operations. This
creates an adequate window for the operation to be performed. Between the two stores, the
tags are continuously invalidated.

22-23 | — Not used

24 PO Protection-only mode. Setting PO enables the 602-specific protection-only mode to be used
after a BAT miss. See Section 5.6, “Protection-Only Mode.”

25 — Not used

26 SL Enable out-of-order loads on the bus.

27 — Not used

28-31 | WIMG Default WIMG settings used in real addressing mode and protection-only mode.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-13




Table 2-8 shows how the HIDO[ECLK] and HIDO[SBCLK] are used to configure the
CLK_OUT signdl.

Table 2-8. CLK_OUT Signal Configuration

HIDO[ECLK] HIDO[SBCLK] CLK_OuT
0 0 High impedance
0 1 High impedance
1 0 Processor clock
1 1 Bus clock (= SYS_CLK)

For more information on the CLK_OUT, see Section 7.2.11.2, “Test Clock (CLK_OUT)—
Output.”

The HIDO register is accessed as SPR 1008.

2.1.2.1.2 Hardware Implementation Register 1 (HID1)—PLL Configuration
In the 602, the HID1 register is used to configure the PLL. The HID1 register is shown in
Figure 2-6.

PCO [] Reserved

| | | | | 000000000000000000000000000 |

01 2 3 4 31

Figure 2-6. HID1—PLL Configuration Register
Table 2-9 describes the bits in the HID1 implemented in the 602.
Table 2-9. HID1 Bit Settings

Bit(s) Name Function
0 PCO PLL configuration bit O (read only)
1 PC1 PLL configuration bit 1 (read only)
2 PC2 PLL configuration bit 2 (read only)
3 PC3 PLL configuration bit 3 (read only)
4-31 Not used —

The HID1 register is accessed as SPR 1009.

2-14 PowerPC 602 RISC Microprocessor User's Manual



2.1.2.2 PowerPC 602 Processor Memory Management Registers

The 602 implements additional registers not defined by the PowerPC architecture for
memory management. These registers are implemented primarily to support the 602's
software table search operations. These registers are described in the following sections.
For more detailed information about how these registers are used with the 602’s MM U, see
Chapter 5, “Memory Management.”

2.1.2.2.1 Data and Instruction TLB Miss Address Registers
(DMISS and IMISS)

The DMISS and IMISS registers have the same format, as shown in Figure 2-7. They are
loaded automatically upon adata or instruction TLB miss. The DMISS and IMISS contain
the effective page address of the access that caused the TLB miss exception. The contents
are used by the 602 when calculating the values of HASH1 and HASH2, and by the tibld
and tlbli instructions when loading a new TLB entry. Note that the 602 always loads the
DMISS register with a big-endian address, even when MSR[LE] is set. These registers are
read-only to the software.

Effective Page Address

Figure 2-7. DMISS and IMISS Registers

The DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA registers should be
accessed with tranglation disabled (MSR[IR] = 0 and MSR[DR] = 0).

2.1.2.2.2 Data and Instruction PTE Compare Registers (DCMP and ICMP)

The DCMP and ICMP registers, shown in Figure 2-8, contain the first word in the required
PTE. The contents are constructed automatically from the contents of the segment registers
and the effective address (DM ISS or IMISS) when a TLB miss exception occurs. Each PTE
read from the tables during the table search process should be compared with this value to
determine whether or not the PTE isamatch. Upon execution of atlbld or tIbli instruction,
the DCMP or ICMP register isloaded into the first word of the selected TLB entry.

|V| VSID | H | API

01 24 25 26 31

Figure 2-8. DCMP and ICMP Registers

Table 2-10 describes the bit settings for the DCMP and ICMP registers.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-15



Table 2-10. DCMP and ICMP Bit Settings

Bit(s) Name Description
0 \% Valid bit. Set by the processor on a TLB miss exception.
1-24 VSID Virtual segment ID. Copied from VSID field of the corresponding segment register.
25 H Hash function identifier. Cleared by the processor on a TLB miss exception.
26-31 API Abbreviated page index. Copied from API of effective address.

Note that DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA should be accessed
with trandlation disabled (MSR]IR] = 0 and MSR[DR] = 0).

The DCMP register can be accessed as SPR 977; the ICMP register can be accessed as
SPR 981.

2.1.2.2.3 Primary and Secondary Hash Address Registers
(HASH1 and HASH2)

The HASH1 and HASHZ2 registers are read-only, supervisor-level SPRs that contain the
physical addresses of the primary and secondary PTEGs for the accessthat caused the TLB
miss exception. Only bits 7-25 differ between them. For convenience, the 602
automatically constructsthe full physical address by routing bits 06 of SDR1into HASH1
and HASH2 and clearing the lower-order 6 bits. These registers are read-only and are
constructed from the contents of the DMISS or IMISS register. The format for the HASH1
and HASH2 registersis shown in Figure 2-9.

[] Reserved
HTABORG[0-6] Hashed Page Address | 000000 |
0 6 7 25 26 31
Figure 2-9. HASH1 and HASH2 Registers
Table 2-11 describes the bit settings of the HASH1 and HASH?2 registers.
Table 2-11. HASH1 and HASH2 Bit Settings
Bits Name Description
0-6 HTABORG[0-6] Copy of the upper 7 bits of the HTABORG field from SDR1
7-25 Hashed page address | Address bits 7-25 of the PTEG to be searched
26-31 — Reserved

Note that DMISS, IMISS, DCMP, ICMP, HASH1, HASH?2, and RPA should be accessed
with trandlation disabled (MSR[IR] = 0 and MSR[DR] = 0).

The HASH1 register can beread as SPR 978; the HASH2 register can be read as SPR 979.

2-16 PowerPC 602 RISC Microprocessor User's Manual



2.1.2.2.4 Required Physical Address Register (RPA)

The RPA register, shown in Figure 2-10, is used to hold the physical addressand isused in
conjunction with page table search operations performed in software on the 602. During a
page table search operation, the software must load the RPA with the second word of the
correct PTE. When thetlbld or tIbli instruction is executed, the contents of the RPA register
and the DMISS or IMISS register are merged and loaded into the selected TLB entry.

[] Reserved
RPN | 0 |NE|SE| R | c| WIMG | 0 | PP |
0 19 20 21 22 23 24 25 28 29 30 31

Figure 2-10. Required Physical Address Register (RPA)—Default Configuration

Table 2-12 describes the bit settings of the RPA register.
Table 2-12. RPA Bit Settings—Default Configuration

Bit(s) | Name Description

0-19 RPN Physical page number from PTE.

20 — Reserved

21 NE No execute. Controls execute privileges for that page. If set, instructions cannot be fetched from
that 4-Kbyte page. NE is a don’t care if SR[N] is set.

22 SE ESA enable. The SE bit is used to control whether the esa instruction can be executed.
Executing esa puts the processor in supervisor mode without taking an exception.

23 R Referenced bit from PTE

24 C Changed bit from PTE

25-28 | WIMG | Memory/cache access attribute bits

29 — Reserved

30-31 | PP Page protection bits from PTE

Note that the DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA registers should
be accessed with trandation disabled (MSR[IR] = 0 and MSR[DR] = 0).

The RPA register can be accessed as SPR 982.

2.1.2.2.5 RPA Register in Protection-Only Mode

The RPA register should be loaded by the processor with the second word of the correct
PTE during a page table search. In protection-only mode, the format of the PTE, the TLB
entries, and the RPA register are different in that each contains 32 protection bits for the
128-Kbyte region they define.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-17



For ITLB loads, the RPA register should contain 32 no-execute (NE) bits, that control
whether instructions from the corresponding pages can be executed. The organization of the
RPA for ITLB loadsis shown in Figure 2-11.

NEg | NE; [ NE; | NEg [ NE | NEs [ NEg | NE; [ NEg | NEg [NE ;o] NE34|NE; 5 [NE15[NE 4 |NE15[NE;6NE1 7 [NE 16 |NE 10| NEo|NE1 [NE 22| NE o NE 1, [NE 25 [NE2g INE o7 | NE 6| NE o[ NE g0 [NE3,

01 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-11. RPA for ITLB Loads—Protection-Only Mode

Beforea TLB Load Instruction (tIbli) is executed, the RPA register should be loaded with
32 NE hits.

For DTLB loads, the RPA register should contain 32 write-enable (WE) bits, that control
whether instructions from the corresponding pages can be executed. For DTLB loads, the
RPA organization is shown in Figure 2-12.

B e Y e e

01 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WE,| WE; | WE,| WE5 |WE, |WEs |WE, |WE; | WEg |WE,

Figure 2-12. RPA for DTLB Loads—Protection-Only Mode

Beforea TLB Load Data (tIbld) instruction is executed, the RPA register should be loaded
with 32 WE bits.

2.1.2.3 ESA Supervisor Access Registers

The 602 defines a set of resourcesthat allow the processor to access supervisor instructions,
registers, and memory resources without taking an exception. This supervisor access is
signaled by the execution of the 602-specific esa instruction. Execution of this instruction
isalowed only if it is enabled for page or block in which it resides.

There are three registers that are 602-specific that support this functionality:

« ESASRR, whichisused to save information about the context of the processor when
the esa instruction is executed

The remaining two registers are used to control access to the esa instruction only when the
processor is running in protection-only mode. They are:

¢ SEBR, which contains the base address for the 128-Kbyte region which is broken
into 32, 4-Kbyte pages

« Each of the 32 bitsin the SER control whether the esa instruction can be executed
from the corresponding 4-Kbyte page.

All three registers are described in the following sections.

2-18 PowerPC 602 RISC Microprocessor User's Manual



2.1.2.3.1 ESA Save and Restore Register (ESASRR)

The ESA save and restore register (ESASRR) is a supervisor-level register that provides a
means for automatically saving and restoring aspects of the machine state for use with the
enabl e/disable supervisor access instructions (esa and dsa).

[] Reserved

000000000000000000000000000 |PR|AP|SA|EE|

0 27 28 29 30 31

Figure 2-13. ESASRR—ESA Save and Restore Register
The bitsin the ESASRR are described in Table 2-13.

Table 2-13. ESASRR Bit Settings

Bit(s) Name Function
0-27 — —
28 PR Copy of MSR[PR] when esa is executed
29 AP Copy of MSR[AP] when esa is executed
30 SA Copy of MSR[SA] when esa is executed
31 EE Copy of MSR[EE] when esa is executed

When an esa instruction is executed, MSR[SA, EE, PR, AP] are updated and the previous
values are automatically saved in the ESASRR. When a dsa instruction is executed, the
contents of these bits are automatically restored to the MSR.

The ESASRR can be accessed explicitly using SPR number 987.

2.1.2.3.2 ESA Enable Base Register (SEBR) (Protection-Only Mode)

The ESA enable base register (SEBR) and ESA enable register (SER) are used to control
whether the esa instruction can be executed for each of the 32 pages of a 128-Kbyte region
of memory when the processor is operating in protection-only mode (MSR[PQ] = 0).

[] Reserved

Base Address 00000000000000000 |

0 14 15 31

Figure 2-14. ESA Enable Base Register (SEBR)

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-19



SEBR[0-14] contains the base address of the 128-Kbyte region that is protected by the 32
SE hitsin SER (each bit in the SER configures a4-Kbyte page). SEBR[0-14] are compared
against the EA[0-14]. If amatch occurs, EA[15-19] indicate which of the 32 SE bitsin the
SER is examined to determine whether the esa instruction can be executed from the
corresponding 4-K byte page. If thereisno match, SE = 0. The matching requirement of the
SEBR issimilar to the BAT register.

The SER and SEBR registers do not affect protection checking unless the processor is
operating in protection-only mode. If HIDO[PO] = 0, these registers can be read and written
to, but are not used by the MMU.

The SEBR register is accessed as SPR 990.

2.1.2.3.3 ESA Enable Register (SER) (Protection-Only Mode)

The ESA enable register (SER), shown in Figure 2-15, contains 32 SE bitsthat control the
ability to execute the esa instruction on a per-page basis when the processor is operating in
protection-only mode (MSR[PQO] = 0).

SEq | SE1 | SE; | SEs| SE4| SEs | SEe [ SE7| SEg | SEq|SE1o| SEr| SE12|SE13|SE1a|SE1s|SE16|SE17|SE18[SE10|SE 20| SE21|SE 2| SE23|SE 5| SE2s|SE26|SE27|SE28[SE20|SER0[SEa:

01 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Figure 2-15. ESA Enable Register (SER)

Each SE bit correspondsto a4-Kbyte page. To execute an esa instruction, the 602 must first
determine whether the page on which the esa instruction resides allows it to be executed.
This is done by comparing the high-order 15 bits of the EA against the same bits in the
SEBR. If amatch occurs, EA[15-19] indicate the 4-Kbyte page, providing an index to the
SER from which the appropriate SE hit is read.

If SE =1, an esa instruction residing on that page can be executed, putting the processor in
supervisor mode. If SE = 0, the esa instruction is disabled for this page. SER[O]
corresponds to the lowest page in memory, SER[1] corresponds with the next higher page
in memory.

The SER and SEBR registers do not affect protection checking unless the processor isin
protection-only mode. If the processor is not in protection-only mode, these registers can
be read and written to, but are not used by the MMU.

The SER is accessed as SPR 991.

2-20 PowerPC 602 RISC Microprocessor User's Manual



2.1.2.4 Miscellaneous PowerPC 602 Processor—Specific Registers

The following sections describe 602-specific registers that support a variety of functions,
such as software support for double-precision floating-point operations and the watchdog
timer facility.

2.1.2.4.1 Floating-Point Tag Registers (SP and LT)

Because the 602 does not support double-precision arithmetic in hardware, the 602
providestwo 32-bit, SPRsthat characterize the contents of the 32 FPRs. The SP tag register
holds tags that identify single-precision values and the LT tag register holds tags that
identify integer values.

Each bit of each register corresponds to a single 32-bit FPR. An SP or LT bit being set
indicates that the corresponding register contains valid data—SP designating single-
precision floating-point data and LT designating integer data. If neither bit is set, the data
resides in memory in the associated double-precision emulated FPR.

During power-on reset, the bitsin the SP and LT registers are not automatically cleared to
al zeros and must be cleared by using mtspr instructions in the reset routine.

Care should be taken to ensure that the SP/LT bits for an associated FPR are not
inadvertently altered by the mtspr instruction; valid dataresiding in an FPR that hasits SP/
LT bits changed causes erroneous results when the FPR is used as an operand.

Instructions requiring single-precision values as operands cause an emulation trap
exception if any of the operand’s associated SP bits are not set. The SP register is accessed
as SPR 1021; The LT register is accessed as SPR 1022.

2.1.2.4.2 Timer Control Register (TCR)

The timer control register (TCR) is a supervisor-level SPR used to program the watchdog
timer, which is an implementation-specific feature of the 602 and is not defined by the
PowerPC architecture. The TCR is shown in Figure 2-16.

CRE —L2E [] Reserved
NWE

—— WIE
SLT

| TI | | | | | | 000000000000000000000000 |

01 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-16. Timer Control Register (TCR)

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-21



The bitsin the TCR are described in Table 2-14.

Table 2-14. Timer Control Register Bit Settings

Bit(s) Name

Description

0-1 Tl

The timer interval bits indicate the number of clock cycles that should occur before the
watchdog timer interrupt exception is taken.

00 2e23clock cycles (ca. 0.25 s)

01 2e24 clock cycles (ca. 0.50 s)

10 2e25 clock cycles (ca. 1.00 s)

11 2e26 clock cycles (ca. 2.00 s)

Approximate durations assume 33 MHz bus running in 2:1 mode. For example, if the Tl bit is
set as 0b00, as soon as bit 8 is set (that is, after 2e23 clock cycles) a carry-out occurs.

2 CRE

Timer core reset enable
0 Timer core reset disabled
1 Timer core reset enabled

Level 2 watchdog timer interrupt enable. Enables the watchdog timer level 2 interrupt after a
carry-out occurs from the bit in the time base register specified by the user.

0 Timer level 2 interrupt disabled

1 Timer level 2 interrupt enabled

4 NWE

Next watchdog timer interrupt enable
0 Enable next interrupt
1 Disable next interrupt

5 WIE

Watchdog timer interrupt enable
0 Interrupt disabled
1 Interrupt enabled

6 SLT

Second-level exception taken. This bit is used by software to determine if the watchdog timer
caused the soft reset.

0 Second-level soft reset not taken

1 Second-level soft reset taken

7-31 —

For information about the watchdog timer utility, see Section 4.5.17, “Watchdog Timer
Interrupt (0x1500).”

The TCR is accessed as SPR 984.

2.1.2.4.3 Interrupt Base Register (IBR)
ThelBR isused to store a 16-bit base address used to determine the exception vector prefix
for certain exceptions and under certain conditions. The 16-bit base addressis concatenated
with the exception vector offset to form the address for the exception handler. The IBR can
be read and written to by the processor. See Figure 2-17 for the format of this register.

2-22

PowerPC 602 RISC Microprocessor User's Manual




[] Reserved

Interrupt Base Address 0000000000000000 |

0 15 16 31
Figure 2-17. Interrupt Base Register

The exception vector is determined as follows:
e For al exceptions, if MSR[IP] is set, the prefix is OxFFFO.

e For all exceptions except system reset on a hard reset, machine check, and
instruction address breakpoint exceptions, if MSR[IP] is cleared, the value of the
IBR is used asthe 16-bit prefix. For ahard reset, a machine check, or an instruction
address breakpoint exception, the prefix is 0x0000 if MSR[I1P] is clear.

The IBR is cleared and MSR[IP] is set on a power-on reset; therefore, the system reset
exception vector on a power-on reset is OxFFF0_0100.

Table 2-15 shows which exceptions use the IBR to determine the vector address.

Table 2-15. Determining the Exception Vector Address

Vector (hexadecimal)
Exception Type Prefix
Offset
P=0|IP=1

System reset (hard reset) FFFO 0100
System reset (soft reset) 0000 FFFO 0100
Machine check 0000 | FFFO 0200
DsSI IBR FFFO 0300
ISI IBR FFFO 0400
External interrupt IBR FFFO 0500
Alignment IBR FFFO 0600
Program IBR FFFO 0700
Floating-point unavailable IBR FFFO 0800
Decrementer IBR FFFO 0900
System call IBR FFFO 0coo
Trace IBR FFFO 0DO00
Floating-point assist IBR FFFO O0E00
Instruction translation miss IBR FFFO 1000

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-23



Table 2-15. Determining the Exception Vector Address (Continued)

Vector (hexadecimal)
Exception Type Prefix
Offset
IP=0|IP=1

Data load translation miss IBR FFFO 1100
Data store translation miss IBR FFFO 1200
Instruction address breakpoint 0000 FFFO 1300
System management interrupt IBR FFFO 1400
Watchdog timer IBR FFFO 1500
Emulation trap IBR FFFO 1600

For soft system reset exceptions or machine check exceptions, if MSR[IP] is cleared the
IBR is not used for the interrupt prefix. In these cases, the offset is 0x0000.

If a soft reset-type system reset interrupt or machine check interrupt occurs, the 602 does
not use the value of IBR, but reverts to the value for the interrupt prefix specified by
MSRJ[IP].

The 602 generates a system reset exception if the SRESET signal is asserted. Unlike ahard
reset, latches are not initialized and the instruction cache is disabled. The SRESET signal
must be asserted for at least two bus clock cycles. After SRESET is deasserted, the 602
vectors to the system reset exception handler at OxXFFFO_0100. The IBR is not used as a
vector offset for soft reset.

The IBR register is accessed as SPR 986.

2.1.2.4.4 Instruction Address Breakpoint Register (IABR)

The IABR, shown in Figure 2-18, is used in conjunction with the instruction address
breakpoint exception. IABR[CEA] holds an effective address to which the address of each
instruction is compared. The exception is enabled by setting IABR[IE]. The exception is
taken when the instruction breakpoint address matches the next instruction to complete.
The instruction tagged with the match is not completed before the breakpoint exception is

taken.
[] Reserved

CEA |IE|0|

0 29 30 31

Figure 2-18. Instruction Address Breakpoint Register (IABR)

2-24 PowerPC 602 RISC Microprocessor User's Manual



Thefieldsin the IABR are described in Table 2-16.

Table 2-16. Instruction Address Breakpoint Register Bit Settings

Bit Name Description
0-29 CEA This field holds an effective address to which the address of each instruction is
compared.
30 IE Setting the IE bit enables the instruction address breakpoint exception.
31 — Reserved

For information about the instruction address breakpoint register, see Section 4.5.15,
“Instruction Address Breakpoint Exception (0x1300)."

The IABR is accessed as SPR 1010.

2.1.3 Saving and Restoring FPRs and the FPSCR

The Store Floating-Point Double (stfd) and Load Floating-Point Double (Ifd) instructions
can be used to save and restore the 32-hit hardware FPRs. As long as the SP bit is set and
the data in the hardware FPR is not an infinity, NaN, or denormalized number, the datain
the FPR will be stored with the stfd instruction as a double-precision number with datain
the single-precision range, and the store instruction does not trap.

For data residing in the 64-bit emulated FPRs, and for the cases of infinities, NaNs,
denormalized numbers, and integers residing in the hardware FPRs, the stfd instruction
traps to 0x1600 and is emulated. The Ifd instruction does not trap if the operand data is
within the single-precision range (with regard to the exponent and fraction). If an operand
is outside that range, or if the 64-bit operand value is an infinity, NaN, or single-precision
format denormalized number, the instruction traps to 0x1600 and is emul ated.

To save the contents of the FPSCR, an mffs (Move from FPSCR) instruction can be issued
followed by an stfd instruction. To restore the FPSCR, an Ifd instruction can be issued on
the data that was previously stored with the stfd instruction followed by an mtfsf (Moveto
FPSCR Fields) instruction. The stfd instruction traps on the integer data and it isleft to the
emulation code to expand the integer to its architected value while clearing the high-order
32 bits of the architected value, and stores the 64-bit value. The load instruction acting on
the data that was stored by the stfd instruction also takes an emulation trap exception. Itis
left to the emulation code to place bits 32-63 of the operand into the hardware FPR, clear
the corresponding SP bit, and set the corresponding LT bits. The mtfsf executes on the data
in the FPR, placing it in the FPSCR.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-25



2.1.4 Synchronization Requirements for SPRs

As specified by the OEA portion of the PowerPC architecture, altering certain registers
requires software synchronization to honor register dependencies for subsequent
instructions. A context-synchronizing operation must follow any instruction that affects
instruction fetching or data access dependencies by altering any of the following registers:

e Instruction fetch dependencies
— MMU control register
— IBATs
— MSR[AP, FP, FEQ, FE1, LE, TE, PE, SA]
— IABR

¢ Data access dependencies
— MMU control register
— DBATs
— MSR[AP, LE, TE, PE, SA]

e Other
— MSR[POW, TGPR, FP]
— HIDO—Context-synchronizing operations that may be used are isync, sc, rfi,

and any exception other than system reset or machine check.
Note that MSR[POW] and MSR[LE] may not be altered concurrently with any other MSR

bit. Software must alter only one bit in the MSR when altering either of these, and the
alteration must be followed by a context-synchronizing operation.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture. It also provides detailed descriptions of conventions used for storing
valuesin registers and memory, accessing the 602's registers, and representation of datain
these registers.

2.2.1 Floating-Point Execution Models—UISA

The |IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but statesthat single-precision arithmetic i nstructions shoul d not accept
double-precision operands. The 602 implements single-precision instructions in hardware
and double-precision instructions in software. Section 6.8.4, “FPU Instruction Timings,”
indicates which instructions are implemented in hardware and which take the emulation
trap exception.

2-26 PowerPC 602 RISC Microprocessor User's Manual



The PowerPC UISA follows these guidelines:

« Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

e Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done
explicitly by software, while conversions from single- to double-precision are done
implicitly.

All PowerPC implementations provide the equivalent of the following execution modelsto
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1:

e Underflow during multiplication using a denormalized factor
¢ Overflow during division using a denormalized divisor

Because al double-precision arithmetic instructions take an emulation trap exception,
single-precision instructions always operate faster than their double-precision equivalents.

Single-precision instructions with operands residing in hardware FPRs with their
associated SP bit set (LT isadon't care) execute in hardware as defined by the architecture
placing the result in the hardware frD, setting the associated SP hit, and clearing the
associated LT hit. If any of the operands have their associated SP bits cleared, the
instruction causes an emulation trap exception (0x1600).

2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multipleinstructions, a sequence of words. The address of amemory operand isthe address
of itsfirst byte (that is, of its lowest-numbered byte). Operand length is implicit for each
instruction.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-27



2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “ natural” address of an operand
isan integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-17. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

The concept of alignment is also applied more generally to datain memory. For example,
a 12-byte dataitem is said to be word-aligned if its address is a multiple of four.

Note that the 602 provides hardware support for misaligned memory accesses; however, a
misaligned access suffers a slight performance degradation compared to an aligned access
of the same type. The 602 does not provide hardware support for floating-point store
operations that are not word-aligned. Instead, an alignment exception is taken.

Floating-point single-word accesses should be word-aligned and floating-point double
word accesses should be double-word-aligned. Frequent use of misaligned accesses
degrades system performance.

Any memory access that crosses an alignment boundary must be broken into multiple
discrete accesses. This includes half-word, word, double-word, and multiple-word
references. Multiple-word accesses are architecturally required to be aligned. The resulting
performance degradation depends upon how well each individual access behaves with
respect to the memory hierarchy. At a minimum, additional cache access cycles are
required. More dramatically, for the case of access to a noncacheable page, each discrete
access involves an individual bus operation which will reduce the effective bandwidth of
the bus. The effect that misalignment and cache misses have on instruction timing is
described in Chapter 6, “Instruction Timing.”

The casual use of misaligned accessesisdiscouraged since they can compromisethe overall
performance of the processor.

2.2.4 Floating-Point Operand

The 602 provides hardware support for all single-precision floating-point operations for
most value representations and all rounding modes. Thisarchitecture providesfor hardware
to implement a floating-point system as defined in ANSI/IEEE standard 754-1985, |EEE
Sandard for Binary Floating-Point Arithmetic. Detailed information about the floating-
point execution model can be found in Chapter 3, “Operand Conventions,” in The
Programming Environments Manual.

2-28 PowerPC 602 RISC Microprocessor User's Manual



Table 2-17. Memory Operands

Operand Length Addr[60-63] (If Aligned)
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quad word 16 bytes 0000

Note: An “x” in an address bit position indicates that the bit can be 0 or 1
independent of the state of other address bits.

2.2.5 Effect of Operand Placement on Performance

TheVEA states that the placement (location and alignment) of operands in memory affect
the relative performance of memory accesses. The best performance is guaranteed if
memory operands are aligned on natural boundaries. To obtain the best performance across
the widest range of PowerPC processor implementations, the programmer should assume

the performance model described in Chapter 3, “Operand Conventions,”

Programming Environments Manual.

2.3 Instruction Set Summary

in The

This section describes instructions and addressing modes defined for the PowerPC 602
microprocessor. These instructions are divided into the following functional categories:

Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

Floating-point instructions—These include fl oating-point arithmetic instructions, as
well asinstructionsthat affect the floating-point status and control register (FPSCR).

For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

L oad and storeinstructions—Theseinclude integer and floating-point load and store

instructions. For more information, see Section 2.3.4.3, “Load and Store

Instructions.”

Flow control instructions—These include branching instructions, condition register

logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow

Control Instructions,” and Section 2.3.4.5, “Trap Instructions.”

System linkage instructions—For more information, see Section 2.3.6.1, “ System
Linkage Instructions”

Processor control instructions—These instructions are used for synchronizing

memory accesses and managing caches, TLBs, and segment registers. For more
information, see Sections 2.3.4.6, 2.3.5.1, and 2.3.6.2.

Chapter 2. PowerPC 602 Microprocessor Programming Model

2-29



« Memory synchronization instructions—These instructions are used for memory
synchronizing. See Sections 2.3.4.7 and 2.3.5.2 for more information.

« Memory control instructions—T hese instructions provide control of caches, TLBs,
and segment registers. For more information, see Sections 2.3.5.3 and 2.3.6.3.

e External control instructions—These include instructions for use with special input/
output devices. The optional external instructions (eciwx and ecowx) defined by the
PowerPC architecture, are not implemented in the 602.

For information about instructions specific to the 602, see Section 2.3.7, “ PowerPC
602 I mplementation-Specific Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes aparticular instruction or group of instructions. Thisinformation, whichisuseful
in taking full advantage of the 602's parallel instruction execution, is provided in Chapter 8,
“Instruction Set,” in The Programming Environments Manual.

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
usesinstructionsthat are 4 byteslong and word-aligned. It providesfor byte, half-word, and
word operand loads and stores between memory and a set of 32 general-purpose registers
(GPRs). It aso provides for word and double-word operand loads and stores between
memory and a set of 32 floating-point registers (FPRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into aregister, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and aformatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics (referred to as
extended mnemonicsin the architecture specification) and symbolsis provided for some of
the frequently used instructions; see Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for acompletelist of simplified mnemonic examples.

2.3.1 Classes of Instructions

The 602 instructions belong to one of the following three classes:
» Defined
o lllega
* Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruction that
is specific to 64-bit implementations is considered defined for 64-bit implementations but
illegal for 32-bit implementations such as the 602.

2-30 PowerPC 602 RISC Microprocessor User's Manual



The classis determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of areserved instruction, the instruction isillegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become assigned to instructions in the architecture, or may be reserved by being assigned
to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor stateis not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in al PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 602 provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required.

A defined instruction can have invalid forms, as described in the following subsection.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

* Ingtructionsthat are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions.

The following primary opcodes are defined asiillegal but may be used in future
extensions to the architecture:

1,4,5,6,9, 22, 56, 57, 60, 61

« Instructions that are implemented in the PowerPC architecture but are not
implemented in a specific PowerPC implementation. For example, instructions that
can be executed on 64-bit PowerPC processors are considered illegal by 32-bit
processors.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-31



Thefollowing primary opcodes are defined for 64-bit implementations only and are
illegal on the 602:

2, 30, 58, 62

» All unused extended opcodes areillegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions that are defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa.

The following primary opcodes have unused extended opcodes:

17, 19, 31, 59, 63 (primary opcodes 30 and 62 are illegal for al 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes)

¢ Aninstruction consisting entirely of zerosis guaranteed to be anillegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the system illegal instruction error handler (aprogram exception).
Note that if only the primary opcode consists of all zeros, the instruction is
considered areserved instruction. Thisis further described in Section 2.3.1.4,
“Reserved Instruction Class”

An attempt to execute an illegal instruction invokes theillegal instruction error handler (a
program exception) but has no other effect. See Section 4.5.7, “Program Exception
(0x0700),” for additional information about illegal and invalid instruction exceptions.

With the exception of the instruction consisting entirely of binary zeros, the illega
instructions are available for further additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are alocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 4.5.7, “Program Exception (0x0700),” for additional information about illegal and
invalid instruction exceptions.

The following types of instructions are included in this class:

* Implementation-specific instructions (for example, TLB Load Data (tIbld) and TLB
Load Instruction (tIbli) instructions)

« Optional instructions defined by the PowerPC architecture but not implemented by
the 602 (for example, Floating Square Root (fsgrt) and Floating Square Root Single
(fsgrts) instructions)

2-32 PowerPC 602 RISC Microprocessor User's Manual



2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

2.3.2.2 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multipleinstructions, a sequence of words. The address of amemory operand isthe address
of itsfirst byte (that is, of its lowest-numbered byte). Operand length is implicit for each
instruction. The PowerPC architecture supports both big-endian and little-endian byte
ordering. The default byte and bit ordering is big-endian.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “ natural” address of an operand
isan integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwise it is misaligned.

For a detailed discussion about byte ordering and memory operands, see Chapter 3,
“Operand Conventions,” in The Programming Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored.

L oad and store operations have three categories of effective address generation:
» Register indirect with immediate index mode
* Register indirect with index mode
* Register indirect mode

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-33



Refer to Section2.3.4.3.1, “Integer Load and Store Address Generation,” for further
discussion of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

e Immediate
e Link register indirect
» Count register indirect

Refer to Section 2.3.4.4.1, “Branch Instruction Address Calculation,” for further discussion
of branch instruction effective address generation.

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The PowerPC architecture defines the System Call (sc) and the Return From Interrupt (rfi)
instructions to be context synchronizing. Exceptions (external, internal and taken traps) are
also context synchronizing. Context synchronization requires the following:

* No higher priority exception exists.

e Theinstruction cannot complete until all previous instructions have completed to a
point where they can no longer cause an exception.

* Ingtructions that precede this instruction complete in the context (including
privilege, protection and translation) under which they were issued.

« Theinstruction following thisinstruction executes in the context established by this
instruction.

In the 602, these instructions guarantee context synchronization by performing the
following steps:

1. Working their way through the pipeline (clearing any previousinstructions).
2. Performing the appropriate context updates while at the final stage of the pipeline.

3. Redirecting the instruction fetcher to refetch the instructions from the address
specified by the instruction.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if al previously-initiated instructions appear to
have completed before the instruction isinitiated or, in the case of the Synchronize (sync)
and Instruction Synchronize (isync) instructions, before the instruction completes. For
example, the Move to Machine State Register (mtmsr) instruction is execution
synchronizing. It ensuresthat all preceding instructions have completed execution and will
not cause an exception before the instruction executes, but does not ensure subsequent
instructions execute in the newly established environment. For example, if the mtmsr sets

2-34 PowerPC 602 RISC Microprocessor User's Manual



the MSR[PR] bit, unless an isync immediately follows the mtmsr instruction, a privileged
instruction could be executed or privileged access could be performed without causing an
exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the 602—those caused directly by the execution of an
instruction and those caused by an asynchronous event. Either may cause components of
the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

« Anattempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to beinvoked. An attempt by auser-level program to execute the
supervisor-level instructions listed below causesthe privileged instruction (program
exception) handler to be invoked. The 602 provides the following supervisor-level
instructions—dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tibie, tlbsync, tibld, and tIbli. Note that the privilege level of the mfspr and mtspr
instructions depends on the SPR encoding.

« Anattempt to access memory that is not available (page fault) causes the | S|
exception handler to be invoked.

« Anattempt to access memory with an effective address alignment that isinvalid for
the instruction causes the alignment exception handler to be invoked.

» The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

» The execution of atrap instruction invokes the program exception trap handler.

» The execution of afloating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

e The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.
Exceptions caused by asynchronous events are described in Chapter 4, “ Exceptions.”

2.3.2.4.4 Self-Modifying Code Requirements

The following sequence of instructions will synchronize the instruction stream.
dchst

sync

i chi

i sync

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-35



2.3.3 Instruction Set Overview

This section provides abrief overview of the PowerPC instructionsimplemented in the 602
and highlights any special information with respect to how the 602 implements a particul ar
instruction. Note that the categories used in this section correspond to those used in
Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are provided for the convenience of the
programmer and do not necessarily reflect the PowerPC architecture specification.

Note that some of the instructions have the following optional features:

¢ CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
¢ Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding afew user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:
 Integer arithmetic instructions
¢ Integer compare instructions
* Integer logical instructions
« Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER, and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-18 lists the integer arithmetic instructions for the 602.

Table 2-18. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM

2-36 PowerPC 602 RISC Microprocessor User's Manual



Table 2-18. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme.subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu (divwu.  divwuo  divwuo.) rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

2.3.4.1.2 Integer Compare Instructions

Theinteger compareinstructionsalgebraically or logically compare the contents of r A with
either the UIMM operand, the SIMM operand, or the contents of rB. The comparison is
signed for the cmpi and cmp instructions, and unsigned for the cmpli and cmpl
instructions. Table 2-19 lists the integer compare instructions.

Table 2-19. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-37



The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field.

For information on simplified mnemonics for the integer compare instructions, see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-20 perform bit-parallel operations. Logical
instructions with the CR update enabled and instructions andi. and andis. set CR field CRO
to characterize the result of thelogical operation. Thesefieldsare set asif the sign-extended
low-order 32 bits of the result were algebraically compared to zero. Logica instructions
without CR update and the remaining logical instructions do not modify the CR. Logical
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

For simplified mnemonics examples for the integer logical operations see Appendix F,

“Simplified Mnemonics,” in The Programming Environments Manual.

Table 2-20. Integer Logical Instructions

Name Mnemonic Operand Syntax 602 Comments

AND Immediate andi. rA,rS,UIMM —

AND Immediate Shifted andis. rA,rS,UIMM —

OR Immediate ori rA,rS,UuIMM ori r0,r0,0 is the preferred form for the no-
op instruction. This acts as a ‘branch
never' instruction in the 602 and is folded-
out by the BPU.

OR Immediate Shifted oris rA,rS,uiMM —

XOR Immediate xori rA,rS,UIMM —

XOR Immediate Shifted Xoris rA,rS,UuiMM —

AND and (and.) rA,rS,rB —

OR or (or.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

Equivalent eqv (eqv.) rA,rS,rB —

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rArS —

Count Leading Zeros Word | cntlzw (cntlzw.) rA,rS —

2-38

PowerPC 602 RISC Microprocessor User's Manual




2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of aregister, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructionsrotate the contents of aregister. Theresult of therotation is either
inserted into the target register under control of amask (if amask hit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with amask before being placed into the
target register.

The integer rotate instructions are listed in Table 2-21.

Table 2-21. Integer Rotate Instructions

Name Mnemonic Operand Syntax
Rotate Left Word Immediate then AND with Mask | rlwinm (rlwinm.) rA,rS,SH,MB,ME
Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shift operations. Immediate-form
logical (unsigned) shift operations are obtained by specifying masks and shift values for
certain rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual.

Theinteger shift instructions are listed in Table 2-22.

Table 2-22. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word srw (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-39



2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

* Foating-point arithmetic instructions

» Foating-point multiply-add instructions

* FHoating-point rounding and conversion instructions

* Foating-point compare instructions

« Foating-point status and control register instructions

¢ Foating-point move instructions

* Foating-point special instructions—Because the 602 hardware supports only

single-precision operations, the smaller single-precision FPRs need status bits to
recognize the following:

— A valid floating-point operand in the hardware (rather than in a memory image)

— Aninteger value moved from the FPSCR or generated by an fctiwz instruction.
See Section 6.4.3, “Floating-Point Unit,” for a complete description of these
status bits.

» Thesestatusbitsareimplemented as SPR registers (SPand LT) and are accessed and
reloaded using the mfspr/mtspr instructions. See Section 2.1.2.4.1, “Floating-
Point Tag Registers (SP and LT),” for more information.

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

If the SP bit is set for al of its operands and those operands reside in the 602's 32-bit FPRS,
a single-precision floating-point instruction executes in hardware. That is, by placing the
result in the target hardware FPR, setting the associated SP bit, and clearing the associated
LT bit. If any of the operands have their associated SP bits cleared, the instruction takes an
emulation trap exception (0x1600).

All double-precision arithmetic instructions take an emulation trap exception.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but the 602 provides software support to conform with that standard. All floating-
point operations conform to the IEEE 754 standard, unless the non-lIEEE mode bit
(FPSCRINI]) is set, in which case the 602 is in nondenormalized mode. Floating-point
modes are described in Section 2.3.4.2.2, “IEEE Mode (FPSCR[NI] = 0)” and
Section 2.3.4.2.3, “Non-|EEE Mode (FPSCR[NI] = 1).”

2.3.4.2.1 Denormalized Number Support

The 602 hardware accepts denormalized numbers as operands; however, in |EEE-mode,
when underflow exceptions are disabled, any underflow condition causes atrap to 0x1600
where emulation software produces the proper IEEE result. In non-lEEE mode
(FPSCR[NI] = 1), the hardware underflows to zero instead of producing a denormalized
number.

2-40 PowerPC 602 RISC Microprocessor User's Manual



Some instructions, however, require the denormalized number to be preserved, such as
when executing a Floating Move Register (fmr) or Floating Select (fsel) instruction, or
when the sign bit of a denormalized operand is changed—as is the case when a Floating
AbsoluteValue (fabs), Floating Negative AbsoluteValue (fnabs), or Floating Negate (fneg)
instruction is executed. In such cases, the hardware produces the desired result.

2.3.4.2.2 |IEEE Mode (FPSCRI[NI] = 0)
When the processor isin full IEEE compatibility mode, the following conditionswill cause
atrap to 0x1600 where emulation code produces the proper | EEE results or conditions:
« Invalid operation exceptions when such exceptions are enabled (FPSCR[VE] = 1).
» Zero divide exceptions when such exceptions are enabled (FPSCR[ZE]).
» Underflow exceptions when such exceptions are disabled (FPSCR[UE] = 0).

» All double-precision operations or instructions having double-precision operands.
Theinstructions that cause an emulation trap exception are listed in Section 6.8,
“Instruction Latency Summary.”

¢ For some instructions, the setting of an operand’s SP or LT can generate an
exception.

2.3.4.2.3 Non-lIEEE Mode (FPSCR[NI] = 1)

The 602 supports a non-IEEE mode that is useful for time-critical operations where |EEE
complianceisnot useful. Thismodeis enabled by setting FPSCR[NI]. Table 2-23 describes
the operation of non-IEEE mode. These results are always produced when FPSCR[NI] is
set regardless of the settings of the exception enable bitsin the FPSCR.

Table 2-23. Non-IEEE Mode Results

Result Output

Divide by + infinity
zero

Invalid QNaN for arithmetic or round-to-single-precision operations
Most-positive integer if convert-to-integer and positive overflow or positive infinity operand
* Most-negative integer if convert-to-integer and negative overflow, negative infinity, or NaN operand

Overflow + infinity when round-to-nearest
« Format'’s largest representable finite number with sign of the intermediate result when round-

towards-zero

* Most negative number for negative overflow and +infinity for positive overflow when round-
towards-positive-infinity

« —infinity for negative overflow or largest finite number for positive overflow when round-towards-
negative-infinity

Underflow | Zero

Note that, as defined by the IEEE model, the 602 presents a QNaN regardless of whether
theinput is an SNaN or a QNaN.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-41



The exception enable bits in the FPSCR and the floating-point exception mode bits in the
M SR determine whether an exception condition is generated when the resultsin Table 2-23
occur regardless of the setting of FPSCR[NI].

When traps are disabled, the IEEE and non-lEEE modes differ only with respect to how
underflows are handled.

2.3.4.2.4 Time-Critical Floating-Point Operations

For time-critical applications, the FPSCR bits must be set such that the non-IEEE modeis
enabled (FPSCR[NI] = 1) and al floating-point exceptions are disabled. With these
settings, the 602 does not cause floating-point enabled program exceptions or generate
denormalized numbers, either of which would slow performance.

When the 602 is in non-IEEE mode, al floating-point operations should involve only
single-precision operands (or integer operands, in a few instructions). See Section 6.8,
“Instruction Latency Summary,” for instructions that trap to 0x1600; such instructions
should be avoided in time-critical operations.

See Section 2.2, “Operand Conventions,” for more information about the 602 support for
the nondenormalized mode.

2.3.4.2.5 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are listed in Table 2-24.

Table 2-24. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax 602 Notes
Floating Add (Double- fadd (fadd.) frD,frA,frB This instruction is not supported in hardware on
Precision) the 602; causes an emulation trap exception
(0x1600).
Floating Add Single fadds (fadds.) | frD,frA,frB If the SP bits are set for source operands, the

instruction is executed as defined by the
architecture; otherwise, it takes an emulation trap

exception.
Floating Subtract fsub (fsub.) frD,frA,frB This instruction is not supported in hardware on
(Double-Precision) the 602; causes an emulation trap exception
(0x1600).
Floating Subtract Single | fsubs (fsubs.) | frD,frA,frB If the SP bits are set for source operands, the

instruction is executed as defined by the
architecture; otherwise, it takes an emulation trap

exception.
Floating Multiply fmul (fmul.) frD,frA,frC This instruction is not supported in hardware on
(Double-Precision) the 602; causes an emulation trap exception
(0x1600).
Floating Multiply Single | fmuls (fmuls.) | frD,frA,frC If the SP bits are set for source operands, the

instruction is executed as defined by the
architecture; otherwise, it takes an emulation trap
exception.

2-42 PowerPC 602 RISC Microprocessor User's Manual



Table 2-24. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax 602 Notes

Floating Divide (Double- | fdiv (fdiv.) frD,frAfrB This instruction is not supported in hardware on

Precision) the 602; causes an emulation trap exception
(0x1600).

Floating Divide Single fdivs (fdivs.) frD,frA,frB If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation trap
exception.

Floating Reciprocal fres (fres.) frD,frB This instruction is implemented as a single-

Estimate Single precision divide instruction; it is not an estimate.

Floating Reciprocal frsqrte frD,frB The estimate is accurate to 1 part in 32 of the

Square Root Estimate (frsqrte.) reciprocal of the square root of frB. The target
operand is single-precision if it is in a hardware
FPR and its SP bit is set. Otherwise, the
instruction traps to 0x1600.

Floating Select fsel frD,frA,frC,frB Traps if the SP bit associated with frA is “OFF” or
if the SP bits is cleared for the selected frB or frC.

2.3.4.2.6 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 48 bits wide for single-
precision values and 106 bits wide for double-precision values. All intermediate fractional
bits take part in the add/subtract portion of the instruction. Note that double-precision
instructions take an emulation trap exception.

The floating-point multiply-add instructions are listed in Table 2-25.

Table 2-25. Floating-Point Multiply-Add Instructions

Name Mnemonic | Operand Syntax 602 Notes

Floating Multiply-Add fmadd frD,frA,frC,frB This instruction is not supported in hardware on

(Double-Precision) (fmadd.) the 602; causes an emulation trap exception
(0x1600).

Floating Multiply-Add Single | fmadds frD,frA,frC,frB If the SP bits are set for source operands, the

(fmadds.) instruction is executed as defined by the

architecture; otherwise, it takes an emulation
trap exception.

Floating Multiply-Subtract fmsub frD,frA,frC,frB This instruction is not supported in hardware on

(Double-Precision) (fmsub.) the 602; causes an emulation trap exception
(0x1600).

Floating Multiply-Subtract fmsubs frD,frA,frC,frB If the SP bits are set for source operands, the

Single (fmsubs.) instruction is executed as defined by the
architecture; otherwise, it takes an emulation
trap exception.

Chapter 2. PowerPC 602 Microprocessor Programming Model

2-43




Table 2-25. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic | Operand Syntax 602 Notes
Floating Negative Multiply- fnmadd frD,frA,frC,frB This instruction is not supported in hardware on
Add (Double-Precision) (fnmadd.) the 602; causes an emulation trap exception
(0x1600).
Floating Negative Multiply- fnmadds frD,frAfrC,frB If the SP bits are set for source operands, the
Add Single (fnmadds.) instruction is executed as defined by the

architecture; otherwise, it takes an emulation
trap exception.

Floating Negative Multiply- fnmsub frD,frA,frC,frB This instruction is not supported in hardware on

Subtract (Double-Precision) (fnmsub.) the 602; causes an emulation trap exception
(0x1600).

Floating Negative Multiply- fnmsubs frD,frAfrC,frB If the SP bits are set for source operands, the

Subtract Single (fnmsubs) instruction is executed as defined by the

architecture; otherwise, it takes an emulation
trap exception.

2.3.4.2.7 Floating-Point Rounding and Conversion Instructions

The Foating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-
point conversion instructions convert a 64-bit double-precision floating-point number to a
32-hit signed integer number.

On the 602, if the operand resides in the hardware FPR and has its SP bit “ON”", the frsp
instruction simply moves the data from the source FPR to the target FPR, and sets the
corresponding SP and LT bits to 1 and O respectively. If the data resides in the emul ated,
double-precision FPR or is an integer value in the hardware FPR, the instruction traps to
the emulation trap exception vector and is emulated. If the operand is a denormalized
number, an underflow condition occurs and the dataiis manipul ated as required by the mode
of operation and by the setting of FPSCR[UE].

The PowerPC architecture defines bits 0-31 of floating-point register frD as undefined
when executing the Floating Convert to Integer Word (fctiw) and Floating Convert to
Integer Word with Round toward Zero (fctiwz) instructions. Note that of the convert-to-
integer instructions, only the fctiwz instruction is supported in hardware in the 602. The
fctiw instruction causes an emulation trap exception. Executing the fctiwz instruction
produces aninteger in bits 0-31 of thetarget register. Thetarget isal so flagged as an integer
by loading its associated SP and LT bitswith 0 and 1, respectively.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual. The
floating-point rounding instructions are shown in Table 2-26.

2-44 PowerPC 602 RISC Microprocessor User's Manual



Table 2-26. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand 602 Notes
Syntax
Floating Round to frsp frD,frB —_
Single-Precision (frsp.)
Floating Convertto | fctiw frD,frB This instruction is not supported in hardware on the 602; causes
Integer Word (fctiw.) an emulation trap exception (0x1600).
Floating Convertto | fctiwz frD,frB If the operand’s associated SP bit is set, the instruction produces
Integer Word with (fctiwz.) an integer in the target hardware register (frD) with its associated
Round toward Zero SP||LT set to 0b01; otherwise it takes an emulation trap
exception. This instruction is dispatch serialized.

2.3.4.2.8 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare
instructions are listed in Table 2-27.

Table 2-27. Floating-Point Compare Instructions

Name Mnemonic | Operand Syntax 602 Notes
Floating Compare fcmpu crfD,frA,frB If the SP bits are set for both operands, the instruction is
Unordered executed as defined by the architecture; otherwise, it
takes an emulation trap exception.
Floating Compare fcmpo crfD,frA,frB If the SP bits are set for both operands, the instruction is
Ordered executed as defined by the architecture; otherwise, it

takes an emulation trap exception.

2.3.4.2.9 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by agiven processor. Executing an FPSCR instruction ensuresthat all
floating-point instructions previousdly initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed.

The FPSCR instructions are listed in Table 2-28.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-45



Table 2-28. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand 602 Notes
Syntax

Move from mffs frD This instruction is implemented using the 32-bit hardware FPRs.

FPSCR (mffs.) For the mffs instruction, the target is a 32-bit FPR (all bits 0-31),
the corresponding SP bit is cleared, and the corresponding LT bit is
set.

Move to CR mcrfs crfD,crfS —

from FPSCR

Move to FPSCR | mtfsfi crfD,IMM _

Field Immediate | (mtfsfi.)

Move to FPSCR | mtfsf FM,frB This instruction is implemented using the 32-bit hardware FPRs.

Fields (mtfsf.) The frB operand is a 32-bit FPR (bits 0-31) masked as long as frB
has its associated LT bit set; otherwise, the instruction is trapped to
0x1600.

Move to FPSCR | mtfsb0 crbD —

Bit 0 (mtfsb0.)

Move to FPSCR | mtfsb1l crbD —

Bit 1 (mtfsbl.)

2.3.4.2.10 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to another. The
floating-point move instructions do not modify the FPSCR. The CR update option in these
instructions controls the placing of result statusinto CR1. Floating-point move instructions
arelisted in Table 2-28.

Table 2-29. Floating-Point Move Instructions

Name Mnemonic Operand 602 Notes
Syntax

Floating Move fmr (fmr.) frD,frB If the SP bit is set for frB, the instruction is executed as defined by
Register the architecture; otherwise, it takes an emulation trap exception.
Floating Negate fneg frD,frB If the SP bit is set for frB, the instruction is executed as defined by

(fneg.) the architecture; otherwise, it takes an emulation trap exception.
Floating Absolute | fabs frD,frB If the SP bit is set for frB, the instruction is executed as defined by
Value (fabs.) the architecture; otherwise, it takes an emulation trap exception.
Floating Negative | fnabs frD,frB If the SP bit is set for frB, the instruction is executed as defined by
Absolute Value (fnabs.) the architecture; otherwise, it takes an emulation trap exception.

2-46

PowerPC 602 RISC Microprocessor User's Manual



2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions of the 602, which consist of
the following:

* Integer load instructions

* Integer storeinstructions

* Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions

e Foating-point load instructions

* Foating-point storeinstructions

* Memory synchronization instructions

2.3.4.3.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that the 602 is optimized for load and store operations that are
aligned on natural boundaries, and operations that are not naturally aligned may suffer
performance degradation. Refer to Section 4.5.6.1, “Integer Alignment Exceptions,” for
additional information about load and store address alignment exceptions.

2.3.4.3.2 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA isloaded into rD. Many integer load instructions have an update form, in which rA is
updated with the generated effective address. For these forms, the EA isplaced intor A and
the memory element (byte, half word, word, or double word) addressed by EA isloaded
into rD.

Note that in some implementations of the architecture, the load word algebraic instructions
(Iha and Ihax) and the load with update (Ibzu, Ibzux, Ihzu, Thzux, lhau, and Ihaux)
instructions may execute with greater latency than other types of load instructions. Theload
with update instructions may take longer to execute in some implementations than the
corresponding pair of a nonupdate load followed by an addx instruction. In the 602, these
instructions operate with the same latency as other load instructions.

Table 2-30 lists the integer load instructions.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-47



Table 2-30. Integer Load Instructions

Name Mnemonic Operand Syntax
Load Byte and Zero Ibz rD,d(rA)
Load Byte and Zero Indexed lbzx rD,rA,rB
Load Byte and Zero with Update lbzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux rD,rA,rB
Load Half Word Algebraic Ilha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed Ihaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

Note that the PowerPC architecture cautions programmers that some implementations of
the architecture may run the lha, lhax, lbzu, Ibzux, Ihzu, Ihzux, lhau, and Ihaux,
instructions with greater latency than other types of load instructions. Thisis not the case
in the 602; these instructions have the same latency as other load instructions.

2.3.4.3.3 Integer Store Instructions
For integer store instructions, the contents of r S are stored into the byte, half word, word,
or doubleword in memory addressed by the effective address (EA). Many storeinstructions
have an update form, in which r A is updated with the EA. For these forms, the following
rules apply:

* IfrA#£0,theEA isplacedintorA.

e IfrS=rA, the contents of rS are copied to the target memory element, then the
generated EA isplaced intorA (rS).

The 602 defines store with update instructions with rA = 0 and integer store instructions
with the CR update option enabled (Rc field, bit 31, in the instruction encoding = 1) to be
invalid forms. Table 2-31 provides alist of the integer store instructions for the 602.

2-48 PowerPC 602 RISC Microprocessor User's Manual



Table 2-31. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rArB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

2.3.4.3.4 Integer Load and Store with Byte-Reverse Instructions

Table 2-32 describes integer 1oad and store with byte-reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing datain big-endian order. For more information about big-endian and
little-endian byte ordering, see “Byte Ordering” in Chapter 3, “Operand Conventions,” in
The Programming Environments Manual.

Note that the PowerPC architecture cautions programmers that in some PowerPC
implementations, load byte-reverse instructions (Ihbrx and lwbrx) may have greater
latency than other load instructions; however, these instructions operate with the same
latency as other load instructions in the 602.

Table 2-32. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Syntax
Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB
Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-49



2.3.4.3.5 Integer Load and Store Multiple Instructions

Theinteger load and store multiple instructions are used to move blocks of datato and from
the GPRs. The load multiple and store multiple instructions may have operandsthat require
memory accesses crossing a4-Kbyte page boundary. As aresult, these instructions may be
interrupted by a DS| exception associated with the address trandlation of the second page.

Implementation Notes—T he following describes the 602 implementation of the load and
store multiple instructions:

* Theload multiple and store multiple instructions may have operands that require
memory accesses crossing a 4-Kbyte page boundary. As aresult, these instructions
may beinterrupted by a DS exception associated with the address translation of the
second page. In this case, the 602 performs some or al of the memory references
from thefirst page, and none of the memory references from the second page before
taking the exception. On return from the DSI exception, the load or store multiple
instruction will re-execute from the beginning. For additional information, refer to
“DSI Exception (0x0300)” in Chapter 6, “Exceptions,” in The Programming
Environments Manual.

» For the 602, there are no preferred forms for load and store multiple instructions.

« In some PowerPC processors, these instructions are likely to have greater latency
and take longer to execute, perhaps much longer, than a sequence of individual load
or store instructions that produce the same results.

» The PowerPC architecture defines the load multiple word (Imw) instruction withr A
in the range of registers to be loaded as an invalid form. It defines the load multiple
and store multiple instructions with misaligned operands (that is, the EA isnot a
multiple of 4) to be an invalid form. The 602 defines the load multiple word (Imw)
instruction with r A in the range of registers to be loaded as an invalid form.

Table 2-33 lists the integer load and store multiple instructions for the 602.

Table 2-33. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)

2.3.4.3.6 Integer Load and Store String Instructions

The integer load and store string instructions are defined by the architecture to allow
movement of data from memory to registers or from registers to memory. When the 602
encounters aload or store string instruction, an emulation trap exception is taken.

Table 2-34 lists the integer load and store string instructions.

2-50 PowerPC 602 RISC Microprocessor User's Manual



Table 2-34. Integer Load and Store String Instructions

Name Mnemonic | Operand Syntax 602 Notes
Load String Iswi rD,rA,NB This instruction is not supported in hardware on the 602;
Word Immediate causes an emulation trap exception (0x1600).
Load String Iswx rD,rA,rB This instruction is not supported in hardware on the 602;
Word Indexed causes an emulation trap exception (0x1600).
Store String stswi rS,rA,NB This instruction is not supported in hardware on the 602;
Word Immediate causes an emulation trap exception (0x1600).
Store String stswx rS,rA,rB This instruction is not supported in hardware on the 602;
Word Indexed causes an emulation trap exception (0x1600).

If rA isin therange of registersto be loaded for anIswi instruction or if either rA or rB is
in the range of registers to be loaded for an Iswx instruction, the PowerPC architecture
defines the instruction to be of an invalid form. In addition, thelswx and stswx instructions
that specify a string length of zero are defined to be invalid by the PowerPC architecture.

2.3.4.3.7 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode, the details of which are described in the following sections.

2.3.4.3.8 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Note that the PowerPC architecture defines load with update
instructionswithrA = 0 asaninvalid form.

Table 2-35 provides alist of the floating-point load instructions.

Table 2-35. Floating-Point Load Instructions

Name Mnemonic Operand 602 Notes
Syntax

Load Floating- Ifs frD,d(rA) | The 602 loads the single-precision operand as a single-precision
Point Single value into the hardware FPR and sets its corresponding SP and LT

bits to 1 and 0, respectively.
Load Floating- Ifsx frD,rA,rB | The 602 loads the single-precision operand as a single-precision
Point Single value into the hardware FPR and sets its corresponding SP and LT
Indexed bits to 1 and 0, respectively.
Load Floating- Ifsu frD,d(rA) | The 602 loads the single-precision operand as a single-precision
Point Single with value into the hardware FPR and sets its corresponding SP and LT
Update bits to 1 and 0, respectively.
Load Floating- Ifsux frD,rA,rB | The 602 loads the single-precision operand as a single-precision
Point Single with value into the hardware FPR and sets its corresponding SP and LT
Update Indexed bits to 1 and 0, respectively.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-51



Table 2-35. Floating-Point Load Instructions (Continued)

Name Mnemonic Operand 602 Notes
Syntax
Load Floating- Ifd frD,d(rA) | If the 64-bit operand fits in single-precision format and is not a
Point Double NaN, infinity, or single-precision format denormalized number, the
operand is compressed to single-precision format and placed in the
hardware FPR with its corresponding SP and LT bits setto 1 and 0,
respectively. Otherwise, Ifd takes an emulation trap exception.
Load Floating- Ifdx frD,rA,rB | If the 64-bit operand fits in single-precision format and is not a
Point Double NaN, infinity, or single-precision format denormalized number, the
Indexed operand is compressed to single-precision format and placed in the
hardware FPR with its corresponding SP and LT bits setto 1 and 0,
respectively. Otherwise, Ifdx takes an emulation trap exception.
Load Floating- Ifdu frD,d(rA) | If the 64-bit operand fits in single-precision format and is not a
Point Double with NaN, infinity, or single-precision format denormalized number, the
Update operand is compressed to single-precision format and placed in the
hardware FPR with its corresponding SP and LT bits set to 1 and 0,
respectively. Otherwise, Ifdu takes an emulation trap exception.
Load Floating- Ifdux frD,rA,rB | If the 64-bit operand fits in single-precision format and is not a
Point Double with NaN, infinity, or single-precision format denormalized number, the
Update Indexed operand is compressed to single-precision format and placed in the
hardware FPR with its corresponding SP and LT bits set to 1 and 0,
respectively. Otherwise, Ifdux takes an emulation trap exception.

Note that the 602 performs the Ifs, Ifsx, Ifsu, and Ifsux instructions by saving the single-precision operand as a
single-precision value in the 32-bit hardware target FPR.

2.3.4.3.9 Floating-Point Store Instructions

There are three basic forms of the store instruction—single-precision, double-precision,
and integer. The integer form is supported by the optional stfiwx (Store Floating-Point as
Integer Word Indexed) instruction.

Note that the PowerPC architecture defines store with update instructionswithr A =0 asan

invalid form.

Table 2-36 provides alist of the floating-point store instructions.

Table 2-36. Floating-Point Store Instructions

Name Mnemonic Operand 602 Notes
Syntax
Store Floating-Point Single | stfs frS,d(rA) If the operand’s SP bit is set, the operand is copied
directly from the hardware FPR to memory; otherwise,
the instruction takes an emulation trap exception.
Store Floating-Point Single | stfsx frS,rA,rB If the operand’s SP bit is set, the operand is copied
Indexed directly from the hardware FPR to memory; otherwise,
the instruction takes an emulation trap exception.
Store Floating-Point Single | stfsu frS,d(rA) If the operand’s SP bit is set, the operand is copied
with Update directly from the hardware FPR to memory; otherwise,
the instruction takes an emulation trap exception.
2-52 PowerPC 602 RISC Microprocessor User's Manual



Table 2-36. Floating-Point Store Instructions (Continued)

Name Mnemonic Operand 602 Notes
Syntax

Store Floating-Point Single | stfsux frS,rArB If the operand’s SP bit is set, the operand is copied

with Update Indexed directly from the hardware FPR to memory; otherwise,
the instruction takes an emulation trap exception.

Store Floating-Point stfd frS,d(rA) If the operand’s SP bit is set and the operand is not a

Double NaN, infinity, or denormalized number, it is expanded to
the double-precision format and stored; otherwise, the
instruction takes an emulation trap exception.

Store Floating-Point stfdx frS,rA,rB If the operand’s SP bit is set and the operand is not a

Double Indexed NaN, infinity, or denormalized number, it is expanded to
the double-precision format and stored; otherwise, the
instruction takes an emulation trap exception.

Store Floating-Point stfdu frS,d(rA) If the operand’s SP bit is set and the operand is not a

Double with Update NaN, infinity, or denormalized number, it is expanded to
the double-precision format and stored; otherwise, the
instruction takes an emulation trap exception.

Store Floating-Point stfdux frS,rA,rB If the operand’s SP bit is set and the operand is not a

Double with Update NaN, infinity, or denormalized number, it is expanded to

Indexed the double-precision format and stored; otherwise, the
instruction takes an emulation trap exception.

Store Floating-Point as stfiwx frS,rA,rB If the operand’s LT bit is set, the value is stored directly;

Integer Word Indexed otherwise, an emulation trap exception is taken.

2.3.4.4 Branch and Flow Control Instructions

Branch instructions are executed by the branch processing unit (BPU). The BPU receives
branch instructions from the fetch unit and performs condition register (CR) lookahead
operations on conditional branches to resolve them early, achieving the effect of a zero-
cycle branch in many cases.

Some branch instructions can redirect instruction execution conditionally based on the
value of bitsin the CR. When the branch processor encounters one of these instructions, it
scans the execution pipelinesto determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch is predicted using static branch prediction as described in “Conditional Branch
Control” in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The
Programming Environments Manual. The interlock is monitored while instructions are
fetched for the predicted branch. When the interlock is cleared, the branch processor
determines whether the prediction was correct based on the value of the CR bit. If the
predictioniscorrect, the branch is considered compl eted and instruction fetching continues.
If the prediction is incorrect, the fetched instructions are purged, and instruction fetching

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-53



continues aong the alternate path. See Chapter 8, “Instruction Timing,” in The
Programming Environments Manual for more information about how branches are
executed.

Note that when the 602 predicts abranch path, prefetching isallowed only from the internal
instruction cache. Prefetching from external memory isblocked until the branch instruction
resolves.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word-aligned; the processor ignores the two low-order bits of the
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

e Branch relative

« Branch conditiona to relative address

» Branch to absolute address

¢ Branch conditional to absolute address

« Branch conditiona to link register

« Branch conditional to count register

2.3.4.4.2 Branch Instructions

Table 2-37 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbolsis provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for alist of simplified mnemonic examples.

Table 2-37. Branch Instructions

Name Mnemonic Operand Syntax
Branch b (ba, bl, bla) target_addr
Branch Conditional bc (bca, bcel, bela) BO,Bl,target_addr
Branch Conditional to Link Register belr (bclrl) BO,BI
Branch Conditional to Count Register becetr (bectrl) BO,BI

2-54 PowerPC 602 RISC Microprocessor User's Manual



2.3.4.4.3 Condition Register Logical Instructions
Condition register logica instructions, shown in Table 2-38, and the Move Condition
Register Field (mcrf) instruction are a so defined as flow control instructions, athough they
are executed by the system register unit (SRU). Most instructions executed by the SRU are
completion-serialized to maintain system state; that is, the instruction is held for execution
in the SRU until all prior instructions issued have compl eted.

Table 2-38. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA,crbB
Condition Register AND with Complement | crandc crbD,crbA,crbB
Condition Register OR with Complement crorc crbD,crbA,crbB
Move Condition Register Field mcrf crfD,crfS

Notethat if the LR update option is enabled for any of these instructions, these forms of the
instructions are invalid in the 602.

2.3.4.5 Trap Instructions

The trap instructions shown in Table 2-39 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-39. Trap Instructions

Name Mnemonic Operand Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual for
acomplete set of simplified mnemonics.

2.3.4.6 Processor Control Instructions

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (M SR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-55



2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-46 lists the instructions provided by the 602 for reading from or writing to the CR.

Table 2-40. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER mcrxr crfD
Move from Condition Register mfcr rD

Note that the PowerPC architecture cautions programmers that in some implementations,
the mterf instruction may perform more slowly when only a portion of the fields are
updated as opposed to al of the fields. Thisis not the case in the 602.

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

The sync instruction delays execution of subsequent instructions until previousinstructions
have compl eted to the point that they can no longer cause an exception and until al previous
memory accesses are performed globally; the sync operation is not broadcast onto the 602
bus interface. Additionally, all load and store cache/bus activities initiated by prior
instructions are completed. Touch load operations (dcbt and dcbtst) are required to
complete at least through address trandlation, but not required to complete on the bus.

The functions performed by the sync instruction normally takes a significant amount of
time to complete. Because the latency of the sync instruction depends on the state of the
processor when the instruction is issued as well as various system-level factors, frequent
use of thisinstruction may cause some performance degradation.

The 602 treats the Enforce In-Order Execution of 1/0 (eieio) instruction as a no-op, since
it enforcesthat all loads and storesto caching-inhibited memory and storesto write-through
memory execute in order on the external bus.

The proper paired use of the lwarx and stwcx. instructions allows programmers to emulate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” Examples of these semaphore operations can be found in
Appendix E, “Synchronization Programming Examples” in The Programming
Environments Manual. The Iwarx instruction must be paired with an stwcx. instruction
with the same effective address used for both instructions of the pair. Note that the
reservation granularity is 32 bytes.

2-56 PowerPC 602 RISC Microprocessor User's Manual



The concept behind the use of the Iwarx and stwcx. instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location (only if that location has not been modified
since it was first read), and determine if the store was successful. The conditiona storeis
performed based upon the existence of a reservation established by the preceding Iwarx
instruction. If the reservation exists when the store is executed, the store is performed and
abit isset in the CR. If the reservation does not exist when the store is executed, the target
memory location is not modified and a bit is cleared in the CR.

If the store was successful, the sequence of instructions from the read of the semaphore to
the store that updated the semaphore appear to have been executed atomically (that is, no
other processor or mechanism modified the semaphore location between the read and the
update), thus providing the equivalent of areal atomic operation. However, in reality, other
processors may have read from the location during this operation. In the 602, the
reservations are made on behalf of aligned 32-byte sections of the memory address space.

The lwarx and stwcex. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned Iwar x or stwcex. instruction, because
there is no correct way to define the address associated with the reservation.

In general, the Iwarx and stwcex. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most, one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent Iwar x instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
Iwar x regardless of whether the address generated by the Iwar x matches that generated by
the stwex. instruction. A reservation held by the processor is cleared by one of the
following:

¢ Executing an stwcx. instruction to any address

« Attempt by some other device to modify alocation in the reservation granularity
(32 bytes)

The Iwarx and stwcx. instructions in write-through access mode do not cause a DSI
exception.

The stwex. instruction always broadcasts on the external bus and thus operates with slightly
less performance characteristics as compared to normal store operations.

Table 2-41 lists the UISA memory synchronization instructions for the 602.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-57



Table 2-41. Memory Synchronization Instructions—UISA

Name Mnemonic | Operand Syntax 602 Notes
Load Word and lwarx rD,rA,rB —
Reserve Indexed
Store Word Conditional | stwcx. rS,rA,rB —
Indexed
Synchronize sync — This instruction delays subsequent bus activity until

previous instructions and bus operations (except
gueued touch load operations and instruction
fetches) have completed.

In the 602, reservationsfor lwar x and stwcx. instructions are made on behalf of aligned 32-
byte sections of the memory address space. Using these instructions when the 602 is in
write-through mode does not cause a DSI exception. Because the stwcex. instruction is
broadcast on the external bus, it typically does not perform as efficiently as normal store
operations.

2.3.4.8 Preferred No-Op Instruction
The PowerPC architecture defines theinstruction “ori r0,r0,0” asthe preferred form for the

no-op instruction. This preferred form acts as a* branch never’ instruction in the 602 and is
folded out by the BPU.

2.3.5 PowerPC VEA Instructions

The PowerPC VEA describes the semantics of the memory model that can be assumed by
software processes, and includes descriptions of the cache model, cache-control
instructions, address aiasing, and other related issues.

2.3.5.1 Processor Control Instructions

In addition to the move to condition register instructions specified by the UISA, the VEA
defines the Move from Time Base (mftb) instruction for reading the contents of the time
base register. The mftb is a user-level instruction; it is shown in Table 2-42.

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. The
mftb instruction serves as both a basic and simplified mnemonic. Assemblersrecoghize an
mftb mnemonic with two operands as the basic form, and an mftb mnemonic with one
operand as the simplified form. Simplified mnemonics are also provided for Move from
Time Base Upper (mftbu), which isavariant of the mftb instruction rather than of mfspr.
For more information, refer to “ Simplified Mnemonics for Specia Purpose Registers,” in
Appendix F, “ Simplified Mnemonics,” in The Programming Environments Manual.

2-58 PowerPC 602 RISC Microprocessor User's Manual



Table 2-42. Move from Time Base Instruction

Name Mnemonic | Operand Syntax 602 Notes
Move from mftb rD, TBR The 602 time base is incremented every four bus clocks. The time
Time Base base enable (TBEN) signal enables the count. The 602 ignores
bit 25 of mftb and treats it like an mfspr instruction.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

Implementation Notes—The following list describes how the 602 handles memory
synchronization in the VEA.

« Thelnstruction Synchronize (isync) instruction causes arefetch serialization, which
waits for al prior instructions to complete and then executes the next sequential
instruction. Execution of subsequent instructionsis held until all previous
instructions have completed until they can no longer cause an exception and al store
gueues have completed trandlation. Any instruction after an isync see al effects of
prior instructions

e TheEnforce In-Order Execution of I/O (eieio) instruction is used to ensure memory
reordering. Since the 602 does not reorder noncacheable memory accesses, theeieio
instruction is treated as a no-op.

Table 2-41 lists the VEA memory synchronization instructions for the 602.

Table 2-43. Memory Synchronization Instructions—VEA

Name Mnemonic Operand 602 Notes
Syntax
Enforce In-Order eieio — The 602 does not reorder noncacheable memory
Execution of 1/0 accesses; therefore, eieio is treated as a no-op.
Instruction Synchronize isync — —

2.3.5.3 Memory Control Instructions—VEA
The memory control instructions defined by the VEA provide user-level programs the
ability to manage on-chip caches when they exist. Memory control instructions include the
following types:

¢ Cache control instructions

*  Segment register manipulation instructions

« Trandation lookaside buffer management instructions

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-59



User-level cache instructions are listed in Table2-44. See Section 2.3.6.3, “Memory
Control Instructions—OEA,” for information on supervisor-level cache, segment register
manipulation, and TLB management instructions.

Note that the 602 interprets cache control instructions (icbi, dcbi, dcbf, and dcbst) as if
they pertain only to the 602 cache and does not broadcast these instructions The dcbz
instruction is broadcast to maintain coherency. Any bus activity caused by these
instructions results from the operation on the 602 cache.

Aswith other memory-related instructions, the effect of the cache management instructions
on memory is weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, async instruction must be placed in the program following those instructions.

Table 2-44 lists the cache instructions that are accessible to user-level programs.

Table 2-44. User-Level Cache Instructions

Name Mnemonic Operand 602 Notes
Syntax
Data Cache dcbt rA,rB The EA is computed, translated, and checked for protection violations.
Block Touch « If the EA violates page protection or misses in the MMU, the
operation is a no-op.

» If the address hits in the cache, no action is taken.

« If the address misses in the cache and the tag is in the modified (M)
state, the cache block is written back to memory and the new cache
block is brought in and placed in the exclusive (E) state.

« If the address misses in the cache and tag is in the E state, the new
cache block is brought in and placed in the E state.

Address-only transfers are not generated on the external bus (other

cache operations).

Data Cache dcbtst rArB This instruction is treated like a dcbt instruction with respect to the MEI
Block Touch cache coherency protocol.
for Store

2-60 PowerPC 602 RISC Microprocessor User's Manual



Table 2-44. User-Level Cache Instructions (Continued)

Name

Mnemonic

Operand
Syntax

602 Notes

Data Cache
Block Set to
Zero

dcbz

rArB

The EA is computed, translated, and checked for protection violations.

If the EA hits in the cache, zeros are burst into the cache. Also, if M =1

(coherency enforced), the address is broadcast onto the bus before the

zero-line-fill operation. The dcbz instruction is the only cache

instruction that the 602 broadcasts on the bus.

The exception priorities (from highest to lowest) for dcbz are as follows:

1 BAT protection violation—DSI exception

2  MMU miss—DTLB exception

3 Cache disabled—Alignment exception

4 Page marked write-through or caching-inhibited—Alignment
exception

5 TLB protection violation—DSI exception

When data address translation is disabled (MSR[DR] = 0), the dcbz

instruction allocates a cache block but may not verify that the physical

address is valid. If a cache block is created for an invalid physical

address, a machine check condition may result when an attempt is

made to write that cache block back to memory. The cache block could

be written back as a result of the execution of an instruction that causes

a cache miss and the invalid addressed cache block is the target for

replacement or a dcbst instruction.

Data Cache
Block Store

dcbst

rArB

The EA is computed, translated, and checked for protection violations.

» If the address hits in the cache and the tag is in the E state, no
further action is taken.

« If the address hits in the cache and is in the M state, the cache block
is written back to memory and the cache block is put in the E state.

Address-only transfers are not generated on the external bus.

The exception priorities (from highest to lowest) are as follows:

1 BAT protection violation—DSI exception

2  MMU miss—DTLB exception

3 TLB protection violation—DSI exception

Data Cache
Block Flush

dcbf

rA,rB

The EA is computed, translated, and checked for protection violations.

« |If the address hits in the cache and the block is marked M, the block
is written back to memory and the cache entry is invalidated.

» If the address hits in the cache, and the cache block is marked E,
the cache entry is invalidated.

» If the address misses in the cache, no further action is taken.

The exception priorities (from highest to lowest) are as follows:

1 BAT protection violation—DSI exception

2 MMU miss—DTLB exception

3 TLB protection violation—DSI exception

Instruction
Cache Block
Invalidate

icbi

rArB

The icbi instruction performs a virtual lookup into the instruction cache
(index only). The address is not translated and cannot generate an
exception. Both ways of the selected set are invalidated. This
instruction is not broadcast onto the external bus.

2.3.5.4 External Control Instructions

The optional external control instructions, eciwx and ecowx, defined by the PowerPC
architecture are not implemented in the 602.

Chapter 2. PowerPC 602 Microprocessor Programming Model

2-61




2.3.6 PowerPC OEA Instructions

The PowerPC OEA includes the structure of the memory management model, supervisor-
level registers, and the exception model.

2.3.6.1 System Linkage Instructions

This section describes the system linkage instructions (see Table 2-45). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The Return from Interrupt (rfi)
instruction is a supervisor-level instruction used for returning from an exception handler.

Table 2-45. System Linkage Instructions

Name Mnemonic Operand 602 Notes
Syntax
System Call sc — —
Return from rfi — —
Interrupt
Enable esa — 602-specific. Provides the entry point for supervisor access. The esa
Supervisor instruction is a nonserialized instruction that saves MSR[SA, EE, PR,
Access AP] to the ESASRR and sets appropriate MSR bits (SA =1, EE =0,
PR =0, AP = 0). For more information, see Section 2.3.9, “Using the esa
Instruction for Supervisor-Level Access.”
Disable dsa — 602-specific. Provides the exit point for supervisor access. The dsa
Supervisor instruction is a nonserialized instruction that restores MSR[SA, EE, PR,
Access AP] from the ESASRR to the MSR. For more information, see
Section 2.3.9, “Using the esa Instruction for Supervisor-Level Access.”

2.3.6.2 Processor Control Instructions—OEA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (M SR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

2.3.6.2.1 Move to/from Machine State Register Instructions

Table 2-46 lists the instructions provided by the 602 for reading from or writing to the
MSR.

Table 2-46. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax
Move to Machine State Register mtmsr rs
Move from Machine State Register mfmsr rD

2.3.6.2.2 Move to/from Special-Purpose Register Instructions

Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be
coded with the SPR name as part of the mnemonic rather than as a numeric operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for

2-62 PowerPC 602 RISC Microprocessor User's Manual



simplified mnemonic examples. The mtspr and mfspr instructions are shown in
Table 2-47.

Table 2-47. Move to/from Special-Purpose Register Instructions

Name Mnemonic Operand Syntax
Move to Special Purpose Register mtspr SPR,rS
Move from Special Purpose Register mfspr rD,SPR

The following describes exception conditions associated with the mtspr and mfspr
instructions:

e The602 treats mtspr and mfspr instructionsthat specify SPRs defined for POWER
and not for PowerPC asillegal.

* Any mtspr or mfspr instruction that references privileged SPRs while not in the
supervisor mode (MSR[PR]=1) causes a privileged instruction type program
exception.

« Any mtspr instruction with an invalid SPR causes a program exception.

« Any mfspr with aninvalid SPR causes an illegal opcode type program exception.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 1620 of the instruction encoding and the low-order 5 bitsin bits 11-15.

If the SPR field contains any value other than one of the values shown in Table 2-6, either
the program exception handler isinvoked or the results are boundedly undefined.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing in
bits 1620 of the instruction and the low-order 5 bitsin bits 11-15.

Note that the updating of some registers requires additional synchronization to ensure that
data access and instruction fetching dependencies are handled properly. For more
information, see Section 2.1.4, “ Synchronization Regquirements for SPRs.”

2.3.6.3 Memory Control Instructions—OEA
This section describes memory control instructions, which include the following types:

« Cache management instructions
*  Segment register manipulation instructions
« TLB management instructions

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-63



2.3.6.3.1 Supervisor-Level Cache Management Instruction

Table2-48 lists the only supervisor-level cache management instruction. See
Section 2.3.5.3, “Memory Control Instructions—VEA,” for a description of cache
instructions that provide user-level programs the ability to manage the on-chip caches.

When data trandlation is disabled, MSR[DR] = 0, the dcbz instruction establishes a block
in the cache and may not verify that the physical addressis valid. If ablock is created for
an invalid real address, a machine check exception may result when an attempt is made to
write that block back to memory. The block could be written back as the result of the
execution of an instruction that causes a cache miss and the invalid address block is the
target for replacement or as the result of adcbst instruction.

Table 2-48. Supervisor-Level Cache Management Instruction

Name Mnemonic Operand 602 Notes
Syntax
Data Cache dcbi rA,rB The EA is computed, translated, and checked for protection
Block Invalidate violations. If the addressed block is in the cache, it is marked ‘I'

regardless of whether the data is in the M or E state.

The exception priorities (from highest to lowest) are as follows:
1 BAT protection violation—DSI exception

2 MMU Miss—DTLB exception

3 TLB protection violation—DSI exception

2.3.6.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 2-49 provide access to the segment registers for the 602.
These instructions operate completely independently of the MSR[IR] and MSR[DR] hit
settings. Refer to Section2.1.4, “Synchronization Requirements for SPRs” for
serialization requirements and other recommended precautions to observe when
mani pulating the segment registers.

Table 2-49. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax
Move to Segment Register mtsr SR,rS
Move to Segment Register Indirect mtsrin rS,rB
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect | mfsrin rD,rB

2.3.6.3.3 Translation Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTES) used by PowerPC processorsto locate the effective-to-physical address
mapping for a particular access. The PTES reside in page tablesin memory. As defined for
32-bit implementations by the PowerPC architecture, segment descriptorsreside in 16 on-
chip segment registers.

2-64 PowerPC 602 RISC Microprocessor User's Manual



The 602 provides the ability to invalidate a TLB entry. The TLB Invalidate Entry (tlbi€)
instruction invalidates the TLB entry indexed by the EA, and operates on both the
instruction and data TL Bs simultaneously invalidating four TLB entries (both setsin each
TLB). The index corresponds to bits 1519 of the EA. To invalidate all entries within both
TLBs, 32 tIbie instructions should be issued, incrementing this field by one each time.

The 602 provides two implementation-specific instructions, TLB Load Dataand TLB Load
Instruction (tlbld and tlbli), that are used by software table search operationsto load TLB
entries on-chip following TLB misses. For a compl ete description of these instructions, see
Section 2.3.7, “PowerPC 602 Implementation-Specific Instructions.”

Refer to Chapter 5, “Memory Management” for more information about the TLB
operations for the 602. Table 2-50 lists the TLB instructions.

Table 2-50. Translation Lookaside Buffer Management Instructions

Name Mnemonic Operand 602 Notes
Syntax

T LB Invalidate tibie B This instruction invalidates both ways in the ITLBs and DTLBs at the

Entry index provided within the EA. Executes without regard to translation
setting. To invalidate all TLB entries, the tlbie instruction should be
executed 16 times, each time incrementing the index (EA[16-19]).

TLB Synchronize | tlbsync — This instruction is implemented and treated as a no-op

TLB Load Data tibld rB This is a 602-specific instruction. It loads the contents of the DCMP
and RPA registers into the first word of the DTLB entry selected by
the EA and the SRR1[WAY] bit. See Section 2.3.7, “PowerPC 602
Implementation-Specific Instructions.”

TLB Load tibli B This is a 602-specific instruction. It loads the contents of the ICMP

Instruction and required physical address (RPA) registers into the first word of
the ITLB entry selected by the EA and the SRR1[WAY] bit. See
Section 2.3.7, “PowerPC 602 Implementation-Specific Instructions.”

Because the presence and exact semantics of the TLB management instructions are
implementation-dependent, system software should incorporate uses of the instruction into
subroutines to maximize compatibility with programs written for other processors.

For more information on the PowerPC instruction set, refer to Chapter 4, “Addressing
Modes and Instruction Set Summary,” and Chapter 8, “Instruction Set” in The
Programming Environments Manual .

2.3.7 PowerPC 602 Implementation-Specific Instructions

This section describes the instructions that are specific to the 602. However, some of these
instructions may be supported by other PowerPC processors.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-65



dsa dsa

Disable Supervisor Access Integer Unit
dsa
[] Reserved
31 00000 00000 00000 628 |0|
0 56 10 11 15 16 20 21 30 31

Thisinstruction is not part of the Power PC ar chitecture.

The dsa instruction is the last instruction executed before returning from a routine in
supervisor-access region. The dsa instruction does the following:

* Restores MSR[PR, AP, EE, SA] from ESASRR.
* If MSR[SA] = 0, aprogram exception is taken.

The following rules should be followed for using the dsa and esa instructions:
*  Supervisor-access routines must begin with an esa instruction.

» Execution of an esa or dsainstruction cannot alter theinstruction streamin any way.
Make sure that consistency is maintained in the following:

— Protections for fetching (NE, etc.)
— Tranglation method (BAT, TLB)

» Unprivileged store addresses must be checked before being passed to supervisor-
access routines.

e Dataisnot allowed in supervisor-access areas.

e Supervisor-access routines cannot call other supervisor-access routines. Executing
an esa instruction when MSR[SA] = 1 causes a program exception.

2-66 PowerPC 602 RISC Microprocessor User's Manual



esSa esa

Enable Supervisor Access Integer Unit
esa
[] Reserved
31 00000 00000 00000 596 |0|
0 5 6 10 11 15 16 20 21 30 31

Thisinstruction is not part of the Power PC ar chitecture.

The esa instruction is the entry point for routines in supervisor access regions. The esa
instruction is a nonserialized instruction and does the following:

» Saves MSR[SA, EE, PR, AP] to the ESASRR
e Setsappropriate MSR bits (SA =1, EE=0,PR=0,AP=0)

e |If the memory space is not designated as a supervisor-access region (that is, if the
SE bit in the corresponding TLB or BAT is cleared), a program exception occurs.

« If MSR[SA] = 1, aprogram exception occurs. A second esa instruction cannot be

executed until the SA bit has been cleared, preferably by adsa instruction.
The following rules should be followed for using the esa and dsa instructions:

* Supervisor access routines must begin with an esa instruction.

» Execution of esa or dsa cannot alter the instruction stream in any way:
— Protections for fetch (NE, etc.)
— Trangdlation method (BAT, TLB, or protection-only mode) must be consistent

» Store addresses passed to supervisor access routines must be checked.

» Dataisnot alowed in supervisor access areas.

* Supervisor access routines cannot call other supervisor access routines. Nesting
SUpErvisor access routines causes a program exception (that is, issuing an esa
instruction with MSR[SA] set).

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-67



mfrom mfrom

Move from ROM Integer Unit
mfrom rD,rA
[] Reserved
31 D A | 00000 | 265 | 0 |
0 56 10 11 15 16 20 21 30 31

Thisinstruction isnot part of the Power PC ar chitecture.

The content of the internal ROM addressable by (rA) is moved to the GPR addressed by
rD. The ROM contains a 7-bit value that is zero-extended to 32 bits. The ROM contains
602 entries (addressed by the least significant 10 bits of rA); if addressed out of range, the
ROM returns a zero value. The ROM contents are derived by the following:

ROM(1) = 256 * Log;o(1 + 10"/2%6) + 0.5
The mfrom instruction is a supervisor-level instruction, Attempting to execute this

instruction when MSR[PR] = 1 (user level), causesanillegal instruction program exception
to be taken.

Application note: For speech or handwriting recognition applications using Markov
models where single-precision operations are not adequate, the integer unit can be used as
long as the input datais in logarithmic form. For multiplication operations, such as

C = Ax B, the operation can be performed as the addition of logarithms as the following:

log(C) = log(A)+log(B)

For addition operations such as C = A + B, the mfrom instruction solves this problem by
helping to implement the following computation:

log(C) = log(10°° + 10'%®)

It can be seen that, for agiven finite binary implementation, al nhumbers have minimum and
maximum boundaries and that if Aisvery large and B isvery small, then C will be equal to
A. The format for integer valuesis 256 x log(value). With this precision, the log(C) can be
computed as an adjustment to the greater of log(A) or log(B). The scaling factor,
256 x log(value), ensures that there are only 602 values that allow log(A) and log(B) to be
close enough to each other to cause log(C) to be other than max(log(A), log(B)).

The adjustment needed to determine log(C) can be computed with mfrom instruction and
alookup tableindexed by the difference of |log(A) - log(B)|. Theinstruction returns a 7-bit
value from a 602-entry table through the following formula

Xi = 256 xlog(1 + 10~(/256)) + 0.5

wherei is the address (or index) into the table determined by |log(A)-log(B)| and x is the
returned 7-bit value needed to adjust max(log(A), log(B)) to determine log(C).

2-68 PowerPC 602 RISC Microprocessor User's Manual



tibld tibld

TLB Load Data Integer Unit
tibld rB

[] Reserved

31 00000 00000 B 978 |o|

0 5 6 10 11 15 16 20 21 30 31

Thisinstruction is not part of the Power PC ar chitecture.
EA ~ (rB)

TLB entry created from DCMP and RPA
DTLB entry selected by EA[15-19] and SRR1[WAY] - created TLB entry

The EA is the contents of rB. The tIbld instruction loads the contents of the DCMP and
RPA registersinto the first word of the selected data TLB entry. The specific DTLB entry
to beloaded is selected by <ea> and the SRR1[WAY] bit.

The tlbld instruction should only be executed when address trandation is disabled.
MSR[IR] = 0 and MSR[DR] = 0.

Thisis a 602-specific, supervisor-level instruction.

Notethat if the processor isin HIDO[PO] = 1 mode, bits 11-14 of the EA are used to index
the TLB instead of bits 15-19.

Other registers altered:
* None

Load the data TLB entry indexed by EA with DCMP and RPA.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-69



tibli tibli

TLB Load Instruction Integer Unit
tibli rB

[] Reserved

31 00000 00000 B 1010 |o|

0 5 6 10 11 15 16 20 21 30 31

Thisinstruction is not part of the Power PC ar chitecture.

EA ~ (rB

TLB erstry)created from ICMP and RPA

ITLB entry selected by EA[15-19] and SRR1[WAY]  created TLB entry
The EA isthe contents of r B. Thetlbli instruction loads the contents of the instruction PTE
compare (ICMP) and required physical address (RPA) registers into the first word of the
selected instruction TLB entry. The specific ITLB entry to be loaded is selected by <ea>
and the SRR1[WAY] bit.

For code compatibility the tIbli instruction should be limited to TLB miss handlers and
should only be executed when address trandation is disabled. MSR[IR] = 0 and
MSR[DR] = 0. If it isdesired to use these instructions with translation enabled, use care. It
isrequired that a context-synchronizing instruction follow these instructions if translation
ison. It is considered a programming error to perform a tlbli that modifies the current
prefetch addresses.

Notethat if the processor isin HIDO[PO] = 1 mode, bits 11-14 of the EA are used to index
the TLB instead of bits 15-19.

Thisisasupervisor-level instruction; it is a so a602-specific instruction, and not part of the
PowerPC instruction set.

Other registers atered:
* None

2-70 PowerPC 602 RISC Microprocessor User's Manual



2.3.8 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). PowerPC-compliant assemblers provide the
simplified mnemonics listed in “Recommended Simplified Mnemonics’ in Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual and listed with
some of the instruction descriptions in this chapter. Programs written to be portable across
the various assemblers for the PowerPC architecture should not assume the existence of
mnemonics not described in this document.

For acomplete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual.

2.3.9 Using the esa Instruction for Supervisor-Level Access

The 602 can be made to operate in supervisor mode either by taking an exception or by
executing the 602-specific Enable Supervisor Access (esa) instruction. Executing the esa
alows the processor to access supervisor-level instructions, registers, and memory without
encountering the latencies associated with the kind of exception handling required for
processors used in multipurpose personal computers. Such latencies include
synchronization to ensure precise operation and the pipeline and memory access latencies
associated with having to refetch from a new instruction path.

Note that after the esa instruction has been successfully executed, the program can fetch
from any page defined as instruction space for which fetching is enabled regardiess of the
setting of SE.

When the esa instruction is executed, several bitsfrom the MSR (MSR[SA, EE, PR, AP] to
the ESASRR) and those bits are automatically set asfollows (SA =1, EE=0, PR=0, AP
= 0). Clearing M SR[ EE] disables external interrupts, clearing M SR[PR] puts the processor
in supervisor mode, and clearing MSR[AP] gives the processor supervisor-level accessto
memory locations. MSR[SA] indicates that the processor is operating in this esa-initiated
supervisor mode. This bit is cleared when the Disable Supervisor Access (dsa) instruction
isexecuted. If MSR[SA] is not set, attempting to execute dsa causes a program exception.

The processor remains in supervisor mode until the dsa instruction is executed. Note that
the dsa instruction can be executed from any memory location for which instruction
fetching is enabled—that is, the dsa instruction can be executed regardless of the setting of
SE for the page on which it resides.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-71



Implementation of the ESA supervisor-access feature affects the 602's MMU
implementation in the following ways:

The esainstruction is enabled on a page or block basis, so the MMU trandation
mechanism must be used to configure memory to alow or disallow this
functionality. An additional SE bit is provided in the TLBs and BATs to enable the
esa instruction.The ESA enable register (SER) and the ESA enable base register
(SEBR) control supervisor execute privileges for each of the 32 pages of a 128-
Kbyte block of memory. Configuration of memory space defined by TLBsis
handled by using the 602-defined TLB Load Instruction (tIbli) and TLB Load Data
(tlbld) instructions to set the SE hit in the TLBs. BAT[SE] can be written by using
the mtspr instruction.

Thisfacility can be used regardless of whether the processor uses one of the
architecturally-defined translation mechanisms or the 602-specific protection-only
mode. When the esa instruction is enabled in protection-only mode (for which the
tranglation mechanism is not used to form the real address, EA = RA), resources
such asthe RPA and TLBsthat are otherwise defined for trandlation are redefined to
support memory protection.

Note that translation must be enabled for esa to be executed; therefore, esa cannot
be executed when the processor isin real addressing mode.

2.3.9.1 esal/dsa Instructions
The two instructions are described as follows:

Enable Supervisor Access (esa)—The esa instruction is the entry point for routines
iN esa SsUpervisor-access regions.

If the memory space is not designated as a supervisor access region (that is, if the
SE bit in the corresponding TLB or BAT is cleared), a program exception occurs.

Disable Supervisor Access (dsa)—The dsa instruction is the last instruction
executed before returning from aroutine initiated by the esa instruction. The dsa
instruction restores MSR[PR, AP, EE, SA] from ESASRR. Note that if

MSR[SA] = 0, aprogram exception is taken when the dsa instruction is executed.

The following rules should be followed for using the dsa and esa instructions:

Begin all supervisor-access routines with an esa instruction.

Execution of an esa or dsa instruction cannot alter the instruction streamin any way.
Protections for fetching (NE, etc.) and the translation method (BAT, TLB) must be
consistent.

Check unprivileged store address passed to supervisor-access routines.

Supervisor access routines cannot call other supervisor-access routines. Executing
an esa instruction when MSR[SA] = 1 causes a program exception.

No data should be updated in supervisor access areas.

2-72

PowerPC 602 RISC Microprocessor User's Manual



2.3.9.2 ESA Supervisor-Access Registers

The 602 defines a set of resources that allow the processor to access supervisor-level
instructions, registers, and memory resources without taking an exception. This supervisor
access is signaled by the execution of the 602-specific esa instruction. Execution of this
instruction is alowed only if it is enabled for the 4-Kbyte page in which it resides.

There are three registers that are 602-specific that support this functionality as described in
the following list. The ESASRR register is used to save and restore the four MSR bits that
are saved when the esa instruction is executed. The SEBR and SER are used to enable the
esa instruction on a 4-Kbyte page basis when the processor isin protection-only mode.

» ESA Save and Restore Register (ESASRR)—ESA SRR isasupervisor-level register
that provides ameans for automatically saving and restoring aspects of the machine
state for use with the enabl e/disable supervisor access instructions (esa and dsa).
When an esa instruction is executed, MSR[SA, EE, PR, AP] bits are automatically
saved in the ESASRR. When adsa instruction is executed, the contents of these bits
are automatically restored to the MSR. The ESASRR is described more fully in
Section 2.1.2.3.1, “ESA Save and Restore Register (ESASRR).”

« ESA Enable Base Register (SEBR)—The SEBR is used when the processor isin
protection-only mode to determine whether the esa instruction is enabled for the 4-
Kbyte page in which it resides. SEBR[0-14] contains the base address of the 128-
Kbyte region that is protected by the 32 SE bitsin SER (each bit in the SER
configures a4-Kbyte page). The SEBR is described morefully in Section 2.1.2.3.2,
“ESA Enable Base Register (SEBR) (Protection-Only Mode).”

« ESA Enable Register (SER)—The SER contains 32 SE bits, each of which
corresponds to a 4-K byte page when the processor isin protection-only mode. If a
match occurs when SEBR[0-14] are compared against the EA[0-14], EA[15-19]
indicate which of the 32 SE bitsin the SER is examined to determine whether the
esa instruction can be executed. If thereis no match, SE = 0. The matching
requirement of the SEBR issimilar to the BAT register. The SER is described more
fully in Section 2.1.2.3.3, “ESA Enable Register (SER) (Protection-Only Mode).”

2.3.9.2.1 Enabling the esa Instruction

For the esa instruction to be executed it must first be enabled for the memory region in
which it resides. This ability is enabled by setting the SE bit, which is read either from the
IBAT, the ITLB, or the ESA register depending on the memory translation protection mode
chosen. These are described as follows:

* Block address translation—If a BAT hit occurs, whether the esa instruction can be
executed depends on the setting of the corresponding IBAT[SE].

« Page address trandlation—If page address trandation is used (that is a BAT miss
occursand the processor isnot in protection-only mode), whether the esa instruction
can be executed depends on the setting of the SE bit in the corresponding ITLB.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-73



» Protection-only mode—If the processor isin protection-only mode (HIDO[PO] = 1)
and aBAT miss occurs, whether the esa instruction can be executed depends on the
setting of the corresponding SE bit in the SER register.

These trandation/protection mechanisms are described in Chapter 5, “Memory
Management.”

2.3.9.2.2 Executing the esa Instruction

The appropriate SE hit is not checked when the esa instruction is fetched. That is, the esa
instruction can be fetched even though it may not be enabled by the SE bit. Logic is
provided in the 602 instruction pipeline that allows the completion unit to detect whether
the esa instruction has been enabled. If esa has not been enabled, an illegal instruction
program exception is taken. If it has been enabled, the following occurs:

— MSR[SA, EE, PR, AP] are saved to the ESASRR before those bits are reset for
operation in supervisor mode.

— MSR[SA] isset, toindicate that the processor isin esa supervisor mode. This bit
is cleared by the dsa instruction; attempting to execute another esa instruction
when this bit is set causes a program exception.

— MSRIEE] is cleared to disable external interrupt exceptions.
— MSRIPR] iscleared to give supervisor level accessto registers and instructions.
— MSRJ[ARP] iscleared to provide access to supervisor-level memory regions.

Note that when the esa instruction is enabled, it is not context-synchronizing, There is no
change in program flow and subsequent instructionsin the program do not encounter stalls
due to saving the M SR bhits.

After the esa instruction has executed, the processor is in supervisor mode and can access
supervisor-level instructions, registers, and memory space (depending on the setting of
MSR[AP]). Note that after the MSR[SA] bit has been set, no more esa instructions can be
executed. Attempting to do so causes a program exception.

2.3.9.2.3 Returning to User-Level Operation

After the esa instruction has been successfully executed, the processor remains in
supervisor mode as long as the MSR[SA] bit remains set. Although this bit can be cleared
explicitly by using an mtspr instruction, the recommended way to clear this bit is by
executing the Disable Supervisor Access (dsa) instruction. Executing this instruction is
analogous to executing an rfi instruction in an exception handler in that the processor
returns to user mode and the four bits that were saved and reset when the esa instruction
was executed (MSR[SA, EE, PR, AP]) arerestored to the MSR.

2-74 PowerPC 602 RISC Microprocessor User's Manual



2.3.10 Differences between Using the esa Instruction and Taking a
System Call Exception

The Enable Supervisor Access (esa) instruction can be executed only if the SE bit is set for
the block or the page in which the esa instruction resides. If an esa instruction is fetched
from any other region, a program exception is taken. Successful execution of the esa
instruction places the processor in supervisor mode, and can be compared with the system
call exception in the following ways:

*  When the esa instruction is executed, there is no change in program flow asisthe
case with fetching from the address of the target exception vector. This eliminates
thelatency required for synchronizing to maintain a precise exception model and the
stalls that may occur during those cycles when the exception handler instructions
have not reached the instruction queue.

» Becausethereisno changein program flow, the SRRO register is not used to save a
return address. The SRR1 register isnot used to save the machine state. Instead, only
four MSR bits are affected. The status of MSR[SA, EE, PR, AP] are saved to the
ESASRR.

« After the esa instruction is executed, four bitsin the MSR are updated:
— MSR[SA] is set to indicate that the processor isin esa supervisor mode.
— MSRIEE] is cleared to disable external interrupt exceptions.
— MSRIPR] iscleared to give supervisor-level accessto registers and instructions.
— MSRJ[ARP] iscleared to provide access to supervisor-level memory regions.

» Trangation must be enabled; therefore, esa supervisor access is not available when
the processor is running in real addressing mode.

If tranglation remains active, al effective addresses must map in the TLBs or BATSs.
MSR[PR, AP, SA, EE] bits are updated upon entry into the esa routine; the state of these
bits prior to the execution of esa are saved in ESASRR until the dsa instruction restores
them. Note that MSR[SA] must be set when the dsa instruction is executed to return the
processor to user-level operation; if this bit is cleared, a program exception occurs. Note
that any changes to the MSR (other than to the four saved bits) are retained after the dsa
instruction is executed.

Chapter 2. PowerPC 602 Microprocessor Programming Model 2-75



2-76 PowerPC 602 RISC Microprocessor User's Manual



Chapter 3
Instruction and Data Cache Operation

This chapter describes the organization of the PowerPC 602 microprocessor’'s on-chip
instruction and data caches, the MEI cache coherency protocol, cache control instructions,
various cache operations, and the interaction between the cache, load/store unit, and the bus
interface unit.

3.1 PowerPC 602 Processor Cache Implementation
Overview

The 602 provides separate 4-Kbyte, two-way set-associative caches for instructions and
data. Both theinstruction and data caches are tightly coupled to the 602's businterface unit
(BIU) to dlow efficient access to the system memory controller and other bus masters. The
602's load/store unit (LSU) is also directly coupled to the data cache to move data to and
from the GPRs and FPRs efficiently. Figure 3-1 shows the organization of the 602 caches,
which is essentially the same for both the instruction and data caches.

64 Sets [ , , [

[ : [ I I
T T T T T T T
Block 0] Address Tag 0 :|: State Words 0-7 :|:
} } } } } } }
Block 1| Address Tag 1 State Words 0-7
|«—— 8 Words/Block —————]

Figure 3-1. PowerPC 602 Processor Instruction and Data Cache Organization

Both caches have a cache block (cacheline) size of 32 bytes, and the data cache blocks can
be snooped, or cast out when the cache block is rel oaded. The 602 provides bits (WIM) for
control of write-back policy, cacheability, and memory coherency. These bhits are
implemented differently depending on the type of address translation used, as described in
Chapter 5, “Memory Management.”

Chapter 3. Instruction and Data Cache Operation 3-1



Note that in the PowerPC architecture, the term “cache block” refersto the unit of memory
at which coherency is maintained. For the 602, this is eight words. This size of a cache
block may be different for other PowerPC implementations.

Typicaly, when an instruction or data address is not found in the cache, the cache is
updated. Because it is extremely likely that the data or instructions at adjacent addresses
will aso be needed, the entire cache block of data that includes the data at the requested
address is updated from memory by means of a burst transaction—an automatic series of
bus transactions that transfers an entire eight-word cache block.

Read misses and instruction fetches may generate burst read operations that transfer the
entire cache block from memory. A write miss may also cause a burst transaction from
memory—after the cache block is updated from memory, the write operation that caused
the burst read updates the memory at the write address within the cache block. Whether and
when this new data is passed on to external memory depends on how coherency attributes
are configured.

Burst operations can also occur as the result of other operations. For example, both caches
use a least-recently used (LRU) replacement policy, so if both cache blocks to which an
address can be mapped are valid, the new data replaces the older of the two cache blocks.
If adata cache block that is being replaced is modified (that is, it has the correct contents
for that address but those contents have not been written back to memory), the datain that
cache block must be written back (cast out) to memory. Basic data cache operations are
described in Section 3.4, “Basic Data Cache Operations.”

Asshownin Figure 3-1, the data cache is organized into 64 sets of two cache blocks apiece.
Each block has an address tag and two state bits. The two state bits implement the three-
state MEI (modified-exclusive-invalid) protocol, a coherent subset of the standard four-
state MESI protocol. The 602's on-chip data cache tags are single-ported, and load or store
operations must be arbitrated with snoop accesses to the data cache tags. Load or store
operations can be performed to the cache on the clock cycleimmediately following a snoop
access if the snoop misses; snoop hits may block the data cache for two or more cycles,
depending on whether a copyback to main memory is required.

The 602 supports an additional snooping mechanism, known as injected snooping. While
the 602 as a bus master performs a burst read transaction, the read target device can inject
the snoop address onto the bus between data beats. Injected snooping is described in
Section 8.4.2, “ Qualified Snoop Conditions,” and isillustrated in Section 8.5.4.7, “Injected
Snoop Timings.” Information about the MEI protocol is provided in Section 3.7, “Cache
Coherency—MEI Protocol ”

Theinstruction cacheisalso organized into 64 sets of two 32-byte cache blocks. Each block
has an address tag, but unlike the data cache which has two bits that identify the MEI state,
the instruction cache has only one state bit that indicates whether the contents of the cache
block are valid. Because the instruction cache is updated only as a result of a line-fill
operation on a cache miss, it is not snooped.

3-2 PowerPC 602 RISC Microprocessor User's Manual



The load/store unit (LSU) provides the data transfer interface between the data cache and
the GPRs and the FPRs. The LSU provides al logic required to calculate effective
addresses and handles data alignment to and from the data cache. As shown in Figure 1-1,
the caches provide a 32-bit interface to the instruction fetcher and LSU. Write operations
to the data cache can be performed on a byte, half-word, word, or double-word basis. The
bus can be dynamically configured to function as a 32-bit busin the data phase (using only
D0-D31 for the data transfer).

The 602's bus interface unit (BIU), described in Section 3.10, “Bus Interface”, receives
requests for bus operations from the instruction and data caches, and uses the 602 bus
protocol to direct transfersto and from external memory. The BIU provides address queues,
prioritization, and bus control logic. The BIU also captures snoop addresses for data cache,
address queue, and memory reservation (Iwarx and stwcex. instruction) operations.

On a burst-read operation, corresponding cache block isfilled in four beats of 64 bits each
when the bus is in 64-bit mode or in eight beats of 32 bits each in 32-bit mode. The
requested instruction or data arrives first as part of the critical double word, and is
simultaneously written to the cache and forwarded to the requesting unit.

For example, if the instruction cache is performing a cache line reload, the requested
instruction is forwarded to the BPU at the same time that is made available in the cache. If
the busisin 64-bit mode, the instruction that arrives as part of the first double beat goes to
the cache only, and must be fetched from there.

Additionally, if a branch instruction is fetched from the cache block that is being filled, it
may point either to another address within same cache block or to another location as
follows:

« |f thetarget instruction is el sewhere in the same cache block, that instruction can be
fetched as soon as it becomes available in the instruction cache.

« If thetarget instruction is elsewhere in the cache, the instruction can be fetched
without having to wait for the entire cache block to be updated.

The 602 supports a fully-coherent 4-Gbyte physical memory address space. How that
memory is organized and defined is largely controlled by the memory management model,
and thisin turn has an effect on how the caches operate. Caching attributes are defined by
four mode control bits—W, I, M, and G. The W (write-through) and | (caching-inhibited)
bits control how the processor executing the access uses its own cache. The M (memory
coherence) hit specifies whether the processor executing the access must use the MEI
(modified, exclusive, or invalid) cache coherence protocol to ensure al copies of the
addressed memory location are kept consistent. The G (guarded memory) bit controls
whether out-of-order data and instruction fetching is permitted.

Chapter 3. Instruction and Data Cache Operation 3-3



The method by which the WIMG bits are configured depends on the type of memory
translation used. If block address trandlation is used, the bits are defined in the BAT
registers. If page address translation is used, the bits are configured through the translation
lookaside buffers (TLBSs), which in turn are kept in page table entries (PTES) which also
contain trangd ation information and are maintained by the MMU. If real addressing mode
is used (that is, the trandation is disabled) or if the processor is in the 602-specific
protection-only mode, the WIMG bits are read from the HIDO register. Address translation
is described in Chapter 5, “Memory Management.”

The 602 maintains data cache coherency in hardware by coordinating activity between the
data cache, the memory system, and the bus interface logic. As bus operations are
performed on the bus by other bus masters, the 602 bus snooping logic monitors the
addresses that are referenced. These addresses are compared with the addresses resident in
the data cache. If there is a snoop hit, the 602's bus snooping logic responds to the bus
interface with the appropriate snoop status (for example, an ARTRY). Additional snoop
action may be forwarded to the cache as aresult of a snoop hit in some cases (a cache push
of modified data or a cache block invalidation).

3.2 Instruction Cache Organization and Control

Each block of the instruction cache can hold eight 32-bit words (that is, eight instructions),
an address tag, and avalid bit. The instruction cache may not be written to except through
a line-fill operation. In addition, this cache is not snooped. Instruction cache coherency
must be maintained by software and is supported by afast hardware invalidation capability.

Theinstruction fetcher accesses the instruction cache frequently in order to sustain the high
throughput provided by the six-entry instruction dispatch queue.

3.2.1 Instruction Cache Organization

The organization of theinstruction cacheisshownin Figure 3-1. Each cache block contains
eight contiguous words from memory that are |loaded from an eight-word boundary (that is,
bits A27-A31 of the logical (effective) addresses are zero); as a result, cache blocks are
aligned with page boundaries.

Notethat addressbitsA21-A26 provide an index to select aset. BitsA27-A31 select abyte
within ablock. The tags consists of bits PAO—-PA20. Address translation occursin parallel,
such that higher-order bits (the tag bitsin the cache) are physical. Note that the replacement
agorithm is strictly an LRU algorithm; that is, the least-recently used block is filled with
new instructions on a cache miss.

3-4 PowerPC 602 RISC Microprocessor User's Manual



3.2.2 Instruction Cache Fill Operations

In 64-bit mode, the 602’s instruction cache blocks are loaded in four beats of 64 bits each,
with the critical double word loaded first. In 32-bit mode, this operation takes eight beats.

The 602's caches are nonblocking during line-fill operations. If the instruction cache is
performing a cache-line-reload, the requested instruction is forwarded to the BPU at the
sametime that is made available in the cache. In 32-bit mode, the instruction that arrives as
part of the first double beat goes to the cache only and must be fetched from there.

Additionally, if a branch instruction is fetched from the cache block that is being filled it
may point either to another address within the same block or to another location asfollows:

« If thetarget instruction is elsewhere in the same cache block, that instruction can be
fetched as soon as it becomes available in the instruction cache.

« If thetarget instruction is elsewhere in the cache, the instruction can be fetched
without having to wait for the entire cache block to be updated.

Note, however, that in both of these cases, instructions can be fetched from the cache only
whileit is not being written to as part of the cache-line-refill.

3.2.3 Instruction Cache Control

In addition to instruction cache control instructions, the 602 provides three control bitsin
the HIDO register for the control of invalidating, disabling, and locking the instruction
cache. The HIDO register is described in Section 2.1.2.1.1, “Hardware Implementation
Register 0 (HIDO0).”

3.2.3.1 Instruction Cache Invalidation

While the 602's instruction cache is automatically invalidated during a power-on or hard
reset, assertion of the soft reset signal does not cause instruction cache invalidation.
Software may invalidate the contents of the instruction cache using the instruction cache
flash invalidate control bit, HIDO[ICFI]. Flash invalidation of the instruction cache is
accomplished by setting and clearing the ICFI bit with two consecutive move to SPR
operations to the HIDO register.

3.2.3.2 Locking the Instruction Cache

The contents of instruction cache may be locked through the use of the instruction cache
lock control bit, HIDO[ILOCK]. A locked instruction cache supplies instructions normally
on a cache hit, but cache misses are treated as caching-inhibited accesses. The cache
inhibited (CI) signal is asserted if a cache access missesinto alocked cache. The setting of
the ILOCK bit in HIDO must be preceded by an isync instruction to prevent the instruction
cache from being locked during an instruction access.

Chapter 3. Instruction and Data Cache Operation 3-5



3.3 Data Cache Organization and Control

The data cache supplies data to the GPRs and FPRs by means of the load/store unit, and
provides buffers for load and store bus operations. The data cache a so provides storage for
the cache tags required for memory coherency and performs the cache block replacement
LRU function.

3.3.1 Data Cache Organization

The organization of the data cache is shown in Figure 3-1. Each cache block contains eight
contiguous words from memory that are loaded from an eight-word boundary (that is, bits
A27-A31 of thelogical (effective) addresses are zero); as aresult, cache blocks are aligned
with page boundaries.

Notethat address bitsA21-A26 provide an index to select aset. BitsA27-A31 select abyte
within ablock. The tags consists of bits PAO—PA20. Address translation occursin parallel,
such that higher-order bits (the tag bitsin the cache) are physical. Note that the replacement
algorithm is strictly an LRU agorithm; that is, the least recently used block is filled with
new data on a cache miss.

3.3.2 Data Cache Fill Operations

The 602's data cache blocks are filled in four beats of 64 bits each, in 64-bit mode or eight
beats of 32 bits each in 32-bit mode, with the critical double word loaded first in either
mode. The contents of the critical doubleword are forwarded to the register files at the same
timethat it arrives in the cache. The data cache is nonblocking and can be accessed by the
processor core as subsequent data arrivesin the cache.

3.3.3 Data Cache Control

The 602 provides several means of data cache control through the use of the WIMG hits
(implemented in the page tables for page addressing mode, the BATs for block address
translation mode, and in HIDO for real addressing mode and protection-only mode), control
bits in the HIDO register, and user- and supervisor-level cache control instructions. While
memory page level cache control isprovided by the WIMG bits, the on-chip data cache can
be invalidated, disabled, or locked by the three control bits in the HIDO register described
in this section. The HIDO register is described in Section2.1.2.1.1, “Hardware
Implementation Register 0 (HIDO).” (Note that, user- and supervisor-level are referred to
as problem state and privileged state, respectively, in the architecture specification.)

3.3.3.1 Data Cache Invalidation

While the data cache is automatically invalidated when the 602 is powered up and during a
hard reset, assertion of the soft reset signal does not cause data cache invalidation. Software
may invalidate the contents of the data cache using the data cache flash invalidate control
bit, HIDO[DCFI]. Flash invalidation of the data cache is accomplished by setting and
clearing the DCFI bit with two consecutive mtspr[HIDO] operations.

3-6 PowerPC 602 RISC Microprocessor User's Manual



3.3.3.2 Disabling the Data Cache

The data cache may be disabled through the use of the data cache enable (DCE) control bit
in the HIDO register. When the data cache is in the disabled state, the cache tag state bits
areignored, and all accesses are propagated to the bus as nonburst transactions. The DCE
bit is cleared on power-up, causing the data cache to be disabled. The setting of the DCE
bit must be preceded by a sync instruction to prevent the cache from being enabled or
disabled in the middle of a data access. An isync instruction should follow this mtspr
instruction to guarantee that instructions after the disabling of the cache are cleared from
the prefetch buffer.

Disabling the caches does not affect the translation logic; trandation is still controlled with
MSR[DR].

Note that while snooping is not performed when the data cache is disabled, cache
operations (caused by the dcbz, dcbf, dcbst, and dcbi instructions) are not affected by
disabling the cache, causing potential coherency errors. An example of thiswould be adcbf
instruction that hits a modified cache block in the disabled cache, causing a copyback to
memory of potentialy stale data.

3.3.3.3 Locking the Data Cache

The contents of the data cache may be locked through by setting HIDO[DL OCK]. A locked
data cache supplies data normally on a cache hit, but cache misses are treated as caching-
inhibited accesses. The caching-inhibited (CI) signal is asserted if a cache access misses
into a locked cache. A snoop hit to alocked data cache performs as if the cache were not
locked. A lineinvalidated by a snoop will remain invalid until the cache is unlocked.

The setting of HIDO[DLOCK] must follow a sync instruction to prevent the data cache
from being locked during a data access.

3.4 Basic Data Cache Operations

This section describes the three types of operations that can occur to the data cache, and
how these operations are implemented in the 602.

3.4.1 Data Cache Line-Fill Operation

A cache block isfilled after aread miss or write miss (read-with-intent-to-modify) occurs
in the cache. The cache block that corresponds to the missed address is updated by a burst
transfer of the data from system memory. Note that if aread miss occursin a system with
multiple bus masters, and the data is modified in another cache, the modified data is first
written to external memory before the cache line-fill occurs.

Chapter 3. Instruction and Data Cache Operation 3-7



3.4.2 Data Cache Cast-Out Operation

The 602 uses an LRU replacement al gorithm to determine which of the two possible cache
locations should be used for a cache update on a cache miss. Adding a new block to the
cache causes any modified data associated with the least recently used element to be written
back, or cast out, to system memory to maintain memory coherence.

3.4.3 Cache Block Push Operation

When a cache block in the 602 is snooped and hit by another bus master and the data is
maodified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus.

3.5 Data Cache Transactions on Bus

The 602 transfers datato and from the data cache in burst and nonburst transactions. In 32-
bit mode, data can be transferred in single-beat (one word), double-beat (double word) or
eight-beat burst transactions that transfer an eight-word cache block. In 64-bit mode, data
istransferred in single-beat (double word) or four-beat burst transactions, that transfer the
contents of an entire cache block.

3.5.1 Nonburst Transactions

Nonburst transactions (single-beat when the bus is in 64-bit mode and double-beat when
the busisin 32-bit mode) can transfer from one to eight bytes to or from the 602. Nonburst
transactions can be cache write-through or caching-inhibited, and can be misaligned.

3.5.2 Burst Transactions

Burst transactions on the 602 always transfer eight words of data at atime and are aligned
to a double-word boundary. When the busisin 32-bit mode, eight beats are required; when
it isin 64-bit mode, four beats are required. The 602 transfer burst (TBST) output signal
indicates to the system whether the current transaction is a nonburst or four-beat burst
transfer. The target data bus 32 (T32) signal indicates whether the bus is in 32- or 64-bit
mode. Burst transactions have an assumed address order. For cacheabl e read operations or
cacheable, non-write-through write operations that miss the cache, the 602 presents the
double-word-aligned address associated with the load or store instruction that initiated the
transaction.

Asshownin Figure 3-2, this quad word contains the address of the load or store that missed
the cache. This minimizes latency by alowing the critical code or data to be forwarded to
the processor before the rest of the block isfilled. For al other burst operations, however,
the entire block istransferred in order (oct-word aigned). After an instruction or data cache
miss, the critical double-word is forwarded first.

3-8 PowerPC 602 RISC Microprocessor User's Manual



602 Cache Address

Bits (27..28)
00 01 10 11
A B c D

If the address requested is in double word A (bits 27, 28 are 00), the address placed on the bus
is that of double-word A, and the four data beats are ordered in the following manner:

Beat
0 1 2 3

A B C D

If the address requested is in double word C (bits 27, 28 are 10), the address placed on the bus
will be that of double-word C, and the four data beats are ordered in the following manner:

Beat
0 1 2

C D A B

Figure 3-2. Double-Word Address Ordering—cCritical Double Word First

3.5.3 Access to Direct-Store Segments

The 602 does not provide support for access to direct-store segments. Operations
attempting to access a direct-store segment will invoke a DSI exception. For additional
information about DSI exceptions, refer to Section 4.5.3, “DSI Exception (0x0300).”

3.6 Memory Management/Cache Access Mode Bits—
W, I, M, and G

Some memory characteristics can be set on either ablock or page basis by using theWIMG
bitsin the BAT registers or page table entry (PTE) respectively. The 602 also implements
these bits in the HIDO register to provide control when the processor isin real addressing
mode (that is, trandlation is disabled) or in the 602-specific protection-only mode. The
WIMG attributes control the following functionality:

¢ Write-through (W bit)

e Caching-inhibited (I bit)

e Memory coherency (M bit)
» Guarded memory (G bit)

These bits alow both single- and multiprocessor-system designs to exploit numerous
system-level performance optimizations.

Chapter 3. Instruction and Data Cache Operation 3-9



Careless specification and use of these bits may create situations where coherency
paradoxes are observed by the processor. In particular, this can happen when the state of
these bits is changed without appropriate precautions being taken (for example, when
flushing the pages that correspond to the changed bits from the caches of all processorsin
the system is required, or when the address trandations of aliased physical addresses
(referred to as real addresses in the architecture specification) specify different values for
any of theWIM bits). The 602 treats either of these cases as a programming error that may
compromise the coherency. These paradoxes can occur within asingle processor or across
several devices, as described in Section 3.7.7.1, “Internal Coherency Paradoxes.”

The WIMG attributes are programmed by the operating system for each page and block.
TheW and | attributes control how the processor performing an access uses its own cache.
The M attribute ensures that coherency is maintained for al copies of the addressed
memory location. The G attribute prevents out-of-order loading and prefetching from the
addressed memory location.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M attribute determines the kind of access performed on the bus (global or local).

The WIMG attributes occupy four bitsinthe BAT registersfor block addresstrandation, in
the PTEs for page address translation, and in HIDO for real addressing and protection-only
modes. The WIMG bits are programmed as follows:

* The operating system uses the mtspr instruction to program the WIMG bitsin the
BAT registersfor block addresstrang ation. The IBAT register pairsdo not havea G
bit and all accesses that use the IBAT register pairs are considered not guarded.

¢ The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

3.6.1 Write-Through Attribute (W)

When an access is designated as write-through (W = 1), if the datais in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
external memory location (as described below).

While the PowerPC architecture permits multiple store instructions to be combined for
write-through accesses except when the store instructions are separated by a sync or eieio
instruction, the 602 does not implement this “combined store” capability. Note that a store
operation that uses the write-through attribute may cause any part of valid datain the cache
to be written back to main memory.

3-10 PowerPC 602 RISC Microprocessor User's Manual



The definition of the external memory location to be written to in addition to the on-chip
cache depends on the implementation of the memory system but can be illustrated by the
following examples:

« RAM—Thestoreis sent to the RAM controller to be written into the target RAM.

» 1/O device—The store is sent to the memory-mapped /O control hardware to be
written to the target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.

Accesses that correspond to W = 0 are considered write-back. For this case, although the
store operation is performed to the cache, it is only made to external memory when a copy-
back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other mastersin
the system.

3.6.2 Caching-Inhibited Attribute (I)

If | = 1, the memory access is completed by referencing the location in main memory,
bypassing the on-chip cache. During the access, the addressed location is not loaded into
the cache nor is the location allocated in the cache. It is considered a programming error if
a copy of the target location of an access to caching-inhibited memory is resident in the
cache. Software must ensure that the location has not been previously loaded into the cache,
or, if it has, that it has been flushed from the cache.

The PowerPC architecture permits data accesses from more than one instruction to be
combined for caching-inhibited operations, except when the accesses are separated by a
sync instruction, or by an eieio instruction when the page or block is aso designated as
guarded. This“combined access’ capability is not implemented on the 602.

3.6.3 Memory Coherency Attribute (M)

This attribute is provided to allow improved performance in systems where hardware-
enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M = 0, the processor does not enforce data coherency. When M = 1, the
processor enforces data coherency and the corresponding access is considered to be a
global access.

When the M attributeis set, and the accessis performed, the global signal (GBL)is asserted
to indicate that the access is global. Snooping devices affected by the access must then
respond to this global accessif their datais modified by asserting ARTRY, and updating the
memory location.

Because instruction memory does not have to be consistent with data memory, the 602
ignores the M attribute for instruction accesses.

Chapter 3. Instruction and Data Cache Operation 3-11



3.6.4 Guarded Attribute (G)

When the guarded hit is set, the memory area is designated as guarded, meaning that the
processor will perform out-of-order accesses to this area of memory, only asfollows:

e Out-of-order load operations from guarded memory areas are performed only if the
corresponding data is resident in the cache.

» The processor prefetches from guarded areas, but only when required, and only
within the memory boundary dictated by the cache block. That is, if an instruction
iscertainto berequired for execution by the program, it isfetched and theremaining
instructions in the block may be prefetched, even if the areais guarded.

This setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of memory that are
not fully populated (in other words, there are holes in the memory map within this area),
this setting can protect the system from undesired accesses caused by out-of-order load
operations or instruction prefetches that could lead to the generation of the machine check
exception. Also, the guarded bit can be used to prevent out-of-order load operations or
prefetches from occurring to certain peripheral devicesthat produce undesired results when
accessed in this way.

3.6.5 W, |, and M Bit Combinations

Table 3-1 summarizes the six combinations of the WIM bits. Note that either a“‘0’ or ‘1’
setting for the G bit is allowed for each of these WIM bit combinations.

Table 3-1. Combinations of W, |, and M Bits

WIM Setting Meaning

000 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is not enforced by hardware.

001 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is enforced by hardware.

010 Caching is inhibited.
The access is performed to external memory, completely bypassing the cache.
Memory coherency is not enforced by hardware.

011 Caching is inhibited.

The access is performed to external memory, completely bypassing the cache.

Memory coherency must be enforced by external hardware (processor provides hardware
indication that access is global).

100 Data may be cached.

Load operations whose target hits in the cache use that entry in the cache.

Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.

Memory coherency is not enforced by hardware.

3-12 PowerPC 602 RISC Microprocessor User's Manual



Table 3-1. Combinations of W, |, and M Bits (Continued)

WIM Setting Meaning

101 Data may be cached.

Load operations whose target hits in the cache use that entry in the cache.

Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.

Memory coherency is enforced by hardware.

11x Not supported

3.6.5.1 Out-of-Order Execution and Guarded Memory

Out-of-order execution occurs when the 602 performs operations in advance in case the
result is needed. Typically, these operations are performed by otherwiseidle resources; thus
if aresultisnot required, it isignored and the out-of-order operation incurs no time penalty

(typically).

Supervisor-level programs designate memory as guarded on ablock or pagelevel. Memory
is designated as guarded if it may not be “well-behaved” with respect to out-of-order
operations.

For example, the memory area that contains a memory-mapped 1/0O device may be
designated as guarded if an out-of-order load or instruction fetch performed to such a
device might cause the device to perform unexpected or incorrect operations. Another
example of memory that should be designated as guarded is the area that correspondsto a
device that resides at the highest implemented physical address (as it has no successor and
out-of-order sequential operations such as instruction prefetching can cause a machine
check exception). In addition, areas that contain holes in the physical memory space may
be designated as guarded.

3.6.5.2 Effects of Out-of-Order Data Accesses

Most data operations may be performed out-of-order, as long as the machine appears to
follow a simple sequential model. However, the following out-of-order operations do not
occur:

e Out-of-order loading from guarded memory (G = 1) does not occur unless the
requested dataiis in the cache. However, when aload or store operation is required
by the program, the entire cache block(s) containing the referenced data may be
loaded into the cache.

« Out-of-order store operations that alter the state of the target location do not occur.

« No errors except machine check exceptions are reported due to the out-of-order
execution of an instruction until it is known that execution of the instruction is
required.

Chapter 3. Instruction and Data Cache Operation 3-13



Machine check exceptions resulting solely from out-of-order execution (from nonguarded
memory) may be reported. When an out-of-order instruction'sresult is abandoned, only one
side effect (other than a possible machine check) may occur—the referenced bit (R) in the
corresponding page table entry can be set due to an out-of-order load operation. See
Chapter 4, “Exceptions,” for more information on the machine check exception.

Thus an out-of-order load or store instruction will not access guarded memory unless one
of the following conditions exist:

« Thetarget memory item isresident in an on-chip cache. In this case, the location
may be accessed from the cache or main memory.

* Thetarget memory itemiscacheable (I = 0) and it isguaranteed that theload or store
isin the execution path (assuming there are no intervening exceptions). In this case,
the entire cache block containing the target may be loaded into the cache.

* Thetarget memory is caching-inhibited (I = 1), theload or storeinstructionisin the
execution path, and it is guaranteed that no prior instructions can cause an exception.

3.6.5.3 Effects of Out-of-Order Instruction Fetches

To avoid instruction fetch delay, the processor typically fetches instructions ahead of those
currently being executed. Such instruction prefetching is said to be out-of-order in that
prefetched instructions may not be executed due to intervening branches or exceptions.

During instruction prefetching, no errors except machine check exceptions are reported due
to the out-of-order fetching of an instruction until it is known that execution of the
instruction is required.

Machine check exceptions resulting solely from out-of-order execution (from nonguarded
memory) may be reported. When an out-of-order instruction'sresult is abandoned, only one
side effect (other than a possible machine check) may occur—the referenced bit (R) in the
corresponding page table entry can be set due to an out-of-order load operation. See
Chapter 4, “Exceptions,” for more information on the machine check exception.

3.7 Cache Coherency—MEI Protocol

The primary objective of a coherent memory system is to provide the same image of
memory to al devices using the system. Coherency allows synchronization and cooperative
use of shared resources. Otherwise, multiple copies of amemory location, some containing
stale values, could exist in asystem resulting in errors when the stale values are used. Each
potential bus master must follow rules for managing the state of its cache.

3-14 PowerPC 602 RISC Microprocessor User's Manual



The 602 cache coherency protocol is a coherent subset of the standard MESI four-state
cache protocol that omits the shared state. Since data cannot be shared, the 602 signals al
cache block fills as if they were write misses (read-with-intent-to-modify), which flushes
the corresponding copies of the data in all caches external to the 602 prior to the 602's
cache-block-fill operation. Following the cache-block-load, the 602 is the exclusive owner
of the data and may write to it without a bus broadcast transaction.

To maintain this coherency, all global reads observed on the bus by the 602 are snooped as
if they werewrites, causing the 602 either to write amodified cache block back to memory
and invalidate the cache block, or to simply invalidate the cache block if it is unmodified.
If the cache block is modified, the block is written back to memory, and the cache block is
marked exclusive. If the cache block is marked exclusive when snooped, no bus action is
taken, and the cache block remains in the exclusive state. This treatment of caching-
inhibited reads decreases the possibility of data thrashing by allowing noncaching devices
to read data without invalidating the entry from the 602’s data cache.

3.7.1 MEI State Definitions

The 602's data cache characterizes each 32-byte block it contains as being in one of three
MEI states. Addresses presented to the cache are indexed into the cache directory with bits
A21-A26, and the upper-order 21 bits from the physical address trandation (PAO-PA20)
are compared against the indexed cache directory tags. If neither of the indexed tags
matches, the result is a cache miss. If atag matches, a cache hit occurred and the directory
indicates the state of the cache block through two state bits kept with the tag. The three
possible states for a cache block in the cache are the modified state (M), the exclusive state
(E), and theinvalid state (I). The three MEI states are defined in Table 3-2.

Table 3-2. MEI State Definitions

MEI State Definition

Modified (M) | The addressed cache block is valid in the cache and only in the cache. The cache block is modified
with respect to system memory—that is, the modified data in the cache block has not been written
back to memory.

Exclusive (E) | The addressed block is in this cache only. The data in this cache block is consistent with system
memory.

Invalid (1) This state indicates that the addressed cache block is not resident in the cache.

3.7.2 MEI State Diagram

The 602 provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability of the 602 enforces the MEI protocol, as shown
in Figure 3-3. Figure 3-3 assumes that the WIM bits for the page or block are set to 001;
that is, write-back, caching-not-inhibited, and memory coherency enforced.

Section 3.11, “MEI State Transactions’ provides a detailed list of MEI transitions for
various operations and WIM bit settings.

Chapter 3. Instruction and Data Cache Operation 3-15



SH/ICRW SH/CRW

WH
SH

MODIFIED EXCLUSIVE

WH SH/CIR
BUS TRANSACTIONS
SH =Snoop Hit @: Snoop Push
RH =Read Hit
RM =Read Miss @
WH =Write Hit = Cache Line Fill

WM=Write Miss
SH/CRW=Snoop Hit, Cacheable Read/Write
SH/CIR=Snoop Hit, Cache Inhibited Read

Figure 3-3. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

3.7.3 Compatibility with MESI Protocol

The 602 cache coherency protocol is a coherent subset of the standard MESI four-state
protocol. Sharing data with another 602 is not supported. To ensure this, the 602 marks all
line-fill operations as if they were write misses (read-with-intent-to-modify). This flushes
all external caches prior to the line-fill operation. Following the line-fill operation, the 602
isthe exclusive owner of the data and may write to it without a bus broadcast transaction.

Also, al burst reads on the bus are snooped as if they were writes; they flush the 602 cache
block. This prevents the 602 from storing a cache block that another cache istrying to fill.

However, if the snooped transaction is a caching-inhibited-read, the 602 does not invalidate
its copy of the data. In this case, when the cache block is in the modified state prior to the
snoop, the modified data is pushed and the cache block is then marked exclusive. If the
cache block is exclusive, the snoop causes no bus action and the cache block remainsin the
exclusive state. This reduces data thrashing by allowing noncaching devices to read data
without completely flushing the entry from the cache. Note that caching-inhibited reads
may be either burst or nonburst operations.

3-16 PowerPC 602 RISC Microprocessor User's Manual



3.7.4 Resource Collisions and Retries

Because the 602 data cache tags are single-ported, aresource collision occurs when asnoop
is attempted at the same time as aload or store operation. Except for the following cases,
the snoop access has highest priority and is given first accessto the tags. The load or store
access occurs on the clock cycle following the snoop.

However, a snoop is not given priority into the tags when the snoop coincides with a tag
write (that is, during validation after aline-fill operation, transition to modified after afirst
write, etc.). In these situations, the snoop is retried and must re-arbitrate before the lookup
ispossible.

Occasionally, snoops that hit modified data, which requires a copyback operation, cannot
be serviced and must be retried. These retries occur if the cache isbusy with aburst read or
write at the moment a snoop copyback should begin.

Note that a snoop can hit amodified cache block that is already in the copyback process. If
this happens, the 602 retries the snoop.

3.7.5 Page Table Aliasing

If astore operation hits to a page marked write-through and the entry is modified, the page
has probably been aliased through another page entry that is marked as write-back. If this
occurs, the 602 ignores the modified bit in the cache tag. The cache is updated during the
write-through operation and the cache block remains in the modified state.

3.7.6 MEI Hardware Considerations

While the 602 provides the hardware required to monitor bus traffic for coherency, the 602
data cache tags are single ported, and a simultaneous load or store and snoop access
represent aresource conflict. In general, the snoop access has highest priority and is given
first access to the tags. The load or store access will then occur on the clock following the
snoop. The snoop is not given priority into the tags when the snoop coincides with a tag
write (that is, validation after acache block load, transition to E state after afirst write, etc.).
In these situations, the snoop is retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if
the cache is busy with aburst read or write when the snoop operation takes place.

Notethat it ispossiblefor asnoop to hit amodified cache block that isalready in the process
of being written to the copyback buffer for replacement purposes. If this happens, the 602
retries the snoop, and raises the priority of the cast-out operation to allow it to go to the bus
before the cache block fill.

The global (GBL) signal, asserted as part of the address attribute field during a bus
transaction, enables the snooping hardware of the 602. Address bus masters assert GBL to
indicate that the current transaction is a global access (that is, an access to memory shared
by more than one device). If GBL is not asserted for the transaction, that transaction is not

Chapter 3. Instruction and Data Cache Operation 3-17



snooped by the 602. Note that the GBL signal is not asserted for instruction fetches, and
that GBL is asserted for al data read or write operations when using direct address
tranglation. (Note that direct address translation is referred to as the real addressing mode,
not the direct-store segment, in the architecture specification.)

Normally, GBL reflects the M-hit value specified for the memory reference in the
corresponding trandation descriptor(s). Care must be taken to minimize the number of
pages marked as global, because the retry protocol enforces coherency and can use
considerabl e bus bandwidth if much datais shared. Therefore, available bus bandwidth can
decrease as more traffic is marked global.

The 602 snoops atransaction if the transfer start (TS) and GBL signals are asserted together
in the same bus clock (thisis a qualified snooping condition). No snoop update to the 602
cache occurs if the snooped transaction is not marked global. Also, because cache block
cast-outs and snoop pushes do not require snooping, the GBL signal is not asserted for these
operations.

When the 602 detects a qualified snoop condition, the address associated with the TS signal
is compared with the cache tags. Snooping finishes if no hit is detected. If, however, the
address hitsin the cache, the 602 reacts according to the MEI protocol shown in Figure 3-3.

3.7.7 Coherency Precautions

The 602 supports a three-state coherency protocol that supports the modified, exclusive,
and invalid (MEI) cache states. This protocol isacompatible subset of the MESI four-state
protocol and operates coherently in systems that contain four-state caches. In addition, the
602 does not broadcast cache operations caused by cache instructions. They are intended
for the management of the local cache but not for other caches in the system.

3.7.7.1 Internal Coherency Paradoxes

The following situations concerning coherency can be encountered within a single-
processor system:

e Load or store to a caching-inhibited page (WIM = 0bX 1X) and a cache hit occurs

Caching isinhibited for this page (I = 1)—Load or store operations to a caching-
inhibited page that hit in the cache cause a paradox. The 602 ignores any hit to a
cacheblock in memory space marked caching-inhibited. The accessis performed on
the bus asiif there were no hit. The datais not pushed and the cache block is not
invalidated.

Note that when WIM bits are changed, it iscritical that the cache contents should reflect the
new WIM bit settings. For example, if ablock or page that had allowed caching becomes
caching-inhibited, software should ensure that the appropriate cache blocks are flushed to
memory and invalidated.

3-18 PowerPC 602 RISC Microprocessor User's Manual



3.7.8 Load and Store Coherency Summary

Table 3-3 provides a summary of memory coherency actions performed by the 602 on load
operations. Noncacheable cases are not part of thistable.

Table 3-3. Memory Coherency Actions on Load Operations

Cache State | Bus Operation ARTRY Action
M None Don'’t care Read from cache
E None Don't care Read from cache
| Read Negated Load data and mark E
| Read Asserted Retry read operation

Table 3-4 provides an overview of memory coherency actions on store operations. This
table does not include noncacheable or write-through cases. The read-with-intent-to-
modify (RWITM) examplesinvolve sel ecting areplacement class and casting-out modified
data that may have resided in that replacement class.

Table 3-4. Memory Coherency Actions on Store Operations

Cache State Bus Operation ARTRY Action
M None Don't care Modify cache
E None Don't care Modify cache, mark M
| RWITM Negated Load data, modify it, mark M
| RWITM Asserted Retry the RWITM

3.7.9 Atomic Memory References

The Load Word and Reserve Indexed (Iwar x) and StoreWord Conditional I ndexed (stwcx.)
instructions provide an atomic update function for asingle, aligned word of memory. While
an lwarx instruction will normally be paired with an stwex. instruction with the same
effective address, an stwcx. instruction to any address will cancel the reservation. For
detailed information on these instructions, refer to Chapter 2, “PowerPC 602
Microprocessor Programming Model,” and Chapter 8, “Instruction Set” in The
Programming Environments Manual.

3.7.10 Cache Reaction to Specific Bus Operations

There are several bus transaction types defined for the 602 bus. The 602 must snoop these
transactions and perform the appropriate action to maintain memory coherency as shown
in Table 3-5. A processor may assert ARTRY for any bus transaction due to internal
conflictsthat prevent the appropriate snooping. The transactionsin Table 3-5 correspond to
the transfer type signals TTO-TT4, which are described in Section 7.2.4.1, “ Transfer Type
(TTO-TT4)"

Chapter 3. Instruction and Data Cache Operation 3-19



Table 3-5. Response to Bus Transactions

Snooped Transaction

602 Response

Clean block

No action is taken.

Flush block

No action is taken.

Write-with-flush
Write-with-flush-atomic

Write-with-flush and write-with-flush-atomic operations occur after the processor issues

a store or stwcx. instruction, respectively.

« If the addressed block is in the exclusive state, the address snoop forces the state of
the addressed block to invalid.

« If the addressed block is in the modified state, the address snoop causes ARTRY to
be asserted and initiates a push of the modified block out of the cache and changes
the state of the block to invalid.

Kill block

The kill block operation is an address-only bus transaction initiated when a dcbz
instruction is executed; when snooped by the 602, the addressed cache block is
invalidated, and any associated reservation is canceled.

Write-with-Kkill

In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
cache block is forced to the | state, killing modified data that may have been in the block.
Any reservation associated with the block is also cancelled.

Read
Read-atomic

The read operation is used by most nonburst and burst read operations on the bus. All
burst reads observed on the bus are snooped as if they were writes, causing the
addressed cache block to be flushed. A read on the bus with the GBL signal asserted
causes the following responses:

« If the addressed block in the cache is invalid, the 602 takes no action.

. If the addressed block in the cache is in the exclusive state, the block is
invalidated.

* If f the addressed block in the cache is in the modified state, the block is flushed to
memory and the block is invalidated.

. If the snooped transaction is a caching-inhibited read, and the block in the cache is
in the exclusive state, the snoop causes no bus activity and the block remains in the
exclusive state. If the block is in the cache in the modified state, the 602 initiates a
push of the modified block out to memory and marks the cache block as exclusive.

Read atomic operations appear on the bus in response to Iwarx instructions and
generate the same snooping responses as read operations.

Read-with-intent-to-

A RWITM operation is issued to acquire exclusive use of a memory location for the

modify (RWITM) purpose of modifying it.
RWITM-atomic « If the addressed block is invalid, the 602 takes no action.
« If the addressed cache block is in exclusive state, the 602 initiates an additional snoop
action to change the state of the cache block to invalid.
« If the addressed cache block is in modified state it is flushed to memory and the block
is invalidated.
The RWITM atomic operations appear on the bus in response to stwcx. instructions
and are snooped like RWITM instructions.
sync No action is taken.

TLB invalidate

No action is taken.

3-20

PowerPC 602 RISC Microprocessor User's Manual




3.7.11 Operations Causing ARTRY Assertion
The following scenarios cause the 602 to assert the ARTRY signal:

e Snoop hitsto ablock inthe M state (optional on Kill requests)

» Snoop attempt while the cache is being accessed by aload or store operation

» Snoop hit during a burst |oad operation

¢ Snoop hits while a cast-out request is pending during this or the next clock cycle

3.8 Cache Control Instructions

Software must use the appropriate cache management instructions to ensure that caches are
kept consistent when datais modified by the processor. When a processor alters a memory
location that may be contained in an instruction cache, software must ensure that updates
to memory are visible to the instruction fetching mechanism. Although the instructions to
enforce coherency vary among implementations and hence operating systems should
provide a system service for this function, the following sequenceistypical:

1. dcbst (update memory)

2. sync (wait for update)

3. ichi (invalidate copy in cache)

4. isync (invalidate copy in own instruction buffer)

These operations are necessary because the processor does not maintain instruction
memory coherent with data memory. Software is responsible for enforcing coherency of
instruction caches and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reflected in memory until after the
instruction fetch compl etes.

The PowerPC architecture definesinstructions for controlling both the instruction and data
caches when they exist. The 602 interprets the cache control instructions (icbi, dcbi, dcbt,
and dcbst) as if they pertain only to the 602's caches. They are not intended for use in
managing other cachesin the system.

The dcbz instruction causes an address-only broadcast on the bus if the contents of the
block are from a page marked global through the WIMG bits. This broadcast is performed
for coherency reasons; the dcbz instruction is the only cache control instruction that can
alocate and take new ownership of a cache block. The other instructions do not broadcast
either for the purpose of invalidating or flushing other cachesin the system or for managing
system resources. Any bus activity caused by these instructions is the direct result of
performing the operation in the 602 cache. Note that a DSI exception is generated if the
effective address of adcbi, dcbst, dcbf, or dcbz instruction cannot be translated due to the
lack of a TLB entry. (Note that exceptions are referred to as interrupts in the architecture
specification.)

Chapter 3. Instruction and Data Cache Operation 3-21



Note that in the PowerPC architecture, the term cache block, or simply block when used in
the context of cache implementations, refers to the unit of memory at which coherency is
maintained. For the 602 this is the eight-word cache line. This value may be different for
other PowerPC implementations. In-depth descriptions of coding these instructions is
provided in Section 2.3.6.3, “Memory Control Instructions—OEA."

3.8.1 Data Cache Block Touch (dcbt) Instruction

When a dcbt instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. The behavior of
the dcbt depends on several circumstances:

« |f the effective address of the operation violates page protection or missesin the
MMU, the operation is ano-op.
« |f the address hits in the cache, no further action is taken.

e |f the address missesin the cache and tag isin the modified state, the cache block is
written back to memory and the new cache block is brought in and placed in the
exclusive state.

« |f the address missesin the cache and tag isin the exclusive state, the new cache
block is brought in and placed in the exclusive state.

« Address-only transfers are not generated on the external bus (unlike other cache
operations).

3.8.2 Data Cache Block Touch for Store (dcbtst) Instruction

The dcbtst instruction, like the data cache block touch instruction (dcbt), allows software
to prefetch a cache block in anticipation of a store operation (read-with-intent-to-modify).

3.8.3 Data Cache Block Set to Zero (dcbz) Instruction

When a dcbz instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. If the EA hitsin
the cache, four beats of zeros are written into the cache. Also, if M = 1 (coherency
enforced), the address is broadcast onto the bus prior to the zero linefill.

The exception priorities (from highest to lowest) for dcbz are as follows;

1. Attempt to execute dcbz while in user mode—program exception

BAT protection violation—DSI exception

MMU miss—DTLB exception

Cache disabled—Alignment exception

Page marked write-through or caching-inhibited—Alignment exception
6. TLB protection violation—DSI exception

aksdwbd

The dcbz instruction is the only cache instruction that the 602 broadcasts. This is done to
maintain coherency with other cache devices in the system.

3-22 PowerPC 602 RISC Microprocessor User's Manual



3.8.4 Data Cache Block Invalidate (dcbi) Instruction

When a dcbi instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. If the addressed
lineis present in the cache, then the 602 marksthis dataasinvalid regardless of whether the
datais exclusive or modified.

The exception priorities (from highest to lowest) for dcbi are asfollows;

1. BAT protection violation—DS! exception
2. MMU miss—DTLB exception
3. TLB protection violation—DS| exception

3.8.5 Data Cache Block Store (dcbst) Instruction
When a dcbst instruction is executed, the effective address is computed, transated and
checked for protection violations as defined in the PowerPC architecture. The resulting
actions are asfollows:
« |f the address hitsin the cache and the tag isin the exclusive state, no further action
istaken.

» |f the address hitsin the cache and isin the modified state, the contents of the cache
block are written back to memory and the cache block is placed in the exclusive
state.

» Address-only transfers are not generated on the external bus.
The exception priorities (from highest to lowest) for dcbst are asfollows;

1. BAT protection violation—DS| exception
2. MMU miss—DTLB exception
3. TLB protection violation—DS| exception

3.8.6 Data Cache Block Flush (dcbf) Instruction

When the dcbf instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. The action taken
depends on the memory mode associated with the target, and on the state of the cache block.
The following list describes the action taken for the various cases. The actions described
are executed regardless of whether the page containing the addressed byte is in caching-
inhibited or caching-allowed mode. The following actions occur in both coherency-
required mode (WIM = 0bXX1) and coherency-not-required mode (WIM = 0bXXO0).

The effect of thisinstruction is as follows:
» |f theaddress hitsin the cache, and the cache block is marked modified, the contents
are written back to memory and the cache entry isinvalidated.

« If the address hitsin the cache, and the line is marked exclusive, the cache entry is
invalidated.

« |f the address missesin the cache, no further action is taken.

Chapter 3. Instruction and Data Cache Operation 3-23



The exception priorities (from highest to lowest) for dcbf are as follows;

1. BAT protection violation—DS! exception
2. MMU miss—DTLB exception
3. TLB protection violation—DS| exception

3.8.7 Enforce In-Order Execution of I/O Instruction (eieio)

The eieio instruction is used to order memory accesses. Since the 602 instruction does not
reorder noncacheable memory accesses, the eieio instruction is treated as a no-op
instruction.

3.8.8 Instruction Cache Block Invalidate (icbi) Instruction

Theicbi instruction performs a virtual lookup into the instruction cache (index only). The
address is not translated and as such, cannot generate an exception. Both ways of the
selected set areinvalidated. Thisinstruction is not broadcast onto the external bus.

3.8.9 Instruction Synchronize (isync) Instruction

Theisync instruction waits for al previous instructions to complete and then discards any
previously-fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context established by the previous
instructions. This instruction has no effect on other processors or on their caches. Any
instruction after an isync will see al effects of prior instructions.

3.8.10 Synchronize (sync) Instruction

The sync instruction waits for all previous instructions and all previous bus operations
(except aready queued instruction fetches) to complete before alowing any following bus
activity to be initiated.

3.9 Bus Operations Caused by Cache Control
Instructions

Table 3-6 provides an overview of the bus operationsinitiated by cache control instructions.
The cache control, TLB management, and synchronization instructions supported by the
602 may affect or be affected by the operation of the bus. None of the instructions will
actively broadcast through address-only transactions on the bus (except for dcbz), and no
broadcasts by other masters are snooped by the 602 (except for kills). The operation of the
instructions, however, may indirectly cause bus transactions to be performed, or their
completion may be linked to the bus. The following table summarizes how these
instructions may operate with respect to the bus.

3-24 PowerPC 602 RISC Microprocessor User's Manual



Note that Table 3-6 assumes that the WIM bits are set to 001; that is, the cacheis operating
in write-back mode, caching is permitted and coherency is enforced.

Table 3-6. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Operation | Cache State | Next State Bus Operations Comment
sync Don't care No change | None Waits for memory queues to
complete bus activity

icbi Don't care | None —
dcbi Don't care | None —
dcbf I, E | None —

M | Write-with-kill Block is pushed
dcbst I, E No change | None —

M E Write Block is pushed
dcbhz I M Write-with-Kkill —

E,M M Kill block Writes over modified data
dcbt, I E Read-with-intent-to-modify —
dcbtst

E Read-with-intent-to-modify Replace old data
M E Write, Read-with-intent-to-modify | Block is pushed then updated

Table 3-6 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.11, “MEI State Transactions.”

For detailed information on the cache control instructions, refer to Section 2.3.6.3,
“Memory Control Instructions—OEA,” and to Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 602 contains snooping logic to monitor the bus
for these commands and the control logic required to keep the cache and the memory
gueues coherent. For additional details about the specific bus operations performed by the
602, see Chapter 8, “ System Interface Operation.”

3.10 Bus Interface

The bus interface buffers bus requests from the instruction and data caches, and executes
the requests per the 602 bus protocoal. It includes address register queues, prioritization
logic, and bus control logic. The bus interface also captures snoop addresses for snooping
in the cache and in the address register queues, and snoopsfor reservations. All data storage
for the addressregister buffers (load and store data buffers) arelocated in the cache section.
The data buffers are considered temporary storage for the cache and not part of the bus
interface.

Chapter 3. Instruction and Data Cache Operation 3-25



The general functions and features of the bus interface are as follows:

» Four address register queues:
— Instruction cache load address
— Datacache load address
— Data cache nonburst store address
— Data cache cast-out/store address (associated data cache block buffer located in
cache)
* Reservation bit for Iwar x/stwcex. instructions
» Prefetch line-fill address during copy-back transaction.

A conceptual block diagram of the bus interface is shown in Figure 3-4. The address
register queues in the figure hold transaction requests that the bus interface may issue on
the bus independently of the other requests. Only one transaction may appear on the bus at
atime.

Instruction |-

> Cache Data -
» Cache |
v
, Y y ,
BIU |[_ _|Instruction Cache Data Cache Data Cache Data Cache
Control Load Address Load Address | | Nonburst Store Address | | Castout/Store Address
A
/ \ \ /
Snoop
\ \ T A
Control Address Address Data

SYSTEM BUS

Figure 3-4. Bus Interface Address Buffers
For additional information about the 602 bus interface and the bus protocols, refer to
Chapter 8, “ System Interface Operation.”

3.11 MEI State Transactions

Table 3-7 shows MEI state transitions for various operations. Bus operations are described
in Table 3-5.

3-26 PowerPC 602 RISC Microprocessor User's Manual



Table 3-7. MEI State Transitions

. Cache Bus Current Next . Bus
Operation Operation | sync WiM State State Cache Actions Operation
Load Read No X0x | Same | 1 Cast out of modified Write-with-kill
(T=0) block (as required)
2 Pass four-beat read Read
to memory queue
No X0x E, M Same | Read data from cache —
No x1x | Same | Pass nonburst read to Read
memory queue
No x1x E | CRTRY read —
No X1x M | CRTRY read (push Write-with-kill
sector to write queue)
lwarx Read Acts like other reads but bus operation uses special encoding.
Store Write No 00x | Same | 1 Cast out of modified Write-with-kill
(T=0) block (if necessary)
2 Pass RWITM to RWITM
memory queue
No 00x E,M M Write data to cache —
Store # stwcx Write No 10x | Same | Pass nonburst write to Write-with-
(T=0) memory queue flush
No 10x E Same | 1 Write data to cache —
2 Pass nonburst write Write-with-
to memory queue flush
No 10x M E 1 CRTRY write —
2 Push block to write Write-with-kill
queue
Store (T =0) Write No x1x | Same | Pass nonburst write to Write-with-
or stwcx. memory queue flush
(WIM = 10x)
No x1x | CRTRY write —
No x1x M | 1 CRTRY write —
2 Push block to write Write-with-kill
queue
stwcex. Conditional | If the reserved bit is set, this operation is like other writes except the bus operation
write uses a special encoding.

Chapter 3. Instruction and Data Cache Operation

3-27




Table 3-7. MEI State Transitions (Continued)

. Cache Bus Current Next . Bus
Operation Operation | sync WiM State State Cache Actions Operation
dcbf Datacache | No XXX I, E Same | 1 CRTRY dcbf —
block flush
2 Pass flush Flush
Same | 3 State change only —
No XXX M | Push block to write Write-with-kill
queue
dcbst Datacache | No XXX I, E Same | 1 CRTRY dcbst —
block store
2 Pass clean Clean
Same Same | 3 No action —
No XXX M E Push block to write Write-with-kill
queue
dcbz Datacache | No x1x X X Alignment trap —
block set to -
zero No 10x X X Alignment trap —
Yes 00x | Same | 1 CRTRY dcbz —
2 Cast out of modified Write-with-kill
block
3 Pass kill Kill
Same M 4 Clear block —
No 00x E,M M Clear block —
dcbt Datacache | No Xx1x | Same | Pass nonburst read to Read
block touch memory queue
No x1x E | CRTRY read —
No x1x M | 1 CRTRY read —

2 Push block to write Write-with-kill

queue
No X0x | Same | 1 Cast out of modified Write-with-kill
block (as required)
2 Pass burst read to Read
memory queue
No X0x E.M Same | No action —
Nonburst read Reload No XXX | Same | Forward data_in —
dump 1
Burst read Reload No XXX | E Write data_in to cache —
(double-word- dump
aligned)
Burst write Reload No XXX | M Write data_in to cache —
(double-word- dump
aligned)

3-28 PowerPC 602 RISC Microprocessor User's Manual



Table 3-7. MEI State Transitions (Continued)

. Cache Bus Current Next ) Bus
Operation Operation | sync WiM State State Cache Actions Operation
E-| Snoop No XXX E | State change only —
write or kill (committed)
M-I Snoop No XXX M | State change only —
kill (committed)
Push Snoop No XXX M | Conditionally push Write-with-kill
M= flush
Push Snoop No XXX M E Conditionally push Write-with-kill
M- E clean
tibie TLB No XXX X X 1 CRTRY TLBI —
invalidate
2 PassTLBI —
3 No action —
sync Synchroni- | No XXX X X 1 CRTRY sync —
zation

2 Pass sync

3 No action

Chapter 3. Instruction and Data Cache Operation

3-29




3-30 PowerPC 602 RISC Microprocessor User's Manual



Chapter 4
Exceptions

The PowerPC exception mechanism allows the processor to change to supervisor state
(referred to as privileged state in the architecture specification) as a result of external
signals, errors, or unusual conditions arising in the execution of instructions. When
exceptions (referred to as interrupts in the architecture specification) occur, information
about the state of the processor is saved to certain registers and the processor begins
execution at an address (exception vector) predetermined for each exception. Processing of
exceptions occurs in supervisor mode.

The PowerPC 602 microprocessor also provides an additional mechanism, not defined by
the PowerPC architecture, for entering and exiting supervisor mode without taking an
exception. Two user-level instructions, Enable Supervisor Access (esa) and Disable
Supervisor Access (dsa) and severa registers—ESA enable base register (SEBR), ESA
enable register (SER), and ESA save and restore register (ESASRR)—are implemented to
support this functionality. For information about the esa and dsa instructions, see
Section 2.3.7, “PowerPC 602 Implementation-Specific Instructions,” and for information
about the SER, SEBR, and ESASRR registers, see Section 2.1.2, “PowerPC 602 Processor-
Specific Registers.”

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR or the FPSCR. Additionally, certain exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception istaken. Aninstruction is said to have “ completed” when the
results of that instruction’s execution have been committed to the registers defined by the
architecture (for example, the GPRs or FPRs, rather than rename buffers). If a single
instruction encounters multiple exception conditions, those exceptions are taken in order of
priority. Likewise, exceptions that are asynchronous are recognized when they occur, but
are not handled until the next instruction to complete in program order successfully

Chapter 4. Exceptions 4-1



completes. Throughout this chapter, the term “ next instruction” implies the next instruction
to complete in program order.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
to alow control to ultimately return to the original excepting program.

In many cases, after an exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

Exception handlers should save the information stored in SRRO and SRR1 soon after the
exception is taken to prevent this information from being lost due to another exception
being taken. The information should be saved before enabling any exception that is
automatically disabled when an exception is taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception isidentified by the processor.
Taken An exception is said to be taken when control of instruction

execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routing is executed in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is performed at
supervisor-level.

4.1 Exception Classes
The PowerPC architecture supports four types of exceptions:

» Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occursis known and can be completely restored. This means that (excluding the
system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructionsin the code stream will complete before the exception istaken. Oncethe
exception is processed, execution resumes at the address of the faulting instruction
(or at an aternate address provided by the exception handler). When an exception is
taken due to atrap or system call instruction, execution resumes at an address
provided by the handler.

4-2 PowerPC 602 RISC Microprocessor User's Manual



» Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
602 provides a means to enabl e the imprecise modes, it implements these modes
identically to the precise mode (that is, floating-point enabled exceptions are always
precise on the 602).

« Asynchronous, maskable—The external interrupt, system management interrupt
(SMI), decrementer interrupt, and watchdog timer interrupt are maskable
asynchronous exceptions. When these exceptions occur, their handling is postponed
until the next instruction, and any exceptions associated with that instruction,
completes. If there are no instructions in the execution units, the exception is taken
immediately upon determination of the correct restart address (for loading SRRO).
These exceptions are maskable in that the processor can be disabled by setting
MSR[EE]. Thisisdescribed in Section 4.2.1, “Enabling and Disabling Exceptions.”

¢ Asynchronous, nonmaskable—There are two nonmaskable, asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide alimited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.

The 602 exception classes are shown in Table 4-1.

Table 4-1. PowerPC 602 Microprocessor Exception Classifications

Type Exception
Asynchronous, nonmaskable Machine check
System reset
Asynchronous, maskable External interrupt
Decrementer

System management interrupt
Watchdog timer interrupt

Synchronous, precise Instruction-caused exceptions

Note that Table 4-1 includes no synchronous imprecise instructions. While the PowerPC
architecture supports imprecise handling of floating-point exceptions, the 602 implements
these exception modes as preci se exceptions.

Although the PowerPC architecture specifies that the recognition of the machine check
exception is nonmaskable, on the 602 the stimuli that cause this exception are maskable.
For example, the machine check exception is caused by assertion of TEA or MCP.
However, the MCP signal can be disabled by HIDO[O]. Therefore, the machine check
caused by TEA isthe only truly nonmaskable machine check exception.

Chapter 4. Exceptions 4-3



The 602's exceptions, and conditions that cause them, are listed in Table 4-2. Exceptions
that are specific to the 602 are indicated.

Table 4-2. Exceptions and Conditions

Vector (hexadecimal)

Exception Type Prefix Causing Conditions
Offset
IP=0]IP=1
Reserved — — 0000 —
System reset FFFO 0100 Assertion of HRESET
(Hard reset)
System reset 0000 FFFO | 0100 Assertion of SRESET
(Soft reset)
Machine check 0000 FFFO | 0200 Assertion of TEA during a data transaction; assertion of MCP.
DSI IBR FFFO | 0300 Determined by the bit settings in the DSISR, as follows:

4 Set if a memory access is not permitted by the page or
DBAT protection mechanism; otherwise cleared.

5 Setonly if memory access is attempted and SR[T] = 1. The
602 does not support direct-store memory.

6 Set for a store operation and cleared for a load operation.

1SI IBR FFFO | 0400 An instruction cannot be fetched for one of the following

reasons:

¢ The EA cannot be translated and an ISI exception must be
taken to load the PTE (and possibly the page) into memory.

* The fetch access violates memory protection. If SR[Ks] and
SR[Kp] and PTE[PP] are set to prohibit read access,
instructions cannot be fetched from this location.

External interrupt IBR FFFO | 0500 MSRI[EE] = 1 and the INT signal is asserted.

Alignment IBR FFFO | 0600 Memory cannot be accessed for one of the following reasons:

* The operand of a floating-point load or store is not word-
aligned.

¢ The operand of Imw, stmw, Iwarx, or stwcx. is not word-
aligned.

¢ The operand of dcbz is in a page marked write-through or
caching-inhibited, for a virtual mode access.

« Alittle-endian access is misaligned, or a multiple access is
attempted with the little-endian bit set.

4-4 PowerPC 602 RISC Microprocessor User's Manual




Table 4-2. Exceptions and Conditions (Continued)

Vector (hexadecimal)
Exception Type Prefix Causing Conditions
Offset
IP=0|IP=1
Program IBR FFFO | 0700 The following conditions correspond to bit settings in SRR1
and arise during execution of an instruction:

« Floating-point enabled exception—The following is met:
(MSR[FEOQ] | MSR[FE1]) & FPSCR[FEX] is 1.
FPSCRI[FEX] is set by a floating-point instruction that
causes an enabled exception or by the execution of one of
the “move to FPSCR?” instructions that results in both an
exception condition bit and its corresponding enable bit
being set in the FPSCR.

« lllegal instruction—Execution of an instruction is attempted
with an illegal opcode or combination of opcode and
extended opcode (including PowerPC instructions not
implemented in the 602 but not including those optional
instructions treated as no-ops).

¢ Privileged instruction—Execution of a privileged instruction
is attempted and MSR[PR] = 1. In the 602, this exception is
generated for mtspr or mfspr with an invalid SPR field if
SPR[0] = 1 and MSR[PR] = 1. This may not be true for all
PowerPC processors.

« Trap— Generated when a trap instruction condition is met.

Floating-point IBR FFFO | 0800 An attempt to execute a floating-point instruction (including
unavailable floating-point load, store, or move instructions) when the

floating-point available bit is disabled, (MSR[FP] = 0).

Decrementer IBR FFFO | 0900 The most significant bit of the decrementer (DEC) register
changes from 0 to 1. Must be enabled with the MSR[EE] bit.
Reserved IBR FFFO | OAOO- | —
OBFF
System call IBR FFFO | 0C00 Execution of the System Call (sc) instruction
Trace IBR FFFO | 0DOO MSRI[SE] =1 or when a completing instruction is a branch and
MSR[BE] =1.
Floating-point assist IBR FFFO | OEOO Not implemented in the 602
Reserved — — OE10- | —
OFFF
Instruction translation | IBR FFFO | 1000 The ITLB cannot translate the EA for an instruction fetch.
miss
Data load translation IBR FFFO | 1100 An EA for a data load cannot be translated by the DTLB.
miss
Data store translation | IBR FFFO | 1200 An EA for a data store cannot be translated by the DTLB; or
miss when a DTLB hit occurs and the change bit in the PTE must be
set due to a data store operation.

Chapter 4. Exceptions

4-5




Table 4-2. Exceptions and Conditions (Continued)

Vector (hexadecimal)

Exception Type Prefix Causing Conditions
Offset

Instruction address 0000 FFFO | 1300 The address (bits 0-29) in the IABR matches the next
breakpoint instruction to complete in the completion unit and the IABR
enable bit (bit 30) is set.

System management | IBR FFFO | 1400 MSR[EE] =1 and the SMI input signal is asserted.
interrupt

Watchdog timer IBR FFFO | 1500 A carry occurs out of a bit specified by the user. If the watchdog
timer is not reset by the interrupt service routine, a second
watchdog timer exception forces an internal reset.

Emulation trap IBR FFFO | 1600 A double-precision floating-point instruction or a load/store
string instruction is encountered.

Reserved — — 1700- | —
2FFF

Exceptions are roughly prioritized by exception class, asfollows:

1. Nonmaskable, asynchronous exceptions have priority over al other exceptions—
system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.

Exception priorities are described in “Exception Priorities,” in Chapter 4, “Exceptions,” in
The Programming Environments Manual.

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. Asaresult, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

4-6 PowerPC 602 RISC Microprocessor User's Manual



If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRRO did not cause the exception then that
instruction appears not to have begun execution. For more information on context-
synchronization, see Chapter 4, “ Exceptions,” in The Programming Environments Manual.

4.1.1 Exception Priorities
The exceptions are listed in Table 4-3 in order of highest to lowest priority.

Table 4-3. Exception Priorities

Category Priority Exception Cause
Asynchronous 0 System reset HRESET (hard reset) or power-on reset
1 Machine check TEA or MCP (soft reset)
2 System reset SRESET
3 System management SMI
interrupt
4 External interrupt INT
5 Decrementer Decrementer passed through 0x0000_0000
6 Watchdog timer See Section 4.5.17, “Watchdog Timer Interrupt (0x1500).”
Instruction 0 ITLB miss See Section 4.5.12, “Instruction TLB Miss Exception
fetch (0x1000).”
1 ISI See Section 4.5.4, “IS| Exception (0x0400).”
Instruction 0 IABR See Section 4.5.15, “Instruction Address Breakpoint
dispatch/ Exception (0x1300).”
execution — - -
1 Program lllegal, privileged, or trap instruction
2 System call See Section 4.5.10, “System Call Exception (0x0C00).”
3 Floating-point See Section 4.5.8, “Floating-Point Unavailable Exception
unavailable (0x0800).”
4 Program Floating-point enabled exception condition
5 Alignment « Floating-point operand not word-aligned
¢ Imw, stmw, Iwarx, or stwcx. not word-aligned
¢ Little-endian access is misaligned
« Multiple access with little-endian bit set
¢ dcbztoW=1orl=1 space
6 DSl « BAT page protection violation
« An attempt to access memory for which SR[T] = 1.
7 DTLB miss Store or load miss. A store miss can jump to a DSI routine.
8 DSl TLB page protection violation
9 DTLB miss Change bit not set on a store operation
Post- 0 Trace See Section 4.5.11, “Trace Exception (0x0D00).”
instruction ¢ MSR[SE]=1
execution « MSRI[BE] = 1 for branches

Chapter 4. Exceptions

4-7




4.1.2 Summary of Front-End Exception Handling

The following list of interrupt categories describes how the 602 handles exceptions up to
the point of signaling the appropriate exception to occur. Note that a recoverable state is
reached if the completed store queue is empty (drained, not canceled) and any instruction
that isnext in program order and has been signaled to compl ete has completed. If MSR[RI]
is clear, the 602 isin a nonrecoverable state by default. Also, completion of an instruction
isdefined as performing all architectural register writes associated with that instruction, and
then removing that instruction from the completion buffer queue.

Asynchronous nonmaskabl e nonrecoverable—(System reset caused by the assertion
of either HRESET or internally during power-on reset (POR)). Theseinterruptshave
highest priority and aretaken immediately regardless of other pending exceptionsor
recoverability. An address of an instruction that will not take an exceptionis
guaranteed.

Asynchronous maskable nonrecoverable—(Machine check). A machine check
exception takes priority over any other pending exception except a nonrecoverable
system reset caused. A machine check exception is taken immediately regardless of
recoverability. An address of an instruction that will not take an exceptionis
guaranteed.

Asynchronous nonmaskabl e recoverable—(System reset caused by the assertion of
SRESET). Thisinterrupt takes priority over any other pending exception except
nonrecoverabl e exceptions listed above. It istaken immediately when arecoverable
state is reached.

Asynchronous maskable recoverable—(System management interrupt, external
interrupt, decrementer interrupt). Before handling this type of exception, the next
instruction in program order must complete or except. If this action causes another
type of exception, that exception is taken and the asynchronous maskable
recoverabl e exception remains pending. Once an instruction can compl ete without
causing an exception, further instruction completion is halted while the untaken
exception remains pending. The exception is taken when arecoverable stateis
reached.

Instruction fetch—1TLB, ISl). When this type of exception is detected, dispatch is
halted and the current instruction stream is allowed to drain. If completing any
instructions in this stream causes an exception, that exception is taken and the
instruction fetch exception is forgotten. Otherwise, as soon as the machineis empty
and arecoverable state is reached, the instruction fetch exception is taken.

Instruction dispatch/execution—(Program, DS, alignment, emulation trap, system
call, DTLB misson load or store, IABR). Thistype of exception is determined at
dispatch or execution of an instruction. The exception remains pending until all
instructions in program order, before the exception-causing instruction, are
completed. The exception is then taken without compl eting the exception-causing
instruction. If any other exception condition is created in compl eting these previous
instructions in the machine, that exception takes priority over the pending
instruction dispatch/execution exception, which will then be forgotten.

4-8

PowerPC 602 RISC Microprocessor User's Manual



» Post-instruction execution—(Trace). Thistype of exception is generated following
execution and completion of an instruction while atrace mode is enabled. If
executing the instruction produces conditions for another type of interrupt, that
exception is taken and the post-instruction execution exception is forgotten for that
instruction.

4.2 Exception Processing

When an exception istaken, the processor uses the save/restore registers, SRRO and SRR1,
to save the contents of the machine state register (MSR) for user-level mode (referred to as
problem mode in the architecture specification) and to identify where instruction execution
should resume after the exception is handled.

When an exception occurs, SRRO is set to point to the instruction at which instruction
processing should resume when the exception handler returns control to the interrupted
process. All instructions in the program flow preceding this one will have completed and
no subsequent instruction will have completed. This may be the address of the instruction
that caused the exception or the next one (as in the case of a system call exception). The
instruction addressed can be determined from the exception type and status bits. This
address is used to resume instruction processing in the interrupted process, typically when
an rfi instruction is executed. The SRRO register is shown in Figure 4-1.

SRRO (holds EA for resuming program execution)

Figure 4-1. Machine Status Save/Restore Register O

The savelrestore register 1(SRR1) is used to save machine status (the contents of the MSR)
on exceptions and to restore those values when rfi is executed. SRR1 is shown in
Figure 4-2.

Exception specific information and MSR bit values |

Figure 4-2. Machine Status Save/Restore Register 1

Typicaly, when an exception occurs, bits 0-15 of SRR1 are loaded with exception-specific
information and bits 16-31 of MSR are placed into the corresponding bit positions of
SRR1. The 602 loads SRR1 with specific bits for handling machine check exceptions, as
shown in Table 4-4.

Chapter 4. Exceptions 4-9



Table 4-4. SRR1 Bit Settings for Machine Check Exceptions

Bits Name Description
0 MSRI0] Copy of MSR bit 0
1-4 — Reserved
5-9 MSR[5-9] Copy of MSR bits 5-9
10-11 — Reserved
12 MCP Machine check signal
13 TEA TEA error
14-15 — Reserved
16-31 | MSR[16-31] Copy of MSR bits16-31

The 602 loads SRR1 with specific bits for handling the three TLB miss exceptions, as

shown in Table 4-5.

Table 4-5. SRR1 Bit Settings for Software Table Search Operations

Bits Name Description
0-3 CRFO Copy of condition register field 0 (CRO0)
4 — Reserved
5-9 MSR[5-9] Copy of MSR bits 5-9
10-12 — Reserved
13 IID Instruction/data TLB miss

0 DTLB miss
1 ITLB miss
14 WAY Which TLB associativity set should be replaced
0 Set 0
1 Set1
15 S/L Store/load protection instruction
0 Load miss
1 Store miss
16-31 MSR[16-31] Copy of MSR bits16-31

Note that, in some implementations, every instruction fetch when MSR[IR] = 1 and every
instruction execution requiring address translation when MSR[DR] = 1 may modify SRR1.

The MSR is shown in Figure 4-3. When an exception occurs, MSR bits, as described in
Table 4-6, are altered as determined by the exception.

4-10 PowerPC 602 RISC Microprocessor User's Manual



TGPR

POW
L l [] Reserved

00000O0O0O |AP|SA| 00 | | |ILE|EE|PR|FP|ME|FEO|SE|BE|FE1| 0 | IF’|IR|DR| 00 |RI|LE|

7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 4-3. Machine State Register (MSR)

Table 4-6 shows the bit definitions for the MSR.

Table 4-6. MSR Bit Settings

Bit(s)

Name

Description

0

Reserved, but saved in SRR1 when an exception occurs

1-4

Reserved

5-7

Reserved, but saved in SRR1 when an exception occurs

AP

Access privilege state. (602-specific—not defined by the PowerPC architecture).

Like MSR[PR], but only affects access permission if PR = 0. This bit is checked if and only if
MSR[PR] = 0. MSR[AP] restricts access privilege if PR = 0. Setting MSR[AP] affects access to
the instruction and data locations as if it were PR.

SA

Supervisor access mode. (602-specific—not defined by the PowerPC architecture). If this field
is set, it allows execution of supervisor instructions without entering supervisor mode.

10-12

Reserved

13

POW

Power management enable (602-specific—not defined by the PowerPC architecture)

0  Disables programmable power modes (normal operation mode).

1  Enables programmable power modes (Nap, Doze, or Sleep mode).

This bit controls the programmable power modes only, it has no effect on dynamic power
management (DPM). MSR[POW] may be altered with an mtmsr instruction only. Also, when
altering the POW bit, software may alter only this bit in the MSR and no others. The mtmsr
instruction must be followed by a context-synchronizing instruction.

See Chapter 9, “Power Management,” for more information.

14

TGPR

Temporary GPR remapping (602-specific—not defined by the PowerPC architecture)

0  Normal operation

1 TGPR mode. GPRO-GPR3 are remapped to TGPRO-TGPR3 for use by TLB miss
routines.

The contents of GPRO—-GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use

GPR4-GPR31 with MSR[TGPR] = 1 yield undefined results. Overlays TGPRO-TGPR3 over

GPRO-GPR3 for use by TLB miss routines. When this bit is set, all instruction accesses to

GPRO-GPR3 are mapped to TGPRO-TGPRS3, respectively. The contents of GPRO-GPR3 are

unchanged while as long as this bit remains set. Attempts to use GPR4-GPR31 when this bit

is set yields undefined results.The TGPR bit is set when either an instruction TLB miss, data

read miss, or data write miss exception is taken. The TGPR bit is cleared by an rfi instruction.

This bit is 602-specific.

15

ILE

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

Chapter 4. Exceptions 4-11



Table 4-6. MSR Bit Settings (Continued)

Bit(s)

Name

Description

16

EE

External interrupt enable

0  The processor ignores external interrupts, system management interrupts, and
decrementer interrupts.

1  The processor is enabled to take an external interrupt, system management interrupt, or
decrementer interrupt.

17

PR

Privilege level
0  The processor can execute both user- and supervisor-level instructions.
1  The processor can only execute user-level instructions.

18

FP

Floating-point available

0  The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores, and moves.

1  The processor can execute floating-point instructions, and can take floating-point
enabled exception type program exceptions.

19

ME

Machine check enable
0  Machine check exceptions are disabled.
1  Machine check exceptions are enabled.

20

FEO

Floating-point exception mode 0 (see Table 4-7).

21

SE

Single-step trace enable

0  The processor executes instructions normally.

1  The processor generates a trace exception upon the successful completion of the next
instruction.

22

BE

Branch trace enable

0  The processor executes branch instructions normally.

1  The processor generates a trace exception upon the successful completion of a branch
instruction.

23

FE1

Floating-point exception mode 1 (see Table 4-7)

24

Reserved, but saved in SRR1 when an exception occurs

25

Interrupt prefix. The functionality of this bit is enhanced in the 602. How this bit is interpreted

depends on the exception that is taken.

» If a soft reset, machine check, or instruction address breakpoint exception is taken, the IP
is used as it is defined by the PowerPC architecture. That is, if IP = 0, the vector address is
determined by prepending 0x0000 to the vector offset. If IP is set, the vector address is
determined by prepending the vector offset with OXFFFO.

« If a hard reset is taken, the vector address is always OxFFFO_0100.

» For all other exceptions, if the IP bit is cleared, the vector address is determined by
prepending the contents of the IBR to the vector offset. If IP is set, the vector address is
determined by prepending OxFFFO to the vector offset.

26

Instruction address translation

0 Instruction address translation is disabled.

1  Instruction address translation is enabled.

The 602 implements this bit as defined by the PowerPC architecture. Turns on instruction
address translation, protections, and cache control. The DR and IR bits operate as on
PowerPC; however, if HIDO[SB] is set, the BAT arrays are to be used for translation, cache
control, and protection checking if IR or DR are cleared for the specific access. If IR or DR are
set, the BAT/TLB hit mechanisms take priority.

For more information, see Chapter 5, “Memory Management.”

4-12

PowerPC 602 RISC Microprocessor User's Manual



Table 4-6. MSR Bit Settings (Continued)

Bit(s) Name Description

27 DR Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

As defined by the PowerPC architecture. Turns on data address translation, protections, and
cache control. The DR and IR bits operate as defined on PowerPC architecture; however, if

HIDO[SB] is set, the BAT arrays are to be used for translation, cache control, and protection
checking if IR or DR are cleared for the specific access. If IR or DR are set, the BAT/TLB hit
mechanisms take priority. For more information see Chapter 5, “Memory Management.”

28-29 | — Reserved, but saved in SRR1 when an exception occurs

The |IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
al. The possible settings and default conditions for the 602 are shown in Table 4-7. For
further details, see Chapter 6, “Exceptions,” of The Programming Environments Manual.

Table 4-7. IEEE Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable. In the 602, this bit setting causes the PowerPC 604™

microprocessor to operate in floating-point precise mode.

1 0 Floating-point imprecise recoverable. In the 602, this bit setting causes the 604 to operate in floating-
point precise mode.

1 1 Floating-point precise mode

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

The vector address can be affected by the value in theinterrupt baseregister (IBR).TheBR
is used to store a 16-bit base address for most 602 exception vectors. The 16-bit base
address is concatenated with the exception vector offset to form the address for the
exception handler. The IBR can be read and written to by the processor. See Figure 2-17 for
the format of this register. If MSR[IP] is set, the exception vector prefix is OxFFFO
(following the format of the IBR). If MSR[IP] isnot set, the valuein the IBR is used asthe
16-bit prefix. The IBR is cleared and MSR[IP] is set on a power-on reset; therefore, the
system reset exception vector on a power-on reset is OxXFFF00100. For more information,
see Section 2.1.2.4.3, “Interrupt Base Register (IBR).”

Chapter 4. Exceptions 4-13



4.2.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition as follows:

|EEE floating-point enabled exceptions (atype of program exception) are ignored
when both MSR[FEOQ] and MSR[FEL] are cleared. If either of these bits are set, all
|EEE enabled floating-point exceptions are taken and cause a program exception.

Asynchronous, maskabl e exceptions (that is, the external and decrementer
interrupts) are enabled by setting the M SR EE] bit. When M SR[EE] = 0, recognition
of these exception conditionsisdelayed. M SR[EE] iscleared automatically when an
exception is taken, to delay recognition of conditions causing those exceptions.

A machine check exception can occur only if the machine check enable bit,
MSR[ME], isset. If MSR[ME] iscleared, the processor goesdirectly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bitsin the HIDO register, which is
described in Section 2.1.2.1.1, “Hardware Implementation Register 0 (HIDO).”

System reset exceptions cannot be masked.

4.2.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1

The machine status savelrestore register 0 (SRRO) is loaded with an instruction
address determined by the exception. See the individual exception description for
details about how SRRO is used.

Bits 14 and 10-15 of SRR1 are loaded with information specific to the exception
type. Additional bits may also be loaded.

Bits5-9 and 16-31 of SRR1 are loaded with a copy of the corresponding bits of the
MSR. Note that depending on the implementation, reserved bits may not be copied.

The MSRisset asdescribed in Table 4-6. The new valuestake effect beginning with
the fetching of thefirst instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address tranglation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

Instruction fetch and execution resumes, using the new M SR value, at alocation
specific to the exception type. The location is determined by the exception that is
taken, the valuein MSRJ[IP], and the interrupt base register (IBR).

— Soft reset, machine check, or instruction address breakpoint exception—The IP
bit isused asit is defined by the PowerPC architecture. That is, if IP= 0, the

4-14

PowerPC 602 RISC Microprocessor User's Manual



vector address is determined by prepending 0x0000 to the vector offset. If IPis
set, the vector address is determined by prepending the vector offset with
OxFFFO.

— Hard reset—The vector address is always OxFFFO_0100.

— For al other exceptions, if 1P is cleared, the vector addressis determined by
prepending the contents of the IBR to the vector offset. If 1P is set, the vector
address is determined by prepending OxFFFO to the vector offset.

4.2.3 Setting MSR[RI]
The operating system should handle MSR[RI] as follows:
« Inthe machine check and system reset exceptions—If SRR1[RI] is cleared, the

exception is not recoverable. If itis set, the exception is recoverable with respect to
the processor.

* In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

« In each exception handler—Clear MSR[RI], set the SRRO and SRR1 registers
appropriately, and then execute rfi.

Note that the RI bit being set indicates that, with respect to the processor, enough processor
state dataisvalid for the processor to continue, but it does not guarantee that the interrupted
process can resume.

4.2.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

« All previousinstructions have completed to a point where they can no longer cause
an exception.

¢ Previousinstructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

» Therfi instruction copies SRR1 bits back into the MSR.

» Theinstructions following thisinstruction execute in the context established by this
instruction.

* Branch to the address contained in SRRO.

For acompl ete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

Chapter 4. Exceptions 4-15



4.3 Process Switching
The operating system should execute one of the following when processes are switched:

» Thesync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to beinitiated until the
sync instruction completes. For more information about using the sync instruction,
see Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual.

e Theisyncinstruction, which waitsfor all previousinstructionsto complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

¢ Thestwcx. instruction, to clear any outstanding reservations, which ensures that an
Iwarx instruction in the old process is not paired with an stwex. instruction in the
NEW Process.

The operating system should set the MSR[RI] bit as described in Section 4.2.3, “ Setting
MSR[RI].”

4.4 Exception Latencies

Latencies for taking various exceptions depend on the state of the machine when the
exception conditions occur. This latency may be as short as one cycle, in which case an
exception is signaled in the cycle following the appearance of the exception condition. The
latencies are as follows:

* Hard reset and machine check—In most cases, a hard reset or machine check
exception will have asingle-cycle latency. A two-to-three-cycle delay may occur
only when an instruction on a predicted branch is next to complete, and the branch
prediction associated with this instruction was resolved as incorrect.

» Soft reset—The latency of a soft reset exception is affected by recoverability. The
time to reach arecoverable state may depend on the time needed to complete or
except an instruction at the point of completion, the time needed to drain the
completed store queue, and the time waiting for a correct empty state so that avalid
MSR[IP] may be saved. For lower-priority externally-generated interrupts, a delay
may be incurred waiting for another interrupt generated while reaching a
recoverable state, to be serviced.

Further delays are possible for other types of exceptions depending on the number and type
of instructions that must be completed before that exceptions may be serviced. See
Section4.1.2, “Summary of Front-End Exception Handling,” to determine possible
maximum latencies for different exceptions.

4-16 PowerPC 602 RISC Microprocessor User's Manual



4.5 Exception Definitions

Table 4-8 shows al the types of exceptions that can occur with the 602 and the MSR bit
settings when the processor transitions to supervisor mode. The state of these bits prior to

the exception istypically stored in SRR1.

Table 4-8. MSR Setting Due to Exception

Exception MSR Bit

Type AP | sa | Pow | TGPR | ILE | EE | PR | FP | ME | FEO | SE | BE | FE1 [ R | DR | RI | LE
System reset 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 | ILE
Machine check | 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 ILE
DSl 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE
ISI 0 0 0 0 — | 0 0 0| — 0 0 0 0 0 0 0 | ILE
External 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE
Alignment 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE
Program 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 | ILE
Floating-point 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE
unavailable
Decrementer 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE
System call 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE
Trace 0 0 0 0 — 0 0 0| — 0 0 0 0 0 0 0 | ILE
exception
ITLB miss 0 0 0 1 — 10 0 0| — 0 0 0 0 0 0 0 | ILE
DTLB miss on 0 0 0 1 — 0 0 0 — 0 0 0 0 0 0 0 ILE
load
DTLB miss on 0 0 0 1 — 0 0 0 — 0 0 0 0 0 0 0 ILE
store
Instruction 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE
address
breakpoint
System 0 0 0 0 — 0 0 0| — 0 0 0 0 0 0 0 | ILE
management
interrupt
Watchdog 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE
timer
Emulation trap 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 | ILE

0 Bit is cleared

1 Bit is set

ILE Bit is copied from the ILE bit in the MSR.

— Bit is not altered

Reserved bits are read as if written as 0.

Chapter 4. Exceptions 4-17




4.5.1 Reset Exceptions (0x0100)

The system reset exception is a nonmaskable, asynchronous exception signaled to the 602
either through the assertion of the reset signals (SRESET or HRESET) or internally during
the power-on reset (POR) process. The assertion of the soft reset signal, SRESET, as
described in Section 7.2.9.6.2, “Soft Reset (SRESET)—Input,” causes the soft reset
exception to be taken, and the physical base address of the handler is determined by the
MSR[IP] bit. The assertion of the hard reset signal, HRESET, as described in
Section 7.2.9.6.1, “Hard Reset (HRESET)—Input,” causes the hard reset exception to be
taken, and the physical address of the handler is always OxFFFO_0100.

The reset sequence is shown in Figure 4-4.

Hard Reset Soft Reset

>255 clocks

yes
JTAG_IR = FFRZ?

Stop Chip Clocks,
Except for the COP no =

—_—————

Perform COP
Functions

COP cmd = RESUME?

no

| Chip Clocks Running |

System Reset
Exception Handler

Figure 4-4. Reset Sequence

4-18 PowerPC 602 RISC Microprocessor User's Manual



45.1.1 Hard Reset and Power-On Reset

As described in 4.1.2, “Summary of Front-End Exception Handling,” the hard reset
exception is a nonrecoverable, nonmaskabl e asynchronous exception (maskable interrupt).
When HRESET is asserted or at power-on reset (POR), the 602 immediately branches to
OxFFFO_0100 without attempting to reach arecoverable state. A hard reset has the highest
priority of any exception. It is aways nonrecoverable. Table 4-9 shows the state of the
machine just before it fetches the first instruction of the system reset handler after a hard
reset.

The HRESET signal can be asserted for the following reasons:
e System power-on reset
¢ System reset from a panel switch

For information on the HRESET signal, see Section 7.2.9.6.1, “Hard Reset (HRESET)—
Input.”

Table 4-9. Settings Caused by Hard Reset

Register Setting Register Setting
GPRs All Os PVR 0005010n
FPRs All 0s HIDO 00000000
FPSCR 00000000 HID1 00000000
CR All Os DMISS and IMISS | All 0s
SRs Unknown DCMP and ICMP All Os
MSR 00000040 RPA 00000000
XER 00000000 IABR 00000000
TBU 00000000 ESARR 00000000
TBL 00000000 SER 00000000
LR 00000000 SEBR 00000000
CTR 00000000 IBR 00000000
DSISR 00000000 HASH1 00000000
DAR 00000000 HASH2 00000000
DEC FFFFFFFF SP Unknown
SDR1 00000000 LT Unknown
SRRO 00000000 TLBs Unknown

Chapter 4. Exceptions

4-19



Table 4-9. Settings Caused by Hard Reset (Continued)

Register Setting Register Setting
SRR1 00000000 Cache All cache blocks invalidated
SPRGs 00000000 BATs Unknown
Tag directory All Os. (However, LRU bits are

initialized so each side of the
cache has a unique LRU
value.)

Thefollowing is also true after a hard reset operation:
» External checkstops are enabled.

» Theon-chip test interface has given control of the I/Osto the rest of the chip for
functional use.

» Since the reset exception has data and instruction trandation disabled (MSR[DR]
and MSR[IR] both cleared), the chip operatesin direct address translation mode
(referred to as the real addressing mode in the architecture specification).

45.1.2 Soft Reset

Asdescribed in Section 4.1.2, “ Summary of Front-End Exception Handling,” the soft reset
exception is a type of system reset exception that is a recoverable, nonmaskable, and
asynchronous. When SRESET is asserted, the processor attempts to reach a recoverable
state by allowing the next instruction to either complete or cause an exception, blocking the
completion of subsequent instructions, and allowing the completed store queue to drain.

Unlike ahard reset, the latches are not initialized. The SRESET signal must be asserted for
at least two bus clock cycles. After the SRESET signal is deasserted, the 602 vectorsto the
system reset routine at OXFFF00100. The IBR is not used to determine the vector offset for
soft reset.

When a soft reset occurs, registers are set as shown in Table 4-10.

Table 4-10. Soft Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to complete
next if no exception conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR. Note that if the processor state is corrupted to the extent
that execution cannot be reliably restarted, SRR1[30] is cleared.

MSR AP 0 EE O FEO O IR 0
SA 0 PR 0 SE O DR O
POW 0 FP 0 BE O RI 0
ILE — ME — FE1 O LE Set to value of ILE

4-20 PowerPC 602 RISC Microprocessor User's Manual



The vector address for a soft reset is 0x0000_0100 if MSRJ[IP] is cleared or OXFFFO_0100
if MSR[IP] is set (the IBR is not used). A soft reset is recoverable provided that attaining
the recoverabl e state does not cause a machine check exception. Thisinterrupt caseisthird
in priority, following hard reset and machine check. Soft resets are recoverable provided
that attaining arecoverable state does not cause a machine check exception.

4.5.2 Machine Check Exception (0x0200)

The 602 conditionally initiates a machine check exception after detecting the assertion of
the TEA or MCP signals on the 602 bus (assuming the machine check is enabled,
MSR[ME] = 1). The assertion of one of these signalsindicates that abus error occurred and
the system terminates the current transaction. One clock cycle after the signal is asserted,
the data bus signal's go to the high-impedance state; however, data entering the GPR or the
cache is not invalidated. Note that if HIDO[EMCRP] is cleared, the processor ignores the
assertion of the MCP signal.

Note that the 602 makes no attempt to force recoverability; however, it does guarantee that
the machine check exception is aways taken immediately upon request, with an address
guaranteed not to be behind one that can take an exception saved in SRRO, regardless of the
current machine state. Any pending storesin the completed store queue are cancelled when
the exception is taken. Software can use the machine check exception in a recoverable
mode for checking bus configuration. For this case, async, load, syncinstruction sequence
is used. A subsequent machine check exception at the load address indicates a bus
configuration problem and the processor isin arecoverable state.

If the MSR[ME] bit is set, the exception is recognized and handled; otherwise, the 602
attemptsto enter aninternal checkstop. Note that the resulting machine check exception has
priority over any exceptions caused by the instruction that generated the bus operation.

Machine check exceptions are only enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] =0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in 4.5.2.2, “ Checkstop State (MSR[ME] = 0).”

Chapter 4. Exceptions 4-21



4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-11.

Table 4-11. Machine Check Exception—Register Settings

Register Setting Description

SRRO Set to the address of the next instruction that would have been completed in the interrupted
instruction stream. Neither this instruction nor any others beyond it will have been completed. All
preceding instructions will have been completed.

SRR1 0-11 Cleared
12 MCP—Machine check interrupt signal caused exception
13 TEA—Transfer error acknowledge signal caused exception

14-15 Cleared
16-31 Loaded from MSR[16-31].

MSR AP 0 EE 0 FEO O IR 0
SA 0 PR 0 SE O DR O
POW 0 FP 0 BE O RI 0
TGPRO ME — FE1 O LE Set to value of ILE
ILE —

Note that when a machine check exception is taken, the exception handler should set MSR[ME]
as soon as it is practical to handle another TEA assertion. Otherwise, subsequent TEA assertions
cause the processor to automatically enter the checkstop state.

When a machine check exception is taken, instruction execution for the handler begins at
offset 0x0200. Table 4-2 shows how the vector address is determined. Note that the 602-
specific IBR is not used to determine the vector of a machine check exception.

In order to return to the main program, the exception handler should do the following:

1. SRRO and SRR1 should be given the values to be used by the rfi instruction.
2. Executerfi.

4.5.2.2 Checkstop State (MSR[ME] = 0)

When the 602 enters the checkstop state, it asserts the checkstop output signal,
CKSTP_OUT. The following events cause the 602 to enter the checkstop state:

« Machine check exception occurs with MSR[ME] cleared.
« External checkstop input signal, CKSTP_IN, is asserted.

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot be restarted without resetting the processor. The contents of all latchesare
frozen within two cycles upon entering the checkstop state so that the state of the processor
can be analyzed as an aid in problem determination.

Note that not all PowerPC processors provide the samelevel of error checking. The reasons
aprocessor can enter checkstop state are implementation-dependent.

4-22 PowerPC 602 RISC Microprocessor User's Manual



4.5.3 DSI Exception (0x0300)

A DSl exception occurs when no higher priority exception exists and a datamemory access
cannot be performed. The condition that caused the DSI exception can be determined by
reading the DSISR register, a supervisor-level SPR (SPR18) that can be read by using the
mfspr instruction. Bit settings are provided in Table 4-12. Table 4-12 & so indicates which
memory element is saved to the DAR. DSI exceptions can occur for any of the following
reasons:

¢ Theinstruction is not supported for the type of memory addressed.

« Any attempt to access memory for which SR[T] = 1. Direct-store accesses are not
supported on the 602.

» Theaccess violates memory protection. Access is not permitted by the key (Ksand
Kp) and PP bits, which are set in the segment register and PTE for page protection
and in the BATs for block protection.

Note that the OEA specifies an additional case that may cause a DS| exception—when an
effective address for aload, store, or cache operation cannot be translated by the TLBs. On
the 602, this condition causes a TLB miss exception instead.

DSl exceptions can be generated by load/store instructions, and the cache control
instructions (dcbi, dcbz, dcbst, and dcbf).

The 602 supports the crossing of page boundaries. However, if the second page has a
tranglation error or protection violation associated with it, the 602 will take the DS
exception in the middle of the instruction. In this case, the data address register (DAR)
aways pointsto the first byte address of the offending page.

If an stwex. instruction has an effective address for which a normal store operation would
cause a DSI exception, the 602 will take the DSI exception without checking for the
reservation.

If the XER indicates that the byte count for an Iswi or stswi instruction is zero, a DS
exception does not occur, regardless of the effective address.

The condition that caused the exception is defined in the DSISR. These conditions also use
the data address register (DAR) as shown in Table 4-12.

Chapter 4. Exceptions 4-23



Table 4-12. DSI Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception.
SRR1 0-15 Cleared
16-31 Loaded with bits 16-31 of the MSR
MSR AP 0 EE O FEO O IR 0

SA 0 PR 0 SE O DR 0

POW 0 FP 0 BE O RI 0

TGPRO ME — FE1 O LE  Setto value of ILE

ILE —

DSISR 0 Cleared.

1 Set by the data TLB miss exception handler if the translation of an attempted access is not
found in the primary hash table entry group (HTEG), or in the rehashed secondary HTEG, or in
the range of a DBAT register; otherwise cleared.

2-3 Cleared

4 Set if a memory access is not permitted by the page or BAT protection mechanism; otherwise
cleared.

5 Set if the lwarx or stwcx. instruction is attempted to direct-store space.

6 Set for a store operation and cleared for a load operation.

7-31 Cleared

DAR Set to the effective address of a memory element as described in the following list:

« A byte in the first word accessed in the page that caused the DSI exception, for a byte, half word,

or word memory access.

« A byte in the first word accessed in the BAT area that caused the DSI exception for a byte, half

word, or word access to a BAT area.

« A byte in the block that caused the exception for icbi, dcbz, dcbst, dcbf, or dcbi instructions.

* Any EA in the memory range addressed (for direct-store exceptions).

When a DSI exception is taken, instruction execution for the handler begins at offset
0x0300. Table 4-2 shows how the vector address can be determined.

The architecture permits certain instructionsto be partially executed when they causeaDS|
exception. These are as follows:

¢ Load multiple instructions—Some registers in the range of registers to be loaded
may have been loaded.

» Store multiple instructions—Some bytes of memory in the range addressed may
have been updated.

In these cases, the number of registers and amount of memory altered are instruction- and
boundary-dependent. For update forms, the update register (rA) is not altered.

4-24

PowerPC 602 RISC Microprocessor User's Manual



4.5.4 IS| Exception (0x0400)

The ISl exception is implemented as it is defined by the PowerPC architecture. An IS
exception occurs when no higher priority exception exists and an attempt to fetch the next
instruction fails for any of the following reasons:

e If aninstruction TLB missfailsto find the desired PTE, then a page fault is
synthesized. The ITLB misshandler branchesto the | Sl exception handler to retrieve
the trandlation from a storage device.

» Thefetch access violates memory protection.

Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual .

When an S| exception is taken, instruction execution for the handler begins at offset
0x0400. Table 4-2 shows how the vector address can be determined.

4.5.5 External Interrupt (0x0500)

An external interrupt is signaled to the 602 by the assertion of the INT signal as described
in Section 7.2.9.1, “Interrupt (INT)—Input.” The interrupt may not be recognized if a
higher priority exception is detected simultaneously or if the MSR[EE] bit is cleared when
INT is asserted.

After the INT assertion is detected (and assuming that MSR[EE] is set), the 602 generates
a recoverable halt to instruction completion. The 602 requires the next instruction in
program order to complete (although it may cause an exception before doing so), block
completion of any following instructions, and allow the completed store queue to drain. If
any other exceptions are encountered in this process, they are taken first and the externa
interrupt is delayed until arecoverable halt is achieved. At this time the 602 saves the state
information and takes the external interrupt as defined in the PowerPC architecture.

The register settings for the external interrupt are shown in Table 4-13.

Table 4-13. External Interrupt Exception—Register Settings

Register Setting

SRRO Set to the effective address of the instruction that the processor would have attempted to execute
next if no interrupt conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16—31 of the MSR

MSR AP 0 EE O FEO O IR 0
SA O PR O SE O DR O
POW 0 FP 0 BE O RI 0
TGPRO ME — FE1 O LE  Setto value of ILE
ILE —

Chapter 4. Exceptions 4-25



When an external interrupt is taken, instruction execution for the handler begins at offset
0x0500. Table 4-2 shows how the vector addressis determined.

The 602 only recognizesthe interrupt condition (INT asserted) if the MSR[EE] bit is set; it
ignoresthe interrupt condition if the MSR[EE] bit is cleared. To guarantee that the external
interrupt istaken, the INT signal must be held active until the 602 takes the interrupt. If the
INT signal is negated before the interrupt is taken, the 602 is not guaranteed to take an
external interrupt. The exception handler must send a command to the device that asserted
INT, acknowledging the interrupt and instructing the device to negate INT.

Table 4-2 shows how the vector address is determined.

4.5.6 Alignment Exception (0x0600)

This section describes conditions that can cause alignment exceptions in the 602. Similar
to DSI exceptions, alignment exceptions use the SRRO and SRR1 to save the machine state
and the DSI SR to determine the source of the exception. The 602 will initiate an alignment
exception when it detects any of the following conditions:

» Theoperand of afloating-point load or store operation is not word-aligned.
e Theoperand of an Imw, stmw, Iwar x, or stwcx. instruction is not word-aligned.
e A little-endian access (MSR[LE] = 1) is misaligned.
e A multiple load or store operation is attempted with the MSR[LE] bit set.
« Theoperand of adcbz instruction isin a page that is write-through or caching-
inhibited.
The register settings for alignment exceptions are shown in Table 4-13.

Table 4-14. Alignment Exception—Register Settings

Register Setting
SRRO Set to the effective address of the instruction that caused the exception.
SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR
MSR AP 0 EE 0 FEO O IR 0
SA 0 PR 0 SE 0 DR 0
POW 0 FP 0 BE O RI 0
TGPRO ME — FE1 O LE  Setto value of ILE
ILE —

4-26 PowerPC 602 RISC Microprocessor User's Manual



Table 4-14. Alignment Exception—Register Settings (Continued)

Register Setting

DSISR 0-11 Cleared
12-13 Cleared. (Can be set by several 64-bit PowerPC instructions not supported in the 602.)
14 Cleared
15-16 For instruction with register indirect with index addressing—set to instruction bits 29-30
For instruction with register indirect with immediate index addressing—cleared
17 For instruction with register indirect with index addressing—set to instruction bit 25
For instruction with register indirect with immediate index addressing— set to instruction bit 5
18-21 For instruction with register indirect with index addressing—set to bits 21-24 of the instruction
For instruction with register indirect with immediate index addressing—set to instruction bits 1-4
22-26 Set to bits 6-10 (identifying the source or destination) of the instruction—undefined for dcbz
27-31 Set to bits 11-15 of the instruction (rA)
Set to either bits 11-15 of the instruction or to any register number not in the range of registers
loaded by a valid form instruction, for Imw, Iswi, and Iswx instructions. Otherwise undefined.

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception

The architecture does not support the use of an unaligned EA by Iwarx or stwcx.
instructions. If one of these instructions specifies an unaligned EA, the exception handler
should not emulate the instruction, but should treat the occurrence as a programming error.
Table 4-2 shows how the vector address can be determined.

4.5.6.1 Integer Alignment Exceptions

The 602 is optimized for load and store operations that are aligned on natural boundaries.
Operations that are not naturally aligned may suffer performance degradation, depending
on the type of operation, the boundaries crossed, and the mode that the processor is in
during execution. More specifically, these operations may either cause an alignment
exception or they may cause the processor to break the memory access into multiple,
smaller accesses with respect to the cache and the memory subsystem.

The 602 can initiate alignment exception for the accesses as shown in Table 4-15. In al of
these cases, the appropriate range check is performed before the instruction begins
execution. Asaresult, if an alignment exception istaken, it is guaranteed that no portion of
the instruction has been executed.

Table 4-15. Access Types

MSR[DR] SR[T] Access Type
0 0 Direct translation access
X 1 Direct-store access—not supported on the 602. Any attempt to access a

memory region marked as direct-store causes a DSI exception.

1 0 Page-address translation access

A real addressing mode data access occurs when MSR[DR] = 0. If a 256-Mbyte boundary
is crossed by any portion of the memory being accessed by an instruction (including
load/store multiples), an alignment exception is taken.

Chapter 4. Exceptions 4-27




4.5.6.2 Page Address Translation Access
A page address trand ation access occurs when MSR[DR] is set and there is a BAT miss.
Note the following points:

» Thefollowing istruefor al load and store instructions except multiples:
— An alignment exception is taken if the operand spans a 4-Kbyte boundary.
— Byte operands never cause an alignment exception.
— Half-word operands can cause an alignment exception if the EA endsin OxFFFO.
— Word operands can cause an alignment exception if the EA endsin OxFFD—FFF.

— Double-word operands cause an aignment exception if the EA endsin
OxFF9-FFF.

« Thedcbz instruction causes an alignment exception if the accessisto a page or
block with the W (write-through) or | (caching-inhibit) bit set.

A misaligned memory access that does not cause an alignment exception will not perform
aswell as an aligned access of the same type. The resulting performance degradation due
to misaligned accesses depends on how well each individual access behaves with respect to
the memory hierarchy. At aminimum, additional cache access cycles are required that can
delay other processor resources from using the cache. More dramatically, for an access to
anoncacheabl e page, each discrete accessinvolvesindividual processor bus operations that
reduce the effective bandwidth of that bus.

Finally, note that when the 602 is in page address trandation mode, there is no specia
handling for accesses that fall into BAT regions.

4.5.6.3 Floating-Point Alignment Exceptions

The 602 implements the alignment exception asit is defined in the PowerPC architecture.
For information on bit settings and how exception conditions are detected, refer to The
Programming Environments Manual.

Note that the PowerPC architecture allows individual processors to determine whether an
exception is required to handle various aignment conditions. The 602 initiates an
alignment exception when it detects any of the following conditions:

» Theoperand of afloating-point load or store operation is not word-aligned.

» Theoperand of Imw, stmw, lwarX, or stwcx. instruction is not word-aligned. Note
that unlike other alignment exceptions, which store the address as computed by the
instruction in the DAR, alignment exceptions for load or store multiple instructions
store that address value + 4 into the DAR.

» Theoperand of adcbz instruction isin a page that is write-through or caching-
inhibited for avirtual mode access.

« A little-endian accessis misaligned
* A multiple accessis attempted while the little-endian (MSR[LE]) bit is set

4-28 PowerPC 602 RISC Microprocessor User's Manual



4.5.7 Program Exception (0x0700)

The 602 implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

When a program exception is taken, instruction execution for the handler begins at offset
0x0700. The exception conditions are as follows:

« Floating-point enabled exception—These exceptions correspond to | EEE-defined
exception conditions, such as overflows, and divide by zeroes that may occur during
the execution of afloating-point arithmetic instruction. Asagroup, these exceptions
are enabled by the FEOQ and FEL bitsin thein the MSR. Individual conditions are
enabled by specific bitsin the FPSCR. For general information about this exception,
see The Programming Environments Manual. For moreinformation about how these
exceptions are implemented in the 602, see Section 4.5.7.1, “1EEE Floating-Point
Exception Program Exceptions.”

« lllegdl instruction—An illegal instruction program exception is generated when
execution of aninstructionisattempted with anillegal opcode or illegal combination
of opcode and extended opcode fields (including PowerPC instructions not
implemented in the 602). These do not include any optional instructions treated as
no-ops.

» Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the MSR
register user privilege bit, MSR[PR], is set. In the 602, this exception is generated
for mtspr or mfspr withaninvaid SPRfield if SPR[0] = 1 and MSR[PR] = 1. This
may not be true for al PowerPC processors.

« Trap—A trap type program exception is generated when any of the conditions
specified in atrap instruction is met.

4.5.7.1 |IEEE Floating-Point Exception Program Exceptions

In the 602, floating-point exceptions are signaled by condition bits set in the floating-point
status and control register (FPSCR). They can cause the system floating-point enabled
exception handler to be invoked. The 602 handles all floating-point exceptions precisely.
The 602 implements the FPSCR as it is defined by the PowerPC architecture; for more
information about the FPSCR, see The Programming Environments Manual.

Floating-point operations that change exception sticky bits in the FPSCR may suffer a
performance penalty. When an exception is disabled in the FPSCR and MSR[FE] = 0,
updates to the FPSCR exception sticky bits are serialized at the completion stage. This
serialization may result in aone- or two-cycle execution delay. The penalty isincurred only
when the exception bit is changed and not on subsequent operations with the same
exception. See Chapter 6, “Instruction Timing,” for a full description of completion
serialization.

Chapter 4. Exceptions 4-29



When an exception is enabled in the FPSCR, the instruction traps to the emulation trap
exception vector without updating the FPSCR or the target FPR. The emulation trap
exception handler is required to complete the instruction. The emulation trap exception
handler isinvoked regardless of the FE setting in the MSR.

The two |EEE floating-point imprecise modes, defined by the PowerPC architecture as
when MSR[FEQ] # MSR[FEL1], are treated as precise exceptions (that is, if MSR[FEQ] =
MSR[FE1] = 1). Thisisregardless of the setting of MSR[NI].

For the highest and most predictable floating-point performance, al exceptions should be
disabled in the FPSCR and M SR. For more information about the program exception, see
The Programming Environments Manual.

4.5.7.2 lllegal, Reserved, and Unimplemented Instructions
Program Exceptions

In accordance with the PowerPC architecture, the 602 considers all instructions defined for
64-bit implementations and unimplemented optional instructions, such asfsqrt, eciwx, and
ecowx as illega and takes a program exception when one of these instructions is
encountered. Likewise, if a supervisor-level instruction is encountered when the processor
isin user-level mode, a privileged-instruction-type program exception is taken.

The 602 implements some instructions, such as double-precision floating-point and
load/store string instructions in software. These instruction take the 602-specific emulation
trap exception (0x1600) rather than a program exception.

4.5.8 Floating-Point Unavailable Exception (0x0800)

The floating-point unavailable exception is implemented in the 602 as it is defined in the
PowerPC architecture. A floating-point unavailable exception occurs when no higher
priority exception exists, an attempt is made to execute a floating-point instruction
(including floating-point load, store, and move instructions), and the floating-point
avalablebitinthe MSRisdisabled, (MSR[FP] = 0). Register settingsfor thisexception are
described in Chapter 6, “Exceptions,” in The Programming Environments Manual

When a floating-point unavailable exception is taken, instruction execution for the handler
begins at offset 0x0800. Table 4-2 shows how the vector address can be determined.

4.5.9 Decrementer Interrupt (0x0900)

The 602 implements the decrementer interrupt exception as it is defined in the PowerPC
architecture. A decrementer interrupt regquest is made when the decrementer counts down
through zero. Therequest is held until there are no higher priority exceptions and M SR[EE]
= 1. At this point the decrementer interrupt is taken. If multiple decrementer interrupt
requests are received before the first can be reported, only one exception is reported. The
occurrence of a decrementer interrupt cancels the request. Register settings for this
exception are described in Chapter 6, “Exceptions,” in The Programming Environments
Manual.

4-30 PowerPC 602 RISC Microprocessor User's Manual



When adecrementer interrupt istaken, instruction execution for the handler begins at offset
0x0900. Table 4-2 shows how the vector addressis determined.

4.5.10 System Call Exception (0x0CO00)

The 602 implements the system call exception asit is defined by the PowerPC architecture.
A system call exception request is made when a system call (sc) instruction is completed.
If no higher priority exception exists, the system call exception is taken, with SRRO being
set to the EA of the instruction following the sc instruction. Register settings for this
exception are described in Chapter 6, “Exceptions,” in The Programming Environments
Manual.

When asystem call exception istaken, instruction execution for the handler begins at offset
0x0CO00. Table 4-2 shows how the vector address can be determined.

4.5.11 Trace Exception (0x0DO0O0)
The trace exception is taken under one of the following conditions:

¢ When MSR[SE] is set, a single-step instruction trace exception is taken when no
higher priority exception exists and any instruction (other than rfi or isync) is
successfully completed. Note that other PowerPC processors will take the trace
exception on isync instructions (when MSR[SE] is set); the 602 does not take the
traceexception onisyncinstructions. Single-step instruction trace modeisdescribed
in Section 4.5.11.1, “Single-Step Instruction Trace Mode.”

«  When MSR[BE] is set, the branch trace exception is taken after each branch
instruction is completed.

« The 602 deviates from the architecture by not taking trace exceptions on isync
instructions. Single-step instruction trace mode is described in Section 4.5.11.2,
“Branch Trace Mode.”

Successful completion implies that the instruction caused no other exceptions. A trace
exception is never taken for an sc instruction or for a trap instruction that takes a trap
exception.

MSR[SE] and MSR[BE] are cleared when the trace exception is taken. In the normal use
of this function, MSR[SE] and MSR[BE] are restored when the exception handler returns
to the interrupted program using an rfi instruction.

Chapter 4. Exceptions 4-31



Register settings for the trace mode are described in Table 4-16.

Table 4-16. Trace Exception—Register Settings

Register Setting Description
SRRO Set to the address of the instruction following the one for which the trace exception was generated.
SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR
MSR AP 0 EE O FEO O IR 0
SA 0 PR 0 SE 0 DR 0
POW 0 FP 0 BE O RI 0
TGPRO ME — FE1 O LE  Setto value of ILE

ILE —

Note that atrace or instruction address breakpoint exception condition generates a soft stop
instead of an exception if soft stop has been enabled by the JTAG/COP logic. If trace and
breakpoint conditions occur simultaneously, the breakpoint conditions receive higher
priority.

When a trace exception is taken, instruction execution for the handler begins as offset
0x0DO0O0. Table 4-2 shows how the vector address is determined.

4.5.11.1 Single-Step Instruction Trace Mode
The single-step instruction trace mode is enabled by setting MSR[SE]. Encountering the
single-step breakpoint causes one of the following actions:

» Trap to address vector 0xOD0OO

» Soft stop (wait for quiescence)

The default single-step trace action isto trap after an instruction execution and completion.
The soft stop option, in which the 602 stops in a restartable state after an instruction
execution and completion, can be enabled only through the COP function. The ESP, which
interfaces to the COP, can restart the 602 after a soft stop. For more information, see
Section 7.2.10, “JTAG/Scan Interface Signals.”

4.5.11.2 Branch Trace Mode
The branch trace mode is enabled by setting MSR[BE]. Encountering the branch trace
breakpoint causes one of the following actions:

« Trap to exception vector 0xODOO

e Soft stop

e Hard stop

The default branch trace action is to trap after the completion of any branch instruction
whenever MSR[BE] is set. However, if soft stop is enabled through the COP interface, the
602 stops in a restartable state. If hard stop is enabled through the COP interface, the 602
stops immediately without waiting to reach a restartable state. Therefore, the 602 is not

4-32 PowerPC 602 RISC Microprocessor User's Manual



guaranteed to be restartable after a hard stop. For more information, see Section 7.2.10,
“JTAG/Scan Interface Signals.”

4.5.12 Instruction TLB Miss Exception (0x1000)

When the effective address for an instruction load, store, or cache operation cannot be
tranglated by the ITLBs, an instruction TLB miss exception is generated. Register settings
for the instruction and data TLB miss exceptions are described in Table 4-17.

Table 4-17. Instruction and Data TLB Miss Exceptions—Register Settings

Register Setting Description
SRRO Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.
SRR1 0-3  Loaded from condition register CRO field
4-12 Cleared

13 0 = data TLB miss
1 = instruction TLB miss
14 0 = replace TLB associativity set 0
1 = replace TLB associativity set 1
15 0 = data TLB miss on store (or C = 0)
1 = data TLB miss on load
16-31 Loaded from bits 16-31 of the MSR

MSR AP 0 EE O FEO O IR 0
SA 0 PR 0 SE O DR O
POW 0 FP 0 BE O RI 0
TGPR1 ME — FE1 O LE  Setto value of ILE
ILE —

If theinstruction TLB miss exception handler failsto find the desired PTE, then apage fault
must be synthesized. The handler must restore the machine state and turn off the GPRs
before invoking the |SI exception (0x0400).

Software table search operations are discussed in Chapter 5, “Memory Management.”

When an instruction TLB miss exception is taken, instruction execution for the handler
begins at offset 0x1000. Table 4-2 shows how the vector address is determined.

4.5.13 DataTLB Miss on Load Exception (0x1100)

When the effective address for a data load or cache operation cannot be translated by the
DTLBs, a data TLB miss on load exception is generated. Register settings for the
instruction and data TLB miss exceptions are described in Table 4-17.

If adata TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state and turn off MSR[TGPR]
before invoking the DSI exception (0x0300).

Software table search operations are discussed in Chapter 5, “Memory Management.”

Chapter 4. Exceptions 4-33



When a data TLB miss on load exception is taken, instruction execution for the handler
begins at offset 0x1100. Table 4-2 shows how the vector address is determined.

4.5.14 DataTLB Miss on Store Exception (0x1200)

When the effective address for a data store or cache operation cannot be translated by the
DTLBs, a data TLB miss on store exception is generated. The data TLB miss on store
exception is also taken when the changed bit (C = 0) for aDTLB entry needsto be updated
for a store operation. Register settings for the instruction and data TL B miss exceptions are
described in Table 4-17.

If adata TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state and turn off the TGPRs before
invoking a DSI exception (0x0300).

Software table search operations are discussed in Chapter 5, “Memory Management.”

When a data TLB miss on store exception is taken, instruction execution for the handler
begins at offset 0x1200. Table 4-2 shows how the vector address is determined.

4.5.15 Instruction Address Breakpoint Exception (0x1300)

The instruction address breakpoint is controlled by the IABR specia-purpose register.
IABR[0-29] holds an effective address to which each instruction is compared. The
exception is enabled by setting IABR[30]. Note that the 602 ignores the trans ation enable
bit (IABR[31]). The exception is taken when an instruction breakpoint address matches on
the next instruction to complete. The instruction tagged with the match is not completed
before the instruction address breakpoint exception is taken.

The breakpoint action can be one of the following:

» Trap to exception vector at offset 0x1300 (default). Table 4-2 shows how the vector
address is determined.

* Soft stop

The bit settings when an instruction address breakpoint exception is taken are shown in
Table 4-18.

4-34 PowerPC 602 RISC Microprocessor User's Manual



Table 4-18. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRRO Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR AP 0 EE O FEO O IR 0
SA 0 PR 0 SE 0 DR O
POW 0 FP 0 BE 0 RI 0
TGPRO ME — FE1 0 LE  Setto value of ILE
ILE —

The default breakpoint action is to trap before the execution of the matching instruction.

The soft stop feature can be enabled only through the COP interface. With soft stop enabled,
the 602 stopsin arestartabl e state, while with hard stop enabled, the 602 stopsimmediately
without attempting to reach a restartable state. Upon restarting from a soft stop, the
matching instructions are executed and compl eted unlessit generates an exception. For soft
stops, the next ten instructions that could have passed the IABR check can be monitored
only by single-stepping the processor. When soft stops are used, the address compare must
be separated by at least 10 instructions.

If soft stop is enabled, only one soft stop is generated before completion of an instruction
with an IABR match, regardless of whether a soft stop is generated before that instruction
for any other reason, such astrace mode on for the preceding instruction or a COP soft stop
request.

Table 4-19 shows the priority of actions taken when more than one mode is enabled for the
same instruction.

Table 4-19. Breakpoint Action for Multiple Modes Enabled for the Same Address

IABR[IE} | MSR[BE] | MSR[SE] | First action Next action Comments

1 1 0 Instruction Trace Enabling both modes is useful only if both
address (branch) trace and address breakpoint interrupts

are needed.

1 0 1 Instruction Trace Enabling both modes is useful only if
address (single-step) different breakpoint actions are required.
breakpoint

0 1 1 Trace None The action for branch trace and single-step
(branch) trace is the same. Enabling both trace

modes is redundant except for hard stop
on branches.

1 1 1 Instruction Trace Enabling all modes is redundant. This
address entry is for clarification only.
breakpoint

Chapter 4. Exceptions 4-35



Note that atrace or instruction address breakpoint exception condition generates a soft stop
instead of an exception if soft stop has been enabled by the JTAG/COP logic. If trace and
breakpoint conditions occur simultaneously, the breakpoint conditions receive higher
priority.

The 602 requires that an mtspr instruction that updates the IABR be followed by a context-
synchronizing instruction. If the mtspr instruction enables the instruction address
breakpoint exception, the context-synchronizing instruction cannot generate a breakpoint
response. The 602 also cannot block a breakpoint response on the context-synchronizing
instruction if the breakpoint was disabled by the mtspr instruction. See Section 2.1.4,
“Synchronization Requirements for SPRs,” for more information on this requirement.

4.5.16 System Management Interrupt (0x1400)

The system management interrupt behaves like an externa interrupt except for the signa
asserted and the vector taken. A system management interrupt is signaled to the 602 by the
assertion of the SMI signal. The interrupt may not be recognized if a higher priority
exception is detected simultaneously or if the M SR[EE] bit is cleared when SMI is asserted.
Note that SMI takes priority over INT if they are recognized simultaneously.

After the SMI is detected (and provided that MSR[EE] is set), the 602 generates a
recoverable halt to instruction completion. The 602 requires the next instruction in program
order to complete (although it may cause an exception to be taken before doing so), block
completion of any following instructions, and allow the completed store queue to drain. If
any higher priority exceptions are encountered in this process, they are taken first and the
system management interrupt is delayed until a recoverable halt is achieved. At this time
the 602 saves state information and takes the system management interrupt.

The register settings for the external interrupt exception are shown in Table 4-20.

Table 4-20. System Management Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to complete
next if no interrupt conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16—31 of the MSR

MSR AP 0 EE O FEO O IR 0
SA O PR O SE O DR O
POW 0 FP 0 BE O RI 0
TGPRO ME — FE1 O LE  Setto value of ILE
ILE —

When a system management interrupt is taken, instruction execution for the handler begins
at offset 0x1400. Table 4-2 shows how the vector address is determined.

4-36 PowerPC 602 RISC Microprocessor User's Manual



The 602 recognizes the interrupt condition (SMI asserted) only if the MSR[EE] bit is set;
and ignores the interrupt condition otherwise. To guarantee that the external interrupt is
taken, the SMI signal must be held active until the 602 takes the interrupt. If the SM1 signal
is negated before the interrupt is taken, the 602 is not guaranteed to take a system
management interrupt. The exception handler must send a command to the device that
asserted SMI, acknowledging the interrupt and instructing the device to negate SMI.

4.5.17 Watchdog Timer Interrupt (0x1500)

The watchdog timer generates a periodic exception based on the carry-out of selected bits
in the time base register. The watchdog timer is controlled by the timer control register
(TCR), which is specific to the 602 and not defined by the PowerPC architecture. The TCR
is shown in Figure 4-5.

CRE ——— L2E Reserved
NWE O

—— WIE

|— SLT

| TI | | | | | | 000000000000000000000000 |

01 2 3 456 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 4-5. Timer Control Register (TCR)
The bitsin the TCR are described in Table 4-21.

Table 4-21. Timer Control Register Bit Settings

Bit Name Description

0-1 TI The timer interval bits indicate the number of clock cycles that should occur before the
watchdog timer interrupt exception is taken.

00 223 clock cycles (ca. 0.25 s)

01 2%*clock cycles (ca. 0.50 s)

10 225 clock cycles (ca. 1.00 s)

11 2% clock cycles (ca. 2.00 s)

Approximate durations assume 33-MHz bus running in 2:1 mode. For example, if it is set as
0b00, as soon as bit 8 is set (that is, after 2e23 clock cycles) a carry-out occurs.

2 CRE Timer core reset enable
0  Timer core reset disabled
1  Timer core reset enabled

3 L2E Level 2 watchdog timer interrupt enable. Enables the watchdog timer level 2 interrupt after a
carry-out occurs from the bit in the time base register specified by the user.

0  Timer level 2 interrupt disabled

1  Timer level 2 interrupt enabled

4 NWE Next watchdog timer interrupt enable
0  Enable next interrupt
1 Disable next interrupt

Chapter 4. Exceptions 4-37



Table 4-21. Timer Control Register Bit Settings (Continued)

Bit Name Description

5 WIE Watchdog timer interrupt enable
0 Interrupt disabled
1 Interrupt enabled

6 SLT Second-level exception taken. This bit is used by software to determine if the watchdog timer
caused the soft reset.

0 Second-level soft reset not taken

1 Second-level soft reset taken

6-31 — —

Software with supervisor-level access can select one of four time periods for the interrupts
by setting TCR[TI], as shown in Table 4-21.

If the watchdog timer is enabled (TCR[WIE] is set), a level-2 interrupt condition is
signalled after a carry-out occurs from the bit specified by the user. If the processor is
operating properly, the exception handler must reset the watchdog timer by setting
TCR[NWE]; otherwise, an internal reset of the processor core occurs after the next
watchdog timer interval. This reset can be disabled by clearing TCR[CRE].

If the 602 is not operating correctly, the exception handler cannot set TCR[NWE];
therefore, when the second carry-out occurs, the watchdog timer asserts RESETO signal
and generates a soft reset to the processor core. RESETO remains asserted until the third
carry-out occurs, at which point it is deasserted and the process can be repeated. Note that
RESETO &l so reflects the HRESET signal value.

The following details and assumptions should be noted with respect to using the watchdog
timer interrupt:
e Theinitial value loaded in the time base register is assumed to be all zeros.
» Thevalue, zero, isincremented
e For TCR[TI] = 0b00 as soon as bit 8 in the time base register is set. That is, acarry-
out occurs after 223 clock cycles).
» For sustained interrupt after 0.25 seconds, software must load the decrementer with
all zeros after every 237 carry-outs. Note that this does not preclude another value
from being loaded into the time base register.

Table 4-22 shows the bit settings after a watchdog timer interrupt is taken.

4-38 PowerPC 602 RISC Microprocessor User's Manual



Table 4-22. Watchdog Timer Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to complete
next if no interrupt conditions were present.

SRR1 0-15 Cleared
16-31 Loaded from bits 16-31 of the MSR

MSR AP 0 EE O FEO O IR 0
SA 0 PR 0 SE 0 DR O
POW 0 FP 0 BE 0 RI 0
TGPRO ME — FE1 0 LE  Setto value of ILE
ILE —

4.5.18 Emulation Trap Exception (0x1600)

The emulation trap exception is taken when a double-precision floating-point instruction,
fctiw, or aload/store string instruction is encountered. An emulation trap exception is also
generated if any of the operand’s associated SP bits are not set for instructions requiring
single-precision values as operands, or if the LT bits are not set for instructions requiring
integer values as operands. Instructions that cause an emulation trap exception arelisted in

Section 6.8, “Instruction Latency Summary.”
Table 4-23 shows the hit settings when an emulation trap exception is taken.

Table 4-23. Emulation Trap Exception—Register Settings

Register Setting Description

next if no interrupt conditions were present.

SRRO Set to the effective address of the instruction that the processor would have attempted to complete

SRR1 0-15 Cleared
16-31 Loaded from bits 16—31 of the MSR

MSR AP 0 EE O FEO O IR 0
SA O PR 0 SE O DR O
POW 0 FP 0 BE O RI 0
TGPRO ME — FE1 O LE S
ILE —

et to value of ILE

Chapter 4. Exceptions

4-39



4-40 PowerPC 602 RISC Microprocessor User's Manual



Chapter 5
Memory Management

This chapter describes the PowerPC 602 microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the PowerPC operating environment
architecture (OEA) for PowerPC processors and aso the 602-specific implementation
features. For information about how the PowerPC architecture defines the memory
management model, refer to Chapter 7, “Memory Management,” in The Programming
Environments Manual.

The primary function of the MMU in a PowerPC processor is the translation of logical
(effective) addresses to physical addresses (referred to as real addresses in the architecture
specification) for memory accesses and 1/0 accesses (/O accesses are assumed to be
memory-mapped). In addition, the MMU provides access protection on a segment, block,
or page basis.

The 602 implementation of the OEA -defined memory management model is similar to that
of the PowerPC 603™ microprocessor with the following differences:

¢ The 602 implements an extra key bit in the SRR1 register that simplifies the table
search software. This feature isimplemented in the PowerPC 603e™ processor.

» The 602 does not support direct-store bus accesses; attemptsto access asegment for
which SR[T] = 1 causesa DSl or an IS| exception depending on the type of access.
The same istrue for the 603e.

« Inaddition to implementing the PowerPC exception model, the 602 can be made to
operate in supervisor mode through the use of the 602-specific Enable Supervisor
Access (esa) and Disable Supervisor Access (dsa) instructions. The ability to
execute the esa instruction from ablock or pageis controlled by esa enable bits (SE)
implemented in the IBATS, PTEG, and ITLB entries, which reside in the MMU.

« In addition to the trand ation/protection mechanisms defined by the PowerPC
architecture, the 602 implements a protection-only mode. Thismodeissimilar tothe
OEA-defined real addressing mode in that the effective addressis used as the
physical address. However, unlike real addressing mode, protection-only mode
offers programmable memory protection. Additional general details are discussed
separately in this overview.

Chapter 5. Memory Management 5-1



* Anadditional NE bitisdefined in IBATsand ITLB that control whether instructions
can be executed from a specified page or block. The NE hit is similar to the OEA-
defined SR[N] bit that controls instruction fetching privileges at the segment level.

¢ The 602-specific MSR[AP] bit provides an additional level of memory protection
when the processor isin supervisor mode. Thishit, whichisvalid only when the 602
isin supervisor mode, can be used to restrict supervisor-level software to accessing
only memory space that is configured as user-level.

Protection-only mode is provided for special-purpose implementations that do not require
the more complete paging functionality required for multipurpose personal computers, but
need memory protection not offered by the OEA-defined real addressing mode. Protection-
only mode is asfollows:

« Each TLB can be configured to provide protection for 32, 4-Kbyte pages per TLB
entry. A total of 4 Mbytes of memory can be protected in each TLB at one time.
Protection consists of 1 bit per 4-Kbyte pageto control instruction fetching (NE bit)
in instruction pages and control write access (WE bit) in the data pages.

« Although the effective address is used as the physical address, the MMU’s page
transl ation mechanism is used to protect memory. In protection-only mode, only the
24-bit virtual segment ID (VSID) in segment register 0 (SRO) isused. ThisVSID
aso functions as a process ID in protection-only mode. Only the settings for the
page from SRO are used in this mode. Other entries can be written to, but are not
used.

¢ The 602 provides programmable default cache control bits (WIMG) in the HIDO
register to be used when the processor is running in real addressing mode or
protection-only mode.

* The ESA enable base register (SEBR) and ESA enable register (SER) control the
execution of the 602-specific esa instruction for each of the 32, 4-Kbyte pages of a
128-Kbyte block of memory at any one time.

Two general types of accesses generated by PowerPC processors require address
tranglation—instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physica
address mapping for instruction and data accesses. The segment information tranglates the
effective addressto an interim virtual address, and the page table information translates the
virtual addressto a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as on-
chip segment registers on 32-bit implementations (such as the 602). In addition, two
tranglation lookaside buffers (TLBs) are implemented on the 602 to keep recently-used
page address trandations on-chip. Although the PowerPC OEA describes one MMU
(conceptually), the 602 hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be accessed independently (and simultaneously).

5-2 PowerPC 602 RISC Microprocessor User's Manual



Therefore, the 602 is described as having two MMUSs, one for instruction accesses (IMMU)
and one for data accesses (DMMU).

The block address trandation (BAT) mechanism is a software-controlled array that stores
the available block addresstransglations on-chip. BAT array entriesareimplemented as pairs
of BAT registers that are accessible as supervisor specia-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the 602, they reside in the
instruction and data MMUs respectively.

The MMUSs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement apaged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.2, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUs.

In protection-only mode, the 602 provides protection for up to 4 Mbytes of memory per
TLB. Inthis case, effective addresses are not translated through the TL Bs, but the TLB miss
exceptions are still used to access the protection bits, NE and WE, stored in memory. Note
also that ISl and DSI exceptions can still be caused by access protection violations.

This mode does not affect use of the BATSs, which are available for protection and
tranglation whenever tranglation is enabled (MSR[DR] or MSR[IR] = 1) and are maintained
by the system software. As is the case with OEA-defined operations, an effective address
match in the BATs takes priority over ahit in the TLBs in protection-only mode.

5.1 MMU Features

The 602 implements the memory management specification of the PowerPC OEA for 32-
bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tablesin the generation of 32-bit physical addresses. PowerPC processors
aso have a block address trandation (BAT) mechanism for mapping large blocks of
memory. Block sizes range from 128 Kbytes to 256 Mbytes and are software-
programmable.

In addition, the 602 implements a protection-only mode in which each TLB protects up to
128 Kbytes per entry (4 Mbytes per TLB). Page address translation is not performed by the
TLBsin protection-only mode; however, the BAT mechanism is not affected in protection-
only mode and it still implements both protection and translation of the effective addresses
as described earlier.

Chapter 5. Memory Management 5-3



Table5-1 summarizes al 602 MMU features including the architectural features of
PowerPC MMUs (defined by the OEA) for 32-bit processors and the implementation-
specific features provided by the 602.

Table 5-1. MMU Features Summary

Feature Where Feature
Category Defined
Address OEA 232 pytes of effective address
ranges = -
2°“ bytes of virtual address
232 pytes of physical address
Page size OEA 4 Kbytes
Segment size OEA 256 Mbytes
Block address OEA Range of 128 Kbyte—256 Mbyte sizes
translation - - -
Implemented with IBAT and DBAT registers in BAT array
Memory OEA Segments selectable as no-execute through the use of the SR[N] bit
protection -
Pages selectable as user/supervisor and read-only
Blocks selectable as user/supervisor and read-only
602 Additional no-execute protection bits (NE) that allow no-execute protection at the
page and block level, in addition to the OEA-defined SR[N] bit that provides no-
execute protection on a per-segment basis.
SE bit that controls whether the 602’s esa instruction can be executed from a
particular 4-Kbyte page
Protection-only mode. Provides memory protection without address translation. Unlike
the OEA-defined real addressing mode, protection-only mode provides memory
protection for the 602-specific no-execute bit (NE), SE bit (to enable or disable use of
the esa instruction), and WE bit, which controls whether blocks or pages are write-
enabled.
Page history OEA Referenced and changed bits defined and maintained
Page address OEA Translations stored as PTEs in hashed page tables in memory
translation - - - -
Page table size determined by mask in SDR1 register
602 NE and SE bits defined in PTEs control no-execute and esa execution, respectively.
Cache 602 The 602 implements programmable default cache control bits (WIMG) in HIDO used
attributes when address translation is disabled (MSR[DR] or MSR[IR] = 0) or when the
processor is in protection-only mode (HIDO[PO] = 1.)
TLBs OEA Instructions for maintaining optional TLBs (tIbie instruction in 602)
602 32-entry, two-way set associative ITLB
32-entry, two-way set associative DTLB
Alternate use for ITLB and DTLB entries in protection-only mode—Each ITLB entry
holds 32 NE bits that indicate whether the corresponding 4-Kbyte page is configured
as a no-execute page; each DTLB entry holds 32 WE bits that control whether the
corresponding page is write-enabled.
5-4 PowerPC 602 RISC Microprocessor User's Manual



Table 5-1. MMU Features Summary (Continued)

Feature
Category

Where
Defined

Feature

Segment
descriptors

OEA

Stored as segment registers on-chip

Page table
search support

602

Three MMU exceptions defined: ITLB miss exception, DTLB miss on load exception,
and DTLB miss on store (or C = 0) exception; MMU-related bits set in SRR1 for these
exceptions.

IMISS and DMISS registers (missed effective address)
HASH1 and HASH?2 registers (PTEG address)

ICMP and DCMP registers (for comparing PTES)

RPA register (for loading TLBs)

tlbli rB instruction for loading ITLB entries
tlbld rB instruction for loading DTLB entries

Shadow registers for GPRO-GPR3 that can use r0-r3 in table search handler without
corrupting rO—r3 in context that was previously executing. These registers are
available as r0-r3 when MSR[TGPR] is set. MSR[TGPR] is a 602-specific bit that
when set maps instruction accesses that would have been to GPRO-GPR3 to 602-
defined shadow registers (TGPRO-TGPR3). The 602 automatically sets MSR[TGPR]
whenever one of the three TLB miss exceptions occurs, allowing these exception
handlers to have four registers that are used as scratchpad space without having to
save or restore this part of the machine state that existed when the exception
occurred. Note that MSR[TGPR] is restored to the value in SRR1 when the rfi
instruction is executed.

Protection-
only mode

602

The 602 provides an additional memory access mode for which there is no address
translation (EA = physical address), but for which memory protection is provided for
each 4-Kbyte page defined by the TLBs. This protection includes the NE bit, which
provides no-execute protection, the SE bit, which controls the use of esa supervisor
access, and the WE bit, which controls whether memory can be written. These
additional bits are defined in the TLBs and the BATs and are propagated and
managed through portions of the architecturally-defined page translation mechanism.

To support the ESA supervisor access functionality in protection-only mode, the 602
defines an ESA enable register (SER) and an ESA enable base register (SEBR) that
control whether the esa instruction can be executed in each specified 4-Kbyte page.

Support for
esal/dsa
supervisor
access

602

The 602 defines resources to support a way for certain user-level programs to operate
in supervisor mode without using the OEA-defined exception mechanism. When an
enabled esa instruction is executed, the processor is given access to supervisor-level
instructions, registers, and memory regions without requiring synchronization or
changing the program flow.

The 602 defines MSR[SA] which is used to indicate when processor has accessed
supervisor mode through the use of the esa instruction. This bit is set automatically
when the esa instruction is successfully executed. If this bit is not set, the dsa
instruction cannot execute and a program exception occurs.

User-level
memory
access option
for supervisor
level

602

The 602 defines an additional bit, MSR[AP], that controls supervisor-level access to
memory spaces defined as user-level access only. This bit is checked only when the
processor is in supervisor mode (MSR[PR] = 0). If this bit is set, the processor can still
access registers and instructions defined as supervisor-level only, but can access only
those memory locations configured as user-level only. The processor can access
memory locations configured as supervisor-level only if MSR[PR] = MSR[AP] = 0.

Chapter 5. Memory Management 5-5




5.1.1 Overview of PowerPC 602 Processor-Specific Features
This section provides an overview of 602-specific features that involve the MM U.

5.1.1.1 Instruction-Related Protection Bits—NE and SE

The 602 provides resources that control instruction fetching and the ability to execute the
esa instruction. Thisfunctionality is controlled by the NE and SE bits, which are described
asfollows:

¢ NE bit—No-execute bits are defined in the IBATs and ITLB entries (and
consequently in the PTEs that define instruction space). The NE bit controls the
ability to execute instructions from the block or page defined by the IBAT or PTE.
If NE is set, instructions cannot be fetched from the corresponding block or page;
attempting to do so causes an ISl instruction.

» SE bit—The SE bit controls whether the esa instruction can be executed from the
corresponding block or page in memory. If the SE bit is set (and fetching is enabled
for the same block or page), the esa instruction can execute, which puts the
processor in supervisor mode. If the SE bit is cleared, the esa instruction can be
fetched, but is not allowed to execute. Information that indicates whether the esa
instruction can be executed follows the instruction through the 602 instruction
pipeline and causes an illegal instruction program exception when an attempt is
made to execute an esa instruction that is not enabled. Note that the SE bitisadon’t
careif the NE bit is set.

For more information about the esa and dsa instructions, see Section 2.3.9, “Using
the esa I nstruction for Supervisor-Level Access.”

Table 5-2 shows the access permissions for the SE and NE bits. Note that as with ITLB
access permissions, SRO[T] or SRO[N] are not used to determine DTLB access privileges.

Table 5-2. Instruction Space Access Permissions

NE | SE Meaning
0 0 The esa instruction cannot be executed. All other valid instructions can be executed.
0 1 Instructions can be fetched and esa instructions can be executed.
1 X No access. If NE is set, SE is a don’t care; no instructions can be fetched including
the esa instruction; attempting to execute an instruction causes an IS exception.

5.1.1.2 ESA Access and Memory Management

The 602 can be made to operate in supervisor mode either by taking an exception or by
executing the 602-specific Enable Supervisor Access (esa) instruction. Executing the esa
instruction allows the processor to access supervisor-level instructions, registers, and
memory without encountering the latencies associated with the kind of exception handling
required for processors used in multipurpose personal computers. Such latencies include
synchronization to ensure precise operation, and the pipeline and memory access latencies
associated with having to refetch from a new instruction path.

5-6 PowerPC 602 RISC Microprocessor User's Manual



Note that after the esa instruction has been successfully executed, the program can fetch
instructions from any page defined as instruction space for which fetching is enabled
regardless of the setting of the corresponding SE bit. The SE bit controls only the execution
of the esa instruction itself.

When the esa instruction is executed, MSR[SA, EE, PR, AP] hits are saved to the ESASRR
and those bits are automatically set asfollows (SA =1, EE=0, PR=0, AP = 0). Clearing
MSR[EE] disables external interrupts, clearing MSR[PR] puts the processor in supervisor
mode, and clearing MSR[AP] gives the processor supervisor-level access to memory
locations. MSR[SA] isabit that indicatesthat the processor is operating in thisesa-initiated
supervisor mode. This hit is cleared when the Disable Supervisor Access instruction (dsa)
isexecuted. If MSR[SA] is not set, attempting to execute dsa causes a program exception.

The processor remains in supervisor mode until the dsa instruction is executed. Note that
the dsa instruction can be executed from any memory location for which instruction
fetching is enabled—that is, the dsa instruction can be executed regardless of the setting of
SE for the page in which it resides. When the dsa instruction is executed, MSR[SA, EE,
PR, AP] arerestored from the ESASRR and esa supervisor access ends.

For more information about the esa and dsa instructions, see Section 2.3.7, “ PowerPC 602
I mplementation-Specific Instructions.”

Implementation of the ESA supervisor access feature affects the 602's MMU
implementation in the following ways:

« Theexecution of theesainstruction isenabled on apage or block basis, sothe MMU
tranglation mechanism must be used to configure memory to allow or disallow this
functionality. An additional SE hit is provided in the ITLB entries and IBATs to
enable the esa instruction. Configuration of memory space defined by TLBsis
handled by using the 602-defined TLB Load Instruction (tIbli) and TLB Load Data
(tIbld) instructions. BATs are configured by using the mtspr instruction.

« Thisfacility can be used regardless of whether the processor uses one of the
architecturally defined translation mechanisms or the 602-specific protection-only
mode. When the esa instruction is enabled in protection-only mode (for which the
transl ation mechanism is not used to form the physical address, EA = PA), resources
such asthe RPA and TLBsthat are otherwise defined for trandl ation are redefined to
support memory protection. In protection-only mode, the ESA enableregister (SER)
and ESA enable base register (SEBR) control esa execute privileges for each of the
32 pages of a128-Kbyte block of memory.

« Note that instruction address trandation must be enabled (MSR[IR] = 1) for esato
be executed; therefore, esa cannot be executed when the processor isin real
addressing mode.

Chapter 5. Memory Management 5-7



5.1.1.3 Protection-Only Mode Overview

The 602 provides an additional memory access mode for which there is no address
tranglation (effective address = physical address), but for which some memory protection
is provided. This protection includes the NE bit, which provides no-execute protection on
apage level, the SE bit, which controls the use of esa/dsa supervisor access, and the WE
bit, which controls whether memory can be written to on a page basis. In protection-only
mode, additional bits are defined in the TLBs and are propagated and managed through
portions of the architecturally-defined page trand ation mechanism.

In protection-only mode, the TLBs can be configured to provide protection for 32, 4-Kbyte
pages per TLB entry. The 602 provides one 32-entry, two-way set-associative TLB for
instructions and one for data. Therefore, atotal of 4 Mbytes of memory can be protected in
each TLB at onetime—that is, 128 Kbytes per entry (32 x 4 Kbytes) and 4 Mbytesper TLB
(2 x 16 x 128 Kbytes).

Protection consists of 1 bit per 4-Kbyte page to inhibit instruction fetching (NE bit) in the
ITLB and to enable writes (WE bit) in the DTLB.

The TLB lookup procedure in protection-only mode is similar to that used in page address
tranglation; however, only segment register entry 0 (SRO) is used. Other segment register
entries can be written to, but are not used for address trandlation. The TLB lookup process
isdescribed in Section 5.6.1.1, “TLB Missesin Protection-Only Mode.”

5.1.2 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes aload, store, or cache instruction, and when it fetches the next
instruction. The effective address is trandlated to a physical address according to the
procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.3 MMU Organization

Figure5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search of the page
tablesfor PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.

5-8 PowerPC 602 RISC Microprocessor User's Manual



Figure 5-2 and Figure 5-3 show the conceptual organization of the 602 instruction and data
MMUSs, respectively. The instruction addresses shown in Figure 5-2 are generated by the
processor for sequential instruction fetches and addresses that correspond to a change of
program flow. Data addresses shown in Figure5-3 are generated by load and store
instructions and by cache instructions.

As shown in the figures, after an address is generated, the high-order bits of the effective
address, EAO-EA19 (or asmaller set of address bits, EAO-EAN, in the cases of blocks), are
trandlated into physical address bits PAO—PA19. The low-order address bits, A20-A31 are
untranslated and therefore identical for both effective and physical addresses. After
tranglating the address, the MM Us pass the resulting 32-bit physical addressto the memory
subsystem.

In addition to the high-order address bits, the MMUs automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of MSR[PR] and MSR[AP] when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the accessisfor a
load or astore operation. Thisinformation isthen used by the MM Usto appropriately direct
the address trandlation and to enforce the protection hierarchy programmed by the
operating system. Section 4.2, “ Exception Processing,” describes the MSR, which controls
some of the critical functionality of the MMUs.

The figures show the way in which the A21-A26 address bits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits A20 and PAO-PA19) of the two
selected cache blocks to determine if a cache hit has occurred. In the case of a cache miss,
the instruction or data accessis then forwarded to the businterface unit which then initiates
an external memory access.

Chapter 5. Memory Management 5-9



[ ] Optional

Data Instruction
Accesses Accesses
[}
3 2
<< L
i I
I o
o <
= w A20-A31
MMU L.
(32-Bit) <
EA4-EA19 EA15-EA19
EAO-EA3
> IBATOU
EAO0-EA14 IBATOL
0| Segment Registers :
: IBAT3U
. IBAT3L
EA15-EA19
15 ~
_ >X)
Upper 24 bits of
virtual address
“onchip | SaUEA T DBATOU
R T DBATOL
I (optional) | . BAT )
L e — ° Hit
DBAT3U
DBAT3L
- = — -
Page Table |
Search Logic
| (optional) | PAO—PA14 o
L — — — 1 2
PA15-PA19 &
[$V]
<<
SDR1 SPR25 PAO-PA19
PAO-PA19
é‘
PAO-PA31

Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations

5-10

PowerPC 602 RISC Microprocessor User's Manual




Instruction

Unit A20-A31
BPU
[}
<
3 IMMU
<
EAO-EA3 wy
" IBAT Array
Q
% 0| Segment Registers | IBATOU
2 . 2 IBATOL
L~ . w | EAO-EA14 .
. é = .
15 i IBAT3U
IBAT3L
EA4-EA19
mB vy
[ [
0 | Cache
0 TAGS
15
Select
A21-A26
[ 63 |PAO-PA19, A20
(X
\
IMISS SPR980
ICMP SPR981
Y
——
SDR1 SPR25 PAO-PA19 = Compare
HASH1 SPR978
HASH2 SPR979 C‘p‘
RPA SPR982 -
| Cache
Hit/Miss
SER SPR990
SEBR SPR991
/
PAO-PA31

Figure 5-2. PowerPC 602 Microprocessor IMMU Block Diagram

Chapter 5. Memory Management

5-11



Load/Store

Unit A20-A31
()
<
: DMMU
<
11}
Y
_ | EAO-EA3 DBAT Array
[}
3 -
= 0| Segment Registers & DBATOU
@ R Z DBATOL
L 5 . i .
. OI _ .
< | EAO-EAL4
15 o DBAT3U
DBAT3L
EA4-EA19
DTLB
\ I
[ [
0 D Cache
0 TAGS
15 Select
A21-A26
63 |PAO0-PA19, A20
f"
VKX '
DMISS SPR976 PAO—PA19 T
DCMP SPR977 > Compare
I |
SDR1 SPR25 = '3..5&?2?
HASH1 SPR978
HASH2 SPR979
RPA SPR982
Y
PAO-PA31

Figure 5-3. PowerPC 602 Microprocessor DMMU Block Diagram

5-12 PowerPC 602 RISC Microprocessor User's Manual



5.1.4 Address Translation Mechanisms

PowerPC processors support four types of addresstrandation. In addition, the 602 supports
an additional protection-only mode not defined by the PowerPC architecture. The memory
management modes supported by the 602 are as follows:

¢ Page address trand ation—trangl ates the page frame address for a 4-Kbyte page size

¢ Block addresstranglation—trand ates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte.

» Direct-store interface address trandl ation—used to generate direct-store interface
accesses on the external bus; not implemented in the 602.

» Rea addressing mode trand ation—when address trandlation is disabled, the
physical addressisidentical to the effective address.

¢ Protection-only mode—An optional configuration of the TLBsthat offers no-
execute and write-enable protection for up to 4 Mbytes of memory per ITLB and
DTLB, respectively. Although the effective address is used as the physical address,
the MMU'’s trand ation mechanism is used to enforce protection. Protection-only
mode is described in Section 5.6, “ Protection-Only Mode.”

Figure 5-4 shows the address translation mechanisms provided by the 602 MMUSs. The
segment descriptors shown in the figure control the page address translation mechanism.
When an access uses page address trandlation, the appropriate segment descriptor is
required. In 32-bit implementations, one of the 16 on-chip segment registers (which contain
segment descriptors) is selected by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space (selected when the direct-
storetranglation control bit (T bit) in the corresponding segment descriptor is set). Note that
the direct-store interface is present only for compatibility with existing I/O devices that
used this interface. When an access is determined to be to the direct-store interface space,
the 602 takes a DSI exception as described in Section 4.5.3, “DSI Exception (0x0300).”

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical addressfor the page residesin an on-
chipTLB andisavailablefor quick access. However, if the page addresstrandlation misses
in an on-chip TLB, the MMU causes a search of the page tables in memory (using the
virtual address information and a hashing function) to locate the required physical address.
When this occurs, the 602 vectors to exception handlers that search the page tables with
software.

Chapter 5. Memory Management 5-13



Block address translation occurs in parallel with page address translation and is similar to
page address trand ation; however, fewer high-order effective address bits are translated
into physical address bits (morelow-order address bits (at |east 17) are untranslated to form
the offset into a block). Also, instead of segment descriptors and a TLB, block address
tranglations use the on-chip BAT registers as a BAT array. If an effective address matches
the corresponding field of a BAT register, the information in the BAT register is used to
generate the physical address; in this case, the results of the page trandlation (occurring in
parallel) areignored (even if the segment corresponds to the direct-store interface space).

HDOPOJ=1 2

31

Effective Address

Address Translation Disabled

MMU Translation  ©
used for
protection only

/

4

Look up Protection
r—

Segment Descriptor

Match with BAT Reg-

Translation
(Not supported on the 602)
|

DSI/IS| exception

Page Address
Translation
(See Section 5.1.7.2)

|

bits in TLB Located isters
|
(T = 1) | |
Direct-Store Interface (T=0) Block Address
Translation

(see Section 5.3)

I (MSRIIR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address =

0 51 Physical Address
Virtual Address (see Section 5.2)
Protection Only Mode
Effective Address = A
Physical Address Look Up in
(see Section 5.6) Page Table
0 31 0 ' 310 y 310 ' 31

Physical Address | |

Physical Address

Physical Address

Physical Address

Figure 5-4. Address Translation Types

5-14

PowerPC 602 RISC Microprocessor User's Manual



Real addressing mode translation occurs when address trangdlation is disabled; in this case
the physical address generated is identical to the effective address. Instruction and data
address trandation is enabled with the MSR[IR] and MSR[DR] bits, respectively. Thus
when the processor generates an access, and the corresponding address translation enable
bitin MSR (MSR[IR] for instruction accesses and MSR[DR] for data accesses) is cleared,
the resulting physical address is identical to the effective address and al other trandlation
mechanisms are ignored.

Like real addressing mode, the 602-specific protection-only mode does not use the address
translation mechanism to generate a physical address. However, unlike the real addressing
mode, the protection-only mode provides memory protection features that require the use
of the address trandlation mechanism. See Section 5.6, “Protection-Only Mode,” for more
information about protection-only mode.

Table 5-3 shows which 602 functions can be used in the four translation/protection modes
supported by the 602.

Table 5-3. PowerPC 602 Microprocessor Feature Mapping

MMU Mode esa Supervisor Support for No- Support for Write- Use of Use of
Access (SE bit) Execute (NE Bit) Enable (WE Bit) MSR[AP] | HIDO[WIMG]

Page address Yes Yes No Yes No

translation

Block address Yes Yes No Yes No

translation

Real addressing No No No Yes Yes

mode

Protection-only Yes Yes Yes Yes Yes

mode

5.1.5 Memory Protection Facilities

In addition to the trandation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table5-4 shows the eight
protection options supported by the MMUs for pages along with page address translation.

Table 5-4. Access Protection Options for Pages

User Read Supervisor Read .
’ User Supervisor
Option Write Write
I-Fetch Data I-Fetch Data

Supervisor-only — — — v v v
Supervisor-only-no-execute — — — — v v
Supervisor-write-only v v — v v v
Supervisor-write-only-no-execute — v — — v v

Chapter 5. Memory Management 5-15



Table 5-4. Access Protection Options for Pages (Continued)

User Read Supervisor Read .
. User Supervisor
Option Write Write
I-Fetch Data I-Fetch Data

Both user/supervisor v v v v v v
Both user/supervisor-no-execute — v v — v v
Both read-only v v — v v —
Both read-only-no-execute — v — — v —

v access permitted
— protection violation

The operating system programs whether instructions can be fetched from an area of
memory by appropriately using the no-execute option provided in the segment descriptor
or the 602-defined NE bit in the PTE. Each of the remaining optionsis enforced based on
a combination of information in the segment descriptor and the page table entry. Thus, the
supervisor-only option allows only read and write operations generated while the processor
is operating in supervisor mode (corresponding to MSR[PR] = 0) to access the page. User
accesses that map into a supervisor-only page cause an exception to be taken.

The 602 aso defines an additional bit, SE, that controls whether the 602-specific esa
instruction can be executed, thus allowing the processor to operate in supervisor mode
without using the OEA-defined exception mechanism. The relationship between the esa
instruction and the MMU is described in Section5.6.2, “ESA Enable Protection
(Instruction Space Only).”

The 602 aso defines the MSR[AP] bit which controls whether the processor running in
supervisor mode has user- or supervisor-level memory access. MSR[AP] is examined only
when the processisin supervisor mode (MSR[PR] = 0). If this bit is set, the processor has
user-level memory access.

Finally, thereisafacility in the VEA and OEA that allows pages or blocksto be designated
as guarded preventing out-of-order accesses that may cause undesired side effects. For
example, areas of the memory map that are used to control 1/O devices can be marked as
guarded so that accesses (for example, instruction prefetches) do not occur unless they are
explicitly required by the program.

In protection-only mode (HIDO[PO] = 1), pages defined as instruction space are protected
by the NE bitsinthe ITLB and SE bitsfrom the SER. DTLB pages are protected by the WE
bit only. For instruction fetches, the NE bit controls fetching and the SE bit controls the
ability to execute the esa instruction on a per-page basis.

Also in protection-only mode, for store instructions, the WE bit controls write accessto a
page; read accessis permitted for all pages. Thus, al loads from the data cache or memory
are permitted for pages mapped in the DTLB, but stores are disallowed unless the
appropriate WE bit inthe DTLB is set.

5-16 PowerPC 602 RISC Microprocessor User's Manual



Note that the protection-only mode does not use SR[N] to determine execution/protection
violations. In addition, thereis an interaction with the key bitsin segment register 0 (SRO0).
Thisisdescribed in Section 5.6, “Protection-Only Mode.”

For more information on memory protection, see “Memory Protection Facilities,” in
Chapter 7, “Memory Management,” in the The Programming Environments Manual.

5.1.6 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bitsin the
page address translation mechanism that can be used as history information relevant to the
page. Thisinformation can then be used by the operating system to determine which areas
of memory to write back to disk when new pages must be allocated in main memory.
Although these bits are initialy programmed by the operating system into the page table,
the architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required. The software table search routines used by the 602 set the R bit when aPTE
is accessed; the 602 causes an exception (to vector to the software table search routines)
when the C hit in the corresponding TLB entry requires updating. Note that the R and C
bits are not maintained in protection-only mode and as a result do not cause exceptions for
this case.

5.1.7 General Flow of MMU Address Translation

The following sections describe the genera flow used by PowerPC processors to trandate
effective addresses to virtual and then physical addresses.

5.1.7.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
trandationisdisabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing modetranglationis
used (physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, “Real Addressing Mode” Note aso that the
effective address also equals the physical address in protection-only mode; however,
portions of the MMU which are disabled in real addressing mode, are used in protection-
only mode in order to enforce memory protection.

Figure 5-5 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select page
address tranglation.

Chapter 5. Memory Management 5-17



Effective Address
Generated

l-access D-access

Instruction /<(Instru ction b ata\/o\ Data
i i - - Translation Disabled
Translation Disabled Translation Enabled  Translation Enabled (MSR:[DR]Iz 0)

(MSRI[IR] = 0) (MSR[IR] = 1 (MSR[DR] = 1)
Perform Real Perform Real

Add;;isslgic';/rl?de Compare Address with
Instruction or Data BAT
Array (as appropriate)

Addressing Mode
Translation

BAT Array BAT Array (see The Programming
Miss Hit Environments Manual)
HIDO[PO] = 1 >
Access Access
Protected Permitted

Perform Protection—
Only Translation

Access Faulted | Translate Address |
Perform Address Translation
with Segment Descriptor

(see Figure 5-7)

(see Figure 5-27)

Continue Access
to Memory
Subsystem

Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Notethat if the BAT array search resultsin ahit, the accessis qualified with the appropriate
protection bits. The 602 defines additional bits that are maintained in this process—the SE
bit controls whether the esa instruction can be fetched and the NE bit specifies whether
instructions can be executed from the referenced memory location. These bits are described
in Section 2.1.1.4, “BAT Registers,” If the access violates the protection mechanism, an
exception (ISl or DSI exception) is generated.

5.1.7.2 Page Address Translation Selection

If address trandation is enabled (real addressing mode not selected) and the effective
address information does not match with a BAT array entry, MSR[PQ] is checked to see if
protection-only mode is selected. If the PO hit is set, protection-only mode, described in
Section 5.6, “Protection-Only Mode,” is used. If MSR[PQ] is cleared, the segment
descriptor must be located. Note that the 602 does not implement the direct-store interface
and accessesto segmentsfor which SR[T] isset causeaDSI or an | Sl exception, depending
on the type of access. Figure 5-6 also shows the way in which the no-execute protection is
enforced at the SR level; if the N bit in the segment descriptor is set and the accessis an
instruction fetch, the access is faulted as described in Chapter 7, “Memory Management,”

5-18 PowerPC 602 RISC Microprocessor User's Manual



in The Programming Environments Manual. Note that the figure shows the flow for these
cases as described by the PowerPC OEA, and so the TLB references are shown as optional .

As the 602 implements TLBs, these branches are valid, and described in more detail
throughout this chapter.

Address Translation with
Segment Descriptor

Use EAO-EA3 to
Select One of 16 On-Chip
Segment Registers

Check T bitin
Segment Descriptor

Page Address Direct-Store
Translation Segment Address
(T=0) (T=1)

DSI/ISI exception

otherwise
Generate 52-bit Virtual I-Fetch with N bit Set in
Address from Segment Segment Descriptor
Descriptor (No-Execute)
Compare Virtual | \
Address with TLB

Entries I

L — — — - — — 4
~

~
~
~
>~ JTLB
Hit . (See Figure 5-10)
S~
(See T~ -
Perform Page Table ) ~
Search Operation Figure 5-11) >~ o -
Access /O\ Access
Permitted Protected
| Translate Address | Access Faulted
PTE Not PTE Found
Found
| Continue Access
= —=l— to Memory Subsystem
Access Faulted Load TLB Entry
L - - — — 4

— — — Optional to the PowerPC architecture. Implemented in the 602.
*In the case of instruction accesses, causes IS| exception

Figure 5-6. Address Translation with Segment Descriptor

Chapter 5. Memory Management 5-19



If the T bit in the corresponding segment descriptor is O, page address trandation is
selected. The information in the segment descriptor is then used to generate the 52-hit
virtual address. The virtual address is then used to identify the page address tranglation
information (stored as page table entries (PTES) in a page table in memory). For increased
performance, the 602 has two TLBs to store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page trandation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU requires a search of the page table. In this case, the 602 traps to one of three
exception handlers for the system software to perform the page table search. If the PTE is
successfully matched, a new TLB entry is created and the page tranglation is once again
attempted. Thistime, the TLB is guaranteed to hit. Once the PTE is located, the access is
qualified with the appropriate protection hits. If the access is a protection violation (not
alowed), an exception (instruction access or data access) is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and the
TLB miss exception handlers synthesize either an ISl or DS exception to handle the page
fault.

5.1.8 MMU Exceptions Summary

To complete any memory access, the effective address must be trandated to a physica
address. In the 602, an MMU exception condition occurs if this trandation fails for one of
the following reasons:

» Page fault—there is no valid entry in the page table for the page specified by the
effective address (and segment descriptor) and there is no valid BAT trandlation.

« Anaddresstrandation is found but the accessis not allowed by the memory
protection mechanism.

Additionally, because the 602 relies on software to perform table search operations, the
processor a so takes an exception when either of the following occurs:

* Thereisamissin the corresponding (instruction or data) TLB (including protection-
only mode).

» The page table requires an update to the changed (C) bit.

The state saved by the processor for each of these exceptions contains information that
identifiesthe address of thefailing instruction. Refer to Chapter 4, “ Exceptions,” for amore
detailed description of exception processing.

Because a page fault condition (PTE not found in the page tables in memory) is detected
by the software that performs the table search operation (and not the 602 hardware), it does
not cause 602 exception in the strictest sense in that exception processing as described in
Chapter 4, “Exceptions’ does not occur. However, in order to maintain architectural
compatibility with software written for other PowerPC devices, the software that detects
this condition should synthesize an exception by setting the appropriate bitsin the DSISR

5-20 PowerPC 602 RISC Microprocessor User's Manual



or SRR1 and branching to the ISl or DSI exception handler. Refer to Section 5.5.2, “Table
Search Operation with the PowerPC 602 Microprocessor,” for more information and
examples of this exception software. The remainder of this chapter assumes that the table
search software emulates this exception and refers to this condition as an exception.

The trand ation exception conditions defined by the OEA for 32-bit implementations cause

either the ISl or the DSI exception to be taken as shown in Table 5-5.

Table 5-5. Translation Exception Conditions

Condition

Description

Exception

Page fault (no PTE found)

No matching PTE found in page tables (and no
matching BAT array entry) Note that the 602
hardware does not vector to these exceptions
automatically. It is assumed that the software that
performs the table search operations vectors to
these exceptions and sets the appropriate bits
when a page fault condition occurs

Instruction access:
ISI exception
SRR1[1]=1

Data access:
DSl exception
DSISR[1] =1

Block protection violation

Conditions described for block in “Block Memory
Protection” in Chapter 7, “Memory Management,”
in The Programming Environments Manual. Note
that the table search software can also vector to

these exception conditions

Instruction access:
ISI exception
SRR1[4]=1

Data access:
DSl exception
DSISR[4] =1

Page protection violation

Conditions described for page in “Memory
Segment Model” in Chapter 7, “Memory
Management,” in The Programming Environments
Manual.

Instruction access:
ISI exception
SRR1[4]=1

Data access:
DSI exception

DSISR[4] =1

No-execute protection violation Attempt to fetch instruction when SR[N], IBAT[NE], [ ISI exception
or PTE[NE] = 1 SRR1[3] =1

Instruction fetch from segment where | Attempt to fetch instruction when SR[T] = 1 ISI exception
SR[T] =1 SRR1[3] =1

Data access to segment where

Attempt to perform load or store (including floating-

DSI exception

entry and PTE[G] = 1.

SR[T] = 1 (including floating-point point load or store) when SR[T] = 1 DSISR[5] =1
access) (602-specific condition)

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] = 1 and | ISI exception
memory with MSR[IR] = 1 either matching xBAT[G] = 1, or no matching BAT SRR1[3] =1

In addition to the tranglation exceptions, there are other MM U-related conditions (some of
them defined as implementation-specific and therefore, not required by the architecture)
that can cause an exception to occur in the 602. These exception conditions map to the
processor exception as shown in Table5-6. For example, the 602 aso defines three
exception conditions to support software table searching. The only exception conditions
that occur when MSR[DR] = 0 are the conditions that cause the alignment exception for

Chapter 5. Memory Management 5-21



data accesses. For more detailed information about the conditions that cause the alignment
exception (in particular for string/multiple instructions), see Section 4.5.6, “Alignment
Exception (0x0600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or caching-inhibited (I = 1). These bits are described fully in
“Memory/CacheAccessAttributes,” in Chapter 5, “ Cache Model and Memory Coherency,”
of The Programming Environments Manual. Refer to Chapter 4, “Exceptions,” of this book
and to Chapter 6, “Exceptions,” in The Programming Environments Manual for acomplete

description of the SRR1 and DSISR bit settings for these exceptions.

Table 5-6. Other MMU Exception Conditions for the PowerPC 602 Processor

Condition

Description

Exception

TLB miss for an instruction
fetch

No matching entry found in ITLB

ITLB miss exception
SRR1[13] =1
MSR[14] = 1

TLB miss for a data access

No matching entry found in DTLB for
data access

Load: DTLB miss on load exception
MSRI[14] = 1

Store: DTLB miss on store exception
SRR1[15] =1
MSR[14] =1

Store operation and C =0

Matching DLTB entry has C = 0 and
access is a store

DTLB miss on store exception
SRR1[15] =1
MSR[14] = 1

dcbzwithW=1orl=1

dcbz instruction to write-through or
caching-inhibited segment or block

Alignment exception (not required by
architecture for this condition)

lwarx or stwcx. instruction to
direct-store segment

Reservation instruction or external
control instruction when SR[T] =1

DSI exception
DSISR[5] =1

Floating-point load or store to
direct-store segment

Floating-point memory access when
SR[T] =1

See data access to direct-store
segment in Table 5-5.

Load or store would cause a
direct-store error

Does not occur in 602

Does not apply

eciwx or ecowx attempted

eciwx and ecowx are not supported on
the 602

DSl exception
DSISR[11] =1

Imw or stmw instruction
attempted in little-endian mode

Imw or stmw instruction attempted
while MSR[LE] = 1

Alignment exception

Operand misalignment

Translation enabled and operand is
misaligned as described in Chapter 4,
“Exceptions.”

Alignment exception (some of these
cases are implementation-specific)

Attempt to execute esa
instruction from page or block
for which SE = 0.

The esa instruction was fetched from a
page or block for which it is not
enabled. This could occur either when

either the SE bit or the key equals zero.

lllegal instruction program exception

5-22

PowerPC 602 RISC Microprocessor User's Manual




5.1.9 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up
the block address tranglation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tablesin memory whenever changes are made to the tablesin memory.
When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, alowing the tranglation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the 602 implements all TLB-related instructions except tlbia, which istreated as
anillegal instruction. The 602 also uses some implementation-specific instructions to load
two on-chip TLBs.

Because the MMU specification for PowerPC processorsis so flexible, it is recommended
that the software that uses these instructions and registers be “encapsulated” into
subroutines to minimize the impact of migrating across the family of implementations.

Table 5-7 summarizes 602 instructions that specifically control the MMU. For more
detailed information about the instructions, refer to Chapter 2, “PowerPC 602
Microprocessor Programming Model,” in thisbook and Chapter 8, “Instruction Set,” in The
Programming Environments Manual .

Table 5-7. PowerPC 602 Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#] « rS

mtsrin rS,rB | Move to Segment Register Indirect
SR[rB[0-3]] < IS

mfsr rD,SR Move from Segment Register
rD — SR[SR#]

mfsrin rD,rB | Move from Segment Register Indirect
rD « SR[rB[0-3]]

tibie rB* TLB Invalidate Entry

For effective address specified by rB, TLB[V] < 0

Invalidates both TLB entries indexed by the EA and operates on both the ITLBs and DTLBs
simultaneously invalidating four TLB entries. The index corresponds to EA[16-19].

tlbsync* TLB Synchronize
Implemented as a no-op on the 602

tibli TLB Load Instruction
(602-specific) | Loads data provided in the ICMP, IMISS, and RPA registers into the ITLB. Note that the format for
RPA differs if the 602 is running in protection-only mode.

Chapter 5. Memory Management 5-23



Table 5-7. PowerPC 602 Microprocessor Instruction Summary—Control MMUs

Instruction

Description

tibld
(602-specific)

TLB Load Data
Loads data provided in the DCMP, DMISS, and RPA registers into the DTLB. Note that the format
for RPA differs if the 602 is running in protection-only mode.

* These instructions are defined by the PowerPC architecture, but are optional.

Table 5-8 summarizes the registers that the operating system uses to program the 602
MM USs. These registers are accessible to supervisor-level software only. Theseregistersare
described in Chapter 2, “Register Set,” in The Programming Environments Manual. The
602-specific registers are described in Chapter 2, “PowerPC 602 Microprocessor
Programming Model,” of this book.

Table 5-8. PowerPC 602 Microprocessor MMU Registers

Register

Description

Segment registers
(SR0O-SR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of the
PowerPC architecture. The segment registers are accessed by the mtsr, mtsrin, mfsr,
and mfsrin instructions. In protection-only mode, the settings in SRO are used for the
entire memory space.

BAT registers
(IBATOU-IBAT3U,
IBATOL-IBAT3L,
DBATOU-DBAT3U,
and DBATOL-DBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers
(DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined as 32-
bit registers in 32-bit implementations. These are special-purpose registers that are
accessed by the mtspr and mfspr instructions. Two additional bits are specified in the
602—the NE bit provides no-execute protection, and the SE bit controls whether the esa
instruction can be executed from the specified block.

SDR1

The SDR1 register specifies the variables used in accessing the page tables in memory.
SDR1 is defined as a 32-bit register for 32-bit implementations. This SPR is accessed by
the mtspr and mfspr instructions.

Instruction TLB miss
address and data TLB
miss address registers
(IMISS and DMISS)

When a TLB miss exception occurs, the IMISS or DMISS register contains the 32-bit
effective address of the instruction or data access, respectively, that caused the miss.
Note that the 602 always loads a big-endian address into the DMISS register. These

registers are 602-specific.

Primary and secondary
hash address registers
(HASH1 and HASH2)

HASH1 and HASH2 hold the primary and secondary PTEG addresses that correspond to
the address causing a TLB miss. These PTEG addresses are automatically derived by
the 602 by performing the primary and secondary hashing function on the contents of
IMISS or DMISS, for an ITLB or DTLB miss exception, respectively.

These registers are 602-specific.

Instruction and data
PTE compare registers
(ICMP and DCMP)

The ICMP and DCMP registers contain the word to be compared with the first word of a
PTE in the table search software routine to determine if a PTE contains the address
translation for the instruction or data access. The contents of ICMP and DCMP are
automatically derived by the 602 when a TLB miss exception occurs.

These registers are 602-specific.

Required physical
address register (RPA)

The system software loads a TLB entry by loading the second word of the matching PTE
entry into the RPA register and then executing the tlbli or tIbld instruction (for loading the
ITLB or DTLB, respectively). The organization of the RPA contents is different when the
processor is running in protection-only mode.

This register is 602-specific.

5-24

PowerPC 602 RISC Microprocessor User's Manual




Table 5-8. PowerPC 602 Microprocessor MMU Registers (Continued)

Register Description
ESA Enable Base SEBR[0-14] are compared with EA[0-14] to determine whether the address associated
Register (SEBR) with the EA is in a 4-Kbyte page in which the esa instruction can be executed. If the bits

(protection-only mode) match, EA[15-19] identify the bit in the SER that corresponds to the page of the EA.

ESA Enable Register The SER register is composed of 32 SE bits which, if they are set, enable the execution of
(protection-only mode) the esa instruction for the corresponding 4-Kbyte page.

Note that the 602 contains other features that don’t specifically control the 602 MMU but
that are implemented to increase performance and flexibility. These are as follows:

e Complete set of shadow segment registersfor theinstruction MMU. Theseregisters
are invisible to the programming model, as described in Section 5.4.4, “TLB
Description.”

* Temporary GPRO-GPR3. Theseregistersare available asr 0—+ 3when MSR[TGPR]
isset. The 602 automatically sets M SR[TGPR] whenever one of the three TLB miss
exceptions occurs, allowing these exception handlers to have four registers that are
used as scratchpad space, without having to save or restore this part of the machine
state that existed when the exception occurred. Note that MSR[TGPR] isrestored to
thevaluein SRR1 whentherfi instruction isexecuted. Refer to Section 5.5.2, “ Table
Search Operation with the PowerPC 602 Microprocessor,” for code examples that
take advantage of these registers.

In addition, the 602 also automatically saves the values of CR[CRQ] of the executing
context to SRR1[0-3] whenever one of the three TLB miss exceptions occurs. Thus, the
exception handler can set CR[CRO] bits and branch accordingly in the exception handler
routine, without having to save the existing CR[CRQ] bits. However, the exception handler
must restore these bits to CR[CRO] before executing the rfi instruction. There are also four
other hits saved in SRR1 whenever a TLB miss exception occurs that give information
about whether the access was an instruction or data access, and if it was a data access,
whether it wasfor aload or astoreinstruction. Also these bits give someinformation related
to the protection attributes for the access, and which set in the TLB will be replaced when
the next TLB entry is loaded. Refer to Section 5.5.2.1, “Resources for Table Search
Operations,” for more information on these bits and their use.

5.2 Real Addressing Mode

If address trandlation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

Chapter 5. Memory Management 5-25




For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to “Synchronization Requirements for Special Registers and for
Lookaside Buffers’ in Chapter 2, “PowerPC Register Set” in The Programming
Environments Manual.

Note that in the 602, the HIDO[WIMG] bits provide programmable cache control attributes
when real addressing is used. The real addressing mode also supports the 602-specific
MSR[AP] bit, which can be used to restrict memory accesses by supervisor-level programs
to only user-level memory locations. This bit isvalid only for supervisor mode.

Note that the esa instruction and the protection provided by the SE, WE, and NE bits are
not supported in real addressing mode. For implementations that require such protection
without using address trandlation, the 602 provides a protection-only mode, described in
Section 5.6, “Protection-Only Mode.”

Implementation Note—When the processor is in either rea addressing mode or
protection-only mode, care should be taken when clearing HIDO[G]. The 602 allows out-
of-order loads to access the processor bus. If an out-of-order load follows an instruction that
causes an exception, the load/store unit may pass the out-of-order load operation onto the
system bus. Because this load cannot be cancelled, depending on the temporal position of
the faulting instruction, transl ation may be enabled when the instruction passes through the
instruction stream but may be disabled when the cache control information and address
reach the bus. Setting HIDO[G] prevents such aload operation from accessing the bus.

5.3 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides away to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such asamemory-mapped display buffer or an extremely large array of numerical
data.

The software model for block address trandation in the 602 is described in Chapter 7,
“Memory Management,” in The Programming Environments Manual for 32-bit
implementations.

In addition to the functionality defined by the OEA, the 602 supports two additional
memory-protection features at the block level that are supported by the implementation of
two 602-specific bitsin the IBAT registers that are reserved in the OEA definition. These
are asfollows:

¢ Theno-execute bit (NE), IBATL[21], indicates whether instructions can be fetched
from the current block of memory.

e The ESA enable bit (SE), IBATL[22], indicates whether the execution of the esa
instruction is enabled in the current block of memory.

5-26 PowerPC 602 RISC Microprocessor User's Manual



Figure 5-7 shows the flow when an address hits in a BAT. Note that the flow differs from
that defined for the PowerPC architecture except that IBAT[NE] is checked before the PP
bits are checked.

BAT Array Hit

IBAT
[NE] bit=1
and Instruction fetch

otherwise

otherwise Read Access with
PP =00
Write Access with
PP = any of
00 ISI Exception
PAO-PA31 = BRPN (0-3) || x1
BRPN (4-14)
((EA4—EA14) & (BL)) ||
EA15-EA31
Continue Access to Memory
Subsystem with WIMG in Other Memory Protection
Lower BAT Register Violation Conditions

(See The Programming Environments Manual)
Figure 5-7. Flow for a BAT Array Hit

If the NE bit is set, the SE bit is adon’t care because fetching is disabled for this block.
Although the NE bit controls the ability to fetch instructions (including the esa instruction)
from memory space specified, the SE bit does not prevent the esa instruction from being
fetched. If the SE bit disables the esa instruction, it is not detected until after the processor
attempts to execute the instruction, at which point an illegal instruction program exception
istaken.

Implementation Note—The 602 BAT registersare not initialized by the hardware after the
power-up or reset sequence. Consequently, all valid bits in both instruction and data BAT
areas must be cleared before setting any BAT areafor the first time. Thisis true regardless
of whether address trandation is enabled. Also, software must avoid overlapping blocks
while updating a BAT area or areas. Even if trandation is disabled, multiple BAT area hits
are treated as programming errors and can corrupt the BAT registers and produce
unpredictable results.

Chapter 5. Memory Management 5-27



5.4 Memory Segment Model

The 602 adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address trandation), while providing the programming
flexibility afforded by alarge virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
trandation (BAT) mechanism described in Section 5.3, “Block Address Trandation.” If
HIDO[PQ] hit is set, the processor is in protection-only mode described in Section 5.6,
“Protection-Only Mode” If HIDO[PQ] is not set, the trandation proceeds with the
following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual addressto physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 602.

5.4.1 PTE Format in the PowerPC 602 Microprocessor

Figure 5-8 shows the format of the two words that comprise a PTE for 32-bit
implementations. Note that the NE and SE bits, which are implemented in the IBATS as
described in Section 5.3, “Block Address Trandation,” are also implemented at the page
level. These hits control instruction fetching and the ability to use the esa instruction to
enter supervisor mode.

[] Reserved
01 24 25 26 31
\Y% VSID H | API
RPN | 0 |NE|SE| R | C WIMG | 0 | PP
0 19 20 22 2324 25 28 29 3031

Figure 5-8. Page Table Entry Format—PowerPC 602 Processor

5-28 PowerPC 602 RISC Microprocessor User's Manual



Table 5-9 lists the corresponding bit definitions for each word in a PTE as defined above.

Table 5-9. PTE Bit Definitions—PowerPC 602 Processor

Word Bit Name Description
0 0 \% Entry valid (V = 1) or invalid (V = 0)

1-24 VSID Virtual segment ID

25 H Hash function identifier

26-31 | API Abbreviated page index

1 0-19 RPN Physical page number

20 — Reserved

21 NE No execute. The NE bit controls execute privileges for the page. If this bit is set,
instructions cannot be fetched from this page. Note that setting SR[N] also inhibits
execute privileges on a 256-Mbyte basis and overrides a setting of zero for the NE bit.
The NE bit is valid only in instruction space. This bit is 602-specific.

22 SE Special execute. The SE bit controls whether the esa instruction, which puts the
processor in supervisor mode, can execute from this page.The SE bit is valid only in
instruction space. This bit is 602-specific.

23 R Referenced bit

24 C Changed bit

25-28 | WIMG Memory/cache control bits

29 — Reserved

30-31 | PP Page protection bits

5.4.2 Page History Recording

Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 602 hardware and the table search
software. The operating system uses this information to determine which areas of memory
to write back to disk when new pages must be alocated in main memory. Referenced and
changed recording is performed only for accesses made with page address translation and
not for tranglations made with the BAT mechanism or for accesses that correspond to
protection-only mode. Furthermore, R and C bits are maintained only for accesses made
while address trandlation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 602, the referenced and changed bits are updated as follows:
e For TLB hits, the C bit is updated according to Table 5-10.

¢ For TLB misses, when atable-search operation isin progressto locate aPTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

Chapter 5. Memory Management 5-29




Table 5-10. Table Search Operations to Update History Bits—TLB Hit Case

Rand C bits Processor Action
in TLB entry
00 Combination doesn’t occur
01 Combination doesn’t occur
10 Read: No special action
Write: Table search operation required to update C bit. Causes a DTLB miss on store exception
11 No special action for read or write

Table 5-10 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bitsin
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The 602 causes the R hit to be set for the execution of thedcbt or dcbtst instruction to that
page (by causing a TLB miss exception to load the TLB entry in the case of a TLB miss).
However, neither of these instructions cause the C bit to be set.

The update of the referenced and changed bits is performed by PowerPC processors as if
address translation were disabled (real addressing mode trandation). Additionally, these
updates should be performed with single-beat read and byte write transactions on the bus.

5.4.2.1 Referenced Bit

Thereferenced (R) bit of a page islocated in the PTE in the page table. Every time a page
is referenced (with aread or write access) and the R bit is zero, the R bit is then set in the
pagetable. The OEA specifiesthat the referenced bit may be set immediately, or the setting
may be delayed until the memory access is determined to be successful. Because the
reference to a page iswhat causes a PTE to be loaded into the TLB, the referenced bit in all
602 TLB entries is effectively always set. The processor never automatically clears the
referenced hit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set athough the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of thisin
PowerPC systems include the following:

¢ Fetching of instructions not subsequently executed

* Accesses generated by an stwcex. instruction when no store is performed because a
reservation does not exist

» Accesses that cause exceptions and are not completed

5-30 PowerPC 602 RISC Microprocessor User's Manual



5.4.2.2 Changed Bit

The changed bit of apageislocated both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if aTLB isimplemented, asin the 602). Whenever a data store
instruction is executed successfully, if the TLB search (for page address tranglation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is aready set, the
processor does not change the C bit. If the TLB changed bitis 0, it is set and atable search
operation is performed to also set the C bit in the corresponding PTE in the page table. The
602 causes adata TL B misson store exception for this case so that the software can perform
the table search operation for setting the C bit.

The changed hit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and all conditional
branches occurring earlier in the program have been resolved (such that the store is
guaranteed to be in the execution path). Furthermore, the following conditions may cause
the C bit to be set:

¢ The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed because no reservation exists.

« Thestore operation is not performed because an exception occurs before the storeis
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set, they never cause the C hit to be set.

5.4.2.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor; in some scenarios, the architecture allows
that the bits may be set (not absolutely required); and in some scenarios, the bits are
guaranteed to not be set.

In implementations that do not maintain the R and C bits in hardware (such as the 602),
software assistance is required. For these processors, the information in this section till
applies, except that the software performing the updates is constrained to the rules
described (that is, must set bits shown as guaranteed to be set and must not set bits shown
as guaranteed to not be set).

Table 5-11 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over amatching scenario closer to the bottom
of the table. For example, if an stwex. instruction causes a protection violation and there is
no reservation, the C bit is not atered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions and by the cache
management instructions that are treated as a load with respect to address translation.
Similarly, store operations include those operations generated by store instructions and by
the cache management instructions that are treated as a store with respect to address

Chapter 5. Memory Management 5-31



tranglation. In the columns for the 602, the combination of the 602 itself and the software
used to search the page tables (described in Section 5.5.2, “ Table Search Operation with the
PowerPC 602 Microprocessor”) is assumed.

Table 5-11. Model for Guaranteed R and C Bit Settings

R Bit Set C Bit Set
Priority Scenario
OEA 602 OEA 602

1 No-execute protection violation Maybe No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
4 Out-of-order store operation contingent on a branch, Maybe No No No

trap, sc, or rfi instruction, or a possible exception
5 Out-of-order store operation contingent on an exception, | Maybe® No Maybe® No

other than a trap or sc instruction, not occurring
6 Store conditional (stwcx.) with no reservation Maybel | Yes Maybel | Yes
7 In-order instruction fetch Yes? Yes No No
8 Load instruction Yes Yes No No
9 Store or dcbz instruction Yes Yes Yes Yes
10 ichi, dcbt, dcbtst, dcbst, or dcbf instruction Maybe Yes No No
11 dcbi instruction Maybel Yes Maybel Yes

Notes:
1.If Cis set, R is guaranteed to also be set.
2. Includes the case in which the instruction was fetched out of order and R was not set
(does not apply for 602).

For more information, see “Page History Recording” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

5.4.3 Page Memory Protection

The 602 implements page memory protection as it is defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

In addition to the functionality defined by the OEA, the 602 supports two additional
memory-protection features at the page level that are supported by the implementation of
two 602-specific bitsin the PTEs and TLBs. These are as follows:

¢ Theno-execute bit (NE), PTE[21], indicates whether instructions can execute from
the page. Figure 5-10 shows how the NE bit is checked as part of the trandlation
process.

« The ESA enable bit (SE), PTE[22], indicates whether the use of the esa instruction
is enabled for the page.

5-32 PowerPC 602 RISC Microprocessor User's Manual



Note that the NE bit functions like SR[N] by controlling the ability to fetch instructions
from the corresponding memory space. If the NE bit is set, no instructions can be fetched,
including the esa instruction, so in this case the SE bit is a don't care. If the NE bit is
cleared, instructions can be fetched, including the esa instruction, regardless whether the
SE bitisset. If the SE bit iscleared the esa supervisor accessisdisabled. Theesainstruction
can be fetched, but causes an exception when the processor attempts to execute it. For a
detailed flow diagram, see Figure 5-10.

5.4.4 TLB Description

This section describes the hardware resources provided in the 602 to facilitate the page
address trandation process. Note that the hardware implementation of the MMU is not
specified by the architecture, and while this description applies to the 602, it does not
necessarily apply to other PowerPC processors.

Note that the TL Bs are redefined when the processor is operating in protection-only mode.
The low-order 32 bitsof ITLB entries hold 32 NE bits, each of which indicates whether the
corresponding 4-Kbyte page is configured as no-execute. The low-order 32 bits of the
DTLB entries hold 32 WE bits that indicate whether the corresponding 4-Kbyte page is
configured as write-enabled. For more information about protection-only mode, see
Section 5.6, “Protection-Only Mode” The remainder of this section describes TLB
operation when the processor is not running in protection-only mode.

5.4.4.1 TLB Organization
Because the 602 hastwo MM Us (IMMU and DMMU) that operatein parallel, some of the
MMU resources are shared, and some are actually duplicated (shadowed) in each MMU to
maximize performance. Figure 5-9 shows the rel ationships between these resources within
both the IMMU and DMMU, and how the various portions of the effective address are used
in the address translation process.

Chapter 5. Memory Management 5-33



EAO-EA31 Segment Registers

0 78 31
o|T
EAO0-EA3 o o o VSID
> o . .
L] . .
15| T VSID
EA4-EA15
TLB \ \
v[ | -
Line 1
ofv » Compare
EA16-EA19 Select [of o . Line 0
- » Compare
3 | { Compare |

15 c

>

@

-

RPN =

>

(U]

o

R ] T

MW =
» PAO-PA19

Figure 5-9. Segment Register and TLB Organization

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), when there is an exception condition, only one
exception isreported at atime. ITLB miss exceptions are reported when there are no more
instructions to be dispatched or retired (the pipeline is empty), and DTLB miss conditions
are reported when the load or store instruction is ready to be retired. Refer to Chapter 6,
“Instruction Timing,” for more detailed information about the internal pipelines and the
reporting of exceptions.

AsTLB entries are on-chip copies of PTEs in the page tables in memory, they are similar
in structure. TLB entries consist of two words—the high-order word containstheV SID and
API fields of the high-order word of the PTE and the low-order word contains the RPN, the
C bit, the WIMG bits, and the PP bits (as in the low-order word of the PTE). In order to
uniquely identify a TLB entry as the required PTE, the PTE also contains six more bits of
the page index, EA10-EA15 (in addition to the APl bits of the PTE).

5-34 PowerPC 602 RISC Microprocessor User's Manual



When aninstruction or data access occurs, the effective address is routed to the appropriate
MMU. EAO-EA3 select one of the 16 segment regi sters and the remaining eff ective address
bits and the virtual address from the segment register is passed to the TLB. EA16-EA19
then select two entriesin the TLB; the valid bit is checked and EA10-EA15, theVSID, and
API fields for the access are then compared with the corresponding values in the TLB
entries. If one of the entries hits, the NE bit is checked for instruction accesses, the PP bits
are checked for a protection violation, and the C bit is checked. If these bits don’t cause an
exception, the RPN value is passed to the memory subsystem and the WIMG and SE are
then used as attributes for the access.

Although address trandlation is disabled on any reset condition, the valid bits of the BAT
array and TLB entries are not automatically cleared. Thus TLB entries must be explicitly
cleared by the system software (with the tlbie instruction) before the valid entries are
loaded and address trand ation is enabled.

5.4.4.2 TLB Entry Invalidation

For the PowerPC processors, such as the 602, that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optiona tlbie
instruction providesaway to invalidate the TL B entries. Note that the execution of thetlbie
instruction in the 602 invalidates four entries—both the ITLB entries indexed by
EA16-EA19 and both the indexed entries of the DTLB.

The architecture allowstlbieto optionally enable aTL B invalidate signaling mechanismin
hardware so that other processors aso invalidate their resident copies of the matching PTE.
The 602 does not signal the TLB invalidation to other processors nor does it perform any
action when a TLB invalidation is performed by another processor.

Thetlbsync instruction is treated as a no-op on the 602.

The tlbia instruction is not implemented on the 602 and when its opcode is encountered,
anillegal instruction program exception isgenerated. To invalidate all entries of both TLBS,
32 tlbie instructions must be executed, incrementing EA16-EA 19 by one each time. See
Chapter 8, “Instruction Set,” in The Programming Environments Manual for detailed
information about the tlbie instruction.

5.4.5 Page Address Translation Summary

Figure 5-10 provides the detailed flow for the page address trandation mechanism. The
figure includes the checking of the N bit in the segment register and then expands on the
“TLB Hit” branch of Figure 5-6, including the checking of ITLB[NE]. The detailed flow
for the“TLB Miss’ branch of Figure 5-6 is described in Section 5.5.1, “Page Table Search
Operation—Conceptua Flow.” Note that as in the case of block address trandation, if the
dcbz instruction is attempted to be executed either in write-through mode or as caching-
inhibited (W =1 or | = 1), the alignment exception is generated. The remaining checking
of memory protection violation conditions for page address tranglation is described in

Chapter 5. Memory Management 5-35



Chapter 7, “Memory Management,” in The Programming Environments Manual for 32-bit
implementations.

othe?nm

Page Address
Translation

I-Fetch with N Bit Set in
Segment Descriptor
(No-Execute)

Generate 52-Bit
Virtual Address from
Segment Descriptor

Compare Virtual Address
with TLB Entries

(Alignment Exception

TLB Hit
Case
dcbz Instruction otherwise
withWorl=1
r TLB[NE] = 1 and
Instruction Fetch

other\lee

Page Table Continue Access to Mem-
Search Operation ory Subsystem with WIMG
bits from PTE

Check Page Memory
SRRI[3] ~ 1 Protection Violation Condltlons

(See The Programming

ISI Exception Environments Manual)
(See The

Access Permitted Access Prohibited Programming

/< Environments
Store Access W|th

Manual)
PTE [C] = otherwise

Page Memory
Protection Violation

PAO-PA31 — RPN||A20-A31 |

(See Figure 5-11)

Figure 5-10. Page Address Translation Flow for PowerPC 602 Processor—TLB Hit

5-36

PowerPC 602 RISC Microprocessor User's Manual



5.5

Page Table Search Operation

Asstated earlier, the operating system must synthesize the table search algorithm for setting
up the tables. In the case of the 602, the TLB miss exception handlers also use this
algorithm (with the assistance of some hardware-generated values) to load TLB entries
when TLB misses occur as described in Section 5.5.2, “Table Search Operation with the
PowerPC 602 Microprocessor.”

5.5.1 Page Table Search Operation—Conceptual Flow

The table search process for a PowerPC processor varies dlightly for 64-and 32-bit
implementations. The main differences are the address ranges and PTE formats specified.
An outline of the page table search process performed by a 32-bit implementation (such as
the 602) is asfollows:

1

The 32-bit physical address of the primary PTEG is generated as described in
Chapter 7, “Memory Management,” in The Programming Environments Manual for
32-bit implementations.

Thefirst PTE (PTEQ) in the primary PTEG isread from memory. PTE reads should
occur with an implied WIM memory/cache mode control bit setting of ObOO1.
Therefore, they are considered cacheable and burst in from memory and placed in
the cache.

The PTE in the selected PTEG istested for a match with the virtual page number
(VPN) of the access. The VPN isthe VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] =0

— PTE[V] =1

— PTE[VSID] =VA[0-23]

— PTE[API] =VA[24-29]

If amatch is not found, step 3 isrepeated for each of the other seven PTEs in the
primary PTEG. If amatch isfound, the table search process continues as described

in step 8. If amatch is not found within the eight PTEs of the primary PTEG, the
address of the secondary PTEG is generated.

Thefirst PTE (PTEO) in the secondary PTEG isread from memory. Again, because
PTE reads typically have aWIM bit combination of 0b001, an entire cachelineis
burst into the on-chip cache.

The PTE in the selected secondary PTEG istested for amatch with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

— PTE[H] =1

— PTE[V] =1

— PTE[VSID] =VA[0-23]

— PTE[API] = VA[24-29]

Chapter 5. Memory Management 5-37



7. If amatch isnot found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG.

8. If amatchisfound, the PTE iswritten into the on-chip TLB (if implemented, asin
the 602) and the R bit is updated in the PTE in memory (if necessary). If thereisno
memory protection violation, the C bit is aso updated in memory and the table
search is complete.

9. If amatchis not found within the eight PTEs of the secondary PTEG, the search
fails, and a page fault exception condition occurs (either an 1S| exception or aDSI
exception). Notethat the software routinesthat implement thisalgorithm for the 602
must synthesize this condition by appropriately setting the bitsin SRR1 (or DSISR)
and branching to the ISl or DSI handler routine.

Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-11 and Figure 5-12 provide conceptual flow diagrams of primary and secondary
page table search operations, respectively as described in the OEA for 32-bit processors.
Recall that the architecture alows for implementations to perform the page table search
operations automatically (in hardware) or software assist may be required, as is the case
with the 602. Also, the elements in the figure that apply to TLBs are shown as optiona
because TLBs are not required by the architecture.

Figure 5-11 shows the case of adcbz instruction that is executed withW =1 or | = 1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated in the case of a memory
protection violation.

5-38 PowerPC 602 RISC Microprocessor User's Manual



Primary Page
Table Search

Generate PA using Primary Hash Function
PA — Base PA of PTEG

Fetch PTE from PTEG

PA —~ PA+8 Fetch PTE (64 Bits)
(Fetch Next PTE in PTEG) from PA

A

otherwise PTE [VSID, API, H, V]=
Segment Descriptor [VSID], EA[API], 0, 1

Secondary Page
Table Search Hit
PTE[R]=1 PTE[R]=0

Last PTE in PTEG
\|(fr0m Figure 5-12)
PTE[R] - 1
R_Flag ~ 1

Perform Secondary
Page Table Search

=

| Write PTE
into TLB

L_ _— _ _41

otherwise /(g\

otherwise

dcbz Instruction
withWorl=1

\?\ herwi

Check Memory Protection R_Flag=1 otherwise
Violation Conditions |

Byte Write to -'

: Update PTE[R]

- in Memor
ccess Prohibited L _'nMemory

Access Permitted

otherwise Store Operation with

PTE[C] = -
Perform Operation to
otherwise otherwise ‘Memory or Tak(?
-~ _ _ Alignment Exception
R_Flag = 1 TLB[PTE | -1 R_Flag =1
r— —| — — A
PTE[R] ~1 PTE[C] ~1 | PTER] -1
(update PTE[R] (update PTE[C] (update PTE[R]
in memory) in memory) l in memory)

Page Table Page Table Memory Protection
Search Complete Search Complete Violation

Figure 5-11. Primary Page Table Search—Conceptual Flow

L 1 optional

Chapter 5. Memory Management 5-39



Secondary Page
Table Search

Generate PA using Secondary Hash Function
PA — Base PA of PTEG

Fetch PTE from PTEG

PA - PA+8 Fetch PTE (64 Bits)
(Fetch Next PTE in PTEG) from PA

A

otherwise PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 1, 1

otherwise
Secondary Page
Table Search Hit
Last PTE in PTEG -
(See Figure 5-11)
Page Fault
Instruction Access Data Access

Set SRR1[1]=1

ISI exception

Figure 5-12. Secondary Page Table Search Flow—Conceptual Flow

Set DSISR[1]=1

DSl
Exception

5.5.2 Table Search Operation with the PowerPC 602 Microprocessor

The 602 has a set of implementation-specific registers, exceptions, and instructions that
facilitate very efficient software searching of the page tables in memory. This section
describes those resources that can be used in a 602 system for an efficient search of the
tranglation tables in software. These three code segquences can be used as handlers for the
three exceptions requiring access to the PTES in the page tables in memory—instruction
TLB miss, data TLB miss on load, and data TLB miss on store exceptions.

5.5.2.1 Resources for Table Search Operations

In addition to setting up the trandation page tables in memory, the system software must
assist the processor in loading PTEs into the on-chip TLBs. When arequired TLB entry is
not found in the appropriate TLB, the processor vectors to one of the three TLB miss
exception handlers so that the software can perform a table search operation and load the
TLB. When thisoccurs, the processor automatically savesinformation about the access and
the executing context. Table5-12 provides a summary of the implementation-specific

5-40 PowerPC 602 RISC Microprocessor User's Manual



exceptions, registers, and instructions, that can be used by the TLB miss exception handler
software in 602 systems. Refer to Chapter 4, “Exceptions,” for more information about
exception processing.

Table 5-12. Implementation-Specific Resources for Table Search Operations

Resource Name Description

Exceptions Instruction TLB miss exception No matching entry found in ITLB

(vector offset 0x1000)

Data TLB miss on load exception | No matching entry found in DTLB for a load data access

(vector offset 0x1100)

Data TLB miss on store No matching entry found in DTLB for a store data access or

exception—also caused when matching DLTB entry has C = 0 and access is a store.

changed bit must be updated

(vector offset 0x1200)

Registers IMISS and DMISS When a TLB miss exception occurs, the IMISS or DMISS
register contains the 32-bit effective address of the instruction
or data access that caused the exception.

ICMP and DCMP The ICMP and DCMP registers contain the word to be
compared with the first word of a PTE in the table search
software routine to determine if a PTE contains the address
translation for the instruction or data access. The contents of
ICMP and DCMP are automatically derived by the 602 when a
TLB miss exception occurs.

HASH1 and HASH2 The HASH1 and HASH2 registers contain the primary and
secondary PTEG addresses that correspond to the address
causing a TLB miss. These PTEG addresses are automatically
derived by the 602 by performing the primary and secondary
hashing function on the contents of IMISS or DMISS, for an
ITLB or DTLB miss exception, respectively.

RPA The system software loads a TLB entry by loading the second
word of the matching PTE entry into the RPA register and then
executing the tlbli or tlbld instruction (for loading the ITLB or
DTLB, respectively). Note that the format for the RPA register
is different for protection-only mode.

Instructions tibli rB Loads data from the IMISS, ICMP, and RPA registers into the
ITLB entry selected by <ea> and SRR1[WAY]. See
Section 2.3.7, “PowerPC 602 Implementation-Specific
Instructions.”

tibld rB Loads data from the DMISS, DCMP, and RPA registers into

the DTLB entry selected by <ea> and SRR1[WAY]. See
Section 2.3.7, “PowerPC 602 Implementation-Specific
Instructions.”

Chapter 5. Memory Management

5-41



In addition, the 602 contains the following other features that don’t specifically control the
602 MMU but that are implemented to increase performance and flexibility in the software
table search routines whenever one of the three TLB miss exceptions occurs:

Temporary GPRO-GPRS3. Theseregistersare available asr 0—+ 3 when MSR[TGPR]
is set. The 602 automatically sets MSR[TGPR] for these cases, allowing these
exception handlers to have four registers that are used as scratchpad space, without
having to save or restore this part of the machine state that existed when the
exception occurred. Note that MSR[TGPR] is cleared when the rfi instruction is
executed because the old MSR value (with MSR[TGPR] = 0) saved in SRR1 is
restored.

The 602 a so automatically savesthe values of CR[CRO] of the executing context to
SRR1[0-3]. Thus, the exception handler can set CR[CROQ] bits and branch
accordingly in the exception handler routine, without having to save the existing
CR[CRAQ] bits. However, the exception handler must restore these bits to CR[CRO]
before executing the rfi instruction.

Also saved in SRR1 are two bits identifying the type of miss (SRR1[D/I] identifies
instruction or data, and SRR1[L/S] identifies aload or store). Additionally,
SRR1[WAY] identifies the associativity class of the TLB entry selected for
replacement by the LRU algorithm. The software can change this value, effectively
over-writing the replacement algorithm. Finally, the SRR1 [KEY] bit is used by the
table search software to determine if there is a protection violation associated with
the access (useful on datawrite missesfor determining if the C bit should be updated
in the table). Table 5-13 summarizes the SRR1 bits updated whenever one of the
three TLB miss exceptions occurs.

Table 5-13. SRR1 Bits Specific to the PowerPC 602 Microprocessor

Bit Number Name Function
0-3 CRFO Condition register field O bits
12 KEY Key for TLB miss (either Ks or Kp from segment register,
depending on whether the access is a user or supervisor access)
13 D/l Set if instruction TLB miss
14 WAY Next TLB set to be replaced (set per LRU)
15 S/L Set if data TLB miss was for a load instruction

The KEY bit saved in SRR1 is derived as shown in Figure 5-13.

Select KEY from segment register:
If MSR[PR] = 0, KEY= Ks
If MSR[PR] = 1, KEY= Kp

Figure 5-13. Derivation of KEY bit for SRR1

5-42

PowerPC 602 RISC Microprocessor User's Manual



Theremainder of this section describesthe format of theimplementati on-specific SPRsthat
are not defined by the PowerPC architecture, but are used by the TLB miss exception
handlers. These registers can be accessed by supervisor-level instructionsonly. Any attempt
to access these SPRswith user-level instructionsresultsin a privileged instruction program
exception. As DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA are used to
access the trandation tables for software table search operations, they should only be
accessed when address trandlation is disabled (that is, MSR[IR] = 0 and MSR[DR] = 0).
Note that MSR[IR] and MSR[DR] are cleared by the processor whenever an exception
occurs.

5.5.2.1.1 Data and Instruction TLB Miss Address Registers (DMISS and
IMISS)

The DMISS and IMISS registers have the same format as shown in Figure 5-14. They are
loaded automatically upon adataor instruction TLB miss. The DMISS and IMISSregisters
contain the effective page address of the access which caused the TLB miss exception. The
contents are used by the processor when cal culating the values of HASH1 and HASH2, and
by thetlbld and tibli instructions when loading a new TLB entry. Note that the 602 always
loads a big-endian address into the DMISS register. These registers are read-only to the
software.

Effective Page Address |

Figure 5-14. DMISS and IMISS Registers

5.5.2.1.2 Data and Instruction PTE Compare Registers (DCMP and ICMP)

The DCMP and ICMP registers are shown in Figure 5-15. These registers contain the first
word in the required PTE. The contents are constructed automatically from the contents of
the segment registers and the effective address (DMISS or IMISS) when a TLB miss
exception occurs. Each PTE read from the tablesin memory during the table search process
should be compared with this value to determine whether or not the PTE is a match. Upon
execution of a tlbld or tIbli instruction, the contents of the DCMP or ICMP register is
loaded into the first word of the selected TLB entry.

|V| VSID | H | API
01 24 25 26 31

Figure 5-15. DCMP and ICMP Registers

Chapter 5. Memory Management 5-43



Table 5-14 describes the bit settings for the DCMP and ICMP registers.

Table 5-14. DCMP and ICMP Bit Settings

Bits Name Description
0 \% Valid bit. Set by the processor on a TLB miss exception.
1-24 VSID Virtual segment ID. Copied from VSID field of corresponding segment register.
25 H Hash function identifier. Cleared by the processor on a TLB miss exception
26-31 API Abbreviated page index. Copied from API of effective address.

5.5.2.1.3 Primary and Secondary Hash Address Registers (HASH1 and
HASH?2)

The HASH1 and HASH2 registers contain the physical addresses of the primary and
secondary PTEGs for the access that caused the TLB miss exception. Only bits 7-25 differ
between them. For convenience, the processor automatically constructs the full physical
address by routing bits 0—6 of SDR1 into HASH1 and HASH2 and clearing the low-order
six bits. These registers are read-only and are constructed from the contents of the DMISS
or IMISS register. The format for the HASH1 and HASH2 registers is shown in
Figure 5-16.

[] Reserved
HTABORG Hashed Page Address | 000000 |
0 6 7 25 26 31
Figure 5-16. HASH1 and HASH2 Registers
Table 5-15 describes the bit settings of the HASH1 and HASH?2 registers.
Table 5-15. HASH1 and HASH2 Bit Settings
Bits Name Description
0-6 HTABORG[0-6] Copy of the high-order 7 bits of the HTABORG field from
SDR1
7-25 Hashed page address | Address bits 7-25 of the PTEG to be searched.
26-31 — Reserved

5.5.2.1.4 Required Physical Address (RPA) Register

The RPA is shown in Figure 5-17. During a page table search operation, the software must
load the RPA with the second word of the correct PTE. When atlbli or tibld instruction is
executed, datafrom the IMISS and ICMP (or DMISS and DCMP) and the RPA registersis
loaded into the selected TLB entry. The TLB entry is selected by the effective address of
the access (loaded by the table search software from the DMISS or IMISS register) and the
SRR1[WAY] bit.

5-44 PowerPC 602 RISC Microprocessor User's Manual



Note that the organization and operation of the RPA is different when the 602 is operating
in protection-only mode, corresponding with the content of the TLB entries and PTEs.

When thetlbld or tlbli instruction is executed, bits from the specified EA (written from the
IMISS or DMISS registers) and the contents of the RPA register are merged with the
contents of either the DCMP or ICMP register and are loaded into the selected TLB entry.

[] Reserved
RPN 0 NE|SE| R | c| WIMG o| pp |
0 19 20 21 22 23 24 25 28 29 30 31

Figure 5-17. Required Physical Address (RPA) Register—Default Configuration
Table 5-16 describes the bit settings of the RPA register when HIDO[PQO] = 0.

Table 5-16. RPA Bit Settings—Default Configuration

Bits Name Description
0-19 RPN Physical page number from PTE
20 — Reserved
21 NE No execute. The NE bit controls execution privileges for that page. If NE = 1, instructions

cannot be fetched from that 4-Kbyte page. This bit is valid only for ITLB entries.

22 SE Controls ability to execute esa instruction from this page. Valid only for ITLB entries.
23 R Referenced bit from PTE
24 C Changed bit from PTE

25-28 WIMG Memory/cache access attribute bits

29 — Reserved

30-31 PP Page protection bits from PTE

5.5.2.2 Software Table Search Operation

When aTLB missoccurs, theinstruction or dataMMU loadsthe IMISS or DMISSregister,
respectively, with the effective address of the access. The processor completes all
instructions dispatched prior to the exception, statusinformation is saved in SRR1, and one
of the three TLB miss exceptions is taken. In addition, the processor loads the ICMP or
DCMP register with the value to be compared with the first word of PTEs in the tablesin
memory.

Chapter 5. Memory Management 5-45



The software should then accessthefirst PTE at the address pointed to by HASH1. Thefirst
word of the PTE should beloaded and compared to the contents of DCMP or ICMP. If there
isamatch, the required PTE has been found and the second word of the PTE isloaded from
memory into the RPA register. Then thetlbli or tlbld instruction is executed, which loads
datafrom the IMISS and ICMP (or DMISS and DCMP) and RPA registersinto the selected
TLB entry. The TLB entry is selected by the effective address of the access and the
SRR1[WAY] bit.

If the compare did not result in amatch, however, the PTEG addressisincremented to point
to the next PTE in the table and the above sequence is repeated. If none of the eight PTEs
in the primary PTEG matches, the sequence is then repeated using the secondary PTEG (at
the address contained in HASH2).

If the PTE is also not found in the eight entries of the secondary page table, a page fault
condition exists, and a page fault exception must be synthesized. Thus the appropriate bits
must be set in SRR1 (or DSISR) and the TLB miss handler must branch to either the 1S or
DSl exception handler, which handles the page fault condition.

This section provides aflow diagram outlining some example software that can be used to
handle the three TLB miss exceptions, as well as an assembly language example that
implements that flow.

5.5.2.2.1 Flow for Example Exception Handlers

Figure 5-18 shows the flow for the example TLB miss exception handlers. The flow shown
is common for the three exception handlers, except that the IMISS and ICMP registers are
used for theinstruction TLB miss exception whilethe DMISS and DCM P registers are used
for the two data TLB miss exceptions. Also, for the cases of store instructions that cause
either a TLB miss or require a table search operation to update the C bit, the flow shows
that the C bit is set in both the TLB entry and the PTE in memory. Finally, in the case of a
page fault (no PTE found in the table search operation), the setup for the ISl or DSI
exception is dightly different for these two cases.

Figure 5-19 showstheflow for checking and setting the R and C bits and Figure 5-20 shows
the flow for synthesizing a page fault exception when no PTE is found. Figure 5-21 shows
the flow for managing the cases of a TLB miss on an instruction access to guarded memory,
and aTLB misswhen C = 0 and a protection violation exists. The set up for these protection
violation exceptions is very similar to that of page fault conditions (as shown in
Figure 5-20) except that different bitsin SRR1 (and DSISR) are set.

5-46 PowerPC 602 RISC Microprocessor User's Manual



TLB Miss Exception

Save old counter
and CRO bits

Set counter:
cnt — 8

[
Load primary PTEG pointer:
ptr —« HASH1 -8
compare_value — ICMP/DCMP

Read lower word of next
PTE from memory:
ptr — ptr+8
temp — (ptr)

temp = compare_value otherwise

:

Read upper word of PTE:
temp ~ (ptr - 4)

otherwise

i

compare_value [H] =1

Secondary hash
complete

RPA « temp

> ~ . Set up for page
instruction access and fault exception
temp[G] =1
(See Figure 5-20)
otherwise

Set up for protection
violation exception

(See Figure 5-21)

| <ea> IMISS/DMISS|

Check R, C bits

and set as needed ) (See Figure 5-19)

Load TLB entry
tibli <ea> (or tibld<ea>)

Restore old counter
and CRO bits

Return to executing programz>

rfi

C

cnt#0

\_

cnt —cnt-1

otherwise

e

Load secondary
PTEG pointer:
ptr « HASH2 -8

| compare_value [H] — 1|

Set counter:
cnt - 8

Figure 5-18. Flow for Example Software Table Search Operation

Chapter 5. Memory Management



Check R, C bits
and set as needed

handler for data store op

otherwise
temp[C] =0
Check pro-
tection PP= icl) otherwise Set R bit:
00 temp ~ temp OR 0x100
pp =10 Pp= 01 L
_— Store byte 7 of PTE to memory:
pp =11 (ptr-2) ~ temp [byte7]
Set up for Return to TLB Miss
protection violation Exception flow
: C
(See Figure 5-21) (See Figure 5-18)
SRRI1[KEY] =1
otherwise Set up for
protection violation
(See Figure 5-21)
Set R, C bits:

temp — temp OR 0x180

Store bytes 6, 7 of PTE to memory:
(ptr - 2) ~ temp [bytes 6, 7]

Return to TLB Miss
Exception flow

(See Figure 5-18)

Figure 5-19. Check and Set R, C Bit Flow

5-48 PowerPC 602 RISC Microprocessor User's Manual



Set up for page
fault exception

Data TLB miss handlers Instruction TLB
miss handlers

|
| DSISR[6] SRR1[15]| \
[

Clear upper bits of SRR1 Sé:éiar ug%eéflfNoé (S)RS,:lFF
SRR1 ~ SRR1 AND OxFFFF - X

[

| DSISRI[l] -1 | | SRR1[1] - 1 |
| [

| dtemp — DMISS | | Restore CRO bits |

| MSR[TGPR] - 0 |

SRR1[31] =1 [
(little-endian mode) Branch to ISI Exception
/ otherwise Handler

dtemp — dtemp XOR 0x07 |

| DAR ~ dtemp |
[

| Restore CRO bits |

[
| MSR[TGPR] - 0 |

Branch to DSI
Exception Handler

Figure 5-20. Page Fault Setup Flow

Chapter 5. Memory Management 5-49



Set up for protection
violation exceptions

Data TLB miss handlers Ir;ﬁ};gcﬁgrr]ldTlé.rB (Instruction access
(Data access | to guarded memory)
to protected
memory.C<0) | DSISRI6] — SRRI[15]|

Clear upper bits of SRR1 Clear upper bits of SRR1
SRR1  SRR1 AND OXFFFF SRR1 — SRR1AND OXFFFF
I [
| DSISR[4] « 1 | | SRR1[4] « 1 |
[ [

| dtemp — DMISS | | Restore CRO bits |

| MSR[TGPR] - 0 |
SRR1[31]=1 [

(little-endian mode) Branch 0 151
/ otherwise Exception Handler

dtemp — dtemp XOR 0x07 |

| DAR — dtemp |

| Restore CRO bits |

| MSR[TGPR] — 0 |

Branch to DSI
Exception Handler

Figure 5-21. Setup for Protection Violation Exceptions

5.5.2.2.2 Code for Example Exception Handlers

This section provides some assembly language examples that implement the flow diagrams
described above. Note that although these routines fit into a few cache lines, they are
supplied only as a functional example; they could be further optimized for faster
performance.

Note that a copy of this code can be downloaded by accessing one of the online facilities
listed in “Motorola Electronic Support,” and “IBM Electronic Support,” in the preface of
this document.

# TLB software reload

#

# New Instructions:

# dtba - write the dtb with the pte in rpareg

5-50 PowerPC 602 RISC Microprocessor User's Manual



# itba - write the itb with the ptein rpareg
#New SPRs

# dmiss - address of dstream miss

# imiss - address of istream miss

# hashl - address primary hash PTEG address
# hash2 - returns secondary hash PTEG address
# iCmp - returns the primary istream compare value
# dCmp - returns the primary dstream compare value
# rpa - the second word of pte used bye xtba
#

# gpr r0..r4 are shadowed

#

# there are three flows.

# tibDataMiss- th miss on dataload

# tibchange - tb store with change bit == 0

# tiblnstrMiss- th miss on instruction Fetch

#

#+

# place labels for rel branches

#-

#.machine PPC_603

#.set r0, 0

#.set r1, 1

#.5et 12,2

#.set r3,3

#.set dMiss, 1010

#.set dCmp, 1011

#.set hashl, 1012

#.set hash2, 1013

#.set iMiss, 1014

#.set iCmp, 1015

#.5et rpa, 1010

#.set c0,0

#.set dar, 19

#.set dsisr, 18

#.5et sr0, 26

#.5et sirl, 27

#.set tIbldRO, Ox7E0007A4
#.set tIbliRO, OX7EOOQ7E4

#.csect tbmiss[PR]
#vecO:

#.globl vecO

#

.orig 0x300
vec300:
.orig 0x400
vec400:

#H+

Chapter 5. Memory Management

5-51



# Instruction TB miss flow

#Entry:
# Vec = 1000
# srr0 -> address of instruction that missed
# srl -> 0:3=cr0 4=Iru way bit 16:31 = saved MSR
# msr<tgpr> ->1
# iMiss -> eathat missed
# iCmp -> the compare vaue for the va that missed
# hashl -> pointer to first hash pteg
# hash2 -> pointer to second hash pteg
#
# Register usage:
# r0 is saved counter
# rlisjunk
# r2 is pointer to pteg
# r3iscurrent compare value
#-
.orig 0x1000
tibinstrMiss:
mfspr r2,hashl # get first pointer
addi r1,r0,8 #load 8 for counter
mfspr ro,ctr # save counter
mfspr r3,iCmp # get first compare value
addi r2,r2,-8 # predecrement pointer
imO: mtspr ctr,rl # load counter
iml: lwzu r1,8(r2) # get next pte
cmp 0,r1r3 # seeif found pte
bdnzf eq,iml
bne instrSecHash
lwz r1,4(r2) #load tlb entry PTE lower-word
andi. r3,r.8 # check G-bit
bne dolSlg
mtspr ctr,r0 # restore counter
mfspr r0,iMiss # get the miss address for the dtba
mfspr r3,srrl # get the saved crO hits
mtcrf 0x80,r3 # restore CRO
mtspr rparl # set the PTE
ori r1,r1,0x100 # set reference bit
rlwinm r1,r1,24831  #get byte 7 of PTE
tibli r0 #load the tb
stb r1,6(r2) # update page table
rfi # and back we go
#+
# Register usage:
# r0 is saved counter
# rlisjunk
# r2 is pointer to PTEG
# r3iscurrent compare value
#-

5-52 PowerPC 602 RISC Microprocessor User's Manual



instrSecHash:

#H+

andi. r1,r3,0x0040  # seeif we have done second hash
bne dolS|

mfspr r2,hash2 # get the second pointer

ori r3,r3,0x0040  # change the compare value

addi r1,r0,8 #load 8 for counter

addi r2,r2,-8 # pre dec for update on load

b im0 #try second hash

# entry Not Found: cause an isi exception
# guarded storage protection violation: cause an isi exception

# Entry:

dolSlp:

dolSI:

isil:

H#H+

r0 is saved counter
rlisjunk

r2 is pointer to PTEG
r3iscurrent compare value

mfspr r3,srrl #getsrrl

andi. r2,r3,0xffff # clean upper srrl

addis r2,r2,0x1000  #orin sr<3> =1 to flag guarded violation
b isil:

mfspr r3,srrl #getsrl

andi. r2,r3,0xffff # clean upper srrl

addis r2,r2,0x0800  #orinsr<4>=1to flag prot violation
b isil:

mfspr r3,srl #get sl
andi. r2,r3,0xffff # clean upper srrl
addis r2,r2,0x4000  #orinsrr<1>=1to flag PTE not found

mtspr ctr,ro # restore counter

mtspr srrl,r2 #setsrrl

mfmsr r0 # get msr

Xoris r0,r0,0x0002  #flip the msr<tgpr> hit
mterf 0x80,r3 # restore CRO

mtmsr r0 #flip back to the native gprs
isync # sync the mtmsr

b vec400 #gotoisi exception

# Data TB missflow

#Entry:
#

HOoHOHH K H

Vec = 1100
srr0 -> address of instruction that caused data tb miss
sl -> 0:3=cr0 4=Iru way bit 5=1 if store 16:31 = saved MSR

msr<tgpr> ->1

dMiss -> eathat missed

dCmp -> the compare va ue for the va that missed
hashl -> pointer to first hash PTEG

Chapter 5. Memory Management

5-53



# hash2 -> pointer to second hash PTEG

#

# Register usage:

# r0 is saved counter

# rlisjunk

# r2 is pointer to PTEG

# r3iscurrent compare value
#-

#.csect tibmiss[PR]
.orig 0x1100

tibDataMiss:
mfspr r2,hashl # get first pointer
addi r1,r0,8 #load 8 for counter
mfspr ro,ctr # save counter
mfspr r3,dCmp # get first compare value
addi r2,r2,-8 # pre dec the pointer
dmo: mtspr ctr,rl # load counter
dml: lwzu r1,8(r2) # get next PTE
cmp 0,r1,r3 # seeif found PTE
bdnzf eg,dml
bne dataSecHash
lwz r1,4(r2) #load tlb entry PTE lower-word
mtspr ctr,ro # restore counter
mfspr r0,dMiss # get the miss address for the dtba
mfspr r3,srl # get the saved crO bits
mtcrf 0x80,r3 # restore CRO
mtspr rpa,rl # set the PTE
ori r1,r1,0x100 # set reference bit
rlwinm r1,r1,24831 #getbyte7 of PTE
tibld r0 #load the tlb
stb r1,6(r2) # update page table
rfi # and back we go
#+
# Register usage:
# r0 is saved counter
# rlisjunk
# r2 is pointer to PTEG
# r3iscurrent compare value
#-
dataSecHash:
andi. r1,r3,0x0040  # seeif we have done second hash
bc ICR,EQ,doDSI # yes, take dsi exception
mfspr r2,hash2 # get the second pointer
ori r3,r3,0x0040  # change the compare value
addi r1,r0,8 #load 8 for counter
addi r2,r2,-8 # predecrement for update on load
b dmoO # try second hash
#+

5-54 PowerPC 602 RISC Microprocessor User's Manual



# entry not found: cause a dsi exception
# protection violation: cause adsi exception

# Entry:
# r0 is saved counter
# rlisjunk
# r2 is pointer to PTEG
# r3iscurrent compare value
#-
doDSI:
mfspr r3,srrl #getsrl
rlwinm  r1,r3,9,6,6 # get srrl<flag> to bit 6 for load/store, zero rest
addis r1,r1,0x4000 #orindsisr<1>=1to flag PTE not found
b dsil:
doDSlp:
mfspr r3,srl #get sl
rlwinm r1,r3,9,6,6 # get srri<flag> to bit 6 for load/store, zero rest
addis r1,r1,0x0800  #orindsisr<4> = 1to flag prot violation
dsil: mtspr ctr,ro # restore counter
andi. r2,r3,0xffff # clear upper bits of srrl
mtspr srrl,r2 #setsrrl
mtspr dsisr,rl #load thedsisr
mfspr r1,dMiss # get miss address
rlwinm.  r2,r2,0,31,31  #test LE bit
bne dsi2
Xori r1,r1,0x07 # demunge the data address
dsi2: mtspr dar,rl # putin dar
mfmsr r0 # get msr
Xoris r0,r0,0x0002  # clear the msr<tgpr> bit
mterf 0x80,r3 # restore CRO
mtmsr r0 #flip back to the native gprs
isync # sync the mtmsr
b vec300 #gotods exception
#+
#C=0TB flow
# Entry:
# Vec = 1200
# sr0 -> address of store that caused the trap
# srl -> 0:3=cr0 4=Iru way bit 5=1 16:31 = saved MSR
# msr<tgpr> ->1
# dMiss -> eathat missed
# dCmp -> the compare vaue for the va that missed
# hashl -> pointer to first hash PTEG
# hash2 -> pointer to second hash PTEG
#
# Register usage:
# r0 is saved counter
# rlisjunk
# r2 is pointer to PTEG
# r3iscurrent compare value
#-

Chapter 5. Memory Management

5-55



#.csect  tlbmisgPR]
.orig 0x1200

tIbCeqO:
mfspr r2,hashl
addi r1,r0,8
mfspr ro,ctr
mfspr r3,dCmp
addi r2,r2,-8
ceqO: mtspr ctr,rl
ceql: lwzu r1,8(r2)
cmp 0,r1r3
bdnzf eqg,ceql
bne cEq0SecHash
lwz r1,4(r2)
andi. r3,r1,0x80
beq cEqOChkProt
mtspr ctr,ro
mfspr r0,dMiss
mfspr r3,srl
mtcrf 0x80,r3
mtspr rpa,rl
tibld r0
rfi
#t
# Register usage:
# r0 is saved counter
# rlisjunk
# r2 is pointer to PTEG
# r3iscurrent compare value
#-
cEq0SecHash:
andi. r1,r3,0x0040
bne doDSlI
mfspr r2,hash2
ori r3,r3,0x0040
addi r1,r0,8
addi r2,r2,-8
b ceq0
#+

# entry found and PTE(c-bit==0):
# (check protection before setting PTE(c-bit)

# Register usage:

# r0 is saved counter

# rlisPTE entry

# r2 is pointer to PTEG
# r3istrashed

H#-

# get first pointer

#load 8 for counter

# save counter

# get first compare value
# pre dec the pointer

# load counter

# get next PTE

# seeif found PTE

#load tlb entry PTE lower-word
# check the C-bit

# restore counter

# get the miss address for the dtba
# get the saved crO bits

# restore CRO

# set the PTE

#load the tb

# and back we go

# see if we have done second hash

# get the second pointer

# change the compare value
#load 8 for counter

# pre dec for update on load
# try second hash

# Note: The following code is specific to 603e. It uses

5-56

PowerPC 602 RISC Microprocessor User's Manual



# the 'KEY' bit of SRRO to speedup protection checking.

#
cEqOChkProt:
rlwinm.  r3,r1,30,0,1 #test PP
bge- chk0
andi. r3ri,1 # test PP[O]
beq+ chk2
b doDSlp #else DSIp
chko: mfspr r3,srl # get SRRO
andis. r3,r3,0x0008  #test the KEY bit SRR0O[12]
beqg+ chk2
b doDSlp #else DISp
chk2: mtspr ctr,r0 # restore counter
mfspr r0,dMiss # get the miss address for the dtba
mfspr r3,srl # get the saved cr0 bits
mtcrf 0x80,r3 # restore CRO
ori rl,r1,0x180 # set reference and change bit
mtspr rparl # set the PTE
tibld RO #load the tb
sth r1,6(r2) # update page table
rfi # and back we go

# Note: The following code doesn't rely upon the 'KEY" bit
# and works on 603, and 603e. (although dlightly slower on 603€)

#

# cEqOChkProt:

# rlwinm.  r3,r1,30,0,1 #test PP

# bge- chk0 #if (PP==00 or PP==01) goto chkO:
# andi. r3ri,1 # test PP[O]

# beq+ chk2 # return if PP[0]==0

# b doDSlp #elseDSIp

#chk0:  mfspr r3,srl # get old msr

# andi. r3,r3,0x4000 # get PR bit

# beg+ chkl #if (PR==0) goto chk1:

# mfspr r3,dmiss # get miss address

# mfsrin r3,r3 # get associated segment register
# andi. r3,r3,4 #test Kp bit

# beqg+ chk2 #if (Kp==0) goto chk2

# b doDSIp #else DSIp

#chkl:  mfspr r3,dmiss # get miss address

# mfsrin r3,r3 # get associated segment register
# andi. r3,r3,2 # test Ks bit

# beg+ chk2 #if (Ks==0) goto chk2:

# b doDSlp #elseDSIp

#chk2:  mtspr ctr,r0 # restore counter

# mfspr r0,dMiss # get the miss address for the dtba
# mfspr r3,srl # get the saved cr0 bits

# mtcrf 0x80,r3 # restore CRO

# ori rl,r1,0x180 # set reference and change bit

# mtspr rparl # set the PTE

Chapter 5. Memory Management 5-57



# tibld RO #load the tb
# sth r1,6(r2) # update page table
# rfi # and back we go

5.5.3 Page Table Updates

When TLBs are implemented (as in the 602) they are defined as noncoherent caches of the
page tables. TLB entries must be flushed explicitly with the TLB invalidate entry
instruction (tlbie) whenever the corresponding PTE is modified. As the 602 is intended
primarily for uniprocessor environments, it does not provide coherency of TLBs between
multiple processors. If the 602 is used in a multiprocessor environment where TLB
coherency is required, all synchronization must be implemented in software.

Processors may write referenced and changed bits with unsynchronized, atomic byte-store
operations. Notethat theV, R, and C bitseach residesin adistinct byte of aPTE. Therefore,
extreme care must be taken to use byte-writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly atering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. Thiskind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly-undefined results. Therefore, PTES must not be
changed in amanner that causes an implicit branch. Chapter 2, “ PowerPC Register Set,” in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and M SR bits are changed.

5.5.4 Segment Register Updates

There are certain synchronization requirements for using the move to segment register
instructions. These are described in “ Synchronization Requirements for Special Registers
and for Lookaside Buffers’ in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

5.6 Protection-Only Mode

The 602 implements an additional memory management resource not defined by the
PowerPC architecture called protection-only mode, which is activated after a BAT miss
when HIDO[PQ] = 1. In this mode, the effective address is used as the physical address.
However, unlike the OEA-defined real addressing mode, some protection is provided. This
is accomplished by using, and in some cases redefining, resources used in page address
tranglation. For example, in protection-only mode the bitsinthe DTL B entries are redefined
to hold 32 WE (write enable) bits, which indicate whether the corresponding 4-Kbyte page
of data space is write-protected. Likewise, the ITLB entries are redefined to hold 32 NE
(no-execute) bits to indicate whether the corresponding page allows instruction execution.

In protection-only mode (as in real addressing mode), the default cache attributes are
controlled by the settings of HIDO[WIMG] (bits 28-31).

5-58 PowerPC 602 RISC Microprocessor User's Manual



Implementation Note—When the processor is in either rea addressing mode or
protection-only mode, care should be taken when clearing HIDO[G]. The 602 allows out-
of-order loads to access the processor bus. If an out-of-order load follows an instruction that
causes an exception, the load/store unit may pass the out-of-order load operation onto the
system bus. Because this load cannot be cancelled, depending on the temporal position of
the faulting instruction, transl ation may be enabled when the instruction passes through the
instruction stream but may be disabled when the cache control information and address
reach the bus. Setting HIDO[G] prevents such aload operation from accessing the bus.

5.6.1 Use of Translation Resources in Protection-Only Mode

The instruction and data MMUSs each use a dedicated 32-entry, two-way set-associative
TLB. In the OEA-defined page addressing mode, described in Section 5.4, “Memory
Segment Model,” each TLB entry provides translation and protection for a4-Kbyte pagein
memory. In protection-only mode, the TLBs are not used for storing page address
tranglations, so the bits are redefined such that each TLB entry maps a 128-Kbyte region
with bits within the TLB entry that provide protection information for the 32, 4-Kbyte
pages within that region.

If HIDO[PQ] = 1 and a hit occurs in the TLB, the NE and WE bits are used for checking
access permissions for instruction and data accesses, respectively. The cache control bits
(WIMG) are set as programmed in the HIDO register. The effective address is used as the
physical address.

To locate the NE or WE bit for this page, the effective address and 24-bit VSID from SRO
are used to create a 56-bit virtual address. This address is used to index into and compare
against entriesinthe TLB and can be used asa process ID for operationsin protection-only
mode for locating these bits.

Figure 5-22 shows the TLB lookup operation when the processor is in protection-only
mode. TheVSID istaken only from SRO (when the processor is in page addressing mode,
al 16 segment registers can be used). Note that in protection-only mode, SRO[N], which
ordinarily controls instruction fetching at the segment level, is ignored and no-execute
privileges are configured on a 4-Kbyte page basis using the NE bits. EAO-EA14 and the
VSID from SRO are used to select the correct ITLB entry. From this entry, EA15-EA19
select the correct NE bit for the page of the access.

Chapter 5. Memory Management 5-59



Ignored
EAO-EA31 Segment Register

|T|Ks|Kp|N| 0000 | VSID SRO

012 3 4 7 8 31
VSID

EAO-EA10

TLB

Y

Line 1
0| v » Compare
| Select Line 0
EALL-EAL4 ol . . »| Compare

Y

15 C
] 3
2 ) )
& 32 NE bits 32 NE bits =
m >
> [v]
© Y V¥ 2
MUX_|<7 =
Selected Line
v NE Select \
[ |
|NE0|NE1|NE2| e |NE31|

ne bit

Figure 5-22. TLB Lookup Operation in Protection-Only Mode

5.6.1.1 TLB Misses in Protection-Only Mode

Regardless of whether the processor isin protection-only mode, when a TLB miss occurs,
one of three exceptionsistaken—an I TLB missexception, aDTLB misson |oad exception,
or aDTLB miss on store (or C = 0) exception. Likewise, when the TLB miss occurs in
protection-only mode, the same resources used to perform the software tablewalk in page
accessing mode are available in protection-only mode, as follows:

¢ ThelMISS and DMISS registers hold the missed effective address.
e TheHASH1 and HASH2 registers hold the PTEG address.

5-60 PowerPC 602 RISC Microprocessor User's Manual



e ThelCMP and DCMP registers are used for comparing PTEs.

* The RPA register is used for loading TLBs; however, in protection-only mode, the
RPA holds the 32 WE or NE hits that are loaded into the TLB entries.

Note that the TLB miss mechanism can be used to maintain translation and configuration
information for pages that extend beyond the 32 TLB entries that can be defined for each
MMU in protection-only mode. These exceptionsare described in Chapter 4, “ Exceptions.”

Descriptions of exception handlers are described in Section 5.5.2.2.1, “Flow for Example
Exception Handlers.” Notethat these examples are conceptual and provide ageneral notion
of what is possible for an exception handler in protection-only mode.

5.6.1.2 Access Protection in Protection-Only Mode

In protection-only mode, pages mapped by the ITLB are protected by the NE bitinthe TLB
and SE bits from the SER. DTLB pages are protected by only the WE bit in the PTE. For
instruction fetches, the NE bit controls execute privilegesin general and the SE bit controls
whether the esa instruction can be executed from the corresponding page. Note that if
fetching isdisabled (NE = 1), no instructions can be fetched (including the esa instruction)
and SEisadon't care.

For store instructions, the WE bit controls write access to a page; read access is permitted
for al pages. All loads from the data cache or memory are permitted for pages mapped in
the DTLB, but data cannot be stored unless the appropriate WE bit inthe DTLB is set. Note
that aswith ITLB access permissions, the SRO[T] or SRO[N] bits are not used to determine
DTLB access privileges in protection-only mode.

5.6.1.3 Required Physical Address Register in Protection-Only Mode

During a page table search operation, the RPA register is |oaded with the second word of
the appropriate PTE. In protection-only mode, the PTE contains the 32 WE or NE bits
loaded into the TLBs viathe RPA register. Also, as shown in Figure 5-23 and Figure 5-24,
the contents of the RPA register are different for instruction and data TLB loads.

Before the TLB Load Instruction (tlbli) is executed in protection-only mode, the RPA
register should be loaded with 32 NE hits. Figure 5-23 shows the proper contents of the
RPA for an ITLB load.

NEg | NE; | NE; [ NE3 | NE, | NEs | NEg | NE; | NEg | NEg |NE4 o[ NE11 [NE45|NE ;3 NE4 4| NE;5|NE4 6| NE; 7 [NE1g|NE10[NE20|NE 1 [NEo5| NEa|NE 4 |NE s [NE6|NE 7 [NEg|NEso|NEgo|NEs,|

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-23. RPA for ITLB Load Operations in Protection-Only Mode

Asshown in Figure 5-24, beforea TLB Load Data (tIbld) instruction is executed, the RPA
register should be loaded with 32 WE bits.

Chapter 5. Memory Management 5-61



5 5 B

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WE,|WE, [WE, [WE,|WE,|WEs [WEs | wE,[wE, |WE,

Figure 5-24. RPA for DTLB Load Operations in Protection-Only Mode

5.6.2 ESA Enable Protection (Instruction Space Only)

The 602 defines a user-level instruction, Enable Supervisor Access (esa) that, when
successfully executed, allows the processor to function in supervisor mode without taking
an exception. To control the execution of thisinstruction, it must be enabled for the block
or pageon whichit resides, and for this purpose an extrabit (SE) isimplemented inthe BAT
registersfor block address trandations and in the TLB/PTEs for page address trandlations.
The use of this instruction is not supported for real addressing mode (MSRJ[IR] or
MSR[DR] = 0).

The 602 definestwo additional registers, the ESA enable base register (SEBR) and the ESA
enable register (SER), that allow the use of the esa instruction in protection-only mode.
These two registers work together to control esa privileges for each 4-Kbyte block in much
the same way as the TLBs provide no-execute and write-enable protection for instruction
and data space.

As described in the preceding section, in protection-only mode, the TLBs store only one
protection bit for each 4-Kbyte page—an NE bit for each page of instruction space and a
WE bit for each page of data space. Similarly, the SE protection registers provide an
additional protection bit for 32 contiguous 4-Kbyte pages (128-Kbyte region). This
additional protection bit controls whether an esa instruction from the region specified in the
SEBR can be executed.

The SEBR, shown in Figure 5-25, contains the base address of the 128-Kbyte region that
is protected by the SE bitsin the SER. The 15-bit base address in this register corresponds
to bits EAO-EA14. For the correct SE bit to be located, the effective address of an
instruction fetch must match the base address in SEBR. If the effective address does not
match the base address, avalue of SE = 0 is assumed, and the execution of esa instructions
in that page is disabled.

[] Reserved

Base Address 00000000000000000 |

0 14 15 31

Figure 5-25. ESA Enable Base Register (SEBR)

If amatch occurs, bits EA14-EA19 identify the SER bit that corresponds to the 4-Kbyte
page associated with the esa instruction. The SER, shown in Figure 5-26, contains 32 SE
bits.

5-62 PowerPC 602 RISC Microprocessor User's Manual



SEq | SEy [ SE, | SEs | SE4 | SEs | SE6 | SE; | SEg | SEq [SE10|SE11|SE15|SE1s|SE1a|SE1s|SE16|SE17|SE18|SE 10| SE20|SEan|SE2s| SE2s| SE 20 [SE2s|SE26|SEa7| SE26| SE6| SEs0[SEa1

01 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-26. ESA Enable Register (SER)

The SER and SEBR registers do not affect protection checking unless the processor isin
protection-only mode. These registers can be read and written to by using the mfspr and
mtspr instructions but are not used by the MMU unless the processor is in protection-only
mode.

5.6.3 Translation Flow in Protection-Only Mode

Figure 5-27 shows a detailed flow diagram of how the translation mechanism is used to
locate the NE and WE bits when the processor isin protection-only mode. It assumes that
aBAT miss has occurred and that the HIDO[PQ] bit is set.

The flow diagram shows first how the appropriate key bit from SRO is checked. If the key
is 0, the NE and WE bits are predetermined, as shown in Figure 5-28.

If the key bit is 1, the WE hit is selected for data accesses and the NE bit is selected for
instruction accesses. Notethat in case of aTLB miss, one of the three TL B miss exceptions
is taken—an ITLB miss exception, a DTLB miss on load exception, or a DTLB miss on
store (or C = 0) exception, asis the case when the processor is not operating in protection-
only mode.

For instruction accesses, if the NE bit allows instructions to be fetched, the SE bit is
accessed and if an esa instruction is fetched from this page, the SE value is used to
determine whether it can be executed.

Chapter 5. Memory Management 5-63



Protection-Only
Translation Operation

Get Ks, Kp from SRO
Ks « SRO[1]
Kp « SRO[2]

Select Key:
If MSR[PR] = 0, Key = Ks
If MSR[PR] = 1, Key = Kp

key =0

See Figure 5-28 key =1

Use Upper 44 Bits of VA to Check for
TLB Hit (to Get NE/WE Bit)

DTLB hit ITLB hit

(Data Access) TLB Miss  (Instruction Access)

| we ~ Selected WE Bit | Exception | ne ~ Selected NE Bit |
Table Search S/W
(See Section 5.6.1.1)
we =1 we =0 ne=1 ne=0
- 0
SEBR[0-14] =
Load Store EA[0-14] otherwise
DSISR[4] — 1 SRRI[3] - 1
| index  EA[15-19] | | se — 0 |

( DsSlI Exception) ( ISI Exception

se — SERJindex]

End of Key = 0 Flow

(from Figure 5-28)

PA ~ EA
Append se bit
to address

Perform Access to/from Cache
Instruction Accesses Allowed as Shown in Table 5-2

Figure 5-27. Translation Flow in Protection-Only Mode

5-64 PowerPC 602 RISC Microprocessor User's Manual



Figure 5-28 shows how the NE, SE, and WE bits are determined when the key = 0. Note
that the NE and WE bits are predetermined such that write accessis enabled for data pages
(WE = 1) and execution is enabled for instruction pages (NE = 0). The value of SE is
determined by comparing SEBR[0-14] with the low-order 15 bits of the effective address.
If amatch occurs, the esa instruction is enabled; otherwise, it is disabled.

Protection Checking
for Key =0

Data Access Instruction Access

otherwise SEBR[0-14] = EA[0-14]

End of Key = 0 flow
(See Figure 5-27)

Figure 5-28. Protection Checking with Key =0 in Protection-Only Mode

Chapter 5. Memory Management 5-65



5-66 PowerPC 602 RISC Microprocessor User's Manual



Chapter 6
Instruction Timing

This chapter describesinstruction prefetch and execution through all of the execution units
of the PowerPC 602 microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions. Bus signals described in this chapter are only accurate to within half-clock
cycle increments. See Chapter 8, “System Interface Operation,” for more specific
information regarding bus operation timing. Instruction mnemonics for PowerPC
instructions used in this chapter can be identified by referring to The Programming
Environments Manual; 602-specific instructions are discussed in Section 2.3, “Instruction
Set Summary.”

6.1 Instruction Timing Overview

Asshown in Figure 6-1, the 602 handlesinstructionsin such away that (with the exception
of branch instructions) they are fetched, dispatched, and completed in program order.
However, the 602 implements three independent execution units, which allow multiple
instructions to be executed simultaneously. After instructions are executed, they are
completed and their results are written back to the architected registers (for example, the
FPRs or GPRs) in program order.

As a PowerPC processor, the 602 has been designed to minimize average instruction
execution latency. Latency is defined as the number of clock cycles necessary to execute an
instruction and make ready the results of that execution for a subsequent instruction. For
many of theinstructionsin the 602, this can be simplified to include only the execute phase
for a particular instruction. However, data access instructions require additional clock
cycles between the execute and the completion/writeback stage due to memory latencies.
Most integer and logical instructions have alatency of one clock cycle (for example, results
for these instructions are ready for use on the next clock cycle after issue). Other
instructions, such as the integer multiply, require more than one clock cycle to execute.

Chapter 6. Instruction Timing 6-1



Fetch

> Branch
Processing Unit

3 1 1 1 y O
L L o 1
[ | Instruction Queue
teeooio 2 ___._____ |(InProgram Order)
Dispatch

F———— = — - — = — — — — — —

| Completion Buffer

| Assignment

| A

|

| y FPU

| L

I y LSU L--}--‘

I ————— 1 ===

I ' I ] 1

| L__i__a ______ yIU

: . . L L
______ b | E ')

|

| Memory

| Subsystem

| Finish

| 3 vy vvyy vvvy vyy yO

!_ N R R Completion Buffer

L____A_____L____A__T_J' (In Program Order)

l Complete (Retire)

Figure 6-1. Instruction Flow Diagram

Effective throughput approaching one instruction per clock cycle can be realized by the
many performance features in the 602 including pipelining, branch folding, rename
registers, and multiple execution units that operate independently and in parallel.

The load/store and floating-point units on the 602 are pipelined, which means that the
execution units are broken into stages. Each stage performs a specific step, which
contributes to the overall execution of an instruction. The pipelined design is analogous to

6-2 PowerPC 602 RISC Microprocessor User's Manual



an assembly line where workers perform a specific task and pass the partially complete
product to the next worker.

Figure 6-2 shows a graphical representation of atypical pipelined execution unit.

CLOCKO  [(STAGE1) A||(STAGE2) ||(STAGE3) |

CLOCK1 [(STAGE1) B||(STAGE2) A ||(STAGE3) |

/N N
CLOCK 2 |(STAGE 1) C | | (STAGE 2) B | | (STAGE 3) A|
N N

CLOCK3  [(STAGE1) D ||(STAGE2) C | | (STAGE 3) B|

Figure 6-2. Pipelined Execution Unit

When an instruction is issued to a pipelined execution unit, the first stage in the pipeline
beginsits designated work on that instruction. As an instruction is passed from one stagein
the pipeline to the next, evacuated stages may accept new instructions. This design allows
a single execution unit to be working on severa different instructions simultaneously.
While it may take severa cyclesfor agiven instruction to propagate through the execution
pipeline, once the pipeline has been filled with instructions the execution unit can complete
oneinstruction per clock.

If the number of stages in each pipeline equals the total latency in clock cycles of its
respective execution unit, the processor can continuously issue instructions to the same
execution unit without stalling. Thus, when enough instructions have been issued to an
execution unit to fill its pipeline, the first instruction completes execution and exits the
pipeline, allowing subsequent instructions to be issued into the tail of the pipeline without
interruption. This is illustrated for the 602's three execution units in Figure 6-3 in the
following section.

The 602's completion buffer can retire one instruction on every clock cycle. In general,
instruction processing is accomplished in four stages—the fetch stage, the dispatch stage,
the execute stage, and the completion/writeback stage. The instruction fetch stage includes
the clock cycles necessary to request instructions from the on-chip cache aswell asthetime
it takes the on-chip cache to respond to that request. The decode stage consists of the time
it takes to fully decode the instruction. Operations specified by the instruction are
performed during the execute stage. In the completion/writeback stage, the results of the
execute stage are used to update the architected registers. The completion buffer ensures
that instructions write back and are retired in program order and also ensures the 602’'s
precise exception model.

Chapter 6. Instruction Timing 6-3



Instructions are fetched and executed concurrently with the execution and write back of
previousinstructions producing an overlap period between instructions. The details of these
operations are explained in the following paragraphs.

6.2 PowerPC 602 Microprocessor Pipeline
Organization

The instruction pipeline of the 602 has four major stages—fetch, dispatch, execute, and
complete/writeback. Each instruction executed by the machine flows through some or all
of these stages as shown in Figure 6-3. Some instructions spend multiple cyclesin a stage.

6-4 PowerPC 602 RISC Microprocessor User's Manual



Integer Unit Instruction Pipeline

o 1 2 s E—
Dispatch
e T e T s T e O [ o
I Execute
Complete/
N0 [ ] L vt
Nt ]
Load Store Unit Instruction Pipeline
0 1 2 3 4 5 6
M 7 7 7 7 LI 1
| so | [EVEREV
EESEE Lsui  Lsw2
EETH sU.  Lsu2
LSU1—EA Calculation
LSU2—Cache Access
Floating-Point Unit Instruction Pipeline
0 1 2 3 4 5 6 7

B ~ru: FPU2 FPUB
B Fru: FPu2 FPUB
B2 rru. FPU2  FPU3

FPU1—Multiply
FPU2—Add
FPU3—Round

Figure 6-3. Pipeline Diagrams for the PowerPC 602 Processor Execution Units

Chapter 6. Instruction Timing 6-5



Note that the timing examplesin Figure 6-3 are for typical instructions and do not apply to
al instructions that execute in a particular unit.

The stages in the 602 are described as follows:

The fetch stage primarily involves retrieving instructions from the memory system
and determining where the next instruction fetch should occur. The instructions
retrieved from the memory system are either latched into an instruction buffer or the
dispatch buffer for subsequent consideration by the dispatch stage. The BPU aso
decodes branches during the fetch stage and attemptsto fold out branch instructions.

The dispatch stage decodes the instructions supplied by the instruction fetch stage,
and determines which instructions can be dispatched in the current cycle. In
addition, the source operands are read from the appropriate register file and
dispatched with the instruction to the execute stage. At the end of the dispatch stage,
dispatched instructions and their operands are latched into execution unit input
latches.

During the execute stage, each execution unit that has an executable instruction
execute the selected instruction (perhaps over multiple cycles), write the
instruction’s result into the appropriate rename buffer, and notify the completion
stagethat theinstruction hasfinished execution. In the cases of aninternal exception,
the execution unit reports the exception to completion/writeback stage and
discontinues instruction execution until the exception is handled. The exception is
not addressed until that instruction is the next to be completed.

Execution of instructions is handled by one of three execution units, which operate
inparallel:

— Asshown in Figure 6-3, most single-precision floating-point instructions are
pipelined within the FPU. The stages for the FPU are multiply, add, and
normalize-round. A different instruction can occupy each stage, allowing up to
three instructions to be executing in the FPU concurrently.

— Execution of most load or store instructionsis pipelined. Asindicated in
Figure 6-3, the LSU has two stages—effective address calculation and MMU
trandation is performed in the first stage and dataiis accessed in the cachein the
second stage.

— Theinteger unit consists of a single stage, and most instructions that executein
the integer stage take only one clock cyclein that stage. Someinstructions, such
asinteger divides and multiplies, take multiple cyclesin that integer execute
stage and subsequent instructions that execute in the integer unit wait for those
instructions to execute.

Note that because instruction results are written to the rename buffers at the end of
the last execution cycle, those results are available for use by any instructions that
need those results as source operands. However, those results are not written to the
architected registers until the end of the compl etion/writeback stage.

6-6

PowerPC 602 RISC Microprocessor User's Manual



» The complete/writeback stage maintains the correct architectural machine state and
commitsit to the machine architectural registersat the proper time. If the completion
logic detects an instruction contai ning an exception status, al following instructions
are cancelled, their execution resultsin rename buffers are discarded, and the correct
instruction stream is fetched.

6.3 Timing Considerations

Although the 602 appears to the programmer to execute instructionsin sequential order, the
602 providesincreased performance by executing multipleinstructions at atime, and using
hardware to manage dependencies. All instructions (except for those resolved branch
instructions that can be folded out of the instruction stream) complete and write back their
results to architected registers in program order. However, the use of rename registers
alows the results of an instruction that has been executed but not yet alowed to complete
to be made available to a subsequent instruction that needs those results as source data.

When an instruction is issued, the register file or its associated rename registers place the
appropriate source data on the appropriate bus. The corresponding execution unit then reads
the data from the bus.

The 602 contains the following execution units that operate independently and in parallel:
e Branch processing unit (BPU)
e 32-bit integer unit (1U)
e 32-hit floating-point unit (FPU) for single-precision operations
« Load/store unit (LSU)

The 602’ s branch processing unit decodes and executes branchesimmediately after they are
fetched. The resources of the branch unit include—a count register (CTR) rename register
for writing to the CTR with the mtspr instruction, alink register (LR) rename register for
writing to the LR with the mtspr instruction, a link register rename register for branches
specifying an update of the link register, and a branch reservation station for conditional
branches that cannot be resolved due to a CR-data dependency.

When a conditional branch cannot be resolved due to a CR-data dependency, the branchis
predicted and instructions are executed out-of-order down the predicted path. Note that
instructions cannot complete and write back their results to architected registers until the
branch is resolved; however, they can make their results available to subsequent
instructions. If the branch resolves as incorrectly guessed then the following occurs:

1. Instructions that preceded the branch are allowed to complete.
2. Theinstruction buffer is purged.
3. Fetching of the correct path begins.

Chapter 6. Instruction Timing 6-7



When the IU or FPU finishes executing an instruction, it places any results into a rename
buffer for general-purpose register (GPR), floating-point register (FPR), link register,
counter register, or conditional register. Results are not stored into the associated
architected registers until the write-back stage, which helps ensure a precise exception
model.

6.3.1 Instruction Fetch Timing

Instruction fetch latency depends on whether the instruction is in the cache (cache hit). If
the instruction is not in the cache, additional latency is required to access the instruction
from an off-chip memory resource. In turn, this latency is affected by the bus frequency.
These issues are discussed further in the following sections.

6.3.1.1 Cache Arbitration
When the instruction fetcher tries to fetch instructions from the on-chip cache, one of two
things may occur:

* |f theinstruction cacheisidle and the instructions are in the cache, the cache
supplies the requested instructions on the next clock cycle.

» Because the 602's caches are nonblocking during line-fill operations, if the
instruction cache is performing a cache-line-reload, the requested instruction is
forwarded to the BPU at the same time that is made available in the cache.

Additionally, if abranch instruction is fetched from the cache block that is being
filled, it may point either to another addresswithin same block or to another location.

— If thetarget instruction is el sawhere in the same cache block, that instruction can
be fetched as soon as it becomes available in the instruction cache.

— If the target instruction is elsewhere in the cache, the instruction can be fetched
without having to wait for the entire cache block to be updated.

Note, however, that in both of these cases, instructions can be fetched from the cache
only whileit is not being written to as part of the cache linerefill. Thisis shownin
Section 6.3.1.3, “Cache Miss.”

6.3.1.2 Cache Hit

Assuming that the instruction fetcher is not blocked from the cache by a cache reload
operation and the instructions it needs are in the on-chip cache (in other words, a cache hit
has occurred), there is only one clock cycle between the time that the instruction fetcher
reguests an instruction and the time that the instruction entersthe 1Q.

Figure 6-4 shows a brief example of instruction fetching that hits in the on-chip cache.

6-8 PowerPC 602 RISC Microprocessor User's Manual



[Oadd [ ] [ Fetch
[Tneg] | [ Dispatch
2fadds] | I Execute
ECE— Complete
[ 3br | - Writeback
[4and [ |

Figure 6-4. Instruction Timing—Cache Hit

1. During clock cycle 0, instruction 0 (an add instruction) is fetched.

2. Inclock cycle 1, aneg instruction that uses the results of instruction 0 as a source
operand is fetched while instruction 0 isin the dispatch stage.

3. During clock cycle 2, instruction 2 (fadds) is fetched, instruction 1 isin dispatch,
and instruction 0 is executed in the U and its results are placed in arename buffer,
making those results available as a source operand for the neg instruction.

During clock cycle 3, an unconditional branch instruction isfetched into the branch
unit. The BPU immediately determines that the branch changed the program flow
and sends arequest to the on-chip cache for the new instruction stream.

Previous instructions continue to proceed down the pipeline. Note that even though
the results of instruction 0 are not written back to the architected GPR until the end
of thiscycle, instruction 1 accesses those results from the GPR rename buffer as a
source operand and executes without delay.

4. Inclock cycle 4, an and instruction is fetched from the new path, the branch
instruction isfolded, and the faddsinstruction enters the second execute stage of the
FPU pipeline, and instruction 1 completes and writes back.

5. Inclock cycle5, instruction 5 (an or) isfetched, while previousinstructions proceed
down the pipeline without encountering stalls.

6. Inclock cycle6, instruction 5 isin the dispatch stage, instruction 4 isin the IU
execute stage, and instruction 2 isin the third of the FPU execute stages.

7. Inclock cycle7, both instruction 2 and instruction 4 enter the compl etion/write back
stage. However, because only oneinstruction can compl ete and write back per clock
cycle, instruction 4 must wait for an additional cyclein order to complete. Note that
even though instruction 4, an and instruction, cannot complete, it does not prevent
the subsequent or instruction from going into the IU execute stage.

Chapter 6. Instruction Timing 6-9



8.

In clock cycle 8, instruction 4 is able to complete and write back, but again because
only one instruction can complete per clock cycle, instruction 5 must wait to
compl ete on the subsequent cycle.

6.3.1.3 Cache Miss

Figure 6-5 shows a brief example of an instruction fetch that misses in the on-chip cache
and how the bus timing affects the instruction issue. This example shows the simplest bus
timing—the processor/bus clock ratio is 2:1, the data bus is in 64-bit mode, the address
phaseisthe shortest possible (asingle cycle of the slower bus clock), and there are no wait
states between each beat of data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
rorrrrrerirrrrerrrrrirrerrrrerirfru1|
Bus — Address insts.3&4 Xinsts.5&6 Xinsts.7&8 Xinsts.9&10)—
3fmr[ ]
1 Fetch
[ Dispatch
[ Execute 6and |
I Complete/
Writeback

NP

Figure 6-5. Instruction Timing—Cache Miss

In clock cycle 0, an integer add instruction (instruction 0) is fetched.

In clock cycle 1, an fsel instruction (instruction 1) is fetched and instruction O isin
the dispatch stage.

In clock cycle 2, an unconditional branch instruction is fetched, and immediately
resolved. Thetarget instruction isnot in theinstruction cache, so aline-fill operation
isrequired.

Clock cycles4-8 show the buslatency for aburst-read operation in 64-bit mode with
asingle-cycle address phase.

Inclock cycle 9, thetarget instruction (an fmr instruction) arrivesin beat oneand is
made available to both the instruction cache and to instruction unit.

In clock cycle 10, the second instruction that arrived in the first beat (instruction 4)
isfetched from the cache. Note that thisis possible because in 2:1 mode, the cache
is being updated on alternate clock cycles, leaving it available for instruction
fetching on every other clock cycle.

PowerPC 602 RISC Microprocessor User's Manual



7. Inclock cycle 11, the cache is being written to, so no instructions can be fetched.
Instructions 3 and 4 continue through the pipeline.

8. Instruction 5 (from data beat 2) isfetched in clock cycle 12.

9. Thefirst instruction from the second data beat (instruction 5) is fetched. This
illustrates the fact that the 602’ s instruction cache is nonblocking, so thefetch logic
does not have to wait for the entire cache block to be loaded to fetch additional
instructions.

10. Additional instructions are fetched from the cache block without interruption on
every other clock cycle. By clock cycle 15, the line-fill operation is complete and
instructions can be fetched one instruction per processor clock cycle.

6.3.2 Instruction Dispatch and Completion Considerations

Severa factors may affect the 602's ability to dispatch instructions, including availability
of the execution units, rename registers, and the completion buffer, and the handling of
dispatch-serialized instructions.

To avoid dispatch unit stalls due to instruction data dependencies, the 602 provides a
reservation station for each execution unit. If a data dependency prevents an instruction
from beginning execution, that instruction is dispatched to the reservation station
associated with its execution unit, thereby clearing the dispatch unit. When the datathat the
operation depends upon isreturned viaa cache access or asaresult of aprevious operation,
execution begins during the same clock cycle that the register file is being updated. If the
second instruction in the dispatch unit requires the same execution unit, that instruction
cannot be dispatched until the first instruction executes.

The completion unit records the program order, and even though instructions may execute
out of order, it ensures that the results are written back and the instructions are retired in
program order. Completing an instruction implies the commitment of the results of
instruction execution to the architected registers and ensures a precise exception model
when the 602 must recover from a mispredicted branch or an exception.

Instruction state and all information required for completion is kept in a first-in-first-out
(FIFO) queue of four completion buffers. A single completion buffer is allocated for each
instruction asit is dispatched by the dispatch unit. If no spaceisavailablein the completion
buffer available, the dispatch unit stalls. While one instruction per clock cycle can be
completed and retired in program order from the completion unit, instruction completion
can be stalled by the instruction reaching the last position in the completion queue while
the instruction is still being executed.

Because the 602 can execute instructions out of order, the in-order completion by the
completion unit provides a precise exception mechanism. All program-related exceptions
are signaled when the instruction causing the exception has reached the last position in the
completion buffer. All prior instructions are allowed to complete before the exception is
taken.

Chapter 6. Instruction Timing 6-11



6.3.3 Rename Register Operation

To avoid contention for aregister filelocation, the 602 provides rename registersfor storing
instruction results before the completion unit commits them to the architected register.

The 602 has the following rename register resources:

* Four GPR rename buffers
* Four FPR rename buffers
* Onerename buffer each for the CR, LR, and CTR

When the dispatch unit dispatches an instruction to its execution unit, it allocates arename
register for the results of that instruction. If an instruction is dispatched to a reservation
station associated with an execution unit due to a data dependency, the dispatcher also
provides atag to the execution unit identifying which rename register forwards the required
data upon instruction completion. When the data is available in the rename register, the
pending execution may begin.

The completion unit does not transfer instruction results from the rename registers to the
architected registers until the instruction can be retired from the completion queue without
exceptions and until any unresolved branch conditions preceding it in the completion queue
have been resolved. If a branch is mispredicted, instructions associated with the
mispredicted branch are flushed from the completion queue and the results of those
instructions are flushed from the rename registers.

6.4 Execution Unit Timings

The following sections describe instruction timing considerations within each of the
respective execution units in the 602. Refer to Table 6-1 for branch instruction execution
timing.

6.4.1 Branch Processing Unit Execution Timing

Flow control operations (conditional branches, unconditional branches, and traps) are
typically time-consuming to execute in most machines because they disrupt normal
instruction flow. When the program flow changes, the 1Q must be rel oaded with the target
instruction stream, during which time the execution units can only execute instructions
dispatched before the change in the program flow. Waiting for instructions to be fetched
from the new address can cause inactivity in the execution units.

Performance features such as branch folding and static branch prediction help minimizethe
penalties associated with flow-control operations.

6-12 PowerPC 602 RISC Microprocessor User's Manual



The timing for branch instruction execution is determined by many factors including the
following:

* Whether the branch is taken

*  Whether the target instruction stream is in the on-chip cache
¢ Whether the branch is predicted

*  Whether the prediction is correct

6.4.1.1 Branch Folding

When abranch instruction is encountered by the fetcher, the BPU immediately triesto pull
that instruction out of the instruction stream and resolve it. When the BPU pullsthe branch
instruction out of the instruction stream, the instruction above the branch is shifted down to
take the place of the removed branch. The technique of removing the branch instruction
from the instruction sequence seen by the other execution unitsis known as branch folding.

Often, if the prediction is correct or if the branch is unconditional, branch folding can
reduce the penalties of flow control instructions to zero since instruction execution may
proceed as though the branch was never there. A branch can be predicted to be either taken
or not taken:

< Branch taken—If the folded branch instruction changes program flow, the BPU
immediately requests the instructions at the new target from the on-chip cache. In
most cases, the new instructions arrive in the |Q before any bubbles are introduced
into the execution units.

< Branch not taken—If the folded branch instruction does not change program flow,
the branch instruction is aready removed from theinstruction stream and execution
continues as if no branch instruction were in the original sequence.

When a conditional branch cannot be resolved due to a CR data dependency, the branch is
predicted by means of static branch prediction, and instruction fetching proceeds down the
predicted path. If the branch prediction was incorrect when the branch is resolved, the
instruction queue and al instructions associated with the mispredicted branch are purged.
The results of any instructions from the mispredicted branch that may have executed are
also purged and are not written to architected registers. Instruction fetching resumes down
the correct path.

There are several situations where instruction sequences create dependencies that prevent
abranch instruction from being resolved immediately, thereby causing the instructions that
are the target of the mispredicted branch to be executed out of order.

Chapter 6. Instruction Timing 6-13



The instruction sequences and the resulting action of the branch instruction are described
asfollows:

* Anmtspr(LR) followed by abclr—Fetching stops, and the branch waits for the
mtspr to execute.

* Anmtspr(CTR) followed by abcctr—Fetching stops, and the branch waits for the
mtspr to execute.

¢ Anmtspr(CTR) followed by abc(CTR)—Fetching stops, and the branch waits for
the mtspr to execute.

* A bc(CTR) followed by another bc(CTR)—Fetching stops and the second branch
waits for the first branch to be completed.

* A bc(CTR) followed by abcctr—Fetching stops, and the beetr waits for the first
branch to be completed.

¢ A branch(LK = 1) followed by a branch(LK = 1)—Fetching stops, and the second
branch waits for the first branch to be completed. (Note: abl instruction does not
have to wait for abranch(LK = 1) to complete.)

» A be(based-on-CR) waiting for resolution due to a CR-dependency followed by a
bc(based-on-CR)—TFetching stops, and the second branch waits for the first CR-
dependency to be resolved. (Note: branch conditions can be afunction of the CTR
and the CR; if the CTR condition is sufficient to resolve the branch, then a CR-
dependency isignored.)

6.4.1.2 Static Branch Prediction

Static branch prediction is a mechanism by which software (for example, compilers) can
give a hint to the machine hardware about the direction the branch is likely to take. When
a branch instruction encounters a data dependency, the BPU waits for the required
condition code to become available. Rather than stalling instruction issue until the source
operand is ready, the 602 predicts the path a branch instruction is likely to take, and
instructions are fetched and executed along that path. When the branch operand becomes
available, the branch is evaluated. If the predicted path was correct, program flow continues
along that path uninterrupted; otherwise, the processor backs up, and program flow resumes
along the correct path.

Thereisascenario where aflow-control instruction is not predicted on the 602. If the target
address of the branch (link or count register) is modified by an instruction that appears
before the branch instruction, the BPU must wait until the target addressis available.

The 602 executes through one level of prediction. The microprocessor may not predict a
branch if aprior branch instruction is unresolved.

The number of instructions that can be executed after the issue of a predicted branch
instruction is limited by the fact that like other out-of-order instructions, instructions in
unresolved branch cannot update the register files or memory. That is, instructions can
execute and make their results available for execution by subsequent instructions, they

6-14 PowerPC 602 RISC Microprocessor User's Manual



cannot reach the complete/write-back stage in the completion unit and they instead stall in
the completion unit. As a result, the completion queue may become full, at which point
subsequent instructions can no longer be dispatched until the branch is resolved.

In the case of a misprediction, the 602 can redirect its machine state rather painlessly
because the programing model has not been updated. When a branch is found to be
mispredicted, instructions associated with the mispredicted branch are flushed and their
results flushed from the rename registers. The architected register state is not affected by
out-of-order execution.

6.4.1.2.1 Predicted Branch Timing Examples
Figure 6-6 depicts the cases where branch instructions are predicted, and shows both
“taken” and “not taken” branch outcomes.

[Ofneg] |
[[1bc ] I I ]
[3bc | [ ]
[4fdivs] ]

[ Fetch Sor ]
[—/] Dispatch
[ Unpredicted _8 T
[/ Predicted/unresolved
[ Execute
I Complete/Writeback

Figure 6-6. Branch Instruction Timing

1. During clock cycle 0, instruction 0 (an fneg instruction) is fetched.

2.

In clock cycle 1, instruction 1, a Branch Conditional (bc) instruction whose
resolution depends on how instruction 0 affectsthe CR isfetched asinstruction Ois
dispatched to the FPU execution unit. Notice that the BPU has a combined
decode/execute stage, thus the branch (instruction 1) is predicted as “not taken”
during clock cycle 2 becauseits source register (condition register) will not become
available until clock cycle 5.

In clock cycle 2, the be instruction remains predicted but unable to resolve waiting
for the results from instruction 0. An add instruction (instruction 2) is fetched—
sequentially according to the prediction of instruction 1.

Chapter 6. Instruction Timing 6-15



4. During clock cycle 3, instruction 0 isin FPU execute stage 2, and instruction 1
remains unresolved, waiting for the results of instruction 0. Also, theadd instruction
is dispatched, and a second bc instruction (instruction 3) is fetched.

5. During clock cycle 4, instruction O entersits final execute stage, instruction 1
remains unresolved, instruction 2 isin the U execute stage, and the second bc
instruction remains unable to predict waiting the resolution of the first bc
instruction. Therefore, no instruction is fetched.

6. Inclock cycle 5, instruction O enters the complete stage, which resolves the data
dependency for the first branch (instruction 1); in this case the prediction was
correct. When instruction 1 isresolved, the BPU isfreeto predict be (instruction 3),
and it too is predicted as * not taken”. This branch depends on how instruction 2
affects the CR and therefore must wait for it to complete and write back its results.
Although instruction 2 had executed, it cannot exit the compl ete stage because only
one instruction can complete per clock cycle. Also in this clock cycle, an fdivs
instruction (instruction 4) is fetched.

7. During clock 6, instruction 2 writes back its results so the second branch instruction
isresolved, and the prediction wasincorrect. Asaresult, thefdivsinstruction, which
isnow in dispatch stage must be flushed from the pipeline and fetching must begin
at the target address.

8. Inclock cycle 7, the instruction fetcher begins fetching instructions from the
instruction cache. In this case there is a cache hit, so the target or instruction is
fetched, and the instruction flow continues.

6.4.2 Integer Unit Execution Timing

The integer unit executes al integer and logical instructions. Many of these instructions
execute in asingle clock cycle. The integer unit has one execute phase in its pipeline, thus
when a multicycle integer instruction is being executed, no other integer instructions may
begin an execute phase. Refer to Table 6-2 for integer instruction execution timing.

6.4.3 Floating-Point Unit

The 602's FPU performs single-precision floating-point operations compliant with the
|IEEE-754 floating-point standard, and can produce non-IEEE results for time-critical
operations. These modes of operation are described in Section 2.3.4.2.2, “IEEE Mode
(FPSCR[NI] = 0),” and Section 2.3.4.2.3, “Non-IEEE Mode (FPSCR[NI] = 1)

Single-precision multiplies, multiply-adds, adds, and subtracts execute in a three-stage
pipeline with three-cycle completion latency allowing throughput of one single-precision
instruction per cycle. Single-precision divide operations require multiple cycles to
complete.

All operations involving double-precision operands and operations that produce
denormalized numbers require emulation routines, and therefore have longer execution
latency.

6-16 PowerPC 602 RISC Microprocessor User's Manual



There are two 32-bit, special-purpose registers—SP and LT. Each bit of each register
corresponds to a single 32-bit FPR.

« If either the SP bit or the LT hit is set, the associated register contains valid data—
SP designating single-precision floating-point data, and LT designating integer data.

« If neither bit is set, the data resides in memory in the associated double-precision
emulated FPR. The operation of these registersis described in greater detail in
Section 2.1.2.4.1, “Floating-Point Tag Registers (SPand LT).”

The block diagram for the floating-point execution unit is shown in Figure 6-7.

Floating-Point Instruction Stream
(Source operands from FPRs
or Rename Buffers)

|

Multiply

Y Y

Carry/Propagate/Add

Y

A

Normalize/Round

Y

Floating-Point Results
(To FPRs/Rename Buffers)

Figure 6-7. FPU Block Diagram

6.4.4 Floating-Point Unit Execution Timing

The FPU on the 602 executes all hardware-supported floating-point instructions. Execution
of most floating-point instructions is pipelined within the FPU, alowing up to three
instructions to be executing in the FPU concurrently (one at each of the three stagesin the
FPU pipeling). While most floating-point instructions execute with three- or four-cycle
latency, and one-cycle throughput, two instructions (fdivs and fres) execute with latencies
of 18 cycles. The fdivs, fres, mtfsb0, mtfsbl, mtfsfi, mffs, and mtfsf instructions block
the FPU pipeline until they complete execution, and thereby inhibit the dispatch of
additional floating-point instructions. With the exception of the mcrfs instruction, all
floating-point instructionsimmediately forward their CR results to the BPU for fast branch

Chapter 6. Instruction Timing 6-17



resolution without waiting for the instruction to be retired by the completion unit, and the
CR updated. Refer to Table 6-5 for floating-point instruction execution timing.

6.4.5 Load/Store Unit Execution Timing

The LSU has two pipeline stages—the first is for effective address calculation and MMU
tranglation, and the second isfor accessing the datain the cache. The execution of most load
and store instructionsis pipelined, asfollows:

¢ Load instructions have atwo-cycle latency and one-cycle throughput. Load
instructions block subsequent access to the cache until the critical word is
forwarded.

« Storeinstructions have atwo-cycle latency and two-cycle throughput.

Refer to Table 6-6 for load and store instruction execution timing.

6.5 Memory Performance Considerations

Dueto the 602’ sinstruction execution throughput of three instructions per clock cycle, lack
of data bandwidth can become a performance bottleneck. For the 602 to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.
In a multiprocessor system environment, one processor may experience long memory
latencies while another bus master (for example, a direct-memory access controller) is
using the external bus. To avoid such contention, the PowerPC architecture defines three
memory update modes—copy-back, write-through, and caching-inhibited. Each page of
memory is specified to be in one of the following modes:

» If apageor block isin copy-back mode, databeing stored to that pageiswritten only
to the on-chip cache.

« If apageor block isin write-through mode, write operationsto that page update the
on-chip cache on hits and always update main memory.

« If apage or block is caching-inhibited, datain that page is never stored in the on-
chip cache.

This section describes how performance is affected by each memory update mode. For
details about the operation of the on-chip cache and the memory update modes, see
Chapter 3, “Instruction and Data Cache Operation.”

6.5.1 Copy-Back Mode

When storing data while in copy-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on modified cache block replacements, cache flushes, or when another processor
attempts to access a specific address for which there is a corresponding modified cache
entry. For this reason, copy-back mode may be preferred when external bus bandwidth isa
potential bottleneck—for example, in a multiprocessor environment. Copy-back mode is
also well suited for datathat is closely coupled to a processor, such as local variables.

6-18 PowerPC 602 RISC Microprocessor User's Manual



If more than one device uses data stored in a page or block that is in copy-back mode,
snooping must be enabled to allow copy-back operations and cache invalidations of
modified data. The 602 implements snooping hardware to prevent other devices from
accessing invalid data. When bus snooping is enabled, the processor monitors the
transactions of the other devices. For example, if another device accesses a memory
location and its memory-coherent (M) bit is set, and the 602’ s on-chip cache has amodified
value for that address, the processor preempts the bus transaction, and updates memory
with the cache data. If the cache contents associated with the snooped address are
unmodified, the 602 invalidates the cache block. The other deviceisthen freeto attempt an
access to the updated memory address. See Chapter 3, “Instruction and Data Cache
Operation,” for complete information about bus snooping. For an understanding of how bus
latency is affected by snooping, aswell as by the operationsthat occur asaresult of asnoop
hit, see Section 8.4, “Memory Coherency and Bus Protocol.”

Copy-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

6.5.2 Write-Through Mode

Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the datain the cache must
always agree with external memory (for example, video memory), or when there is shared
(global) datathat may be used frequently, or when allocation of acacheline on acachemiss
is undesirable. Automatic copy-back of cached datais not performed if that dataisfrom a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that are in write-through mode may cause a decrease in performance.
Each time a store is performed to memory in write-through mode, the bus is busy for the
extra clock cycles required to perform the memory update; therefore, load operations that
miss the on-chip cache must wait while the external store operation completes.

6.5.3 Caching-Inhibited Accesses

If amemory page is specified to be caching-inhibited, data from this page is not stored in
the on-chip cache.

Areas of the memory map can be caching-inhibited by the operating system software. If a
caching-inhibited access hits in the on-chip cache, the corresponding cache line is
invalidated. If the line is marked as modified, it is copied back to memory before being
invalidated.

In summary, the copy-back mode allows both load and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the caching-inhibited mode causes memory access for both loads and stores.

Chapter 6. Instruction Timing 6-19



6.6 Instruction Scheduling Guidelines
Instruction scheduling on the 602 can be improved by observing the following guidelines:

Implement good static branch prediction (setting of y bit in BO field)

When branch prediction is either uncertain or an even probability, predict that the
branch is not taken.

To reduce mispredictions, separate the instruction that sets CR bits from the branch
instruction that eval uates them; separation by more than nine instructions ensures
that the CR bits are immediately available for evaluation.

When branching conditionally to alocation specified by the count or link register, or
when branching conditionally based on the value in the count register, separate the
mtspr instruction that initializes the CTR or LR from the branch instruction
performing the evaluation. Separation of the branch instruction and the mtspr
instruction by more than nine instructions ensures the register values are
immediately available for use by the branch instruction.

Schedule instructions to minimize execution-unit-busy stalls.
Avoid using serializing instructions.

Scheduleinstructionsto avoid dispatch stalls due to renamed resource limitations by
observing the following guidelines:

— Only four instructions can be in the complete/writeback stage at any one time

— Schedule code to avoid aneed for more than four GPR or FPR rename buffers at
atime, so even though space may be available in the first FPU execute stage, a
floating-point instruction cannot enter the execute stage if all four FPR rename
registers are occupied.

6.6.1 Branch, Dispatch, and Completion Unit Resource

Requirements

This section describes the specific resources required to avoid stalls during branch
resolution, instruction dispatching, and instruction completion.

6.6.1.1 Branch Resolution Resource Requirements

Thefollowingisalist of branch instructions and the resources required to avoid stalling the
fetch unit in the course of branch resolution:

The bclr instruction requires LR availability.
The bectr instruction requires CTR availability.
“Branch and link” instructions require shadow LR availability.

The “branch conditional on counter decrement and CR condition” requires CTR
availability or the CR condition must be false, and 602 cannot be executing
instructions out-of order when the branch instruction is encountered by the BPU.

The “branch conditional on CR condition” cannot be executed out of order.

6-20

PowerPC 602 RISC Microprocessor User's Manual



6.6.1.2 Dispatch Unit Resource Requirements
Thefollowing isalist of resources required to avoid stalls in the dispatch unit:

* Needed execution unit is available.

» Needed GPR rename register(s) are available.

¢ Needed FPR rename registers are available.

e Completion buffer is not full.

» Instructionis dispatch-serialized and completion buffer is empty.
¢ A dispatch-seriaized instruction is not currently being executed.

6.6.1.3 Completion Unit Resource Requirements

The following isalist of resources required to avoid stalls in the completion unit—CQ[0]
is the completion buffer located at the end of the completion queue:

e Ingtructionin CQ[0] must be finished
e Instructionin CQ[0] must not cause an exception

6.7 Instruction Serialization Modes
This section describes the operation of the 602's serialization modes, which are asfollows:
e Completion serialization
» Dispatch serialization
» Refetch serialization
¢ FPU seridization

6.7.1 Completion Serialization

A completion-serialized instruction is held for execution in itsfunctional unit until all prior
instructions have completed. The instruction executes when it is next to complete in
program order.

Completion serialization is used for instructions that access or modify nonrenamed
resources or directly access renamed resources. Results from these instructions are not
available or forwarded for subsequent instructions until the instruction completes.
Consecutive completion serialized instructions in a program limit completion to one
instruction per cycle. The following instructions are completion serialized:

* Ingtructions that modify the CR register, excluding record operations and compare
instructions

« Instructions that access or modify system control or status registers

« Instructions that manage caches, TLBs, or BAT registers

« Instructions that access nonrenamed GPRs such as load multiple instructions

« Instructions defined by the architecture as synchronizing—sync, isync, rfi, and sc
» All storeinstructions

Chapter 6. Instruction Timing 6-21



6.7.2 Dispatch Serialization
Some completion-serialized instructions are also dispatch serialized. These instructions
inhibit dispatching of subsequent instructions until the instruction completes. Dispatch
serialization is used for instructions that access resources that can be renamed used by the
dispatcher.
The following instructions are dispatch-serialized:

* dcbf, dcbi, dcbst, dcbz, and icbi

« tlbld, tibli, and tibie

e Imw and stmw

e mcrfs, merxr

« mfspr with SPRs—IBATNn, DBATN, LT, and SP

e mffs, mfsr, and mfsrin

* mtspr with SPRs—SER, SEBR, ESASRR, XER, IBATn, and DBATn

o mtfsbl, mtfsf, mtfsfi, mtmsr (if a store operation is pending), mtssb0, mtsr, and
mtsrin,

o fctiwz
e syncandisync

6.7.3 Refetch Serialization

There is one instruction, isync, that is refetch serializing. After an isync instruction
completes, it forces subsequent instructions to be refetched.

6.7.4 FPU Serialization

The FPU serializes divide instructions that are not pipelined. No new instructions are
accepted from the dispatch unit until FPU-serialized divide instruction finishes.

6.8 Instruction Latency Summary
Instruction latency is shown in Table 6-1 through Table 6-6.

» Pipelined floating-point instructions are shown with number of clocksin each stage
separated by dashes.

» Instructions that must be emulated by software are identified by the exception that
they take.

The “~" indicates certain instructions (integer instructions, floating-point compare
instructions, and floating-point instructionswith Rc = 1) that immediately forward their CR
resultsto the BPU for fast branch resolution. All other instructions forward their CR results
when they reach the completion stage.

6-22 PowerPC 602 RISC Microprocessor User's Manual



Note that the BPU folds (removes) certain branch instructions from the instruction stream
before the stream reaches the dispatcher. In certain cases, the BPU aso predicts branches
and supplies an instruction stream to the dispatcher at the target address indicated by the
predicted branch. Therefore, athough this section accurately indicates the number of cycles
an instruction executes in the appropriate unit, determining the elapsed time or cycles to
execute a sequence of instructionsis difficult and beyond the scope of this document.

6.8.1 BPU Instruction Timings

Table 6-1 liststhe timings for executing branch instructions. Note that these timings do not
identify the latency of the actual branching, which can be affected by factors such as the
accuracy of the branch prediction and memory latency.

Table 6-1. BPU Operations

Mnemonic Primary Extended Cycles
beetr(l] 19 528 1*
belrl] 19 016 1*
be[l][a] 16 — 1*
b[l][a] 18 — 1*

*These operations may be folded for an effective cycle time of 0.

6.8.2 Integer Unit Instruction Timings

The IU in the 602 is responsible for executing integer computational and logical
instructions. Timings for the 1U instructions are listed in Table 6-2.

Table 6-2. Integer Unit Operations

Mnemonic Primary Extended Cycles
addc[o][.] 31 010 1
adde[o][.] 31 138 1
addel[o][.] 31 138 1
addi 14 — 1
addic 12 — 1
addic. 13 — 1
addis 15 — 1
addme[o][.] 31 234 1
addze[o][.] 31 202 1
add[o][] 31 266 1
andc[.] 31 060 1
andi. 28 — 1

Chapter 6. Instruction Timing 6-23



Table 6-2. Integer Unit Operations (Continued)

Mnemonic Primary Extended Cycles
andis. 29 — 1
andl[.] 31 028 1
cmp 31 000 n
cmpi 11 — n
cmpl 31 032 n
cmpli 10 — n
cntlzwl.] 31 026 1
divwu[o][.] 31 459 37
divw[o][] 31 491 37
dsa 31 628 1
eieio 31 854 no op
eqv[] 31 284 1
esa 31 596 1
extsbl[.] 31 954 1
extsh[.] 31 922 1
mfmsr 31 083 1
mfrom 31 265 1
mfspr (DBATSs) 31 339 3&
mfspr (IBATS) 31 339 3&
mfspr (not I/DBATS) 31 339 1
mfsr 31 595 3&
mfsrin 31 659 3&
mftb 31 371 1
mtmsr 31 146 2
mtspr (IBATs) 31 467 2&
mtspr (not IBATS) 31 467 2
mtsr 31 210 3&
mtsrin 31 242 3&
mttb 31 467 1
mulhwul[.] 31 011 1-1,2-1,3-1,4-1
mulhw[.] 31 075 1-1,2-1,3-1
mulli 07 — 1,1-1

6-24 PowerPC 602 RISC Microprocessor User's Manual



Table 6-2. Integer Unit Operations (Continued)

Mnemonic Primary Extended Cycles
mullw(o][.] 31 235 1-1.2-1,31
nand[.] 31 476 1
neg[o][] 31 104 1
norl[.] 31 124 1
orcl[.] 31 412 1
ori 24 — 1
oris 25 — 1
or[] 31 444 1
riwimi[.] 20 — 1
riwinm[.] 21 — 1
rlwnml[.] 23 — 1
siw[] 31 024 1
srawil.] 31 824 1
sraw[.] 31 792 1
srw[.] 31 536 1
subfc[o][.] 31 008 1
subfe[o][.] 31 136 1
subfic 08 — 1
subfmelo][.] 31 232 1
subfze[o][.] 31 200 1
subf[o][.] 31 040 1
sync 31 598 1&
tw 31 004 2
twi 03 — 2
xori 26 — 1
Xoris 27 — 1
xorl[.] 31 316 1

Chapter 6. Instruction Timing

6-25



Condition register logical instructions are executed inthe |U. Timingsfor these instructions
are shown in Table 6-3.

Table 6-3. Condition Register Logical Operations

Mnemonic Primary Extended Cycles
crand 19 257 1
crandc 19 129 1
creqv 19 289 1
crnand 19 225 1
crnor 19 033 1
cror 19 449 1
crorc 19 417 1
crxor 19 193 1
mcrf 19 000 1
mcrxr 31 512 1&
mfcr 31 019 1
mtcrf 31 144 1

6.8.3 Synchronization Instructions

Severa instructions are not dispatched and executed in an execution unit, but rather are sent
directly to the completion buffer where they are alowed to perform the appropriate
operation in the correct order.

Table 6-4. Synchronization Instructions

Mnemonic Primary Extended Cycles
isync 19 150 1&
rfi 19 050 3
sc 17 --1 3

6.8.4 FPU Instruction Timings

Timings for floating-point instructions are shown in Table 6-5. Instructions with a single
entry in the cycles column are not pipelined; for these instructions the FPU is not available
for additional instruction execution.

6-26 PowerPC 602 RISC Microprocessor User's Manual



Table 6-5. FPU Operations

Mnemonic Primary Extended Cycles
fabs[.] 63 264 1-1-17
faddsl[.] 59 021 1-1-1n
fadd[.] 63 021 Emulation trap
fcmpo 63 032 1-1-1n
fcmpu 63 000 1-1-1n
fctiwz[.] 63 015 1-1-1n
fetiw[.] 63 014 Emulation trap
fdivs[.] 59 018 18"
fdiv[.] 63 018 Emulation trap
fmadds|.] 59 029 1-1-17
fmadd[.] 63 029 Emulation trap
fmr[.] 63 072 1-1-17
fmsubsl.] 59 028 1-1-170
fmsubl[.] 63 028 Emulation trap
fmuls[.] 59 025 1-1-1n
fmul[.] 63 025 Emulation trap
fnabs[.] 63 136 1-1-1n
fneg[.] 63 040 1-1-1n
fnmadds[.] 59 031 1-1-17
fnmadd[.] 63 031 Emulation trap
fnmsubs|.] 59 030 1-1-1n
fnmsub[.] 63 030 Emulation trap
fres[.] 59 024 18"
frsp[.] 63 012 1-1-1n
frsqrte[.] 63 026 1-1-1n
fsell.] 63 023 1-1-17
fsubsl.] 59 020 1-1-17
fsub[.] 63 020 Emulation trap
mcrfs 63 064 1-1-1&

Chapter 6. Instruction Timing

6-27



Table 6-5. FPU Operations (Continued)

Mnemonic Primary Extended Cycles
mffs[.] 63 583 1-1-18"
mtfsbO[.] 63 070 1-1-18°
mtfsbi[] 63 038 1-1-18»
mtfsfi[.] 63 134 1-1-187
mtfsf[.] 63 711 1-1-18°

Note that all single-precision instructions take an emulation trap exception if any of the
operands’ SP bitsare cleared (indicating that the operand is an integer or adouble-precision
floating-point number). The mtfsf instruction takes an emulation trap exception if the LT
bit is cleared.

6.8.5 Load/Store Unit Instruction Timings

Pipelined load/store instructions are shown in Table 6-6 with cycles of total latency and
throughput cycles separated by a colon.

Table 6-6. Load/Store Unit Instruction Timings

Mnemonic Primary Extended Cycles
dcbf 31 086 2/5&
dcbi 31 470 2&
dcbst 31 054 2/5&
dcbt 31 278 1
dcbtst 31 246 1
dcbz 31 1014 5&
eciwx 31 310 Program exception
ecowx 31 438 Program exception
icbi 31 982 3&
Ibz 34 — 2:1
lbzu 35 — 2:1
Ibzux 31 119 2:1
Ibzx 31 087 2:1
Ifd 50 — 3:2
Ifdu 51 — 3:2
Ifdux 31 631 3:2
Ifdx 31 599 3:2

6-28 PowerPC 602 RISC Microprocessor User's Manual



Table 6-6. Load/Store Unit Instruction Timings (Continued)

Mnemonic Primary Extended Cycles
Ifs 48 — 2:1
Ifsu 49 — 2:1
Ifsux 31 567 2:1
Ifsx 31 535 2:1
lha 42 — 2:1
lhau 43 — 2:1
lhaux 31 375 2:1
lhax 31 343 2:1
lhbrx 31 790 2:1
lhz 40 — 2:1
lhzu 41 — 2:1
lhzux 31 311 2:1
lhzx 31 279 2:1
Imw 46 — 1+ n&
Iswi 31 597 Emulation trap
Iswx 31 533 Emulation trap
lwarx 31 020 2:1
lwbrx 31 534 2:1
lwz 32 — 2:1
lwzu 33 — 2:1
lwzux 31 055 2:1
lwzx 31 023 2:1
stb 38 — 2:1
stbu 39 — 2:1
stbux 31 247 2:1
stbx 31 215 2:1
stfd 54 — 3:2
stfdu 55 — 3:2
stfdux 31 759 3:2
stfdx 31 727 3:2
stfiwx 31 983 2:1
stfs 52 — 2:1

Chapter 6. Instruction Timing

6-29



Table 6-6. Load/Store Unit Instruction Timings (Continued)

Mnemonic Primary Extended Cycles
stfsu 53 — 2:1
stfsux 31 695 2:1
stfsx 31 663 2:1
sth 44 — 2:1
sthbrx 31 918 2:1
sthu 45 — 2:1
sthux 31 439 2:1
sthx 31 407 2:1
stmw 47 — n&
stswi 31 725 Emulation trap
stswx 31 661 Emulation trap
stw 36 — 2:1
stwbrx 31 662 2:1
stwcex. 31 150 2:1
stwu 37 — 2:1
stwux 31 183 2:1
stwx 31 151 2:1
tibie 31 306 3&
tibld 31 978 3&
tIbli 31 1010 3&

Note that the Ifd, Ifdu, Ifdx, and Ifdux instructions trap to the emulation trap exception
(0x01600) if the operand is not within the single-precision range (regarding both the
exponent and fraction) or if the operand is a NaN, an infinity, or a denormalized number.
Thestfd, stfdu, stfdx, and stfdux instructions trap to the emulation trap exception if the SP
bit associated with the operand FPR is*“ OFF’ or if the FPR contains a NaN, an infinity, or
a denormalized number.

6.8.6 Effect of Operand Placement on Performance

The location and alignment of operands in memory affect relative performance of memory
accesses, and in some cases affect it significantly. Dataand instructions shoul d be organized
in memory to minimize the number of effective address calculations and minimize the
number of alignment exceptions.

6-30 PowerPC 602 RISC Microprocessor User's Manual



The following list characterizes the efficiency of memory accesses relating to operand
placement:

* One effective address generated—A s long as the entire memory access falls within
adouble word, only one effective address is generated. For optimal performance,
operands should not cross double-word alignment boundaries.

¢ Multiple effective addresses generated—When an operand crosses a double-word
boundary (for example, when a double-word operand is not double-word-aligned),
an additional effective address must be generated for each double word in memory
in which the operand resides. If the double-word boundary is also at a cache block
boundary, a cache miss may occur.

« Alignment exception is generated—An alignment exception or other exception is
generated by the memory operation. Note that any little-endian access that does not
fall on its natural alignment boundary causes an alignment exception. If an access
crosses a page boundary, a page miss may occur.

6.8.7 Effect of Floating-Point Exceptions on Performance

Floating-point operations that affect the exception sticky bits in the FPSCR may incur
performance penalties.

When an exception is disabled in the FPSCR and MSR[FE] = 0, updates to the FPSCR
exception sticky bits are completion-serialized, as described in Section 6.7.1, “ Completion
Serialization.” This serialization may incur a one- or two-cycle execution delay. The
penalty isincurred only on transitions to the exception bit and not on subsequent operations
with the same exception.

When an exception is enabled in the FPSCR, the instruction causes an emulation trap
exception without updating the FPSCR or the target FPR. The emulation trap exception
handler is required to complete the instruction and is invoked regardless of the setting of
MSR[FE].

For the fastest and most predictable floating-point performance, al exceptions should be
disabled in the FPSCR and MSR.

Chapter 6. Instruction Timing 6-31



6-32 PowerPC 602 RISC Microprocessor User's Manual



Chapter 7
Signal Descriptions

The PowerPC 602 microprocessor bus interface has a single 64-bit bus that is time-
multiplexed for use as address and data bus. This technique provides the most efficient use
of signals on the processor while having most of the signals of other current 32-bit
PowerPC processors. If a nonmultiplexed bus is desired, the 602 bus can aso be
demultiplexed at the processor with a set of address latches. The 602 bus supports cache-
coherent DMA operations.

A summary of the bus features are listed as follows:

e 32-hit address and address attributes

e 64-bit busfor datatransfer that can be dynamically resized for 32-bit data operations
* Snooping to support cache-coherent DMA operations

 Injected snoops allowed during a burst read transaction

« Provideslinefill read address on the address phase of the write-back transaction

This chapter describes the 602's external signals. It contains a concise description of
individual signals, showing behavior when the signal is asserted and negated and when the
signal isan input and an output.

NOTE

A bar over a signal name indicates that the signa is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
arenot active low, such as TTO-TT4 (transfer type signals), are
referred to as asserted when they are high and negated when
they are low.

Chapter 7. Signal Descriptions 7-1



The 602 signals are grouped as follows:

7.1

Arbitration signals—The 602 uses these signals to arbitrate for bus mastership.

Transfer start signa—The transfer start signal indicates that abus master has begun
atransaction.

Address transfer signals—These signals, which correspond to the data signals
D0-D31 during the data phase, transfer the address during the address phase.

Transfer attribute signals—These signals, which share the same physical
connections as D31-D63, provide information about the type of transfer, such asthe
transfer size and whether the transaction is bursted, write-through, or caching-
inhibited.

Address transfer termination signals—These signals are used to acknowledge the
end of the address phase. They also indicate whether acondition existsthat requires
the address phase to be repeated.

Datatransfer signals—These signals are used to transfer the data and to ensure the
integrity of the transfer.

Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a nonburst transaction, the data termination signals
asoindicate the end of the transaction, while in burst accesses, the datatermination
signals apply to individual beats and indicate the end of the data phase only after the
final data beat. They also indicate whether a condition exists that requires entire
transaction to be repeated.

System status signals—These signals include the external interrupt signal,
checkstop signals, and both soft- and hard-reset signals. These signals are used to
interrupt and to reset the processor.

JTAG/COP interface signals—The JTAG interface and common on-chip processor
(COP) unit provides a serial interface to the system for performing monitoring and
boundary tests.

Clock signals—These signals provide for system clock input and frequency control.

Signal Configuration

Figure 7-1illustrates the 602's signal configuration, showing how the signals are grouped.

NOTE

A pinout showing actual pin humbers is included in the 602
hardware specifications.

7-2

PowerPC 602 RISC Microprocessor User's Manual



602
— < A0A3UDOD3 ., 1 l< TS -
PFADDRO-PFADDR?/ _
D32-D39 8 1 < BB >
BEO-BE7/D40-D47/
«__PFADDRB-PFADDRI5 __| g 1< ARTRY .
PFADDR16-PFADDR17/ o
D48-D49 2 1 | TEA
TSIZ0-TSIZ2/D50-D52/ _
PFADDR18-PFADDR20 | 5 1l iy
TBST/DS3 < ARACK
ADDRESS/ e 1
TRANSFER
ATTRIBUTES/ < TTO-TT4/D54-D58 5 1| INT
DATA - -
- GBL/D59 o 1< S}
- CiD60 o1 1< MCP
- WT/D61 o1 1< CKSTP_IN
TCo-TCUD62-D63 | , . CKSTP_OUT
T32 o1 » HRESET, SRESET
N RESETO .
BR OREQ
- 1 1 >
BUS
ARBITRATION BG o 1 1l QACK
1)< TBEN
SYSCLK o1
TEST CLOCK JTAGICOP
CLOCKS - 1 5 | >
PLL CFGO-PLL CFG3 | ,
ale TEST

]
]

DATA
TRANSFER
TERMINATION

INTERRUPT,
CHECKSTOPS,
AND RESETS

SYSTEM
STATUS
SIGNALS

JTAG/COP
INTERFACE

LSSD TEST
CONTROL

Figure 7-1. PowerPC 602 Microprocessor Signal Groups

Chapter 7. Signal Descriptions

7-3



7.1.1 Time-Multiplexed System Bus

To conserve space and power, the 602 implements atime-multiplexed bus. That is, the same
signals from the processor serve different functions depending on whether it is being used
to transfer an address or data. Note that AO-A31 are equivalent to DO-D31. The remaining
32 bits are used for transfer attribute signals, such as global (GBL) and transfer burst

(TBST). Signal assignments for data and address cycles are shown in Table 7-1.

Table 7-1. Time-Multiplexed Sighal Assignments

Address Phase
Data Phase

Nonburst Transactions Burst Transactions
D0-D31 Address signals (A0-A31) Address signals (A0-A31)
D32-D39 — Prefetch line-fill address signals

(PFADDRO-PFADDRZ20). (Cache copy-

D40-D47 Byte enable (BEO-BE7) back line-fill only)
D48-D49 —
D50-D52 Transfer size (TSIZ0-TSIZ2)
D53 Transfer burst (TBST) Transfer burst (TBST)
D54-D58 Transfer type (TTO-TT4) Transfer type (TTO-TT4)
D59 Global (GBL) Global (GBL)
D60 Cache inhibit (CT) Cache inhibit (CI)
D61 Write through (WT) Write through (WT)
D62-D63 Transfer code (TCO-TC1) Transfer code (TCO-TC1)

When the bus is in the data phase, it can be made to function as a 32- or 64-bit data bus.
The bus width is determined by the target data bus width (T32) signal, described in
Section 7.2.7.2, “ Target Data Bus 32 (T32)—Input.”

7.2 Signal Descriptions

This section describes individual 602 signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signa functions.
Chapter 8, “ System Interface Operation,” describes many of these signals in greater detail,
both with respect to how individual signals function and how groups of signalsinteract.

7.2.1 Bus Arbitration Signals

The arbitration signals are a collection of input and output signals the 602 uses to request
the bus and the system uses to control bus mastership. For a detailed description of how
these signals interact, see Section 8.3.1, “BusArbitration.”

7-4 PowerPC 602 RISC Microprocessor User's Manual



7.2.1.1 Bus Request (BR)—Output

The busrequest (BR) signal isan output signal on the 602. Following are the state meaning
and timing comments for the BR signal.

State M eaning

Timing Comments

Asserted—I ndicates that the 602 is requesting mastership of the bus
and is waiting for a qualified BG to begin the bus transaction. See
Section 8.3.1, “BusArbitration.”

Negated—Indicates that the 602 is not requesting the bus. The 602
may have no bus operation pending, it may be parked, or theARTRY
input was asserted on the previous bus clock cycle.

Assertion— Occurswhen the 602 is not parked and abus transaction
is needed.

Negation—Occursfor at least one bus clock cycle after an accepted,
qualified bus grant (see BG, TS, ARTRY, and BB), even if another
transaction is pending. It is also negated for at least one bus clock
cyclewhentheassertion of ARTRY isdetected onthebus, unlessthis
602 asserted ARTRY and needs to perform a snoop write back. BR
may also be negated if the 602 cancels the internal bus request
(need_bus condition) before receiving a qualified BG.

High-impedance—Occurs during a hard reset or checkstop
condition.

7.2.1.2 Bus Grant (BG)—Input

The bus grant (BG) signal is an input signal on the 602. Following are the state meaning
and timing comments for the BG signal.

State M eaning

Timing Comments

Asserted—I ndicates that the 602 may, with the proper qualification,
assume mastership of the bus. A qualified bus grant occurswhen BG
is asserted and BB (bus busy), TS, and ARTRY are negated
(indicating that no other devices currently are using the bus). Note
that the BR is not part of the qualified bus grant; if the processor is
parked, it does not assert the BR signal when it needs the bus. See
Section 8.3.1, “BusArbitration.”

Negated— | ndicates that the 602 has not been designated to be the
next potential bus master.

Assertion—May occur at any time to indicate the 602 is free to use
the bus. If the 602 has a second transaction pending, (except for
cache copy-back line-fill operations) it does not look for BG to be
asserted until the clock cycle after BB is negated. If the current
transaction is a copy-back line-fill, the 602 samples the BG signal
during the last data beat.

Chapter 7. Signal Descriptions 7-5



Negation—May occur at any timeto indicateto the 602 that it cannot
usethebus. The 602 can still assume bus mastership on the bus clock
cycle of the negation of BG because during the previous cycle BG

indicated to the 602 that it was free to take mastership (if qualified).

7.2.2 Transfer Start (TS)

The transfer start signal, TS, indicates that an address phase of a transfer has begun. For
detailed information about how the TS signal interacts with other signals, refer to
Section 8.3.2, “Address Transfer Subphase.”

The TS signal is both an input and an output signal on the 602.

7.2.2.1 Transfer Start (TS)—Output
Following are the state meaning and timing comments for the TS output signal.

State M eaning

Timing Comments

Asserted—I ndicates that the 602 is the current bus owner and isin
the address phrase has begun a bus transaction and that the address
and transfer attribute signals are valid.

The 602 may not assume bus mastership if the bus request is
cancelled internally by the cycle a qualified bus grant would have
been recognized.

Negated—Indicates that the 602 is not in the address phase

Assertion— Occurs in the cycle after aqualified bus grant is
accepted by the 602 and remains asserted for the duration of the
address phase.

Negation/High Impedance (turn-off sequencing)—Negates for one
bus clock, then goes to the high impedance state.

7.2.2.2 Transfer Start (TS)—Input
Following are the state meaning and timing comments for the TS input signal.

State M eaning

Timing Comments

Asserted—I ndicates that another master has begun a bus transaction
and that the address and transfer attribute signals are valid for
snooping (see GBL).

Negated—Indicates that no bus transaction is occurring and that the
bus may be available for use by the 602.

Assertion—May occur whenever the 602 must be prevented from
using the bus.

Negation—May occur whenever the 602 is permitted access to the
bus. Must occur one bus clock cycle after TSis asserted.

7-6

PowerPC 602 RISC Microprocessor User's Manual



7.2.3 Address Transfer Signals

The address transfer signals are used to transmit the address for the address transfer. For a
detailed description of how these signals interact, refer to Section 8.3.2, “Address Transfer
Subphase.”

7.2.3.1 Address Signals (A0-A31)

The address signals (A0-A31) are both input and output signals. Because the bus is time-
multiplexed, the physical connections serve dual purposes. The additional function these
signals serve are identified here and described elsewhere in this chapter.

7.2.3.1.1 Address Signals (A0O—A31)—Output

Following are the state meaning and timing comments for the AO-A31 output signals.

State Meaning Asserted/Negated—Represents the physical address (real addressin
the architecture specification) of the data to be transferred.

On burst read operations, the bus presents the double-word-aligned
address containing the critical double word of the cache block that
missed the cache.

On burst write operations, the bus presents the first double word of
the cache block.

Note that the address output during burst operationsis not
incremented. See Section 8.3.2, “Address Transfer Subphase.”

Timing Comments Assertion/Negation—Driven valid on the same cycle that TSis
asserted and remains valid for the duration of the address phase.

High Impedance—Occurs the cycle following the assertion of
AACK. No precharge action is performed on release.

Alternate Use Data output signals (D0-D31). See Section 7.2.7.1.1, “Data Signals
(D0-D63)—Output.”

7.2.3.1.2 Address Signals (A0O-A31)—Input
Following are the state meaning and timing comments for the AO-A31 input signals.

State M eaning Asserted/Negated—Represents the physical address of a snoop
operation.

Timing Comments  Assertion/Negation—Must occur on the same bus clock cycle asthe
assertion of TS; the 602 samples the address signals only on this

cycle.
Alternate Use Data signals (D0-D31). See Section 7.2.7.1.2, “Data Signals (D0—
D63)—Input.”

Chapter 7. Signal Descriptions 7-7



7.2.3.1.3 Prefetch Line-Fill Address (PFADDRO-PFADDR20)—Output

The prefetch line-fill address signals, PFADDRO-PFADDR20, help expedite a cache-line-
fill when room in the cache must be made when a read misses in the cache and modified
datain the least-recently used cache block is cast-out and written back to external memory.
The prefetch line-fill address signals specify the cache-line-fill read address.

When the 602 misses in its cache and must write modified data to externa memory, it
outputs the upper 21 bits (A0-A20) of the missing read address on the address phase of the
write-back transaction. The low-order 6 address bits (A21-A26) of the read address match
the low-order 6 bits of the write-back address because the index into the internal cacheis
the same for both the line-fill read address and the write-back address. This read address
ensures that a system’s memory controller can prefetch the read data, making it available
immediately when the 602 performs aline-fill operation.

Following are the state meaning and timing comments for the PFADDRO-PFADDR20
output signals.

State M eaning Asserted/Negated—This addressis valid only when TCO is negated,
TClisasserted, and TBST is asserted.

Timing Comments Assertion/Negation—Driven valid on the same cyclethat TSis
asserted and remains driven/valid for the duration of the address
phase.

Alternate Use The dternate uses for PFADDRO-PFADDR20 are shown in
Table 7-2.

Table 7-2. Alternate Uses for PFADDRO-PFADDR20

PFADDR Signal Alternate Use

PFADDRO-PFADDR? Data output (D32—-D39). See Section 7.2.7.1.1, “Data Signals (D0-D63)—Output.”

PFADDR8-PFADDR15 Byte enable (BEO-BE7). See Section 7.2.4.3, “Byte Enable (BEO-BE7).”
Data output (D40-D47). See Section 7.2.7.1.1, “Data Signals (D0-D63)—Output.”

PFADDR16-PFADDR17 | Data output (D48-D49). See Section 7.2.7.1.1, “Data Signals (D0-D63)—Output.”

PFADDR18-PFADDR20 | Transfer size 0-2 (TSIZ0-TSIZ2). See Section 7.2.4.2, “Transfer Size (TSIZ0-TSIZ2)—
Output,”
Data output (D50-D52). See Section 7.2.7.1.1, “Data Signals (D0-D63)—Output.”

7.2.4 Transfer Attribute Signals

Thetransfer attribute signals are a set of signalsthat further characterize the transfer—such
as the size of the transfer, whether it is aread or write operation, and whether it is a burst
or nonburst transfer. For a detailed description of how these signals interact, see
Section 8.3.2, “Address Transfer Subphase.”

7.2.4.1 Transfer Type (TT0O-TT4)

The transfer type (TTO-TT4) signals consist of five input/output signals on the 602. For a
complete description of TTO-TT4 signals and for transfer type encodings, see Table 7-3.

7-8 PowerPC 602 RISC Microprocessor User's Manual



7.2.4.1.1 Transfer Type (TTO-TT4)—Output

Following are the state meaning and timing comments for the TTO-TT4 output signals on
the 602.

State Meaning Asserted/Negated—I ndicates the type of transfer in progress; see

Table 7-3.
Timing Comments Assertion/Negation/High Impedance—The same asA0-A31.
Alternate Use The TTO-TT4 signals are also used as D54-D58. See

Section 7.2.7.1, “Data Signals (D0-D63).”

7.2.4.1.2 Transfer Type (TTO-TT4)—Input

Following are the state meaning and timing comments for the TTO-TT3 input signals on
the 602.

State M eaning Asserted/Negated—I ndicates the type of transfer in progress; see

Table 7-3.
Timing Comments Assertion/Negation—The same asA0-A31.
Alternate Use The TTO-TT4 signals are also used as D54-D58; see

Section 7.2.7.1, “Data Signals (DO-D63).”
Table 7-3 describes the transfer-type encodings.

Table 7-3. TTO-TT4 Encodings

60x Bus Specification 602 as Master Si%zozzr
TTO-TT4
Command Transaction TranBst:\(S:tion Trsaonusr;(?tioofn Action on Hit

00000 Clean block Address only n/a n/a Clean
00100 Flush block Address only n/a n/a Flush
01000 SYNC Address only n/a n/a n/a

01100 Kill block Address only Address only dcbz Kill

10000 EIEIO Address only n/a n/a n/a

10100 Graphics write (ecowx) Nonburst write* | n/a n/a n/a

11000 TLB invalidate Address only n/a n/a n/a

11100 Graphics read (eciwx) Nonburst read* n/a n/a n/a

00001 lwarx reservation set Address only n/a n/a n/a

00101 stwcx. reservation clear Address only n/a n/a n/a

01001 TLBSYNC Address only n/a n/a n/a

01101 ICBI Address only n/a n/a n/a

1XX01 Reserved — n/a n/a n/a

Chapter 7. Signal Descriptions 7-9




Table 7-3. TTO-TT4 Encodings (Continued)

60x Bus Specification 602 as Master 602 as
Snooper
TTO-TT4
Command Transaction Bus . Source .Of Action on Hit
Transaction Transaction
00010 Write-with-flush Nonburst write* | Nonburst write* | Caching-inhibited Flush
or burst or write-through
store
00110 Write-with-kill Burst Burst (not Castout or snoop Kill
global) copyback
01010 Read Nonburst read* Nonburst read* | Caching-inhibited Clean or flush
or burst load
01110 Read-with-intent-to- Burst Burst Load/store miss Flush
modify
10010 Write-with-flush-atomic Nonburst write* | Nonburst write* | stwcx Flush
10110 (Reserved) n/a n/a n/a n/a
11010 Read-atomic Nonburst read* Nonburst read* | Iwarx (caching- Clean or flush
or burst inhibited load)
11110 Read-with-intent-to- Burst Burst Iwarx (load miss) Flush
modify-atomic
00X11 (Reserved) — n/a n/a n/a
01011 Read-with-no-intent-to- Nonburst read* n/a n/a Clean
modify or burst
01111 (Reserved) — n/a n/a n/a
1XX11 (Reserved) — n/a n/a n/a

* Note that these transactions take two beats if the bus is operating in 32-bit data mode.

7.2.4.2 Transfer Size (TSIZ0-TSIZ2)—Output

The transfer size (TSIZ0-TSIZ2) signals consist of three output signals on the 602.
Following are the state meaning and timing comments for the TSIZ0-TSIZ2 output signals
on the 602.

State M eaning Asserted/Negated—For memory accesses, these signals along with
TBST, indicate the datatransfer sizefor the current bus operation, as

shown in Table 7-4.
Timing Comments Assertion/Negation/High Impedance—The same asA0-A31.

7-10 PowerPC 602 RISC Microprocessor User's Manual



Table 7-4. Data Transfer Size

TBST TSIZ0-TSIZ2 Transfer Size Comments

Negated | 001 1 byte Byte

Negated | 010 2 bytes Half word

Negated | 011 3 bytes —

Negated | 100 4 bytes Word

Negated | 101 5 bytes —

Negated | 110 6 bytes —

Negated | 111 7 bytes —

Negated | 000 8 bytes Double word (bus width in 64-bit mode)

Asserted | Invalid 32 bytes Four double word (four data beats in 64-bit mode)
Alternate Use The TSIZ0-TSIZ2 signals are also used as D50-D52 and

PFADDR18-PFADDR?20. For more information, see
Section 7.2.7.1, “Data Signals (D0-D63),” and Section 7.2.3.1.3,
“Prefetch Line-Fill Address (PFADDRO-PFADDR20)—Output.”

7.2.4.3 Byte Enable (BEO-BE7)

Following are the state meaning and timing comments for the eight input/output byte
enable (BEO-BE?Y) signals.

State M eaning Asserted/Negated— | ndicates which data bytes are valid during a
nonburst operation. For burst operation, al the byte enables are
invalid. If BE isused, the A29-A31 and TSIZ0-TSIZ2 signals can
be ignored for nonburst operations.

Figure 7-2 shows how the byte lanes correspond to the individual
byte enable signals. The use of the byte enable signals can simplify
the system design because the transfer sizeand A29-A31 signalsare
not needed.

0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63
Byte lane O | Byte lane 1 | Byte lane 2 | Byte lane 3 | Byte lane 4 | Byte lane 5 | Byte lane 6 | Byte lane 7

BEO BE1 BE2 BE3 BE4 BES BE6 BE7

Figure 7-2. Address Format/Data Format Using Byte Enable Signals

For more information, see Section 8.3.2.2.3, “Alignment.”
Timing Comments Assertion/Negation/High |mpedance—Same as A0-A31.

Chapter 7. Signal Descriptions 7-11



Alternate Use The BEO-BE7 signals are a so used as PFADDR8-PFADDR15 and
for the data signals D40-D47. See Section 7.2.3.1.3, “Prefetch Line-
Fill Address (PFADDRO-PFADDR20)—Output,” and
Section 7.2.7.1.1, “ Data Signa's (D0-D63)—Output.”

7.2.4.4 Transfer Burst (TBST)
Thetransfer burst (TBST) signal is an input/output signal on the 602.

7.2.4.4.1 Transfer Burst (TBST)—Output

Following are the state meaning and timing comments for the TBST output signal.
Table 7-4 shows how the TBST signal is used with the TSIZ signals to determine the
transfer size.

State M eaning Asserted—Indicates that a burst transfer isin progress. For more
information, see Section 7.2.4.2, “ Transfer Size (TSIZ0-TSIZ2)—
Output.” See Table 7-4.

Negated—I ndicates that a burst transfer is not in progress.
Timing Comments Assertion/Negation/High Impedance—The same asA0-A31.
Alternate Use The TBST signal isalso used as D53. See Section 7.2.7.1, “Data
Signals (D0-D63).”
7.2.4.4.2 Transfer Burst (TBST)—Input
Following are the state meaning and timing comments for the TBST input signal.

State M eaning Asserted/Negated—Used when snooping for nonburst reads (read
with no intent to cache). See Table 7-4.

Timing Comments Assertion/Negation—The same asA0-A31.
Alternate Use The TBST signal isaso used as D53. See Section 7.2.7.1, “Data
Signals (D0-D63).”

7.2.4.5 Transfer Code (TCO-TC1)—Output

The transfer code (TCO-TC1) consists of two output signals on the 602. Following are the
state meaning and timing comments for the TCO-TC1 signals.

State M eaning Asserted/Negated—Represents aspecial encoding for thetransfer in
progress (see Table 7-5).

Timing Comments Assertion/Negation/High Impedance—The same asA0-A31.

Alternate Use The TCO-TC1 signals are also used as D62-D63. See
Section 7.2.7.1, “Data Signals (D0-D63).”

7-12 PowerPC 602 RISC Microprocessor User's Manual



Table 7-5. Encodings for TCO-TCL1 Signals

TCO-TC1 Read Write
00 Data transaction Normal write
01 N/A Copy-back line-fill
10 Instruction fetch N/A
11 Reserved Reserved

7.2.4.6 Cache Inhibit (Cl)—Output
The cacheinhibit (CI) signal isan output signal on the 602. Following are the state meaning
and timing comments for the CI signal.

State Meaning Asserted—Indicates that a nonburst transfer will not be cached,
reflecting the setting of the | bit for the block or page that contains
the address of the current transaction.

Negated—I ndicatesthat aburst transfer will allocatealinein the 602

data cache.
Timing Comments Assertion/Negation/High Impedance—The same asA0-A31.
Alternate Use TheCl signal isalso used as D60. See Section 7.2.7.1, “DataSignals
(D0-D63).”

7.2.4.7 Write-Through (WT)—Output
The write-through (WT) signal is an output signa on the 602. Following are the state
meaning and timing comments for the WT signal.

State M eaning Asserted—I ndicates that a nonburst transaction is write-through,
reflecting the value of the W bit for the block or page that contains
the address of the current transaction.

Negated—I ndicates that a transaction is not write-through.
Timing Comments Assertion/Negation/High Impedance—The same asA0-A31.
Alternate Use The WT signal is also used as D61. See Section 7.2.7.1, “Data
Signals (D0-D63).”

7.2.4.8 Global (GBL)
The global (GBL) signal is an input/output signal on the 602.

7.2.4.8.1 Global (GBL)—Output
Following are the state meaning and timing comments for the GBL output signal.

State M eaning Asserted—I ndicatesthat atransactionisglobal, reflecting the setting
of the M hit for the block or page that contains the address of the
current transaction (except in the case of copy-back operations,
which are nonglobal.)

Chapter 7. Signal Descriptions 7-13



Timing Comments
Alternate Use

Negated—Indicates that a transaction is not global.
Assertion/Negation/High Impedance—The same as A0-A31.

The GBL signal isalso used as D59. See Section 7.2.7.1, “Data
Signals (D0-D63).”

7.2.4.8.2 Global (GBL)—Input
Following are the state meaning and timing comments for the GBL input signal.

State M eaning

Timing Comments
Alternate Use

Asserted—Indicates that a transaction must be snooped by the 602.
Negated—I ndicates that a transaction is not snooped by the 602
Assertion/Negation—The same as A0-A31.

The GBL signal isalso used as D59. See Section 7.2.7.1, “Data
Signals (D0-D63).”

7.2.5 Address Transfer Termination Signals

The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated. For detailed information about how these signals interact, see Section 8.3.2.3,
“Address Phase Termination.”

7.2.5.1 Address Acknowledge (AACK)—Input

The address acknowledge (AACK) signal isan input signal (input-only) onthe 602. A slave
device uses this signal to indicate when the address phase has completed. The 602 allows
the AACK signal to be asserted in thefirst clock cycle asthe assertion of TS (the same clock
cycle that the address is made available on the bus). This is referred to as a single-cycle
address phase, and is discussed in Section 8.3, “Address Bus Phase.”

Following are the state meaning and timing comments for the AACK signal.

State M eaning

Timing Comments

Asserted—I ndicates that the address phase is compl ete.

Negated—When TSis asserted, negating AACK indicates that the
address phase cannot terminate—the 602 continues to drive the
address and transfer attribute signals.

Assertion—M ay occur as early asthe assertion of TS (single-cycle
address phase). Thetarget device can delay asserting AACK toallow
adequate address accesstime; for example, to support slow snooping
devices. AACK is asserted for only one clock cycle.

Negation—M ust occur one bus clock cycle after the assertion of
AACK.

7-14

PowerPC 602 RISC Microprocessor User's Manual



7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY') signal is both an input and output signal on the 602.

7.2.5.2.1 Address Retry (ARTRY)—Output
Following are the state meaning and timing comments for the ARTRY output signal.

State M eaning Asserted—I ndicates that the 602 detects a condition in which a
transaction must be retried. If the 602 needs to update memory as a
result of the snoop that caused theretry, it asserts BR the cycle after
the ARTRY is asserted.

High Impedance—Indicates that the 602 does not need to retry the
transaction.

Timing Comments Assertion—(Single-cycle address phase). The ARTRY signal is
asserted the second clock cycle after TSis asserted if aretry is
required. Thisrelationship is shown in Figure 7-3.

(Multicycle address phase). When the address phase | asts|onger than
one cycle, ARTRY can be asserted on the clock cycle after TSis
asserted as shown in Figure 7-4.

Negation—(Single-cycle address phase). As shown in Figure 7-3,
occurs the second bus cycle after the assertion of AACK. Since this
signal may be simultaneously driven by multiple devices, it negates
in aunique fashion.

(Multicycle address phase). As shown in Figure 7-4, occurs the
second bus cycle after the assertion of AACK. Since this signal may
be simultaneously driven by multiple devices, it negates in a unique
fashion.

Chapter 7. Signal Descriptions 7-15



11 21314]15]6]7]

N

System Bus

ARTRY |

TEA |

Single-Cycle Address Phase

Figure 7-3. ARTRY During Other Master Read

PowerPC 602 RISC Microprocessor User's Manual

7-16



123 [4]5]6]7]|8]9]10]
CLK

| | | |
\_I L/
| | |

|

3
Pyl

d 8

|
T | Vo L/ [ —
IR (1 1 1
T32 | \ |
N A\ A |
AACK
| | | | | | | | | |
System Bus ——1 RA >—|—|—|
| | | T T T T T | | |
BB T & T T T T T\l/ T
| | | | | | | | | | |
TJA I | | | | | | | | | |
| | ‘I | | | | | | | |
ARTRY | | 7| | It /| T
| | | | | | | | | | |
| | | | | | | | |

TEA |

Figure 7-4. ARTRY During Other Master Read Transaction—Multicycle Address
Phase

7.2.5.2.2 Address Retry (ARTRY)—Input
Following are the state meaning and timing comments for the ARTRY input signal.

State M eaning Asserted—If the 602 isthe bus master, ARTRY indicatesthat the 602
must retry the current transaction and immediately negate BR (if
asserted). For single-cycle address phases, ARTRY issampled onthe
second clock cycle after TSiis negated, as shown in Figure 7-5.

For multicycle address phases, the ARTRY signal can be asserted on
the clock cycle after the assertion of TS, as shown in Figure 7-6.

Negated/High Impedance—Indicates that the 602 does not need to
retry the transaction.

Chapter 7. Signal Descriptions 7-17



1121314 ]15]6]7]
CLK

|
BRIM\_L 1/ I I T I
| | | | | | | |

BG [

| |

TS
| |
T32 7T X : |
| | | | | | | |
AACK \a, /
| | | | | | |
| | [ T N |
System Bus T T T RA ) T DA ) T 1
_ \_l_gl_L\_:_:_/_l_\_l
BBy 1 [
| | | | | | | |
AL [T
| | | | | | | |
ARTRY | | II | R /|
| | | | | | | |
TEA | [ | | | [ [ |
I I I I

Figure 7-5. ARTRY During Read Transaction—Single-Cycle Address Phase

Timing Comments Assertion—May occur as early as the clock cycle following the
assertion of TS. As shown in Figure 7-5, for single-cycle address
phases, assertion must occur by the second bus clock cycle after the
assertion of TSiif the transaction must be retried. As shown in
Figure 7-6, for multicycle address phases, assertion must occur by
the bus clock cycleimmediately after TSis negated.

Negation—In both single-cycle and multicycle address phases,
ARTRY isnegated in the clock cycle after it is sampled.

7-18 PowerPC 602 RISC Microprocessor User's Manual



System Bus

BB

>

ARTRY

1123 [4]5]6]7]8]9]10]

=R | ———————1
Y
R
: : ?: : : :/| : |
\ /1 1\ |
——— e —
T v SN o ey
R I e e S [
Lo T
o

TE

Figure 7-6. ARTRY During PowerPC 602 Processor Read Transaction—Multicycle

7.2.6 Data Phase Signal
The BB (bus busy) signal indicates that the 602 isin the data phase.

7.2.6.1 Bus Busy (BB)

Address Phase

The bus busy (BB) signal is both an input and output signal on the 602.

7.2.6.1.1 Bus Busy (BB)—Output

Following are the state meaning and timing comments for the BB output signal.
Asserted—Indicates that the 602 is the bus master and that the

State Meaning

transaction isin the data phase.
Negated—If the 602 is the bus master, indicates that it is not in the

data phase; negated when the 602 is not bus master.

Timing Comments Assertion—Occurs during the bus clock cycle following aqualified

AACK and remains asserted for duration of the data phase.

Negation—Is negated synchronously with the last beat of a data

transaction.

High Impedance—Occurs after BB is negated.

Chapter 7. Signal Descriptions

7-19



7.2.6.1.2 Bus Busy (BB)—Input
Following are the state meaning and timing comments for the BB input signal.

State Meaning Asserted—Indicates that another device is bus master (used to
determine a qualified bus grant).

Negated—I ndicates that the busis free for use by the 602. Must be
sampled as negated to achieve a qualified bus grant.

Timing Comments Assertion—Required when the 602 must be prevented from using
the bus.

Negation—May occur whenever the busis available.

7.2.7 Data Transfer Signals

Like the addresstransfer signals, the datatransfer signals are used to transmit data between
the processor and system memory. For a detailed description of how the data transfer
signalsinteract, see Section 8.3.3.1, “Data Transfer.”

7.2.7.1 Data Signals (D0-D63)

The data signals (D0-D63) are both input and output signals on the 602. Following are the
state meaning and timing comments for the data signals.

State Meaning See Table 7-6 for the data byte lane assignments. Note that when the
bus is operating in 32-bit mode, lanes 03 are used.

Timing Comments When the busisin 64-bit mode, the busisdriven once for noncached
transactions and four timesfor cache transactions (bursts). When the
busisin 32-bit mode, 32-bit transfers require asingle beat, transfers
of 33-64 bits take two beats, and cache block transfers take eight
beats. For more information, see Section 7.2.7.2, “Target Data Bus
32 (T32)—Input.”

Table 7-6. Data Lane Assignments

Data Signals Byte Lane
D0-D7 0
D8-D15 1
D16-D23 2
D24-D31 3
D32-D39 4
D40-D47 5
D48-D55 6
D56-D63 7

7-20 PowerPC 602 RISC Microprocessor User's Manual



Alternate Use Table 7-7 lists the alternate assignments for DO-D63.

Table 7-7. Alternate Uses of the Data Signals (D0-D63)

Data Signals Alternate Use
D0-D31 Address signals (A0—A31); see Section 7.2.3.1, “Address Signals (A0O—A31).”
D32-D39 Prefetch line-fill address signals (PFADDRO-PFADDRY7); see Section 7.2.3.1.3, “Prefetch Line-

Fill Address (PFADDRO-PFADDR20)—Output.”

D40-D47 Prefetch line-fill address signals (PFADDR8-PFADDR15); see Section 7.2.3.1.3, “Prefetch Line-
Fill Address (PFADDRO—-PFADDR20)—Output.”
Byte enable signals (BEO-BE7); see Section 7.2.4.3, “Byte Enable (BEO-BE7).”

D48-D49 Prefetch line-fill address signals (PFADDR16-PFADDR17); see Section 7.2.3.1.3, “Prefetch
Line-Fill Address (PFADDRO-PFADDR20)—Output.”

D50-D52 Prefetch line-fill address signals (PFADDR18-PFADDR20); see Section 7.2.3.1.3, “Prefetch
Line-Fill Address (PFADDRO-PFADDR20)—Output.” Transfer size (TSIZ0-TSIZ2); see
Section 7.2.4.2, “Transfer Size (TSIZ0-TSIZ2)—Output.”

D53 Transfer burst (TBST); see Section 7.2.4.4, “Transfer Burst (TBST).”

D54-D58 Transfer type signals (TTO-TT4); see Section 7.2.4.1, “Transfer Type (TTO-TT4).”
D59 Global (GBL); see Section 7.2.4.8, “Global (GBL).

D60 Cache inhibit (CI); see Section 7.2.4.6, “Cache Inhibit (Cl)—Output.”

D61 Write through (WT); see Section 7.2.4.7, “Write-Through (WT)—Output.”

D62-D63 Transfer code (TCO-TC1); see Section 7.2.4.5, “Transfer Code (TCO-TC1)—Output.”

7.2.7.1.1 Data Signals (D0O-D63)—Output
Following are the state meaning and timing comments for the data output signals.

State Meaning Asserted/Negated—Represents the state of data during a data write.
Unused byte lanes do not supply valid data.

Timing Comments Assertion/Negation—Initial beat coincides with BB and, for bursts,
transitions on the bus clock cycle following each assertion of TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion of TA or following the assertion of TEA or certain ARTRY
cases. Address retry operations are described in Section 8.3.3.2,
“Data Phase Termination.”

7.2.7.1.2 Data Signals (D0-D63)—Input
Following are the state meaning and timing comments for the datainput signals.

State M eaning Asserted/Negated—Represents the state of data during a data read
transaction. For nonburst read operations in 64-bit mode (cache
inhibited or write through operations), unselected byte lanes are not
used.

Timing Comments  Assertion/Negation—Must be valid on the same bus clock cyclethat
TA is asserted.

Chapter 7. Signal Descriptions 7-21



7.2.7.2 Target Data Bus 32 (T32)—Input
The T32 signal is used to dynamically indicate the width of the bus.

State M eaning

Timing Comments

Asserted—Indicates that only 32 bits, DO-D31, are used to transfer
data. In 32-bit mode, the processor can generate single-beat (up to 4
bytes) and double-beat (from 5 to 8 bytes) nonburst transactions. In
adouble-beat transfer, the high-order word is transferred on the first
beat and the low-order word is transferred on the second. Likewise,
for each of the four double words of a burst transaction, the high-
order word of a double word is always transferred before the low-
order word.

Negated—Indicates that all 64 bits, DO-D63, are used to transfer
data. For any transaction less or equal to 64 bits, the 602 performs a
nonburst transaction.

Assertion/Negation—Simultaneous with the assertion of AACK. If
dynamic bus sizing is not required, this signal can betied low for
static 32-bit systems and high for static 64-bit systems.

7.2.8 Data Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that for
nonburst transactions, the data termination signals also indicate the end of the data phase,
while for burst accesses, the data termination signals apply to individual beats and indicate
the end of the data phase only after the final data beat.

For a detailed description of how these signals interact, see Section 8.3.3.2, “Data Phase

Termination.”

7.2.8.1 Transfer Acknowledge (TA)—Input

Thetransfer acknowledge (TA) signal isan input signal (input-only) on the 602. Following
are the state meaning and timing comments for the TA signal.

State M eaning

Timing Comments

Asserted— Indicates that valid data on the bus has been provided or
accepted by the system.

Negated—For read operations, indicates that the valid read datais
not on the bus. For write operationsindicates that the data beat must
be extended.

Assertion—May occur on any cycle during the 602's normal data
transfer but not on the cycle before ARTRY is asserted if ARTRY
cancellation isto be used.

Negation—For multiple-beat operations, TA must be negated the
cycle after it is asserted unless conditions require TA to be asserted
for the next data best.

7-22

PowerPC 602 RISC Microprocessor User's Manual



7.2.8.2 Transfer Error Acknowledge (TEA)—Input

The transfer error acknowledge (TEA) signal is input only on the 602. Following are the
state meaning and timing comments for the TEA signal.

State M eaning

Timing Comments

Asserted—Indicates that a bus error occurred and that on the
following cycle the 602 must terminate the transaction internally.
The 602 may also take a machine check exception or may enter
checkstop state if the machine check enable bit (MSR[ME]) is
cleared. For moreinformation, see Section 4.5.2.2, “ Checkstop State
(MSR[ME] = 0).” Assertion terminates the current transaction; that
is, assertion of TA isignored. The assertion of TEA causes the
negation/high impedance of BB in the next clock cycle. However,
data entering the GPR or the cache is not invalidated.

Negated—Indicates that no bus error was detected.

Assertion/Negation—Assertion may occur on any cycle during the
602’'s normal operation (while BB is asserted and on the cycle after
TA during reads). Assertion should occur for one cycle only.

Note: The system must ensure that TEA isnegated by the start of the
next transaction.

7.2.9 System Status Signals

Most system status signals are input signals that indicate when exceptions are received,
when checkstop conditions have occurred, and when the 602 must be reset. The 602
generates the output signal, CKSTP_OUT, when it detects a checkstop condition.

7.2.9.1 Interrupt (INT)—Input

The interrupt (INT) signa is input only. Following are the state meaning and timing
comments for the INT signal.

State M eaning

Timing Comments

Asserted—The 602 initiates an interrupt if MSR[EE] is set;
otherwise, the 602 ignores the interrupt. To guarantee that the 602
will take the external interrupt, the INT signal must be held active
until the 602 takes the interrupt; otherwise, whether the 602 takes an
external interrupt, depends on whether the MSR[EE] bit was set
whilethe INT signal was held active.

Negated—I ndicates that normal operation should proceed.

Assertion—May occur at any time and may be asserted
asynchronously to SY SCLK. The INT input is level-sensitive.
Negation—Should not occur until the exception is taken.

Chapter 7. Signal Descriptions 7-23



7.2.9.2 System Management Interrupt (SMI)—Input

The system management interrupt (SMI) signal is input only. Following are the state
meaning and timing comments for the SMI signal.

State M eaning Asserted—The 602 initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 602 ignores the
interrupt condition. The 602 must hold the SMI signal active until the
interrupt is taken.

Negated—I ndicates that normal operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SY SCLK. The SMI input is level-sensitive.

Negation—Should not occur until interrupt is taken.

7.2.9.3 Machine Check Interrupt (MCP)—Input

The machine check interrupt (MCP) signal isinput only on the 602. Following are the state
meaning and timing comments for the MCP signal.

State M eaning Asserted—The 602 initiates a machine check interrupt operation if
MSR[ME] and HIDO[EMCP] are set; if MSR[ME] is cleared and
HIDO[EMCP] is set, the 602 must terminate operation by internally
gating off al clocks, and releasing all outputs (except CKSTP_OUT)
to the high impedance state. If HIDO[EM CP] is cleared, the 602
ignores the interrupt condition. The MCP pin must be held asserted
for two bus clock cycles.

Negated—Indicates that no machine check exception is being
reguested; normal operation should continue.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the SY SCLK. The MCP input is negative edge-
sensitive.

Negation—May occur any time after the minimum MCP pulsewidth
has been met

7.2.9.4 Checkstop Input (CKSTP_IN)—Input

The checkstop input (CKSTP_IN) signal is input only on the 602. Following are the state
meaning and timing comments for the CKSTP_IN signal.

State Meaning Asserted—I ndicates that the 602 must terminate operation and enter
checkstop state by internally gating off all clocks, and release all
outputs (except CKSTP_OUT) to the high impedance state. Once
CKSTP_IN has been asserted it must remain asserted until the
system has been reset. CKSTP_IN is not maskable.

Negated—I ndicates that normal operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the SY SCLK.

7-24 PowerPC 602 RISC Microprocessor User's Manual



Negation—May occur any time after the CKSTP_OUT output signal
has been asserted.

7.2.9.5 Checkstop Output (CKSTP_OUT)—Output

The checkstop output (CKSTP_OUT) signal is output only on the 602. Note that the
(CKSTP_OUT) signal is an open-drain type output and is either asserted or in high-
impedance state. It requires an external pull-up resistor (for example, 10 kQ to Vpp) to
assure proper de-assertion of the CKSTP_OUT signal. Following are the state meaning and
timing comments for the CKSTP_OUT signal.

State M eaning Asserted—I ndicates that the 602 has detected a checkstop condition
and has ceased operation.
Negated—I ndicates that the 602 is operating normally.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SY SCLK.

Negation—Is negated upon assertion of HRESET.

7.2.9.6 Reset Signals

There are two reset signals on the 602—hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.6.1 Hard Reset (HRESET)—Input

The hard reset (HRESET) signal is input only and must be used at power-on to properly

reset the processor. Following are the state meaning and timing comments for the HRESET

signal.

State Meaning Asserted—I nitiates a compl ete hard reset operation when this input
transitions from asserted to negated. Causes asystem reset exception
as described in Section 4.5.1.1, “Hard Reset and Power-On Reset.”
Output driversare rel eased to high impedance during the assertion of
HRESET.

Negated—I ndicates that normal operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SY SCLK.

Negation—May occur any time after the minimum hard reset pulse
width has been met.

Thisinput has additional functionality in certain test modes.

7.2.9.6.2 Soft Reset (SRESET)—Input

The soft reset (SRESET) signal is input only. Following are the state meaning and timing
comments for the SRESET signal.

State M eaning Asserted— Initiates processing for a system reset exception as
described in Section 4.5.1.2, “ Soft Reset.”

Chapter 7. Signal Descriptions 7-25



Negated—I ndicates that a soft reset is not being requested; normal
operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SY SCLK. The SRESET input is negative edge-
sensitive.

Negation—May occur any time after the minimum SRESET pulse
width has been met.

Thisinput has additional functionality in certain test modes.

7.2.9.6.3 Reset Out (RESETO)—Output

The RESETO signal is asserted whenever it is signalled by the watchdog timer or when the
HRESET signal is asserted.

Note that when the HRESET signal is asserted, the 602 puts all output signals in high-
impedance state. In order for RESETO to continue to be asserted, it should be pulled low.

State M eaning Asserted—I ndicates that HRESET is asserted or the watchdog timer
reset signal is active.
Negated—I ndicates that normal operation should proceed.

Timing Comments Assertion—May occur any time asynchronously to SY SCLK.

Negation—May occur any time after the minimum hard reset pulse
width has been met.

7.2.9.7 Quiescent Request (QREQ)—Output

The quiescent request (QREQ) signal is output only. Following are the state meaning and
timing comments for the QREQ signal.

State Meaning Asserted—Indicates that the 602 is requesting all bus activity
normally required to be snooped to terminate or to pause so the 602
may enter a quiescent (low power) state. Once the 602 has entered a
quiescent state, it no longer snoops bus activity.

Negated—Indicates that the 602 is not making arequest to enter the
quiescent state.

Timing Comments Assertion/Negation—May occur on any cycle. The QREQ signal
remains asserted for the duration of the quiescent state.

7.2.9.8 Quiescent Acknowledge (QACK)—Input

The quiescent acknowledge (QACK) signal isinput only. Following are the state meaning
and timing comments for the QACK signal.

State M eaning Asserted—Indicates that all bus activity that requires snooping has
terminated or paused, and that the 602 may enter the quiescent (or
low power) state.

Negated—I ndicates that the 602 may not enter a quiescent state and
must continue snooping the bus.

7-26 PowerPC 602 RISC Microprocessor User's Manual



Timing Comments Assertion/Negation—May occur on any cycle following the
assertion of QREQ, and must be held asserted for aminimum of one
bus clock cycle.

Note that at start-up, QACK is sampled at the negation of HRESET

to select reduced-pinout mode; if QACK is asserted at start-up,
reduced-pinout mode is disabled.

7.2.9.9 Time Base Enable (TBEN)—Input

The time base enable (TBEN) signa is input only on the 602. Following are the state
meaning and timing comments for the TBEN signal. This input is essentially a “count
enable” control for the time base registers.

State M eaning Asserted—I ndicates that the time base facility should continue
clocking.

Negated—I ndicates the time base facility should stop clocking.
Timing Comments Assertion/Negation—May occur on any cycle.

7.2.10 JTAG/Scan Interface Signals
The 602 has extensive on-chip test capability including the following:

e Built-ininstruction and data cache self test (BIST)
« Debug control/observation (COP)
¢ Boundary scan that supports most functions defined by JTAG IEEE 1149.1

The BIST hardware is not exercised as part of the POR sequence. The COP and boundary-
scan logic are not used under typical operating conditions.

A detailed discussion of the 602 boundary-scan test functions is provided in Appendix C,
“Boundary-Scan Testing Support.”.

The COP/boundary scan interface is shown in Figure 7-7.

———»| TDI (Test Data Input)
—— | TMS (Test Mode Select)
—— | TCK (Test Clock input)
<— TDO (Test Data Output)

—>| TRST (Test Reset)

Figure 7-7. Boundary-Scan Interface

The following sections describe the test access port (TAP) signals used for boundary-scan
testing.

Chapter 7. Signal Descriptions 7-27



7.2.10.1 Test Data Output (TDO)—Output

Following is the state meaning for the TDO output signal.

State M eaning Asserted/Negated—The contents of the selected internal instruction
or dataregister are shifted out onto this signal on the falling edge of

TCK. The TDO signal will remain in a high-impedance state except
when scanning of dataisin progress.

7.2.10.2 Test Data Input (TDI)—Input
Following is the state meaning for the TDI input signal.

State M eaning Asserted/Negated—The value presented on this signal on therising
edge of TCK is clocked into the selected test instruction or data
register.

7.2.10.3 Test Clock (TCK)—Input

Thetest clock (TCK) signal is an input on the 602. Following is the state meaning for the
TCK input signal.

State M eaning Asserted/Negated—This input should be driven by afree-running
clock signal with a’50% duty cycle. Input signals to the test access
port (TAP) are clocked in on the rising edge of TCK. Changesto the
TAP output signals occur on the falling edge of TCK. Thetest logic
alows TCK to be stopped.

Notethat thisinput containsan internal pull-up resistor to ensurethat
an unterminated input appears as a high signal level to the test logic.

7.2.10.4 Test Mode Select (TMS)—Input
The test mode select (TMS) signal is an input on the 602. Following is the state meaning
for the TMS input signal.

State M eaning Asserted/Negated—This signal is decoded by the internal TAP
controller to distinguish the primary operation of the test support
circuitry.

Notethat thisinput containsaninternal pull-up resistor to ensurethat
an unterminated input appears as a high signal level to the test logic.

7.2.10.5 Test Reset (TRST)—Input
Thetest reset (TRST) signal is an input on the 602. Following is the state meaning for the
TRST input signal.

State Meaning Asserted—This input causes asynchronous initialization of the
internal test access port controller. During power-on reset, the system
should assert TRST to reset the boundary-scan control logic.

Negated—I ndicates normal operation.

7-28 PowerPC 602 RISC Microprocessor User's Manual



Notethat thisinput containsaninternal pull-up resistor to ensurethat
an unterminated input appears asahigh signal level to thetest logic.
Note that if boundary-scan is not used for adesign, TRST can be
connected to HRESET.

7.2.11 Clock Signals

The clock signal inputs of the 602 determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency.

Refer to the 602 hardware specifications for exact timing relationships of the clock signals.

7.2.11.1 System Clock (SYSCLK)—Input

The 602 requires a single system clock (SY SCLK) input. This input sets the frequency of
operation for the bus interface. Internally, the 602 uses a phase-locked loop (PLL) circuit
to generate amaster clock for all of the CPU circuitry (including the businterface circuitry)
which is phase-locked to the SY SCLK input. The master clock may be set to an integer
multiple (x1, x2, x3, or x4) of the SY SCLK frequency allowing the CPU core to operate at
an equal or greater frequency than the bus interface. The state meanings are as follows:

State M eaning Asserted/Negated—The SY SCLK input is the primary clock input
for the 602 and represents the bus clock frequency for 602 bus
operation. Internally, the 602 may be operating at an integer multiple
of the bus clock frequency.

Timing Comments Duty cycle—Refer to the 602 hardware specifications for timing
comments. A loose duty cycleis allowed.
Note: SY SCLK isthefrequency referencefor theinternal PLL clock
generator. To ensure proper PLL operation, SY SCLK must not be
suspended or varied during normal operation.

7.2.11.2 Test Clock (CLK_OUT)—Output

The Test Clock (CLK_OUT) signal isan output signal (output-only) on the 602. Following
are the state meaning and timing comments for the CLK_OUT signal.

State M eaning Asserted/Negated—Provides PLL clock output for PLL testing and
monitoring. The test clock frequency is chosen through the HIDO
register. If HIDO[SBCLK] (bit 4) is set, the test clock uses the bus
clock frequency; otherwise, the test clock uses the processor clock
frequency. The default state of the CLK_OUT signa is high-
impedance. The CLK_OUT signal is provided for testing only.

Timing Comments Assertion/Negation—Refer to the 602 hardware specifications for
timing comments.

See Section 2.1.2.1.1, “Hardware Implementation Register 0 (HIDO),” for information on
configuring CLK_OUT through software.

Chapter 7. Signal Descriptions 7-29



7.2.11.3 PLL Configuration (PLL_CFGO-PLL_CFG3)—Input

The PLL (phase-lock loop) is configured by the PLL_CFGO-PLL_CFG3 signals. For a
given SYSCLK (bus) frequency, the PLL configuration signals set the interna CPU
frequency of operation.

Following are the state meaning and timing comments for the PLL_CFGO-PLL_CFG3

signals.
State M eaning

Timing Comments

Asserted/Negated— Configures the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus and internal frequency of operation. PLL_CFGO-PLL_CFG1
determine the processor/SY SCLK frequency ratio. PLL_CFG2—
PLL_CFG3 determine the processor/PLL frequency ratio. Table 7-8
shows the permissible settings for the PLL_CFG signals and the
resultant frequency relationships; see the 602 hardware
specifications for exact settings.

Assertion/Negation—Must remain stable during operation; should
only be changed during the assertion of HRESET, or during sleep
mode.

Table 7-8. PLL Configuration

Example SYSCLK/CPU and Resulting PLL

PLL_CFGO- | CPU (Core) | PLL_CFG2- | PLL (VCO) Frequencies (MHz)

PLL_CFG1 Frequency PLL_CFG3 | Frequency
PLL =133.3 | PLL=150 | PLL =160 | PLL =200
01 SYSCLK x2 | 01 CPUX 2 33.33/66.66 37.5/75 40/80 —
CPUXx 4 16.66/33.33 18.75/37.5 | 20/40 25/50
10 SYSCLK x 3 | 00 CPUx 2 22.22/66.66 25/75 26.66/80 —
00 — 10 — PLL bypass— the SYSCLK input signal clocks the

internal processor directly and the bus is set for 1:1
mode operation.

11 —_

11 — Clock off—no clocking occurs regardless of the
SYSCLK input.

Notes:

The resulting CPU / SYSCLK frequencies shown are for reference. Some PLL configurations may select
bus, CPU, or PLL frequencies that are not useful, not supported, or not tested.

Although 1:1 mode is not an operational mode, it may be used for testing.

7.2.12 Power and Ground Signals
The 602 provides the following additional connections for power and ground:
* Vppand OVpp—Vpp and OV pp providethe connection for the supply voltage. On
the 602, there is no electrical distinction between theVp and the OV pp signals.
These signals are internally shorted together.

7-30

PowerPC 602 RISC Microprocessor User's Manual




*  AVpp—TheAVp power signal provides power to the clock generation phase-lock
loop. See the 602 hardware specifications for information on how to use thissignal.
* GND and OGND—The GND and OGND signals provide the connection for

grounding the 602. On the 602, there is no electrical distinction between the GND
and OGND signals. These signals are internally shorted together.

Chapter 7. Signal Descriptions 7-31



7-32 PowerPC 602 RISC Microprocessor User's Manual



Chapter 8
System Interface Operation

This chapter describes the PowerPC 602 microprocessor bus interface and its operation. It
shows how the 602 signals, defined in Chapter 7, “ Signal Descriptions” interact to perform
address and data transfers. This chapter includes timing diagrams that illustrate the
operation of the 602's time-multiplexed bus and its ability to dynamically function as a 32-
or 64-bit data bus.

8.1 PowerPC 602 Microprocessor System Interface
Overview

The 602 bus interface is atime-multiplexed interface. That is, the 64 physical connections
that are used to transfer data during the data phase are used to transfer the 32-bit address,
as well as other information, during the address phase. This double use of physica
connections greatly reduces the number of physical connectionsto the processor aswell as
the power requirements.

During the address phase, the high-order 32 connections are used to transfer the 32-bit
address, and the low-order connections are used to transfer information about attributes of
the subsequent data transfer, such as the size of the data and whether the transfer is a burst
or nonburst operation—signalsthat have dedicated pins on other PowerPC processors, such
as the PowerPC 603 and the PowerPC 604 microprocessors.

During the data phase, the 64 physical connections are used exclusively to transfer data.
However, because the 602 supports dynamic bus sizing, the bus can function as either a 64-
or 32-bit data bus depending on the device with which the 602 is communicating.

The 602 on-chip caches can be configured as either write-through or write-back. In write-
back mode, most transactions are burst-read memory operations that update an entire cache
line (referred to here as a cache block), followed by burst-write operations, and
noncacheable (write-through) operations. Additionally, there can be address-only
operations (for example, global memory operations that are snooped), atomic memory
operations, and address retry activity (for example, when a snooped read access hits a
modified block in the cache).

Chapter 8. System Interface Operation 8-1



When the data bus is in 64-bit mode, all burst operations consist of four data beats and
transfer 32 bytes (an eight-word cache block) per transaction; all nonburst operations are
single-beat transactions that transfer up to 8 bytes (1 double word).

When the data busisin 32-bit mode, burst transactions also transfer afull eight-word cache
block of data, but because it can do so only one word at atime, it takes eight beats. There
are two types of nonburst operations in 32-bit mode—single-beat operations that transfer
up to 32 hits, and double-beat operations that transfer up to 64 bits.

Access to the system interface is granted through an external arbitration mechanism that
alows devices to compete for bus mastership. This arbitration mechanism alows the 602
to be integrated into systems that implement various fairness and bus parking proceduresto
avoid arbitration overhead.

8.1.1 Operation of the Instruction and Data Caches

The 602 provides independent instruction and data caches. Each cache is a physically-
addressed, 4-K byte cache with two-way set-associativity. Both caches consist of 64 sets of
two cache blocks, with eight words in each cache block.

The data cache tags are single-ported, so snoop accesses cannot occur simultaneously with
load or store operations. Snoop accesses have the highest priority and are given first access
to the tags, unless the snoop access occurs when atag is being accessed (for example, by
theload/store unit), in which case the snoop isretried and must rearbitrate for cache access.

On asnoop hit, the snooping device asserts the address retry (ARTRY) signal, causing the
operation whose address caused the snoop hit to be delayed so the snooping device can
perform the necessary bus operation to ensure cache coherency. After the snooping device
completesits operation, the original operation can be retried. On a snoop miss, the load or
store operation deferred due to a snoop access is performed on the clock cycle following
the snoop. Bus timing for snoop operations can be found in Section 8.5.4, “ Snooping.”

The 602 supports an additional snooping mechanism, known as injected snooping. While
the 602 as a bus master performs a burst-read transaction, the read target device can inject
the snoop address onto the bus between data beats. Injected snooping is described in
Section 8.4.2, “Qualified Snoop Conditions,” and isillustrated in Section 8.5.4.7, “ Injected
Snoop Timings.”

The 602 supports a three-state coherency protocol that supports the modified, exclusive,
and invaid (MEIl) cache states. The protocol is a subset of the MES
(modified/exclusive/shared/invalid) four-state protocol and operates coherently in systems
that contain four-state caches. Except for the dcbz instruction, the 602 does not broadcast
cache control instructions. The cache control instructions are intended for the management
of the local cache but not for other caches in the system.

Cache blocks in the 602 are loaded in four beats of 64 bits each (or eight beats of 32 bits
each when the busis operating in 32-bit bus mode). The burst load is performed as“ critica

8-2 PowerPC 602 RISC Microprocessor User's Manual



double word first.” The critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays. As additional
data or instructions arrive, they can be accessed by the requesting unit.

For further details regarding byte ordering, see Section 8.3.2.2, “Transfer Attributes.”

Figure 8-1 shows the address path from the execution units and instruction fetcher, through
the trandation logic to the caches and system interface logic.

Chapter 8. System Interface Operation 8-3



32 BIT

/
| sEquEnTIAL | 32BIT BRANCH
FETCHER PROCESSING
32BIT UNIT
Y CTR
INSTRUCTION CR
QUEUE LR
32 BIT
Dispatch Unit |«— |\STRUCTION UNIT
32 BIT
y
v ¥ 32 BIT v 32 BIT v 32 BIT ¥
INTEGER |_ | GPRFile |_. | LOAD/STORE [_ | FPRFile |_. _| FLOATING-
UNIT UNIT POINT UNIT
GP FP
[ x + Rename Rename /| o« +
Registers Registers
XER FPSCR
| | 4 |
32 BIT
COMPLETION y \
UNIT
D MMU | MMU
D 32 BIT
SRS | | peat SRS | | 1gaT
Arra Arra;
DTLB y ITLB y
Power Time Base
Dissipation Counter/
Control Decrementer
4-Kbyte 4-Kbyte
Tags | Tags _—
Test Clock g D Cache g | Cache
Interface Multiplier ‘ ‘ y
/
PROCESSOR BUS
INTERFACE

Time-Multiplexed, 32-Bit Address Bus, 32-/64-Bit Data Bus \/

Figure 8-1. PowerPC 602 Microprocessor Block Diagram

PowerPC 602 RISC Microprocessor User's Manual



Cache blocks are selected for replacement based on an LRU (least-recently used)
algorithm. Each time a cache block is accessed, it istagged as the most-recently used cache
block of the set. When a miss occurs, if both cache blocks in the set are marked as valid,
the least recently used cache block is replaced with the new data. Coherency is maintained
in the data caches, and if the datain the least-recently used cache block in a data cacheis
modified it is written back to memory before the burst read operation.

8.1.2 32-Bit Data Bus Mode

The 602 supports an optional 32-bit data bus mode. The 32-bit data bus mode operates the
same as the 64-bit data bus mode with the exception of the byte lanes involved in the
transfer and the number of data beatsthat are performed. The number of data beats required
for a data phase in the 32-bit data bus mode is one, two, or eight beats depending on the
amount of the data being transferred and the cache attributes for the address (determined
by the W, |, and M bits). For additional information about 32-bit data bus mode, see the
examplesin Section 8.5, “Bus Timing Examples.”

8.1.3 Clocks

The 602 requires a single system clock input (SY SCLK). This input sets the frequency of
operation for the bus interface. Internally, the 602 uses a phase-locked loop (PLL) circuit
to generate a master clock for all of the processor circuity (including the bus interface
circuitry) which is phase-locked to the SY SCLK input. The master clock may be set to an
integer multiple—either double or triple the frequency of SY SCLK, allowing the processor
core to run at optimum speed independently from the bus speed.

The PLL is configured by the PLL_CFGO-PLL_CFG3 signals. For a given bus frequency
(SYSCLK), these pins set the processor frequency and PLL (VCO) frequency. The
encoding for the PLL configuration pins are shown in Section7.2.11.3, “PLL
Configuration (PLL_CFGO-PLL_CFG3)—Input.”

All signals for the 602 bus interface are specified with respect to the rising-edge of the
external system clock input (SYSCLK) and are guaranteed to be sampled as inputs or
changed as outputs with respect to that edge. Since the same clock edge is referenced for
driving or sampling the bus signals, the possibility of clock skew could exist between
various modules in a system due to routing or the use of multiple clocks. The system must
handle any such clock skew problems.

8.1.4 Operation of the System Interface

The following sections describe how the 602 interface operates, providing detailed timing
diagrams that illustrate how the signals interact. A collection of more genera timing
diagrams are included as examples of typical bus operations.

Figure 8-2 isalegend of the conventions used in the timing diagrams.

Chapter 8. System Interface Operation 8-5



Bar over signal name indicates active low
bg 602 input (while 602 is a bus master)
BR 602 output (while 602 is a bus master)
ADDR%+ 602 output (grouped: here, address plus attributes)

qual BG 602 internal signal (inaccessible to the user, but used in
diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

602 three-state output or input

602 nonsampled input

Signal with sample point

ox8 T

A sampled condition (dot on high or low state)
q with multiple dependencies

~

Timing for a signal had it been asserted (it is not
actually asserted)

r

|

| -
Q

Figure 8-2. Timing Diagram Legend

The 602 interfaceis synchronous—all 602 input signals are sampled and output signals are
driven on the rising edge of the bus clock cycle (see the 602 hardware specifications for
exact timing information).

8.2 Memory Access Protocol

Memory accesses are divided into address and data phases, each of which consists of
subphases, as shown in Figure 8-3.

Figure 8-3 shows the address and data phases with their respective subphases—arbitration,
transfer, and termination. It shows a data transfer that consists of a nonburst transfer. Burst
transfers of 32-byte cache blocks require data transfer termination signals for each beat of
data.

8-6 PowerPC 602 RISC Microprocessor User's Manual



ADDRESS PHASE DATA PHASE

N
A\ N N

Arbitration | Address Transfer| Address Termina- | Data Transfer | Data Termination

Figure 8-3. Address and Data Phases of a Memory Transaction

The basic functions of the address and data phase are as follows:
¢ Addressphase

— Arbitration: During arbitration, bus arbitration signals are used to gain bus
mastership.

— Transfer: When the 602 becomes bus master it transfers the address and the
transfer attributes.

— Termination: After the addresstransfer, the system signalsthat the address phase
is complete or that it must be repeated.

+ Data Phase

— Transfer: After the address phase, the 602 samples the data bus for read
operations or drives the data bus for write operations.

— Termination: Datatermination signals are required for each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the phase, whilein burst accesses, the datatermination signals
apply to individual beats and indicate the end of the phase after the final data
beat.

The 602 generates address-only bus transfers as the result of execution of the dcbz
instructions, which use only the address bus with no data transfer involved. Additionally,
the 602's retry capability provides an efficient snooping protocol for systems with multiple
memory systems (including caches) that must remain coherent. Timing examples for
address-only transactions are shown in Section 8.5.5.1, “Single-Cycle Address-Only
Transaction,” and Section 8.5.5.2, “Multicycle Address-Only Transaction.”

8.3 Address Bus Phase

This section describes the three subphases of the address phase—bus arbitration, address
transfer, and address termination.

8.3.1 Bus Arbitration
Before the 602 can access the system bus, it must first be granted mastership of the bus.

When the instruction fetcher or the processor core generates the need to access memory;, it
generates an internal signal (identified here conceptually as the need bus signal). For the

Chapter 8. System Interface Operation 8-7



602 to access the bus, it must be granted bus mastership, which occurs after other devices
have completed their transactions and the 602 is given a qualified bus grant. The conditions
necessary for aqualified bus grant are described in Table 8-1.

Table 8-1. Input Conditions for a Qualified Bus Grant

Signal State (Input) Description
Bus Grant Asserted Assertion indicates that the 602 may, with the proper qualification, assume
BG mastership of the bus. If BG is asserted for the 602 before it is needed (that
is, 602 is parked), the 602 does not assert BR.
Bus Busy Negated The negation of TS and BB indicate that no other master is currently using

BB the bus. If the BB input is asserted, another bus device is in its data phase
and the current 602 cannot have bus access until the operation completes
successfully and negates BB.

Transfer Start | Negated The negation of TS and BB indicate that no other master is currently using
TS the bus. If the TS input is asserted, the address and transfer attribute signals
are valid for another device and the bus is not available.

Address Retry
ARTRY

Negated for at
least one bus
clock cycle

If the ARTRY input is asserted, a transfer is being retried on the bus and the
bus is not available. Negating ARTRY indicates that the address retry
window for any just-completed address phase has passed. Note that the
sampling of ARTRY requires additional qualification since ARTRY may be
set to the high impedance state the second cycle following the assertion of
AACK and cannot be sampled reliably on this clock.

Note that the bus request (BR) signal is not a part of a qualified bus grant. Although
asserting BR indicates that the 602 is requesting mastership of the bus, the 602 does not
assert BRif it is parked on the bus (that is, if BG is already asserted when the need_bus
internal signal is generated).

For systems that share the system bus with other processors or devices, the logic required
for arbitration can be complex, whereas, for designsin which the 602 isthe only device that
accesses the system bus, arbitration can be very simplified. For example, theBG signal can
be connected low, which eliminates the need to assert BR when a “need _bus’ condition
occurs. This section described bus arbitration under two conditions—when the 602 is not
the current bus master and must compete with other resourcesfor it and when the processor
is parked on the bus.

Arbiter implementations may require additional signals to coordinate bus
master/d ave/snooping activities. Note that bus busy (BB) is a bidirectional signal. These
signals are inputs unless the 602 has mastership of the bus; they must be connected high
through pull-up resistors so that they remain negated when no devices have control of the
buses.

Upon recognizing a qualified bus grant, the 602 takes bus mastership by asserting TS (and
by negating BR if the 602 was not parked. At the same time, the 602 drives the address and
transfer attributes for the requested access.

8-8 PowerPC 602 RISC Microprocessor User's Manual



The timing for the nonparked case are described in Section 8.3.1.1, “Bus Arbitration—
Nonparked Case.”

8.3.1.1 Bus Arbitration—Nonparked Case

When the 602 needs to access the external bus and does not have a qualified bus grant, it
asserts bus request (BR) until it is granted bus mastership and the bus is available (see
Figure 8-4). Note that the 602 can cancel the bus request before the bus has been granted.
The external arbiter must grant master-elect status to the potential master by asserting the
bus grant (BG) signal. The 602 requesting the bus determinesthat the busis available when
the BB input is negated. When the bus is not busy (BB and TS inputs are negated), BG is
asserted and the address retry (ARTRY)) input is negated, and was negated the previous
cycle; the 602 has what is referred to as a qualified bus grant. The 602 assumes bus
mastership by asserting TS when it receives a qualified bus grant. The TS signal indicates
that the address and transfer attribute signals are valid and that the memory operation can

begin.

| -1 | 0 1 |
Logical Bus Clock | | | |
o | i
need_bus
_ I } |
t :C !
BR | I |
| Ve
bg | N\
l |

|
-
G

/[
=

N

Figure 8-4. Bus Arbitration—Nonparked Case

Externa arbiters must allow only one device at a time to be the bus master. In
implementations in which no other device can be a master, BG can be grounded (always
asserted) to continually grant mastership of the busto the 602.

Chapter 8. System Interface Operation 8-9



If the 602 asserts BR before the external arbiter asserts BG, the 602 is considered to be
unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where aqualified bus
grant exists on the clock edge following aneed_bus condition. Notice that the one bus clock
cycle required for arbitration are eliminated if the 602 is parked, reducing overall memory
latency for atransaction. The 602 always negates BB for at least one bus clock cycle after
AACK isasserted, eveniif it is parked and has another transaction pending.

8.3.1.2 Bus Arbitration—Parked Case

A device is said to be parked when the BG input signal is asserted before the device has
generated a reason to access the bus. If BG is asserted, an interna “need_bus’ condition
does not assert the BR signal, reducing by at |east one cycle the time required to access the
bus.

At itssimplest, in a single-processor system the BG signal can be connected asserted (low)
so there is never a need to assert the BR signal. Bus parking may also be used in a
multiprocessor system when an external arbiter uses some scheme to leave the bus granted
to the device most likely to useit. Typically, bus parking is provided to the device that was
the most recent bus master; however, system designers may choose other schemes such as
providing unrequested bus grants in situations where it is easy to correctly predict the next
device requesting bus mastership.

In the nonparked case (described in Section 8.3.1.2, “Bus Arbitration—Parked Case”), the
602 must first assert BR to the arbiter to request the bus, and then may need wait to receive
abus grant from the arbiter.

When the 602 is parked on the bus and it determines a need to perform a bus transaction
internally (“need_bus’), it does not assert BR but immediately assumes bus ownership on
the next cycle. Eliminating the need to assert BR reduces the overall access latency seen by
the 602 by one cycle.

Bustiming for the parked case is shown in Figure 8-5.

8-10 PowerPC 602 RISC Microprocessor User's Manual



L

need_bus

el
)

artry

—

|

|

| |

| |

| |

gual BG | I
| |

| |

| |

I I

Figure 8-5. Bus Arbitration Showing Bus Parking

When the 602 receives aqualified bus grant, it assumes bus mastership by asserting BB and
negating the BR output signal in the nonparked case. Meanwhile, the 602 drivesthe address
for the requested access onto the bus and asserts TS to indicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 602 may assert BR without
using the bus after it receives the qualified bus grant. For example, in a system using bus
snooping, the 602 may assert BR to perform a read-with-intent-to-modify-atomic
(RWITMA) operation but may cancel that operation if it snoops an access that cancels the
reservation associated with the RWITMA. Once the 602 is granted the bus, it no longer
needs to perform the RWITMA; therefore, the 602 does not assert TS and does not use the
bus for the read operation. Note that the 602 asserts BR for at least one clock cyclein these
instances.

8.3.2 Address Transfer Subphase

During the address subphase, the bus master transmits the physical address and transfer
attributes to any slave devices. To ensure cache coherency, snooping logic may monitor the
transfer. The signals used in this phase are transfer start (TS) and the address and attributes
signals described in Section 7.2.4, “Transfer Attribute Signals” TS indicates that the 602
has begun a bus transaction and that the address and transfer attributes are valid. The 602
always asserts TS to begin atransaction and requires other masters to do the same.

Chapter 8. System Interface Operation 8-11



Thetiming for thetransfer start and address attribute signalsis shown in Figure 8-6, aswell
asin the many examplesin Section 8.5, “Bus Timing Examples.”

During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.2.3,
“Address Phase Termination.”

The signals used in the address transfer include the following signas:
« Addresstransfer start signal—transfer start (TS)
e Addresstransfer signals—Address bus (A0-A31)

¢ Addresstransfer attribute signals—Transfer type (TTO-TT4), transfer code (TCO-
TC1), transfer size (TSIZO-TSIZ2), transfer burst (TBST), cacheinhibit (CI), write-
through (WT), and global (GBL). The 602 also has byte enable signals (BEO-BE7)
that can be used instead of the transfer size signals.

Figure 8-6 shows that the timing for all of these signals, except TSisidentical. All of the
address transfer and address transfer attribute signals are combined into the ADDR+
grouping in Figure 8-6. The TS signal indicates that the 602 has begun an address transfer
and that the address and transfer attributes are valid (within the context of a synchronous
bus). The TS signa remains asserted for the entire address transfer and indicates to other
processors that the bus is in use. Keeping the TS signal asserted prevents another device
from achieving aqualified bus grant.

8-12 PowerPC 602 RISC Microprocessor User's Manual



B B
R

i

N

Logical Bus Clock

need_bus

N\

|
|
|
|
|
qual BG | |
| |
—— | | lﬁ\_:_/—l
S
| | | |
a0k I } } \_:_/—1
| | | |
| | | /—l—\ |
System Bus I ] ] Address I
__ | ! ! ! |
5 | | T
I I I I

Figure 8-6. Address Bus Transfer

Figure 8-6 shows the fastest possible address cycle; that is, the address cycle lasts only one
bus clock cycle and is simultaneous with the assertion of TS and AACK.

8.3.2.1 Address Phase Signal Configurations

Because the 602 bus is multiplexed, signal connections have multiple signal assignments
depending not only on whether the processor is in address or data phase, but whether the
datatransfer isaburst or nonburst transfer. Table 8-2 summarizes these signal assignments.

Chapter 8. System Interface Operation 8-13



Table 8-2. Time-Multiplexed Signal Assignments

Data Phase Address Phase Address Signals/Transfer Attribute Signal Assignments
Signals Nonburst Transactions Burst Transactions
D0-D31 Address bus (A0—-A31) Address bus (A0-A31)
D32-D39 Reserved—Don't care Prefetch read address bus (PFADDRO to
D40-D47 Byte enable (BEO-BE7) PRADDR20)
D48-D49 Reserved —Don't care
D50-D52 Transfer size (TSIZ0-TSIZ2)
D53 Transfer burst (TBST) (negated) Transfer burst (TBST) (asserted)
D54-D58 Transfer type (TTO-TT4) Transfer type (TTO-TT4)
D59 Global (GBL) Global (GBL)
D60 Cache inhibit (CI) Cache inhibit (CI)
D61 Write through (WT) Write through (WT)
D62-D63 Transfer code (TCO-TC1) Transfer code (TCO-TC1)

Note that if the byte enable signals (BEO-BE?) are used, the TSIZ0-TSIZ2 and A29-A31
signals can be ignored. The TSIZ signals are provided for compatibility with other
PowerPC processors; however, the byte enable signals provide asimpler way of identifying
both the size and the starting address of the data to be transferred by identifying the byte
lanes that are to be used in the data phase. This correlation between the byte enable signals
and the byte lanes is shown in Figure 8-7.

0 8 7 15 16 23 24 31 32 39 40 47 48 55 56 63
| Byte lane 0 | Byte lane 1 | Byte lane 2 | Byte lane 3 | Byte lane 4 | Byte lane 5 | Byte lane 6 | Byte lane 7

| BEO BE1 BE2 BE3 | BE4 BES BE6 BE7

T
32-Bit Mode

Figure 8-7. Data Format Using Byte Enable Signals

Notethat in 32-bit mode, only byte lanes 0-3 are used. For more information about the byte
enable signals, see Section 7.2.4.3, “Byte Enable (BEO-BE7).” The two methods of
specifying data size and starting address are discussed in Section 8.3.2.2, “Transfer
Attributes,” and are summarized in Table 8-3.

8.3.2.2 Transfer Attributes

During the address phase, the 602 not only transfers the address for the memory access, but
aso information about the overall transaction aswell, such aswhether thereis a data phase,
and, if so, whether the data phase consists of a burst or nonburst transaction, the size,

8-14 PowerPC 602 RISC Microprocessor User's Manual



alignment, and the order of the data to be transferred. Those attributes are signaled by the
high-order pins (32-63) on the multiplexed bus and are described in the following sections.

8.3.2.2.1 Transfer Type Encodings

Thetransfer type signals (TTO-TT4) indicate the type of transaction in progress. They aso
provide information on how the 602's caches handle the transaction and instruct other
cachesin the system how to treat the transaction for cache coherency purposes. Thetransfer
type encodings are shown in Table 8-3.

The transfer type signals are also snooped by 602 and instruct 602 how to handle a cache
block on a snoop hit. The transfer type signals may specify clean, flush, or kill operations

(these operations are described in Table 3-5).

Table 8-3. Transfer Type Encoding

602 Master 602 Snooper

TTO-TT4 Command

Bus Transaction Source of Transaction Hit Response
00000 Clean block n/a n/a Clean
00100 Flush block n/a n/a Flush
01000 sync n/a n/a n/a
01100 Kill block Address-only dcbz Kill
10000 eieio n/a n/a n/a
10100 Graphics write n/a n/a n/a
11000 TLB invalidate n/a n/a n/a
11100 graphics read n/a n/a n/a
00001 Iwarx reservation set n/a n/a n/a
00101 stwcx. reservation clear n/a n/a n/a
01001 tlbsync n/a n/a n/a
01101 icbi n/a n/a n/a
1XX01 Reserved n/a n/a n/a
00010 Write-with-flush Nonburst write Cl or WT store Flush
00110 Write-with-kill Burst (not global) Castout or snoop copy-back | Kill
01010 Read Nonburst read Cl Load Clean or flush
01110 Read-with-intent-to-modify Burst Load miss or store miss Flush
10010 Write-with-flush-atomic Nonburst write stwex Flush
10110 (Reserved) n/a n/a n/a
11010 Read-atomic Nonburst read lwarx (Cl load) Clean or flush
11110 Read-with-intent-to-modify-atomic | Burst lwarx (load miss) Flush
00X11 (Reserved) n/a n/a n/a

Chapter 8.

System Interface Operation

8-15




Table 8-3. Transfer Type Encoding (Continued)

602 Master 602 Snooper
TTO-TT4 Command
Bus Transaction Source of Transaction Hit Response
01011 Read-with-no-intent-to-cache n/a n/a Clean
01111 Reserved n/a n/a n/a
1XX11 Reserved n/a n/a n/a
Notes:

1. Snoop hits cancel the bit set by an lwarx instruction.

2. For read operations, whether the 602 cleans or flushes the cache block during a snoop is determined by
the TBST input signal. Nonburst read operations (TBST negated) clean to emulate read-with-no-intent-to-
cache.

3. Cast-out and snoop copy-back operations are generally marked as nonglobal and are not snooped (except
for reservation monitoring). Other masters, however, may perform DMA write operations with the same
transfer type encoding and marked global.

4. A write operation (whether global or nonglobal) cancels an active reservation during a snoop hit in the

reservation register (independent of snoop hit in cache).

5.The TT1 signal may be generally unincorporated as a “read verses write” indicator for the bus.

8.3.2.2.2 Transfer Size and Burst Ordering

The transfer size (TSIZ0-TSIZ2) signals indicate the size of the requested data transfer.
The transfer size signals may be used with TBST and A27-A31 to determine which byte
lanes of the data bus are used for the transfer. For nonburst transfers, thetransfer sizesignals
specify the number of bytes starting from the byte location addressed by A27-A31. For
burst transfers, double words are always assumed for each data beat of the burst. The 602
aways attempts to transfer 4 double words during a burst transaction. Burst read transfers
are performed critical-double-word-first and wraparound the end of the cache block. Burst
write transfers are always performed zero-word-first.

Table 8-4. Data Transfer Size

TBST TSIZO-TSIZ2 | Transfer Size Comments
Negated | 001 1 byte Byte
Negated | 010 2 bytes Half word
Negated | 011 3 bytes —
Negated | 100 4 bytes Word
Negated | 101 5 bytes —
Negated | 110 6 bytes —
Negated | 111 7 bytes —
Negated | 000 8 bytes Double word (bus width in 64-bit mode)
Asserted | Invalid 32 bytes Four double words (four data beats in 64-bit mode)

8-16

PowerPC 602 RISC Microprocessor User's Manual




The basic coherency size (cache block size) of the bus is 32 bytes for the 602. For proper
snooping, data transfersthat cross an aligned 32-byte boundary must present anew address
onto the bus at that boundary or must operate as not coherent with respect to the 602.

The 602 never generates a bus transaction with a transfer size of 5, 6, or 7 bytes. Other
PowerPC processors may specify these transfer sizes.

Table 8-5 shows the order in which double words are transferred during burst operationsin
64-bit mode.

Table 8-5. Burst Ordering—64-Bit Mode

For Starting Address:
Data Beat
A27-A28 = 00 A27-A28 =01 A27-A28 =10 A27-A28 =11
Data beat 1 Double word 0 Double word 1 Double word 2 Double word 3
Data beat 2 Double word 1 Double word 2 Double word 3 Double word 0
Data beat 3 Double word 2 Double word 3 Double word 0 Double word 1
Data beat 4 Double word 3 Double word 0 Double word 1 Double word 2

The A27-A28 signals specify the first double word of the 32-byte block being transferred;
the remaining double words to transfer must wrap around the block. A29-A31 are dways
“don’'t cares” for burst transfers by the 602.

Table 8-6 shows the order in which words are transferred during burst operations in 32-bit

mode.

Table 8-6. Burst Ordering—32-Bit Mode

For Starting Address:
Data Beat

A27-A28 = 00 A27-A28 =01 A27-A28 = 10 A27-A28 = 11
Data beat 1 High word/DWO | High word/DW1 | High word/DW2 | High word/DW3
Data beat 2 Low word/DWO Low word/DW1 Low word/DW2 Low word/DW3
Data beat 3 High word/DW1 | High word/DW2 | High word/DW3 | High word/DWO
Data beat 4 Low word/DW1 Low word/DW2 Low word/DW3 Low word/DWO
Data beat 5 High word/DW2 | High word/DW3 | High word/DWO | High word/DW1
Data beat 6 Low word/DW2 Low word/DW3 Low word/DWO Low word/DW1
Data beat 7 High word/DW3 | High word/DWO | High word/DW1 | High word/DW2
Data beat 8 Low word/DW3 Low word/DWO Low word/DW1 Low word/DW2

Chapter 8. System Interface Operation

8-17



8.3.2.2.3 Alignment

Aligned transfers are byte, half-word, word, and double-word transfers that lie on their
respective natural address boundaries (bytes on byte address boundaries, words on word
address boundaries, etc.). The supported aligned transfers for 64-bit mode are shown in
Table 8-7. Note that if the byte enable signals are used to specify the byte lanes to be used,

the TSIZ0-TSIZ2 and A29-A31 signals can be ignored, and vice versa.

Although the 602 supports only single-precision floating-point arithmetic in hardware and
provides only 32-bit FPRs in hardware, it can perform single-precision operations on
double-precision operands. The 602 does support load and store double-precision
instructions. If the operand can be represented as a 32-bit single-precision operand, it is

converted. Otherwise, an emulation trap exception (0x1600) is taken.

Misaligned transfers are supported in the 602.

Table 8-7. Data Transfers—64-Bit Mode

Byte Lanes
Program Bus Bus Bus DO... D63
Transfer Size BEO-BE7 | TSIZO-TSIZ2 A29-A31

2 3 4 5

Byte 10000000 001 000 —- — | = -
01000000 001 001 —- == =

00100000 001 010 v - = —

00010000 001 011 — V| = —

00001000 001 100 — — | v =

00000100 001 101 - — | = ¥

00000010 001 110 —_ == =

00000001 001 111 _- - = -

Half Word 11000000 010 000 _- == =
01100000 010 001 v - = —

00110000 010 010 v V| — —

00011000 010 011 — v v -

00001100 010 100 — — | v v

00000110 010 101 - — | = v

00000011 010 110 _- == =

Triple byte 11100000 011 000 v - = —
00000111 011 101 - == —

8-18 PowerPC 602 RISC Microprocessor User's Manual




Table 8-7. Data Transfers—64-Bit Mode (Continued)

Byte Lanes
Program_ Bus Bus Bus DO... D63
Transfer Size BEO-BE7 | TSIZ0-TSIZ2 A29-A31

0o 1 2 3|4 5 6 7

Word 11110000 100 000 v o voY V| = = = —
01111000 100 001 — v v V|V = = —

00111100 100 010 — — Vv NV N = =

00011110 100 011 — — — V|V v N =

00001111 100 100 - — — — | v v v

Double Word 11111111 000 000 A A

Vv Lanes that are read or written during that bus transaction
— Lanes that are ignored during read transactions and driven with undefined data during write transactions

The supported aligned transfers for 32-bit mode are shown in Table 8-8.
Table 8-8. Data Transfers—32-Bit Mode

Byte Lanes
Tr:r:gfgerragize BE?)EES’; E7 TSIZl(B)E'IS'SIZZ A22:i31 DHO... ~-DH31 Nul;ne[;?; °
o 1 2 3

Byte 10000000 001 000 v — — — | Single beat
01000000 001 001 — Vv — — | Single beat
00100000 001 010 — — v — | Single beat
00010000 001 011 — — — | Single beat
00001000 001 100 v — — — | Single beat
00000100 001 101 — Vv — — | Single beat
00000010 001 110 — — V¥ — | Single beat
00000001 001 111 — — — V| Single beat
Half Word 11000000 010 000 v v — — | Single beat
01100000 010 001 — Vv ¥ — | Single beat
00110000 010 010 - — v v | Single beat

00011000 010 011 — — — vV | Beatl

v — — — | Beat2
00001100 010 100 v v — — | Single beat
00000110 010 101 — Vv ¥ — | Single beat
00000011 010 110 - — v v | Single beat

Chapter 8. System Interface Operation 8-19



Table 8-8. Data Transfers—32-Bit Mode (Continued)

Byte Lanes
Program Bus Bus Bus Number of
Transfer Size BEO-BE7 | TSIZO-TSIZ2 A29-A31 DHO......DH31 Beats
o 1 2 3
Triple byte 11100000 011 000 v v V¥ — | Single beat
00000111 011 101 — Vv V¥« | Single beat
Word 11110000 100 000 v v V¥ | Single beat
01111000 100 001 — Vv V¥ V| Beatl
v — — —|Beat2
00111100 100 010 — v v | Beatl
v Vv — — | Beat2
00011110 100 011 — — — V| Beatl
v Vv ¥ — | Beat2
00001111 100 100 v v ¥ V| Single beat
Double Word 11111111 000 000 v Vv Vv V |Beatl
v Vv Vv V| Beat2
Vv Lanes that are read or written during that bus transaction
— Lanes that are ignored during read transactions and driven with undefined data during write
transactions

Because the 602 has an on-chip, copy-back primary cache, most bus transactionsissued by
the 602 are double-word-aligned burst-read or burst-write operations. Only those nonburst
transactions that bypass or miss in the cache (caching-inhibited and write-through
transactions) generate alignment considerations on the bus.

Note that when aprogram generates amisaligned request that crosses aword boundary, two
bus transactions may be required to serve the request, which may in turn encounter
additional latency due to such factors as cache misses, page faults, or cacheability
attributes,

8.3.2.2.4 Transfer Code

These attributes provide further descriptive information about the transaction. The transfer
code signals (TCO-TCL1) are encoded differently for read and write operations. Their
encodings are shown in Table 8-9.

8-20 PowerPC 602 RISC Microprocessor User's Manual



Table 8-9. Transfer Code Signal Encoding

TCO-TC1 Read Write
00 Data transaction Normal write
01 N/A Copy-back line-fill
10 Instruction fetch N/A
11 Reserved Reserved

8.3.2.2.5 Address/Transfer Attribute Summary

Table 8-10 summarizes the address and transfer attribute information presented on the bus
by the 602 for various processor or snoop-related transactions.

Table 8-10. Address/Transfer Attribute Summary

Bus Transaction AO0-A31 TTO-TT4 | TBST | TSIZO-TSIZ2 | WT CIGBL | TCO-TC1

Instruction Fetch

Cacheable AO0-A28]|xxx 01110 | O Invalid 111 10
Caching-Inhibited A0-A28[|000 01010 |1 000 101 10
Caching-Inhibited A0-A28||100 01010 |1 000 101 10

Cache Operations

Line-fill (cache miss) AO0-A28][xxx 01110 | O 010 W, 1-M1 00
Castout AO—A26]|00xxx 00110 (O 010 111 00
Snoop copy-back AO0-A26]|00xxx 00110 | O 010 111 00

Cache Bypass Operations

Single-beat read (Cl) | A0-A31 01010 |1 Size (see =W, 0 -M 00
Table 7-4)

Single-beat write (Cl) | A0-A31 00010 |1 Size (see =W, 0 -M 00
Table 7-4)

Single-beat write A0-A31 00010 |1 Size (see 0-l, =M 00

(WT) Table 7-4)

Special Instructions

dcbz (address-only) | AO—A26/|00000 | 01100 | 0 | 010 | -W, 10 | 00

lW,I,M = WIM bits from PTEs, BATs, or HIDO; = = Complement

Note that in Table 8-10, the WT, CI, and GBL signals correspond to the WIM bits, which
are defined in the BATs (for block address trandations), the PTEs (for page address
trandation), or in HIDO (for real addressing mode and protection-only mode).

Chapter 8. System Interface Operation 8-21



8.3.2.3 Address Phase Termination
Two signals are used to terminate the address phase—AACK and ARTRY.

The 602 does not terminate the address phase until AACK is asserted. As shown in the
previous examples, in the fastest address cycle, the AACK signal can be asserted
simultaneously with the TS cycleto result in asingle-cycle address phase. In some systems,
AACK can be connected low to minimize each address phase to one bus cycle. However,
the system can use AACK to extend or pace the address phase.

After the address phase, TS alwaysis driven high for one bus cycle. TheAACK signal must
be asserted for one bus cycle only.

The address phase can be terminated with requirement to rerun, or retry, if ARTRY is
asserted during the address phase and through the cycle following AACK (see Figure 8-8).
This causes the entire transaction—address and data phase—to be rerun. As a snooper, the
602 asserts ARTRY for a snooped transaction that hits modified data in the data cache and
must be written to memory, or if the snooped transaction could not be serviced. As a bus
master, the 602 responds to an assertion of ARTRY by aborting the bus transaction and re-
requesting the bus, if BG is deasserted. Internaly, the address queue that was retried is
continually rearbitrated with the other internal queues until the next qualified bus grant is
recognized.

If an address retry isrequired, the ARTRY response may be asserted by a snooper as early
asthe second cycle after the assertion of TS. (the 602, however, may not assert ARTRY until
the third cycle after TS). Once asserted, ARTRY must remain asserted through the cycle
after the assertion cycle of AACK. The assertion of ARTRY during the cycle after the
assertion of AACK is referred to as a qualified ARTRY. An earlier assertion of ARTRY
during the address phase is referred to as an early ARTRY. If AACK is connected low,
ARTRY must be asserted on the second cycle (clock cycle 3) after the assertion of TS.

8-22 PowerPC 602 RISC Microprocessor User's Manual



qualBG

(given to

snooping
device)

TS

Figure 8-8. Snooped Address Cycle with ARTRY

As abus master, the 602 recognizes either an early or aqualified ARTRY and preventsthe
data phase associated with the retried address phase from beginning. During a qualified
ARTRY, the 602 aso determines whether it should negate BR and ignore BG on the
following cycle. Thefollowing cycleisthe snooping window, during which only the device
that asserted ARTRY can assert BR. This guarantees the snooping device an opportunity to
request and be granted the bus before the just-retried master can restart its transaction.
During this window, BG is also blocked so a pipelined arbiter (one that clocks requestsin
and clocks grants out) has a chance to negate BG to an aready granted potential bus master
to perform a new arbitration.

8.3.3 Data Phase

After the address phase, the 602 asserts BB, begins driving or sampling the data bus, and
sampling the transfer acknowledge signal. The data phase consists of the datatransfer itself
and data termination.

8.3.3.1 Data Transfer

The data transfer signals are DO-D63. These signals form a 64-bit data path for read and
write operations when the processor isin 64-bit mode (T32 is negated); DO-D31 form a 32-
bit data path when the processor isin 32-bit mode (T32 is asserted). D32-D63 are ignored
in 32-bit mode.

In 64-bit mode, the 602 transfers datain either single-beat (nonburst) transfers or four-beat
burst transfers. Nonburst operations can transfer from one to eight bytes at atime and can

Chapter 8. System Interface Operation 8-23



be misaligned. Burst transfers are used by the 602 to transfer cache blocks into or out of its
internal cache. Nonburst transfers are either caching-inhibited or write-through write
operations. For more information see Section 8.3.2.2, “ Transfer Attributes.”

8.3.3.2 Data Phase Termination

Thefollowing three signals are used to terminate the individual data beats of the data phase
and the bus phase—TA, TEA, and ARTRY:

» Asserting TA signals normal termination of a data beat or the transaction (last data
beat of burst). It must always be asserted on the bus cycle coincident with the data
that it is qualifying. It may be withheld by the slave for any number of clocks until
valid datais ready to be supplied or accepted.

» Asserting TEA signalsanonrecoverable error during the datatransaction. It may be
asserted on any cycle while BB is asserted. Asserting TEA terminates the bus phase
immediately even if it isin the middle of aburst, however, it does not prevent
incorrect data that has just been acknowledged with TA from being written into the
602's cache or register files. Asserting TEA causes either amachine check exception
or a checkstop condition, depending on the setting of MSR[ME].

e Asserting ARTRY terminates the bus phase immediately. ARTRY istypicaly
asserted in response to a device snooping and hitting an address on the bus. In such
cases, asserting ARTRY delays the interrupted transaction so the snooping device
can perform an operation (such asawrite-back or castout operation) to ensure cache
coherency.

Upon receiving afinal or only termination condition, the 602 negates BB for at least one
cycle.

8.3.3.3 Normal Single-Beat Termination

Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave; see Figure 8-9.

ta
|
I

BB

| 1 | 2 | 3 | 45 |

Logical Bus Clock | | | | | | [ | [ | |
qual B | ' ' ' ' '

f | | | | |

TS — | f | | |

| f | | | |
mkCN\__ L/ | ! !

| | | |

System Bus | { Address Data ) } |
| |

| |

| |

| |

I I

Figure 8-9. Normal Single-Beat Read Termination

8-24 PowerPC 602 RISC Microprocessor User's Manual



Normal termination of aburst transfer occurs when TA is asserted for four bus clock cycles
(in 64-bit mode), as shown in Figure 8-10. The bus clock cycles in which TA is asserted
need not be consecutive, thus allowing pacing of the data transfer beats. For read or write
bursts to terminate successfully, TEA must remain negated during the transfer. The only
difference for a 32-bit mode is the number of data beats.

0

| |
I |
_ | | |
e —|\—m
| | | | | |
e : Add}’ess @ X Datjal X Dat?}»x Data 3 : :
| 1 L | |
ta | \k o | |

|

4

Figure 8-10. Normal Burst Transaction

8.4 Memory Coherency and Bus Protocol

The 602 has a copy-back cache which relies on bus snooping to maintain cache coherency
in a uniprocessor system with coherent caches. The 602 implements a three-state MEI
cache coherency protocol. The three-state cache coherency protocol is asubset of the four-
state MESI protocol with the shared state not supported. For more details, see Chapter 7,
“Signa Descriptions.”

8.4.1 Effect on Read Operations

The three-state (MEI) cache coherency protocol of the 602 affects read operations on the
busin the following ways:

¢ 602 asbus master—Al| read operations (except for those that are caching-inhibited)
are signalled on the bus as RWITM to force flushing of the cache block from other
caches.

» 602 as snooper—A\I read operations snooped from the bus (except for those that are
caching-inhibited) are interpreted as RWITM to cause flushing from the 602's
cache. A caching-inhibited read isinferred by the 602 when the transaction isa
nonburst read (TBST not asserted).

These actions for read operations allow the 602 to operate successfully on the bus with bus
masters that support either MEI or MESI protocol. Table 8-3 summarizes the 602 signals
used to maintain coherency.

Chapter 8. System Interface Operation 8-25



8.4.2 Qualified Snoop Conditions

During the cycle that TS is asserted by another bus master, other 602s snoop bus
transactions for any of the following conditions:

« Basic transfer protocol (signaled by TS)

— Theglobal signal (GBL) is asserted indicating that coherency enforcement is
required.

— A reservation is currently active in the 602 as the result of an lwar x instruction,
and the snooped address indicates awrite or kill operation in the transfer type
attributes (TTO-TT4). These transactions are snooped regardless of whether
GBL is asserted to support reservations in the three-state cache protocol.

« Injected snoop during read transaction (signaled by TS and TA)

While the 602 as a bus master performs a burst read transaction, the read target
device can inject snoops by asserting TS, negating TA, and driving the snooped
address on the bus. The window of the injected snoop is from the third cycle
following the assertion of BB to the cycle beforethe last read databeat istransferred
into the 602. If the injected snoop generates a hit, it asserts ARTRY, but does not
perform the snoop push operation. (The 602 does not perform clean or flush
operations to the interna cache). For the 602 to perform a normal snoop, the read
target device must regenerate the snooped address as a normal transaction (that is,
read, write, or address-only transaction) after the current read transaction is
completed. If the snoop hitsfor kill, the 602 invalidates the matched cache block.

Timing for injected snoop operations is shown in Section 8.5.4.7, “Injected Snoop
Timings.

8.4.3 Internal Snoop Sources

When a qualified snoop condition is detected on the bus, the snooped address associated
with TSis compared against the data cache tags, memory queues, and any other appropriate
memory elements as appropriate for the following conditions detected during the assertion
of TS:

» Data cache tags—The data cache tags are snooped for standard data cache
coherency support. Instruction caches are not snooped.

e Reservation—Thisisfor the lwar x/stwcx. instructions.

8.4.4 Reaction on Qualified Snoops

The 602 asserts ARTRY to the current bus master when a snooped transaction presents a
cache or memory queue coherency problem to the 602 as described above. The assertion of
ARTRY should signal the other master to abort itstransaction and retry it later after the 602
can first perform a write operation back to memory. The 602 may aso retry a bus
transaction if the cache tags are being accessed (for example, when the LSU is accessing or
updating the tags) prevent it from snooping the transaction on that cycle. Bus timing
operations are shown in Section 8.5.4, “ Snooping.”

8-26 PowerPC 602 RISC Microprocessor User's Manual



8.4.5 Special Instructions

The cache control, TLB management, and synchronization instructions supported by the
602 may affect or be affected by the operation of the bus. Only dcbz is actively broadcast
through address-only transactions on the bus, and the 602 snoops only KILL operations
broadcast by other masters. However, these instructions may indirectly initiate bus
transactions, or their completion may be linked to the bus. Table 8-11 summarizes how
these instructions may operate with respect to the bus.

Table 8-11. Bus Impact for Special Instructions

Possible Bus

Instruction . Comment
Operation
sync None Allows gueued bus operations (except instruction and touch load operations) to
complete.
tibie None —
tibsync None —
eieio None No-op. The eieio instruction is not needed on the 602 because the caching-
inhibited and write-through operations are performed in order.
icbi None —
dcbi None —
dcbf Write-with-kill Occurs only if cache block is modified
dchst Write-with-Kkill Occurs only if cache block is modified
dcbz Kill block Serves as broadcast to other masters for cache coherency; occurs only if the
(address-only) cache block is marked as global even if cache block matches and is modified.
Write-with-Kkill May occur as a result of normal cache replacement in case of a cache miss.
dchbt, Read-with- Fetched cache block is stored in the touch load queue; see Section 2.5.1.
dcbtst intent-to-modify

Note: This table does not address the impact of WIM settings, nor does it completely describe the mechanisms
for the operations described. It is intended only to show the possible bus relationships that may exist.

Chapter 8. System Interface Operation

8-27




8.5 Bus Timing Examples
The timings in this section take into account the following variables.

Length of the address phase—There are two types of address phases:

— Single-cycle address phase—For these transactions, the address phase lasts only
one bus clock cycle because AACK is asserted simultaneously with TS. The
AACK signal can be connected low to ensure a single-cycle address phase.

— Multicycle address phase—This describes any address phase for which AACK
is not asserted simultaneously with TS.

Burst or nonburst transfers—The different types of transactions supported depend
on the amount of datato be transferred. Thisis often affected by the settings of the
W, 1, and M hits.

— Burst transactionstransfer an eight-word cache block between the on-chip cache
and system memory. This can happen only when memory is addressed in
memory space that is designated as cacheable.

— Nonburst transactions transfer up to 64 bits of data between the processor and
system memory. It should be pointed out that a single-beat transaction
(transferring up to 64 bits) is the only nonburst transaction supported in 64-bit
mode. There are two types of nonburst transactionsin 32-bit mode—single-beat
transactions that transfer up to 32 bits and double-beat transactions that transfer
up to 64 hits.

64- or 32-hit data bus mode—Whether the bus operates as a 32- or 64-bit busis
determined by the setting of T32. Bus width can be changed dynamically or the
signal can be connected asserted for systems that use a static 32-bit bus or negated
for systems that use a static 64-bit bus.

— 64-bit—If T32isnegated, the data bus behaves as a 64-bit bus. Burst transactions
take four beats to transfer an eight-word cache block. Nonburst transactions are
nonburst operations that can transfer up to 64 bits of data. Timings for basic 32-
bit mode operationsare described in Section 8.5.1, “64-Bit DataBusModeBasic
Transactions.”

— 32-bit—If T32 is asserted, the bus operates as a 32-bit bus. Burst transactions
take eight beats of 32 bits each to transfer an eight-word cache block. Nonburst
transactions consist of single- or double-beat operations that can transfer up to
64 bits of data. Timings for basic 32-bit mode operations are described in
Section 8.5.2, “32-Bit Bus Mode Basic Transactions.”

Whether wait states are inserted between bursts—Each beat of data must be
acknowledged by the assertion of the TA signal. In a multiple-beat transaction (a
four-beat burst or a double-beat nonburst operation), the next beat is delayed if the
TA is negated between beats. An example of a data transaction that has wait states
canbeseenin Section 8.5.1.2, “ Burst Read Transaction with aSingle-CycleAddress
Phase—64-Bit Mode.”

8-28

PowerPC 602 RISC Microprocessor User's Manual



The TA signal can remain asserted during the transaction to indicate that thereis no
need to introduce wait states. In the following examples, thisisreferred to as*“ fastest
datatransaction.” An example of a data transaction with no wait statesis shown in
Section 8.5.1.6, “Burst Write Transaction—64-Bit Mode.”

»  Whether the transaction is aread, write, or address-only transaction

8.5.1 64-Bit Data Bus Mode Basic Transactions

This section presents basic bus transactions when the processor is in 64-bit mode. They
include the following:

« Nonburst read transaction with single-cycle address phase (Section 8.5.1.1)

» Burst read transaction with a single-cycle address phase (Section 8.5.1.2)

» Burst read transaction with a multicycle address phase (Section 8.5.1.4)

« Nonburst write transaction (Section 8.5.1.5)

¢ Burst write transaction with a single-cycle address phase (Section 8.5.1.6)

» Slower burst write transaction (Section 8.5.1.7)

These exampl es show many characteristics that are common to 32-bit mode transactions as
well, such as the timing for single- and multicycle address phases and how wait states can
be inserted between beats of a burst operation by asserting and negating TA.

8.5.1.1 Nonburst Read Transaction—64-Bit Mode

Figure 8-11 shows a nonburst read operation with the single-cycle address phase. Note that
this operation is the same regardless of whether the busisin 32- or 64-bit mode. Note that
to transfer 64 bits of data in 32-bit mode, a double-beat transaction is necessary. Thisis
shown in Figure 8-19.

Chapter 8. System Interface Operation 8-29



123 ]4]5]6]7]

R s s e o I o I
I
BRAN— /v 1 1
I e e D I I B
BG | | For
I | I | I I I

TS | | | |
1 | | | | | | |
T32 | / |
I | I | / | | T ]
AACK ) A\ / !
N Fob
| [ | | [

System Bus | ./ \ / \

T \RA T \RB )

Figure 8-11. Nonburst Read Transaction, Single-Cycle Address Phase—64-Bit
Mode
The signal interactions are as follows:
1. Inclock cycle 1, the bus request isissued (BR is asserted).

2. Inclock cycle2, thebusisgranted (BGisasserted). Inthisexample, thereisno other
activity onthe bus; BB, TS, and ARTRY signals are sampled as negated, so the 602
receives a qualified bus grant.

3. Inclock cycle 3, transfer start (TS) is asserted and the address is made available on
the bus. The AACK signal, which is connected asserted, is sampled. Because it is
always asserted, the address phase is guaranteed to be the single-cycle address phase
(one bus clock cycle).

4. Inclock cycle 4, BB is asserted indicating the start of the data phase.

5. Inclock cycle5, the slave device makesthe data avail able on the bus and the transfer
is acknowledged (TA is asserted).

6. Inclock cycle 6, the data transfer completes, and the TA and BB are negated.

8-30 PowerPC 602 RISC Microprocessor User's Manual



8.5.1.2 Burst Read Transaction with a Single-Cycle Address Phase—
64-Bit Mode

Figure 8-12 shows a burst read operation with the single-cycle address with the bus

operating as a 64-bit bus. This exampleisidentical to the nonburst read example shown in

Section 8.5.1.1, “Nonburst Read Transaction—64-Bit Mode.” However, here a four-beat

burst operation occurs that updates a cache block.

Arbitration Address phase Data phase

| I I |
| 1| 2| 3| 4|56 7|89 ]10]11]12]13]| 14|

SYSCLK
(R T A O O O O O T I e
BR INA—+ 1 I 1 1 1 & T I 1 1 1 1
[ T (N I AN A N NN NN NN B
BG | | o
[ N T T e O N E (R R B B
TS | T 1T T T T T T T T 1
R A
1 o\ T T T T 1 1 T T 1 1
AACK | \ |
T T (e [ Y A KN N EE N B
RPN [ L
BBy T N~ L T
S T I s I I O R S N B
a0 o I~ I~ T
(P T Ty T I O A
ARTRY 1 0 1 1
Lol 0
TEA L
I I I I I I I I I I I I I I I

Figure 8-12. Burst Read Transaction with a Single-Cycle Address Phase—64-Bit
Mode

Chapter 8. System Interface Operation 8-31



The signd interactions are as follows:

1. Clock cycles 14 show the single-cycle address phase and are identical to the
nonburst case described in Section 8.5.1.1, “Nonburst Read Transaction—64-Bit
Mode.

2. Inclock cycle 5, TSis three-stated and the slave device does not yet drive the data
bus.

3. Inclock cycle 6, the slave device drives data beat 0 on the memory bus; meanwhile,
the TA signal is asserted.

4. Inclock cycle 7, the slave device is not yet driving the next data beat and the TA
signal is negated and remains so through clock cycle 8.

5. Inclock cycle 9, the Slave device drives data beat 2 on the memory bus while TA is
reasserted.

6. TA remainsasserted through clock cycles9-11, while databeats 1-3 aretransferred.
7. Inclock cycle 12, the final data beat arrives and TA is negated.

8.5.1.3 Burst Read Transaction with a Single-Cycle Address
Phase/Shortest Data Phase—64-Bit Mode

Table 8-7 shows a burst read transaction in which the four data beats occur without

interruption. In this example TA remains asserted throughout the data transfer.

112131456 7]|8]9]10]

SYSCLK
[ T e e T I B
o | | | | | | | | | |
BR | [ T T (N N I B
_ [ S Y O E—
BG
N A I IR I
s [ I R N
- I
T32 /1 1\ ]
| | N | N N
AACK AN / '
: [ : ™ [ "
System Bus | RA | DO | [
— <Ry @@ |
BB l'—‘*—\| | N | | L 1/ T
[ [ B [ I T
TA ; | ; | |\ : [ AR
N P A I I S O B B
ARTRY |~
| [ |
S R R D R R e
I T T
TEA S

Figure 8-13. Burst Read Transaction with a Single-Cycle Address Phase/Shortest
Data Phase—64-Bit Mode

8-32 PowerPC 602 RISC Microprocessor User's Manual



8.5.1.4 Burst Read Transaction with a Multicycle Address Phase—
64-Bit Mode

Figure 8-14 shows a burst-read transaction with a multicycle address phase.

Arbitration ~ Address phase Data phase

| I I |
| 1] 2|34 |5|6|7]|8]9|10[11]|12]13| 1415|1617 |

SYSCLK
[ O O O O O A T A e e e e e
BRINL L/ 1 1 1 T T T © T 1 1T 1T 1 1 1
I e e e e e
BGI | \@—+/ 1 1 I 1 1 000
S P N e [ A Y O A E SR B
s N~ | T T T T T T T T T 1
[ S T N |(| I N N N (N A TR NN RO M
TSZL T | T T I/I\I T T T T T T T I T I
AACK —\ M
: I L R R r 1 1 1 T T 1T 1 1 T 1
sywemus — oo KO 25— —
T —T—r—T—h 1 | 000 T
oD o YT T e r
moT [ T T T T TN/ TN L L L/ T
AL VA I N S SO I N SO I N SO SO N
ARTRY — T T T T T T T T T T T T | T |
e I e e e e O e e e e
A R R R

Figure 8-14. Burst Read Transaction with a Multicycle Address Phase—64-Bit Mode

In this example, it takes four clock cycles for the address to be transferred on the bus. In
this example, the four data beats are paced by the TA signal, but thisis independent of the
length of the data phase.

8.5.1.5 Nonburst Write Transaction—64-Bit Mode

Figure 8-15 illustrates a nonburst write transaction with the single-cycle address phase in
64-bit mode. Note the similarities with Section 8.5.1.1, “Nonburst Read Transaction—64-
Bit Mode.” The essential difference between these transactions is that the memory busis
not put into high-impedance for the clock cycle after the address is transferred (clock
cycle 4).

Chapter 8. System Interface Operation 8-33



't 1213 14]15]6]7]
ck LI LI LI LI LI L1

| I I |
BR M\ | /1 [ [ I |
| | | | | | | |
BG | | | | |
I | I |

TS | I
] | | | | |
32 | 4 |
! [ T | [ [ T |
AACK : \ @l |
| [

oranass L1 wo )
|
BB ¢ \ / \—|

TA

ARTRY ®

TEA T

oL

Figure 8-15. Fastest Nonburst Write Transaction—64-Bit Mode

The signal interactions are as follows:

1. Clock cycles 1-3 areidentical to the nonburst read example in Figure 8-11, except
the address transfer carries awrite address (WA) rather than aread address.

2. The essential difference between read and write operationsis seenin clock cycle 4.
The memory bus does not need to put in high-impedance, and the write data
becomes available immediately after the address is transferred. Likewise the BB
signal is asserted after the address is transferred.

3. Asinthe nonburst read example, in clock cycle 5, TA is asserted to end the transfer.
4. Clock cycles 6 and 7 are the same as the burst read example.

8.5.1.6 Burst Write Transaction—64-Bit Mode

Figure 8-16 shows a simple burst write transaction with single-cycle address phase and
with no wait states between data beats.

8-34 PowerPC 602 RISC Microprocessor User's Manual



112134567 ]|8]9]10]

SYSCLK
R
BR O IN—+/1 1 1 1 o 1 1 1
o N N R A N B
BG R A T N I B
- [ O Y
| T T
32 | 7T !
T T | T T T
AACK T T / T T T T t
[ [

o 1L e e

e /_l_\g
R N I R s ey e |
w /—w
T T T ey By ey R O
ARTRY T &+ttt
T T O O T
TEA T T T T T T T T T 1
I I I I I I I I I I I

Note: This transaction should be used only when ARTRY is not asserted.

Figure 8-16. Fastest Burst Write Transaction with Negated GBL Signal (Single-
Cycle Address Phase)—64-Bit Mode

The signal interactions are as follows:

1. Clock cycles 1-3 areidentical to those in Section 8.5.1.6, “ Burst Write
Transaction—64-Bit Mode”

2. Because GBL isnegated, thetransaction is not snooped by other devices and TA can
be asserted simultaneously with BB in clock cycle 4.

3. TheBB and TA signals remain asserted while the four data beats are transferred in
clock cycles 4-8.

4. After thelast databeat in clock cycle 8, BB and TA are negated, after which the
memory busis put in high-impedance state and the timing behavior continues asin
the previous examples.

In this example, snooping is not required, therefore it can be assumed that the GBL signal
is not asserted. This allows the TA signal to be asserted in the same clock as BB,
immediately after the address is transferred on the memory bus. For an example showing
how this transaction is performed when the GBL signal is asserted, see Section 8.5.4,
“Snooping.”

Chapter 8. System Interface Operation 8-35



8.5.1.7 Slower Burst Write Transaction—64-Bit Mode

In previous examples showing burst transactions, the TA signal has remained asserted
throughout the data beats, eliminating potential wait states. Figure 8-17 shows aburst write
transaction in which the TA signa is not held asserted throughout the four-beat data
transfer.

|1 ]2 |3 |4|5|6]|7|8]9|10]11]12]

TS

T32

AACK |

System Bus

|
I I I
Ve W g

Figure 8-17. Slow Burst Write Transaction

The signd interactions are as follows:

1. Clock cycles 1-3 show the standard timing for a single-cycle address phase
transaction.

2. Inclock cycle4, dataisavailable on the memory bus (D), but cannot compl ete until
clock cycle 6 because TA is not asserted simultaneously with BB.

3. TheTA signal remains asserted through clock cycle 6 (allowing data beat 1 to
complete), but is negated in clock cycle 7, which prolongs data beat 2.

4. TheTA signal is asserted in clock cycle 9, allowing the D2 to complete on the
following clock cycle (10).

5. The TA signal remains asserted allowing D3 to completein clock cycle 11 with no
additional wait states.

6. After D3 istransferred, the transaction concludes as normal.

8-36 PowerPC 602 RISC Microprocessor User's Manual



8.5.2 32-Bit Bus Mode Basic Transactions

This section describes basic read and write operations when the 602 is operating in 32-bit
mode. Many details that are common between 32-bit and 64-bit mode transactions, such as
the timing for the single- and multicycle address phases, are illustrated in the previous
examples and are not repeated here.

The examplesillustrate the following:

» Single-beat read transactions (Section 8.5.2.1)

» Double-beat read transactions (Section 8.5.2.2)

e Burst read operations (Section 8.5.2.3)

» Burst read transaction with a multicycle address phase (Section 8.5.2.4)
« Writetransactions in 32-bit mode (Section 8.5.2.5)

8.5.2.1 Single-Beat Read Transactions—32-Bit Only

A single-beat read transaction in 3-bit modeis shown in Figure 8-18. In thisexample, up to
32 bits are transferred in the data beat in clock cycle 5. The timing differs from the 64-bit
nonburst operation (shown in Figure 8-11) only in that the T32 pin is asserted (low).

11213 ]4]5]6]7]

N Y I I
T Y E IR |
BRI 1/ 1 T 1 1 |
N T I R |
BG [ [ I [
[ I |

TS |
I | [ [ I [
T32 | N\ | /T i |
L I | /1 | I |
AACK | AN / . |
I LV T T
System Bus : L (ra @ : |
| |

i H o N TN I/ g Y

ARTRY

I
[
i
I
|
I
L |
TEA |

I I
f N
I I
| |
I I
| |
| |

Figure 8-18. Single-Beat Read Transactions—32-Bit Only

Chapter 8. System Interface Operation 8-37



8.5.2.2 Double-Beat Read Transactions—32-Bit Only

When the processor data bus is operating in 32-bit mode, it takes more than one beat to
transfer double-word data types (for example, double-precision floating-point operands).
For these situations, the 602 generates a two-beat memory access. Note that this does not
require an additional address phase.

1123 ]4]5]6]7]8]

Y Y I
N Y R A F RN I R
BRI /17 1 1 T 1
[ L e e T e B
BG 1 T 1 1
[ I T A
75 | R S W
[ | | | [ | |
T32 | \ | /] ]
| | | I | | [ l |
AACK 1 T — 5L T T T T 1
L L Vo e e T
System Bus | | I /oY
| [ | [
[

\:_'_/_l_\_l

Figure 8-19. Double-Beat Read Transactions—32-Bit Only

The signd interactions are as follows:

1. Clock cycles1 and 2 are likethosein Section 8.5.1.1, “Nonburst Read
Transaction—64-Bit Mode”

2. Inclock cycle 3, the 602 asserts TS and drives the address on the bus. During this
clock cycle, the 602 samples the T32 and AACK signals. AACK is connected
asserted guaranteeing a single-cycle address phase (one bus clock cycle). T32 is
asserted and is latched when AACK is sampled. Asserting T32 indicates that the
daveisa32-bit device; and ensures that the bus will function as a 32-bit databusin
the data phase.

3. Asinthe 64-bit example, in clock cycle 4, the bus busy signal, BB, is asserted.

8-38 PowerPC 602 RISC Microprocessor User's Manual



4. Inclock cycle 5, thefirst 32-bit half of the data (RDO) is made available on the bus
and the transfer is acknowledged (TA is asserted). Note that TA cannot be asserted

while the address/data bus are in high-impedance state.

5. Inclock cycle 6, the second word (RDO) of datais transferred and the TA and BB
signals remain asserted. Note that as with other burst operations, here the TA signa

can be held asserted through the duration of the transfer or it can be alternately
asserted and negated to pace the data beats.

6. Inclock cycle 7, the second beat of dataistransferred and the TA and BB signalsare

negated.

8.5.2.3 Burst Read Operations—32-Bit

Figure 8-20 shows a burst read operation with the single-cycle address with the bus
operating as a 64-bit bus. This exampleisidentical to the nonburst read example shown in
Section 8.5.1.2, “Burst Read Transaction with a Single-Cycle Address Phase—64-Bit
Mode.” However, since the data bus is half as wide when it operates in 32-bit mode, an
eight-beat burst operation (32-bits per beat) is required to update the cache block.

Address
Arbitration  phase

Data phase

| 1|23 4|5]|6]7]8]9]10]11]12]13|14| 15| 16|17 18|

SYSCLK

ol |
System Bus | | RAY—
IS

BB T (T S S S — T

N N T T Y O Y B B B I T |

LY —t—t—t+ | T

| | | | | | | | | | | | | | | | |

ARTRY | ‘| [ Y T T B B [ O T T B B

| | | | | | | | | | | | | | | | |

A o N

Figure 8-20. Burst Read Transaction with a Single-Cycle Address Phase—32-Bit

The 32-bit burst read transaction differs from the 64-bit burst read transaction primarily in
that it requires eight data beatsinstead of four. TA must be asserted for each of these beats.

Chapter 8. System Interface Operation

8-39



8.5.2.4 Burst Read Transaction with a Multicycle Address Phase—
32-Bit Mode

Figure 8-21 shows a burst-read transaction with a multicycle address phase and a data

phase in which wait states are inserted. The timing for this example isidentical to the 64-

bit example in Figure 8-13, except for the fact that it requires four additional beats.

Address
Arbitration phase Data phase

[ I I |
|1]2|3|4|5|6|7]|8|9]|10[11|12|13|14|15]|16|17|18]19 |

SYSCLK I

|
REQ# [Nl 1/ | |
o
|
|

|
I
|
GNT# I
I

AACK

|
|
|
TS |
l
I
|
|

System Bus ——+—

1L |
BBT I W T T T 1T NNl L 1 1 1 @ 1 1 1 1 1/
T I T N (Y (Y N [ N A B
AL T T 1T T 1T /T 1111/

S T 1 T T T T (Y (N O A B
ARRY T O T 1T T T T T T T T T T T T T T T 1
T (Y T (Y (N N A B
TEAT T T 1T T 1T T 1T T 1T T 17 T 71T 1T T 1T T 71T 1

Figure 8-21. Burst Read Transaction with a Multicycle Address Phase—32-Bit Mode

8.5.2.5 Write Transactions in 32-Bit Mode

Tis section provides exampl es of write transactionsin 32-bit mode, including the following:
» Fastest single-beat write transaction (Section 8.5.2.5.1)
» Fastest double-beat write transaction (32-bit mode only) (Section 8.5.2.5.2)
» Fastest burst write transaction (Section 8.5.2.5.3)

All three of these examples use a single-cycle address phase, and the two multiple-beat
transactions have no wait states.

8-40 PowerPC 602 RISC Microprocessor User's Manual



8.5.2.5.1 Fastest Single-Beat Write Transaction—32-Bit Mode
In Figure 8-22, the 602 performs the fastest single-beat write operation.

112131415161 7]8]

SYSCLK

AACK |

I |
System Bus I—l—
|

&

B, T T T\ L1/ ——

AN /2 g S —

ARTRY

TE

>

|
|
O
TA |
|
|
|
|

Figure 8-22. Fastest Single-Beat Write Transaction—32-Bit Mode

Two clock cycles are required to transmit the word of data because, as with single-beat
transactions in 64-bit mode described in Section 8.5.1.5, “Nonburst Write Transaction—
64-Bit Mode,” TA cannot be asserted until the second clock cycle after the write addressis

transmitted.

8.5.2.5.2 Fastest Double-Beat Write Transaction—32-Bit Mode Only

Figure 8-23 shows a double-beat write transaction with no wait states between the two data
beats. Thistransaction is supported only in 32-bit mode.

Chapter 8. System Interface Operation

8-41



[T 1213141 5]16]7]38]

| | |
I [ |
I | |
I [ ]
| | |
| | J
| | |

T !

AACK | | '
I | I | | I | |
PPN 0 T
| IR
| L1/
S P o
A | o
| |
I I
| |
I I

Figure 8-23. Fastest Double-Beat Write Transaction—32-Bit Mode

This example differs from Figure 8-24 in that TA can be asserted a clock cycle earlier than
in the single-beat write case (asis also the case with multiple-beat (burst) operationsin 64-
bit mode).

8.5.2.5.3 Fastest Burst Write Transaction—32-Bit Mode
Figure 8-24 shows the fastest possible burst write transaction in 32-bit mode.

8-42 PowerPC 602 RISC Microprocessor User's Manual



|1 ]2 |3|4|5|6]|7|8]9]|10]11]12]13]

SYSCLK

| | | | | | | | | | | | | |
BR |\ /| | [ | | [ | [
| | | | | | | | | | | | | |
BG | I I I I I I I I I I
| | I | | I | I
TS | | | | | | | | |
_ | | | | | | | | | | |
T32 f : : ' : : : : : : : : : !
Mk  m N
| I I I I I I I I I I I |

e (DD DD DD
| | | | |
BB M T &1\ 1 | | 1 | /T
| Il | | . | | . | .
e m e Y K N SN N A A R O ma O
I (N I I [ I I [ I [
ARTRY | —@t f f f f f f f f f f i
| (. | | (. | | (. | (.
TEA | I I I I I I I I I I I I 1
| | | | | | | | | | | | | |

Figure 8-24. Fastest Burst Write Transaction—32-Bit Mode

Thisexample showsthe single-cycle address phase, and sincethisisawrite transaction, the
first data beat can be made available on the next beat. In the fastest burst write transaction,
there are no wait states inserted between data beats. In this case the TA signal remains
asserted throughout while all eight data beats are transferred.

8.5.3 Consecutive Operations

Previous examples have shown the timings for basic read and write operations in 32- and
64-bit mode. The examples in this section show the latency that can be encountered
between transactions

8.5.3.1 Consecutive Nonburst Write-Read Transaction
Figure 8-25 shows the bus timing for a nonburst write followed by a nonburst read.

Chapter 8. System Interface Operation 8-43



|11 2| 3|4 |5]|]6]| 7] 8] 9]|10]11]

CLK
_ T e e Y S S S
BR
| T T O A TR IO B
- [ O I I
| L
TS
| T | |
T2 | 7TTN VAV |
AACK | \ o /£ \ I
Cr [ N Y
SystemBus || || @ WD Il {raVl {rp ) |
Lo L LN~
BB 1 I 1 | |
I I e I e e e
LT I Y s i S A B
[ I N R R P { I R A B
___ ® ®
ARTRY ||
| | | | | | | | | | | |
L T T T T e T I I

Figure 8-25. Consecutive Nonburst Write-Read Transaction

The signd interactions are as follows:
1. Clock cycles 1-3 show the timing for a single-cycle address phase operation.

2. Clock cycles 1-6 areidentical to the nonburst write operation shown in
Section 8.5.1.5, “Nonburst Write Transaction—64-Bit Mode” except that the BG
signal remains asserted so the bus remains granted after the write operation. An
additional bus request is not required because the bus is parked.

3. Inclock cycle 6, BB is sampled. Because it is not asserted, the subsequent read
operation can process without the 602 having to rearbitrate for the bus.

4. Inclock cycle 7, theread addressis supplied to the memory bus and anonburst read
operation identical to that described in Section 8.5.1.1, “Nonburst Read
Transaction—64-Bit Mode”

8.5.3.2 Consecutive Nonburst Read-Write Transaction
Figure 8-26 shows a nonburst read transaction followed by a nonburst write transaction.

8-44 PowerPC 602 RISC Microprocessor User's Manual



| 1| 2|3 |4 |56 78] 9]10]11]12]|

I\
|
&\/.
| | | | |
e )
| |

|
[
|
System Bus I
|
|

1/

|

[

|

:

| | L

| | I
| | | |
] | ] ]

| I B
ARTRY |1 T T T T
| | R

] ] T

] ] ] ] ] ] ] ] ]

Figure 8-26. Consecutive Nonburst Read-Write Transaction

The signal interactions are as follows:

1. Clock cycles 1-6 areidentical to the nonburst read example shown in
Section 8.5.1.1, “Nonburst Read Transaction—64-Bit Mode,” again except for the
fact that the bus remains parked (BG remains asserted).

2. Inclock cycle 6, the BB signal is sampled because it is not asserted; the 602 is free
to begin the subsequent write transaction without having to rearbitrate for the bus.

3. Inclock cycle 7, anonburst write transaction like the one described in
Section 8.5.1.5, “Nonburst Write Transaction—64-Bit Mode,” begins.

4. The nonburst write operation proceeds as described in Section 8.5.1.5, “Nonburst
Write Transaction—64-Bit Mode.”

8.5.3.3 Consecutive Burst Write-Read Transaction

Similar to the previous examples showing consecutive nonburst operations, the following
example shows a burst write operation followed by a burst read operation. Note that once
again that the BG input remains asserted so the 602 does not need to assert BR.

Chapter 8. System Interface Operation 8-45



| 1| 2| 3| 4|56 7|8]9|10]11|12]13]|14]|15 |16 |

1
TS I I
_ L1 |
S g g e v .‘
AACK l |\ \
] Cor

| |

| |

| |

: |

| |

| |

| |

T T

| |

systemeus. |—L—L~wa {yoglovonog ra)——eooton R0z o) ——

BB | |
| |

| |

| |

| |

| |

I I

I I

|
BB|—|—'1—|-\| LT L /T

| | | | | | | | | | | | | | |
w1 T T\ L /T T\ L/ T\ /T

| | | | | | | | | | | | | | |
ARTRY | I‘I | | | | | | | | | | | |
| | | | | | | | | | | | | | |

TEA | | | | | | | | | | | | | | |

Figure 8-27. Consecutive Burst Write-Read Transaction

The signal interactions are as follows:

1. Clock cycles 1-7 areidentical to the burst write transaction described in
Section 8.5.1.6, “Burst Write Transaction—64-Bit Mode,” except that theBG signal
remains asserted so the 602 does not need to rearbitrate for the burst read operation
that follows.

2. Theread addressis made available in clock cycle 7, and like the example shown in
Section 8.5.1.2, “Burst Read Transaction with a Single-Cycle Address Phase—64-
Bit Mode,” there is asingle-cycle pause before the first data beat is available on the
memory bus.

3. TheTA signal remains asserted for two clock cycles, so the first two data beats are
transferred without interruption.

4. TheTA signal isnegated in clock cycle 12, which causes await state to be inserted
in the data transfer.

5. TheTA signal is asserted again in clock cycle 13, which allows the two remaining
data beats to complete. The transaction completes as normal.

8.5.3.4 Consecutive Burst Read-Write Transaction

In this example, aburst write operation follows aburst read. Note again in this case the bus
arbiter allows the BG signals to remain asserted throughout the first transactions so
additional arbitration is not required for the write transaction.

8-46 PowerPC 602 RISC Microprocessor User's Manual



|12 |3 |4 |5|6]7]|8]9|10]|11]|12]|13 |14 |15 |16 |17 |18 |

SYSCLK
__ | | | | | | | | | | | | | |
BR — —

| | | | | | | | | | | | | |

BG | | | | | | / t t t t t t t |

| | | | I | | | | | | | | | |

s N I N (% o Y Y I R
o | | | | \ | | | | | | | | | |
T32 } \ 1 1 1 1 \ 1 / I \ 1 1 1 1 1 1 1 I

| | | | I N | | | | | | | | |

AACK | . . [ . . . . N\ L . . . . . . |
| | | | | i | | | | | |

SystemBus | 1 (RAY—+—~RDO @@@ @ WDO WD2

| | | | | [ [ [ [ | |

BB | | .| N N T N B /20 T e N AN NN R R B VAN B

| | | | | | | | | | | | | | | | | | |

27N I T I Y B I/ By poy VR I/ IS A B |

| | ‘I | | | | | | | | | | | | | | | |
ARTRY | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | |
TEA | | | | | | | | | | | | | | | | | | |

Figure 8-28. Consecutive Burst Read-Write Transaction

In Figure 8-28 the burst read transaction is the fastest possible burst read operation—that
is, the TA signal remains asserted so there are no wait states between data beats. In the burst
write transaction shown, data beats, WDO0 and WD2, are prolonged by the negation of the
TA signal.

8.5.4 Snooping

This section describes bus timing for systems that use multiple caching devices. Such
systems must ensure cache coherency by snooping read and write addresses transferred on
the bus, checking those addresses against regions of memory that are configured as
cacheable, and responding when one of these addresses matches (a snoop hit occurs).
Ensuring cache coherency affects the timing illustrated in the previous examples in the
following ways:

» For an address to be snooped, the GBL signal must be asserted, and this causes
additional busactivity, asshownin Section 8.5.4.1, “ Fastest Burst Write Transaction
with Asserted GBL Signal”

*  When a snoop hit occurs, the operation that corresponds with the address that was
broadcast must not be allowed to complete until the snooping device performs the
bus operations necessary for it to maintain cache coherency. The snooped bus
operation isinterrupted by the assertion of the ARTRY signal, as described in
Section 8.5.4.2, “Address Retry During 602 Read Transaction—Single-Cycle

Chapter 8. System Interface Operation 8-47



AddressPhase,” Section 8.5.4.4, “ARTRY During Other Master Read Transaction—
Single-Cycle Address Phase,” Section 8.5.4.3, “Address Retry During 602 Read
Transaction—Multicycle Address Phase,” and Section 8.5.4.5, “ARTRY During
Other Master Read Transaction—Multicycle Address Phase.”

« Typically, the response to a snoop hit is to write back modified data to system
memory. An example of thisis shown in Section 8.5.4.6, “ Snoop Hit—Write-Back
Transaction.”

¢ In addition to the address snooping mechanism described above, the 602 supports
injected snoop operations that can occur between data beats of aburst operation in
either 32- or 64-bit mode. Several examples of this are shown in Section 8.5.4.7,
“Injected Snoop Timings.”

Snooping requires additional clock cycles; a performance improvement can be gained by
asserting GBL only unless snooping is required. This is shown in the following two
examples.

8.5.4.1 Fastest Burst Write Transaction with Asserted GBL Signal

Figure 8-29 shows the same transaction as shown in Section 8.5.1.6, “Burst Write
Transaction—64-Bit Mode.”

112181415/ 6]7[8]9]|10]
sYselk ML LML L L
|
|

[ [
BR (L L /T T 1 1T
[ O R L

Be | I L
[ [ [

T35 | | | |
I sk e o

32 | AT N\ ‘
L | | | | | | |
AACKI A £ [ I |
[ [

@ g
1 I~

| |

| |

| |

| |

| |

| |

| |

| | |
I I

e o E0EEEs

|

I

|

|

|

|

|

I

Figure 8-29. Fastest Burst Write Transaction with Asserted GBL Signal

8-48 PowerPC 602 RISC Microprocessor User's Manual



The primary difference between these two examples can be seen in clock cycle 4. Because
GBL is asserted, snooping must occur, and although data becomes available in the second
half of clock cycle 4 immediately after the address is transferred, the TA signal cannot be
asserted until one clock cycle later. Thisforcesthefirst beat of data (DO) to take two cycles
to transfer instead of one cycle when GBL is negated.

While this example shows the effect that snooping has on bus timing, it does not show the
timing when there is a snoop hit of the address. These timings are shown in the following
examples.

8.5.4.2 Address Retry During 602 Read Transaction—Single-Cycle
Address Phase

The ARTRY signal is not sampled until the second ck after the read addressiis transferred.

When a read operation uses the single-cycle address phase, the ARTRY signal is not

sampled until the second clock cycle after the address is transferred.

Figure 8-30 shows the ARTRY signal asserted after snoop hit on aread operation with the
single-cycle address phase. This example illustrates the fact that the ARTRY signal is not
sampled until the clock cycle after the address signals are no longer in high impedance—
that is, the second clock cycle after the read addressis transferred.

11213145167

CLK

T32 |

AACK

System Bus

Figure 8-30. ARTRY During Read Transaction—Single-Cycle Address Phase

Chapter 8. System Interface Operation 8-49



Note that the slave device may assert ARTRY in clock cycle 4; the 602 does not sample
ARTRY until the next clock cycle simultaneously with the read data being put on the bus.
Because ARTRY isasserted in this case, the data transfer is not allowed to complete; TA is
not asserted.

8.5.4.3 Address Retry During 602 Read Transaction—Multicycle
Address Phase

In Figure 8-31 the multicycle address phase is used, and the slave device may assert
ARTRY asearly as clock cycle 4; it is not sampled until after the addressis transferred.

1123 [4]5]6]7]8]9]10]
CLK

| | | |
R 1/
| | | |
| |

|

|

|

BG

| | |
TS | |

|

\

|

[ N
| | | |
[ T I
O
[ T I
AT

[1 1 |
/11
|||:\|

\
/

]
I I
| |
System Bus ————

\ RA

\_/—|—\_l

|
}
| |

} | | |
| | | |
ARTRY :—'—"1—'ﬂ_'/—'—uI

Figure 8-31. ARTRY During 602 Read Transaction—Multicycle Address Phase

8-50 PowerPC 602 RISC Microprocessor User's Manual



8.5.4.4 ARTRY During Other Master Read Transaction—Single-Cycle

Address Phase

Figure 8-32 shows the 602 snooping a bus operation by another bus master.

112131415167

TSN e e T o B O
| | | | | | | |
BR [ \__| 1/ | | | |
| | | | | | | |
BG | | | | | |
| | | | | |

TS | | |
L L1 |
T32\' i i | i i |
AACK | \a! / I
| | | | | | | |
system Bus ——+—1+—{ra Y +{RD Y———1
| | I\—I_/I\_I‘/I |
BB T O T\ 1/ T
| | | | | | | |
TA | | | | | | | |
| | | | | | | |
ARTRY | —® I ™ /T
| | | | | | | |
TEA | | | | | | | |
I I I I I I I I

Figure 8-32. ARTRY During Other Master Read—Single-Cycle Address Phase

Note that the ARTRY signal cannot be asserted on the cycle immediately following the
address transfer as it can when the transaction has a multicycle address phase (shown in
Figure 8-33). As described in Section 7.2.5.2, “Address Retry (ARTRY),” the ARTRY
signal is asserted on the second bus cycle after the assertion of the TSsignal and is negated
on the second cycle following the negation of the AACK signal.

8.5.4.5 ARTRY During Other Master Read Transaction—Multicycle

Address Phase

Figure 8-33 shows the 602 asserting ARTRY after a snoop hit on an address broadcast by
another device that shares the memory bus.

Chapter 8. System Interface Operation

8-51



1123 [4]5]6]7]8]9]10]
CLK

| | | |
BRM_L__ /T
| | |

R
BG

|
I
|
[
|
TS |

:

|

| | | | (

o L1
T32 '\
|
|

\
| | | | |

System Bus ——1—— RA

AACKI | |

T

o]

B

:

=

o \

I
|
I
ARTRY | |

|
TEA |

)

Figure 8-33. ARTRY During Other Master Read Transaction—Multicycle Address
Phase

Asin the previous example, the ARTRY signal is asserted in the second cycle following the
assertion of TS, as described in Section 7.2.5.2, “Address Retry (ARTRY).” In the case of
the multicycle address phase, the assertion of the AACK signal must be delayed for the
address to be decoded. Because the negation of the ARTRY signal must occur no sooner
than two clock cycles after the assertion of the AACK signal, ARTRY is held asserted from
clock cycles 5-9.

8.5.4.6 Snoop Hit—Write-Back Transaction

Figure 8-34 shows the bus timing when a snoop hit occurs on a read address. In this
example, a DMA device has requested and has been granted the bus for a burst read
operation, and the read address is snooped by the 602.

8-52 PowerPC 602 RISC Microprocessor User's Manual



DMABR I/ \ I
[ T A

DMABG l l / \

| 1] 23| 4|5]|6] 7|8 9|10]11|12|13]|14 |15 |16 |17 |18 |
CLK

/

/

| | |

CPUBR —t—\ | /
| | |

CPUBG 1/

AACK T\ 1/ \ | /

|
"l

Lo Lo
System ous. L) Qi) oo X o1 D2 p3)——(ra)— KOO RD R0
| | | |

E

L1101 1/
Y E N N

[
A1 b e N I R B IV B s mey VN RN RN B
L T Y [ A KN IO IR R R

ARTRY | | |/ — T T T T T T T T T T T T 1
I N N L g
TRA | (Y Y Y A NN IR NN R R

Figure 8-34. Snoop Hit—Write-Back Transaction

The signd interactions are as follows:

1

In clock cycles 1-3, the DMA device has been granted mastership of the memory
bus (DMABG asserted). It broadcasts the read addressin clock cycle 1.

The 602 snoops and hits the read address, and assertsthe ARTRY and CPUBR
signalsin clock cycle 3.

In clock cycle 4, the bus busy signal, BB, is negated for the DMA operation
simultaneously with the assertion of the bus grant signal (CPUBG) to the 602 and
the reassertion of the DMA device's bus request signal (DMABR).

Inclock cycle5, the TSsignal isasserted and the 602 puts the write address onto the
memory bus.

In clock cycle 6, afour-beat write operation begins and the memory bus grant is
giventothe DMA devicesoit canretry itsread transaction when the write operation
compl etes.

Inclock cycle 11, the DMA device startsits read transaction again, and it completes
asnormal.

Chapter 8. System Interface Operation 8-53



8.5.4.7 Injected Snoop Timings

As described in Section 8.4.2, “Qualified Snoop Conditions,” injected snoops can occur
during read transactions (signalled by TS and TA):

When a 602 bus master performs a burst read transaction, the read target device can inject
snoops by asserting TS, negating TA, and driving the snooped address on the address bus.
As shown in Section 8.5.4.7.1, “First Injected Snoop in the Injected Snoop Window,” and
Section 8.5.4.7.2, “Last Injected Snoop in the Injected Snoop Window,” the window of the
injected snoop is from the third cycle following the assertion of BB to the cycle before the
last read data beat istransferred.

8.5.4.7.1 First Injected Snoop in the Injected Snoop Window

The example shown in Figure 8-35 shows a snoop injected at the earliest possible moment
in aread operation.

| 1| 23| 4|56 7]|8]9|10]11|12]13]14 |

SYSeU ML L LML L L L L L L LT
| | | |

[ e N N A e A e
BR | o
- R N I NN N A NN NN NN RO SO B
BG | | T Y A N I I B
o I_J_L\_:_/_l_\_l\_:_/ L
S0 I T T T R Y B
S T 1 O [ (Y N (N IR N B
T32 7 |\ 1
AACK | A/ i
C o 1 T 1 1T T 1T 1T 1T T 71 71T 1
systemBus L1 | /oa\ | .“W
y ) @K s X0 X o1 o2 K 22—
BT T T\ 1 1110 0T
T T (Y Y A I AN IR N
I S VA N A e
P e e e
A N N N
S T T IS A N (RN NN BN
TEA |
I I I I I I ] I I I I ] I I I

[ | |

Snoop Window

Note: TA must be driven high (negated) on the snoop cycle (clock #6).

Figure 8-35. First Injected Snoop in the Injected Snoop Window

8-54 PowerPC 602 RISC Microprocessor User's Manual



The signd interactions are as follows:

1. Thehburst read transaction begins as normal, as shown in Section 8.5.1.1, “Nonburst
Read Transaction—64-Bit Mode.”

2. Thefirst difference occursin clock cycle 6 when the other bus device signalsits
intentions to snoop by asserting TS, negates TA, and puts its snoop address out on
the memory bus, in place of the first data beat.

3. Inclock cycle 7, the snoop address transaction completes, TS is negated, TA is
asserted, and the first data beat is transferred.

4. Inthisexample, thereis asnoop hit, so in clock cycle 8, the 602 asserts ARTRY to
force the other bus device to postpone its operation.

5. Intherest of the diagram, the 602’s read operation completes as normal.

8.5.4.7.2 Last Injected Snoop in the Injected Snoop Window

Figure 8-36 shows an operation similar to that in Figure 8-35. However, in this example,
the snoop address is broadcast at the last possible moment—before the last data beat.

| 1] 2| 3| 4|5 6| 7] 8] 9 ]10]11|12]13] 14 |

SYSCLK [ L[ LI/ LI rire e refreroiud
[ T S T I S S S S
BRINA—+ 1 1 1 1 1 1 0 1010
[ N (O R N N (N SN NN NN NN N
BG | | T Y A K AR T B
_ [ T T O B I
L s A B s m
T732 ! | I/ !\ | | | | | | | | | | |

| I I | I I I I I I I I I I ]

AACK | \ | /

T N T K I N (N ENN AN HRY AN B B

System Bus | } } /ﬁ\ }
RN \‘l‘/ [ o

BB | | ‘| 1\ | | | | | | L/

[ T T T e e e e e A O R
Aot T 1 T

L1 @l 1 [

ARTRY | | '| Y T R E N N N [
| | | | | | | | | | | | | | |
TEA 0

I I I I I I I I I I I I I I I
[ |
|
Snoop Window

Note: TA must be driven high (negated) on the snoop cycle (clock #10).

Figure 8-36. Last Injected Snoop in the Injected Snoop Window

Chapter 8. System Interface Operation 8-55



Asin the previous example, the other bus master takes advantage of its ability to inject a
snoop during aburst read operation. In this case, the other device asserts TS and broadcasts
the snoop address in clock cycle 10. In the next clock cycle, the TA signal is reasserted and
the final data beat is transferred. Once again, a snoop hit occurs, and the 602 asserts the
ARTRY signal (clock cycle 12).

8.5.5 Address-Only Transactions

The 602 generates an address-only bus transaction only when a dcbz instruction is
executed. Examples of address-only transactions are given in Section 8.5.5.1, “Single-
Cycle Address-Only Transaction,” and Section 8.5.5.2, “Multicycle Address-Only
Transaction.”

8.5.5.1 Single-Cycle Address-Only Transaction

Because many address-only operations cause other devices to perform an action (for
example by either flushing, killing, or clearing the contents of a cache block), it is typica
for another device to snoop the address, and assert the ARTRY signal to perform the
required operation. The timing for the ARTRY signal isincluded in Figure 8-37.

11 21314]15]6]7]

___ 7/ is“don'tcare”
Figure 8-37. Single-Cycle Address-Only Transaction

8-56 PowerPC 602 RISC Microprocessor User's Manual



Here the transfer acknowledge signal is treated as a “don’t care” because there is no data
phase. Similar to the example shown in Section 8.5.4.4, “ARTRY During Other Master
Read Transaction—Single-Cycle Address Phase,” the ARTRY signal is asserted by a
snooping device in the second clock cycle after the address is transmitted.

8.5.5.2 Multicycle Address-Only Transaction

Figure 8-38 shows a multicycle address-only transaction, again showing the timing for the
assertion of ARTRY by a snooping device that hits the address. As shown in
Section 8.5.4.5, “ARTRY During Other Master Read Transaction—Multicycle Address
Phase” the ARTRY signal is asserted in the clock cycle after the address has been
transferred. Again, because there is no datato be transferred, the TA signal isadon't care.

11213 [4]5]6]7]8]

O ML LML L L
| | | |
|

[oy]

E

m' ' ' ' '/ |
AACK | ! ! ! '\L t

System Bus 1| ADDRESS
| | | |

-1

Y

| |
BB &+ M\ _ |/ T
| | | | | | | | |
TA I I I I I ™ 7 1 1
| | | | | | | | |
ARTRY &+t~
| | | | | | | | |
TEA | [ [ [ [ [ [ [ |
I I I I I I I I

___ 7/ Is“dontcare”

Figure 8-38. Multicycle Address-Only Transaction

Chapter 8. System Interface Operation 8-57



8-58 PowerPC 602 RISC Microprocessor User's Manual



Chapter 9
Power Management

The PowerPC 602 microprocessor is specifically designed for low-power operation. The
602 provides both automatic and program-controllable power reduction modes for
progressive reduction of power consumption. This chapter describes the hardware support
provided by the 602 for power management.

9.1 Dynamic Power Management

Dynamic power management automatically powers up and down individual execution units
of the 602 on a demand basis. For example, if no floating-point instructions are being
executed, the floating-point unit is automatically powered down. Power is not actualy
removed from the execution unit; instead, each execution unit has an independent clock
input, which is automatically controlled on a clock-by-clock basis. Since CMOS circuits
consume negligible power when they are not switching, stopping the clock to an execution
unit effectively eliminates its power consumption. Dynamic power management is
transparent to software and external hardware and is enabled by setting HIDO[DPM]
(bit 11) on power-up, or following the assertion of HRESET.

9.2 Programmable Power Modes

The 602 provides four programmable power states—full power, doze, nap, and sleep.
Software selects these modes by setting one (and only one) of three power-saving mode
bits—HIDO[DOZE], HIDO[NAP], and HIDO[SLEEP] (bits 8, 9, and 10, respectively).

Hardware can enable a power management state through external asynchronousinterrupts.
The hardware interrupt causes the transfer of program flow to the interrupt handler, which
sets the appropriate mode. The 602 provides a separate exception and exception vector for
power management—the system management interrupt (SMI). The 602 also contains a
decrement timer, which alowsit to enter the nap or doze mode for a predetermined period
and then return to full power operation through the decrementer interrupt.

The 602 cannot switch from one power management mode to another without returning to
full power mode. Nap and sleep modes disable bus snooping; therefore, a hardware
handshake is provided to ensure coherency before the 602 enters these power management
modes. Table 9-1 summarizes the power states.

Chapter 9. Power Management 9-1



Table 9-1. PowerPC 602 Microprocessor Programmable Power Modes

PM Mode Functioning Units Activation Method Full-Power Wake Up Method
Full power All units active — —
Full power (with dynamic | Requested logic by Instruction dispatch —
power management) demand
Doze « Bus snooping Software External asynchronous exceptions
« Data cache as needed Decrementer interrupt
» Decrementer timer Reset
Nap Decrementer timer Hardware/software External asynchronous exceptions
Decrementer interrupt
Reset
Sleep None Hardware/software External asynchronous exceptions
Reset

9.2.1 Power Management Modes

The following sections describe the characteristics of the 602's power management modes,
the requirements for entering and exiting the various modes, and the system capabilities
provided by the 602 while the power management modes are active.

9.2.1.1 Full-Power Mode with Dynamic Power Management Disabled
Full-power mode with dynamic power management disabled power mode is selected by
clearing HIDO[DPM].

¢ Default state following power-up and HRESET

« All functional units are operating at full processor speed at all times.

9.2.1.2 Full-Power Mode with Dynamic Power Management Enabled
Full-power mode with dynamic power management enabled (HIDO[DPM] = 1) provides
on-chip power management without affecting the functionality or performance of the 602.

* Required functiona units are operating at full processor speed

¢ Functional units are clocked only when needed

* No software or hardware intervention required after mode is set

» Software/hardware and performance transparent

9-2 PowerPC 602 RISC Microprocessor User's Manual




9.2.1.3 Doze Mode
Doze mode disables most functional units but maintains cache coherency by enabling the
bus interface unit and snooping. A snoop hit causes the 602 to enable the data cache, copy
the data back to memory, disable the cache, and fully return to the doze state.
* Most functional units disabled
» Bus snooping and time base/decrementer still enabled
« Doze mode sequence
— Set doze bit (HIDO[8] = 1)
— 602 enters doze mode after several processor clocks
» Severa methods of returning to full-power mode
— Assert INT, SMI, MCP or decrementer exceptions
— Assert HRESET or SRESET

» Transition to full power state takes no more than a few processor cycles
e Phase-locked loop (PLL) running and locked to SY SCLK

9.2.1.4 Nap Mode
The nap mode disables the 602 but maintains the PLL and the time base/decrementer. The
time base can be used to restore the 602 to full power state after a programmed amount of
time. Because bus snooping is disabled for nap and sleep modes, a hardware handshake
using the quiesce regquest (QREQ) and quiesce acknowledge (QACK) signals are required
to maintain data coherency. The 602 will assert the QREQ signal to indicate that it is ready
to disable bus snooping. When the system ensures that snooping is no longer necessary, it
asserts QACK and the 602 enters the sleep or nap mode.
» Time base/decrementer still enabled
» Most functional units disabled (including bus snooping)
e All nonessential input receivers disabled
* Nap mode sequence
— Set nap bit (HIDO[9] = 1)
— 602 asserts quiesce request (QREQ)
— System asserts quiesce acknowledge (QACK)
— 602 enters sleep mode after several processor clocks
» Severa methods of returning to full-power mode
— Assertion of the INT, SMI, and MCP signals or occurrence of a decrementer
interrupt
— Assert hard or soft reset
» Transition to full power takes no more than a few processor cycles
e PLL running and locked to SY SCLK

Chapter 9. Power Management 9-3



9.2.1.5 Sleep Mode

Sleep mode consumes the least amount of power of the four modes because all functional
units are disabled. To conserve the maximum amount of power, the PLL may be disabled
and the SY SCLK may be removed. Due to the fully static design of the 602, the interna
processor state is preserved when no internal clock is present. Because the time base and
decrementer are disabled while the 602 is in sleep mode, the 602 microprocessor’s time
base contents must be updated from an external time base following sleep mode if accurate
time-of-day maintenance is required. Before the 602 enters the sleep mode, the 602 will
assert the QREQ signal to indicatethat it is ready to disable bus snooping. When the system
has ensured that snooping is no longer necessary, it asserts QACK and the 602 enters sleep
mode.

« All functional units disabled (including bus snooping and time base)

« All nonessential input receivers disabled

— Interna clock regenerators disabled

— PLL still running (see below)
» Sleep mode sequence

— Set sleep bit (HIDO[10] = 1)

— 602 asserts quiesce request (QREQ)

— System asserts quiesce acknowledge (QACK)

— 602 enters sleep mode after several processor clocks
» Severa methods of returning to full-power mode

— Assert INT, SMI, or MCP interrupts

— Assert hard or soft reset
e PLL may bedisabled and SY SCLK may be removed in sleep mode

¢ Return to full-power mode after PLL and SY SCLK disabled in sleep mode
— Enable SYSCLK

— Reconfigure PLL into desired processor clock mode
— System logic waits for PLL start-up and relock time (100 sec)
— System logic asserts one of the sleep recovery signals (for example, INT or SMI)

9.2.2 Power Management Software Considerations

All outstanding bus operations must complete before nap or sleep modes are entered.
Normally, a power management mode is selected by setting the appropriate HIDO mode bit
during system configuration. Later, the power management mode is selected by setting the
MSR[POW] bit. To provide aclean transition into and out of the power management mode,
the mtmsr[POW] should be preceded by a sync instruction and followed by an isync
instruction.

9-4 PowerPC 602 RISC Microprocessor User's Manual



Appendix A
PowerPC Instruction Set Listings

This appendix lists the PowerPC 602 microprocessor’s instruction set as well as the
additional PowerPC instructions not implemented in the 602. Instructions are sorted by
mnemonic, opcode, function, and form. Also included in this appendix isaquick reference
table that contains general information, such as the architecture level, privilege level, and
form, and indicatesif the instruction is 64-bit and optional.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” in The
Programming Environments Manual .

A.1l Instructions Sorted by Mnemonic

Table A-1 lists the instructions implemented in the PowerPC architecture in aphabetical
order by mnemonic.

Table A-1. Complete Instruction List Sorted by Mnemonic

Key:
I:I Reserved bits I:I Instruction not implemented in the 602
Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addx 31 D A B OF| 266 Rc
addcx 31 D A B OE| 10 Rc
addex 31 D A B OF| 138 Rc
addi 14 D A SIMM
addic 12 D A SIMM
addic. 13 D A SIMM
addis 15 D A SIMM
addmex 31 D A 00000 [OH 234 Rc
addzex 31 D A 00000 [OF 202 Rc
andx 31 S A B 28 Rc
andcx 31 S A B 60 Rc

Appendix A. PowerPC Instruction Set Listings A-1



becetrx
belrx
cmp
cmpi
cmpl

cmpli

6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

28 s A UIMM

29 s A UIMM

18 Li ALK
16 BO BI BD AalLK
19 BO BI 00000 528 LK
19 BO Bl 00000 16 LK
31 ofd |ofL A B 0 0

11 ofd |ofL A SIMM

31 ofd |ofL A B | 32 | 0

10 ofo |ofL A UIMM

cntlzwx 31 S A 00000 26 Rc
crand 19 crbD crbA crbB 257 0
crandc 19 crbD crbA crbB 129 0
creqv 19 crbD crbA crbB 289 0
crnand 19 crbD crbA crbB 225 0
crnor 19 crbD crbA crbB 33 0
cror 19 crbD crbA crbB 449 0
crorc 19 crbD crbA crbB 417 0
crxor 19 crbD crbA crbB 193 0
dcbf 31 00000 B 86 0
debi ! 31 00000 A B 470 0
dcbst 31 00000 A B 54 0
dcbt 31 00000 A B 278 0
dcbtst 31 00000 A B 246 0
dcbz 31 00000 A B 1014 0
divwx 31 D A B OE| 491 Rc
divwux 31 D A B OE| 459 Rc
dsa 16 31 00000 00000 00000 628 0
A-2 PowerPC 602 RISC Microprocessor User’'s Manual



Name
eieio
eqvx

esal®

extsbx

extshx

fabsx

faddx

faddsx

fcmpo

fecmpu

0 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 00000 00000 00000 854 0
31 S A B 284 Rc
31 00000 00000 00000 596 0
31 S A 00000 954 Rc
31 S A 00000 922 Rc

63 D 00000 B 264 Rc
63 D A B 00000 21 Rc
59 D A B 00000 21 Rc

63

crfD

00

32

63

crfD

00

fetiwx 63 D 00000 B 14 Rc
fetiwzx 63 D 00000 B 15 Rc
fdivx 63 D A B 00000 18 Rc
fdivsx 59 D A B 00000 18 Rc
fmaddx 63 D A B C 29 Rc
fmaddsx 59 D A B C 29 Rc
fmrx 63 D 00000 B 72 Rc
fmsubx 63 D A B C 28 Rc
fmsubsx 59 D A B C 28 Rc
fmulx 63 D A 00000 C 25 Rc
fmulsx 59 D A 00000 C 25 Rc
fnabsx 63 D 00000 B 136 Rc
fnegx 63 D 00000 B 40 Rc
fnmaddx 63 D A B C 31 Rc
fnmaddsx 59 D A B C 31 Rc
fnmsubx 63 D A B C 30 Rc
fnmsubsx 59 D A B C 30 Rc
fresx® 59 D 00000 B 00000 24 Rc
frspx 63 D 00000 B 12 Rc
Appendix A. PowerPC Instruction Set Listings A-3



Name

frsqrtex®

fselx®

fsubx
fsubsx
icbi
isync
bz
lbzu
Ibzux

Ibzx

Ifd

Ifdu
Ifdux
Ifdx
Ifs
Ifsu
Ifsux
Ifsx
lha
lhau
lhaux
lhax
lhbrx
Ilhz
lhzu

lhzux

0 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
63 D 00000 B 00000 26 Rc
63 D A B C 23 Rc

63 D A B 00000 20 Rc
59 D A B 00000 20 Rc
31 00000 A B 982 0
19 00000 00000 00000 150 0
34 D A d

35 D A d

31 D A B 119 0
31 D A B 87 0

50 D A d
51 D A d
31 D A B 631 0
31 D A B 599 0
48 D A d
49 D A d
31 D A B 567 0
31 D A B 535 0
42 D A d
43 D A d
31 D A B 375 0
31 D A B 343 0
31 D A B 790 0
40 D A d
41 D A d
31 D A B 311 0

A4

PowerPC 602 RISC Microprocessor User’'s Manual




Name
lhzx
Imw

Iswi 3

Iswx 3

0 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 D B 279 0
46 D A
31 D A NB 597 0
31 D A B 533 0

D A

lwz 32 D A

lwzu 33 D A
lwzux 31 D A B 55 0
Iwzx 31 D A B 23 0
mcrf 19 crfD 00 crfS 00 00000 0 0
merfs 63 cfd | 00| cfS [ 00| 00000 64 0
merxr 31 cfd | 00| 00000 00000 512 0
mfer 31 D 00000 00000 19 0
mffsx 63 D 00000 00000 583 Rc
mfmsr 31 D 00000 00000 83 0
mfrom 1.6 31 D A 00000 265 0
mfspr 2 31 D spr 339 0
mfsr 1 31 D o| SR 00000 595 0
mfsrin 31 D 00000 B 659 0
mftb 31 D thr 371 0
mtcrf 31 s 0 | CRM 0 144 0
mtfshox 63 crbD 00000 00000 70 Rc
mtfsblx 63 crbD 00000 00000 38 Rc
mtfsfx 63 0 | M | 0 B 711 Rc
mtfsfix 63 crfD | 00| 00000 MM |0 134 Rc
mtmsr 31 s 00000 00000 146 0
mtspr 2 31 S spr 467 0
mtsr 1 a1 s o| SR 00000 210 0
mtsrin 1 31 s 00000 B 242 0
Appendix A. PowerPC Instruction Set Listings A-5



Name 0

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31

mulhwx 31 D B 0 75 Rc
mulhwux 31 D B 0 11 Rc

mulli 7 D A SIMM
mullwx 31 D A B ot 235 Rc
nandx 31 S A B 476 Rc
negx 31 D A 00000 OEI 104 Rc
norx 31 S A B 124 Rc
orx 31 S A B 444 Rc
orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM
rfi 1 19 00000 00000 00000 50 0

rlwimix 20 S A SH MB ME Rc
rlwinmx 21 S A SH MB ME Rc
rlwnmx 23 S A B MB ME Rc

sc 17 00000 00000 00000000000000 0

srawx 31 S B 792 Rc
srawix 31 S SH 824 Rc
A-6 PowerPC 602 RISC Microprocessor User’'s Manual



Name

0

6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SIwx
stb
stbu
stbux

stbx

31 S A B 536 Rc
38 S A d

39 S A d

31 S A B 247 0
31 S A B 215 0

stfd 54 S A d
stfdu 55 S A d
stfdux 31 S A B 759 0
stfdx 31 S A B 727 0
stfiwx 5 31 S A B 983 0
stfs 52 S A d
stfsu 53 S A d
stfsux 31 S A B 695 0
stfsx 31 S A B 663 0
sth 44 S A d
sthbrx 31 S A B 918 0
sthu 45 S A d
sthux 31 S A B 439 0
sthx 31 S A B 407 0
stmw 2 47 s A d
stswi 3 31 s A NB 725 0
stswx 3 31 s A B 661 0
stw 36 S A d
stwbrx 31 S A B 662 0
stwcex. 31 S A B 150 1
stwu 37 S A d
stwux 31 S A B 183 0
Appendix A. PowerPC Instruction Set Listings A-7



Name
stwx
subfx
subfcx
subfex
subfic
subfmex
subfzex

sync

tibie 15

tibld -6
tibli &6
tibsyncl®
tw

twi

xorx

XOri

xoris

0 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 S B 151 0
31 D A B OF| 40 Rc
31 D A B OE| 8 Rc
31 D A B OF| 136 Rc
08 D A SIMM
31 D A 00000 [OF 232 Rc
31 D A 00000 [OF 200 Rc
31 00000 00000 00000 598 0

31 00000 00000 B 306 0
31 00000 00000 B 978 0
31 00000 00000 B 1010 0
31 00000 00000 00000 566 0
31 TO A B 4 0
03 TO A SIMM
31 S A B 316 Rc
26 S A UIMM
27 S A UIMM

1 supervisor-level instruction

2 supervisor- and user-level instruction

3 Load and store string or multiple instruction

4 64-hit instruction
5 Optional in the PowerPC architecture
6 602-implementation specific instruction

A-8

PowerPC 602 RISC Microprocessor User’'s Manual




A.2 Instructions Sorted by Opcode

Table A-2 lists the instructions defined in the PowerPC architecture in numeric order by

opcode.

Key:

I:l Reserved bits

I:I Instruction not implemented in the 602

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
tdi 4 000010 TO A SIMM
twi 000011 TO A SIMM
mulli 000111 D A SIMM
subfic 001000 D A SIMM
cmpli 001010 crfD OfL A UIMM
cmpi 001011 crfD oL A SIMM
addic 001100 D A SIMM
addic. 001101 D A SIMM
addi 001110 D A SIMM
addis 001111 D A SIMM
bex 010000 BO BI BD AA|LK
sc 010001 00000 00000 000000000000000 1(0
bx 010010 LI AA|LK
mcrf 010011 crfD 00 crfS 00 00000 0000000000 0
belrx 010011 BO BI 00000 0000010000 LK
crnor 010011 crbD crbA crbB 0000100001 0
rfi 010011 00000 00000 00000 0000110010 0
crandc 010011 crbD crbA crbB 0010000001 0
isync 010011 00000 00000 00000 0010010110 0
crxor 010011 crbD crbA crbB 0011000001 0
crnand 010011 crbD crbA crbB 0011100001 0
crand 010011 crbD crbA crbB 0100000001 0
creqv 010011 crbD crbA crbB 0100100001 0
crorc 010011 crbD crbA crbB 0110100001 0
cror 010011 crbD crbA crbB 0111000001 0
beetrx 010011 BO BI 00000 1000010000 LK
riwimix 010100 S A SH MB ME Rc
Appendix A. PowerPC Instruction Set Listings A-9




Name
rlwinmx
rlwnmx
ori
oris
xori
xoris

andi.

andis.

0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

010101 S SH MB ME Rc
010111 S A B MB ME Rc
011000 S A UIMM
011001 S A UIMM
011010 S A UIMM
011011 S A UIMM
011100 S A UIMM
011101 S A UIMM

cmp
tw

subfcx

addcx

mulhwux
mfcr

lwarx

lwzx
slwx

cntlzwx

andx

cmpl

subfx

011111 cfD |O|L B 0000000000 0
011111 TO B 0000000100 0
011111 D B O 0000001000 Rc

011111 D A B OF| 0000001010 Rc
011111 D A B 0 0000001011 Rc
011111 D 00000 00000 0000010011 0
011111 D A B 0000010100 0

011111 D A B 0000010111 0
011111 S A B 0000011000 Rc
011111 S A 00000 0000011010 Rc

011111 s A B 0000011100 Rc
011111 erfD |o||_ A B 0000100000 0
011111 D B o 0000101000  |Rc

dcbst 011111 00000 B 0000110110 0
Iwzux 011111 D B 0000110111 0
A-10 PowerPC 602 RISC Microprocessor User's Manual



Name

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mulhwx

mfmsr

dcbf

Ibzx
negx
Ibzux
norx
subfex
addex
mtcrf

mtmsr

stwcex.

stwx

stwux
subfzex

addzex

mtsr

stbx

subfmex

011111 A B 0 0001001011 Rc
011111 D 00000 00000 0001010011 0
011111 00000 A B 0001010110 0
011111 D A B 0001010111 0
011111 D A 00000 OEI 0001101000 Rc
011111 D A B 0001110111 0
011111 S A B 0001111100 Rc
011111 D A B OF| 0010001000 Rc
011111 D A B OF| 0010001010 Rc
011111 S CRM 0010010000 0
011111 S 00000 00000 0010010010 0

011111

0010010110

011111

0010010111

011111 S A B 0010110111 0
011111 D A 00000 (OF 0011001000 Rc
011111 D A 00000 (OF 0011001010 Rc
011111 S SR 00000 0011010010 0

011111

0011010111

011111

0011101000

addmex 011111 D A 00000 [OH 0011101010 Rc
mullwx 011111 D A B OF| 0011101011 RC
mtsrin 011111 S 00000 B 0011110010 0
dcbtst 011111 00000 A B 0011110110 0
stbux 011111 S A B 0011110111 0
Appendix A. PowerPC Instruction Set Listings A-11



Name
mfrom 1.6
addx
dcbt
lhzx
eqvx

tibie 15

A

hzux| 011111 D B 0100110111 0
xorx| 011111 B 0100111100 Rc
mispr2| 011111 D spr 0101010011 0

0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

011111 D A 00000 0100001001 0
011111 D A B oq 0100001010  |Rc
011111 00000 A B 0100010110 0
011111 D A B 0100010111 0
011111 s A B 0100011100 Rc
011111 00000 00000 B 0100110010 0

it | o | s | s | omnon o

o | o | w | sonoou [

lhaux
sthx

orcx

011111 D B 0101110111 0
011111 B 0110010111 0
011111 S B 0110011100 Rc

sthux

orx

divwux
mtspr 2
dcbi

nandx

011111

0110110111

011111

0110111100

011111 D A B O 0111001011 Rc
011111 S spr 0111010011 0
011111 00000 B 0111010110 0
011111 S B 0111011100 Rc

mcrxr 011111 crfD 00 00000 00000 1000000000 0
Iswx3| 011111 D A B 1000010101 0
A-12 PowerPC 602 RISC Microprocessor User's Manual



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Iwbrx 011111 D A B 1000010110 0
Ifsx 011111 D A B 1000010111 0
Srwx 011111 S A B 1000011000 Rc
srdx* 011111 S A B 1000011011 Rc
tlbsyncl'5 011111 00000 00000 00000 1000110110 0
Ifsux 011111 D A B 1000110111 0
mfsr 011111 D 0 SR 00000 1001010011 0
esal® 011111 00000 00000 00000 1001010100 0
Iswi 3 011111 D A NB 1001010101 0
sync 011111 00000 00000 00000 1001010110 0
Ifdx 011111 D A B 1001010111 0
dsa 16 011111 00000 00000 00000 1001110100 0
Ifdux 011111 D A B 1001110111 0
mfsrin 1 011111 D 00000 B 1010010011 0
stswx 3 011111 S A B 1010010101 0
stwbrx 011111 S A B 1010010110 0
stfsx 011111 S A B 1010010111 0
stfsux 011111 S A B 1010110111 0
stswi 3 011111 S A NB 1011010101 0
stfdx 011111 S A B 1011010111 0
stfdux 011111 S A B 1011110111 0
Ihbrx 011111 D A B 1100010110 0
srawx 011111 S A B 1100011000 Rc
sradx* 011111 S A B 1100011010 Rc
srawix 011111 S A SH 1100111000 Rc
eieio 011111 00000 00000 00000 1101010110 0
sthbrx 011111 S A B 1110010110 0
extshx 011111 S A 00000 1110011010 Rc
extsbx 011111 S A 00000 1110111010 Rc
tibld 16 011111 00000 00000 B 1111010010 0
icbi 011111 00000 A B 1111010110 0
stfiwx ° 011111 S A B 1111010111 0
extsw 4 011111 S A 00000 1111011010 Rc
Appendix A. PowerPC Instruction Set Listings A-13




Name

tibli 1.6

dchz

lwzu
Ibz
Ibzu
stw
stwu
stb
stbu
lhz

lhzu

Ifsu
Ifd
Ifdu
stfs
stfsu

stfd

stfdu

0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

011111

00000

00000

1111110010

011111

00000

1111110110

100000

D

o

100001

100010

100011

100100

100101

100110

100111

101000

101001

101010

101011

101100

101101

101110

101111

110000

110001

110010

110011

110100

110101

110110

110111

nwlnln|ln|o|lo|lo|loln|O|ln|ln|0|0|0|l0O| n|n|ln|n|0O|0|O0

>I>| > 2> > > >> > >

o|lao|laoa|laoajlaolaoajla|la|la|lalaoalalaoa|laoa|la|lalalala|lalalala

fdivsx
fsubsx

faddsx

111011 D A 00000 10010 |Rc
111011 D A 00000 10100 |Rc
111011 D A 00000 10101 |Rc

PowerPC 602 RISC Microprocessor User's Manual



Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fresx® 111011 D 00000 B 00000 11000 Rc
fmulsx 111011 D A 00000 C 11001 Rc
fmsubsx 111011 D A B C 11100 Rc
fmaddsx 111011 D A B C 11101 |Rc
fnmsubsx 111011 D A B C 11110 Rc
fnmaddsx 111011 D A B C 11111 Rc
std 4 111110 S A ds 00
stdu 111110 S A ds 01
fcmpu 111111 crfD 00 A B 0000000000 0
frspx 111111 D 00000 B 0000001100 Rc
fetiwx 111111 D 00000 B 0000001110
fetiwzx 111111 D 00000 B 0000001111 Rc
fdivx 111111 D A B 00000 10010 |Rc
fsubx 111111 D A B 00000 10100 Rc
faddx 111111 D A B 00000 10101 Rc
fs,qrtx5 111111 D 00000 B 00000 10110 Rc
fselx® 111111 D A B C 10111 Rc
fmulx 111111 D A 00000 C 11001 Rc
frsqrtex® 111111 D 00000 B 00000 11010 |Rc
fmsubx 111111 D A B C 11100 Rc
fmaddx 111111 D A B C 11101 Rc
fnmsubx 111111 D A B C 11110 Rc
fnmaddx 111111 D A B C 11111 Rc
fcmpo 111111 crfD ‘OO A B 0000100000 0
mtfsblx 111111 crbD 00000 00000 0000100110 Rc
fnegx 111111 D 00000 B 0000101000 Rc
mcrfs 111111 crfD ‘OO crfS 00 00000 0001000000 0
mtfsbOx 111111 crbD 00000 00000 0001000110 Rc
fmrx 111111 D 00000 B 0001001000 Rc
mtfsfix 111111 crfD ‘OO 00000 IMM 0010000110 Rc
fnabsx 111111 D 00000 B 0010001000 Rc
fabsx 111111 D 00000 B 0100001000 Rc
mffsx 111111 D 00000 00000 1001000111 Rc
Appendix A. PowerPC Instruction Set Listings A-15




Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfx 111111 0 FM 0 B 1011000111 Rc

1 Supervisor-level instruction

2 supervisor- and user-level instruction

3 Load and store string or multiple instruction
4 64-hit instruction

5 Optional in the PowerPC architecture

6 602-implementation specific instruction

A-16 PowerPC 602 RISC Microprocessor User's Manual



A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-30 list the PowerPC instructions grouped by function.

Key:
I:l Reserved bits

Table A-3. Integer Arithmetic Instructions

- Instruction not implemented in the 602

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addx 31 D A B OE| 266 Rc
addcx 31 D A B IOE| 10 Rc
addex 31 D A B OE| 138 Rc
addi 14 D A SIMM
addic 12 D A SIMM
addic. 13 D A SIMM
addis 15 D A SIMM
addmex 31 D A 00000 [OH 234 Rc
addzex 31 D A 00000 |[OF 202 Rc

divwx

divwux

mulhwx

mulhwux

31

491

Rc

31

31

459

75

Rc

Rc

31

11

Rc

mulli 07 D A SIMM
mullwx 31 D A B OE| 235 Rc
negx 31 D A 00000 [OF 104 Rc
subfx 31 D A B o]= 40 Rc
subfcx 31 D A B OF| 8 Rc
subficx 08 D A SIMM
subfex 31 D A B o]= 136 Rc
subfmex 31 D A 00000 [OF 232 Rc
subfzex 31 D A 00000 [OF 200 Rc
Appendix A. PowerPC Instruction Set Listings A-17



Name
cmp
cmpi
cmpl

cmpli

Name
andx
andcx
andi.

andis.

cntlzwx
eqvx
extsbx

extshx

nandx
norx
orx
orcx
ori
oris
Xxorx
xori

xoris

Name

Table A-4. Integer Compare Instructions

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 afd oL B 0000000000 |o
11 cfD |O|L A SIMM
31 ofd |ofL A B 32 |o
10 afd |ofL A UIMM

Table A-5. Integer Logical Instructions

0 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
31 S A B 28 Rc
31 s A B 60 Rc
28 S A UIMM
29 S A UIMM

31 S A 00000 26 Rc
31 S A B 284 Rc
31 S A 00000 954 Rc
31 S A 00000 922 Rc

31 s A B 476 Rc
31 s A B 124 Rc
31 s A B 444 Rc
31 s A B 412 Rc
24 s A UIMM
25 S A UIMM
31 s A B 316 Rc
26 s A UIMM
27 s A UIMM

Table A-6. Integer Rotate Instructions
0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-18

PowerPC 602 RISC Microprocessor User's Manual



rlwimix
rlwinmx

rlwnmx

22 S A SH MB ME Rc
20 S A SH MB ME Rc
21 S A SH MB ME Rc

Table A-7. Integer Shift Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31

Table A-8. Floating-Point Arithmetic Instructions

Name 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
faddx 63 D A B 00000 21 Rc
faddsx 59 D A B 00000 21 Rc
fdivx 63 D A B 00000 18 Rc
fdivsx 59 D A B 00000 18 Rc
fmulx 63 D A 00000 C 25 Rc
fmulsx 59 D A 00000 C 25 Rc
fresx® 59 D 00000 B 00000 24 Rc
frsqrtex® 63 D 00000 B 00000 26 Rc
fsubx 63 D A B 00000 20 Rc
fsubsx 59 D A B 00000 20 Rc
fselx® 63 D A B c 23 Rc
Appendix A. PowerPC Instruction Set Listings A-19



Name
fmaddx
fmaddsx
fmsubx
fmsubsx
fnmaddx
fnmaddsx
fnmsubx

fnmsubsx

Table A-10. Floating-Point Rounding and Conversion Instructions

Name
fefidx*
fotidx*

fetidzx 4

fetiwx
fctiwzx

frspx

Name

fcmpo

fcmpu

Table A-12. Floating-Point Status and Control Register Instructions

0

Table A-9. Floating-Point Multiply-Add Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

63 D A B C 29 Rc
59 D A B C 29 Rc
63 D A B C 28 Rc
59 D A B C 28 Rc
63 D A B C 31 Rc
59 D A B C 31 Rc
63 D A B C 30 Rc
59 D A B C 30 Rc

0

5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

63 D 00000 B 846 Rc
63 D 00000 B 814 Rc
63 D 00000 B 815 Rc
63 D 00000 B 14 Rc
63 D 00000 B 15 Rc
63 D 00000 B 12 Rc

0

Table A-11. Floating-Point Compare Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

63

crfD

00

A

B

32

63

crfD

00

A

B

0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mcrfs 63 crfD 00 crfS 00 00000 64 0
mffsx 63 D 00000 00000 583 Rc

mtfsbOx 63 crbD 00000 00000 70 Rc

mtfsblx 63 crbD 00000 00000 38 Rc
mtfsfx 31 0 ‘ FM ‘ 0 B 711 Rc
mtfsfix 63 crfD ‘ 00 ‘ 00000 IMM 134 Rc

A-20 PowerPC 602 RISC Microprocessor User's Manual




Name
bz
Ibzu

Ibzux

Ibzx

Table A-13. Integer Load Instructions

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
34 D d
35 D A d
31 D A B 119 0
31 D A B 87 0

lhau
lhaux
lhax
lhz
lhzu
lhzux

lhzx

lwzu
lwzux

lwzx

Name
stb
stbu

stbux

stbx

42 D A d
43 D A d
31 D A B 375 0
31 D A B 343 0
40 D A d
41 D A d
31 D A B 311 0
31 D A B 279 0
32 D A d
33 D A d
31 D A B 55 0
31 D A B 23 0

Table A-14. Integer Store Instructions

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
38 s d
39 s A d
31 s A B 247 0
31 s A B 215 0

Appendix A. PowerPC Instruction Set Listings

A-21



stdx 4 31 S A B 149 0
sth 44 S A d
sthu 45 S A d
sthux 31 S A B 439 0
sthx 31 S A B 407 0
stw 36 S A d
stwu 37 S A d
stwux 31 S A B 183 0
stwx 31 S A B 151 0

Table A-15. Integer Load and Store with Byte-Reverse Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
lhbrx 31 D A B 790 0
Iwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Table A-16. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Imw 3 46 D A d
stmw 3 47 S A d

Table A-17. Integer Load and Store String Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Iswi 3 31 D A NB 597 0
Iswx 3 31 D A B 533 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

Table A-18. Memory Synchronization Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
eieio 31 00000 00000 00000 854 0
isync 19 00000 00000 00000 150 0

Idarx 4 31 D A B 84 0
lwarx 31 D A B 20 0

stdex.4 31 S A B 214 1
stwcx. 31 S A B 150 1

A-22 PowerPC 602 RISC Microprocessor User's Manual



Sync’ 31 ‘ 00000 00000 00000 598 ‘0‘

Table A-19. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ifd 50 D A d

Ifdu 51 D A d
Ifdux 31 D A B 631 0
Ifdx 31 D A B 599 0

Ifs 48 D A d

Ifsu 49 D A d
Ifsux 31 D A B 567 0
Ifsx 31 D A B 535 0

Table A-20. Floating-Point Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
stfd 54 S A d
stfdu 55 S A d
stfdux 31 S A B 759 0
stfdx 31 S A B 727 0
stfiwx 3 31 S A B 983 0
stfs 52 S A d
stfsu 53 S A d
stfsux 31 S A B 695 0
stfsx 31 S A B 663 0

Table A-21. Floating-Point Move Instructions

Name 0 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fabsx 63 D 00000 B 264 Rc
fmrx 63 D 00000 B 72 Rc
fnabsx 63 D 00000 B 136 Rc
fnegx 63 D 00000 B 40 Rc

Appendix A. PowerPC Instruction Set Listings A-23



Table A-22. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
bx 18 LI AA|LK
bex 16 BO BI BD AA|LK
becetrx 19 BO Bl 00000 528 LK
bclrx 19 BO Bl 00000 16 LK
Table A-23. Condition Register Logical Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
crand 19 crbD crbA crbB 257 0
crandc 19 crbD crbA crbB 129 0
creqv 19 crbD crbA crbB 289 0
crnand 19 crbD crbA crbB 225 0
crnor 19 crbD crbA crbB 33 0
cror 19 crbD crbA crbB 449 0
crorc 19 crbD crbA crbB 417 0
crxor 19 crbD crbA crbB 193 0
mcrf 19 crfD 00 crfS 00 00000 0000000000 0
Table A-24. System Linkage Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
dsa® 31 00000 00000 00000 628 0
esa® 31 00000 00000 00000 596 0
mfrom%6 31 D A 00000 265 0
rfi 1 19 00000 00000 00000 50 0
sc 17 00000 00000 00000000000000O 1|0
A-24 PowerPC 602 RISC Microprocessor User's Manual




Table A-25. Trap Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
K TO A B ‘ 68 ‘o
tdi 4 03 TO A SIMM

tw 31 TO A B ‘ 4 ‘o
twi 03 TO A SIMM
Table A-26. Processor Control Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
merxr 31 cfS | 00 00000 00000 512 0
mfcr 31 D 00000 00000 19 0

mfmsr 1 31 D 00000 00000 83 0

mfspr 2 31 D spr 339 0
mftb 31 D tpr 371 0

mtcrf 31 s 0 ‘ CRM ‘ 0 144 0
mtmsr 1 31 s 00000 ‘ 00000 146 0
mtspr 2 31 D spr 467 0

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 00000 A B 86 0
debi ! 31 00000 A B 470 0
dcbst 31 00000 A B 54 0

debt 31 00000 A B 278 0
dcbtst 31 00000 A B 246 0
dcbz 31 00000 A B 1014 0

icbi 31 00000 A B 982 0

Table A-28. Segment Register Manipulation Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mfsr 1 31 D o‘ SR 00000 595 0

mfsrin 1 31 D 00000 B 659 0

mtsr 31 S o‘ SR 00000 210 0
mtsrin 31 s 00000 B 242 0

Appendix A. PowerPC Instruction Set Listings

A-25



Table A-29. Lookaside Buffer Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tibie 15 31 00000 00000 B 306 0

tibld 16 31 00000 00000 B 978 0

tibli 1.6 31 00000 00000 B 1010 0

tibsync®® 31 00000 00000 00000 566 0
Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 Supervisor-level instruction

2 supervisor- and user-level instruction

3 Load and store string or multiple instruction
4 64-hit instruction

5 Optional in the PowerPC architecture

6 602-implementation specific instruction

A-26 PowerPC 602 RISC Microprocessor User's Manual



A.4 Instructions Sorted by Form
Table A-31 through Table A-45 list the PowerPC instructions grouped by form.

Key:
I:I Reserved bits I:I Instruction not implemented in the 602

Table A-31. I-Form

’ OPCD ‘ LI ‘AA‘LK‘

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bX’ 18 ‘ LI ‘AA‘LK‘

Table A-32. B-Form

’ OPCD ‘ BO ‘ Bl ‘ BD ‘AA‘LK‘

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx’ 16 ‘ BO ‘ BI ‘ BD ‘AA‘LK‘

Table A-33. SC-Form

’ OPCD ‘ 00000 ‘ 00000 ‘ 000000000000000 ‘1‘0‘

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SC’ 17 ‘ 00000 ‘ 00000 ‘ 00000000000000O0 ‘1‘0‘

Table A-34. D-Form

OPCD D A d

OPCD D A SIMM
OPCD S A d

OPCD S A UIMM
OPCD cfD |O|L A SIMM
OPCD cfD |[O|L A UMM
OPCD TO A SIMM

Appendix A. PowerPC Instruction Set Listings A-27



Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addi 14 D A SIMM
addic 12 D A SIMM
addic. 13 D A SIMM
addis 15 D A SIMM
andi. 28 S A UIMM
andis. 29 S A UIMM
cmpi 11 crfD A SIMM
cmpli 10 crfD A UIMM
bz 34 D A d
Ibzu 35 D A d
Ifd 50 D A d
Ifdu 51 D A d
Ifs 48 D A d
Ifsu 49 D A d
lha 42 D A d
lhau 43 D A d
lhz 40 D A d
lhzu 41 D A d
Imw 3 46 D A d
lwz 32 D A d
lwzu 33 D A d
mulli 7 D A SIMM
ori 24 S A UIMM
oris 25 S A UIMM
stb 38 S A d
stbu 39 S A d
stfd 54 S A d
stfdu 55 S A d
stfs 52 S A d
stfsu 53 S A d
sth 44 S A d
sthu 45 S A d
stmw 3 47 S A d
A-28 PowerPC 602 RISC Microprocessor User's Manual



stw 36 S A d
stwu 37 S A d
subfic 08 D A SIMM

twi 03 TO A SIMM
Xori 26 S A UIMM
xoris 27 S A UIMM
Table A-35. DS-Form
OPCD D A ds X0
OPCD S A ds X0
Specific Instructions
Name 0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table A-36. X-Form

OPCD D A B X0 0
OPCD D A NB X0 0
OPCD D 00000 B X0 0
OPCD D 00000 00000 X0 0
OPCD D o| sRr 00000 X0 0
OPCD s A B X0 Rc
OPCD s A B X0 1
OPCD s A B X0 0
OPCD s A NB X0 0
OPCD s A 00000 X0 Rc
OPCD s 00000 B X0 0
OPCD s 00000 00000 X0 0
OPCD s 0 | SR 00000 X0 0
OPCD s A SH X0 Rc
opcdD | ofo |o | L A B X0 0
oPcD | cfd | 00 A B X0 0

Appendix A. PowerPC Instruction Set Listings A-29



andx
andcx
cmp

cmpl

cntlzwx
dcbf
dcbi t
dcbst
dcbt
dcbtst
dcbz

dsa®

eieio
eqvx
esa®

extsbx

OPCD crfD 00 crfS 00 00000 X0 0
OPCD crfD 00 00000 00000 X0 0
OPCD crfD 00 00000 IMM X0 Rc
OPCD TO A B X0 0
OPCD D 00000 B X0 Rc
OPCD D 00000 00000 X0 Rc
OPCD crbD 00000 00000 X0 Rc
OPCD 00000 A B X0 0
OPCD 00000 00000 B X0 0
OPCD 00000 00000 00000 X0 0
Specific Instructions

31 S B 28 Rc
31 S A B 60 Rc
31 cfD |O|L A B 0 0
31 cfD |O|L A B 32 0
ozl @ [ s a4 Jems |5 [q
31 S A 00000 26 Rc
31 00000 A B 86 0
31 00000 A B 470 0
31 00000 A B 54 0
31 00000 A B 278 0
31 00000 A B 246 0
31 00000 A B 1014 0
31 00000 00000 00000 628 0
31 00000 00000 00000 854 0
31 S A B 284 Rc
31 00000 00000 00000 596 0
31 S A 00000 954 Rc
31 S A 00000 922 Rc

extshx

A-30

PowerPC 602 RISC Microprocessor User's Manual



fcmpo

fecmpu

fetiwx
fetiwzx
fmrx
fnabsx
fnegx
frspx
icbi

Ibzux

Ibzx

63 crfD 00 B 32 0
63 crfD 00 B 0 0
63 D 00000 B 14 Rc
63 D 00000 B 15 Rc
63 D 00000 B 72 Rc
63 D 00000 B 136 Rc
63 D 00000 B 40 Rc
63 D 00000 B 12 Rc
31 00000 A B 982 0
31 D A B 119 0
31 D A B 87 0

Ifdux 31 D A B 631 0
Ifdx 31 D A B 599 0
Ifsux 31 D A B 567 0
Ifsx 31 D A B 535 0
lhaux 31 D A B 375 0
lhax 31 D A B 343 0
lhbrx 31 D A B 790 0
lhzux 31 D A B 311 0
lhzx 31 D A B 279 0
Iswi 3 31 D A NB 597 0
Iswx 3 31 D A B 533 0
lwarx 31 D A B 20 0
lwbrx 31 D B 534 0
lwzux 31 D B 55 0
lwzx 31 D B 23 0
mcrfs 63 crfD 00 crfS 00 00000 64 0
mcrxr 31 crfD 00 00000 00000 512 0
Appendix A. PowerPC Instruction Set Listings A-31



mfcr
mffsx
mfmsr 1
mfsr 1
mfsrin
mtfsb0x
mtfsblx
mtfsfix
mtmsr 1
mtsr *
mtsrin 1
nandx

norx

orx

orcx

31 D 00000 00000 19 0
63 D 00000 00000 583 Rc
31 D 00000 00000 83 0
31 D ol sr 00000 595 0
31 D 00000 B 659 0
63 crbD 00000 00000 70 Rc
63 crfD 00000 00000 38 Rc
63 crbD | 00| o0000 MM 134 Rc
31 s 00000 00000 146 0
31 s o| SR 00000 210 0
31 s 00000 B 242 0
31 s A B 476 Rc
31 s A B 124 Rc
31 s A B 444 Rc
31 s A B 412 Rc

srawx

srawix

Srwx
stbux

stbx

stfdux
stfdx
stfiwx®
stfsux
stfsx

sthbrx

31 S A B 536 Rc
31 S A B 247 0
31 S A B 215 0
31 S A B 759 0
31 S A B 727 0
31 S A B 983 0
31 S A B 695 0
31 S A B 663 0
31 S A B 918 0

A-32

PowerPC 602 RISC Microprocessor User's Manual



sthux 31 S A B 439 0
sthx 31 S A B 407 0
stswi 3 31 S A NB 725 0
stswx 3 31 s A B 661 0
stwbrx 31 S A B 662 0
stwcex. 31 S A B 150 1
stwux 31 S A B 183 0
stwx 31 S A B 151 0
sync 31 00000 00000 00000 598 0
td 4 31 TO A B 68 0
tibia &5 31 00000 00000 00000 370 0
tibie 15 31 00000 00000 B 306 0
tibld 16 31 00000 00000 B 978 0
tlbli &6 31 00000 00000 B 1010 0
tlbsyncl® 31 00000 00000 00000 566 0
tw 31 TO A B 4 0
xorx 31 S A B 316 Rc
Table A-37. XL-Form
OPCD BO BI 00000 XO LK
OPCD crbD crbA crbB X0 0
OPCD crfD 00 crfS 00 00000 X0 0
OPCD 00000 00000 00000 XO 0
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
beetrx 19 BO BI 00000 528 LK
belrx 19 BO Bl 00000 16 LK
crand 19 crbD crbA crbB 257 0
crandc 19 crbD crbA crbB 129 0
creqv 19 crbD crbA crbB 289 0
crnand 19 crbD crbA crbB 225 0
crnor 19 crbD crbA crbB 33 0
cror 19 crbD crbA crbB 449 0
crorc 19 crbD crbA crbB 417 0
crxor 19 crbD crbA crbB 193 0
Appendix A. PowerPC Instruction Set Listings A-33



isync 19 00000 00000 00000 150 0
mcrf 19 crfD 00 crfS 00 00000 0 0
rfi 19 00000 00000 00000 50
Table A-38. XFX-Form
OPCD D spr X0 0
OPCD D 0 CRM 0 X0 0
OPCD S spr X0 0
OPCD D tbr X0 0
Specific Instructions
Name 0 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mfspr 2 31 D spr 339 0
mftb 31 D tbr 371 0
mtcrf 31 S 0 ‘ CRM ‘ 0 144 0
mtspr 2 31 D spr 467 0
Table A-39. XFL-Form
’ OPCD ‘ 0 ‘ FM ‘ 0 ‘ B ‘ XO ‘Rc‘
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
mtfsfx’ 63 ‘ 0 ‘ FM ‘ 0 ‘ B ‘ 711 ‘Rc‘
Table A-40. XS-Form
’ oPCD ‘ s ‘ A ‘ sh ‘ X0 sh Rc‘
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
sradix* | 31 I S I A I sh I 413 lsh ch‘
Table A-41. XO-Form
OPCD D A B OF| X0 Rc
OPCD D A B 0 X0 Rc
OPCD D A 00000 [OF X0 Rc
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
addx 31 D A B IOF 266 Rc
addcx 31 D A B OE| 10 Rc

A-34

PowerPC 602 RISC Microprocessor User's Manual



addex

addmex

addzex

31 D B OF| 138 Rc
31 D 00000 [OF 234 Rc
31 D 00000 [OF 202 Rc

mulhwx 31 D B 0 75 Rc
mulhwux 31 D A B 0 11 Rc
S I IR I T = N
mullwx 31 D A B OE| 235 Rc
negx 31 D A 00000 [OF 104 Rc
subfx 31 D A B o]= 40 Rc
subfcx 31 D A B OF| 8 Rc
subfex 31 D A B OF| 136 Rc
subfmex 31 D A 00000 |OF 232 Rc
subfzex 31 D A 00000 [OH 200 Rc
Table A-42. A-Form
OPCD D A B 00000 X0 Rc
OPCD D A B C XO Rc
OPCD D A 00000 C X0 Rc
OPCD D 00000 B 00000 X0 Rc
Specific Instructions
Name 0 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
faddx 63 D A B 00000 21 Rc
faddsx 59 D A B 00000 21 Rc
fdivx 63 D A B 00000 18 Rc
fdivsx 59 D A B 00000 18 Rc
fmaddx 63 D A B C 29 Rc
fmaddsx 59 D A B C 29 Rc
fmsubx 63 D A B C 28 Rc
fmsubsx 59 D A B C 28 Rc
Appendix A. PowerPC Instruction Set Listings A-35



fmulx 63 D A 00000 C 25 Rc
fmulsx 59 D A 00000 C 25 Rc
fnmaddx 63 D A B C 31 Rc
fnmaddsx 59 D A B C 31 Rc
fnmsubx 63 D A B C 30 Rc
fnmsubsx 59 D A B C 30 Rc
fresx > 59 D 00000 B 00000 24 Rc
frsqrtex® 63 D 00000 B 00000 26 Rc
fselx® 63 D A B c 23 Rc
fsubx 63 D A B 00000 20 Rc
fsubsx 59 D A B 00000 20 Rc

Table A-43. M-Form
OPCD S A SH MB ME Rc
OPCD s A B MB ME Rc

Specific Instructions

Name 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
rlwimix 20 S A SH MB ME Rc
rlwinmx 21 S A SH MB ME Rc
rlwnmx 23 S A B MB ME Rc

Table A-44. MD-Form
OPCD S A sh mb XO |sh|Rc
OPCD S A sh me XO |sh|Rc

Specific Instructions

Name 0 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-36

PowerPC 602 RISC Microprocessor User's Manual




Table A-45. MDS-Form

OPCD S A B mb XO Rc
OPCD S A B me X0 Rc
Specific Instructions
Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture

6 602-implementation specific instruction

Appendix A. PowerPC Instruction Set Listings

A-37



A.5 Instruction Set Legend

Table A-46 provides general information on the PowerPC instruction set (such as the
architectural level, privilege level, and form).

Key:
I:I Reserved bits I:I Instruction not implemented in the 602

Table A-46. PowerPC Instruction Set Legend

UISA VEA OEA Supervisor Level 64-Bit Optional Form
addx v X0
addcx v X0
addex v X0
addi v D
addic v D
addic. v D
addis v D
addmex v X0
addzex v X0
andx v X
andcx v X
andi. v D
andis. v D
bx v |
bcx v B
beetrx v XL
belrx v XL
cmp v X
cmpi v D
cmpl v X
cmpli v D
cntlzdx v v X
cntlzwx v X
crand v XL
crandc v XL
creqv v XL

A-38 PowerPC 602 RISC Microprocessor User's Manual



UISA VEA OEA Supervisor Level 64-Bit Optional Form
crnand v XL
crnor v XL
cror v XL
crorc v XL
crxor v XL
dcbf v X
dcbi v v X
dcbst v X
dcbt v X
dcbtst v X
dcbz v X
divwx v X0
divwux v X0
dsa® X

eieio v X
eqvx v X
esa’ X
extsbx v X
extshx v X

|

fabsx v

faddx v

faddsx v

|

fcmpo v

fcmpu v

fctiwx v

Appendix A. PowerPC Instruction Set Listings

A-39



UISA VEA OEA Supervisor Level 64-Bit Optional Form

<

v

x

fctiwzx

fdivx

fdivsx

fmaddx

fmaddsx

fmrx

fmsubx

fmsubsx

fmulx

fmulsx

fnabsx

fnegx

fnmaddx

fnmaddsx

fnmsubx

fnmsubsx

fresx

frspx

frsqrtex

Ll ]l =
>I>|IX|P>I>|I>|P>|P>IX|X|[>I>|> > X|> > > >

fselx

fsubx v A

fsubsx v A
icbi v

isync v XL

bz

Ibzu

Ibzux

< | < <] <
X | X | O| 0O

Ibzx

A-40 PowerPC 602 RISC Microprocessor User’'s Manual



UISA VEA OEA Supervisor Level 64-Bit Optional Form

Ifd

Ifdu

Ifdux

Ifdx

Ifs

Ifsu

Ifsux

Ifsx

lha

lhau

lhaux

lhax

lhbrx

lhz

lhzu

lhzux

lhzx

Imw 2

Iswi 2

LS S B RN - N N e e B N B S I N - S N BN S B
X|X|O|X|X|O|O|X|X|X|O|O|X|X|0O|O|X|X|0O|O

Iswx 2

lwbrx

lwz

lwzu

lwzux

lwzx

mcrf

LS S R NSRS RS

mcrfs

Appendix A. PowerPC Instruction Set Listings A-41



UISA VEA OEA Supervisor Level 64-Bit Optional Form

merxr v X
mfcr v X
mffsx v X
mfmsr v v X
mfspr t v Vv Vv XFX
mfsr v v X
mfsrin v v X
mftb v XFX
mtcrf v XFX
mtfsbOx v X
mtfsblx v X
mtfsfx v XFL
mtfsfix v X
mtmsr v v X
mtspr ! v v v XFX
mtsr v v X
mtsrin v v X
mulhwx v X0
mulhwux v X0
om0 L [ [ [ ¢ [ [ o |
mulli v D
mullwx v X0
nandx v X
negx v X0
norx v X
orx v X
orcx v X
ori v D
oris v D
rfi v v XL

A-42 PowerPC 602 RISC Microprocessor User’'s Manual



UISA VEA OEA Supervisor Level 64-Bit Optional Form

riwimix

rlwinmx

rlwnmx

| < <] <

ScC

srawx v X

srawix v X
T T S O I N

Srwx v X

stb v D

stbu v D

stbux v X

stbx v X

stfd

stfdu

stfdux

stfdx

< L L] <
X | X | X|O| O

stfiwx

Appendix A. PowerPC Instruction Set Listings A-43



UISA VEA OEA Supervisor Level 64-Bit Optional Form

<
lw)

stfs

stfsu

stfsux

stfsx

sth

sthbrx

sthu

sthux

sthx

stmw 2

stswi 2

stswx 2

stw

stwbrx

stwcex.

stwu

stwux

X[ X|O|X|X|O|X|X|O|X|X|0O|X|O|X|X|O

stwx

subfx

x
(o]

x
o

subfcx

x
o]

subfex

subfic

subfmex X0

subfzex X0

LS N B S IR N S B N e B B N S B R N N S ) B e I I B

sync

tibie v

tibld 3

tibli 3

< | < <] <

tlbsync v

X | X | X| X| X

tw v

A-44 PowerPC 602 RISC Microprocessor User’'s Manual



UISA VEA OEA Supervisor Level 64-Bit Optional Form

twi v D
Xorx v X
Xori v D
xoris v D

1 supervisor- and user-level instruction
2 Load and store string or multiple instruction
3 602-implementation specific instruction

Appendix A. PowerPC Instruction Set Listings A-45



A-46 PowerPC 602 RISC Microprocessor User’'s Manual



Appendix B
Instructions Not Implemented

This appendix describes the 32-bit and 64-bit PowerPC instructions that are not
implemented in the PowerPC 602 microprocessor. It also providesthe 32-bit SPR encoding
that is not implemented by the 602. Note that any attempt to execute instructions that are
not implemented on the 602 causes an illegal instruction exception.

Table B-1 provides the 32-bit PowerPC instructions that are optiona to the PowerPC
architecture but not implemented by the 602.

Table B-1. 32-Bit Instructions Not Implemented by the PowerPC 602
Microprocessor

Mnemonic Instruction
fsqrt Floating Square Root (Double-Precision)
fsqrts Floating Square Root Single
tibia TLB Invalidate All

Table B-2 provides alist of 64-bit instructions that are not implemented by the 602.

Table B-2. 64-Bit Instructions Not Implemented by the PowerPC 602
Microprocessor

Mnemonic Instruction
cntlzd Count Leading Zeros Double Word
divd Divide Double Word
divdu Divide Double Word Unsigned
extsw Extend Sign Word
fcfid Floating Convert From Integer Double Word
fctid Floating Convert to Integer Double Word
fctidz Floating Convert to Integer Double Word with Round toward Zero
Id Load Double Word
Idarx Load Double Word and Reserve Indexed
Idu Load Double Word with Update

Appendix B. Instructions Not Implemented B-1



Table B-2. 64-Bit Instructions Not Implemented by the PowerPC 602
Microprocessor (Continued)

Mnemonic Instruction
Idux Load Double Word with Update Indexed
ldx Load Double Word Indexed
lwa Load Word Algebraic
lwaux Load Word Algebraic with Update Indexed
lwax Load Word Algebraic Indexed
mulld Multiply Low Double Word
mulhd Multiply High Double Word
mulhdu Multiply High Double Word Unsigned
ridcl Rotate Left Double Word then Clear Left
ridcr Rotate Left Double Word then Clear Right
ridic Rotate Left Double Word Immediate then Clear
ridicl Rotate Left Double Word Immediate then Clear Left
rldicr Rotate Left Double Word Immediate then Clear Right
ridimi Rotate Left Double Word Immediate then Mask Insert
slbia SLB Invalidate All
slbie SLB Invalidate Entry
sld Shift Left Double Word
srad Shift Right Algebraic Double Word
sradi Shift Right Algebraic Double Word Immediate
srd Shift Right Double Word
std Store Double Word
stdcx. Store Double Word Conditional Indexed
stdu Store Double Word with Update
stdux Store Double Word Indexed with Update
stdx Store Double Word Indexed
td Trap Double Word
tdi Trap Double Word Immediate

Table B-3 provides the 64-bit SPR encoding that is not implemented by the 602.

B-2 PowerPC 602 RISC Microprocessor User's Manual



Table B-3. 64-Bit SPR Encoding Not Implemented by the PowerPC 602

Microprocessor

SPR

Register
Name Access
Decimal spr[5-9] spr[0-4]
280 01000 11000 ASR Supervisor

Appendix B. Instructions Not Implemented

B-3



B-4

PowerPC 602 RISC Microprocessor User's Manual



Appendix C
Boundary-Scan Testing Support

The PowerPC 602 microprocessor provides a boundary-scan interface for board-level
testing. The boundary-scan interface of 602 is not completely |IEEE 1149.1-compliant.
However, the 602 can be tested with commercially available board-level JTAG Automatic
Test Pattern Generation (ATPG) tools provided that certain constraints are met.
Section C.2, “Unimplemented |EEE 1149.1 Features,” describes specific noncompliant
aspects and the constraints.

The 602's boundary-scan interface implements the five test port signals required by the
IEEE 1149.1 specification.

C.1 Boundary-Scan Interface Description

Theinterface consists of a set of five signals, two test data registers, an instruction register,
and atest access port (TAP) controller, described in thefollowing sections. A block diagram
of the interface is shown in Figure C-1.

C.1.1 Boundary-Scan Signals
The 602 provides five dedicated boundary-scan signas:
» Testdatainput (TDI) and test dataoutput (TDO). The TDI and TDO signalsare used
to input and output instructions and data to the scan registers.

» Test mode select (TMS)—The TAP controller controls boundary-scan operations
through commands received by means of the TMS signal.

e Testreset (TRST)—The TRST signal is used to reset the TAP controller
asynchronously. Asserting the TRST signal at power-on reset assures that the
boundary-scan logic does not interfere with the 602's normal operation.

e Test clock (TCK)—Boundary-scan datais latched by the TAP controller on the
rising edge of the TCK signal.

Section 7.2.10, “JTAG/Scan Interface Signals,” provides additional detail about the
operation of these signals.

Appendix C. Boundary-Scan Testing Support C-1



a ;‘U“ 2 |3 PowerPC 602
~ ) %) -
= BOUNDARY
| SCAN REGISTER ||
\ MUX
BYPASS > —
)
DECODER MUX |
INST REG >
% L > TAP CONTROLLER
TDO /L‘
X \I‘

Figure C-1. Boundary-Scan Interface Block Diagram

C.1.2 Boundary-Scan Registers and Scan Chains

The 602 implements the bypass, boundary-scan, and instruction registers and their
associated scan chains. These resources are described in the following sections.

C.1.2.1 Bypass Register

The bypass register is a single-stage register used to bypass the boundary-scan register of
the 602 during board-level boundary-scan operations involving components other than the
602. Using the bypass register reduces the total scan string size of the boundary-scan test.
The bypass register is accessed by the BY PASS instruction.

C.1.2.2 Boundary-Scan Registers

The boundary-scan interface provides a chain of registers dedicated to boundary-scan
operations. These registers are not shared with any of the 602's functional registers. The
boundary-scan register chain includes registers that control the direction of the output
drivers and registers that reflect the signal value received or driven.

The boundary-scan registers capture the input or output state of the 602's signals during a
Capture_DR TAP controller state. When a data scan is initiated following the Capture DR
state, the sampled values are shifted out through the TDO output while new boundary-scan
register values are shifted in through the TDI input. At the end of the data scan operation,
the boundary-scan registers are updated with the new values during an Update DR TAP
controller state.

C-2 PowerPC 602 RISC Microprocessor User’'s Manual



C.1.2.3 Compliance-Enable Signals

Note that the LSSD_MODE, L1 TEST _CLK, and L2 TEST_CLK signals (used for
factory testing) are not included in the boundary-scan register chain. These signals, along
with HRESET and CKSTP_IN, are compliance-enable signals for boundary-scan testing.

C.1.3 Instruction Register

The 8-hit instruction register serves as an instruction and status register. As TAP controller
instructions are scanned in through the TDI input, the TAP controller status bits are scanned
out through the TDO output.

C.1.4 TAP Controller

The 602 provides a TAP controller that controls instruction and data scan operations. The
TMSsignal controls the state transitions of the TAP controller.

C.2 Unimplemented IEEE 1149.1 Features
The 602 supports IEEE 1149.1 JTAG definition with the following exceptions.

1. A hard reset sequence with HRESET aswell asthe test reset with TRST, isrequired
before using the EXTEST or SAMPLE/PRELOAD instructions. As specified by
IEEE 1149.1, the TRST signal must completely reset al logic circuitsthat can affect
the boundary-scan operation. The 602 TRST signal does not completely reset all
boundary-scan-related logic, and as a consequence, power-on-reset must be
executed before executing the boundary-scan instructions.

2. Asserting HRESET and CKSTP_IN input signals can cause the system logic to
interfere with the operation of the |[EEE 1149.1 EXTEST and SAMPLE/PRELOAD
instructions. As aworkaround for this noncompliant feature, the boundary-scan
description language (BSDL) file provided for the 602 defines the HRESET and
CKSTP_IN signalsas compliance-enabl e signalswith acompliance pattern with the
signals held high (unasserted). The input boundary cells originally associated with
the two signals are defined asinternal cells. These two signals cannot be
interconnection tested by boundary-scan ATPG tools.

3. Internally-generated checkstop conditions interfere with the operation of EXTEST
and SAMPLE/PRELOAD. The workaround to thisissueis to execute a power-on-
reset, or otherwise ensure that no internal machine checkstop has occurred prior to
the execution of the boundary-scan instructions.

4. Asserting HRESET causes BR, QREQ, and RESETO to be driven at high-
impedance; however, the boundary-scan chain does not include any registers to
control the enable of the output drivers for these signals.

All other boundary-scan features are compliant with the IEEE 1149.1 specification.

Appendix C. Boundary-Scan Testing Support C-3



C.3 Boundary-Scan Instructions

The 602 supports the mandatory IEEE 1149.1 instructions, BYPASS, SAMPLE/
PRELOAD, and EXTEST except for the noncompliant features described in Section C.2,
“Unimplemented |EEE 1149.1 Features.” As long as the board-level test includes a hard
reset sequence, interconnections should be able to be tested by using board-level boundary-
scan ATPG toals.

All instruction opcodes except the three mandatory instructions are reserved as private
instructions.

C-4 PowerPC 602 RISC Microprocessor User’'s Manual



Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from |EEE
Sd 754-1985, |EEE Sandard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

A Atomic. A bus access that attempts to be part of aread-write operation to the
same address uninterrupted by any other access to that address (the
term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
Iwar x/stwex. instruction pair.

B Biased exponent. The sum of the exponent and a constant (bias) chosen to
make the biased exponent's range non-negative.

Big-endian. A byte-ordering method in memory where the address ‘'n’ of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Boundedly undefined. The results of attempting to execute a given
instruction are said to be boundedly undefined if they could have
been achieved by executing an arbitrary sequence of defined
instructions, in valid form, starting in the state the machine was in
before attempting to execute the given instruction. Boundedly-
undefined results for a given instruction may vary between
implementations, and between execution attempts in the same
implementation.

C Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory).

Cache block. The cacheable unit for a PowerPC processor. The size of a
cache block may vary among processors.

Glossary of Terms and Abbreviations Glossary-1



Cache coherency. Cachesare coherent if aprocessor performing aread from
its cacheis supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cast-outs. Modified cache blocks that are written back to memory when a
snoop miss causes the least-recently used cache block to be replaced.

Context synchronization. Context synchronization as the result of the
execution of specific instructions (such as isync or rfi) or when
certain events occur (such as an exception). During context
synchronization, all instructionsin execution complete past the point
where they can produce an exception; all instructions in execution
complete in the context in which they began execution; al
subsequent instructions are fetched and executed in the new context.

Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usualy the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Exception. A condition encountered by the processor that requires special
processing.

Exception handler. A software routine that executes when an exception
occurs. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (such
as aborting the program that caused the exception). The addresses of
the exception handlers are defined by a two-word exception vector
that is branched to automatically when an exception occurs.

Execution synchronization. All instructions in execution are architecturally
complete before beginning execution (appearing to begin execution)
of the next instruction. Similar to context synchronization but doesn't
force the contents of the instruction buffers to be deleted and
refetched.

Exponent. The component of a binary floating-point number that normally
signifies the integer power to which two israised in determining the
value of the represented number. Occasionally the exponent is called
the signed or unbiased exponent.

Glossary-2

PowerPC 602 RISC Microprocessor User's Manual



Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination resultsfor floating-point instructions. Floating-point load
instructions move data from memory to FPRs, and floating-point
store instructions move data from FPRs to memory.

Fraction. Thefield of the significand that liesto theright of itsimplied binary
point.

General-purposeregister (GPR). Any of the 32 registersin the register file.
These registers provide the source operands and destination results
for al data manipulation instructions. Load instructions move data
from memory to registers, and store instructions move data from
registers to memory.

|EEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations of binary floating-point arithmetic
and representations of binary floating-point numbers.

I nterrupt. An asynchronous exception.

Kill. An operation that causes a cache block to be invalidated.

L atency. The number of clock cycles necessary to execute an instruction and
make ready the results of that instruction.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Mantissa. The significant digits of afloating-point number. The placement of
the binary point is determined by the value of the exponent.

M emory-mapped accesses. Accesses whose addresses use the segmented or
block address translation mechanisms provided by the MMU and
that occur externally with the bus protocol defined for memory.

Memory coherency. Refers to memory agreement between caches in a
multiple processor and system memory (for example, MESI cache
coherency).

Glossary of Terms and Abbreviations Glossary-3



Memory consistency. Refersto agreement of levels of memory with respect
to a single processor and system memory (e.g., on-chip cache,
secondary cache, and system memory).

Memory management unit. The functional unit that trandlates the effective
address bits to physical address hits.

NaN. An abbreviation for “not a number,” a symbolic entity encoded in
floating-point format. There aretwo types of NaNs—signaling NaNs
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Out-of-order. Not occurring in strict program sequence; speculative. An
operation is said to be out-of-order when its results are not
guaranteed to be required by the sequential execution model, such as
the execution of an instruction that follows another instruction that
may alter theinstruction flow. For example, execution of instructions
in an unresolved branch are considered out-of-order, as is the
execution of an instruction behind another instruction that may yet
cause an exception. The results of operations that are performed out-
of-order are not committed to architected resources until it can be
ensured that these results adhere to the in-order, or sequential,
execution model.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are added, the sum may require
33 bits due to carry.

Page. A 4-Kbyte area of memory, aligned on a 4-Kbyte boundary.

Pipelining. A technique that breaks a group of events (for example
instruction execution) into distinct steps so that multiple steps can be
performed at the same time.

Precise exceptions. An exception mechanism by which the instruction
pipeline can be stopped so the instructions that preceded the faulting
instruction or event can complete, no results of subsequent
instructions will have affected architected resources, and execution
can resume with the next instruction in program order. A PowerPC-
based system is precise unless one of the imprecise modes for
invoking the floating-point enabled exception isin effect.

Glossary-4

PowerPC 602 RISC Microprocessor User's Manual



Quiet NaNs (QNaNs). Represent the results of certain invalid operations,
such asinvalid arithmetic operations on infinities or on NaNs, when
invalid. QNaNs propagate through almost every arithmetic operation
without signaling exceptions.

Signaling NaNs (SNaNs). NaNs that signal the invalid operation exception
when they are specified as arithmetic operands

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of itsimplied binary
point and afraction field to the right.

Static branch prediction. Mechanism by which software (for example,
compilers) can give a hint to the machine hardware about the
direction the branch is likely to take.

Sticky bit. A bit that when set only can be cleared explicitly.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of the a processor. In
supervisor mode, software can access al control registers and can
access the supervisor memory space, among other privileged
operations.

Underflow. An error condition that occurs during arithmetic operationswhen
the result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result is a single-precision number. The result
may require a larger exponent and/or mantissa than the single-
precision format makes available. In other words, the result is too
small to be represented accurately.

User mode. The unprivileged operating state of a processor. In user mode,
software can only access certain control registersand can only access
user memory space. No privileged operations can be performed.

Write-through. A memory update policy in which all processor write cycles
are written to both the cache and memory.

Glossary of Terms and Abbreviations Glossary-5



Glossary-6 PowerPC 602 RISC Microprocessor User’'s Manual



Numerics

602-specific features
block diagram, 8-4
instructions
dsa, 2-62, 2-66
esa, 2-62, 2-67, 5-6, 5-62
mfrom, 2-68
tlbld, 2-65, 2-69
tibli, 2-65, 2-70
MMU, 5-1, 5-15, 5-28
programming model, 2-3
registers, 2-11, 2-14, 2-22, 5-43

A

AO-A3lsignals, 7-7
AACK signa, 7-14
add, 2-36
addc, 2-37
adde, 2-37
addi, 2-36
addic, 2-36
addic., 2-36
addis, 2-36
addme, 2-37
Address bus
address tenure
address transfer signals, 8-11
arbitration signals, 8-7
address transfer
AO-A3lsignals, 7-7

PFADDRO-PFADDR20 signals, 7-8

address transfer attribute
BEO-BE7 signals, 7-11, 8-14
Cl signal, 7-13
GBL signal, 7-13
summary, 8-21
TBST signal, 3-8, 7-12
TCO-TC1signals, 7-12, 8-20
TSIZ0-TSIZ2 signals, 7-10
TTO-TT4 signals, 7-8
WT signal, 7-13
address transfer start, 7-6, 8-8
address transfer termination
AACK signal, 7-14, 8-22
ARTRY signd, 8-22

address phase termination, 8-22

description, 7-15

INDEX

during read transaction, 8-49
operations causing assertion, 3-21
qualified bus grant, 8-8
description, 8-7
bus arbitration
BGsignal, 7-5, 8-8
BRsignal, 7-5, 8-8
description, 8-7
nonparked, 8-9
parked, 8-10
Address calculation
branch instructions, 2-54
Address phase signals, 8-14
Address trandlation see Memory management unit
Addressing conventions
alignment, 2-28
modes, 2-33
addze, 2-37
Aligned data transfer, 2-27
Alignment
exception, 4-26, 5-21
rules, 2-28
and, 2-38
andc, 2-38
andi., 2-38
andis., 2-38
ARTRY signa
description, 7-15
during read transaction, 8-49
operations causing assertion, 3-21
qualified bus grant, 8-8
Atomic memory references
stwex., 2-56
using lwarx/stwex., 3-19

B

b, 2-54

BAT registers
BAT register initialization, 5-27
bit description, 2-10
NE bit, 1-4, 2-10
WIMG bits, 2-10

BB signd, 7-19, 8-8

bc, 2-54

bectr, 2-54

bclr, 2-54

BEO-BE7 signals, 7-11, 8-14

Index

Index-1



INDEX

BGsigndl, 7-5, 8-8
Block addresstranslation see also BAT registers
BAT register initialization, 5-27
flow, 5-17
selection, 5-14
Boundary-scan interface, C-1
Boundedly undefined, definition, 2-31
BRsignd, 7-5, 8-8
Branch folding, 6-13
Branch instructions
address calculation, 2-54
branch instructions, 2-54, A-24
condition register logical, 2-55, A-24
system linkage, 2-62, A-24
trap, 2-55, A-25
Branch prediction, 6-14
Branch processing unit
branch instruction timing, 6-15
execution timing, 6-12
overview, 1-9
Burst transactions
32-bit mode
burst read, 8-39
double-beat read, 8-38
fastest burst write, 8-42
fastest double-beat write, 8-41
fastest single-beat write, 8-41
read with multicycle address phase, 8-40
single-beat read, 8-37
64-bit mode
burst write, 8-34
read with multicycle address phase, 8-33
read with shortest data phase, 8-32
read with single-cycle address phase, 8-32
slower write, 8-36
ARTRY during read transaction, multicycle, 8-50
ARTRY during read transaction, single-cycle,
8-49
burst ordering, 8-16
consecutive burst read-write, 8-46
consecutive burst write-read, 8-45
description, 3-8, 8-28
fastest burst write with asserted GBL signal, 8-48
signal assignments, 8-14
Bus arbitration
signals, 7-5, 8-8
Bus busy (BB) signal, 7-19, 8-8
Bus interface unit (BIU), 3-3
Bus parking, 8-10
Bus protocol, 8-25
Bypass register, C-2
Byte enable (BEO-BE7) signals, 7-11, 8-14
Byte ordering, default, 2-33
Byte-reverse instructions, 2-49, A-22

C

Cache arbitration, 6-8
Cache block
32-/64-bit burst transactions, 8-28
definition, 3-2, 8-1
miss, 6-10, 8-5
push operation, 3-8, 8-26
replacement selection, 8-5
size, 8-17
Cache cast-out operation, 3-8
Cache coherency
actions on load operations, 3-19
actions on store operations, 3-19
compatibility with MESI protocol, 3-16
copy-back operation, 3-11, 8-1, 8-25, 8-52
in single-processor systems, 3-18
MEI and read operétions, 8-25
MEI hardware considerations, 3-17
overview, 3-4
reaction to bus operations, 3-19
size, 8-17
snooping, 8-2
WIMG bits, 2-10, 3-9
write-back mode, 3-11, 8-1, 8-52
Cache control instructions
bus operations, 3-24
dcbf, 2-61, 3-23
dcbi, 2-64
dcbst, 2-61, 3-23
dchbt, 2-60, 3-22
dcbtst, 2-60, 3-22
dcbz, 2-61, 3-22
elelo, 2-59, 3-24
ichi, 2-61, 3-24
isync, 2-59, 3-24, 4-16
purpose, 3-21, 8-2
Cache hit, 6-8
Cacheline see Cache block
Cache management instructions, 2-59, 2-64, A-25
Cache miss, 6-10, 8-5
Cache operations
data cache, 3-7, 8-2
instruction cache, 8-2
instruction cachefill, 3-5
overview, 1-13
response to bus transactions, 3-19
Cache unit
memory performance, 6-18
operation of the cache, 8-2
overview, 3-2
Caching-inhibited accesses (I bit)
cacheinteractions, 3-9
I-bit setting, 3-11
timing considerations, 6-19

Index-2

PowerPC 602 RISC Microprocessor User's Manual



Changed (C) bit maintenance
recording, 5-17, 5-29-5-32
Checkstop
signal, 7-24
state, 4-22
Cl signal, 7-13
Classes of instructions, 2-30
Clean block operation, 3-20
Clock signals
CLK_OUT, 2-14, 7-29
PLL_CFGO-PLL_CFG3, 7-30, 8-5
SYSCLK, 7-29, 8-5
cmp, 2-37
cmpi, 2-37
cmpl, 2-37
cmpli, 2-37
cntlzw, 2-38
Compare instructions, 2-45, A-18
Complete/writeback stage, 6-4
Completion considerations, 6-11
Context synchronization, 2-34
COP/scan interface, 7-27
Copy-back mode, 6-18
CR logica instructions, 2-55, A-24
crand, 2-55
crandc, 2-55
cregv, 2-55
crnand, 2-55
crnor, 2-55
cror, 2-55
crorc, 2-55
crxor, 2-55

D

DO0-D63, 7-20, 8-14, 8-23
Databus
basic transactions
32-bit, 8-37
64-bit, 8-29
data tenure, 8-7
datatransfer, 7-20, 8-18-8-19
data transfer termination, 7-22
data transfers, alignment, 2-27
optional 32-bit mode, 8-5
T32 signal, 32-/64-bit mode, 8-28
Data cache
basic operations, 3-7
cache control, 3-6
configuration, 3-2
DCFI, DCE, DLOCK bits, 3-6
single-ported tags, 8-2
Data cachefill, 3-7
Data phase signals, 7-20, 8-14, 8-23

INDEX

Data storage interrupt (DSI) see DSI exception
Data TLB miss on load exception, 4-33
Data TLB miss on store exception, 4-34
Datatransfer signals
D0-D63, 7-20, 8-14, 8-23
T32, 3-8, 7-22, 8-28
Datatransfer termination signals
TA, 7-22, 8-24
TEA, 7-23,8-24
dcbf, 2-61, 3-23
dchi, 2-64
dcbst, 2-61, 3-23
dcht, 2-60, 3-22
dcbtst, 2-60, 3-22
dcbz, 2-61, 3-22
DCMP and ICMP registers (602-specific), 2-11,
2-15, 5-43
Decode stage, 6-3
Decrementer interrupt, 4-30, 9-1
Defined instruction class, 2-31
Denormalized number, support, 2-40
Dispatch considerations, 6-11
divw, 2-37
divwu, 2-37
DMISS and IMISS registers (602-specific), 2-11,
2-15, 5-43
dsa (602-specific), 2-62, 2-66, 2-72, 4-1
DSl exception, 4-23

E

Effective address calculation
address trandation, 5-8
branches, 2-33, 2-54
loads and stores, 2-33, 2-47, 2-51
eieio, 2-59, 3-24
Emulation trap exception, 4-39
eqv, 2-38
esa (602-specific)
description, 2-62, 2-67
esa access and MMU, 5-6, 5-62
supervisor-level access, 1-26, 2-71-2-75
system call exception, differencesin use, 2-75
ESASRR register (602-specific), 2-11, 2-19
Exceptions
alignment exception, 4-26
causing conditions, 4-4
data TLB miss on load, 4-33
data TLB miss on store, 4-34
decrementer interrupt, 4-30
DSl exception, 4-23
emulation trap exception, 4-39
enabling and disabling, 4-14
exception classifications, 4-2

Index

Index-3



exception processing

MSR, 4-10

SRRO/SRR1, 4-9

steps, 4-14
external interrupt, 4-25
floating-point assist, 4-5
FP unavailable exception, 4-30
|EEE FP exception

mode bits, 4-13

program exception, 4-29

illegal/reserved/unimplemented instructions

exception, 4-30
instruction address breakpoint, 4-34
instruction TLB miss, 4-33
ISl exception, 4-25
latencies, 4-16
machine check exception, 4-21
priorities, 4-7
process switching, 4-16
program exception, 4-29
register settings
FPSCR, 4-29
MSR, 4-17
SRRO/SRR1, 2-8, 4-10
reset, 4-18-4-20
returning from an exception handler, 4-15
summary, 2-35
system call exception, 2-75, 4-31
system management interrupt, 4-36
trace exception, 4-31
watchdog timer interrupt, 4-37
Execution synchronization, 2-34
Execution units, 1-9
External control instructions, 2-61, A-26
External interrupt, 4-25
extsb, 2-38
extsh, 2-38

F

fabs, 2-46
fadd, 2-42
fadds, 2-42
fcmpo, 2-45
fempu, 2-45
fctiw, 2-45
fctiwz, 2-45
fdiv, 2-43
fdivs, 2-43
Features, 602, 1-3
Floating-point assist exception, 4-5
Floating-point model
FEO/FEL1 bits, 4-13
FP arithmetic instructions, 2-42, A-19
FP compare instructions, 2-45, A-20

INDEX

FP execution models, 2-26
FPload instructions, 2-51, A-23
FP move instructions, 2-46, A-23

FP multiply-add instructions, 2-43, A-20
FP rounding and conversion instructions, 2-44,

A-20
FP store instructions, 2-52, A-23
FP unavailable exception, 4-30
FPSCR instructions, 2-45, A-20
fsel instruction, 2-43
Floating-point special instructions, 2-40
Floating-point unit
block diagram, 6-17
execution timing, 6-17
overview, 1-10
Flow control instructions

branch instruction address calculation, 2-54

branch instructions, 2-54, A-24
condition register logical, 2-55, A-24

Flush block operation, 3-20

fmadd, 2-43

fmadds, 2-43

fmr, 2-46

fmsub, 2-43

fmsubs, 2-43

fmul, 2-42

fmuls, 2-42

fnabs, 2-46

fneg, 2-46

fnmadd, 2-44

fnmadds, 2-44

fnmsub, 2-44

fnmsubs, 2-44

FP rounding and conversion instructions, 2-44, A-20

FPRs, saving and restoring, 2-25

FPSCR
instructions, 2-45, A-20
restoring, 2-25

fres, 2-43

frsp, 2-45

frsorte, 2-43

fsel, 2-43

fsub, 2-42

fsubs, 2-42

G

GBL signal, 7-13

Guarded memory bit (G bit)
cache interactions, 3-9
G-bit setting, 3-12

Index-4

PowerPC 602 RISC Microprocessor User's Manual



H

HASH1 and HASH2 registers (602-specific), 2-11,
2-16, 5-44
Hashing functions
primary PTEG, 5-39
secondary PTEG, 5-40
HIDO register (602-specific)
602-specific SPRs, 2-11
bit settings, 2-12
DCFI, DCE, DLOCK hits, 3-6
doze bit, 9-3
DPM enable bit, 9-2
ICFI, ICE, ILOCK bits, 3-5
nap bit, 9-3
HID1 register (602-specific), 2-11, 2-14
HRESET signal, 7-25

IABR register (602-specific), 2-11, 2-24
IBR register (602-specific), 2-11, 2-22
ichi, 2-61, 3-24
ICFI control bit, 3-5
|EEE 1149.1interface signals, C-1
| EEE compatibility mode, 2-41
Illegal instruction class, xxix, 2-31, B-1
ILOCK control bit, 3-5
IMMU, 5-11
Injected snooping see Snooping operation
Instruction address breakpoint exception, 4-34
Instruction cache
cache control bits, 3-5
cachefill operations, 3-5
configuration, 3-2
ICFI, ICE, ILOCK bits, 3-5
Instruction fetch timing, 6-8
Instruction storage interrupt (1S) see ISl exception
Instruction timing
overview, 6-1
Instruction TLB miss exception, 4-33
Instruction unit, 1-8
Instructions
602-specific
dsa, 2-62, 2-66, 2-72, 4-1
esa, 2-62, 2-67, 2-71-2-75, 5-6, 5-62
mfrom, 2-68
tlbld, 2-65, 2-69
tibli, 2-65, 2-70
branch address calculation, 2-54
branch instructions, 2-54, A-24

cache management instructions, 2-59, 2-64, A-25

classes, 2-30

external control, 2-61, A-26
floating-point
arithmetic, 2-42, A-19
compare, 2-45, A-20
FPload instructions, 2-51, A-23
FP move instructions, 2-46, 2-46
FP special instructions, 2-40
FP storeinstructions, 2-52, A-23
FPSCR instructions, 2-45, A-20
multiply-add, 2-43, A-20
rounding and conversion instructions, 2-44,
A-20
illegal instructions, xxix, 2-31, B-1
integer
arithmetic, 2-36, A-17
compare, 2-37, A-18
load, 2-47, A-21
logical, 2-38, A-18
multiple, 2-50, A-22
rotate and shift, 2-39, A-18-A-19
store, 2-48, A-21
latency summary, 6-22
load and store
address generation, floating-point, 2-51
address generation, integer, 2-47
byte-reverse instructions, 2-49, A-22
FPload instructions, 2-51, A-23
FP move instructions, 2-46, A-23
FP storeinstructions, 2-52, A-23
integer load instructions, 2-47, A-21
integer multiple instructions, 2-50, A-22
integer store instructions, 2-48, A-21
string instructions, 2-50, A-22
memory control, 2-59, 2-64, A-25-A-26
memory synchronization, 2-56, 2-59, A-22
PowerPC instructions, list
form (format), A-27
function, A-17
legend, A-38
mnemonic, A-1
opcode, A-9
processor control, 2-55, 2-58, 2-62, A-25
reserved instructions, 2-32
rfi, 4-15
segment register manipulation, 2-64, A-25
stwex., 4-16
supervisor-level cache management, 2-64
sync, 4-16
system linkage, 2-62, A-24
TLB management instructions, 2-64, A-26
trap instructions, 2-55, A-25
unimplemented instructions, B-1

INT signal, 7-23
Integer arithmetic instructions, 2-36, A-17
Integer compare instructions, 2-37, A-18

condition register logical, 2-55, A-24
defined instructions, 2-31

Index Index-5



INDEX

Integer load instructions, 2-47, A-21
Integer logical instructions, 2-38, A-18
Integer multiple instructions, 2-50, A-22
Integer rotate and shift instructions, 2-39, A-18-A-19
Integer store instructions, 2-48, A-21
Integer unit

execution timing, 6-16

overview, 1-9
Interrupt see Exceptions
Interrupt, external, 4-25
ISl exception, 4-25
isync, 2-59, 3-24, 4-16

J

JTAG interface, C-1
JTAG signdls, C-2

K
Kill block operation, 3-20

L

Latency, 6-1, 6-22, 8-43

Ibz, 2-48

Ibzu, 2-48

Ibzux, 2-48

Ibzx, 2-48

Ifd, 2-25, 2-52

Ifdu, 2-52

Ifdux, 2-52

Ifdx, 2-52

Ifs, 2-51

Ifsu, 2-51

Ifsux, 2-51

Ifsx, 2-51

Iha, 2-48

Ihau, 2-48

Ihaux, 2-48

Ihax, 2-48

Ihbrx, 2-49

lhz, 2-48

lhzu, 2-48

Ihzux, 2-48

Ihzx, 2-48

Imw, 2-50

L oad operations, memory coherency actions, 3-19

L oad/store
address generation, 2-47, 2-51
byte-reverse instructions, 2-49, A-22
floating-point load instructions, 2-51, A-23
floating-point move instructions, 2-46, A-23
floating-point store instructions, 2-52, A-23
integer load instructions, 2-47, A-21

integer store instructions, 2-48, A-21
load/store multiple instructions, 2-50, A-22
string instructions, 2-50, A-22
Load/store unit
execution timing, 6-18
overview, 1-10
Logical addresses
trandlation into physical addresses, 5-1
Iswi, 2-51
Iswx, 2-51
Iwarx, 2-58, 3-19
Ilwarx/stwex. general information, 3-19
lwbrx, 2-49
lwz, 2-48
lwzu, 2-48
lwzux, 2-48
lwzx, 2-48

M

Machine check exception
checkstop state, 4-22
enabled, 4-22
register settings, 4-22
SRR1 hit settings, 2-8, 4-10
MCPsignal, 7-24
mcrf, 2-55
mcrfs, 2-46
mcrxr, 2-56
MEI protocol
compatibility with MESI protocol, 3-16
definitions, MEI states, 3-15, 8-2
hardware considerations, 3-17
read operations, 8-25
Memory accesses, 8-6
Memory coherency bit (M bit)
cacheinteractions, 3-9
M-bit setting, 3-11
timing considerations, 6-18
Memory control instructions
segment register manipulation, 2-64, A-25
supervisor-level cache management, 2-64
TLB management, 2-64, A-26
Memory management unit
602-specific features
feature mapping, 5-15
overview, 5-1
PTE format, 5-28
address trandlation flow, 5-17
address transl ation mechanisms, 5-13, 5-17
block address trandlation, 5-14, 5-17, 5-26
block diagram, 5-10-5-12
esa access, 5-6, 5-62
exceptions, 5-20
general features summary, 5-4

Index-6

PowerPC 602 RISC Microprocessor User's Manual



INDEX

instructions and registers, 5-23
memory protection, 5-15, 5-32
overview, 1-11
page address trandlation, 5-13, 5-17, 5-20, 5-35
page history status, 5-17, 5-29-5-32
page table search operation, 5-37
physical address generation, 5-1
protection-only mode
access protection, 5-61
features, 5-2, 5-58
overview, 5-8
protection checking, 5-65
RPA register, 2-11, 2-17, 5-44, 5-61
SEBR register, 2-11, 2-19, 5-62
SER register, 2-11, 2-20, 5-62
TLB look-up operation, 5-60
translation flow, 5-63
real addressing mode, 5-15, 5-17, 5-25
segment model, 5-28
software table search operation, 5-40, 5-45, 5-47
Memory synchronization
eeio, 2-59, 3-24
instructions, 2-56, 2-59, A-22
isync, 2-59, 3-24, 4-16
Iwarx, 2-58
stwex., 2-56, 2-58
sync, 2-58
Memory/cache access modes
performance impact of copy-back mode, 6-18
Memory/cache access modes see WIMG bits
mfcr, 2-56
mffs, 2-46
mfmsr, 2-62
mfrom (602-specific), 2-68
mfspr, 2-63
mfsr, 2-64
mfsrin, 2-64
mftb, 2-59
MSR (machine state register)
602-specific bits, 2-7, 4-11
bit settings, 4-11
exception processing, 4-10
RI bit, setting, 4-15
settings due to exception, 4-17

mulli, 2-37
mullw, 2-37

N

nand, 2-38
Nap mode, 9-3
neg, 2-37
Nonburst transactions
consecutive nonburst read-write, 8-44
consecutive nonburst write-read, 8-43
description, 8-2, 8-24, 8-28
fastest nonburst write, 8-34
nonburst read, 8-29
nonburst read, single-cycle address phase, 8-30
nonburst write, 8-33
signal assignments, 8-14
Nondenormalized mode, support, 2-40
nor, 2-38

@)

Operand placement and performance, 2-29
Operating environment architecture, xxvii, 1-17
Optional instructions, A-38

or, 2-38

orc, 2-38

ori, 2-38

oris, 2-38

P

Page address translation
page address trandlation flow, 5-35
page size, 5-28
selection, 5-13, 5-20
table search operation, 5-37
TLB organization, 5-33
Page history status
R and C bit recording, 5-17, 5-29-5-32
Page tables
page table updates, 5-58
PTE bit definitions, 5-29
PTE format, 5-28
resources for table search operations, 5-40

mtcrf, 2-56 software table search operation, 5-40, 5-45
mtfsh0, 2-46 table search for PTE, 5-37

mtfsbl, 2-46 Performance considerations, memory, 6-2, 6-12,
mtfsf, 2-46 6-18, 6-30

mtfsfi, 2-46 PFADDRO-PFADDR20 signals, 7-8

mtmsr, 2-62 Phase-locked loop, 9-3

mtspr, 2-63 Physical address generation see Memory management
mtsr, 2-64 unit

mtsrin, 2-64 Pipelined execution unit, 6-3

mulhw, 2-37 PLL configuration, 7-30, 8-5

mulhwu, 2-37

Index Index-7



INDEX

PLL_CFGO-PLL_CFG3, 7-30, 8-5
Power management
decrementer interrupt, 9-1
doze mode, 9-3
doze, nap, sleep, DPM bits, 2-12
full-power mode, 9-2
nap mode, 9-3
programmabl e power modes, 9-2
sleep mode, 9-4
software considerations, 9-4
system management interrupt, 9-1
PowerPC architecture
instruction list, A-1, A-9, A-17, A-27, A-38
operating environment architecture, xxvii, 1-17
user instruction set architecture, xxvii, 1-17
virtual environment architecture, xxvii, 1-17
Prefetch line-fill address signal, 7-8
Privilege levels
supervisor-level cache instruction, 2-64
use of esainstruction, 1-26, 2-71
Privileged state see Privilege levels
Problem state see Privilege levels
Process switching, 4-16
Processor control instructions, 2-55, 2-58, 2-62, A-25
Program exception, 4-29
Programmable power states
doze mode, 9-3
full-power mode
DPM enabled/disabled, 9-2
nap mode, 9-3
sleep mode, 9-4
Protection of memory areas
features, 5-32
no-execute protection, 5-18
options available, 5-15
protection violations, 5-20
Protection-only mode
access protection, 5-61
features, 5-2, 5-58
overview, 5-8
protection checking, 5-65
RPA register, 2-11, 2-17, 5-44, 5-61
SEBR register, 2-11, 2-19, 5-62
SER register, 2-11, 2-20, 5-62
TLB look-up operation, 5-60
trandation flow, 5-63
use of translation resources
PTEGs (PTE groups)
table search operation, 5-37
PTEs (page table entries)
bit definitions, 5-29
format, 5-28
table search operations, 5-37

Q

QACK signd, 7-26
QREQ signal, 7-26
Qualified bus grant, 8-8

R

Read atomic operation, 3-20
Read operation, 3-20
Read with intent to modify operation, 3-20
Real addressing mode
data accesses, 5-15, 5-17, 5-25
instruction accesses, 5-15, 5-17, 5-25
Referenced (R) bit maintenance
recording, 5-17, 5-29-5-30, 5-38
Registers
602-specific bits
BATS, 2-9
MSR, 2-7
PVR, 2-9
SRR1, 2-8, 5-42
602-specific registers
DCMPand ICMP, 2-11, 2-15, 5-43
DMISS and IMISS, 2-11, 2-15, 5-43
ESASRR, 2-11, 2-19
HASH1 and HASH2, 2-11, 2-16, 5-44
HIDO, 2-11-2-12
HID1, 2-11, 2-14
IABR, 2-11, 2-24
IBR, 2-11, 2-22
RPA, 2-11, 2-17, 5-44, 5-61
SEBR, 2-11, 2-19, 5-62
SER, 2-11, 2-20, 5-62
SPand LT, 2-11, 2-21, 6-17
TCR, 1-15, 2-11, 2-21, 4-37
configuration registers, 2-5
exception handling registers, 2-6
exception processing registers, 4-9-4-10
FPRs, saving and restoring registers, 2-25
memory management registers, 2-5, 2-15
supervisor-level registers
BATS, 2-9
DCMPand ICMP, 2-11, 2-15, 5-43
DMISS and IMISS, 2-11, 2-15, 5-43
ESASRR, 2-11, 2-19
HASH1 and HASH2, 2-11, 2-16, 5-44
HIDO, 2-11-2-12
HID1, 2-11, 2-14
IABR, 2-11, 2-24
IBR, 2-11, 2-22
MSR, 2-7
PVR, 2-9
RPA, 2-11, 2-17, 5-44, 5-61
SEBR, 2-11, 2-19, 5-62

Index-8

PowerPC 602 RISC Microprocessor User's Manual



INDEX

SER, 2-11, 2-20, 5-62
SPand LT, 2-11, 2-21, 6-17
SRR1, 2-8
TCR, 1-15, 2-11, 2-21
user-level registers, list, 2-4
Rename register operation, 6-12
Reservation station, 6-11
Reserved instruction class, 2-32
Reset
hard reset, 4-19
HRESET signd, 7-25
reset exception, 4-18-4-20
RESETO signal, 7-26
SRESET signal, 7-25
RESETO signal, 7-26
rfi, 2-62, 4-15
rlwimi, 2-39
rlwinm, 2-39
rlwnm, 2-39
Rotate and shift instructions, 2-39, A-18-A-19
RPA register (602-specific), 2-11, 2-17, 5-44, 5-61

S

sc, 2-62
SEBR register (602-specific), 2-11, 2-19, 5-62
Segment registers

SR manipulation instructions, 2-64, A-25
Segmented memory model see Memory management

unit

Self-modifying code, 2-35
SER register (602-specific), 2-11, 2-20, 5-62
Signals

AO0-A31, 7-7

AACK, 7-14

address arbitration, 7-4, 8-7

ARTRY, 3-21, 7-15, 8-22, 8-49

BB, 7-19, 8-8

BEO-BE7, 7-11, 8-14

BG, 7-5, 8-8

BR, 7-5, 8-8

ClI, 7-13

CKSTP_IN, 7-24

CKSTP_OUT, 7-25

CLK_OUT, 2-14, 7-29

configuration, 7-2

COP/scan interface, 7-27

DO0-D63, 7-20, 8-14, 8-23

GBL, 7-13

HRESET, 7-25

INT, 7-23

JTAG signals, C-2

MCP, 7-24

PFADDRO-PFADDR20, 7-8

PLL_CFGO-PLL_CFG3, 7-30, 8-5

QACK, 7-26
QREQ, 7-26
RESETO, 7-26
SMI, 4-36, 7-24
SRESET, 7-25
SYSCLK, 7-29, 8-5
T32,3-8,7-22,8-28
TA, 7-22,8-24
TBEN, 1-15, 7-27
TBST, 3-8, 7-12
TCO-TC1, 7-12, 8-20
TCK (JTAG test clock), 7-28, C-1
TDI (JTAG test datainput), 7-28, C-1
TDO (JTAG test data output), 7-28, C-1
TEA, 7-23,8-24
TMS (JTAG test mode select), 7-28, C-1
TRST (JTAG test reset), 7-28, C-1
TS, 7-6
TSIZ0-TSIZ2, 7-10
TTO-TT4,7-8
WT, 7-13
Single-beat transfer
termination, 8-24
Sleep mode, 9-4
slw, 2-39
SMIT signal, 4-36, 7-24
Snooping operation
address cycle with ARTRY, 8-23
cache coherency, 8-2
conditions, 8-26
description, 8-47
injected snooping, 8-2, 8-26
internal snoop sources, 8-26
operation, 3-19, 6-19, 8-2
priority level, 8-2
reaction on qualified snoops, 8-26
snoop hit, write-back, 8-52
Snooping operations
injected snooping, 8-54
SPand LT registers (602-specific), 2-11, 2-21, 6-17
SPR encodings
not implemented in 602, B-3
sraw, 2-39
srawi, 2-39
SRESET signd, 7-25
SRRO/SRR1 (status save/restore registers)
602-specific hits, 5-42
machine check exception, bit settings, 2-8, 4-10
table search operations, bit settings, 4-10
srw, 2-39
Static branch prediction, 6-14
stb, 2-49
stbu, 2-49
stbux, 2-49
stbx, 2-49

Index

Index-9



stfd, 2-25, 2-53
stfdu, 2-53
stfdux, 2-53
stfdx, 2-53
stfiwx, 2-53
stfs, 2-52
stfsu, 2-52
stfsux, 2-53
stfsx, 2-52
sth, 2-49
sthbrx, 2-49
sthu, 2-49
sthux, 2-49
sthx, 2-49
stmw, 2-50
Store operations
memory coherency actions, 3-19
String instructions, 2-50, A-22
stswi, 2-51
stswx, 2-51
stw, 2-49
stwbrx, 2-49
stwex., 2-56, 2-58, 4-16
stwu, 2-49
stwux, 2-49
stwx, 2-49
subf, 2-36
subfc, 2-37
subfe, 2-37
subfic, 2-36
subfme, 2-37
subfze, 2-37
Supervisor mode see Privilege levels
Supervisor-level registers, list, 2-5
sync
description, 2-58
operation, 3-20
process switching, 4-16
Synchronization
context/execution synchronization, 2-34
execution of rfi, 4-15
memory synchronization instructions, 2-56,
2-59, A-22
SYSCLK signal, 7-29, 8-5
System bus, time-multiplexed, 7-4, 8-1
System call exception, 2-75, 4-31

INDEX

MCP, 7-24
OACK, 7-26
OREQ, 7-26
RESETO, 7-26
SMI, 7-24
SRESET, 7-25
TBEN, 1-15, 7-27

T

T32signal, 3-8, 7-22, 8-28
TA signal, 7-22, 8-24
Table search operation
agorithm, 5-37
software routines for the 602, 5-40, 5-45-5-50
table search flow (primary and secondary), 5-38
Table search operations
SRR1 hit settings, 2-8, 4-10
TBEN signal, 1-15, 7-27
TBST signadl, 3-8, 7-12
TCO-TC1lsignals, 7-12, 8-20
TCK (JTAG test clock) signal, 7-28, C-1
TCR register (602-specific), 1-15, 2-11, 2-21, 4-37
TDI (JTAG test datainput) signal, 7-28, C-1
TDO (JTAG test data output) signal, 7-28, C-1
TEA signal, 7-23, 8-24
Time-multiplexed
address phase signals, 8-14
system bus, 7-4, 8-1
Timing diagrams
32-bit mode
burst read with multicycle address phase,
8-40
burst read with single-cycle address phase,
8-39
double-beat read, 8-38
fastest burst write, 8-43
fastest double-beat write, 8-42
fastest single-beat write, 8-41
legend, 8-6
single-beat read, 8-37
64-bit mode
burst read with multicycle address phase,
8-33
burst read with shortest data phase, 8-32
burst read with single-cycle address phase,

System interface operation, 8-5 8-31,8-32
System linkage instructions, 2-62, A-24 fastest burst write with negated GBL
System management interrupt, 4-36, 9-1 signal, 8-35
System status signals fastest nonburst write, 8-34
CKSTP_IN, 7-24 legend, 8-6
CKSTP_OUT, 7-25 nonburst read, single-cycle address phase,
HRESET, 7-25 8—30_
TNT, 7-23 slow burst write, 8-36
address cycle with ARTRY, 8-23
Index-10 PowerPC 602 RISC Microprocessor User's Manual



>

RTRY during other master read transaction,
multicycle, 7-17, 8-52

ARTRY during other master read transaction,

single-cycle, 7-16, 8-51

ARTRY during read transaction, multicycle, 8-50

ARTRY during read transaction, single-cycle,
7-18, 7-19, 8-49

consecutive burst read-write, 8-47

consecutive burst write-read, 8-46

consecutive nonburst read-write, 8-45

consecutive nonburst write-read, 8-44

fastest burst write with asserted GBL signal, 8-48

injected snoop, 8-54
multicycle address-only transaction, 8-57
single-cycle address-only transaction, 8-56
snoop hit, write-back transaction, 8-53
Timing examples see Timing diagrams
Timing, instruction
BPU execution timing, 6-12
branch timing example, 6-15
cache arbitration, 6-8
cache hit, 6-8
cache miss, 6-10
FPU execution timing, 6-17
instruction dispatch, 6-11
instruction fetch timing, 6-8
instruction scheduling guidelines, 6-20
IU execution timing, 6-16
latency summary, 6-22
load/store unit execution timing, 6-18
overview, 6-1
TLB
invalidate
TLB management instructions, 2-64, A-26
tibie, 2-65
tlbld (602-specific), 2-65, 2-69
tlbli (602-specific), 2-65, 2-70
TLBs
description, 5-33
invalidate
TLB management instructions, 5-35, 5-58
organization, 5-33
TLB look-up operation, 5-60
tibsync, 2-65
TMS (JTAG test mode select) signal, 7-28, C-1
Trace exception, 4-31
Transactions, data cache
burst transactions, 3-8
nonburst transactions, 3-8
Transfer, address bus, 8-11
Trap instructions, 2-55, A-25
TRST (JTAG test reset) signal, 7-28, C-1
TSsignal, 7-6, 8-8, 8-12
TSIZ0-TSIZ2 signals, 7-10
TTO-TT4 signds, 7-8

INDEX

tw, 2-55
twi, 2-55

u

User instruction set architecture, xxvii, 1-17
User-level registers, list, 2-4

\Y

Virtual environment architecture, xxvii, 1-17

w

Watchdog timer (602-specific)
instruction fetching, 1-15
interrupt, 4-37
purpose, 1-15
TCRregister, 1-15, 2-11, 2-21

WIMG bits
in BAT register, 2-10, 3-9

Write with atomic operation, 3-20

Write with flush operation, 3-20

Write with kill operation, 3-20

Write-back mode
copy-back operation, 3-11
description, 8-1
snoop hit, 8-52

Write-through mode (W bit)
cacheinteractions, 3-9
timing considerations, 6-19
W-bit setting, 3-10

WT signal, 7-13

X

xor, 2-38
xori, 2-38
xoris, 2-38

Index

Index-11



INDEX

Index-12 PowerPC 602 RISC Microprocessor User’'s Manual



© Motorola Inc. 1995. All rights reserved.
Portions hereof © International Business Machines Corp. 1991-1995. All rights reserved.

This document contains information on a new product under development by Motorola and IBM. Motorola and IBM reserve the right to change or
discontinue this product without notice. Information in this document is provided solely to enable system and software implementers to use PowerPC
microprocessors. There are no express or implied copyright or patent licenses granted hereunder by Motorola or IBM to design, modify the design of, or
fabricate circuits based on the information in this document.

The PowerPC 602 microprocessor embodies the intellectual property of Motorola and of IBM. However, neither Motorola nor IBM assumes any
responsibility or liability as to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party or by
any third party. Neither Motorola nor IBM is to be considered an agent or representative of the other, and neither has assumed, created, or granted hereby
any right or authority to the other, or to any third party, to assume or create any express or implied obligations on its behalf. Information such as data
sheets, as well as sales terms and conditions such as prices, schedules, and support, for the product may vary as between parties selling the product.
Accordingly, customers wishing to learn more information about the products as marketed by a given party should contact that party.

Both Motorola and IBM reserve the right to modify this manual and/or any of the products as described herein without further notice. NOTHING IN THIS
MANUAL, NOR IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPORTING DOCUMENTATION, SHALL BE INTERPRETED AS
THE CONVEYANCE BY MOTOROLA OR IBM OF AN EXPRESS WARRANTY OF ANY KIND OR IMPLIED WARRANTY, REPRESENTATION, OR
GUARANTEE REGARDING THE MERCHANTABILITY OR FITNESS OF THE PRODUCTS FOR ANY PARTICULAR PURPOSE. Neither Motorola nor
IBM assumes any liability or obligation for damages of any kind arising out of the application or use of these materials. Any warranty or other obligations
as to the products described herein shall be undertaken solely by the marketing party to the customer, under a separate sale agreement between the
marketing party and the customer. In the absence of such an agreement, no liability is assumed by Motorola, IBM, or the marketing party for any damages,
actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Neither Motorola nor IBM convey any license under their respective intellectual property rights nor the rights
of others. Neither Motorola nor IBM makes any claim, warranty, or representation, express or implied, that the products described in this manual are
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support
or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should
customer purchase or use the products for any such unintended or unauthorized application, customer shall indemnify and hold Motorola and IBM and
their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

IBM and IBM logo are registered trademarks, and IBM Microelectronics is a trademark of International Business Machines Corp.
The PowerPC name, PowerPC logotype, PowerPC 601, PowerPC 602, PowerPC 603, PowerPC 603e, and PowerPC 604 are trademarks of International
Business Machines Corp. used by Motorola under license from International Business Machines Corp. International Business Machines Corp. is an Equal
Opportunity/Affirmative Action Employer.







	Audience
	Organization
	Additional Reading
	Motorola Electronic Support
	IBM Electronic Support
	Conventions
	Acronyms and Abbreviations
	Terminology Conventions
	1.1 PowerPC 602 Microprocessor Overview
	1.1.1 PowerPC 602 Microprocessor Features
	1.1.2 Block Diagram
	1.1.3 Instruction Pipeline
	1.1.3.1 Instruction Unit

	1.1.4 Independent Execution Units
	1.1.4.1 Integer Unit (IU)
	1.1.4.2 Floating-Point Unit (FPU)
	1.1.4.3 Load/Store Unit (LSU)

	1.1.5 Memory Subsystem
	1.1.5.1 Memory Management Units (MMUs)
	1.1.5.2 Cache Units

	1.1.6 Processor Bus Interface
	1.1.7 System Support Functions
	1.1.7.1 Power Management
	1.1.7.2 Time Base/Decrementer
	1.1.7.3 IEEE 1149.1 (JTAG)/Common On-Chip Processo...
	1.1.7.4 Clock Multiplier
	1.1.7.5 Watchdog Timer


	1.2 PowerPC 602 Microprocessor: Implementation
	1.2.1 Features
	1.2.2 PowerPC Registers and Programming Model
	1.2.2.1 General-Purpose Registers (GPRs)
	1.2.2.2 Floating-Point Registers (FPRs)
	1.2.2.3 Condition Register (CR)
	1.2.2.4 Floating-Point Status and Control Register...
	1.2.2.5 Machine State Register (MSR)
	1.2.2.6 Segment Registers (SRs)
	1.2.2.7 Special-Purpose Registers (SPRs)

	1.2.3 Instruction Set and Addressing Modes
	1.2.3.1 PowerPC Instruction Set and Addressing Mod...
	1.2.3.2 PowerPC 602 Microprocessor Instruction Set...

	1.2.4 Cache Implementation
	1.2.4.1 PowerPC Cache Characteristics
	1.2.4.2 PowerPC 602 Microprocessor Cache Implement...

	1.2.5 Exception Model
	1.2.5.1 PowerPC Exception Model
	1.2.5.2 PowerPC 602 Microprocessor Exception Model...

	1.2.6 Memory Management
	1.2.6.1 PowerPC Memory Management
	1.2.6.2 PowerPC 602 Microprocessor Memory Manageme...

	1.2.7 Instruction Timing
	1.2.8 System Interface
	1.2.8.1 Memory Accesses
	1.2.8.2 PowerPC 602 Microprocessor Signals
	1.2.8.3 Signal Configuration


	2.1 PowerPC 602 Processor Register Set
	2.1.1 PowerPC Registers with Implementation-Specif...
	2.1.1.1 Machine State Register
	2.1.1.2 Machine Status Save/Restore Register 1
	2.1.1.3 Processor Version Register
	2.1.1.4 BAT Registers

	2.1.2 PowerPC 602 Processor-Specific Registers
	2.1.2.1 Configuration Registers
	2.1.2.2 PowerPC 602 Processor Memory Management Re...
	2.1.2.3 ESA Supervisor Access Registers
	2.1.2.4 Miscellaneous PowerPC 602 Processor–Specif...

	2.1.3 Saving and Restoring FPRs and the FPSCR
	2.1.4 Synchronization Requirements for SPRs

	2.2 Operand Conventions
	2.2.1 Floating-Point Execution Models—UISA
	2.2.2 Data Organization in Memory and Data Transfe...
	2.2.3 Alignment and Misaligned Accesses
	2.2.4 Floating-Point Operand
	2.2.5 Effect of Operand Placement on Performance
	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	2.3.4.2 Floating-Point Instructions
	2.3.4.3 Load and Store Instructions
	2.3.4.4 Branch and Flow Control Instructions
	2.3.4.5 Trap Instructions
	2.3.4.6 Processor Control Instructions
	2.3.4.7 Memory Synchronization Instructions—UISA
	2.3.4.8 Preferred No-Op Instruction

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions
	2.3.5.2 Memory Synchronization Instructions—VEA
	2.3.5.3 Memory Control Instructions—VEA
	2.3.5.4 External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions
	2.3.6.2 Processor Control Instructions—OEA
	2.3.6.3 Memory Control Instructions—OEA

	2.3.7 PowerPC 602 Implementation-Specific Instruct...
	2.3.8 Recommended Simplified Mnemonics
	2.3.9 Using the esa Instruction for Supervisor-Lev...
	2.3.9.1 esa/dsa Instructions
	2.3.9.2 ESA Supervisor-Access Registers

	2.3.10 Differences between Using the esa Instructi...


	3.1 PowerPC 602 Processor Cache Implementation 3.1...
	3.2 Instruction Cache Organization and Control
	3.2.1 Instruction Cache Organization
	3.2.2 Instruction Cache Fill Operations
	3.2.3 Instruction Cache Control
	3.2.3.1 Instruction Cache Invalidation
	3.2.3.2 Locking the Instruction Cache


	3.3 Data Cache Organization and Control
	3.3.1 Data Cache Organization
	3.3.2 Data Cache Fill Operations
	3.3.3 Data Cache Control
	3.3.3.1 Data Cache Invalidation
	3.3.3.2 Disabling the Data Cache
	3.3.3.3 Locking the Data Cache


	3.4 Basic Data Cache Operations
	3.4.1 Data Cache Line-Fill Operation
	3.4.2 Data Cache Cast-Out Operation
	3.4.3 Cache Block Push Operation

	3.5 Data Cache Transactions on Bus
	3.5.1 Nonburst Transactions
	3.5.2 Burst Transactions
	3.5.3 Access to Direct-Store Segments

	3.6 Memory Management/Cache Access Mode Bits— 3.6 ...
	3.6.1 Write-Through Attribute (W)
	3.6.2 Caching-Inhibited Attribute (I)
	3.6.3 Memory Coherency Attribute (M)
	3.6.4 Guarded Attribute (G)
	3.6.5 W, I, and M Bit Combinations
	3.6.5.1 Out-of-Order Execution and Guarded Memory
	3.6.5.2 Effects of Out-of-Order Data Accesses
	3.6.5.3 Effects of Out-of-Order Instruction Fetche...


	3.7 Cache Coherency—MEI Protocol
	3.7.1 MEI State Definitions
	3.7.2 MEI State Diagram
	3.7.3 Compatibility with MESI Protocol
	3.7.4 Resource Collisions and Retries
	3.7.5 Page Table Aliasing
	3.7.6 MEI Hardware Considerations
	3.7.7 Coherency Precautions
	3.7.7.1 Internal Coherency Paradoxes

	3.7.8 Load and Store Coherency Summary
	3.7.9 Atomic Memory References
	3.7.10 Cache Reaction to Specific Bus Operations
	3.7.11 Operations Causing ARTRY Assertion

	3.8 Cache Control Instructions
	3.8.1 Data Cache Block Touch (dcbt) Instruction
	3.8.2 Data Cache Block Touch for Store (dcbtst) In...
	3.8.3 Data Cache Block Set to Zero (dcbz) Instruct...
	3.8.4 Data Cache Block Invalidate (dcbi) Instructi...
	3.8.5 Data Cache Block Store (dcbst) Instruction
	3.8.6 Data Cache Block Flush (dcbf) Instruction
	3.8.7 Enforce In-Order Execution of I/O Instructio...
	3.8.8 Instruction Cache Block Invalidate (icbi) In...
	3.8.9 Instruction Synchronize (isync) Instruction
	3.8.10 Synchronize (sync) Instruction

	3.9 Bus Operations Caused by Cache Control 3.9 Ins...
	3.10 Bus Interface
	3.11 MEI State Transactions
	4.1 Exception Classes
	4.1.1 Exception Priorities
	4.1.2 Summary of Front-End Exception Handling

	4.2 Exception Processing
	4.2.1 Enabling and Disabling Exceptions
	4.2.2 Steps for Exception Processing
	4.2.3 Setting MSR[RI]
	4.2.4 Returning from an Exception Handler

	4.3 Process Switching
	4.4 Exception Latencies
	4.5 Exception Definitions
	4.5.1 Reset Exceptions (0x0100)
	4.5.1.1 Hard Reset and Power-On Reset
	4.5.1.2 Soft Reset

	4.5.2 Machine Check Exception (0x0200)
	4.5.2.1 Machine Check Exception Enabled (MSR[ME] =...
	4.5.2.2 Checkstop State (MSR[ME] = 0)

	4.5.3 DSI Exception (0x0300)
	4.5.4 ISI Exception (0x0400)
	4.5.5 External Interrupt (0x0500)
	4.5.6 Alignment Exception (0x0600)
	4.5.6.1 Integer Alignment Exceptions
	4.5.6.2 Page Address Translation Access
	4.5.6.3 Floating-Point Alignment Exceptions

	4.5.7 Program Exception (0x0700)
	4.5.7.1 IEEE Floating-Point Exception Program Exce...
	4.5.7.2 Illegal, Reserved, and Unimplemented Instr...

	4.5.8 Floating-Point Unavailable Exception (0x0800...
	4.5.9 Decrementer Interrupt (0x0900)
	4.5.10 System Call Exception (0x0C00)
	4.5.11 Trace Exception (0x0D00)
	4.5.11.1 Single-Step Instruction Trace Mode
	4.5.11.2 Branch Trace Mode

	4.5.12 Instruction TLB Miss Exception (0x1000)
	4.5.13 Data TLB Miss on Load Exception (0x1100)
	4.5.14 Data TLB Miss on Store Exception (0x1200)
	4.5.15 Instruction Address Breakpoint Exception (0...
	4.5.16 System Management Interrupt (0x1400)
	4.5.17 Watchdog Timer Interrupt (0x1500)
	4.5.18 Emulation Trap Exception (0x1600)

	5.1 MMU Features
	5.1.1 Overview of PowerPC 602 Processor-Specific F...
	5.1.1.1 Instruction-Related Protection Bits—NE and...
	5.1.1.2 ESA Access and Memory Management
	5.1.1.3 Protection-Only Mode Overview

	5.1.2 Memory Addressing
	5.1.3 MMU Organization
	5.1.4 Address Translation Mechanisms
	5.1.5 Memory Protection Facilities
	5.1.6 Page History Information
	5.1.7 General Flow of MMU Address Translation
	5.1.7.1 Real Addressing Mode and Block Address Tra...
	5.1.7.2 Page Address Translation Selection

	5.1.8 MMU Exceptions Summary
	5.1.9 MMU Instructions and Register Summary

	5.2 Real Addressing Mode
	5.3 Block Address Translation
	5.4 Memory Segment Model
	5.4.1 PTE Format in the PowerPC 602 Microprocessor...
	5.4.2 Page History Recording
	5.4.2.1 Referenced Bit
	5.4.2.2 Changed Bit
	5.4.2.3 Scenarios for Referenced and Changed Bit R...

	5.4.3 Page Memory Protection
	5.4.4 TLB Description
	5.4.4.1 TLB Organization
	5.4.4.2 TLB Entry Invalidation

	5.4.5 Page Address Translation Summary

	5.5 Page Table Search Operation
	5.5.1 Page Table Search Operation—Conceptual Flow
	5.5.2 Table Search Operation with the PowerPC 602 ...
	5.5.2.1 Resources for Table Search Operations
	5.5.2.2 Software Table Search Operation

	5.5.3 Page Table Updates
	5.5.4 Segment Register Updates

	5.6 Protection-Only Mode
	5.6.1 Use of Translation Resources in Protection-O...
	5.6.1.1 TLB Misses in Protection-Only Mode
	5.6.1.2 Access Protection in Protection-Only Mode
	5.6.1.3 Required Physical Address Register in Prot...

	5.6.2 ESA Enable Protection (Instruction Space Onl...
	5.6.3 Translation Flow in Protection-Only Mode

	6.1 Instruction Timing Overview
	6.2 PowerPC 602 Microprocessor Pipeline 6.2 Organi...
	6.3 Timing Considerations
	6.3.1 Instruction Fetch Timing
	6.3.1.1 Cache Arbitration
	6.3.1.2 Cache Hit
	6.3.1.3 Cache Miss

	6.3.2 Instruction Dispatch and Completion Consider...
	6.3.3 Rename Register Operation

	6.4 Execution Unit Timings
	6.4.1 Branch Processing Unit Execution Timing
	6.4.1.1 Branch Folding
	6.4.1.2 Static Branch Prediction

	6.4.2 Integer Unit Execution Timing
	6.4.3 Floating-Point Unit
	6.4.4 Floating-Point Unit Execution Timing
	6.4.5 Load/Store Unit Execution Timing

	6.5 Memory Performance Considerations
	6.5.1 Copy-Back Mode
	6.5.2 Write-Through Mode
	6.5.3 Caching-Inhibited Accesses

	6.6 Instruction Scheduling Guidelines
	6.6.1 Branch, Dispatch, and Completion Unit Resour...
	6.6.1.1 Branch Resolution Resource Requirements
	6.6.1.2 Dispatch Unit Resource Requirements
	6.6.1.3 Completion Unit Resource Requirements


	6.7 Instruction Serialization Modes
	6.7.1 Completion Serialization
	6.7.2 Dispatch Serialization
	6.7.3 Refetch Serialization
	6.7.4 FPU Serialization

	6.8 Instruction Latency Summary
	6.8.1 BPU Instruction Timings
	6.8.2 Integer Unit Instruction Timings
	6.8.3 Synchronization Instructions
	6.8.4 FPU Instruction Timings
	6.8.5 Load/Store Unit Instruction Timings
	6.8.6 Effect of Operand Placement on Performance
	6.8.7 Effect of Floating-Point Exceptions on Perfo...

	7.1 Signal Configuration
	7.1.1 Time-Multiplexed System Bus

	7.2 Signal Descriptions
	7.2.1 Bus Arbitration Signals
	7.2.1.1 Bus Request (BR)—Output
	7.2.1.2 Bus Grant (BG)—Input

	7.2.2 Transfer Start (TS)
	7.2.2.1 Transfer Start (TS)—Output
	7.2.2.2 Transfer Start (TS)—Input

	7.2.3 Address Transfer Signals
	7.2.3.1 Address Signals (A0–A31)

	7.2.4 Transfer Attribute Signals
	7.2.4.1 Transfer Type (TT0–TT4)
	7.2.4.2 Transfer Size (TSIZ0–TSIZ2)—Output
	7.2.4.3 Byte Enable (BE0–BE7)
	7.2.4.4 Transfer Burst (TBST)
	7.2.4.5 Transfer Code (TC0–TC1)—Output
	7.2.4.6 Cache Inhibit (CI)—Output
	7.2.4.7 Write-Through (WT)—Output
	7.2.4.8 Global (GBL)

	7.2.5 Address Transfer Termination Signals
	7.2.5.1 Address �Acknowledge (AACK)—Input
	7.2.5.2 Address Retry (ARTRY)

	7.2.6 Data Phase Signal
	7.2.6.1 Bus Busy (BB)

	7.2.7 Data Transfer Signals
	7.2.7.1 Data Signals (D0–D63)
	7.2.7.2 Target Data Bus 32 (T32)—Input

	7.2.8 Data Transfer Termination Signals
	7.2.8.1 Transfer �Acknowledge (TA)—Input
	7.2.8.2 Transfer Error Acknowledge (TEA)—Input

	7.2.9 System Status Signals
	7.2.9.1 Interrupt (INT)—Input
	7.2.9.2 System Management Interrupt (SMI)—Input
	7.2.9.3 Machine Check Interrupt (MCP)—Input
	7.2.9.4 Checkstop Input (CKSTP_IN)—Input
	7.2.9.5 Checkstop Output (CKSTP_OUT)—Output
	7.2.9.6 Reset Signals
	7.2.9.7 Quiescent Request (QREQ)—Output
	7.2.9.8 Quiescent Acknowledge (QACK)—Input
	7.2.9.9 Time Base Enable (TBEN)—Input

	7.2.10 JTAG/Scan Interface Signals
	7.2.10.1 Test Data Output (TDO)—Output
	7.2.10.2 Test Data Input (TDI)—Input
	7.2.10.3 Test Clock (TCK)—Input
	7.2.10.4 Test Mode Select (TMS)—Input
	7.2.10.5 Test Reset (TRST)—Input

	7.2.11 Clock Signals
	7.2.11.1 System Clock (SYSCLK)—Input
	7.2.11.2 Test Clock (CLK_OUT)—Output
	7.2.11.3 PLL Configuration (PLL_CFG0–PLL_CFG3)—Inp...

	7.2.12 Power and Ground Signals

	8.1 PowerPC 602 Microprocessor System Interface 8....
	8.1.1 Operation of the Instruction and Data Caches...
	8.1.2 32-Bit Data Bus Mode
	8.1.3 Clocks
	8.1.4 Operation of the System Interface

	8.2 Memory Access Protocol
	8.3 Address Bus Phase
	8.3.1 Bus Arbitration
	8.3.1.1 Bus Arbitration—Nonparked Case
	8.3.1.2 Bus Arbitration—Parked Case

	8.3.2 Address Transfer Subphase
	8.3.2.1 Address Phase Signal Configurations
	8.3.2.2 Transfer Attributes
	8.3.2.3 Address Phase Termination

	8.3.3 Data Phase
	8.3.3.1 Data Transfer
	8.3.3.2 Data Phase Termination
	8.3.3.3 Normal Single-Beat Termination


	8.4 Memory Coherency and Bus Protocol
	8.4.1 Effect on Read Operations
	8.4.2 Qualified Snoop Conditions
	8.4.3 Internal Snoop Sources
	8.4.4 Reaction on Qualified Snoops
	8.4.5 Special Instructions

	8.5 Bus Timing Examples
	8.5.1 64-Bit Data Bus Mode Basic Transactions
	8.5.1.1 Nonburst Read Transaction—64-Bit Mode
	8.5.1.2 Burst Read Transaction with a Single-Cycle...
	8.5.1.3 Burst Read Transaction with a Single-Cycle...
	8.5.1.4 Burst Read Transaction with a Multicycle A...
	8.5.1.5 Nonburst Write Transaction—64-Bit Mode
	8.5.1.6 Burst Write Transaction—64-Bit Mode
	8.5.1.7 Slower Burst Write Transaction—64-Bit Mode...

	8.5.2 32-Bit Bus Mode Basic Transactions
	8.5.2.1 Single-Beat Read Transactions—32-Bit Only
	8.5.2.2 Double-Beat Read Transactions—32-Bit Only
	8.5.2.3 Burst Read Operations—32-Bit
	8.5.2.4 Burst Read Transaction with a Multicycle A...
	8.5.2.5 Write Transactions in 32-Bit Mode

	8.5.3 Consecutive Operations
	8.5.3.1 Consecutive Nonburst Write-Read Transactio...
	8.5.3.2 Consecutive Nonburst Read-Write Transactio...
	8.5.3.3 Consecutive Burst Write-Read Transaction
	8.5.3.4 Consecutive Burst Read-Write Transaction

	8.5.4 Snooping
	8.5.4.1 Fastest Burst Write Transaction with Asser...
	8.5.4.2 Address Retry During 602 Read Transaction—...
	8.5.4.3 Address Retry During 602 Read Transaction—...
	8.5.4.4 ARTRY During Other Master Read Transaction...
	8.5.4.5 ARTRY During Other Master Read Transaction...
	8.5.4.6 Snoop Hit—Write-Back Transaction
	8.5.4.7 Injected Snoop Timings

	8.5.5 Address-Only Transactions
	8.5.5.1 Single-Cycle Address-Only Transaction
	8.5.5.2 Multicycle Address-Only Transaction

	9.1 Dynamic Power Management
	9.2 Programmable Power Modes
	9.2.1 Power Management Modes
	9.2.1.1 Full-Power Mode with Dynamic Power Managem...
	9.2.1.2 Full-Power Mode with Dynamic Power Managem...
	9.2.1.3 Doze Mode
	9.2.1.4 Nap Mode
	9.2.1.5 Sleep Mode

	9.2.2 Power Management Software Considerations

	A.1 Instructions Sorted by Mnemonic
	A.2 Instructions Sorted by Opcode
	A.3 Instructions Grouped by Functional Categories
	A.4 Instructions Sorted by Form
	A.5 Instruction Set Legend
	C.1 Boundary-Scan Interface Description
	C.1.1 Boundary-Scan Signals
	C.1.2 Boundary-Scan Registers and Scan Chains
	C.1.2.1 Bypass Register
	C.1.2.2 Boundary-Scan Registers
	C.1.2.3 Compliance-Enable Signals

	C.1.3 Instruction Register
	C.1.4 TAP Controller

	C.2 Unimplemented IEEE 1149.1 Features
	C.3 Boundary-Scan Instructions


