

MPR602UMU-01 MPC602UM/AD
11/95

PowerPC
™

 602
RISC Microprocessor User's Manual

2

3

4

5

6

7

8

9

A

B

C

GLO

IND

1
Overview

PowerPC 602 Microprocessor Programming Model

Instruction and Data Cache Operation

Exceptions

Memory Management

Instruction Timing

Signal Descriptions

System Interface Operation

Power Management

PowerPC Instruction Set Listings

Instructions Not Implemented

Boundary-Scan Testing Support

Glossary of Terms and Abbreviations

Index

CONTENTS

Paragraph
Number Title Page

Number

About This Book

Audience .. xxviii
Organization... xxix
Additional Reading ..xxx
Motorola Electronic Support.. xxxi
IBM Electronic Support... xxxi
Conventions ... xxxi
Acronyms and Abbreviations ... xxxii
Terminology Conventions ...xxxv

Chapter 1
Overview

1.1 PowerPC 602 Microprocessor Overview... 1-1
1.1.1 PowerPC 602 Microprocessor Features... 1-3
1.1.2 Block Diagram... 1-5
1.1.3 Instruction Pipeline .. 1-7
1.1.3.1 Instruction Unit .. 1-8
1.1.3.1.1 Instruction Queue (IQ) and Dispatch Unit... 1-8
1.1.3.1.2 Branch Processing Unit (BPU).. 1-8
1.1.3.1.3 Completion Unit .. 1-9
1.1.4 Independent Execution Units... 1-9
1.1.4.1 Integer Unit (IU) .. 1-9
1.1.4.2 Floating-Point Unit (FPU) ... 1-10
1.1.4.3 Load/Store Unit (LSU) .. 1-10
1.1.5 Memory Subsystem ... 1-11
1.1.5.1 Memory Management Units (MMUs)... 1-11
1.1.5.2 Cache Units.. 1-13
1.1.6 Processor Bus Interface ... 1-13
1.1.7 System Support Functions ... 1-14
1.1.7.1 Power Management ... 1-14
1.1.7.2 Time Base/Decrementer .. 1-15
1.1.7.3 IEEE 1149.1 (JTAG)/Common On-Chip Processor (COP) Test Interface1-15
1.1.7.4 Clock Multiplier... 1-15
Contents iii

CONTENTS

Paragraph
Number Title Page

Number

1.1.7.5 Watchdog Timer...1-15
1.2 PowerPC 602 Microprocessor: Implementation...1-16
1.2.1 Features...1-17
1.2.2 PowerPC Registers and Programming Model ..1-17
1.2.2.1 General-Purpose Registers (GPRs) ..1-20
1.2.2.2 Floating-Point Registers (FPRs)...1-20
1.2.2.3 Condition Register (CR)...1-20
1.2.2.4 Floating-Point Status and Control Register (FPSCR)1-20
1.2.2.5 Machine State Register (MSR)...1-21
1.2.2.6 Segment Registers (SRs) ..1-21
1.2.2.7 Special-Purpose Registers (SPRs)..1-21
1.2.2.7.1 User-Level SPRs ..1-21
1.2.2.7.2 Supervisor-Level SPRs ..1-21
1.2.3 Instruction Set and Addressing Modes...1-23
1.2.3.1 PowerPC Instruction Set and Addressing Modes.......................................1-23
1.2.3.1.1 PowerPC Instruction Set ..1-23
1.2.3.1.2 Calculating Effective Addresses ..1-25
1.2.3.2 PowerPC 602 Microprocessor Instruction Set ...1-25
1.2.4 Cache Implementation..1-26
1.2.4.1 PowerPC Cache Characteristics ...1-26
1.2.4.2 PowerPC 602 Microprocessor Cache Implementation1-27
1.2.5 Exception Model ..1-28
1.2.5.1 PowerPC Exception Model ..1-28
1.2.5.2 PowerPC 602 Microprocessor Exception Model1-30
1.2.6 Memory Management ..1-32
1.2.6.1 PowerPC Memory Management ..1-33
1.2.6.2 PowerPC 602 Microprocessor Memory Management1-33
1.2.6.2.1 Protection-Only Mode..1-34
1.2.7 Instruction Timing ..1-35
1.2.8 System Interface ...1-36
1.2.8.1 Memory Accesses...1-37
1.2.8.2 PowerPC 602 Microprocessor Signals ...1-37
1.2.8.3 Signal Configuration ..1-38

Chapter 2
PowerPC 602 Microprocessor Programming Model

2.1 PowerPC 602 Processor Register Set ...2-1
2.1.1 PowerPC Registers with Implementation-Specific Bits...................................2-7
2.1.1.1 Machine State Register...2-7
2.1.1.2 Machine Status Save/Restore Register 1..2-8
2.1.1.3 Processor Version Register ..2-9
iv PowerPC 602 RISC Microprocessor User's Manual

CONTENTS

2.1.1.4 BAT Registers..2-9
2.1.2 PowerPC 602 Processor-Specific Registers...2-11
2.1.2.1 Configuration Registers ...2-12
2.1.2.1.1 Hardware Implementation Register 0 (HID0)2-12
2.1.2.1.2 Hardware Implementation Register 1 (HID1)—PLL Configuration.....2-14
2.1.2.2 PowerPC 602 Processor Memory Management Registers2-15
2.1.2.2.1 Data and Instruction TLB Miss Address Registers

(DMISS and IMISS) ..2-15
2.1.2.2.2 Data and Instruction PTE Compare Registers (DCMP and ICMP).......2-15
2.1.2.2.3 Primary and Secondary Hash Address Registers

(HASH1 and HASH2) ...2-16
2.1.2.2.4 Required Physical Address Register (RPA)...2-17
2.1.2.2.5 RPA Register in Protection-Only Mode ..2-17
2.1.2.3 ESA Supervisor Access Registers..2-18
2.1.2.3.1 ESA Save and Restore Register (ESASRR) ..2-19
2.1.2.3.2 ESA Enable Base Register (SEBR) (Protection-Only Mode)2-19
2.1.2.3.3 ESA Enable Register (SER) (Protection-Only Mode)...........................2-20
2.1.2.4 Miscellaneous PowerPC 602 Processor–Specific Registers2-21
2.1.2.4.1 Floating-Point Tag Registers (SP and LT)...2-21
2.1.2.4.2 Timer Control Register (TCR)...2-21
2.1.2.4.3 Interrupt Base Register (IBR) ..2-22
2.1.2.4.4 Instruction Address Breakpoint Register (IABR)..................................2-24
2.1.3 Saving and Restoring FPRs and the FPSCR..2-25
2.1.4 Synchronization Requirements for SPRs ...2-26
2.2 Operand Conventions...2-26
2.2.1 Floating-Point Execution Models—UISA ...2-26
2.2.2 Data Organization in Memory and Data Transfers ..2-27
2.2.3 Alignment and Misaligned Accesses ...2-28
2.2.4 Floating-Point Operand..2-28
2.2.5 Effect of Operand Placement on Performance...2-29
2.3 Instruction Set Summary..2-29
2.3.1 Classes of Instructions..2-30
2.3.1.1 Definition of Boundedly Undefined ..2-31
2.3.1.2 Defined Instruction Class...2-31
2.3.1.3 Illegal Instruction Class ...2-31
2.3.1.4 Reserved Instruction Class...2-32
2.3.2 Addressing Modes..2-33
2.3.2.1 Memory Addressing...2-33
2.3.2.2 Memory Operands..2-33
2.3.2.3 Effective Address Calculation ...2-33
2.3.2.4 Synchronization ...2-34
2.3.2.4.1 Context Synchronization..2-34
2.3.2.4.2 Execution Synchronization ..2-34
Contents v

CONTENTS

Paragraph
Number Title Page

Number

2.3.2.4.3 Instruction-Related Exceptions ..2-35
2.3.2.4.4 Self-Modifying Code Requirements ..2-35
2.3.3 Instruction Set Overview..2-36
2.3.4 PowerPC UISA Instructions...2-36
2.3.4.1 Integer Instructions...2-36
2.3.4.1.1 Integer Arithmetic Instructions ..2-36
2.3.4.1.2 Integer Compare Instructions ...2-37
2.3.4.1.3 Integer Logical Instructions..2-38
2.3.4.1.4 Integer Rotate and Shift Instructions..2-39
2.3.4.2 Floating-Point Instructions ...2-40
2.3.4.2.1 Denormalized Number Support..2-40
2.3.4.2.2 IEEE Mode (FPSCR[NI] = 0) ..2-41
2.3.4.2.3 Non-IEEE Mode (FPSCR[NI] = 1) ..2-41
2.3.4.2.4 Time-Critical Floating-Point Operations..2-42
2.3.4.2.5 Floating-Point Arithmetic Instructions...2-42
2.3.4.2.6 Floating-Point Multiply-Add Instructions..2-43
2.3.4.2.7 Floating-Point Rounding and Conversion Instructions2-44
2.3.4.2.8 Floating-Point Compare Instructions ...2-45
2.3.4.2.9 Floating-Point Status and Control Register Instructions........................2-45
2.3.4.2.10 Floating-Point Move Instructions...2-46
2.3.4.3 Load and Store Instructions..2-47
2.3.4.3.1 Integer Load and Store Address Generation ..2-47
2.3.4.3.2 Register Indirect Integer Load Instructions..2-47
2.3.4.3.3 Integer Store Instructions ...2-48
2.3.4.3.4 Integer Load and Store with Byte-Reverse Instructions2-49
2.3.4.3.5 Integer Load and Store Multiple Instructions...2-50
2.3.4.3.6 Integer Load and Store String Instructions...2-50
2.3.4.3.7 Floating-Point Load and Store Address Generation...............................2-51
2.3.4.3.8 Floating-Point Load Instructions..2-51
2.3.4.3.9 Floating-Point Store Instructions ...2-52
2.3.4.4 Branch and Flow Control Instructions ...2-53
2.3.4.4.1 Branch Instruction Address Calculation...2-54
2.3.4.4.2 Branch Instructions ..2-54
2.3.4.4.3 Condition Register Logical Instructions ..2-55
2.3.4.5 Trap Instructions...2-55
2.3.4.6 Processor Control Instructions ...2-55
2.3.4.6.1 Move to/from Condition Register Instructions2-56
2.3.4.7 Memory Synchronization Instructions—UISA..2-56
2.3.4.8 Preferred No-Op Instruction...2-58
2.3.5 PowerPC VEA Instructions..2-58
2.3.5.1 Processor Control Instructions ...2-58
2.3.5.2 Memory Synchronization Instructions—VEA...2-59
2.3.5.3 Memory Control Instructions—VEA...2-59
vi PowerPC 602 RISC Microprocessor User's Manual

CONTENTS

2.3.5.4 External Control Instructions ...2-61
2.3.6 PowerPC OEA Instructions..2-62
2.3.6.1 System Linkage Instructions ..2-62
2.3.6.2 Processor Control Instructions—OEA...2-62
2.3.6.2.1 Move to/from Machine State Register Instructions2-62
2.3.6.2.2 Move to/from Special-Purpose Register Instructions2-62
2.3.6.3 Memory Control Instructions—OEA...2-63
2.3.6.3.1 Supervisor-Level Cache Management Instruction.................................2-64
2.3.6.3.2 Segment Register Manipulation Instructions...2-64
2.3.6.3.3 Translation Lookaside Buffer Management Instructions.......................2-64
2.3.7 PowerPC 602 Implementation-Specific Instructions2-65
2.3.8 Recommended Simplified Mnemonics ..2-71
2.3.9 Using the esa Instruction for Supervisor-Level Access2-71
2.3.9.1 esa/dsa Instructions..2-72
2.3.9.2 ESA Supervisor-Access Registers ...2-73
2.3.9.2.1 Enabling the esa Instruction...2-73
2.3.9.2.2 Executing the esa Instruction...2-74
2.3.9.2.3 Returning to User-Level Operation..2-74
2.3.10 Differences between Using the esa Instruction and Taking a System Call

Exception ...2-75

Chapter 3
Instruction and Data Cache Operation

3.1 PowerPC 602 Processor Cache Implementation Overview3-1
3.2 Instruction Cache Organization and Control..3-4
3.2.1 Instruction Cache Organization..3-4
3.2.2 Instruction Cache Fill Operations ..3-5
3.2.3 Instruction Cache Control ..3-5
3.2.3.1 Instruction Cache Invalidation ...3-5
3.2.3.2 Locking the Instruction Cache ...3-5
3.3 Data Cache Organization and Control ...3-6
3.3.1 Data Cache Organization ...3-6
3.3.2 Data Cache Fill Operations ..3-6
3.3.3 Data Cache Control ..3-6
3.3.3.1 Data Cache Invalidation...3-6
3.3.3.2 Disabling the Data Cache...3-7
3.3.3.3 Locking the Data Cache...3-7
3.4 Basic Data Cache Operations...3-7
3.4.1 Data Cache Line-Fill Operation ...3-7
3.4.2 Data Cache Cast-Out Operation...3-8
3.4.3 Cache Block Push Operation ...3-8
Contents vii

CONTENTS

Paragraph
Number Title Page

Number

3.5 Data Cache Transactions on Bus ..3-8
3.5.1 Nonburst Transactions..3-8
3.5.2 Burst Transactions ..3-8
3.5.3 Access to Direct-Store Segments ...3-9
3.6 Memory Management/Cache Access Mode Bits—W, I, M, and G3-9
3.6.1 Write-Through Attribute (W) ...3-10
3.6.2 Caching-Inhibited Attribute (I)...3-11
3.6.3 Memory Coherency Attribute (M) ...3-11
3.6.4 Guarded Attribute (G) ..3-12
3.6.5 W, I, and M Bit Combinations ...3-12
3.6.5.1 Out-of-Order Execution and Guarded Memory ...3-13
3.6.5.2 Effects of Out-of-Order Data Accesses..3-13
3.6.5.3 Effects of Out-of-Order Instruction Fetches ..3-14
3.7 Cache Coherency—MEI Protocol ..3-14
3.7.1 MEI State Definitions...3-15
3.7.2 MEI State Diagram...3-15
3.7.3 Compatibility with MESI Protocol...3-16
3.7.4 Resource Collisions and Retries...3-17
3.7.5 Page Table Aliasing..3-17
3.7.6 MEI Hardware Considerations ...3-17
3.7.7 Coherency Precautions ...3-18
3.7.7.1 Internal Coherency Paradoxes..3-18
3.7.8 Load and Store Coherency Summary...3-19
3.7.9 Atomic Memory References...3-19
3.7.10 Cache Reaction to Specific Bus Operations...3-19
3.7.11 Operations Causing ARTRY Assertion ..3-21
3.8 Cache Control Instructions ...3-21
3.8.1 Data Cache Block Touch (dcbt) Instruction ..3-22
3.8.2 Data Cache Block Touch for Store (dcbtst) Instruction3-22
3.8.3 Data Cache Block Set to Zero (dcbz) Instruction ..3-22
3.8.4 Data Cache Block Invalidate (dcbi) Instruction...3-23
3.8.5 Data Cache Block Store (dcbst) Instruction ..3-23
3.8.6 Data Cache Block Flush (dcbf) Instruction..3-23
3.8.7 Enforce In-Order Execution of I/O Instruction (eieio)...................................3-24
3.8.8 Instruction Cache Block Invalidate (icbi) Instruction3-24
3.8.9 Instruction Synchronize (isync) Instruction ...3-24
3.8.10 Synchronize (sync) Instruction...3-24
3.9 Bus Operations Caused by Cache Control Instructions......................................3-24
3.10 Bus Interface...3-25
3.11 MEI State Transactions ..3-26
viii PowerPC 602 RISC Microprocessor User's Manual

CONTENTS

Chapter 4
Exceptions

4.1 Exception Classes...4-2
4.1.1 Exception Priorities..4-7
4.1.2 Summary of Front-End Exception Handling ...4-8
4.2 Exception Processing ...4-9
4.2.1 Enabling and Disabling Exceptions ...4-14
4.2.2 Steps for Exception Processing..4-14
4.2.3 Setting MSR[RI] ..4-15
4.2.4 Returning from an Exception Handler ...4-15
4.3 Process Switching ..4-16
4.4 Exception Latencies ...4-16
4.5 Exception Definitions...4-17
4.5.1 Reset Exceptions (0x0100) ..4-18
4.5.1.1 Hard Reset and Power-On Reset..4-19
4.5.1.2 Soft Reset ...4-20
4.5.2 Machine Check Exception (0x0200)..4-21
4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)4-22
4.5.2.2 Checkstop State (MSR[ME] = 0)...4-22
4.5.3 DSI Exception (0x0300) ..4-23
4.5.4 ISI Exception (0x0400) ..4-25
4.5.5 External Interrupt (0x0500)..4-25
4.5.6 Alignment Exception (0x0600)..4-26
4.5.6.1 Integer Alignment Exceptions ...4-27
4.5.6.2 Page Address Translation Access ..4-28
4.5.6.3 Floating-Point Alignment Exceptions..4-28
4.5.7 Program Exception (0x0700) ...4-29
4.5.7.1 IEEE Floating-Point Exception Program Exceptions4-29
4.5.7.2 Illegal, Reserved, and Unimplemented Instructions

Program Exceptions ...4-30
4.5.8 Floating-Point Unavailable Exception (0x0800) ...4-30
4.5.9 Decrementer Interrupt (0x0900) ..4-30
4.5.10 System Call Exception (0x0C00)...4-31
4.5.11 Trace Exception (0x0D00)...4-31
4.5.11.1 Single-Step Instruction Trace Mode ..4-32
4.5.11.2 Branch Trace Mode..4-32
4.5.12 Instruction TLB Miss Exception (0x1000) ..4-33
4.5.13 Data TLB Miss on Load Exception (0x1100)..4-33
4.5.14 Data TLB Miss on Store Exception (0x1200)..4-34
4.5.15 Instruction Address Breakpoint Exception (0x1300).....................................4-34
Contents ix

CONTENTS

Paragraph
Number Title Page

Number

4.5.16 System Management Interrupt (0x1400)..4-36
4.5.17 Watchdog Timer Interrupt (0x1500) ..4-37
4.5.18 Emulation Trap Exception (0x1600) ..4-39

Chapter 5
Memory Management

5.1 MMU Features..5-3
5.1.1 Overview of PowerPC 602 Processor-Specific Features5-6
5.1.1.1 Instruction-Related Protection Bits—NE and SE ..5-6
5.1.1.2 ESA Access and Memory Management...5-6
5.1.1.3 Protection-Only Mode Overview ...5-8
5.1.2 Memory Addressing ...5-8
5.1.3 MMU Organization ..5-8
5.1.4 Address Translation Mechanisms...5-13
5.1.5 Memory Protection Facilities ...5-15
5.1.6 Page History Information ...5-17
5.1.7 General Flow of MMU Address Translation..5-17
5.1.7.1 Real Addressing Mode and Block Address Translation Selection.............5-17
5.1.7.2 Page Address Translation Selection ...5-18
5.1.8 MMU Exceptions Summary...5-20
5.1.9 MMU Instructions and Register Summary...5-23
5.2 Real Addressing Mode ...5-25
5.3 Block Address Translation ...5-26
5.4 Memory Segment Model ..5-28
5.4.1 PTE Format in the PowerPC 602 Microprocessor ...5-28
5.4.2 Page History Recording..5-29
5.4.2.1 Referenced Bit ..5-30
5.4.2.2 Changed Bit ..5-31
5.4.2.3 Scenarios for Referenced and Changed Bit Recording5-31
5.4.3 Page Memory Protection ..5-32
5.4.4 TLB Description...5-33
5.4.4.1 TLB Organization...5-33
5.4.4.2 TLB Entry Invalidation ..5-35
5.4.5 Page Address Translation Summary ..5-35
5.5 Page Table Search Operation ...5-37
5.5.1 Page Table Search Operation—Conceptual Flow..5-37
5.5.2 Table Search Operation with the PowerPC 602 Microprocessor5-40
5.5.2.1 Resources for Table Search Operations ...5-40
5.5.2.1.1 Data and Instruction TLB Miss Address Registers

(DMISS and IMISS)...5-43
5.5.2.1.2 Data and Instruction PTE Compare Registers (DCMP and ICMP)5-43
x PowerPC 602 RISC Microprocessor User's Manual

CONTENTS

5.5.2.1.3 Primary and Secondary Hash Address Registers
(HASH1 and HASH2) ...5-44

5.5.2.1.4 Required Physical Address (RPA) Register...5-44
5.5.2.2 Software Table Search Operation ..5-45
5.5.2.2.1 Flow for Example Exception Handlers..5-46
5.5.2.2.2 Code for Example Exception Handlers..5-50
5.5.3 Page Table Updates..5-58
5.5.4 Segment Register Updates ...5-58
5.6 Protection-Only Mode..5-58
5.6.1 Use of Translation Resources in Protection-Only Mode5-59
5.6.1.1 TLB Misses in Protection-Only Mode...5-60
5.6.1.2 Access Protection in Protection-Only Mode..5-61
5.6.1.3 Required Physical Address Register in Protection-Only Mode.................5-61
5.6.2 ESA Enable Protection (Instruction Space Only) ..5-62
5.6.3 Translation Flow in Protection-Only Mode ...5-63

Chapter 6
Instruction Timing

6.1 Instruction Timing Overview...6-1
6.2 PowerPC 602 Microprocessor Pipeline Organization..6-4
6.3 Timing Considerations ...6-7
6.3.1 Instruction Fetch Timing..6-8
6.3.1.1 Cache Arbitration...6-8
6.3.1.2 Cache Hit..6-8
6.3.1.3 Cache Miss ...6-10
6.3.2 Instruction Dispatch and Completion Considerations....................................6-11
6.3.3 Rename Register Operation ...6-12
6.4 Execution Unit Timings ...6-12
6.4.1 Branch Processing Unit Execution Timing..6-12
6.4.1.1 Branch Folding...6-13
6.4.1.2 Static Branch Prediction...6-14
6.4.1.2.1 Predicted Branch Timing Examples ..6-15
6.4.2 Integer Unit Execution Timing ..6-16
6.4.3 Floating-Point Unit...6-16
6.4.4 Floating-Point Unit Execution Timing...6-17
6.4.5 Load/Store Unit Execution Timing..6-18
6.5 Memory Performance Considerations..6-18
6.5.1 Copy-Back Mode ...6-18
6.5.2 Write-Through Mode ...6-19
6.5.3 Caching-Inhibited Accesses ...6-19
6.6 Instruction Scheduling Guidelines ...6-20
Contents xi

CONTENTS

Paragraph
Number Title Page

Number

6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements6-20
6.6.1.1 Branch Resolution Resource Requirements ...6-20
6.6.1.2 Dispatch Unit Resource Requirements...6-21
6.6.1.3 Completion Unit Resource Requirements ..6-21
6.7 Instruction Serialization Modes..6-21
6.7.1 Completion Serialization ..6-21
6.7.2 Dispatch Serialization...6-22
6.7.3 Refetch Serialization ..6-22
6.7.4 FPU Serialization..6-22
6.8 Instruction Latency Summary ..6-22
6.8.1 BPU Instruction Timings..6-23
6.8.2 Integer Unit Instruction Timings ..6-23
6.8.3 Synchronization Instructions ..6-26
6.8.4 FPU Instruction Timings ..6-26
6.8.5 Load/Store Unit Instruction Timings..6-28
6.8.6 Effect of Operand Placement on Performance ...6-30
6.8.7 Effect of Floating-Point Exceptions on Performance.....................................6-31

Chapter 7
Signal Descriptions

7.1 Signal Configuration...7-2
7.1.1 Time-Multiplexed System Bus...7-4
7.2 Signal Descriptions...7-4
7.2.1 Bus Arbitration Signals ..7-4
7.2.1.1 Bus Request (BR)—Output ..7-5
7.2.1.2 Bus Grant (BG)—Input ..7-5
7.2.2 Transfer Start (TS)..7-6
7.2.2.1 Transfer Start (TS)—Output...7-6
7.2.2.2 Transfer Start (TS)—Input ...7-6
7.2.3 Address Transfer Signals..7-7
7.2.3.1 Address Signals (A0–A31)...7-7
7.2.3.1.1 Address Signals (A0–A31)—Output ...7-7
7.2.3.1.2 Address Signals (A0–A31)—Input ..7-7
7.2.3.1.3 Prefetch Line-Fill Address (PFADDR0–PFADDR20)—Output7-8
7.2.4 Transfer Attribute Signals ..7-8
7.2.4.1 Transfer Type (TT0–TT4)..7-8
7.2.4.1.1 Transfer Type (TT0–TT4)—Output...7-9
7.2.4.1.2 Transfer Type (TT0–TT4)—Input ...7-9
7.2.4.2 Transfer Size (TSIZ0–TSIZ2)—Output ...7-10
7.2.4.3 Byte Enable (BE0–BE7) ..7-11
7.2.4.4 Transfer Burst (TBST)..7-12
xii PowerPC 602 RISC Microprocessor User's Manual

CONTENTS

7.2.4.4.1 Transfer Burst (TBST)—Output ..7-12
7.2.4.4.2 Transfer Burst (TBST)—Input...7-12
7.2.4.5 Transfer Code (TC0–TC1)—Output..7-12
7.2.4.6 Cache Inhibit (CI)—Output ...7-13
7.2.4.7 Write-Through (WT)—Output ..7-13
7.2.4.8 Global (GBL) ...7-13
7.2.4.8.1 Global (GBL)—Output ..7-13
7.2.4.8.2 Global (GBL)—Input...7-14
7.2.5 Address Transfer Termination Signals...7-14
7.2.5.1 Address Acknowledge (AACK)—Input ...7-14
7.2.5.2 Address Retry (ARTRY) ...7-15
7.2.5.2.1 Address Retry (ARTRY)—Output ..7-15
7.2.5.2.2 Address Retry (ARTRY)—Input ...7-17
7.2.6 Data Phase Signal...7-19
7.2.6.1 Bus Busy (BB)..7-19
7.2.6.1.1 Bus Busy (BB)—Output ..7-19
7.2.6.1.2 Bus Busy (BB)—Input ...7-20
7.2.7 Data Transfer Signals ...7-20
7.2.7.1 Data Signals (D0–D63)..7-20
7.2.7.1.1 Data Signals (D0–D63)—Output...7-21
7.2.7.1.2 Data Signals (D0–D63)—Input ...7-21
7.2.7.2 Target Data Bus 32 (T32)—Input ..7-22
7.2.8 Data Transfer Termination Signals ..7-22
7.2.8.1 Transfer Acknowledge (TA)—Input ...7-22
7.2.8.2 Transfer Error Acknowledge (TEA)—Input ...7-23
7.2.9 System Status Signals ..7-23
7.2.9.1 Interrupt (INT)—Input ..7-23
7.2.9.2 System Management Interrupt (SMI)—Input..7-24
7.2.9.3 Machine Check Interrupt (MCP)—Input ..7-24
7.2.9.4 Checkstop Input (CKSTP_IN)—Input..7-24
7.2.9.5 Checkstop Output (CKSTP_OUT)—Output ..7-25
7.2.9.6 Reset Signals ..7-25
7.2.9.6.1 Hard Reset (HRESET)—Input ..7-25
7.2.9.6.2 Soft Reset (SRESET)—Input...7-25
7.2.9.6.3 Reset Out (RESETO)—Output..7-26
7.2.9.7 Quiescent Request (QREQ)—Output..7-26
7.2.9.8 Quiescent Acknowledge (QACK)—Input ..7-26
7.2.9.9 Time Base Enable (TBEN)—Input..7-27
7.2.10 JTAG/Scan Interface Signals ...7-27
7.2.10.1 Test Data Output (TDO)—Output ...7-28
7.2.10.2 Test Data Input (TDI)—Input ..7-28
7.2.10.3 Test Clock (TCK)—Input ..7-28
7.2.10.4 Test Mode Select (TMS)—Input ...7-28
Contents xiii

CONTENTS

Paragraph
Number Title Page

Number

7.2.10.5 Test Reset (TRST)—Input ...7-28
7.2.11 Clock Signals..7-29
7.2.11.1 System Clock (SYSCLK)—Input ..7-29
7.2.11.2 Test Clock (CLK_OUT)—Output..7-29
7.2.11.3 PLL Configuration (PLL_CFG0–PLL_CFG3)—Input..............................7-30
7.2.12 Power and Ground Signals ...7-30

Chapter 8
System Interface Operation

8.1 PowerPC 602 Microprocessor System Interface Overview8-1
8.1.1 Operation of the Instruction and Data Caches..8-2
8.1.2 32-Bit Data Bus Mode..8-5
8.1.3 Clocks ...8-5
8.1.4 Operation of the System Interface..8-5
8.2 Memory Access Protocol..8-6
8.3 Address Bus Phase..8-7
8.3.1 Bus Arbitration ...8-7
8.3.1.1 Bus Arbitration—Nonparked Case ..8-9
8.3.1.2 Bus Arbitration—Parked Case ...8-10
8.3.2 Address Transfer Subphase ..8-11
8.3.2.1 Address Phase Signal Configurations ..8-13
8.3.2.2 Transfer Attributes ...8-14
8.3.2.2.1 Transfer Type Encodings ...8-15
8.3.2.2.2 Transfer Size and Burst Ordering...8-16
8.3.2.2.3 Alignment...8-18
8.3.2.2.4 Transfer Code ...8-20
8.3.2.2.5 Address/Transfer Attribute Summary ..8-21
8.3.2.3 Address Phase Termination..8-22
8.3.3 Data Phase ..8-23
8.3.3.1 Data Transfer ..8-23
8.3.3.2 Data Phase Termination ...8-24
8.3.3.3 Normal Single-Beat Termination ...8-24
8.4 Memory Coherency and Bus Protocol..8-25
8.4.1 Effect on Read Operations..8-25
8.4.2 Qualified Snoop Conditions ...8-26
8.4.3 Internal Snoop Sources...8-26
8.4.4 Reaction on Qualified Snoops ..8-26
8.4.5 Special Instructions ..8-27
8.5 Bus Timing Examples ..8-28
8.5.1 64-Bit Data Bus Mode Basic Transactions ..8-29
8.5.1.1 Nonburst Read Transaction—64-Bit Mode ...8-29
xiv PowerPC 602 RISC Microprocessor User's Manual

CONTENTS

8.5.1.2 Burst Read Transaction with a Single-Cycle Address Phase—
64-Bit Mode ...8-31

8.5.1.3 Burst Read Transaction with a Single-Cycle
Address Phase/Shortest Data Phase—64-Bit Mode...............................8-32

8.5.1.4 Burst Read Transaction with a Multicycle Address Phase—64-Bit Mode 8-33
8.5.1.5 Nonburst Write Transaction—64-Bit Mode ..8-33
8.5.1.6 Burst Write Transaction—64-Bit Mode ..8-34
8.5.1.7 Slower Burst Write Transaction—64-Bit Mode ..8-36
8.5.2 32-Bit Bus Mode Basic Transactions...8-37
8.5.2.1 Single-Beat Read Transactions—32-Bit Only...8-37
8.5.2.2 Double-Beat Read Transactions—32-Bit Only ...8-38
8.5.2.3 Burst Read Operations—32-Bit ...8-39
8.5.2.4 Burst Read Transaction with a Multicycle Address Phase—32-Bit Mode 8-40
8.5.2.5 Write Transactions in 32-Bit Mode ...8-40
8.5.2.5.1 Fastest Single-Beat Write Transaction—32-Bit Mode8-41
8.5.2.5.2 Fastest Double-Beat Write Transaction—32-Bit Mode Only................8-41
8.5.2.5.3 Fastest Burst Write Transaction—32-Bit Mode8-42
8.5.3 Consecutive Operations ...8-43
8.5.3.1 Consecutive Nonburst Write-Read Transaction ..8-43
8.5.3.2 Consecutive Nonburst Read-Write Transaction ..8-44
8.5.3.3 Consecutive Burst Write-Read Transaction...8-45
8.5.3.4 Consecutive Burst Read-Write Transaction...8-46
8.5.4 Snooping ..8-47
8.5.4.1 Fastest Burst Write Transaction with Asserted GBL Signal......................8-48
8.5.4.2 Address Retry During 602 Read Transaction—

Single-Cycle Address Phase ..8-49
8.5.4.3 Address Retry During 602 Read Transaction—

Multicycle Address Phase..8-50
8.5.4.4 ARTRY During Other Master Read Transaction—

Single-Cycle Address Phase ..8-51
8.5.4.5 ARTRY During Other Master Read Transaction—

Multicycle Address Phase..8-51
8.5.4.6 Snoop Hit—Write-Back Transaction...8-52
8.5.4.7 Injected Snoop Timings ...8-54
8.5.4.7.1 First Injected Snoop in the Injected Snoop Window8-54
8.5.4.7.2 Last Injected Snoop in the Injected Snoop Window..............................8-55
8.5.5 Address-Only Transactions..8-56
8.5.5.1 Single-Cycle Address-Only Transaction ...8-56
8.5.5.2 Multicycle Address-Only Transaction ...8-57
Contents xv

CONTENTS

Paragraph
Number Title Page

Number

Chapter 9
Power Management

9.1 Dynamic Power Management ..9-1
9.2 Programmable Power Modes..9-1
9.2.1 Power Management Modes ..9-2
9.2.1.1 Full-Power Mode with Dynamic Power Management Disabled..................9-2
9.2.1.2 Full-Power Mode with Dynamic Power Management Enabled...................9-2
9.2.1.3 Doze Mode ...9-3
9.2.1.4 Nap Mode ...9-3
9.2.1.5 Sleep Mode...9-4
9.2.2 Power Management Software Considerations..9-4

Appendix A
PowerPC Instruction Set Listings

A.1 Instructions Sorted by Mnemonic..A-1
A.2 Instructions Sorted by Opcode ..A-9
A.3 Instructions Grouped by Functional Categories ..A-17
A.4 Instructions Sorted by Form ..A-27
A.5 Instruction Set Legend...A-38

Appendix B
Instructions Not Implemented

Appendix C
Boundary-Scan Testing Support

C.1 Boundary-Scan Interface Description ...C-1
C.1.1 Boundary-Scan Signals ...C-1
C.1.2 Boundary-Scan Registers and Scan Chains...C-2
C.1.2.1 Bypass Register ...C-2
C.1.2.2 Boundary-Scan Registers ..C-2
C.1.2.3 Compliance-Enable Signals ..C-3
C.1.3 Instruction Register ...C-3
C.1.4 TAP Controller ..C-3
C.2 Unimplemented IEEE 1149.1 Features ...C-3
C.3 Boundary-Scan Instructions ..C-4

Glossary of Terms and Abbreviations

Index
xvi PowerPC 602 RISC Microprocessor User's Manual

ILLUSTRATIONS

Figure
Number Title Page

 Number

 1-1. PowerPC 602 Microprocessor Block Diagram... 1-6
 1-2. Pipeline Diagram .. 1-7
 1-3. PowerPC 602 Microprocessor Programming Model—Registers 1-19
 1-4. Cache Organization... 1-27
 1-5. System Interface.. 1-36
 1-6. PowerPC 602 Microprocessor Signal Groups .. 1-39
 2-1. PowerPC 602 Processor Programming Model ... 2-3
 2-2. Machine State Register (MSR) ... 2-7
 2-3. Format of Upper BAT Registers—32-Bit Implementations............................... 2-9
 2-4. Format of Lower BAT Registers—32-Bit Implementations 2-9
 2-5. Hardware Implementation Register 0 (HID0) .. 2-12
 2-6. HID1—PLL Configuration Register... 2-14
 2-7. DMISS and IMISS Registers .. 2-15
 2-8. DCMP and ICMP Registers.. 2-15
 2-9. HASH1 and HASH2 Registers ... 2-16
 2-10. Required Physical Address Register (RPA)—Default Configuration 2-17
 2-11. RPA for ITLB Loads—Protection-Only Mode .. 2-18
 2-12. RPA for DTLB Loads—Protection-Only Mode... 2-18
 2-13. ESASRR—ESA Save and Restore Register... 2-19
 2-14. ESA Enable Base Register (SEBR) .. 2-19
 2-15. ESA Enable Register (SER).. 2-20
 2-16. Timer Control Register (TCR).. 2-21
 2-17. Interrupt Base Register ... 2-23
 2-18. Instruction Address Breakpoint Register (IABR)... 2-24
 3-1. PowerPC 602 Processor Instruction and Data Cache Organization 3-1
 3-2. Double-Word Address Ordering—Critical Double Word First.......................... 3-9
 3-3. MEI Cache Coherency Protocol—State Diagram (WIM = 001)...................... 3-16
 3-4. Bus Interface Address Buffers .. 3-26
 4-1. Machine Status Save/Restore Register 0 .. 4-9
 4-2. Machine Status Save/Restore Register 1 .. 4-9
 4-3. Machine State Register (MSR) ... 4-11
 4-4. Reset Sequence ... 4-18
 4-5. Timer Control Register (TCR).. 4-37
 5-1. MMU Conceptual Block Diagram—32-Bit Implementations.......................... 5-10
 5-2. PowerPC 602 Microprocessor IMMU Block Diagram 5-11
 5-3. PowerPC 602 Microprocessor DMMU Block Diagram................................... 5-12
Illustrations xvii

ILLUSTRATIONS

Figure
Number Title Page

Number

 5-4. Address Translation Types ... 5-14
 5-5. General Flow of Address Translation (Real Addressing Mode and Block) 5-18
 5-6. Address Translation with Segment Descriptor ... 5-19
 5-7. Flow for a BAT Array Hit .. 5-27
 5-8. Page Table Entry Format—PowerPC 602 Processor.. 5-28
 5-9. Segment Register and TLB Organization ... 5-34
 5-10. Page Address Translation Flow for PowerPC 602 Processor—TLB Hit 5-36
 5-11. Primary Page Table Search—Conceptual Flow ... 5-39
 5-12. Secondary Page Table Search Flow—Conceptual Flow 5-40
 5-13. Derivation of KEY bit for SRR1 .. 5-42
 5-14. DMISS and IMISS Registers .. 5-43
 5-15. DCMP and ICMP Registers.. 5-43
 5-16. HASH1 and HASH2 Registers ... 5-44
 5-17. Required Physical Address (RPA) Register—Default Configuration 5-45
 5-18. Flow for Example Software Table Search Operation 5-47
 5-19. Check and Set R, C Bit Flow.. 5-48
 5-20. Page Fault Setup Flow .. 5-49
 5-21. Setup for Protection Violation Exceptions ... 5-50
 5-22. TLB Lookup Operation in Protection-Only Mode ... 5-60
 5-23. RPA for ITLB Load Operations in Protection-Only Mode 5-61
 5-24. RPA for DTLB Load Operations in Protection-Only Mode............................. 5-62
 5-25. ESA Enable Base Register (SEBR) .. 5-62
 5-26. ESA Enable Register (SER).. 5-63
 5-27. Translation Flow in Protection-Only Mode.. 5-64
 5-28. Protection Checking with Key = 0 in Protection-Only Mode 5-65
 6-1. Instruction Flow Diagram... 6-2
 6-2. Pipelined Execution Unit .. 6-3
 6-3. Pipeline Diagrams for the PowerPC 602 Processor Execution Units................. 6-5
 6-4. Instruction Timing—Cache Hit .. 6-9
 6-5. Instruction Timing—Cache Miss.. 6-10
 6-6. Branch Instruction Timing.. 6-15
 6-7. FPU Block Diagram.. 6-17
 7-1. PowerPC 602 Microprocessor Signal Groups .. 7-3
 7-2. Address Format/Data Format Using Byte Enable Signals................................ 7-11
 7-3. ARTRY During Other Master Read—Single-Cycle Address Phase................ 7-16
 7-4. ARTRY During Other Master Read Transaction—Multicycle Address Phase 7-17
 7-5. ARTRY During Read Transaction—Single-Cycle Address Phase 7-18
 7-6. ARTRY During PowerPC 602 Processor Read Transaction—

Multicycle Address Phase.. 7-19
 7-7. Boundary-Scan Interface .. 7-27
 8-1. PowerPC 602 Microprocessor Block Diagram... 8-4
 8-2. Timing Diagram Legend... 8-6
 8-3. Address and Data Phases of a Memory Transaction .. 8-7
xviii PowerPC 602 RISC Microprocessor User’s Manual

ILLUSTRATIONS

Figure
Number Title Page

Number
 8-4. Bus Arbitration—Nonparked Case ... 8-9
 8-5. Bus Arbitration Showing Bus Parking.. 8-11
 8-6. Address Bus Transfer.. 8-13
 8-7. Data Format Using Byte Enable Signals .. 8-14
 8-8. Snooped Address Cycle with ARTRY ... 8-23
 8-9. Normal Single-Beat Read Termination .. 8-24
 8-10. Normal Burst Transaction... 8-25
 8-11. Nonburst Read Transaction, Single-Cycle Address Phase—64-Bit Mode....... 8-30
 8-12. Burst Read Transaction with a Single-Cycle Address Phase—64-Bit Mode ... 8-31
 8-13. Burst Read Transaction with a Single-Cycle

Address Phase/Shortest Data Phase—64-Bit Mode 8-32
 8-14. Burst Read Transaction with a Multicycle Address Phase—64-Bit Mode....... 8-33
 8-15. Fastest Nonburst Write Transaction—64-Bit Mode ... 8-34
 8-16. Fastest Burst Write Transaction with Negated GBL Signal

(Single-Cycle Address Phase)—64-Bit Mode ... 8-35
 8-17. Slow Burst Write Transaction... 8-36
 8-18. Single-Beat Read Transactions—32-Bit Only.. 8-37
 8-19. Double-Beat Read Transactions—32-Bit Only .. 8-38
 8-20. Burst Read Transaction with a Single-Cycle Address Phase—32-Bit 8-39
 8-21. Burst Read Transaction with a Multicycle Address Phase—32-Bit Mode....... 8-40
 8-22. Fastest Single-Beat Write Transaction—32-Bit Mode 8-41
 8-23. Fastest Double-Beat Write Transaction—32-Bit Mode 8-42
 8-24. Fastest Burst Write Transaction—32-Bit Mode ... 8-43
 8-25. Consecutive Nonburst Write-Read Transaction ... 8-44
 8-26. Consecutive Nonburst Read-Write Transaction ... 8-45
 8-27. Consecutive Burst Write-Read Transaction.. 8-46
 8-28. Consecutive Burst Read-Write Transaction.. 8-47
 8-29. Fastest Burst Write Transaction with Asserted GBL Signal 8-48
 8-30. ARTRY During Read Transaction—Single-Cycle Address Phase 8-49
 8-31. ARTRY During 602 Read Transaction—Multicycle Address Phase 8-50
 8-32. ARTRY During Other Master Read—Single-Cycle Address Phase................. 8-51
 8-33. ARTRY During Other Master Read Transaction—Multicycle Address Phase 8-52
 8-34. Snoop Hit—Write-Back Transaction.. 8-53
 8-35. First Injected Snoop in the Injected Snoop Window .. 8-54
 8-36. Last Injected Snoop in the Injected Snoop Window... 8-55
 8-37. Single-Cycle Address-Only Transaction .. 8-56
 8-38. Multicycle Address-Only Transaction.. 8-57
 C-1 Boundary-Scan Interface Block Diagram ...C-2
Illustrations xix

xx PowerPC 602 RISC Microprocessor User’s Manual

TABLES

Table
Number Title Page

Number
 i Acronyms and Abbreviated Terms .. xxxii
 ii Terminology Conventions ..xxxv
 iii Instruction Field Conventions...xxxv
 1-1 PowerPC 602 Microprocessor Exception Classifications................................. 1-30
 1-2 Exceptions and Conditions ... 1-30
 2-1 Machine State Register—Implementation-Specific Bits 2-7
 2-2 SRR1—PowerPC 602-Specific Bits for Software Table Search Operations 2-8
 2-3 SRR1—PowerPC 602-Specific Bits for Machine Check Handling 2-9
 2-4 BAT Registers—Field and Bit Descriptions... 2-10
 2-5 BAT Area Lengths.. 2-11
 2-6 PowerPC 602 Processor-Specific SPRs.. 2-11
 2-7 HID0 Bit Settings.. 2-12
 2-8 CLK_OUT Signal Configuration.. 2-14
 2-9 HID1 Bit Settings.. 2-14
 2-10 DCMP and ICMP Bit Settings.. 2-16
 2-11 HASH1 and HASH2 Bit Settings ... 2-16
 2-12 RPA Bit Settings—Default Configuration.. 2-17
 2-13 ESASRR Bit Settings.. 2-19
 2-14 Timer Control Register Bit Settings ... 2-22
 2-15 Determining the Exception Vector Address ... 2-23
 2-16 Instruction Address Breakpoint Register Bit Settings 2-25
 2-17 Memory Operands .. 2-29
 2-18 Integer Arithmetic Instructions ... 2-36
 2-19 Integer Compare Instructions.. 2-37
 2-20 Integer Logical Instructions .. 2-38
 2-21 Integer Rotate Instructions.. 2-39
 2-22 Integer Shift Instructions... 2-39
 2-23 Non-IEEE Mode Results... 2-41
 2-24 Floating-Point Arithmetic Instructions ... 2-42
 2-25 Floating-Point Multiply-Add Instructions .. 2-43
 2-26 Floating-Point Rounding and Conversion Instructions..................................... 2-45
 2-27 Floating-Point Compare Instructions.. 2-45
 2-28 Floating-Point Status and Control Register Instructions 2-46
 2-29 Floating-Point Move Instructions ... 2-46
 2-30 Integer Load Instructions .. 2-48
 2-31 Integer Store Instructions.. 2-49
Tables xxi

TABLES
Table
Number Title Page

Number
 2-32 Integer Load and Store with Byte-Reverse Instructions 2-49
 2-33 Integer Load and Store Multiple Instructions ... 2-50
 2-34 Integer Load and Store String Instructions ... 2-51
 2-35 Floating-Point Load Instructions .. 2-51
 2-36 Floating-Point Store Instructions .. 2-52
 2-37 Branch Instructions ... 2-54
 2-38 Condition Register Logical Instructions ... 2-55
 2-39 Trap Instructions ... 2-55
 2-40 Move to/from Condition Register Instructions ... 2-56
 2-41 Memory Synchronization Instructions—UISA .. 2-58
 2-42 Move from Time Base Instruction.. 2-59
 2-43 Memory Synchronization Instructions—VEA ... 2-59
 2-44 User-Level Cache Instructions.. 2-60
 2-45 System Linkage Instructions... 2-62
 2-46 Move to/from Machine State Register Instructions .. 2-62
 2-47 Move to/from Special-Purpose Register Instructions 2-63
 2-48 Supervisor-Level Cache Management Instruction.. 2-64
 2-49 Segment Register Manipulation Instructions.. 2-64
 2-50 Translation Lookaside Buffer Management Instructions 2-65
 3-1 Combinations of W, I, and M Bits.. 3-12
 3-2 MEI State Definitions ... 3-15
 3-3 Memory Coherency Actions on Load Operations .. 3-19
 3-4 Memory Coherency Actions on Store Operations .. 3-19
 3-5 Response to Bus Transactions .. 3-20
 3-6 Bus Operations Caused by Cache Control Instructions (WIM = 001) 3-25
 3-7 MEI State Transitions ... 3-27
 4-1 PowerPC 602 Microprocessor Exception Classifications................................... 4-3
 4-2 Exceptions and Conditions ... 4-4
 4-3 Exception Priorities... 4-7
 4-4 SRR1 Bit Settings for Machine Check Exceptions... 4-10
 4-5 SRR1 Bit Settings for Software Table Search Operations................................ 4-10
 4-6 MSR Bit Settings .. 4-11
 4-7 IEEE Floating-Point Exception Mode Bits... 4-13
 4-8 MSR Setting Due to Exception... 4-17
 4-9 Settings Caused by Hard Reset ... 4-19
 4-10 Soft Reset Exception—Register Settings.. 4-20
 4-11 Machine Check Exception—Register Settings... 4-22
 4-12 DSI Exception—Register Settings.. 4-24
 4-13 External Interrupt Exception—Register Settings.. 4-25
 4-14 Alignment Exception—Register Settings ... 4-26
 4-15 Access Types .. 4-27
 4-16 Trace Exception—Register Settings ... 4-32
 4-17 Instruction and Data TLB Miss Exceptions—Register Settings....................... 4-33
xxii PowerPC 602 RISC Microprocessor User’s Manual

TABLES

 4-18 Instruction Address Breakpoint Exception—Register Settings........................ 4-35
 4-19 Breakpoint Action for Multiple Modes Enabled for the Same Address........... 4-35
 4-20 System Management Interrupt—Register Settings... 4-36
 4-21 Timer Control Register Bit Settings ... 4-37
 4-22 Watchdog Timer Interrupt—Register Settings ... 4-39
 4-23 Emulation Trap Exception—Register Settings... 4-39
 5-1 MMU Features Summary ... 5-4
 5-2 Instruction Space Access Permissions .. 5-6
 5-3 PowerPC 602 Microprocessor Feature Mapping.. 5-15
 5-4 Access Protection Options for Pages .. 5-15
 5-5 Translation Exception Conditions... 5-21
 5-6 Other MMU Exception Conditions for the PowerPC 602 Processor 5-22
 5-7 PowerPC 602 Microprocessor Instruction Summary—Control MMUs........... 5-23
 5-8 PowerPC 602 Microprocessor MMU Registers ... 5-24
 5-9 PTE Bit Definitions—PowerPC 602 Processor.. 5-29
 5-10 Table Search Operations to Update History Bits—TLB Hit Case 5-30
 5-11 Model for Guaranteed R and C Bit Settings ... 5-32
 5-12 Implementation-Specific Resources for Search Operations 5-41
 5-13 SRR1 Bits Specific to the PowerPC 602 Microprocessor 5-42
 5-14 DCMP and ICMP Bit Settings.. 5-44
 5-15 HASH1 and HASH2 Bit Settings ... 5-44
 5-16 RPA Bit Settings—Default Configuration.. 5-45
 6-1 BPU Operations .. 6-23
 6-2 Integer Unit Operations... 6-23
 6-3 Condition Register Logical Operations .. 6-26
 6-4 Synchronization Instructions .. 6-26
 6-5 FPU Operations... 6-27
 6-6 Load/Store Unit Instruction Timings .. 6-28
 7-1 Time-Multiplexed Signal Assignments .. 7-4
 7-2 Alternate Uses for PFADDR0–PFADDR20... 7-8
 7-3 TT0–TT4 Encodings... 7-9
 7-4 Data Transfer Size... 7-11
 7-5 Encodings for TC0–TC1 Signals .. 7-13
 7-6 Data Lane Assignments .. 7-20
 7-7 Alternate Uses of the Data Signals (D0–D63).. 7-21
 7-8 PLL Configuration .. 7-30
 8-1 Input Conditions for a Qualified Bus Grant.. 8-8
 8-2 Time-Multiplexed Signal Assignments .. 8-14
 8-3 Transfer Type Encoding ... 8-15
 8-4 Data Transfer Size... 8-16
 8-5 Burst Ordering–64-Bit Mode.. 8-17
 8-6 Burst Ordering—32-Bit Mode.. 8-17
 8-7 Data Transfers—64-Bit Mode .. 8-18
Tables xxiii

TABLES
Table
Number Title Page

Number
 8-8 Data Transfers—32-Bit Mode .. 8-19
 8-9 Transfer Code Signal Encoding .. 8-21
 8-10 Address/Transfer Attribute Summary... 8-21
 8-11 Bus Impact for Special Instructions.. 8-27
 9-1 PowerPC 602 Microprocessor Programmable Power Modes............................. 9-2
 A-1 Complete Instruction List Sorted by Mnemonic.. A-1
 A-2 Complete Instruction List Sorted by Opcode... A-9
 A-3 Integer Arithmetic Instructions .. A-17
 A-4 Integer Compare Instructions... A-18
 A-5 Integer Logical Instructions ... A-18
 A-6 Integer Rotate Instructions... A-18
 A-7 Integer Shift Instructions.. A-19
 A-8 Floating-Point Arithmetic Instructions .. A-19
 A-9 Floating-Point Multiply-Add Instructions ... A-20
 A-10 Floating-Point Rounding and Conversion Instructions.................................... A-20
 A-11 Floating-Point Compare Instructions... A-20
 A-12 Floating-Point Status and Control Register Instructions A-20
 A-13 Integer Load Instructions ... A-21
 A-14 Integer Store Instructions... A-21
 A-15 Integer Load and Store with Byte-Reverse Instructions A-22
 A-16 Integer Load and Store Multiple Instructions .. A-22
 A-17 Integer Load and Store String Instructions .. A-22
 A-18 Memory Synchronization Instructions... A-22
 A-19 Floating-Point Load Instructions ... A-23
 A-20 Floating-Point Store Instructions ... A-23
 A-21 Floating-Point Move Instructions .. A-23
 A-22 Branch Instructions .. A-24
 A-23 Condition Register Logical Instructions .. A-24
 A-24 System Linkage Instructions.. A-24
 A-25 Trap Instructions .. A-25
 A-26 Processor Control Instructions... A-25
 A-27 Cache Management Instructions.. A-25
 A-28 Segment Register Manipulation Instructions... A-25
 A-29 Lookaside Buffer Management Instructions.. A-26
 A-30 External Control Instructions... A-26
 A-31 I-Form .. A-27
 A-32 B-Form... A-27
 A-33 SC-Form... A-27
 A-34 D-Form... A-27
 A-35 DS-Form .. A-29
 A-36 X-Form... A-29
 A-37 XL-Form .. A-33
 A-38 XFX-Form.. A-34
xxiv PowerPC 602 RISC Microprocessor User’s Manual

TABLES

 A-39 XFL-Form.. A-34
 A-40 XS-Form .. A-34
 A-41 XO-Form.. A-34
 A-42 A-Form... A-35
 A-43 M-Form.. A-36
 A-44 MD-Form ... A-36
 A-45 MDS-Form... A-37
 A-46 PowerPC Instruction Set Legend ... A-38
 B-1 32-Bit Instructions Not Implemented by the PowerPC 602 MicroprocessorB-1
 B-2 64-Bit Instructions Not Implemented by the PowerPC 602 MicroprocessorB-1
 B-3 64-Bit SPR Encoding Not Implemented by the PowerPC 602 Microprocessor.B-3
Tables xxv

xxvi PowerPC 602 RISC Microprocessor User’s Manual

About This Book
The primary objective of this manual is to help hardware and software designers who are
working with the PowerPC 602™ microprocessor. This book is intended as a companion
to the PowerPC™ Microprocessor Family: The Programming Environments, referred to as
The Programming Environments Manual. Because the PowerPC architecture is designed to
be flexible to support a broad range of processors, The Programming Environments Manual
provides a general description of features that are common to PowerPC processors and
indicates those features that are optional or that may be implemented differently in the
design of each processor. Contact your local sales representative to obtain a copy of The
Programming Environments Manual.

The PowerPC 602 RISC Microprocessor User’s Manual summarizes features of the 602
that are not defined by the architecture. This document and The Programming
Environments Manual distinguish between the three levels, or programming environments,
of the PowerPC architecture, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.
About This Book xxvii

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

Note also that the PowerPC architecture does not specify whether certain functionality be
implemented in hardware or software. Similarly, a PowerPC implementation may provide
functionality that offers alternatives to the PowerPC architecture in addition to that defined
by the PowerPC architecture.

For ease in reference, this book has arranged topics described by the architecture
information into topics that build upon one another, beginning with a description and
complete summary of 602-specific registers and progressing to more specialized topics
such as 602-specific details regarding the cache, exception, and memory management
models. As such, chapters may include information from multiple levels of the architecture.
(For example, the discussion of the cache model uses information from both the VEA and
the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience
This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 602. It is assumed that the reader
understands operating systems, microprocessor system design, the basic principles of RISC
processing, and details of the PowerPC architecture.
xxviii PowerPC 602 RISC Microprocessor User's Manual

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition, and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

• Chapter 2, “PowerPC 602 Microprocessor Programming Model,” is useful for
software engineers who need to understand the 602-specific registers, operand
conventions, and details regarding how PowerPC instructions are implemented on
the 602.

• Chapter 3, “Instruction and Data Cache Operation,” provides a discussion of the
cache and memory model as implemented on the 602.

• Chapter 4, “Exceptions,” describes the exception model as implemented on the 602.

• Chapter 5, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as implemented on the 602.

• Chapter 6, “Instruction Timing,” describes instruction timing in the 602.

• Chapter 7, “Signal Descriptions,” describes individual signals defined for the 602.

• Chapter 8, “System Interface Operation,” describes interface operations on the 602.

• Chapter 9, “Power Management,” describes the operation of the power management
hardware and software facilities incorporated in the 602.

• Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

• Appendix B, “Instructions Not Implemented,” describes the 32-bit and 64-bit
PowerPC instructions that are not implemented in the 602.

• Appendix C, “Boundary-Scan Testing Support,” provides a boundary-scan interface
for board-level testing.

• This manual also includes a glossary and an index.

In this document, the term “602” is used as an abbreviation for the phrase, “PowerPC 602
Microprocessor.” The PowerPC 602 microprocessors are available from IBM as PPC602
and from Motorola as MPC602.
About This Book xxix

Additional Reading
This section lists additional reading that provides background for the information in this
manual.

• PowerPC Microprocessor Family: The Programming Environments, MPCFPE/AD
(Motorola Order Number) and MPRPPCFPE-01 (IBM Order Number)

• The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, CA

• John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA

• PowerPC 602 RISC Microprocessor Technical Summary, Rev 1
MPC602/D (Motorola Order Number) and MPR602TSU-02 (IBM Order Number)

• PowerPC 603™ RISC Microprocessor Technical Summary, Rev 3
MPC603/D (Motorola order number) and MPR603TSU-03 (IBM order number)

• PowerPC 603e™ RISC Microprocessor Technical Summary, Rev 0
MPC603E/D (Motorola order number) and MPR603TSU-04 (IBM order number)

• PowerPC 603e RISC Microprocessor User’s Manual (with Supplement for
PowerPC 603 Microprocessor), MPC603EUM/AD (Motorola order number) and
MPR603EUM-01 (IBM order number)

• PowerPC 604™ RISC Microprocessor Technical Summary, Rev 1
MPC604/D (Motorola order number) and MPR604TSU-02 (IBM order number)

• PowerPC 604 RISC Microprocessor User’s Manual, Rev 0
MPC604UM/AD (Motorola order #) and MPR604UMU-01 (IBM order #)

Additional literature on PowerPC implementations is being released as new processors
become available.
xxx PowerPC 602 RISC Microprocessor User's Manual

Motorola Electronic Support
Motorola provides electronic support through the following channels. The technical
support BBS, known as AESOP (Application Engineering Support through On-Line
Productivity), can be reached by modem or the Internet.

Modem: Call 1-800-843-3451 (outside U.S. or Canada, call (512) 891-3650) on a modem
that runs at 14,400 bps or slower. Set your software to C/8/1/F emulating a VT100.

Internet: This access is provided via telnet at pirs.aus.sps.mot.com [129.38.233];
or through the world-wide web at http://pirs.aus.sps.mot.com and
http://www.mot.com/powerpc/.

Note that the code for implementing the software table search routines can be acquired from
Motorola’s home page:
http://www.mot.com/pub/SPS/powerpc/library/user_man/602mmu.txt.

Apps FAX Line: You may FAX questions to 1-800-248-8567.

IBM Electronic Support
IBM provides electronic support through the following channels:

Internet: This access is provided through the following world-wide web locations:

IBM world-wide web home page at http://www.ibm.com
IBM Microelectronics world-wide web home page at http://www/chips.ibm.com

FAX: IBM Microelectronics FAX service at (415) 855-4121

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

ACTIVE_LOW A bar over a signal name indicates that the signal is active low—for
example, ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
AP0–AP3 (address bus parity signals) and TT0–TT4 (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

mnemonics Instruction mnemonics are shown in lowercase bold.

OPERATIONS Address-only bus operations that are named for the instructions that
generate them are identified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.
About This Book xxxi

italics Italics indicate variable command parameters, for example, bcctrx

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rA|0 The contents of a specified GPR or the value 0.

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

mtspr(SPR_NAME) In text, the SPR accessed by an mtspr or mfspr instruction is
identified in parenthesis after the instruction. This should not be
confused with the instruction syntax for these instructions.

x In certain contexts, such as a signal encoding, this indicates a don’t
care.

n Used to express an undefined numerical value.

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

BAT Block address translation

BIST Built-in self test

BIU Bus interface unit

BPU Branch processing unit

COP Common on-chip processor

CR Condition register

CTR Count register

DAR Data address register

DBAT Data BAT

DEC Decrementer (register)
xxxii PowerPC 602 RISC Microprocessor User's Manual

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ESASRR ESA save and restore register

FIFO First-in-first-out

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

HID0(1) Hardware implementation dependent (register) 0(1)

IABR Instruction address breakpoint register

IBAT Instruction BAT

IBR Interrupt base register

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IQ Instruction queue

IU Integer unit

JTAG Joint Test Action Group

L2 Secondary cache

LR Link register

LRU Least-recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

LT Integer tag register

MEI Modified/exclusive/ invalid

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
About This Book xxxiii

NaN Not a number

No-op No operation

OEA Operating environment architecture

PLL Phase-locked loop

POWER Performance Optimized with Enhanced RISC architecture

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing/computer

RPA Required physical address (register)

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SER ESA enable register

SEBR ESA enable base register

SIMM Signed immediate value

SP Single-precision tag register

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRR0 (Machine status) save/restore register 0

SRR1 (Machine status) save/restore register 1

TB Time base register

TCR Timer control register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VEA Virtual environment architecture

XER Register used for indicating conditions such as carries and overflows for integer operations

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
xxxiv PowerPC 602 RISC Microprocessor User's Manual

Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table iii describes instruction field notation conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception

Interrupt* Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

* For a detailed discussion of how the terms interrupt and exception are used in this
document, see the introduction to Chapter 4, “Exceptions.”

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)
About This Book xxxv

xxxvi PowerPC 602 RISC Microprocessor User's Manual

Chapter 1
Overview
10
10

This chapter provides an overview of the PowerPC 602™ microprocessor features,
including a block diagram showing the major functional components. It provides
information about how the 602 implementation complies with the PowerPC™ architecture
definition.

1.1 PowerPC 602 Microprocessor Overview
This section describes features of the 602, provides a block diagram showing the major
functional units, and describes in a general way how the 602 operates.

The 602 is a low-cost, low-power implementation of the PowerPC microprocessor family
of reduced instruction set computer (RISC) microprocessors. The 602 implements the 32-
bit portion of the PowerPC architecture, which provides 32-bit effective addresses, integer
data types of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits. Floating-
point operations involving either 32- or 64-bit data types in single-precision format are
supported; however, floating-point operations involving 64-bit data types in double-
precision format are not implemented in hardware and are instead trapped for emulation in
software. For more information about how the architecture defines addressing and data
types, see PowerPC Microprocessor Family: The Programming Environments (also
referred to as The Programming Environments Manual).

The 602 provides dynamic and static power-saving modes. The three static modes—nap,
doze, and sleep—progressively reduce the amount of power required by the processor.
Dynamic power management mode allows the processor to reduce power consumption by
providing clocking only to those functional units that are active, without affecting
operational performance, software execution, or external hardware.

The 602 can simultaneously fold one branch instruction and dispatch one nonbranch
instruction per clock cycle to any one of three execution units. Instructions can execute out
of order; however, the instructions complete and write back in program order.

The 602 has four execution units—an integer unit (IU), a floating-point unit (FPU), a
branch processing unit (BPU), and a load/store unit (LSU). The ability to execute four
instructions in parallel and the use of simple instructions with rapid execution times yield
high efficiency and throughput for 602-based systems. Most integer instructions execute in
Chapter 1. Overview 1-1

one clock cycle. The FPU is pipelined such that typically when the FPU pipeline is full a
single-precision instruction can complete on each clock cycle.

The 602 provides independent on-chip, 4-Kbyte, two-way set-associative, physically
addressed caches for instructions and data and on-chip instruction and data memory
management units (MMUs). The 602 MMUs contain 32-entry, two-way set-associative,
data and instruction translation lookaside buffers (DTLB and ITLB). The TLBs cache the
translations for the most recently used pages. The 602 also supports block address
translation through the use of two independent instruction and data block address
translation (IBAT and DBAT) arrays of four entries each. Effective addresses are compared
simultaneously with all four entries in the BAT array during block translation. If an
effective address matches any entry in the BATs, the BAT entry takes priority over any
potential matches in the TLBs. In real addressing mode, the MMU translation is disabled.

The 602 provides an additional memory protection mechanism not defined by the PowerPC
architecture. The 602’s protection-only mode can control whether instructions can be
fetched from 4-Kbyte instruction pages and whether data can be written to 4-Kbyte data
pages. Protection-only mode also controls the ability to execute the 602-specific esa
(Enable Supervisor Access) instruction on a per-page basis. When this instruction is
enabled, its execution causes the processor to enter supervisor mode. In protection-only
mode, the effective address is also used as the physical address just as in real addressing
mode, but the MMU page addressing mechanism is enabled to enforce this protection. For
details, refer to Section 1.1.5.1, “Memory Management Units (MMUs).”

The 602 has a single bus interface for transferring 32-bit addresses and either 32- or 64-bit
data. This bus is time-multiplexed, as described in Section 1.2.8, “System Interface.” When
the bus is in the data phase, it can be configured dynamically to perform as a 32- or 64-bit
data bus.

The 602 interface protocol allows multiple masters to compete for system resources
through a central external arbiter. The 602 provides a three-state coherency protocol that
supports the modified, exclusive, and invalid (MEI) cache states. This protocol is a
compatible subset of the MESI (modified/exclusive/shared/invalid) four-state protocol and
operates coherently in systems that contain four-state caches.

The amount of data that can be transferred per bus clock cycle depends on whether the bus
is configured as a 32- or 64-bit bus. In 64-bit mode, the bus can transfer up to 64 bits in a
single-beat (nonburst) transaction and an entire eight-word cache block in a four-beat burst
transaction. In 32-bit mode, there are two types of nonburst transactions. A single-beat
transaction transfers up to 32 bits and a double-beat transaction transfers 64 bits. In 32-bit
mode, the burst transaction requires eight beats to transfer a cache block of data.

The 602 uses an advanced, 3.3-V CMOS process technology and maintains full interface
compatibility with TTL devices.
1-2 PowerPC 602 RISC Microprocessor User's Manual

1.1.1 PowerPC 602 Microprocessor Features
This section describes details of the 602’s implementation of the PowerPC architecture.
Major features of the 602 are as follows:

• High-performance microprocessor with parallel execution units
— One instruction is fetched from the instruction queue per clock cycle
— One instruction can be issued and one retired per clock cycle
— As many as four instructions in execution per clock cycle
— Single-cycle execution for most instructions

• Four independent execution units and two register files
— Branch processing unit (BPU)

– Zero-cycle branch capability (branch folding)
– Programmable static branch prediction on unresolved conditional branches
– BPU that performs CR-lookahead operations

— A 32-bit integer unit (IU)

– Thirty-two 32-bit general-purpose registers (GPRs) for integer operands

— A 32-bit floating-point unit (FPU)

– Fully IEEE 754-compliant FPU for single-precision operations

– Emulation support for double-precision operations

– An implementation of the non-IEEE floating-point mode

– Thirty-two 32-bit floating-point registers (FPRs) for single-precision
operands

— A load/store unit (LSU) for data transfer between data cache and GPRs and FPRs

• Rename registers to allow data-dependent instructions to access source data before
it has been written back to architected registers

— Four GPR rename buffers

— Four FPR rename buffers

— One rename buffer each for the condition register (CR), link register (LR), and
count register (CTR)

• Instruction pipelining

— Instruction unit capable of simultaneously folding out a branch instruction and
dispatching one instruction per clock cycle from the instruction queue

— A four-entry instruction queue that provides lookahead capability

— Independent pipelines with feed-forwarding that reduces data dependencies in
hardware
Chapter 1. Overview 1-3

• Separate caches for instructions and data (Harvard architecture)

— 4-Kbyte data cache—two-way set-associative, physically addressed; LRU
replacement algorithm

— 4-Kbyte instruction cache—two-way set-associative, physically addressed; LRU
replacement algorithm

— Eight-word cache block can be updated by a burst operation

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

• Memory management features

— Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— A 32-entry, two-way set-associative ITLB

— A 32-entry, two-way set-associative DTLB

— 52-bit virtual address; 32-bit physical address

— Four-entry data and instruction BAT arrays providing 128-Kbyte to 256-Mbyte
blocks

— Efficient software table search operation aided by hardware assistance

— Ability to inhibit instruction fetching on a page or block basis. This is provided
by the 602-specific NE bit that provides the same instruction fetching control as
the SR[N] bit for smaller units of memory.

— Additional MSR bit (MSR[AP]) that can limit supervisor-level software to
accessing supervisor-level memory space only

— Programmable default cache control attributes available (HID0[WIMG]) for use
when the processor is in real addressing mode or in protection-only mode

— Protection-only mode

– Uses the TLB translation mechanism to control instruction fetching for
instruction pages, writing to data pages, and enabling the 602-specific esa
instruction, which when executed puts the processor in supervisor mode

– Control is defined for 4-Kbyte pages (32, 4-Kbyte pages defined in each TLB
entry)

– The translation mechanism is not used to determine the physical address
(effective address generated by the code is used for the physical address as in
real-addressing mode).
1-4 PowerPC 602 RISC Microprocessor User's Manual

• Facilities for enhanced system performance

— A 64-bit (address and data multiplexed) external data bus with burst transfers

— Dynamic bus sizing allows the data bus to function as either a 32- or 64-bit bus

— Support for injected snoops by other devices during burst read operations

— Ability to broadcast a line-fill address, during the address phase of a write-back
transaction on the bus

• Alternative method for entering supervisor mode without synchronizing the
processor. The Enable Supervisor Access (esa) instruction is defined by the 602 to
cause the processor to enter supervisor mode without taking an exception. The
ability to execute this instruction is administered by the MMU on a per block or page
basis, depending on the type of address translation used.

• Integrated power management

— Low-power 3.3-volt design

— Internal processor/bus clock multiplier that provides 2/1 and 3/1 ratios

— Three static power-saving modes—doze, nap, and sleep

— Automatic dynamic power reduction on an internal subunit level of granularity,
on a per clock cycle basis, when the subunits are idle

• In-system testability and debugging features through JTAG boundary-scan
capability

1.1.2 Block Diagram
The 602 block diagram in Figure 1-1 illustrates how the execution units—IU, FPU, BPU,
and LSU—operate independently and in parallel.
Chapter 1. Overview 1-5

Figure 1-1. PowerPC 602 Microprocessor Block Diagram

GPR File

GP
Rename
Registers

32 BIT

BRANCH
PROCESSING

UNIT

Time-Multiplexed, 32-Bit Address Bus, 32-/64-Bit Data Bus

INSTRUCTION UNIT

4-Kbyte
D Cache

Tags

CTR
CR
LR

PROCESSOR BUS
INTERFACE

D MMU

SRs

DTLB

DBAT
Array

32 BIT

32 BIT

32 BIT

Power
Dissipation

Control

COMPLETION
UNIT

Time Base
Counter/

Decrementer

Clock
Multiplier

JTAG/COP
Interface

I MMU

SRs

ITLB

IBAT
Array

4-Kbyte
I Cache

Tags

32 BIT

32 BIT

32 BIT

32 BIT32 BIT

LOAD/STORE
UNIT

+

32 BIT

SEQUENTIAL
FETCHER

INSTRUCTION
QUEUE

Dispatch Unit

FLOATING-
 POINT UNIT

+*/

FPSCR

FPR File

FP
Rename
Registers

INTEGER
UNIT

+*/

XER
1-6 PowerPC 602 RISC Microprocessor User's Manual

1.1.3 Instruction Pipeline
As shown in Figure 1-2, the instruction pipeline in the 602 has four stages:

• Fetch—During this stage, instructions are fetched from the instruction cache.

• Decode and dispatch—During this stage, instructions are decoded, branch
instructions are folded out, and instructions are dispatched for execution once all the
resources needed for execution are available.

• Execute—During this stage, instructions are executed in the LSU, IU, or FPU.

• Complete and write-back—During this stage, all results are committed to the
architectural registers.

Figure 1-2. Pipeline Diagram

Note that an instruction may remain in a single pipeline stage for multiple processor cycles
and may simultaneously occupy more than one pipeline stage.

If an exception is taken during the execute or the complete/write-back stages, all following
instructions are flushed, any execution results in rename buffers are discarded, and fetching
begins at the appropriate target address. For an overview and definition of exceptions
supported in the 602, see Section 1.2.5.1, “PowerPC Exception Model.”

The 602 provides address translation and protection facilities, including an ITLB, a DTLB
and IBAT and DBAT arrays. Instruction fetching and dispatch are handled by the
instruction unit. The MMUs translate effective addresses for fetching instructions and for
reading and writing data to and from the physically addressed caches or external memory.
For more information, see Sections 1.1.3.1, “Instruction Unit,” and 1.1.5.1, “Memory
Management Units (MMUs).”

Decode/Dispatch

Fetch

Complete/Write-back

One instruction dispatch per clock cycle

IU FPU LSU

Execute Stage
Chapter 1. Overview 1-7

1.1.3.1 Instruction Unit
As shown in Figure 1-1, the 602 instruction unit, which contains a fetch unit, instruction
queue, dispatch unit, and BPU, provides centralized control of instruction flow to the
execution units. The instruction unit determines the address of the next instruction to be
fetched based on information from the sequential fetcher and from the BPU.

The instruction unit fetches the instructions from the instruction cache into the instruction
queue (IQ). The BPU extracts branch instructions from the instruction queue and uses the
static branch prediction defined by the PowerPC architecture specification on unresolved
conditional branches. This allows the instruction unit to fetch instructions from a predicted
target instruction stream while a conditional branch is evaluated. The BPU folds out branch
instructions for unconditional branches or for conditional branches unaffected by
instructions in progress in the execution pipeline.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If any of these
instructions are to be executed in the BPU, they are decoded but not issued. Instructions to
be executed by the FPU, IU, and LSU are issued and allowed to complete up to the register
write-back stage. Write-back is allowed when a correctly predicted branch is resolved, and
instruction execution continues without interruption along the predicted path. An
instruction is dispatched only if there is an entry available for it in the completion unit. If
no completion buffers are available, instruction dispatch stalls until an entry is available.

If branch prediction is incorrect, the instruction unit flushes all predicted path instructions
and instructions are issued from the correct path.

1.1.3.1.1 Instruction Queue (IQ) and Dispatch Unit
The instruction queue, shown in Figure 1-1, holds as many as four instructions and loads
one instruction from the instruction cache during a single cycle. The instruction fetch unit
continuously loads as many instructions as space in the IQ allows. If one of the instructions
loaded is a branch instruction, it is dispatched to the BPU. One nonbranch instruction per
cycle can be dispatched to any one of the three other execution units. Dispatching is
facilitated to the IU, FPU, and LSU by the provision of a reservation station at each unit.
The dispatch unit checks for source and destination register dependencies, determines
dispatch serializations, and inhibits subsequent instruction dispatching as required.

For a more detailed overview of instruction dispatch, see Section 1.2.7, “Instruction
Timing.”

1.1.3.1.2 Branch Processing Unit (BPU)
The BPU receives branch instructions from the fetch unit and performs CR lookahead
operations on conditional branches to resolve them early, achieving the effect of a zero-
cycle branch in many cases.
1-8 PowerPC 602 RISC Microprocessor User's Manual

The BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered, the
602 fetches instructions from the predicted target stream until the conditional branch is
resolved.

The BPU contains an adder for computing branch target addresses and three user-control
registers—the link register (LR), the count register (CTR), and the condition register (CR).
The BPU calculates the return pointer for subroutine calls and saves it into the LR for
certain types of branch instructions. The LR also contains the branch target address for the
Branch Conditional to Link Register (bclrx) instruction. The CTR contains the branch
target address for the Branch Conditional to Count Register (bcctrx) instruction. The
contents of the LR and CTR can be copied to or from any GPR. Because the BPU uses
dedicated registers rather than GPRs or FPRs, execution of branch instructions is largely
independent from execution of integer and floating-point instructions.

1.1.3.1.3 Completion Unit
When an instruction is dispatched, a place is reserved in the completion buffer, which
ensures that instructions complete in program order. Completing an instruction commits the
602 to any architectural register changes caused by that instruction. In-order completion
ensures the correct architectural state when the 602 must recover from a mispredicted
branch or an exception.

Instruction state and other information required for completion is kept in a first-in-first-out
(FIFO) queue of four completion buffers. A single completion buffer is allocated for each
instruction as it enters the dispatch unit. If no completion buffers are available, instruction
dispatch stalls. A maximum of one instruction per cycle is completed in order from the
queue.

This unit is responsible for ensuring that exceptions are handled in an orderly way.

1.1.4 Independent Execution Units
The PowerPC architecture’s support for independent execution units allows the
implementation of processors with out-of-order instruction execution. For example,
because branch instructions do not depend on GPRs or FPRs, branches can often be
resolved early, eliminating stalls caused by taken branches.

Branch instructions do not execute in the same sense that arithmetic, logical, or load/store
instructions do. As shown in Figure 1-1, the IU, FPU, and LSU are arranged in parallel to
one another. The execution units are described in the following sections.

1.1.4.1 Integer Unit (IU)
The IU executes all integer instructions. The IU executes one integer instruction at a time,
performing computations with its arithmetic logic unit (ALU), multiplier, divider, and the
XER register. Most integer instructions are single-cycle instructions. Thirty-two 32-bit
GPRs are provided to support integer operations. Four rename registers are implemented
Chapter 1. Overview 1-9

for the GPRs. These rename registers allow instructions that have finished execution to
make their results available to subsequent instructions before those results can be sent to
the architected GPR. Rename registers also eliminate stalls due to contention for GPRs.
The 602 writes the contents of the rename registers to the appropriate GPR when integer
instructions are retired by the completion unit.

The IU executes all integer arithmetic instructions, condition register logical instructions,
synchronization, and move to/from instructions.

1.1.4.2 Floating-Point Unit (FPU)
The FPU contains a single-precision multiply-add array and the floating-point status and
control register (FPSCR). The multiply-add array allows the 602 to efficiently implement
multiply, add, and multiply-add operations. The FPU is pipelined so that single-precision
instructions can be issued back-to-back. Thirty-two 32-bit FPRs support single-precision
floating-point operations. Four rename registers are implemented for the FPRs. These
rename registers allow instructions that have finished execution to make their results
available to subsequent instructions before those results can be sent to the architected FPR.
Rename registers also eliminate stalls due to contention for FPRs. The 602 writes the
contents of the rename registers to the appropriate FPR when floating-point instructions are
retired by the completion unit.

In the 602, all double-precision arithmetic operations, floating-point load or store
operations that involve double-precision operands that cannot be expressed as single-
precision values, and operations producing denormalized numbers are handled by
emulation software. The 602 traps to an exception handler when it encounters these
operands or operations.

The 602 can also be operated in the non-IEEE floating-point mode. For a result of divide
by zero, invalid, overflow, or underflow, this mode allows the 602 to produce predetermined
values that may not conform to IEEE 754. The non-IEEE mode is useful for time-critical
applications such as graphics applications.

1.1.4.3 Load/Store Unit (LSU)
The LSU executes all load and store instructions and provides the data transfer interface
between the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective
addresses, performs data alignment, and traps on load/store string instructions. Load/store
string instructions are emulated in software.

Load and store instructions are issued and translated in program order; however, the actual
memory accesses can occur out of order. Synchronizing instructions are provided to
enforce strict ordering.

Cacheable loads, when free of data dependencies, execute with a maximum throughput of
one per cycle and a two-cycle total latency. Data returned from the cache is held in a rename
register until the completion logic commits the value to a GPR or FPR. Data in a rename
register can be used by an executing instruction before that data has been written to a
1-10 PowerPC 602 RISC Microprocessor User's Manual

register file. Store instructions cannot be executed out of order and are held in the store
queue until the completion logic signals that the store operation is to be completed to
memory. The time required to perform the actual load or store operation depends on
whether the operation involves the cache or the system memory.

The LSU executes all load, store, cache control, and memory control instructions.

1.1.5 Memory Subsystem
The 602 provides support for cache and memory management through separate instruction
and data memory management units. The 602 also provides separate 4-Kbyte instruction
and data caches and an efficient processor bus interface to facilitate access to main memory
and other bus subsystems. The memory subsystem support functions are described in the
following sections.

1.1.5.1 Memory Management Units (MMUs)
The 602’s MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory (referred to as real memory in the architecture specification) for
instruction and data. The MMUs also control access privileges for these spaces on block
and page granularities. Referenced and changed status is maintained by the processor for
each page to assist implementation of a demand-paged virtual memory system.

The LSU calculates effective addresses for data load and store operations, and performs
data alignment to and from cache memory. The instruction unit calculates the effective
addresses for instruction fetching.

After an address is generated, the higher-order bits of the effective address are translated by
the appropriate MMU into physical address bits. Simultaneously, the lower-order address
bits (which are untranslated and the same for both logical and physical addresses), are
directed to the on-chip caches where they form the index into the two-way set-associative
tag array. After translating the address, the MMU passes the higher-order bits of the
physical address to the cache, and the cache lookup completes. For cache-inhibited
accesses or accesses that miss in the cache, the untranslated lower-order address bits are
concatenated with the translated higher-order address bits; the resulting 32-bit physical
address is then used by the memory unit and the system interface, which accesses external
memory.

The MMU also translates addresses and enforces memory protection supervisor/user
privilege level of the access in relation to whether the access is a load or store.

For instruction accesses, the MMU performs an address lookup in the 32 entries of the
ITLB, and in the IBAT array. If an effective address hits in both the ITLB and the IBAT
array, the IBAT array translation takes priority. Data accesses cause a lookup in the DTLB
and DBAT array for the physical address translation. In most cases, the physical address
translation resides in one of the TLBs or BATs, and the physical address bits are readily
available to the on-chip cache.
Chapter 1. Overview 1-11

If an access misses in the BATs, the OEA-defined page address translation is used unless
HID0[PO] is set, in which case the 602-specific protection-only mode is used.

The 602-specific protection-only mode enables each TLB to protect up to 128 Kbytes per
entry (4 Mbytes per TLB). Effective address translation is not performed for TLBs in
protection-only mode. Protection-only mode is used if the effective address misses in the
BATs and the protection-only mode is enabled (HID0[PO] = 1), otherwise, page address
translation is used. In protection-only mode, the MMU is not used to translate the effective
address (the effective address is used for the physical address), and is used only to enforce
protection for each 4-Kbyte page. The protection consists of the following:

• Write enabling—The WE bit determines whether data pages can be written to.

• Instruction fetching—The NE bit controls whether instructions (including the esa
instruction) can be fetched from the current page.

• Enabling execution of the esa instruction—The SE bit controls whether the esa
instruction can be executed from the current page. If fetching is disabled, the SE bit
is a don’t care.

In either page address translation mode or protection-only mode, when the address misses
in the TLBs, the 602 provides hardware assistance for software to perform a search of the
translation tables in memory. The hardware assist consists of the following features:

• Separate exception vectors defined for instruction translation miss, data load
translation miss, and data store translation miss

• Automatic storage of the missed effective address in the 602-specific IMISS and
DMISS registers

• Automatic generation of the primary and secondary hashed real address of the page
table entry group (PTEG), which are readable from the HASH1 and HASH2 register
locations. The HASH data is generated from the contents of the IMISS or DMISS
register. The register selected depends on whether an instruction or data miss was
acknowledged last.

• Automatic generation of the first word of the page table entry (PTE) for which the
tables are being searched

• A required physical address (RPA) register that matches the format of the lower
word of the PTE

• Two 602-specific TLB access instructions (tlbli and tlbld) that are used to load an
address translation into the instruction or data TLBs

• Shadow registers for GPR0–GPR3 that allow missed code to execute without
corrupting the state of any of the GPRs. These shadow registers are used only for
servicing a TLB miss.

For details about the architecturally-defined translation and protection mechanism, see The
Programming Environments Manual.
1-12 PowerPC 602 RISC Microprocessor User's Manual

See Section 1.2.6.2, “PowerPC 602 Microprocessor Memory Management,” for more
information about memory management for the 602.

1.1.5.2 Cache Units
The 602 provides independent 4-Kbyte, two-way set-associative instruction and data
caches. The cache block size is 32 bytes (eight words). The caches adhere to a write-back
policy, but, as defined by the PowerPC architecture, the 602 allows control of cacheability,
write policy, and memory coherency at the page and memory block levels. The caches use
an LRU replacement policy.

As shown in Figure 1-1, the caches provide a 32-bit interface to the instruction fetch unit
and load/store unit. The surrounding logic selects, organizes, and forwards the requested
information to the requesting unit. Store operations to the cache can be performed on a byte
basis, and a complete read-modify-write operation to the cache can occur in each cycle.

The load/store unit and instruction fetch unit provide the caches with the address of the data
or instruction to be fetched. In the case of a cache hit, the cache returns two words to the
requesting unit.

Since the 602 data cache tags are single-ported, simultaneous load or store and snoop
accesses cause resource contention. Snoop accesses have the highest priority and are given
first access to the tags, unless the snoop access coincides with a tag write. In this case the
snoop is retried and must rearbitrate for access to the cache. Load or store operations that
are deferred due to snoop accesses are executed on the clock cycle following the snoop.

1.1.6 Processor Bus Interface
The 602 bus interface is a time-multiplexed, 32-bit address, 64-bit data interface. Data
transfers consist of two phases—the address phase, during which the address and transfer
attributes are broadcast on the bus, and the data phase, during which the bus can function
as either a 32-bit or 64-bit data bus. The address phase consists of subphases that are
required for the processor to arbitrate and be granted mastership of the bus as well as the
actual address transfer itself. The data phase consists of subphases that include the actual
data transfer as well as an acknowledgment that each beat of data has been transferred
successfully.

The 602 on-chip caches can be configured in the write-through or write-back modes. In the
write-back mode, the predominant type of transaction for most applications is burst-read
memory operations, followed by burst-write memory operations and single-beat
(noncacheable or write-through) operations. Additionally, there can be address-only
operations, variants of the burst and nonburst operations, (for example, global memory
operations that are snooped and atomic memory operations), and address retry activity (for
example, when a snooped read access hits a modified block in the cache).
Chapter 1. Overview 1-13

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism allows the 602
to be integrated into systems that implement various fairness and bus parking procedures to
avoid arbitration overhead.

The amount of data that can be transferred per bus clock cycle depends on whether the bus
is configured as a 32- or 64-bit bus. In 64-bit mode, the bus can transfer up to 64 bits in a
single-beat (nonburst) transaction and an entire 8-word cache block in a four-beat burst
transaction. In 32-bit mode, there are two types of nonburst transactions. A single-beat
transaction transfers up to 32 bits and a double-beat transaction transfers 64 bits. In 32-bit
mode, the burst transaction requires eight beats to transfer a cache block of data.

Typically, 602 memory accesses are weakly-ordered—sequences of operations, including
load/store multiple instructions, do not necessarily complete in the order they begin. This
maximizes the efficiency of the bus without sacrificing data integrity. The 602 allows read
operations to precede store operations (except when a dependency exists). Because the
processor can dynamically optimize run-time ordering of load/store traffic, overall
performance is improved.

1.1.7 System Support Functions
The 602 implements several support functions that include power management, time base/
decrementer registers for system timing tasks, a watchdog timer, an IEEE 1149.1(JTAG)/
common on-chip processor (COP) test interface, and a phase-locked loop (PLL) clock
multiplier. These system support functions are described in the following subsections.

1.1.7.1 Power Management
The 602 provides four power modes selectable by setting the appropriate control bits in the
machine state register (MSR) and hardware implementation register 0 (HID0) registers.
The four power modes are as follows:

• Full-power–This is the default power state of the 602. The 602 is fully powered and
the internal functional units are operating at the full processor clock speed. If the
dynamic power management mode is enabled, functional units that are idle
automatically enters a low-power state without affecting performance, software
execution, or external hardware.

• Doze–All the functional units of the 602 are disabled except for the time base/
decrementer registers and the bus snooping logic. The 602 returns to the full-power
state upon the occurrence of any asynchronous exception. Asynchronous exceptions
implemented on the 602 are listed in Table 1-1. The 602 in doze mode maintains the
PLL in a fully-powered state and locked to the system external clock input
(SYSCLK) so a transition to the full-power state takes only a few processor clock
cycles.
1-14 PowerPC 602 RISC Microprocessor User's Manual

• Nap–The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. The 602 returns
to the full-power state upon the occurrence of any asynchronous exception.
Asynchronous exceptions implemented on the 602 are listed in Table 1-1. A return
to full-power state from a nap state takes only a few processor clock cycles.

• Sleep–Sleep mode reduces power consumption to a minimum by disabling all
internal functional units, after which external system logic may disable the PLL and
SYSCLK. Returning the 602 to the full-power state requires the enabling of the PLL
and SYSCLK, followed by any external exception after the time required to relock
the PLL.

1.1.7.2 Time Base/Decrementer
The time base (TB) is a 64-bit register (accessed as two 32-bit registers) that is incremented
once every four bus clock cycles; external control of the time base is provided through the
time base enable (TBEN) signal. The decrementer is a 32-bit register that generates a
decrementer exception after a programmable delay. The contents of the decrementer
register are decremented once every four bus clock cycles, and the decrementer exception
condition is generated as the count passes through zero.

1.1.7.3 IEEE 1149.1 (JTAG)/Common On-Chip Processor (COP) Test
Interface

The 602 provides IEEE 1149.1 and COP functions for facilitating board testing and chip
debug. The test interface provides a means for boundary-scan testing the 602 and the board
to which it is attached. The COP function shares the IEEE 1149.1 test port, provides a
means for executing test routines, and facilitates chip and software debugging.

1.1.7.4 Clock Multiplier
The internal clocking of the 602 is generated from and synchronized to the external clock
signal, SYSCLK, by means of a voltage-controlled, oscillator-based PLL. The PLL
provides programmable internal processor clock rates of either two or three times the
externally supplied clock frequency. The bus clock is the same frequency and is
synchronous with SYSCLK.

1.1.7.5 Watchdog Timer
The 602-specific watchdog timer can be used to generate a periodic exception based on the
operation of the time base register. The watchdog timer is enabled and programmed through
the timer control register (TCR), which is a supervisor-level SPR specific to the 602.
Supervisor-level software can set bits in the TCR to select one of four time periods for the
interrupts, and other aspects of the watchdog timer operations. When a watchdog timer
exception occurs, instruction fetching begins at vector offset 0x1500 (as shown in
Table 1-2). The watchdog timer can be programmed such that if the exception handler does
not reset the timer, a second watchdog timer interrupt condition will cause a soft reset
(system reset exception).
Chapter 1. Overview 1-15

1.2 PowerPC 602 Microprocessor: Implementation
The PowerPC architecture is derived from the IBM POWER architecture (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
PowerPC architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

This section describes the PowerPC architecture in general, and gives specific details about
the implementation of the 602 as a low-power, 32-bit member of the PowerPC processor
family.

• Features—Section 1.2.1, “Features,” describes general features that the 602 shares
with the PowerPC microprocessor family.

• Registers and programming model—Section 1.2.2, “PowerPC Registers and
Programming Model,” describes the registers for the operating environment
architecture common among PowerPC processors and describes the programming
model. It also describes the additional registers that are unique to the 602.

• Instruction set and addressing modes—Section 1.2.3, “Instruction Set and
Addressing Modes,” describes the PowerPC instruction set and addressing modes
for the PowerPC operating environment architecture, and defines and describes the
PowerPC instructions implemented in the 602.

• Cache implementation—Section 1.2.4, “Cache Implementation,” describes the
cache model that is defined generally for PowerPC processors by the virtual
environment architecture. It also provides specific details about the 602 cache
implementation.

• Exception model—Section 1.2.5, “Exception Model,” describes the exception
model of the PowerPC operating environment architecture and the differences in the
602 exception model.

• Memory management—Section 1.2.6, “Memory Management,” describes generally
the conventions for memory management among the PowerPC processors. This
section also describes the 602’s implementation of the 32-bit PowerPC memory
management specification.

• Instruction timing—Section 1.2.7, “Instruction Timing,” provides a general
description of the instruction timing provided by the parallel execution supported by
the PowerPC architecture and the 602.

• System interface—Section 1.2.8, “System Interface,” describes the signals
implemented on the 602.
1-16 PowerPC 602 RISC Microprocessor User's Manual

1.2.1 Features
The 602 is a high-performance, low-cost microprocessor for consumer electronics and
computers. It is designed for use in advanced home entertainment and educational devices
with audio/video, multimedia, and complex graphics requirements. The 602 is also
applicable for low-power business and commercial devices with speech recognition and
synthesis, wireless communications, or handwriting recognition.

The following sections summarize the features of the 602, including both those that are
defined by the architecture and those that are unique to the 602 implementation.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented:

• PowerPC user instruction set architecture (UISA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

• PowerPC virtual environment architecture (VEA)—Describes the memory model
for a multiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

The 602 does not implement the double-precision floating-point instructions and the load/
store string instructions in hardware. Barring these exceptions, the 602 implements the
levels of architecture as mentioned above. Specific features of the 602 are listed in
Section 1.1.1, “PowerPC 602 Microprocessor Features.”

For more information, see The Programming Environments Manual.

1.2.2 PowerPC Registers and Programming Model
The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

PowerPC processors have two levels of privilege—supervisor level (typically used by the
operating system) and user level (used by the application software). The programming
models incorporate 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Each PowerPC microprocessor may also have its own unique set
of implementation-specific registers. The registers implemented in the 602 are shown in
Chapter 1. Overview 1-17

Figure 1-3 and described in the following sections. Registers defined by the PowerPC
architecture are described in The Programming Environments Manual.

Access to supervisor-level instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating system and critical machine resources). Instructions that control the state of the
processor, the address translation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.

Figure 1-3 shows the registers implemented in the 602 and indicates whether these registers
are accessible to user- or supervisor-level software. The numbers to the right of the SPRs
indicate the number that is used in the syntax of the instruction operands to access the
register.
1-18 PowerPC 602 RISC Microprocessor User's Manual

Figure 1-3. PowerPC 602 Microprocessor Programming Model—Registers

DSISR

SPR 18DSISR

Data Address Register

SPR 19DAR

SPR 26SRR0

SPR 27SRR1

SPRGs

SPR 272SPRG0

SPR 273SPRG1

SPR 274SPRG2

SPR 275SPRG3

Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

SPR 528IBAT0U

SPR 529IBAT0L

SPR 530IBAT1U

SPR 531IBAT1L

SPR 532IBAT2U

SPR 533IBAT2L

SPR 534IBAT3U

SPR 535IBAT3L

Data BAT Registers

SPR 536DBAT0U

SPR 537DBAT0L

SPR 538DBAT1U

SPR 539DBAT1L

SPR 540DBAT2U

SPR 541DBAT2L

SPR 542DBAT3U

SPR 543DBAT3L

Memory Management Registers
Software Table

Search Registers1

SPR 976DMISS

SPR 977DCMP

SPR 978HASH1

SPR 979HASH2

SPR 980IMISS

SPR 981ICMP

SPR 982RPA

Machine State
Register

MSR

Processor Version
Register

SPR 287PVR

Configuration Registers
Checkstop Enables

Register1

SPR 1008HID0

TBR 268TBL

TBR 269TBU

SPR 1

USER MODEL

Floating-Point Status
and Control Register

CR

FPSCR

Condition Register

GPR0

GPR1

GPR31

General-Purpose
Registers

Single-Precision
Floating-Point Registers

XER

XER

SPR 8

Link Register

LR

Time Base Facility
(For Reading)

SUPERVISOR MODEL

SPR 984

Timer Control
Register1

TCR

Time Base Facility
(For Writing)

SPR 284TBL

SPR 285TBU

SDR1

SPR 25SDR1

SPR 9

Count Register

CTR

Miscellaneous Registers

SPR 1010IABR

Instruction Address
Breakpoint Register1

Segment Registers

SR0

SR1

SR15

FPR0

FPR1

FPR31

1 These registers are 602–specific registers. They may not be supported by other PowerPC processors.

Single-Precision
Tag Register1

SPR 1021SP

SPR 22

Decrementer

DEC

SPR 1022LT

SPR 986

Interrupt Base
Register1

IBR

ESA Access
Registers

SPR 991

ESA Enable
Register1

SER

SPR 990

ESA Enable Base
Register1

SEBR

Integer Tag Register1

ESA Save/Restore
Register1

SPR 987ESASRR

PLL Configuration
Register1

SPR 1009HID1
Chapter 1. Overview 1-19

The following sections summarize the PowerPC registers that are implemented in the 602.

1.2.2.1 General-Purpose Registers (GPRs)
The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs) that
serve as the data source or destination for all integer instructions. The 602 also implements
four GPR rename registers, which are used to make the results of executing an instruction
available to subsequent instructions before they are written back to the architected GPR
(during the complete/write-back stage).

The 602 also defines four GPR shadow registers to support the software table search
operations. MSR[TGPR] is set whenever the 602 takes an instruction TLB miss, data read
miss, or data write miss exception. When MSR[TGPR] is set, all instruction accesses to
GPR0–GPR3 are to be mapped to TGPR0–TGPR3. The contents of GPR0–GPR3 remain
unchanged while MSR[TGPR] is set. Attempts to use GPR4–GPR31 with MSR[TGPR] set
yields undefined results. MSR[TGPR] is cleared when an rfi instruction is executed.

1.2.2.2 Floating-Point Registers (FPRs)
The UISA portion of the PowerPC architecture defines 32 user-level, 64-bit floating-point
registers (FPRs). The FPRs serve as the data source or destination for floating-point
instructions. These registers can contain data objects of either single- or double-precision
floating-point formats. However, because the 602 is optimized for systems that perform
single- and not double-precision floating-point arithmetic, the 602 implements 32 user-
level, 32-bit FPRs. Double-precision arithmetic instructions and operations that employ
double-precision operands that cannot be represented in single-precision are trapped for
emulation in software. Single-precision operations can execute instructions using double-
precision operands without taking an exception as long as the double-precision operand can
be represented as a single-precision value without loss of accuracy.

The 602 also implements four FPR rename registers, which are used to make the results of
executing a floating-point instruction available to subsequent instructions before those
results are written back to the architected FPR (during the complete/write-back stage).

1.2.2.3 Condition Register (CR)
The CR is a 32-bit, user-level register that consists of eight 4-bit fields that reflect the results
of certain operations, such as move, integer and floating-point compare, arithmetic, and
logical instructions, and provide a mechanism for testing and branching.

1.2.2.4 Floating-Point Status and Control Register (FPSCR)
The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard.
1-20 PowerPC 602 RISC Microprocessor User's Manual

1.2.2.5 Machine State Register (MSR)
The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and typically
restored when the exception handling completes. The 602 implements the MSR as a 32-bit
register. The 602 defines additional bits in the MSR to support 602-specific functionality.
For example, MSR[SA] indicates whether the esa instruction has been executed to put the
processor in supervisor mode. MSR[AP] controls whether supervisor-level software can
access memory at user level or at supervisor level.

1.2.2.6 Segment Registers (SRs)
For memory management, 32-bit PowerPC microprocessors implement sixteen 32-bit
segment registers (SRs). To speed access, the 602 implements the segment registers as two
arrays—a main array (for data memory accesses) and a shadow array (for instruction
memory accesses). Loading a segment entry with the Move to Segment Register (mtsr)
instruction loads both arrays.

1.2.2.7 Special-Purpose Registers (SPRs)
The PowerPC operating environment architecture defines numerous SPRs that serve a
variety of functions, such as providing controls, indicating status, configuring the
processor, and performing special operations. During normal execution, a program can
access the registers, shown in Figure 1-3, depending on the program’s access privilege
(supervisor or user, determined by the privilege level (PR) bit in the MSR). Note that
registers such as the GPRs and FPRs are accessed through operands that are part of the
instructions. Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as Move to Special-Purpose Register (mtspr) and Move
from Special-Purpose Register (mfspr) instructions) or implicit, as the part of the execution
of an instruction. Some registers are accessed both explicitly and implicitly.

1.2.2.7.1 User-Level SPRs
The following SPRs are accessible by user-level software:

• Link register (LR)—The 32-bit link register can be used to provide the branch target
address and to hold the return address after branch and link instructions.

• Count register (CTR)—The 32-bit CTR is decremented and tested automatically as
a result of branch and count instructions.

• The XER register—The 32-bit XER contains the summary overflow bit, integer
carry bit, and overflow bit.

1.2.2.7.2 Supervisor-Level SPRs
The 602 contains SPRs that can be accessed only by supervisor-level software. See
Figure 1-3 for a list of the SPR numbers. The 602 implements both those supervisor-level
SPRs defined by the PowerPC architecture as well as several additional SPRs required for
supporting 602-specific features such as the software table search, the watchdog timer, and
the esa supervisor access.
Chapter 1. Overview 1-21

The following registers are defined by the PowerPC architecture, although some of these
registers implement additional bits to support 602 functionality:

• The 32-bit DSISR defines the cause of data access and alignment exceptions.

• The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or DSI exception.

• Decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

• The 32-bit SDR1 specifies the page table format used in virtual-to-physical address
translation for pages. (Note that physical address is referred to as real address in the
architecture specification.)

• The machine status save/restore register 0 (SRR0) is a 32-bit register that is used by
the 602 for saving the address of the instruction that caused the exception, and the
address to return to when a Return from Interrupt (rfi) instruction is executed.

• The machine status save/restore register 1 (SRR1) is a 32-bit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed. The 602 defines additional bits in the MSR to support 602-specific
functionality.

• The 32-bit SPRG0–SPRG3 registers are provided for operating system use.

• The time base registers (TBL and TBU) together provide a 64-bit time base register.
The registers are implemented as a 64-bit counter, with the least-significant bit being
the most frequently incremented.

• The processor version register (PVR) is a 32-bit, read-only register that identifies the
version (model) and revision level of the PowerPC processor.

• Block address translation (BAT) registers—The PowerPC architecture defines 16
BAT registers, divided into four pairs of data BATs (DBATs) and four pairs of
instruction BATs (IBATs). The IBAT registers implement two additional bits—the
NE bit controls whether instructions can be fetched from the block and the SE bit
controls whether an esa instruction fetched from the block can be executed.

 The following supervisor-level SPRs are 602-specific:

• The hardware implementation-dependent register 0 (HID0) provides means for
enabling the 602’s checkstops and features, such as protection-only mode.

• Hardware implementation-dependent register 1 (HID1) is a read-only register that
stores the PLL configuration bits.

• The DMISS and IMISS registers are read-only registers that are loaded
automatically upon an instruction or data TLB miss.

• The HASH1 and HASH2 registers contain the physical addresses of the primary and
secondary page table entry groups (PTEGs).

• The ICMP and DCMP registers contain a duplicate of the first word in the page table
entry (PTE) for which the table search is looking.
1-22 PowerPC 602 RISC Microprocessor User's Manual

• The required physical address (RPA) register is loaded by the processor with the
second word of the correct PTE during a page table search.

• The instruction address breakpoint register (IABR) is loaded with an instruction
address that is compared to instruction addresses in the dispatch queue. When an
address match occurs, an instruction address breakpoint exception is generated.

• The ESA enable register (SER) is a 32-bit register used in the protection-only mode.
Each bit controls esa execution privileges for a 4-Kbyte page.

• The ESA enable base register (SEBR) contains the base address of the 128-Kbyte
region that is protected by the special execute (SE) bits in SER.

• The ESA save and restore register (ESASRR) is a 32-bit register that saves selected
MSR bits (PR, AP, SA, EE) when the esa instruction is executed. Executing the dsa
instruction restores these bits to the MSR.

• The single-precision tag register (SP) is a 32-bit register for which each bit (SP0–
SP31) corresponds to one of the 32, 32-bit FPRs (FPR0–FPR31). An SP bit is set if
the corresponding FPR holds a single-precision value.

• The integer tag register (LT) is a 32-bit register for which each bit (LT0–LT31)
corresponds to one of the 32, 32-bit FPRs (FPR0–FPR31). An LT bit is set if the
corresponding FPR holds an integer value.

• The timer control register (TCR) provides bits for enabling and programming the
watchdog timer.

• The interrupt base register (IBR) contains an exception vector offset address used by
exception handlers if the MSR[IP] is cleared when an exception occurs; if MSR[IP]
is set, the default offset address 0xFFF00000 is used.

1.2.3 Instruction Set and Addressing Modes
The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.2.3.1 PowerPC Instruction Set and Addressing Modes
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.2.3.1.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

• Integer instructions—These include computational and logical instructions.

— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions
Chapter 1. Overview 1-23

• Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR.

— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point status and control instructions

• Load/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store instructions
— Primitives used to construct atomic memory operations (lwarx and stwcx.

instructions)

• Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— Condition register logical instructions

• Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.

— Move to/from SPR instructions
— Move to/from MSR instructions
— Synchronize instruction
— Instruction synchronize

• Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers.

— Supervisor-level cache management instructions
— User-level cache instructions
— Segment register manipulation instructions
— Translation lookaside buffer management instructions

Note that this grouping of the instructions does not indicate the execution unit that executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) operands. Floating-point double-
precision operations are trapped for emulation in software. The PowerPC architecture uses
instructions that are four bytes long and word-aligned. It provides for byte, half-word, and
1-24 PowerPC 602 RISC Microprocessor User's Manual

word operand load and store operations between memory and 32 GPRs. It also provides for
word and double-word operand loads and stores between memory and 32 FPRs.

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction causing an exception, or by an asynchronous event. Either kind of exception
may cause one of several components of the system software to be invoked.

1.2.3.1.2 Calculating Effective Addresses
The effective address (EA) is the 32-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

• EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)
• EA = (rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

1.2.3.2 PowerPC 602 Microprocessor Instruction Set
The 602 instruction set is defined as follows:

• The 602 provides hardware support for most 32-bit PowerPC instructions. The 602
does not support double-precision floating-point, load/store string, eciwx, and
ecowx instructions in hardware.

• The 602 provides two implementation-specific instructions used for software table
search operations following TLB misses:

– TLB Load Data (tlbld)
– TLB Load Instruction (tlbli)
Chapter 1. Overview 1-25

• The 602 provides two implementation-specific instructions that enable/disable
access into the supervisor mode (without having to branch or invoking a system
call):

– Enable Supervisor Access (esa) instruction. When the esa instruction is
executed, the processor enters supervisor mode without incurring the
additional latency due to synchronizing the processor and refetching from the
exception vector. The ability to execute the esa instruction on a block or page
is controlled by the SE bit, which is configured through the IBATs and the
ITLBs. This functionality is not available in real addressing mode.

– Disable Supervisor Access (dsa) instruction. Executing the dsa instruction
restores the processor to the state it was in prior to the execution of the esa
instruction.

• The 602 implements the following instructions that are defined as optional by the
PowerPC architecture:

– Floating Select (fsel) instruction

– Floating Reciprocal Estimate Single-Precision (fres) instruction. On the 602,
fres is implemented as a divide rather than an estimate.

– Floating Convert to Integer Word with Round toward Zero (fctiwz) instruction

1.2.4 Cache Implementation
The following subsections describe the PowerPC architecture’s treatment of cache in
general, and the 602-specific implementation, respectively.

1.2.4.1 PowerPC Cache Characteristics
The PowerPC architecture does not define hardware aspects of cache implementations. For
example, some PowerPC processors, including the 602, have separate instruction and data
caches (Harvard architecture), while others, such as the PowerPC 601™ microprocessor,
implement a unified cache.

PowerPC microprocessors control the following memory access modes on a page or block
basis:

• Write-back/write-through mode
• Caching-inhibited mode
• Memory coherency

Note that in the 602, a cache block is defined as being eight words wide. The VEA defines
cache management instructions that application programmers can use to affect the cache
contents and coherency state.
1-26 PowerPC 602 RISC Microprocessor User's Manual

1.2.4.2 PowerPC 602 Microprocessor Cache Implementation
The 602 has two 4-Kbyte, two-way set-associative (instruction and data) caches. The
caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as specified by the PowerPC architecture. Cache organization is shown
in Figure 1-4.

Figure 1-4. Cache Organization

The data cache is configured as 64 sets of two cache blocks each. Each cache block consists
of eight 32-bit words, two state bits, and an address tag. The two state bits implement the
three-state MEI (modified/exclusive/invalid) protocol. Note that the PowerPC architecture
defines the term block as the cacheable unit. For the 602, the block size is equivalent to a
cache block.

The instruction cache differs in that it maintains only one state bit that indicates only
whether the data is valid, because the instruction caches do not support the MEI coherency
protocol. Because the instruction cache may not be written to except through a line-fill
operation it is not snooped, and cache coherency must be maintained by software. A fast
hardware invalidation capability is provided to support cache maintenance.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27–A31 of the effective addresses are zero); thus, a
cache block never crosses a page boundary. Accesses that cross a page boundary can incur
a performance penalty.

The 602’s cache blocks are loaded in four beats of 64 bits each when the bus is in 64-bit
mode (and in eight 32-bit beats in 32-bit mode). The burst load is performed as critical
double word first and the requested data in that double word is forwarded to the requesting
processor unit as an instruction or as an operand. The caches are nonblocking, so additional
data or instructions can be accessed by the requesting unit as soon as it arrives in the cache.

Address Tag 1Block 1

64 Sets

Address Tag 0Block 0

8 Words/Block

State

State

Words 0–7

Words 0–7
Chapter 1. Overview 1-27

To ensure coherency among caches in a multiprocessor (or multiple caching-device)
implementation, the 602 implements the MEI protocol in the data caches. These three
states, modified, exclusive, and invalid, indicate the state of the cache block as follows:

• Modified—The cache block is modified with respect to system memory; that is, data
for this address is valid only in the cache and not in system memory.

• Exclusive—This cache block holds valid data that is identical to the data at this
address in system memory. No other device has this data.

• Invalid—This cache block does not hold valid data.

Cache coherency is enforced by on-chip bus snooping logic. Since the 602’s data cache tags
are single-ported, a simultaneous load or store and snoop access represent a resource
contention. The snoop access is given first access to the tags. The load or store then occurs
on the clock following the snoop. All read operations on the bus are treated as read-with-
intent-to-modify operations, as are all burst read operations from a snooping perspective.
Injected snooping, that is snooping between beats in a burst read operation, provides an
additional snooping opportunity.

1.2.5 Exception Model
The following subsections describe the PowerPC exception model and the 602
implementation, respectively.

1.2.5.1 PowerPC Exception Model
The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions, and differ from the arithmetic exceptions defined by the IEEE for floating-
point operations. When exceptions occur, information about the state of the processor is
saved to certain registers and the processor begins execution at an address (exception
vector) predetermined for each exception. Processing of exceptions occurs in supervisor
mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, some exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that a processor be able to handle instruction-caused
exceptions in program order; therefore, although a particular implementation may
recognize exception conditions out of order, they are presented strictly in order. When an
instruction-caused exception is recognized, any unexecuted instructions that appear in the
instruction stream prior to the instruction causing the interrupt are required to complete
before the exception is taken. Any exceptions caused by those instructions are handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until the instruction currently in the completion stage successfully
completes execution or generates an exception, and the completed store queue is emptied.
1-28 PowerPC 602 RISC Microprocessor User's Manual

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, an instruction encounters multiple exception
conditions, those conditions are processed sequentially. After the exception handler handles
an exception, the instruction execution continues until the next exception condition is
encountered. However, in many cases, there is no attempt to re-execute the instruction. This
method of recognizing and handling exception conditions sequentially guarantees that
exceptions are recoverable.

Exception handlers should save the information stored in SRR0 and SRR1 early to prevent
the program state from being lost due to a system reset and machine check exception or to
an instruction-caused exception in the exception handler, and before enabling external
interrupts.

The PowerPC architecture supports four types of exceptions:

• Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the trap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream completes execution before the exception is taken.
Once the exception is processed, execution resumes at the address of the faulting
instruction (or at an alternate address provided by the exception handler). When an
exception is taken due to a trap or system call instruction, execution resumes at an
address provided by the handler.

• Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
602 provides a means to enable the imprecise modes, it implements these modes
identically to the precise mode (that is, all enabled floating-point exceptions are
always precise on the 602).

• Asynchronous, maskable—The external, system management, and decrementer
interrupts are maskable asynchronous exceptions. When these exceptions occur,
their handling is postponed until the next instruction, and any exceptions associated
with that instruction, completes execution. If there are no instructions in the
execution units, the exception is taken immediately upon determination of the
correct restart address (for loading SRR0).

• Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions, system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.
Chapter 1. Overview 1-29

1.2.5.2 PowerPC 602 Microprocessor Exception Model
As specified by the PowerPC architecture, all 602 exceptions can be described as either
precise or imprecise and either synchronous or asynchronous. Asynchronous exceptions
(some of which are maskable) are caused by events external to the processor’s execution;
synchronous exceptions, which are all handled precisely by the 602, are caused by
instructions. The 602 exception classes are shown in Table 1-1.

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskable, the distinctions shown in Table 1-1 define categories of exceptions that the
602 handles uniquely. Note that Table 1-1 includes no synchronous imprecise instructions.
Although the PowerPC architecture supports imprecise handling of floating-point
exceptions, the 602 implements these exception modes as precise exceptions.

The 602’s exceptions, and conditions that cause them, are listed in Table 1-2. The vector
column indicates how to determine the vector address from the vector offset and a
combination of the setting of MSR[IP] and the contents of the interrupt base register (IBR).

Exceptions that are specific to the 602 are indicated.

Table 1-1. PowerPC 602 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Type

Asynchronous, nonmaskable Imprecise Machine check
System reset

Asynchronous, maskable Precise External interrupt
Decrementer interrupt
System management interrupt
Watchdog timer interrupt

Synchronous Precise Instruction-caused exceptions

Table 1-2. Exceptions and Conditions

Exception Type

Vector (hexadecimal)

Causing Conditions Prefix
Offset

IP = 0 IP = 1

Reserved — — 0000 —

System reset
(Hard reset)

FFF0 0100 Assertion of HRESET

System reset
(Soft reset)

0000 FFF0 0100 Assertion of SRESET

Machine check 0000 FFF0 0200 Assertion of TEA during a data transaction; assertion of MCP.
1-30 PowerPC 602 RISC Microprocessor User's Manual

DSI IBR FFF0 0300 Determined by the bit settings in the DSISR, as follows:
4 Set if a memory access is not permitted by the page or

DBAT protection mechanism; otherwise cleared.
5 Set if memory access is attempted and SR[T] = 1;

otherwise cleared. The 602 does not support direct-store
memory.

6 Set for a store operation and cleared for a load operation.

ISI IBR FFF0 0400 An instruction cannot be fetched for one of the following
reasons:
• The EA cannot be translated and an ISI exception must be

taken to load the PTE (and possibly the page) into memory.
• The fetch access violates memory protection. If SR[Ks] and

SR[Kp] and PTE[PP] are set to prohibit read access,
instructions cannot be fetched from this location.

External interrupt IBR FFF0 0500 MSR[EE] = 1 and the INT signal is asserted.

Alignment IBR FFF0 0600 Memory cannot be accessed for one of the following reasons:
• The operand of a floating-point load or store is not word-

aligned.
• The operand of lmw, stmw, lwarx, or stwcx. is not word-

aligned.
• The operand of dcbz is in a page marked write-through or

caching-inhibited, for a virtual mode access.
• A little-endian access is misaligned, or a multiple access is

attempted with the little-endian bit set.

Program IBR FFF0 0700 The following conditions correspond to bit settings in SRR1
and arise during execution of an instruction:
• Floating-point enabled exception—The following is met:

 (MSR[FE0] | MSR[FE1]) & FPSCR[FEX] is 1.
FPSCR[FEX] is set by a floating-point instruction that
causes an enabled exception or by the execution of one of
the “move to FPSCR” instructions that results in both an
exception condition bit and its corresponding enable bit
being set in the FPSCR.

• Illegal instruction—Execution of an instruction is attempted
with an illegal opcode or combination of opcode and
extended opcode (including PowerPC instructions not
implemented in the 602 but not including those optional
instructions treated as no-ops).

• Privileged instruction—Execution of a privileged instruction
is attempted and MSR[PR] = 1. In the 602, this exception is
generated for mtspr or mfspr with an invalid SPR field if
SPR[0] = 1 and MSR[PR] = 1. This may not be true for all
PowerPC processors.

• Trap— Generated when a trap instruction condition is met.

Floating-point
unavailable

IBR FFF0 0800 An attempt to execute a floating-point instruction (including
floating-point load, store, or move instructions) when the
floating-point available bit is disabled, (MSR[FP] = 0)

Table 1-2. Exceptions and Conditions (Continued)

Exception Type

Vector (hexadecimal)

Causing Conditions Prefix
Offset

IP = 0 IP = 1
Chapter 1. Overview 1-31

1.2.6 Memory Management
The following subsections describe the memory management features of the PowerPC
architecture, and the 602 implementation, respectively.

Decrementer IBR FFF0 0900 The most significant bit of the decrementer (DEC) register
changes from 0 to 1. Must be enabled with the MSR[EE] bit.

Reserved IBR FFF0 0A00–
0BFF

—

System call IBR FFF0 0C00 Execution of the System Call (sc) instruction

Trace IBR FFF0 0D00 MSR[SE] =1 or when a completing instruction is a branch and
MSR[BE] =1

Floating-point assist IBR FFF0 0E00 Not implemented in the 602

Reserved — — 0E10–
0FFF

—

Instruction translation
miss

IBR FFF0 1000 The ITLB cannot translate the EA for an instruction fetch.

Data load translation
miss

IBR FFF0 1100 An EA for a data load cannot be translated by the DTLB.

Data store translation
miss

IBR FFF0 1200 An EA for a data store cannot be translated by the DTLB; or
when a DTLB hit occurs and the change bit in the PTE must be
set due to a data store operation.

Instruction address
breakpoint

0000 FFF0 1300 The address (bits 0–29) in the instruction address breakpoint
register (IABR) matches the next instruction to complete in the
completion unit and the IABR enable bit (bit 30) is set.

System management
interrupt

IBR FFF0 1400 MSR[EE] = 1 and the SMI input signal is asserted.

Watchdog timer IBR FFF0 1500 A carry occurs out of a bit specified by the user. If the watchdog
timer is not reset by the interrupt service routine, a second
watchdog timer exception forces an internal reset.

Emulation trap IBR FFF0 1600 Either a double-precision floating-point instruction or a load/
store string instruction is encountered.

Reserved — — 1700–
2FFF

—

Table 1-2. Exceptions and Conditions (Continued)

Exception Type

Vector (hexadecimal)

Causing Conditions Prefix
Offset

IP = 0 IP = 1
1-32 PowerPC 602 RISC Microprocessor User's Manual

1.2.6.1 PowerPC Memory Management
The primary functions of the MMU are to translate logical (effective) addresses to physical
addresses for memory accesses, I/O accesses (I/O accesses are assumed to be memory-
mapped), and to provide access protection on blocks and pages of memory.

There are two types of accesses generated by the 602 that require address translation—
instruction accesses and data accesses to memory generated by load and store instructions.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight page table entries (PTEs) of 8 bytes each; therefore, each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations.

Address translations are enabled by setting bits in the MSR—MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

1.2.6.2 PowerPC 602 Microprocessor Memory Management
Instruction and data TLBs provide address translation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of a TLB hit. A TLB is a cache of
the most recently used page table entries. Software is responsible for maintaining the
consistency of the TLB with memory. The 602’s TLBs are 32-entry, two-way set-
associative caches that contain instruction and data address translations. The 602 provides
hardware assist for software table search operations through the hashed page table on TLB
misses. Supervisor software can invalidate TLB entries selectively.

The instruction and data memory management units provide 4 Gbytes of logical address
space accessible to supervisor and user programs with a 4-Kbyte page size and 256-Mbyte
segment size. Block sizes range from 128 Kbytes to 256 Mbytes and are software-
selectable. In addition, the 602 uses an interim 52-bit virtual address and hashed page tables
for generating 32-bit physical addresses. The MMUs in the 602 rely on the exception
processing mechanism for the implementation of the paged virtual memory environment
and for enforcing protection of designated memory areas.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data
structure that defines the mapping between virtual page numbers and physical page
numbers. The page table size is a power of 2, and its starting address is a multiple of its size.
Chapter 1. Overview 1-33

Also as specified by the PowerPC architecture, the page table contains a number of page
table entry groups (PTEGs). A PTEG contains eight page table entries (PTEs) of 8 bytes
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table
search operations.

For applications requiring protection for areas of memory larger than 256 Kbytes, the 602
provides an optional configuration of its TLBs. Upon reset, the operating system can
configure the TLBs in the protection-only mode, which is described in detail in
Section 1.2.6.2.1, “Protection-Only Mode.”

The 602 also provides independent four-entry BAT arrays for instructions and data that
maintain address translations for blocks of memory. These entries define blocks that can
vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system software.
An address match with an entry in the BATs takes priority over a hit in the TLBs for the
same effective address.

1.2.6.2.1 Protection-Only Mode
Protection-only mode is provided for special-purpose implementations that do not require
the more extensive paging functionality required for multipurpose personal computers, but
need memory protection not offered by the OEA-defined real addressing mode.

Protection-only mode is described as follows:

• Protection-only mode is used when an effective address misses in the BAT registers
and HID0[PO] is set.

• When HID0[PO] is set, the TLBs are configured differently than the configuration
for the OEA-defined page address translation. In protection-only mode, each TLB is
configured to provide protection for 32, 4-Kbyte pages per TLB entry. A total of
4 Mbytes of memory can be protected in each TLB at one time. Protection consists
of 1 bit per 4-Kbyte page to control execution (NE bit) in instruction pages and
control write access (WE bit) in the data pages.

• This protection is provided by the NE bit, which provides no-execute protection on
a page level, the SE bit, which controls the use of esa/dsa supervisor access, and the
WE bit, which controls whether memory can be written to on a page basis. In
protection-only mode, these additional bits are defined in the TLBs and are
propagated and managed through portions of the architecturally-defined page
translation mechanism.

• Although the page translation mechanism is used to enforce memory protection, it
is not used to determine the physical address (that is, the effective address is used as
the physical address). In protection-only mode only the 24-bit virtual segment ID
(VSID) in SR0 is used. This VSID also functions as a process ID in protection-only
mode.

• Only the settings for the page from segment register 0 are used in this mode. Other
entries can be written to, but are not used.
1-34 PowerPC 602 RISC Microprocessor User's Manual

• The 602 provides programmable default cache control bits (WIMG) in the HID0
register to be used when the processor is running in real addressing mode or
protection-only mode.

• The SEBR and SER registers control the execution of the 602-specific esa
instruction for each of the 32, 4-Kbyte pages of a 128-Kbyte block of memory at any
one time.

1.2.7 Instruction Timing
The 602 is a pipelined processor with parallel execution units. A pipelined processor is one
in which the processing of an instruction is reduced into discrete stages. Because the
processing of an instruction is broken into a series of stages, an instruction does not require
the entire resources of an execution unit. For example, after an instruction completes the
decode stage, it can pass on to the next stage, while the subsequent instruction can advance
into the decode stage. This improves the throughput of the instruction flow. For example, it
may take three cycles for a floating-point instruction to complete, but if there are no stalls
in the floating-point pipeline, a series of floating-point instructions can have a throughput
of one instruction per cycle.

The instruction pipeline in the 602 has four major pipeline stages, described as follows:

• The fetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. Additionally, the
BPU decodes branches during the fetch stage and folds out branch instructions
before the dispatch stage if possible.

• The decode and dispatch pipeline stage is responsible for decoding the instructions
supplied by the instruction fetch stage and determining which of the instructions are
eligible to be dispatched in the current cycle. In addition, the source operands of the
instructions are read from the appropriate register file and dispatched with the
instruction to the execute pipeline stage. At the end of the dispatch pipeline stage,
the dispatched instructions and their operands are latched by the appropriate
execution unit.

• During the execute pipeline stage each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notifies the
completion stage that the instruction has finished execution. In the case of an internal
exception, the execution unit reports the exception to the completion/write-back
pipeline stage and discontinues instruction execution until the exception is handled.
The exception is not signaled until that instruction is the next to be completed.
Execution of most floating-point instructions is pipelined within the FPU allowing
up to three instructions to be executing in the FPU concurrently. The pipeline stages
for the floating-point unit are multiply, add, and round-convert. Execution of most
load/store instructions is also pipelined. The load/store unit has two pipeline stages.
The first stage is for effective address calculation and MMU translation and the
second stage is for accessing the data in the cache.
Chapter 1. Overview 1-35

• The complete/write-back pipeline stage maintains the correct architectural machine
state and transfers the contents of the rename registers to the GPRs and FPRs as
instructions are retired. If the completion logic detects an instruction causing an
exception, all following instructions are flushed, any execution results in rename
registers are discarded, and instructions are fetched from the correct instruction
stream.

The 602 has four independent execution units, one each for integer instructions, floating-
point instructions, branch instructions, and load/store instructions. The IU and the FPU
each have dedicated register files for maintaining operands (GPRs and FPRs, respectively),
allowing integer calculations and floating-point calculations to occur simultaneously
without interference.

Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing among various PowerPC processors varies
accordingly.

1.2.8 System Interface
The system interface is specific for each PowerPC microprocessor implementation.

The 602 interface includes a time-multiplexed, 32-bit address and 64-bit data bus, and 56
control and information signals (see Figure 1-5). The system interface allows for address-
only transactions as well as address and data transactions. The 602 control and information
signals include the bus arbitration, address start, address transfer, transfer attribute, address
termination, data transfer, data termination, and processor state signals. Test and control
signals provide diagnostics for selected internal circuits.

Figure 1-5. System Interface

The 602 supports multiple masters through a bus arbitration scheme that allows various
devices to compete for the shared bus resource. The arbitration logic can implement priority
protocols, such as fairness, and can park masters to avoid arbitration overhead. The MEI
protocol ensures coherency among multiple devices and system memory. Also, the 602's
on-chip caches and TLBs and optional second-level caches can be controlled externally.

+3.3 V

ADDRESS (32-BIT)/DATA (32-BIT)

ATTRIBUTES/DATA (32-BIT)

CLOCKS

BUS ARBITRATION

BUS CONTROLS

INTERRUPTS, RESETS

PROCESSOR STATE

TEST AND CONTROL

602
1-36 PowerPC 602 RISC Microprocessor User's Manual

The 602’s clocking structure allows the bus to operate at integer multiples of the processor
cycle time.

The following sections describe the 602 bus support for memory. Note that some signals
perform different functions depending upon the addressing protocol used.

1.2.8.1 Memory Accesses
The 602 memory accesses allow transfer sizes of 8, 16, 24, 32, or 64 bits in one bus clock
cycle. In 64-bit mode, data transfers occur in either single-beat transactions (up to 64 bits)
or four-beat burst (8 words) transactions. In 64-bit mode, nonburst data transfers occur in
either single- or double-beat (up to 32 or 64 bits, respectively) transactions or eight-beat
burst transactions.

Nonburst transactions are caused by noncached accesses that access memory directly (that
is, read and write operations when caching is disabled, caching-inhibited accesses, and
stores in write-through mode). Four-beat burst transactions, which always transfer an entire
32-byte cache block, are initiated when a block is read from or written to memory. The 602
initiates two distinct bus transactions in cases of misaligned accesses.

1.2.8.2 PowerPC 602 Microprocessor Signals
The 602 signals are grouped as follows:

• Bus arbitration signals—The 602 uses these signals to arbitrate for address bus
mastership.

• Address transfer start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals—These signals consist of the address, and prefetch line-fill
address buses.

• Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is a burst, write-
through, or caching-inhibited transaction.

• Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

• Data transfer signals—These signals consist of the 64-bit data bus.

• Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a nonburst transaction, the data termination signals
also indicate the end of the phase, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the data phase only after the
final data beat.

• System status signals—These signals include the interrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.
Chapter 1. Overview 1-37

• Processor state signals—These signals enable the time base and control the ability
to put the 602 in quiescent mode.

• IEEE 1149.1(JTAG)/COP interface signals—The IEEE 1149.1 test unit and the
common on-chip processor (COP) unit are accessed through a shared set of input,
output, and clocking signals. The IEEE 1149.1/COP interface provides a means for
boundary-scan testing and internal debugging of the 602.

• Test interface signals—These signals are used for production testing.

• Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE

A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, for example, TT0–TT4 (transfer type
signals), are referred to as asserted when they are high and
negated when they are low.

1.2.8.3 Signal Configuration
Figure 1-6 illustrates the 602's logical pin configuration, showing how the signals are
grouped.
1-38 PowerPC 602 RISC Microprocessor User's Manual

Figure 1-6. PowerPC 602 Microprocessor Signal Groups

A0–A31/D0–D31

SYSCLK

INT

HRESET, SRESET

JTAG/COP

TEST

INTERRUPT,

SYSTEM

CHECKSTOPS,

JTAG/COP
INTERFACE

LSSD TEST
CONTROL

ADDRESS/

CLOCKS TEST CLOCK

PFADDR0–PFADDR7/

BE0–BE7/D40–D47/

QREQ

TBEN

PLL_CFG0–PLL_CFG3

MCP

CKSTP_IN

AND RESETS

TSIZ0–TSIZ2/D50–D52/

TBST/D53

TT0–TT4/D54–D58

GBL/D59

TC0–TC1/D62–D63

CI/D60

WT/D61

BG

BR

TS

ARTRY

BB

BUS
ARBITRATION

TEA

TA

AACK

PFADDR16–PFADDR17/
DATA

RESETO

CKSTP_OUT

SMI

QACK

T32

TRANSFER
ATTRIBUTES/

DATA

TRANSFER
TERMINATION

STATUS
SIGNALS

1

1

8

8

4

3

1

5

1

2

1

1

1

1

2

1

1

2

5

3

602

1

1

1

1

1

1

1

1

1

1

1

1

1

1

32

D32–D39

PFADDR8–PFADDR15

D48–D49

PFADDR18–PFADDR20
Chapter 1. Overview 1-39

1-40 PowerPC 602 RISC Microprocessor User's Manual

Chapter 2
PowerPC 602 Microprocessor
Programming Model
20
20

This chapter describes the PowerPC programming model with respect to the PowerPC 602
microprocessor. It consists of three major sections that describe the following:

• Registers implemented in the 602
• Operand conventions
• The 602 instruction set

2.1 PowerPC 602 Processor Register Set
This section describes the registers implemented in the 602. These registers can be grouped
into three types:

• Registers that are implemented as they are defined by the PowerPC architecture.
These registers are identified in this chapter, but are described more fully in
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

• Registers that are defined by the PowerPC architecture that have been altered
somewhat from the PowerPC architecture definition. Typically this is the result of
implementing additional bits in bit locations reserved for use by individual PowerPC
processors. This chapter describes the differences.

• Registers that are defined for the 602 that are not defined by the PowerPC
architecture. For example, the timer control register (TCR) is used to configure and
control the 602’s watchdog timer facility, and the ESA save and restore register
(ESASRR) provides a place to save and restore state information when the 602-
specific esa instruction is used to put the processor in supervisor mode.

Some registers are updated as the result of instruction execution. The PowerPC architecture
defines register-to-register operations for all computational instructions. Source operands
are accessed from the on-chip registers—primarily the 32 general-purpose registers (GPRs)
and the 32 floating-point registers (FPRs)—or is provided as an immediate value embedded
in the opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required. Data is transferred between
memory and registers with explicit load and store instructions only. In addition to the GPRs
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-1

and FPRs, other registers can be affected directly by instructions; for example, the counter
register (CTR) and condition registers (CRs). Special conditions and errors are reflected in
the XER register and the floating-point status and control register (FPSCR).

Some registers are used for a variety of specific purposes, such as time keeping,
configuration, and support for exception handling. These registers are called special-
purpose registers (SPRs). The SPRs can be read by using the Move from Special-Purpose
Register (mfspr) instruction and written to by using the Move to Special-Purpose Register
(mfspr) instruction. Some SPRs are also affected by other operations as well.

When the 602 detects SPR encodings other than those defined in this document, it takes an
illegal instruction-type program exception. (Note that the term, ‘exception,’ is also referred
to as ‘interrupt’ in the architecture specification.) Conversely, some SPRs in the 602 may
not be implemented in other PowerPC processors, or may not be implemented in the same
way in other PowerPC processors. In general, for registers with reserved bits,
implementations return zeros or return the value last written to those bits.

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user- or
supervisor-level instructions (the architecture specification refers to user- and supervisor-
level as problem state and privileged state, respectively). The number to the right of the
register name indicates the number used in the syntax of the instruction operands to access
the register (for example, the number used to access the XER is SPR1).
2-2 PowerPC 602 RISC Microprocessor User's Manual

Figure 2-1. PowerPC 602 Processor Programming Model

DSISR

SPR 18DSISR

Data Address Register

SPR 19DAR

SPR 26SRR0

SPR 27SRR1

SPRGs

SPR 272SPRG0

SPR 273SPRG1

SPR 274SPRG2

SPR 275SPRG3

Exception Handling Registers

Save and Restore
Registers

Instruction BAT
Registers

SPR 528IBAT0U

SPR 529IBAT0L

SPR 530IBAT1U

SPR 531IBAT1L

SPR 532IBAT2U

SPR 533IBAT2L

SPR 534IBAT3U

SPR 535IBAT3L

Data BAT Registers

SPR 536DBAT0U

SPR 537DBAT0L

SPR 538DBAT1U

SPR 539DBAT1L

SPR 540DBAT2U

SPR 541DBAT2L

SPR 542DBAT3U

SPR 543DBAT3L

Memory Management Registers
Software Table

Search Registers1

SPR 976DMISS

SPR 977DCMP

SPR 978HASH1

SPR 979HASH2

SPR 980IMISS

SPR 981ICMP

SPR 982RPA

Machine State
Register

MSR

Processor Version
Register

SPR 287PVR

Configuration Registers
Checkstop Enables

Register1

SPR 1008HID0

TBR 268TBL

TBR 269TBU

SPR 1

USER MODEL

Floating-Point Status
and Control Register

CR

FPSCR

Condition Register

GPR0

GPR1

GPR31

General-Purpose
Registers

Single-Precision
Floating-Point Registers

XER

XER

SPR 8

Link Register

LR

Time Base Facility
(For Reading)

SUPERVISOR MODEL

SPR 984

Timer Control
Register1

TCR

Time Base Facility
(For Writing)

SPR 284TBL

SPR 285TBU

SDR1

SPR 25SDR1

SPR 9

Count Register

CTR

Miscellaneous Registers

SPR 1010IABR

Instruction Address
Breakpoint Register1

Segment Registers

SR0

SR1

SR15

FPR0

FPR1

FPR31

1 These registers are 602–specific registers. They may not be supported by other PowerPC processors.

Single-Precision
Tag Register1

SPR 1021SP

SPR 22

Decrementer

DEC

SPR 1022LT

SPR 986

Interrupt Base
Register1

IBR

ESA Access
Registers

SPR 991

ESA Enable
Register1

SER

SPR 990

ESA Enable
Base Register1

SEBR

Integer Tag Register1

ESA Save/Restore
Register1

SPR 987ESASRR

PLL Configuration
Register1

SPR 1009HID1
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-3

The 602’s user-level registers are described as follows:

• User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The general-purpose register file consists of
thirty-two 32-bit GPRs designated as GPR0–GPR31. This register file serves as
the data source or destination for all integer instructions and provides data for
generating addresses.

— Floating-point registers (FPRs). The floating-point register file implemented in
hardware in the 602 consists of thirty-two 32-bit FPRs designated as FPR0–
FPR31, which serve as the data source or destination for all floating-point
instructions. The UISA specifies that FPRs be 64 bits wide, to accommodate
double-precision operands, however, because the 602 does not support double-
precision arithmetic in hardware, the architected 64-bit FPRs are emulated in
software for double-precision instructions that require them.

The smaller single-precision registers need status bits to recognize a valid
floating-point operand in the hardware (rather than in a memory image) or an
integer value moved from the FPSCR or generated by the fctiwz instruction.
These status bits are implemented in SPRs (the SP and LT registers) and are
accessed and reloaded using the mfspr/mtspr instructions. For information
about the SP and LT registers, see Section 2.1.2.4.1, “Floating-Point Tag
Registers (SP and LT).”

For information on saving and restoring the contents of the FPRs, see
Section 2.1.3, “Saving and Restoring FPRs and the FPSCR.”

— Condition register (CR). The CR consists of eight 4-bit fields, CR0–CR7, that
reflect the results of certain arithmetic operations and are used for testing and
branching.

— Floating-point status and control register (FPSCR). The FPSCR is used to
configure how floating-point operations are handled and to register the results of
certain floating-point operations. The FPSCR contains all floating-point
exception signal bits, exception summary bits, exception enable bits, and
rounding control bits needed for compliance with the IEEE 754 standard.

The remaining user-level registers are SPRs. These instructions are typically used to
explicitly access certain registers, while other SPRs may be more commonly
accessed as the side effect of executing other instructions.

— XER register. Bits in the 32-bit XER are set as the result of specific integer
conditions, such as underflows and carries.

— Link register (LR). The 32-bit link register provides the branch target address for
the Branch Conditional to Link Register (bclrx) instruction, and can optionally
be used to hold the logical address (referred to as the effective address in the
architecture specification) of the instruction that follows a branch and link
instruction, typically used for linking to subroutines.
2-4 PowerPC 602 RISC Microprocessor User's Manual

— Count register (CTR). The CTR is a 32-bit register for holding a loop count that
can be decremented during execution of appropriately coded branch instructions.
The CTR can also provide the branch target address for the Branch Conditional
to Count Register (bcctrx) instruction.

• User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB). The TB is a 64-bit structure that maintains the time of day and operates
interval timers. The TB consists of two 32-bit registers—time base upper (TBU) and
time base lower (TBL). Note that the time base registers can be accessed by both
user- and supervisor-level registers.

• Supervisor-level registers (OEA)—The OEA defines the registers that are
typically used by an operating system for such operations as memory management,
configuration, and exception handling. The 602 implements the supervisor-level
registers defined by the PowerPC architecture as follows:

— Configuration registers

– Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Interrupt (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. The 602
implements additional bits in the MSR for configuring functionality not
defined by the PowerPC architecture. Section 2.1.1.1, “Machine State
Register,” of this manual describes 602-specific MSR bits.

– Processor version register (PVR). This read-only register identifies the
version (model) and revision level of the PowerPC processor. Section 2.1.1.3,
“Processor Version Register,” describes how the PVR is used to show the
processor version number for 602.

— Memory management registers

– Block-address translation (BAT) registers. The 602 includes the four pairs of
instruction BATs (IBAT0U–IBAT3U and IBAT0L–IBAT3L) and four pairs of
data BATs (DBAT0U–DBAT3U and DBAT0L–DBAT3L) defined by the
OEA. The 602 implements two additional bits in the lower BAT registers to
support 602-specific functionality. These bits are described in Section 2.1.1.4,
“BAT Registers.”

– SDR1. The SDR1 register specifies the page table base address used in virtual-
to-physical address translation.

– Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SR0–SR15) for 32-bit implementations only.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-5

— Exception-handling registers

– Data address register (DAR). After a data access or an alignment exception,
the DAR is set to the effective address generated by the faulting instruction.

– SPRG0–SPRG3. The SPRG0–SPRG3 registers are provided for operating
system use.

– DSISR. The DSISR defines the cause of data access and alignment
exceptions.

– Machine status save/restore register 0 (SRR0). The SRR0 is used to save the
address of the instruction that should be executed after an rfi instruction is
executed. The instruction address saved to the SRR0 depends on the exception
taken.

– Machine status save/restore register 1 (SRR1). The SRR1 is used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed. The bits saved to SRR1 depend on the exception
taken. See Section 2.1.1.2, “Machine Status Save/Restore Register 1,” for
information on how SRR1 is implemented in the 602.

— Miscellaneous registers

– The time base facility (TB). The TB is a 64-bit structure that maintains the
time of day and operates interval timers. The TB consists of two 32-bit
registers—time base upper (TBU) and time base lower (TBL). Note that the
time base registers can be accessed by both user- and supervisor-level
registers.

The 602’s time base is incremented once every four bus clocks. Additional
time base control is achieved through the time base enable (TBEN) signal
which serves as a count enable.

– Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.

– External access register (EAR). The EAR is an optional 32-bit register that is
defined by the PowerPC architecture but not implemented in the 602.

For more information about PowerPC architecture-defined registers refer to Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.
2-6 PowerPC 602 RISC Microprocessor User's Manual

2.1.1 PowerPC Registers with Implementation-Specific Bits
A number of registers defined by the PowerPC architecture have additional
implementation-specific bits defined for the 602. These registers are described in the
following sections.

2.1.1.1 Machine State Register
The 602’s implementation of the MSR includes bits described by the PowerPC architecture
as well as additional bits that support 602-specific functionality. The MSR is shown in
Figure 2-2.

Figure 2-2. Machine State Register (MSR)

The following additional 602-specific bits (shown in Table 2-1) are implemented in the
MSR.

Table 2-1. Machine State Register—Implementation-Specific Bits

Bit Name Function

8 AP Access privilege state. This bit is checked only when MSR[PR] = 0; if AP is set, the
processor has user-level access to instruction and data space. If AP is cleared, the
processor has supervisor-level access to memory.

9 SA Supervisor access mode. If set, this bit allows execution of supervisor instructions without
entering supervisor mode.

13 POW Activates power management. This bit is defined by the PowerPC architecture, but may not
be implemented in all processors. MSR[POW] may be altered with an mtmsr instruction
only. Also, when altering the POW bit, software may alter only this bit in the MSR and no
others. The mtmsr instruction must be followed by a context-synchronizing instruction. See
Chapter 9, “Power Management,” for more information about power management.

14 TGPR Temporarily replaces TGPR0–TGPR3 with GPR0–GPR3 for use by TLB miss routines.
When this bit is set, all instruction accesses to GPR0–GPR3 are mapped to TGPR0–
TGPR3, respectively. The contents of GPR0–GPR3 are unchanged as long as this bit
remains set. Attempts to use GPR4–GPR31 when this bit is set yields undefined results.The
TGPR bit is set when either an instruction TLB miss, data read miss, or data write miss
exception is taken. The TGPR bit is cleared by an rfi instruction.

20 FE0 IEEE floating-point exception mode. This bit is implemented as defined by the PowerPC
architecture; however, if either FE0 or FE1 are set, the 602 operates in precise mode. As
defined by the architecture, if both bits are cleared, floating-point exceptions are disabled.
For more information, see Section 4.5.7, “Program Exception (0x0700).” These modes
operate regardless of the setting of FPSCR[NI].

0 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved
POW

TGPR

ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 0 0 RI LE0 0 0 0 0 0 0 0 AP SA 0 0 0
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-7

2.1.1.2 Machine Status Save/Restore Register 1
Table 2-3 shows the 602-specific bits implemented in SRR1 as implemented for table
search operations.

23 FE1 IEEE floating-point exception mode. This bit is implemented as defined by the PowerPC
architecture; however, if either FE0 or FE1 are set, the 602 operates in precise mode. As
defined by the architecture, if both bits are cleared, floating-point exceptions are disabled.
For more information, see Section 4.5.7, “Program Exception (0x0700).” These modes
operate regardless of the setting of FPSCR[NI].

25 IP The IP bit, defined by the PowerPC architecture, is implemented differently in the 602. How
the IP bit is interpreted depends on the exception.
• If a soft reset, machine check, or instruction address breakpoint exception is taken, the IP

is used as it is defined by the PowerPC architecture. That is, if IP = 0, the vector address
is determined by prefixing 0’s to the vector offset. If IP is set, the vector address is
determined by prefixing the vector offset with 0xFFF.

• If a hard reset is taken, the vector address is always 0XFFF0_0100.
• For all other exceptions, if the IP bit is cleared, the vector address is determined by

prefixing the contents of the IBR to the vector offset. If IP is set, the vector address is
determined by prefixing 0xFFF to the vector offset.

The 602-specific interrupt base register can be used to program the top 16 bits or exception
addresses. See Section 2.1.2.4.3, “Interrupt Base Register (IBR).”

26 IR This bit is implemented as defined by the PowerPC architecture. Turns on instruction
address translation, protections, and cache control. The DR and IR bits operate as defined
by the PowerPC architecture. If IR or DR bits are set, the BAT/TLB hit mechanisms take
priority.

27 DR This bit is implemented as defined by the PowerPC architecture. Turns on data address
translation, protections, and cache control. The DR and IR bits operate as defined by the
PowerPC architecture. If IR or DR bits are set, the BAT/TLB hit mechanisms take priority.

Table 2-2. SRR1—PowerPC 602-Specific Bits for Software Table Search Operations

Bit(s) Name Function

0–3 CRF0 Condition register field 0 bits

12 KEY TLB miss protection key

13 I/D Instruction TLB miss

14 WAY Specifies which TLB set should be replaced

15 S/L TLB miss was on a store or load operation

Table 2-1. Machine State Register—Implementation-Specific Bits (Continued)

Bit Name Function
2-8 PowerPC 602 RISC Microprocessor User's Manual

When the 602 takes a machine check exception, it sets one or more error bits in SRR1.
Table 2-3 shows the 602-specific bits implemented in SRR1 as implemented for machine
check handling.

2.1.1.3 Processor Version Register
The processor version number is 0x0005 for the 602. The processor revision level starts at
0x0100 and is incremented for each revision of the processor. The PVR is described in
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

2.1.1.4 BAT Registers
The PowerPC OEA defines the BAT registers as eight instruction block-address translation
(IBAT) registers, consisting of four pairs of instruction BATs, or IBATs (IBAT0U–IBAT3U
and IBAT0L–IBAT3L) and eight data BATs, or DBATs, (DBAT0U–DBAT3U and
DBAT0L–DBAT3L). The BAT registers (BATs) maintain the address translation
information for four instruction blocks and four data blocks in memory. BAT registers
define the starting addresses and sizes of BAT areas as well as other characteristics of each
block.

Figure 2-3 and Figure 2-4 show the format of the upper and lower BAT registers for
32-bit PowerPC processors.

Figure 2-3. Format of Upper BAT Registers—32-Bit Implementations

Figure 2-4. Format of Lower BAT Registers—32-Bit Implementations

Table 2-3. SRR1—PowerPC 602-Specific Bits for Machine Check Handling

Bit Name Function

12 MCPIN If set, the exception was caused by the assertion of the machine check interrupt (MCP) signal.

13 TEA If set, the exception was caused by the assertion of the transfer error acknowledge (TEA) signal.

BEPI 0 0 0 0 BL Vs Vp

0 14 15 18 19 29 30 31

Reserved

Reserved

0 14 15 20 21 22 23 24 25 28 29 30 31

BRPN 0 0 0 0 0 0 NE SE 0 0 WIMG* 0 PP

*W and G bits are reserved (not defined) for IBAT registers
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-9

Table 2-4 describes the bits in the BAT registers.

The value loaded into BL determines both the length and alignment of the BAT area in both
logical and physical address space. The values loaded into BEPI and BRPN must have at
least as many low-order zeros as there are ones in BL. Table 2-5 lists the BAT area lengths
encoded in BAT[BL].

For more information on the BAT registers, refer to The Programming Environments
Manual. Use of BAT registers is described in Chapter 5, “Memory Management.”

Table 2-4. BAT Registers—Field and Bit Descriptions

Register Bit(s) Name Description

Upper
BAT
register

0–14 BEPI Block effective page index. This field is compared with high-order bits of the logical
address to determine if there is a hit in that BAT array entry. (Note that the
architecture specification refers to logical address as effective address.)

15–18 — Reserved

19–29 BL Block length. BL is a mask that encodes the size of the block. Values for BL are
listed in Table 2-5.

30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if there is a
match with the logical address. For more information, see Section 5.3, “Block
Address Translation."

31 Vp User mode valid bit. This bit and MSR[PR] determine if there is a match with the
logical address. See Section 5.3, “Block Address Translation.”

Lower
BAT
register

0–14 BRPN This field is used with BL to generate high-order bits of the physical address of the
block.

15–20 — Reserved

21 NE No execute. This bit controls execute privileges for the block. When this bit is set,
instructions cannot be fetched from this block. Note that setting SR[N] also inhibits
execute privileges on a 256-Mbyte basis and overrides a setting of zero for the NE
bit. The NE bit is valid only in the IBATs and is specific to the 602.

22 SE ESA enable. This bit controls whether the esa instruction, which puts the
processor in supervisor mode, can execute from this block. The SE bit is valid only
in the IBATs and is specific to the 602.

23–24 — Reserved

25–28 WIMG Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
G Guarded

For detailed information about the WIMG bits, see Section 3.6, “Memory
Management/Cache Access Mode Bits—W, I, M, and G."

29 — Reserved

30–31 PP Protection bits for block. This field determines the protection for the block as
described in Section 5.3, “Block Address Translation."
2-10 PowerPC 602 RISC Microprocessor User's Manual

2.1.2 PowerPC 602 Processor-Specific Registers
The 602 includes several implementation-specific, supervisor-level SPRs not defined by the
PowerPC architecture, as shown in Table 2-6.

Table 2-5. BAT Area Lengths

BAT Area
Length

BL Encoding
BAT Area
Length

BL Encoding

128 Kbytes 000_0000_0000 8 Mbytes 000_0011_1111

256 Kbytes 000_0000_0001 16 Mbytes 000_0111_1111

512 Kbytes 000_0000_0011 32 Mbytes 000_1111_1111

1 Mbyte 000_0000_0111 64 Mbytes 001_1111_1111

2 Mbytes 000_0000_1111 128 Mbytes 011_1111_1111

4 Mbytes 000_0001_1111 256 Mbytes 111_1111_1111

Table 2-6. PowerPC 602 Processor-Specific SPRs

Register
Name

Function
SPR

(Decimal)
SPR

spr 5-9 spr 0-4
R/W

HID0 Checkstop/miscellaneous enables 1008 11111 10000 R/W

HID1 PLL configuration values 1009 11111 10001 Read-only

IABR Instruction address breakpoint register 1010 11111 10010 R/W

SP FPU single-precision tags 102 11111 11101 R/W

LT FPU integer tags 1022 11111 11110 R/W

DMISS DTLB miss address register 976 11110 10000 R/W

DCMP DTLB miss compare register 977 11110 10001 R/W

HASH1 Primary hash address 978 11110 10010 Read-only

HASH2 Secondary hash address 979 11110 10011 Read-only

IMISS ITLB miss address register 980 11110 10100 R/W

ICMP ITLB miss compare register 981 11110 10101 R/W

RPA Required physical address register 982 11110 10110 R/W

TCR Timer control register 984 11110 11000 R/W

IBR Interrupt base register 986 11110 11010 R/W

ESASRR ESA save and restore register 987 11110 11011 R/W

SER ESA enable register 991 11110 11111 R/W

SEBR ESA enable base register 990 11110 11110 R/W
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-11

DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA are used for software table
search operations and should be accessed only when address translation is disabled (that is,
MSR[IR] = 0 and MSR[DR] = 0). For a complete discussion of software table search
operations, refer to Section 5.5, “Page Table Search Operation.”

2.1.2.1 Configuration Registers
The 602 provides additional configuration registers for enabling and disabling 602-specific
functions, such as power management, cache control, protection-only mode, and PLL
configuration. These registers are described in the following sections.

2.1.2.1.1 Hardware Implementation Register 0 (HID0)
The hardware implementation register 0 (HID0), shown in Figure 2-5, defines enable bits
for various 602-specific features.

Figure 2-5. Hardware Implementation Register 0 (HID0)

Table 2-7 shows the bit definitions for HID0.

Table 2-7. HID0 Bit Settings

Bit(s) Name Description

0 EMCP Enable machine check pin. EMCP is used to mask machine check interrupts caused by the
assertion of MCP. Setting EMCP enables the MCP signal to cause a checkstop if MSR[ME] is
cleared or a machine check interrupt if MSR[ME] is set. Clearing EMCP prevents the MCP
signal from causing either a machine check interrupt or a checkstop.

1–3 — Not used

4 SBCLK Select bus clock for test clock pin.
1 The test clock, CLK_OUT, runs at the bus frequency.
0 The test clock, CLK_OUT, runs at the processor frequency.
Used in combination with SBCLK to determine configure the CLK_OUT signal. SeeTable 2-8.

5 — Not used

6 ECLK Enable external test clock pin. Used in combination with SBCLK to configure the CLK_OUT
signal. SeeTable 2-8.

7 — Not used

8 DOZE Doze mode—PLL, time base, and snooping active. See Chapter 9, “Power Management.”

9 NAP Nap mode—PLL and time base active. See Chapter 9, “Power Management.”

10 SLEEP Sleep mode—no external clock required. See Chapter 9, “Power Management.”

11 DPM Enable dynamic power management. See Chapter 9, “Power Management.”

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 31

Reserved

NAP DPM NHR DCE

DCFI

EMCP SBCLK ECLK DOZE SLEEP RISEG ILOCK

DLOCK

ICFI WIMG0 00 0 0 0 0 0 0 PO SL0 0
2-12 PowerPC 602 RISC Microprocessor User's Manual

12 RISEG Reserved for test.

13–14 — Not used

15 NHR Not hard reset. Software can set this bit at start up to indicate that soft reset can be
distinguished from hard reset. This bit is subsequently cleared by a hard reset.

16 — Not used

17 DCE Data cache enable. To prevent a cache from being disabled in the middle of an access the
setting of this bit must be preceded by a sync instruction. To guarantee that instructions are
cleared from the instruction queue after the cache is disabled, an isync instruction should follow
the mtspr instruction that updates HID0.

18 ILOCK Instruction cache lock. A locked cache can supply data normally on a hit, but a miss operation is
treated as a caching-inhibited transaction. The setting of the ILOCK must be preceded by an
isync instruction to prevent the cache from being locked while it is being accessed.

19 DLOCK Data cache lock. A locked cache can supply data normally on a hit, but a miss operation is
treated as a caching-inhibited transaction.
A snoop hit to a locked data cache performs as if the cache were not locked. A cache block
invalidated by a snoop remains invalid until the cache is unlocked.
The setting of the DLOCK bit must be preceded by a sync instruction to prevent the cache from
being locked while it is being accessed.

20 ICFI Instruction cache flash invalidate. Setting this bit causes the instruction cache to be invalidated.
Both caches are invalidated automatically upon power-up (hard reset). Soft reset does not
invalidate the caches automatically, so ICFI must be set if invalidation is desired after a soft
reset. Proper use of this bit is to set it and clear it in two consecutive mtspr operations. This
creates an adequate window for the operation to be performed. Between the two stores, the
tags are continuously invalidated.

21 DCFI Data cache flash invalidate. Setting this bit causes the data cache to be invalidated after a soft
reset. Both caches are invalidated automatically upon power-up (hard reset). Soft reset does
not invalidate the caches automatically, so DCFI must be set if invalidation is desired after a soft
reset. Proper use of this bit is to set it and clear it in two consecutive mtspr operations. This
creates an adequate window for the operation to be performed. Between the two stores, the
tags are continuously invalidated.

22–23 — Not used

24 PO Protection-only mode. Setting PO enables the 602-specific protection-only mode to be used
after a BAT miss. See Section 5.6, “Protection-Only Mode.”

25 — Not used

26 SL Enable out-of-order loads on the bus.

27 — Not used

28–31 WIMG Default WIMG settings used in real addressing mode and protection-only mode.

Table 2-7. HID0 Bit Settings (Continued)

Bit(s) Name Description
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-13

Table 2-8 shows how the HID0[ECLK] and HID0[SBCLK] are used to configure the
CLK_OUT signal.

For more information on the CLK_OUT, see Section 7.2.11.2, “Test Clock (CLK_OUT)—
Output.”

The HID0 register is accessed as SPR 1008.

2.1.2.1.2 Hardware Implementation Register 1 (HID1)—PLL Configuration
In the 602, the HID1 register is used to configure the PLL. The HID1 register is shown in
Figure 2-6.

Figure 2-6. HID1—PLL Configuration Register

Table 2-9 describes the bits in the HID1 implemented in the 602.

The HID1 register is accessed as SPR 1009.

Table 2-8. CLK_OUT Signal Configuration

HID0[ECLK] HID0[SBCLK] CLK_OUT

0 0 High impedance

0 1 High impedance

1 0 Processor clock

1 1 Bus clock (= SYS_CLK)

Table 2-9. HID1 Bit Settings

Bit(s) Name Function

0 PC0 PLL configuration bit 0 (read only)

1 PC1 PLL configuration bit 1 (read only)

2 PC2 PLL configuration bit 2 (read only)

3 PC3 PLL configuration bit 3 (read only)

4–31 Not used —

0 1 2 3 4 31

PC0
PC1
PC2
PC3

Reserved

0 0
2-14 PowerPC 602 RISC Microprocessor User's Manual

2.1.2.2 PowerPC 602 Processor Memory Management Registers
The 602 implements additional registers not defined by the PowerPC architecture for
memory management. These registers are implemented primarily to support the 602’s
software table search operations. These registers are described in the following sections.
For more detailed information about how these registers are used with the 602’s MMU, see
Chapter 5, “Memory Management.”

2.1.2.2.1 Data and Instruction TLB Miss Address Registers
(DMISS and IMISS)

The DMISS and IMISS registers have the same format, as shown in Figure 2-7. They are
loaded automatically upon a data or instruction TLB miss. The DMISS and IMISS contain
the effective page address of the access that caused the TLB miss exception. The contents
are used by the 602 when calculating the values of HASH1 and HASH2, and by the tlbld
and tlbli instructions when loading a new TLB entry. Note that the 602 always loads the
DMISS register with a big-endian address, even when MSR[LE] is set. These registers are
read-only to the software.

Figure 2-7. DMISS and IMISS Registers

The DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA registers should be
accessed with translation disabled (MSR[IR] = 0 and MSR[DR] = 0).

2.1.2.2.2 Data and Instruction PTE Compare Registers (DCMP and ICMP)
The DCMP and ICMP registers, shown in Figure 2-8, contain the first word in the required
PTE. The contents are constructed automatically from the contents of the segment registers
and the effective address (DMISS or IMISS) when a TLB miss exception occurs. Each PTE
read from the tables during the table search process should be compared with this value to
determine whether or not the PTE is a match. Upon execution of a tlbld or tlbli instruction,
the DCMP or ICMP register is loaded into the first word of the selected TLB entry.

Figure 2-8. DCMP and ICMP Registers

Table 2-10 describes the bit settings for the DCMP and ICMP registers.

0 31

Effective Page Address

0 1 24 25 26 31

V HVSID API
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-15

Note that DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA should be accessed
with translation disabled (MSR[IR] = 0 and MSR[DR] = 0).

The DCMP register can be accessed as SPR 977; the ICMP register can be accessed as
SPR 981.

2.1.2.2.3 Primary and Secondary Hash Address Registers
(HASH1 and HASH2)

The HASH1 and HASH2 registers are read-only, supervisor-level SPRs that contain the
physical addresses of the primary and secondary PTEGs for the access that caused the TLB
miss exception. Only bits 7–25 differ between them. For convenience, the 602
automatically constructs the full physical address by routing bits 0–6 of SDR1 into HASH1
and HASH2 and clearing the lower-order 6 bits. These registers are read-only and are
constructed from the contents of the DMISS or IMISS register. The format for the HASH1
and HASH2 registers is shown in Figure 2-9.

Figure 2-9. HASH1 and HASH2 Registers

Table 2-11 describes the bit settings of the HASH1 and HASH2 registers.

Note that DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA should be accessed
with translation disabled (MSR[IR] = 0 and MSR[DR] = 0).

The HASH1 register can be read as SPR 978; the HASH2 register can be read as SPR 979.

Table 2-10. DCMP and ICMP Bit Settings

Bit(s) Name Description

0 V Valid bit. Set by the processor on a TLB miss exception.

1–24 VSID Virtual segment ID. Copied from VSID field of the corresponding segment register.

25 H Hash function identifier. Cleared by the processor on a TLB miss exception.

26–31 API Abbreviated page index. Copied from API of effective address.

Table 2-11. HASH1 and HASH2 Bit Settings

Bits Name Description

0–6 HTABORG[0–6] Copy of the upper 7 bits of the HTABORG field from SDR1

7–25 Hashed page address Address bits 7–25 of the PTEG to be searched

26–31 — Reserved

0 6 7 25 26 31

Reserved

HTABORG[0–6] Hashed Page Address 0 0 0 0 0 0
2-16 PowerPC 602 RISC Microprocessor User's Manual

2.1.2.2.4 Required Physical Address Register (RPA)
The RPA register, shown in Figure 2-10, is used to hold the physical address and is used in
conjunction with page table search operations performed in software on the 602. During a
page table search operation, the software must load the RPA with the second word of the
correct PTE. When the tlbld or tlbli instruction is executed, the contents of the RPA register
and the DMISS or IMISS register are merged and loaded into the selected TLB entry.

Figure 2-10. Required Physical Address Register (RPA)—Default Configuration

Table 2-12 describes the bit settings of the RPA register.

Note that the DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA registers should
be accessed with translation disabled (MSR[IR] = 0 and MSR[DR] = 0).

The RPA register can be accessed as SPR 982.

2.1.2.2.5 RPA Register in Protection-Only Mode
The RPA register should be loaded by the processor with the second word of the correct
PTE during a page table search. In protection-only mode, the format of the PTE, the TLB
entries, and the RPA register are different in that each contains 32 protection bits for the
128-Kbyte region they define.

Table 2-12. RPA Bit Settings—Default Configuration

Bit(s) Name Description

0–19 RPN Physical page number from PTE.

20 — Reserved

21 NE No execute. Controls execute privileges for that page. If set, instructions cannot be fetched from
that 4-Kbyte page. NE is a don’t care if SR[N] is set.

22 SE ESA enable. The SE bit is used to control whether the esa instruction can be executed.
Executing esa puts the processor in supervisor mode without taking an exception.

23 R Referenced bit from PTE

24 C Changed bit from PTE

25–28 WIMG Memory/cache access attribute bits

29 — Reserved

30–31 PP Page protection bits from PTE

0 19 20 21 22 23 24 25 28 29 30 31

Reserved

RPN R C WIMG PP0 0 NE SE
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-17

For ITLB loads, the RPA register should contain 32 no-execute (NE) bits, that control
whether instructions from the corresponding pages can be executed. The organization of the
RPA for ITLB loads is shown in Figure 2-11.

Figure 2-11. RPA for ITLB Loads—Protection-Only Mode

Before a TLB Load Instruction (tlbli) is executed, the RPA register should be loaded with
32 NE bits.

For DTLB loads, the RPA register should contain 32 write-enable (WE) bits, that control
whether instructions from the corresponding pages can be executed. For DTLB loads, the
RPA organization is shown in Figure 2-12.

Figure 2-12. RPA for DTLB Loads—Protection-Only Mode

Before a TLB Load Data (tlbld) instruction is executed, the RPA register should be loaded
with 32 WE bits.

2.1.2.3 ESA Supervisor Access Registers
The 602 defines a set of resources that allow the processor to access supervisor instructions,
registers, and memory resources without taking an exception. This supervisor access is
signaled by the execution of the 602-specific esa instruction. Execution of this instruction
is allowed only if it is enabled for page or block in which it resides.

There are three registers that are 602-specific that support this functionality:

• ESASRR, which is used to save information about the context of the processor when
the esa instruction is executed

The remaining two registers are used to control access to the esa instruction only when the
processor is running in protection-only mode. They are:

• SEBR, which contains the base address for the 128-Kbyte region which is broken
into 32, 4-Kbyte pages

• Each of the 32 bits in the SER control whether the esa instruction can be executed
from the corresponding 4-Kbyte page.

All three registers are described in the following sections.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

NE0 NE1 NE2 NE3 NE4 NE5 NE6 NE7 NE8 NE9 NE10 NE11 NE12 NE13 NE14 NE15 NE16 NE17 NE18 NE19 NE20 NE21 NE22 NE23 NE24 NE25 NE26 NE27 NE28 NE29 NE30 NE31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WE0 WE1 WE2 WE3 WE4 WE5 WE6 WE7 WE8 WE9 WE10 WE11WE12 WE13WE14 WE15WE16WE17 WE18WE19WE20 WE21WE22WE23 WE24WE25WE26WE27 WE28 WE29WE30 WE31
2-18 PowerPC 602 RISC Microprocessor User's Manual

2.1.2.3.1 ESA Save and Restore Register (ESASRR)
The ESA save and restore register (ESASRR) is a supervisor-level register that provides a
means for automatically saving and restoring aspects of the machine state for use with the
enable/disable supervisor access instructions (esa and dsa).

Figure 2-13. ESASRR—ESA Save and Restore Register

The bits in the ESASRR are described in Table 2-13.

When an esa instruction is executed, MSR[SA, EE, PR, AP] are updated and the previous
values are automatically saved in the ESASRR. When a dsa instruction is executed, the
contents of these bits are automatically restored to the MSR.

The ESASRR can be accessed explicitly using SPR number 987.

2.1.2.3.2 ESA Enable Base Register (SEBR) (Protection-Only Mode)
The ESA enable base register (SEBR) and ESA enable register (SER) are used to control
whether the esa instruction can be executed for each of the 32 pages of a 128-Kbyte region
of memory when the processor is operating in protection-only mode (MSR[PO] = 0).

Figure 2-14. ESA Enable Base Register (SEBR)

Table 2-13. ESASRR Bit Settings

Bit(s) Name Function

0–27 — —

28 PR Copy of MSR[PR] when esa is executed

29 AP Copy of MSR[AP] when esa is executed

30 SA Copy of MSR[SA] when esa is executed

31 EE Copy of MSR[EE] when esa is executed

0 27 28 29 30 31

PR AP SA EE

Reserved

0 0

0 14 15 31

Base Address

Reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-19

SEBR[0–14] contains the base address of the 128-Kbyte region that is protected by the 32
SE bits in SER (each bit in the SER configures a 4-Kbyte page). SEBR[0–14] are compared
against the EA[0–14]. If a match occurs, EA[15–19] indicate which of the 32 SE bits in the
SER is examined to determine whether the esa instruction can be executed from the
corresponding 4-Kbyte page. If there is no match, SE = 0. The matching requirement of the
SEBR is similar to the BAT register.

The SER and SEBR registers do not affect protection checking unless the processor is
operating in protection-only mode. If HID0[PO] = 0, these registers can be read and written
to, but are not used by the MMU.

The SEBR register is accessed as SPR 990.

2.1.2.3.3 ESA Enable Register (SER) (Protection-Only Mode)
The ESA enable register (SER), shown in Figure 2-15, contains 32 SE bits that control the
ability to execute the esa instruction on a per-page basis when the processor is operating in
protection-only mode (MSR[PO] = 0).

Figure 2-15. ESA Enable Register (SER)

Each SE bit corresponds to a 4-Kbyte page. To execute an esa instruction, the 602 must first
determine whether the page on which the esa instruction resides allows it to be executed.
This is done by comparing the high-order 15 bits of the EA against the same bits in the
SEBR. If a match occurs, EA[15–19] indicate the 4-Kbyte page, providing an index to the
SER from which the appropriate SE bit is read.

If SE = 1, an esa instruction residing on that page can be executed, putting the processor in
supervisor mode. If SE = 0, the esa instruction is disabled for this page. SER[0]
corresponds to the lowest page in memory, SER[1] corresponds with the next higher page
in memory.

The SER and SEBR registers do not affect protection checking unless the processor is in
protection-only mode. If the processor is not in protection-only mode, these registers can
be read and written to, but are not used by the MMU.

The SER is accessed as SPR 991.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SE0 SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9 SE10 SE11 SE12 SE13 SE14 SE15 SE16 SE17 SE18 SE19 SE20 SE21 SE22 SE23 SE24 SE25 SE26 SE27 SE28 SE29 SE30 SE31
2-20 PowerPC 602 RISC Microprocessor User's Manual

2.1.2.4 Miscellaneous PowerPC 602 Processor–Specific Registers
The following sections describe 602-specific registers that support a variety of functions,
such as software support for double-precision floating-point operations and the watchdog
timer facility.

2.1.2.4.1 Floating-Point Tag Registers (SP and LT)
Because the 602 does not support double-precision arithmetic in hardware, the 602
provides two 32-bit, SPRs that characterize the contents of the 32 FPRs. The SP tag register
holds tags that identify single-precision values and the LT tag register holds tags that
identify integer values.

Each bit of each register corresponds to a single 32-bit FPR. An SP or LT bit being set
indicates that the corresponding register contains valid data—SP designating single-
precision floating-point data and LT designating integer data. If neither bit is set, the data
resides in memory in the associated double-precision emulated FPR.

During power-on reset, the bits in the SP and LT registers are not automatically cleared to
all zeros and must be cleared by using mtspr instructions in the reset routine.

Care should be taken to ensure that the SP/LT bits for an associated FPR are not
inadvertently altered by the mtspr instruction; valid data residing in an FPR that has its SP/
LT bits changed causes erroneous results when the FPR is used as an operand.

Instructions requiring single-precision values as operands cause an emulation trap
exception if any of the operand’s associated SP bits are not set. The SP register is accessed
as SPR 1021; The LT register is accessed as SPR 1022.

2.1.2.4.2 Timer Control Register (TCR)
The timer control register (TCR) is a supervisor-level SPR used to program the watchdog
timer, which is an implementation-specific feature of the 602 and is not defined by the
PowerPC architecture. The TCR is shown in Figure 2-16.

Figure 2-16. Timer Control Register (TCR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

TI

L2E
NWE
WIE
SLT

CRE Reserved

0 0
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-21

The bits in the TCR are described in Table 2-14.

For information about the watchdog timer utility, see Section 4.5.17, “Watchdog Timer
Interrupt (0x1500).”

The TCR is accessed as SPR 984.

2.1.2.4.3 Interrupt Base Register (IBR)
The IBR is used to store a 16-bit base address used to determine the exception vector prefix
for certain exceptions and under certain conditions. The 16-bit base address is concatenated
with the exception vector offset to form the address for the exception handler. The IBR can
be read and written to by the processor. See Figure 2-17 for the format of this register.

Table 2-14. Timer Control Register Bit Settings

Bit(s) Name Description

0–1 TI The timer interval bits indicate the number of clock cycles that should occur before the
watchdog timer interrupt exception is taken.
00 2e23 clock cycles (ca. 0.25 s)
01 2e24 clock cycles (ca. 0.50 s)
10 2e25 clock cycles (ca. 1.00 s)
11 2e26 clock cycles (ca. 2.00 s)

Approximate durations assume 33 MHz bus running in 2:1 mode. For example, if the TI bit is
set as 0b00, as soon as bit 8 is set (that is, after 2e23 clock cycles) a carry-out occurs.

2 CRE Timer core reset enable
0 Timer core reset disabled
1 Timer core reset enabled

3 L2E Level 2 watchdog timer interrupt enable. Enables the watchdog timer level 2 interrupt after a
carry-out occurs from the bit in the time base register specified by the user.
0 Timer level 2 interrupt disabled
1 Timer level 2 interrupt enabled

4 NWE Next watchdog timer interrupt enable
0 Enable next interrupt
1 Disable next interrupt

5 WIE Watchdog timer interrupt enable
0 Interrupt disabled
1 Interrupt enabled

6 SLT Second-level exception taken. This bit is used by software to determine if the watchdog timer
caused the soft reset.
0 Second-level soft reset not taken
1 Second-level soft reset taken

7–31 — —
2-22 PowerPC 602 RISC Microprocessor User's Manual

Figure 2-17. Interrupt Base Register

The exception vector is determined as follows:

• For all exceptions, if MSR[IP] is set, the prefix is 0xFFF0.

• For all exceptions except system reset on a hard reset, machine check, and
instruction address breakpoint exceptions, if MSR[IP] is cleared, the value of the
IBR is used as the 16-bit prefix. For a hard reset, a machine check, or an instruction
address breakpoint exception, the prefix is 0x0000 if MSR[IP] is clear.

The IBR is cleared and MSR[IP] is set on a power-on reset; therefore, the system reset
exception vector on a power-on reset is 0xFFF0_0100.

Table 2-15 shows which exceptions use the IBR to determine the vector address.

Table 2-15. Determining the Exception Vector Address

Exception Type

Vector (hexadecimal)

 Prefix
Offset

IP = 0 IP = 1

System reset (hard reset) FFF0 0100

System reset (soft reset) 0000 FFF0 0100

Machine check 0000 FFF0 0200

DSI IBR FFF0 0300

ISI IBR FFF0 0400

External interrupt IBR FFF0 0500

Alignment IBR FFF0 0600

Program IBR FFF0 0700

Floating-point unavailable IBR FFF0 0800

Decrementer IBR FFF0 0900

System call IBR FFF0 0C00

Trace IBR FFF0 0D00

Floating-point assist IBR FFF0 0E00

Instruction translation miss IBR FFF0 1000

0 15 16 31

Interrupt Base Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-23

For soft system reset exceptions or machine check exceptions, if MSR[IP] is cleared the
IBR is not used for the interrupt prefix. In these cases, the offset is 0x0000.

If a soft reset-type system reset interrupt or machine check interrupt occurs, the 602 does
not use the value of IBR, but reverts to the value for the interrupt prefix specified by
MSR[IP].

The 602 generates a system reset exception if the SRESET signal is asserted. Unlike a hard
reset, latches are not initialized and the instruction cache is disabled. The SRESET signal
must be asserted for at least two bus clock cycles. After SRESET is deasserted, the 602
vectors to the system reset exception handler at 0xFFF0_0100. The IBR is not used as a
vector offset for soft reset.

The IBR register is accessed as SPR 986.

2.1.2.4.4 Instruction Address Breakpoint Register (IABR)
The IABR, shown in Figure 2-18, is used in conjunction with the instruction address
breakpoint exception. IABR[CEA] holds an effective address to which the address of each
instruction is compared. The exception is enabled by setting IABR[IE]. The exception is
taken when the instruction breakpoint address matches the next instruction to complete.
The instruction tagged with the match is not completed before the breakpoint exception is
taken.

Figure 2-18. Instruction Address Breakpoint Register (IABR)

Data load translation miss IBR FFF0 1100

Data store translation miss IBR FFF0 1200

Instruction address breakpoint 0000 FFF0 1300

System management interrupt IBR FFF0 1400

Watchdog timer IBR FFF0 1500

Emulation trap IBR FFF0 1600

Table 2-15. Determining the Exception Vector Address (Continued)

Exception Type

Vector (hexadecimal)

 Prefix
Offset

IP = 0 IP = 1

0 29 30 31

Reserved

CEA IE 0
2-24 PowerPC 602 RISC Microprocessor User's Manual

The fields in the IABR are described in Table 2-16.

For information about the instruction address breakpoint register, see Section 4.5.15,
“Instruction Address Breakpoint Exception (0x1300).”

The IABR is accessed as SPR 1010.

2.1.3 Saving and Restoring FPRs and the FPSCR
The Store Floating-Point Double (stfd) and Load Floating-Point Double (lfd) instructions
can be used to save and restore the 32-bit hardware FPRs. As long as the SP bit is set and
the data in the hardware FPR is not an infinity, NaN, or denormalized number, the data in
the FPR will be stored with the stfd instruction as a double-precision number with data in
the single-precision range, and the store instruction does not trap.

For data residing in the 64-bit emulated FPRs, and for the cases of infinities, NaNs,
denormalized numbers, and integers residing in the hardware FPRs, the stfd instruction
traps to 0x1600 and is emulated. The lfd instruction does not trap if the operand data is
within the single-precision range (with regard to the exponent and fraction). If an operand
is outside that range, or if the 64-bit operand value is an infinity, NaN, or single-precision
format denormalized number, the instruction traps to 0x1600 and is emulated.

To save the contents of the FPSCR, an mffs (Move from FPSCR) instruction can be issued
followed by an stfd instruction. To restore the FPSCR, an lfd instruction can be issued on
the data that was previously stored with the stfd instruction followed by an mtfsf (Move to
FPSCR Fields) instruction. The stfd instruction traps on the integer data and it is left to the
emulation code to expand the integer to its architected value while clearing the high-order
32 bits of the architected value, and stores the 64-bit value. The load instruction acting on
the data that was stored by the stfd instruction also takes an emulation trap exception. It is
left to the emulation code to place bits 32–63 of the operand into the hardware FPR, clear
the corresponding SP bit, and set the corresponding LT bits. The mtfsf executes on the data
in the FPR, placing it in the FPSCR.

Table 2-16. Instruction Address Breakpoint Register Bit Settings

Bit Name Description

0–29 CEA This field holds an effective address to which the address of each instruction is
compared.

30 IE Setting the IE bit enables the instruction address breakpoint exception.

31 — Reserved
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-25

2.1.4 Synchronization Requirements for SPRs
As specified by the OEA portion of the PowerPC architecture, altering certain registers
requires software synchronization to honor register dependencies for subsequent
instructions. A context-synchronizing operation must follow any instruction that affects
instruction fetching or data access dependencies by altering any of the following registers:

• Instruction fetch dependencies

— MMU control register
— IBATs
— MSR[AP, FP, FE0, FE1, LE, TE, PE, SA]
— IABR

• Data access dependencies

— MMU control register
— DBATs
— MSR[AP, LE, TE, PE, SA]

• Other

— MSR[POW, TGPR, FP]

— HID0—Context-synchronizing operations that may be used are isync, sc, rfi,
and any exception other than system reset or machine check.

Note that MSR[POW] and MSR[LE] may not be altered concurrently with any other MSR
bit. Software must alter only one bit in the MSR when altering either of these, and the
alteration must be followed by a context-synchronizing operation.

2.2 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture. It also provides detailed descriptions of conventions used for storing
values in registers and memory, accessing the 602’s registers, and representation of data in
these registers.

2.2.1 Floating-Point Execution Models—UISA
The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but states that single-precision arithmetic instructions should not accept
double-precision operands. The 602 implements single-precision instructions in hardware
and double-precision instructions in software. Section 6.8.4, “FPU Instruction Timings,”
indicates which instructions are implemented in hardware and which take the emulation
trap exception.
2-26 PowerPC 602 RISC Microprocessor User's Manual

The PowerPC UISA follows these guidelines:

• Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done
explicitly by software, while conversions from single- to double-precision are done
implicitly.

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is 1:

• Underflow during multiplication using a denormalized factor
• Overflow during division using a denormalized divisor

Because all double-precision arithmetic instructions take an emulation trap exception,
single-precision instructions always operate faster than their double-precision equivalents.

Single-precision instructions with operands residing in hardware FPRs with their
associated SP bit set (LT is a don’t care) execute in hardware as defined by the architecture
placing the result in the hardware frD, setting the associated SP bit, and clearing the
associated LT bit. If any of the operands have their associated SP bits cleared, the
instruction causes an emulation trap exception (0x1600).

2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple instructions, a sequence of words. The address of a memory operand is the address
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each
instruction.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-27

2.2.3 Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-17. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.)

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Note that the 602 provides hardware support for misaligned memory accesses; however, a
misaligned access suffers a slight performance degradation compared to an aligned access
of the same type. The 602 does not provide hardware support for floating-point store
operations that are not word-aligned. Instead, an alignment exception is taken.

Floating-point single-word accesses should be word-aligned and floating-point double
word accesses should be double-word-aligned. Frequent use of misaligned accesses
degrades system performance.

Any memory access that crosses an alignment boundary must be broken into multiple
discrete accesses. This includes half-word, word, double-word, and multiple-word
references. Multiple-word accesses are architecturally required to be aligned. The resulting
performance degradation depends upon how well each individual access behaves with
respect to the memory hierarchy. At a minimum, additional cache access cycles are
required. More dramatically, for the case of access to a noncacheable page, each discrete
access involves an individual bus operation which will reduce the effective bandwidth of
the bus. The effect that misalignment and cache misses have on instruction timing is
described in Chapter 6, “Instruction Timing.”

The casual use of misaligned accesses is discouraged since they can compromise the overall
performance of the processor.

2.2.4 Floating-Point Operand
The 602 provides hardware support for all single-precision floating-point operations for
most value representations and all rounding modes. This architecture provides for hardware
to implement a floating-point system as defined in ANSI/IEEE standard 754-1985, IEEE
Standard for Binary Floating-Point Arithmetic. Detailed information about the floating-
point execution model can be found in Chapter 3, “Operand Conventions,” in The
Programming Environments Manual.
2-28 PowerPC 602 RISC Microprocessor User's Manual

2.2.5 Effect of Operand Placement on Performance
The VEA states that the placement (location and alignment) of operands in memory affect
the relative performance of memory accesses. The best performance is guaranteed if
memory operands are aligned on natural boundaries. To obtain the best performance across
the widest range of PowerPC processor implementations, the programmer should assume
the performance model described in Chapter 3, “Operand Conventions,” in The
Programming Environments Manual.

2.3 Instruction Set Summary
This section describes instructions and addressing modes defined for the PowerPC 602
microprocessor. These instructions are divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

• Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

• Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

• Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions,” and Section 2.3.4.5, “Trap Instructions.”

• System linkage instructions—For more information, see Section 2.3.6.1, “System
Linkage Instructions.”

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Sections 2.3.4.6, 2.3.5.1, and 2.3.6.2.

Table 2-17. Memory Operands

Operand Length Addr[60–63] (If Aligned)

Byte 8 bits xxxx

Half word 2 bytes xxx0

Word 4 bytes xx00

Double word 8 bytes x000

Quad word 16 bytes 0000

Note: An “x” in an address bit position indicates that the bit can be 0 or 1
independent of the state of other address bits.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-29

• Memory synchronization instructions—These instructions are used for memory
synchronizing. See Sections 2.3.4.7 and 2.3.5.2 for more information.

• Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Sections 2.3.5.3 and 2.3.6.3.

• External control instructions—These include instructions for use with special input/
output devices. The optional external instructions (eciwx and ecowx) defined by the
PowerPC architecture, are not implemented in the 602.

For information about instructions specific to the 602, see Section 2.3.7, “PowerPC
602 Implementation-Specific Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 602’s parallel instruction execution, is provided in Chapter 8,
“Instruction Set,” in The Programming Environments Manual.

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are 4 bytes long and word-aligned. It provides for byte, half-word, and
word operand loads and stores between memory and a set of 32 general-purpose registers
(GPRs). It also provides for word and double-word operand loads and stores between
memory and a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics (referred to as
extended mnemonics in the architecture specification) and symbols is provided for some of
the frequently used instructions; see Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonic examples.

2.3.1 Classes of Instructions
The 602 instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruction that
is specific to 64-bit implementations is considered defined for 64-bit implementations but
illegal for 32-bit implementations such as the 602.
2-30 PowerPC 602 RISC Microprocessor User's Manual

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may
become assigned to instructions in the architecture, or may be reserved by being assigned
to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined
If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 602 provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required.

A defined instruction can have invalid forms, as described in the following subsection.

2.3.1.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the PowerPC architecture. These opcodes
are available for future extensions of the PowerPC architecture; that is, future
versions of the PowerPC architecture may define any of these instructions to
perform new functions.

The following primary opcodes are defined as illegal but may be used in future
extensions to the architecture:

1, 4, 5, 6, 9, 22, 56, 57, 60, 61

• Instructions that are implemented in the PowerPC architecture but are not
implemented in a specific PowerPC implementation. For example, instructions that
can be executed on 64-bit PowerPC processors are considered illegal by 32-bit
processors.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-31

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 602:

2, 30, 58, 62

• All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions that are defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa.

The following primary opcodes have unused extended opcodes:

17, 19, 31, 59, 63 (primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes)

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the system illegal instruction error handler (a program exception).
Note that if only the primary opcode consists of all zeros, the instruction is
considered a reserved instruction. This is further described in Section 2.3.1.4,
“Reserved Instruction Class.”

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 4.5.7, “Program Exception
(0x0700),” for additional information about illegal and invalid instruction exceptions.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
Section 4.5.7, “Program Exception (0x0700),” for additional information about illegal and
invalid instruction exceptions.

The following types of instructions are included in this class:

• Implementation-specific instructions (for example, TLB Load Data (tlbld) and TLB
Load Instruction (tlbli) instructions)

• Optional instructions defined by the PowerPC architecture but not implemented by
the 602 (for example, Floating Square Root (fsqrt) and Floating Square Root Single
(fsqrts) instructions)
2-32 PowerPC 602 RISC Microprocessor User's Manual

2.3.2 Addressing Modes
This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

2.3.2.2 Memory Operands
Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple instructions, a sequence of words. The address of a memory operand is the address
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each
instruction. The PowerPC architecture supports both big-endian and little-endian byte
ordering. The default byte and bit ordering is big-endian.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

For a detailed discussion about byte ordering and memory operands, see Chapter 3,
“Operand Conventions,” in The Programming Environments Manual.

2.3.2.3 Effective Address Calculation
An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode
• Register indirect with index mode
• Register indirect mode
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-33

Refer to Section 2.3.4.3.1, “Integer Load and Store Address Generation,” for further
discussion of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate
• Link register indirect
• Count register indirect

Refer to Section 2.3.4.4.1, “Branch Instruction Address Calculation,” for further discussion
of branch instruction effective address generation.

2.3.2.4 Synchronization
The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization
The PowerPC architecture defines the System Call (sc) and the Return From Interrupt (rfi)
instructions to be context synchronizing. Exceptions (external, internal and taken traps) are
also context synchronizing. Context synchronization requires the following:

• No higher priority exception exists.

• The instruction cannot complete until all previous instructions have completed to a
point where they can no longer cause an exception.

• Instructions that precede this instruction complete in the context (including
privilege, protection and translation) under which they were issued.

• The instruction following this instruction executes in the context established by this
instruction.

In the 602, these instructions guarantee context synchronization by performing the
following steps:

1. Working their way through the pipeline (clearing any previous instructions).

2. Performing the appropriate context updates while at the final stage of the pipeline.

3. Redirecting the instruction fetcher to refetch the instructions from the address
specified by the instruction.

2.3.2.4.2 Execution Synchronization
An instruction is execution synchronizing if all previously-initiated instructions appear to
have completed before the instruction is initiated or, in the case of the Synchronize (sync)
and Instruction Synchronize (isync) instructions, before the instruction completes. For
example, the Move to Machine State Register (mtmsr) instruction is execution
synchronizing. It ensures that all preceding instructions have completed execution and will
not cause an exception before the instruction executes, but does not ensure subsequent
instructions execute in the newly established environment. For example, if the mtmsr sets
2-34 PowerPC 602 RISC Microprocessor User's Manual

the MSR[PR] bit, unless an isync immediately follows the mtmsr instruction, a privileged
instruction could be executed or privileged access could be performed without causing an
exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 602—those caused directly by the execution of an
instruction and those caused by an asynchronous event. Either may cause components of
the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 602 provides the following supervisor-level
instructions—dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tlbie, tlbsync, tlbld, and tlbli. Note that the privilege level of the mfspr and mtspr
instructions depends on the SPR encoding.

• An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

• An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

• The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

• The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”

2.3.2.4.4 Self-Modifying Code Requirements
The following sequence of instructions will synchronize the instruction stream.

dcbst

sync

icbi

isync
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-35

2.3.3 Instruction Set Overview
This section provides a brief overview of the PowerPC instructions implemented in the 602
and highlights any special information with respect to how the 602 implements a particular
instruction. Note that the categories used in this section correspond to those used in
Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are provided for the convenience of the
programmer and do not necessarily reflect the PowerPC architecture specification.

Note that some of the instructions have the following optional features:

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.

• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions
The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer logical instructions
• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER, and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-18 lists the integer arithmetic instructions for the 602.

Table 2-18. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addi rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add add (add. addo addo.) rD,rA,rB

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Subtract from Immediate Carrying subfic rD,rA,SIMM
2-36 PowerPC 602 RISC Microprocessor User's Manual

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

2.3.4.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of rA with
either the UIMM operand, the SIMM operand, or the contents of rB. The comparison is
signed for the cmpi and cmp instructions, and unsigned for the cmpli and cmpl
instructions. Table 2-19 lists the integer compare instructions.

Add Carrying addc (addc. addco addco.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu (divwu. divwuo divwuo.) rD,rA,rB

Table 2-19. Integer Compare Instructions

Name Mnemonic Operand Syntax

Compare Immediate cmpi crfD,L,rA,SIMM

Compare cmp crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Compare Logical cmpl crfD,L,rA,rB

Table 2-18. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-37

The crfD operand can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR field must be specified in the instruction crfD field.

For information on simplified mnemonics for the integer compare instructions, see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions
The logical instructions shown in Table 2-20 perform bit-parallel operations. Logical
instructions with the CR update enabled and instructions andi. and andis. set CR field CR0
to characterize the result of the logical operation. These fields are set as if the sign-extended
low-order 32 bits of the result were algebraically compared to zero. Logical instructions
without CR update and the remaining logical instructions do not modify the CR. Logical
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

For simplified mnemonics examples for the integer logical operations see Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual.

Table 2-20. Integer Logical Instructions

Name Mnemonic Operand Syntax 602 Comments

AND Immediate andi. rA,rS,UIMM —

AND Immediate Shifted andis. rA,rS,UIMM —

OR Immediate ori rA,rS,UIMM ori r0,r0,0 is the preferred form for the no-
op instruction. This acts as a ‘branch
never’ instruction in the 602 and is folded-
out by the BPU.

OR Immediate Shifted oris rA,rS,UIMM —

XOR Immediate xori rA,rS,UIMM —

XOR Immediate Shifted xoris rA,rS,UIMM —

AND and (and.) rA,rS,rB —

OR or (or.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

Equivalent eqv (eqv.) rA,rS,rB —

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —
2-38 PowerPC 602 RISC Microprocessor User's Manual

2.3.4.1.4 Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are listed in Table 2-21.

The integer shift instructions perform left and right shift operations. Immediate-form
logical (unsigned) shift operations are obtained by specifying masks and shift values for
certain rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual.

The integer shift instructions are listed in Table 2-22.

Table 2-21. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 2-22. Integer Shift Instructions

Name Mnemonic Operand Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-39

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions
• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions
• Floating-point move instructions
• Floating-point special instructions—Because the 602 hardware supports only

single-precision operations, the smaller single-precision FPRs need status bits to
recognize the following:

— A valid floating-point operand in the hardware (rather than in a memory image)

— An integer value moved from the FPSCR or generated by an fctiwz instruction.
See Section 6.4.3, “Floating-Point Unit,” for a complete description of these
status bits.

• These status bits are implemented as SPR registers (SP and LT) and are accessed and
reloaded using the mfspr/mtspr instructions. See Section 2.1.2.4.1, “Floating-
Point Tag Registers (SP and LT),” for more information.

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

If the SP bit is set for all of its operands and those operands reside in the 602’s 32-bit FPRs,
a single-precision floating-point instruction executes in hardware. That is, by placing the
result in the target hardware FPR, setting the associated SP bit, and clearing the associated
LT bit. If any of the operands have their associated SP bits cleared, the instruction takes an
emulation trap exception (0x1600).

All double-precision arithmetic instructions take an emulation trap exception.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but the 602 provides software support to conform with that standard. All floating-
point operations conform to the IEEE 754 standard, unless the non-IEEE mode bit
(FPSCR[NI]) is set, in which case the 602 is in nondenormalized mode. Floating-point
modes are described in Section 2.3.4.2.2, “IEEE Mode (FPSCR[NI] = 0),” and
Section 2.3.4.2.3, “Non-IEEE Mode (FPSCR[NI] = 1).”

2.3.4.2.1 Denormalized Number Support
The 602 hardware accepts denormalized numbers as operands; however, in IEEE-mode,
when underflow exceptions are disabled, any underflow condition causes a trap to 0x1600
where emulation software produces the proper IEEE result. In non-IEEE mode
(FPSCR[NI] = 1), the hardware underflows to zero instead of producing a denormalized
number.
2-40 PowerPC 602 RISC Microprocessor User's Manual

Some instructions, however, require the denormalized number to be preserved, such as
when executing a Floating Move Register (fmr) or Floating Select (fsel) instruction, or
when the sign bit of a denormalized operand is changed—as is the case when a Floating
Absolute Value (fabs), Floating Negative Absolute Value (fnabs), or Floating Negate (fneg)
instruction is executed. In such cases, the hardware produces the desired result.

2.3.4.2.2 IEEE Mode (FPSCR[NI] = 0)
When the processor is in full IEEE compatibility mode, the following conditions will cause
a trap to 0x1600 where emulation code produces the proper IEEE results or conditions:

• Invalid operation exceptions when such exceptions are enabled (FPSCR[VE] = 1).

• Zero divide exceptions when such exceptions are enabled (FPSCR[ZE]).

• Underflow exceptions when such exceptions are disabled (FPSCR[UE] = 0).

• All double-precision operations or instructions having double-precision operands.
The instructions that cause an emulation trap exception are listed in Section 6.8,
“Instruction Latency Summary.”

• For some instructions, the setting of an operand’s SP or LT can generate an
exception.

2.3.4.2.3 Non-IEEE Mode (FPSCR[NI] = 1)
The 602 supports a non-IEEE mode that is useful for time-critical operations where IEEE
compliance is not useful. This mode is enabled by setting FPSCR[NI]. Table 2-23 describes
the operation of non-IEEE mode. These results are always produced when FPSCR[NI] is
set regardless of the settings of the exception enable bits in the FPSCR.

Note that, as defined by the IEEE model, the 602 presents a QNaN regardless of whether
the input is an SNaN or a QNaN.

Table 2-23. Non-IEEE Mode Results

Result Output

Divide by
zero

± infinity

Invalid QNaN for arithmetic or round-to-single-precision operations
• Most-positive integer if convert-to-integer and positive overflow or positive infinity operand
• Most-negative integer if convert-to-integer and negative overflow, negative infinity, or NaN operand

Overflow ± infinity when round-to-nearest
• Format’s largest representable finite number with sign of the intermediate result when round-

towards-zero
• Most negative number for negative overflow and +infinity for positive overflow when round-

towards-positive-infinity
• –infinity for negative overflow or largest finite number for positive overflow when round-towards-

negative-infinity

Underflow Zero
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-41

The exception enable bits in the FPSCR and the floating-point exception mode bits in the
MSR determine whether an exception condition is generated when the results in Table 2-23
occur regardless of the setting of FPSCR[NI].

When traps are disabled, the IEEE and non-IEEE modes differ only with respect to how
underflows are handled.

2.3.4.2.4 Time-Critical Floating-Point Operations
For time-critical applications, the FPSCR bits must be set such that the non-IEEE mode is
enabled (FPSCR[NI] = 1) and all floating-point exceptions are disabled. With these
settings, the 602 does not cause floating-point enabled program exceptions or generate
denormalized numbers, either of which would slow performance.

When the 602 is in non-IEEE mode, all floating-point operations should involve only
single-precision operands (or integer operands, in a few instructions). See Section 6.8,
“Instruction Latency Summary,” for instructions that trap to 0x1600; such instructions
should be avoided in time-critical operations.

See Section 2.2, “Operand Conventions,” for more information about the 602 support for
the nondenormalized mode.

2.3.4.2.5 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are listed in Table 2-24.

Table 2-24. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax 602 Notes

Floating Add (Double-
Precision)

fadd (fadd.) frD,frA,frB This instruction is not supported in hardware on
the 602; causes an emulation trap exception
(0x1600).

Floating Add Single fadds (fadds.) frD,frA,frB If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation trap
exception.

Floating Subtract
(Double-Precision)

fsub (fsub.) frD,frA,frB This instruction is not supported in hardware on
the 602; causes an emulation trap exception
(0x1600).

Floating Subtract Single fsubs (fsubs.) frD,frA,frB If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation trap
exception.

Floating Multiply
(Double-Precision)

fmul (fmul.) frD,frA,frC This instruction is not supported in hardware on
the 602; causes an emulation trap exception
(0x1600).

Floating Multiply Single fmuls (fmuls.) frD,frA,frC If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation trap
exception.
2-42 PowerPC 602 RISC Microprocessor User's Manual

2.3.4.2.6 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 48 bits wide for single-
precision values and 106 bits wide for double-precision values. All intermediate fractional
bits take part in the add/subtract portion of the instruction. Note that double-precision
instructions take an emulation trap exception.

The floating-point multiply-add instructions are listed in Table 2-25.

Floating Divide (Double-
Precision)

fdiv (fdiv.) frD,frA,frB This instruction is not supported in hardware on
the 602; causes an emulation trap exception
(0x1600).

Floating Divide Single fdivs (fdivs.) frD,frA,frB If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation trap
exception.

Floating Reciprocal
Estimate Single

fres (fres.) frD,frB This instruction is implemented as a single-
precision divide instruction; it is not an estimate.

Floating Reciprocal
Square Root Estimate

frsqrte
(frsqrte.)

frD,frB The estimate is accurate to 1 part in 32 of the
reciprocal of the square root of frB. The target
operand is single-precision if it is in a hardware
FPR and its SP bit is set. Otherwise, the
instruction traps to 0x1600.

Floating Select fsel frD,frA,frC,frB Traps if the SP bit associated with frA is “OFF” or
if the SP bits is cleared for the selected frB or frC.

Table 2-25. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax 602 Notes

Floating Multiply-Add
(Double-Precision)

fmadd
(fmadd.)

frD,frA,frC,frB This instruction is not supported in hardware on
the 602; causes an emulation trap exception
(0x1600).

Floating Multiply-Add Single fmadds
(fmadds.)

frD,frA,frC,frB If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation
trap exception.

Floating Multiply-Subtract
(Double-Precision)

fmsub
(fmsub.)

frD,frA,frC,frB This instruction is not supported in hardware on
the 602; causes an emulation trap exception
(0x1600).

Floating Multiply-Subtract
Single

fmsubs
(fmsubs.)

frD,frA,frC,frB If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation
trap exception.

Table 2-24. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax 602 Notes
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-43

2.3.4.2.7 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The floating-
point conversion instructions convert a 64-bit double-precision floating-point number to a
32-bit signed integer number.

On the 602, if the operand resides in the hardware FPR and has its SP bit “ON”, the frsp
instruction simply moves the data from the source FPR to the target FPR, and sets the
corresponding SP and LT bits to 1 and 0 respectively. If the data resides in the emulated,
double-precision FPR or is an integer value in the hardware FPR, the instruction traps to
the emulation trap exception vector and is emulated. If the operand is a denormalized
number, an underflow condition occurs and the data is manipulated as required by the mode
of operation and by the setting of FPSCR[UE].

The PowerPC architecture defines bits 0–31 of floating-point register frD as undefined
when executing the Floating Convert to Integer Word (fctiw) and Floating Convert to
Integer Word with Round toward Zero (fctiwz) instructions. Note that of the convert-to-
integer instructions, only the fctiwz instruction is supported in hardware in the 602. The
fctiw instruction causes an emulation trap exception. Executing the fctiwz instruction
produces an integer in bits 0–31 of the target register. The target is also flagged as an integer
by loading its associated SP and LT bits with 0 and 1, respectively.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual. The
floating-point rounding instructions are shown in Table 2-26.

Floating Negative Multiply-
Add (Double-Precision)

fnmadd
(fnmadd.)

frD,frA,frC,frB This instruction is not supported in hardware on
the 602; causes an emulation trap exception
(0x1600).

Floating Negative Multiply-
Add Single

fnmadds
(fnmadds.)

frD,frA,frC,frB If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation
trap exception.

Floating Negative Multiply-
Subtract (Double-Precision)

fnmsub
(fnmsub.)

frD,frA,frC,frB This instruction is not supported in hardware on
the 602; causes an emulation trap exception
(0x1600).

Floating Negative Multiply-
Subtract Single

fnmsubs
(fnmsubs)

frD,frA,frC,frB If the SP bits are set for source operands, the
instruction is executed as defined by the
architecture; otherwise, it takes an emulation
trap exception.

Table 2-25. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand Syntax 602 Notes
2-44 PowerPC 602 RISC Microprocessor User's Manual

2.3.4.2.8 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = –0). The floating-point compare
instructions are listed in Table 2-27.

2.3.4.2.9 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed.

The FPSCR instructions are listed in Table 2-28.

Table 2-26. Floating-Point Rounding and Conversion Instructions

Name Mnemonic
Operand
Syntax

602 Notes

Floating Round to
Single-Precision

frsp
(frsp.)

frD,frB —

Floating Convert to
Integer Word

fctiw
(fctiw.)

frD,frB This instruction is not supported in hardware on the 602; causes
an emulation trap exception (0x1600).

Floating Convert to
Integer Word with
Round toward Zero

fctiwz
(fctiwz.)

frD,frB If the operand’s associated SP bit is set, the instruction produces
an integer in the target hardware register (frD) with its associated
SP||LT set to 0b01; otherwise it takes an emulation trap
exception. This instruction is dispatch serialized.

Table 2-27. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax 602 Notes

Floating Compare
Unordered

fcmpu crfD,frA,frB If the SP bits are set for both operands, the instruction is
executed as defined by the architecture; otherwise, it
takes an emulation trap exception.

Floating Compare
Ordered

fcmpo crfD,frA,frB If the SP bits are set for both operands, the instruction is
executed as defined by the architecture; otherwise, it
takes an emulation trap exception.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-45

2.3.4.2.10 Floating-Point Move Instructions
Floating-point move instructions copy data from one floating-point register to another. The
floating-point move instructions do not modify the FPSCR. The CR update option in these
instructions controls the placing of result status into CR1. Floating-point move instructions
are listed in Table 2-28.

Table 2-28. Floating-Point Status and Control Register Instructions

Name Mnemonic
Operand
Syntax

602 Notes

Move from
FPSCR

mffs
(mffs.)

frD This instruction is implemented using the 32-bit hardware FPRs.
For the mffs instruction, the target is a 32-bit FPR (all bits 0–31),
the corresponding SP bit is cleared, and the corresponding LT bit is
set.

Move to CR
from FPSCR

mcrfs crfD,crfS —

Move to FPSCR
Field Immediate

mtfsfi
(mtfsfi.)

crfD,IMM —

Move to FPSCR
Fields

mtfsf
(mtfsf.)

FM,frB This instruction is implemented using the 32-bit hardware FPRs.
The frB operand is a 32-bit FPR (bits 0–31) masked as long as frB
has its associated LT bit set; otherwise, the instruction is trapped to
0x1600.

Move to FPSCR
Bit 0

mtfsb0
(mtfsb0.)

crbD —

Move to FPSCR
Bit 1

mtfsb1
(mtfsb1.)

crbD —

Table 2-29. Floating-Point Move Instructions

Name Mnemonic
Operand
 Syntax

602 Notes

Floating Move
Register

fmr (fmr.) frD,frB If the SP bit is set for frB, the instruction is executed as defined by
the architecture; otherwise, it takes an emulation trap exception.

Floating Negate fneg
(fneg.)

frD,frB If the SP bit is set for frB, the instruction is executed as defined by
the architecture; otherwise, it takes an emulation trap exception.

Floating Absolute
Value

fabs
(fabs.)

frD,frB If the SP bit is set for frB, the instruction is executed as defined by
the architecture; otherwise, it takes an emulation trap exception.

Floating Negative
Absolute Value

fnabs
(fnabs.)

frD,frB If the SP bit is set for frB, the instruction is executed as defined by
the architecture; otherwise, it takes an emulation trap exception.
2-46 PowerPC 602 RISC Microprocessor User's Manual

2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions of the 602, which consist of
the following:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte-reverse instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Memory synchronization instructions

2.3.4.3.1 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that the 602 is optimized for load and store operations that are
aligned on natural boundaries, and operations that are not naturally aligned may suffer
performance degradation. Refer to Section 4.5.6.1, “Integer Alignment Exceptions,” for
additional information about load and store address alignment exceptions.

2.3.4.3.2 Register Indirect Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed by the
EA is loaded into rD. Many integer load instructions have an update form, in which rA is
updated with the generated effective address. For these forms, the EA is placed into rA and
the memory element (byte, half word, word, or double word) addressed by EA is loaded
into rD.

Note that in some implementations of the architecture, the load word algebraic instructions
(lha and lhax) and the load with update (lbzu, lbzux, lhzu, lhzux, lhau, and lhaux)
instructions may execute with greater latency than other types of load instructions. The load
with update instructions may take longer to execute in some implementations than the
corresponding pair of a nonupdate load followed by an addx instruction. In the 602, these
instructions operate with the same latency as other load instructions.

Table 2-30 lists the integer load instructions.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-47

Note that the PowerPC architecture cautions programmers that some implementations of
the architecture may run the lha, lhax, lbzu, lbzux, lhzu, lhzux, lhau, and lhaux,
instructions with greater latency than other types of load instructions. This is not the case
in the 602; these instructions have the same latency as other load instructions.

2.3.4.3.3 Integer Store Instructions
For integer store instructions, the contents of rS are stored into the byte, half word, word,
or double word in memory addressed by the effective address (EA). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

• If rA ≠ 0, the EA is placed into rA.

• If rS = rA, the contents of rS are copied to the target memory element, then the
generated EA is placed into rA (rS).

The 602 defines store with update instructions with rA = 0 and integer store instructions
with the CR update option enabled (Rc field, bit 31, in the instruction encoding = 1) to be
invalid forms. Table 2-31 provides a list of the integer store instructions for the 602.

Table 2-30. Integer Load Instructions

Name Mnemonic Operand Syntax

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB
2-48 PowerPC 602 RISC Microprocessor User's Manual

2.3.4.3.4 Integer Load and Store with Byte-Reverse Instructions
Table 2-32 describes integer load and store with byte-reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see “Byte Ordering” in Chapter 3, “Operand Conventions,” in
The Programming Environments Manual.

Note that the PowerPC architecture cautions programmers that in some PowerPC
implementations, load byte-reverse instructions (lhbrx and lwbrx) may have greater
latency than other load instructions; however, these instructions operate with the same
latency as other load instructions in the 602.

Table 2-31. Integer Store Instructions

Name Mnemonic Operand Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Table 2-32. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Syntax

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-49

2.3.4.3.5 Integer Load and Store Multiple Instructions
The integer load and store multiple instructions are used to move blocks of data to and from
the GPRs. The load multiple and store multiple instructions may have operands that require
memory accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

Implementation Notes—The following describes the 602 implementation of the load and
store multiple instructions:

• The load multiple and store multiple instructions may have operands that require
memory accesses crossing a 4-Kbyte page boundary. As a result, these instructions
may be interrupted by a DSI exception associated with the address translation of the
second page. In this case, the 602 performs some or all of the memory references
from the first page, and none of the memory references from the second page before
taking the exception. On return from the DSI exception, the load or store multiple
instruction will re-execute from the beginning. For additional information, refer to
“DSI Exception (0x0300)” in Chapter 6, “Exceptions,” in The Programming
Environments Manual.

• For the 602, there are no preferred forms for load and store multiple instructions.

• In some PowerPC processors, these instructions are likely to have greater latency
and take longer to execute, perhaps much longer, than a sequence of individual load
or store instructions that produce the same results.

• The PowerPC architecture defines the load multiple word (lmw) instruction with rA
in the range of registers to be loaded as an invalid form. It defines the load multiple
and store multiple instructions with misaligned operands (that is, the EA is not a
multiple of 4) to be an invalid form. The 602 defines the load multiple word (lmw)
instruction with rA in the range of registers to be loaded as an invalid form.

Table 2-33 lists the integer load and store multiple instructions for the 602.

2.3.4.3.6 Integer Load and Store String Instructions
The integer load and store string instructions are defined by the architecture to allow
movement of data from memory to registers or from registers to memory. When the 602
encounters a load or store string instruction, an emulation trap exception is taken.

Table 2-34 lists the integer load and store string instructions.

Table 2-33. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)
2-50 PowerPC 602 RISC Microprocessor User's Manual

If rA is in the range of registers to be loaded for an lswi instruction or if either rA or rB is
in the range of registers to be loaded for an lswx instruction, the PowerPC architecture
defines the instruction to be of an invalid form. In addition, the lswx and stswx instructions
that specify a string length of zero are defined to be invalid by the PowerPC architecture.

2.3.4.3.7 Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode, the details of which are described in the following sections.

2.3.4.3.8 Floating-Point Load Instructions
There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Note that the PowerPC architecture defines load with update
instructions with rA = 0 as an invalid form.

Table 2-35 provides a list of the floating-point load instructions.

Table 2-34. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax 602 Notes

Load String
Word Immediate

lswi rD,rA,NB This instruction is not supported in hardware on the 602;
causes an emulation trap exception (0x1600).

Load String
Word Indexed

lswx rD,rA,rB This instruction is not supported in hardware on the 602;
causes an emulation trap exception (0x1600).

Store String
Word Immediate

stswi rS,rA,NB This instruction is not supported in hardware on the 602;
causes an emulation trap exception (0x1600).

Store String
Word Indexed

stswx rS,rA,rB This instruction is not supported in hardware on the 602;
causes an emulation trap exception (0x1600).

Table 2-35. Floating-Point Load Instructions

Name Mnemonic
Operand
Syntax

602 Notes

Load Floating-
Point Single

lfs frD,d(rA) The 602 loads the single-precision operand as a single-precision
value into the hardware FPR and sets its corresponding SP and LT
bits to 1 and 0, respectively.

Load Floating-
Point Single
Indexed

lfsx frD,rA,rB The 602 loads the single-precision operand as a single-precision
value into the hardware FPR and sets its corresponding SP and LT
bits to 1 and 0, respectively.

Load Floating-
Point Single with
Update

lfsu frD,d(rA) The 602 loads the single-precision operand as a single-precision
value into the hardware FPR and sets its corresponding SP and LT
bits to 1 and 0, respectively.

Load Floating-
Point Single with
Update Indexed

lfsux frD,rA,rB The 602 loads the single-precision operand as a single-precision
value into the hardware FPR and sets its corresponding SP and LT
bits to 1 and 0, respectively.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-51

2.3.4.3.9 Floating-Point Store Instructions
There are three basic forms of the store instruction—single-precision, double-precision,
and integer. The integer form is supported by the optional stfiwx (Store Floating-Point as
Integer Word Indexed) instruction.

Note that the PowerPC architecture defines store with update instructions with rA = 0 as an
invalid form.

Table 2-36 provides a list of the floating-point store instructions.

Load Floating-
Point Double

lfd frD,d(rA) If the 64-bit operand fits in single-precision format and is not a
NaN, infinity, or single-precision format denormalized number, the
operand is compressed to single-precision format and placed in the
hardware FPR with its corresponding SP and LT bits set to 1 and 0,
respectively. Otherwise, lfd takes an emulation trap exception.

Load Floating-
Point Double
Indexed

lfdx frD,rA,rB If the 64-bit operand fits in single-precision format and is not a
NaN, infinity, or single-precision format denormalized number, the
operand is compressed to single-precision format and placed in the
hardware FPR with its corresponding SP and LT bits set to 1 and 0,
respectively. Otherwise, lfdx takes an emulation trap exception.

Load Floating-
Point Double with
Update

lfdu frD,d(rA) If the 64-bit operand fits in single-precision format and is not a
NaN, infinity, or single-precision format denormalized number, the
operand is compressed to single-precision format and placed in the
hardware FPR with its corresponding SP and LT bits set to 1 and 0,
respectively. Otherwise, lfdu takes an emulation trap exception.

Load Floating-
Point Double with
Update Indexed

lfdux frD,rA,rB If the 64-bit operand fits in single-precision format and is not a
NaN, infinity, or single-precision format denormalized number, the
operand is compressed to single-precision format and placed in the
hardware FPR with its corresponding SP and LT bits set to 1 and 0,
respectively. Otherwise, lfdux takes an emulation trap exception.

Note that the 602 performs the lfs, lfsx, lfsu, and lfsux instructions by saving the single-precision operand as a
single-precision value in the 32-bit hardware target FPR.

Table 2-36. Floating-Point Store Instructions

Name Mnemonic
Operand
Syntax

602 Notes

Store Floating-Point Single stfs frS,d(rA) If the operand’s SP bit is set, the operand is copied
directly from the hardware FPR to memory; otherwise,
the instruction takes an emulation trap exception.

Store Floating-Point Single
Indexed

stfsx frS,rA,rB If the operand’s SP bit is set, the operand is copied
directly from the hardware FPR to memory; otherwise,
the instruction takes an emulation trap exception.

Store Floating-Point Single
with Update

stfsu frS,d(rA) If the operand’s SP bit is set, the operand is copied
directly from the hardware FPR to memory; otherwise,
the instruction takes an emulation trap exception.

Table 2-35. Floating-Point Load Instructions (Continued)

Name Mnemonic
Operand
Syntax

602 Notes
2-52 PowerPC 602 RISC Microprocessor User's Manual

2.3.4.4 Branch and Flow Control Instructions
Branch instructions are executed by the branch processing unit (BPU). The BPU receives
branch instructions from the fetch unit and performs condition register (CR) lookahead
operations on conditional branches to resolve them early, achieving the effect of a zero-
cycle branch in many cases.

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the branch processor encounters one of these instructions, it
scans the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch is predicted using static branch prediction as described in “Conditional Branch
Control” in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The
Programming Environments Manual. The interlock is monitored while instructions are
fetched for the predicted branch. When the interlock is cleared, the branch processor
determines whether the prediction was correct based on the value of the CR bit. If the
prediction is correct, the branch is considered completed and instruction fetching continues.
If the prediction is incorrect, the fetched instructions are purged, and instruction fetching

Store Floating-Point Single
with Update Indexed

stfsux frS,rA,rB If the operand’s SP bit is set, the operand is copied
directly from the hardware FPR to memory; otherwise,
the instruction takes an emulation trap exception.

Store Floating-Point
Double

stfd frS,d(rA) If the operand’s SP bit is set and the operand is not a
NaN, infinity, or denormalized number, it is expanded to
the double-precision format and stored; otherwise, the
instruction takes an emulation trap exception.

Store Floating-Point
Double Indexed

stfdx frS,rA,rB If the operand’s SP bit is set and the operand is not a
NaN, infinity, or denormalized number, it is expanded to
the double-precision format and stored; otherwise, the
instruction takes an emulation trap exception.

Store Floating-Point
Double with Update

stfdu frS,d(rA) If the operand’s SP bit is set and the operand is not a
NaN, infinity, or denormalized number, it is expanded to
the double-precision format and stored; otherwise, the
instruction takes an emulation trap exception.

Store Floating-Point
Double with Update
Indexed

stfdux frS,rA,rB If the operand’s SP bit is set and the operand is not a
NaN, infinity, or denormalized number, it is expanded to
the double-precision format and stored; otherwise, the
instruction takes an emulation trap exception.

Store Floating-Point as
Integer Word Indexed

stfiwx frS,rA,rB If the operand’s LT bit is set, the value is stored directly;
otherwise, an emulation trap exception is taken.

Table 2-36. Floating-Point Store Instructions (Continued)

Name Mnemonic
Operand
Syntax

602 Notes
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-53

continues along the alternate path. See Chapter 8, “Instruction Timing,” in The
Programming Environments Manual for more information about how branches are
executed.

Note that when the 602 predicts a branch path, prefetching is allowed only from the internal
instruction cache. Prefetching from external memory is blocked until the branch instruction
resolves.

2.3.4.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word-aligned; the processor ignores the two low-order bits of the
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative
• Branch conditional to relative address
• Branch to absolute address
• Branch conditional to absolute address
• Branch conditional to link register
• Branch conditional to count register

2.3.4.4.2 Branch Instructions
Table 2-37 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-37. Branch Instructions

Name Mnemonic Operand Syntax

Branch b (ba, bl, bla) target_addr

Branch Conditional bc (bca, bcl, bcla) BO,BI,target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI
2-54 PowerPC 602 RISC Microprocessor User's Manual

2.3.4.4.3 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 2-38, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions, although they
are executed by the system register unit (SRU). Most instructions executed by the SRU are
completion-serialized to maintain system state; that is, the instruction is held for execution
in the SRU until all prior instructions issued have completed.

Note that if the LR update option is enabled for any of these instructions, these forms of the
instructions are invalid in the 602.

2.3.4.5 Trap Instructions
The trap instructions shown in Table 2-39 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
a complete set of simplified mnemonics.

2.3.4.6 Processor Control Instructions
Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

Table 2-38. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA,crbB

Condition Register AND with Complement crandc crbD,crbA,crbB

Condition Register OR with Complement crorc crbD,crbA,crbB

Move Condition Register Field mcrf crfD,crfS

Table 2-39. Trap Instructions

Name Mnemonic Operand Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-55

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-46 lists the instructions provided by the 602 for reading from or writing to the CR.

Note that the PowerPC architecture cautions programmers that in some implementations,
the mtcrf instruction may perform more slowly when only a portion of the fields are
updated as opposed to all of the fields. This is not the case in the 602.

2.3.4.7 Memory Synchronization Instructions—UISA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

The sync instruction delays execution of subsequent instructions until previous instructions
have completed to the point that they can no longer cause an exception and until all previous
memory accesses are performed globally; the sync operation is not broadcast onto the 602
bus interface. Additionally, all load and store cache/bus activities initiated by prior
instructions are completed. Touch load operations (dcbt and dcbtst) are required to
complete at least through address translation, but not required to complete on the bus.

The functions performed by the sync instruction normally takes a significant amount of
time to complete. Because the latency of the sync instruction depends on the state of the
processor when the instruction is issued as well as various system-level factors, frequent
use of this instruction may cause some performance degradation.

The 602 treats the Enforce In-Order Execution of I/O (eieio) instruction as a no-op, since
it enforces that all loads and stores to caching-inhibited memory and stores to write-through
memory execute in order on the external bus.

The proper paired use of the lwarx and stwcx. instructions allows programmers to emulate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” Examples of these semaphore operations can be found in
Appendix E, “Synchronization Programming Examples,” in The Programming
Environments Manual. The lwarx instruction must be paired with an stwcx. instruction
with the same effective address used for both instructions of the pair. Note that the
reservation granularity is 32 bytes.

Table 2-40. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crfD

Move from Condition Register mfcr rD
2-56 PowerPC 602 RISC Microprocessor User's Manual

The concept behind the use of the lwarx and stwcx. instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and
conditionally store it back to the same location (only if that location has not been modified
since it was first read), and determine if the store was successful. The conditional store is
performed based upon the existence of a reservation established by the preceding lwarx
instruction. If the reservation exists when the store is executed, the store is performed and
a bit is set in the CR. If the reservation does not exist when the store is executed, the target
memory location is not modified and a bit is cleared in the CR.

If the store was successful, the sequence of instructions from the read of the semaphore to
the store that updated the semaphore appear to have been executed atomically (that is, no
other processor or mechanism modified the semaphore location between the read and the
update), thus providing the equivalent of a real atomic operation. However, in reality, other
processors may have read from the location during this operation. In the 602, the
reservations are made on behalf of aligned 32-byte sections of the memory address space.

The lwarx and stwcx. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned lwarx or stwcx. instruction, because
there is no correct way to define the address associated with the reservation.

In general, the lwarx and stwcx. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most, one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent lwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
lwarx regardless of whether the address generated by the lwarx matches that generated by
the stwcx. instruction. A reservation held by the processor is cleared by one of the
following:

• Executing an stwcx. instruction to any address
• Attempt by some other device to modify a location in the reservation granularity

(32 bytes)

The lwarx and stwcx. instructions in write-through access mode do not cause a DSI
exception.

The stwcx. instruction always broadcasts on the external bus and thus operates with slightly
less performance characteristics as compared to normal store operations.

Table 2-41 lists the UISA memory synchronization instructions for the 602.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-57

In the 602, reservations for lwarx and stwcx. instructions are made on behalf of aligned 32-
byte sections of the memory address space. Using these instructions when the 602 is in
write-through mode does not cause a DSI exception. Because the stwcx. instruction is
broadcast on the external bus, it typically does not perform as efficiently as normal store
operations.

2.3.4.8 Preferred No-Op Instruction
The PowerPC architecture defines the instruction “ori r0,r0,0” as the preferred form for the
no-op instruction. This preferred form acts as a ‘branch never’ instruction in the 602 and is
folded out by the BPU.

2.3.5 PowerPC VEA Instructions
The PowerPC VEA describes the semantics of the memory model that can be assumed by
software processes, and includes descriptions of the cache model, cache-control
instructions, address aliasing, and other related issues.

2.3.5.1 Processor Control Instructions
In addition to the move to condition register instructions specified by the UISA, the VEA
defines the Move from Time Base (mftb) instruction for reading the contents of the time
base register. The mftb is a user-level instruction; it is shown in Table 2-42.

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. The
mftb instruction serves as both a basic and simplified mnemonic. Assemblers recognize an
mftb mnemonic with two operands as the basic form, and an mftb mnemonic with one
operand as the simplified form. Simplified mnemonics are also provided for Move from
Time Base Upper (mftbu), which is a variant of the mftb instruction rather than of mfspr.
For more information, refer to “Simplified Mnemonics for Special Purpose Registers,” in
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

Table 2-41. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax 602 Notes

Load Word and
Reserve Indexed

lwarx rD,rA,rB —

Store Word Conditional
Indexed

stwcx. rS,rA,rB —

Synchronize sync — This instruction delays subsequent bus activity until
previous instructions and bus operations (except
queued touch load operations and instruction
fetches) have completed.
2-58 PowerPC 602 RISC Microprocessor User's Manual

2.3.5.2 Memory Synchronization Instructions—VEA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization.

Implementation Notes—The following list describes how the 602 handles memory
synchronization in the VEA.

• The Instruction Synchronize (isync) instruction causes a refetch serialization, which
waits for all prior instructions to complete and then executes the next sequential
instruction. Execution of subsequent instructions is held until all previous
instructions have completed until they can no longer cause an exception and all store
queues have completed translation. Any instruction after an isync see all effects of
prior instructions

• The Enforce In-Order Execution of I/O (eieio) instruction is used to ensure memory
reordering. Since the 602 does not reorder noncacheable memory accesses, the eieio
instruction is treated as a no-op.

Table 2-41 lists the VEA memory synchronization instructions for the 602.

2.3.5.3 Memory Control Instructions—VEA
The memory control instructions defined by the VEA provide user-level programs the
ability to manage on-chip caches when they exist. Memory control instructions include the
following types:

• Cache control instructions
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

Table 2-42. Move from Time Base Instruction

Name Mnemonic Operand Syntax 602 Notes

Move from
Time Base

mftb rD, TBR The 602 time base is incremented every four bus clocks. The time
base enable (TBEN) signal enables the count. The 602 ignores
bit 25 of mftb and treats it like an mfspr instruction.

Table 2-43. Memory Synchronization Instructions—VEA

Name Mnemonic
Operand
Syntax

602 Notes

Enforce In-Order
Execution of I/O

eieio — The 602 does not reorder noncacheable memory
accesses; therefore, eieio is treated as a no-op.

Instruction Synchronize isync — —
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-59

User-level cache instructions are listed in Table 2-44. See Section 2.3.6.3, “Memory
Control Instructions—OEA,” for information on supervisor-level cache, segment register
manipulation, and TLB management instructions.

Note that the 602 interprets cache control instructions (icbi, dcbi, dcbf, and dcbst) as if
they pertain only to the 602 cache and does not broadcast these instructions The dcbz
instruction is broadcast to maintain coherency. Any bus activity caused by these
instructions results from the operation on the 602 cache.

As with other memory-related instructions, the effect of the cache management instructions
on memory is weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

Table 2-44 lists the cache instructions that are accessible to user-level programs.

Table 2-44. User-Level Cache Instructions

Name Mnemonic
Operand
Syntax

602 Notes

Data Cache
Block Touch

dcbt rA,rB The EA is computed, translated, and checked for protection violations.
• If the EA violates page protection or misses in the MMU, the

operation is a no-op.
• If the address hits in the cache, no action is taken.
• If the address misses in the cache and the tag is in the modified (M)

state, the cache block is written back to memory and the new cache
block is brought in and placed in the exclusive (E) state.

• If the address misses in the cache and tag is in the E state, the new
cache block is brought in and placed in the E state.

Address-only transfers are not generated on the external bus (other
cache operations).

Data Cache
Block Touch
for Store

dcbtst rA,rB This instruction is treated like a dcbt instruction with respect to the MEI
cache coherency protocol.
2-60 PowerPC 602 RISC Microprocessor User's Manual

2.3.5.4 External Control Instructions
The optional external control instructions, eciwx and ecowx, defined by the PowerPC
architecture are not implemented in the 602.

Data Cache
Block Set to
Zero

dcbz rA,rB The EA is computed, translated, and checked for protection violations.
If the EA hits in the cache, zeros are burst into the cache. Also, if M = 1
(coherency enforced), the address is broadcast onto the bus before the
zero-line-fill operation. The dcbz instruction is the only cache
instruction that the 602 broadcasts on the bus.
The exception priorities (from highest to lowest) for dcbz are as follows:
1 BAT protection violation—DSI exception
2 MMU miss—DTLB exception
3 Cache disabled—Alignment exception
4 Page marked write-through or caching-inhibited—Alignment

exception
5 TLB protection violation—DSI exception
When data address translation is disabled (MSR[DR] = 0), the dcbz
instruction allocates a cache block but may not verify that the physical
address is valid. If a cache block is created for an invalid physical
address, a machine check condition may result when an attempt is
made to write that cache block back to memory. The cache block could
be written back as a result of the execution of an instruction that causes
a cache miss and the invalid addressed cache block is the target for
replacement or a dcbst instruction.

Data Cache
Block Store

dcbst rA,rB The EA is computed, translated, and checked for protection violations.
• If the address hits in the cache and the tag is in the E state, no

further action is taken.
• If the address hits in the cache and is in the M state, the cache block

is written back to memory and the cache block is put in the E state.
Address-only transfers are not generated on the external bus.
The exception priorities (from highest to lowest) are as follows:
1 BAT protection violation—DSI exception
2 MMU miss—DTLB exception
3 TLB protection violation—DSI exception

Data Cache
Block Flush

dcbf rA,rB The EA is computed, translated, and checked for protection violations.
• If the address hits in the cache and the block is marked M, the block

is written back to memory and the cache entry is invalidated.
• If the address hits in the cache, and the cache block is marked E,

the cache entry is invalidated.
• If the address misses in the cache, no further action is taken.
The exception priorities (from highest to lowest) are as follows:
1 BAT protection violation—DSI exception
2 MMU miss—DTLB exception
3 TLB protection violation—DSI exception

Instruction
Cache Block
Invalidate

icbi rA,rB The icbi instruction performs a virtual lookup into the instruction cache
(index only). The address is not translated and cannot generate an
exception. Both ways of the selected set are invalidated. This
instruction is not broadcast onto the external bus.

Table 2-44. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand
Syntax

602 Notes
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-61

2.3.6 PowerPC OEA Instructions
The PowerPC OEA includes the structure of the memory management model, supervisor-
level registers, and the exception model.

2.3.6.1 System Linkage Instructions
This section describes the system linkage instructions (see Table 2-45). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The Return from Interrupt (rfi)
instruction is a supervisor-level instruction used for returning from an exception handler.

2.3.6.2 Processor Control Instructions—OEA
Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

2.3.6.2.1 Move to/from Machine State Register Instructions
Table 2-46 lists the instructions provided by the 602 for reading from or writing to the
MSR.

2.3.6.2.2 Move to/from Special-Purpose Register Instructions
Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be
coded with the SPR name as part of the mnemonic rather than as a numeric operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for

Table 2-45. System Linkage Instructions

Name Mnemonic
Operand
 Syntax

602 Notes

System Call sc — —

Return from
Interrupt

rfi — —

Enable
Supervisor
Access

esa — 602-specific. Provides the entry point for supervisor access. The esa
instruction is a nonserialized instruction that saves MSR[SA, EE, PR,
AP] to the ESASRR and sets appropriate MSR bits (SA = 1, EE = 0,
PR = 0, AP = 0). For more information, see Section 2.3.9, “Using the esa
Instruction for Supervisor-Level Access.”

Disable
Supervisor
Access

dsa — 602-specific. Provides the exit point for supervisor access. The dsa
instruction is a nonserialized instruction that restores MSR[SA, EE, PR,
AP] from the ESASRR to the MSR. For more information, see
Section 2.3.9, “Using the esa Instruction for Supervisor-Level Access.”

Table 2-46. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax

Move to Machine State Register mtmsr rS

Move from Machine State Register mfmsr rD
2-62 PowerPC 602 RISC Microprocessor User's Manual

simplified mnemonic examples. The mtspr and mfspr instructions are shown in
Table 2-47.

The following describes exception conditions associated with the mtspr and mfspr
instructions:

• The 602 treats mtspr and mfspr instructions that specify SPRs defined for POWER
and not for PowerPC as illegal.

• Any mtspr or mfspr instruction that references privileged SPRs while not in the
supervisor mode (MSR[PR]=1) causes a privileged instruction type program
exception.

• Any mtspr instruction with an invalid SPR causes a program exception.

• Any mfspr with an invalid SPR causes an illegal opcode type program exception.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 16–20 of the instruction encoding and the low-order 5 bits in bits 11–15.

If the SPR field contains any value other than one of the values shown in Table 2-6, either
the program exception handler is invoked or the results are boundedly undefined.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing in
bits 16–20 of the instruction and the low-order 5 bits in bits 11–15.

Note that the updating of some registers requires additional synchronization to ensure that
data access and instruction fetching dependencies are handled properly. For more
information, see Section 2.1.4, “Synchronization Requirements for SPRs.”

2.3.6.3 Memory Control Instructions—OEA
This section describes memory control instructions, which include the following types:

• Cache management instructions
• Segment register manipulation instructions
• TLB management instructions

Table 2-47. Move to/from Special-Purpose Register Instructions

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mfspr rD,SPR
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-63

2.3.6.3.1 Supervisor-Level Cache Management Instruction
Table 2-48 lists the only supervisor-level cache management instruction. See
Section 2.3.5.3, “Memory Control Instructions—VEA,” for a description of cache
instructions that provide user-level programs the ability to manage the on-chip caches.

When data translation is disabled, MSR[DR] = 0, the dcbz instruction establishes a block
in the cache and may not verify that the physical address is valid. If a block is created for
an invalid real address, a machine check exception may result when an attempt is made to
write that block back to memory. The block could be written back as the result of the
execution of an instruction that causes a cache miss and the invalid address block is the
target for replacement or as the result of a dcbst instruction.

2.3.6.3.2 Segment Register Manipulation Instructions
The instructions listed in Table 2-49 provide access to the segment registers for the 602.
These instructions operate completely independently of the MSR[IR] and MSR[DR] bit
settings. Refer to Section 2.1.4, “Synchronization Requirements for SPRs,” for
serialization requirements and other recommended precautions to observe when
manipulating the segment registers.

2.3.6.3.3 Translation Lookaside Buffer Management Instructions
The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the effective-to-physical address
mapping for a particular access. The PTEs reside in page tables in memory. As defined for
32-bit implementations by the PowerPC architecture, segment descriptors reside in 16 on-
chip segment registers.

Table 2-48. Supervisor-Level Cache Management Instruction

Name Mnemonic
Operand
 Syntax

602 Notes

Data Cache
Block Invalidate

dcbi rA,rB The EA is computed, translated, and checked for protection
violations. If the addressed block is in the cache, it is marked ‘I’
regardless of whether the data is in the M or E state.
The exception priorities (from highest to lowest) are as follows:
1 BAT protection violation—DSI exception
2 MMU Miss—DTLB exception
3 TLB protection violation—DSI exception

Table 2-49. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax

Move to Segment Register mtsr SR,rS

Move to Segment Register Indirect mtsrin rS,rB

Move from Segment Register mfsr rD,SR

Move from Segment Register Indirect mfsrin rD,rB
2-64 PowerPC 602 RISC Microprocessor User's Manual

The 602 provides the ability to invalidate a TLB entry. The TLB Invalidate Entry (tlbie)
instruction invalidates the TLB entry indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries (both sets in each
TLB). The index corresponds to bits 15–19 of the EA. To invalidate all entries within both
TLBs, 32 tlbie instructions should be issued, incrementing this field by one each time.

The 602 provides two implementation-specific instructions, TLB Load Data and TLB Load
Instruction (tlbld and tlbli), that are used by software table search operations to load TLB
entries on-chip following TLB misses. For a complete description of these instructions, see
Section 2.3.7, “PowerPC 602 Implementation-Specific Instructions.”

Refer to Chapter 5, “Memory Management” for more information about the TLB
operations for the 602. Table 2-50 lists the TLB instructions.

Because the presence and exact semantics of the TLB management instructions are
implementation-dependent, system software should incorporate uses of the instruction into
subroutines to maximize compatibility with programs written for other processors.

For more information on the PowerPC instruction set, refer to Chapter 4, “Addressing
Modes and Instruction Set Summary,” and Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

2.3.7 PowerPC 602 Implementation-Specific Instructions
This section describes the instructions that are specific to the 602. However, some of these
instructions may be supported by other PowerPC processors.

Table 2-50. Translation Lookaside Buffer Management Instructions

Name Mnemonic
Operand
 Syntax

602 Notes

T LB Invalidate
Entry

tlbie rB This instruction invalidates both ways in the ITLBs and DTLBs at the
index provided within the EA. Executes without regard to translation
setting. To invalidate all TLB entries, the tlbie instruction should be
executed 16 times, each time incrementing the index (EA[16–19]).

TLB Synchronize tlbsync — This instruction is implemented and treated as a no-op

TLB Load Data tlbld rB This is a 602-specific instruction. It loads the contents of the DCMP
and RPA registers into the first word of the DTLB entry selected by
the EA and the SRR1[WAY] bit. See Section 2.3.7, “PowerPC 602
Implementation-Specific Instructions.”

TLB Load
Instruction

tlbli rB This is a 602-specific instruction. It loads the contents of the ICMP
and required physical address (RPA) registers into the first word of
the ITLB entry selected by the EA and the SRR1[WAY] bit. See
Section 2.3.7, “PowerPC 602 Implementation-Specific Instructions.”
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-65

dsa dsa
Disable Supervisor Access Integer Unit

dsa

This instruction is not part of the PowerPC architecture.
The dsa instruction is the last instruction executed before returning from a routine in
supervisor-access region. The dsa instruction does the following:

• Restores MSR[PR, AP, EE, SA] from ESASRR.
• If MSR[SA] = 0, a program exception is taken.

The following rules should be followed for using the dsa and esa instructions:

• Supervisor-access routines must begin with an esa instruction.

• Execution of an esa or dsa instruction cannot alter the instruction stream in any way.
Make sure that consistency is maintained in the following:

— Protections for fetching (NE, etc.)
— Translation method (BAT, TLB)

• Unprivileged store addresses must be checked before being passed to supervisor-
access routines.

• Data is not allowed in supervisor-access areas.

• Supervisor-access routines cannot call other supervisor-access routines. Executing
an esa instruction when MSR[SA] = 1 causes a program exception.

0 5 6 10 11 15 16 20 21 30 31

0 0 0 0 0 628 031 0 0 0 0 0 0 0 0 0 0

Reserved
2-66 PowerPC 602 RISC Microprocessor User's Manual

esa esa
Enable Supervisor Access Integer Unit

esa

This instruction is not part of the PowerPC architecture.
The esa instruction is the entry point for routines in supervisor access regions. The esa
instruction is a nonserialized instruction and does the following:

• Saves MSR[SA, EE, PR, AP] to the ESASRR

• Sets appropriate MSR bits (SA = 1, EE = 0, PR = 0, AP = 0)

• If the memory space is not designated as a supervisor-access region (that is, if the
SE bit in the corresponding TLB or BAT is cleared), a program exception occurs.

• If MSR[SA] = 1, a program exception occurs. A second esa instruction cannot be
executed until the SA bit has been cleared, preferably by a dsa instruction.

The following rules should be followed for using the esa and dsa instructions:

• Supervisor access routines must begin with an esa instruction.

• Execution of esa or dsa cannot alter the instruction stream in any way:

— Protections for fetch (NE, etc.)

— Translation method (BAT, TLB, or protection-only mode) must be consistent

• Store addresses passed to supervisor access routines must be checked.

• Data is not allowed in supervisor access areas.

• Supervisor access routines cannot call other supervisor access routines. Nesting
supervisor access routines causes a program exception (that is, issuing an esa
instruction with MSR[SA] set).

0 5 6 10 11 15 16 20 21 30 31

0 0 0 0 0 596 031 0 0 0 0 0 0 0 0 0 0

Reserved
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-67

mfrom mfrom
Move from ROM Integer Unit

mfrom rD,rA

This instruction is not part of the PowerPC architecture.
The content of the internal ROM addressable by (rA) is moved to the GPR addressed by
rD. The ROM contains a 7-bit value that is zero-extended to 32 bits. The ROM contains
602 entries (addressed by the least significant 10 bits of rA); if addressed out of range, the
ROM returns a zero value. The ROM contents are derived by the following:

ROM(I) = 256 * Log10(1 + 10-I/256) + 0.5
The mfrom instruction is a supervisor-level instruction, Attempting to execute this
instruction when MSR[PR] = 1 (user level), causes an illegal instruction program exception
to be taken.

Application note: For speech or handwriting recognition applications using Markov
models where single-precision operations are not adequate, the integer unit can be used as
long as the input data is in logarithmic form. For multiplication operations, such as
C = A x B, the operation can be performed as the addition of logarithms as the following:

log(C) = log(A)+log(B)
For addition operations such as C = A + B, the mfrom instruction solves this problem by
helping to implement the following computation:

It can be seen that, for a given finite binary implementation, all numbers have minimum and
maximum boundaries and that if A is very large and B is very small, then C will be equal to
A. The format for integer values is 256 x log(value). With this precision, the log(C) can be
computed as an adjustment to the greater of log(A) or log(B). The scaling factor,
256 x log(value), ensures that there are only 602 values that allow log(A) and log(B) to be
close enough to each other to cause log(C) to be other than max(log(A), log(B)).

The adjustment needed to determine log(C) can be computed with mfrom instruction and
a lookup table indexed by the difference of |log(A) - log(B)|. The instruction returns a 7-bit
value from a 602-entry table through the following formula

where i is the address (or index) into the table determined by |log(A)-log(B)| and x is the
returned 7-bit value needed to adjust max(log(A), log(B)) to determine log(C).

0 5 6 10 11 15 16 20 21 30 31

0 0 0 0 0 265 031 D A

Reserved

C()log 10
A()log

10
B()log

+()log=

χi 256 1 10 i 256⁄()–+()log× 0.5+=
2-68 PowerPC 602 RISC Microprocessor User's Manual

tlbld tlbld
TLB Load Data Integer Unit

tlbld rB

This instruction is not part of the PowerPC architecture.

EA ← (rB)
TLB entry created from DCMP and RPA
DTLB entry selected by EA[15-19] and SRR1[WAY] ← created TLB entry

The EA is the contents of rB. The tlbld instruction loads the contents of the DCMP and
RPA registers into the first word of the selected data TLB entry. The specific DTLB entry
to be loaded is selected by <ea> and the SRR1[WAY] bit.

The tlbld instruction should only be executed when address translation is disabled.
MSR[IR] = 0 and MSR[DR] = 0.

This is a 602-specific, supervisor-level instruction.

Note that if the processor is in HID0[PO] = 1 mode, bits 11–14 of the EA are used to index
the TLB instead of bits 15–19.

Other registers altered:

• None

Load the data TLB entry indexed by EA with DCMP and RPA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 978 0
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-69

tlbli tlbli
TLB Load Instruction Integer Unit

tlbli rB

This instruction is not part of the PowerPC architecture.

EA ← (rB)
TLB entry created from ICMP and RPA
ITLB entry selected by EA[15-19] and SRR1[WAY] ← created TLB entry

The EA is the contents of rB. The tlbli instruction loads the contents of the instruction PTE
compare (ICMP) and required physical address (RPA) registers into the first word of the
selected instruction TLB entry. The specific ITLB entry to be loaded is selected by <ea>
and the SRR1[WAY] bit.

For code compatibility the tlbli instruction should be limited to TLB miss handlers and
should only be executed when address translation is disabled. MSR[IR] = 0 and
MSR[DR] = 0. If it is desired to use these instructions with translation enabled, use care. It
is required that a context-synchronizing instruction follow these instructions if translation
is on. It is considered a programming error to perform a tlbli that modifies the current
prefetch addresses.

Note that if the processor is in HID0[PO] = 1 mode, bits 11–14 of the EA are used to index
the TLB instead of bits 15–19.

This is a supervisor-level instruction; it is also a 602-specific instruction, and not part of the
PowerPC instruction set.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 1010 0
2-70 PowerPC 602 RISC Microprocessor User's Manual

2.3.8 Recommended Simplified Mnemonics
To simplify assembly language programs, a set of simplified mnemonics is provided for
some of the most frequently used operations (such as no-op, load immediate, load address,
move register, and complement register). PowerPC-compliant assemblers provide the
simplified mnemonics listed in “Recommended Simplified Mnemonics” in Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual and listed with
some of the instruction descriptions in this chapter. Programs written to be portable across
the various assemblers for the PowerPC architecture should not assume the existence of
mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual.

2.3.9 Using the esa Instruction for Supervisor-Level Access
The 602 can be made to operate in supervisor mode either by taking an exception or by
executing the 602-specific Enable Supervisor Access (esa) instruction. Executing the esa
allows the processor to access supervisor-level instructions, registers, and memory without
encountering the latencies associated with the kind of exception handling required for
processors used in multipurpose personal computers. Such latencies include
synchronization to ensure precise operation and the pipeline and memory access latencies
associated with having to refetch from a new instruction path.

Note that after the esa instruction has been successfully executed, the program can fetch
from any page defined as instruction space for which fetching is enabled regardless of the
setting of SE.

When the esa instruction is executed, several bits from the MSR (MSR[SA, EE, PR, AP] to
the ESASRR) and those bits are automatically set as follows (SA = 1, EE = 0, PR = 0, AP
= 0). Clearing MSR[EE] disables external interrupts, clearing MSR[PR] puts the processor
in supervisor mode, and clearing MSR[AP] gives the processor supervisor-level access to
memory locations. MSR[SA] indicates that the processor is operating in this esa-initiated
supervisor mode. This bit is cleared when the Disable Supervisor Access (dsa) instruction
is executed. If MSR[SA] is not set, attempting to execute dsa causes a program exception.

The processor remains in supervisor mode until the dsa instruction is executed. Note that
the dsa instruction can be executed from any memory location for which instruction
fetching is enabled—that is, the dsa instruction can be executed regardless of the setting of
SE for the page on which it resides.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-71

Implementation of the ESA supervisor-access feature affects the 602’s MMU
implementation in the following ways:

• The esa instruction is enabled on a page or block basis, so the MMU translation
mechanism must be used to configure memory to allow or disallow this
functionality. An additional SE bit is provided in the TLBs and BATs to enable the
esa instruction.The ESA enable register (SER) and the ESA enable base register
(SEBR) control supervisor execute privileges for each of the 32 pages of a 128-
Kbyte block of memory. Configuration of memory space defined by TLBs is
handled by using the 602-defined TLB Load Instruction (tlbli) and TLB Load Data
(tlbld) instructions to set the SE bit in the TLBs. BAT[SE] can be written by using
the mtspr instruction.

• This facility can be used regardless of whether the processor uses one of the
architecturally-defined translation mechanisms or the 602-specific protection-only
mode. When the esa instruction is enabled in protection-only mode (for which the
translation mechanism is not used to form the real address, EA = RA), resources
such as the RPA and TLBs that are otherwise defined for translation are redefined to
support memory protection.

• Note that translation must be enabled for esa to be executed; therefore, esa cannot
be executed when the processor is in real addressing mode.

2.3.9.1 esa/dsa Instructions
The two instructions are described as follows:

• Enable Supervisor Access (esa)—The esa instruction is the entry point for routines
in esa supervisor-access regions.

If the memory space is not designated as a supervisor access region (that is, if the
SE bit in the corresponding TLB or BAT is cleared), a program exception occurs.

• Disable Supervisor Access (dsa)—The dsa instruction is the last instruction
executed before returning from a routine initiated by the esa instruction. The dsa
instruction restores MSR[PR, AP, EE, SA] from ESASRR. Note that if
MSR[SA] = 0, a program exception is taken when the dsa instruction is executed.

The following rules should be followed for using the dsa and esa instructions:

• Begin all supervisor-access routines with an esa instruction.

• Execution of an esa or dsa instruction cannot alter the instruction stream in any way.
Protections for fetching (NE, etc.) and the translation method (BAT, TLB) must be
consistent.

• Check unprivileged store address passed to supervisor-access routines.

• Supervisor access routines cannot call other supervisor-access routines. Executing
an esa instruction when MSR[SA] = 1 causes a program exception.

• No data should be updated in supervisor access areas.
2-72 PowerPC 602 RISC Microprocessor User's Manual

2.3.9.2 ESA Supervisor-Access Registers
The 602 defines a set of resources that allow the processor to access supervisor-level
instructions, registers, and memory resources without taking an exception. This supervisor
access is signaled by the execution of the 602-specific esa instruction. Execution of this
instruction is allowed only if it is enabled for the 4-Kbyte page in which it resides.

There are three registers that are 602-specific that support this functionality as described in
the following list. The ESASRR register is used to save and restore the four MSR bits that
are saved when the esa instruction is executed. The SEBR and SER are used to enable the
esa instruction on a 4-Kbyte page basis when the processor is in protection-only mode.

• ESA Save and Restore Register (ESASRR)—ESASRR is a supervisor-level register
that provides a means for automatically saving and restoring aspects of the machine
state for use with the enable/disable supervisor access instructions (esa and dsa).
When an esa instruction is executed, MSR[SA, EE, PR, AP] bits are automatically
saved in the ESASRR. When a dsa instruction is executed, the contents of these bits
are automatically restored to the MSR. The ESASRR is described more fully in
Section 2.1.2.3.1, “ESA Save and Restore Register (ESASRR).”

• ESA Enable Base Register (SEBR)—The SEBR is used when the processor is in
protection-only mode to determine whether the esa instruction is enabled for the 4-
Kbyte page in which it resides. SEBR[0–14] contains the base address of the 128-
Kbyte region that is protected by the 32 SE bits in SER (each bit in the SER
configures a 4-Kbyte page). The SEBR is described more fully in Section 2.1.2.3.2,
“ESA Enable Base Register (SEBR) (Protection-Only Mode).”

• ESA Enable Register (SER)—The SER contains 32 SE bits, each of which
corresponds to a 4-Kbyte page when the processor is in protection-only mode. If a
match occurs when SEBR[0–14] are compared against the EA[0–14], EA[15–19]
indicate which of the 32 SE bits in the SER is examined to determine whether the
esa instruction can be executed. If there is no match, SE = 0. The matching
requirement of the SEBR is similar to the BAT register. The SER is described more
fully in Section 2.1.2.3.3, “ESA Enable Register (SER) (Protection-Only Mode).”

2.3.9.2.1 Enabling the esa Instruction
For the esa instruction to be executed it must first be enabled for the memory region in
which it resides. This ability is enabled by setting the SE bit, which is read either from the
IBAT, the ITLB, or the ESA register depending on the memory translation protection mode
chosen. These are described as follows:

• Block address translation—If a BAT hit occurs, whether the esa instruction can be
executed depends on the setting of the corresponding IBAT[SE].

• Page address translation—If page address translation is used (that is a BAT miss
occurs and the processor is not in protection-only mode), whether the esa instruction
can be executed depends on the setting of the SE bit in the corresponding ITLB.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-73

• Protection-only mode—If the processor is in protection-only mode (HID0[PO] = 1)
and a BAT miss occurs, whether the esa instruction can be executed depends on the
setting of the corresponding SE bit in the SER register.

These translation/protection mechanisms are described in Chapter 5, “Memory
Management.”

2.3.9.2.2 Executing the esa Instruction
The appropriate SE bit is not checked when the esa instruction is fetched. That is, the esa
instruction can be fetched even though it may not be enabled by the SE bit. Logic is
provided in the 602 instruction pipeline that allows the completion unit to detect whether
the esa instruction has been enabled. If esa has not been enabled, an illegal instruction
program exception is taken. If it has been enabled, the following occurs:

— MSR[SA, EE, PR, AP] are saved to the ESASRR before those bits are reset for
operation in supervisor mode.

— MSR[SA] is set, to indicate that the processor is in esa supervisor mode. This bit
is cleared by the dsa instruction; attempting to execute another esa instruction
when this bit is set causes a program exception.

— MSR[EE] is cleared to disable external interrupt exceptions.

— MSR[PR] is cleared to give supervisor level access to registers and instructions.

— MSR[AP] is cleared to provide access to supervisor-level memory regions.

Note that when the esa instruction is enabled, it is not context-synchronizing, There is no
change in program flow and subsequent instructions in the program do not encounter stalls
due to saving the MSR bits.

After the esa instruction has executed, the processor is in supervisor mode and can access
supervisor-level instructions, registers, and memory space (depending on the setting of
MSR[AP]). Note that after the MSR[SA] bit has been set, no more esa instructions can be
executed. Attempting to do so causes a program exception.

2.3.9.2.3 Returning to User-Level Operation
After the esa instruction has been successfully executed, the processor remains in
supervisor mode as long as the MSR[SA] bit remains set. Although this bit can be cleared
explicitly by using an mtspr instruction, the recommended way to clear this bit is by
executing the Disable Supervisor Access (dsa) instruction. Executing this instruction is
analogous to executing an rfi instruction in an exception handler in that the processor
returns to user mode and the four bits that were saved and reset when the esa instruction
was executed (MSR[SA, EE, PR, AP]) are restored to the MSR.
2-74 PowerPC 602 RISC Microprocessor User's Manual

2.3.10 Differences between Using the esa Instruction and Taking a
System Call Exception

The Enable Supervisor Access (esa) instruction can be executed only if the SE bit is set for
the block or the page in which the esa instruction resides. If an esa instruction is fetched
from any other region, a program exception is taken. Successful execution of the esa
instruction places the processor in supervisor mode, and can be compared with the system
call exception in the following ways:

• When the esa instruction is executed, there is no change in program flow as is the
case with fetching from the address of the target exception vector. This eliminates
the latency required for synchronizing to maintain a precise exception model and the
stalls that may occur during those cycles when the exception handler instructions
have not reached the instruction queue.

• Because there is no change in program flow, the SRR0 register is not used to save a
return address. The SRR1 register is not used to save the machine state. Instead, only
four MSR bits are affected. The status of MSR[SA, EE, PR, AP] are saved to the
ESASRR.

• After the esa instruction is executed, four bits in the MSR are updated:

— MSR[SA] is set to indicate that the processor is in esa supervisor mode.

— MSR[EE] is cleared to disable external interrupt exceptions.

— MSR[PR] is cleared to give supervisor-level access to registers and instructions.

— MSR[AP] is cleared to provide access to supervisor-level memory regions.

• Translation must be enabled; therefore, esa supervisor access is not available when
the processor is running in real addressing mode.

If translation remains active, all effective addresses must map in the TLBs or BATs.
MSR[PR, AP, SA, EE] bits are updated upon entry into the esa routine; the state of these
bits prior to the execution of esa are saved in ESASRR until the dsa instruction restores
them. Note that MSR[SA] must be set when the dsa instruction is executed to return the
processor to user-level operation; if this bit is cleared, a program exception occurs. Note
that any changes to the MSR (other than to the four saved bits) are retained after the dsa
instruction is executed.
Chapter 2. PowerPC 602 Microprocessor Programming Model 2-75

2-76 PowerPC 602 RISC Microprocessor User's Manual

Chapter 3
Instruction and Data Cache Operation
30
30

This chapter describes the organization of the PowerPC 602 microprocessor’s on-chip
instruction and data caches, the MEI cache coherency protocol, cache control instructions,
various cache operations, and the interaction between the cache, load/store unit, and the bus
interface unit.

3.1 PowerPC 602 Processor Cache Implementation
Overview

The 602 provides separate 4-Kbyte, two-way set-associative caches for instructions and
data. Both the instruction and data caches are tightly coupled to the 602’s bus interface unit
(BIU) to allow efficient access to the system memory controller and other bus masters. The
602’s load/store unit (LSU) is also directly coupled to the data cache to move data to and
from the GPRs and FPRs efficiently. Figure 3-1 shows the organization of the 602 caches,
which is essentially the same for both the instruction and data caches.

Figure 3-1. PowerPC 602 Processor Instruction and Data Cache Organization

Both caches have a cache block (cache line) size of 32 bytes, and the data cache blocks can
be snooped, or cast out when the cache block is reloaded. The 602 provides bits (WIM) for
control of write-back policy, cacheability, and memory coherency. These bits are
implemented differently depending on the type of address translation used, as described in
Chapter 5, “Memory Management.”

Address Tag 1Block 1

64 Sets

Address Tag 0Block 0

8 Words/Block

State

State

Words 0–7

Words 0–7
Chapter 3. Instruction and Data Cache Operation 3-1

Note that in the PowerPC architecture, the term “cache block” refers to the unit of memory
at which coherency is maintained. For the 602, this is eight words. This size of a cache
block may be different for other PowerPC implementations.

Typically, when an instruction or data address is not found in the cache, the cache is
updated. Because it is extremely likely that the data or instructions at adjacent addresses
will also be needed, the entire cache block of data that includes the data at the requested
address is updated from memory by means of a burst transaction—an automatic series of
bus transactions that transfers an entire eight-word cache block.

Read misses and instruction fetches may generate burst read operations that transfer the
entire cache block from memory. A write miss may also cause a burst transaction from
memory—after the cache block is updated from memory, the write operation that caused
the burst read updates the memory at the write address within the cache block. Whether and
when this new data is passed on to external memory depends on how coherency attributes
are configured.

Burst operations can also occur as the result of other operations. For example, both caches
use a least-recently used (LRU) replacement policy, so if both cache blocks to which an
address can be mapped are valid, the new data replaces the older of the two cache blocks.
If a data cache block that is being replaced is modified (that is, it has the correct contents
for that address but those contents have not been written back to memory), the data in that
cache block must be written back (cast out) to memory. Basic data cache operations are
described in Section 3.4, “Basic Data Cache Operations.”

As shown in Figure 3-1, the data cache is organized into 64 sets of two cache blocks apiece.
Each block has an address tag and two state bits. The two state bits implement the three-
state MEI (modified-exclusive-invalid) protocol, a coherent subset of the standard four-
state MESI protocol. The 602’s on-chip data cache tags are single-ported, and load or store
operations must be arbitrated with snoop accesses to the data cache tags. Load or store
operations can be performed to the cache on the clock cycle immediately following a snoop
access if the snoop misses; snoop hits may block the data cache for two or more cycles,
depending on whether a copyback to main memory is required.

The 602 supports an additional snooping mechanism, known as injected snooping. While
the 602 as a bus master performs a burst read transaction, the read target device can inject
the snoop address onto the bus between data beats. Injected snooping is described in
Section 8.4.2, “Qualified Snoop Conditions,” and is illustrated in Section 8.5.4.7, “Injected
Snoop Timings.” Information about the MEI protocol is provided in Section 3.7, “Cache
Coherency—MEI Protocol.”

The instruction cache is also organized into 64 sets of two 32-byte cache blocks. Each block
has an address tag, but unlike the data cache which has two bits that identify the MEI state,
the instruction cache has only one state bit that indicates whether the contents of the cache
block are valid. Because the instruction cache is updated only as a result of a line-fill
operation on a cache miss, it is not snooped.
3-2 PowerPC 602 RISC Microprocessor User's Manual

The load/store unit (LSU) provides the data transfer interface between the data cache and
the GPRs and the FPRs. The LSU provides all logic required to calculate effective
addresses and handles data alignment to and from the data cache. As shown in Figure 1-1,
the caches provide a 32-bit interface to the instruction fetcher and LSU. Write operations
to the data cache can be performed on a byte, half-word, word, or double-word basis. The
bus can be dynamically configured to function as a 32-bit bus in the data phase (using only
D0–D31 for the data transfer).

The 602’s bus interface unit (BIU), described in Section 3.10, “Bus Interface”, receives
requests for bus operations from the instruction and data caches, and uses the 602 bus
protocol to direct transfers to and from external memory. The BIU provides address queues,
prioritization, and bus control logic. The BIU also captures snoop addresses for data cache,
address queue, and memory reservation (lwarx and stwcx. instruction) operations.

On a burst-read operation, corresponding cache block is filled in four beats of 64 bits each
when the bus is in 64-bit mode or in eight beats of 32 bits each in 32-bit mode. The
requested instruction or data arrives first as part of the critical double word, and is
simultaneously written to the cache and forwarded to the requesting unit.

For example, if the instruction cache is performing a cache line reload, the requested
instruction is forwarded to the BPU at the same time that is made available in the cache. If
the bus is in 64-bit mode, the instruction that arrives as part of the first double beat goes to
the cache only, and must be fetched from there.

Additionally, if a branch instruction is fetched from the cache block that is being filled, it
may point either to another address within same cache block or to another location as
follows:

• If the target instruction is elsewhere in the same cache block, that instruction can be
fetched as soon as it becomes available in the instruction cache.

• If the target instruction is elsewhere in the cache, the instruction can be fetched
without having to wait for the entire cache block to be updated.

The 602 supports a fully-coherent 4-Gbyte physical memory address space. How that
memory is organized and defined is largely controlled by the memory management model,
and this in turn has an effect on how the caches operate. Caching attributes are defined by
four mode control bits—W, I, M, and G. The W (write-through) and I (caching-inhibited)
bits control how the processor executing the access uses its own cache. The M (memory
coherence) bit specifies whether the processor executing the access must use the MEI
(modified, exclusive, or invalid) cache coherence protocol to ensure all copies of the
addressed memory location are kept consistent. The G (guarded memory) bit controls
whether out-of-order data and instruction fetching is permitted.
Chapter 3. Instruction and Data Cache Operation 3-3

The method by which the WIMG bits are configured depends on the type of memory
translation used. If block address translation is used, the bits are defined in the BAT
registers. If page address translation is used, the bits are configured through the translation
lookaside buffers (TLBs), which in turn are kept in page table entries (PTEs) which also
contain translation information and are maintained by the MMU. If real addressing mode
is used (that is, the translation is disabled) or if the processor is in the 602-specific
protection-only mode, the WIMG bits are read from the HID0 register. Address translation
is described in Chapter 5, “Memory Management.”

The 602 maintains data cache coherency in hardware by coordinating activity between the
data cache, the memory system, and the bus interface logic. As bus operations are
performed on the bus by other bus masters, the 602 bus snooping logic monitors the
addresses that are referenced. These addresses are compared with the addresses resident in
the data cache. If there is a snoop hit, the 602’s bus snooping logic responds to the bus
interface with the appropriate snoop status (for example, an ARTRY). Additional snoop
action may be forwarded to the cache as a result of a snoop hit in some cases (a cache push
of modified data or a cache block invalidation).

3.2 Instruction Cache Organization and Control
Each block of the instruction cache can hold eight 32-bit words (that is, eight instructions),
an address tag, and a valid bit. The instruction cache may not be written to except through
a line-fill operation. In addition, this cache is not snooped. Instruction cache coherency
must be maintained by software and is supported by a fast hardware invalidation capability.

The instruction fetcher accesses the instruction cache frequently in order to sustain the high
throughput provided by the six-entry instruction dispatch queue.

3.2.1 Instruction Cache Organization
The organization of the instruction cache is shown in Figure 3-1. Each cache block contains
eight contiguous words from memory that are loaded from an eight-word boundary (that is,
bits A27–A31 of the logical (effective) addresses are zero); as a result, cache blocks are
aligned with page boundaries.

Note that address bits A21–A26 provide an index to select a set. Bits A27–A31 select a byte
within a block. The tags consists of bits PA0–PA20. Address translation occurs in parallel,
such that higher-order bits (the tag bits in the cache) are physical. Note that the replacement
algorithm is strictly an LRU algorithm; that is, the least-recently used block is filled with
new instructions on a cache miss.
3-4 PowerPC 602 RISC Microprocessor User's Manual

3.2.2 Instruction Cache Fill Operations
In 64-bit mode, the 602’s instruction cache blocks are loaded in four beats of 64 bits each,
with the critical double word loaded first. In 32-bit mode, this operation takes eight beats.

The 602’s caches are nonblocking during line-fill operations. If the instruction cache is
performing a cache-line-reload, the requested instruction is forwarded to the BPU at the
same time that is made available in the cache. In 32-bit mode, the instruction that arrives as
part of the first double beat goes to the cache only and must be fetched from there.

Additionally, if a branch instruction is fetched from the cache block that is being filled it
may point either to another address within the same block or to another location as follows:

• If the target instruction is elsewhere in the same cache block, that instruction can be
fetched as soon as it becomes available in the instruction cache.

• If the target instruction is elsewhere in the cache, the instruction can be fetched
without having to wait for the entire cache block to be updated.

Note, however, that in both of these cases, instructions can be fetched from the cache only
while it is not being written to as part of the cache-line-refill.

3.2.3 Instruction Cache Control
In addition to instruction cache control instructions, the 602 provides three control bits in
the HID0 register for the control of invalidating, disabling, and locking the instruction
cache. The HID0 register is described in Section 2.1.2.1.1, “Hardware Implementation
Register 0 (HID0).”

3.2.3.1 Instruction Cache Invalidation
While the 602’s instruction cache is automatically invalidated during a power-on or hard
reset, assertion of the soft reset signal does not cause instruction cache invalidation.
Software may invalidate the contents of the instruction cache using the instruction cache
flash invalidate control bit, HID0[ICFI]. Flash invalidation of the instruction cache is
accomplished by setting and clearing the ICFI bit with two consecutive move to SPR
operations to the HID0 register.

3.2.3.2 Locking the Instruction Cache
The contents of instruction cache may be locked through the use of the instruction cache
lock control bit, HID0[ILOCK]. A locked instruction cache supplies instructions normally
on a cache hit, but cache misses are treated as caching-inhibited accesses. The cache
inhibited (CI) signal is asserted if a cache access misses into a locked cache. The setting of
the ILOCK bit in HID0 must be preceded by an isync instruction to prevent the instruction
cache from being locked during an instruction access.
Chapter 3. Instruction and Data Cache Operation 3-5

3.3 Data Cache Organization and Control
The data cache supplies data to the GPRs and FPRs by means of the load/store unit, and
provides buffers for load and store bus operations. The data cache also provides storage for
the cache tags required for memory coherency and performs the cache block replacement
LRU function.

3.3.1 Data Cache Organization
The organization of the data cache is shown in Figure 3-1. Each cache block contains eight
contiguous words from memory that are loaded from an eight-word boundary (that is, bits
A27–A31 of the logical (effective) addresses are zero); as a result, cache blocks are aligned
with page boundaries.

Note that address bits A21–A26 provide an index to select a set. Bits A27–A31 select a byte
within a block. The tags consists of bits PA0–PA20. Address translation occurs in parallel,
such that higher-order bits (the tag bits in the cache) are physical. Note that the replacement
algorithm is strictly an LRU algorithm; that is, the least recently used block is filled with
new data on a cache miss.

3.3.2 Data Cache Fill Operations
The 602’s data cache blocks are filled in four beats of 64 bits each, in 64-bit mode or eight
beats of 32 bits each in 32-bit mode, with the critical double word loaded first in either
mode. The contents of the critical double word are forwarded to the register files at the same
time that it arrives in the cache. The data cache is nonblocking and can be accessed by the
processor core as subsequent data arrives in the cache.

3.3.3 Data Cache Control
The 602 provides several means of data cache control through the use of the WIMG bits
(implemented in the page tables for page addressing mode, the BATs for block address
translation mode, and in HID0 for real addressing mode and protection-only mode), control
bits in the HID0 register, and user- and supervisor-level cache control instructions. While
memory page level cache control is provided by the WIMG bits, the on-chip data cache can
be invalidated, disabled, or locked by the three control bits in the HID0 register described
in this section. The HID0 register is described in Section 2.1.2.1.1, “Hardware
Implementation Register 0 (HID0).” (Note that, user- and supervisor-level are referred to
as problem state and privileged state, respectively, in the architecture specification.)

3.3.3.1 Data Cache Invalidation
While the data cache is automatically invalidated when the 602 is powered up and during a
hard reset, assertion of the soft reset signal does not cause data cache invalidation. Software
may invalidate the contents of the data cache using the data cache flash invalidate control
bit, HID0[DCFI]. Flash invalidation of the data cache is accomplished by setting and
clearing the DCFI bit with two consecutive mtspr[HID0] operations.
3-6 PowerPC 602 RISC Microprocessor User's Manual

3.3.3.2 Disabling the Data Cache
The data cache may be disabled through the use of the data cache enable (DCE) control bit
in the HID0 register. When the data cache is in the disabled state, the cache tag state bits
are ignored, and all accesses are propagated to the bus as nonburst transactions. The DCE
bit is cleared on power-up, causing the data cache to be disabled. The setting of the DCE
bit must be preceded by a sync instruction to prevent the cache from being enabled or
disabled in the middle of a data access. An isync instruction should follow this mtspr
instruction to guarantee that instructions after the disabling of the cache are cleared from
the prefetch buffer.

Disabling the caches does not affect the translation logic; translation is still controlled with
MSR[DR].

Note that while snooping is not performed when the data cache is disabled, cache
operations (caused by the dcbz, dcbf, dcbst, and dcbi instructions) are not affected by
disabling the cache, causing potential coherency errors. An example of this would be a dcbf
instruction that hits a modified cache block in the disabled cache, causing a copyback to
memory of potentially stale data.

3.3.3.3 Locking the Data Cache
The contents of the data cache may be locked through by setting HID0[DLOCK]. A locked
data cache supplies data normally on a cache hit, but cache misses are treated as caching-
inhibited accesses. The caching-inhibited (CI) signal is asserted if a cache access misses
into a locked cache. A snoop hit to a locked data cache performs as if the cache were not
locked. A line invalidated by a snoop will remain invalid until the cache is unlocked.

The setting of HID0[DLOCK] must follow a sync instruction to prevent the data cache
from being locked during a data access.

3.4 Basic Data Cache Operations
This section describes the three types of operations that can occur to the data cache, and
how these operations are implemented in the 602.

3.4.1 Data Cache Line-Fill Operation
A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs
in the cache. The cache block that corresponds to the missed address is updated by a burst
transfer of the data from system memory. Note that if a read miss occurs in a system with
multiple bus masters, and the data is modified in another cache, the modified data is first
written to external memory before the cache line-fill occurs.
Chapter 3. Instruction and Data Cache Operation 3-7

3.4.2 Data Cache Cast-Out Operation
The 602 uses an LRU replacement algorithm to determine which of the two possible cache
locations should be used for a cache update on a cache miss. Adding a new block to the
cache causes any modified data associated with the least recently used element to be written
back, or cast out, to system memory to maintain memory coherence.

3.4.3 Cache Block Push Operation
When a cache block in the 602 is snooped and hit by another bus master and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus.

3.5 Data Cache Transactions on Bus
The 602 transfers data to and from the data cache in burst and nonburst transactions. In 32-
bit mode, data can be transferred in single-beat (one word), double-beat (double word) or
eight-beat burst transactions that transfer an eight-word cache block. In 64-bit mode, data
is transferred in single-beat (double word) or four-beat burst transactions, that transfer the
contents of an entire cache block.

3.5.1 Nonburst Transactions
Nonburst transactions (single-beat when the bus is in 64-bit mode and double-beat when
the bus is in 32-bit mode) can transfer from one to eight bytes to or from the 602. Nonburst
transactions can be cache write-through or caching-inhibited, and can be misaligned.

3.5.2 Burst Transactions
Burst transactions on the 602 always transfer eight words of data at a time and are aligned
to a double-word boundary. When the bus is in 32-bit mode, eight beats are required; when
it is in 64-bit mode, four beats are required. The 602 transfer burst (TBST) output signal
indicates to the system whether the current transaction is a nonburst or four-beat burst
transfer. The target data bus 32 (T32) signal indicates whether the bus is in 32- or 64-bit
mode. Burst transactions have an assumed address order. For cacheable read operations or
cacheable, non-write-through write operations that miss the cache, the 602 presents the
double-word-aligned address associated with the load or store instruction that initiated the
transaction.

As shown in Figure 3-2, this quad word contains the address of the load or store that missed
the cache. This minimizes latency by allowing the critical code or data to be forwarded to
the processor before the rest of the block is filled. For all other burst operations, however,
the entire block is transferred in order (oct-word aligned). After an instruction or data cache
miss, the critical double-word is forwarded first.
3-8 PowerPC 602 RISC Microprocessor User's Manual

Figure 3-2. Double-Word Address Ordering—Critical Double Word First

3.5.3 Access to Direct-Store Segments
The 602 does not provide support for access to direct-store segments. Operations
attempting to access a direct-store segment will invoke a DSI exception. For additional
information about DSI exceptions, refer to Section 4.5.3, “DSI Exception (0x0300).”

3.6 Memory Management/Cache Access Mode Bits—
W, I, M, and G

Some memory characteristics can be set on either a block or page basis by using the WIMG
bits in the BAT registers or page table entry (PTE) respectively. The 602 also implements
these bits in the HID0 register to provide control when the processor is in real addressing
mode (that is, translation is disabled) or in the 602-specific protection-only mode. The
WIMG attributes control the following functionality:

• Write-through (W bit)
• Caching-inhibited (I bit)
• Memory coherency (M bit)
• Guarded memory (G bit)

These bits allow both single- and multiprocessor-system designs to exploit numerous
system-level performance optimizations.

602 Cache Address
Bits (27..28)

Beat

Beat

A B C D

0 0 0 1 1 0 1 1

A B C D

0 1 2 3

If the address requested is in double word A (bits 27, 28 are 00), the address placed on the bus
is that of double-word A, and the four data beats are ordered in the following manner:

If the address requested is in double word C (bits 27, 28 are 10), the address placed on the bus
will be that of double-word C, and the four data beats are ordered in the following manner:

C D A B

0 1 2 3
Chapter 3. Instruction and Data Cache Operation 3-9

Careless specification and use of these bits may create situations where coherency
paradoxes are observed by the processor. In particular, this can happen when the state of
these bits is changed without appropriate precautions being taken (for example, when
flushing the pages that correspond to the changed bits from the caches of all processors in
the system is required, or when the address translations of aliased physical addresses
(referred to as real addresses in the architecture specification) specify different values for
any of the WIM bits). The 602 treats either of these cases as a programming error that may
compromise the coherency. These paradoxes can occur within a single processor or across
several devices, as described in Section 3.7.7.1, “Internal Coherency Paradoxes.”

The WIMG attributes are programmed by the operating system for each page and block.
The W and I attributes control how the processor performing an access uses its own cache.
The M attribute ensures that coherency is maintained for all copies of the addressed
memory location. The G attribute prevents out-of-order loading and prefetching from the
addressed memory location.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M attribute determines the kind of access performed on the bus (global or local).

The WIMG attributes occupy four bits in the BAT registers for block address translation, in
the PTEs for page address translation, and in HID0 for real addressing and protection-only
modes. The WIMG bits are programmed as follows:

• The operating system uses the mtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs do not have a G
bit and all accesses that use the IBAT register pairs are considered not guarded.

• The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

3.6.1 Write-Through Attribute (W)
When an access is designated as write-through (W = 1), if the data is in the cache, a store
operation updates the cached copy of the data. In addition, the update is written to the
external memory location (as described below).

While the PowerPC architecture permits multiple store instructions to be combined for
write-through accesses except when the store instructions are separated by a sync or eieio
instruction, the 602 does not implement this “combined store” capability. Note that a store
operation that uses the write-through attribute may cause any part of valid data in the cache
to be written back to main memory.
3-10 PowerPC 602 RISC Microprocessor User's Manual

The definition of the external memory location to be written to in addition to the on-chip
cache depends on the implementation of the memory system but can be illustrated by the
following examples:

• RAM—The store is sent to the RAM controller to be written into the target RAM.
• I/O device—The store is sent to the memory-mapped I/O control hardware to be

written to the target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the
memory hierarchy that is seen by all processors and devices.

Accesses that correspond to W = 0 are considered write-back. For this case, although the
store operation is performed to the cache, it is only made to external memory when a copy-
back operation is required. Use of the write-back mode (W = 0) can improve overall
performance for areas of the memory space that are seldom referenced by other masters in
the system.

3.6.2 Caching-Inhibited Attribute (I)
If I = 1, the memory access is completed by referencing the location in main memory,
bypassing the on-chip cache. During the access, the addressed location is not loaded into
the cache nor is the location allocated in the cache. It is considered a programming error if
a copy of the target location of an access to caching-inhibited memory is resident in the
cache. Software must ensure that the location has not been previously loaded into the cache,
or, if it has, that it has been flushed from the cache.

The PowerPC architecture permits data accesses from more than one instruction to be
combined for caching-inhibited operations, except when the accesses are separated by a
sync instruction, or by an eieio instruction when the page or block is also designated as
guarded. This “combined access” capability is not implemented on the 602.

3.6.3 Memory Coherency Attribute (M)
This attribute is provided to allow improved performance in systems where hardware-
enforced coherency is relatively slow, and software is able to enforce the required
coherency. When M = 0, the processor does not enforce data coherency. When M = 1, the
processor enforces data coherency and the corresponding access is considered to be a
global access.

When the M attribute is set, and the access is performed, the global signal (GBL)is asserted
to indicate that the access is global. Snooping devices affected by the access must then
respond to this global access if their data is modified by asserting ARTRY, and updating the
memory location.

Because instruction memory does not have to be consistent with data memory, the 602
ignores the M attribute for instruction accesses.
Chapter 3. Instruction and Data Cache Operation 3-11

3.6.4 Guarded Attribute (G)
When the guarded bit is set, the memory area is designated as guarded, meaning that the
processor will perform out-of-order accesses to this area of memory, only as follows:

• Out-of-order load operations from guarded memory areas are performed only if the
corresponding data is resident in the cache.

• The processor prefetches from guarded areas, but only when required, and only
within the memory boundary dictated by the cache block. That is, if an instruction
is certain to be required for execution by the program, it is fetched and the remaining
instructions in the block may be prefetched, even if the area is guarded.

This setting can be used to protect certain memory areas from read accesses made by the
processor that are not dictated directly by the program. If there are areas of memory that are
not fully populated (in other words, there are holes in the memory map within this area),
this setting can protect the system from undesired accesses caused by out-of-order load
operations or instruction prefetches that could lead to the generation of the machine check
exception. Also, the guarded bit can be used to prevent out-of-order load operations or
prefetches from occurring to certain peripheral devices that produce undesired results when
accessed in this way.

3.6.5 W, I, and M Bit Combinations
Table 3-1 summarizes the six combinations of the WIM bits. Note that either a ‘0’ or ‘1’
setting for the G bit is allowed for each of these WIM bit combinations.

Table 3-1. Combinations of W, I, and M Bits

WIM Setting Meaning

000 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is not enforced by hardware.

001 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is enforced by hardware.

010 Caching is inhibited.
The access is performed to external memory, completely bypassing the cache.
Memory coherency is not enforced by hardware.

011 Caching is inhibited.
The access is performed to external memory, completely bypassing the cache.
Memory coherency must be enforced by external hardware (processor provides hardware
indication that access is global).

100 Data may be cached.
Load operations whose target hits in the cache use that entry in the cache.
Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.
Memory coherency is not enforced by hardware.
3-12 PowerPC 602 RISC Microprocessor User's Manual

3.6.5.1 Out-of-Order Execution and Guarded Memory
Out-of-order execution occurs when the 602 performs operations in advance in case the
result is needed. Typically, these operations are performed by otherwise idle resources; thus
if a result is not required, it is ignored and the out-of-order operation incurs no time penalty
(typically).

Supervisor-level programs designate memory as guarded on a block or page level. Memory
is designated as guarded if it may not be “well-behaved” with respect to out-of-order
operations.

For example, the memory area that contains a memory-mapped I/O device may be
designated as guarded if an out-of-order load or instruction fetch performed to such a
device might cause the device to perform unexpected or incorrect operations. Another
example of memory that should be designated as guarded is the area that corresponds to a
device that resides at the highest implemented physical address (as it has no successor and
out-of-order sequential operations such as instruction prefetching can cause a machine
check exception). In addition, areas that contain holes in the physical memory space may
be designated as guarded.

3.6.5.2 Effects of Out-of-Order Data Accesses
Most data operations may be performed out-of-order, as long as the machine appears to
follow a simple sequential model. However, the following out-of-order operations do not
occur:

• Out-of-order loading from guarded memory (G = 1) does not occur unless the
requested data is in the cache. However, when a load or store operation is required
by the program, the entire cache block(s) containing the referenced data may be
loaded into the cache.

• Out-of-order store operations that alter the state of the target location do not occur.
• No errors except machine check exceptions are reported due to the out-of-order

execution of an instruction until it is known that execution of the instruction is
required.

101 Data may be cached.
Load operations whose target hits in the cache use that entry in the cache.
Stores are written to external memory. The target location of the store may be cached and is
updated on a hit.
Memory coherency is enforced by hardware.

11x Not supported

Table 3-1. Combinations of W, I, and M Bits (Continued)

WIM Setting Meaning
Chapter 3. Instruction and Data Cache Operation 3-13

Machine check exceptions resulting solely from out-of-order execution (from nonguarded
memory) may be reported. When an out-of-order instruction's result is abandoned, only one
side effect (other than a possible machine check) may occur—the referenced bit (R) in the
corresponding page table entry can be set due to an out-of-order load operation. See
Chapter 4, “Exceptions,” for more information on the machine check exception.

Thus an out-of-order load or store instruction will not access guarded memory unless one
of the following conditions exist:

• The target memory item is resident in an on-chip cache. In this case, the location
may be accessed from the cache or main memory.

• The target memory item is cacheable (I = 0) and it is guaranteed that the load or store
is in the execution path (assuming there are no intervening exceptions). In this case,
the entire cache block containing the target may be loaded into the cache.

• The target memory is caching-inhibited (I = 1), the load or store instruction is in the
execution path, and it is guaranteed that no prior instructions can cause an exception.

3.6.5.3 Effects of Out-of-Order Instruction Fetches
To avoid instruction fetch delay, the processor typically fetches instructions ahead of those
currently being executed. Such instruction prefetching is said to be out-of-order in that
prefetched instructions may not be executed due to intervening branches or exceptions.

During instruction prefetching, no errors except machine check exceptions are reported due
to the out-of-order fetching of an instruction until it is known that execution of the
instruction is required.

Machine check exceptions resulting solely from out-of-order execution (from nonguarded
memory) may be reported. When an out-of-order instruction's result is abandoned, only one
side effect (other than a possible machine check) may occur—the referenced bit (R) in the
corresponding page table entry can be set due to an out-of-order load operation. See
Chapter 4, “Exceptions,” for more information on the machine check exception.

3.7 Cache Coherency—MEI Protocol
The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization and cooperative
use of shared resources. Otherwise, multiple copies of a memory location, some containing
stale values, could exist in a system resulting in errors when the stale values are used. Each
potential bus master must follow rules for managing the state of its cache.
3-14 PowerPC 602 RISC Microprocessor User's Manual

The 602 cache coherency protocol is a coherent subset of the standard MESI four-state
cache protocol that omits the shared state. Since data cannot be shared, the 602 signals all
cache block fills as if they were write misses (read-with-intent-to-modify), which flushes
the corresponding copies of the data in all caches external to the 602 prior to the 602’s
cache-block-fill operation. Following the cache-block-load, the 602 is the exclusive owner
of the data and may write to it without a bus broadcast transaction.

To maintain this coherency, all global reads observed on the bus by the 602 are snooped as
if they were writes, causing the 602 either to write a modified cache block back to memory
and invalidate the cache block, or to simply invalidate the cache block if it is unmodified.
If the cache block is modified, the block is written back to memory, and the cache block is
marked exclusive. If the cache block is marked exclusive when snooped, no bus action is
taken, and the cache block remains in the exclusive state. This treatment of caching-
inhibited reads decreases the possibility of data thrashing by allowing noncaching devices
to read data without invalidating the entry from the 602’s data cache.

3.7.1 MEI State Definitions
The 602’s data cache characterizes each 32-byte block it contains as being in one of three
MEI states. Addresses presented to the cache are indexed into the cache directory with bits
A21–A26, and the upper-order 21 bits from the physical address translation (PA0–PA20)
are compared against the indexed cache directory tags. If neither of the indexed tags
matches, the result is a cache miss. If a tag matches, a cache hit occurred and the directory
indicates the state of the cache block through two state bits kept with the tag. The three
possible states for a cache block in the cache are the modified state (M), the exclusive state
(E), and the invalid state (I). The three MEI states are defined in Table 3-2.

3.7.2 MEI State Diagram
The 602 provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability of the 602 enforces the MEI protocol, as shown
in Figure 3-3. Figure 3-3 assumes that the WIM bits for the page or block are set to 001;
that is, write-back, caching-not-inhibited, and memory coherency enforced.

Section 3.11, “MEI State Transactions” provides a detailed list of MEI transitions for
various operations and WIM bit settings.

Table 3-2. MEI State Definitions

MEI State Definition

Modified (M) The addressed cache block is valid in the cache and only in the cache. The cache block is modified
with respect to system memory—that is, the modified data in the cache block has not been written
back to memory.

Exclusive (E) The addressed block is in this cache only. The data in this cache block is consistent with system
memory.

Invalid (I) This state indicates that the addressed cache block is not resident in the cache.
Chapter 3. Instruction and Data Cache Operation 3-15

Figure 3-3. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

3.7.3 Compatibility with MESI Protocol
The 602 cache coherency protocol is a coherent subset of the standard MESI four-state
protocol. Sharing data with another 602 is not supported. To ensure this, the 602 marks all
line-fill operations as if they were write misses (read-with-intent-to-modify). This flushes
all external caches prior to the line-fill operation. Following the line-fill operation, the 602
is the exclusive owner of the data and may write to it without a bus broadcast transaction.

Also, all burst reads on the bus are snooped as if they were writes; they flush the 602 cache
block. This prevents the 602 from storing a cache block that another cache is trying to fill.

However, if the snooped transaction is a caching-inhibited-read, the 602 does not invalidate
its copy of the data. In this case, when the cache block is in the modified state prior to the
snoop, the modified data is pushed and the cache block is then marked exclusive. If the
cache block is exclusive, the snoop causes no bus action and the cache block remains in the
exclusive state. This reduces data thrashing by allowing noncaching devices to read data
without completely flushing the entry from the cache. Note that caching-inhibited reads
may be either burst or nonburst operations.

RH

WH

RH

MODIFIED

BUS TRANSACTIONS

SH =Snoop Hit = Snoop Push
RH =Read Hit
RM =Read Miss
WH =Write Hit = Cache Line Fill
WM=Write Miss
SH/CRW=Snoop Hit, Cacheable Read/Write
SH/CIR=Snoop Hit, Cache Inhibited Read

WH

SH

SH/CIR

EXCLUSIVE

INVALID

SH/CRW SH/CRW

WM RM
3-16 PowerPC 602 RISC Microprocessor User's Manual

3.7.4 Resource Collisions and Retries
Because the 602 data cache tags are single-ported, a resource collision occurs when a snoop
is attempted at the same time as a load or store operation. Except for the following cases,
the snoop access has highest priority and is given first access to the tags. The load or store
access occurs on the clock cycle following the snoop.

However, a snoop is not given priority into the tags when the snoop coincides with a tag
write (that is, during validation after a line-fill operation, transition to modified after a first
write, etc.). In these situations, the snoop is retried and must re-arbitrate before the lookup
is possible.

Occasionally, snoops that hit modified data, which requires a copyback operation, cannot
be serviced and must be retried. These retries occur if the cache is busy with a burst read or
write at the moment a snoop copyback should begin.

Note that a snoop can hit a modified cache block that is already in the copyback process. If
this happens, the 602 retries the snoop.

3.7.5 Page Table Aliasing
If a store operation hits to a page marked write-through and the entry is modified, the page
has probably been aliased through another page entry that is marked as write-back. If this
occurs, the 602 ignores the modified bit in the cache tag. The cache is updated during the
write-through operation and the cache block remains in the modified state.

3.7.6 MEI Hardware Considerations
While the 602 provides the hardware required to monitor bus traffic for coherency, the 602
data cache tags are single ported, and a simultaneous load or store and snoop access
represent a resource conflict. In general, the snoop access has highest priority and is given
first access to the tags. The load or store access will then occur on the clock following the
snoop. The snoop is not given priority into the tags when the snoop coincides with a tag
write (that is, validation after a cache block load, transition to E state after a first write, etc.).
In these situations, the snoop is retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if
the cache is busy with a burst read or write when the snoop operation takes place.

Note that it is possible for a snoop to hit a modified cache block that is already in the process
of being written to the copyback buffer for replacement purposes. If this happens, the 602
retries the snoop, and raises the priority of the cast-out operation to allow it to go to the bus
before the cache block fill.

The global (GBL) signal, asserted as part of the address attribute field during a bus
transaction, enables the snooping hardware of the 602. Address bus masters assert GBL to
indicate that the current transaction is a global access (that is, an access to memory shared
by more than one device). If GBL is not asserted for the transaction, that transaction is not
Chapter 3. Instruction and Data Cache Operation 3-17

snooped by the 602. Note that the GBL signal is not asserted for instruction fetches, and
that GBL is asserted for all data read or write operations when using direct address
translation. (Note that direct address translation is referred to as the real addressing mode,
not the direct-store segment, in the architecture specification.)

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s). Care must be taken to minimize the number of
pages marked as global, because the retry protocol enforces coherency and can use
considerable bus bandwidth if much data is shared. Therefore, available bus bandwidth can
decrease as more traffic is marked global.

The 602 snoops a transaction if the transfer start (TS) and GBL signals are asserted together
in the same bus clock (this is a qualified snooping condition). No snoop update to the 602
cache occurs if the snooped transaction is not marked global. Also, because cache block
cast-outs and snoop pushes do not require snooping, the GBL signal is not asserted for these
operations.

When the 602 detects a qualified snoop condition, the address associated with the TS signal
is compared with the cache tags. Snooping finishes if no hit is detected. If, however, the
address hits in the cache, the 602 reacts according to the MEI protocol shown in Figure 3-3.

3.7.7 Coherency Precautions
The 602 supports a three-state coherency protocol that supports the modified, exclusive,
and invalid (MEI) cache states. This protocol is a compatible subset of the MESI four-state
protocol and operates coherently in systems that contain four-state caches. In addition, the
602 does not broadcast cache operations caused by cache instructions. They are intended
for the management of the local cache but not for other caches in the system.

3.7.7.1 Internal Coherency Paradoxes
The following situations concerning coherency can be encountered within a single-
processor system:

• Load or store to a caching-inhibited page (WIM = 0bX1X) and a cache hit occurs

Caching is inhibited for this page (I = 1)—Load or store operations to a caching-
inhibited page that hit in the cache cause a paradox. The 602 ignores any hit to a
cache block in memory space marked caching-inhibited. The access is performed on
the bus as if there were no hit. The data is not pushed and the cache block is not
invalidated.

Note that when WIM bits are changed, it is critical that the cache contents should reflect the
new WIM bit settings. For example, if a block or page that had allowed caching becomes
caching-inhibited, software should ensure that the appropriate cache blocks are flushed to
memory and invalidated.
3-18 PowerPC 602 RISC Microprocessor User's Manual

3.7.8 Load and Store Coherency Summary
Table 3-3 provides a summary of memory coherency actions performed by the 602 on load
operations. Noncacheable cases are not part of this table.

Table 3-4 provides an overview of memory coherency actions on store operations. This
table does not include noncacheable or write-through cases. The read-with-intent-to-
modify (RWITM) examples involve selecting a replacement class and casting-out modified
data that may have resided in that replacement class.

3.7.9 Atomic Memory References
The Load Word and Reserve Indexed (lwarx) and Store Word Conditional Indexed (stwcx.)
instructions provide an atomic update function for a single, aligned word of memory. While
an lwarx instruction will normally be paired with an stwcx. instruction with the same
effective address, an stwcx. instruction to any address will cancel the reservation. For
detailed information on these instructions, refer to Chapter 2, “PowerPC 602
Microprocessor Programming Model,” and Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

3.7.10 Cache Reaction to Specific Bus Operations
There are several bus transaction types defined for the 602 bus. The 602 must snoop these
transactions and perform the appropriate action to maintain memory coherency as shown
in Table 3-5. A processor may assert ARTRY for any bus transaction due to internal
conflicts that prevent the appropriate snooping. The transactions in Table 3-5 correspond to
the transfer type signals TT0–TT4, which are described in Section 7.2.4.1, “Transfer Type
(TT0–TT4).”

Table 3-3. Memory Coherency Actions on Load Operations

Cache State Bus Operation ARTRY Action

M None Don’t care Read from cache

E None Don’t care Read from cache

I Read Negated Load data and mark E

I Read Asserted Retry read operation

Table 3-4. Memory Coherency Actions on Store Operations

Cache State Bus Operation ARTRY Action

M None Don't care Modify cache

E None Don't care Modify cache, mark M

I RWITM Negated Load data, modify it, mark M

I RWITM Asserted Retry the RWITM
Chapter 3. Instruction and Data Cache Operation 3-19

Table 3-5. Response to Bus Transactions

Snooped Transaction 602 Response

Clean block No action is taken.

Flush block No action is taken.

Write-with-flush
Write-with-flush-atomic

Write-with-flush and write-with-flush-atomic operations occur after the processor issues
a store or stwcx. instruction, respectively.
• If the addressed block is in the exclusive state, the address snoop forces the state of

the addressed block to invalid.
• If the addressed block is in the modified state, the address snoop causes ARTRY to

be asserted and initiates a push of the modified block out of the cache and changes
the state of the block to invalid.

Kill block The kill block operation is an address-only bus transaction initiated when a dcbz
instruction is executed; when snooped by the 602, the addressed cache block is
invalidated, and any associated reservation is canceled.

Write-with-kill In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
cache block is forced to the I state, killing modified data that may have been in the block.
Any reservation associated with the block is also cancelled.

Read
Read-atomic

The read operation is used by most nonburst and burst read operations on the bus. All
burst reads observed on the bus are snooped as if they were writes, causing the
addressed cache block to be flushed. A read on the bus with the GBL signal asserted
causes the following responses:
• If the addressed block in the cache is invalid, the 602 takes no action.
• If the addressed block in the cache is in the exclusive state, the block is

invalidated.
• If f the addressed block in the cache is in the modified state, the block is flushed to

memory and the block is invalidated.
• If the snooped transaction is a caching-inhibited read, and the block in the cache is

in the exclusive state, the snoop causes no bus activity and the block remains in the
exclusive state. If the block is in the cache in the modified state, the 602 initiates a
push of the modified block out to memory and marks the cache block as exclusive.

Read atomic operations appear on the bus in response to lwarx instructions and
generate the same snooping responses as read operations.

Read-with-intent-to-
modify (RWITM)
RWITM-atomic

A RWITM operation is issued to acquire exclusive use of a memory location for the
purpose of modifying it.
• If the addressed block is invalid, the 602 takes no action.
• If the addressed cache block is in exclusive state, the 602 initiates an additional snoop

action to change the state of the cache block to invalid.
• If the addressed cache block is in modified state it is flushed to memory and the block

is invalidated.
The RWITM atomic operations appear on the bus in response to stwcx. instructions
and are snooped like RWITM instructions.

sync No action is taken.

TLB invalidate No action is taken.
3-20 PowerPC 602 RISC Microprocessor User's Manual

3.7.11 Operations Causing ARTRY Assertion
The following scenarios cause the 602 to assert the ARTRY signal:

• Snoop hits to a block in the M state (optional on kill requests)
• Snoop attempt while the cache is being accessed by a load or store operation
• Snoop hit during a burst load operation
• Snoop hits while a cast-out request is pending during this or the next clock cycle

3.8 Cache Control Instructions
Software must use the appropriate cache management instructions to ensure that caches are
kept consistent when data is modified by the processor. When a processor alters a memory
location that may be contained in an instruction cache, software must ensure that updates
to memory are visible to the instruction fetching mechanism. Although the instructions to
enforce coherency vary among implementations and hence operating systems should
provide a system service for this function, the following sequence is typical:

1. dcbst (update memory)
2. sync (wait for update)
3. icbi (invalidate copy in cache)
4. isync (invalidate copy in own instruction buffer)

These operations are necessary because the processor does not maintain instruction
memory coherent with data memory. Software is responsible for enforcing coherency of
instruction caches and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reflected in memory until after the
instruction fetch completes.

The PowerPC architecture defines instructions for controlling both the instruction and data
caches when they exist. The 602 interprets the cache control instructions (icbi, dcbi, dcbt,
and dcbst) as if they pertain only to the 602’s caches. They are not intended for use in
managing other caches in the system.

The dcbz instruction causes an address-only broadcast on the bus if the contents of the
block are from a page marked global through the WIMG bits. This broadcast is performed
for coherency reasons; the dcbz instruction is the only cache control instruction that can
allocate and take new ownership of a cache block. The other instructions do not broadcast
either for the purpose of invalidating or flushing other caches in the system or for managing
system resources. Any bus activity caused by these instructions is the direct result of
performing the operation in the 602 cache. Note that a DSI exception is generated if the
effective address of a dcbi, dcbst, dcbf, or dcbz instruction cannot be translated due to the
lack of a TLB entry. (Note that exceptions are referred to as interrupts in the architecture
specification.)
Chapter 3. Instruction and Data Cache Operation 3-21

Note that in the PowerPC architecture, the term cache block, or simply block when used in
the context of cache implementations, refers to the unit of memory at which coherency is
maintained. For the 602 this is the eight-word cache line. This value may be different for
other PowerPC implementations. In-depth descriptions of coding these instructions is
provided in Section 2.3.6.3, “Memory Control Instructions—OEA.”

3.8.1 Data Cache Block Touch (dcbt) Instruction
When a dcbt instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. The behavior of
the dcbt depends on several circumstances:

• If the effective address of the operation violates page protection or misses in the
MMU, the operation is a no-op.

• If the address hits in the cache, no further action is taken.
• If the address misses in the cache and tag is in the modified state, the cache block is

written back to memory and the new cache block is brought in and placed in the
exclusive state.

• If the address misses in the cache and tag is in the exclusive state, the new cache
block is brought in and placed in the exclusive state.

• Address-only transfers are not generated on the external bus (unlike other cache
operations).

3.8.2 Data Cache Block Touch for Store (dcbtst) Instruction
The dcbtst instruction, like the data cache block touch instruction (dcbt), allows software
to prefetch a cache block in anticipation of a store operation (read-with-intent-to-modify).

3.8.3 Data Cache Block Set to Zero (dcbz) Instruction
When a dcbz instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. If the EA hits in
the cache, four beats of zeros are written into the cache. Also, if M = 1 (coherency
enforced), the address is broadcast onto the bus prior to the zero line fill.

The exception priorities (from highest to lowest) for dcbz are as follows;

1. Attempt to execute dcbz while in user mode—program exception
2. BAT protection violation—DSI exception
3. MMU miss—DTLB exception
4. Cache disabled—Alignment exception
5. Page marked write-through or caching-inhibited—Alignment exception
6. TLB protection violation—DSI exception

The dcbz instruction is the only cache instruction that the 602 broadcasts. This is done to
maintain coherency with other cache devices in the system.
3-22 PowerPC 602 RISC Microprocessor User's Manual

3.8.4 Data Cache Block Invalidate (dcbi) Instruction
When a dcbi instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. If the addressed
line is present in the cache, then the 602 marks this data as invalid regardless of whether the
data is exclusive or modified.

The exception priorities (from highest to lowest) for dcbi are as follows;

1. BAT protection violation—DSI exception
2. MMU miss—DTLB exception
3. TLB protection violation—DSI exception

3.8.5 Data Cache Block Store (dcbst) Instruction
When a dcbst instruction is executed, the effective address is computed, translated and
checked for protection violations as defined in the PowerPC architecture. The resulting
actions are as follows:

• If the address hits in the cache and the tag is in the exclusive state, no further action
is taken.

• If the address hits in the cache and is in the modified state, the contents of the cache
block are written back to memory and the cache block is placed in the exclusive
state.

• Address-only transfers are not generated on the external bus.
The exception priorities (from highest to lowest) for dcbst are as follows;

1. BAT protection violation—DSI exception
2. MMU miss—DTLB exception
3. TLB protection violation—DSI exception

3.8.6 Data Cache Block Flush (dcbf) Instruction
When the dcbf instruction is executed, the effective address is computed, translated, and
checked for protection violations as defined in the PowerPC architecture. The action taken
depends on the memory mode associated with the target, and on the state of the cache block.
The following list describes the action taken for the various cases. The actions described
are executed regardless of whether the page containing the addressed byte is in caching-
inhibited or caching-allowed mode. The following actions occur in both coherency-
required mode (WIM = 0bXX1) and coherency-not-required mode (WIM = 0bXX0).

The effect of this instruction is as follows:

• If the address hits in the cache, and the cache block is marked modified, the contents
are written back to memory and the cache entry is invalidated.

• If the address hits in the cache, and the line is marked exclusive, the cache entry is
invalidated.

• If the address misses in the cache, no further action is taken.
Chapter 3. Instruction and Data Cache Operation 3-23

The exception priorities (from highest to lowest) for dcbf are as follows;

1. BAT protection violation—DSI exception
2. MMU miss—DTLB exception
3. TLB protection violation—DSI exception

3.8.7 Enforce In-Order Execution of I/O Instruction (eieio)
The eieio instruction is used to order memory accesses. Since the 602 instruction does not
reorder noncacheable memory accesses, the eieio instruction is treated as a no-op
instruction.

3.8.8 Instruction Cache Block Invalidate (icbi) Instruction
The icbi instruction performs a virtual lookup into the instruction cache (index only). The
address is not translated and as such, cannot generate an exception. Both ways of the
selected set are invalidated. This instruction is not broadcast onto the external bus.

3.8.9 Instruction Synchronize (isync) Instruction
The isync instruction waits for all previous instructions to complete and then discards any
previously-fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context established by the previous
instructions. This instruction has no effect on other processors or on their caches. Any
instruction after an isync will see all effects of prior instructions.

3.8.10 Synchronize (sync) Instruction
The sync instruction waits for all previous instructions and all previous bus operations
(except already queued instruction fetches) to complete before allowing any following bus
activity to be initiated.

3.9 Bus Operations Caused by Cache Control
Instructions

Table 3-6 provides an overview of the bus operations initiated by cache control instructions.
The cache control, TLB management, and synchronization instructions supported by the
602 may affect or be affected by the operation of the bus. None of the instructions will
actively broadcast through address-only transactions on the bus (except for dcbz), and no
broadcasts by other masters are snooped by the 602 (except for kills). The operation of the
instructions, however, may indirectly cause bus transactions to be performed, or their
completion may be linked to the bus. The following table summarizes how these
instructions may operate with respect to the bus.
3-24 PowerPC 602 RISC Microprocessor User's Manual

Note that Table 3-6 assumes that the WIM bits are set to 001; that is, the cache is operating
in write-back mode, caching is permitted and coherency is enforced.

Table 3-6 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.11, “MEI State Transactions.”

For detailed information on the cache control instructions, refer to Section 2.3.6.3,
“Memory Control Instructions—OEA,” and to Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 602 contains snooping logic to monitor the bus
for these commands and the control logic required to keep the cache and the memory
queues coherent. For additional details about the specific bus operations performed by the
602, see Chapter 8, “System Interface Operation.”

3.10 Bus Interface
The bus interface buffers bus requests from the instruction and data caches, and executes
the requests per the 602 bus protocol. It includes address register queues, prioritization
logic, and bus control logic. The bus interface also captures snoop addresses for snooping
in the cache and in the address register queues, and snoops for reservations. All data storage
for the address register buffers (load and store data buffers) are located in the cache section.
The data buffers are considered temporary storage for the cache and not part of the bus
interface.

Table 3-6. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Operation Cache State Next State Bus Operations Comment

sync Don’t care No change None Waits for memory queues to
complete bus activity

icbi Don’t care I None —

dcbi Don’t care I None —

dcbf I, E I None —

M I Write-with-kill Block is pushed

dcbst I, E No change None —

M E Write Block is pushed

dcbz I M Write-with-kill —

E, M M Kill block Writes over modified data

dcbt,
dcbtst

I E Read-with-intent-to-modify —

E E Read-with-intent-to-modify Replace old data

M E Write, Read-with-intent-to-modify Block is pushed then updated
Chapter 3. Instruction and Data Cache Operation 3-25

The general functions and features of the bus interface are as follows:

• Four address register queues:
— Instruction cache load address
— Data cache load address
— Data cache nonburst store address
— Data cache cast-out/store address (associated data cache block buffer located in

cache)

• Reservation bit for lwarx/stwcx. instructions
• Prefetch line-fill address during copy-back transaction.

A conceptual block diagram of the bus interface is shown in Figure 3-4. The address
register queues in the figure hold transaction requests that the bus interface may issue on
the bus independently of the other requests. Only one transaction may appear on the bus at
a time.

Figure 3-4. Bus Interface Address Buffers

For additional information about the 602 bus interface and the bus protocols, refer to
Chapter 8, “System Interface Operation.”

3.11 MEI State Transactions
Table 3-7 shows MEI state transitions for various operations. Bus operations are described
in Table 3-5.

Data Cache Data Cache
Load Address Nonburst Store Address

BIU

Control Address Address Data

SYSTEM BUS

Control
Instruction Cache

Load Address

Instruction

DataCache

Cache

Snoop

Data Cache
Castout/Store Address
3-26 PowerPC 602 RISC Microprocessor User's Manual

Table 3-7. MEI State Transitions

Operation
Cache

Operation
Bus
sync

WIM
Current

State
Next
State

Cache Actions
Bus

Operation

Load
(T = 0)

Read No x0x I Same 1 Cast out of modified
block (as required)

Write-with-kill

2 Pass four-beat read
to memory queue

Read

No x0x E, M Same Read data from cache —

No x1x I Same Pass nonburst read to
memory queue

Read

No x1x E I CRTRY read —

No x1x M I CRTRY read (push
sector to write queue)

Write-with-kill

lwarx Read Acts like other reads but bus operation uses special encoding.

Store
(T = 0)

Write No 00x I Same 1 Cast out of modified
block (if necessary)

Write-with-kill

2 Pass RWITM to
memory queue

RWITM

No 00x E, M M Write data to cache —

Store ≠ stwcx
(T = 0)

Write No 10x I Same Pass nonburst write to
memory queue

Write-with-
flush

No 10x E Same 1 Write data to cache —

2 Pass nonburst write
to memory queue

Write-with-
flush

No 10x M E 1 CRTRY write —

2 Push block to write
queue

Write-with-kill

Store (T = 0)
or stwcx.
(WIM = 10x)

Write No x1x I Same Pass nonburst write to
memory queue

Write-with-
flush

No x1x E I CRTRY write —

No x1x M I 1 CRTRY write —

2 Push block to write
queue

Write-with-kill

stwcx. Conditional
 write

If the reserved bit is set, this operation is like other writes except the bus operation
uses a special encoding.
Chapter 3. Instruction and Data Cache Operation 3-27

dcbf Data cache
block flush

No xxx I, E Same 1 CRTRY dcbf —

2 Pass flush Flush

Same I 3 State change only —

No xxx M I Push block to write
queue

Write-with-kill

dcbst Data cache
block store

No xxx I, E Same 1 CRTRY dcbst —

2 Pass clean Clean

Same Same 3 No action —

No xxx M E Push block to write
queue

Write-with-kill

dcbz Data cache
block set to
zero

No x1x x x Alignment trap —

No 10x x x Alignment trap —

Yes 00x I Same 1 CRTRY dcbz —

2 Cast out of modified
block

Write-with-kill

3 Pass kill Kill

Same M 4 Clear block —

No 00x E, M M Clear block —

dcbt Data cache
block touch

No x1x I Same Pass nonburst read to
memory queue

Read

No x1x E I CRTRY read —

No x1x M I 1 CRTRY read —

2 Push block to write
queue

Write-with-kill

No x0x I Same 1 Cast out of modified
block (as required)

Write-with-kill

2 Pass burst read to
memory queue

Read

No x0x E,M Same No action —

Nonburst read Reload
dump 1

No xxx I Same Forward data_in —

Burst read
(double-word-
aligned)

Reload
dump

No xxx I E Write data_in to cache —

Burst write
(double-word-
aligned)

Reload
dump

No xxx I M Write data_in to cache —

Table 3-7. MEI State Transitions (Continued)

Operation
Cache

Operation
Bus
sync

WIM
Current

State
Next
State

Cache Actions
Bus

Operation
3-28 PowerPC 602 RISC Microprocessor User's Manual

E→I Snoop
write or kill

No xxx E I State change only
(committed)

—

M→I Snoop
kill

No xxx M I State change only
(committed)

—

Push
M→I

Snoop
flush

No xxx M I Conditionally push Write-with-kill

Push
M→E

Snoop
clean

No xxx M E Conditionally push Write-with-kill

tlbie TLB
invalidate

No xxx x x 1 CRTRY TLBI —

2 Pass TLBI —

3 No action —

sync Synchroni-
zation

No xxx x x 1 CRTRY sync —

2 Pass sync —

3 No action —

Table 3-7. MEI State Transitions (Continued)

Operation
Cache

Operation
Bus
sync

WIM
Current

State
Next
State

Cache Actions
Bus

Operation
Chapter 3. Instruction and Data Cache Operation 3-29

3-30 PowerPC 602 RISC Microprocessor User's Manual

Chapter 4
Exceptions
40
40

The PowerPC exception mechanism allows the processor to change to supervisor state
(referred to as privileged state in the architecture specification) as a result of external
signals, errors, or unusual conditions arising in the execution of instructions. When
exceptions (referred to as interrupts in the architecture specification) occur, information
about the state of the processor is saved to certain registers and the processor begins
execution at an address (exception vector) predetermined for each exception. Processing of
exceptions occurs in supervisor mode.

The PowerPC 602 microprocessor also provides an additional mechanism, not defined by
the PowerPC architecture, for entering and exiting supervisor mode without taking an
exception. Two user-level instructions, Enable Supervisor Access (esa) and Disable
Supervisor Access (dsa) and several registers—ESA enable base register (SEBR), ESA
enable register (SER), and ESA save and restore register (ESASRR)—are implemented to
support this functionality. For information about the esa and dsa instructions, see
Section 2.3.7, “PowerPC 602 Implementation-Specific Instructions,” and for information
about the SER, SEBR, and ESASRR registers, see Section 2.1.2, “PowerPC 602 Processor-
Specific Registers.”

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR or the FPSCR. Additionally, certain exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. An instruction is said to have “completed” when the
results of that instruction’s execution have been committed to the registers defined by the
architecture (for example, the GPRs or FPRs, rather than rename buffers). If a single
instruction encounters multiple exception conditions, those exceptions are taken in order of
priority. Likewise, exceptions that are asynchronous are recognized when they occur, but
are not handled until the next instruction to complete in program order successfully
Chapter 4. Exceptions 4-1

completes. Throughout this chapter, the term “next instruction” implies the next instruction
to complete in program order.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
to allow control to ultimately return to the original excepting program.

In many cases, after an exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

Exception handlers should save the information stored in SRR0 and SRR1 soon after the
exception is taken to prevent this information from being lost due to another exception
being taken. The information should be saved before enabling any exception that is
automatically disabled when an exception is taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routing is executed in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is performed at
supervisor-level.

4.1 Exception Classes
The PowerPC architecture supports four types of exceptions:

• Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the
system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete before the exception is taken. Once the
exception is processed, execution resumes at the address of the faulting instruction
(or at an alternate address provided by the exception handler). When an exception is
taken due to a trap or system call instruction, execution resumes at an address
provided by the handler.
4-2 PowerPC 602 RISC Microprocessor User's Manual

• Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
602 provides a means to enable the imprecise modes, it implements these modes
identically to the precise mode (that is, floating-point enabled exceptions are always
precise on the 602).

• Asynchronous, maskable—The external interrupt, system management interrupt
(SMI), decrementer interrupt, and watchdog timer interrupt are maskable
asynchronous exceptions. When these exceptions occur, their handling is postponed
until the next instruction, and any exceptions associated with that instruction,
completes. If there are no instructions in the execution units, the exception is taken
immediately upon determination of the correct restart address (for loading SRR0).
These exceptions are maskable in that the processor can be disabled by setting
MSR[EE]. This is described in Section 4.2.1, “Enabling and Disabling Exceptions.”

• Asynchronous, nonmaskable—There are two nonmaskable, asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. All exceptions
report recoverability through the MSR[RI] bit.

The 602 exception classes are shown in Table 4-1.

Note that Table 4-1 includes no synchronous imprecise instructions. While the PowerPC
architecture supports imprecise handling of floating-point exceptions, the 602 implements
these exception modes as precise exceptions.

Although the PowerPC architecture specifies that the recognition of the machine check
exception is nonmaskable, on the 602 the stimuli that cause this exception are maskable.
For example, the machine check exception is caused by assertion of TEA or MCP.
However, the MCP signal can be disabled by HID0[0]. Therefore, the machine check
caused by TEA is the only truly nonmaskable machine check exception.

Table 4-1. PowerPC 602 Microprocessor Exception Classifications

Type Exception

Asynchronous, nonmaskable Machine check
System reset

Asynchronous, maskable External interrupt
Decrementer
System management interrupt
Watchdog timer interrupt

Synchronous, precise Instruction-caused exceptions
Chapter 4. Exceptions 4-3

The 602’s exceptions, and conditions that cause them, are listed in Table 4-2. Exceptions
that are specific to the 602 are indicated.

Table 4-2. Exceptions and Conditions

Exception Type

Vector (hexadecimal)

Causing Conditions Prefix
Offset

IP = 0 IP = 1

Reserved — — 0000 —

System reset
(Hard reset)

FFF0 0100 Assertion of HRESET

System reset
(Soft reset)

0000 FFF0 0100 Assertion of SRESET

Machine check 0000 FFF0 0200 Assertion of TEA during a data transaction; assertion of MCP.

DSI IBR FFF0 0300 Determined by the bit settings in the DSISR, as follows:
4 Set if a memory access is not permitted by the page or

DBAT protection mechanism; otherwise cleared.
5 Set only if memory access is attempted and SR[T] = 1. The

602 does not support direct-store memory.
6 Set for a store operation and cleared for a load operation.

ISI IBR FFF0 0400 An instruction cannot be fetched for one of the following
reasons:
• The EA cannot be translated and an ISI exception must be

taken to load the PTE (and possibly the page) into memory.
• The fetch access violates memory protection. If SR[Ks] and

SR[Kp] and PTE[PP] are set to prohibit read access,
instructions cannot be fetched from this location.

External interrupt IBR FFF0 0500 MSR[EE] = 1 and the INT signal is asserted.

Alignment IBR FFF0 0600 Memory cannot be accessed for one of the following reasons:
• The operand of a floating-point load or store is not word-

aligned.
• The operand of lmw, stmw, lwarx, or stwcx. is not word-

aligned.
• The operand of dcbz is in a page marked write-through or

caching-inhibited, for a virtual mode access.
• A little-endian access is misaligned, or a multiple access is

attempted with the little-endian bit set.
4-4 PowerPC 602 RISC Microprocessor User's Manual

Program IBR FFF0 0700 The following conditions correspond to bit settings in SRR1
and arise during execution of an instruction:
• Floating-point enabled exception—The following is met:

 (MSR[FE0] | MSR[FE1]) & FPSCR[FEX] is 1.
FPSCR[FEX] is set by a floating-point instruction that
causes an enabled exception or by the execution of one of
the “move to FPSCR” instructions that results in both an
exception condition bit and its corresponding enable bit
being set in the FPSCR.

• Illegal instruction—Execution of an instruction is attempted
with an illegal opcode or combination of opcode and
extended opcode (including PowerPC instructions not
implemented in the 602 but not including those optional
instructions treated as no-ops).

• Privileged instruction—Execution of a privileged instruction
is attempted and MSR[PR] = 1. In the 602, this exception is
generated for mtspr or mfspr with an invalid SPR field if
SPR[0] = 1 and MSR[PR] = 1. This may not be true for all
PowerPC processors.

• Trap— Generated when a trap instruction condition is met.

Floating-point
unavailable

IBR FFF0 0800 An attempt to execute a floating-point instruction (including
floating-point load, store, or move instructions) when the
floating-point available bit is disabled, (MSR[FP] = 0).

Decrementer IBR FFF0 0900 The most significant bit of the decrementer (DEC) register
changes from 0 to 1. Must be enabled with the MSR[EE] bit.

Reserved IBR FFF0 0A00–
0BFF

—

System call IBR FFF0 0C00 Execution of the System Call (sc) instruction

Trace IBR FFF0 0D00 MSR[SE] =1 or when a completing instruction is a branch and
MSR[BE] =1.

Floating-point assist IBR FFF0 0E00 Not implemented in the 602

Reserved — — 0E10–
0FFF

—

Instruction translation
miss

IBR FFF0 1000 The ITLB cannot translate the EA for an instruction fetch.

Data load translation
miss

IBR FFF0 1100 An EA for a data load cannot be translated by the DTLB.

Data store translation
miss

IBR FFF0 1200 An EA for a data store cannot be translated by the DTLB; or
when a DTLB hit occurs and the change bit in the PTE must be
set due to a data store operation.

Table 4-2. Exceptions and Conditions (Continued)

Exception Type

Vector (hexadecimal)

Causing Conditions Prefix
Offset

IP = 0 IP = 1
Chapter 4. Exceptions 4-5

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—
system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.

Exception priorities are described in “Exception Priorities,” in Chapter 4, “Exceptions,” in
The Programming Environments Manual.

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

Instruction address
breakpoint

0000 FFF0 1300 The address (bits 0–29) in the IABR matches the next
instruction to complete in the completion unit and the IABR
enable bit (bit 30) is set.

System management
interrupt

IBR FFF0 1400 MSR[EE] =1 and the SMI input signal is asserted.

Watchdog timer IBR FFF0 1500 A carry occurs out of a bit specified by the user. If the watchdog
timer is not reset by the interrupt service routine, a second
watchdog timer exception forces an internal reset.

Emulation trap IBR FFF0 1600 A double-precision floating-point instruction or a load/store
string instruction is encountered.

Reserved — — 1700–
2FFF

—

Table 4-2. Exceptions and Conditions (Continued)

Exception Type

Vector (hexadecimal)

Causing Conditions Prefix
Offset

IP = 0 IP = 1
4-6 PowerPC 602 RISC Microprocessor User's Manual

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRR0 did not cause the exception then that
instruction appears not to have begun execution. For more information on context-
synchronization, see Chapter 4, “Exceptions,” in The Programming Environments Manual.

4.1.1 Exception Priorities
The exceptions are listed in Table 4-3 in order of highest to lowest priority.

Table 4-3. Exception Priorities

 Category Priority Exception Cause

Asynchronous 0 System reset HRESET (hard reset) or power-on reset

1 Machine check TEA or MCP (soft reset)

2 System reset SRESET

3 System management
interrupt

SMI

4 External interrupt INT

5 Decrementer Decrementer passed through 0x0000_0000

6 Watchdog timer See Section 4.5.17, “Watchdog Timer Interrupt (0x1500).”

Instruction
fetch

0 ITLB miss See Section 4.5.12, “Instruction TLB Miss Exception
(0x1000).”

1 ISI See Section 4.5.4, “ISI Exception (0x0400).”

Instruction
dispatch/
execution

0 IABR See Section 4.5.15, “Instruction Address Breakpoint
Exception (0x1300).”

1 Program Illegal, privileged, or trap instruction

2 System call See Section 4.5.10, “System Call Exception (0x0C00).”

3 Floating-point
unavailable

See Section 4.5.8, “Floating-Point Unavailable Exception
(0x0800).”

4 Program Floating-point enabled exception condition

5 Alignment • Floating-point operand not word-aligned
• lmw, stmw, lwarx, or stwcx. not word-aligned
• Little-endian access is misaligned
• Multiple access with little-endian bit set
• dcbz to W=1 or I =1 space

6 DSI • BAT page protection violation
• An attempt to access memory for which SR[T] = 1.

7 DTLB miss Store or load miss. A store miss can jump to a DSI routine.

8 DSI TLB page protection violation

9 DTLB miss Change bit not set on a store operation

Post-
instruction
execution

0 Trace See Section 4.5.11, “Trace Exception (0x0D00).”
• MSR[SE] = 1
• MSR[BE] = 1 for branches
Chapter 4. Exceptions 4-7

4.1.2 Summary of Front-End Exception Handling
The following list of interrupt categories describes how the 602 handles exceptions up to
the point of signaling the appropriate exception to occur. Note that a recoverable state is
reached if the completed store queue is empty (drained, not canceled) and any instruction
that is next in program order and has been signaled to complete has completed. If MSR[RI]
is clear, the 602 is in a nonrecoverable state by default. Also, completion of an instruction
is defined as performing all architectural register writes associated with that instruction, and
then removing that instruction from the completion buffer queue.

• Asynchronous nonmaskable nonrecoverable—(System reset caused by the assertion
of either HRESET or internally during power-on reset (POR)). These interrupts have
highest priority and are taken immediately regardless of other pending exceptions or
recoverability. An address of an instruction that will not take an exception is
guaranteed.

• Asynchronous maskable nonrecoverable—(Machine check). A machine check
exception takes priority over any other pending exception except a nonrecoverable
system reset caused. A machine check exception is taken immediately regardless of
recoverability. An address of an instruction that will not take an exception is
guaranteed.

• Asynchronous nonmaskable recoverable—(System reset caused by the assertion of
SRESET). This interrupt takes priority over any other pending exception except
nonrecoverable exceptions listed above. It is taken immediately when a recoverable
state is reached.

• Asynchronous maskable recoverable—(System management interrupt, external
interrupt, decrementer interrupt). Before handling this type of exception, the next
instruction in program order must complete or except. If this action causes another
type of exception, that exception is taken and the asynchronous maskable
recoverable exception remains pending. Once an instruction can complete without
causing an exception, further instruction completion is halted while the untaken
exception remains pending. The exception is taken when a recoverable state is
reached.

• Instruction fetch–(ITLB, ISI). When this type of exception is detected, dispatch is
halted and the current instruction stream is allowed to drain. If completing any
instructions in this stream causes an exception, that exception is taken and the
instruction fetch exception is forgotten. Otherwise, as soon as the machine is empty
and a recoverable state is reached, the instruction fetch exception is taken.

• Instruction dispatch/execution—(Program, DSI, alignment, emulation trap, system
call, DTLB miss on load or store, IABR). This type of exception is determined at
dispatch or execution of an instruction. The exception remains pending until all
instructions in program order, before the exception-causing instruction, are
completed. The exception is then taken without completing the exception-causing
instruction. If any other exception condition is created in completing these previous
instructions in the machine, that exception takes priority over the pending
instruction dispatch/execution exception, which will then be forgotten.
4-8 PowerPC 602 RISC Microprocessor User's Manual

• Post-instruction execution—(Trace). This type of exception is generated following
execution and completion of an instruction while a trace mode is enabled. If
executing the instruction produces conditions for another type of interrupt, that
exception is taken and the post-instruction execution exception is forgotten for that
instruction.

4.2 Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRR0 and SRR1,
to save the contents of the machine state register (MSR) for user-level mode (referred to as
problem mode in the architecture specification) and to identify where instruction execution
should resume after the exception is handled.

When an exception occurs, SRR0 is set to point to the instruction at which instruction
processing should resume when the exception handler returns control to the interrupted
process. All instructions in the program flow preceding this one will have completed and
no subsequent instruction will have completed. This may be the address of the instruction
that caused the exception or the next one (as in the case of a system call exception). The
instruction addressed can be determined from the exception type and status bits. This
address is used to resume instruction processing in the interrupted process, typically when
an rfi instruction is executed. The SRR0 register is shown in Figure 4-1.

Figure 4-1. Machine Status Save/Restore Register 0

The save/restore register 1(SRR1) is used to save machine status (the contents of the MSR)
on exceptions and to restore those values when rfi is executed. SRR1 is shown in
Figure 4-2.

Figure 4-2. Machine Status Save/Restore Register 1

Typically, when an exception occurs, bits 0–15 of SRR1 are loaded with exception-specific
information and bits 16–31 of MSR are placed into the corresponding bit positions of
SRR1. The 602 loads SRR1 with specific bits for handling machine check exceptions, as
shown in Table 4-4.

SRR0 (holds EA for resuming program execution)

0 31

0 31

Exception specific information and MSR bit values
Chapter 4. Exceptions 4-9

Table 4-4. SRR1 Bit Settings for Machine Check Exceptions

The 602 loads SRR1 with specific bits for handling the three TLB miss exceptions, as
shown in Table 4-5.

Table 4-5. SRR1 Bit Settings for Software Table Search Operations

Note that, in some implementations, every instruction fetch when MSR[IR] = 1 and every
instruction execution requiring address translation when MSR[DR] = 1 may modify SRR1.

The MSR is shown in Figure 4-3. When an exception occurs, MSR bits, as described in
Table 4-6, are altered as determined by the exception.

Bits Name Description

0 MSR[0] Copy of MSR bit 0

1–4 — Reserved

5–9 MSR[5–9] Copy of MSR bits 5–9

10–11 — Reserved

12 MCP Machine check signal

13 TEA TEA error

14–15 — Reserved

16–31 MSR[16–31] Copy of MSR bits16–31

Bits Name Description

0–3 CRF0 Copy of condition register field 0 (CR0)

4 — Reserved

5–9 MSR[5–9] Copy of MSR bits 5–9

10–12 — Reserved

13 I/D Instruction/data TLB miss
0 DTLB miss
1 ITLB miss

14 WAY Which TLB associativity set should be replaced
0 Set 0
1 Set 1

15 S/L Store/load protection instruction
0 Load miss
1 Store miss

16–31 MSR[16–31] Copy of MSR bits16–31
4-10 PowerPC 602 RISC Microprocessor User's Manual

Figure 4-3. Machine State Register (MSR)

Table 4-6 shows the bit definitions for the MSR.

Table 4-6. MSR Bit Settings

Bit(s) Name Description

0 — Reserved, but saved in SRR1 when an exception occurs

1–4 — Reserved

5–7 — Reserved, but saved in SRR1 when an exception occurs

8 AP Access privilege state. (602-specific—not defined by the PowerPC architecture).
Like MSR[PR], but only affects access permission if PR = 0. This bit is checked if and only if
MSR[PR] = 0. MSR[AP] restricts access privilege if PR = 0. Setting MSR[AP] affects access to
the instruction and data locations as if it were PR.

9 SA Supervisor access mode. (602-specific—not defined by the PowerPC architecture). If this field
is set, it allows execution of supervisor instructions without entering supervisor mode.

10–12 — Reserved

13 POW Power management enable (602-specific—not defined by the PowerPC architecture)
0 Disables programmable power modes (normal operation mode).
1 Enables programmable power modes (Nap, Doze, or Sleep mode).
This bit controls the programmable power modes only, it has no effect on dynamic power
management (DPM). MSR[POW] may be altered with an mtmsr instruction only. Also, when
altering the POW bit, software may alter only this bit in the MSR and no others. The mtmsr
instruction must be followed by a context-synchronizing instruction.
See Chapter 9, “Power Management,” for more information.

14 TGPR Temporary GPR remapping (602-specific—not defined by the PowerPC architecture)
0 Normal operation
1 TGPR mode. GPR0–GPR3 are remapped to TGPR0–TGPR3 for use by TLB miss

routines.
The contents of GPR0–GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use
GPR4–GPR31 with MSR[TGPR] = 1 yield undefined results. Overlays TGPR0–TGPR3 over
GPR0–GPR3 for use by TLB miss routines. When this bit is set, all instruction accesses to
GPR0–GPR3 are mapped to TGPR0–TGPR3, respectively. The contents of GPR0–GPR3 are
unchanged while as long as this bit remains set. Attempts to use GPR4–GPR31 when this bit
is set yields undefined results.The TGPR bit is set when either an instruction TLB miss, data
read miss, or data write miss exception is taken. The TGPR bit is cleared by an rfi instruction.
This bit is 602-specific.

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

0 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved
POW

TGPR

ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 0 0 RI LE0 0 0 0 0 0 0 0 0 0AP SA
Chapter 4. Exceptions 4-11

16 EE External interrupt enable
0 The processor ignores external interrupts, system management interrupts, and

decrementer interrupts.
1 The processor is enabled to take an external interrupt, system management interrupt, or

decrementer interrupt.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point

loads, stores, and moves.
1 The processor can execute floating-point instructions, and can take floating-point

enabled exception type program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 Floating-point exception mode 0 (see Table 4-7).

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a trace exception upon the successful completion of the next

instruction.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a trace exception upon the successful completion of a branch

instruction.

23 FE1 Floating-point exception mode 1 (see Table 4-7)

24 — Reserved, but saved in SRR1 when an exception occurs

25 IP Interrupt prefix. The functionality of this bit is enhanced in the 602. How this bit is interpreted
depends on the exception that is taken.
• If a soft reset, machine check, or instruction address breakpoint exception is taken, the IP

is used as it is defined by the PowerPC architecture. That is, if IP = 0, the vector address is
determined by prepending 0x0000 to the vector offset. If IP is set, the vector address is
determined by prepending the vector offset with 0xFFF0.

• If a hard reset is taken, the vector address is always 0xFFF0_0100.
• For all other exceptions, if the IP bit is cleared, the vector address is determined by

prepending the contents of the IBR to the vector offset. If IP is set, the vector address is
determined by prepending 0xFFF0 to the vector offset.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
The 602 implements this bit as defined by the PowerPC architecture. Turns on instruction
address translation, protections, and cache control. The DR and IR bits operate as on
PowerPC; however, if HID0[SB] is set, the BAT arrays are to be used for translation, cache
control, and protection checking if IR or DR are cleared for the specific access. If IR or DR are
set, the BAT/TLB hit mechanisms take priority.
For more information, see Chapter 5, “Memory Management.”

Table 4-6. MSR Bit Settings (Continued)

Bit(s) Name Description
4-12 PowerPC 602 RISC Microprocessor User's Manual

The IEEE floating-point exception mode bits (FE0 and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. The possible settings and default conditions for the 602 are shown in Table 4-7. For
further details, see Chapter 6, “Exceptions,” of The Programming Environments Manual.

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

The vector address can be affected by the value in the interrupt base register (IBR).The IBR
is used to store a 16-bit base address for most 602 exception vectors. The 16-bit base
address is concatenated with the exception vector offset to form the address for the
exception handler. The IBR can be read and written to by the processor. See Figure 2-17 for
the format of this register. If MSR[IP] is set, the exception vector prefix is 0xFFF0
(following the format of the IBR). If MSR[IP] is not set, the value in the IBR is used as the
16-bit prefix. The IBR is cleared and MSR[IP] is set on a power-on reset; therefore, the
system reset exception vector on a power-on reset is 0xFFF00100. For more information,
see Section 2.1.2.4.3, “Interrupt Base Register (IBR).”

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
As defined by the PowerPC architecture. Turns on data address translation, protections, and
cache control. The DR and IR bits operate as defined on PowerPC architecture; however, if
HID0[SB] is set, the BAT arrays are to be used for translation, cache control, and protection
checking if IR or DR are cleared for the specific access. If IR or DR are set, the BAT/TLB hit
mechanisms take priority. For more information see Chapter 5, “Memory Management.”

28–29 — Reserved, but saved in SRR1 when an exception occurs

Table 4-7. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable. In the 602, this bit setting causes the PowerPC 604™
microprocessor to operate in floating-point precise mode.

1 0 Floating-point imprecise recoverable. In the 602, this bit setting causes the 604 to operate in floating-
point precise mode.

1 1 Floating-point precise mode

Table 4-6. MSR Bit Settings (Continued)

Bit(s) Name Description
Chapter 4. Exceptions 4-13

4.2.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition as follows:

• IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FE0] and MSR[FE1] are cleared. If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

• Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognition
of these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of conditions causing those exceptions.

• A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HID0 register, which is
described in Section 2.1.2.1.1, “Hardware Implementation Register 0 (HID0).”

• System reset exceptions cannot be masked.

4.2.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. The machine status save/restore register 0 (SRR0) is loaded with an instruction
address determined by the exception. See the individual exception description for
details about how SRR0 is used.

2. Bits 1–4 and 10–15 of SRR1 are loaded with information specific to the exception
type. Additional bits may also be loaded.

3. Bits 5–9 and 16–31 of SRR1 are loaded with a copy of the corresponding bits of the
MSR. Note that depending on the implementation, reserved bits may not be copied.

4. The MSR is set as described in Table 4-6. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by the exception that is
taken, the value in MSR[IP], and the interrupt base register (IBR).

— Soft reset, machine check, or instruction address breakpoint exception—The IP
bit is used as it is defined by the PowerPC architecture. That is, if IP = 0, the
4-14 PowerPC 602 RISC Microprocessor User's Manual

vector address is determined by prepending 0x0000 to the vector offset. If IP is
set, the vector address is determined by prepending the vector offset with
0xFFF0.

— Hard reset—The vector address is always 0xFFF0_0100.

— For all other exceptions, if IP is cleared, the vector address is determined by
prepending the contents of the IBR to the vector offset. If IP is set, the vector
address is determined by prepending 0xFFF0 to the vector offset.

4.2.3 Setting MSR[RI]
The operating system should handle MSR[RI] as follows:

• In the machine check and system reset exceptions—If SRR1[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

• In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

• In each exception handler—Clear MSR[RI], set the SRR0 and SRR1 registers
appropriately, and then execute rfi.

Note that the RI bit being set indicates that, with respect to the processor, enough processor
state data is valid for the processor to continue, but it does not guarantee that the interrupted
process can resume.

4.2.4 Returning from an Exception Handler
The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause
an exception.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The rfi instruction copies SRR1 bits back into the MSR.

• The instructions following this instruction execute in the context established by this
instruction.

• Branch to the address contained in SRR0.

For a complete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.
Chapter 4. Exceptions 4-15

4.3 Process Switching
The operating system should execute one of the following when processes are switched:

• The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes. For more information about using the sync instruction,
see Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual.

• The isync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

• The stwcx. instruction, to clear any outstanding reservations, which ensures that an
lwarx instruction in the old process is not paired with an stwcx. instruction in the
new process.

The operating system should set the MSR[RI] bit as described in Section 4.2.3, “Setting
MSR[RI].”

4.4 Exception Latencies
Latencies for taking various exceptions depend on the state of the machine when the
exception conditions occur. This latency may be as short as one cycle, in which case an
exception is signaled in the cycle following the appearance of the exception condition. The
latencies are as follows:

• Hard reset and machine check—In most cases, a hard reset or machine check
exception will have a single-cycle latency. A two-to-three-cycle delay may occur
only when an instruction on a predicted branch is next to complete, and the branch
prediction associated with this instruction was resolved as incorrect.

• Soft reset—The latency of a soft reset exception is affected by recoverability. The
time to reach a recoverable state may depend on the time needed to complete or
except an instruction at the point of completion, the time needed to drain the
completed store queue, and the time waiting for a correct empty state so that a valid
MSR[IP] may be saved. For lower-priority externally-generated interrupts, a delay
may be incurred waiting for another interrupt generated while reaching a
recoverable state, to be serviced.

Further delays are possible for other types of exceptions depending on the number and type
of instructions that must be completed before that exceptions may be serviced. See
Section 4.1.2, “Summary of Front-End Exception Handling,” to determine possible
maximum latencies for different exceptions.
4-16 PowerPC 602 RISC Microprocessor User's Manual

S

M

D

I

E

A

P

F
u

D

S

T
e

I

D
l

D
s

I
a
b

S
m
i

W
t

E

4.5 Exception Definitions
Table 4-8 shows all the types of exceptions that can occur with the 602 and the MSR bit
settings when the processor transitions to supervisor mode. The state of these bits prior to
the exception is typically stored in SRR1.

Table 4-8. MSR Setting Due to Exception

Exception
Type

MSR Bit

AP SA POW TGPR ILE EE PR FP ME FE0 SE BE FE1 IR DR RI LE

ystem reset 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

achine check 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 ILE

SI 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

SI 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

xternal 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

lignment 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

rogram 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

loating-point
navailable

0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

ecrementer 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

ystem call 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

race
xception

0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

TLB miss 0 0 0 1 — 0 0 0 — 0 0 0 0 0 0 0 ILE

TLB miss on
oad

0 0 0 1 — 0 0 0 — 0 0 0 0 0 0 0 ILE

TLB miss on
tore

0 0 0 1 — 0 0 0 — 0 0 0 0 0 0 0 ILE

nstruction
ddress
reakpoint

0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

ystem
anagement

nterrupt

0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

atchdog
imer

0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

mulation trap 0 0 0 0 — 0 0 0 — 0 0 0 0 0 0 0 ILE

0 Bit is cleared
1 Bit is set
ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.
Chapter 4. Exceptions 4-17

4.5.1 Reset Exceptions (0x0100)
The system reset exception is a nonmaskable, asynchronous exception signaled to the 602
either through the assertion of the reset signals (SRESET or HRESET) or internally during
the power-on reset (POR) process. The assertion of the soft reset signal, SRESET, as
described in Section 7.2.9.6.2, “Soft Reset (SRESET)—Input,” causes the soft reset
exception to be taken, and the physical base address of the handler is determined by the
MSR[IP] bit. The assertion of the hard reset signal, HRESET, as described in
Section 7.2.9.6.1, “Hard Reset (HRESET)—Input,” causes the hard reset exception to be
taken, and the physical address of the handler is always 0xFFF0_0100.

The reset sequence is shown in Figure 4-4.

Figure 4-4. Reset Sequence

Hard Reset?
yes

no

JTAG_IR = FFRZ?

no

yes

Perform COP
Functions

COP cmd = RESUME?

yes

no

>255 clocks

Stop Chip Clocks,
Except for the COP

Soft ResetHard Reset

Scan in Zeros

Chip Clocks Running

System Reset
Exception Handler
4-18 PowerPC 602 RISC Microprocessor User's Manual

4.5.1.1 Hard Reset and Power-On Reset
As described in 4.1.2, “Summary of Front-End Exception Handling,” the hard reset
exception is a nonrecoverable, nonmaskable asynchronous exception (maskable interrupt).
When HRESET is asserted or at power-on reset (POR), the 602 immediately branches to
0xFFF0_0100 without attempting to reach a recoverable state. A hard reset has the highest
priority of any exception. It is always nonrecoverable. Table 4-9 shows the state of the
machine just before it fetches the first instruction of the system reset handler after a hard
reset.

The HRESET signal can be asserted for the following reasons:

• System power-on reset
• System reset from a panel switch

For information on the HRESET signal, see Section 7.2.9.6.1, “Hard Reset (HRESET)—
Input.”

Table 4-9. Settings Caused by Hard Reset

Register Setting Register Setting

GPRs All 0s PVR 0005010n

FPRs All 0s HID0 00000000

FPSCR 00000000 HID1 00000000

CR All 0s DMISS and IMISS All 0s

SRs Unknown DCMP and ICMP All 0s

MSR 00000040 RPA 00000000

XER 00000000 IABR 00000000

TBU 00000000 ESARR 00000000

TBL 00000000 SER 00000000

LR 00000000 SEBR 00000000

CTR 00000000 IBR 00000000

DSISR 00000000 HASH1 00000000

DAR 00000000 HASH2 00000000

DEC FFFFFFFF SP Unknown

SDR1 00000000 LT Unknown

SRR0 00000000 TLBs Unknown
Chapter 4. Exceptions 4-19

The following is also true after a hard reset operation:

• External checkstops are enabled.

• The on-chip test interface has given control of the I/Os to the rest of the chip for
functional use.

• Since the reset exception has data and instruction translation disabled (MSR[DR]
and MSR[IR] both cleared), the chip operates in direct address translation mode
(referred to as the real addressing mode in the architecture specification).

4.5.1.2 Soft Reset
As described in Section 4.1.2, “Summary of Front-End Exception Handling,” the soft reset
exception is a type of system reset exception that is a recoverable, nonmaskable, and
asynchronous. When SRESET is asserted, the processor attempts to reach a recoverable
state by allowing the next instruction to either complete or cause an exception, blocking the
completion of subsequent instructions, and allowing the completed store queue to drain.

Unlike a hard reset, the latches are not initialized. The SRESET signal must be asserted for
at least two bus clock cycles. After the SRESET signal is deasserted, the 602 vectors to the
system reset routine at 0xFFF00100. The IBR is not used to determine the vector offset for
soft reset.

When a soft reset occurs, registers are set as shown in Table 4-10.

SRR1 00000000 Cache All cache blocks invalidated

SPRGs 00000000 BATs Unknown

Tag directory All 0s. (However, LRU bits are
initialized so each side of the
cache has a unique LRU
value.)

Table 4-10. Soft Reset Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to complete
next if no exception conditions were present.

SRR1 0–15 Cleared
16–31 Loaded from bits 16–31 of the MSR. Note that if the processor state is corrupted to the extent

that execution cannot be reliably restarted, SRR1[30] is cleared.

MSR AP 0
SA 0
POW 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE

Table 4-9. Settings Caused by Hard Reset (Continued)

Register Setting Register Setting
4-20 PowerPC 602 RISC Microprocessor User's Manual

The vector address for a soft reset is 0x0000_0100 if MSR[IP] is cleared or 0xFFF0_0100
if MSR[IP] is set (the IBR is not used). A soft reset is recoverable provided that attaining
the recoverable state does not cause a machine check exception. This interrupt case is third
in priority, following hard reset and machine check. Soft resets are recoverable provided
that attaining a recoverable state does not cause a machine check exception.

4.5.2 Machine Check Exception (0x0200)
The 602 conditionally initiates a machine check exception after detecting the assertion of
the TEA or MCP signals on the 602 bus (assuming the machine check is enabled,
MSR[ME] = 1). The assertion of one of these signals indicates that a bus error occurred and
the system terminates the current transaction. One clock cycle after the signal is asserted,
the data bus signals go to the high-impedance state; however, data entering the GPR or the
cache is not invalidated. Note that if HID0[EMCP] is cleared, the processor ignores the
assertion of the MCP signal.

Note that the 602 makes no attempt to force recoverability; however, it does guarantee that
the machine check exception is always taken immediately upon request, with an address
guaranteed not to be behind one that can take an exception saved in SRR0, regardless of the
current machine state. Any pending stores in the completed store queue are cancelled when
the exception is taken. Software can use the machine check exception in a recoverable
mode for checking bus configuration. For this case, a sync, load, sync instruction sequence
is used. A subsequent machine check exception at the load address indicates a bus
configuration problem and the processor is in a recoverable state.

If the MSR[ME] bit is set, the exception is recognized and handled; otherwise, the 602
attempts to enter an internal checkstop. Note that the resulting machine check exception has
priority over any exceptions caused by the instruction that generated the bus operation.

Machine check exceptions are only enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] = 0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in 4.5.2.2, “Checkstop State (MSR[ME] = 0).”
Chapter 4. Exceptions 4-21

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-11.

When a machine check exception is taken, instruction execution for the handler begins at
offset 0x0200. Table 4-2 shows how the vector address is determined. Note that the 602-
specific IBR is not used to determine the vector of a machine check exception.

In order to return to the main program, the exception handler should do the following:

1. SRR0 and SRR1 should be given the values to be used by the rfi instruction.
2. Execute rfi.

4.5.2.2 Checkstop State (MSR[ME] = 0)
When the 602 enters the checkstop state, it asserts the checkstop output signal,
CKSTP_OUT. The following events cause the 602 to enter the checkstop state:

• Machine check exception occurs with MSR[ME] cleared.
• External checkstop input signal, CKSTP_IN, is asserted.

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot be restarted without resetting the processor. The contents of all latches are
frozen within two cycles upon entering the checkstop state so that the state of the processor
can be analyzed as an aid in problem determination.

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checkstop state are implementation-dependent.

Table 4-11. Machine Check Exception—Register Settings

Register Setting Description

SRR0 Set to the address of the next instruction that would have been completed in the interrupted
instruction stream. Neither this instruction nor any others beyond it will have been completed. All
preceding instructions will have been completed.

SRR1 0–11 Cleared
12 MCP—Machine check interrupt signal caused exception
13 TEA—Transfer error acknowledge signal caused exception
14–15 Cleared
16–31 Loaded from MSR[16–31].

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE

Note that when a machine check exception is taken, the exception handler should set MSR[ME]
as soon as it is practical to handle another TEA assertion. Otherwise, subsequent TEA assertions
cause the processor to automatically enter the checkstop state.
4-22 PowerPC 602 RISC Microprocessor User's Manual

4.5.3 DSI Exception (0x0300)
A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The condition that caused the DSI exception can be determined by
reading the DSISR register, a supervisor-level SPR (SPR18) that can be read by using the
mfspr instruction. Bit settings are provided in Table 4-12. Table 4-12 also indicates which
memory element is saved to the DAR. DSI exceptions can occur for any of the following
reasons:

• The instruction is not supported for the type of memory addressed.

• Any attempt to access memory for which SR[T] = 1. Direct-store accesses are not
supported on the 602.

• The access violates memory protection. Access is not permitted by the key (Ks and
Kp) and PP bits, which are set in the segment register and PTE for page protection
and in the BATs for block protection.

Note that the OEA specifies an additional case that may cause a DSI exception—when an
effective address for a load, store, or cache operation cannot be translated by the TLBs. On
the 602, this condition causes a TLB miss exception instead.

DSI exceptions can be generated by load/store instructions, and the cache control
instructions (dcbi, dcbz, dcbst, and dcbf).

The 602 supports the crossing of page boundaries. However, if the second page has a
translation error or protection violation associated with it, the 602 will take the DSI
exception in the middle of the instruction. In this case, the data address register (DAR)
always points to the first byte address of the offending page.

If an stwcx. instruction has an effective address for which a normal store operation would
cause a DSI exception, the 602 will take the DSI exception without checking for the
reservation.

If the XER indicates that the byte count for an lswi or stswi instruction is zero, a DSI
exception does not occur, regardless of the effective address.

The condition that caused the exception is defined in the DSISR. These conditions also use
the data address register (DAR) as shown in Table 4-12.
Chapter 4. Exceptions 4-23

When a DSI exception is taken, instruction execution for the handler begins at offset
0x0300. Table 4-2 shows how the vector address can be determined.

The architecture permits certain instructions to be partially executed when they cause a DSI
exception. These are as follows:

• Load multiple instructions—Some registers in the range of registers to be loaded
may have been loaded.

• Store multiple instructions—Some bytes of memory in the range addressed may
have been updated.

In these cases, the number of registers and amount of memory altered are instruction- and
boundary-dependent. For update forms, the update register (rA) is not altered.

Table 4-12. DSI Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 0–15 Cleared
16–31 Loaded with bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE

DSISR 0 Cleared.
1 Set by the data TLB miss exception handler if the translation of an attempted access is not

found in the primary hash table entry group (HTEG), or in the rehashed secondary HTEG, or in
the range of a DBAT register; otherwise cleared.

2–3 Cleared
4 Set if a memory access is not permitted by the page or BAT protection mechanism; otherwise

cleared.
5 Set if the lwarx or stwcx. instruction is attempted to direct-store space.
6 Set for a store operation and cleared for a load operation.
7–31 Cleared

DAR Set to the effective address of a memory element as described in the following list:
• A byte in the first word accessed in the page that caused the DSI exception, for a byte, half word,

or word memory access.
• A byte in the first word accessed in the BAT area that caused the DSI exception for a byte, half

word, or word access to a BAT area.
• A byte in the block that caused the exception for icbi, dcbz, dcbst, dcbf, or dcbi instructions.
• Any EA in the memory range addressed (for direct-store exceptions).
4-24 PowerPC 602 RISC Microprocessor User's Manual

4.5.4 ISI Exception (0x0400)
The ISI exception is implemented as it is defined by the PowerPC architecture. An ISI
exception occurs when no higher priority exception exists and an attempt to fetch the next
instruction fails for any of the following reasons:

• If an instruction TLB miss fails to find the desired PTE, then a page fault is
synthesized. The ITLB miss handler branches to the ISI exception handler to retrieve
the translation from a storage device.

• The fetch access violates memory protection.

Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual.

When an ISI exception is taken, instruction execution for the handler begins at offset
0x0400. Table 4-2 shows how the vector address can be determined.

4.5.5 External Interrupt (0x0500)
An external interrupt is signaled to the 602 by the assertion of the INT signal as described
in Section 7.2.9.1, “Interrupt (INT)—Input.” The interrupt may not be recognized if a
higher priority exception is detected simultaneously or if the MSR[EE] bit is cleared when
INT is asserted.

After the INT assertion is detected (and assuming that MSR[EE] is set), the 602 generates
a recoverable halt to instruction completion. The 602 requires the next instruction in
program order to complete (although it may cause an exception before doing so), block
completion of any following instructions, and allow the completed store queue to drain. If
any other exceptions are encountered in this process, they are taken first and the external
interrupt is delayed until a recoverable halt is achieved. At this time the 602 saves the state
information and takes the external interrupt as defined in the PowerPC architecture.

The register settings for the external interrupt are shown in Table 4-13.

Table 4-13. External Interrupt Exception—Register Settings

Register Setting

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute
next if no interrupt conditions were present.

SRR1 0–15 Cleared
16–31 Loaded from bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE
Chapter 4. Exceptions 4-25

When an external interrupt is taken, instruction execution for the handler begins at offset
0x0500. Table 4-2 shows how the vector address is determined.

The 602 only recognizes the interrupt condition (INT asserted) if the MSR[EE] bit is set; it
ignores the interrupt condition if the MSR[EE] bit is cleared. To guarantee that the external
interrupt is taken, the INT signal must be held active until the 602 takes the interrupt. If the
INT signal is negated before the interrupt is taken, the 602 is not guaranteed to take an
external interrupt. The exception handler must send a command to the device that asserted
INT, acknowledging the interrupt and instructing the device to negate INT.

Table 4-2 shows how the vector address is determined.

4.5.6 Alignment Exception (0x0600)
This section describes conditions that can cause alignment exceptions in the 602. Similar
to DSI exceptions, alignment exceptions use the SRR0 and SRR1 to save the machine state
and the DSISR to determine the source of the exception. The 602 will initiate an alignment
exception when it detects any of the following conditions:

• The operand of a floating-point load or store operation is not word-aligned.

• The operand of an lmw, stmw, lwarx, or stwcx. instruction is not word-aligned.

• A little-endian access (MSR[LE] = 1) is misaligned.

• A multiple load or store operation is attempted with the MSR[LE] bit set.

• The operand of a dcbz instruction is in a page that is write-through or caching-
inhibited.

The register settings for alignment exceptions are shown in Table 4-13.

Table 4-14. Alignment Exception—Register Settings

Register Setting

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 0–15 Cleared
16–31 Loaded from bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE
4-26 PowerPC 602 RISC Microprocessor User's Manual

The architecture does not support the use of an unaligned EA by lwarx or stwcx.
instructions. If one of these instructions specifies an unaligned EA, the exception handler
should not emulate the instruction, but should treat the occurrence as a programming error.
Table 4-2 shows how the vector address can be determined.

4.5.6.1 Integer Alignment Exceptions
The 602 is optimized for load and store operations that are aligned on natural boundaries.
Operations that are not naturally aligned may suffer performance degradation, depending
on the type of operation, the boundaries crossed, and the mode that the processor is in
during execution. More specifically, these operations may either cause an alignment
exception or they may cause the processor to break the memory access into multiple,
smaller accesses with respect to the cache and the memory subsystem.

The 602 can initiate alignment exception for the accesses as shown in Table 4-15. In all of
these cases, the appropriate range check is performed before the instruction begins
execution. As a result, if an alignment exception is taken, it is guaranteed that no portion of
the instruction has been executed.

A real addressing mode data access occurs when MSR[DR] = 0. If a 256-Mbyte boundary
is crossed by any portion of the memory being accessed by an instruction (including
load/store multiples), an alignment exception is taken.

DSISR 0–11 Cleared
12–13 Cleared. (Can be set by several 64-bit PowerPC instructions not supported in the 602.)
14 Cleared
15–16 For instruction with register indirect with index addressing—set to instruction bits 29–30

For instruction with register indirect with immediate index addressing—cleared
17 For instruction with register indirect with index addressing—set to instruction bit 25

For instruction with register indirect with immediate index addressing— set to instruction bit 5
18–21 For instruction with register indirect with index addressing—set to bits 21–24 of the instruction

For instruction with register indirect with immediate index addressing—set to instruction bits 1–4
22–26 Set to bits 6–10 (identifying the source or destination) of the instruction—undefined for dcbz
27–31 Set to bits 11–15 of the instruction (rA)

Set to either bits 11–15 of the instruction or to any register number not in the range of registers
loaded by a valid form instruction, for lmw, lswi, and lswx instructions. Otherwise undefined.

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception

Table 4-15. Access Types

MSR[DR] SR[T] Access Type

0 0 Direct translation access

x 1 Direct-store access—not supported on the 602. Any attempt to access a
memory region marked as direct-store causes a DSI exception.

1 0 Page-address translation access

Table 4-14. Alignment Exception—Register Settings (Continued)

Register Setting
Chapter 4. Exceptions 4-27

4.5.6.2 Page Address Translation Access
A page address translation access occurs when MSR[DR] is set and there is a BAT miss.
Note the following points:

• The following is true for all load and store instructions except multiples:

— An alignment exception is taken if the operand spans a 4-Kbyte boundary.

— Byte operands never cause an alignment exception.

— Half-word operands can cause an alignment exception if the EA ends in 0xFFF0.

— Word operands can cause an alignment exception if the EA ends in 0xFFD–FFF.

— Double-word operands cause an alignment exception if the EA ends in
0xFF9–FFF.

• The dcbz instruction causes an alignment exception if the access is to a page or
block with the W (write-through) or I (caching-inhibit) bit set.

A misaligned memory access that does not cause an alignment exception will not perform
as well as an aligned access of the same type. The resulting performance degradation due
to misaligned accesses depends on how well each individual access behaves with respect to
the memory hierarchy. At a minimum, additional cache access cycles are required that can
delay other processor resources from using the cache. More dramatically, for an access to
a noncacheable page, each discrete access involves individual processor bus operations that
reduce the effective bandwidth of that bus.

Finally, note that when the 602 is in page address translation mode, there is no special
handling for accesses that fall into BAT regions.

4.5.6.3 Floating-Point Alignment Exceptions
The 602 implements the alignment exception as it is defined in the PowerPC architecture.
For information on bit settings and how exception conditions are detected, refer to The
Programming Environments Manual.

Note that the PowerPC architecture allows individual processors to determine whether an
exception is required to handle various alignment conditions. The 602 initiates an
alignment exception when it detects any of the following conditions:

• The operand of a floating-point load or store operation is not word-aligned.

• The operand of lmw, stmw, lwarx, or stwcx. instruction is not word-aligned. Note
that unlike other alignment exceptions, which store the address as computed by the
instruction in the DAR, alignment exceptions for load or store multiple instructions
store that address value + 4 into the DAR.

• The operand of a dcbz instruction is in a page that is write-through or caching-
inhibited for a virtual mode access.

• A little-endian access is misaligned

• A multiple access is attempted while the little-endian (MSR[LE]) bit is set
4-28 PowerPC 602 RISC Microprocessor User's Manual

4.5.7 Program Exception (0x0700)
The 602 implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

When a program exception is taken, instruction execution for the handler begins at offset
0x0700. The exception conditions are as follows:

• Floating-point enabled exception—These exceptions correspond to IEEE-defined
exception conditions, such as overflows, and divide by zeroes that may occur during
the execution of a floating-point arithmetic instruction. As a group, these exceptions
are enabled by the FE0 and FE1 bits in the in the MSR. Individual conditions are
enabled by specific bits in the FPSCR. For general information about this exception,
see The Programming Environments Manual. For more information about how these
exceptions are implemented in the 602, see Section 4.5.7.1, “IEEE Floating-Point
Exception Program Exceptions.”

• Illegal instruction—An illegal instruction program exception is generated when
execution of an instruction is attempted with an illegal opcode or illegal combination
of opcode and extended opcode fields (including PowerPC instructions not
implemented in the 602). These do not include any optional instructions treated as
no-ops.

• Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the MSR
register user privilege bit, MSR[PR], is set. In the 602, this exception is generated
for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1. This
may not be true for all PowerPC processors.

• Trap—A trap type program exception is generated when any of the conditions
specified in a trap instruction is met.

4.5.7.1 IEEE Floating-Point Exception Program Exceptions
In the 602, floating-point exceptions are signaled by condition bits set in the floating-point
status and control register (FPSCR). They can cause the system floating-point enabled
exception handler to be invoked. The 602 handles all floating-point exceptions precisely.
The 602 implements the FPSCR as it is defined by the PowerPC architecture; for more
information about the FPSCR, see The Programming Environments Manual.

Floating-point operations that change exception sticky bits in the FPSCR may suffer a
performance penalty. When an exception is disabled in the FPSCR and MSR[FE] = 0,
updates to the FPSCR exception sticky bits are serialized at the completion stage. This
serialization may result in a one- or two-cycle execution delay. The penalty is incurred only
when the exception bit is changed and not on subsequent operations with the same
exception. See Chapter 6, “Instruction Timing,” for a full description of completion
serialization.
Chapter 4. Exceptions 4-29

When an exception is enabled in the FPSCR, the instruction traps to the emulation trap
exception vector without updating the FPSCR or the target FPR. The emulation trap
exception handler is required to complete the instruction. The emulation trap exception
handler is invoked regardless of the FE setting in the MSR.

The two IEEE floating-point imprecise modes, defined by the PowerPC architecture as
when MSR[FE0] ≠ MSR[FE1], are treated as precise exceptions (that is, if MSR[FE0] =
MSR[FE1] = 1). This is regardless of the setting of MSR[NI].

For the highest and most predictable floating-point performance, all exceptions should be
disabled in the FPSCR and MSR. For more information about the program exception, see
The Programming Environments Manual.

4.5.7.2 Illegal, Reserved, and Unimplemented Instructions
Program Exceptions

In accordance with the PowerPC architecture, the 602 considers all instructions defined for
64-bit implementations and unimplemented optional instructions, such as fsqrt, eciwx, and
ecowx as illegal and takes a program exception when one of these instructions is
encountered. Likewise, if a supervisor-level instruction is encountered when the processor
is in user-level mode, a privileged-instruction-type program exception is taken.

The 602 implements some instructions, such as double-precision floating-point and
load/store string instructions in software. These instruction take the 602-specific emulation
trap exception (0x1600) rather than a program exception.

4.5.8 Floating-Point Unavailable Exception (0x0800)
The floating-point unavailable exception is implemented in the 602 as it is defined in the
PowerPC architecture. A floating-point unavailable exception occurs when no higher
priority exception exists, an attempt is made to execute a floating-point instruction
(including floating-point load, store, and move instructions), and the floating-point
available bit in the MSR is disabled, (MSR[FP] = 0). Register settings for this exception are
described in Chapter 6, “Exceptions,” in The Programming Environments Manual

When a floating-point unavailable exception is taken, instruction execution for the handler
begins at offset 0x0800. Table 4-2 shows how the vector address can be determined.

4.5.9 Decrementer Interrupt (0x0900)
The 602 implements the decrementer interrupt exception as it is defined in the PowerPC
architecture. A decrementer interrupt request is made when the decrementer counts down
through zero. The request is held until there are no higher priority exceptions and MSR[EE]
= 1. At this point the decrementer interrupt is taken. If multiple decrementer interrupt
requests are received before the first can be reported, only one exception is reported. The
occurrence of a decrementer interrupt cancels the request. Register settings for this
exception are described in Chapter 6, “Exceptions,” in The Programming Environments
Manual.
4-30 PowerPC 602 RISC Microprocessor User's Manual

When a decrementer interrupt is taken, instruction execution for the handler begins at offset
0x0900. Table 4-2 shows how the vector address is determined.

4.5.10 System Call Exception (0x0C00)
The 602 implements the system call exception as it is defined by the PowerPC architecture.
A system call exception request is made when a system call (sc) instruction is completed.
If no higher priority exception exists, the system call exception is taken, with SRR0 being
set to the EA of the instruction following the sc instruction. Register settings for this
exception are described in Chapter 6, “Exceptions,” in The Programming Environments
Manual.

When a system call exception is taken, instruction execution for the handler begins at offset
0x0C00. Table 4-2 shows how the vector address can be determined.

4.5.11 Trace Exception (0x0D00)
The trace exception is taken under one of the following conditions:

• When MSR[SE] is set, a single-step instruction trace exception is taken when no
higher priority exception exists and any instruction (other than rfi or isync) is
successfully completed. Note that other PowerPC processors will take the trace
exception on isync instructions (when MSR[SE] is set); the 602 does not take the
trace exception on isync instructions. Single-step instruction trace mode is described
in Section 4.5.11.1, “Single-Step Instruction Trace Mode.”

• When MSR[BE] is set, the branch trace exception is taken after each branch
instruction is completed.

• The 602 deviates from the architecture by not taking trace exceptions on isync
instructions. Single-step instruction trace mode is described in Section 4.5.11.2,
“Branch Trace Mode.”

Successful completion implies that the instruction caused no other exceptions. A trace
exception is never taken for an sc instruction or for a trap instruction that takes a trap
exception.

MSR[SE] and MSR[BE] are cleared when the trace exception is taken. In the normal use
of this function, MSR[SE] and MSR[BE] are restored when the exception handler returns
to the interrupted program using an rfi instruction.
Chapter 4. Exceptions 4-31

Register settings for the trace mode are described in Table 4-16.

Note that a trace or instruction address breakpoint exception condition generates a soft stop
instead of an exception if soft stop has been enabled by the JTAG/COP logic. If trace and
breakpoint conditions occur simultaneously, the breakpoint conditions receive higher
priority.

When a trace exception is taken, instruction execution for the handler begins as offset
0x0D00. Table 4-2 shows how the vector address is determined.

4.5.11.1 Single-Step Instruction Trace Mode
The single-step instruction trace mode is enabled by setting MSR[SE]. Encountering the
single-step breakpoint causes one of the following actions:

• Trap to address vector 0x0D00
• Soft stop (wait for quiescence)

The default single-step trace action is to trap after an instruction execution and completion.
The soft stop option, in which the 602 stops in a restartable state after an instruction
execution and completion, can be enabled only through the COP function. The ESP, which
interfaces to the COP, can restart the 602 after a soft stop. For more information, see
Section 7.2.10, “JTAG/Scan Interface Signals.”

4.5.11.2 Branch Trace Mode
The branch trace mode is enabled by setting MSR[BE]. Encountering the branch trace
breakpoint causes one of the following actions:

• Trap to exception vector 0x0D00
• Soft stop
• Hard stop

The default branch trace action is to trap after the completion of any branch instruction
whenever MSR[BE] is set. However, if soft stop is enabled through the COP interface, the
602 stops in a restartable state. If hard stop is enabled through the COP interface, the 602
stops immediately without waiting to reach a restartable state. Therefore, the 602 is not

Table 4-16. Trace Exception—Register Settings

Register Setting Description

SRR0 Set to the address of the instruction following the one for which the trace exception was generated.

SRR1 0–15 Cleared
16–31 Loaded from bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE
4-32 PowerPC 602 RISC Microprocessor User's Manual

guaranteed to be restartable after a hard stop. For more information, see Section 7.2.10,
“JTAG/Scan Interface Signals.”

4.5.12 Instruction TLB Miss Exception (0x1000)
When the effective address for an instruction load, store, or cache operation cannot be
translated by the ITLBs, an instruction TLB miss exception is generated. Register settings
for the instruction and data TLB miss exceptions are described in Table 4-17.

If the instruction TLB miss exception handler fails to find the desired PTE, then a page fault
must be synthesized. The handler must restore the machine state and turn off the GPRs
before invoking the ISI exception (0x0400).

Software table search operations are discussed in Chapter 5, “Memory Management.”

When an instruction TLB miss exception is taken, instruction execution for the handler
begins at offset 0x1000. Table 4-2 shows how the vector address is determined.

4.5.13 Data TLB Miss on Load Exception (0x1100)
When the effective address for a data load or cache operation cannot be translated by the
DTLBs, a data TLB miss on load exception is generated. Register settings for the
instruction and data TLB miss exceptions are described in Table 4-17.

If a data TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state and turn off MSR[TGPR]
before invoking the DSI exception (0x0300).

Software table search operations are discussed in Chapter 5, “Memory Management.”

Table 4-17. Instruction and Data TLB Miss Exceptions—Register Settings

Register Setting Description

SRR0 Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.

SRR1 0–3 Loaded from condition register CR0 field
4–12 Cleared
13 0 = data TLB miss

1 = instruction TLB miss
14 0 = replace TLB associativity set 0

1 = replace TLB associativity set 1
15 0 = data TLB miss on store (or C = 0)

1 = data TLB miss on load
16–31 Loaded from bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 1
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE
Chapter 4. Exceptions 4-33

When a data TLB miss on load exception is taken, instruction execution for the handler
begins at offset 0x1100. Table 4-2 shows how the vector address is determined.

4.5.14 Data TLB Miss on Store Exception (0x1200)
When the effective address for a data store or cache operation cannot be translated by the
DTLBs, a data TLB miss on store exception is generated. The data TLB miss on store
exception is also taken when the changed bit (C = 0) for a DTLB entry needs to be updated
for a store operation. Register settings for the instruction and data TLB miss exceptions are
described in Table 4-17.

If a data TLB miss exception handler fails to find the desired PTE, then a page fault must
be synthesized. The handler must restore the machine state and turn off the TGPRs before
invoking a DSI exception (0x0300).

Software table search operations are discussed in Chapter 5, “Memory Management.”

When a data TLB miss on store exception is taken, instruction execution for the handler
begins at offset 0x1200. Table 4-2 shows how the vector address is determined.

4.5.15 Instruction Address Breakpoint Exception (0x1300)
The instruction address breakpoint is controlled by the IABR special-purpose register.
IABR[0–29] holds an effective address to which each instruction is compared. The
exception is enabled by setting IABR[30]. Note that the 602 ignores the translation enable
bit (IABR[31]). The exception is taken when an instruction breakpoint address matches on
the next instruction to complete. The instruction tagged with the match is not completed
before the instruction address breakpoint exception is taken.

The breakpoint action can be one of the following:

• Trap to exception vector at offset 0x1300 (default). Table 4-2 shows how the vector
address is determined.

• Soft stop

The bit settings when an instruction address breakpoint exception is taken are shown in
Table 4-18.
4-34 PowerPC 602 RISC Microprocessor User's Manual

The default breakpoint action is to trap before the execution of the matching instruction.

The soft stop feature can be enabled only through the COP interface. With soft stop enabled,
the 602 stops in a restartable state, while with hard stop enabled, the 602 stops immediately
without attempting to reach a restartable state. Upon restarting from a soft stop, the
matching instructions are executed and completed unless it generates an exception. For soft
stops, the next ten instructions that could have passed the IABR check can be monitored
only by single-stepping the processor. When soft stops are used, the address compare must
be separated by at least 10 instructions.

If soft stop is enabled, only one soft stop is generated before completion of an instruction
with an IABR match, regardless of whether a soft stop is generated before that instruction
for any other reason, such as trace mode on for the preceding instruction or a COP soft stop
request.

Table 4-19 shows the priority of actions taken when more than one mode is enabled for the
same instruction.

Table 4-18. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRR0 Set to the address of the next instruction to be executed in the program for which the TLB miss
exception was generated.

SRR1 0–15 Cleared
16–31 Loaded from bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE

Table 4-19. Breakpoint Action for Multiple Modes Enabled for the Same Address

IABR[IE} MSR[BE] MSR[SE] First action Next action Comments

1 1 0 Instruction
address

Trace
(branch)

Enabling both modes is useful only if both
trace and address breakpoint interrupts
are needed.

1 0 1 Instruction
address
breakpoint

Trace
(single-step)

Enabling both modes is useful only if
different breakpoint actions are required.

0 1 1 Trace
(branch)

None The action for branch trace and single-step
trace is the same. Enabling both trace
modes is redundant except for hard stop
on branches.

1 1 1 Instruction
address
breakpoint

Trace Enabling all modes is redundant. This
entry is for clarification only.
Chapter 4. Exceptions 4-35

Note that a trace or instruction address breakpoint exception condition generates a soft stop
instead of an exception if soft stop has been enabled by the JTAG/COP logic. If trace and
breakpoint conditions occur simultaneously, the breakpoint conditions receive higher
priority.

The 602 requires that an mtspr instruction that updates the IABR be followed by a context-
synchronizing instruction. If the mtspr instruction enables the instruction address
breakpoint exception, the context-synchronizing instruction cannot generate a breakpoint
response. The 602 also cannot block a breakpoint response on the context-synchronizing
instruction if the breakpoint was disabled by the mtspr instruction. See Section 2.1.4,
“Synchronization Requirements for SPRs,” for more information on this requirement.

4.5.16 System Management Interrupt (0x1400)
The system management interrupt behaves like an external interrupt except for the signal
asserted and the vector taken. A system management interrupt is signaled to the 602 by the
assertion of the SMI signal. The interrupt may not be recognized if a higher priority
exception is detected simultaneously or if the MSR[EE] bit is cleared when SMI is asserted.
Note that SMI takes priority over INT if they are recognized simultaneously.

After the SMI is detected (and provided that MSR[EE] is set), the 602 generates a
recoverable halt to instruction completion. The 602 requires the next instruction in program
order to complete (although it may cause an exception to be taken before doing so), block
completion of any following instructions, and allow the completed store queue to drain. If
any higher priority exceptions are encountered in this process, they are taken first and the
system management interrupt is delayed until a recoverable halt is achieved. At this time
the 602 saves state information and takes the system management interrupt.

The register settings for the external interrupt exception are shown in Table 4-20.

When a system management interrupt is taken, instruction execution for the handler begins
at offset 0x1400. Table 4-2 shows how the vector address is determined.

Table 4-20. System Management Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to complete
next if no interrupt conditions were present.

SRR1 0–15 Cleared
16–31 Loaded from bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE
4-36 PowerPC 602 RISC Microprocessor User's Manual

The 602 recognizes the interrupt condition (SMI asserted) only if the MSR[EE] bit is set;
and ignores the interrupt condition otherwise. To guarantee that the external interrupt is
taken, the SMI signal must be held active until the 602 takes the interrupt. If the SMI signal
is negated before the interrupt is taken, the 602 is not guaranteed to take a system
management interrupt. The exception handler must send a command to the device that
asserted SMI, acknowledging the interrupt and instructing the device to negate SMI.

4.5.17 Watchdog Timer Interrupt (0x1500)
The watchdog timer generates a periodic exception based on the carry-out of selected bits
in the time base register. The watchdog timer is controlled by the timer control register
(TCR), which is specific to the 602 and not defined by the PowerPC architecture. The TCR
is shown in Figure 4-5.

Figure 4-5. Timer Control Register (TCR)

The bits in the TCR are described in Table 4-21.

Table 4-21. Timer Control Register Bit Settings

Bit Name Description

0–1 TI The timer interval bits indicate the number of clock cycles that should occur before the
watchdog timer interrupt exception is taken.
00 223 clock cycles (ca. 0.25 s)
01 224 clock cycles (ca. 0.50 s)
10 225 clock cycles (ca. 1.00 s)
11 226 clock cycles (ca. 2.00 s)
Approximate durations assume 33-MHz bus running in 2:1 mode. For example, if it is set as
0b00, as soon as bit 8 is set (that is, after 2e23 clock cycles) a carry-out occurs.

2 CRE Timer core reset enable
0 Timer core reset disabled
1 Timer core reset enabled

3 L2E Level 2 watchdog timer interrupt enable. Enables the watchdog timer level 2 interrupt after a
carry-out occurs from the bit in the time base register specified by the user.
0 Timer level 2 interrupt disabled
1 Timer level 2 interrupt enabled

4 NWE Next watchdog timer interrupt enable
0 Enable next interrupt
1 Disable next interrupt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L2E
NWE
WIE
SLT

CRE

0 0TI

Reserved
Chapter 4. Exceptions 4-37

Software with supervisor-level access can select one of four time periods for the interrupts
by setting TCR[TI], as shown in Table 4-21.

If the watchdog timer is enabled (TCR[WIE] is set), a level-2 interrupt condition is
signalled after a carry-out occurs from the bit specified by the user. If the processor is
operating properly, the exception handler must reset the watchdog timer by setting
TCR[NWE]; otherwise, an internal reset of the processor core occurs after the next
watchdog timer interval. This reset can be disabled by clearing TCR[CRE].

If the 602 is not operating correctly, the exception handler cannot set TCR[NWE];
therefore, when the second carry-out occurs, the watchdog timer asserts RESETO signal
and generates a soft reset to the processor core. RESETO remains asserted until the third
carry-out occurs, at which point it is deasserted and the process can be repeated. Note that
RESETO also reflects the HRESET signal value.

The following details and assumptions should be noted with respect to using the watchdog
timer interrupt:

• The initial value loaded in the time base register is assumed to be all zeros.

• The value, zero, is incremented

• For TCR[TI] = 0b00 as soon as bit 8 in the time base register is set. That is, a carry-
out occurs after 223 clock cycles).

• For sustained interrupt after 0.25 seconds, software must load the decrementer with
all zeros after every 237 carry-outs. Note that this does not preclude another value
from being loaded into the time base register.

Table 4-22 shows the bit settings after a watchdog timer interrupt is taken.

5 WIE Watchdog timer interrupt enable
0 Interrupt disabled
1 Interrupt enabled

6 SLT Second-level exception taken. This bit is used by software to determine if the watchdog timer
caused the soft reset.
0 Second-level soft reset not taken
1 Second-level soft reset taken

6–31 — —

Table 4-21. Timer Control Register Bit Settings (Continued)

Bit Name Description
4-38 PowerPC 602 RISC Microprocessor User's Manual

4.5.18 Emulation Trap Exception (0x1600)
The emulation trap exception is taken when a double-precision floating-point instruction,
fctiw, or a load/store string instruction is encountered. An emulation trap exception is also
generated if any of the operand’s associated SP bits are not set for instructions requiring
single-precision values as operands, or if the LT bits are not set for instructions requiring
integer values as operands. Instructions that cause an emulation trap exception are listed in
Section 6.8, “Instruction Latency Summary.”

Table 4-23 shows the bit settings when an emulation trap exception is taken.

Table 4-22. Watchdog Timer Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to complete
next if no interrupt conditions were present.

SRR1 0–15 Cleared
16–31 Loaded from bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE

Table 4-23. Emulation Trap Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to complete
next if no interrupt conditions were present.

SRR1 0–15 Cleared
16–31 Loaded from bits 16–31 of the MSR

MSR AP 0
SA 0
POW 0
TGPR 0
ILE —

EE 0
PR 0
FP 0
ME —

FE0 0
SE 0
BE 0
FE1 0

IR 0
DR 0
RI 0
LE Set to value of ILE
Chapter 4. Exceptions 4-39

4-40 PowerPC 602 RISC Microprocessor User's Manual

Chapter 5
Memory Management
50
50

This chapter describes the PowerPC 602 microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the PowerPC operating environment
architecture (OEA) for PowerPC processors and also the 602-specific implementation
features. For information about how the PowerPC architecture defines the memory
management model, refer to Chapter 7, “Memory Management,” in The Programming
Environments Manual.

The primary function of the MMU in a PowerPC processor is the translation of logical
(effective) addresses to physical addresses (referred to as real addresses in the architecture
specification) for memory accesses and I/O accesses (I/O accesses are assumed to be
memory-mapped). In addition, the MMU provides access protection on a segment, block,
or page basis.

The 602 implementation of the OEA-defined memory management model is similar to that
of the PowerPC 603™ microprocessor with the following differences:

• The 602 implements an extra key bit in the SRR1 register that simplifies the table
search software. This feature is implemented in the PowerPC 603e™ processor.

• The 602 does not support direct-store bus accesses; attempts to access a segment for
which SR[T] = 1 causes a DSI or an ISI exception depending on the type of access.
The same is true for the 603e.

• In addition to implementing the PowerPC exception model, the 602 can be made to
operate in supervisor mode through the use of the 602-specific Enable Supervisor
Access (esa) and Disable Supervisor Access (dsa) instructions. The ability to
execute the esa instruction from a block or page is controlled by esa enable bits (SE)
implemented in the IBATs, PTEG, and ITLB entries, which reside in the MMU.

• In addition to the translation/protection mechanisms defined by the PowerPC
architecture, the 602 implements a protection-only mode. This mode is similar to the
OEA-defined real addressing mode in that the effective address is used as the
physical address. However, unlike real addressing mode, protection-only mode
offers programmable memory protection. Additional general details are discussed
separately in this overview.
Chapter 5. Memory Management 5-1

• An additional NE bit is defined in IBATs and ITLB that control whether instructions
can be executed from a specified page or block. The NE bit is similar to the OEA-
defined SR[N] bit that controls instruction fetching privileges at the segment level.

• The 602-specific MSR[AP] bit provides an additional level of memory protection
when the processor is in supervisor mode. This bit, which is valid only when the 602
is in supervisor mode, can be used to restrict supervisor-level software to accessing
only memory space that is configured as user-level.

Protection-only mode is provided for special-purpose implementations that do not require
the more complete paging functionality required for multipurpose personal computers, but
need memory protection not offered by the OEA-defined real addressing mode. Protection-
only mode is as follows:

• Each TLB can be configured to provide protection for 32, 4-Kbyte pages per TLB
entry. A total of 4 Mbytes of memory can be protected in each TLB at one time.
Protection consists of 1 bit per 4-Kbyte page to control instruction fetching (NE bit)
in instruction pages and control write access (WE bit) in the data pages.

• Although the effective address is used as the physical address, the MMU’s page
translation mechanism is used to protect memory. In protection-only mode, only the
24-bit virtual segment ID (VSID) in segment register 0 (SR0) is used. This VSID
also functions as a process ID in protection-only mode. Only the settings for the
page from SR0 are used in this mode. Other entries can be written to, but are not
used.

• The 602 provides programmable default cache control bits (WIMG) in the HID0
register to be used when the processor is running in real addressing mode or
protection-only mode.

• The ESA enable base register (SEBR) and ESA enable register (SER) control the
execution of the 602-specific esa instruction for each of the 32, 4-Kbyte pages of a
128-Kbyte block of memory at any one time.

Two general types of accesses generated by PowerPC processors require address
translation—instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment information translates the
effective address to an interim virtual address, and the page table information translates the
virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as on-
chip segment registers on 32-bit implementations (such as the 602). In addition, two
translation lookaside buffers (TLBs) are implemented on the 602 to keep recently-used
page address translations on-chip. Although the PowerPC OEA describes one MMU
(conceptually), the 602 hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be accessed independently (and simultaneously).
5-2 PowerPC 602 RISC Microprocessor User's Manual

Therefore, the 602 is described as having two MMUs, one for instruction accesses (IMMU)
and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the 602, they reside in the
instruction and data MMUs respectively.

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.2, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUs.

In protection-only mode, the 602 provides protection for up to 4 Mbytes of memory per
TLB. In this case, effective addresses are not translated through the TLBs, but the TLB miss
exceptions are still used to access the protection bits, NE and WE, stored in memory. Note
also that ISI and DSI exceptions can still be caused by access protection violations.

This mode does not affect use of the BATs, which are available for protection and
translation whenever translation is enabled (MSR[DR] or MSR[IR] = 1) and are maintained
by the system software. As is the case with OEA-defined operations, an effective address
match in the BATs takes priority over a hit in the TLBs in protection-only mode.

5.1 MMU Features
The 602 implements the memory management specification of the PowerPC OEA for 32-
bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors
also have a block address translation (BAT) mechanism for mapping large blocks of
memory. Block sizes range from 128 Kbytes to 256 Mbytes and are software-
programmable.

In addition, the 602 implements a protection-only mode in which each TLB protects up to
128 Kbytes per entry (4 Mbytes per TLB). Page address translation is not performed by the
TLBs in protection-only mode; however, the BAT mechanism is not affected in protection-
only mode and it still implements both protection and translation of the effective addresses
as described earlier.
Chapter 5. Memory Management 5-3

Table 5-1 summarizes all 602 MMU features including the architectural features of
PowerPC MMUs (defined by the OEA) for 32-bit processors and the implementation-
specific features provided by the 602.

Table 5-1. MMU Features Summary

Feature
Category

Where
Defined

Feature

Address
ranges

OEA 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

Page size OEA 4 Kbytes

Segment size OEA 256 Mbytes

Block address
translation

OEA Range of 128 Kbyte–256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory
protection

OEA Segments selectable as no-execute through the use of the SR[N] bit

Pages selectable as user/supervisor and read-only

Blocks selectable as user/supervisor and read-only

602 Additional no-execute protection bits (NE) that allow no-execute protection at the
page and block level, in addition to the OEA-defined SR[N] bit that provides no-
execute protection on a per-segment basis.

SE bit that controls whether the 602’s esa instruction can be executed from a
particular 4-Kbyte page

Protection-only mode. Provides memory protection without address translation. Unlike
the OEA-defined real addressing mode, protection-only mode provides memory
protection for the 602-specific no-execute bit (NE), SE bit (to enable or disable use of
the esa instruction), and WE bit, which controls whether blocks or pages are write-
enabled.

Page history OEA Referenced and changed bits defined and maintained

Page address
translation

OEA Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

602 NE and SE bits defined in PTEs control no-execute and esa execution, respectively.

Cache
attributes

602 The 602 implements programmable default cache control bits (WIMG) in HID0 used
when address translation is disabled (MSR[DR] or MSR[IR] = 0) or when the
processor is in protection-only mode (HID0[PO] = 1.)

TLBs OEA Instructions for maintaining optional TLBs (tlbie instruction in 602)

602 32-entry, two-way set associative ITLB
32-entry, two-way set associative DTLB

Alternate use for ITLB and DTLB entries in protection-only mode—Each ITLB entry
holds 32 NE bits that indicate whether the corresponding 4-Kbyte page is configured
as a no-execute page; each DTLB entry holds 32 WE bits that control whether the
corresponding page is write-enabled.
5-4 PowerPC 602 RISC Microprocessor User's Manual

Segment
descriptors

OEA Stored as segment registers on-chip

Page table
search support

602 Three MMU exceptions defined: ITLB miss exception, DTLB miss on load exception,
and DTLB miss on store (or C = 0) exception; MMU-related bits set in SRR1 for these
exceptions.

IMISS and DMISS registers (missed effective address)
HASH1 and HASH2 registers (PTEG address)
ICMP and DCMP registers (for comparing PTEs)
RPA register (for loading TLBs)

tlbli rB instruction for loading ITLB entries
tlbld rB instruction for loading DTLB entries

Shadow registers for GPR0–GPR3 that can use r0–r3 in table search handler without
corrupting r0–r3 in context that was previously executing. These registers are
available as r0–r3 when MSR[TGPR] is set. MSR[TGPR] is a 602-specific bit that
when set maps instruction accesses that would have been to GPR0–GPR3 to 602-
defined shadow registers (TGPR0–TGPR3). The 602 automatically sets MSR[TGPR]
whenever one of the three TLB miss exceptions occurs, allowing these exception
handlers to have four registers that are used as scratchpad space without having to
save or restore this part of the machine state that existed when the exception
occurred. Note that MSR[TGPR] is restored to the value in SRR1 when the rfi
instruction is executed.

Protection-
only mode

602 The 602 provides an additional memory access mode for which there is no address
translation (EA = physical address), but for which memory protection is provided for
each 4-Kbyte page defined by the TLBs. This protection includes the NE bit, which
provides no-execute protection, the SE bit, which controls the use of esa supervisor
access, and the WE bit, which controls whether memory can be written. These
additional bits are defined in the TLBs and the BATs and are propagated and
managed through portions of the architecturally-defined page translation mechanism.

To support the ESA supervisor access functionality in protection-only mode, the 602
defines an ESA enable register (SER) and an ESA enable base register (SEBR) that
control whether the esa instruction can be executed in each specified 4-Kbyte page.

Support for
esa/dsa
supervisor
access

602 The 602 defines resources to support a way for certain user-level programs to operate
in supervisor mode without using the OEA-defined exception mechanism. When an
enabled esa instruction is executed, the processor is given access to supervisor-level
instructions, registers, and memory regions without requiring synchronization or
changing the program flow.

The 602 defines MSR[SA] which is used to indicate when processor has accessed
supervisor mode through the use of the esa instruction. This bit is set automatically
when the esa instruction is successfully executed. If this bit is not set, the dsa
instruction cannot execute and a program exception occurs.

User-level
memory
access option
for supervisor
level

602 The 602 defines an additional bit, MSR[AP], that controls supervisor-level access to
memory spaces defined as user-level access only. This bit is checked only when the
processor is in supervisor mode (MSR[PR] = 0). If this bit is set, the processor can still
access registers and instructions defined as supervisor-level only, but can access only
those memory locations configured as user-level only. The processor can access
memory locations configured as supervisor-level only if MSR[PR] = MSR[AP] = 0.

Table 5-1. MMU Features Summary (Continued)

Feature
Category

Where
Defined

Feature
Chapter 5. Memory Management 5-5

5.1.1 Overview of PowerPC 602 Processor-Specific Features
This section provides an overview of 602-specific features that involve the MMU.

5.1.1.1 Instruction-Related Protection Bits—NE and SE
The 602 provides resources that control instruction fetching and the ability to execute the
esa instruction. This functionality is controlled by the NE and SE bits, which are described
as follows:

• NE bit—No-execute bits are defined in the IBATs and ITLB entries (and
consequently in the PTEs that define instruction space). The NE bit controls the
ability to execute instructions from the block or page defined by the IBAT or PTE.
If NE is set, instructions cannot be fetched from the corresponding block or page;
attempting to do so causes an ISI instruction.

• SE bit—The SE bit controls whether the esa instruction can be executed from the
corresponding block or page in memory. If the SE bit is set (and fetching is enabled
for the same block or page), the esa instruction can execute, which puts the
processor in supervisor mode. If the SE bit is cleared, the esa instruction can be
fetched, but is not allowed to execute. Information that indicates whether the esa
instruction can be executed follows the instruction through the 602 instruction
pipeline and causes an illegal instruction program exception when an attempt is
made to execute an esa instruction that is not enabled. Note that the SE bit is a don’t
care if the NE bit is set.

For more information about the esa and dsa instructions, see Section 2.3.9, “Using
the esa Instruction for Supervisor-Level Access.”

Table 5-2 shows the access permissions for the SE and NE bits. Note that as with ITLB
access permissions, SR0[T] or SR0[N] are not used to determine DTLB access privileges.

5.1.1.2 ESA Access and Memory Management
The 602 can be made to operate in supervisor mode either by taking an exception or by
executing the 602-specific Enable Supervisor Access (esa) instruction. Executing the esa
instruction allows the processor to access supervisor-level instructions, registers, and
memory without encountering the latencies associated with the kind of exception handling
required for processors used in multipurpose personal computers. Such latencies include
synchronization to ensure precise operation, and the pipeline and memory access latencies
associated with having to refetch from a new instruction path.

Table 5-2. Instruction Space Access Permissions

NE SE Meaning

0 0 The esa instruction cannot be executed. All other valid instructions can be executed.

0 1 Instructions can be fetched and esa instructions can be executed.

1 X No access. If NE is set, SE is a don’t care; no instructions can be fetched including
the esa instruction; attempting to execute an instruction causes an ISI exception.
5-6 PowerPC 602 RISC Microprocessor User's Manual

Note that after the esa instruction has been successfully executed, the program can fetch
instructions from any page defined as instruction space for which fetching is enabled
regardless of the setting of the corresponding SE bit. The SE bit controls only the execution
of the esa instruction itself.

When the esa instruction is executed, MSR[SA, EE, PR, AP] bits are saved to the ESASRR
and those bits are automatically set as follows (SA = 1, EE = 0, PR = 0, AP = 0). Clearing
MSR[EE] disables external interrupts, clearing MSR[PR] puts the processor in supervisor
mode, and clearing MSR[AP] gives the processor supervisor-level access to memory
locations. MSR[SA] is a bit that indicates that the processor is operating in this esa-initiated
supervisor mode. This bit is cleared when the Disable Supervisor Access instruction (dsa)
is executed. If MSR[SA] is not set, attempting to execute dsa causes a program exception.

The processor remains in supervisor mode until the dsa instruction is executed. Note that
the dsa instruction can be executed from any memory location for which instruction
fetching is enabled—that is, the dsa instruction can be executed regardless of the setting of
SE for the page in which it resides. When the dsa instruction is executed, MSR[SA, EE,
PR, AP] are restored from the ESASRR and esa supervisor access ends.

For more information about the esa and dsa instructions, see Section 2.3.7, “PowerPC 602
Implementation-Specific Instructions.”

Implementation of the ESA supervisor access feature affects the 602’s MMU
implementation in the following ways:

• The execution of the esa instruction is enabled on a page or block basis, so the MMU
translation mechanism must be used to configure memory to allow or disallow this
functionality. An additional SE bit is provided in the ITLB entries and IBATs to
enable the esa instruction. Configuration of memory space defined by TLBs is
handled by using the 602-defined TLB Load Instruction (tlbli) and TLB Load Data
(tlbld) instructions. BATs are configured by using the mtspr instruction.

• This facility can be used regardless of whether the processor uses one of the
architecturally defined translation mechanisms or the 602-specific protection-only
mode. When the esa instruction is enabled in protection-only mode (for which the
translation mechanism is not used to form the physical address, EA = PA), resources
such as the RPA and TLBs that are otherwise defined for translation are redefined to
support memory protection. In protection-only mode, the ESA enable register (SER)
and ESA enable base register (SEBR) control esa execute privileges for each of the
32 pages of a 128-Kbyte block of memory.

• Note that instruction address translation must be enabled (MSR[IR] = 1) for esa to
be executed; therefore, esa cannot be executed when the processor is in real
addressing mode.
Chapter 5. Memory Management 5-7

5.1.1.3 Protection-Only Mode Overview
The 602 provides an additional memory access mode for which there is no address
translation (effective address = physical address), but for which some memory protection
is provided. This protection includes the NE bit, which provides no-execute protection on
a page level, the SE bit, which controls the use of esa/dsa supervisor access, and the WE
bit, which controls whether memory can be written to on a page basis. In protection-only
mode, additional bits are defined in the TLBs and are propagated and managed through
portions of the architecturally-defined page translation mechanism.

In protection-only mode, the TLBs can be configured to provide protection for 32, 4-Kbyte
pages per TLB entry. The 602 provides one 32-entry, two-way set-associative TLB for
instructions and one for data. Therefore, a total of 4 Mbytes of memory can be protected in
each TLB at one time—that is, 128 Kbytes per entry (32 x 4 Kbytes) and 4 Mbytes per TLB
(2 x 16 x 128 Kbytes).

Protection consists of 1 bit per 4-Kbyte page to inhibit instruction fetching (NE bit) in the
ITLB and to enable writes (WE bit) in the DTLB.

The TLB lookup procedure in protection-only mode is similar to that used in page address
translation; however, only segment register entry 0 (SR0) is used. Other segment register
entries can be written to, but are not used for address translation. The TLB lookup process
is described in Section 5.6.1.1, “TLB Misses in Protection-Only Mode.”

5.1.2 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, or cache instruction, and when it fetches the next
instruction. The effective address is translated to a physical address according to the
procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.3 MMU Organization
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search of the page
tables for PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.
5-8 PowerPC 602 RISC Microprocessor User's Manual

Figure 5-2 and Figure 5-3 show the conceptual organization of the 602 instruction and data
MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by the
processor for sequential instruction fetches and addresses that correspond to a change of
program flow. Data addresses shown in Figure 5-3 are generated by load and store
instructions and by cache instructions.

As shown in the figures, after an address is generated, the high-order bits of the effective
address, EA0–EA19 (or a smaller set of address bits, EA0–EAn, in the cases of blocks), are
translated into physical address bits PA0–PA19. The low-order address bits, A20–A31 are
untranslated and therefore identical for both effective and physical addresses. After
translating the address, the MMUs pass the resulting 32-bit physical address to the memory
subsystem.

In addition to the high-order address bits, the MMUs automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of MSR[PR] and MSR[AP] when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the access is for a
load or a store operation. This information is then used by the MMUs to appropriately direct
the address translation and to enforce the protection hierarchy programmed by the
operating system. Section 4.2, “Exception Processing,” describes the MSR, which controls
some of the critical functionality of the MMUs.

The figures show the way in which the A21–A26 address bits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits A20 and PA0–PA19) of the two
selected cache blocks to determine if a cache hit has occurred. In the case of a cache miss,
the instruction or data access is then forwarded to the bus interface unit which then initiates
an external memory access.
Chapter 5. Memory Management 5-9

Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations

MMU
(32-Bit)

A20–A31

X

E
A

0–
E

A
19

E
A

0–
E

A
19

EA0–EA3

0

15

Segment Registers

PA0–PA31

EA0-EA14

EA0–EA14

EA4–EA19

On-Chip
TLBs

(optional)

Page Table
Search Logic

(optional)

Data
Accesses

Instruction
Accesses

A
20

–A
31

SPR25SDR1

+

X

DBAT0U
DBAT0L

DBAT3U
DBAT3L

PA15–PA19
+

X

←

X
EA15-EA19

Upper 24 bits of
virtual address

EA15–EA19

PA0–PA14

PA0–PA19

BAT
 Hit

IBAT0U
IBAT0L

IBAT3U
IBAT3L

Optional

PA0–PA19
5-10 PowerPC 602 RISC Microprocessor User's Manual

Figure 5-2. PowerPC 602 Microprocessor IMMU Block Diagram

Compare

IMMU

PA0–PA31

Instruction
Unit

SPR978HASH1

BPU

ITLB

S
el

ec
t

E
A

0–
E

A
19

RPA

HASH2 SPR979

SPR982

IBAT0U
IBAT0L

IBAT3U
IBAT3L

IBAT Array

SPR980IMISS

ICMP SPR981

X

+

Compare

I Cache
Hit/Miss

EA0–EA14

E
A

0–
E

A
19

A20–A31

PA0–PA19
SDR1 SPR25

EA4–EA19

EA0–EA3

0

15

0

15

Segment Registers

SPR990SER

SEBR SPR991

A21–A26

Select

I Cache

0

63

TAGS

PA0–PA19, A20
Chapter 5. Memory Management 5-11

Figure 5-3. PowerPC 602 Microprocessor DMMU Block Diagram

DMMU

PA0–PA31

Load/Store
Unit

SPR978HASH1

DTLB

0

15

Segment Registers

EA0–EA3

S
el

ec
t

E
A

0–
E

A
19

RPA

HASH2 SPR979

SPR982

DBAT0U
DBAT0L

DBAT3U
DBAT3L

DBAT Array

SPR976DMISS

DCMP SPR977

X

+

E
A

0–
E

A
19

A21–A26

D Cache
Hit/Miss

Select

PA0–PA19

D Cache

SPR25SDR1

EA0–EA14

EA4–EA19

A20–A31

Compare
Compare

0

63

TAGS

PA0–PA19, A20

0

15
5-12 PowerPC 602 RISC Microprocessor User's Manual

5.1.4 Address Translation Mechanisms
PowerPC processors support four types of address translation. In addition, the 602 supports
an additional protection-only mode not defined by the PowerPC architecture. The memory
management modes supported by the 602 are as follows:

• Page address translation—translates the page frame address for a 4-Kbyte page size

• Block address translation—translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte.

• Direct-store interface address translation—used to generate direct-store interface
accesses on the external bus; not implemented in the 602.

• Real addressing mode translation—when address translation is disabled, the
physical address is identical to the effective address.

• Protection-only mode—An optional configuration of the TLBs that offers no-
execute and write-enable protection for up to 4 Mbytes of memory per ITLB and
DTLB, respectively. Although the effective address is used as the physical address,
the MMU’s translation mechanism is used to enforce protection. Protection-only
mode is described in Section 5.6, “Protection-Only Mode.”

Figure 5-4 shows the address translation mechanisms provided by the 602 MMUs. The
segment descriptors shown in the figure control the page address translation mechanism.
When an access uses page address translation, the appropriate segment descriptor is
required. In 32-bit implementations, one of the 16 on-chip segment registers (which contain
segment descriptors) is selected by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space (selected when the direct-
store translation control bit (T bit) in the corresponding segment descriptor is set). Note that
the direct-store interface is present only for compatibility with existing I/O devices that
used this interface. When an access is determined to be to the direct-store interface space,
the 602 takes a DSI exception as described in Section 4.5.3, “DSI Exception (0x0300).”

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an on-
chip TLB and is available for quick access. However, if the page address translation misses
in an on-chip TLB, the MMU causes a search of the page tables in memory (using the
virtual address information and a hashing function) to locate the required physical address.
When this occurs, the 602 vectors to exception handlers that search the page tables with
software.
Chapter 5. Memory Management 5-13

Block address translation occurs in parallel with page address translation and is similar to
page address translation; however, fewer high-order effective address bits are translated
into physical address bits (more low-order address bits (at least 17) are untranslated to form
the offset into a block). Also, instead of segment descriptors and a TLB, block address
translations use the on-chip BAT registers as a BAT array. If an effective address matches
the corresponding field of a BAT register, the information in the BAT register is used to
generate the physical address; in this case, the results of the page translation (occurring in
parallel) are ignored (even if the segment corresponds to the direct-store interface space).

Figure 5-4. Address Translation Types

0 31

0 31
Physical Address

0 31
Physical Address

0 31
Physical Address

Address Translation Disabled

Page Address
Translation

(See Section 5.1.7.2)

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address =
Physical Address
(see Section 5.2)

Block Address
Translation

(see Section 5.3)

DSI/ISI exception

Look Up in
Page Table

0 51
Virtual Address

(T = 1)

Direct-Store Interface
Translation

(Not supported on the 602)

0 31
Physical Address

HID0[P0] = 1

MMU Translation
used for

protection only

Protection Only Mode
Effective Address =
Physical Address
(see Section 5.6)

(T = 0)

Look up Protection
bits in TLB

Segment Descriptor
Located

Match with BAT Reg-
isters

Effective Address
5-14 PowerPC 602 RISC Microprocessor User's Manual

Real addressing mode translation occurs when address translation is disabled; in this case
the physical address generated is identical to the effective address. Instruction and data
address translation is enabled with the MSR[IR] and MSR[DR] bits, respectively. Thus
when the processor generates an access, and the corresponding address translation enable
bit in MSR (MSR[IR] for instruction accesses and MSR[DR] for data accesses) is cleared,
the resulting physical address is identical to the effective address and all other translation
mechanisms are ignored.

Like real addressing mode, the 602-specific protection-only mode does not use the address
translation mechanism to generate a physical address. However, unlike the real addressing
mode, the protection-only mode provides memory protection features that require the use
of the address translation mechanism. See Section 5.6, “Protection-Only Mode,” for more
information about protection-only mode.

Table 5-3 shows which 602 functions can be used in the four translation/protection modes
supported by the 602.

5.1.5 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-4 shows the eight
protection options supported by the MMUs for pages along with page address translation.

Table 5-3. PowerPC 602 Microprocessor Feature Mapping

MMU Mode
esa Supervisor
Access (SE bit)

Support for No-
Execute (NE Bit)

Support for Write-
Enable (WE Bit)

Use of
MSR[AP]

Use of
HID0[WIMG]

Page address
translation

Yes Yes No Yes No

Block address
translation

Yes Yes No Yes No

Real addressing
mode

No No No Yes Yes

Protection-only
mode

Yes Yes Yes Yes Yes

Table 5-4. Access Protection Options for Pages

Option
User Read

User
Write

Supervisor Read
Supervisor

Write
I-Fetch Data I-Fetch Data

Supervisor-only — — — √ √ √

Supervisor-only-no-execute — — — — √ √

Supervisor-write-only √ √ — √ √ √

Supervisor-write-only-no-execute — √ — — √ √
Chapter 5. Memory Management 5-15

The operating system programs whether instructions can be fetched from an area of
memory by appropriately using the no-execute option provided in the segment descriptor
or the 602-defined NE bit in the PTE. Each of the remaining options is enforced based on
a combination of information in the segment descriptor and the page table entry. Thus, the
supervisor-only option allows only read and write operations generated while the processor
is operating in supervisor mode (corresponding to MSR[PR] = 0) to access the page. User
accesses that map into a supervisor-only page cause an exception to be taken.

The 602 also defines an additional bit, SE, that controls whether the 602-specific esa
instruction can be executed, thus allowing the processor to operate in supervisor mode
without using the OEA-defined exception mechanism. The relationship between the esa
instruction and the MMU is described in Section 5.6.2, “ESA Enable Protection
(Instruction Space Only).”

The 602 also defines the MSR[AP] bit which controls whether the processor running in
supervisor mode has user- or supervisor-level memory access. MSR[AP] is examined only
when the process is in supervisor mode (MSR[PR] = 0). If this bit is set, the processor has
user-level memory access.

Finally, there is a facility in the VEA and OEA that allows pages or blocks to be designated
as guarded preventing out-of-order accesses that may cause undesired side effects. For
example, areas of the memory map that are used to control I/O devices can be marked as
guarded so that accesses (for example, instruction prefetches) do not occur unless they are
explicitly required by the program.

In protection-only mode (HID0[PO] = 1), pages defined as instruction space are protected
by the NE bits in the ITLB and SE bits from the SER. DTLB pages are protected by the WE
bit only. For instruction fetches, the NE bit controls fetching and the SE bit controls the
ability to execute the esa instruction on a per-page basis.

Also in protection-only mode, for store instructions, the WE bit controls write access to a
page; read access is permitted for all pages. Thus, all loads from the data cache or memory
are permitted for pages mapped in the DTLB, but stores are disallowed unless the
appropriate WE bit in the DTLB is set.

Both user/supervisor √ √ √ √ √ √

Both user/supervisor-no-execute — √ √ — √ √

Both read-only √ √ — √ √ —

Both read-only-no-execute — √ — — √ —

√ access permitted
 — protection violation

Table 5-4. Access Protection Options for Pages (Continued)

Option
User Read

User
Write

Supervisor Read
Supervisor

Write
I-Fetch Data I-Fetch Data
5-16 PowerPC 602 RISC Microprocessor User's Manual

Note that the protection-only mode does not use SR[N] to determine execution/protection
violations. In addition, there is an interaction with the key bits in segment register 0 (SR0).
This is described in Section 5.6, “Protection-Only Mode.”

For more information on memory protection, see “Memory Protection Facilities,” in
Chapter 7, “Memory Management,” in the The Programming Environments Manual.

5.1.6 Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. This information can then be used by the operating system to determine which areas
of memory to write back to disk when new pages must be allocated in main memory.
Although these bits are initially programmed by the operating system into the page table,
the architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required. The software table search routines used by the 602 set the R bit when a PTE
is accessed; the 602 causes an exception (to vector to the software table search routines)
when the C bit in the corresponding TLB entry requires updating. Note that the R and C
bits are not maintained in protection-only mode and as a result do not cause exceptions for
this case.

5.1.7 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.7.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode translation is
used (physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, “Real Addressing Mode.” Note also that the
effective address also equals the physical address in protection-only mode; however,
portions of the MMU which are disabled in real addressing mode, are used in protection-
only mode in order to enforce memory protection.

Figure 5-5 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select page
address translation.
Chapter 5. Memory Management 5-17

Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. The 602 defines additional bits that are maintained in this process—the SE
bit controls whether the esa instruction can be fetched and the NE bit specifies whether
instructions can be executed from the referenced memory location. These bits are described
in Section 2.1.1.4, “BAT Registers,” If the access violates the protection mechanism, an
exception (ISI or DSI exception) is generated.

5.1.7.2 Page Address Translation Selection
If address translation is enabled (real addressing mode not selected) and the effective
address information does not match with a BAT array entry, MSR[PO] is checked to see if
protection-only mode is selected. If the PO bit is set, protection-only mode, described in
Section 5.6, “Protection-Only Mode,” is used. If MSR[PO] is cleared, the segment
descriptor must be located. Note that the 602 does not implement the direct-store interface
and accesses to segments for which SR[T] is set cause a DSI or an ISI exception, depending
on the type of access. Figure 5-6 also shows the way in which the no-execute protection is
enforced at the SR level; if the N bit in the segment descriptor is set and the access is an
instruction fetch, the access is faulted as described in Chapter 7, “Memory Management,”

Perform Address Translation
with Segment Descriptor

Access Faulted

Compare Address with
Instruction or Data BAT
Array (as appropriate)

Translate Address

Perform Real
Addressing Mode

Translation

Effective Address
Generated

Continue Access
to Memory
Subsystem

Instruction
Translation Enabled

(MSR[IR] = 1)

Data
Translation Enabled

(MSR[DR] = 1)

(see Figure 5-7)

Instruction
Translation Disabled

(MSR[IR] = 0)

Data
Translation Disabled

(MSR[DR] = 0)

BAT Array
Hit

BAT Array
Miss

D-accessI-access

Access
Protected

Access
Permitted

Perform Real
Addressing Mode

Translation

(see The Programming
Environments Manual)

Perform Protection–
Only Translation

HID0[P0] = 1

(see Figure 5-27)
5-18 PowerPC 602 RISC Microprocessor User's Manual

in The Programming Environments Manual. Note that the figure shows the flow for these
cases as described by the PowerPC OEA, and so the TLB references are shown as optional.
As the 602 implements TLBs, these branches are valid, and described in more detail
throughout this chapter.

Figure 5-6. Address Translation with Segment Descriptor

Access Faulted

Access Faulted

Perform Page Table
Search Operation

Continue Access
to Memory Subsystem

Translate Address

*In the case of instruction accesses, causes ISI exception

Load TLB Entry

TLB
Miss

Address Translation with
Segment Descriptor

(See Figure 5-10)

(See
Figure 5-11)

TLB
Hit

otherwise

Check T bit in
Segment Descriptor

Use EA0-EA3 to
Select One of 16 On-Chip

Segment Registers

Page Address
Translation

(T = 0)

Direct-Store
Segment Address

(T = 1)*

I-Fetch with N bit Set in
Segment Descriptor

 (No-Execute)

Compare Virtual
Address with TLB

Entries

Generate 52-bit Virtual
Address from Segment

Descriptor

PTE Not
Found

PTE Found

Access
Protected

Access
Permitted

Optional to the PowerPC architecture. Implemented in the 602.

DSI/ISI exception
Chapter 5. Memory Management 5-19

If the T bit in the corresponding segment descriptor is 0, page address translation is
selected. The information in the segment descriptor is then used to generate the 52-bit
virtual address. The virtual address is then used to identify the page address translation
information (stored as page table entries (PTEs) in a page table in memory). For increased
performance, the 602 has two TLBs to store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page translation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU requires a search of the page table. In this case, the 602 traps to one of three
exception handlers for the system software to perform the page table search. If the PTE is
successfully matched, a new TLB entry is created and the page translation is once again
attempted. This time, the TLB is guaranteed to hit. Once the PTE is located, the access is
qualified with the appropriate protection bits. If the access is a protection violation (not
allowed), an exception (instruction access or data access) is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and the
TLB miss exception handlers synthesize either an ISI or DSI exception to handle the page
fault.

5.1.8 MMU Exceptions Summary
To complete any memory access, the effective address must be translated to a physical
address. In the 602, an MMU exception condition occurs if this translation fails for one of
the following reasons:

• Page fault—there is no valid entry in the page table for the page specified by the
effective address (and segment descriptor) and there is no valid BAT translation.

• An address translation is found but the access is not allowed by the memory
protection mechanism.

Additionally, because the 602 relies on software to perform table search operations, the
processor also takes an exception when either of the following occurs:

• There is a miss in the corresponding (instruction or data) TLB (including protection-
only mode).

• The page table requires an update to the changed (C) bit.

The state saved by the processor for each of these exceptions contains information that
identifies the address of the failing instruction. Refer to Chapter 4, “Exceptions,” for a more
detailed description of exception processing.

Because a page fault condition (PTE not found in the page tables in memory) is detected
by the software that performs the table search operation (and not the 602 hardware), it does
not cause 602 exception in the strictest sense in that exception processing as described in
Chapter 4, “Exceptions” does not occur. However, in order to maintain architectural
compatibility with software written for other PowerPC devices, the software that detects
this condition should synthesize an exception by setting the appropriate bits in the DSISR
5-20 PowerPC 602 RISC Microprocessor User's Manual

or SRR1 and branching to the ISI or DSI exception handler. Refer to Section 5.5.2, “Table
Search Operation with the PowerPC 602 Microprocessor,” for more information and
examples of this exception software. The remainder of this chapter assumes that the table
search software emulates this exception and refers to this condition as an exception.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the ISI or the DSI exception to be taken as shown in Table 5-5.

In addition to the translation exceptions, there are other MMU-related conditions (some of
them defined as implementation-specific and therefore, not required by the architecture)
that can cause an exception to occur in the 602. These exception conditions map to the
processor exception as shown in Table 5-6. For example, the 602 also defines three
exception conditions to support software table searching. The only exception conditions
that occur when MSR[DR] = 0 are the conditions that cause the alignment exception for

Table 5-5. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and no
matching BAT array entry) Note that the 602
hardware does not vector to these exceptions
automatically. It is assumed that the software that
performs the table search operations vectors to
these exceptions and sets the appropriate bits
when a page fault condition occurs

Instruction access:
ISI exception

SRR1[1] = 1

Data access:
DSI exception

DSISR[1] =1

Block protection violation Conditions described for block in “Block Memory
Protection” in Chapter 7, “Memory Management,”
in The Programming Environments Manual. Note
that the table search software can also vector to
these exception conditions

Instruction access:
ISI exception

SRR1[4] = 1

Data access:
DSI exception

DSISR[4] =1

Page protection violation Conditions described for page in “Memory
Segment Model” in Chapter 7, “Memory
Management,” in The Programming Environments
Manual.

Instruction access:
ISI exception

SRR1[4] = 1

Data access:
DSI exception

DSISR[4] =1

No-execute protection violation Attempt to fetch instruction when SR[N], IBAT[NE],
or PTE[NE] = 1

ISI exception
SRR1[3] = 1

Instruction fetch from segment where
SR[T] = 1

Attempt to fetch instruction when SR[T] = 1 ISI exception
SRR1[3] =1

Data access to segment where
SR[T] = 1 (including floating-point
access) (602-specific condition)

Attempt to perform load or store (including floating-
point load or store) when SR[T] = 1

DSI exception
DSISR[5] =1

Instruction fetch from guarded
memory with MSR[IR] = 1

Attempt to fetch instruction when MSR[IR] = 1 and
either matching xBAT[G] = 1, or no matching BAT
entry and PTE[G] = 1.

ISI exception
SRR1[3] =1
Chapter 5. Memory Management 5-21

data accesses. For more detailed information about the conditions that cause the alignment
exception (in particular for string/multiple instructions), see Section 4.5.6, “Alignment
Exception (0x0600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or caching-inhibited (I = 1). These bits are described fully in
“Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and Memory Coherency,”
of The Programming Environments Manual. Refer to Chapter 4, “Exceptions,” of this book
and to Chapter 6, “Exceptions,” in The Programming Environments Manual for a complete
description of the SRR1 and DSISR bit settings for these exceptions.

Table 5-6. Other MMU Exception Conditions for the PowerPC 602 Processor

Condition Description Exception

TLB miss for an instruction
fetch

No matching entry found in ITLB ITLB miss exception
SRR1[13] = 1
MSR[14] = 1

TLB miss for a data access No matching entry found in DTLB for
data access

Load: DTLB miss on load exception
MSR[14] = 1

Store: DTLB miss on store exception
SRR1[15] =1
MSR[14] = 1

Store operation and C = 0 Matching DLTB entry has C = 0 and
access is a store

DTLB miss on store exception
SRR1[15] =1
MSR[14] = 1

dcbz with W = 1 or I = 1 dcbz instruction to write-through or
caching-inhibited segment or block

Alignment exception (not required by
architecture for this condition)

lwarx or stwcx. instruction to
direct-store segment

Reservation instruction or external
control instruction when SR[T] =1

DSI exception
DSISR[5] = 1

Floating-point load or store to
direct-store segment

Floating-point memory access when
SR[T] = 1

See data access to direct-store
segment in Table 5-5.

Load or store would cause a
direct-store error

Does not occur in 602 Does not apply

eciwx or ecowx attempted eciwx and ecowx are not supported on
the 602

DSI exception
DSISR[11] = 1

lmw or stmw instruction
attempted in little-endian mode

lmw or stmw instruction attempted
while MSR[LE] = 1

Alignment exception

Operand misalignment Translation enabled and operand is
misaligned as described in Chapter 4,
“Exceptions.”

Alignment exception (some of these
cases are implementation-specific)

Attempt to execute esa
instruction from page or block
for which SE = 0.

The esa instruction was fetched from a
page or block for which it is not
enabled. This could occur either when
either the SE bit or the key equals zero.

Illegal instruction program exception
5-22 PowerPC 602 RISC Microprocessor User's Manual

5.1.9 MMU Instructions and Register Summary
The MMU instructions and registers provide the operating system with the ability to set up
the block address translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tables in memory whenever changes are made to the tables in memory.
When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the 602 implements all TLB-related instructions except tlbia, which is treated as
an illegal instruction. The 602 also uses some implementation-specific instructions to load
two on-chip TLBs.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be “encapsulated” into
subroutines to minimize the impact of migrating across the family of implementations.

Table 5-7 summarizes 602 instructions that specifically control the MMU. For more
detailed information about the instructions, refer to Chapter 2, “PowerPC 602
Microprocessor Programming Model,” in this book and Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

Table 5-7. PowerPC 602 Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#]← rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr rD,SR Move from Segment Register
rD←SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

tlbie rB* TLB Invalidate Entry
For effective address specified by rB, TLB[V]←0
Invalidates both TLB entries indexed by the EA and operates on both the ITLBs and DTLBs
simultaneously invalidating four TLB entries. The index corresponds to EA[16–19].

tlbsync* TLB Synchronize
Implemented as a no-op on the 602

tlbli
(602-specific)

TLB Load Instruction
Loads data provided in the ICMP, IMISS, and RPA registers into the ITLB. Note that the format for
RPA differs if the 602 is running in protection-only mode.
Chapter 5. Memory Management 5-23

Table 5-8 summarizes the registers that the operating system uses to program the 602
MMUs. These registers are accessible to supervisor-level software only. These registers are
described in Chapter 2, “Register Set,” in The Programming Environments Manual. The
602-specific registers are described in Chapter 2, “PowerPC 602 Microprocessor
Programming Model,” of this book.

tlbld
(602-specific)

TLB Load Data
Loads data provided in the DCMP, DMISS, and RPA registers into the DTLB. Note that the format
for RPA differs if the 602 is running in protection-only mode.

* These instructions are defined by the PowerPC architecture, but are optional.

Table 5-8. PowerPC 602 Microprocessor MMU Registers

Register Description

Segment registers
(SR0–SR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of the
PowerPC architecture. The segment registers are accessed by the mtsr, mtsrin, mfsr,
and mfsrin instructions. In protection-only mode, the settings in SR0 are used for the
entire memory space.

BAT registers
(IBAT0U–IBAT3U,
IBAT0L–IBAT3L,
DBAT0U–DBAT3U,
and DBAT0L–DBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBAT0U–IBAT3U paired with IBAT0L–IBAT3L) and four pairs of data BAT registers
(DBAT0U–DBAT3U paired with DBAT0L–DBAT3L). The BAT registers are defined as 32-
bit registers in 32-bit implementations. These are special-purpose registers that are
accessed by the mtspr and mfspr instructions. Two additional bits are specified in the
602—the NE bit provides no-execute protection, and the SE bit controls whether the esa
instruction can be executed from the specified block.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in memory.
SDR1 is defined as a 32-bit register for 32-bit implementations. This SPR is accessed by
the mtspr and mfspr instructions.

Instruction TLB miss
address and data TLB
miss address registers
(IMISS and DMISS)

When a TLB miss exception occurs, the IMISS or DMISS register contains the 32-bit
effective address of the instruction or data access, respectively, that caused the miss.
Note that the 602 always loads a big-endian address into the DMISS register. These
registers are 602-specific.

Primary and secondary
hash address registers
(HASH1 and HASH2)

 HASH1 and HASH2 hold the primary and secondary PTEG addresses that correspond to
the address causing a TLB miss. These PTEG addresses are automatically derived by
the 602 by performing the primary and secondary hashing function on the contents of
IMISS or DMISS, for an ITLB or DTLB miss exception, respectively.
These registers are 602-specific.

Instruction and data
PTE compare registers
(ICMP and DCMP)

The ICMP and DCMP registers contain the word to be compared with the first word of a
PTE in the table search software routine to determine if a PTE contains the address
translation for the instruction or data access. The contents of ICMP and DCMP are
automatically derived by the 602 when a TLB miss exception occurs.
These registers are 602-specific.

Required physical
address register (RPA)

The system software loads a TLB entry by loading the second word of the matching PTE
entry into the RPA register and then executing the tlbli or tlbld instruction (for loading the
ITLB or DTLB, respectively). The organization of the RPA contents is different when the
processor is running in protection-only mode.
This register is 602-specific.

Table 5-7. PowerPC 602 Microprocessor Instruction Summary—Control MMUs

Instruction Description
5-24 PowerPC 602 RISC Microprocessor User's Manual

Note that the 602 contains other features that don’t specifically control the 602 MMU but
that are implemented to increase performance and flexibility. These are as follows:

• Complete set of shadow segment registers for the instruction MMU. These registers
are invisible to the programming model, as described in Section 5.4.4, “TLB
Description.”

• Temporary GPR0–GPR3. These registers are available as r0–r3 when MSR[TGPR]
is set. The 602 automatically sets MSR[TGPR] whenever one of the three TLB miss
exceptions occurs, allowing these exception handlers to have four registers that are
used as scratchpad space, without having to save or restore this part of the machine
state that existed when the exception occurred. Note that MSR[TGPR] is restored to
the value in SRR1 when the rfi instruction is executed. Refer to Section 5.5.2, “Table
Search Operation with the PowerPC 602 Microprocessor,” for code examples that
take advantage of these registers.

In addition, the 602 also automatically saves the values of CR[CR0] of the executing
context to SRR1[0–3] whenever one of the three TLB miss exceptions occurs. Thus, the
exception handler can set CR[CR0] bits and branch accordingly in the exception handler
routine, without having to save the existing CR[CR0] bits. However, the exception handler
must restore these bits to CR[CR0] before executing the rfi instruction. There are also four
other bits saved in SRR1 whenever a TLB miss exception occurs that give information
about whether the access was an instruction or data access, and if it was a data access,
whether it was for a load or a store instruction. Also these bits give some information related
to the protection attributes for the access, and which set in the TLB will be replaced when
the next TLB entry is loaded. Refer to Section 5.5.2.1, “Resources for Table Search
Operations,” for more information on these bits and their use.

5.2 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

ESA Enable Base
Register (SEBR)
(protection-only mode)

SEBR[0–14] are compared with EA[0–14] to determine whether the address associated
with the EA is in a 4-Kbyte page in which the esa instruction can be executed. If the bits
match, EA[15-19] identify the bit in the SER that corresponds to the page of the EA.

ESA Enable Register
(protection-only mode)

The SER register is composed of 32 SE bits which, if they are set, enable the execution of
the esa instruction for the corresponding 4-Kbyte page.

Table 5-8. PowerPC 602 Microprocessor MMU Registers (Continued)

Register Description
Chapter 5. Memory Management 5-25

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to “Synchronization Requirements for Special Registers and for
Lookaside Buffers” in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

Note that in the 602, the HID0[WIMG] bits provide programmable cache control attributes
when real addressing is used. The real addressing mode also supports the 602-specific
MSR[AP] bit, which can be used to restrict memory accesses by supervisor-level programs
to only user-level memory locations. This bit is valid only for supervisor mode.

Note that the esa instruction and the protection provided by the SE, WE, and NE bits are
not supported in real addressing mode. For implementations that require such protection
without using address translation, the 602 provides a protection-only mode, described in
Section 5.6, “Protection-Only Mode.”

Implementation Note—When the processor is in either real addressing mode or
protection-only mode, care should be taken when clearing HID0[G]. The 602 allows out-
of-order loads to access the processor bus. If an out-of-order load follows an instruction that
causes an exception, the load/store unit may pass the out-of-order load operation onto the
system bus. Because this load cannot be cancelled, depending on the temporal position of
the faulting instruction, translation may be enabled when the instruction passes through the
instruction stream but may be disabled when the cache control information and address
reach the bus. Setting HID0[G] prevents such a load operation from accessing the bus.

5.3 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

The software model for block address translation in the 602 is described in Chapter 7,
“Memory Management,” in The Programming Environments Manual for 32-bit
implementations.

In addition to the functionality defined by the OEA, the 602 supports two additional
memory-protection features at the block level that are supported by the implementation of
two 602-specific bits in the IBAT registers that are reserved in the OEA definition. These
are as follows:

• The no-execute bit (NE), IBATL[21], indicates whether instructions can be fetched
from the current block of memory.

• The ESA enable bit (SE), IBATL[22], indicates whether the execution of the esa
instruction is enabled in the current block of memory.
5-26 PowerPC 602 RISC Microprocessor User's Manual

Figure 5-7 shows the flow when an address hits in a BAT. Note that the flow differs from
that defined for the PowerPC architecture except that IBAT[NE] is checked before the PP
bits are checked.

Figure 5-7. Flow for a BAT Array Hit

If the NE bit is set, the SE bit is a don’t care because fetching is disabled for this block.
Although the NE bit controls the ability to fetch instructions (including the esa instruction)
from memory space specified, the SE bit does not prevent the esa instruction from being
fetched. If the SE bit disables the esa instruction, it is not detected until after the processor
attempts to execute the instruction, at which point an illegal instruction program exception
is taken.

Implementation Note—The 602 BAT registers are not initialized by the hardware after the
power-up or reset sequence. Consequently, all valid bits in both instruction and data BAT
areas must be cleared before setting any BAT area for the first time. This is true regardless
of whether address translation is enabled. Also, software must avoid overlapping blocks
while updating a BAT area or areas. Even if translation is disabled, multiple BAT area hits
are treated as programming errors and can corrupt the BAT registers and produce
unpredictable results.

BAT Array Hit

SRRI[3] = 1

PA0–PA31 = BRPN (0–3) ||
BRPN (4–14)
((EA4–EA14) & (BL)) ||
EA15–EA31

Other Memory Protection
Violation Conditions

otherwise IBAT
[NE] bit = 1
and Instruction fetch

ISI Exception

otherwise Read Access with
PP = 00

Continue Access to Memory
Subsystem with WIMG in

Lower BAT Register

(See The Programming Environments Manual)

Write Access with
PP = any of

00
x1
Chapter 5. Memory Management 5-27

5.4 Memory Segment Model
The 602 adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, “Block Address Translation.” If
HID0[PO] bit is set, the processor is in protection-only mode described in Section 5.6,
“Protection-Only Mode.” If HID0[PO] is not set, the translation proceeds with the
following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 602.

5.4.1 PTE Format in the PowerPC 602 Microprocessor
Figure 5-8 shows the format of the two words that comprise a PTE for 32-bit
implementations. Note that the NE and SE bits, which are implemented in the IBATs as
described in Section 5.3, “Block Address Translation,” are also implemented at the page
level. These bits control instruction fetching and the ability to use the esa instruction to
enter supervisor mode.

Figure 5-8. Page Table Entry Format—PowerPC 602 Processor

Reserved

0 19 20 22 23 24 25 28 29 30 31

V VSID H API

0 1 24 25 26 31

RPN 0 NESE R C WIMG 0 PP
5-28 PowerPC 602 RISC Microprocessor User's Manual

Table 5-9 lists the corresponding bit definitions for each word in a PTE as defined above.

5.4.2 Page History Recording
Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 602 hardware and the table search
software. The operating system uses this information to determine which areas of memory
to write back to disk when new pages must be allocated in main memory. Referenced and
changed recording is performed only for accesses made with page address translation and
not for translations made with the BAT mechanism or for accesses that correspond to
protection-only mode. Furthermore, R and C bits are maintained only for accesses made
while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 602, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-10.

• For TLB misses, when a table-search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-9. PTE Bit Definitions—PowerPC 602 Processor

Word Bit Name Description

0 0 V Entry valid (V = 1) or invalid (V = 0)

1–24 VSID Virtual segment ID

25 H Hash function identifier

26–31 API Abbreviated page index

1 0–19 RPN Physical page number

20 — Reserved

21 NE No execute. The NE bit controls execute privileges for the page. If this bit is set,
instructions cannot be fetched from this page. Note that setting SR[N] also inhibits
execute privileges on a 256-Mbyte basis and overrides a setting of zero for the NE bit.
The NE bit is valid only in instruction space. This bit is 602-specific.

22 SE Special execute. The SE bit controls whether the esa instruction, which puts the
processor in supervisor mode, can execute from this page. The SE bit is valid only in
instruction space. This bit is 602-specific.

23 R Referenced bit

24 C Changed bit

25–28 WIMG Memory/cache control bits

29 — Reserved

30–31 PP Page protection bits
Chapter 5. Memory Management 5-29

Table 5-10 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The 602 causes the R bit to be set for the execution of the dcbt or dcbtst instruction to that
page (by causing a TLB miss exception to load the TLB entry in the case of a TLB miss).
However, neither of these instructions cause the C bit to be set.

The update of the referenced and changed bits is performed by PowerPC processors as if
address translation were disabled (real addressing mode translation). Additionally, these
updates should be performed with single-beat read and byte write transactions on the bus.

5.4.2.1 Referenced Bit
The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the R bit is then set in the
page table. The OEA specifies that the referenced bit may be set immediately, or the setting
may be delayed until the memory access is determined to be successful. Because the
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all
602 TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

• Fetching of instructions not subsequently executed

• Accesses generated by an stwcx. instruction when no store is performed because a
reservation does not exist

• Accesses that cause exceptions and are not completed

Table 5-10. Table Search Operations to Update History Bits—TLB Hit Case

R and C bits
in TLB entry

Processor Action

00 Combination doesn’t occur

01 Combination doesn’t occur

10 Read: No special action
Write: Table search operation required to update C bit. Causes a DTLB miss on store exception

11 No special action for read or write
5-30 PowerPC 602 RISC Microprocessor User's Manual

5.4.2.2 Changed Bit
The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the 602). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is already set, the
processor does not change the C bit. If the TLB changed bit is 0, it is set and a table search
operation is performed to also set the C bit in the corresponding PTE in the page table. The
602 causes a data TLB miss on store exception for this case so that the software can perform
the table search operation for setting the C bit.

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and all conditional
branches occurring earlier in the program have been resolved (such that the store is
guaranteed to be in the execution path). Furthermore, the following conditions may cause
the C bit to be set:

• The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed because no reservation exists.

• The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5.4.2.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor; in some scenarios, the architecture allows
that the bits may be set (not absolutely required); and in some scenarios, the bits are
guaranteed to not be set.

In implementations that do not maintain the R and C bits in hardware (such as the 602),
software assistance is required. For these processors, the information in this section still
applies, except that the software performing the updates is constrained to the rules
described (that is, must set bits shown as guaranteed to be set and must not set bits shown
as guaranteed to not be set).

Table 5-11 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions and by the cache
management instructions that are treated as a load with respect to address translation.
Similarly, store operations include those operations generated by store instructions and by
the cache management instructions that are treated as a store with respect to address
Chapter 5. Memory Management 5-31

translation. In the columns for the 602, the combination of the 602 itself and the software
used to search the page tables (described in Section 5.5.2, “Table Search Operation with the
PowerPC 602 Microprocessor”) is assumed.

For more information, see “Page History Recording” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

5.4.3 Page Memory Protection
The 602 implements page memory protection as it is defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

In addition to the functionality defined by the OEA, the 602 supports two additional
memory-protection features at the page level that are supported by the implementation of
two 602-specific bits in the PTEs and TLBs. These are as follows:

• The no-execute bit (NE), PTE[21], indicates whether instructions can execute from
the page. Figure 5-10 shows how the NE bit is checked as part of the translation
process.

• The ESA enable bit (SE), PTE[22], indicates whether the use of the esa instruction
is enabled for the page.

Table 5-11. Model for Guaranteed R and C Bit Settings

Priority Scenario
R Bit Set C Bit Set

OEA 602 OEA 602

1 No-execute protection violation Maybe No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation contingent on a branch,
trap, sc, or rfi instruction, or a possible exception

Maybe No No No

5 Out-of-order store operation contingent on an exception,
other than a trap or sc instruction, not occurring

Maybe1 No Maybe1 No

6 Store conditional (stwcx.) with no reservation Maybe1 Yes Maybe1 Yes

7 In-order instruction fetch Yes2 Yes No No

8 Load instruction Yes Yes No No

9 Store or dcbz instruction Yes Yes Yes Yes

10 icbi, dcbt, dcbtst, dcbst, or dcbf instruction Maybe Yes No No

11 dcbi instruction Maybe1 Yes Maybe1 Yes

Notes:
1. If C is set, R is guaranteed to also be set.
2. Includes the case in which the instruction was fetched out of order and R was not set

(does not apply for 602).
5-32 PowerPC 602 RISC Microprocessor User's Manual

Note that the NE bit functions like SR[N] by controlling the ability to fetch instructions
from the corresponding memory space. If the NE bit is set, no instructions can be fetched,
including the esa instruction, so in this case the SE bit is a don’t care. If the NE bit is
cleared, instructions can be fetched, including the esa instruction, regardless whether the
SE bit is set. If the SE bit is cleared the esa supervisor access is disabled. The esa instruction
can be fetched, but causes an exception when the processor attempts to execute it. For a
detailed flow diagram, see Figure 5-10.

5.4.4 TLB Description
This section describes the hardware resources provided in the 602 to facilitate the page
address translation process. Note that the hardware implementation of the MMU is not
specified by the architecture, and while this description applies to the 602, it does not
necessarily apply to other PowerPC processors.

Note that the TLBs are redefined when the processor is operating in protection-only mode.
The low-order 32 bits of ITLB entries hold 32 NE bits, each of which indicates whether the
corresponding 4-Kbyte page is configured as no-execute. The low-order 32 bits of the
DTLB entries hold 32 WE bits that indicate whether the corresponding 4-Kbyte page is
configured as write-enabled. For more information about protection-only mode, see
Section 5.6, “Protection-Only Mode.” The remainder of this section describes TLB
operation when the processor is not running in protection-only mode.

5.4.4.1 TLB Organization
Because the 602 has two MMUs (IMMU and DMMU) that operate in parallel, some of the
MMU resources are shared, and some are actually duplicated (shadowed) in each MMU to
maximize performance. Figure 5-9 shows the relationships between these resources within
both the IMMU and DMMU, and how the various portions of the effective address are used
in the address translation process.
Chapter 5. Memory Management 5-33

Figure 5-9. Segment Register and TLB Organization

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), when there is an exception condition, only one
exception is reported at a time. ITLB miss exceptions are reported when there are no more
instructions to be dispatched or retired (the pipeline is empty), and DTLB miss conditions
are reported when the load or store instruction is ready to be retired. Refer to Chapter 6,
“Instruction Timing,” for more detailed information about the internal pipelines and the
reporting of exceptions.

As TLB entries are on-chip copies of PTEs in the page tables in memory, they are similar
in structure. TLB entries consist of two words—the high-order word contains the VSID and
API fields of the high-order word of the PTE and the low-order word contains the RPN, the
C bit, the WIMG bits, and the PP bits (as in the low-order word of the PTE). In order to
uniquely identify a TLB entry as the required PTE, the PTE also contains six more bits of
the page index, EA10–EA15 (in addition to the API bits of the PTE).

T

0 7 8 31

0

15 T VSID

Segment Registers

TLB

EA0–EA31

EA0–EA3

EA16–EA19

VSID

Select

Compare

Compare

EA4–EA15

Line 1

Line 0

MUX

RPN

PA0–PA19

V

V0

15

Line 1/Line 0 H
it
5-34 PowerPC 602 RISC Microprocessor User's Manual

When an instruction or data access occurs, the effective address is routed to the appropriate
MMU. EA0–EA3 select one of the 16 segment registers and the remaining effective address
bits and the virtual address from the segment register is passed to the TLB. EA16–EA19
then select two entries in the TLB; the valid bit is checked and EA10–EA15, the VSID, and
API fields for the access are then compared with the corresponding values in the TLB
entries. If one of the entries hits, the NE bit is checked for instruction accesses, the PP bits
are checked for a protection violation, and the C bit is checked. If these bits don’t cause an
exception, the RPN value is passed to the memory subsystem and the WIMG and SE are
then used as attributes for the access.

Although address translation is disabled on any reset condition, the valid bits of the BAT
array and TLB entries are not automatically cleared. Thus TLB entries must be explicitly
cleared by the system software (with the tlbie instruction) before the valid entries are
loaded and address translation is enabled.

5.4.4.2 TLB Entry Invalidation
For the PowerPC processors, such as the 602, that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optional tlbie
instruction provides a way to invalidate the TLB entries. Note that the execution of the tlbie
instruction in the 602 invalidates four entries—both the ITLB entries indexed by
EA16–EA19 and both the indexed entries of the DTLB.

The architecture allows tlbie to optionally enable a TLB invalidate signaling mechanism in
hardware so that other processors also invalidate their resident copies of the matching PTE.
The 602 does not signal the TLB invalidation to other processors nor does it perform any
action when a TLB invalidation is performed by another processor.

The tlbsync instruction is treated as a no-op on the 602.

The tlbia instruction is not implemented on the 602 and when its opcode is encountered,
an illegal instruction program exception is generated. To invalidate all entries of both TLBs,
32 tlbie instructions must be executed, incrementing EA16–EA19 by one each time. See
Chapter 8, “Instruction Set,” in The Programming Environments Manual for detailed
information about the tlbie instruction.

5.4.5 Page Address Translation Summary
Figure 5-10 provides the detailed flow for the page address translation mechanism. The
figure includes the checking of the N bit in the segment register and then expands on the
“TLB Hit” branch of Figure 5-6, including the checking of ITLB[NE]. The detailed flow
for the “TLB Miss” branch of Figure 5-6 is described in Section 5.5.1, “Page Table Search
Operation—Conceptual Flow.” Note that as in the case of block address translation, if the
dcbz instruction is attempted to be executed either in write-through mode or as caching-
inhibited (W = 1 or I = 1), the alignment exception is generated. The remaining checking
of memory protection violation conditions for page address translation is described in
Chapter 5. Memory Management 5-35

Chapter 7, “Memory Management,” in The Programming Environments Manual for 32-bit
implementations.

Figure 5-10. Page Address Translation Flow for PowerPC 602 Processor—TLB Hit

(See The
Programming
Environments

Manual)

(See Figure 5-11)

TLB Hit
Case

Alignment Exception

Compare Virtual Address
with TLB Entries

Continue Access to Mem-
ory Subsystem with WIMG

bits from PTE

Page Table
Search Operation

PA0–PA31←RPN||A20–A31

Generate 52-Bit
 Virtual Address from
Segment Descriptor

Page Address
Translation

Check Page Memory
 Protection Violation Conditions

I-Fetch with N Bit Set in
Segment Descriptor

 (No-Execute)

Page Memory
Protection Violation

Access ProhibitedAccess Permitted

otherwise
Store Access with

PTE [C] = 0

otherwisedcbz Instruction
with W or I = 1

otherwise

(See The Programming
Environments Manual)

otherwise

SRRI[3] ← 1

ISI Exception

TLB[NE] = 1 and
Instruction Fetch
5-36 PowerPC 602 RISC Microprocessor User's Manual

5.5 Page Table Search Operation
As stated earlier, the operating system must synthesize the table search algorithm for setting
up the tables. In the case of the 602, the TLB miss exception handlers also use this
algorithm (with the assistance of some hardware-generated values) to load TLB entries
when TLB misses occur as described in Section 5.5.2, “Table Search Operation with the
PowerPC 602 Microprocessor.”

5.5.1 Page Table Search Operation—Conceptual Flow
The table search process for a PowerPC processor varies slightly for 64-and 32-bit
implementations. The main differences are the address ranges and PTE formats specified.
An outline of the page table search process performed by a 32-bit implementation (such as
the 602) is as follows:

1. The 32-bit physical address of the primary PTEG is generated as described in
Chapter 7, “Memory Management,” in The Programming Environments Manual for
32-bit implementations.

2. The first PTE (PTE0) in the primary PTEG is read from memory. PTE reads should
occur with an implied WIM memory/cache mode control bit setting of 0b001.
Therefore, they are considered cacheable and burst in from memory and placed in
the cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] = 0
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, the table search process continues as described
in step 8. If a match is not found within the eight PTEs of the primary PTEG, the
address of the secondary PTEG is generated.

5. The first PTE (PTE0) in the secondary PTEG is read from memory. Again, because
PTE reads typically have a WIM bit combination of 0b001, an entire cache line is
burst into the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

— PTE[H] = 1
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]
Chapter 5. Memory Management 5-37

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG.

8. If a match is found, the PTE is written into the on-chip TLB (if implemented, as in
the 602) and the R bit is updated in the PTE in memory (if necessary). If there is no
memory protection violation, the C bit is also updated in memory and the table
search is complete.

9. If a match is not found within the eight PTEs of the secondary PTEG, the search
fails, and a page fault exception condition occurs (either an ISI exception or a DSI
exception). Note that the software routines that implement this algorithm for the 602
must synthesize this condition by appropriately setting the bits in SRR1 (or DSISR)
and branching to the ISI or DSI handler routine.

Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-11 and Figure 5-12 provide conceptual flow diagrams of primary and secondary
page table search operations, respectively as described in the OEA for 32-bit processors.
Recall that the architecture allows for implementations to perform the page table search
operations automatically (in hardware) or software assist may be required, as is the case
with the 602. Also, the elements in the figure that apply to TLBs are shown as optional
because TLBs are not required by the architecture.

Figure 5-11 shows the case of a dcbz instruction that is executed with W = 1 or I = 1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated in the case of a memory
protection violation.
5-38 PowerPC 602 RISC Microprocessor User's Manual

Figure 5-11. Primary Page Table Search—Conceptual Flow

(from Figure 5-12)

Fetch PTE from PTEG

otherwise

Perform Secondary
Page Table Search

Secondary Page
Table Search Hit

PTE[R] ← 1
R_Flag ← 1

Write PTE
into TLB

otherwise
dcbz Instruction
with W or I = 1

otherwise

Perform Operation to
Memory or Take

Alignment Exception

Page Table
Search Complete

TLB[PTE[C]] ← 1

Page Table
Search Complete

R_Flag=1

Byte Write to
Update PTE[R]

in Memory

PTE[R] ←1
(update PTE[R]

in memory)

Generate PA using Primary Hash Function
PA ← Base PA of PTEG

Primary Page
Table Search

PA ← PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64 Bits)
from PA

PTE [VSID, API, H, V]=
Segment Descriptor [VSID], EA[API], 0, 1

Memory Protection
Violation

PTE[C] ←1
(update PTE[C]

in memory)

PTE[R] ←1
(update PTE[R]

in memory)

otherwise

Access Permitted Access Prohibited

Check Memory Protection
Violation Conditions

Optional

otherwise

Last PTE in PTEG
PTE[R]=1 PTE[R]=0

otherwise

R_Flag = 1

Store Operation with
PTE[C] = 0

otherwise

R_Flag = 1
Chapter 5. Memory Management 5-39

Figure 5-12. Secondary Page Table Search Flow—Conceptual Flow

5.5.2 Table Search Operation with the PowerPC 602 Microprocessor
The 602 has a set of implementation-specific registers, exceptions, and instructions that
facilitate very efficient software searching of the page tables in memory. This section
describes those resources that can be used in a 602 system for an efficient search of the
translation tables in software. These three code sequences can be used as handlers for the
three exceptions requiring access to the PTEs in the page tables in memory—instruction
TLB miss, data TLB miss on load, and data TLB miss on store exceptions.

5.5.2.1 Resources for Table Search Operations
In addition to setting up the translation page tables in memory, the system software must
assist the processor in loading PTEs into the on-chip TLBs. When a required TLB entry is
not found in the appropriate TLB, the processor vectors to one of the three TLB miss
exception handlers so that the software can perform a table search operation and load the
TLB. When this occurs, the processor automatically saves information about the access and
the executing context. Table 5-12 provides a summary of the implementation-specific

Generate PA using Secondary Hash Function
PA ← Base PA of PTEG

Fetch PTE from PTEG

Fetch PTE (64 Bits)
from PA

PA ← PA+ 8
(Fetch Next PTE in PTEG)

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 1, 1

Secondary Page
Table Search Hit

Page Fault

DSI
 Exception

ISI exception

Set SRR1[1]=1 Set DSISR[1]=1

(See Figure 5-11)

Secondary Page
Table Search

otherwise

otherwise

Last PTE in PTEG

Data AccessInstruction Access
5-40 PowerPC 602 RISC Microprocessor User's Manual

exceptions, registers, and instructions, that can be used by the TLB miss exception handler
software in 602 systems. Refer to Chapter 4, “Exceptions,” for more information about
exception processing.

Table 5-12. Implementation-Specific Resources for Table Search Operations

Resource Name Description

Exceptions Instruction TLB miss exception
(vector offset 0x1000)

No matching entry found in ITLB

Data TLB miss on load exception
(vector offset 0x1100)

No matching entry found in DTLB for a load data access

Data TLB miss on store
exception—also caused when
changed bit must be updated
(vector offset 0x1200)

No matching entry found in DTLB for a store data access or
matching DLTB entry has C = 0 and access is a store.

Registers IMISS and DMISS When a TLB miss exception occurs, the IMISS or DMISS
register contains the 32-bit effective address of the instruction
or data access that caused the exception.

ICMP and DCMP The ICMP and DCMP registers contain the word to be
compared with the first word of a PTE in the table search
software routine to determine if a PTE contains the address
translation for the instruction or data access. The contents of
ICMP and DCMP are automatically derived by the 602 when a
TLB miss exception occurs.

HASH1 and HASH2 The HASH1 and HASH2 registers contain the primary and
secondary PTEG addresses that correspond to the address
causing a TLB miss. These PTEG addresses are automatically
derived by the 602 by performing the primary and secondary
hashing function on the contents of IMISS or DMISS, for an
ITLB or DTLB miss exception, respectively.

RPA The system software loads a TLB entry by loading the second
word of the matching PTE entry into the RPA register and then
executing the tlbli or tlbld instruction (for loading the ITLB or
DTLB, respectively). Note that the format for the RPA register
is different for protection-only mode.

Instructions tlbli rB Loads data from the IMISS, ICMP, and RPA registers into the
ITLB entry selected by <ea> and SRR1[WAY]. See
Section 2.3.7, “PowerPC 602 Implementation-Specific
Instructions.”

 tlbld rB Loads data from the DMISS, DCMP, and RPA registers into
the DTLB entry selected by <ea> and SRR1[WAY]. See
Section 2.3.7, “PowerPC 602 Implementation-Specific
Instructions.”
Chapter 5. Memory Management 5-41

In addition, the 602 contains the following other features that don’t specifically control the
602 MMU but that are implemented to increase performance and flexibility in the software
table search routines whenever one of the three TLB miss exceptions occurs:

• Temporary GPR0–GPR3. These registers are available as r0–r3 when MSR[TGPR]
is set. The 602 automatically sets MSR[TGPR] for these cases, allowing these
exception handlers to have four registers that are used as scratchpad space, without
having to save or restore this part of the machine state that existed when the
exception occurred. Note that MSR[TGPR] is cleared when the rfi instruction is
executed because the old MSR value (with MSR[TGPR] = 0) saved in SRR1 is
restored.

• The 602 also automatically saves the values of CR[CR0] of the executing context to
SRR1[0–3]. Thus, the exception handler can set CR[CR0] bits and branch
accordingly in the exception handler routine, without having to save the existing
CR[CR0] bits. However, the exception handler must restore these bits to CR[CR0]
before executing the rfi instruction.

• Also saved in SRR1 are two bits identifying the type of miss (SRR1[D/I] identifies
instruction or data, and SRR1[L/S] identifies a load or store). Additionally,
SRR1[WAY] identifies the associativity class of the TLB entry selected for
replacement by the LRU algorithm. The software can change this value, effectively
over-writing the replacement algorithm. Finally, the SRR1 [KEY] bit is used by the
table search software to determine if there is a protection violation associated with
the access (useful on data write misses for determining if the C bit should be updated
in the table). Table 5-13 summarizes the SRR1 bits updated whenever one of the
three TLB miss exceptions occurs.

The KEY bit saved in SRR1 is derived as shown in Figure 5-13.

Figure 5-13. Derivation of KEY bit for SRR1

Table 5-13. SRR1 Bits Specific to the PowerPC 602 Microprocessor

Bit Number Name Function

0–3 CRF0 Condition register field 0 bits

12 KEY Key for TLB miss (either Ks or Kp from segment register,
depending on whether the access is a user or supervisor access)

13 D/I Set if instruction TLB miss

14 WAY Next TLB set to be replaced (set per LRU)

15 S/L Set if data TLB miss was for a load instruction

Select KEY from segment register:
If MSR[PR] = 0, KEY= Ks
If MSR[PR] = 1, KEY= Kp
5-42 PowerPC 602 RISC Microprocessor User's Manual

The remainder of this section describes the format of the implementation-specific SPRs that
are not defined by the PowerPC architecture, but are used by the TLB miss exception
handlers. These registers can be accessed by supervisor-level instructions only. Any attempt
to access these SPRs with user-level instructions results in a privileged instruction program
exception. As DMISS, IMISS, DCMP, ICMP, HASH1, HASH2, and RPA are used to
access the translation tables for software table search operations, they should only be
accessed when address translation is disabled (that is, MSR[IR] = 0 and MSR[DR] = 0).
Note that MSR[IR] and MSR[DR] are cleared by the processor whenever an exception
occurs.

5.5.2.1.1 Data and Instruction TLB Miss Address Registers (DMISS and
IMISS)

The DMISS and IMISS registers have the same format as shown in Figure 5-14. They are
loaded automatically upon a data or instruction TLB miss. The DMISS and IMISS registers
contain the effective page address of the access which caused the TLB miss exception. The
contents are used by the processor when calculating the values of HASH1 and HASH2, and
by the tlbld and tlbli instructions when loading a new TLB entry. Note that the 602 always
loads a big-endian address into the DMISS register. These registers are read-only to the
software.

Figure 5-14. DMISS and IMISS Registers

5.5.2.1.2 Data and Instruction PTE Compare Registers (DCMP and ICMP)
The DCMP and ICMP registers are shown in Figure 5-15. These registers contain the first
word in the required PTE. The contents are constructed automatically from the contents of
the segment registers and the effective address (DMISS or IMISS) when a TLB miss
exception occurs. Each PTE read from the tables in memory during the table search process
should be compared with this value to determine whether or not the PTE is a match. Upon
execution of a tlbld or tlbli instruction, the contents of the DCMP or ICMP register is
loaded into the first word of the selected TLB entry.

Figure 5-15. DCMP and ICMP Registers

0 31

Effective Page Address

0 1 24 25 26 31

V HVSID API
Chapter 5. Memory Management 5-43

Table 5-14 describes the bit settings for the DCMP and ICMP registers.

5.5.2.1.3 Primary and Secondary Hash Address Registers (HASH1 and
HASH2)

The HASH1 and HASH2 registers contain the physical addresses of the primary and
secondary PTEGs for the access that caused the TLB miss exception. Only bits 7–25 differ
between them. For convenience, the processor automatically constructs the full physical
address by routing bits 0–6 of SDR1 into HASH1 and HASH2 and clearing the low-order
six bits. These registers are read-only and are constructed from the contents of the DMISS
or IMISS register. The format for the HASH1 and HASH2 registers is shown in
Figure 5-16.

Figure 5-16. HASH1 and HASH2 Registers

Table 5-15 describes the bit settings of the HASH1 and HASH2 registers.

5.5.2.1.4 Required Physical Address (RPA) Register
The RPA is shown in Figure 5-17. During a page table search operation, the software must
load the RPA with the second word of the correct PTE. When a tlbli or tlbld instruction is
executed, data from the IMISS and ICMP (or DMISS and DCMP) and the RPA registers is
loaded into the selected TLB entry. The TLB entry is selected by the effective address of
the access (loaded by the table search software from the DMISS or IMISS register) and the
SRR1[WAY] bit.

Table 5-14. DCMP and ICMP Bit Settings

Bits Name Description

0 V Valid bit. Set by the processor on a TLB miss exception.

1–24 VSID Virtual segment ID. Copied from VSID field of corresponding segment register.

25 H Hash function identifier. Cleared by the processor on a TLB miss exception

26–31 API Abbreviated page index. Copied from API of effective address.

Table 5-15. HASH1 and HASH2 Bit Settings

Bits Name Description

0–6 HTABORG[0–6] Copy of the high-order 7 bits of the HTABORG field from
SDR1

7–25 Hashed page address Address bits 7–25 of the PTEG to be searched.

26–31 — Reserved

0 6 7 25 26 31

Reserved

HTABORG Hashed Page Address 0 0 0 0 0 0
5-44 PowerPC 602 RISC Microprocessor User's Manual

Note that the organization and operation of the RPA is different when the 602 is operating
in protection-only mode, corresponding with the content of the TLB entries and PTEs.

When the tlbld or tlbli instruction is executed, bits from the specified EA (written from the
IMISS or DMISS registers) and the contents of the RPA register are merged with the
contents of either the DCMP or ICMP register and are loaded into the selected TLB entry.

Figure 5-17. Required Physical Address (RPA) Register—Default Configuration

Table 5-16 describes the bit settings of the RPA register when HID0[PO] = 0.

5.5.2.2 Software Table Search Operation
When a TLB miss occurs, the instruction or data MMU loads the IMISS or DMISS register,
respectively, with the effective address of the access. The processor completes all
instructions dispatched prior to the exception, status information is saved in SRR1, and one
of the three TLB miss exceptions is taken. In addition, the processor loads the ICMP or
DCMP register with the value to be compared with the first word of PTEs in the tables in
memory.

Table 5-16. RPA Bit Settings—Default Configuration

Bits Name Description

0–19 RPN Physical page number from PTE

20 — Reserved

21 NE No execute. The NE bit controls execution privileges for that page. If NE = 1, instructions
cannot be fetched from that 4-Kbyte page. This bit is valid only for ITLB entries.

22 SE Controls ability to execute esa instruction from this page. Valid only for ITLB entries.

23 R Referenced bit from PTE

24 C Changed bit from PTE

25–28 WIMG Memory/cache access attribute bits

29 — Reserved

30–31 PP Page protection bits from PTE

0 19 20 21 22 23 24 25 28 29 30 31

Reserved

RPN R C WIMG PP0 0 NE SE
Chapter 5. Memory Management 5-45

The software should then access the first PTE at the address pointed to by HASH1. The first
word of the PTE should be loaded and compared to the contents of DCMP or ICMP. If there
is a match, the required PTE has been found and the second word of the PTE is loaded from
memory into the RPA register. Then the tlbli or tlbld instruction is executed, which loads
data from the IMISS and ICMP (or DMISS and DCMP) and RPA registers into the selected
TLB entry. The TLB entry is selected by the effective address of the access and the
SRR1[WAY] bit.

If the compare did not result in a match, however, the PTEG address is incremented to point
to the next PTE in the table and the above sequence is repeated. If none of the eight PTEs
in the primary PTEG matches, the sequence is then repeated using the secondary PTEG (at
the address contained in HASH2).

If the PTE is also not found in the eight entries of the secondary page table, a page fault
condition exists, and a page fault exception must be synthesized. Thus the appropriate bits
must be set in SRR1 (or DSISR) and the TLB miss handler must branch to either the ISI or
DSI exception handler, which handles the page fault condition.

This section provides a flow diagram outlining some example software that can be used to
handle the three TLB miss exceptions, as well as an assembly language example that
implements that flow.

5.5.2.2.1 Flow for Example Exception Handlers
Figure 5-18 shows the flow for the example TLB miss exception handlers. The flow shown
is common for the three exception handlers, except that the IMISS and ICMP registers are
used for the instruction TLB miss exception while the DMISS and DCMP registers are used
for the two data TLB miss exceptions. Also, for the cases of store instructions that cause
either a TLB miss or require a table search operation to update the C bit, the flow shows
that the C bit is set in both the TLB entry and the PTE in memory. Finally, in the case of a
page fault (no PTE found in the table search operation), the setup for the ISI or DSI
exception is slightly different for these two cases.

Figure 5-19 shows the flow for checking and setting the R and C bits and Figure 5-20 shows
the flow for synthesizing a page fault exception when no PTE is found. Figure 5-21 shows
the flow for managing the cases of a TLB miss on an instruction access to guarded memory,
and a TLB miss when C = 0 and a protection violation exists. The set up for these protection
violation exceptions is very similar to that of page fault conditions (as shown in
Figure 5-20) except that different bits in SRR1 (and DSISR) are set.
5-46 PowerPC 602 RISC Microprocessor User's Manual

Figure 5-18. Flow for Example Software Table Search Operation

(See Figure 5-19)

Set counter:
cnt ← 8

Load primary PTEG pointer:
ptr ← HASH1 – 8

compare_value ← ICMP/DCMP

Read lower word of next
PTE from memory:

ptr ← ptr + 8
temp ← (ptr)

Read upper word of PTE:
temp ← (ptr - 4)

otherwise

RPA ← temp

<ea> ← IMISS/DMISS

Load TLB entry
tlbli <ea> (or tlbld<ea>)

otherwise

cnt ≠ 0

Save old counter
and CR0 bits

Restore old counter
and CR0 bits

otherwise

Load secondary
PTEG pointer:

ptr ← HASH2 – 8

compare_value [H]← 1

Set counter:
cnt ← 8

cnt ←cnt–1

Set up for page
fault exception

Secondary hash
complete

Return to executing program:
rfi

compare_value [H] = 1

(See Figure 5-20)

TLB Miss Exception

instruction access and
temp[G] = 1

otherwise

Set up for protection
violation exception

Check R, C bits
and set as needed

(See Figure 5-21)

temp = compare_value
Chapter 5. Memory Management 5-47

Figure 5-19. Check and Set R, C Bit Flow

Store byte 7 of PTE to memory:
(ptr - 2) ← temp [byte7]

Set R bit:
temp ← temp OR 0x100

handler for data store op

Check R, C bits
and set as needed

otherwise

pp = 00
01

Set up for
protection violation

Check pro-
tection pp = 10

11

Set up for
protection violation

pp = 11

pp = 10

Return to TLB Miss
Exception flow

(See Figure 5-18)

(See Figure 5-21)

(See Figure 5-21)

temp[C] = 0

otherwise

SRR1[KEY] = 1

Store bytes 6, 7 of PTE to memory:
(ptr - 2) ← temp [bytes 6, 7]

Return to TLB Miss
Exception flow

(See Figure 5-18)

Set R, C bits:
temp ← temp OR 0x180

otherwise
5-48 PowerPC 602 RISC Microprocessor User's Manual

Figure 5-20. Page Fault Setup Flow

Set up for page
fault exception

Data TLB miss handlers Instruction TLB
miss handlers

DSISR[6] ← SRR1[15]

DSISR[1] ← 1

DAR ← dtemp

Restore CR0 bits

MSR[TGPR] ← 0

Branch to DSI
Exception Handler

Restore CR0 bits

MSR[TGPR] ← 0

Branch to ISI Exception
Handler

Clear upper bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[1] ← 1

Clear upper bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[31] = 1
(little-endian mode)

dtemp ← DMISS

dtemp← dtemp XOR 0x07

otherwise
Chapter 5. Memory Management 5-49

Figure 5-21. Setup for Protection Violation Exceptions

5.5.2.2.2 Code for Example Exception Handlers
This section provides some assembly language examples that implement the flow diagrams
described above. Note that although these routines fit into a few cache lines, they are
supplied only as a functional example; they could be further optimized for faster
performance.

Note that a copy of this code can be downloaded by accessing one of the online facilities
listed in “Motorola Electronic Support,” and “IBM Electronic Support,” in the preface of
this document.

TLB software reload
#
New Instructions:
dtba - write the dtb with the pte in rpa reg

DSISR[6] ← SRR1[15]

DSISR[4] ← 1

Restore CR0 bits

MSR[TGPR] ← 0

Branch to DSI
Exception Handler

Restore CR0 bits

MSR[TGPR] ← 0

Branch to ISI
Exception Handler

Clear upper bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[4] ← 1

Clear upper bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

Data TLB miss handlers (Instruction access
to guarded memory)(Data access

to protected
memory; C=0)

Set up for protection
violation exceptions

DAR ← dtemp

SRR1[31] = 1
(little-endian mode)

dtemp ← DMISS

dtemp← dtemp XOR 0x07

otherwise

Instruction TLB
miss handler
5-50 PowerPC 602 RISC Microprocessor User's Manual

itba - write the itb with the pte in rpa reg
New SPRs
dmiss - address of dstream miss
imiss - address of istream miss
hash1 - address primary hash PTEG address
hash2 - returns secondary hash PTEG address
iCmp - returns the primary istream compare value
dCmp - returns the primary dstream compare value
rpa - the second word of pte used bye xtba
#
gpr r0..r4 are shadowed
#
there are three flows.
tlbDataMiss- tb miss on data load
tlbchange - tb store with change bit == 0
tlbInstrMiss- tb miss on instruction Fetch
#
#+
place labels for rel branches
#-
#.machine PPC_603
#.set r0, 0
#.set r1, 1
#.set r2, 2
#.set r3, 3
#.set dMiss, 1010
#.set dCmp, 1011
#.set hash1, 1012
#.set hash2, 1013
#.set iMiss, 1014
#.set iCmp, 1015
#.set rpa, 1010
#.set c0, 0
#.set dar, 19
#.set dsisr, 18
#.set srr0, 26
#.set srr1, 27
#.set tlbldR0, 0x7E0007A4
#.set tlbliR0, 0x7E0007E4

#.csect tlbmiss[PR]
#vec0:
#.globl vec0
#

.orig 0x300
vec300:
.orig 0x400
vec400:

#+
Chapter 5. Memory Management 5-51

Instruction TB miss flow
Entry:
Vec = 1000
srr0 -> address of instruction that missed
srr1 -> 0:3=cr0 4=lru way bit 16:31 = saved MSR
msr<tgpr> -> 1
iMiss -> ea that missed
iCmp -> the compare value for the va that missed
hash1 -> pointer to first hash pteg
hash2 -> pointer to second hash pteg
#
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to pteg
r3 is current compare value
#-

.orig 0x1000

tlbInstrMiss:
mfspr r2,hash1 # get first pointer
addi r1,r0,8 # load 8 for counter
mfspr r0,ctr # save counter
mfspr r3,iCmp # get first compare value
addi r2,r2,-8 # predecrement pointer

im0: mtspr ctr,r1 # load counter
im1: lwzu r1,8(r2) # get next pte

cmp 0, r1,r3 # see if found pte
bdnzf eq,im1
bne instrSecHash
lwz r1,4(r2) # load tlb entry PTE lower-word
andi. r3,r1,8 # check G-bit
bne doISIg
mtspr ctr,r0 # restore counter
mfspr r0,iMiss # get the miss address for the dtba
mfspr r3,srr1 # get the saved cr0 bits
mtcrf 0x80,r3 # restore CR0
mtspr rpa,r1 # set the PTE
ori r1,r1,0x100 # set reference bit
rlwinm r1,r1,24,8,31 #get byte 7 of PTE
tlbli r0 # load the tb
stb r1,6(r2) # update page table
rfi # and back we go

#+
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to PTEG
r3 is current compare value
#-
5-52 PowerPC 602 RISC Microprocessor User's Manual

instrSecHash:
andi. r1,r3,0x0040 # see if we have done second hash
bne doISI
mfspr r2,hash2 # get the second pointer
ori r3,r3,0x0040 # change the compare value
addi r1,r0,8 # load 8 for counter
addi r2,r2,-8 # pre dec for update on load
b im0 # try second hash

#+
entry Not Found: cause an isi exception
guarded storage protection violation: cause an isi exception
Entry:
r0 is saved counter
r1 is junk
r2 is pointer to PTEG
r3 is current compare value
#-

doISIg: mfspr r3,srr1 # get srr1
andi. r2,r3,0xffff # clean upper srr1
addis r2,r2,0x1000 # or in srr<3> = 1 to flag guarded violation
b isi1:

doISIp:
mfspr r3,srr1 # get srr1
andi. r2,r3,0xffff # clean upper srr1
addis r2,r2,0x0800 # or in srr<4> = 1 to flag prot violation
b isi1:

doISI:
mfspr r3,srr1 # get srr1
andi. r2,r3,0xffff # clean upper srr1
addis r2,r2,0x4000 # or in srr<1> = 1 to flag PTE not found

isi1: mtspr ctr,r0 # restore counter
mtspr srr1,r2 # set srr1
mfmsr r0 # get msr
xoris r0,r0,0x0002 # flip the msr<tgpr> bit
mtcrf 0x80,r3 # restore CR0
mtmsr r0 # flip back to the native gprs
isync # sync the mtmsr
b vec400 # go to isi exception

#+
Data TB miss flow
Entry:
Vec = 1100
srr0 -> address of instruction that caused data tb miss
srr1 -> 0:3=cr0 4=lru way bit 5=1 if store 16:31 = saved MSR
msr<tgpr> -> 1
dMiss -> ea that missed
dCmp -> the compare value for the va that missed
hash1 -> pointer to first hash PTEG
Chapter 5. Memory Management 5-53

hash2 -> pointer to second hash PTEG
#
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to PTEG
r3 is current compare value
#-

#.csect tlbmiss[PR]
.orig 0x1100

tlbDataMiss:
mfspr r2,hash1 # get first pointer
addi r1,r0,8 # load 8 for counter
mfspr r0,ctr # save counter
mfspr r3,dCmp # get first compare value
addi r2,r2,-8 # pre dec the pointer

dm0: mtspr ctr,r1 # load counter
dm1: lwzu r1,8(r2) # get next PTE

cmp 0,r1,r3 # see if found PTE
bdnzf eq,dm1
bne dataSecHash
lwz r1,4(r2) # load tlb entry PTE lower-word
mtspr ctr,r0 # restore counter
mfspr r0,dMiss # get the miss address for the dtba
mfspr r3,srr1 # get the saved cr0 bits
mtcrf 0x80,r3 # restore CR0
mtspr rpa,r1 # set the PTE
ori r1,r1,0x100 # set reference bit
rlwinm r1,r1,24,8,31 # get byte 7 of PTE
tlbld r0 # load the tlb
stb r1,6(r2) # update page table
rfi # and back we go

#+
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to PTEG
r3 is current compare value
#-
dataSecHash:

andi. r1,r3,0x0040 # see if we have done second hash
bc !CR,EQ,doDSI # yes, take dsi exception
mfspr r2,hash2 # get the second pointer
ori r3,r3,0x0040 # change the compare value
addi r1,r0,8 # load 8 for counter
addi r2,r2,-8 # predecrement for update on load
b dm0 # try second hash

#+
5-54 PowerPC 602 RISC Microprocessor User's Manual

entry not found: cause a dsi exception
protection violation: cause a dsi exception
Entry:
r0 is saved counter
r1 is junk
r2 is pointer to PTEG
r3 is current compare value
#-
doDSI:

mfspr r3,srr1 # get srr1
rlwinm r1,r3,9,6,6 # get srr1<flag> to bit 6 for load/store, zero rest
addis r1,r1,0x4000 # or in dsisr<1> = 1 to flag PTE not found
b dsi1:

doDSIp:
mfspr r3,srr1 # get srr1
rlwinm r1,r3,9,6,6 # get srr1<flag> to bit 6 for load/store, zero rest
addis r1,r1,0x0800 # or in dsisr<4> = 1 to flag prot violation

dsi1: mtspr ctr,r0 # restore counter
andi. r2,r3,0xffff # clear upper bits of srr1
mtspr srr1,r2 # set srr1
mtspr dsisr,r1 # load the dsisr
mfspr r1,dMiss # get miss address
rlwinm. r2,r2,0,31,31 # test LE bit
bne dsi2
xori r1,r1,0x07 # demunge the data address

dsi2: mtspr dar,r1 # put in dar
mfmsr r0 # get msr
xoris r0,r0,0x0002 # clear the msr<tgpr> bit
mtcrf 0x80,r3 # restore CR0
mtmsr r0 # flip back to the native gprs
isync # sync the mtmsr
b vec300 # go to dsi exception

#+
C=0 TB flow
Entry:
Vec = 1200
srr0 -> address of store that caused the trap
srr1 -> 0:3=cr0 4=lru way bit 5=1 16:31 = saved MSR
msr<tgpr> -> 1
dMiss -> ea that missed
dCmp -> the compare value for the va that missed
hash1 -> pointer to first hash PTEG
hash2 -> pointer to second hash PTEG
#
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to PTEG
r3 is current compare value
#-
Chapter 5. Memory Management 5-55

#.csect tlbmiss[PR]
.orig 0x1200

tlbCeq0:
mfspr r2,hash1 # get first pointer
addi r1,r0,8 # load 8 for counter
mfspr r0,ctr # save counter
mfspr r3,dCmp # get first compare value
addi r2,r2,-8 # pre dec the pointer

ceq0: mtspr ctr,r1 # load counter
ceq1: lwzu r1,8(r2) # get next PTE

cmp 0, r1,r3 # see if found PTE
bdnzf eq,ceq1
bne cEq0SecHash
lwz r1,4(r2) # load tlb entry PTE lower-word
andi. r3,r1,0x80 # check the C-bit
beq cEq0ChkProt
mtspr ctr,r0 # restore counter
mfspr r0,dMiss # get the miss address for the dtba
mfspr r3,srr1 # get the saved cr0 bits
mtcrf 0x80,r3 # restore CR0
mtspr rpa,r1 # set the PTE
tlbld r0 # load the tb
rfi # and back we go

#+
Register usage:
r0 is saved counter
r1 is junk
r2 is pointer to PTEG
r3 is current compare value
#-
cEq0SecHash:

andi. r1,r3,0x0040 # see if we have done second hash
bne doDSI
mfspr r2,hash2 # get the second pointer
ori r3,r3,0x0040 # change the compare value
addi r1,r0,8 # load 8 for counter
addi r2,r2,-8 # pre dec for update on load
b ceq0 # try second hash

#+
entry found and PTE(c-bit==0):
(check protection before setting PTE(c-bit)
Register usage:
r0 is saved counter
r1 is PTE entry
r2 is pointer to PTEG
r3 is trashed
#-

Note: The following code is specific to 603e. It uses
5-56 PowerPC 602 RISC Microprocessor User's Manual

the 'KEY' bit of SRR0 to speedup protection checking.
#
cEq0ChkProt:

rlwinm. r3,r1,30,0,1 # test PP
bge- chk0
andi. r3,r1,1 # test PP[0]
beq+ chk2
b doDSIp # else DSIp

chk0: mfspr r3,srr1 # get SRR0
andis. r3,r3,0x0008 # test the KEY bit SRR0[12]
beq+ chk2
b doDSIp # else DISp

chk2: mtspr ctr,r0 # restore counter
mfspr r0,dMiss # get the miss address for the dtba
mfspr r3,srr1 # get the saved cr0 bits
mtcrf 0x80,r3 # restore CR0
ori r1,r1,0x180 # set reference and change bit
mtspr rpa,r1 # set the PTE
tlbld R0 # load the tb
sth r1,6(r2) # update page table
rfi # and back we go

Note: The following code doesn't rely upon the 'KEY' bit
and works on 603, and 603e. (although slightly slower on 603e)
#
cEq0ChkProt:
rlwinm. r3,r1,30,0,1 # test PP
bge- chk0 # if (PP==00 or PP==01) goto chk0:
andi. r3,r1,1 # test PP[0]
beq+ chk2 # return if PP[0]==0
b doDSIp # else DSIp
chk0: mfspr r3,srr1 # get old msr
andi. r3,r3,0x4000 # get PR bit
beq+ chk1 # if (PR==0) goto chk1:
mfspr r3,dmiss # get miss address
mfsrin r3,r3 # get associated segment register
andi. r3,r3,4 # test Kp bit
beq+ chk2 # if (Kp==0) goto chk2
b doDSIp # else DSIp
chk1: mfspr r3,dmiss # get miss address
mfsrin r3,r3 # get associated segment register
andi. r3,r3,2 # test Ks bit
beq+ chk2 # if (Ks==0) goto chk2:
b doDSIp # else DSIp
chk2: mtspr ctr,r0 # restore counter
mfspr r0,dMiss # get the miss address for the dtba
mfspr r3,srr1 # get the saved cr0 bits
mtcrf 0x80,r3 # restore CR0
ori r1,r1,0x180 # set reference and change bit
mtspr rpa,r1 # set the PTE
Chapter 5. Memory Management 5-57

tlbld R0 # load the tb
sth r1,6(r2) # update page table
rfi # and back we go

5.5.3 Page Table Updates
When TLBs are implemented (as in the 602) they are defined as noncoherent caches of the
page tables. TLB entries must be flushed explicitly with the TLB invalidate entry
instruction (tlbie) whenever the corresponding PTE is modified. As the 602 is intended
primarily for uniprocessor environments, it does not provide coherency of TLBs between
multiple processors. If the 602 is used in a multiprocessor environment where TLB
coherency is required, all synchronization must be implemented in software.

Processors may write referenced and changed bits with unsynchronized, atomic byte-store
operations. Note that the V, R, and C bits each resides in a distinct byte of a PTE. Therefore,
extreme care must be taken to use byte-writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly-undefined results. Therefore, PTEs must not be
changed in a manner that causes an implicit branch. Chapter 2, “PowerPC Register Set,” in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and MSR bits are changed.

5.5.4 Segment Register Updates
There are certain synchronization requirements for using the move to segment register
instructions. These are described in “Synchronization Requirements for Special Registers
and for Lookaside Buffers” in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

5.6 Protection-Only Mode
The 602 implements an additional memory management resource not defined by the
PowerPC architecture called protection-only mode, which is activated after a BAT miss
when HID0[PO] = 1. In this mode, the effective address is used as the physical address.
However, unlike the OEA-defined real addressing mode, some protection is provided. This
is accomplished by using, and in some cases redefining, resources used in page address
translation. For example, in protection-only mode the bits in the DTLB entries are redefined
to hold 32 WE (write enable) bits, which indicate whether the corresponding 4-Kbyte page
of data space is write-protected. Likewise, the ITLB entries are redefined to hold 32 NE
(no-execute) bits to indicate whether the corresponding page allows instruction execution.

In protection-only mode (as in real addressing mode), the default cache attributes are
controlled by the settings of HID0[WIMG] (bits 28–31).
5-58 PowerPC 602 RISC Microprocessor User's Manual

Implementation Note—When the processor is in either real addressing mode or
protection-only mode, care should be taken when clearing HID0[G]. The 602 allows out-
of-order loads to access the processor bus. If an out-of-order load follows an instruction that
causes an exception, the load/store unit may pass the out-of-order load operation onto the
system bus. Because this load cannot be cancelled, depending on the temporal position of
the faulting instruction, translation may be enabled when the instruction passes through the
instruction stream but may be disabled when the cache control information and address
reach the bus. Setting HID0[G] prevents such a load operation from accessing the bus.

5.6.1 Use of Translation Resources in Protection-Only Mode
The instruction and data MMUs each use a dedicated 32-entry, two-way set-associative
TLB. In the OEA-defined page addressing mode, described in Section 5.4, “Memory
Segment Model,” each TLB entry provides translation and protection for a 4-Kbyte page in
memory. In protection-only mode, the TLBs are not used for storing page address
translations, so the bits are redefined such that each TLB entry maps a 128-Kbyte region
with bits within the TLB entry that provide protection information for the 32, 4-Kbyte
pages within that region.

If HID0[PO] = 1 and a hit occurs in the TLB, the NE and WE bits are used for checking
access permissions for instruction and data accesses, respectively. The cache control bits
(WIMG) are set as programmed in the HID0 register. The effective address is used as the
physical address.

To locate the NE or WE bit for this page, the effective address and 24-bit VSID from SR0
are used to create a 56-bit virtual address. This address is used to index into and compare
against entries in the TLB and can be used as a process ID for operations in protection-only
mode for locating these bits.

Figure 5-22 shows the TLB lookup operation when the processor is in protection-only
mode. The VSID is taken only from SR0 (when the processor is in page addressing mode,
all 16 segment registers can be used). Note that in protection-only mode, SR0[N], which
ordinarily controls instruction fetching at the segment level, is ignored and no-execute
privileges are configured on a 4-Kbyte page basis using the NE bits. EA0–EA14 and the
VSID from SR0 are used to select the correct ITLB entry. From this entry, EA15–EA19
select the correct NE bit for the page of the access.
Chapter 5. Memory Management 5-59

Figure 5-22. TLB Lookup Operation in Protection-Only Mode

5.6.1.1 TLB Misses in Protection-Only Mode
Regardless of whether the processor is in protection-only mode, when a TLB miss occurs,
one of three exceptions is taken—an ITLB miss exception, a DTLB miss on load exception,
or a DTLB miss on store (or C = 0) exception. Likewise, when the TLB miss occurs in
protection-only mode, the same resources used to perform the software tablewalk in page
accessing mode are available in protection-only mode, as follows:

• The IMISS and DMISS registers hold the missed effective address.

• The HASH1 and HASH2 registers hold the PTEG address.

Segment Register

TLB

EA0–EA31

EA11–EA14 Select

Compare

Compare

EA0–EA10

Line 1

Line 0

MUX

32 NE bits

V

V0

15 Line 1/Line 0 H
it

0 1 2 3 4 7 8 31

T Ks Kp N 0 0 0 0 VSID

VSID

32 NE bits

E
A

15–E
A

19

NE0 NE1 NE2 NE31

Selected Line

ne bit

NE Select

Ignored

SR0
5-60 PowerPC 602 RISC Microprocessor User's Manual

• The ICMP and DCMP registers are used for comparing PTEs.

• The RPA register is used for loading TLBs; however, in protection-only mode, the
RPA holds the 32 WE or NE bits that are loaded into the TLB entries.

Note that the TLB miss mechanism can be used to maintain translation and configuration
information for pages that extend beyond the 32 TLB entries that can be defined for each
MMU in protection-only mode. These exceptions are described in Chapter 4, “Exceptions.”

Descriptions of exception handlers are described in Section 5.5.2.2.1, “Flow for Example
Exception Handlers.” Note that these examples are conceptual and provide a general notion
of what is possible for an exception handler in protection-only mode.

5.6.1.2 Access Protection in Protection-Only Mode
In protection-only mode, pages mapped by the ITLB are protected by the NE bit in the TLB
and SE bits from the SER. DTLB pages are protected by only the WE bit in the PTE. For
instruction fetches, the NE bit controls execute privileges in general and the SE bit controls
whether the esa instruction can be executed from the corresponding page. Note that if
fetching is disabled (NE = 1), no instructions can be fetched (including the esa instruction)
and SE is a don’t care.

For store instructions, the WE bit controls write access to a page; read access is permitted
for all pages. All loads from the data cache or memory are permitted for pages mapped in
the DTLB, but data cannot be stored unless the appropriate WE bit in the DTLB is set. Note
that as with ITLB access permissions, the SR0[T] or SR0[N] bits are not used to determine
DTLB access privileges in protection-only mode.

5.6.1.3 Required Physical Address Register in Protection-Only Mode
During a page table search operation, the RPA register is loaded with the second word of
the appropriate PTE. In protection-only mode, the PTE contains the 32 WE or NE bits
loaded into the TLBs via the RPA register. Also, as shown in Figure 5-23 and Figure 5-24,
the contents of the RPA register are different for instruction and data TLB loads.

Before the TLB Load Instruction (tlbli) is executed in protection-only mode, the RPA
register should be loaded with 32 NE bits. Figure 5-23 shows the proper contents of the
RPA for an ITLB load.

Figure 5-23. RPA for ITLB Load Operations in Protection-Only Mode

As shown in Figure 5-24, before a TLB Load Data (tlbld) instruction is executed, the RPA
register should be loaded with 32 WE bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

NE0 NE1 NE2 NE3 NE4 NE5 NE6 NE7 NE8 NE9 NE10 NE11 NE12 NE13 NE14 NE15 NE16 NE17 NE18 NE19 NE20 NE21 NE22 NE23 NE24 NE25 NE26 NE27 NE28 NE29 NE30 NE31
Chapter 5. Memory Management 5-61

Figure 5-24. RPA for DTLB Load Operations in Protection-Only Mode

5.6.2 ESA Enable Protection (Instruction Space Only)
The 602 defines a user-level instruction, Enable Supervisor Access (esa) that, when
successfully executed, allows the processor to function in supervisor mode without taking
an exception. To control the execution of this instruction, it must be enabled for the block
or page on which it resides, and for this purpose an extra bit (SE) is implemented in the BAT
registers for block address translations and in the TLB/PTEs for page address translations.
The use of this instruction is not supported for real addressing mode (MSR[IR] or
MSR[DR] = 0).

The 602 defines two additional registers, the ESA enable base register (SEBR) and the ESA
enable register (SER), that allow the use of the esa instruction in protection-only mode.
These two registers work together to control esa privileges for each 4-Kbyte block in much
the same way as the TLBs provide no-execute and write-enable protection for instruction
and data space.

As described in the preceding section, in protection-only mode, the TLBs store only one
protection bit for each 4-Kbyte page—an NE bit for each page of instruction space and a
WE bit for each page of data space. Similarly, the SE protection registers provide an
additional protection bit for 32 contiguous 4-Kbyte pages (128-Kbyte region). This
additional protection bit controls whether an esa instruction from the region specified in the
SEBR can be executed.

The SEBR, shown in Figure 5-25, contains the base address of the 128-Kbyte region that
is protected by the SE bits in the SER. The 15-bit base address in this register corresponds
to bits EA0–EA14. For the correct SE bit to be located, the effective address of an
instruction fetch must match the base address in SEBR. If the effective address does not
match the base address, a value of SE = 0 is assumed, and the execution of esa instructions
in that page is disabled.

Figure 5-25. ESA Enable Base Register (SEBR)

If a match occurs, bits EA14–EA19 identify the SER bit that corresponds to the 4-Kbyte
page associated with the esa instruction. The SER, shown in Figure 5-26, contains 32 SE
bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WE0 WE1 WE2 WE3 WE4 WE5 WE6 WE7 WE8 WE9 WE10 WE11WE12 WE13WE14 WE15WE16WE17 WE18WE19WE20 WE21WE22 WE23WE24WE25 WE26WE27 WE28WE29 WE30 WE31

0 14 15 31

Base Address

Reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5-62 PowerPC 602 RISC Microprocessor User's Manual

Figure 5-26. ESA Enable Register (SER)

The SER and SEBR registers do not affect protection checking unless the processor is in
protection-only mode. These registers can be read and written to by using the mfspr and
mtspr instructions but are not used by the MMU unless the processor is in protection-only
mode.

5.6.3 Translation Flow in Protection-Only Mode
Figure 5-27 shows a detailed flow diagram of how the translation mechanism is used to
locate the NE and WE bits when the processor is in protection-only mode. It assumes that
a BAT miss has occurred and that the HID0[PO] bit is set.

The flow diagram shows first how the appropriate key bit from SR0 is checked. If the key
is 0, the NE and WE bits are predetermined, as shown in Figure 5-28.

If the key bit is 1, the WE bit is selected for data accesses and the NE bit is selected for
instruction accesses. Note that in case of a TLB miss, one of the three TLB miss exceptions
is taken—an ITLB miss exception, a DTLB miss on load exception, or a DTLB miss on
store (or C = 0) exception, as is the case when the processor is not operating in protection-
only mode.

For instruction accesses, if the NE bit allows instructions to be fetched, the SE bit is
accessed and if an esa instruction is fetched from this page, the SE value is used to
determine whether it can be executed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SE0 SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9 SE10 SE11 SE12 SE13 SE14 SE15 SE16 SE17 SE18 SE19 SE20 SE21 SE22 SE23 SE24 SE25 SE26 SE27 SE28 SE29 SE30 SE31
Chapter 5. Memory Management 5-63

Figure 5-27. Translation Flow in Protection-Only Mode

Protection-Only
Translation Operation

Get Ks, Kp from SR0
Ks ← SR0[1]
Kp ← SR0[2]

Select Key:
If MSR[PR] = 0, Key = Ks
If MSR[PR] = 1, Key = Kp

See Figure 5-28

Use Upper 44 Bits of VA to Check for
TLB Hit (to Get NE/WE Bit)

we ← Selected WE Bit Exception
Table Search S/W

(See Section 5.6.1.1)

TLB Miss

ne ← Selected NE Bit

se ← 0index ← EA[15-19]

se ← SER[index]

 ISI Exception

End of Key = 0 Flow

PA ← EA
Append se bit

to address

Perform Access to/from Cache
Instruction Accesses Allowed as Shown in Table 5-2

key = 0

key = 1

DTLB hit
(Data Access)

ITLB hit
(Instruction Access)

we = 1 we = 0 ne = 1 ne = 0

DSISR[4] ← 1 SRRI[3] ← 1

otherwise
SEBR[0–14] =

EA[0–14]

 DSI Exception

StoreLoad

(from Figure 5-28)
5-64 PowerPC 602 RISC Microprocessor User's Manual

Figure 5-28 shows how the NE, SE, and WE bits are determined when the key = 0. Note
that the NE and WE bits are predetermined such that write access is enabled for data pages
(WE = 1) and execution is enabled for instruction pages (NE = 0). The value of SE is
determined by comparing SEBR[0–14] with the low-order 15 bits of the effective address.
If a match occurs, the esa instruction is enabled; otherwise, it is disabled.

Figure 5-28. Protection Checking with Key = 0 in Protection-Only Mode

Protection Checking
for Key = 0

se ←1se ← 0

ne ← 0we ← 1

End of Key = 0 flow
(See Figure 5-27)

Data Access Instruction Access

otherwise SEBR[0–14] = EA[0–14]
Chapter 5. Memory Management 5-65

5-66 PowerPC 602 RISC Microprocessor User's Manual

Chapter 6
Instruction Timing
60
60

This chapter describes instruction prefetch and execution through all of the execution units
of the PowerPC 602 microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions. Bus signals described in this chapter are only accurate to within half-clock
cycle increments. See Chapter 8, “System Interface Operation,” for more specific
information regarding bus operation timing. Instruction mnemonics for PowerPC
instructions used in this chapter can be identified by referring to The Programming
Environments Manual; 602-specific instructions are discussed in Section 2.3, “Instruction
Set Summary.”

6.1 Instruction Timing Overview
As shown in Figure 6-1, the 602 handles instructions in such a way that (with the exception
of branch instructions) they are fetched, dispatched, and completed in program order.
However, the 602 implements three independent execution units, which allow multiple
instructions to be executed simultaneously. After instructions are executed, they are
completed and their results are written back to the architected registers (for example, the
FPRs or GPRs) in program order.

As a PowerPC processor, the 602 has been designed to minimize average instruction
execution latency. Latency is defined as the number of clock cycles necessary to execute an
instruction and make ready the results of that execution for a subsequent instruction. For
many of the instructions in the 602, this can be simplified to include only the execute phase
for a particular instruction. However, data access instructions require additional clock
cycles between the execute and the completion/writeback stage due to memory latencies.
Most integer and logical instructions have a latency of one clock cycle (for example, results
for these instructions are ready for use on the next clock cycle after issue). Other
instructions, such as the integer multiply, require more than one clock cycle to execute.
Chapter 6. Instruction Timing 6-1

Figure 6-1. Instruction Flow Diagram

Effective throughput approaching one instruction per clock cycle can be realized by the
many performance features in the 602 including pipelining, branch folding, rename
registers, and multiple execution units that operate independently and in parallel.

The load/store and floating-point units on the 602 are pipelined, which means that the
execution units are broken into stages. Each stage performs a specific step, which
contributes to the overall execution of an instruction. The pipelined design is analogous to

FPU

Complete (Retire)

Fetch

LSU

Dispatch

Branch
Processing Unit

Instruction Queue
(In Program Order)

Completion Buffer
(In Program Order)

Completion Buffer
Assignment

Finish

IU

3 0

03

Memory
Subsystem
6-2 PowerPC 602 RISC Microprocessor User's Manual

an assembly line where workers perform a specific task and pass the partially complete
product to the next worker.

Figure 6-2 shows a graphical representation of a typical pipelined execution unit.

Figure 6-2. Pipelined Execution Unit

When an instruction is issued to a pipelined execution unit, the first stage in the pipeline
begins its designated work on that instruction. As an instruction is passed from one stage in
the pipeline to the next, evacuated stages may accept new instructions. This design allows
a single execution unit to be working on several different instructions simultaneously.
While it may take several cycles for a given instruction to propagate through the execution
pipeline, once the pipeline has been filled with instructions the execution unit can complete
one instruction per clock.

If the number of stages in each pipeline equals the total latency in clock cycles of its
respective execution unit, the processor can continuously issue instructions to the same
execution unit without stalling. Thus, when enough instructions have been issued to an
execution unit to fill its pipeline, the first instruction completes execution and exits the
pipeline, allowing subsequent instructions to be issued into the tail of the pipeline without
interruption. This is illustrated for the 602’s three execution units in Figure 6-3 in the
following section.

The 602’s completion buffer can retire one instruction on every clock cycle. In general,
instruction processing is accomplished in four stages—the fetch stage, the dispatch stage,
the execute stage, and the completion/writeback stage. The instruction fetch stage includes
the clock cycles necessary to request instructions from the on-chip cache as well as the time
it takes the on-chip cache to respond to that request. The decode stage consists of the time
it takes to fully decode the instruction. Operations specified by the instruction are
performed during the execute stage. In the completion/writeback stage, the results of the
execute stage are used to update the architected registers. The completion buffer ensures
that instructions write back and are retired in program order and also ensures the 602’s
precise exception model.

CLOCK 0 (STAGE 1) A (STAGE 2) (STAGE 3)

CLOCK 1 (STAGE 1) B (STAGE 2) A (STAGE 3)

CLOCK 2 (STAGE 1) C (STAGE 2) B (STAGE 3) A

CLOCK 3 (STAGE 1) D (STAGE 2) C (STAGE 3) B
Chapter 6. Instruction Timing 6-3

Instructions are fetched and executed concurrently with the execution and write back of
previous instructions producing an overlap period between instructions. The details of these
operations are explained in the following paragraphs.

6.2 PowerPC 602 Microprocessor Pipeline
Organization

The instruction pipeline of the 602 has four major stages—fetch, dispatch, execute, and
complete/writeback. Each instruction executed by the machine flows through some or all
of these stages as shown in Figure 6-3. Some instructions spend multiple cycles in a stage.
6-4 PowerPC 602 RISC Microprocessor User's Manual

Figure 6-3. Pipeline Diagrams for the PowerPC 602 Processor Execution Units

1 2 3 40

INT0

INT1

1 2 3 4 5 60

LS0

LS1

LS2

Integer Unit Instruction Pipeline

1 2 3 4 5 6 70

FP0

FP1

FP2

Load Store Unit Instruction Pipeline

Floating-Point Unit Instruction Pipeline

Fetch

Dispatch

Execute

Complete/
Writeback

LSU1—EA Calculation

LSU2—Cache Access

FPU1—Multiply

FPU2—Add

FPU3—Round

LSU1 LSU2

LSU1 LSU2

LSU1 LSU2

FPU1 FPU2 FPU3

FPU1 FPU2 FPU3

FPU1 FPU2 FPU3
Chapter 6. Instruction Timing 6-5

Note that the timing examples in Figure 6-3 are for typical instructions and do not apply to
all instructions that execute in a particular unit.

The stages in the 602 are described as follows:

• The fetch stage primarily involves retrieving instructions from the memory system
and determining where the next instruction fetch should occur. The instructions
retrieved from the memory system are either latched into an instruction buffer or the
dispatch buffer for subsequent consideration by the dispatch stage. The BPU also
decodes branches during the fetch stage and attempts to fold out branch instructions.

• The dispatch stage decodes the instructions supplied by the instruction fetch stage,
and determines which instructions can be dispatched in the current cycle. In
addition, the source operands are read from the appropriate register file and
dispatched with the instruction to the execute stage. At the end of the dispatch stage,
dispatched instructions and their operands are latched into execution unit input
latches.

• During the execute stage, each execution unit that has an executable instruction
execute the selected instruction (perhaps over multiple cycles), write the
instruction’s result into the appropriate rename buffer, and notify the completion
stage that the instruction has finished execution. In the cases of an internal exception,
the execution unit reports the exception to completion/writeback stage and
discontinues instruction execution until the exception is handled. The exception is
not addressed until that instruction is the next to be completed.

Execution of instructions is handled by one of three execution units, which operate
in parallel:

— As shown in Figure 6-3, most single-precision floating-point instructions are
pipelined within the FPU. The stages for the FPU are multiply, add, and
normalize-round. A different instruction can occupy each stage, allowing up to
three instructions to be executing in the FPU concurrently.

— Execution of most load or store instructions is pipelined. As indicated in
Figure 6-3, the LSU has two stages—effective address calculation and MMU
translation is performed in the first stage and data is accessed in the cache in the
second stage.

— The integer unit consists of a single stage, and most instructions that execute in
the integer stage take only one clock cycle in that stage. Some instructions, such
as integer divides and multiplies, take multiple cycles in that integer execute
stage and subsequent instructions that execute in the integer unit wait for those
instructions to execute.

Note that because instruction results are written to the rename buffers at the end of
the last execution cycle, those results are available for use by any instructions that
need those results as source operands. However, those results are not written to the
architected registers until the end of the completion/writeback stage.
6-6 PowerPC 602 RISC Microprocessor User's Manual

• The complete/writeback stage maintains the correct architectural machine state and
commits it to the machine architectural registers at the proper time. If the completion
logic detects an instruction containing an exception status, all following instructions
are cancelled, their execution results in rename buffers are discarded, and the correct
instruction stream is fetched.

6.3 Timing Considerations
Although the 602 appears to the programmer to execute instructions in sequential order, the
602 provides increased performance by executing multiple instructions at a time, and using
hardware to manage dependencies. All instructions (except for those resolved branch
instructions that can be folded out of the instruction stream) complete and write back their
results to architected registers in program order. However, the use of rename registers
allows the results of an instruction that has been executed but not yet allowed to complete
to be made available to a subsequent instruction that needs those results as source data.

When an instruction is issued, the register file or its associated rename registers place the
appropriate source data on the appropriate bus. The corresponding execution unit then reads
the data from the bus.

The 602 contains the following execution units that operate independently and in parallel:

• Branch processing unit (BPU)
• 32-bit integer unit (IU)
• 32-bit floating-point unit (FPU) for single-precision operations
• Load/store unit (LSU)

The 602’s branch processing unit decodes and executes branches immediately after they are
fetched. The resources of the branch unit include—a count register (CTR) rename register
for writing to the CTR with the mtspr instruction, a link register (LR) rename register for
writing to the LR with the mtspr instruction, a link register rename register for branches
specifying an update of the link register, and a branch reservation station for conditional
branches that cannot be resolved due to a CR-data dependency.

When a conditional branch cannot be resolved due to a CR-data dependency, the branch is
predicted and instructions are executed out-of-order down the predicted path. Note that
instructions cannot complete and write back their results to architected registers until the
branch is resolved; however, they can make their results available to subsequent
instructions. If the branch resolves as incorrectly guessed then the following occurs:

1. Instructions that preceded the branch are allowed to complete.
2. The instruction buffer is purged.
3. Fetching of the correct path begins.
Chapter 6. Instruction Timing 6-7

When the IU or FPU finishes executing an instruction, it places any results into a rename
buffer for general-purpose register (GPR), floating-point register (FPR), link register,
counter register, or conditional register. Results are not stored into the associated
architected registers until the write-back stage, which helps ensure a precise exception
model.

6.3.1 Instruction Fetch Timing
Instruction fetch latency depends on whether the instruction is in the cache (cache hit). If
the instruction is not in the cache, additional latency is required to access the instruction
from an off-chip memory resource. In turn, this latency is affected by the bus frequency.
These issues are discussed further in the following sections.

6.3.1.1 Cache Arbitration
When the instruction fetcher tries to fetch instructions from the on-chip cache, one of two
things may occur:

• If the instruction cache is idle and the instructions are in the cache, the cache
supplies the requested instructions on the next clock cycle.

• Because the 602’s caches are nonblocking during line-fill operations, if the
instruction cache is performing a cache-line-reload, the requested instruction is
forwarded to the BPU at the same time that is made available in the cache.

Additionally, if a branch instruction is fetched from the cache block that is being
filled, it may point either to another address within same block or to another location.

— If the target instruction is elsewhere in the same cache block, that instruction can
be fetched as soon as it becomes available in the instruction cache.

— If the target instruction is elsewhere in the cache, the instruction can be fetched
without having to wait for the entire cache block to be updated.

Note, however, that in both of these cases, instructions can be fetched from the cache
only while it is not being written to as part of the cache line refill. This is shown in
Section 6.3.1.3, “Cache Miss.”

6.3.1.2 Cache Hit
Assuming that the instruction fetcher is not blocked from the cache by a cache reload
operation and the instructions it needs are in the on-chip cache (in other words, a cache hit
has occurred), there is only one clock cycle between the time that the instruction fetcher
requests an instruction and the time that the instruction enters the IQ.

Figure 6-4 shows a brief example of instruction fetching that hits in the on-chip cache.
6-8 PowerPC 602 RISC Microprocessor User's Manual

Figure 6-4. Instruction Timing—Cache Hit

1. During clock cycle 0, instruction 0 (an add instruction) is fetched.

2. In clock cycle 1, a neg instruction that uses the results of instruction 0 as a source
operand is fetched while instruction 0 is in the dispatch stage.

3. During clock cycle 2, instruction 2 (fadds) is fetched, instruction 1 is in dispatch,
and instruction 0 is executed in the IU and its results are placed in a rename buffer,
making those results available as a source operand for the neg instruction.

During clock cycle 3, an unconditional branch instruction is fetched into the branch
unit. The BPU immediately determines that the branch changed the program flow
and sends a request to the on-chip cache for the new instruction stream.

Previous instructions continue to proceed down the pipeline. Note that even though
the results of instruction 0 are not written back to the architected GPR until the end
of this cycle, instruction 1 accesses those results from the GPR rename buffer as a
source operand and executes without delay.

4. In clock cycle 4, an and instruction is fetched from the new path, the branch
instruction is folded, and the fadds instruction enters the second execute stage of the
FPU pipeline, and instruction 1 completes and writes back.

5. In clock cycle 5, instruction 5 (an or) is fetched, while previous instructions proceed
down the pipeline without encountering stalls.

6. In clock cycle 6, instruction 5 is in the dispatch stage, instruction 4 is in the IU
execute stage, and instruction 2 is in the third of the FPU execute stages.

7. In clock cycle 7, both instruction 2 and instruction 4 enter the completion/write back
stage. However, because only one instruction can complete and write back per clock
cycle, instruction 4 must wait for an additional cycle in order to complete. Note that
even though instruction 4, an and instruction, cannot complete, it does not prevent
the subsequent or instruction from going into the IU execute stage.

1 2 3 4 5 6 7 80

0 add

1 neg

2 fadds

4 and

3 br

9

5 or

Fetch

Dispatch

Execute

Complete/
Writeback
Chapter 6. Instruction Timing 6-9

8. In clock cycle 8, instruction 4 is able to complete and write back, but again because
only one instruction can complete per clock cycle, instruction 5 must wait to
complete on the subsequent cycle.

6.3.1.3 Cache Miss
Figure 6-5 shows a brief example of an instruction fetch that misses in the on-chip cache
and how the bus timing affects the instruction issue. This example shows the simplest bus
timing—the processor/bus clock ratio is 2:1, the data bus is in 64-bit mode, the address
phase is the shortest possible (a single cycle of the slower bus clock), and there are no wait
states between each beat of data.

Figure 6-5. Instruction Timing—Cache Miss

1. In clock cycle 0, an integer add instruction (instruction 0) is fetched.

2. In clock cycle 1, an fsel instruction (instruction 1) is fetched and instruction 0 is in
the dispatch stage.

3. In clock cycle 2, an unconditional branch instruction is fetched, and immediately
resolved. The target instruction is not in the instruction cache, so a line-fill operation
is required.

4. Clock cycles 4–8 show the bus latency for a burst-read operation in 64-bit mode with
a single-cycle address phase.

5. In clock cycle 9, the target instruction (an fmr instruction) arrives in beat one and is
made available to both the instruction cache and to instruction unit.

6. In clock cycle 10, the second instruction that arrived in the first beat (instruction 4)
is fetched from the cache. Note that this is possible because in 2:1 mode, the cache
is being updated on alternate clock cycles, leaving it available for instruction
fetching on every other clock cycle.

1 2 3 4 5 6 7 80 9 10 11

Bus

0 add
1 fsel

4 add

2 br

Fetch
Dispatch

Execute
Complete/

5 or

12 13

3 fmr

14

Writeback

15 16

6 and

Address insts.3&4 insts.7&8 insts.9&10insts.5&6
6-10 PowerPC 602 RISC Microprocessor User's Manual

7. In clock cycle 11, the cache is being written to, so no instructions can be fetched.
Instructions 3 and 4 continue through the pipeline.

8. Instruction 5 (from data beat 2) is fetched in clock cycle 12.

9. The first instruction from the second data beat (instruction 5) is fetched. This
illustrates the fact that the 602’s instruction cache is nonblocking, so the fetch logic
does not have to wait for the entire cache block to be loaded to fetch additional
instructions.

10. Additional instructions are fetched from the cache block without interruption on
every other clock cycle. By clock cycle 15, the line-fill operation is complete and
instructions can be fetched one instruction per processor clock cycle.

6.3.2 Instruction Dispatch and Completion Considerations
Several factors may affect the 602’s ability to dispatch instructions, including availability
of the execution units, rename registers, and the completion buffer, and the handling of
dispatch-serialized instructions.

To avoid dispatch unit stalls due to instruction data dependencies, the 602 provides a
reservation station for each execution unit. If a data dependency prevents an instruction
from beginning execution, that instruction is dispatched to the reservation station
associated with its execution unit, thereby clearing the dispatch unit. When the data that the
operation depends upon is returned via a cache access or as a result of a previous operation,
execution begins during the same clock cycle that the register file is being updated. If the
second instruction in the dispatch unit requires the same execution unit, that instruction
cannot be dispatched until the first instruction executes.

The completion unit records the program order, and even though instructions may execute
out of order, it ensures that the results are written back and the instructions are retired in
program order. Completing an instruction implies the commitment of the results of
instruction execution to the architected registers and ensures a precise exception model
when the 602 must recover from a mispredicted branch or an exception.

Instruction state and all information required for completion is kept in a first-in-first-out
(FIFO) queue of four completion buffers. A single completion buffer is allocated for each
instruction as it is dispatched by the dispatch unit. If no space is available in the completion
buffer available, the dispatch unit stalls. While one instruction per clock cycle can be
completed and retired in program order from the completion unit, instruction completion
can be stalled by the instruction reaching the last position in the completion queue while
the instruction is still being executed.

Because the 602 can execute instructions out of order, the in-order completion by the
completion unit provides a precise exception mechanism. All program-related exceptions
are signaled when the instruction causing the exception has reached the last position in the
completion buffer. All prior instructions are allowed to complete before the exception is
taken.
Chapter 6. Instruction Timing 6-11

6.3.3 Rename Register Operation
To avoid contention for a register file location, the 602 provides rename registers for storing
instruction results before the completion unit commits them to the architected register.

The 602 has the following rename register resources:

• Four GPR rename buffers
• Four FPR rename buffers
• One rename buffer each for the CR, LR, and CTR

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register for the results of that instruction. If an instruction is dispatched to a reservation
station associated with an execution unit due to a data dependency, the dispatcher also
provides a tag to the execution unit identifying which rename register forwards the required
data upon instruction completion. When the data is available in the rename register, the
pending execution may begin.

The completion unit does not transfer instruction results from the rename registers to the
architected registers until the instruction can be retired from the completion queue without
exceptions and until any unresolved branch conditions preceding it in the completion queue
have been resolved. If a branch is mispredicted, instructions associated with the
mispredicted branch are flushed from the completion queue and the results of those
instructions are flushed from the rename registers.

6.4 Execution Unit Timings
The following sections describe instruction timing considerations within each of the
respective execution units in the 602. Refer to Table 6-1 for branch instruction execution
timing.

6.4.1 Branch Processing Unit Execution Timing
Flow control operations (conditional branches, unconditional branches, and traps) are
typically time-consuming to execute in most machines because they disrupt normal
instruction flow. When the program flow changes, the IQ must be reloaded with the target
instruction stream, during which time the execution units can only execute instructions
dispatched before the change in the program flow. Waiting for instructions to be fetched
from the new address can cause inactivity in the execution units.

Performance features such as branch folding and static branch prediction help minimize the
penalties associated with flow-control operations.
6-12 PowerPC 602 RISC Microprocessor User's Manual

The timing for branch instruction execution is determined by many factors including the
following:

• Whether the branch is taken
• Whether the target instruction stream is in the on-chip cache
• Whether the branch is predicted
• Whether the prediction is correct

6.4.1.1 Branch Folding
When a branch instruction is encountered by the fetcher, the BPU immediately tries to pull
that instruction out of the instruction stream and resolve it. When the BPU pulls the branch
instruction out of the instruction stream, the instruction above the branch is shifted down to
take the place of the removed branch. The technique of removing the branch instruction
from the instruction sequence seen by the other execution units is known as branch folding.

Often, if the prediction is correct or if the branch is unconditional, branch folding can
reduce the penalties of flow control instructions to zero since instruction execution may
proceed as though the branch was never there. A branch can be predicted to be either taken
or not taken:

• Branch taken—If the folded branch instruction changes program flow, the BPU
immediately requests the instructions at the new target from the on-chip cache. In
most cases, the new instructions arrive in the IQ before any bubbles are introduced
into the execution units.

• Branch not taken—If the folded branch instruction does not change program flow,
the branch instruction is already removed from the instruction stream and execution
continues as if no branch instruction were in the original sequence.

When a conditional branch cannot be resolved due to a CR data dependency, the branch is
predicted by means of static branch prediction, and instruction fetching proceeds down the
predicted path. If the branch prediction was incorrect when the branch is resolved, the
instruction queue and all instructions associated with the mispredicted branch are purged.
The results of any instructions from the mispredicted branch that may have executed are
also purged and are not written to architected registers. Instruction fetching resumes down
the correct path.

There are several situations where instruction sequences create dependencies that prevent
a branch instruction from being resolved immediately, thereby causing the instructions that
are the target of the mispredicted branch to be executed out of order.
Chapter 6. Instruction Timing 6-13

The instruction sequences and the resulting action of the branch instruction are described
as follows:

• An mtspr(LR) followed by a bclr—Fetching stops, and the branch waits for the
mtspr to execute.

• An mtspr(CTR) followed by a bcctr—Fetching stops, and the branch waits for the
mtspr to execute.

• An mtspr(CTR) followed by a bc(CTR)—Fetching stops, and the branch waits for
the mtspr to execute.

• A bc(CTR) followed by another bc(CTR)—Fetching stops and the second branch
waits for the first branch to be completed.

• A bc(CTR) followed by a bcctr—Fetching stops, and the bcctr waits for the first
branch to be completed.

• A branch(LK = 1) followed by a branch(LK = 1)—Fetching stops, and the second
branch waits for the first branch to be completed. (Note: a bl instruction does not
have to wait for a branch(LK = 1) to complete.)

• A bc(based-on-CR) waiting for resolution due to a CR-dependency followed by a
bc(based-on-CR)—Fetching stops, and the second branch waits for the first CR-
dependency to be resolved. (Note: branch conditions can be a function of the CTR
and the CR; if the CTR condition is sufficient to resolve the branch, then a CR-
dependency is ignored.)

6.4.1.2 Static Branch Prediction
Static branch prediction is a mechanism by which software (for example, compilers) can
give a hint to the machine hardware about the direction the branch is likely to take. When
a branch instruction encounters a data dependency, the BPU waits for the required
condition code to become available. Rather than stalling instruction issue until the source
operand is ready, the 602 predicts the path a branch instruction is likely to take, and
instructions are fetched and executed along that path. When the branch operand becomes
available, the branch is evaluated. If the predicted path was correct, program flow continues
along that path uninterrupted; otherwise, the processor backs up, and program flow resumes
along the correct path.

There is a scenario where a flow-control instruction is not predicted on the 602. If the target
address of the branch (link or count register) is modified by an instruction that appears
before the branch instruction, the BPU must wait until the target address is available.

The 602 executes through one level of prediction. The microprocessor may not predict a
branch if a prior branch instruction is unresolved.

The number of instructions that can be executed after the issue of a predicted branch
instruction is limited by the fact that like other out-of-order instructions, instructions in
unresolved branch cannot update the register files or memory. That is, instructions can
execute and make their results available for execution by subsequent instructions, they
6-14 PowerPC 602 RISC Microprocessor User's Manual

cannot reach the complete/write-back stage in the completion unit and they instead stall in
the completion unit. As a result, the completion queue may become full, at which point
subsequent instructions can no longer be dispatched until the branch is resolved.

In the case of a misprediction, the 602 can redirect its machine state rather painlessly
because the programing model has not been updated. When a branch is found to be
mispredicted, instructions associated with the mispredicted branch are flushed and their
results flushed from the rename registers. The architected register state is not affected by
out-of-order execution.

6.4.1.2.1 Predicted Branch Timing Examples
Figure 6-6 depicts the cases where branch instructions are predicted, and shows both
“taken” and “not taken” branch outcomes.

Figure 6-6. Branch Instruction Timing

1. During clock cycle 0, instruction 0 (an fneg instruction) is fetched.

2. In clock cycle 1, instruction 1, a Branch Conditional (bc) instruction whose
resolution depends on how instruction 0 affects the CR is fetched as instruction 0 is
dispatched to the FPU execution unit. Notice that the BPU has a combined
decode/execute stage, thus the branch (instruction 1) is predicted as “not taken”
during clock cycle 2 because its source register (condition register) will not become
available until clock cycle 5.

3. In clock cycle 2, the bc instruction remains predicted but unable to resolve waiting
for the results from instruction 0. An add instruction (instruction 2) is fetched—
sequentially according to the prediction of instruction 1.

1 2 3 4 5 60

Fetch

Dispatch

Execute

Complete/Writeback

Predicted/unresolved

7

1 bc

0 fneg

8 9 10

Unpredicted

2 add

3 bc

4 fdivs

5 or

6 or

7 fadds

8 and
Chapter 6. Instruction Timing 6-15

4. During clock cycle 3, instruction 0 is in FPU execute stage 2, and instruction 1
remains unresolved, waiting for the results of instruction 0. Also, the add instruction
is dispatched, and a second bc instruction (instruction 3) is fetched.

5. During clock cycle 4, instruction 0 enters its final execute stage, instruction 1
remains unresolved, instruction 2 is in the IU execute stage, and the second bc
instruction remains unable to predict waiting the resolution of the first bc
instruction. Therefore, no instruction is fetched.

6. In clock cycle 5, instruction 0 enters the complete stage, which resolves the data
dependency for the first branch (instruction 1); in this case the prediction was
correct. When instruction 1 is resolved, the BPU is free to predict bc (instruction 3),
and it too is predicted as “not taken”. This branch depends on how instruction 2
affects the CR and therefore must wait for it to complete and write back its results.
Although instruction 2 had executed, it cannot exit the complete stage because only
one instruction can complete per clock cycle. Also in this clock cycle, an fdivs
instruction (instruction 4) is fetched.

7. During clock 6, instruction 2 writes back its results so the second branch instruction
is resolved, and the prediction was incorrect. As a result, the fdivs instruction, which
is now in dispatch stage must be flushed from the pipeline and fetching must begin
at the target address.

8. In clock cycle 7, the instruction fetcher begins fetching instructions from the
instruction cache. In this case there is a cache hit, so the target or instruction is
fetched, and the instruction flow continues.

6.4.2 Integer Unit Execution Timing
The integer unit executes all integer and logical instructions. Many of these instructions
execute in a single clock cycle. The integer unit has one execute phase in its pipeline, thus
when a multicycle integer instruction is being executed, no other integer instructions may
begin an execute phase. Refer to Table 6-2 for integer instruction execution timing.

6.4.3 Floating-Point Unit
The 602’s FPU performs single-precision floating-point operations compliant with the
IEEE-754 floating-point standard, and can produce non-IEEE results for time-critical
operations. These modes of operation are described in Section 2.3.4.2.2, “IEEE Mode
(FPSCR[NI] = 0),” and Section 2.3.4.2.3, “Non-IEEE Mode (FPSCR[NI] = 1).”

Single-precision multiplies, multiply-adds, adds, and subtracts execute in a three-stage
pipeline with three-cycle completion latency allowing throughput of one single-precision
instruction per cycle. Single-precision divide operations require multiple cycles to
complete.

All operations involving double-precision operands and operations that produce
denormalized numbers require emulation routines, and therefore have longer execution
latency.
6-16 PowerPC 602 RISC Microprocessor User's Manual

There are two 32-bit, special-purpose registers—SP and LT. Each bit of each register
corresponds to a single 32-bit FPR.

• If either the SP bit or the LT bit is set, the associated register contains valid data—
SP designating single-precision floating-point data, and LT designating integer data.

• If neither bit is set, the data resides in memory in the associated double-precision
emulated FPR. The operation of these registers is described in greater detail in
Section 2.1.2.4.1, “Floating-Point Tag Registers (SP and LT).”

The block diagram for the floating-point execution unit is shown in Figure 6-7.

Figure 6-7. FPU Block Diagram

6.4.4 Floating-Point Unit Execution Timing
The FPU on the 602 executes all hardware-supported floating-point instructions. Execution
of most floating-point instructions is pipelined within the FPU, allowing up to three
instructions to be executing in the FPU concurrently (one at each of the three stages in the
FPU pipeline). While most floating-point instructions execute with three- or four-cycle
latency, and one-cycle throughput, two instructions (fdivs and fres) execute with latencies
of 18 cycles. The fdivs, fres, mtfsb0, mtfsb1, mtfsfi, mffs, and mtfsf instructions block
the FPU pipeline until they complete execution, and thereby inhibit the dispatch of
additional floating-point instructions. With the exception of the mcrfs instruction, all
floating-point instructions immediately forward their CR results to the BPU for fast branch

Floating-Point Results

Floating-Point Instruction Stream
(Source operands from FPRs

(To FPRs/Rename Buffers)

or Rename Buffers)

Multiply

Carry/Propagate/Add

Normalize/Round
Chapter 6. Instruction Timing 6-17

resolution without waiting for the instruction to be retired by the completion unit, and the
CR updated. Refer to Table 6-5 for floating-point instruction execution timing.

6.4.5 Load/Store Unit Execution Timing
The LSU has two pipeline stages—the first is for effective address calculation and MMU
translation, and the second is for accessing the data in the cache. The execution of most load
and store instructions is pipelined, as follows:

• Load instructions have a two-cycle latency and one-cycle throughput. Load
instructions block subsequent access to the cache until the critical word is
forwarded.

• Store instructions have a two-cycle latency and two-cycle throughput.

Refer to Table 6-6 for load and store instruction execution timing.

6.5 Memory Performance Considerations
Due to the 602’s instruction execution throughput of three instructions per clock cycle, lack
of data bandwidth can become a performance bottleneck. For the 602 to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.
In a multiprocessor system environment, one processor may experience long memory
latencies while another bus master (for example, a direct-memory access controller) is
using the external bus. To avoid such contention, the PowerPC architecture defines three
memory update modes—copy-back, write-through, and caching-inhibited. Each page of
memory is specified to be in one of the following modes:

• If a page or block is in copy-back mode, data being stored to that page is written only
to the on-chip cache.

• If a page or block is in write-through mode, write operations to that page update the
on-chip cache on hits and always update main memory.

• If a page or block is caching-inhibited, data in that page is never stored in the on-
chip cache.

This section describes how performance is affected by each memory update mode. For
details about the operation of the on-chip cache and the memory update modes, see
Chapter 3, “Instruction and Data Cache Operation.”

6.5.1 Copy-Back Mode
When storing data while in copy-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on modified cache block replacements, cache flushes, or when another processor
attempts to access a specific address for which there is a corresponding modified cache
entry. For this reason, copy-back mode may be preferred when external bus bandwidth is a
potential bottleneck—for example, in a multiprocessor environment. Copy-back mode is
also well suited for data that is closely coupled to a processor, such as local variables.
6-18 PowerPC 602 RISC Microprocessor User's Manual

If more than one device uses data stored in a page or block that is in copy-back mode,
snooping must be enabled to allow copy-back operations and cache invalidations of
modified data. The 602 implements snooping hardware to prevent other devices from
accessing invalid data. When bus snooping is enabled, the processor monitors the
transactions of the other devices. For example, if another device accesses a memory
location and its memory-coherent (M) bit is set, and the 602’s on-chip cache has a modified
value for that address, the processor preempts the bus transaction, and updates memory
with the cache data. If the cache contents associated with the snooped address are
unmodified, the 602 invalidates the cache block. The other device is then free to attempt an
access to the updated memory address. See Chapter 3, “Instruction and Data Cache
Operation,” for complete information about bus snooping. For an understanding of how bus
latency is affected by snooping, as well as by the operations that occur as a result of a snoop
hit, see Section 8.4, “Memory Coherency and Bus Protocol.”

Copy-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

6.5.2 Write-Through Mode
Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the data in the cache must
always agree with external memory (for example, video memory), or when there is shared
(global) data that may be used frequently, or when allocation of a cache line on a cache miss
is undesirable. Automatic copy-back of cached data is not performed if that data is from a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that are in write-through mode may cause a decrease in performance.
Each time a store is performed to memory in write-through mode, the bus is busy for the
extra clock cycles required to perform the memory update; therefore, load operations that
miss the on-chip cache must wait while the external store operation completes.

6.5.3 Caching-Inhibited Accesses
If a memory page is specified to be caching-inhibited, data from this page is not stored in
the on-chip cache.

Areas of the memory map can be caching-inhibited by the operating system software. If a
caching-inhibited access hits in the on-chip cache, the corresponding cache line is
invalidated. If the line is marked as modified, it is copied back to memory before being
invalidated.

In summary, the copy-back mode allows both load and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the caching-inhibited mode causes memory access for both loads and stores.
Chapter 6. Instruction Timing 6-19

6.6 Instruction Scheduling Guidelines
Instruction scheduling on the 602 can be improved by observing the following guidelines:

• Implement good static branch prediction (setting of y bit in BO field)

• When branch prediction is either uncertain or an even probability, predict that the
branch is not taken.

• To reduce mispredictions, separate the instruction that sets CR bits from the branch
instruction that evaluates them; separation by more than nine instructions ensures
that the CR bits are immediately available for evaluation.

• When branching conditionally to a location specified by the count or link register, or
when branching conditionally based on the value in the count register, separate the
mtspr instruction that initializes the CTR or LR from the branch instruction
performing the evaluation. Separation of the branch instruction and the mtspr
instruction by more than nine instructions ensures the register values are
immediately available for use by the branch instruction.

• Schedule instructions to minimize execution-unit-busy stalls.

• Avoid using serializing instructions.

• Schedule instructions to avoid dispatch stalls due to renamed resource limitations by
observing the following guidelines:

— Only four instructions can be in the complete/writeback stage at any one time

— Schedule code to avoid a need for more than four GPR or FPR rename buffers at
a time, so even though space may be available in the first FPU execute stage, a
floating-point instruction cannot enter the execute stage if all four FPR rename
registers are occupied.

6.6.1 Branch, Dispatch, and Completion Unit Resource
Requirements

This section describes the specific resources required to avoid stalls during branch
resolution, instruction dispatching, and instruction completion.

6.6.1.1 Branch Resolution Resource Requirements
The following is a list of branch instructions and the resources required to avoid stalling the
fetch unit in the course of branch resolution:

• The bclr instruction requires LR availability.

• The bcctr instruction requires CTR availability.

• “Branch and link” instructions require shadow LR availability.

• The “branch conditional on counter decrement and CR condition” requires CTR
availability or the CR condition must be false, and 602 cannot be executing
instructions out-of order when the branch instruction is encountered by the BPU.

• The “branch conditional on CR condition” cannot be executed out of order.
6-20 PowerPC 602 RISC Microprocessor User's Manual

6.6.1.2 Dispatch Unit Resource Requirements
The following is a list of resources required to avoid stalls in the dispatch unit:

• Needed execution unit is available.
• Needed GPR rename register(s) are available.
• Needed FPR rename registers are available.
• Completion buffer is not full.
• Instruction is dispatch-serialized and completion buffer is empty.
• A dispatch-serialized instruction is not currently being executed.

6.6.1.3 Completion Unit Resource Requirements
The following is a list of resources required to avoid stalls in the completion unit—CQ[0]
is the completion buffer located at the end of the completion queue:

• Instruction in CQ[0] must be finished
• Instruction in CQ[0] must not cause an exception

6.7 Instruction Serialization Modes
This section describes the operation of the 602’s serialization modes, which are as follows:

• Completion serialization
• Dispatch serialization
• Refetch serialization
• FPU serialization

6.7.1 Completion Serialization
A completion-serialized instruction is held for execution in its functional unit until all prior
instructions have completed. The instruction executes when it is next to complete in
program order.

Completion serialization is used for instructions that access or modify nonrenamed
resources or directly access renamed resources. Results from these instructions are not
available or forwarded for subsequent instructions until the instruction completes.
Consecutive completion serialized instructions in a program limit completion to one
instruction per cycle. The following instructions are completion serialized:

• Instructions that modify the CR register, excluding record operations and compare
instructions

• Instructions that access or modify system control or status registers

• Instructions that manage caches, TLBs, or BAT registers

• Instructions that access nonrenamed GPRs such as load multiple instructions

• Instructions defined by the architecture as synchronizing—sync, isync, rfi, and sc

• All store instructions
Chapter 6. Instruction Timing 6-21

6.7.2 Dispatch Serialization
Some completion-serialized instructions are also dispatch serialized. These instructions
inhibit dispatching of subsequent instructions until the instruction completes. Dispatch
serialization is used for instructions that access resources that can be renamed used by the
dispatcher.

The following instructions are dispatch-serialized:

• dcbf, dcbi, dcbst, dcbz, and icbi

• tlbld, tlbli, and tlbie

• lmw and stmw

• mcrfs, mcrxr

• mfspr with SPRs—IBATn, DBATn, LT, and SP

• mffs, mfsr, and mfsrin

• mtspr with SPRs—SER, SEBR, ESASRR, XER, IBATn, and DBATn

• mtfsb1, mtfsf, mtfsfi, mtmsr (if a store operation is pending), mtssb0, mtsr, and
mtsrin,

• fctiwz

• sync and isync

6.7.3 Refetch Serialization
There is one instruction, isync, that is refetch serializing. After an isync instruction
completes, it forces subsequent instructions to be refetched.

6.7.4 FPU Serialization
The FPU serializes divide instructions that are not pipelined. No new instructions are
accepted from the dispatch unit until FPU-serialized divide instruction finishes.

6.8 Instruction Latency Summary
Instruction latency is shown in Table 6-1 through Table 6-6.

• Pipelined floating-point instructions are shown with number of clocks in each stage
separated by dashes.

• Instructions that must be emulated by software are identified by the exception that
they take.

The “^” indicates certain instructions (integer instructions, floating-point compare
instructions, and floating-point instructions with Rc = 1) that immediately forward their CR
results to the BPU for fast branch resolution. All other instructions forward their CR results
when they reach the completion stage.
6-22 PowerPC 602 RISC Microprocessor User's Manual

Note that the BPU folds (removes) certain branch instructions from the instruction stream
before the stream reaches the dispatcher. In certain cases, the BPU also predicts branches
and supplies an instruction stream to the dispatcher at the target address indicated by the
predicted branch. Therefore, although this section accurately indicates the number of cycles
an instruction executes in the appropriate unit, determining the elapsed time or cycles to
execute a sequence of instructions is difficult and beyond the scope of this document.

6.8.1 BPU Instruction Timings
Table 6-1 lists the timings for executing branch instructions. Note that these timings do not
identify the latency of the actual branching, which can be affected by factors such as the
accuracy of the branch prediction and memory latency.

6.8.2 Integer Unit Instruction Timings
The IU in the 602 is responsible for executing integer computational and logical
instructions. Timings for the IU instructions are listed in Table 6-2.

Table 6-1. BPU Operations

Mnemonic Primary Extended Cycles

bcctr[l] 19 528 1*

bclr[l] 19 016 1*

bc[l][a] 16 — 1*

b[l][a] 18 — 1*

*These operations may be folded for an effective cycle time of 0.

Table 6-2. Integer Unit Operations

Mnemonic Primary Extended Cycles

addc[o][.] 31 010 1

adde[o][.] 31 138 1

adde[o][.] 31 138 1

addi 14 — 1

addic 12 — 1

addic. 13 — 1

addis 15 — 1

addme[o][.] 31 234 1

addze[o][.] 31 202 1

add[o][.] 31 266 1

andc[.] 31 060 1

andi. 28 — 1
Chapter 6. Instruction Timing 6-23

andis. 29 — 1

and[.] 31 028 1

cmp 31 000 1^

cmpi 11 — 1^

cmpl 31 032 1^

cmpli 10 — 1^

cntlzw[.] 31 026 1

divwu[o][.] 31 459 37

divw[o][.] 31 491 37

dsa 31 628 1

eieio 31 854 no op

eqv[.] 31 284 1

esa 31 596 1

extsb[.] 31 954 1

extsh[.] 31 922 1

mfmsr 31 083 1

mfrom 31 265 1

mfspr (DBATs) 31 339 3&

mfspr (IBATs) 31 339 3&

mfspr (not I/DBATs) 31 339 1

mfsr 31 595 3&

mfsrin 31 659 3&

mftb 31 371 1

mtmsr 31 146 2

mtspr (IBATs) 31 467 2&

mtspr (not IBATs) 31 467 2

mtsr 31 210 3&

mtsrin 31 242 3&

mttb 31 467 1

mulhwu[.] 31 011 1-1,2-1,3-1,4-1

mulhw[.] 31 075 1-1,2-1,3-1

mulli 07 — 1,1-1

Table 6-2. Integer Unit Operations (Continued)

Mnemonic Primary Extended Cycles
6-24 PowerPC 602 RISC Microprocessor User's Manual

mullw[o][.] 31 235 1-1.2-1,3-1

nand[.] 31 476 1

neg[o][.] 31 104 1

nor[.] 31 124 1

orc[.] 31 412 1

ori 24 — 1

oris 25 — 1

or[.] 31 444 1

rlwimi[.] 20 — 1

rlwinm[.] 21 — 1

rlwnm[.] 23 — 1

slw[.] 31 024 1

srawi[.] 31 824 1

sraw[.] 31 792 1

srw[.] 31 536 1

subfc[o][.] 31 008 1

subfe[o][.] 31 136 1

subfic 08 — 1

subfme[o][.] 31 232 1

subfze[o][.] 31 200 1

subf[o][.] 31 040 1

sync 31 598 1&

tw 31 004 2

twi 03 — 2

xori 26 — 1

xoris 27 — 1

xor[.] 31 316 1

Table 6-2. Integer Unit Operations (Continued)

Mnemonic Primary Extended Cycles
Chapter 6. Instruction Timing 6-25

Condition register logical instructions are executed in the IU. Timings for these instructions
are shown in Table 6-3.

6.8.3 Synchronization Instructions
Several instructions are not dispatched and executed in an execution unit, but rather are sent
directly to the completion buffer where they are allowed to perform the appropriate
operation in the correct order.

6.8.4 FPU Instruction Timings
Timings for floating-point instructions are shown in Table 6-5. Instructions with a single
entry in the cycles column are not pipelined; for these instructions the FPU is not available
for additional instruction execution.

Table 6-3. Condition Register Logical Operations

Mnemonic Primary Extended Cycles

crand 19 257 1

crandc 19 129 1

creqv 19 289 1

crnand 19 225 1

crnor 19 033 1

cror 19 449 1

crorc 19 417 1

crxor 19 193 1

mcrf 19 000 1

mcrxr 31 512 1&

mfcr 31 019 1

mtcrf 31 144 1

Table 6-4. Synchronization Instructions

Mnemonic Primary Extended Cycles

isync 19 150 1&

rfi 19 050 3

sc 17 - -1 3
6-26 PowerPC 602 RISC Microprocessor User's Manual

Table 6-5. FPU Operations

Mnemonic Primary Extended Cycles

fabs[.] 63 264 1-1-1^

fadds[.] 59 021 1-1-1^

fadd[.] 63 021 Emulation trap

fcmpo 63 032 1-1-1^

fcmpu 63 000 1-1-1^

fctiwz[.] 63 015 1-1-1^

fctiw[.] 63 014 Emulation trap

fdivs[.] 59 018 18^

fdiv[.] 63 018 Emulation trap

fmadds[.] 59 029 1-1-1^

fmadd[.] 63 029 Emulation trap

fmr[.] 63 072 1-1-1^

fmsubs[.] 59 028 1-1-1^

fmsub[.] 63 028 Emulation trap

fmuls[.] 59 025 1-1-1^

fmul[.] 63 025 Emulation trap

fnabs[.] 63 136 1-1-1^

fneg[.] 63 040 1-1-1^

fnmadds[.] 59 031 1-1-1^

fnmadd[.] 63 031 Emulation trap

fnmsubs[.] 59 030 1-1-1^

fnmsub[.] 63 030 Emulation trap

fres[.] 59 024 18^

frsp[.] 63 012 1-1-1^

frsqrte[.] 63 026 1-1-1^

fsel[.] 63 023 1-1-1^

fsubs[.] 59 020 1-1-1^

fsub[.] 63 020 Emulation trap

mcrfs 63 064 1-1-1&
Chapter 6. Instruction Timing 6-27

Note that all single-precision instructions take an emulation trap exception if any of the
operands’ SP bits are cleared (indicating that the operand is an integer or a double-precision
floating-point number). The mtfsf instruction takes an emulation trap exception if the LT
bit is cleared.

6.8.5 Load/Store Unit Instruction Timings
Pipelined load/store instructions are shown in Table 6-6 with cycles of total latency and
throughput cycles separated by a colon.

mffs[.] 63 583 1-1-1&^

mtfsb0[.] 63 070 1-1-1&^

mtfsb1[.] 63 038 1-1-1&^

mtfsfi[.] 63 134 1-1-1&^

mtfsf[.] 63 711 1-1-1&^

Table 6-6. Load/Store Unit Instruction Timings

Mnemonic Primary Extended Cycles

dcbf 31 086 2/5&

dcbi 31 470 2&

dcbst 31 054 2/5&

dcbt 31 278 1

dcbtst 31 246 1

dcbz 31 1014 5&

eciwx 31 310 Program exception

ecowx 31 438 Program exception

icbi 31 982 3&

lbz 34 — 2:1

lbzu 35 — 2:1

lbzux 31 119 2:1

lbzx 31 087 2:1

lfd 50 — 3:2

lfdu 51 — 3:2

lfdux 31 631 3:2

lfdx 31 599 3:2

Table 6-5. FPU Operations (Continued)

Mnemonic Primary Extended Cycles
6-28 PowerPC 602 RISC Microprocessor User's Manual

lfs 48 — 2:1

lfsu 49 — 2:1

lfsux 31 567 2:1

lfsx 31 535 2:1

lha 42 — 2:1

lhau 43 — 2:1

lhaux 31 375 2:1

lhax 31 343 2:1

lhbrx 31 790 2:1

lhz 40 — 2:1

lhzu 41 — 2:1

lhzux 31 311 2:1

lhzx 31 279 2:1

lmw 46 — 1+ n&

lswi 31 597 Emulation trap

lswx 31 533 Emulation trap

lwarx 31 020 2:1

lwbrx 31 534 2:1

lwz 32 — 2:1

lwzu 33 — 2:1

lwzux 31 055 2:1

lwzx 31 023 2:1

stb 38 — 2:1

stbu 39 — 2:1

stbux 31 247 2:1

stbx 31 215 2:1

stfd 54 — 3:2

stfdu 55 — 3:2

stfdux 31 759 3:2

stfdx 31 727 3:2

stfiwx 31 983 2:1

stfs 52 — 2:1

Table 6-6. Load/Store Unit Instruction Timings (Continued)

Mnemonic Primary Extended Cycles
Chapter 6. Instruction Timing 6-29

Note that the lfd, lfdu, lfdx, and lfdux instructions trap to the emulation trap exception
(0x01600) if the operand is not within the single-precision range (regarding both the
exponent and fraction) or if the operand is a NaN, an infinity, or a denormalized number.
The stfd, stfdu, stfdx, and stfdux instructions trap to the emulation trap exception if the SP
bit associated with the operand FPR is “OFF” or if the FPR contains a NaN, an infinity, or
a denormalized number.

6.8.6 Effect of Operand Placement on Performance
The location and alignment of operands in memory affect relative performance of memory
accesses, and in some cases affect it significantly. Data and instructions should be organized
in memory to minimize the number of effective address calculations and minimize the
number of alignment exceptions.

stfsu 53 — 2:1

stfsux 31 695 2:1

stfsx 31 663 2:1

sth 44 — 2:1

sthbrx 31 918 2:1

sthu 45 — 2:1

sthux 31 439 2:1

sthx 31 407 2:1

stmw 47 — n&

stswi 31 725 Emulation trap

stswx 31 661 Emulation trap

stw 36 — 2:1

stwbrx 31 662 2:1

stwcx. 31 150 2:1

stwu 37 — 2:1

stwux 31 183 2:1

stwx 31 151 2:1

tlbie 31 306 3&

tlbld 31 978 3&

tlbli 31 1010 3&

Table 6-6. Load/Store Unit Instruction Timings (Continued)

Mnemonic Primary Extended Cycles
6-30 PowerPC 602 RISC Microprocessor User's Manual

The following list characterizes the efficiency of memory accesses relating to operand
placement:

• One effective address generated—As long as the entire memory access falls within
a double word, only one effective address is generated. For optimal performance,
operands should not cross double-word alignment boundaries.

• Multiple effective addresses generated—When an operand crosses a double-word
boundary (for example, when a double-word operand is not double-word-aligned),
an additional effective address must be generated for each double word in memory
in which the operand resides. If the double-word boundary is also at a cache block
boundary, a cache miss may occur.

• Alignment exception is generated—An alignment exception or other exception is
generated by the memory operation. Note that any little-endian access that does not
fall on its natural alignment boundary causes an alignment exception. If an access
crosses a page boundary, a page miss may occur.

6.8.7 Effect of Floating-Point Exceptions on Performance
Floating-point operations that affect the exception sticky bits in the FPSCR may incur
performance penalties.

When an exception is disabled in the FPSCR and MSR[FE] = 0, updates to the FPSCR
exception sticky bits are completion-serialized, as described in Section 6.7.1, “Completion
Serialization.” This serialization may incur a one- or two-cycle execution delay. The
penalty is incurred only on transitions to the exception bit and not on subsequent operations
with the same exception.

When an exception is enabled in the FPSCR, the instruction causes an emulation trap
exception without updating the FPSCR or the target FPR. The emulation trap exception
handler is required to complete the instruction and is invoked regardless of the setting of
MSR[FE].

For the fastest and most predictable floating-point performance, all exceptions should be
disabled in the FPSCR and MSR.
Chapter 6. Instruction Timing 6-31

6-32 PowerPC 602 RISC Microprocessor User's Manual

Chapter 7
Signal Descriptions
70
70

The PowerPC 602 microprocessor bus interface has a single 64-bit bus that is time-
multiplexed for use as address and data bus. This technique provides the most efficient use
of signals on the processor while having most of the signals of other current 32-bit
PowerPC processors. If a nonmultiplexed bus is desired, the 602 bus can also be
demultiplexed at the processor with a set of address latches. The 602 bus supports cache-
coherent DMA operations.

A summary of the bus features are listed as follows:

• 32-bit address and address attributes
• 64-bit bus for data transfer that can be dynamically resized for 32-bit data operations
• Snooping to support cache-coherent DMA operations
• Injected snoops allowed during a burst read transaction
• Provides line-fill read address on the address phase of the write-back transaction

This chapter describes the 602’s external signals. It contains a concise description of
individual signals, showing behavior when the signal is asserted and negated and when the
signal is an input and an output.

NOTE
A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as TT0–TT4 (transfer type signals), are
referred to as asserted when they are high and negated when
they are low.
Chapter 7. Signal Descriptions 7-1

The 602 signals are grouped as follows:

• Arbitration signals—The 602 uses these signals to arbitrate for bus mastership.

• Transfer start signal—The transfer start signal indicates that a bus master has begun
a transaction.

• Address transfer signals—These signals, which correspond to the data signals
D0–D31 during the data phase, transfer the address during the address phase.

• Transfer attribute signals—These signals, which share the same physical
connections as D31–D63, provide information about the type of transfer, such as the
transfer size and whether the transaction is bursted, write-through, or caching-
inhibited.

• Address transfer termination signals—These signals are used to acknowledge the
end of the address phase. They also indicate whether a condition exists that requires
the address phase to be repeated.

• Data transfer signals—These signals are used to transfer the data and to ensure the
integrity of the transfer.

• Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a nonburst transaction, the data termination signals
also indicate the end of the transaction, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the data phase only after the
final data beat. They also indicate whether a condition exists that requires entire
transaction to be repeated.

• System status signals—These signals include the external interrupt signal,
checkstop signals, and both soft- and hard-reset signals. These signals are used to
interrupt and to reset the processor.

• JTAG/COP interface signals—The JTAG interface and common on-chip processor
(COP) unit provides a serial interface to the system for performing monitoring and
boundary tests.

• Clock signals—These signals provide for system clock input and frequency control.

7.1 Signal Configuration
Figure 7-1 illustrates the 602’s signal configuration, showing how the signals are grouped.

NOTE
A pinout showing actual pin numbers is included in the 602
hardware specifications.
7-2 PowerPC 602 RISC Microprocessor User's Manual

Figure 7-1. PowerPC 602 Microprocessor Signal Groups

A0–A31/D0–D31

SYSCLK

INT

HRESET, SRESET

JTAG/COP

TEST

INTERRUPT,

SYSTEM

CHECKSTOPS,

JTAG/COP
INTERFACE

LSSD TEST
CONTROL

ADDRESS/

CLOCKS TEST CLOCK

PFADDR0–PFADDR7/

BE0–BE7/D40–D47/

QREQ

TBEN

PLL_CFG0–PLL_CFG3

MCP

CKSTP_IN

AND RESETS

TSIZ0–TSIZ2/D50–D52/

TBST/D53

TT0–TT4/D54–D58

GBL/D59

TC0–TC1/D62–D63

CI/D60

WT/D61

BG

BR

TS

ARTRY

BB

BUS
ARBITRATION

TEA

TA

AACK

PFADDR16–PFADDR17/
DATA

RESETO

CKSTP_OUT

SMI

QACK

T32

TRANSFER
ATTRIBUTES/

DATA

TRANSFER
TERMINATION

STATUS
SIGNALS

1

1

8

8

4

3

1

5

1

2

1

1

1

1

2

1

1

2

5

3

602

1

1

1

1

1

1

1

1

1

1

1

1

1

1

32

D32–D39

PFADDR8–PFADDR15

D48–D49

PFADDR18–PFADDR20
Chapter 7. Signal Descriptions 7-3

7.1.1 Time-Multiplexed System Bus
To conserve space and power, the 602 implements a time-multiplexed bus. That is, the same
signals from the processor serve different functions depending on whether it is being used
to transfer an address or data. Note that A0–A31 are equivalent to D0–D31. The remaining
32 bits are used for transfer attribute signals, such as global (GBL) and transfer burst
(TBST). Signal assignments for data and address cycles are shown in Table 7-1.

When the bus is in the data phase, it can be made to function as a 32- or 64-bit data bus.
The bus width is determined by the target data bus width (T32) signal, described in
Section 7.2.7.2, “Target Data Bus 32 (T32)—Input.”

7.2 Signal Descriptions
This section describes individual 602 signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signal functions.
Chapter 8, “System Interface Operation,” describes many of these signals in greater detail,
both with respect to how individual signals function and how groups of signals interact.

7.2.1 Bus Arbitration Signals
The arbitration signals are a collection of input and output signals the 602 uses to request
the bus and the system uses to control bus mastership. For a detailed description of how
these signals interact, see Section 8.3.1, “Bus Arbitration.”

Table 7-1. Time-Multiplexed Signal Assignments

Data Phase
Address Phase

Nonburst Transactions Burst Transactions

D0–D31 Address signals (A0–A31) Address signals (A0–A31)

D32–D39 — Prefetch line-fill address signals
(PFADDR0–PFADDR20). (Cache copy-
back line-fill only)D40–D47 Byte enable (BE0–BE7)

D48–D49 —

D50–D52 Transfer size (TSIZ0–TSIZ2)

D53 Transfer burst (TBST) Transfer burst (TBST)

D54–D58 Transfer type (TT0–TT4) Transfer type (TT0–TT4)

D59 Global (GBL) Global (GBL)

D60 Cache inhibit (CI) Cache inhibit (CI)

D61 Write through (WT) Write through (WT)

D62–D63 Transfer code (TC0–TC1) Transfer code (TC0–TC1)
7-4 PowerPC 602 RISC Microprocessor User's Manual

7.2.1.1 Bus Request (BR)—Output
The bus request (BR) signal is an output signal on the 602. Following are the state meaning
and timing comments for the BR signal.

State Meaning Asserted—Indicates that the 602 is requesting mastership of the bus
and is waiting for a qualified BG to begin the bus transaction. See
Section 8.3.1, “Bus Arbitration.”

Negated—Indicates that the 602 is not requesting the bus. The 602
may have no bus operation pending, it may be parked, or the ARTRY
input was asserted on the previous bus clock cycle.

Timing Comments Assertion— Occurs when the 602 is not parked and a bus transaction
is needed.

Negation—Occurs for at least one bus clock cycle after an accepted,
qualified bus grant (see BG, TS, ARTRY, and BB), even if another
transaction is pending. It is also negated for at least one bus clock
cycle when the assertion of ARTRY is detected on the bus, unless this
602 asserted ARTRY and needs to perform a snoop write back. BR
may also be negated if the 602 cancels the internal bus request
(need_bus condition) before receiving a qualified BG.

High-impedance—Occurs during a hard reset or checkstop
condition.

7.2.1.2 Bus Grant (BG)—Input
The bus grant (BG) signal is an input signal on the 602. Following are the state meaning
and timing comments for the BG signal.

State Meaning Asserted—Indicates that the 602 may, with the proper qualification,
assume mastership of the bus. A qualified bus grant occurs when BG
is asserted and BB (bus busy), TS, and ARTRY are negated
(indicating that no other devices currently are using the bus). Note
that the BR is not part of the qualified bus grant; if the processor is
parked, it does not assert the BR signal when it needs the bus. See
Section 8.3.1, “Bus Arbitration.”

Negated— Indicates that the 602 has not been designated to be the
next potential bus master.

Timing Comments Assertion—May occur at any time to indicate the 602 is free to use
the bus. If the 602 has a second transaction pending, (except for
cache copy-back line-fill operations) it does not look for BG to be
asserted until the clock cycle after BB is negated. If the current
transaction is a copy-back line-fill, the 602 samples the BG signal
during the last data beat.
Chapter 7. Signal Descriptions 7-5

Negation—May occur at any time to indicate to the 602 that it cannot
use the bus. The 602 can still assume bus mastership on the bus clock
cycle of the negation of BG because during the previous cycle BG
indicated to the 602 that it was free to take mastership (if qualified).

7.2.2 Transfer Start (TS)
The transfer start signal, TS, indicates that an address phase of a transfer has begun. For
detailed information about how the TS signal interacts with other signals, refer to
Section 8.3.2, “Address Transfer Subphase.”

The TS signal is both an input and an output signal on the 602.

7.2.2.1 Transfer Start (TS)—Output
Following are the state meaning and timing comments for the TS output signal.

State Meaning Asserted—Indicates that the 602 is the current bus owner and is in
the address phrase has begun a bus transaction and that the address
and transfer attribute signals are valid.

The 602 may not assume bus mastership if the bus request is
cancelled internally by the cycle a qualified bus grant would have
been recognized.

Negated—Indicates that the 602 is not in the address phase

Timing Comments Assertion— Occurs in the cycle after a qualified bus grant is
accepted by the 602 and remains asserted for the duration of the
address phase.

Negation/High Impedance (turn-off sequencing)—Negates for one
bus clock, then goes to the high impedance state.

7.2.2.2 Transfer Start (TS)—Input
Following are the state meaning and timing comments for the TS input signal.

State Meaning Asserted—Indicates that another master has begun a bus transaction
and that the address and transfer attribute signals are valid for
snooping (see GBL).

Negated—Indicates that no bus transaction is occurring and that the
bus may be available for use by the 602.

Timing Comments Assertion—May occur whenever the 602 must be prevented from
using the bus.
Negation—May occur whenever the 602 is permitted access to the
bus. Must occur one bus clock cycle after TS is asserted.
7-6 PowerPC 602 RISC Microprocessor User's Manual

7.2.3 Address Transfer Signals
The address transfer signals are used to transmit the address for the address transfer. For a
detailed description of how these signals interact, refer to Section 8.3.2, “Address Transfer
Subphase.”

7.2.3.1 Address Signals (A0–A31)
The address signals (A0–A31) are both input and output signals. Because the bus is time-
multiplexed, the physical connections serve dual purposes. The additional function these
signals serve are identified here and described elsewhere in this chapter.

7.2.3.1.1 Address Signals (A0–A31)—Output
Following are the state meaning and timing comments for the A0–A31 output signals.

State Meaning Asserted/Negated—Represents the physical address (real address in
the architecture specification) of the data to be transferred.

On burst read operations, the bus presents the double-word-aligned
address containing the critical double word of the cache block that
missed the cache.

On burst write operations, the bus presents the first double word of
the cache block.

Note that the address output during burst operations is not
incremented. See Section 8.3.2, “Address Transfer Subphase.”

Timing Comments Assertion/Negation—Driven valid on the same cycle that TS is
asserted and remains valid for the duration of the address phase.

High Impedance—Occurs the cycle following the assertion of
AACK. No precharge action is performed on release.

Alternate Use Data output signals (D0–D31). See Section 7.2.7.1.1, “Data Signals
(D0–D63)—Output.”

7.2.3.1.2 Address Signals (A0–A31)—Input
Following are the state meaning and timing comments for the A0–A31 input signals.

State Meaning Asserted/Negated—Represents the physical address of a snoop
operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle as the
assertion of TS; the 602 samples the address signals only on this
cycle.

Alternate Use Data signals (D0–D31). See Section 7.2.7.1.2, “Data Signals (D0–
D63)—Input.”
Chapter 7. Signal Descriptions 7-7

7.2.3.1.3 Prefetch Line-Fill Address (PFADDR0–PFADDR20)—Output
The prefetch line-fill address signals, PFADDR0–PFADDR20, help expedite a cache-line-
fill when room in the cache must be made when a read misses in the cache and modified
data in the least-recently used cache block is cast-out and written back to external memory.
The prefetch line-fill address signals specify the cache-line-fill read address.

When the 602 misses in its cache and must write modified data to external memory, it
outputs the upper 21 bits (A0–A20) of the missing read address on the address phase of the
write-back transaction. The low-order 6 address bits (A21–A26) of the read address match
the low-order 6 bits of the write-back address because the index into the internal cache is
the same for both the line-fill read address and the write-back address. This read address
ensures that a system’s memory controller can prefetch the read data, making it available
immediately when the 602 performs a line-fill operation.

Following are the state meaning and timing comments for the PFADDR0–PFADDR20
output signals.

State Meaning Asserted/Negated—This address is valid only when TC0 is negated,
TC1 is asserted, and TBST is asserted.

Timing Comments Assertion/Negation—Driven valid on the same cycle that TS is
asserted and remains driven/valid for the duration of the address
phase.

Alternate Use The alternate uses for PFADDR0–PFADDR20 are shown in
Table 7-2.

7.2.4 Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer—such
as the size of the transfer, whether it is a read or write operation, and whether it is a burst
or nonburst transfer. For a detailed description of how these signals interact, see
Section 8.3.2, “Address Transfer Subphase.”

7.2.4.1 Transfer Type (TT0–TT4)
The transfer type (TT0–TT4) signals consist of five input/output signals on the 602. For a
complete description of TT0–TT4 signals and for transfer type encodings, see Table 7-3.

Table 7-2. Alternate Uses for PFADDR0–PFADDR20

PFADDR Signal Alternate Use

PFADDR0–PFADDR7 Data output (D32–D39). See Section 7.2.7.1.1, “Data Signals (D0–D63)—Output.”

PFADDR8–PFADDR15 Byte enable (BE0–BE7). See Section 7.2.4.3, “Byte Enable (BE0–BE7).”
Data output (D40–D47). See Section 7.2.7.1.1, “Data Signals (D0–D63)—Output.”

PFADDR16–PFADDR17 Data output (D48–D49). See Section 7.2.7.1.1, “Data Signals (D0–D63)—Output.”

PFADDR18–PFADDR20 Transfer size 0–2 (TSIZ0–TSIZ2). See Section 7.2.4.2, “Transfer Size (TSIZ0–TSIZ2)—
Output,”
Data output (D50–D52). See Section 7.2.7.1.1, “Data Signals (D0–D63)—Output.”
7-8 PowerPC 602 RISC Microprocessor User's Manual

7.2.4.1.1 Transfer Type (TT0–TT4)—Output
Following are the state meaning and timing comments for the TT0–TT4 output signals on
the 602.

State Meaning Asserted/Negated—Indicates the type of transfer in progress; see
Table 7-3.

Timing Comments Assertion/Negation/High Impedance—The same as A0–A31.

Alternate Use The TT0–TT4 signals are also used as D54–D58. See
Section 7.2.7.1, “Data Signals (D0–D63).”

7.2.4.1.2 Transfer Type (TT0–TT4)—Input
Following are the state meaning and timing comments for the TT0–TT3 input signals on
the 602.

State Meaning Asserted/Negated—Indicates the type of transfer in progress; see
Table 7-3.

Timing Comments Assertion/Negation—The same as A0–A31.

Alternate Use The TT0–TT4 signals are also used as D54–D58; see
Section 7.2.7.1, “Data Signals (D0–D63).”

Table 7-3 describes the transfer-type encodings.

Table 7-3. TT0–TT4 Encodings

TT0–TT4

60x Bus Specification 602 as Master
602 as

Snooper

Command Transaction
Bus

Transaction
Source of

Transaction
Action on Hit

00000 Clean block Address only n/a n/a Clean

00100 Flush block Address only n/a n/a Flush

01000 SYNC Address only n/a n/a n/a

01100 Kill block Address only Address only dcbz Kill

10000 EIEIO Address only n/a n/a n/a

10100 Graphics write (ecowx) Nonburst write* n/a n/a n/a

11000 TLB invalidate Address only n/a n/a n/a

11100 Graphics read (eciwx) Nonburst read* n/a n/a n/a

00001 lwarx reservation set Address only n/a n/a n/a

00101 stwcx. reservation clear Address only n/a n/a n/a

01001 TLBSYNC Address only n/a n/a n/a

01101 ICBI Address only n/a n/a n/a

1XX01 Reserved — n/a n/a n/a

Chapter 7. Signal Descriptions 7-9

7.2.4.2 Transfer Size (TSIZ0–TSIZ2)—Output
The transfer size (TSIZ0–TSIZ2) signals consist of three output signals on the 602.
Following are the state meaning and timing comments for the TSIZ0–TSIZ2 output signals
on the 602.

State Meaning Asserted/Negated—For memory accesses, these signals along with
TBST, indicate the data transfer size for the current bus operation, as
shown in Table 7-4.

Timing Comments Assertion/Negation/High Impedance—The same as A0–A31.

00010 Write-with-flush Nonburst write*
or burst

Nonburst write* Caching-inhibited
or write-through
store

Flush

00110 Write-with-kill Burst Burst (not
global)

Castout or snoop
copyback

Kill

01010 Read Nonburst read*
or burst

Nonburst read* Caching-inhibited
load

Clean or flush

01110 Read-with-intent-to-
modify

Burst Burst Load/store miss Flush

10010 Write-with-flush-atomic Nonburst write* Nonburst write* stwcx Flush

10110 (Reserved) n/a n/a n/a n/a

11010 Read-atomic Nonburst read*
or burst

Nonburst read* lwarx (caching-
inhibited load)

Clean or flush

11110 Read-with-intent-to-
modify-atomic

Burst Burst lwarx (load miss) Flush

00X11 (Reserved) — n/a n/a n/a

01011 Read-with-no-intent-to-
modify

Nonburst read*
or burst

n/a n/a Clean

01111 (Reserved) — n/a n/a n/a

1XX11 (Reserved) — n/a n/a n/a

* Note that these transactions take two beats if the bus is operating in 32-bit data mode.

Table 7-3. TT0–TT4 Encodings (Continued)

TT0–TT4

60x Bus Specification 602 as Master
602 as

Snooper

Command Transaction
Bus

Transaction
Source of

Transaction
Action on Hit
7-10 PowerPC 602 RISC Microprocessor User's Manual

Alternate Use The TSIZ0–TSIZ2 signals are also used as D50–D52 and
PFADDR18–PFADDR20. For more information, see
Section 7.2.7.1, “Data Signals (D0–D63),” and Section 7.2.3.1.3,
“Prefetch Line-Fill Address (PFADDR0–PFADDR20)—Output.”

7.2.4.3 Byte Enable (BE0–BE7)
Following are the state meaning and timing comments for the eight input/output byte
enable (BE0–BE7) signals.

State Meaning Asserted/Negated— Indicates which data bytes are valid during a
nonburst operation. For burst operation, all the byte enables are
invalid. If BE is used, the A29–A31 and TSIZ0–TSIZ2 signals can
be ignored for nonburst operations.

Figure 7-2 shows how the byte lanes correspond to the individual
byte enable signals. The use of the byte enable signals can simplify
the system design because the transfer size and A29–A31 signals are
not needed.

Figure 7-2. Address Format/Data Format Using Byte Enable Signals

For more information, see Section 8.3.2.2.3, “Alignment.”

Timing Comments Assertion/Negation/High Impedance—Same as A0–A31.

Table 7-4. Data Transfer Size

TBST TSIZ0–TSIZ2 Transfer Size Comments

Negated 001 1 byte Byte

Negated 010 2 bytes Half word

Negated 011 3 bytes —

Negated 100 4 bytes Word

Negated 101 5 bytes —

Negated 110 6 bytes —

Negated 111 7 bytes —

Negated 000 8 bytes Double word (bus width in 64-bit mode)

Asserted Invalid 32 bytes Four double word (four data beats in 64-bit mode)

0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63

Byte lane 0 Byte lane 1 Byte lane 2 Byte lane 3 Byte lane 4 Byte lane 5 Byte lane 6 Byte lane 7

BE0 BE1 BE2 BE3 BE4 BE5 BE6 BE7
Chapter 7. Signal Descriptions 7-11

Alternate Use The BE0–BE7 signals are also used as PFADDR8–PFADDR15 and
for the data signals D40–D47. See Section 7.2.3.1.3, “Prefetch Line-
Fill Address (PFADDR0–PFADDR20)—Output,” and
Section 7.2.7.1.1, “Data Signals (D0–D63)—Output.”

7.2.4.4 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on the 602.

7.2.4.4.1 Transfer Burst (TBST)—Output
Following are the state meaning and timing comments for the TBST output signal.
Table 7-4 shows how the TBST signal is used with the TSIZ signals to determine the
transfer size.

State Meaning Asserted—Indicates that a burst transfer is in progress. For more
information, see Section 7.2.4.2, “Transfer Size (TSIZ0–TSIZ2)—
Output.” See Table 7-4.

Negated—Indicates that a burst transfer is not in progress.

Timing Comments Assertion/Negation/High Impedance—The same as A0–A31.

Alternate Use The TBST signal is also used as D53. See Section 7.2.7.1, “Data
Signals (D0–D63).”

7.2.4.4.2 Transfer Burst (TBST)—Input
Following are the state meaning and timing comments for the TBST input signal.

State Meaning Asserted/Negated—Used when snooping for nonburst reads (read
with no intent to cache). See Table 7-4.

Timing Comments Assertion/Negation—The same as A0–A31.

Alternate Use The TBST signal is also used as D53. See Section 7.2.7.1, “Data
Signals (D0–D63).”

7.2.4.5 Transfer Code (TC0–TC1)—Output
The transfer code (TC0–TC1) consists of two output signals on the 602. Following are the
state meaning and timing comments for the TC0–TC1 signals.

State Meaning Asserted/Negated—Represents a special encoding for the transfer in
progress (see Table 7-5).

Timing Comments Assertion/Negation/High Impedance—The same as A0–A31.

Alternate Use The TC0–TC1 signals are also used as D62–D63. See
Section 7.2.7.1, “Data Signals (D0–D63).”
7-12 PowerPC 602 RISC Microprocessor User's Manual

7.2.4.6 Cache Inhibit (CI)—Output
The cache inhibit (CI) signal is an output signal on the 602. Following are the state meaning
and timing comments for the CI signal.

State Meaning Asserted—Indicates that a nonburst transfer will not be cached,
reflecting the setting of the I bit for the block or page that contains
the address of the current transaction.

Negated—Indicates that a burst transfer will allocate a line in the 602
data cache.

Timing Comments Assertion/Negation/High Impedance—The same as A0–A31.

Alternate Use The CI signal is also used as D60. See Section 7.2.7.1, “Data Signals
(D0–D63).”

7.2.4.7 Write-Through (WT)—Output
The write-through (WT) signal is an output signal on the 602. Following are the state
meaning and timing comments for the WT signal.

State Meaning Asserted—Indicates that a nonburst transaction is write-through,
reflecting the value of the W bit for the block or page that contains
the address of the current transaction.

Negated—Indicates that a transaction is not write-through.

Timing Comments Assertion/Negation/High Impedance—The same as A0–A31.

Alternate Use The WT signal is also used as D61. See Section 7.2.7.1, “Data
Signals (D0–D63).”

7.2.4.8 Global (GBL)
The global (GBL) signal is an input/output signal on the 602.

7.2.4.8.1 Global (GBL)—Output
Following are the state meaning and timing comments for the GBL output signal.

State Meaning Asserted—Indicates that a transaction is global, reflecting the setting
of the M bit for the block or page that contains the address of the
current transaction (except in the case of copy-back operations,
which are nonglobal.)

Table 7-5. Encodings for TC0–TC1 Signals

TC0–TC1 Read Write

00 Data transaction Normal write

01 N/A Copy-back line-fill

10 Instruction fetch N/A

11 Reserved Reserved
Chapter 7. Signal Descriptions 7-13

Negated—Indicates that a transaction is not global.

Timing Comments Assertion/Negation/High Impedance—The same as A0–A31.

Alternate Use The GBL signal is also used as D59. See Section 7.2.7.1, “Data
Signals (D0–D63).”

7.2.4.8.2 Global (GBL)—Input
Following are the state meaning and timing comments for the GBL input signal.

State Meaning Asserted—Indicates that a transaction must be snooped by the 602.

Negated—Indicates that a transaction is not snooped by the 602

Timing Comments Assertion/Negation—The same as A0–A31.

Alternate Use The GBL signal is also used as D59. See Section 7.2.7.1, “Data
Signals (D0–D63).”

7.2.5 Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated. For detailed information about how these signals interact, see Section 8.3.2.3,
“Address Phase Termination.”

7.2.5.1 Address Acknowledge (AACK)—Input
The address acknowledge (AACK) signal is an input signal (input-only) on the 602. A slave
device uses this signal to indicate when the address phase has completed. The 602 allows
the AACK signal to be asserted in the first clock cycle as the assertion of TS (the same clock
cycle that the address is made available on the bus). This is referred to as a single-cycle
address phase, and is discussed in Section 8.3, “Address Bus Phase.”

Following are the state meaning and timing comments for the AACK signal.

State Meaning Asserted—Indicates that the address phase is complete.

Negated—When TS is asserted, negating AACK indicates that the
address phase cannot terminate—the 602 continues to drive the
address and transfer attribute signals.

Timing Comments Assertion—May occur as early as the assertion of TS (single-cycle
address phase). The target device can delay asserting AACK to allow
adequate address access time; for example, to support slow snooping
devices. AACK is asserted for only one clock cycle.

Negation—Must occur one bus clock cycle after the assertion of
AACK.
7-14 PowerPC 602 RISC Microprocessor User's Manual

7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY) signal is both an input and output signal on the 602.

7.2.5.2.1 Address Retry (ARTRY)—Output
Following are the state meaning and timing comments for the ARTRY output signal.

State Meaning Asserted—Indicates that the 602 detects a condition in which a
transaction must be retried. If the 602 needs to update memory as a
result of the snoop that caused the retry, it asserts BR the cycle after
the ARTRY is asserted.

High Impedance—Indicates that the 602 does not need to retry the
transaction.

Timing Comments Assertion—(Single-cycle address phase). The ARTRY signal is
asserted the second clock cycle after TS is asserted if a retry is
required. This relationship is shown in Figure 7-3.

(Multicycle address phase). When the address phase lasts longer than
one cycle, ARTRY can be asserted on the clock cycle after TS is
asserted as shown in Figure 7-4.

Negation—(Single-cycle address phase). As shown in Figure 7-3,
occurs the second bus cycle after the assertion of AACK. Since this
signal may be simultaneously driven by multiple devices, it negates
in a unique fashion.

(Multicycle address phase). As shown in Figure 7-4, occurs the
second bus cycle after the assertion of AACK. Since this signal may
be simultaneously driven by multiple devices, it negates in a unique
fashion.
Chapter 7. Signal Descriptions 7-15

Figure 7-3. ARTRY During Other Master Read—Single-Cycle Address Phase

1 2 3 4 5 6 7

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

RA RD

T32
7-16 PowerPC 602 RISC Microprocessor User's Manual

Figure 7-4. ARTRY During Other Master Read Transaction—Multicycle Address
Phase

7.2.5.2.2 Address Retry (ARTRY)—Input
Following are the state meaning and timing comments for the ARTRY input signal.

State Meaning Asserted—If the 602 is the bus master, ARTRY indicates that the 602
must retry the current transaction and immediately negate BR (if
asserted). For single-cycle address phases, ARTRY is sampled on the
second clock cycle after TS is negated, as shown in Figure 7-5.

For multicycle address phases, the ARTRY signal can be asserted on
the clock cycle after the assertion of TS, as shown in Figure 7-6.

Negated/High Impedance—Indicates that the 602 does not need to
retry the transaction.

1 2 3 4 5 6 7 8 9 10

RA

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

T32
Chapter 7. Signal Descriptions 7-17

Figure 7-5. ARTRY During Read Transaction—Single-Cycle Address Phase

Timing Comments Assertion—May occur as early as the clock cycle following the
assertion of TS. As shown in Figure 7-5, for single-cycle address
phases, assertion must occur by the second bus clock cycle after the
assertion of TS if the transaction must be retried. As shown in
Figure 7-6, for multicycle address phases, assertion must occur by
the bus clock cycle immediately after TS is negated.

Negation—In both single-cycle and multicycle address phases,
ARTRY is negated in the clock cycle after it is sampled.

1 2 3 4 5 6 7

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

RA DA

T32
7-18 PowerPC 602 RISC Microprocessor User's Manual

Figure 7-6. ARTRY During PowerPC 602 Processor Read Transaction—Multicycle
Address Phase

7.2.6 Data Phase Signal
The BB (bus busy) signal indicates that the 602 is in the data phase.

7.2.6.1 Bus Busy (BB)
The bus busy (BB) signal is both an input and output signal on the 602.

7.2.6.1.1 Bus Busy (BB)—Output
Following are the state meaning and timing comments for the BB output signal.

State Meaning Asserted—Indicates that the 602 is the bus master and that the
transaction is in the data phase.

Negated—If the 602 is the bus master, indicates that it is not in the
data phase; negated when the 602 is not bus master.

Timing Comments Assertion—Occurs during the bus clock cycle following a qualified
AACK and remains asserted for duration of the data phase.

Negation—Is negated synchronously with the last beat of a data
transaction.

High Impedance—Occurs after BB is negated.

1 2 3 4 5 6 7 8 9 10

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

RA

T32
Chapter 7. Signal Descriptions 7-19

7.2.6.1.2 Bus Busy (BB)—Input
Following are the state meaning and timing comments for the BB input signal.

State Meaning Asserted—Indicates that another device is bus master (used to
determine a qualified bus grant).

Negated—Indicates that the bus is free for use by the 602. Must be
sampled as negated to achieve a qualified bus grant.

Timing Comments Assertion—Required when the 602 must be prevented from using
the bus.

Negation—May occur whenever the bus is available.

7.2.7 Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data between
the processor and system memory. For a detailed description of how the data transfer
signals interact, see Section 8.3.3.1, “Data Transfer.”

7.2.7.1 Data Signals (D0–D63)
The data signals (D0–D63) are both input and output signals on the 602. Following are the
state meaning and timing comments for the data signals.

State Meaning See Table 7-6 for the data byte lane assignments. Note that when the
bus is operating in 32-bit mode, lanes 0–3 are used.

Timing Comments When the bus is in 64-bit mode, the bus is driven once for noncached
transactions and four times for cache transactions (bursts). When the
bus is in 32-bit mode, 32-bit transfers require a single beat, transfers
of 33–64 bits take two beats, and cache block transfers take eight
beats. For more information, see Section 7.2.7.2, “Target Data Bus
32 (T32)—Input.”

Table 7-6. Data Lane Assignments

Data Signals Byte Lane

D0–D7 0

D8–D15 1

D16–D23 2

D24–D31 3

D32–D39 4

D40–D47 5

D48–D55 6

D56–D63 7
7-20 PowerPC 602 RISC Microprocessor User's Manual

Alternate Use Table 7-7 lists the alternate assignments for D0–D63.

7.2.7.1.1 Data Signals (D0–D63)—Output
Following are the state meaning and timing comments for the data output signals.

State Meaning Asserted/Negated—Represents the state of data during a data write.
Unused byte lanes do not supply valid data.

Timing Comments Assertion/Negation—Initial beat coincides with BB and, for bursts,
transitions on the bus clock cycle following each assertion of TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion of TA or following the assertion of TEA or certain ARTRY
cases. Address retry operations are described in Section 8.3.3.2,
“Data Phase Termination.”

7.2.7.1.2 Data Signals (D0–D63)—Input
Following are the state meaning and timing comments for the data input signals.

State Meaning Asserted/Negated—Represents the state of data during a data read
transaction. For nonburst read operations in 64-bit mode (cache
inhibited or write through operations), unselected byte lanes are not
used.

Timing Comments Assertion/Negation—Must be valid on the same bus clock cycle that
TA is asserted.

Table 7-7. Alternate Uses of the Data Signals (D0–D63)

Data Signals Alternate Use

D0–D31 Address signals (A0–A31); see Section 7.2.3.1, “Address Signals (A0–A31).”

D32–D39 Prefetch line-fill address signals (PFADDR0–PFADDR7); see Section 7.2.3.1.3, “Prefetch Line-
Fill Address (PFADDR0–PFADDR20)—Output.”

D40–D47 Prefetch line-fill address signals (PFADDR8–PFADDR15); see Section 7.2.3.1.3, “Prefetch Line-
Fill Address (PFADDR0–PFADDR20)—Output.”
Byte enable signals (BE0–BE7); see Section 7.2.4.3, “Byte Enable (BE0–BE7).”

D48–D49 Prefetch line-fill address signals (PFADDR16–PFADDR17); see Section 7.2.3.1.3, “Prefetch
Line-Fill Address (PFADDR0–PFADDR20)—Output.”

D50–D52 Prefetch line-fill address signals (PFADDR18–PFADDR20); see Section 7.2.3.1.3, “Prefetch
Line-Fill Address (PFADDR0–PFADDR20)—Output.” Transfer size (TSIZ0–TSIZ2); see
Section 7.2.4.2, “Transfer Size (TSIZ0–TSIZ2)—Output.”

D53 Transfer burst (TBST); see Section 7.2.4.4, “Transfer Burst (TBST).”

D54–D58 Transfer type signals (TT0–TT4); see Section 7.2.4.1, “Transfer Type (TT0–TT4).”

D59 Global (GBL); see Section 7.2.4.8, “Global (GBL).”

D60 Cache inhibit (CI); see Section 7.2.4.6, “Cache Inhibit (CI)—Output.”

D61 Write through (WT); see Section 7.2.4.7, “Write-Through (WT)—Output.”

D62–D63 Transfer code (TC0–TC1); see Section 7.2.4.5, “Transfer Code (TC0–TC1)—Output.”
Chapter 7. Signal Descriptions 7-21

7.2.7.2 Target Data Bus 32 (T32)—Input
The T32 signal is used to dynamically indicate the width of the bus.

State Meaning Asserted—Indicates that only 32 bits, D0–D31, are used to transfer
data. In 32-bit mode, the processor can generate single-beat (up to 4
bytes) and double-beat (from 5 to 8 bytes) nonburst transactions. In
a double-beat transfer, the high-order word is transferred on the first
beat and the low-order word is transferred on the second. Likewise,
for each of the four double words of a burst transaction, the high-
order word of a double word is always transferred before the low-
order word.
Negated—Indicates that all 64 bits, D0–D63, are used to transfer
data. For any transaction less or equal to 64 bits, the 602 performs a
nonburst transaction.

Timing Comments Assertion/Negation—Simultaneous with the assertion of AACK. If
dynamic bus sizing is not required, this signal can be tied low for
static 32-bit systems and high for static 64-bit systems.

7.2.8 Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note that for
nonburst transactions, the data termination signals also indicate the end of the data phase,
while for burst accesses, the data termination signals apply to individual beats and indicate
the end of the data phase only after the final data beat.

For a detailed description of how these signals interact, see Section 8.3.3.2, “Data Phase
Termination.”

7.2.8.1 Transfer Acknowledge (TA)—Input
The transfer acknowledge (TA) signal is an input signal (input-only) on the 602. Following
are the state meaning and timing comments for the TA signal.

State Meaning Asserted— Indicates that valid data on the bus has been provided or
accepted by the system.

Negated—For read operations, indicates that the valid read data is
not on the bus. For write operations indicates that the data beat must
be extended.

Timing Comments Assertion—May occur on any cycle during the 602’s normal data
transfer but not on the cycle before ARTRY is asserted if ARTRY
cancellation is to be used.

Negation—For multiple-beat operations, TA must be negated the
cycle after it is asserted unless conditions require TA to be asserted
for the next data beat.
7-22 PowerPC 602 RISC Microprocessor User's Manual

7.2.8.2 Transfer Error Acknowledge (TEA)—Input
The transfer error acknowledge (TEA) signal is input only on the 602. Following are the
state meaning and timing comments for the TEA signal.

State Meaning Asserted—Indicates that a bus error occurred and that on the
following cycle the 602 must terminate the transaction internally.
The 602 may also take a machine check exception or may enter
checkstop state if the machine check enable bit (MSR[ME]) is
cleared. For more information, see Section 4.5.2.2, “Checkstop State
(MSR[ME] = 0).” Assertion terminates the current transaction; that
is, assertion of TA is ignored. The assertion of TEA causes the
negation/high impedance of BB in the next clock cycle. However,
data entering the GPR or the cache is not invalidated.

Negated—Indicates that no bus error was detected.

Timing Comments Assertion/Negation—Assertion may occur on any cycle during the
602’s normal operation (while BB is asserted and on the cycle after
TA during reads). Assertion should occur for one cycle only.

Note: The system must ensure that TEA is negated by the start of the
next transaction.

7.2.9 System Status Signals
Most system status signals are input signals that indicate when exceptions are received,
when checkstop conditions have occurred, and when the 602 must be reset. The 602
generates the output signal, CKSTP_OUT, when it detects a checkstop condition.

7.2.9.1 Interrupt (INT)—Input
The interrupt (INT) signal is input only. Following are the state meaning and timing
comments for the INT signal.

State Meaning Asserted—The 602 initiates an interrupt if MSR[EE] is set;
otherwise, the 602 ignores the interrupt. To guarantee that the 602
will take the external interrupt, the INT signal must be held active
until the 602 takes the interrupt; otherwise, whether the 602 takes an
external interrupt, depends on whether the MSR[EE] bit was set
while the INT signal was held active.

Negated—Indicates that normal operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SYSCLK. The INT input is level-sensitive.
Negation—Should not occur until the exception is taken.
Chapter 7. Signal Descriptions 7-23

7.2.9.2 System Management Interrupt (SMI)—Input
The system management interrupt (SMI) signal is input only. Following are the state
meaning and timing comments for the SMI signal.

State Meaning Asserted—The 602 initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 602 ignores the
interrupt condition. The 602 must hold the SMI signal active until the
interrupt is taken.

Negated—Indicates that normal operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SYSCLK. The SMI input is level-sensitive.

Negation—Should not occur until interrupt is taken.

7.2.9.3 Machine Check Interrupt (MCP)—Input
The machine check interrupt (MCP) signal is input only on the 602. Following are the state
meaning and timing comments for the MCP signal.

State Meaning Asserted—The 602 initiates a machine check interrupt operation if
MSR[ME] and HID0[EMCP] are set; if MSR[ME] is cleared and
HID0[EMCP] is set, the 602 must terminate operation by internally
gating off all clocks, and releasing all outputs (except CKSTP_OUT)
to the high impedance state. If HID0[EMCP] is cleared, the 602
ignores the interrupt condition. The MCP pin must be held asserted
for two bus clock cycles.

Negated—Indicates that no machine check exception is being
requested; normal operation should continue.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the SYSCLK. The MCP input is negative edge-
sensitive.
Negation—May occur any time after the minimum MCP pulse width
has been met

7.2.9.4 Checkstop Input (CKSTP_IN)—Input
The checkstop input (CKSTP_IN) signal is input only on the 602. Following are the state
meaning and timing comments for the CKSTP_IN signal.

State Meaning Asserted—Indicates that the 602 must terminate operation and enter
checkstop state by internally gating off all clocks, and release all
outputs (except CKSTP_OUT) to the high impedance state. Once
CKSTP_IN has been asserted it must remain asserted until the
system has been reset. CKSTP_IN is not maskable.

Negated—Indicates that normal operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the SYSCLK.
7-24 PowerPC 602 RISC Microprocessor User's Manual

Negation—May occur any time after the CKSTP_OUT output signal
has been asserted.

7.2.9.5 Checkstop Output (CKSTP_OUT)—Output
The checkstop output (CKSTP_OUT) signal is output only on the 602. Note that the
(CKSTP_OUT) signal is an open-drain type output and is either asserted or in high-
impedance state. It requires an external pull-up resistor (for example, 10 kΩ to VDD) to
assure proper de-assertion of the CKSTP_OUT signal. Following are the state meaning and
timing comments for the CKSTP_OUT signal.

State Meaning Asserted—Indicates that the 602 has detected a checkstop condition
and has ceased operation.

Negated—Indicates that the 602 is operating normally.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SYSCLK.

Negation—Is negated upon assertion of HRESET.

7.2.9.6 Reset Signals
There are two reset signals on the 602—hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.6.1 Hard Reset (HRESET)—Input
The hard reset (HRESET) signal is input only and must be used at power-on to properly
reset the processor. Following are the state meaning and timing comments for the HRESET
signal.

State Meaning Asserted—Initiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a system reset exception
as described in Section 4.5.1.1, “Hard Reset and Power-On Reset.”
Output drivers are released to high impedance during the assertion of
HRESET.

Negated—Indicates that normal operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SYSCLK.

Negation—May occur any time after the minimum hard reset pulse
width has been met.

This input has additional functionality in certain test modes.

7.2.9.6.2 Soft Reset (SRESET)—Input
The soft reset (SRESET) signal is input only. Following are the state meaning and timing
comments for the SRESET signal.

State Meaning Asserted— Initiates processing for a system reset exception as
described in Section 4.5.1.2, “Soft Reset.”
Chapter 7. Signal Descriptions 7-25

Negated—Indicates that a soft reset is not being requested; normal
operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to SYSCLK. The SRESET input is negative edge-
sensitive.

Negation—May occur any time after the minimum SRESET pulse
width has been met.

This input has additional functionality in certain test modes.

7.2.9.6.3 Reset Out (RESETO)—Output
The RESETO signal is asserted whenever it is signalled by the watchdog timer or when the
HRESET signal is asserted.

Note that when the HRESET signal is asserted, the 602 puts all output signals in high-
impedance state. In order for RESETO to continue to be asserted, it should be pulled low.

State Meaning Asserted—Indicates that HRESET is asserted or the watchdog timer
reset signal is active.
Negated—Indicates that normal operation should proceed.

Timing Comments Assertion—May occur any time asynchronously to SYSCLK.

Negation—May occur any time after the minimum hard reset pulse
width has been met.

7.2.9.7 Quiescent Request (QREQ)—Output
The quiescent request (QREQ) signal is output only. Following are the state meaning and
timing comments for the QREQ signal.

State Meaning Asserted—Indicates that the 602 is requesting all bus activity
normally required to be snooped to terminate or to pause so the 602
may enter a quiescent (low power) state. Once the 602 has entered a
quiescent state, it no longer snoops bus activity.

Negated—Indicates that the 602 is not making a request to enter the
quiescent state.

Timing Comments Assertion/Negation—May occur on any cycle. The QREQ signal
remains asserted for the duration of the quiescent state.

7.2.9.8 Quiescent Acknowledge (QACK)—Input
The quiescent acknowledge (QACK) signal is input only. Following are the state meaning
and timing comments for the QACK signal.

State Meaning Asserted—Indicates that all bus activity that requires snooping has
terminated or paused, and that the 602 may enter the quiescent (or
low power) state.

Negated—Indicates that the 602 may not enter a quiescent state and
must continue snooping the bus.
7-26 PowerPC 602 RISC Microprocessor User's Manual

Timing Comments Assertion/Negation—May occur on any cycle following the
assertion of QREQ, and must be held asserted for a minimum of one
bus clock cycle.

Note that at start-up, QACK is sampled at the negation of HRESET
to select reduced-pinout mode; if QACK is asserted at start-up,
reduced-pinout mode is disabled.

7.2.9.9 Time Base Enable (TBEN)—Input
The time base enable (TBEN) signal is input only on the 602. Following are the state
meaning and timing comments for the TBEN signal. This input is essentially a “count
enable” control for the time base registers.

State Meaning Asserted—Indicates that the time base facility should continue
clocking.

Negated—Indicates the time base facility should stop clocking.

Timing Comments Assertion/Negation—May occur on any cycle.

7.2.10 JTAG/Scan Interface Signals
The 602 has extensive on-chip test capability including the following:

• Built-in instruction and data cache self test (BIST)
• Debug control/observation (COP)
• Boundary scan that supports most functions defined by JTAG IEEE 1149.1

The BIST hardware is not exercised as part of the POR sequence. The COP and boundary-
scan logic are not used under typical operating conditions.

A detailed discussion of the 602 boundary-scan test functions is provided in Appendix C,
“Boundary-Scan Testing Support.”.

The COP/boundary scan interface is shown in Figure 7-7.

Figure 7-7. Boundary-Scan Interface

The following sections describe the test access port (TAP) signals used for boundary-scan
testing.

TDI (Test Data Input)

TMS (Test Mode Select)

TCK (Test Clock input)

TDO (Test Data Output)

TRST (Test Reset)
Chapter 7. Signal Descriptions 7-27

7.2.10.1 Test Data Output (TDO)—Output
Following is the state meaning for the TDO output signal.

State Meaning Asserted/Negated—The contents of the selected internal instruction
or data register are shifted out onto this signal on the falling edge of
TCK. The TDO signal will remain in a high-impedance state except
when scanning of data is in progress.

7.2.10.2 Test Data Input (TDI)—Input
Following is the state meaning for the TDI input signal.

State Meaning Asserted/Negated—The value presented on this signal on the rising
edge of TCK is clocked into the selected test instruction or data
register.

7.2.10.3 Test Clock (TCK)—Input
The test clock (TCK) signal is an input on the 602. Following is the state meaning for the
TCK input signal.

State Meaning Asserted/Negated—This input should be driven by a free-running
clock signal with a 50% duty cycle. Input signals to the test access
port (TAP) are clocked in on the rising edge of TCK. Changes to the
TAP output signals occur on the falling edge of TCK. The test logic
allows TCK to be stopped.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

7.2.10.4 Test Mode Select (TMS)—Input
The test mode select (TMS) signal is an input on the 602. Following is the state meaning
for the TMS input signal.

State Meaning Asserted/Negated—This signal is decoded by the internal TAP
controller to distinguish the primary operation of the test support
circuitry.

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.

7.2.10.5 Test Reset (TRST)—Input
The test reset (TRST) signal is an input on the 602. Following is the state meaning for the
TRST input signal.

State Meaning Asserted—This input causes asynchronous initialization of the
internal test access port controller. During power-on reset, the system
should assert TRST to reset the boundary-scan control logic.

Negated—Indicates normal operation.
7-28 PowerPC 602 RISC Microprocessor User's Manual

Note that this input contains an internal pull-up resistor to ensure that
an unterminated input appears as a high signal level to the test logic.
Note that if boundary-scan is not used for a design, TRST can be
connected to HRESET.

7.2.11 Clock Signals
The clock signal inputs of the 602 determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency.

Refer to the 602 hardware specifications for exact timing relationships of the clock signals.

7.2.11.1 System Clock (SYSCLK)—Input
The 602 requires a single system clock (SYSCLK) input. This input sets the frequency of
operation for the bus interface. Internally, the 602 uses a phase-locked loop (PLL) circuit
to generate a master clock for all of the CPU circuitry (including the bus interface circuitry)
which is phase-locked to the SYSCLK input. The master clock may be set to an integer
multiple (x1, x2, x3, or x4) of the SYSCLK frequency allowing the CPU core to operate at
an equal or greater frequency than the bus interface. The state meanings are as follows:

State Meaning Asserted/Negated—The SYSCLK input is the primary clock input
for the 602 and represents the bus clock frequency for 602 bus
operation. Internally, the 602 may be operating at an integer multiple
of the bus clock frequency.

Timing Comments Duty cycle—Refer to the 602 hardware specifications for timing
comments. A loose duty cycle is allowed.
Note: SYSCLK is the frequency reference for the internal PLL clock
generator. To ensure proper PLL operation, SYSCLK must not be
suspended or varied during normal operation.

7.2.11.2 Test Clock (CLK_OUT)—Output
The Test Clock (CLK_OUT) signal is an output signal (output-only) on the 602. Following
are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/Negated—Provides PLL clock output for PLL testing and
monitoring. The test clock frequency is chosen through the HID0
register. If HID0[SBCLK] (bit 4) is set, the test clock uses the bus
clock frequency; otherwise, the test clock uses the processor clock
frequency. The default state of the CLK_OUT signal is high-
impedance. The CLK_OUT signal is provided for testing only.

Timing Comments Assertion/Negation—Refer to the 602 hardware specifications for
timing comments.

See Section 2.1.2.1.1, “Hardware Implementation Register 0 (HID0),” for information on
configuring CLK_OUT through software.
Chapter 7. Signal Descriptions 7-29

7.2.11.3 PLL Configuration (PLL_CFG0–PLL_CFG3)—Input
The PLL (phase-lock loop) is configured by the PLL_CFG0–PLL_CFG3 signals. For a
given SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU
frequency of operation.

Following are the state meaning and timing comments for the PLL_CFG0–PLL_CFG3
signals.

State Meaning Asserted/Negated— Configures the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus and internal frequency of operation. PLL_CFG0–PLL_CFG1
determine the processor/SYSCLK frequency ratio. PLL_CFG2–
PLL_CFG3 determine the processor/PLL frequency ratio. Table 7-8
shows the permissible settings for the PLL_CFG signals and the
resultant frequency relationships; see the 602 hardware
specifications for exact settings.

Timing Comments Assertion/Negation—Must remain stable during operation; should
only be changed during the assertion of HRESET, or during sleep
mode.

7.2.12 Power and Ground Signals
The 602 provides the following additional connections for power and ground:

• VDD and OVDD—VDD and OVDD provide the connection for the supply voltage. On
the 602, there is no electrical distinction between the VDD and the OVDD signals.
These signals are internally shorted together.

Table 7-8. PLL Configuration

PLL_CFG0–
PLL_CFG1

CPU (Core)
Frequency

PLL_CFG2–
PLL_CFG3

PLL (VCO)
Frequency

Example SYSCLK/CPU and Resulting PLL
Frequencies (MHz)

PLL = 133.3 PLL = 150 PLL = 160 PLL = 200

01 SYSCLK x 2 01 CPU x 2 33.33/66.66 37.5/75 40/80 —

CPU x 4 16.66/33.33 18.75/37.5 20/40 25/50

10 SYSCLK x 3 00 CPU x 2 22.22/66.66 25/75 26.66/80 —

00 — 10 — PLL bypass— the SYSCLK input signal clocks the
internal processor directly and the bus is set for 1:1
mode operation.

11 — 11 — Clock off—no clocking occurs regardless of the
SYSCLK input.

Notes:

The resulting CPU / SYSCLK frequencies shown are for reference. Some PLL configurations may select
bus, CPU, or PLL frequencies that are not useful, not supported, or not tested.

Although 1:1 mode is not an operational mode, it may be used for testing.
7-30 PowerPC 602 RISC Microprocessor User's Manual

• AVDD—The AVDD power signal provides power to the clock generation phase-lock
loop. See the 602 hardware specifications for information on how to use this signal.

• GND and OGND—The GND and OGND signals provide the connection for
grounding the 602. On the 602, there is no electrical distinction between the GND
and OGND signals. These signals are internally shorted together.
Chapter 7. Signal Descriptions 7-31

7-32 PowerPC 602 RISC Microprocessor User's Manual

Chapter 8
System Interface Operation
80
80

This chapter describes the PowerPC 602 microprocessor bus interface and its operation. It
shows how the 602 signals, defined in Chapter 7, “Signal Descriptions,” interact to perform
address and data transfers. This chapter includes timing diagrams that illustrate the
operation of the 602’s time-multiplexed bus and its ability to dynamically function as a 32-
or 64-bit data bus.

8.1 PowerPC 602 Microprocessor System Interface
Overview

The 602 bus interface is a time-multiplexed interface. That is, the 64 physical connections
that are used to transfer data during the data phase are used to transfer the 32-bit address,
as well as other information, during the address phase. This double use of physical
connections greatly reduces the number of physical connections to the processor as well as
the power requirements.

During the address phase, the high-order 32 connections are used to transfer the 32-bit
address, and the low-order connections are used to transfer information about attributes of
the subsequent data transfer, such as the size of the data and whether the transfer is a burst
or nonburst operation—signals that have dedicated pins on other PowerPC processors, such
as the PowerPC 603 and the PowerPC 604 microprocessors.

During the data phase, the 64 physical connections are used exclusively to transfer data.
However, because the 602 supports dynamic bus sizing, the bus can function as either a 64-
or 32-bit data bus depending on the device with which the 602 is communicating.

The 602 on-chip caches can be configured as either write-through or write-back. In write-
back mode, most transactions are burst-read memory operations that update an entire cache
line (referred to here as a cache block), followed by burst-write operations, and
noncacheable (write-through) operations. Additionally, there can be address-only
operations (for example, global memory operations that are snooped), atomic memory
operations, and address retry activity (for example, when a snooped read access hits a
modified block in the cache).
Chapter 8. System Interface Operation 8-1

When the data bus is in 64-bit mode, all burst operations consist of four data beats and
transfer 32 bytes (an eight-word cache block) per transaction; all nonburst operations are
single-beat transactions that transfer up to 8 bytes (1 double word).

When the data bus is in 32-bit mode, burst transactions also transfer a full eight-word cache
block of data, but because it can do so only one word at a time, it takes eight beats. There
are two types of nonburst operations in 32-bit mode—single-beat operations that transfer
up to 32 bits, and double-beat operations that transfer up to 64 bits.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism allows the 602
to be integrated into systems that implement various fairness and bus parking procedures to
avoid arbitration overhead.

8.1.1 Operation of the Instruction and Data Caches
The 602 provides independent instruction and data caches. Each cache is a physically-
addressed, 4-Kbyte cache with two-way set-associativity. Both caches consist of 64 sets of
two cache blocks, with eight words in each cache block.

The data cache tags are single-ported, so snoop accesses cannot occur simultaneously with
load or store operations. Snoop accesses have the highest priority and are given first access
to the tags, unless the snoop access occurs when a tag is being accessed (for example, by
the load/store unit), in which case the snoop is retried and must rearbitrate for cache access.

On a snoop hit, the snooping device asserts the address retry (ARTRY) signal, causing the
operation whose address caused the snoop hit to be delayed so the snooping device can
perform the necessary bus operation to ensure cache coherency. After the snooping device
completes its operation, the original operation can be retried. On a snoop miss, the load or
store operation deferred due to a snoop access is performed on the clock cycle following
the snoop. Bus timing for snoop operations can be found in Section 8.5.4, “Snooping.”

The 602 supports an additional snooping mechanism, known as injected snooping. While
the 602 as a bus master performs a burst-read transaction, the read target device can inject
the snoop address onto the bus between data beats. Injected snooping is described in
Section 8.4.2, “Qualified Snoop Conditions,” and is illustrated in Section 8.5.4.7, “Injected
Snoop Timings.”

The 602 supports a three-state coherency protocol that supports the modified, exclusive,
and invalid (MEI) cache states. The protocol is a subset of the MESI
(modified/exclusive/shared/invalid) four-state protocol and operates coherently in systems
that contain four-state caches. Except for the dcbz instruction, the 602 does not broadcast
cache control instructions. The cache control instructions are intended for the management
of the local cache but not for other caches in the system.

Cache blocks in the 602 are loaded in four beats of 64 bits each (or eight beats of 32 bits
each when the bus is operating in 32-bit bus mode). The burst load is performed as “critical
8-2 PowerPC 602 RISC Microprocessor User's Manual

double word first.” The critical double word is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to load delays. As additional
data or instructions arrive, they can be accessed by the requesting unit.

For further details regarding byte ordering, see Section 8.3.2.2, “Transfer Attributes.”

Figure 8-1 shows the address path from the execution units and instruction fetcher, through
the translation logic to the caches and system interface logic.
Chapter 8. System Interface Operation 8-3

Figure 8-1. PowerPC 602 Microprocessor Block Diagram

GPR File

GP
Rename
Registers

32 BIT

BRANCH
PROCESSING

UNIT

Time-Multiplexed, 32-Bit Address Bus, 32-/64-Bit Data Bus

INSTRUCTION UNIT

4-Kbyte
D Cache

Tags

CTR
CR
LR

PROCESSOR BUS
INTERFACE

D MMU

SRs

DTLB

DBAT
Array

32 BIT

32 BIT

32 BIT

Power
Dissipation

Control

COMPLETION
UNIT

Time Base
Counter/

Decrementer

Clock
Multiplier

Test
Interface

I MMU

SRs

ITLB

IBAT
Array

4-Kbyte
I Cache

Tags

32 BIT

32 BIT

32 BIT

32 BIT32 BIT

LOAD/STORE
UNIT

+

32 BIT

SEQUENTIAL
FETCHER

INSTRUCTION
QUEUE

Dispatch Unit

FLOATING-
 POINT UNIT

+*/

FPSCR

FPR File

FP
Rename
Registers

INTEGER
UNIT

+*/

XER
8-4 PowerPC 602 RISC Microprocessor User's Manual

Cache blocks are selected for replacement based on an LRU (least-recently used)
algorithm. Each time a cache block is accessed, it is tagged as the most-recently used cache
block of the set. When a miss occurs, if both cache blocks in the set are marked as valid,
the least recently used cache block is replaced with the new data. Coherency is maintained
in the data caches, and if the data in the least-recently used cache block in a data cache is
modified it is written back to memory before the burst read operation.

8.1.2 32-Bit Data Bus Mode
The 602 supports an optional 32-bit data bus mode. The 32-bit data bus mode operates the
same as the 64-bit data bus mode with the exception of the byte lanes involved in the
transfer and the number of data beats that are performed. The number of data beats required
for a data phase in the 32-bit data bus mode is one, two, or eight beats depending on the
amount of the data being transferred and the cache attributes for the address (determined
by the W, I, and M bits). For additional information about 32-bit data bus mode, see the
examples in Section 8.5, “Bus Timing Examples.”

8.1.3 Clocks
The 602 requires a single system clock input (SYSCLK). This input sets the frequency of
operation for the bus interface. Internally, the 602 uses a phase-locked loop (PLL) circuit
to generate a master clock for all of the processor circuity (including the bus interface
circuitry) which is phase-locked to the SYSCLK input. The master clock may be set to an
integer multiple—either double or triple the frequency of SYSCLK, allowing the processor
core to run at optimum speed independently from the bus speed.

The PLL is configured by the PLL_CFG0–PLL_CFG3 signals. For a given bus frequency
(SYSCLK), these pins set the processor frequency and PLL (VCO) frequency. The
encoding for the PLL configuration pins are shown in Section 7.2.11.3, “PLL
Configuration (PLL_CFG0–PLL_CFG3)—Input.”

All signals for the 602 bus interface are specified with respect to the rising-edge of the
external system clock input (SYSCLK) and are guaranteed to be sampled as inputs or
changed as outputs with respect to that edge. Since the same clock edge is referenced for
driving or sampling the bus signals, the possibility of clock skew could exist between
various modules in a system due to routing or the use of multiple clocks. The system must
handle any such clock skew problems.

8.1.4 Operation of the System Interface
The following sections describe how the 602 interface operates, providing detailed timing
diagrams that illustrate how the signals interact. A collection of more general timing
diagrams are included as examples of typical bus operations.

Figure 8-2 is a legend of the conventions used in the timing diagrams.
Chapter 8. System Interface Operation 8-5

Figure 8-2. Timing Diagram Legend

The 602 interface is synchronous—all 602 input signals are sampled and output signals are
driven on the rising edge of the bus clock cycle (see the 602 hardware specifications for
exact timing information).

8.2 Memory Access Protocol
Memory accesses are divided into address and data phases, each of which consists of
subphases, as shown in Figure 8-3.

Figure 8-3 shows the address and data phases with their respective subphases—arbitration,
transfer, and termination. It shows a data transfer that consists of a nonburst transfer. Burst
transfers of 32-byte cache blocks require data transfer termination signals for each beat of
data.

602 input (while 602 is a bus master)

602 output (while 602 is a bus master)

602 output (grouped: here, address plus attributes)

602 internal signal (inaccessible to the user, but used in
diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

602 three-state output or input

602 nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Bar over signal name indicates active low

bg

BR

ADDR+

qual BG
8-6 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-3. Address and Data Phases of a Memory Transaction

The basic functions of the address and data phase are as follows:

• Address phase

— Arbitration: During arbitration, bus arbitration signals are used to gain bus
mastership.

— Transfer: When the 602 becomes bus master it transfers the address and the
transfer attributes.

— Termination: After the address transfer, the system signals that the address phase
is complete or that it must be repeated.

• Data Phase

— Transfer: After the address phase, the 602 samples the data bus for read
operations or drives the data bus for write operations.

— Termination: Data termination signals are required for each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the phase, while in burst accesses, the data termination signals
apply to individual beats and indicate the end of the phase after the final data
beat.

The 602 generates address-only bus transfers as the result of execution of the dcbz
instructions, which use only the address bus with no data transfer involved. Additionally,
the 602’s retry capability provides an efficient snooping protocol for systems with multiple
memory systems (including caches) that must remain coherent. Timing examples for
address-only transactions are shown in Section 8.5.5.1, “Single-Cycle Address-Only
Transaction,” and Section 8.5.5.2, “Multicycle Address-Only Transaction.”

8.3 Address Bus Phase
This section describes the three subphases of the address phase—bus arbitration, address
transfer, and address termination.

8.3.1 Bus Arbitration
Before the 602 can access the system bus, it must first be granted mastership of the bus.

When the instruction fetcher or the processor core generates the need to access memory, it
generates an internal signal (identified here conceptually as the need_bus signal). For the

Arbitration Address Transfer Address Termina-

ADDRESS PHASE

Data Transfer Data Termination

DATA PHASE
Chapter 8. System Interface Operation 8-7

602 to access the bus, it must be granted bus mastership, which occurs after other devices
have completed their transactions and the 602 is given a qualified bus grant. The conditions
necessary for a qualified bus grant are described in Table 8-1.

Note that the bus request (BR) signal is not a part of a qualified bus grant. Although
asserting BR indicates that the 602 is requesting mastership of the bus, the 602 does not
assert BR if it is parked on the bus (that is, if BG is already asserted when the need_bus
internal signal is generated).

For systems that share the system bus with other processors or devices, the logic required
for arbitration can be complex, whereas, for designs in which the 602 is the only device that
accesses the system bus, arbitration can be very simplified. For example, the BG signal can
be connected low, which eliminates the need to assert BR when a “need_bus” condition
occurs. This section described bus arbitration under two conditions—when the 602 is not
the current bus master and must compete with other resources for it and when the processor
is parked on the bus.

Arbiter implementations may require additional signals to coordinate bus
master/slave/snooping activities. Note that bus busy (BB) is a bidirectional signal. These
signals are inputs unless the 602 has mastership of the bus; they must be connected high
through pull-up resistors so that they remain negated when no devices have control of the
buses.

Upon recognizing a qualified bus grant, the 602 takes bus mastership by asserting TS (and
by negating BR if the 602 was not parked. At the same time, the 602 drives the address and
transfer attributes for the requested access.

Table 8-1. Input Conditions for a Qualified Bus Grant

Signal State (Input) Description

Bus Grant
BG

Asserted Assertion indicates that the 602 may, with the proper qualification, assume
mastership of the bus. If BG is asserted for the 602 before it is needed (that
is, 602 is parked), the 602 does not assert BR.

Bus Busy
BB

Negated The negation of TS and BB indicate that no other master is currently using
the bus. If the BB input is asserted, another bus device is in its data phase
and the current 602 cannot have bus access until the operation completes
successfully and negates BB.

Transfer Start
TS

Negated The negation of TS and BB indicate that no other master is currently using
the bus. If the TS input is asserted, the address and transfer attribute signals
are valid for another device and the bus is not available.

Address Retry
ARTRY

Negated for at
least one bus
clock cycle

If the ARTRY input is asserted, a transfer is being retried on the bus and the
bus is not available. Negating ARTRY indicates that the address retry
window for any just-completed address phase has passed. Note that the
sampling of ARTRY requires additional qualification since ARTRY may be
set to the high impedance state the second cycle following the assertion of
AACK and cannot be sampled reliably on this clock.
8-8 PowerPC 602 RISC Microprocessor User's Manual

The timing for the nonparked case are described in Section 8.3.1.1, “Bus Arbitration—
Nonparked Case.”

8.3.1.1 Bus Arbitration—Nonparked Case
When the 602 needs to access the external bus and does not have a qualified bus grant, it
asserts bus request (BR) until it is granted bus mastership and the bus is available (see
Figure 8-4). Note that the 602 can cancel the bus request before the bus has been granted.
The external arbiter must grant master-elect status to the potential master by asserting the
bus grant (BG) signal. The 602 requesting the bus determines that the bus is available when
the BB input is negated. When the bus is not busy (BB and TS inputs are negated), BG is
asserted and the address retry (ARTRY) input is negated, and was negated the previous
cycle; the 602 has what is referred to as a qualified bus grant. The 602 assumes bus
mastership by asserting TS when it receives a qualified bus grant. The TS signal indicates
that the address and transfer attribute signals are valid and that the memory operation can
begin.

Figure 8-4. Bus Arbitration—Nonparked Case

External arbiters must allow only one device at a time to be the bus master. In
implementations in which no other device can be a master, BG can be grounded (always
asserted) to continually grant mastership of the bus to the 602.

-1 0 1

need_bus

BR

bg

bb

ts

artry

qual BG

TS

Logical Bus Clock
Chapter 8. System Interface Operation 8-9

If the 602 asserts BR before the external arbiter asserts BG, the 602 is considered to be
unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where a qualified bus
grant exists on the clock edge following a need_bus condition. Notice that the one bus clock
cycle required for arbitration are eliminated if the 602 is parked, reducing overall memory
latency for a transaction. The 602 always negates BB for at least one bus clock cycle after
AACK is asserted, even if it is parked and has another transaction pending.

8.3.1.2 Bus Arbitration—Parked Case
A device is said to be parked when the BG input signal is asserted before the device has
generated a reason to access the bus. If BG is asserted, an internal “need_bus” condition
does not assert the BR signal, reducing by at least one cycle the time required to access the
bus.

At its simplest, in a single-processor system the BG signal can be connected asserted (low)
so there is never a need to assert the BR signal. Bus parking may also be used in a
multiprocessor system when an external arbiter uses some scheme to leave the bus granted
to the device most likely to use it. Typically, bus parking is provided to the device that was
the most recent bus master; however, system designers may choose other schemes such as
providing unrequested bus grants in situations where it is easy to correctly predict the next
device requesting bus mastership.

In the nonparked case (described in Section 8.3.1.2, “Bus Arbitration—Parked Case”), the
602 must first assert BR to the arbiter to request the bus, and then may need wait to receive
a bus grant from the arbiter.

When the 602 is parked on the bus and it determines a need to perform a bus transaction
internally (“need_bus”), it does not assert BR but immediately assumes bus ownership on
the next cycle. Eliminating the need to assert BR reduces the overall access latency seen by
the 602 by one cycle.

Bus timing for the parked case is shown in Figure 8-5.
8-10 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-5. Bus Arbitration Showing Bus Parking

When the 602 receives a qualified bus grant, it assumes bus mastership by asserting BB and
negating the BR output signal in the nonparked case. Meanwhile, the 602 drives the address
for the requested access onto the bus and asserts TS to indicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 602 may assert BR without
using the bus after it receives the qualified bus grant. For example, in a system using bus
snooping, the 602 may assert BR to perform a read-with-intent-to-modify-atomic
(RWITMA) operation but may cancel that operation if it snoops an access that cancels the
reservation associated with the RWITMA. Once the 602 is granted the bus, it no longer
needs to perform the RWITMA; therefore, the 602 does not assert TS and does not use the
bus for the read operation. Note that the 602 asserts BR for at least one clock cycle in these
instances.

8.3.2 Address Transfer Subphase
During the address subphase, the bus master transmits the physical address and transfer
attributes to any slave devices. To ensure cache coherency, snooping logic may monitor the
transfer. The signals used in this phase are transfer start (TS) and the address and attributes
signals described in Section 7.2.4, “Transfer Attribute Signals.” TS indicates that the 602
has begun a bus transaction and that the address and transfer attributes are valid. The 602
always asserts TS to begin a transaction and requires other masters to do the same.

-1 0 1

need_bus

BR

bg

bb

ts

artry

qual BG

TS
Chapter 8. System Interface Operation 8-11

The timing for the transfer start and address attribute signals is shown in Figure 8-6, as well
as in the many examples in Section 8.5, “Bus Timing Examples.”

During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.2.3,
“Address Phase Termination.”

The signals used in the address transfer include the following signals:

• Address transfer start signal—transfer start (TS)

• Address transfer signals—Address bus (A0–A31)

• Address transfer attribute signals—Transfer type (TT0–TT4), transfer code (TC0–
TC1), transfer size (TSIZ0–TSIZ2), transfer burst (TBST), cache inhibit (CI), write-
through (WT), and global (GBL). The 602 also has byte enable signals (BE0–BE7)
that can be used instead of the transfer size signals.

Figure 8-6 shows that the timing for all of these signals, except TS is identical. All of the
address transfer and address transfer attribute signals are combined into the ADDR+
grouping in Figure 8-6. The TS signal indicates that the 602 has begun an address transfer
and that the address and transfer attributes are valid (within the context of a synchronous
bus). The TS signal remains asserted for the entire address transfer and indicates to other
processors that the bus is in use. Keeping the TS signal asserted prevents another device
from achieving a qualified bus grant.
8-12 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-6. Address Bus Transfer

Figure 8-6 shows the fastest possible address cycle; that is, the address cycle lasts only one
bus clock cycle and is simultaneous with the assertion of TS and AACK.

8.3.2.1 Address Phase Signal Configurations
Because the 602 bus is multiplexed, signal connections have multiple signal assignments
depending not only on whether the processor is in address or data phase, but whether the
data transfer is a burst or nonburst transfer. Table 8-2 summarizes these signal assignments.

-1 0 1 2

need_bus

BR

bg

bb

ts

artry

qual BG

TS

aack

System Bus

BB

Logical Bus Clock

Address
Chapter 8. System Interface Operation 8-13

Note that if the byte enable signals (BE0–BE7) are used, the TSIZ0–TSIZ2 and A29–A31
signals can be ignored. The TSIZ signals are provided for compatibility with other
PowerPC processors; however, the byte enable signals provide a simpler way of identifying
both the size and the starting address of the data to be transferred by identifying the byte
lanes that are to be used in the data phase. This correlation between the byte enable signals
and the byte lanes is shown in Figure 8-7.

Figure 8-7. Data Format Using Byte Enable Signals

Note that in 32-bit mode, only byte lanes 0–3 are used. For more information about the byte
enable signals, see Section 7.2.4.3, “Byte Enable (BE0–BE7).” The two methods of
specifying data size and starting address are discussed in Section 8.3.2.2, “Transfer
Attributes,” and are summarized in Table 8-3.

8.3.2.2 Transfer Attributes
During the address phase, the 602 not only transfers the address for the memory access, but
also information about the overall transaction as well, such as whether there is a data phase,
and, if so, whether the data phase consists of a burst or nonburst transaction, the size,

Table 8-2. Time-Multiplexed Signal Assignments

Data Phase
Signals

Address Phase Address Signals/Transfer Attribute Signal Assignments

Nonburst Transactions Burst Transactions

D0–D31 Address bus (A0–A31) Address bus (A0–A31)

D32–D39 Reserved—Don’t care Prefetch read address bus (PFADDR0 to
PFADDR20)

D40–D47 Byte enable (BE0–BE7)

D48–D49 Reserved —Don’t care

D50–D52 Transfer size (TSIZ0–TSIZ2)

D53 Transfer burst (TBST) (negated) Transfer burst (TBST) (asserted)

D54–D58 Transfer type (TT0–TT4) Transfer type (TT0–TT4)

D59 Global (GBL) Global (GBL)

D60 Cache inhibit (CI) Cache inhibit (CI)

D61 Write through (WT) Write through (WT)

D62–D63 Transfer code (TC0–TC1) Transfer code (TC0–TC1)

0 8 7 15 16 23 24 31 32 39 40 47 48 55 56 63

Byte lane 0 Byte lane 1 Byte lane 2 Byte lane 3 Byte lane 4 Byte lane 5 Byte lane 6 Byte lane 7

BE0 BE1 BE2 BE3 BE4 BE5 BE6 BE7

32–Bit Mode
8-14 PowerPC 602 RISC Microprocessor User's Manual

alignment, and the order of the data to be transferred. Those attributes are signaled by the
high-order pins (32–63) on the multiplexed bus and are described in the following sections.

8.3.2.2.1 Transfer Type Encodings
The transfer type signals (TT0–TT4) indicate the type of transaction in progress. They also
provide information on how the 602’s caches handle the transaction and instruct other
caches in the system how to treat the transaction for cache coherency purposes. The transfer
type encodings are shown in Table 8-3.

The transfer type signals are also snooped by 602 and instruct 602 how to handle a cache
block on a snoop hit. The transfer type signals may specify clean, flush, or kill operations
(these operations are described in Table 3-5).

Table 8-3. Transfer Type Encoding

TT0–TT4 Command
602 Master 602 Snooper

Bus Transaction Source of Transaction Hit Response

00000 Clean block n/a n/a Clean

00100 Flush block n/a n/a Flush

01000 sync n/a n/a n/a

01100 Kill block Address-only dcbz Kill

10000 eieio n/a n/a n/a

10100 Graphics write n/a n/a n/a

11000 TLB invalidate n/a n/a n/a

11100 graphics read n/a n/a n/a

00001 lwarx reservation set n/a n/a n/a

00101 stwcx. reservation clear n/a n/a n/a

01001 tlbsync n/a n/a n/a

01101 icbi n/a n/a n/a

1XX01 Reserved n/a n/a n/a

00010 Write-with-flush Nonburst write CI or WT store Flush

00110 Write-with-kill Burst (not global) Castout or snoop copy-back Kill

01010 Read Nonburst read CI Load Clean or flush

01110 Read-with-intent-to-modify Burst Load miss or store miss Flush

10010 Write-with-flush-atomic Nonburst write stwcx Flush

10110 (Reserved) n/a n/a n/a

11010 Read-atomic Nonburst read lwarx (CI load) Clean or flush

11110 Read-with-intent-to-modify-atomic Burst lwarx (load miss) Flush

00X11 (Reserved) n/a n/a n/a
Chapter 8. System Interface Operation 8-15

8.3.2.2.2 Transfer Size and Burst Ordering
The transfer size (TSIZ0–TSIZ2) signals indicate the size of the requested data transfer.
The transfer size signals may be used with TBST and A27–A31 to determine which byte
lanes of the data bus are used for the transfer. For nonburst transfers, the transfer size signals
specify the number of bytes starting from the byte location addressed by A27–A31. For
burst transfers, double words are always assumed for each data beat of the burst. The 602
always attempts to transfer 4 double words during a burst transaction. Burst read transfers
are performed critical-double-word-first and wraparound the end of the cache block. Burst
write transfers are always performed zero-word-first.

01011 Read-with-no-intent-to-cache n/a n/a Clean

01111 Reserved n/a n/a n/a

1XX11 Reserved n/a n/a n/a

Notes:

1. Snoop hits cancel the bit set by an lwarx instruction.

2. For read operations, whether the 602 cleans or flushes the cache block during a snoop is determined by
the TBST input signal. Nonburst read operations (TBST negated) clean to emulate read-with-no-intent-to-
cache.

3. Cast-out and snoop copy-back operations are generally marked as nonglobal and are not snooped (except
for reservation monitoring). Other masters, however, may perform DMA write operations with the same
transfer type encoding and marked global.

4. A write operation (whether global or nonglobal) cancels an active reservation during a snoop hit in the
reservation register (independent of snoop hit in cache).

5. The TT1 signal may be generally unincorporated as a “read verses write” indicator for the bus.

Table 8-4. Data Transfer Size

TBST TSIZ0–TSIZ2 Transfer Size Comments

Negated 001 1 byte Byte

Negated 010 2 bytes Half word

Negated 011 3 bytes —

Negated 100 4 bytes Word

Negated 101 5 bytes —

Negated 110 6 bytes —

Negated 111 7 bytes —

Negated 000 8 bytes Double word (bus width in 64-bit mode)

Asserted Invalid 32 bytes Four double words (four data beats in 64-bit mode)

Table 8-3. Transfer Type Encoding (Continued)

TT0–TT4 Command
602 Master 602 Snooper

Bus Transaction Source of Transaction Hit Response
8-16 PowerPC 602 RISC Microprocessor User's Manual

The basic coherency size (cache block size) of the bus is 32 bytes for the 602. For proper
snooping, data transfers that cross an aligned 32-byte boundary must present a new address
onto the bus at that boundary or must operate as not coherent with respect to the 602.

The 602 never generates a bus transaction with a transfer size of 5, 6, or 7 bytes. Other
PowerPC processors may specify these transfer sizes.

Table 8-5 shows the order in which double words are transferred during burst operations in
64-bit mode.

The A27–A28 signals specify the first double word of the 32-byte block being transferred;
the remaining double words to transfer must wrap around the block. A29–A31 are always
“don’t cares” for burst transfers by the 602.

Table 8-6 shows the order in which words are transferred during burst operations in 32-bit
mode.

Table 8-5. Burst Ordering–64-Bit Mode

Data Beat
For Starting Address:

A27–A28 = 00 A27–A28 = 01 A27–A28 = 10 A27–A28 = 11

Data beat 1 Double word 0 Double word 1 Double word 2 Double word 3

Data beat 2 Double word 1 Double word 2 Double word 3 Double word 0

Data beat 3 Double word 2 Double word 3 Double word 0 Double word 1

Data beat 4 Double word 3 Double word 0 Double word 1 Double word 2

Table 8-6. Burst Ordering—32-Bit Mode

Data Beat
For Starting Address:

A27–A28 = 00 A27–A28 = 01 A27–A28 = 10 A27–A28 = 11

Data beat 1 High word/DW0 High word/DW1 High word/DW2 High word/DW3

Data beat 2 Low word/DW0 Low word/DW1 Low word/DW2 Low word/DW3

Data beat 3 High word/DW1 High word/DW2 High word/DW3 High word/DW0

Data beat 4 Low word/DW1 Low word/DW2 Low word/DW3 Low word/DW0

Data beat 5 High word/DW2 High word/DW3 High word/DW0 High word/DW1

Data beat 6 Low word/DW2 Low word/DW3 Low word/DW0 Low word/DW1

Data beat 7 High word/DW3 High word/DW0 High word/DW1 High word/DW2

Data beat 8 Low word/DW3 Low word/DW0 Low word/DW1 Low word/DW2
Chapter 8. System Interface Operation 8-17

8.3.2.2.3 Alignment
Aligned transfers are byte, half-word, word, and double-word transfers that lie on their
respective natural address boundaries (bytes on byte address boundaries, words on word
address boundaries, etc.). The supported aligned transfers for 64-bit mode are shown in
Table 8-7. Note that if the byte enable signals are used to specify the byte lanes to be used,
the TSIZ0–TSIZ2 and A29–A31 signals can be ignored, and vice versa.

Although the 602 supports only single-precision floating-point arithmetic in hardware and
provides only 32-bit FPRs in hardware, it can perform single-precision operations on
double-precision operands. The 602 does support load and store double-precision
instructions. If the operand can be represented as a 32-bit single-precision operand, it is
converted. Otherwise, an emulation trap exception (0x1600) is taken.

Misaligned transfers are supported in the 602.

Table 8-7. Data Transfers—64-Bit Mode

Program
Transfer Size

Bus
BE0–BE7

Bus
TSIZ0–TSIZ2

Bus
A29–A31

 Byte Lanes

D0... ...D63

0 1 2 3 4 5 6 7

Byte 10000000 001 000 √ — — — — — — —

01000000 001 001 — √ — — — — — —

00100000 001 010 — — √ — — — — —

00010000 001 011 — — — √ — — — —

00001000 001 100 — — — — √ — — —

00000100 001 101 — — — — — √ — —

00000010 001 110 — — — — — — √ —

00000001 001 111 — — — — — — — √

Half Word 11000000 010 000 √ √ — — — — — —

01100000 010 001 — √ √ — — — — —

00110000 010 010 — — √ √ — — — —

00011000 010 011 — — — √ √ — — —

00001100 010 100 — — — — √ √ — —

00000110 010 101 — — — — — √ √ —

00000011 010 110 — — — — — — √ √

Triple byte 11100000 011 000 √ √ √ — — — — —

00000111 011 101 — — — — — — — —
8-18 PowerPC 602 RISC Microprocessor User's Manual

The supported aligned transfers for 32-bit mode are shown in Table 8-8.

Word 11110000 100 000 √ √ √ √ — — — —

01111000 100 001 — √ √ √ √ — — —

00111100 100 010 — — √ √ √ √ — —

00011110 100 011 — — — √ √ √ √ —

00001111 100 100 — — — — √ √ √ √

Double Word 11111111 000 000 √ √ √ √ √ √ √ √

√ Lanes that are read or written during that bus transaction
— Lanes that are ignored during read transactions and driven with undefined data during write transactions

Table 8-8. Data Transfers—32-Bit Mode

Program
Transfer Size

Bus
BE0–BE7

Bus
TSIZ0–TSIZ2

Bus
A29–A31

 Byte Lanes

Number of
Beats

DH0... ...DH31

0 1 2 3

Byte 10000000 001 000 √ — — — Single beat

01000000 001 001 — √ — — Single beat

00100000 001 010 — — √ — Single beat

00010000 001 011 — — — √ Single beat

00001000 001 100 √ — — — Single beat

00000100 001 101 — √ — — Single beat

00000010 001 110 — — √ — Single beat

00000001 001 111 — — — √ Single beat

Half Word 11000000 010 000 √ √ — — Single beat

01100000 010 001 — √ √ — Single beat

00110000 010 010 — — √ √ Single beat

00011000 010 011 —
√

—
—

—
—

√
—

Beat 1
Beat 2

00001100 010 100 √ √ — — Single beat

00000110 010 101 — √ √ — Single beat

00000011 010 110 — — √ √ Single beat

Table 8-7. Data Transfers—64-Bit Mode (Continued)

Program
Transfer Size

Bus
BE0–BE7

Bus
TSIZ0–TSIZ2

Bus
A29–A31

 Byte Lanes

D0... ...D63

0 1 2 3 4 5 6 7
Chapter 8. System Interface Operation 8-19

Because the 602 has an on-chip, copy-back primary cache, most bus transactions issued by
the 602 are double-word-aligned burst-read or burst-write operations. Only those nonburst
transactions that bypass or miss in the cache (caching-inhibited and write-through
transactions) generate alignment considerations on the bus.

Note that when a program generates a misaligned request that crosses a word boundary, two
bus transactions may be required to serve the request, which may in turn encounter
additional latency due to such factors as cache misses, page faults, or cacheability
attributes,

8.3.2.2.4 Transfer Code
These attributes provide further descriptive information about the transaction. The transfer
code signals (TC0–TC1) are encoded differently for read and write operations. Their
encodings are shown in Table 8-9.

Triple byte 11100000 011 000 √ √ √ — Single beat

00000111 011 101 — √ √ √ Single beat

Word 11110000 100 000 √ √ √ √ Single beat

01111000 100 001 —
√

√
—

√
—

√
—

Beat 1
Beat 2

00111100 100 010 —
√

—
√

√
—

√
—

Beat 1
Beat 2

00011110 100 011 —
√

—
√

—
√

√
—

Beat 1
Beat 2

00001111 100 100 √ √ √ √ Single beat

Double Word 11111111 000 000 √
√

√
√

√
√

√
√

Beat 1
Beat 2

√ Lanes that are read or written during that bus transaction
— Lanes that are ignored during read transactions and driven with undefined data during write

transactions

Table 8-8. Data Transfers—32-Bit Mode (Continued)

Program
Transfer Size

Bus
BE0–BE7

Bus
TSIZ0–TSIZ2

Bus
A29–A31

 Byte Lanes

Number of
Beats

DH0... ...DH31

0 1 2 3
8-20 PowerPC 602 RISC Microprocessor User's Manual

8.3.2.2.5 Address/Transfer Attribute Summary
Table 8-10 summarizes the address and transfer attribute information presented on the bus
by the 602 for various processor or snoop-related transactions.

Note that in Table 8-10, the WT, CI, and GBL signals correspond to the WIM bits, which
are defined in the BATs (for block address translations), the PTEs (for page address
translation), or in HID0 (for real addressing mode and protection-only mode).

Table 8-9. Transfer Code Signal Encoding

TC0–TC1 Read Write

00 Data transaction Normal write

01 N/A Copy-back line-fill

10 Instruction fetch N/A

11 Reserved Reserved

Table 8-10. Address/Transfer Attribute Summary

Bus Transaction A0–A31 TT0–TT4 TBST TSIZ0–TSIZ2 WT CI GBL TC0–TC1

Instruction Fetch

Cacheable A0–A28||xxx 0 1 1 1 0 0 Invalid 1 1 1 1 0

Caching-Inhibited A0–A28||000 0 1 0 1 0 1 0 0 0 1 0 1 1 0

Caching-Inhibited A0–A28||100 0 1 0 1 0 1 0 0 0 1 0 1 1 0

Cache Operations

Line-fill (cache miss) A0–A28||xxx 0 1 1 1 0 0 0 1 0 ¬W, 1 ¬M 1 0 0

Castout A0–A26||00xxx 0 0 1 1 0 0 0 1 0 1 1 1 0 0

Snoop copy-back A0–A26||00xxx 0 0 1 1 0 0 0 1 0 1 1 1 0 0

Cache Bypass Operations

Single-beat read (CI) A0–A31 0 1 0 1 0 1 Size (see
Table 7-4)

¬W, 0 ¬M 0 0

Single-beat write (CI) A0–A31 0 0 0 1 0 1 Size (see
Table 7-4)

¬W, 0 ¬M 0 0

Single-beat write
(WT)

A0–A31 0 0 0 1 0 1 Size (see
Table 7-4)

 0 ¬I, ¬M 0 0

Special Instructions

dcbz (address-only) A0–A26||00000 0 1 1 0 0 0 0 1 0 ¬W, 1 0 0 0

1 W,I,M = WIM bits from PTEs, BATs, or HID0; ¬ = Complement
Chapter 8. System Interface Operation 8-21

8.3.2.3 Address Phase Termination
Two signals are used to terminate the address phase—AACK and ARTRY.

The 602 does not terminate the address phase until AACK is asserted. As shown in the
previous examples, in the fastest address cycle, the AACK signal can be asserted
simultaneously with the TS cycle to result in a single-cycle address phase. In some systems,
AACK can be connected low to minimize each address phase to one bus cycle. However,
the system can use AACK to extend or pace the address phase.

After the address phase, TS always is driven high for one bus cycle. The AACK signal must
be asserted for one bus cycle only.

The address phase can be terminated with requirement to rerun, or retry, if ARTRY is
asserted during the address phase and through the cycle following AACK (see Figure 8-8).
This causes the entire transaction—address and data phase—to be rerun. As a snooper, the
602 asserts ARTRY for a snooped transaction that hits modified data in the data cache and
must be written to memory, or if the snooped transaction could not be serviced. As a bus
master, the 602 responds to an assertion of ARTRY by aborting the bus transaction and re-
requesting the bus, if BG is deasserted. Internally, the address queue that was retried is
continually rearbitrated with the other internal queues until the next qualified bus grant is
recognized.

If an address retry is required, the ARTRY response may be asserted by a snooper as early
as the second cycle after the assertion of TS. (the 602, however, may not assert ARTRY until
the third cycle after TS). Once asserted, ARTRY must remain asserted through the cycle
after the assertion cycle of AACK. The assertion of ARTRY during the cycle after the
assertion of AACK is referred to as a qualified ARTRY. An earlier assertion of ARTRY
during the address phase is referred to as an early ARTRY. If AACK is connected low,
ARTRY must be asserted on the second cycle (clock cycle 3) after the assertion of TS.
8-22 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-8. Snooped Address Cycle with ARTRY

As a bus master, the 602 recognizes either an early or a qualified ARTRY and prevents the
data phase associated with the retried address phase from beginning. During a qualified
ARTRY, the 602 also determines whether it should negate BR and ignore BG on the
following cycle. The following cycle is the snooping window, during which only the device
that asserted ARTRY can assert BR. This guarantees the snooping device an opportunity to
request and be granted the bus before the just-retried master can restart its transaction.
During this window, BG is also blocked so a pipelined arbiter (one that clocks requests in
and clocks grants out) has a chance to negate BG to an already granted potential bus master
to perform a new arbitration.

8.3.3 Data Phase
After the address phase, the 602 asserts BB, begins driving or sampling the data bus, and
sampling the transfer acknowledge signal. The data phase consists of the data transfer itself
and data termination.

8.3.3.1 Data Transfer
The data transfer signals are D0–D63. These signals form a 64-bit data path for read and
write operations when the processor is in 64-bit mode (T32 is negated); D0–D31 form a 32-
bit data path when the processor is in 32-bit mode (T32 is asserted). D32–D63 are ignored
in 32-bit mode.

In 64-bit mode, the 602 transfers data in either single-beat (nonburst) transfers or four-beat
burst transfers. Nonburst operations can transfer from one to eight bytes at a time and can

1 2 3 4 5 6 7 8

ts

bb

addr

aack

ARTRY

qualBG

(given to
snooping

device)
TS
Chapter 8. System Interface Operation 8-23

be misaligned. Burst transfers are used by the 602 to transfer cache blocks into or out of its
internal cache. Nonburst transfers are either caching-inhibited or write-through write
operations. For more information see Section 8.3.2.2, “Transfer Attributes.”

8.3.3.2 Data Phase Termination
The following three signals are used to terminate the individual data beats of the data phase
and the bus phase—TA, TEA, and ARTRY:

• Asserting TA signals normal termination of a data beat or the transaction (last data
beat of burst). It must always be asserted on the bus cycle coincident with the data
that it is qualifying. It may be withheld by the slave for any number of clocks until
valid data is ready to be supplied or accepted.

• Asserting TEA signals a nonrecoverable error during the data transaction. It may be
asserted on any cycle while BB is asserted. Asserting TEA terminates the bus phase
immediately even if it is in the middle of a burst, however, it does not prevent
incorrect data that has just been acknowledged with TA from being written into the
602’s cache or register files. Asserting TEA causes either a machine check exception
or a checkstop condition, depending on the setting of MSR[ME].

• Asserting ARTRY terminates the bus phase immediately. ARTRY is typically
asserted in response to a device snooping and hitting an address on the bus. In such
cases, asserting ARTRY delays the interrupted transaction so the snooping device
can perform an operation (such as a write-back or castout operation) to ensure cache
coherency.

Upon receiving a final or only termination condition, the 602 negates BB for at least one
cycle.

8.3.3.3 Normal Single-Beat Termination
Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave; see Figure 8-9.

Figure 8-9. Normal Single-Beat Read Termination

1 2 3 45

qual BG

TS

aack

System Bus

BB

ta

Logical Bus Clock

Address Data
8-24 PowerPC 602 RISC Microprocessor User's Manual

Normal termination of a burst transfer occurs when TA is asserted for four bus clock cycles
(in 64-bit mode), as shown in Figure 8-10. The bus clock cycles in which TA is asserted
need not be consecutive, thus allowing pacing of the data transfer beats. For read or write
bursts to terminate successfully, TEA must remain negated during the transfer. The only
difference for a 32-bit mode is the number of data beats.

Figure 8-10. Normal Burst Transaction

8.4 Memory Coherency and Bus Protocol
The 602 has a copy-back cache which relies on bus snooping to maintain cache coherency
in a uniprocessor system with coherent caches. The 602 implements a three-state MEI
cache coherency protocol. The three-state cache coherency protocol is a subset of the four-
state MESI protocol with the shared state not supported. For more details, see Chapter 7,
“Signal Descriptions.”

8.4.1 Effect on Read Operations
The three-state (MEI) cache coherency protocol of the 602 affects read operations on the
bus in the following ways:

• 602 as bus master—All read operations (except for those that are caching-inhibited)
are signalled on the bus as RWITM to force flushing of the cache block from other
caches.

• 602 as snooper—All read operations snooped from the bus (except for those that are
caching-inhibited) are interpreted as RWITM to cause flushing from the 602’s
cache. A caching-inhibited read is inferred by the 602 when the transaction is a
nonburst read (TBST not asserted).

These actions for read operations allow the 602 to operate successfully on the bus with bus
masters that support either MEI or MESI protocol. Table 8-3 summarizes the 602 signals
used to maintain coherency.

0 1 2 3 4 5 6 7

TS

BB

System
Bus

ta

artry

Address Data 0 Data 1 Data 2 Data 3
Chapter 8. System Interface Operation 8-25

8.4.2 Qualified Snoop Conditions
During the cycle that TS is asserted by another bus master, other 602s snoop bus
transactions for any of the following conditions:

• Basic transfer protocol (signaled by TS)

— The global signal (GBL) is asserted indicating that coherency enforcement is
required.

— A reservation is currently active in the 602 as the result of an lwarx instruction,
and the snooped address indicates a write or kill operation in the transfer type
attributes (TT0–TT4). These transactions are snooped regardless of whether
GBL is asserted to support reservations in the three-state cache protocol.

• Injected snoop during read transaction (signaled by TS and TA)

While the 602 as a bus master performs a burst read transaction, the read target
device can inject snoops by asserting TS, negating TA, and driving the snooped
address on the bus. The window of the injected snoop is from the third cycle
following the assertion of BB to the cycle before the last read data beat is transferred
into the 602. If the injected snoop generates a hit, it asserts ARTRY, but does not
perform the snoop push operation. (The 602 does not perform clean or flush
operations to the internal cache). For the 602 to perform a normal snoop, the read
target device must regenerate the snooped address as a normal transaction (that is,
read, write, or address-only transaction) after the current read transaction is
completed. If the snoop hits for kill, the 602 invalidates the matched cache block.

Timing for injected snoop operations is shown in Section 8.5.4.7, “Injected Snoop
Timings.”

8.4.3 Internal Snoop Sources
When a qualified snoop condition is detected on the bus, the snooped address associated
with TS is compared against the data cache tags, memory queues, and any other appropriate
memory elements as appropriate for the following conditions detected during the assertion
of TS:

• Data cache tags—The data cache tags are snooped for standard data cache
coherency support. Instruction caches are not snooped.

• Reservation—This is for the lwarx/stwcx. instructions.

8.4.4 Reaction on Qualified Snoops
The 602 asserts ARTRY to the current bus master when a snooped transaction presents a
cache or memory queue coherency problem to the 602 as described above. The assertion of
ARTRY should signal the other master to abort its transaction and retry it later after the 602
can first perform a write operation back to memory. The 602 may also retry a bus
transaction if the cache tags are being accessed (for example, when the LSU is accessing or
updating the tags) prevent it from snooping the transaction on that cycle. Bus timing
operations are shown in Section 8.5.4, “Snooping.”
8-26 PowerPC 602 RISC Microprocessor User's Manual

8.4.5 Special Instructions
The cache control, TLB management, and synchronization instructions supported by the
602 may affect or be affected by the operation of the bus. Only dcbz is actively broadcast
through address-only transactions on the bus, and the 602 snoops only KILL operations
broadcast by other masters. However, these instructions may indirectly initiate bus
transactions, or their completion may be linked to the bus. Table 8-11 summarizes how
these instructions may operate with respect to the bus.

Table 8-11. Bus Impact for Special Instructions

Instruction
Possible Bus

Operation
Comment

sync None Allows queued bus operations (except instruction and touch load operations) to
complete.

tlbie None —

tlbsync None —

eieio None No-op. The eieio instruction is not needed on the 602 because the caching-
inhibited and write-through operations are performed in order.

icbi None —

dcbi None —

dcbf Write-with-kill Occurs only if cache block is modified

dcbst Write-with-kill Occurs only if cache block is modified

dcbz Kill block
(address-only)

Serves as broadcast to other masters for cache coherency; occurs only if the
cache block is marked as global even if cache block matches and is modified.

Write-with-kill May occur as a result of normal cache replacement in case of a cache miss.

dcbt,
dcbtst

Read-with-
intent-to-modify

Fetched cache block is stored in the touch load queue; see Section 2.5.1.

Note: This table does not address the impact of WIM settings, nor does it completely describe the mechanisms
for the operations described. It is intended only to show the possible bus relationships that may exist.
Chapter 8. System Interface Operation 8-27

8.5 Bus Timing Examples
The timings in this section take into account the following variables.

• Length of the address phase—There are two types of address phases:

— Single-cycle address phase—For these transactions, the address phase lasts only
one bus clock cycle because AACK is asserted simultaneously with TS. The
AACK signal can be connected low to ensure a single-cycle address phase.

— Multicycle address phase—This describes any address phase for which AACK
is not asserted simultaneously with TS.

• Burst or nonburst transfers—The different types of transactions supported depend
on the amount of data to be transferred. This is often affected by the settings of the
W, I, and M bits.

— Burst transactions transfer an eight-word cache block between the on-chip cache
and system memory. This can happen only when memory is addressed in
memory space that is designated as cacheable.

— Nonburst transactions transfer up to 64 bits of data between the processor and
system memory. It should be pointed out that a single-beat transaction
(transferring up to 64 bits) is the only nonburst transaction supported in 64-bit
mode. There are two types of nonburst transactions in 32-bit mode—single-beat
transactions that transfer up to 32 bits and double-beat transactions that transfer
up to 64 bits.

• 64- or 32-bit data bus mode—Whether the bus operates as a 32- or 64-bit bus is
determined by the setting of T32. Bus width can be changed dynamically or the
signal can be connected asserted for systems that use a static 32-bit bus or negated
for systems that use a static 64-bit bus.

— 64-bit—If T32 is negated, the data bus behaves as a 64-bit bus. Burst transactions
take four beats to transfer an eight-word cache block. Nonburst transactions are
nonburst operations that can transfer up to 64 bits of data. Timings for basic 32-
bit mode operations are described in Section 8.5.1, “64-Bit Data Bus Mode Basic
Transactions.”

— 32-bit—If T32 is asserted, the bus operates as a 32-bit bus. Burst transactions
take eight beats of 32 bits each to transfer an eight-word cache block. Nonburst
transactions consist of single- or double-beat operations that can transfer up to
64 bits of data. Timings for basic 32-bit mode operations are described in
Section 8.5.2, “32-Bit Bus Mode Basic Transactions.”

• Whether wait states are inserted between bursts—Each beat of data must be
acknowledged by the assertion of the TA signal. In a multiple-beat transaction (a
four-beat burst or a double-beat nonburst operation), the next beat is delayed if the
TA is negated between beats. An example of a data transaction that has wait states
can be seen in Section 8.5.1.2, “Burst Read Transaction with a Single-Cycle Address
Phase—64-Bit Mode.”
8-28 PowerPC 602 RISC Microprocessor User's Manual

The TA signal can remain asserted during the transaction to indicate that there is no
need to introduce wait states. In the following examples, this is referred to as “fastest
data transaction.” An example of a data transaction with no wait states is shown in
Section 8.5.1.6, “Burst Write Transaction—64-Bit Mode.”

• Whether the transaction is a read, write, or address-only transaction

8.5.1 64-Bit Data Bus Mode Basic Transactions
This section presents basic bus transactions when the processor is in 64-bit mode. They
include the following:

• Nonburst read transaction with single-cycle address phase (Section 8.5.1.1)
• Burst read transaction with a single-cycle address phase (Section 8.5.1.2)
• Burst read transaction with a multicycle address phase (Section 8.5.1.4)
• Nonburst write transaction (Section 8.5.1.5)
• Burst write transaction with a single-cycle address phase (Section 8.5.1.6)
• Slower burst write transaction (Section 8.5.1.7)

These examples show many characteristics that are common to 32-bit mode transactions as
well, such as the timing for single- and multicycle address phases and how wait states can
be inserted between beats of a burst operation by asserting and negating TA.

8.5.1.1 Nonburst Read Transaction—64-Bit Mode
Figure 8-11 shows a nonburst read operation with the single-cycle address phase. Note that
this operation is the same regardless of whether the bus is in 32- or 64-bit mode. Note that
to transfer 64 bits of data in 32-bit mode, a double-beat transaction is necessary. This is
shown in Figure 8-19.
Chapter 8. System Interface Operation 8-29

Figure 8-11. Nonburst Read Transaction, Single-Cycle Address Phase—64-Bit
Mode

The signal interactions are as follows:

1. In clock cycle 1, the bus request is issued (BR is asserted).

2. In clock cycle 2, the bus is granted (BG is asserted). In this example, there is no other
activity on the bus; BB, TS, and ARTRY signals are sampled as negated, so the 602
receives a qualified bus grant.

3. In clock cycle 3, transfer start (TS) is asserted and the address is made available on
the bus. The AACK signal, which is connected asserted, is sampled. Because it is
always asserted, the address phase is guaranteed to be the single-cycle address phase
(one bus clock cycle).

4. In clock cycle 4, BB is asserted indicating the start of the data phase.

5. In clock cycle 5, the slave device makes the data available on the bus and the transfer
is acknowledged (TA is asserted).

6. In clock cycle 6, the data transfer completes, and the TA and BB are negated.

1 2 3 4 5 6 7
CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

RA RD

T32
8-30 PowerPC 602 RISC Microprocessor User's Manual

8.5.1.2 Burst Read Transaction with a Single-Cycle Address Phase—
64-Bit Mode

Figure 8-12 shows a burst read operation with the single-cycle address with the bus
operating as a 64-bit bus. This example is identical to the nonburst read example shown in
Section 8.5.1.1, “Nonburst Read Transaction—64-Bit Mode.” However, here a four-beat
burst operation occurs that updates a cache block.

Figure 8-12. Burst Read Transaction with a Single-Cycle Address Phase—64-Bit
Mode

SYSCLK

BR

BG

TS

T32

BB

System Bus

TA

ARTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Arbitration Address phase Data phase

AACK

RA D0 D1 D2 D3
Chapter 8. System Interface Operation 8-31

The signal interactions are as follows:

1. Clock cycles 1–4 show the single-cycle address phase and are identical to the
nonburst case described in Section 8.5.1.1, “Nonburst Read Transaction—64-Bit
Mode.”

2. In clock cycle 5, TS is three-stated and the slave device does not yet drive the data
bus.

3. In clock cycle 6, the slave device drives data beat 0 on the memory bus; meanwhile,
the TA signal is asserted.

4. In clock cycle 7, the slave device is not yet driving the next data beat and the TA
signal is negated and remains so through clock cycle 8.

5. In clock cycle 9, the slave device drives data beat 2 on the memory bus while TA is
reasserted.

6. TA remains asserted through clock cycles 9–11, while data beats 1–3 are transferred.

7. In clock cycle 12, the final data beat arrives and TA is negated.

8.5.1.3 Burst Read Transaction with a Single-Cycle Address
Phase/Shortest Data Phase—64-Bit Mode

Table 8-7 shows a burst read transaction in which the four data beats occur without
interruption. In this example TA remains asserted throughout the data transfer.

Figure 8-13. Burst Read Transaction with a Single-Cycle Address Phase/Shortest
Data Phase—64-Bit Mode

SYSCLK

BR

BG

TS

BB

System Bus

TA

ARTRY

TEA

1 2 3 4 5 6 7 8 9 10

T32

AACK

RA D0 D1 D2 D3
8-32 PowerPC 602 RISC Microprocessor User's Manual

8.5.1.4 Burst Read Transaction with a Multicycle Address Phase—
64-Bit Mode

Figure 8-14 shows a burst-read transaction with a multicycle address phase.

Figure 8-14. Burst Read Transaction with a Multicycle Address Phase—64-Bit Mode

In this example, it takes four clock cycles for the address to be transferred on the bus. In
this example, the four data beats are paced by the TA signal, but this is independent of the
length of the data phase.

8.5.1.5 Nonburst Write Transaction—64-Bit Mode
Figure 8-15 illustrates a nonburst write transaction with the single-cycle address phase in
64-bit mode. Note the similarities with Section 8.5.1.1, “Nonburst Read Transaction—64-
Bit Mode.” The essential difference between these transactions is that the memory bus is
not put into high-impedance for the clock cycle after the address is transferred (clock
cycle 4).

SYSCLK

BR

BG

TS

AACK

BB

TA

ARTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Arbitration Address phase Data phase

RA D0 D1 D2 D3

T32

System Bus
Chapter 8. System Interface Operation 8-33

Figure 8-15. Fastest Nonburst Write Transaction—64-Bit Mode

The signal interactions are as follows:

1. Clock cycles 1–3 are identical to the nonburst read example in Figure 8-11, except
the address transfer carries a write address (WA) rather than a read address.

2. The essential difference between read and write operations is seen in clock cycle 4.
The memory bus does not need to put in high-impedance, and the write data
becomes available immediately after the address is transferred. Likewise the BB
signal is asserted after the address is transferred.

3. As in the nonburst read example, in clock cycle 5, TA is asserted to end the transfer.

4. Clock cycles 6 and 7 are the same as the burst read example.

8.5.1.6 Burst Write Transaction—64-Bit Mode
Figure 8-16 shows a simple burst write transaction with single-cycle address phase and
with no wait states between data beats.

1 2 3 4 5 6 7

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

T32

WA WD
8-34 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-16. Fastest Burst Write Transaction with Negated GBL Signal (Single-
Cycle Address Phase)—64-Bit Mode

The signal interactions are as follows:

1. Clock cycles 1–3 are identical to those in Section 8.5.1.6, “Burst Write
Transaction—64-Bit Mode.”

2. Because GBL is negated, the transaction is not snooped by other devices and TA can
be asserted simultaneously with BB in clock cycle 4.

3. The BB and TA signals remain asserted while the four data beats are transferred in
clock cycles 4–8.

4. After the last data beat in clock cycle 8, BB and TA are negated, after which the
memory bus is put in high-impedance state and the timing behavior continues as in
the previous examples.

In this example, snooping is not required, therefore it can be assumed that the GBL signal
is not asserted. This allows the TA signal to be asserted in the same clock as BB,
immediately after the address is transferred on the memory bus. For an example showing
how this transaction is performed when the GBL signal is asserted, see Section 8.5.4,
“Snooping.”

SYSCLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

Note: This transaction should be used only when ARTRY is not asserted.

1 2 3 4 5 6 7 8 9 10

T32

WA D0 D1 D3D2
Chapter 8. System Interface Operation 8-35

8.5.1.7 Slower Burst Write Transaction—64-Bit Mode
In previous examples showing burst transactions, the TA signal has remained asserted
throughout the data beats, eliminating potential wait states. Figure 8-17 shows a burst write
transaction in which the TA signal is not held asserted throughout the four-beat data
transfer.

Figure 8-17. Slow Burst Write Transaction

The signal interactions are as follows:

1. Clock cycles 1–3 show the standard timing for a single-cycle address phase
transaction.

2. In clock cycle 4, data is available on the memory bus (D0), but cannot complete until
clock cycle 6 because TA is not asserted simultaneously with BB.

3. The TA signal remains asserted through clock cycle 6 (allowing data beat 1 to
complete), but is negated in clock cycle 7, which prolongs data beat 2.

4. The TA signal is asserted in clock cycle 9, allowing the D2 to complete on the
following clock cycle (10).

5. The TA signal remains asserted allowing D3 to complete in clock cycle 11 with no
additional wait states.

6. After D3 is transferred, the transaction concludes as normal.

1 2 3 4 5 6 7 8 9 10

SYSCLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

11 12

WA D0 D1 D2 D3

T32
8-36 PowerPC 602 RISC Microprocessor User's Manual

8.5.2 32-Bit Bus Mode Basic Transactions
This section describes basic read and write operations when the 602 is operating in 32-bit
mode. Many details that are common between 32-bit and 64-bit mode transactions, such as
the timing for the single- and multicycle address phases, are illustrated in the previous
examples and are not repeated here.

The examples illustrate the following:

• Single-beat read transactions (Section 8.5.2.1)
• Double-beat read transactions (Section 8.5.2.2)
• Burst read operations (Section 8.5.2.3)
• Burst read transaction with a multicycle address phase (Section 8.5.2.4)
• Write transactions in 32-bit mode (Section 8.5.2.5)

8.5.2.1 Single-Beat Read Transactions—32-Bit Only
A single-beat read transaction in 3-bit mode is shown in Figure 8-18. In this example, up to
32 bits are transferred in the data beat in clock cycle 5. The timing differs from the 64-bit
nonburst operation (shown in Figure 8-11) only in that the T32 pin is asserted (low).

Figure 8-18. Single-Beat Read Transactions—32-Bit Only

1 2 3 4 5 6 7
CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

RA RD

T32
Chapter 8. System Interface Operation 8-37

8.5.2.2 Double-Beat Read Transactions—32-Bit Only
When the processor data bus is operating in 32-bit mode, it takes more than one beat to
transfer double-word data types (for example, double-precision floating-point operands).
For these situations, the 602 generates a two-beat memory access. Note that this does not
require an additional address phase.

Figure 8-19. Double-Beat Read Transactions—32-Bit Only

The signal interactions are as follows:

1. Clock cycles 1 and 2 are like those in Section 8.5.1.1, “Nonburst Read
Transaction—64-Bit Mode.”

2. In clock cycle 3, the 602 asserts TS and drives the address on the bus. During this
clock cycle, the 602 samples the T32 and AACK signals. AACK is connected
asserted guaranteeing a single-cycle address phase (one bus clock cycle). T32 is
asserted and is latched when AACK is sampled. Asserting T32 indicates that the
slave is a 32-bit device; and ensures that the bus will function as a 32-bit data bus in
the data phase.

3. As in the 64-bit example, in clock cycle 4, the bus busy signal, BB, is asserted.

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

1 2 3 4 5 6 7

RA RD0

T32

8

RD1
8-38 PowerPC 602 RISC Microprocessor User's Manual

4. In clock cycle 5, the first 32-bit half of the data (RD0) is made available on the bus
and the transfer is acknowledged (TA is asserted). Note that TA cannot be asserted
while the address/data bus are in high-impedance state.

5. In clock cycle 6, the second word (RD0) of data is transferred and the TA and BB
signals remain asserted. Note that as with other burst operations, here the TA signal
can be held asserted through the duration of the transfer or it can be alternately
asserted and negated to pace the data beats.

6. In clock cycle 7, the second beat of data is transferred and the TA and BB signals are
negated.

8.5.2.3 Burst Read Operations—32-Bit
Figure 8-20 shows a burst read operation with the single-cycle address with the bus
operating as a 64-bit bus. This example is identical to the nonburst read example shown in
Section 8.5.1.2, “Burst Read Transaction with a Single-Cycle Address Phase—64-Bit
Mode.” However, since the data bus is half as wide when it operates in 32-bit mode, an
eight-beat burst operation (32-bits per beat) is required to update the cache block.

Figure 8-20. Burst Read Transaction with a Single-Cycle Address Phase—32-Bit

The 32-bit burst read transaction differs from the 64-bit burst read transaction primarily in
that it requires eight data beats instead of four. TA must be asserted for each of these beats.

SYSCLK

BR

BG

TS

T32

BB

System Bus

TA

ARTRY

TEA

Arbitration
Address

Data phase

AACK

RA D0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

D1 D2 D3 D4 D5 D6 D7

phase
Chapter 8. System Interface Operation 8-39

8.5.2.4 Burst Read Transaction with a Multicycle Address Phase—
32-Bit Mode

Figure 8-21 shows a burst-read transaction with a multicycle address phase and a data
phase in which wait states are inserted. The timing for this example is identical to the 64-
bit example in Figure 8-13, except for the fact that it requires four additional beats.

Figure 8-21. Burst Read Transaction with a Multicycle Address Phase—32-Bit Mode

8.5.2.5 Write Transactions in 32-Bit Mode
Tis section provides examples of write transactions in 32-bit mode, including the following:

• Fastest single-beat write transaction (Section 8.5.2.5.1)
• Fastest double-beat write transaction (32-bit mode only) (Section 8.5.2.5.2)
• Fastest burst write transaction (Section 8.5.2.5.3)

All three of these examples use a single-cycle address phase, and the two multiple-beat
transactions have no wait states.

Arbitration
Address

Data phase

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

phase

SYSCLK

TS

T32

BB

System Bus

TA

ARTRY

TEA

AACK

REQ#

GNT#

RA

18 19

D0 D1 D2 D3 D4 D5 D6 D7
8-40 PowerPC 602 RISC Microprocessor User's Manual

8.5.2.5.1 Fastest Single-Beat Write Transaction—32-Bit Mode
In Figure 8-22, the 602 performs the fastest single-beat write operation.

Figure 8-22. Fastest Single-Beat Write Transaction—32-Bit Mode

Two clock cycles are required to transmit the word of data because, as with single-beat
transactions in 64-bit mode described in Section 8.5.1.5, “Nonburst Write Transaction—
64-Bit Mode,” TA cannot be asserted until the second clock cycle after the write address is
transmitted.

8.5.2.5.2 Fastest Double-Beat Write Transaction—32-Bit Mode Only
Figure 8-23 shows a double-beat write transaction with no wait states between the two data
beats. This transaction is supported only in 32-bit mode.

1 2 3 4 5 6 7 8

SYSCLK

BR

BG

TS

T32

BB

System Bus

TA

ARTRY

TEA

AACK

WA WD
Chapter 8. System Interface Operation 8-41

Figure 8-23. Fastest Double-Beat Write Transaction—32-Bit Mode

This example differs from Figure 8-24 in that TA can be asserted a clock cycle earlier than
in the single-beat write case (as is also the case with multiple-beat (burst) operations in 64-
bit mode).

8.5.2.5.3 Fastest Burst Write Transaction—32-Bit Mode
Figure 8-24 shows the fastest possible burst write transaction in 32-bit mode.

1 2 3 4 5 6 7 8

SYSCLK

BR

BG

TS

T32

BB

System Bus

TA

ARTRY

TEA

AACK

WA HWD LWD
8-42 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-24. Fastest Burst Write Transaction—32-Bit Mode

This example shows the single-cycle address phase, and since this is a write transaction, the
first data beat can be made available on the next beat. In the fastest burst write transaction,
there are no wait states inserted between data beats. In this case the TA signal remains
asserted throughout while all eight data beats are transferred.

8.5.3 Consecutive Operations
Previous examples have shown the timings for basic read and write operations in 32- and
64-bit mode. The examples in this section show the latency that can be encountered
between transactions

8.5.3.1 Consecutive Nonburst Write-Read Transaction
Figure 8-25 shows the bus timing for a nonburst write followed by a nonburst read.

1 2 3 4 5 6 7 8 9 10 11 12 13

SYSCLK

BR

BG

TS

T32

BB

System Bus

TA

ARTRY

TEA

AACK

WA D0 D1 D2 D3 D4 D5 D6 D7
Chapter 8. System Interface Operation 8-43

Figure 8-25. Consecutive Nonburst Write-Read Transaction

The signal interactions are as follows:

1. Clock cycles 1–3 show the timing for a single-cycle address phase operation.

2. Clock cycles 1–6 are identical to the nonburst write operation shown in
Section 8.5.1.5, “Nonburst Write Transaction—64-Bit Mode” except that the BG
signal remains asserted so the bus remains granted after the write operation. An
additional bus request is not required because the bus is parked.

3. In clock cycle 6, BB is sampled. Because it is not asserted, the subsequent read
operation can process without the 602 having to rearbitrate for the bus.

4. In clock cycle 7, the read address is supplied to the memory bus and a nonburst read
operation identical to that described in Section 8.5.1.1, “Nonburst Read
Transaction—64-Bit Mode.”

8.5.3.2 Consecutive Nonburst Read-Write Transaction
Figure 8-26 shows a nonburst read transaction followed by a nonburst write transaction.

1 2 3 4 5 6 7 8 9 10 11
CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

WA WD RA RD

T32
8-44 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-26. Consecutive Nonburst Read-Write Transaction

The signal interactions are as follows:

1. Clock cycles 1–6 are identical to the nonburst read example shown in
Section 8.5.1.1, “Nonburst Read Transaction—64-Bit Mode,” again except for the
fact that the bus remains parked (BG remains asserted).

2. In clock cycle 6, the BB signal is sampled because it is not asserted; the 602 is free
to begin the subsequent write transaction without having to rearbitrate for the bus.

3. In clock cycle 7, a nonburst write transaction like the one described in
Section 8.5.1.5, “Nonburst Write Transaction—64-Bit Mode,” begins.

4. The nonburst write operation proceeds as described in Section 8.5.1.5, “Nonburst
Write Transaction—64-Bit Mode.”

8.5.3.3 Consecutive Burst Write-Read Transaction
Similar to the previous examples showing consecutive nonburst operations, the following
example shows a burst write operation followed by a burst read operation. Note that once
again that the BG input remains asserted so the 602 does not need to assert BR.

1 2 3 4 5 6 7 8 9 10 11

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

12

RA RD WA WD

T32
Chapter 8. System Interface Operation 8-45

Figure 8-27. Consecutive Burst Write-Read Transaction

The signal interactions are as follows:

1. Clock cycles 1–7 are identical to the burst write transaction described in
Section 8.5.1.6, “Burst Write Transaction—64-Bit Mode,” except that the BG signal
remains asserted so the 602 does not need to rearbitrate for the burst read operation
that follows.

2. The read address is made available in clock cycle 7, and like the example shown in
Section 8.5.1.2, “Burst Read Transaction with a Single-Cycle Address Phase—64-
Bit Mode,” there is a single-cycle pause before the first data beat is available on the
memory bus.

3. The TA signal remains asserted for two clock cycles, so the first two data beats are
transferred without interruption.

4. The TA signal is negated in clock cycle 12, which causes a wait state to be inserted
in the data transfer.

5. The TA signal is asserted again in clock cycle 13, which allows the two remaining
data beats to complete. The transaction completes as normal.

8.5.3.4 Consecutive Burst Read-Write Transaction
In this example, a burst write operation follows a burst read. Note again in this case the bus
arbiter allows the BG signals to remain asserted throughout the first transactions so
additional arbitration is not required for the write transaction.

1 2 3 4 5 6 7 8 9 10 11 12

SYSCLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

13 14 15 16

T32

WA WD0 WD1 WD2 WD3 RA RD0 RD1 RD2 RD3
8-46 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-28. Consecutive Burst Read-Write Transaction

In Figure 8-28 the burst read transaction is the fastest possible burst read operation—that
is, the TA signal remains asserted so there are no wait states between data beats. In the burst
write transaction shown, data beats, WD0 and WD2, are prolonged by the negation of the
TA signal.

8.5.4 Snooping
This section describes bus timing for systems that use multiple caching devices. Such
systems must ensure cache coherency by snooping read and write addresses transferred on
the bus, checking those addresses against regions of memory that are configured as
cacheable, and responding when one of these addresses matches (a snoop hit occurs).
Ensuring cache coherency affects the timing illustrated in the previous examples in the
following ways:

• For an address to be snooped, the GBL signal must be asserted, and this causes
additional bus activity, as shown in Section 8.5.4.1, “Fastest Burst Write Transaction
with Asserted GBL Signal.”

• When a snoop hit occurs, the operation that corresponds with the address that was
broadcast must not be allowed to complete until the snooping device performs the
bus operations necessary for it to maintain cache coherency. The snooped bus
operation is interrupted by the assertion of the ARTRY signal, as described in
Section 8.5.4.2, “Address Retry During 602 Read Transaction—Single-Cycle

SYSCLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

RA RD0 RD1 RD2 RD3 WA WD0 WD1 WD2 WD3

18

T32
Chapter 8. System Interface Operation 8-47

Address Phase,” Section 8.5.4.4, “ARTRY During Other Master Read Transaction—
Single-Cycle Address Phase,” Section 8.5.4.3, “Address Retry During 602 Read
Transaction—Multicycle Address Phase,” and Section 8.5.4.5, “ARTRY During
Other Master Read Transaction—Multicycle Address Phase.”

• Typically, the response to a snoop hit is to write back modified data to system
memory. An example of this is shown in Section 8.5.4.6, “Snoop Hit—Write-Back
Transaction.”

• In addition to the address snooping mechanism described above, the 602 supports
injected snoop operations that can occur between data beats of a burst operation in
either 32- or 64-bit mode. Several examples of this are shown in Section 8.5.4.7,
“Injected Snoop Timings.”

Snooping requires additional clock cycles; a performance improvement can be gained by
asserting GBL only unless snooping is required. This is shown in the following two
examples.

8.5.4.1 Fastest Burst Write Transaction with Asserted GBL Signal
Figure 8-29 shows the same transaction as shown in Section 8.5.1.6, “Burst Write
Transaction—64-Bit Mode.”

Figure 8-29. Fastest Burst Write Transaction with Asserted GBL Signal

1 2 3 4 5 6 7 8 9 10

SYSCLK

BR

BG

TS

T32

BB

System Bus

TA

ARTRY

TEA

AACK

WA D0 D1 D3D2
8-48 PowerPC 602 RISC Microprocessor User's Manual

The primary difference between these two examples can be seen in clock cycle 4. Because
GBL is asserted, snooping must occur, and although data becomes available in the second
half of clock cycle 4 immediately after the address is transferred, the TA signal cannot be
asserted until one clock cycle later. This forces the first beat of data (D0) to take two cycles
to transfer instead of one cycle when GBL is negated.

While this example shows the effect that snooping has on bus timing, it does not show the
timing when there is a snoop hit of the address. These timings are shown in the following
examples.

8.5.4.2 Address Retry During 602 Read Transaction—Single-Cycle
Address Phase

The ARTRY signal is not sampled until the second ck after the read address is transferred.
When a read operation uses the single-cycle address phase, the ARTRY signal is not
sampled until the second clock cycle after the address is transferred.

Figure 8-30 shows the ARTRY signal asserted after snoop hit on a read operation with the
single-cycle address phase. This example illustrates the fact that the ARTRY signal is not
sampled until the clock cycle after the address signals are no longer in high impedance—
that is, the second clock cycle after the read address is transferred.

Figure 8-30. ARTRY During Read Transaction—Single-Cycle Address Phase

1 2 3 4 5 6 7

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

RA DA

T32
Chapter 8. System Interface Operation 8-49

Note that the slave device may assert ARTRY in clock cycle 4; the 602 does not sample
ARTRY until the next clock cycle simultaneously with the read data being put on the bus.
Because ARTRY is asserted in this case, the data transfer is not allowed to complete; TA is
not asserted.

8.5.4.3 Address Retry During 602 Read Transaction—Multicycle
Address Phase

In Figure 8-31 the multicycle address phase is used, and the slave device may assert
ARTRY as early as clock cycle 4; it is not sampled until after the address is transferred.

Figure 8-31. ARTRY During 602 Read Transaction—Multicycle Address Phase

1 2 3 4 5 6 7 8 9 10

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

RA

T32
8-50 PowerPC 602 RISC Microprocessor User's Manual

8.5.4.4 ARTRY During Other Master Read Transaction—Single-Cycle
Address Phase

Figure 8-32 shows the 602 snooping a bus operation by another bus master.

Figure 8-32. ARTRY During Other Master Read—Single-Cycle Address Phase

Note that the ARTRY signal cannot be asserted on the cycle immediately following the
address transfer as it can when the transaction has a multicycle address phase (shown in
Figure 8-33). As described in Section 7.2.5.2, “Address Retry (ARTRY),” the ARTRY
signal is asserted on the second bus cycle after the assertion of the TS signal and is negated
on the second cycle following the negation of the AACK signal.

8.5.4.5 ARTRY During Other Master Read Transaction—Multicycle
Address Phase

Figure 8-33 shows the 602 asserting ARTRY after a snoop hit on an address broadcast by
another device that shares the memory bus.

1 2 3 4 5 6 7

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

RA RD

T32
Chapter 8. System Interface Operation 8-51

Figure 8-33. ARTRY During Other Master Read Transaction—Multicycle Address
Phase

As in the previous example, the ARTRY signal is asserted in the second cycle following the
assertion of TS, as described in Section 7.2.5.2, “Address Retry (ARTRY).” In the case of
the multicycle address phase, the assertion of the AACK signal must be delayed for the
address to be decoded. Because the negation of the ARTRY signal must occur no sooner
than two clock cycles after the assertion of the AACK signal, ARTRY is held asserted from
clock cycles 5–9.

8.5.4.6 Snoop Hit—Write-Back Transaction
Figure 8-34 shows the bus timing when a snoop hit occurs on a read address. In this
example, a DMA device has requested and has been granted the bus for a burst read
operation, and the read address is snooped by the 602.

1 2 3 4 5 6 7 8 9 10

RA

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

T32
8-52 PowerPC 602 RISC Microprocessor User's Manual

Figure 8-34. Snoop Hit—Write-Back Transaction

The signal interactions are as follows:

1. In clock cycles 1–3, the DMA device has been granted mastership of the memory
bus (DMABG asserted). It broadcasts the read address in clock cycle 1.

2. The 602 snoops and hits the read address, and asserts the ARTRY and CPUBR
signals in clock cycle 3.

3. In clock cycle 4, the bus busy signal, BB, is negated for the DMA operation
simultaneously with the assertion of the bus grant signal (CPUBG) to the 602 and
the reassertion of the DMA device’s bus request signal (DMABR).

4. In clock cycle 5, the TS signal is asserted and the 602 puts the write address onto the
memory bus.

5. In clock cycle 6, a four-beat write operation begins and the memory bus grant is
given to the DMA device so it can retry its read transaction when the write operation
completes.

6. In clock cycle 11, the DMA device starts its read transaction again, and it completes
as normal.

CLK

DMABR

DMABG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

CPUBR

CPUBG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

RA WA D0 D1 D2 D3 RA RD0 RD1 RD2 RD3

T32
Chapter 8. System Interface Operation 8-53

8.5.4.7 Injected Snoop Timings
As described in Section 8.4.2, “Qualified Snoop Conditions,” injected snoops can occur
during read transactions (signalled by TS and TA):

When a 602 bus master performs a burst read transaction, the read target device can inject
snoops by asserting TS, negating TA, and driving the snooped address on the address bus.
As shown in Section 8.5.4.7.1, “First Injected Snoop in the Injected Snoop Window,” and
Section 8.5.4.7.2, “Last Injected Snoop in the Injected Snoop Window,” the window of the
injected snoop is from the third cycle following the assertion of BB to the cycle before the
last read data beat is transferred.

8.5.4.7.1 First Injected Snoop in the Injected Snoop Window
The example shown in Figure 8-35 shows a snoop injected at the earliest possible moment
in a read operation.

Figure 8-35. First Injected Snoop in the Injected Snoop Window

SYSCLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

Note: TA must be driven high (negated) on the snoop cycle (clock #6).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

RA D0SA D1 D2 D3

T32

Snoop Window
8-54 PowerPC 602 RISC Microprocessor User's Manual

The signal interactions are as follows:

1. The burst read transaction begins as normal, as shown in Section 8.5.1.1, “Nonburst
Read Transaction—64-Bit Mode.”

2. The first difference occurs in clock cycle 6 when the other bus device signals its
intentions to snoop by asserting TS, negates TA, and puts its snoop address out on
the memory bus, in place of the first data beat.

3. In clock cycle 7, the snoop address transaction completes, TS is negated, TA is
asserted, and the first data beat is transferred.

4. In this example, there is a snoop hit, so in clock cycle 8, the 602 asserts ARTRY to
force the other bus device to postpone its operation.

5. In the rest of the diagram, the 602’s read operation completes as normal.

8.5.4.7.2 Last Injected Snoop in the Injected Snoop Window
Figure 8-36 shows an operation similar to that in Figure 8-35. However, in this example,
the snoop address is broadcast at the last possible moment—before the last data beat.

Figure 8-36. Last Injected Snoop in the Injected Snoop Window

SYSCLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

Note: TA must be driven high (negated) on the snoop cycle (clock #10).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

RA D0 SAD1 D2 D3

T32

Snoop Window
Chapter 8. System Interface Operation 8-55

As in the previous example, the other bus master takes advantage of its ability to inject a
snoop during a burst read operation. In this case, the other device asserts TS and broadcasts
the snoop address in clock cycle 10. In the next clock cycle, the TA signal is reasserted and
the final data beat is transferred. Once again, a snoop hit occurs, and the 602 asserts the
ARTRY signal (clock cycle 12).

8.5.5 Address-Only Transactions
The 602 generates an address-only bus transaction only when a dcbz instruction is
executed. Examples of address-only transactions are given in Section 8.5.5.1, “Single-
Cycle Address-Only Transaction,” and Section 8.5.5.2, “Multicycle Address-Only
Transaction.”

8.5.5.1 Single-Cycle Address-Only Transaction
Because many address-only operations cause other devices to perform an action (for
example by either flushing, killing, or clearing the contents of a cache block), it is typical
for another device to snoop the address, and assert the ARTRY signal to perform the
required operation. The timing for the ARTRY signal is included in Figure 8-37.

Figure 8-37. Single-Cycle Address-Only Transaction

is “don’t care”

1 2 3 4 5 6 7

A

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

T32
8-56 PowerPC 602 RISC Microprocessor User's Manual

Here the transfer acknowledge signal is treated as a “don’t care” because there is no data
phase. Similar to the example shown in Section 8.5.4.4, “ARTRY During Other Master
Read Transaction—Single-Cycle Address Phase,” the ARTRY signal is asserted by a
snooping device in the second clock cycle after the address is transmitted.

8.5.5.2 Multicycle Address-Only Transaction
Figure 8-38 shows a multicycle address-only transaction, again showing the timing for the
assertion of ARTRY by a snooping device that hits the address. As shown in
Section 8.5.4.5, “ARTRY During Other Master Read Transaction—Multicycle Address
Phase,” the ARTRY signal is asserted in the clock cycle after the address has been
transferred. Again, because there is no data to be transferred, the TA signal is a don’t care.

Figure 8-38. Multicycle Address-Only Transaction

1 2 3 4 5 6 7 8

ADDRESS

CLK

BR

BG

TS

AACK

BB

System Bus

TA

ARTRY

TEA

T32

Is “don’t care”
Chapter 8. System Interface Operation 8-57

8-58 PowerPC 602 RISC Microprocessor User's Manual

Chapter 9
Power Management
90
90

The PowerPC 602 microprocessor is specifically designed for low-power operation. The
602 provides both automatic and program-controllable power reduction modes for
progressive reduction of power consumption. This chapter describes the hardware support
provided by the 602 for power management.

9.1 Dynamic Power Management
Dynamic power management automatically powers up and down individual execution units
of the 602 on a demand basis. For example, if no floating-point instructions are being
executed, the floating-point unit is automatically powered down. Power is not actually
removed from the execution unit; instead, each execution unit has an independent clock
input, which is automatically controlled on a clock-by-clock basis. Since CMOS circuits
consume negligible power when they are not switching, stopping the clock to an execution
unit effectively eliminates its power consumption. Dynamic power management is
transparent to software and external hardware and is enabled by setting HID0[DPM]
(bit 11) on power-up, or following the assertion of HRESET.

9.2 Programmable Power Modes
The 602 provides four programmable power states—full power, doze, nap, and sleep.
Software selects these modes by setting one (and only one) of three power-saving mode
bits—HID0[DOZE], HID0[NAP], and HID0[SLEEP] (bits 8, 9, and 10, respectively).

Hardware can enable a power management state through external asynchronous interrupts.
The hardware interrupt causes the transfer of program flow to the interrupt handler, which
sets the appropriate mode. The 602 provides a separate exception and exception vector for
power management—the system management interrupt (SMI). The 602 also contains a
decrement timer, which allows it to enter the nap or doze mode for a predetermined period
and then return to full power operation through the decrementer interrupt.

The 602 cannot switch from one power management mode to another without returning to
full power mode. Nap and sleep modes disable bus snooping; therefore, a hardware
handshake is provided to ensure coherency before the 602 enters these power management
modes. Table 9-1 summarizes the power states.
Chapter 9. Power Management 9-1

9.2.1 Power Management Modes
The following sections describe the characteristics of the 602’s power management modes,
the requirements for entering and exiting the various modes, and the system capabilities
provided by the 602 while the power management modes are active.

9.2.1.1 Full-Power Mode with Dynamic Power Management Disabled
Full-power mode with dynamic power management disabled power mode is selected by
clearing HID0[DPM].

• Default state following power-up and HRESET
• All functional units are operating at full processor speed at all times.

9.2.1.2 Full-Power Mode with Dynamic Power Management Enabled
Full-power mode with dynamic power management enabled (HID0[DPM] = 1) provides
on-chip power management without affecting the functionality or performance of the 602.

• Required functional units are operating at full processor speed
• Functional units are clocked only when needed
• No software or hardware intervention required after mode is set
• Software/hardware and performance transparent

Table 9-1. PowerPC 602 Microprocessor Programmable Power Modes

PM Mode Functioning Units Activation Method Full-Power Wake Up Method

Full power All units active — —

Full power (with dynamic
power management)

Requested logic by
demand

Instruction dispatch —

Doze • Bus snooping
• Data cache as needed
• Decrementer timer

Software External asynchronous exceptions
Decrementer interrupt
Reset

Nap Decrementer timer Hardware/software External asynchronous exceptions
Decrementer interrupt
Reset

Sleep None Hardware/software External asynchronous exceptions
Reset
9-2 PowerPC 602 RISC Microprocessor User's Manual

9.2.1.3 Doze Mode
Doze mode disables most functional units but maintains cache coherency by enabling the
bus interface unit and snooping. A snoop hit causes the 602 to enable the data cache, copy
the data back to memory, disable the cache, and fully return to the doze state.

• Most functional units disabled
• Bus snooping and time base/decrementer still enabled
• Doze mode sequence

— Set doze bit (HID0[8] = 1)

— 602 enters doze mode after several processor clocks

• Several methods of returning to full-power mode
— Assert INT, SMI, MCP or decrementer exceptions

— Assert HRESET or SRESET

• Transition to full power state takes no more than a few processor cycles
• Phase-locked loop (PLL) running and locked to SYSCLK

9.2.1.4 Nap Mode
The nap mode disables the 602 but maintains the PLL and the time base/decrementer. The
time base can be used to restore the 602 to full power state after a programmed amount of
time. Because bus snooping is disabled for nap and sleep modes, a hardware handshake
using the quiesce request (QREQ) and quiesce acknowledge (QACK) signals are required
to maintain data coherency. The 602 will assert the QREQ signal to indicate that it is ready
to disable bus snooping. When the system ensures that snooping is no longer necessary, it
asserts QACK and the 602 enters the sleep or nap mode.

• Time base/decrementer still enabled
• Most functional units disabled (including bus snooping)
• All nonessential input receivers disabled
• Nap mode sequence

— Set nap bit (HID0[9] = 1)

— 602 asserts quiesce request (QREQ)

— System asserts quiesce acknowledge (QACK)

— 602 enters sleep mode after several processor clocks

• Several methods of returning to full-power mode
— Assertion of the INT, SMI, and MCP signals or occurrence of a decrementer

interrupt

— Assert hard or soft reset

• Transition to full power takes no more than a few processor cycles
• PLL running and locked to SYSCLK
Chapter 9. Power Management 9-3

9.2.1.5 Sleep Mode
Sleep mode consumes the least amount of power of the four modes because all functional
units are disabled. To conserve the maximum amount of power, the PLL may be disabled
and the SYSCLK may be removed. Due to the fully static design of the 602, the internal
processor state is preserved when no internal clock is present. Because the time base and
decrementer are disabled while the 602 is in sleep mode, the 602 microprocessor’s time
base contents must be updated from an external time base following sleep mode if accurate
time-of-day maintenance is required. Before the 602 enters the sleep mode, the 602 will
assert the QREQ signal to indicate that it is ready to disable bus snooping. When the system
has ensured that snooping is no longer necessary, it asserts QACK and the 602 enters sleep
mode.

• All functional units disabled (including bus snooping and time base)
• All nonessential input receivers disabled

— Internal clock regenerators disabled

— PLL still running (see below)

• Sleep mode sequence
— Set sleep bit (HID0[10] = 1)

— 602 asserts quiesce request (QREQ)

— System asserts quiesce acknowledge (QACK)

— 602 enters sleep mode after several processor clocks

• Several methods of returning to full-power mode
— Assert INT, SMI, or MCP interrupts

— Assert hard or soft reset

• PLL may be disabled and SYSCLK may be removed in sleep mode
• Return to full-power mode after PLL and SYSCLK disabled in sleep mode

— Enable SYSCLK

— Reconfigure PLL into desired processor clock mode

— System logic waits for PLL start-up and relock time (100 µsec)

— System logic asserts one of the sleep recovery signals (for example, INT or SMI)

9.2.2 Power Management Software Considerations
All outstanding bus operations must complete before nap or sleep modes are entered.
Normally, a power management mode is selected by setting the appropriate HID0 mode bit
during system configuration. Later, the power management mode is selected by setting the
MSR[POW] bit. To provide a clean transition into and out of the power management mode,
the mtmsr[POW] should be preceded by a sync instruction and followed by an isync
instruction.
9-4 PowerPC 602 RISC Microprocessor User's Manual

Appendix A
PowerPC Instruction Set Listings
A0
A0

This appendix lists the PowerPC 602 microprocessor’s instruction set as well as the
additional PowerPC instructions not implemented in the 602. Instructions are sorted by
mnemonic, opcode, function, and form. Also included in this appendix is a quick reference
table that contains general information, such as the architecture level, privilege level, and
form, and indicates if the instruction is 64-bit and optional.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

A.1 Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the PowerPC architecture in alphabetical
order by mnemonic.

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

Reserved bits

Key:

Instruction not implemented in the 602
Appendix A. PowerPC Instruction Set Listings A-1

andi. 28 S A UIMM

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

dsa 1,6 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 628 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-2 PowerPC 602 RISC Microprocessor User’s Manual

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

esa 1,6 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 596 0

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 4 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fcfidx 4 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 4 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-3

frsqrtex 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 5 63 D A B C 23 Rc

fsqrtx 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 4 58 D A ds 0

ldarx 4 31 D A B 84 0

ldu 4 58 D A ds 1

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-4 PowerPC 602 RISC Microprocessor User’s Manual

lhzx 31 D A B 279 0

lmw 3 46 D A d

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwa 4 58 D A ds 2

lwarx 31 D A B 20 0

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfrom 1,6 31 D A 0 0 0 0 0 265 0

mfspr 2 31 D spr 339 0

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 63 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 S spr 467 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-5

mulhdx 4 31 D A B 0 73 Rc

mulhdux4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 4 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 1 0

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

sradix 4 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-6 PowerPC 602 RISC Microprocessor User’s Manual

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdcx. 4 31 S A B 214 1

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 5 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 3 47 S A d

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-7

stwx 31 S A B 151 0

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

tdi 4 02 TO A SIMM

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbld 1,6 31 0 0 0 0 0 0 0 0 0 0 B 978 0

tlbli 1,6 31 0 0 0 0 0 0 0 0 0 0 B 1010 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 602-implementation specific instruction

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-8 PowerPC 602 RISC Microprocessor User’s Manual

A.2 Instructions Sorted by Opcode
Table A-2 lists the instructions defined in the PowerPC architecture in numeric order by
opcode.

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 4 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimix 0 1 0 1 0 0 S A SH MB ME Rc

Reserved bits

Key:

Instruction not implemented in the 602
Appendix A. PowerPC Instruction Set Listings A-9

rlwinmx 0 1 0 1 0 1 S A SH MB ME Rc

rlwnmx 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldiclx 4 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicrx 4 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldicx 4 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimix 4 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldclx 4 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcrx 4 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

mulhdux 4 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 0 1 Rc

addcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwux 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 4 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slwx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzwx 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

sldx 4 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subfx 0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

ldux 4 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-10 PowerPC 602 RISC Microprocessor User's Manual

cntlzdx 4 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andcx 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

td 4 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhdx 4 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 0 1 Rc

mulhwx 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 4 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

norx 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 4 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stdux 4 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 4 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

mulld 4 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 0 1 Rc

addmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

mullwx 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-11

mfrom 1,6 0 1 1 1 1 1 D A 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0

addx 0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xorx 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 2 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 4 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 4 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orcx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradix 4 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 1 sh Rc

slbie 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdux 4 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 0 1 Rc

divwux 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

mtspr 2 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nandx 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divdx 4 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 0 1 Rc

divwx 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

slbia 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx 3 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-12 PowerPC 602 RISC Microprocessor User's Manual

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srwx 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srdx 4 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

esa 1,.6 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0

lswi 3 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

dsa 1,.6 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 1 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 3 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 3 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

srawx 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

sradx 4 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawix 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extshx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsbx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

tlbld 1,6 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 1 1 1 1 0 1 0 0 1 0 0

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

stfiwx 5 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extsw 4 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-13

tlbli 1,6 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 1 1 1 1 1 1 0 0 1 0 0

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 3 1 0 1 1 1 0 D A d

stmw 3 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

ld 4 1 1 1 0 1 0 D A ds 0 0

ldu 4 1 1 1 0 1 0 D A ds 0 1

lwa 4 1 1 1 0 1 0 D A ds 1 0

fdivsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtsx 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-14 PowerPC 602 RISC Microprocessor User's Manual

fresx 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmulsx 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubsx 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmaddsx 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubsx 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmaddsx 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 4 1 1 1 1 1 0 S A ds 0 0

stdu 4 1 1 1 1 1 0 S A ds 0 1

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frspx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiwx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwzx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdivx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtx 5 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fselx 5 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmulx 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrtex 5 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsubx 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmaddx 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsubx 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmaddx 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fnegx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmrx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfix 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

fnabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffsx 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-15

mtfsfx 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctidx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidzx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfidx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 602-implementation specific instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-16 PowerPC 602 RISC Microprocessor User's Manual

A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-30 list the PowerPC instructions grouped by function.

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 4 31 D A B 0 73 Rc

mulhdux4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulld 4 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subficx 08 D A SIMM

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Reserved bits

Key:

Instruction not implemented in the 602
Appendix A. PowerPC Instruction Set Listings A-17

Table A-4. Integer Compare Instructions

Table A-5. Integer Logical Instructions

Table A-6. Integer Rotate Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 4 31 S A 0 0 0 0 0 986 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc
A-18 PowerPC 602 RISC Microprocessor User's Manual

Table A-7. Integer Shift Instructions

Table A-8. Floating-Point Arithmetic Instructions

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

rlwimix 22 S A SH MB ME Rc

rlwinmx 20 S A SH MB ME Rc

rlwnmx 21 S A SH MB ME Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

sradix 4 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fresx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fselx 5 63 D A B C 23 Rc

fsqrtx 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc
Appendix A. PowerPC Instruction Set Listings A-19

Table A-9. Floating-Point Multiply-Add Instructions

Table A-10. Floating-Point Rounding and Conversion Instructions

Table A-11. Floating-Point Compare Instructions

Table A-12. Floating-Point Status and Control Register Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfidx 4 63 D 0 0 0 0 0 B 846 Rc

fctidx 4 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 31 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc
A-20 PowerPC 602 RISC Microprocessor User's Manual

Table A-13. Integer Load Instructions

Table A-14. Integer Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 4 58 D A ds 0

ldu 4 58 D A ds 1

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwa 4 58 D A ds 2

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0
Appendix A. PowerPC Instruction Set Listings A-21

Table A-15. Integer Load and Store with Byte-Reverse Instructions

Table A-16. Integer Load and Store Multiple Instructions

Table A-17. Integer Load and Store String Instructions

Table A-18. Memory Synchronization Instructions

stdx 4 31 S A B 149 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 3 46 D A d

stmw 3 47 S A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

ldarx 4 31 D A B 84 0

lwarx 31 D A B 20 0

stdcx.4 31 S A B 214 1

stwcx. 31 S A B 150 1
A-22 PowerPC 602 RISC Microprocessor User's Manual

Table A-19. Floating-Point Load Instructions

Table A-20. Floating-Point Store Instructions

Table A-21. Floating-Point Move Instructions

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 5 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D 0 0 0 0 0 B 264 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc
Appendix A. PowerPC Instruction Set Listings A-23

Table A-22. Branch Instructions

Table A-23. Condition Register Logical Instructions

Table A-24. System Linkage Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dsa 6 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 628 0

esa 6 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 596 0

mfrom1,6 31 D A 0 0 0 0 0 265 0

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 1 0
A-24 PowerPC 602 RISC Microprocessor User's Manual

Table A-25. Trap Instructions

Table A-26. Processor Control Instructions

Table A-27. Cache Management Instructions

Table A-28. Segment Register Manipulation Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

td 4 31 TO A B 68 0

tdi 4 03 TO A SIMM

tw 31 TO A B 4 0

twi 03 TO A SIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 D spr 467 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0
Appendix A. PowerPC Instruction Set Listings A-25

Table A-29. Lookaside Buffer Management Instructions

Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbld 1,6 31 0 0 0 0 0 0 0 0 0 0 B 978 0

tlbli 1,6 31 0 0 0 0 0 0 0 0 0 0 B 1010 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 602-implementation specific instruction
A-26 PowerPC 602 RISC Microprocessor User's Manual

A.4 Instructions Sorted by Form
Table A-31 through Table A-45 list the PowerPC instructions grouped by form.

Table A-31. I-Form

Table A-32. B-Form

Table A-33. SC-Form

Table A-34. D-Form

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

OPCD 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:

Instruction not implemented in the 602
Appendix A. PowerPC Instruction Set Listings A-27

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 3 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 3 47 S A d
A-28 PowerPC 602 RISC Microprocessor User's Manual

Table A-35. DS-Form

Table A-36. X-Form

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

tdi 4 02 TO A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

OPCD D A ds XO

OPCD S A ds XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ld 4 58 D A ds 0

ldu 4 58 D A ds 1

lwa 4 58 D A ds 2

std 4 62 S A ds 0

stdu 4 62 S A ds 1

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0
Appendix A. PowerPC Instruction Set Listings A-29

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

dsa 6 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 628 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

esa 6 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 596 0

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 4 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

fcfidx 4 63 D 0 0 0 0 0 B 846 Rc
A-30 PowerPC 602 RISC Microprocessor User's Manual

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 4 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ldarx 4 31 D A B 84 0

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwarx 31 D A B 20 0

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0
Appendix A. PowerPC Instruction Set Listings A-31

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stdcx. 4 31 S A B 214 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx5 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0
A-32 PowerPC 602 RISC Microprocessor User's Manual

Table A-37. XL-Form

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbld 1,6 31 0 0 0 0 0 0 0 0 0 0 B 978 0

tlbli 1,6 31 0 0 0 0 0 0 0 0 0 0 B 1010 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xorx 31 S A B 316 Rc

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0
Appendix A. PowerPC Instruction Set Listings A-33

Table A-38. XFX-Form

Table A-39. XFL-Form

Table A-40. XS-Form

Table A-41. XO-Form

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 2 31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr 2 31 D spr 467 0

OPCD 0 FM 0 B XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfx 63 0 FM 0 B 711 Rc

OPCD S A sh XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sradix 4 31 S A sh 413 sh Rc

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc
A-34 PowerPC 602 RISC Microprocessor User's Manual

Table A-42. A-Form

addex 31 D A B OE 138 Rc

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 4 31 D A B 0 73 Rc

mulhdux 4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 4 31 D A B OE 233 Rc

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc
Appendix A. PowerPC Instruction Set Listings A-35

Table A-43. M-Form

Table A-44. MD-Form

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 5 63 D A B C 23 Rc

fsqrtx 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

OPCD S A sh mb XO sh Rc

OPCD S A sh me XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc
A-36 PowerPC 602 RISC Microprocessor User's Manual

Table A-45. MDS-Form

OPCD S A B mb XO Rc

OPCD S A B me XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 602-implementation specific instruction
Appendix A. PowerPC Instruction Set Listings A-37

A.5 Instruction Set Legend
Table A-46 provides general information on the PowerPC instruction set (such as the
architectural level, privilege level, and form).

Table A-46. PowerPC Instruction Set Legend

UISA VEA OEA Supervisor Level 64-Bit Optional Form

addx √ XO

addcx √ XO

addex √ XO

addi √ D

addic √ D

addic. √ D

addis √ D

addmex √ XO

addzex √ XO

andx √ X

andcx √ X

andi. √ D

andis. √ D

bx √ I

bcx √ B

bcctrx √ XL

bclrx √ XL

cmp √ X

cmpi √ D

cmpl √ X

cmpli √ D

cntlzdx √ √ X

cntlzwx √ X

crand √ XL

crandc √ XL

creqv √ XL

Reserved bits

Key:

Instruction not implemented in the 602
A-38 PowerPC 602 RISC Microprocessor User’s Manual

crnand √ XL

crnor √ XL

cror √ XL

crorc √ XL

crxor √ XL

dcbf √ X

dcbi √ √ X

dcbst √ X

dcbt √ X

dcbtst √ X

dcbz √ X

divdx √ √ XO

divdux √ √ XO

divwx √ XO

divwux √ XO

dsa 3 X

eciwx √ √ X

ecowx √ √ X

eieio √ X

eqvx √ X

esa 3 X

extsbx √ X

extshx √ X

extswx √ √ X

fabsx √ X

faddx √ A

faddsx √ A

fcfidx √ √ X

fcmpo √ X

fcmpu √ X

fctidx √ √ X

fctidzx √ √ X

fctiwx √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form
Appendix A. PowerPC Instruction Set Listings A-39

fctiwzx √ √ X

fdivx √ A

fdivsx √ A

fmaddx √ A

fmaddsx √ A

fmrx √ X

fmsubx √ A

fmsubsx √ A

fmulx √ A

fmulsx √ A

fnabsx √ X

fnegx √ X

fnmaddx √ A

fnmaddsx √ A

fnmsubx √ A

fnmsubsx √ A

fresx √ √ A

frspx √ X

frsqrtex √ √ A

fselx √ √ A

fsqrtx √ √ A

fsqrtsx √ √ A

fsubx √ A

fsubsx √ A

icbi √ X

isync √ XL

lbz √ D

lbzu √ D

lbzux √ X

lbzx √ X

ld √ √ DS

ldarx √ √ X

ldu √ √ DS

UISA VEA OEA Supervisor Level 64-Bit Optional Form
A-40 PowerPC 602 RISC Microprocessor User’s Manual

ldux √ √ X

ldx √ √ X

lfd √ D

lfdu √ D

lfdux √ X

lfdx √ X

lfs √ D

lfsu √ D

lfsux √ X

lfsx √ X

lha √ D

lhau √ D

lhaux √ X

lhax √ X

lhbrx √ X

lhz √ D

lhzu √ D

lhzux √ X

lhzx √ X

lmw 2 √ D

lswi 2 √ X

lswx 2 √ X

lwa √ √ DS

lwarx √ X

lwaux √ √ X

lwax √ √ X

lwbrx √ X

lwz √ D

lwzu √ D

lwzux √ X

lwzx √ X

mcrf √ XL

mcrfs √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form
Appendix A. PowerPC Instruction Set Listings A-41

 mcrxr √ X

mfcr √ X

mffsx √ X

mfmsr √ √ X

mfspr 1 √ √ √ XFX

mfsr √ √ X

mfsrin √ √ X

mftb √ XFX

mtcrf √ XFX

mtfsb0x √ X

mtfsb1x √ X

mtfsfx √ XFL

mtfsfix √ X

mtmsr √ √ X

mtspr 1 √ √ √ XFX

mtsr √ √ X

mtsrin √ √ X

mulhdx √ √ XO

mulhdux √ √ XO

mulhwx √ XO

mulhwux √ XO

mulldx √ √ XO

mulli √ D

mullwx √ XO

nandx √ X

negx √ XO

norx √ X

orx √ X

orcx √ X

ori √ D

oris √ D

rfi √ √ XL

rldclx √ √ MDS

UISA VEA OEA Supervisor Level 64-Bit Optional Form
A-42 PowerPC 602 RISC Microprocessor User’s Manual

rldcrx √ √ MDS

rldicx √ √ MD

rldiclx √ √ MD

rldicrx √ √ MD

rldimix √ √ MD

rlwimix √ M

rlwinmx √ M

rlwnmx √ M

sc √ √ SC

slbia √ √ √ √ X

slbie √ √ √ √ X

sldx √ √ X

slwx √ X

sradx √ √ X

sradix √ √ XS

srawx √ X

srawix √ X

srdx √ √ X

srwx √ X

stb √ D

stbu √ D

stbux √ X

stbx √ X

std √ √ DS

stdcx. √ √ X

stdu √ √ DS

stdux √ √ X

stdx √ √ X

stfd √ D

stfdu √ D

stfdux √ X

stfdx √ X

stfiwx √ √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form
Appendix A. PowerPC Instruction Set Listings A-43

 stfs √ D

stfsu √ D

stfsux √ X

stfsx √ X

sth √ D

sthbrx √ X

sthu √ D

sthux √ X

sthx √ X

stmw 2 √ D

stswi 2 √ X

stswx 2 √ X

stw √ D

stwbrx √ X

stwcx. √ X

stwu √ D

stwux √ X

stwx √ X

subfx √ XO

subfcx √ XO

subfex √ XO

subfic √ D

subfmex √ XO

subfzex √ XO

sync √ X

td √ √ X

tdi √ √ D

tlbia √ √ √ X

tlbie √ √ √ X

tlbld 3 √ X

tlbli 3 √ X

tlbsync √ √ √ X

tw √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form
A-44 PowerPC 602 RISC Microprocessor User’s Manual

twi √ D

xorx √ X

xori √ D

xoris √ D

1 Supervisor- and user-level instruction
2 Load and store string or multiple instruction
3 602-implementation specific instruction

UISA VEA OEA Supervisor Level 64-Bit Optional Form
Appendix A. PowerPC Instruction Set Listings A-45

A-46 PowerPC 602 RISC Microprocessor User’s Manual

Appendix B
Instructions Not Implemented
B0
B0

This appendix describes the 32-bit and 64-bit PowerPC instructions that are not
implemented in the PowerPC 602 microprocessor. It also provides the 32-bit SPR encoding
that is not implemented by the 602. Note that any attempt to execute instructions that are
not implemented on the 602 causes an illegal instruction exception.

Table B-1 provides the 32-bit PowerPC instructions that are optional to the PowerPC
architecture but not implemented by the 602.

Table B-2 provides a list of 64-bit instructions that are not implemented by the 602.

Table B-1. 32-Bit Instructions Not Implemented by the PowerPC 602
Microprocessor

Mnemonic Instruction

fsqrt Floating Square Root (Double-Precision)

fsqrts Floating Square Root Single

tlbia TLB Invalidate All

Table B-2. 64-Bit Instructions Not Implemented by the PowerPC 602
Microprocessor

Mnemonic Instruction

cntlzd Count Leading Zeros Double Word

divd Divide Double Word

divdu Divide Double Word Unsigned

extsw Extend Sign Word

fcfid Floating Convert From Integer Double Word

fctid Floating Convert to Integer Double Word

fctidz Floating Convert to Integer Double Word with Round toward Zero

ld Load Double Word

ldarx Load Double Word and Reserve Indexed

ldu Load Double Word with Update
Appendix B. Instructions Not Implemented B-1

Table B-3 provides the 64-bit SPR encoding that is not implemented by the 602.

ldux Load Double Word with Update Indexed

ldx Load Double Word Indexed

lwa Load Word Algebraic

lwaux Load Word Algebraic with Update Indexed

lwax Load Word Algebraic Indexed

mulld Multiply Low Double Word

mulhd Multiply High Double Word

mulhdu Multiply High Double Word Unsigned

rldcl Rotate Left Double Word then Clear Left

rldcr Rotate Left Double Word then Clear Right

rldic Rotate Left Double Word Immediate then Clear

rldicl Rotate Left Double Word Immediate then Clear Left

rldicr Rotate Left Double Word Immediate then Clear Right

rldimi Rotate Left Double Word Immediate then Mask Insert

slbia SLB Invalidate All

slbie SLB Invalidate Entry

sld Shift Left Double Word

srad Shift Right Algebraic Double Word

sradi Shift Right Algebraic Double Word Immediate

srd Shift Right Double Word

std Store Double Word

stdcx. Store Double Word Conditional Indexed

stdu Store Double Word with Update

stdux Store Double Word Indexed with Update

stdx Store Double Word Indexed

td Trap Double Word

tdi Trap Double Word Immediate

Table B-2. 64-Bit Instructions Not Implemented by the PowerPC 602
Microprocessor (Continued)

Mnemonic Instruction
B-2 PowerPC 602 RISC Microprocessor User's Manual

Table B-3. 64-Bit SPR Encoding Not Implemented by the PowerPC 602
Microprocessor

 SPR
Register

Name
Access

Decimal spr[5–9] spr[0–4]

280 01000 11000 ASR Supervisor
Appendix B. Instructions Not Implemented B-3

B-4 PowerPC 602 RISC Microprocessor User's Manual

Appendix C
Boundary-Scan Testing Support
C0
C0

The PowerPC 602 microprocessor provides a boundary-scan interface for board-level
testing. The boundary-scan interface of 602 is not completely IEEE 1149.1-compliant.
However, the 602 can be tested with commercially available board-level JTAG Automatic
Test Pattern Generation (ATPG) tools provided that certain constraints are met.
Section C.2, “Unimplemented IEEE 1149.1 Features,” describes specific noncompliant
aspects and the constraints.

The 602’s boundary-scan interface implements the five test port signals required by the
IEEE 1149.1 specification.

C.1 Boundary-Scan Interface Description
The interface consists of a set of five signals, two test data registers, an instruction register,
and a test access port (TAP) controller, described in the following sections. A block diagram
of the interface is shown in Figure C-1.

C.1.1 Boundary-Scan Signals
The 602 provides five dedicated boundary-scan signals:

• Test data input (TDI) and test data output (TDO). The TDI and TDO signals are used
to input and output instructions and data to the scan registers.

• Test mode select (TMS)—The TAP controller controls boundary-scan operations
through commands received by means of the TMS signal.

• Test reset (TRST)—The TRST signal is used to reset the TAP controller
asynchronously. Asserting the TRST signal at power-on reset assures that the
boundary-scan logic does not interfere with the 602’s normal operation.

• Test clock (TCK)—Boundary-scan data is latched by the TAP controller on the
rising edge of the TCK signal.

Section 7.2.10, “JTAG/Scan Interface Signals,” provides additional detail about the
operation of these signals.
Appendix C. Boundary-Scan Testing Support C-1

Figure C-1. Boundary-Scan Interface Block Diagram

C.1.2 Boundary-Scan Registers and Scan Chains
The 602 implements the bypass, boundary-scan, and instruction registers and their
associated scan chains. These resources are described in the following sections.

C.1.2.1 Bypass Register
The bypass register is a single-stage register used to bypass the boundary-scan register of
the 602 during board-level boundary-scan operations involving components other than the
602. Using the bypass register reduces the total scan string size of the boundary-scan test.
The bypass register is accessed by the BYPASS instruction.

C.1.2.2 Boundary-Scan Registers
The boundary-scan interface provides a chain of registers dedicated to boundary-scan
operations. These registers are not shared with any of the 602’s functional registers. The
boundary-scan register chain includes registers that control the direction of the output
drivers and registers that reflect the signal value received or driven.

The boundary-scan registers capture the input or output state of the 602’s signals during a
Capture_DR TAP controller state. When a data scan is initiated following the Capture_DR
state, the sampled values are shifted out through the TDO output while new boundary-scan
register values are shifted in through the TDI input. At the end of the data scan operation,
the boundary-scan registers are updated with the new values during an Update_DR TAP
controller state.

BOUNDARY
SCAN REGISTER

BYPASS

DECODER

INST REG

T
M

S

T
R

S
T

T
C

K

T
D

I

TDO

PowerPC 602

TAP CONTROLLER

MUX

MUX
C-2 PowerPC 602 RISC Microprocessor User’s Manual

C.1.2.3 Compliance-Enable Signals
Note that the LSSD_MODE, L1_TEST_CLK, and L2_TEST_CLK signals (used for
factory testing) are not included in the boundary-scan register chain. These signals, along
with HRESET and CKSTP_IN, are compliance-enable signals for boundary-scan testing.

C.1.3 Instruction Register
The 8-bit instruction register serves as an instruction and status register. As TAP controller
instructions are scanned in through the TDI input, the TAP controller status bits are scanned
out through the TDO output.

C.1.4 TAP Controller
The 602 provides a TAP controller that controls instruction and data scan operations. The
TMS signal controls the state transitions of the TAP controller.

C.2 Unimplemented IEEE 1149.1 Features
The 602 supports IEEE 1149.1 JTAG definition with the following exceptions.

1. A hard reset sequence with HRESET as well as the test reset with TRST, is required
before using the EXTEST or SAMPLE/PRELOAD instructions. As specified by
IEEE 1149.1, the TRST signal must completely reset all logic circuits that can affect
the boundary-scan operation. The 602 TRST signal does not completely reset all
boundary-scan-related logic, and as a consequence, power-on-reset must be
executed before executing the boundary-scan instructions.

2. Asserting HRESET and CKSTP_IN input signals can cause the system logic to
interfere with the operation of the IEEE 1149.1 EXTEST and SAMPLE/PRELOAD
instructions. As a workaround for this noncompliant feature, the boundary-scan
description language (BSDL) file provided for the 602 defines the HRESET and
CKSTP_IN signals as compliance-enable signals with a compliance pattern with the
signals held high (unasserted). The input boundary cells originally associated with
the two signals are defined as internal cells. These two signals cannot be
interconnection tested by boundary-scan ATPG tools.

3. Internally-generated checkstop conditions interfere with the operation of EXTEST
and SAMPLE/PRELOAD. The workaround to this issue is to execute a power-on-
reset, or otherwise ensure that no internal machine checkstop has occurred prior to
the execution of the boundary-scan instructions.

4. Asserting HRESET causes BR, QREQ, and RESETO to be driven at high-
impedance; however, the boundary-scan chain does not include any registers to
control the enable of the output drivers for these signals.

All other boundary-scan features are compliant with the IEEE 1149.1 specification.
Appendix C. Boundary-Scan Testing Support C-3

C.3 Boundary-Scan Instructions
The 602 supports the mandatory IEEE 1149.1 instructions, BYPASS, SAMPLE/
PRELOAD, and EXTEST except for the noncompliant features described in Section C.2,
“Unimplemented IEEE 1149.1 Features.” As long as the board-level test includes a hard
reset sequence, interconnections should be able to be tested by using board-level boundary-
scan ATPG tools.

All instruction opcodes except the three mandatory instructions are reserved as private
instructions.
C-4 PowerPC 602 RISC Microprocessor User’s Manual

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Atomic. A bus access that attempts to be part of a read-write operation to the
same address uninterrupted by any other access to that address (the
term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
lwarx/stwcx. instruction pair.

Biased exponent. The sum of the exponent and a constant (bias) chosen to
make the biased exponent's range non-negative.

Big-endian. A byte-ordering method in memory where the address ‘n’ of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Boundedly undefined. The results of attempting to execute a given
instruction are said to be boundedly undefined if they could have
been achieved by executing an arbitrary sequence of defined
instructions, in valid form, starting in the state the machine was in
before attempting to execute the given instruction. Boundedly-
undefined results for a given instruction may vary between
implementations, and between execution attempts in the same
implementation.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory).

Cache block. The cacheable unit for a PowerPC processor. The size of a
cache block may vary among processors.

A

B

C

Glossary of Terms and Abbreviations Glossary-1

Cache coherency. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cast-outs. Modified cache blocks that are written back to memory when a
snoop miss causes the least-recently used cache block to be replaced.

Context synchronization. Context synchronization as the result of the
execution of specific instructions (such as isync or rfi) or when
certain events occur (such as an exception). During context
synchronization, all instructions in execution complete past the point
where they can produce an exception; all instructions in execution
complete in the context in which they began execution; all
subsequent instructions are fetched and executed in the new context.

Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Exception. A condition encountered by the processor that requires special
processing.

Exception handler. A software routine that executes when an exception
occurs. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (such
as aborting the program that caused the exception). The addresses of
the exception handlers are defined by a two-word exception vector
that is branched to automatically when an exception occurs.

Execution synchronization. All instructions in execution are architecturally
complete before beginning execution (appearing to begin execution)
of the next instruction. Similar to context synchronization but doesn't
force the contents of the instruction buffers to be deleted and
refetched.

Exponent. The component of a binary floating-point number that normally
signifies the integer power to which two is raised in determining the
value of the represented number. Occasionally the exponent is called
the signed or unbiased exponent.

D

E

Glossary-2 PowerPC 602 RISC Microprocessor User’s Manual

Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Floating-point load
instructions move data from memory to FPRs, and floating-point
store instructions move data from FPRs to memory.

Fraction. The field of the significand that lies to the right of its implied binary
point.

General-purpose register (GPR). Any of the 32 registers in the register file.
These registers provide the source operands and destination results
for all data manipulation instructions. Load instructions move data
from memory to registers, and store instructions move data from
registers to memory.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations of binary floating-point arithmetic
and representations of binary floating-point numbers.

Interrupt. An asynchronous exception.

Kill. An operation that causes a cache block to be invalidated.

Latency. The number of clock cycles necessary to execute an instruction and
make ready the results of that instruction.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Mantissa. The significant digits of a floating-point number. The placement of
the binary point is determined by the value of the exponent.

Memory-mapped accesses. Accesses whose addresses use the segmented or
block address translation mechanisms provided by the MMU and
that occur externally with the bus protocol defined for memory.

Memory coherency. Refers to memory agreement between caches in a
multiple processor and system memory (for example, MESI cache
coherency).

F

G

HI

K

L

M

Glossary of Terms and Abbreviations Glossary-3

Memory consistency. Refers to agreement of levels of memory with respect
to a single processor and system memory (e.g., on-chip cache,
secondary cache, and system memory).

Memory management unit. The functional unit that translates the effective
address bits to physical address bits.

NaN. An abbreviation for “not a number,” a symbolic entity encoded in
floating-point format. There are two types of NaNs—signaling NaNs
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Out-of-order. Not occurring in strict program sequence; speculative. An
operation is said to be out-of-order when its results are not
guaranteed to be required by the sequential execution model, such as
the execution of an instruction that follows another instruction that
may alter the instruction flow. For example, execution of instructions
in an unresolved branch are considered out-of-order, as is the
execution of an instruction behind another instruction that may yet
cause an exception. The results of operations that are performed out-
of-order are not committed to architected resources until it can be
ensured that these results adhere to the in-order, or sequential,
execution model.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are added, the sum may require
33 bits due to carry.

Page. A 4-Kbyte area of memory, aligned on a 4-Kbyte boundary.

Pipelining. A technique that breaks a group of events (for example
instruction execution) into distinct steps so that multiple steps can be
performed at the same time.

Precise exceptions. An exception mechanism by which the instruction
pipeline can be stopped so the instructions that preceded the faulting
instruction or event can complete, no results of subsequent
instructions will have affected architected resources, and execution
can resume with the next instruction in program order. A PowerPC-
based system is precise unless one of the imprecise modes for
invoking the floating-point enabled exception is in effect.

N

O

P

Glossary-4 PowerPC 602 RISC Microprocessor User’s Manual

Quiet NaNs (QNaNs). Represent the results of certain invalid operations,
such as invalid arithmetic operations on infinities or on NaNs, when
invalid. QNaNs propagate through almost every arithmetic operation
without signaling exceptions.

Signaling NaNs (SNaNs). NaNs that signal the invalid operation exception
when they are specified as arithmetic operands

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Static branch prediction. Mechanism by which software (for example,
compilers) can give a hint to the machine hardware about the
direction the branch is likely to take.

Sticky bit. A bit that when set only can be cleared explicitly.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of the a processor. In
supervisor mode, software can access all control registers and can
access the supervisor memory space, among other privileged
operations.

Underflow. An error condition that occurs during arithmetic operations when
the result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result is a single-precision number. The result
may require a larger exponent and/or mantissa than the single-
precision format makes available. In other words, the result is too
small to be represented accurately.

User mode. The unprivileged operating state of a processor. In user mode,
software can only access certain control registers and can only access
user memory space. No privileged operations can be performed.

Write-through. A memory update policy in which all processor write cycles
are written to both the cache and memory.

Q

S

U

VW
Glossary of Terms and Abbreviations Glossary-5

Glossary-6 PowerPC 602 RISC Microprocessor User’s Manual

INDEX
Numerics
602-specific features

block diagram, 8-4
instructions

dsa, 2-62, 2-66
esa, 2-62, 2-67, 5-6, 5-62
mfrom, 2-68
tlbld, 2-65, 2-69
tlbli, 2-65, 2-70

MMU, 5-1, 5-15, 5-28
programming model, 2-3
registers, 2-11, 2-14, 2-22, 5-43

A
A0–A31 signals, 7-7
AACK signal, 7-14
add, 2-36
addc, 2-37
adde, 2-37
addi, 2-36
addic, 2-36
addic., 2-36
addis, 2-36
addme, 2-37
Address bus

address tenure
address transfer signals, 8-11
arbitration signals, 8-7

address transfer
A0–A31 signals, 7-7
PFADDR0–PFADDR20 signals, 7-8

address transfer attribute
BE0–BE7 signals, 7-11, 8-14
CI signal, 7-13
GBL signal, 7-13
summary, 8-21
TBST signal, 3-8, 7-12
TC0–TC1 signals, 7-12, 8-20
TSIZ0–TSIZ2 signals, 7-10
TT0–TT4 signals, 7-8
WT signal, 7-13

address transfer start, 7-6, 8-8
address transfer termination

AACK signal, 7-14, 8-22
ARTRY signal, 8-22

address phase termination, 8-22
description, 7-15

during read transaction, 8-49
operations causing assertion, 3-21
qualified bus grant, 8-8

description, 8-7
bus arbitration

BG signal, 7-5, 8-8
BR signal, 7-5, 8-8
description, 8-7
nonparked, 8-9
parked, 8-10

Address calculation
branch instructions, 2-54

Address phase signals, 8-14
Address translation see Memory management unit
Addressing conventions

alignment, 2-28
modes, 2-33

addze, 2-37
Aligned data transfer, 2-27
Alignment

exception, 4-26, 5-21
rules, 2-28

and, 2-38
andc, 2-38
andi., 2-38
andis., 2-38
ARTRY signal

description, 7-15
during read transaction, 8-49
operations causing assertion, 3-21
qualified bus grant, 8-8

Atomic memory references
stwcx., 2-56
using lwarx/stwcx., 3-19

B
b, 2-54
BAT registers

BAT register initialization, 5-27
bit description, 2-10
NE bit, 1-4, 2-10
WIMG bits, 2-10

BB signal, 7-19, 8-8
bc, 2-54
bcctr, 2-54
bclr, 2-54
BE0–BE7 signals, 7-11, 8-14
Index Index-1

INDEX
BG signal, 7-5, 8-8
Block address translation see also BAT registers

BAT register initialization, 5-27
flow, 5-17
selection, 5-14

Boundary-scan interface, C-1
Boundedly undefined, definition, 2-31
BR signal, 7-5, 8-8
Branch folding, 6-13
Branch instructions

address calculation, 2-54
branch instructions, 2-54, A-24
condition register logical, 2-55, A-24
system linkage, 2-62, A-24
trap, 2-55, A-25

Branch prediction, 6-14
Branch processing unit

branch instruction timing, 6-15
execution timing, 6-12
overview, 1-9

Burst transactions
32-bit mode

burst read, 8-39
double-beat read, 8-38
fastest burst write, 8-42
fastest double-beat write, 8-41
fastest single-beat write, 8-41
read with multicycle address phase, 8-40
single-beat read, 8-37

64-bit mode
burst write, 8-34
read with multicycle address phase, 8-33
read with shortest data phase, 8-32
read with single-cycle address phase, 8-32
slower write, 8-36

ARTRY during read transaction, multicycle, 8-50
ARTRY during read transaction, single-cycle,

8-49
burst ordering, 8-16
consecutive burst read-write, 8-46
consecutive burst write-read, 8-45
description, 3-8, 8-28
fastest burst write with asserted GBL signal, 8-48
signal assignments, 8-14

Bus arbitration
signals, 7-5, 8-8

Bus busy (BB) signal, 7-19, 8-8
Bus interface unit (BIU), 3-3
Bus parking, 8-10
Bus protocol, 8-25
Bypass register, C-2
Byte enable (BE0–BE7) signals, 7-11, 8-14
Byte ordering, default, 2-33
Byte-reverse instructions, 2-49, A-22

C
Cache arbitration, 6-8
Cache block

32-/64-bit burst transactions, 8-28
definition, 3-2, 8-1
miss, 6-10, 8-5
push operation, 3-8, 8-26
replacement selection, 8-5
size, 8-17

Cache cast-out operation, 3-8
Cache coherency

actions on load operations, 3-19
actions on store operations, 3-19
compatibility with MESI protocol, 3-16
copy-back operation, 3-11, 8-1, 8-25, 8-52
in single-processor systems, 3-18
MEI and read operations, 8-25
MEI hardware considerations, 3-17
overview, 3-4
reaction to bus operations, 3-19
size, 8-17
snooping, 8-2
WIMG bits, 2-10, 3-9
write-back mode, 3-11, 8-1, 8-52

Cache control instructions
bus operations, 3-24
dcbf, 2-61, 3-23
dcbi, 2-64
dcbst, 2-61, 3-23
dcbt, 2-60, 3-22
dcbtst, 2-60, 3-22
dcbz, 2-61, 3-22
eieio, 2-59, 3-24
icbi, 2-61, 3-24
isync, 2-59, 3-24, 4-16
purpose, 3-21, 8-2

Cache hit, 6-8
Cache line see Cache block
Cache management instructions, 2-59, 2-64, A-25
Cache miss, 6-10, 8-5
Cache operations

data cache, 3-7, 8-2
instruction cache, 8-2
instruction cache fill, 3-5
overview, 1-13
response to bus transactions, 3-19

Cache unit
memory performance, 6-18
operation of the cache, 8-2
overview, 3-2

Caching-inhibited accesses (I bit)
cache interactions, 3-9
I-bit setting, 3-11
timing considerations, 6-19
Index-2 PowerPC 602 RISC Microprocessor User’s Manual

INDEX
Changed (C) bit maintenance
recording, 5-17, 5-29–5-32

Checkstop
signal, 7-24
state, 4-22

CI signal, 7-13
Classes of instructions, 2-30
Clean block operation, 3-20
Clock signals

CLK_OUT, 2-14, 7-29
PLL_CFG0–PLL_CFG3, 7-30, 8-5
SYSCLK, 7-29, 8-5

cmp, 2-37
cmpi, 2-37
cmpl, 2-37
cmpli, 2-37
cntlzw, 2-38
Compare instructions, 2-45, A-18
Complete/writeback stage, 6-4
Completion considerations, 6-11
Context synchronization, 2-34
COP/scan interface, 7-27
Copy-back mode, 6-18
CR logical instructions, 2-55, A-24
crand, 2-55
crandc, 2-55
creqv, 2-55
crnand, 2-55
crnor, 2-55
cror, 2-55
crorc, 2-55
crxor, 2-55

D
D0–D63, 7-20, 8-14, 8-23
Data bus

basic transactions
32-bit, 8-37
64-bit, 8-29

data tenure, 8-7
data transfer, 7-20, 8-18–8-19
data transfer termination, 7-22
data transfers, alignment, 2-27
optional 32-bit mode, 8-5
T32 signal, 32-/64-bit mode, 8-28

Data cache
basic operations, 3-7
cache control, 3-6
configuration, 3-2
DCFI, DCE, DLOCK bits, 3-6
single-ported tags, 8-2

Data cache fill, 3-7
Data phase signals, 7-20, 8-14, 8-23

Data storage interrupt (DSI) see DSI exception
Data TLB miss on load exception, 4-33
Data TLB miss on store exception, 4-34
Data transfer signals

D0–D63, 7-20, 8-14, 8-23
T32, 3-8, 7-22, 8-28

Data transfer termination signals
TA, 7-22, 8-24
TEA, 7-23, 8-24

dcbf, 2-61, 3-23
dcbi, 2-64
dcbst, 2-61, 3-23
dcbt, 2-60, 3-22
dcbtst, 2-60, 3-22
dcbz, 2-61, 3-22
DCMP and ICMP registers (602-specific), 2-11,

2-15, 5-43
Decode stage, 6-3
Decrementer interrupt, 4-30, 9-1
Defined instruction class, 2-31
Denormalized number, support, 2-40
Dispatch considerations, 6-11
divw, 2-37
divwu, 2-37
DMISS and IMISS registers (602-specific), 2-11,

2-15, 5-43
dsa (602-specific), 2-62, 2-66, 2-72, 4-1
DSI exception, 4-23

E
Effective address calculation

address translation, 5-8
branches, 2-33, 2-54
loads and stores, 2-33, 2-47, 2-51

eieio, 2-59, 3-24
Emulation trap exception, 4-39
eqv, 2-38
esa (602-specific)

description, 2-62, 2-67
esa access and MMU, 5-6, 5-62
supervisor-level access, 1-26, 2-71–2-75
system call exception, differences in use, 2-75

ESASRR register (602-specific), 2-11, 2-19
Exceptions

alignment exception, 4-26
causing conditions, 4-4
data TLB miss on load, 4-33
data TLB miss on store, 4-34
decrementer interrupt, 4-30
DSI exception, 4-23
emulation trap exception, 4-39
enabling and disabling, 4-14
exception classifications, 4-2
Index Index-3

INDEX
exception processing
MSR, 4-10
SRR0/SRR1, 4-9
steps, 4-14

external interrupt, 4-25
floating-point assist, 4-5
FP unavailable exception, 4-30
IEEE FP exception

mode bits, 4-13
program exception, 4-29

illegal/reserved/unimplemented instructions
exception, 4-30

instruction address breakpoint, 4-34
instruction TLB miss, 4-33
ISI exception, 4-25
latencies, 4-16
machine check exception, 4-21
priorities, 4-7
process switching, 4-16
program exception, 4-29
register settings

FPSCR, 4-29
MSR, 4-17
SRR0/SRR1, 2-8, 4-10

reset, 4-18–4-20
returning from an exception handler, 4-15
summary, 2-35
system call exception, 2-75, 4-31
system management interrupt, 4-36
trace exception, 4-31
watchdog timer interrupt, 4-37

Execution synchronization, 2-34
Execution units, 1-9
External control instructions, 2-61, A-26
External interrupt, 4-25
extsb, 2-38
extsh, 2-38

F
fabs, 2-46
fadd, 2-42
fadds, 2-42
fcmpo, 2-45
fcmpu, 2-45
fctiw, 2-45
fctiwz, 2-45
fdiv, 2-43
fdivs, 2-43
Features, 602, 1-3
Floating-point assist exception, 4-5
Floating-point model

FE0/FE1 bits, 4-13
FP arithmetic instructions, 2-42, A-19
FP compare instructions, 2-45, A-20

FP execution models, 2-26
FP load instructions, 2-51, A-23
FP move instructions, 2-46, A-23
FP multiply-add instructions, 2-43, A-20
FP rounding and conversion instructions, 2-44,

A-20
FP store instructions, 2-52, A-23
FP unavailable exception, 4-30
FPSCR instructions, 2-45, A-20
fsel instruction, 2-43

Floating-point special instructions, 2-40
Floating-point unit

block diagram, 6-17
execution timing, 6-17
overview, 1-10

Flow control instructions
branch instruction address calculation, 2-54
branch instructions, 2-54, A-24
condition register logical, 2-55, A-24

Flush block operation, 3-20
fmadd, 2-43
fmadds, 2-43
fmr, 2-46
fmsub, 2-43
fmsubs, 2-43
fmul, 2-42
fmuls, 2-42
fnabs, 2-46
fneg, 2-46
fnmadd, 2-44
fnmadds, 2-44
fnmsub, 2-44
fnmsubs, 2-44
FP rounding and conversion instructions, 2-44, A-20
FPRs, saving and restoring, 2-25
FPSCR

instructions, 2-45, A-20
restoring, 2-25

fres, 2-43
frsp, 2-45
frsqrte, 2-43
fsel, 2-43
fsub, 2-42
fsubs, 2-42

G
GBL signal, 7-13
Guarded memory bit (G bit)

cache interactions, 3-9
G-bit setting, 3-12
Index-4 PowerPC 602 RISC Microprocessor User’s Manual

INDEX
H
HASH1 and HASH2 registers (602-specific), 2-11,

2-16, 5-44
Hashing functions

primary PTEG, 5-39
secondary PTEG, 5-40

HID0 register (602-specific)
602-specific SPRs, 2-11
bit settings, 2-12
DCFI, DCE, DLOCK bits, 3-6
doze bit, 9-3
DPM enable bit, 9-2
ICFI, ICE, ILOCK bits, 3-5
nap bit, 9-3

HID1 register (602-specific), 2-11, 2-14
HRESET signal, 7-25

I
IABR register (602-specific), 2-11, 2-24
IBR register (602-specific), 2-11, 2-22
icbi, 2-61, 3-24
ICFI control bit, 3-5
IEEE 1149.1interface signals, C-1
IEEE compatibility mode, 2-41
Illegal instruction class, xxix, 2-31, B-1
ILOCK control bit, 3-5
IMMU, 5-11
Injected snooping see Snooping operation
Instruction address breakpoint exception, 4-34
Instruction cache

cache control bits, 3-5
cache fill operations, 3-5
configuration, 3-2
ICFI, ICE, ILOCK bits, 3-5

Instruction fetch timing, 6-8
Instruction storage interrupt (ISI) see ISI exception
Instruction timing

overview, 6-1
Instruction TLB miss exception, 4-33
Instruction unit, 1-8
Instructions

602-specific
dsa, 2-62, 2-66, 2-72, 4-1
esa, 2-62, 2-67, 2-71–2-75, 5-6, 5-62
mfrom, 2-68
tlbld, 2-65, 2-69
tlbli, 2-65, 2-70

branch address calculation, 2-54
branch instructions, 2-54, A-24
cache management instructions, 2-59, 2-64, A-25
classes, 2-30
condition register logical, 2-55, A-24
defined instructions, 2-31

external control, 2-61, A-26
floating-point

arithmetic, 2-42, A-19
compare, 2-45, A-20
FP load instructions, 2-51, A-23
FP move instructions, 2-46, 2-46
FP special instructions, 2-40
FP store instructions, 2-52, A-23
FPSCR instructions, 2-45, A-20
multiply-add, 2-43, A-20
rounding and conversion instructions, 2-44,

A-20
illegal instructions, xxix, 2-31, B-1
integer

arithmetic, 2-36, A-17
compare, 2-37, A-18
load, 2-47, A-21
logical, 2-38, A-18
multiple, 2-50, A-22
rotate and shift, 2-39, A-18–A-19
store, 2-48, A-21

latency summary, 6-22
load and store

address generation, floating-point, 2-51
address generation, integer, 2-47
byte-reverse instructions, 2-49, A-22
FP load instructions, 2-51, A-23
FP move instructions, 2-46, A-23
FP store instructions, 2-52, A-23
integer load instructions, 2-47, A-21
integer multiple instructions, 2-50, A-22
integer store instructions, 2-48, A-21
string instructions, 2-50, A-22

memory control, 2-59, 2-64, A-25–A-26
memory synchronization, 2-56, 2-59, A-22
PowerPC instructions, list

form (format), A-27
function, A-17
legend, A-38
mnemonic, A-1
opcode, A-9

processor control, 2-55, 2-58, 2-62, A-25
reserved instructions, 2-32
rfi, 4-15
segment register manipulation, 2-64, A-25
stwcx., 4-16
supervisor-level cache management, 2-64
sync, 4-16
system linkage, 2-62, A-24
TLB management instructions, 2-64, A-26
trap instructions, 2-55, A-25
unimplemented instructions, B-1

INT signal, 7-23
Integer arithmetic instructions, 2-36, A-17
Integer compare instructions, 2-37, A-18
Index Index-5

INDEX
Integer load instructions, 2-47, A-21
Integer logical instructions, 2-38, A-18
Integer multiple instructions, 2-50, A-22
Integer rotate and shift instructions, 2-39, A-18–A-19
Integer store instructions, 2-48, A-21
Integer unit

execution timing, 6-16
overview, 1-9

Interrupt see Exceptions
Interrupt, external, 4-25
ISI exception, 4-25
isync, 2-59, 3-24, 4-16

J
JTAG interface, C-1
JTAG signals, C-2

K
Kill block operation, 3-20

L
Latency, 6-1, 6-22, 8-43
lbz, 2-48
lbzu, 2-48
lbzux, 2-48
lbzx, 2-48
lfd, 2-25, 2-52
lfdu, 2-52
lfdux, 2-52
lfdx, 2-52
lfs, 2-51
lfsu, 2-51
lfsux, 2-51
lfsx, 2-51
lha, 2-48
lhau, 2-48
lhaux, 2-48
lhax, 2-48
lhbrx, 2-49
lhz, 2-48
lhzu, 2-48
lhzux, 2-48
lhzx, 2-48
lmw, 2-50
Load operations, memory coherency actions, 3-19
Load/store

address generation, 2-47, 2-51
byte-reverse instructions, 2-49, A-22
floating-point load instructions, 2-51, A-23
floating-point move instructions, 2-46, A-23
floating-point store instructions, 2-52, A-23
integer load instructions, 2-47, A-21

integer store instructions, 2-48, A-21
load/store multiple instructions, 2-50, A-22
string instructions, 2-50, A-22

Load/store unit
execution timing, 6-18
overview, 1-10

Logical addresses
translation into physical addresses, 5-1

lswi, 2-51
lswx, 2-51
lwarx, 2-58, 3-19
lwarx/stwcx. general information, 3-19
lwbrx, 2-49
lwz, 2-48
lwzu, 2-48
lwzux, 2-48
lwzx, 2-48

M
Machine check exception

checkstop state, 4-22
enabled, 4-22
register settings, 4-22
SRR1 bit settings, 2-8, 4-10

MCP signal, 7-24
mcrf, 2-55
mcrfs, 2-46
mcrxr, 2-56
MEI protocol

compatibility with MESI protocol, 3-16
definitions, MEI states, 3-15, 8-2
hardware considerations, 3-17
read operations, 8-25

Memory accesses, 8-6
Memory coherency bit (M bit)

cache interactions, 3-9
M-bit setting, 3-11
timing considerations, 6-18

Memory control instructions
segment register manipulation, 2-64, A-25
supervisor-level cache management, 2-64
TLB management, 2-64, A-26

Memory management unit
602-specific features

feature mapping, 5-15
overview, 5-1
PTE format, 5-28

address translation flow, 5-17
address translation mechanisms, 5-13, 5-17
block address translation, 5-14, 5-17, 5-26
block diagram, 5-10–5-12
esa access, 5-6, 5-62
exceptions, 5-20
general features summary, 5-4
Index-6 PowerPC 602 RISC Microprocessor User’s Manual

INDEX
instructions and registers, 5-23
memory protection, 5-15, 5-32
overview, 1-11
page address translation, 5-13, 5-17, 5-20, 5-35
page history status, 5-17, 5-29–5-32
page table search operation, 5-37
physical address generation, 5-1
protection-only mode

access protection, 5-61
features, 5-2, 5-58
overview, 5-8
protection checking, 5-65
RPA register, 2-11, 2-17, 5-44, 5-61
SEBR register, 2-11, 2-19, 5-62
SER register, 2-11, 2-20, 5-62
TLB look-up operation, 5-60
translation flow, 5-63

real addressing mode, 5-15, 5-17, 5-25
segment model, 5-28
software table search operation, 5-40, 5-45, 5-47

Memory synchronization
eieio, 2-59, 3-24
instructions, 2-56, 2-59, A-22
isync, 2-59, 3-24, 4-16
lwarx, 2-58
stwcx., 2-56, 2-58
sync, 2-58

Memory/cache access modes
performance impact of copy-back mode, 6-18

Memory/cache access modes see WIMG bits
mfcr, 2-56
mffs, 2-46
mfmsr, 2-62
mfrom (602-specific), 2-68
mfspr, 2-63
mfsr, 2-64
mfsrin, 2-64
mftb, 2-59
MSR (machine state register)

602-specific bits, 2-7, 4-11
bit settings, 4-11
exception processing, 4-10
RI bit, setting, 4-15
settings due to exception, 4-17

mtcrf, 2-56
mtfsb0, 2-46
mtfsb1, 2-46
mtfsf, 2-46
mtfsfi, 2-46
mtmsr, 2-62
mtspr, 2-63
mtsr, 2-64
mtsrin, 2-64
mulhw, 2-37
mulhwu, 2-37

mulli, 2-37
mullw, 2-37

N
nand, 2-38
Nap mode, 9-3
neg, 2-37
Nonburst transactions

consecutive nonburst read-write, 8-44
consecutive nonburst write-read, 8-43
description, 8-2, 8-24, 8-28
fastest nonburst write, 8-34
nonburst read, 8-29
nonburst read, single-cycle address phase, 8-30
nonburst write, 8-33
signal assignments, 8-14

Nondenormalized mode, support, 2-40
nor, 2-38

O
Operand placement and performance, 2-29
Operating environment architecture, xxvii, 1-17
Optional instructions, A-38
or, 2-38
orc, 2-38
ori, 2-38
oris, 2-38

P
Page address translation

page address translation flow, 5-35
page size, 5-28
selection, 5-13, 5-20
table search operation, 5-37
TLB organization, 5-33

Page history status
R and C bit recording, 5-17, 5-29–5-32

Page tables
page table updates, 5-58
PTE bit definitions, 5-29
PTE format, 5-28
resources for table search operations, 5-40
software table search operation, 5-40, 5-45
table search for PTE, 5-37

Performance considerations, memory, 6-2, 6-12,
6-18, 6-30

PFADDR0–PFADDR20 signals, 7-8
Phase-locked loop, 9-3
Physical address generation see Memory management

unit
Pipelined execution unit, 6-3
PLL configuration, 7-30, 8-5
Index Index-7

INDEX
PLL_CFG0–PLL_CFG3, 7-30, 8-5
Power management

decrementer interrupt, 9-1
doze mode, 9-3
doze, nap, sleep, DPM bits, 2-12
full-power mode, 9-2
nap mode, 9-3
programmable power modes, 9-2
sleep mode, 9-4
software considerations, 9-4
system management interrupt, 9-1

PowerPC architecture
instruction list, A-1, A-9, A-17, A-27, A-38
operating environment architecture, xxvii, 1-17
user instruction set architecture, xxvii, 1-17
virtual environment architecture, xxvii, 1-17

Prefetch line-fill address signal, 7-8
Privilege levels

supervisor-level cache instruction, 2-64
use of esa instruction, 1-26, 2-71

Privileged state see Privilege levels
Problem state see Privilege levels
Process switching, 4-16
Processor control instructions, 2-55, 2-58, 2-62, A-25
Program exception, 4-29
Programmable power states

doze mode, 9-3
full-power mode

DPM enabled/disabled, 9-2
nap mode, 9-3
sleep mode, 9-4

Protection of memory areas
features, 5-32
no-execute protection, 5-18
options available, 5-15
protection violations, 5-20

Protection-only mode
access protection, 5-61
features, 5-2, 5-58
overview, 5-8
protection checking, 5-65
RPA register, 2-11, 2-17, 5-44, 5-61
SEBR register, 2-11, 2-19, 5-62
SER register, 2-11, 2-20, 5-62
TLB look-up operation, 5-60
translation flow, 5-63
use of translation resources

PTEGs (PTE groups)
table search operation, 5-37

PTEs (page table entries)
bit definitions, 5-29
format, 5-28
table search operations, 5-37

Q
QACK signal, 7-26
QREQ signal, 7-26
Qualified bus grant, 8-8

R
Read atomic operation, 3-20
Read operation, 3-20
Read with intent to modify operation, 3-20
Real addressing mode

data accesses, 5-15, 5-17, 5-25
instruction accesses, 5-15, 5-17, 5-25

Referenced (R) bit maintenance
recording, 5-17, 5-29–5-30, 5-38

Registers
602-specific bits

BATs, 2-9
MSR, 2-7
PVR, 2-9
SRR1, 2-8, 5-42

602-specific registers
DCMP and ICMP, 2-11, 2-15, 5-43
DMISS and IMISS, 2-11, 2-15, 5-43
ESASRR, 2-11, 2-19
HASH1 and HASH2, 2-11, 2-16, 5-44
HID0, 2-11–2-12
HID1, 2-11, 2-14
IABR, 2-11, 2-24
IBR, 2-11, 2-22
RPA, 2-11, 2-17, 5-44, 5-61
SEBR, 2-11, 2-19, 5-62
SER, 2-11, 2-20, 5-62
SP and LT, 2-11, 2-21, 6-17
TCR, 1-15, 2-11, 2-21, 4-37

configuration registers, 2-5
exception handling registers, 2-6
exception processing registers, 4-9–4-10
FPRs, saving and restoring registers, 2-25
memory management registers, 2-5, 2-15
supervisor-level registers

BATs, 2-9
DCMP and ICMP, 2-11, 2-15, 5-43
DMISS and IMISS, 2-11, 2-15, 5-43
ESASRR, 2-11, 2-19
HASH1 and HASH2, 2-11, 2-16, 5-44
HID0, 2-11–2-12
HID1, 2-11, 2-14
IABR, 2-11, 2-24
IBR, 2-11, 2-22
MSR, 2-7
PVR, 2-9
RPA, 2-11, 2-17, 5-44, 5-61
SEBR, 2-11, 2-19, 5-62
Index-8 PowerPC 602 RISC Microprocessor User’s Manual

INDEX
SER, 2-11, 2-20, 5-62
SP and LT, 2-11, 2-21, 6-17
SRR1, 2-8
TCR, 1-15, 2-11, 2-21

user-level registers, list, 2-4
Rename register operation, 6-12
Reservation station, 6-11
Reserved instruction class, 2-32
Reset

hard reset, 4-19
HRESET signal, 7-25
reset exception, 4-18–4-20
RESETO signal, 7-26
SRESET signal, 7-25

RESETO signal, 7-26
rfi, 2-62, 4-15
rlwimi, 2-39
rlwinm, 2-39
rlwnm, 2-39
Rotate and shift instructions, 2-39, A-18–A-19
RPA register (602-specific), 2-11, 2-17, 5-44, 5-61

S
sc, 2-62
SEBR register (602-specific), 2-11, 2-19, 5-62
Segment registers

SR manipulation instructions, 2-64, A-25
Segmented memory model see Memory management

unit
Self-modifying code, 2-35
SER register (602-specific), 2-11, 2-20, 5-62
Signals

A0–A31, 7-7
AACK, 7-14
address arbitration, 7-4, 8-7
ARTRY, 3-21, 7-15, 8-22, 8-49
BB, 7-19, 8-8
BE0–BE7, 7-11, 8-14
BG, 7-5, 8-8
BR, 7-5, 8-8
CI, 7-13
CKSTP_IN, 7-24
CKSTP_OUT, 7-25
CLK_OUT, 2-14, 7-29
configuration, 7-2
COP/scan interface, 7-27
D0–D63, 7-20, 8-14, 8-23
GBL, 7-13
HRESET, 7-25
INT, 7-23
JTAG signals, C-2
MCP, 7-24
PFADDR0–PFADDR20, 7-8
PLL_CFG0–PLL_CFG3, 7-30, 8-5

QACK, 7-26
QREQ, 7-26
RESETO, 7-26
SMI, 4-36, 7-24
SRESET, 7-25
SYSCLK, 7-29, 8-5
T32, 3-8, 7-22, 8-28
TA, 7-22, 8-24
TBEN, 1-15, 7-27
TBST, 3-8, 7-12
TC0–TC1, 7-12, 8-20
TCK (JTAG test clock), 7-28, C-1
TDI (JTAG test data input), 7-28, C-1
TDO (JTAG test data output), 7-28, C-1
TEA, 7-23, 8-24
TMS (JTAG test mode select), 7-28, C-1
TRST (JTAG test reset), 7-28, C-1
TS, 7-6
TSIZ0–TSIZ2, 7-10
TT0–TT4, 7-8
WT, 7-13

Single-beat transfer
termination, 8-24

Sleep mode, 9-4
slw, 2-39
SMI signal, 4-36, 7-24
Snooping operation

address cycle with ARTRY, 8-23
cache coherency, 8-2
conditions, 8-26
description, 8-47
injected snooping, 8-2, 8-26
internal snoop sources, 8-26
operation, 3-19, 6-19, 8-2
priority level, 8-2
reaction on qualified snoops, 8-26
snoop hit, write-back, 8-52

Snooping operations
injected snooping, 8-54

SP and LT registers (602-specific), 2-11, 2-21, 6-17
SPR encodings

not implemented in 602, B-3
sraw, 2-39
srawi, 2-39
SRESET signal, 7-25
SRR0/SRR1 (status save/restore registers)

602-specific bits, 5-42
machine check exception, bit settings, 2-8, 4-10
table search operations, bit settings, 4-10

srw, 2-39
Static branch prediction, 6-14
stb, 2-49
stbu, 2-49
stbux, 2-49
stbx, 2-49
Index Index-9

INDEX
stfd, 2-25, 2-53
stfdu, 2-53
stfdux, 2-53
stfdx, 2-53
stfiwx, 2-53
stfs, 2-52
stfsu, 2-52
stfsux, 2-53
stfsx, 2-52
sth, 2-49
sthbrx, 2-49
sthu, 2-49
sthux, 2-49
sthx, 2-49
stmw, 2-50
Store operations

memory coherency actions, 3-19
String instructions, 2-50, A-22
stswi, 2-51
stswx, 2-51
stw, 2-49
stwbrx, 2-49
stwcx., 2-56, 2-58, 4-16
stwu, 2-49
stwux, 2-49
stwx, 2-49
subf, 2-36
subfc, 2-37
subfe, 2-37
subfic, 2-36
subfme, 2-37
subfze, 2-37
Supervisor mode see Privilege levels
Supervisor-level registers, list, 2-5
sync

description, 2-58
operation, 3-20
process switching, 4-16

Synchronization
context/execution synchronization, 2-34
execution of rfi, 4-15
memory synchronization instructions, 2-56,

2-59, A-22
SYSCLK signal, 7-29, 8-5
System bus, time-multiplexed, 7-4, 8-1
System call exception, 2-75, 4-31
System interface operation, 8-5
System linkage instructions, 2-62, A-24
System management interrupt, 4-36, 9-1
System status signals

CKSTP_IN, 7-24
CKSTP_OUT, 7-25
HRESET, 7-25
INT, 7-23

MCP, 7-24
QACK, 7-26
QREQ, 7-26
RESETO, 7-26
SMI, 7-24
SRESET, 7-25
TBEN, 1-15, 7-27

T
T32 signal, 3-8, 7-22, 8-28
TA signal, 7-22, 8-24
Table search operation

algorithm, 5-37
software routines for the 602, 5-40, 5-45–5-50
table search flow (primary and secondary), 5-38

Table search operations
SRR1 bit settings, 2-8, 4-10

TBEN signal, 1-15, 7-27
TBST signal, 3-8, 7-12
TC0–TC1 signals, 7-12, 8-20
TCK (JTAG test clock) signal, 7-28, C-1
TCR register (602-specific), 1-15, 2-11, 2-21, 4-37
TDI (JTAG test data input) signal, 7-28, C-1
TDO (JTAG test data output) signal, 7-28, C-1
TEA signal, 7-23, 8-24
Time-multiplexed

address phase signals, 8-14
system bus, 7-4, 8-1

Timing diagrams
32-bit mode

burst read with multicycle address phase,
8-40

burst read with single-cycle address phase,
8-39

double-beat read, 8-38
fastest burst write, 8-43
fastest double-beat write, 8-42
fastest single-beat write, 8-41
legend, 8-6
single-beat read, 8-37

64-bit mode
burst read with multicycle address phase,

8-33
burst read with shortest data phase, 8-32
burst read with single-cycle address phase,

8-31, 8-32
fastest burst write with negated GBL

signal, 8-35
fastest nonburst write, 8-34
legend, 8-6
nonburst read, single-cycle address phase,

8-30
slow burst write, 8-36

address cycle with ARTRY, 8-23
Index-10 PowerPC 602 RISC Microprocessor User’s Manual

INDEX
ARTRY during other master read transaction,
multicycle, 7-17, 8-52

ARTRY during other master read transaction,
single-cycle, 7-16, 8-51

ARTRY during read transaction, multicycle, 8-50
ARTRY during read transaction, single-cycle,

7-18, 7-19, 8-49
consecutive burst read-write, 8-47
consecutive burst write-read, 8-46
consecutive nonburst read-write, 8-45
consecutive nonburst write-read, 8-44
fastest burst write with asserted GBL signal, 8-48
injected snoop, 8-54
multicycle address-only transaction, 8-57
single-cycle address-only transaction, 8-56
snoop hit, write-back transaction, 8-53

Timing examples see Timing diagrams
Timing, instruction

BPU execution timing, 6-12
branch timing example, 6-15
cache arbitration, 6-8
cache hit, 6-8
cache miss, 6-10
FPU execution timing, 6-17
instruction dispatch, 6-11
instruction fetch timing, 6-8
instruction scheduling guidelines, 6-20
IU execution timing, 6-16
latency summary, 6-22
load/store unit execution timing, 6-18
overview, 6-1

TLB
invalidate

TLB management instructions, 2-64, A-26
tlbie, 2-65
tlbld (602-specific), 2-65, 2-69
tlbli (602-specific), 2-65, 2-70
TLBs

description, 5-33
invalidate

TLB management instructions, 5-35, 5-58
organization, 5-33
TLB look-up operation, 5-60

tlbsync, 2-65
TMS (JTAG test mode select) signal, 7-28, C-1
Trace exception, 4-31
Transactions, data cache

burst transactions, 3-8
nonburst transactions, 3-8

Transfer, address bus, 8-11
Trap instructions, 2-55, A-25
TRST (JTAG test reset) signal, 7-28, C-1
TS signal, 7-6, 8-8, 8-12
TSIZ0–TSIZ2 signals, 7-10
TT0–TT4 signals, 7-8

tw, 2-55
twi, 2-55

U
User instruction set architecture, xxvii, 1-17
User-level registers, list, 2-4

V
Virtual environment architecture, xxvii, 1-17

W
Watchdog timer (602-specific)

instruction fetching, 1-15
interrupt, 4-37
purpose, 1-15
TCR register, 1-15, 2-11, 2-21

WIMG bits
in BAT register, 2-10, 3-9

Write with atomic operation, 3-20
Write with flush operation, 3-20
Write with kill operation, 3-20
Write-back mode

copy-back operation, 3-11
description, 8-1
snoop hit, 8-52

Write-through mode (W bit)
cache interactions, 3-9
timing considerations, 6-19
W-bit setting, 3-10

WT signal, 7-13

X
xor, 2-38
xori, 2-38
xoris, 2-38
Index Index-11

INDEX
Index-12 PowerPC 602 RISC Microprocessor User’s Manual

© Motorola Inc. 1995. All rights reserved.
Portions hereof © International Business Machines Corp. 1991–1995. All rights reserved.

This document contains information on a new product under development by Motorola and IBM. Motorola and IBM reserve the right to change or
discontinue this product without notice. Information in this document is provided solely to enable system and software implementers to use PowerPC
microprocessors. There are no express or implied copyright or patent licenses granted hereunder by Motorola or IBM to design, modify the design of, or
fabricate circuits based on the information in this document.

The PowerPC 602 microprocessor embodies the intellectual property of Motorola and of IBM. However, neither Motorola nor IBM assumes any
responsibility or liability as to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party or by
any third party. Neither Motorola nor IBM is to be considered an agent or representative of the other, and neither has assumed, created, or granted hereby
any right or authority to the other, or to any third party, to assume or create any express or implied obligations on its behalf. Information such as data
sheets, as well as sales terms and conditions such as prices, schedules, and support, for the product may vary as between parties selling the product.
Accordingly, customers wishing to learn more information about the products as marketed by a given party should contact that party.

Both Motorola and IBM reserve the right to modify this manual and/or any of the products as described herein without further notice. NOTHING IN THIS
MANUAL, NOR IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPORTING DOCUMENTATION, SHALL BE INTERPRETED AS
THE CONVEYANCE BY MOTOROLA OR IBM OF AN EXPRESS WARRANTY OF ANY KIND OR IMPLIED WARRANTY, REPRESENTATION, OR
GUARANTEE REGARDING THE MERCHANTABILITY OR FITNESS OF THE PRODUCTS FOR ANY PARTICULAR PURPOSE. Neither Motorola nor
IBM assumes any liability or obligation for damages of any kind arising out of the application or use of these materials. Any warranty or other obligations
as to the products described herein shall be undertaken solely by the marketing party to the customer, under a separate sale agreement between the
marketing party and the customer. In the absence of such an agreement, no liability is assumed by Motorola, IBM, or the marketing party for any damages,
actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Neither Motorola nor IBM convey any license under their respective intellectual property rights nor the rights
of others. Neither Motorola nor IBM makes any claim, warranty, or representation, express or implied, that the products described in this manual are
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support
or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should
customer purchase or use the products for any such unintended or unauthorized application, customer shall indemnify and hold Motorola and IBM and
their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

IBM and IBM logo are registered trademarks, and IBM Microelectronics is a trademark of International Business Machines Corp.
The PowerPC name, PowerPC logotype, PowerPC 601, PowerPC 602, PowerPC 603, PowerPC 603e, and PowerPC 604 are trademarks of International
Business Machines Corp. used by Motorola under license from International Business Machines Corp. International Business Machines Corp. is an Equal
Opportunity/Affirmative Action Employer.

	Audience
	Organization
	Additional Reading
	Motorola Electronic Support
	IBM Electronic Support
	Conventions
	Acronyms and Abbreviations
	Terminology Conventions
	1.1 PowerPC 602 Microprocessor Overview
	1.1.1 PowerPC 602 Microprocessor Features
	1.1.2 Block Diagram
	1.1.3 Instruction Pipeline
	1.1.3.1 Instruction Unit

	1.1.4 Independent Execution Units
	1.1.4.1 Integer Unit (IU)
	1.1.4.2 Floating-Point Unit (FPU)
	1.1.4.3 Load/Store Unit (LSU)

	1.1.5 Memory Subsystem
	1.1.5.1 Memory Management Units (MMUs)
	1.1.5.2 Cache Units

	1.1.6 Processor Bus Interface
	1.1.7 System Support Functions
	1.1.7.1 Power Management
	1.1.7.2 Time Base/Decrementer
	1.1.7.3 IEEE 1149.1 (JTAG)/Common On-Chip Processo...
	1.1.7.4 Clock Multiplier
	1.1.7.5 Watchdog Timer

	1.2 PowerPC 602 Microprocessor: Implementation
	1.2.1 Features
	1.2.2 PowerPC Registers and Programming Model
	1.2.2.1 General-Purpose Registers (GPRs)
	1.2.2.2 Floating-Point Registers (FPRs)
	1.2.2.3 Condition Register (CR)
	1.2.2.4 Floating-Point Status and Control Register...
	1.2.2.5 Machine State Register (MSR)
	1.2.2.6 Segment Registers (SRs)
	1.2.2.7 Special-Purpose Registers (SPRs)

	1.2.3 Instruction Set and Addressing Modes
	1.2.3.1 PowerPC Instruction Set and Addressing Mod...
	1.2.3.2 PowerPC 602 Microprocessor Instruction Set...

	1.2.4 Cache Implementation
	1.2.4.1 PowerPC Cache Characteristics
	1.2.4.2 PowerPC 602 Microprocessor Cache Implement...

	1.2.5 Exception Model
	1.2.5.1 PowerPC Exception Model
	1.2.5.2 PowerPC 602 Microprocessor Exception Model...

	1.2.6 Memory Management
	1.2.6.1 PowerPC Memory Management
	1.2.6.2 PowerPC 602 Microprocessor Memory Manageme...

	1.2.7 Instruction Timing
	1.2.8 System Interface
	1.2.8.1 Memory Accesses
	1.2.8.2 PowerPC 602 Microprocessor Signals
	1.2.8.3 Signal Configuration

	2.1 PowerPC 602 Processor Register Set
	2.1.1 PowerPC Registers with Implementation-Specif...
	2.1.1.1 Machine State Register
	2.1.1.2 Machine Status Save/Restore Register 1
	2.1.1.3 Processor Version Register
	2.1.1.4 BAT Registers

	2.1.2 PowerPC 602 Processor-Specific Registers
	2.1.2.1 Configuration Registers
	2.1.2.2 PowerPC 602 Processor Memory Management Re...
	2.1.2.3 ESA Supervisor Access Registers
	2.1.2.4 Miscellaneous PowerPC 602 Processor–Specif...

	2.1.3 Saving and Restoring FPRs and the FPSCR
	2.1.4 Synchronization Requirements for SPRs

	2.2 Operand Conventions
	2.2.1 Floating-Point Execution Models—UISA
	2.2.2 Data Organization in Memory and Data Transfe...
	2.2.3 Alignment and Misaligned Accesses
	2.2.4 Floating-Point Operand
	2.2.5 Effect of Operand Placement on Performance
	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	2.3.4.2 Floating-Point Instructions
	2.3.4.3 Load and Store Instructions
	2.3.4.4 Branch and Flow Control Instructions
	2.3.4.5 Trap Instructions
	2.3.4.6 Processor Control Instructions
	2.3.4.7 Memory Synchronization Instructions—UISA
	2.3.4.8 Preferred No-Op Instruction

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions
	2.3.5.2 Memory Synchronization Instructions—VEA
	2.3.5.3 Memory Control Instructions—VEA
	2.3.5.4 External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions
	2.3.6.2 Processor Control Instructions—OEA
	2.3.6.3 Memory Control Instructions—OEA

	2.3.7 PowerPC 602 Implementation-Specific Instruct...
	2.3.8 Recommended Simplified Mnemonics
	2.3.9 Using the esa Instruction for Supervisor-Lev...
	2.3.9.1 esa/dsa Instructions
	2.3.9.2 ESA Supervisor-Access Registers

	2.3.10 Differences between Using the esa Instructi...

	3.1 PowerPC 602 Processor Cache Implementation 3.1...
	3.2 Instruction Cache Organization and Control
	3.2.1 Instruction Cache Organization
	3.2.2 Instruction Cache Fill Operations
	3.2.3 Instruction Cache Control
	3.2.3.1 Instruction Cache Invalidation
	3.2.3.2 Locking the Instruction Cache

	3.3 Data Cache Organization and Control
	3.3.1 Data Cache Organization
	3.3.2 Data Cache Fill Operations
	3.3.3 Data Cache Control
	3.3.3.1 Data Cache Invalidation
	3.3.3.2 Disabling the Data Cache
	3.3.3.3 Locking the Data Cache

	3.4 Basic Data Cache Operations
	3.4.1 Data Cache Line-Fill Operation
	3.4.2 Data Cache Cast-Out Operation
	3.4.3 Cache Block Push Operation

	3.5 Data Cache Transactions on Bus
	3.5.1 Nonburst Transactions
	3.5.2 Burst Transactions
	3.5.3 Access to Direct-Store Segments

	3.6 Memory Management/Cache Access Mode Bits— 3.6 ...
	3.6.1 Write-Through Attribute (W)
	3.6.2 Caching-Inhibited Attribute (I)
	3.6.3 Memory Coherency Attribute (M)
	3.6.4 Guarded Attribute (G)
	3.6.5 W, I, and M Bit Combinations
	3.6.5.1 Out-of-Order Execution and Guarded Memory
	3.6.5.2 Effects of Out-of-Order Data Accesses
	3.6.5.3 Effects of Out-of-Order Instruction Fetche...

	3.7 Cache Coherency—MEI Protocol
	3.7.1 MEI State Definitions
	3.7.2 MEI State Diagram
	3.7.3 Compatibility with MESI Protocol
	3.7.4 Resource Collisions and Retries
	3.7.5 Page Table Aliasing
	3.7.6 MEI Hardware Considerations
	3.7.7 Coherency Precautions
	3.7.7.1 Internal Coherency Paradoxes

	3.7.8 Load and Store Coherency Summary
	3.7.9 Atomic Memory References
	3.7.10 Cache Reaction to Specific Bus Operations
	3.7.11 Operations Causing ARTRY Assertion

	3.8 Cache Control Instructions
	3.8.1 Data Cache Block Touch (dcbt) Instruction
	3.8.2 Data Cache Block Touch for Store (dcbtst) In...
	3.8.3 Data Cache Block Set to Zero (dcbz) Instruct...
	3.8.4 Data Cache Block Invalidate (dcbi) Instructi...
	3.8.5 Data Cache Block Store (dcbst) Instruction
	3.8.6 Data Cache Block Flush (dcbf) Instruction
	3.8.7 Enforce In-Order Execution of I/O Instructio...
	3.8.8 Instruction Cache Block Invalidate (icbi) In...
	3.8.9 Instruction Synchronize (isync) Instruction
	3.8.10 Synchronize (sync) Instruction

	3.9 Bus Operations Caused by Cache Control 3.9 Ins...
	3.10 Bus Interface
	3.11 MEI State Transactions
	4.1 Exception Classes
	4.1.1 Exception Priorities
	4.1.2 Summary of Front-End Exception Handling

	4.2 Exception Processing
	4.2.1 Enabling and Disabling Exceptions
	4.2.2 Steps for Exception Processing
	4.2.3 Setting MSR[RI]
	4.2.4 Returning from an Exception Handler

	4.3 Process Switching
	4.4 Exception Latencies
	4.5 Exception Definitions
	4.5.1 Reset Exceptions (0x0100)
	4.5.1.1 Hard Reset and Power-On Reset
	4.5.1.2 Soft Reset

	4.5.2 Machine Check Exception (0x0200)
	4.5.2.1 Machine Check Exception Enabled (MSR[ME] =...
	4.5.2.2 Checkstop State (MSR[ME] = 0)

	4.5.3 DSI Exception (0x0300)
	4.5.4 ISI Exception (0x0400)
	4.5.5 External Interrupt (0x0500)
	4.5.6 Alignment Exception (0x0600)
	4.5.6.1 Integer Alignment Exceptions
	4.5.6.2 Page Address Translation Access
	4.5.6.3 Floating-Point Alignment Exceptions

	4.5.7 Program Exception (0x0700)
	4.5.7.1 IEEE Floating-Point Exception Program Exce...
	4.5.7.2 Illegal, Reserved, and Unimplemented Instr...

	4.5.8 Floating-Point Unavailable Exception (0x0800...
	4.5.9 Decrementer Interrupt (0x0900)
	4.5.10 System Call Exception (0x0C00)
	4.5.11 Trace Exception (0x0D00)
	4.5.11.1 Single-Step Instruction Trace Mode
	4.5.11.2 Branch Trace Mode

	4.5.12 Instruction TLB Miss Exception (0x1000)
	4.5.13 Data TLB Miss on Load Exception (0x1100)
	4.5.14 Data TLB Miss on Store Exception (0x1200)
	4.5.15 Instruction Address Breakpoint Exception (0...
	4.5.16 System Management Interrupt (0x1400)
	4.5.17 Watchdog Timer Interrupt (0x1500)
	4.5.18 Emulation Trap Exception (0x1600)

	5.1 MMU Features
	5.1.1 Overview of PowerPC 602 Processor-Specific F...
	5.1.1.1 Instruction-Related Protection Bits—NE and...
	5.1.1.2 ESA Access and Memory Management
	5.1.1.3 Protection-Only Mode Overview

	5.1.2 Memory Addressing
	5.1.3 MMU Organization
	5.1.4 Address Translation Mechanisms
	5.1.5 Memory Protection Facilities
	5.1.6 Page History Information
	5.1.7 General Flow of MMU Address Translation
	5.1.7.1 Real Addressing Mode and Block Address Tra...
	5.1.7.2 Page Address Translation Selection

	5.1.8 MMU Exceptions Summary
	5.1.9 MMU Instructions and Register Summary

	5.2 Real Addressing Mode
	5.3 Block Address Translation
	5.4 Memory Segment Model
	5.4.1 PTE Format in the PowerPC 602 Microprocessor...
	5.4.2 Page History Recording
	5.4.2.1 Referenced Bit
	5.4.2.2 Changed Bit
	5.4.2.3 Scenarios for Referenced and Changed Bit R...

	5.4.3 Page Memory Protection
	5.4.4 TLB Description
	5.4.4.1 TLB Organization
	5.4.4.2 TLB Entry Invalidation

	5.4.5 Page Address Translation Summary

	5.5 Page Table Search Operation
	5.5.1 Page Table Search Operation—Conceptual Flow
	5.5.2 Table Search Operation with the PowerPC 602 ...
	5.5.2.1 Resources for Table Search Operations
	5.5.2.2 Software Table Search Operation

	5.5.3 Page Table Updates
	5.5.4 Segment Register Updates

	5.6 Protection-Only Mode
	5.6.1 Use of Translation Resources in Protection-O...
	5.6.1.1 TLB Misses in Protection-Only Mode
	5.6.1.2 Access Protection in Protection-Only Mode
	5.6.1.3 Required Physical Address Register in Prot...

	5.6.2 ESA Enable Protection (Instruction Space Onl...
	5.6.3 Translation Flow in Protection-Only Mode

	6.1 Instruction Timing Overview
	6.2 PowerPC 602 Microprocessor Pipeline 6.2 Organi...
	6.3 Timing Considerations
	6.3.1 Instruction Fetch Timing
	6.3.1.1 Cache Arbitration
	6.3.1.2 Cache Hit
	6.3.1.3 Cache Miss

	6.3.2 Instruction Dispatch and Completion Consider...
	6.3.3 Rename Register Operation

	6.4 Execution Unit Timings
	6.4.1 Branch Processing Unit Execution Timing
	6.4.1.1 Branch Folding
	6.4.1.2 Static Branch Prediction

	6.4.2 Integer Unit Execution Timing
	6.4.3 Floating-Point Unit
	6.4.4 Floating-Point Unit Execution Timing
	6.4.5 Load/Store Unit Execution Timing

	6.5 Memory Performance Considerations
	6.5.1 Copy-Back Mode
	6.5.2 Write-Through Mode
	6.5.3 Caching-Inhibited Accesses

	6.6 Instruction Scheduling Guidelines
	6.6.1 Branch, Dispatch, and Completion Unit Resour...
	6.6.1.1 Branch Resolution Resource Requirements
	6.6.1.2 Dispatch Unit Resource Requirements
	6.6.1.3 Completion Unit Resource Requirements

	6.7 Instruction Serialization Modes
	6.7.1 Completion Serialization
	6.7.2 Dispatch Serialization
	6.7.3 Refetch Serialization
	6.7.4 FPU Serialization

	6.8 Instruction Latency Summary
	6.8.1 BPU Instruction Timings
	6.8.2 Integer Unit Instruction Timings
	6.8.3 Synchronization Instructions
	6.8.4 FPU Instruction Timings
	6.8.5 Load/Store Unit Instruction Timings
	6.8.6 Effect of Operand Placement on Performance
	6.8.7 Effect of Floating-Point Exceptions on Perfo...

	7.1 Signal Configuration
	7.1.1 Time-Multiplexed System Bus

	7.2 Signal Descriptions
	7.2.1 Bus Arbitration Signals
	7.2.1.1 Bus Request (BR)—Output
	7.2.1.2 Bus Grant (BG)—Input

	7.2.2 Transfer Start (TS)
	7.2.2.1 Transfer Start (TS)—Output
	7.2.2.2 Transfer Start (TS)—Input

	7.2.3 Address Transfer Signals
	7.2.3.1 Address Signals (A0–A31)

	7.2.4 Transfer Attribute Signals
	7.2.4.1 Transfer Type (TT0–TT4)
	7.2.4.2 Transfer Size (TSIZ0–TSIZ2)—Output
	7.2.4.3 Byte Enable (BE0–BE7)
	7.2.4.4 Transfer Burst (TBST)
	7.2.4.5 Transfer Code (TC0–TC1)—Output
	7.2.4.6 Cache Inhibit (CI)—Output
	7.2.4.7 Write-Through (WT)—Output
	7.2.4.8 Global (GBL)

	7.2.5 Address Transfer Termination Signals
	7.2.5.1 Address �Acknowledge (AACK)—Input
	7.2.5.2 Address Retry (ARTRY)

	7.2.6 Data Phase Signal
	7.2.6.1 Bus Busy (BB)

	7.2.7 Data Transfer Signals
	7.2.7.1 Data Signals (D0–D63)
	7.2.7.2 Target Data Bus 32 (T32)—Input

	7.2.8 Data Transfer Termination Signals
	7.2.8.1 Transfer �Acknowledge (TA)—Input
	7.2.8.2 Transfer Error Acknowledge (TEA)—Input

	7.2.9 System Status Signals
	7.2.9.1 Interrupt (INT)—Input
	7.2.9.2 System Management Interrupt (SMI)—Input
	7.2.9.3 Machine Check Interrupt (MCP)—Input
	7.2.9.4 Checkstop Input (CKSTP_IN)—Input
	7.2.9.5 Checkstop Output (CKSTP_OUT)—Output
	7.2.9.6 Reset Signals
	7.2.9.7 Quiescent Request (QREQ)—Output
	7.2.9.8 Quiescent Acknowledge (QACK)—Input
	7.2.9.9 Time Base Enable (TBEN)—Input

	7.2.10 JTAG/Scan Interface Signals
	7.2.10.1 Test Data Output (TDO)—Output
	7.2.10.2 Test Data Input (TDI)—Input
	7.2.10.3 Test Clock (TCK)—Input
	7.2.10.4 Test Mode Select (TMS)—Input
	7.2.10.5 Test Reset (TRST)—Input

	7.2.11 Clock Signals
	7.2.11.1 System Clock (SYSCLK)—Input
	7.2.11.2 Test Clock (CLK_OUT)—Output
	7.2.11.3 PLL Configuration (PLL_CFG0–PLL_CFG3)—Inp...

	7.2.12 Power and Ground Signals

	8.1 PowerPC 602 Microprocessor System Interface 8....
	8.1.1 Operation of the Instruction and Data Caches...
	8.1.2 32-Bit Data Bus Mode
	8.1.3 Clocks
	8.1.4 Operation of the System Interface

	8.2 Memory Access Protocol
	8.3 Address Bus Phase
	8.3.1 Bus Arbitration
	8.3.1.1 Bus Arbitration—Nonparked Case
	8.3.1.2 Bus Arbitration—Parked Case

	8.3.2 Address Transfer Subphase
	8.3.2.1 Address Phase Signal Configurations
	8.3.2.2 Transfer Attributes
	8.3.2.3 Address Phase Termination

	8.3.3 Data Phase
	8.3.3.1 Data Transfer
	8.3.3.2 Data Phase Termination
	8.3.3.3 Normal Single-Beat Termination

	8.4 Memory Coherency and Bus Protocol
	8.4.1 Effect on Read Operations
	8.4.2 Qualified Snoop Conditions
	8.4.3 Internal Snoop Sources
	8.4.4 Reaction on Qualified Snoops
	8.4.5 Special Instructions

	8.5 Bus Timing Examples
	8.5.1 64-Bit Data Bus Mode Basic Transactions
	8.5.1.1 Nonburst Read Transaction—64-Bit Mode
	8.5.1.2 Burst Read Transaction with a Single-Cycle...
	8.5.1.3 Burst Read Transaction with a Single-Cycle...
	8.5.1.4 Burst Read Transaction with a Multicycle A...
	8.5.1.5 Nonburst Write Transaction—64-Bit Mode
	8.5.1.6 Burst Write Transaction—64-Bit Mode
	8.5.1.7 Slower Burst Write Transaction—64-Bit Mode...

	8.5.2 32-Bit Bus Mode Basic Transactions
	8.5.2.1 Single-Beat Read Transactions—32-Bit Only
	8.5.2.2 Double-Beat Read Transactions—32-Bit Only
	8.5.2.3 Burst Read Operations—32-Bit
	8.5.2.4 Burst Read Transaction with a Multicycle A...
	8.5.2.5 Write Transactions in 32-Bit Mode

	8.5.3 Consecutive Operations
	8.5.3.1 Consecutive Nonburst Write-Read Transactio...
	8.5.3.2 Consecutive Nonburst Read-Write Transactio...
	8.5.3.3 Consecutive Burst Write-Read Transaction
	8.5.3.4 Consecutive Burst Read-Write Transaction

	8.5.4 Snooping
	8.5.4.1 Fastest Burst Write Transaction with Asser...
	8.5.4.2 Address Retry During 602 Read Transaction—...
	8.5.4.3 Address Retry During 602 Read Transaction—...
	8.5.4.4 ARTRY During Other Master Read Transaction...
	8.5.4.5 ARTRY During Other Master Read Transaction...
	8.5.4.6 Snoop Hit—Write-Back Transaction
	8.5.4.7 Injected Snoop Timings

	8.5.5 Address-Only Transactions
	8.5.5.1 Single-Cycle Address-Only Transaction
	8.5.5.2 Multicycle Address-Only Transaction

	9.1 Dynamic Power Management
	9.2 Programmable Power Modes
	9.2.1 Power Management Modes
	9.2.1.1 Full-Power Mode with Dynamic Power Managem...
	9.2.1.2 Full-Power Mode with Dynamic Power Managem...
	9.2.1.3 Doze Mode
	9.2.1.4 Nap Mode
	9.2.1.5 Sleep Mode

	9.2.2 Power Management Software Considerations

	A.1 Instructions Sorted by Mnemonic
	A.2 Instructions Sorted by Opcode
	A.3 Instructions Grouped by Functional Categories
	A.4 Instructions Sorted by Form
	A.5 Instruction Set Legend
	C.1 Boundary-Scan Interface Description
	C.1.1 Boundary-Scan Signals
	C.1.2 Boundary-Scan Registers and Scan Chains
	C.1.2.1 Bypass Register
	C.1.2.2 Boundary-Scan Registers
	C.1.2.3 Compliance-Enable Signals

	C.1.3 Instruction Register
	C.1.4 TAP Controller

	C.2 Unimplemented IEEE 1149.1 Features
	C.3 Boundary-Scan Instructions

