
GK21-0263-00
2/23/99

PowerPC 740 TM

PowerPC 750 TM

RISC Microprocessor
User’s Manual

© IBM1999
Portions hereof © IMotorola Inc. 1999. All rights reserved.

This document contains information on a new product under development by IBM. IBM reserve the right to change or discontinue this product without
notice. Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no
express or implied copyright or patent licenses granted hereunder by IBM to design, modify the design of, or fabricate circuits based on the information
in this document.

The PowerPC 750 microprocessor embodies the intellectual property of IBM. However, IBM does not assume any responsibility or liability as to any
aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party or by any third party. IBM has neither
assumed, created, or granted hereby any right or authority to any third party to assume or create any express or implied obligations on its behalf.
Information such as data sheets, as well as sales terms and conditions such as prices, schedules, and support, for the product may vary as between
parties selling the product. Accordingly, customers wishing to learn more information about the products as marketed by a given party should contact that
party.

IBM reserves the right to modify this manual and/or any of the products as described herein without further notice. NOTHING IN THIS MANUAL, NOR
IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPORTING DOCUMENTATION, SHALL BE INTERPRETED AS THE
CONVEYANCE BY IBM AN EXPRESS WARRANTY OF ANY KIND OR IMPLIED WARRANTY, REPRESENTATION, OR GUARANTEE REGARDING
THE MERCHANTABILITY OR FITNESS OF THE PRODUCTS FOR ANY PARTICULAR PURPOSE . IBM does not assume any liability or obligation for
damages of any kind arising out of the application or use of these materials. Any warranty or other obligations as to the products described herein shall
be undertaken solely by the marketing party to the customer, under a separate sale agreement between the marketing party and the customer. In the
absence of such an agreement, no liability is assumed by IBM or the marketing party for any damages, actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. IBM does not convey any license under their respective intellectual property rights nor the rights of others.
IBM makes no claim, warranty, or representation, express or implied, that the products described in this manual are designed, intended, or authorized for
use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the product could create a situation where personal injury or death may occur. Should customer purchase or use the
products for any such unintended or unauthorized application, customer shall indemnify and hold IBM and its respective officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IBM was negligent regarding
the design or manufacture of the part.

IBM and IBM logo are registered trademarks, and IBM Microelectronics is a trademark of International Business Machines Corp. The PowerPC name,
PowerPC logotype, PowerPC 740, and PowerPC 750 are trademarks of International Business Machines Corp. International Business Machines Corp.
is an Equal Opportunity/Affirmative Action Employer.

International Business Machines Corporation:
IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY 12533-6531;

WWW Addresses :
http://www.chips.ibm.com/
http://www.ibm.com/

1

2

3

4

5

6

8

7

A

B

IND

GLO

9

10

11
PowerPC 740/PowerPC 750 Overview

Processor Programming Model

L1 Instruction and Data Cache Operation

Exceptions

Memory Management

Instruction Timing

Signal Descriptions

Bus Interface Operation

L2 Cache Interface Operation

Power and Thermal Management

Performance Monitor

PowerPC Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

1

2

3

4

5

6

8

7

A

B

IND

GLO

9

10

11
PowerPC 740/PowerPC 750 Overview

Processor Programming Model

L1 Instruction and Data Cache Operation

Exceptions

Memory Management

Instruction Timing

Signal Descriptions

Bus Interface Operation

L2 Cache Interface Operation

Power and Thermal Management

Performance Monitor

PowerPC Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

. xxvii

. xxvii
. xxviii
....xxx
...xxx
xxiv

... 1-1
..... 1-4
.... 1-4
... 1-7
... 1-8
... 1-8
... 1-9
.. 1-10
. 1-10
1-10
1-11
. 1-11
1-12
.. 1-12
. 1-14
1-15
.. 1-16
. 1-18
.. 1-19
. 1-19
.. 1-21
.. 1-26
.. 1-27
.. 1-28
.. 1-29
.. 1-29
.. 1-29
. 1-29
. 1-29
. 1-31
.. 1-32
. 1-33
. 1-33
Paragraph
Number Title Page

Number

Contents

Preface

Audience ..
Organization...
Suggested Reading..
Conventions ...
Acronyms and Abbreviations ...
Terminology Conventions ... x

Chapter 1
PowerPC 740/PowerPC 750 Overview

1.1 PowerPC 750 Microprocessor Overview..
1.2 PowerPC 750 Microprocessor Features..
1.2.1 Overview of the PowerPC 750 Microprocessor Features............................
1.2.2 Instruction Flow..
1.2.2.1 Instruction Queue and Dispatch Unit ...
1.2.2.2 Branch Processing Unit (BPU)...
1.2.2.3 Completion Unit ...
1.2.2.4 Independent Execution Units...
1.2.2.4.1 Integer Units (IUs)..
1.2.2.4.2 Floating-Point Unit (FPU) ...
1.2.2.4.3 Load/Store Unit (LSU) ..
1.2.2.4.4 System Register Unit (SRU)...
1.2.3 Memory Management Units (MMUs)...
1.2.4 On-Chip Instruction and Data Caches ...
1.2.5 L2 Cache Implementation (Not Supported in the PowerPC 740)
1.2.6 System Interface/Bus Interface Unit (BIU) ...
1.2.7 Signals..
1.2.8 Signal Configuration...
1.2.9 Clocking...
1.3 PowerPC 750 Microprocessor: Implementation...
1.4 PowerPC Registers and Programming Model ...
1.5 Instruction Set ..
1.5.1 PowerPC Instruction Set..
1.5.2 PowerPC 750 Microprocessor Instruction Set...
1.6 On-Chip Cache Implementation ..
1.6.1 PowerPC Cache Model..
1.6.2 PowerPC 750 Microprocessor Cache Implementation................................
1.7 Exception Model...
1.7.1 PowerPC Exception Model...
1.7.2 PowerPC 750 Microprocessor Exception Implementation...........................
1.8 Memory Management..
1.8.1 PowerPC Memory Management Model ...
1.8.2 PowerPC 750 Microprocessor Memory Management Implementation
Contents v

Contents
Paragraph
Number Title Page

Number

.1-34

...1-36
...1-37
..1-38

......2-1

.....2-1
.....2-8
..2-8
....2-9
..2-13
..2-14
-14
-15
-16
-16

.2-16
2-20
..2-20
.2-20
ess

2-21
.2-21
..2-24
...2-28
2-28
..2-28
..2-29
..2-29
...2-31
...2-32
2-33
..2-33
..2-33
...2-34
...2-35
..2-35
...2-35
..2-35
1.9 Instruction Timing ...
1.10 Power Management ...
1.11 Thermal Management..
1.12 Performance Monitor..

Chapter 2
Programming Model

2.1 The PowerPC 750 Processor Register Set..
2.1.1 Register Set..
2.1.2 PowerPC 750-Specific Registers...
2.1.2.1 Instruction Address Breakpoint Register (IABR)
2.1.2.2 Hardware Implementation-Dependent Register 0....................................
2.1.2.3 Hardware Implementation-Dependent Register 1....................................
2.1.2.4 Performance Monitor Registers..
2.1.2.4.1 Monitor Mode Control Register 0 (MMCR0)..2
2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCR0)2
2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1)..2
2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCR1)2
2.1.2.4.5 Performance Monitor Counter Registers (PMC1–PMC4)
2.1.2.4.6 User Performance Monitor Counter Registers (UPMC1–UPMC4).......
2.1.2.4.7 Sampled Instruction Address Register (SIA)
2.1.2.4.8 User Sampled Instruction Address Register (USIA).............................
2.1.2.4.9 Sampled Data Address Register (SDA) and User Sampled Data Addr

Register (USDA)2-20
2.1.3 Instruction Cache Throttling Control Register (ICTC)
2.1.4 Thermal Management Registers (THRM1–THRM3)
2.1.5 L2 Cache Control Register (L2CR)..
2.2 Operand Conventions ..
2.2.1 Floating-Point Execution Models—UISA ...
2.2.2 Data Organization in Memory and Data Transfers
2.2.3 Alignment and Misaligned Accesses..
2.2.4 Floating-Point Operand ..
2.3 Instruction Set Summary ...
2.3.1 Classes of Instructions...
2.3.1.1 Definition of Boundedly Undefined...
2.3.1.2 Defined Instruction Class ...
2.3.1.3 Illegal Instruction Class..
2.3.1.4 Reserved Instruction Class ..
2.3.2 Addressing Modes...
2.3.2.1 Memory Addressing ...
2.3.2.2 Memory Operands...
2.3.2.3 Effective Address Calculation..
vi IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Contents

Paragraph
Number Title Page

Number

..2-36
..2-36
.2-36
..2-37
..2-37
.2-38
..2-38
.2-38
..2-39
.2-40
..2-40
.2-41
2-42
-42

.2-43
.2-43
.2-44
.2-44
..2-45
.2-45
...2-46
.2-46
..2-47
..2-48
.2-49
.2-49
..2-50
..2-51
.2-51
.2-53
.2-53
..2-54
2-54
..2-55
2-55
.2-55
2-56
2-56
2-59
.2-60
.2-60
2-61
2-62
2.3.2.4 Synchronization ...
2.3.2.4.1 Context Synchronization..
2.3.2.4.2 Execution Synchronization ...
2.3.2.4.3 Instruction-Related Exceptions..
2.3.3 Instruction Set Overview..
2.3.4 PowerPC UISA Instructions ...
2.3.4.1 Integer Instructions ..
2.3.4.1.1 Integer Arithmetic Instructions ...
2.3.4.1.2 Integer Compare Instructions...
2.3.4.1.3 Integer Logical Instructions ..
2.3.4.1.4 Integer Rotate and Shift Instructions ...
2.3.4.2 Floating-Point Instructions..
2.3.4.2.1 Floating-Point Arithmetic Instructions ..
2.3.4.2.2 Floating-Point Multiply-Add Instructions ...2
2.3.4.2.3 Floating-Point Rounding and Conversion Instructions.........................
2.3.4.2.4 Floating-Point Compare Instructions..
2.3.4.2.5 Floating-Point Status and Control Register Instructions
2.3.4.2.6 Floating-Point Move Instructions ...
2.3.4.3 Load and Store Instructions ...
2.3.4.3.1 Self-Modifying Code ..
2.3.4.3.2 Integer Load and Store Address Generation.......................................
2.3.4.3.3 Register Indirect Integer Load Instructions ..
2.3.4.3.4 Integer Store Instructions...
2.3.4.3.5 Integer Store Gathering..
2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions
2.3.4.3.7 Integer Load and Store Multiple Instructions
2.3.4.3.8 Integer Load and Store String Instructions ..
2.3.4.3.9 Floating-Point Load and Store Address Generation
2.3.4.3.10 Floating-Point Store Instructions ..
2.3.4.4 Branch and Flow Control Instructions ..
2.3.4.4.1 Branch Instruction Address Calculation ...
2.3.4.4.2 Branch Instructions ..
2.3.4.4.3 Condition Register Logical Instructions ..
2.3.4.4.4 Trap Instructions ..
2.3.4.5 System Linkage Instruction—UISA ..
2.3.4.6 Processor Control Instructions—UISA...
2.3.4.6.1 Move to/from Condition Register Instructions
2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
2.3.4.7 Memory Synchronization Instructions—UISA ...
2.3.5 PowerPC VEA Instructions...
2.3.5.1 Processor Control Instructions—VEA..
2.3.5.2 Memory Synchronization Instructions—VEA...
2.3.5.3 Memory Control Instructions—VEA...
Contents vii

Contents
Paragraph
Number Title Page

Number

.2-62

.2-64

..2-65

.2-65
.2-65
2-66
.2-66
.2-67
2-67
..2-68

.....3-3

....3-4
.....3-5
..3-6
....3-7
....3-9
....3-10
...3-10
..3-10
....3-11
...3-11
..3-11
...3-13
..3-13
..3-13
..3-13
..3-14
..3-14
.3-14
..3-15
..3-15

5
16
16
17
7
7
....3-18
...3-18
2.3.5.3.1 User-Level Cache Instructions—VEA..
2.3.5.4 Optional External Control Instructions ...
2.3.6 PowerPC OEA Instructions..
2.3.6.1 System Linkage Instructions—OEA...
2.3.6.2 Processor Control Instructions—OEA ..
2.3.6.3 Memory Control Instructions—OEA...
2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
2.3.6.3.2 Segment Register Manipulation Instructions (OEA)
2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)........
2.3.7 Recommended Simplified Mnemonics ..

Chapter 3 Instruction and Data Cache Operation

3.1 Data Cache Organization...
3.2 Instruction Cache Organization..
3.3 Memory and Cache Coherency ...
3.3.1 Memory/Cache Access Attributes (WIMG Bits) ...
3.3.2 MEI Protocol ..
3.3.2.1 MEI Hardware Considerations...
3.3.3 Coherency Precautions in Single Processor Systems.................................
3.3.4 Coherency Precautions in Multiprocessor Systems
3.3.5 PowerPC 750-Initiated Load/Store Operations ..
3.3.5.1 Performed Loads and Stores...
3.3.5.2 Sequential Consistency of Memory Accesses...
3.3.5.3 Atomic Memory References ..
3.4 Cache Control ..
3.4.1 Cache Control Parameters in HID0..
3.4.1.1 Data Cache Flash Invalidation ...
3.4.1.2 Data Cache Enabling/Disabling ...
3.4.1.3 Data Cache Locking ...
3.4.1.4 Instruction Cache Flash Invalidation..
3.4.1.5 Instruction Cache Enabling/Disabling...
3.4.1.6 Instruction Cache Locking ...
3.4.2 Cache Control Instructions ...
3.4.2.1 Data Cache Block Touch (dcbt) and

Data Cache Block Touch for Store (dcbtst) ..3-1
3.4.2.2 Data Cache Block Zero (dcbz)...3-
3.4.2.3 Data Cache Block Store (dcbst)...3-
3.4.2.4 Data Cache Block Flush (dcbf)..3-
3.4.2.5 Data Cache Block Invalidate (dcbi) ...3-1
3.4.2.6 Instruction Cache Block Invalidate (icbi) ..3-1
3.5 Cache Operations..
3.5.1 Cache Block Replacement/Castout Operations...
viii IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Contents

Paragraph
Number Title Page

Number

...3-21

.3-21
3-21
..3-22
3-22
...3-22
..3-23
..3-24
...3-25
....3-26
..3-29
..3-31

....4-2

...4-4
.....4-7
..4-10
...4-10
.4-11
.4-11
...4-12
.4-12
...4-13
...4-14
...4-15
.4-17
4-18
.4-19
.4-19
.4-19
.4-20
.4-20
..4-20
4-21
..4-21
..4-21
..4-22
.4-22
.4-22
.4-23
..4-25
3.5.2 Cache Flush Operations ..
3.5.3 Data Cache-Block-Fill Operations..
3.5.4 Instruction Cache-Block-Fill Operations ...
3.5.5 Data Cache-Block-Push Operation ..
3.5.5.1 Enveloped High-Priority Cache-Block-Push Operation
3.6 L1 Caches and 60x Bus Transactions ...
3.6.1 Read Operations and the MEI Protocol ...
3.6.2 Bus Operations Caused by Cache Control Instructions
3.6.3 Snooping ...
3.6.4 Snoop Response to 60x Bus Transactions ...
3.6.5 Transfer Attributes ...
3.7 MEI State Transactions ..

Chapter 4 Exceptions

4.1 PowerPC 750 Microprocessor Exceptions...
4.2 Exception Recognition and Priorities..
4.3 Exception Processing ..
4.3.1 Enabling and Disabling Exceptions ...
4.3.2 Steps for Exception Processing...
4.3.3 Setting MSR[RI] ...
4.3.4 Returning from an Exception Handler ..
4.4 Process Switching ...
4.5 Exception Definitions..
4.5.1 System Reset Exception (0x00100) ..
4.5.1.1 Soft Reset ..
4.5.1.2 Hard Reset...
4.5.2 Machine Check Exception (0x00200)...
4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
4.5.2.2 Checkstop State (MSR[ME] = 0)..
4.5.3 DSI Exception (0x00300) ...
4.5.4 ISI Exception (0x00400) ...
4.5.5 External Interrupt Exception (0x00500) ...
4.5.6 Alignment Exception (0x00600)...
4.5.7 Program Exception (0x00700) ...
4.5.8 Floating-Point Unavailable Exception (0x00800) ...
4.5.9 Decrementer Exception (0x00900) ..
4.5.10 System Call Exception (0x00C00)...
4.5.11 Trace Exception (0x00D00)...
4.5.12 Floating-Point Assist Exception (0x00E00)..
4.5.13 Performance Monitor Interrupt (0x00F00) ...
4.5.14 Instruction Address Breakpoint Exception (0x01300)..................................
4.5.15 System Management Interrupt (0x01400) ...
Contents ix

Contents
Paragraph
Number Title Page

Number

..4-26

...5-2

....5-4

...5-4
.....5-9
.5-11
..5-12
.5-12
..5-12
...5-14
.5-16
.5-18
...5-20
..5-21
..5-21
...5-21
...5-22
...5-23
...5-23
...5-25
.5-25
..5-25
.5-27
...5-28
....5-30
....5-34
....5-34

....6-1
...6-3
....6-7
....6-8
.6-11
..6-11
...6-11
...6-14
4.5.16 Thermal Management Interrupt Exception (0x01700).................................

Chapter 5
Memory Management

5.1 MMU Overview ..
5.1.1 Memory Addressing ...
5.1.2 MMU Organization ...
5.1.3 Address Translation Mechanisms..
5.1.4 Memory Protection Facilities ..
5.1.5 Page History Information ...
5.1.6 General Flow of MMU Address Translation...
5.1.6.1 Real Addressing Mode and Block Address Translation Selection...........
5.1.6.2 Page Address Translation Selection ..
5.1.7 MMU Exceptions Summary..
5.1.8 MMU Instructions and Register Summary..
5.2 Real Addressing Mode ..
5.3 Block Address Translation ...
5.4 Memory Segment Model ..
5.4.1 Page History Recording...
5.4.1.1 Referenced Bit ...
5.4.1.2 Changed Bit ...
5.4.1.3 Scenarios for Referenced and Changed Bit Recording
5.4.2 Page Memory Protection ...
5.4.3 TLB Description..
5.4.3.1 TLB Organization...
5.4.3.2 TLB Invalidation ...
5.4.4 Page Address Translation Summary ...
5.4.5 Page Table Search Operation ...
5.4.6 Page Table Updates ..
5.4.7 Segment Register Updates..

Chapter 6
Instruction Timing

6.1 Terminology and Conventions ...
6.2 Instruction Timing Overview ..
6.3 Timing Considerations ...
6.3.1 General Instruction Flow..
6.3.2 Instruction Fetch Timing ...
6.3.2.1 Cache Arbitration ...
6.3.2.2 Cache Hit ...
6.3.2.3 Cache Miss ..
x IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Contents

Paragraph
Number Title Page

Number

.6-15
.6-16
...6-17
.6-17
.6-18
.6-18
6-18
..6-20
..6-21
..6-22
.6-22
6-24
6-24
.6-25
6-25

...6-25

...6-26
.6-27
..6-27
..6-27
6-28

..6-29
..6-29
...6-30
..6-30
..6-30
..6-31

....7-3
....7-4
...7-4
7-4
7-4
7-5
-5
-5
.....7-6
7-6

7-6
6.3.2.4 L2 Cache Access Timing Considerations (PowerPC 750 Only)
6.3.3 Instruction Dispatch and Completion Considerations...................................
6.3.3.1 Rename Register Operation ..
6.3.3.2 Instruction Serialization ..
6.4 Execution Unit Timings ..
6.4.1 Branch Processing Unit Execution Timing...
6.4.1.1 Branch Folding and Removal of Fall-Through Branch Instructions
6.4.1.2 Branch Instructions and Completion..
6.4.1.3 Branch Prediction and Resolution..
6.4.1.3.1 Static Branch Prediction ..
6.4.1.3.2 Predicted Branch Timing Examples ...
6.4.2 Integer Unit Execution Timing ..
6.4.3 Floating-Point Unit Execution Timing...
6.4.4 Effect of Floating-Point Exceptions on Performance
6.4.5 Load/Store Unit Execution Timing..
6.4.6 Effect of Operand Placement on Performance..
6.4.7 Integer Store Gathering ...
6.4.8 System Register Unit Execution Timing...
6.5 Memory Performance Considerations..
6.5.1 Caching and Memory Coherency...
6.5.2 Effect of TLB Miss ..
6.6 Instruction Scheduling Guidelines ...
6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements
6.6.1.1 Branch Resolution Resource Requirements..
6.6.1.2 Dispatch Unit Resource Requirements ..
6.6.1.3 Completion Unit Resource Requirements..
6.7 Instruction Latency Summary ..

Chapter 7
Signal Descriptions

7.1 Signal Configuration ..
7.2 Signal Descriptions ..
7.2.1 Address Bus Arbitration Signals...
7.2.1.1 Bus Request (BR)—Output..
7.2.1.2 Bus Grant (BG)—Input..
7.2.1.3 Address Bus Busy (ABB) ..
7.2.1.3.1 Address Bus Busy (ABB)—Output ...7
7.2.1.3.2 Address Bus Busy (ABB)—Input ..7
7.2.2 Address Transfer Start Signals..
7.2.2.1 Transfer Start (TS) ...
7.2.2.1.1 Transfer Start (TS)—Output ..
Contents xi

Contents
Paragraph
Number Title Page

Number

7-6
.....7-6
....7-7
...7-7
...7-7
...7-7
...7-7
..7-8
....7-8
...7-8
..7-8
..7-8
.7-11
-12
12
12
-12
-13
7-13
-13
-13
..7-13
4

-14
14
15
..7-15
15
6
-16
16
16
...7-17
7-17
-17
-18

..7-18

.7-18

.7-18
19
..7-19
19
-20
7.2.2.1.2 Transfer Start (TS)—Input ...
7.2.3 Address Transfer Signals...
7.2.3.1 Address Bus (A[0–31]) ..
7.2.3.1.1 Address Bus (A[0–31])—Output ..
7.2.3.1.2 Address Bus (A[0–31])—Input ...
7.2.3.2 Address Bus Parity (AP[0–3])...
7.2.3.2.1 Address Bus Parity (AP[0–3])—Output ...
7.2.3.2.2 Address Bus Parity (AP[0–3])—Input ...
7.2.4 Address Transfer Attribute Signals ..
7.2.4.1 Transfer Type (TT[0–4]) ...
7.2.4.1.1 Transfer Type (TT[0–4])—Output...
7.2.4.1.2 Transfer Type (TT[0–4])—Input ...
7.2.4.2 Transfer Size (TSIZ[0–2])—Output..
7.2.4.3 Transfer Burst (TBST)..7
7.2.4.3.1 Transfer Burst (TBST)—Output ..7-
7.2.4.3.2 Transfer Burst (TBST)—Input ...7-
7.2.4.4 Cache Inhibit (CI)—Output ...7
7.2.4.5 Write-Through (WT)—Output...7
7.2.4.6 Global (GBL)..
7.2.4.6.1 Global (GBL)—Output ..7
7.2.4.6.2 Global (GBL)—Input ...7
7.2.5 Address Transfer Termination Signals...
7.2.5.1 Address Acknowledge (AACK)—Input..7-1
7.2.5.2 Address Retry (ARTRY)..7
7.2.5.2.1 Address Retry (ARTRY)—Output...7-
7.2.5.2.2 Address Retry (ARTRY)—Input ...7-
7.2.6 Data Bus Arbitration Signals..
7.2.6.1 Data Bus Grant (DBG)—Input ..7-
7.2.6.2 Data Bus Write Only (DBWO)—Input ...7-1
7.2.6.3 Data Bus Busy (DBB) ..7
7.2.6.3.1 Data Bus Busy (DBB)—Output ...7-
7.2.6.3.2 Data Bus Busy (DBB)—Input..7-
7.2.7 Data Transfer Signals ..
7.2.7.1 Data Bus (DH[0–31], DL[0–31]) ...
7.2.7.1.1 Data Bus (DH[0–31], DL[0–31])—Output ..7
7.2.7.1.2 Data Bus (DH[0–31], DL[0–31])—Input...7
7.2.7.2 Data Bus Parity (DP[0–7]) ...
7.2.7.2.1 Data Bus Parity (DP[0–7])—Output ...
7.2.7.2.2 Data Bus Parity (DP[0–7])—Input..
7.2.7.3 Data Bus Disable (DBDIS)—Input..7-
7.2.8 Data Transfer Termination Signals ..
7.2.8.1 Transfer Acknowledge (TA)—Input..7-
7.2.8.2 Data Retry (DRTRY)—Input...7
xii IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Contents

Paragraph
Number Title Page

Number

0
...7-21
-21
1
1
2
2
...7-22
23
23
....7-23
3

4
24
.7-24
25
..7-25
-25

7-25
-25
-26

.7-26
7-26
7-26
.7-26
7-27
-27
-27
7-27
-28

7-28
..7-28
..7-29
7-29
7-29
-30
...7-30

....8-2
7.2.8.3 Transfer Error Acknowledge (TEA)—Input ...7-2
7.2.9 System Status Signals ...
7.2.9.1 Interrupt (INT)—Input ..7
7.2.9.2 System Management Interrupt (SMI)—Input..7-2
7.2.9.3 Machine Check Interrupt (MCP)—Input ..7-2
7.2.9.4 Checkstop Input (CKSTP_IN)—Input..7-2
7.2.9.5 Checkstop Output (CKSTP_OUT)—Output ..7-2
7.2.9.6 Reset Signals ...
7.2.9.6.1 Hard Reset (HRESET)—Input ..7-
7.2.9.6.2 Soft Reset (SRESET)—Input...7-
7.2.9.7 Processor Status Signals...
7.2.9.7.1 Quiescent Request (QREQ)—Output..7-2
7.2.9.7.2 Quiescent Acknowledge (QACK)—Input ..7-2
7.2.9.7.3 Reservation (RSRV)—Output ...7-
7.2.9.7.4 Time Base Enable (TBEN)—Input...
7.2.9.7.5 TLBI Sync (TLBISYNC)—Input ..7-
7.2.9.7.6 L2 Cache Interface...
7.2.9.8 L2 Address (L2ADDR[16–0])—Output..7
7.2.9.9 L2 Data (L2DATA[0–63])...
7.2.9.9.1 L2 Data (L2DATA[0–63])—Output..7
7.2.9.9.2 L2 Data (L2DATA[0–63])—Input ..7
7.2.9.10 L2 Data Parity (L2DP[0–7]) ...
7.2.9.10.1 L2 Data Parity (L2DP[0–7])—Output ...
7.2.9.10.2 L2 Data Parity (L2DP[0–7])—Input..
7.2.9.11 L2 Chip Enable (L2CE)—Output ...
7.2.9.12 L2 Write Enable (L2WE)—Output..
7.2.9.13 L2 Clock Out A (L2CLK_OUTA)—Output ...7
7.2.9.14 L2 Clock Out B (L2CLK_OUTB)—Output..7
7.2.9.15 L2 Sync Out (L2SYNC_OUT)—Output ...
7.2.9.16 L2 Sync In (L2SYNC_IN)—Input ..7
7.2.9.17 L2 Low-Power Mode Enable (L2ZZ)—Output...
7.2.10 IEEE 1149.1a-1993 Interface Description ...
7.2.11 Clock Signals ...
7.2.11.1 System Clock (SYSCLK)—Input..
7.2.11.2 Clock Out (CLK_OUT)—Output ..
7.2.11.3 PLL Configuration (PLL_CFG[0–3])—Input ...7
7.2.12 Power and Ground Signals..

Chapter 8
Bus Interface Operation

8.1 Bus Interface Overview..
Contents xiii

Contents
Paragraph
Number Title Page

Number

....8-3
.....8-6
....8-6
...8-7
.....8-7
....8-8
..8-10
..8-11
...8-12
..8-12
...8-14
...8-15
..8-15
.8-15
.8-15
.8-16
.8-16
..8-17
.8-18
8-19
8-21
..8-21
...8-23
..8-23
-24

..8-25

...8-25

..8-26

.8-26
..8-30
.8-30
..8-33
.8-39
..8-39
8-41
...8-41
...8-42
..8-42
...8-42
...8-42
...8-43
....8-43
43
8.1.1 Operation of the Instruction and Data L1 Caches ..
8.1.2 Operation of the L2 Cache ..
8.1.3 Operation of the Bus Interface ...
8.1.4 Optional 32-Bit Data Bus Mode..
8.1.5 Direct-Store Accesses..
8.2 Memory Access Protocol..
8.2.1 Arbitration Signals..
8.2.2 Address Pipelining and Split-Bus Transactions ...
8.3 Address Bus Tenure...
8.3.1 Address Bus Arbitration ...
8.3.2 Address Transfer ...
8.3.2.1 Address Bus Parity ..
8.3.2.2 Address Transfer Attribute Signals ..
8.3.2.2.1 Transfer Type (TT[0–4]) Signals ..
8.3.2.2.2 Transfer Size (TSIZ[0–2]) Signals ..
8.3.2.2.3 Write-Through (WT) Signal..
8.3.2.2.4 Cache Inhibit (CI) Signal ..
8.3.2.3 Burst Ordering During Data Transfers...
8.3.2.4 Effect of Alignment in Data Transfers ..
8.3.2.4.1 Effect of Alignment in Data Transfers (32-Bit Bus)..............................
8.3.2.5 Alignment of External Control Instructions...
8.3.3 Address Transfer Termination..
8.4 Data Bus Tenure ..
8.4.1 Data Bus Arbitration...
8.4.1.1 Using theDBB Signal ..8
8.4.2 Data Bus Write Only ..
8.4.3 Data Transfer ...
8.4.4 Data Transfer Termination ...
8.4.4.1 Normal Single-Beat Termination ..
8.4.4.2 Data Transfer Termination Due to a Bus Error ..
8.4.5 Memory Coherency—MEI Protocol ...
8.5 Timing Examples..
8.6 Optional Bus Configuration ..
8.6.1 32-Bit Data Bus Mode..
8.6.2 No-DRTRY Mode..
8.6.3 Reduced Pinout Mode ...
8.7 Interrupt, Checkstop, and Reset Signals..
8.7.1 External Interrupts ..
8.7.2 Checkstops...
8.7.3 Reset Inputs ...
8.7.4 System Quiesce Control Signals ...
8.8 Processor State Signals...
8.8.1 Support for thelwarx/stwcx. Instruction Pair..8-
xiv IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Contents

Paragraph
Number Title Page

Number

8-44
..8-44
..8-44
.8-45

....9-1
....9-2
...9-5
...9-6
...9-7
.....9-7
...9-7
....9-8
...9-9
...9-9
..9-9
.9-11
.9-12

..10-1
...10-1
...10-2
10-2
10-2
..10-2
..10-3
...10-4
...10-5
..10-6
.10-6
.10-8
.10-8
.10-9
10-10
10-10
10-10
8.8.2 TLBISYNC Input...
8.9 IEEE 1149.1a-1993 Compliant Interface...
8.9.1 JTAG/COP Interface..
8.10 Using Data Bus Write Only ..

Chapter 9 L2 Cache Interface Operation

9.1 L2 Cache Interface Overview ..
9.1.1 L2 Cache Operation ...
9.1.2 L2 Cache Control Register (L2CR) ..
9.1.3 L2 Cache Initialization..
9.1.4 L2 Cache Global Invalidation ...
9.1.5 L2 Cache Test Features and Methods ...
9.1.5.1 L2CR Support for L2 Cache Testing ..
9.1.5.2 L2 Cache Testing ...
9.1.6 L2 Clock Configuration ..
9.1.7 L2 Cache SRAM Timing Examples ...
9.1.7.1 Flow-Through Burst SRAM ..
9.1.7.2 Pipelined Burst SRAM..
9.1.7.3 Late-Write SRAM...

Chapter 10
Power and Thermal Management

10.1 Dynamic Power Management ..
10.2 Programmable Power Modes ..
10.2.1 Power Management Modes...
10.2.1.1 Full-Power Mode with DPM Disabled ..
10.2.1.2 Full-Power Mode with DPM Enabled ...
10.2.1.3 Doze Mode...
10.2.1.4 Nap Mode...
10.2.1.5 Sleep Mode ...
10.2.2 Power Management Software Considerations ..
10.3 Thermal Assist Unit ...
10.3.1 Thermal Assist Unit Overview..
10.3.2 Thermal Assist Unit Operation ...
10.3.2.1 TAU Single Threshold Mode..
10.3.2.2 TAU Dual-Threshold Mode..
10.3.2.3 PowerPC 750 Junction Temperature Determination
10.3.2.4 Power Saving Modes and TAU Operation ..
10.4 Instruction Cache Throttling ..
Contents xv

Contents
Paragraph
Number Title Page

Number

..11-2
...11-3
...11-3
11-3
1-5

11-5
1-6

.11-6
1-10
11-10
11-11
.11-11
.11-12
.11-12

...A-1
...A-9
.A-17
.A-29
.A-41

...B-1

...G-1
Chapter 11
Performance Monitor

11.1 Performance Monitor Interrupt...
11.2 Special-Purpose Registers Used by Performance Monitor..............................
11.2.1 Performance Monitor Registers...
11.2.1.1 Monitor Mode Control Register 0 (MMCR0)..
11.2.1.2 User Monitor Mode Control Register 0 (UMMCR0)1
11.2.1.3 Monitor Mode Control Register 1 (MMCR1)..
11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1)1
11.2.1.5 Performance Monitor Counter Registers (PMC1–PMC4)
11.2.1.6 User Performance Monitor Counter Registers (UPMC1–UPMC4).........1
11.2.1.7 Sampled Instruction Address Register (SIA) ...
11.2.1.8 User Sampled Instruction Address Register (USIA)................................
11.3 Event Counting..
11.4 Event Selection..
11.5 Notes..

Appendix A
PowerPC Instruction Set Listings

A.1 Instructions Sorted by Mnemonic...
A.2 Instructions Sorted by Opcode ...
A.3 Instructions Grouped by Functional Categories ...
A.4 Instructions Sorted by Form ...
A.5 Instruction Set Legend..

Appendix B
Instructions Not Implemented

B.1 Lists of Instructions ..

Glossary of Terms and Abbreviations

G.1 Alphabetical List...

Index
xvi IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Illustrations

Paragraph
Number Title Page

Number

....1-3
...1-13
....1-16
...1-18
..1-23
...1-34
....2-2
....2-9
....2-9
..2-13
2-14
2-16
..2-16
..2-20
2-21
.2-22
..2-23
..2-24
.....3-2
.....3-4
.....3-5
...3-8
..3-19
3-23
......4-7
......4-7
.....4-8
..4-14
.5-6
..5-7
..5-8
...5-10
.5-13
..5-15
..5-26
.5-29
....5-32
....5-33
....6-4
.....6-5
......6-7
..6-10
.6-12
Figure 1-1 PowerPC 750 Microprocessor Block Diagram ..
Figure 1-2 Cache Organization...
Figure 1-3 System Interface...
Figure 1-4 PowerPC 750 Microprocessor Signal Groups...
Figure 1-5 PowerPC 750 Microprocessor Programming Model—Registers
Figure 1-6 Pipeline Diagram...
Figure 2-1 Programming Model—PowerPC 750 Microprocessor Registers
Figure 2-2 Instruction Address Breakpoint Register ...
Figure 2-3 Hardware Implementation-Dependent Register 0 (HID0)
Figure 2-4 Hardware Implementation-Dependent Register 1 (HID1)
Figure 2-5 Monitor Mode Control Register 0 (MMCR0)..
Figure 2-6 Monitor Mode Control Register 1 (MMCR1)..
Figure 2-7 Performance Monitor Counter Registers (PMC1–PMC4)...............................
Figure 2-8 Sampled Instruction Address Registers (SIA) ...
Figure 2-9 Instruction Cache Throttling Control Register (ICTC)......................................
Figure 2-10 Thermal Management Registers 1–2 (THRM1–THRM2)................................
Figure 2-11 Thermal Management Register 3 (THRM3)..
Figure 2-12 L2 Cache Control Register (L2CR) ...
Figure 3-1 Cache Integration ..
Figure 3-2 Data Cache Organization ..
Figure 3-3 Instruction Cache Organization...
Figure 3-4 MEI Cache Coherency Protocol—State Diagram (WIM = 001)
Figure 3-5 PLRU Replacement Algorithm ..
Figure 3-6 Double-Word Address Ordering—Critical Double Word First.........................
Figure 4-1 Machine Status Save/Restore Register 0 (SRR0) ..
Figure 4-2 Machine Status Save/Restore Register 1 (SRR1) ..
Figure 4-3 Machine State Register (MSR) ...
Figure 4-4 SRESET Asserted During HRESET..
Figure 5-1 MMU Conceptual Block Diagram—32-Bit Implementations............................
Figure 5-2 PowerPC 750 Microprocessor IMMU Block Diagram......................................
Figure 5-3 PowerPC 750 Microprocessor DMMU Block Diagram
Figure 5-4 Address Translation Types..
Figure 5-5 General Flow of Address Translation (Real Addressing Mode and Block)
Figure 5-6 General Flow of Page and Direct-Store Interface Address Translation...........
Figure 5-7 Segment Register and DTLB Organization ...
Figure 5-8 Page Address Translation Flow—TLB Hit...
Figure 5-9 Primary Page Table Search ..
Figure 5-10 Secondary Page Table Search Flow...
Figure 6-1 Pipelined Execution Unit ...
Figure 6-2 Superscalar/Pipeline Diagram...
Figure 6-3 PowerPC 750 Microprocessor Pipeline Stages ..
Figure 6-4 Instruction Flow Diagram ..
Figure 6-5 Instruction Timing—Cache Hit...
Illustrations xvii

Illustrations
Paragraph
Number Title Page

Number

..6-15
...6-19
.6-19
...6-20
..6-23
......7-3
.....8-2
....8-5
....8-8
.....8-9
...8-12
..8-13
....8-15
23
...8-24
...8-27
..8-27
...8-28
.8-29
-29
.8-32
.....8-33
....8-34
...8-35
..8-36
..8-37
8
..8-40

...8-44

...8-45
...9-2
..9-10
.9-10
.9-11
...9-11
.9-12
..9-12
..9-13
9-13
.9-14
..10-6
.11-4
.11-5
Figure 6-6 Instruction Timing—Cache Miss ...
Figure 6-7 Branch Folding ..
Figure 6-8 Removal of Fall-Through Branch Instruction ...
Figure 6-9 Branch Completion..
Figure 6-10 Branch Instruction Timing..
Figure 7-1 PowerPC 750 Signal Groups ..
Figure 8-1 Bus Interface Address Buffers...
Figure 8-2 PowerPC 750 Microprocessor Block Diagram ..
Figure 8-3 Timing Diagram Legend ..
Figure 8-4 Overlapping Tenures on the 750 Bus for a Single-Beat Transfer
Figure 8-5 Address Bus Arbitration ..
Figure 8-6 Address Bus Arbitration Showing Bus Parking ...
Figure 8-7 Address Bus Transfer ...
Figure 8-8 Snooped Address Cycle withARTRY..8-
Figure 8-9 Data Bus Arbitration..
Figure 8-10 Normal Single-Beat Read Termination ...
Figure 8-11 Normal Single-Beat Write Termination ...
Figure 8-12 Normal Burst Transaction ...
Figure 8-13 Termination with DRTRY ...
Figure 8-14 Read Burst withTA Wait States and DRTRY..8
Figure 8-15 MEI Cache Coherency Protocol—State Diagram (WIM = 001)
Figure 8-16 Fastest Single-Beat Reads ...
Figure 8-17 Fastest Single-Beat Writes..
Figure 8-18 Single-Beat Reads Showing Data-Delay Controls ..
Figure 8-19 Single-Beat Writes Showing Data Delay Controls...
Figure 8-20 Burst Transfers with Data Delay Controls ...
Figure 8-21 Use of Transfer Error Acknowledge (TEA) ...8-3
Figure 8-22 32-Bit Data Bus Transfer (Eight-Beat Burst) ...
Figure 8-23 32-Bit Data Bus Transfer (Two-Beat Burst withDRTRY)8-40
Figure 8-24 IEEE 1149.1a-1993 Compliant Boundary Scan Interface...............................
Figure 8-25 Data Bus Write Only Transaction ...
Figure 9-26 Typical 1-Mbyte L2 Cache Configuration ..
Figure 9-27 Burst Read-Write-Read L2 Cache Access (Flow-Through).............................
Figure 9-28 Burst Read-Modify-Write L2 Cache Access (Flow-Through)..........................
Figure 9-29 Burst Read-Write-Write L2 Cache Access (Flow-Through).............................
Figure 9-30 Burst Read-Write-Read L2 Cache Access (Pipelined)....................................
Figure 9-31 Burst Read-Modify-Write L2 Cache Access (Pipelined)
Figure 9-32 Burst Read-Write-Write L2 Cache Access (Pipelined)....................................
Figure 9-33 Burst Read-Write-Read L2 Cache Access (Late-Write SRAM)......................
Figure 9-34 Burst Read-Modify-Write L2 Cache Access (Late-Write SRAM)
Figure 9-35 Burst Read-Write-Write L2 Cache Access (Late-Write SRAM)
Figure 10-1 Thermal Assist Unit Block Diagram ..
Figure 11-1 Monitor Mode Control Register 0 (MMCR0) ...
Figure 11-2 Monitor Mode Control Register 1 (MMCR1) ...
xviii IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Illustrations

Paragraph
Number Title Page

Number

..11-6

.11-10

Figure 11-3 Performance Monitor Counter Registers (PMC1–PMC4)...............................
Figure 11-4 Sampled instruction Address Registers (SIA)...
Illustrations xix

Illustrations
Paragraph
Number Title Page

Number
xx IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Tables

Paragraph
Number Title Page

Number

... xxx
xxxiv
xxxv
..1-24
..1-25
..1-26
..1-31
...1-31
...2-4
....2-6
....2-9
....2-9
3

..2-13

..2-14

..2-16

...2-17
.2-17
.2-18
.2-18
.2-19
..2-21
.2-22
.2-23
..2-24
..2-25
..2-30
..2-31
..2-38
...2-39
..2-40
...2-41
..2-41
.2-42
2-43
..2-43
..2-43
..2-44
..2-44
...2-47
...2-48
..2-49
..2-49
Table i Acronyms and Abbreviated Terms ...
Table ii Terminology Conventions ...
Table iii Instruction Field Conventions ..
Table 1-1 Architecture-Defined Registers (Excluding SPRs) ..
Table 1-2 Architecture-Defined SPRs Implemented..
Table 1-3 Implementation-Specific Registers ..
Table 1-4 PowerPC 750 Microprocessor Exception Classifications
Table 1-5 Exceptions and Conditions ...
Table 2-1 Additional MSR Bits...
Table 2-2 Additional SRR1 Bits...
Table 2-3 Instruction Address Breakpoint Register Bit Settings......................................
Table 2-4 HID0 Bit Functions ...
Table 2-5 HID0[BCLK] and HID0[ECLK] CLK_OUT Configuration.............................2-1
Table 2-6 HID1 Bit Functions ..
Table 2-7 MMCR0 Bit Settings ...
Table 2-8 MMCR1 Bit Settings..
Table 2-9 PMCn Bit Settings...
Table 2-10 PMC1 Events—MMCR0[19–25] Select Encodings...
Table 2-11 PMC2 Events—MMCR0[26–31] Select Encodings...
Table 2-12 PMC3 Events—MMCR1[0–4] Select Encodings ..
Table 2-13 PMC4 Events—MMCR1[5–9] Select Encodings...
Table 2-14 ICTC Bit Settings...
Table 2-15 THRM1–THRM2 Bit Settings..
Table 2-16 Valid THRM1/THRM2 States ..
Table 2-17 THRM3 Bit Settings ..
Table 2-18 L2CR Bit Settings ...
Table 2-19 Floating-Point Operand Data Type Behavior ..
Table 2-20 Floating-Point Result Data Type Behavior ...
Table 2-21 Integer Arithmetic Instructions ...
Table 2-22 Integer Compare Instructions..
Table 2-23 Integer Logical Instructions ..
Table 2-24 Integer Rotate Instructions ...
Table 2-25 Integer Shift Instructions ...
Table 2-26 Floating-Point Arithmetic Instructions ..
Table 2-27 Floating-Point Multiply-Add Instructions ...
Table 2-28 Floating-Point Rounding and Conversion Instructions
Table 2-29 Floating-Point Compare Instructions ...
Table 2-30 Floating-Point Status and Control Register Instructions
Table 2-31 Floating-Point Move Instructions ...
Table 2-32 Integer Load Instructions ...
Table 2-33 Integer Store Instructions ...
Table 2-34 Integer Load and Store with Byte-Reverse Instructions
Table 2-35 Integer Load and Store Multiple Instructions ...
Tables xxi

Tables
Paragraph
Number Title Page

Number

...2-50

..2-51
...2-52
...2-52
..2-53
...2-54
..2-54
...2-55
..2-55
..2-56
..2-56
....2-56

.2-59
..2-60
.2-62
...2-63
...2-64
..2-65
..2-65
..2-66
...2-66
...2-67
..2-67
....3-7
...3-20
...3-20
..3-24
.....3-27
..3-29
...3-31
....4-2
.....4-3
.....4-6
.....4-8
.4-10
...4-12
....4-13
....4-15
.....4-16
..4-17
...4-18
...4-22
Table 2-36 Integer Load and Store String Instructions ...
Table 2-37 Floating-Point Load Instructions ...
Table 2-38 Floating-Point Store Instructions ..
Table 2-39 Store Floating-Point Single Behavior ...
Table 2-40 Store Floating-Point Double Behavior ..
Table 2-41 Branch Instructions..
Table 2-42 Condition Register Logical Instructions ..
Table 2-43 Trap Instructions..
Table 2-44 System Linkage Instruction—UISA...
Table 2-45 Move to/from Condition Register Instructions...
Table 2-46 Move to/from Special-Purpose Register Instructions (UISA)..........................
Table 2-47 PowerPC Encodings ..
Table 2-48 SPR Encodings for PowerPC 750-Defined Registers (mfspr)2-58
Table 2-49 Memory Synchronization Instructions—UISA ...
Table 2-50 Move from Time Base Instruction..
Table 2-51 Memory Synchronization Instructions—VEA ..
Table 2-52 User-Level Cache Instructions ..
Table 2-53 External Control Instructions...
Table 2-54 System Linkage Instructions—OEA ..
Table 2-55 Move to/from Machine State Register Instructions..
Table 2-56 Move to/from Special-Purpose Register Instructions (OEA)...........................
Table 2-57 Supervisor-Level Cache Management Instruction ..
Table 2-58 Segment Register Manipulation Instructions ..
Table 2-59 Translation Lookaside Buffer Management Instruction...................................
Table 3-1 MEI State Definitions...
Table 3-2 PLRU Bit Update Rules ..
Table 3-3 PLRU Replacement Block Selection...
Table 3-4 Bus Operations Caused by Cache Control Instructions (WIM = 001).............
Table 3-5 Response to Snooped Bus Transactions ...
Table 3-6 Address/Transfer Attribute Summary ..
Table 3-7 MEI State Transitions ...
Table 4-1 PowerPC 750 Microprocessor Exception Classifications
Table 4-2 Exceptions and Conditions ...
Table 4-3 PowerPC 750 Exception Priorities ...
Table 4-4 MSR Bit Settings ..
Table 4-5 IEEE Floating-Point Exception Mode Bits ..
Table 4-6 MSR Setting Due to Exception ..
Table 4-7 System Reset Exception—Register Settings ...
Table 4-8 HRESET Signal States ...
Table 4-9 Settings Caused by Hard Reset ...
Table 4-10 HID0 Machine Check Enable Bits ...
Table 4-11 Machine Check Exception—Register Settings..
Table 4-12 Trace Exception—SRR1 Settings ...
xxii IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Tables

Paragraph
Number Title Page

Number

.4-23
..4-24
...4-25
..4-26
....5-3
....5-11
..5-17
.5-18
5-19
..5-20
.5-22
..5-24
...6-26
..6-28
...6-31
...6-31
.6-32
...6-33
..6-34
...6-36
....7-9
....7-10
...7-11
...7-17
..7-18
..7-28
...8-16
...8-17
.8-17
...8-18
..8-19
.8-20
.8-21
.....9-5
...10-2
.10-7
..10-7
10-9
10-11
...11-3
..11-4
..11-6
...11-6
Table 4-13 Performance Monitor Interrupt Exception—Register Settings
Table 4-14 Instruction Address Breakpoint Exception—Register Settings
Table 4-15 System Management Interrupt Exception—Register Settings
Table 4-16 Thermal Management Interrupt Exception—Register Settings
Table 5-1 MMU Feature Summary ...
Table 5-2 Access Protection Options for Pages ..
Table 5-3 Translation Exception Conditions ...
Table 5-4 Other MMU Exception Conditions for the PowerPC 750 Processor................
Table 5-5 PowerPC 750 Microprocessor Instruction Summary—Control MMUs............
Table 5-6 PowerPC 750 Microprocessor MMU Registers ..
Table 5-7 Table Search Operations to Update History Bits—TLB Hit Case....................
Table 5-8 Model for Guaranteed R and C Bit Settings ..
Table 6-1 Performance Effects of Memory Operand Placement.....................................
Table 6-2 TLB Miss Latencies ..
Table 6-3 Branch Instructions ...
Table 6-4 System Register Instructions ..
Table 6-5 Condition Register Logical Instructions ..
Table 6-6 Integer Instructions ...
Table 6-7 Floating-Point Instructions ..
Table 6-8 Load and Store Instructions ..
Table 7-1 Transfer Type Encodings for PowerPC 750 Bus Master
Table 7-2 PowerPC 750 Snoop Hit Response ...
Table 7-3 Data Transfer Size ..
Table 7-4 Data Bus Lane Assignments ..
Table 7-5 DP[0–7] Signal Assignments ..
Table 7-6 IEEE Interface Pin Descriptions ..
Table 8-1 Transfer Size Signal Encodings ...
Table 8-2 Burst Ordering...
Table 8-3 Burst Ordering—32-Bit Bus ..
Table 8-4 Aligned Data Transfers ..
Table 8-5 Misaligned Data Transfers (Four-Byte Examples) ...
Table 8-6 Aligned Data Transfers (32-Bit Bus Mode)..
Table 8-7 Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples)
Table 9-8 L2 Cache Control Register ...
Table 10-1 PowerPC 750 Microprocessor Programmable Power Modes.........................
Table 10-2 THRM1 and THRM2 Bit Field Settings...
Table 10-3 THRM3 Bit Field Settings ...
Table 10-4 Valid THRM1 and THRM2 Bit Settings ..
Table 10-5 ICTC Bit Field Settings..
Table 11-1 Performance Monitor SPRs...
Table 11-2 MMCR0 Bit Settings ...
Table 11-3 MMCR1 Bit Settings..
Table 11-4 PMCn Bit Settings...
Tables xxiii

Tables
Paragraph
Number Title Page

Number

..11-7
.11-7
.11-8
..11-9
..A-1
...A-9
.A-17
..A-18
.A-18
..A-19
.A-19
A-20
-20

.A-21
.A-21
.A-21
..A-22
..A-23
..A-23
.A-23
..A-24
.A-24
.A-24
.A-25
.A-25
..A-25
.A-26
..A-26
..A-26
..A-27
...A-27
.A-28
.A-28
.A-28
..
..A-
..A-2
..A-
..A-3
..A-
.A-3
.A-36
.A-37
Table 11-5 PMC1 Events—MMCR0[19–25] Select Encodings ..
Table 11-6 PMC2 Events—MMCR0[26–31] Select Encodings ..
Table 11-7 PMC3 Events—MMCR1[0–4] Select Encodings ..
Table 11-8 PMC4 Events—MMCR1[5–9] Select Encodings ..
Table A-1 Complete Instruction List Sorted by Mnemonic ...
Table A-2 Complete Instruction List Sorted by Opcode ...
Table A-3 Integer Arithmetic Instructions...
Table A-4 Integer Compare Instructions ..
Table A-5 Integer Logical Instructions..
Table A-6 Integer Rotate Instructions...
Table A-7 Integer Shift Instructions ..
Table A-8 Floating-Point Arithmetic Instructions..
Table A-9 Floating-Point Multiply-Add Instructions...A
Table A-10 Floating-Point Rounding and Conversion Instructions
Table A-11 Floating-Point Compare Instructions ...
Table A-12 Floating-Point Status and Control Register Instructions
Table A-13 Integer Load Instructions...
Table A-14 Integer Store Instructions...
Table A-15 Integer Load and Store with Byte Reverse Instructions..................................
Table A-16 Integer Load and Store Multiple Instructions...
Table A-17 Integer Load and Store String Instructions..
Table A-18 Memory Synchronization Instructions ...
Table A-19 Floating-Point Load Instructions..
Table A-20 Floating-Point Store Instructions..
Table A-21 Floating-Point Move Instructions...
Table A-22 Branch Instructions..
Table A-23 Condition Register Logical Instructions...
Table A-24 System Linkage Instructions ...
Table A-25 Trap Instructions..
Table A-26 Processor Control Instructions...
Table A-27 Cache Management Instructions ..
Table A-28 Segment Register Manipulation Instructions. ..
Table A-29 Lookaside Buffer Management Instructions ..
Table A-30 External Control Instructions..
Table A-31 I-Form..A-29
Table A-32 B-Form ..29
Table A-33 SC-Form ..9
Table A-34 D-Form ..29
Table A-35 DS-Form ..1
Table A-36 X-Form ..31
Table A-37 XL-Form...6
Table A-38 XFX-Form ..
Table A-39 XFL-Form...
xxiv IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Tables

Paragraph
Number Title Page

Number

..A-3
.A-37
.A-
.A-3
.A-39
.A-40
..A-41
..A-47
.. B-1
.. B-1
Table A-40 XS-Form..7
Table A-41 XO-Form ..
Table A-42 A-Form...38
Table A-43 M-Form ..9
Table A-44 MD-Form ...
Table A-45 MDS-Form ...
Table A-46 PowerPC Instruction Set Legend ..
Table A-47 PowerPC Instruction Set Legend ..
Table B-1 32-Bit Instructions Not Implemented..
Table B-2 64-Bit Instructions Not Implemented ...
Tables xxv

Tables
Paragraph
Number Title Page

Number
xxvi IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

rPC
lopers.
d, all

this
s:

hat a

ows:

l of
the
tions,
About This Book
The primary objective of this user’s manual is to define the functionality of the Powe
750™ and PowerPC 740™ microprocessors for use by software and hardware deve
Although the emphasis of this manual is upon the 750, unless otherwise note
information here applies to 740. This book is intended as a companion to thePowerPC™
Microprocessor Family: The Programming Environments(referred to asThe Programming
Environments Manual).

Note: Soft copies of the latest version of this manual and documents referred to in
manual that are produced by IBM can be accessed on the world wide web as follow

http://www.chips.ibm.com/

Note: A vertical bar located to the left of a paragraph such as this one, indicates t
change has been made to the paragraph since the 8/97 release of this document.

About the Companion Programming Environments Manual

ThePowerPC 740 PowerPC750 RISC Microprocessor User’s
Manual, which describes 750 features not defined by the
architecture, is to be used with thePowerPC Microprocessor
Family: The Programming Environments, Rev. 1, referred to as
The Programming Environments Manual.

Because the PowerPC architecture is designed to be flexible to
support a broad range of processors,The Programming
Environments Manualprovides a general description of
features that are common to PowerPC processors and indicates
those features that are optional or that may be implemented
differently in the design of each processor.

Contact your sales representative for a copy ofThe
Programming Environments Manual.

This document andThe Programming Environments Manualdistinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as foll

• PowerPC user instruction set architecture (UISA)—The UISA defines the leve
the architecture to which user-level software should conform. The UISA defines
base user-level instruction set, user-level registers, data types, memory conven
and the memory and programming models seen by application programmers.
About This Book xxvii

est
ality
 the
es
he

VEA
rces
ternal

rPC

isor-
e
ption

rPC

in the
ating-
fined

er to
arly

a
and

cache,
ation
odel

mains
ring

the
the

f the
• PowerPC virtual environment architecture (VEA)—The VEA, which is the small
component of the PowerPC architecture, defines additional user-level function
that falls outside typical user-level software requirements. The VEA describes
memory model for an environment in which multiple processors or other devic
can access external memory and defines aspects of the cache model and cac
control instructions from a user-level perspective. The resources defined by the
are particularly useful for optimizing memory accesses and for managing resou
in an environment in which other processors and other devices can access ex
memory.

Implementations that conform to the PowerPC VEA also conform to the Powe
UISA, but may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines superv
level resources typically required by an operating system. The OEA defines th
PowerPC memory management model, supervisor-level registers, and the exce
model.

Implementations that conform to the PowerPC OEA also conform to the Powe
UISA and VEA.

It is important to note that some resources are defined more generally at one level
architecture and more specifically at another. For example, conditions that cause a flo
point exception are defined by the UISA, while the exception mechanism itself is de
by the OEA.

Because it is important to distinguish between the levels of the architecture in ord
ensure compatibility across multiple platforms, those distinctions are shown cle
throughout this book.

For ease in reference, the arrangement of topics in this book follows that ofThe
Programming Environments Manual. Topics build upon one another, beginning with
description and complete summary of 750-specific registers and instructions
progressing to more specialized topics such as 750-specific details regarding the
exception, and memory management models. As such, chapters may include inform
from multiple levels of the architecture. (For example, the discussion of the cache m
uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processorsdefines
the architecture from the perspective of the three programming environments and re
the defining document for the PowerPC architecture. For information about orde
PowerPC documentation, see “Suggested Reading,” on page xxviii.

The information in this book is subject to change without notice, as described in
disclaimers on the title page of this book. As with any technical documentation, it is
readers’ responsibility to be sure they are using the most recent version o
documentation.
xxviii IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ted at

ations
eader
f RISC

ant
cture
cture
 the
odel,

o
ding
nized

C

s,
ient.
.

the

se of
n the

wer
To locate any published errata or updates for this document, refer to the web sites no
the beginning of this section.

Audience
This manual is intended for system software and hardware developers and applic
programmers who want to develop products for the 750. It is assumed that the r
understands operating systems, microprocessor system design, basic principles o
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “PowerPC 740/PowerPC 750 Overview,” is useful for readers who w
a general understanding of the features and functions of the PowerPC archite
and the 750. This chapter describes the flexible nature of the PowerPC archite
definition, and provides an overview of how the PowerPC architecture defines
register set, operand conventions, addressing modes, instruction set, cache m
exception model, and memory management model.

• Chapter 2, “Programming Model,” is useful for software engineers who need t
understand the 750-specific registers, operand conventions, and details regar
how PowerPC instructions are implemented on the 750. Instructions are orga
by function.

• Chapter 3, “Instruction and Data Cache Operation,” discusses the cache and
memory model as implemented on the 750.

• Chapter 4, “Exceptions,” describes the exception model defined in the PowerP
OEA and the specific exception model implemented on the 750.

• Chapter 5, “Memory Management,” describes the 750’s implementation of the
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

• Chapter 6, “Instruction Timing,” provides information about latencies, interlock
special situations, and various conditions to help make programming more effic
This chapter is of special interest to software engineers and system designers

• Chapter 7, “Signal Descriptions,” provides descriptions of individual signals of
750.

• Chapter 8, “Bus Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the 750.

• Chapter 9, “L2 Cache Interface Operation,” describes the implementation and u
the 750 L2 cache and cache controller. Note that this feature is not supported o
740.

• Chapter 10, “Power and Thermal Management,” provides information about po
saving and thermal management modes for the 750.
About This Book xxix

ce

ns
lso
ed

vel,
.

64-

this

cture

0
.A.),

web

04;

p
ted

ver of
dering:
• Chapter 11, “Performance Monitor,” describes the operation of the performan
monitor diagnostic tool incorporated in the 750.

• Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructio
while indicating those instructions which are not implemented by the 750; it a
includes the instructions which are specific to the 750. Instructions are group
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture le
privilege level, and form, and indicates if the instruction is 64-bit and optional

• Appendix B, “Instructions Not Implemented,” provides a list of the 32-bit and
bit PowerPC instructions that are not implemented in the 750.

• This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in
manual as well as general information about the PowerPC architecture.

General Information
The following documentation provides useful information about the PowerPC archite
and computer architecture in general:

• The following books are available from the Morgan-Kaufmann Publishers, 34
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S
(415) 392-2665 (International); internet address: mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide
at http://www.austin.ibm.com/tech/ppc-chg.html.

• PowerPC Programming for Intel Programmers,by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 944
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

• PowerPC System Architecture,by Tom Shanley; Mindshare, Inc., 2202 Buttercu
Drive, Richardson, TX 75082; Tel. (214)231-2216 (U.S.A.), 021-706 6000 (Uni
Kingdom), (800)420-2677 (International).

PowerPC Documentation
The PowerPC documentation is available from the sources listed inside the front co
this manual; the document order numbers are included in parentheses for ease in or

• Programming environments manuals—This book provides information about
resources defined by the PowerPC architecture that are common to PowerPC
processors.
xxx IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ts

ding
as
he

ary
nt to

s
ace,
This

mily

, and

erPC

al
— PowerPC Microprocessor Family: The Programming Environments
G522-0290-00

• Implementation Variances Relative to Rev. 1 of The Programming Environmen
Manual is available via the world-wide web at http://www.chips.ibm.com/.

• Hardware specifications—Hardware specifications provide specific data regar
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well
other design considerations for each PowerPC implementation. This include t
following:

— PowerPC 740TM and PowerPC 750TM Embedded RISC Microprocessor:
Hardware Specificationsis available via the world-wide web at
http://www.chips.ibm.com/.

— PowerPC 750TM SCM RISC Microprocessor: Hardware Specification
G522-0324-00

• Technical Summaries—Each PowerPC implementation has a technical summ
that provides an overview of its features. This document is roughly the equivale
the overview (Chapter 1) of an implementation’s user’s manual.

— PowerPC 750 RISC Microprocessor Technical Summaryis available via the
world-wide web at http://www.chips.ibm.com/.

• PowerPC Microprocessor Family: 60x Bus Interface for 32-Bit Microprocessor,
G522-0291-00, provides a detailed functional description of the 60x bus interf
as implemented on the 601, 603, and 604 family of PowerPC microprocessors.
document is intended to help system and chipset developers by providing a
centralized reference source to identify the bus interface presented by the 60x fa
of PowerPC microprocessors.

• PowerPC Microprocessor Family: The Programmer’s Reference Guide,
MPRPPCPRG-01, is a concise reference that includes the register summary,
memory control model, exception vectors, and the PowerPC instruction set.

• PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide,
SA14-2093-00
This foldout card provides an overview of the PowerPC registers, instructions
exceptions for 32-bit implementations.

• Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with Pow
processors.

• Documentation for support chips—These include the following:

— IBM27-82660 PowerPC to PCI Bridge and Memory Controller User’s Manu
SC09-3026-01
About This Book xxxi

ssors
listed

ext.

ine

on’t

its
as
Additional literature on PowerPC implementations is being released as new proce
become available. For a current list of PowerPC documentation, refer to the web sites
at the beginning of this section.

Conventions
This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

fr A, fr B, fr C Instruction syntax used to identify a source FPR

fr D Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase t
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the mach
state register.

x In certain contexts, such as a signal encoding, this indicates a d
care.

n Used to express an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these b
may be written to as either ones or zeros, they are always read
zeros.

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

BAT Block address translation

BIST Built-in self test

BHT Branch history table

0 0 0 0
xxxii IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

BIU Bus interface unit

BPU Branch processing unit

BTIC Branch target instruction cache

BSDL Boundary-scan description language

BUID Bus unit ID

CMOS Complementary metal-oxide semiconductor

COP Common on-chip processor

CR Condition register

CQ Completion queue

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DCMP Data TLB compare

DEC Decrementer register

DLL Delay-locked loop

DMISS Data TLB miss address

DMMU Data MMU

DPM Dynamic power management

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in-first-out

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

HIDn Hardware implementation-dependent register

IABR Instruction address breakpoint register

IBAT Instruction BAT

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
About This Book xxxiii

ICTC Instruction cache throttling control register

IEEE Institute for Electrical and Electronics Engineers

IMMU Instruction MMU

IQ Instruction queue

ITLB Instruction translation lookaside buffer

IU Integer unit

JTAG Joint Test Action Group

L2 Secondary cache (Level 2 cache)

L2CR L2 cache control register

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MEI Modified/exclusive/invalid

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMCRn Monitor mode control registers

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

No-op No operation

OEA Operating environment architecture

PID Processor identification tag

PLL Phase-locked loop

PLRU Pseudo least recently used

PMCn Performance monitor counter registers

POR Power-on reset

POWER Performance Optimized with Enhanced RISC architecture

PTE Page table entry

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
xxxiv IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

PTEG Page table entry group

PVR Processor version register

RAW Read-after-write

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

RWNITM Read with no intent to modify

SDA Sampled data address register

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIA Sampled instruction address register

SPR Special-purpose register

SRn Segment register

SRU System register unit

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

SRU System register unit

TAU Thermal management assist unit

TB Time base facility

TBL Time base lower register

TBU Time base upper register

THRMn Thermal management registers

TLB Translation lookaside buffer

TTL Transistor-to-transistor logic

UIMM Unsigned immediate value

UISA User instruction set architecture

UMMCRn User monitor mode control registers

UPMCn User performance monitor counter registers

USIA User sampled instruction address register

VEA Virtual environment architecture

WAR Write-after-read

WAW Write-after-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
About This Book xxxv

alent
Terminology Conventions
Table ii describes terminology conventions used in this manual and the equiv
terminology used in the PowerPC architecture specification.

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Store in Write back

Store through Write through

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
xxxvi IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crb A, crb B, crb D (respectively)

BF, BFA crf D, crf S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)
About This Book xxxvii

xxxviii IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ures,
des
cture
sors.

block
rPC

. The
2-bit
pes of
ctions

with
Most
orms
oating-
vious
ting-

add
add
Chapter 1
PowerPC 740/PowerPC 750 Overview
10
10

This chapter provides an overview of the PowerPC 750™ microprocessor feat
including a block diagram showing the major functional components. It provi
information about how the 750 implementation complies with the PowerPC™ archite
definition. The term 750 is used herein to refer to both the 740 and 750 proces
Differences between the two processors are indicated where appropriate.

1.1 PowerPC 750 Microprocessor Overview
This section describes the features and general operation of the 750 and provides a
diagram showing major functional units. The 750 is an implementation of the Powe
microprocessor family of reduced instruction set computer (RISC) microprocessors
750 implements the 32-bit portion of the PowerPC architecture, which provides 3
effective addresses, integer data types of 8, 16, and 32 bits, and floating-point data ty
32 and 64 bits. The 750 is a superscalar processor that can complete two instru
simultaneously. It incorporates the following six execution units:

• Floating-point unit (FPU)

• Branch processing unit (BPU)

• System register unit (SRU)

• Load/store unit (LSU)

• Two integer units (IUs): IU1 executes all integer instructions. IU2 executes all
integer instructions except multiply and divide instructions.

The ability to execute several instructions in parallel and the use of simple instructions
rapid execution times yield high efficiency and throughput for 750-based systems.
integer instructions execute in one clock cycle. The FPU is pipelined, the tasks it perf
are broken into subtasks, then implemented as three successive stages. Typically, a fl
point instruction can occupy only one of the three stages at a time, freeing the pre
stage to work on the next floating-point instruction. Thus, three single-precision floa
point instructions can be in the FPU execute stage at a time. Double-precision
instructions have a three-cycle latency; double-precision multiply and multiply-
instructions have a four-cycle latency.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-1

ram).
this is
atures

ically
emory

ative
ress
data

ture.
l four
Data

, and
essed
te of
40™.
rface

ystem
rotocol
ESI

ly in
fers for
scribed

doze,
idle, a
mode

ernal
e the
d in

TTL
Figure 1-1 shows the parallel organization of the execution units (shaded in the diag
The instruction unit fetches, dispatches, and predicts branch instructions. Note that
a conceptual model that shows basic features rather than attempting to show how fe
are implemented physically.

The 750 has independent on-chip, 32-Kbyte, eight-way set-associative, phys
addressed caches for instructions and data and independent instruction and data m
management units (MMUs). Each MMU has a 128-entry, two-way set-associ
translation lookaside buffer (DTLB and ITLB) that saves recently used page add
translations. Block address translation is done through the four-entry instruction and
block address translation (IBAT and DBAT) arrays, defined by the PowerPC architec
During block translation, effective addresses are compared simultaneously with al
BAT entries. For information about the L1 cache, see Chapter 3, “Instruction and
Cache Operation.”

The L2 cache is implemented with an on-chip, two-way, set-associative tag memory
with external, synchronous SRAMs for data storage. The external SRAMs are acc
through a dedicated L2 cache port that supports a single bank of up to 1 Mby
synchronous SRAMs. The L2 cache interface is not implemented in the PowerPC 7
For information about the L2 cache implementation, see Chapter 9, “L2 Cache Inte
Operation.”

The 750 has a 32-bit address bus and a 64-bit data bus. Multiple devices compete for s
resources through a central external arbiter. The 750’s three-state cache-coherency p
(MEI) supports the exclusive, modified, and invalid states, a compatible subset of the M
(modified/exclusive/shared/invalid) four-state protocol, and it operates coherent
systems with four-state caches. The 750 supports single-beat and burst data trans
memory accesses and memory-mapped I/O operations. The system interface is de
in Chapter 7, “Signal Descriptions,” and Chapter 8, “Bus Interface Operation.”

The 750 has four software-controllable power-saving modes. Three static modes,
nap, and sleep, progressively reduce power dissipation. When functional units are
dynamic power management mode causes those units to enter a low-power
automatically without affecting operational performance, software execution, or ext
hardware. The 750 also provides a thermal assist unit (TAU) and a way to reduc
instruction fetch rate for limiting power dissipation. Power management is describe
Chapter 10, “Power and Thermal Management.”

The 750 uses an advanced CMOS process technology and is fully compatible with
devices.
1-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Figure 1-1. PowerPC 750 Microprocessor Block Diagram

Ad
di

tio
na

l F
ea

tu
re

s
•T

im
e

Ba
se

C
ou

nt
er

/D
ec

re
m

en
te

r
• C

lo
ck

 M
ul

tip
lie

r
• J

TA
G

/C
O

P
In

te
rfa

ce
• T

he
rm

al
/P

ow
er

 M
an

ag
em

en
t

• P
er

fo
rm

an
ce

 M
on

ito
r

+

+

Fe
tc

he
r

Br
an

ch
 P

ro
ce

ss
in

g

BT
IC

64
 E

nt
ry

+
 x

F

P
S

C
R

C
R

FP
SC

R

L2
C

R

C
TR LR

BH
T

Da
ta

 M
M

U

In
st

ru
ct

io
n

M
M

U

N
ot

 in
 th

e
Po

w
er

PC
 7

40

PA
EA

+
 x

In
st

ru
ct

io
n

Un
it

Un
it

In
st

ru
ct

io
n

Q
ue

ue
(6

 W
or

d)

2
In

st
ru

ct
io

ns

R
es

er
va

tio
n

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

In
te

ge
r U

ni
t 1

Sy
st

em
 R

eg
ist

er
Un

it

D
is

pa
tc

h
U

ni
t

64
-B

it
(2

 In
st

ru
ct

io
ns

)

SR
s

IT
LB

(S
ha

do
w

)
IB

AT
Ar

ra
y

32
-K

by
te

I C
ac

he
Ta

gs

12
8-

Bi
t

(4
 In

st
ru

ct
io

ns
)

R
es

er
va

tio
n

St
at

io
n

32
-B

it

Fl
oa

tin
g-

Po
in

t
Un

it

R
en

am
e

Bu
ffe

rs
(6

)

FP
R

 F
ile

32
-B

it
64

-B
it

64
-B

it

R
es

er
va

tio
n

St
at

io
n

(2
 E

nt
ry

)

Lo
ad

/S
to

re
 U

ni
t

(E
A

C
al

cu
la

tio
n)

St
or

e
Q

ue
ue

G
PR

 F
ile

R
en

am
e

Bu
ffe

rs
(6

)

32
-B

it

SR
s

(O
rig

in
al

)

D
TL

B

D
BA

T
Ar

ra
y

64
-B

it
Co

m
pl

et
io

n
Un

it

R
eo

rd
er

 B
uf

fe
r

(6
 E

nt
ry

)

Ta
gs

32
-K

by
te

D
 C

ac
he

60
x

Bu
s

In
te

rfa
ce

 U
ni

t
In

st
ru

ct
io

n
Fe

tc
h

Q
ue

ue

L1
 C

as
to

ut
 Q

ue
ue

D
at

a
Lo

ad
 Q

ue
ue

L2
 C

on
tro

lle
r

L2
 T

ag
s

L2
 B

us
 In

te
rfa

ce
Un

it

L2
 C

as
to

ut
 Q

ue
ue

32
-B

it
Ad

dr
es

s
Bu

s
64

-B
it

D
at

a
Bu

s

17
-B

it
L2

 A
dd

re
ss

 B
us

64
-B

it
L2

 D
at

a
Bu

s

In
te

ge
r U

ni
t 2
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-3

wn in

lock

he

hed
rom
the

of

ster

on
1.2 PowerPC 750 Microprocessor Features
This section lists features of the 750. The interrelationship of these features is sho
Figure 1-1.

1.2.1 Overview of the PowerPC 750 Microprocessor Features
Major features of the 750 are as follows:

• High-performance, superscalar microprocessor

— As many as four instructions can be fetched from the instruction cache per c
cycle

— As many as two instructions can be dispatched per clock

— As many as six instructions can execute per clock (including two integer
instructions)

— Single-clock-cycle execution for most instructions

• Six independent execution units and two register files

— BPU featuring both static and dynamic branch prediction

– 64-entry (16-set, four-way set-associative) branch target instruction cac
(BTIC), a cache of branch instructions that have been encountered in
branch/loop code sequences. If a target instruction is in the BTIC, it is fetc
into the instruction queue a cycle sooner than it can be made available f
the instruction cache. Typically, if a fetch access hits the BTIC, it provides
first two instructions in the target stream.

– 512-entry branch history table (BHT) with two bits per entry for four levels
prediction—not-taken, strongly not-taken, taken, strongly taken

– Branch instructions that do not update the count register (CTR) or link regi
(LR) are removed from the instruction stream.

— Two integer units (IUs) that share thirty-two GPRs for integer operands

– IU1 can execute any integer instruction.

– IU2 can execute all integer instructions except multiply and divide
instructions (multiply, divide, shift, rotate, arithmetic, and logical
instructions). Most instructions that execute in the IU2 take one cycle to
execute. The IU2 has a single-entry reservation station.

— Three-stage FPU

– Fully IEEE 754-1985-compliant FPU for both single- and double-precisi
operations

– Supports non-IEEE mode for time-critical operations

– Hardware support for denormalized numbers

– Single-entry reservation station

– Thirty-two 64-bit FPRs for single- or double-precision operands
1-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

, the

d

rs to

 or

vide
— Two-stage LSU

– Two-entry reservation station

– Single-cycle, pipelined cache access

– Dedicated adder performs EA calculations

– Performs alignment and precision conversion for floating-point data

– Performs alignment and sign extension for integer data

– Three-entry store queue

– Supports both big- and little-endian modes

— SRU handles miscellaneous instructions

– Executes CR logical and Move to/Move from SPR instructions (mtspr and
mfspr)

– Single-entry reservation station

• Rename buffers

— Six GPR rename buffers

— Six FPR rename buffers

— Condition register buffering supports two CR writes per clock

• Completion unit

— The completion unit retires an instruction from the six-entry reorder buffer
(completion queue) when all instructions ahead of it have been completed
instruction has finished execution, and no exceptions are pending.

— Guarantees sequential programming model (precise exception model)

— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes instructions from the mispredicte
branch

— Retires as many as two instructions per clock

• Separate on-chip instruction and data caches (Harvard architecture)

— 32-Kbyte, eight-way set-associative instruction and data caches

— Pseudo least-recently-used (PLRU) replacement algorithm

— 32-byte (eight-word) cache block

— Physically indexed/physical tags. (Note that the PowerPC architecture refe
physical address space as real address space.)

— Cache write-back or write-through operation programmable on a per-page
per-block basis

— Instruction cache can provide four instructions per clock; data cache can pro
two words per clock

— Caches can be disabled in software
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-5

urst
ing

40.)

te

ble,

ent

ed in

x ...

ore
— Caches can be locked in software

— Data cache coherency (MEI) maintained in hardware

— The critical double word is made available to the requesting unit when it is b
into the line-fill buffer. The cache is nonblocking, so it can be accessed dur
this operation.

• Level 2 (L2) cache interface (The L2 cache interface is not supported in the 7

— On-chip two-way set-associative L2 cache controller and tags

— External data SRAMs

— Support for 256-Kbyte, 512-Kbyte, and 1-Mbyte L2 caches

— 64-byte (256-Kbyte/512-Kbyte) and 128-byte (1 Mbyte) sectored line size

— Supports flow-through (register-buffer), pipelined (register-register), and
pipelined late-write (register-register) synchronous burst SRAMs

• Separate memory management units (MMUs) for instructions and data

— 52-bit virtual address; 32-bit physical address

— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mby
segments

— Memory programmable as write-back/write-through, cacheable/noncachea
and coherency enforced/coherency not enforced on a page or block basis

— Separate IBATs and DBATs (four each) also defined as SPRs

— Separate instruction and data translation lookaside buffers (TLBs)

– Both TLBs are 128-entry, two-way set associative, and use LRU replacem
algorithm

– TLBs are hardware-reloadable (that is, the page table search is perform
hardware)

• Separate bus interface units for system memory and for the L2 cache

— Bus interface features include the following:

– Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x, 4x, 4.5
8x. (2x to 8x, all half-clock multipliers in-between)

– A 64-bit, split-transaction external data bus with burst transfers

– Support for address pipelining and limited out-of-order bus transactions

– Single-entry load queue

– Single-entry instruction fetch queue

– Two-entry L1 cache castout queue

– No-DRTRY mode eliminates theDRTRY signal from the qualified bus grant.
This allows the forwarding of data during load operations to the internal c
one bus cycle sooner than if the use ofDRTRY is enabled.
1-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

the

che.

us
tate.

em

tion.

tion
ntry
next
the
— L2 cache interface features (which are not implemented on the 740) include
following:

– Core-to-L2 frequency divisors of 1, 1.5, 2, 2.5, and 3

– Four-entry L2 cache castout queue in L2 cache BIU

– 17-bit address bus

– 64-bit data bus

• Multiprocessing support features include the following:

— Hardware-enforced, three-state cache coherency protocol (MEI) for data ca

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

• Power and thermal management

— Three static modes, doze, nap, and sleep, progressively reduce power
dissipation:

– Doze—All the functional units are disabled except for the time
base/decrementer registers and the bus snooping logic.

– Nap—The nap mode further reduces power consumption by disabling b
snooping, leaving only the time base register and the PLL in a powered s

– Sleep—All internal functional units are disabled, after which external syst
logic may disable the PLL and SYSCLK.

— Thermal management facility provides software-controllable thermal
management. Thermal management is performed through the use of three
supervisor-level registers and an 750-specific thermal management excep

— Instruction cache throttling provides control of instruction fetching to limit
power consumption.

• Performance monitor can be used to help debug system designs and improve
software efficiency.

• In-system testability and debugging features through JTAG boundary-scan
capability

1.2.2 Instruction Flow
As shown in Figure 1-1, the 750 instruction unit provides centralized control of instruc
flow to the execution units. The instruction unit contains a sequential fetcher, six-e
instruction queue (IQ), dispatch unit, and BPU. It determines the address of the
instruction to be fetched based on information from the sequential fetcher and from
BPU.

See Chapter 6, “Instruction Timing,” for a detailed discussion of instruction timing.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-7

ction
anch
ecific

tion
aken);
m the

ranch
anch
and

and
lock
there
nch
itions
cle.
unit
ition is
g as

in the
6.3.3,

CR
fect of

the
nch
ranch
n is
The sequential fetcher loads instructions from the instruction cache into the instru
queue. The BPU extracts branch instructions from the sequential fetcher. Br
instructions that cannot be resolved immediately are predicted using either the 750-sp
dynamic branch prediction or the architecture-defined static branch prediction.

Branch instructions that do not affect the LR or CTR are removed from the instruc
stream. The BPU folds branch instructions when a branch is taken (or predicted as t
branch instructions that are not taken, or predicted as not taken, are removed fro
instruction stream through the dispatch mechanism.

Instructions issued beyond a predicted branch do not complete execution until the b
is resolved, preserving the programming model of sequential execution. If br
prediction is incorrect, the instruction unit flushes all predicted path instructions,
instructions are fetched from the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit
The instruction queue (IQ), shown in Figure 1-1, holds as many as six instructions
loads up to four instructions from the instruction cache during a single processor c
cycle. The instruction fetcher continuously attempts to load as many instructions as
were vacancies in the IQ in the previous clock cycle. All instructions except bra
instructions are dispatched to their respective execution units from the bottom two pos
in the instruction queue (IQ0 and IQ1) at a maximum rate of two instructions per cy
Reservation stations are provided for the IU1, IU2, FPU, LSU, and SRU. The dispatch
checks for source and destination register dependencies, determines whether a pos
available in the completion queue, and inhibits subsequent instruction dispatchin
required.

Branch instructions can be detected, decoded, and predicted from anywhere
instruction queue. For a more detailed discussion of instruction dispatch, see Section
“Instruction Dispatch and Completion Considerations.”

1.2.2.2 Branch Processing Unit (BPU)
The BPU receives branch instructions from the sequential fetcher and performs
lookahead operations on conditional branches to resolve them early, achieving the ef
a zero-cycle branch in many cases.

Unconditional branch instructions and conditional branch instructions in which
condition is known can be resolved immediately. For unresolved conditional bra
instructions, the branch path is predicted using either the architecture-defined static b
prediction or the 750-specific dynamic branch prediction. Dynamic branch predictio
enabled if HID0[BHT] = 1.
1-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

from
tected
on is
r and

to be
d but

ache
nch

anch
ction
ion is
gh the
lved.

tered.

must
a 64-
lly in
tion
the

lock
s and

control
lates
anch
nal to
the

re
dicated
ndent

and
d by
ueue.

them
1).
When a prediction is made, instruction fetching, dispatching, and execution continue
the predicted path, but instructions cannot complete and write back results to archi
registers until the prediction is determined to be correct (resolved). When a predicti
incorrect, the instructions from the incorrect path are flushed from the processo
processing begins from the correct path. The 750 allows a second branch instruction
predicted; instructions from the second predicted instruction stream can be fetche
cannot be dispatched.

Dynamic prediction is implemented using a 512-entry branch history table (BHT), a c
that provides two bits per entry that together indicate four levels of prediction for a bra
instruction—not-taken, strongly not-taken, taken, strongly taken. When dynamic br
prediction is disabled, the BPU uses a bit in the instruction encoding to predict the dire
of the conditional branch. Therefore, when an unresolved conditional branch instruct
encountered, the 750 executes instructions from the predicted target stream althou
results are not committed to architected registers until the conditional branch is reso
This execution can continue until a second unresolved branch instruction is encoun

When a branch is taken (or predicted as taken), the instructions from the untaken path
be flushed and the target instruction stream must be fetched into the IQ. The BTIC is
entry cache that contains the most recently used branch target instructions, typica
pairs. When an instruction fetch hits in the BTIC, the instructions arrive in the instruc
queue in the next clock cycle, a clock cycle sooner than they would arrive from
instruction cache. Additional instructions arrive from the instruction cache in the next c
cycle. The BTIC reduces the number of missed opportunities to dispatch instruction
gives the processor a one-cycle head start on processing the target stream.

The BPU contains an adder to compute branch target addresses and three user-
registers—the link register (LR), the count register (CTR), and the CR. The BPU calcu
the return pointer for subroutine calls and saves it into the LR for certain types of br
instructions. The LR also contains the branch target address for the Branch Conditio
Link Register (bclrx) instruction. The CTR contains the branch target address for
Branch Conditional to Count Register (bcctrx) instruction. Because the LR and CTR a
SPRs, their contents can be copied to or from any GPR. Because the BPU uses de
registers rather than GPRs or FPRs, execution of branch instructions is largely indepe
from execution of integer and floating-point instructions.

1.2.2.3 Completion Unit
The completion unit operates closely with the instruction unit. Instructions are fetched
dispatched in program order. At the point of dispatch, the program order is maintaine
assigning each dispatched instruction a successive entry in the six-entry completion q
The completion unit tracks instructions from dispatch through execution and retires
in program order from the two bottom entries in the completion queue (CQ0 and CQ
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-9

in the
from

s that
ranch

FPRs,
e 750
oves

ction

ing

teger
sion
ctions

it for
-zero
bunit

nits
2-

name

quire
o the
om the
made
tion in
Instructions cannot be dispatched to an execution unit unless there is a vacancy
completion queue. Branch instructions that do not update the CTR or LR are removed
the instruction stream and do not take an entry in the completion queue. Instruction
update the CTR and LR follow the same dispatch and completion procedures as non-b
instructions, except that they are not issued to an execution unit.

Completing an instruction commits execution results to architected registers (GPRs,
LR, and CTR). In-order completion ensures the correct architectural state when th
must recover from a mispredicted branch or any exception. Retiring an instruction rem
it from the completion queue.

For a more detailed discussion of instruction completion, see Section 6.3.3, “Instru
Dispatch and Completion Considerations.”

1.2.2.4 Independent Execution Units
In addition to the BPU, the 750 provides the five execution units described in the follow
sections.

1.2.2.4.1 Integer Units (IUs)
The integer units IU1 and IU2 are shown in Figure 1-1. The IU1 can execute any in
instruction; the IU2 can execute any integer instruction except multiplication and divi
instructions. Each IU has a single-entry reservation station that can receive instru
from the dispatch unit and operands from the GPRs or the rename buffers.

Each IU consists of three single-cycle subunits—a fast adder/comparator, a subun
logical operations, and a subunit for performing rotates, shifts, and count-leading
operations. These subunits handle all one-cycle arithmetic instructions; only one su
can execute an instruction at a time.

The IU1 has a 32-bit integer multiplier/divider as well as the adder, shift, and logical u
of the IU2. The multiplier supports early exit for operations that do not require full 3x

32-bit multiplication.

Each IU has a dedicated result bus (not shown in Figure 1-1) that connects to re
buffers.

1.2.2.4.2 Floating-Point Unit (FPU)
The FPU, shown in Figure 1-1, is designed such that single-precision operations re
only a single pass, with a latency of three cycles. As instructions are dispatched t
FPU’s reservation station, source operand data can be accessed from the FPRs or fr
FPR rename buffers. Results in turn are written to the rename buffers and are
available to subsequent instructions. Instructions pass through the reservation sta
dispatch order.
1-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

and
ent
ble-

oint
n for
. The
-point

NaN,
tion

ture

erface
ffective
g and

some
nforce
age or
te per
ld in
tores
logic
store

cy to
nds on
the L2

gical
stem
, the
ave
e not
The FPU contains a single-precision multiply-add array and the floating-point status
control register (FPSCR). The multiply-add array allows the 750 to efficiently implem
multiply and multiply-add operations. The FPU is pipelined so that one single- or dou
precision instruction can be issued per clock cycle. Thirty-two 64-bit floating-p
registers are provided to support floating-point operations. Stalls due to contentio
FPRs are minimized by automatic allocation of the six floating-point rename registers
750 writes the contents of the rename registers to the appropriate FPR when floating
instructions are retired by the completion unit.

The 750 supports all IEEE 754 floating-point data types (normalized, denormalized,
zero, and infinity) in hardware, eliminating the latency incurred by software excep
routines. (Note that “exception” is also referred to as “interrupt” in the architec
specification.)

1.2.2.4.3 Load/Store Unit (LSU)
The LSU executes all load and store instructions and provides the data transfer int
between the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates e
addresses, performs data alignment, and provides sequencing for load/store strin
multiple instructions.

Load and store instructions are issued and translated in program order; however,
memory accesses can occur out of order. Synchronizing instructions can be used to e
strict ordering. When there are no data dependencies and the guarded bit for the p
block is cleared, a maximum of one out-of-order cacheable load operation can execu
cycle, with a two-cycle total latency on a cache hit. Data returned from the cache is he
a rename register until the completion logic commits the value to a GPR or FPR. S
cannot be executed out of order and are held in the store queue until the completion
signals that the store operation is to be completed to memory. The 750 executes
instructions with a maximum throughput of one per cycle and a three-cycle total laten
the data cache. The time required to perform the actual load or store operation depe
the processor/bus clock ratio and whether the operation involves the on-chip cache,
cache, system memory, or an I/O device.

1.2.2.4.4 System Register Unit (SRU)
The SRU executes various system-level instructions, as well as condition register lo
operations and move to/from special-purpose register instructions. To maintain sy
state, most instructions executed by the SRU are execution-serialized; that is
instruction is held for execution in the SRU until all previously issued instructions h
executed. Results from execution-serialized instructions executed by the SRU ar
available or forwarded for subsequent instructions until the instruction completes.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-11

s for
intained

n unit
ctive

n the
r
entical

ge size

o 256

f the
t are
n-chip
After
cache

ss in the
slated

ry unit

cess, an
lation
rray
le to

hes for

ache
are
dress

te and
ically
aded
1.2.3 Memory Management Units (MMUs)
The 750’s MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory for instructions and data. The MMUs also control access privilege
these spaces on block and page granularities. Referenced and changed status is ma
by the processor for each page to support demand-paged virtual memory systems.

The LSU calculates effective addresses for data loads and stores; the instructio
calculates effective addresses for instruction fetching. The MMU translates the effe
address to determine the correct physical address for the memory access.

The 750 supports the following types of memory translation:

• Real addressing mode—In this mode, translation is disabled by clearing bits i
machine state register (MSR): MSR[IR] for instruction fetching or MSR[DR] fo
data accesses. When address translation is disabled, the physical address is id
to the effective address.

• Page address translation—translates the page frame address for a 4-Kbyte pa

• Block address translation—translates the base address for blocks (128 Kbytes t
Mbytes)

If translation is enabled, the appropriate MMU translates the higher-order bits o
effective address into physical address bits. The lower-order address bits (tha
untranslated and therefore, considered both logical and physical) are directed to the o
caches where they form the index into the eight-way set-associative tag array.
translating the address, the MMU passes the higher-order physical address bits to the
and the cache lookup completes. For caching-inhibited accesses or accesses that mi
cache, the untranslated lower-order address bits are concatenated with the tran
higher-order address bits; the resulting 32-bit physical address is used by the memo
and the system interface, which accesses external memory.

The TLBs store page address translations for recent memory accesses. For each ac
effective address is presented for page and block translation simultaneously. If a trans
is found in both the TLB and the BAT array, the block address translation in the BAT a
is used. Usually the translation is in a TLB and the physical address is readily availab
the on-chip cache. When a page address translation is not in a TLB, hardware searc
one in the page table following the model defined by the PowerPC architecture.

Instruction and data TLBs provide address translation in parallel with the on-chip c
access, incurring no additional time penalty in the event of a TLB hit. The 750’s TLBs
128-entry, two-way set-associative caches that contain instruction and data ad
translations. The 750 automatically generates a TLB search on a TLB miss.

1.2.4 On-Chip Instruction and Data Caches
The 750 implements separate instruction and data caches. Each cache is 32-Kby
eight-way set associative. As defined by the PowerPC architecture, they are phys
indexed. Each cache block contains eight contiguous words from memory that are lo
1-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ever
t load.
hes are
. The
the

cache

the
-block
etting
che
ags are
esource
the

tion
. The
tting
on
from an 8-word boundary (that is, bits EA[27–31] are zeros); thus, a cache block n
crosses a page boundary. An entire cache block can be updated by a four-beat burs
Misaligned accesses across a page boundary can incur a performance penalty. Cac
nonblocking, write-back caches with hardware support for reloading on cache misses
critical double word is transferred on the first beat and is simultaneously written to
cache and forwarded to the requesting unit, minimizing stalls due to load delays. The
being loaded is not blocked to internal accesses while the load completes.

The 750 cache organization is shown in Figure 1-2.

Figure 1-2. Cache Organization

Within one cycle, the data cache provides double-word access to the LSU. Like
instruction cache, the data cache can be invalidated all at once or on a per-cache
basis. The data cache can be disabled and invalidated by clearing HID0[DCE] and s
HID0[DCFI]. The data cache can be locked by setting HID0[DLOCK]. To ensure ca
coherency, the data cache supports the three-state MEI protocol. The data cache t
single-ported, so a simultaneous load or store and a snoop access represent a r
collision. If a snoop hit occurs, the LSU is blocked internally for one cycle to allow
eight-word block of data to be copied to the write-back buffer.

Within one cycle, the instruction cache provides up to four instructions to the instruc
queue. The instruction cache can be invalidated entirely or on a cache-block basis
instruction cache can be disabled and invalidated by clearing HID0[ICE] and se
HID0[ICFI]. The instruction cache can be locked by setting HID0[ILOCK]. The instructi
cache supports only the valid/invalid states.

8 Words/Way

128 Sets

Way 5

Way 6

Way 7

Way 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Way 1

Way 2

Way 3

Way 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

State

State

State

Words [0–7]

State

Words [0–7]

Words [0–7]

Words [0–7]

State

State

State

Words [0–7]

State

Words [0–7]

Words [0–7]

Words [0–7]
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-13

target
been
, it is
m the
am.

s, see

uction
-way,

e. The
le bank
ack

turn
cy is

bits
the
ages
-byte

store
the L1

y are

he can
nd two
re are
e next
iority

ut to
BGA
The 750 also implements a 64-entry (16-set, four-way set-associative) branch
instruction cache (BTIC). The BTIC is a cache of branch instructions that have
encountered in branch/loop code sequences. If the target instruction is in the BTIC
fetched into the instruction queue a cycle sooner than it can be made available fro
instruction cache. Typically the BTIC contains the first two instructions in the target stre
The BTIC can be disabled and invalidated through software.

For more information and timing examples showing cache hit and cache miss latencie
Section 6.3.2, “Instruction Fetch Timing.”

1.2.5 L2 Cache Implementation (Not Supported in the PowerPC 740)
The L2 cache is a unified cache that receives memory requests from both the L1 instr
and data caches independently. The L2 cache is implemented with an on-chip, two
set-associative tag memory, and with external, synchronous SRAMs for data storag
external SRAMs are accessed through a dedicated L2 cache port that supports a sing
of up to 1 Mbyte of synchronous SRAMs. The L2 cache normally operates in write-b
mode and supports system cache coherency through snooping.

Depending on its size, the L2 cache is organized into 64- or 128-byte lines, which in
are subdivided into 32-byte sectors (blocks), the unit at which cache coheren
maintained.

The L2 cache controller contains the L2 cache control register (L2CR), which includes
for enabling parity checking, setting the L2-to-processor clock ratio, and identifying
type of RAM used for the L2 cache implementation. The L2 cache controller also man
the L2 cache tag array, two-way set-associative with 4K tags per way. Each sector (32
cache block) has its own valid and modified status bits.

Requests from the L1 cache generally result from instruction misses, data load or
misses, write-through operations, or cache management instructions. Requests from
cache are looked up in the L2 tags and serviced by the L2 cache if they hit; the
forwarded to the bus interface if they miss.

The L2 cache can accept multiple, simultaneous accesses. The L1 instruction cac
request an instruction at the same time that the L1 data cache is requesting one load a
store operations. The L2 cache also services snoop requests from the bus. If the
multiple pending requests to the L2 cache, snoop requests have highest priority. Th
priority consists of load and store requests from the L1 data cache. The next pr
consists of instruction fetch requests from the L1 instruction cache.

For more information, see Chapter 9, “L2 Cache Interface Operation.”

The L2 cache interface is physically present in the 740, but the IOs are not brought o
the package. Initially, the 740 uses a 255 pin CBGA package; the 750 uses a 360 pin C
package.
1-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

memory
ary

essor

4, 32,
eable
is

nsfer

burst-
ed by
h)

e-beat
at are
hits a

trolled

m that
ible,

d bus

luding
they
750
exists,

a write
snoop
the 750

e is

g and
control
1.2.6 System Interface/Bus Interface Unit (BIU)
The address and data buses operate independently; address and data tenures of a
access are decoupled to provide a more flexible control of memory traffic. The prim
activity of the system interface is transferring data and instructions between the proc
and system memory. There are two types of memory accesses:

• Single-beat transfers—These memory accesses allow transfer sizes of 8, 16, 2
or 64 bits in one bus clock cycle. Single-beat transactions are caused by uncach
read and write operations that access memory directly (that is, when caching
disabled), cache-inhibited accesses, and stores in write-through mode.

• Four-beat burst (32 bytes) data transfers—Burst transactions, which always tra
an entire cache block (32 bytes), are initiated when an entire cache block is
transferred. Because the first-level caches on the 750 are write-back caches,
read memory, burst operations are the most common memory accesses, follow
burst-write memory operations, and single-beat (noncacheable or write-throug
memory read and write operations.

The 750 also supports address-only operations, variants of the burst and singl
operations, (for example, atomic memory operations and global memory operations th
snooped), and address retry activity (for example, when a snooped read access
modified block in the cache). The broadcast of some address-only operations is con
through HID0[ABE]. I/O accesses use the same protocol as memory accesses.

Access to the system interface is granted through an external arbitration mechanis
allows devices to compete for bus mastership. This arbitration mechanism is flex
allowing the 750 to be integrated into systems that implement various fairness an
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, inc
load/store string and multiple instructions, do not necessarily complete in the order
begin—maximizing the efficiency of the bus without sacrificing data coherency. The
allows read operations to go ahead of store operations (except when a dependency
or in cases where a noncacheable access is performed), and provides support for
operation to go ahead of a previously queued read data tenure (for example, letting a
push be enveloped between address and data tenures of a read operation). Because
can dynamically optimize run-time ordering of load/store traffic, overall performanc
improved.

The system interface is specific for each PowerPC microprocessor implementation.

The 750 signals are grouped as shown in Figure 1-3. Signals are provided for clockin
control of the L2 caches, as well as separate L2 address and data buses. Test and
signals provide diagnostics for selected internal circuits.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-15

of one
ds on

tions
of the

bus
other

s bus

parity
e

f
e-

of the
s that

parity
r.
Figure 1-3. System Interface

The system interface supports address pipelining, which allows the address tenure
transaction to overlap the data tenure of another. The extent of the pipelining depen
external arbitration and control circuitry. Similarly, the 750 supports split-bus transac
for systems with multiple potential bus masters—one device can have mastership
address bus while another has mastership of the data bus. Allowing multiple
transactions to occur simultaneously increases the available bus bandwidth for
activity.

The 750’s clocking structure supports a wide range of processor-to-bus clock ratios.

1.2.7 Signals
The 750’s signals are grouped as follows:

• Address arbitration signals—The 750 uses these signals to arbitrate for addres
mastership.

• Address start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals—These signals include the address bus and address
signals. They are used to transfer the address and to ensure the integrity of th
transfer.

• Transfer attribute signals—These signals provide information about the type o
transfer, such as the transfer size and whether the transaction is bursted, writ
through, or caching-inhibited.

• Address termination signals—These signals are used to acknowledge the end
address phase of the transaction. They also indicate whether a condition exist
requires the address phase to be repeated.

• Data arbitration signals—The 750 uses these signals to arbitrate for data bus
mastership.

• Data transfer signals—These signals, which consist of the data bus and data
signals, are used to transfer the data and to ensure the integrity of the transfe

Address Arbitration

Address Start

Address Transfer

Transfer Attribute

Address Termination

Clocks

Data Arbitration

Data Transfer

Data Termination

Processor Status/Control

Test and Control

L2 Cache Address/Data1

L2 Cache Clock/Control1

System Status

VDD VDD (I/O)

750

1 Not supported in the 740
1-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

beat
cates
idual
so
d.

the

cessing

, and
errupt

on

urces

ides

gnals
• Data termination signals—Data termination signals are required after each data
in a data transfer. In a single-beat transaction, a data termination signal also indi
the end of the tenure; in burst accesses, data termination signals apply to indiv
beats and indicate the end of the tenure only after the final data beat. They al
indicate whether a condition exists that requires the data phase to be repeate

• L2 cache clock/control signals—These signals provide clocking and control for
L2 cache. (Not supported in the 740.)

• L2 cache address/data—The 750 has separate address and data buses for ac
the L2 cache. (Not supported in the 740.)

• Interrupt signals—These signals include the interrupt signal, checkstop signals
both soft reset and hard reset signals. These signals are used to generate int
exceptions and, under various conditions, to reset the processor.

• Processor status/control signals—These signals are used to set the reservati
coherency bit, enable the time base, and other functions.

• Miscellaneous signals—These signals are used in conjunction with such reso
as secondary caches and the time base facility.

• JTAG/COP interface signals—The common on-chip processor (COP) unit prov
a serial interface to the system for performing board-level boundary scan
interconnect tests.

• Clock signals—These signals determine the system clock frequency. These si
can also be used to synchronize multiprocessor systems.

NOTE
A bar over a signal name indicates that the signal is active
low—for example,ARTRY (address retry) andTS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as AP[0–3] (address bus parity signals)
and TT[0–4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-17

ction.

nd
1.2.8 Signal Configuration
Figure 1-4 shows the 750's logical pin configuration. The signals are grouped by fun

Figure 1-4. PowerPC 750 Microprocessor Signal Groups

Signal functionality is described in detail in Chapter 7, “Signal Descriptions,” a
Chapter 8, “Bus Interface Operation.”

Data
Arbitration

L2 Cache
Address/
Data

BR
BG

ABB

TS

AP[0–3]

GBL

TSIZ[0–2]

AACK

ARTRY

SYSCLK

DBG

DBWO

DBB

D[0–63]

DP[0–7]

TA
DRTRY

TEA

INT

JTAG/COP

Factory Test

1

1

1

1

1

5

3

4

TBST

WT

PLL_CFG[0–3]

TT[0–4]
5

4

TBEN

1
CLK_OUT

MCP

SRESET

TLBISYNC

L2ADDR[16–0]

SMI

HRESET

QREQ

QACK

CKSTP_IN

CKSTP_OUT

L2DATA[0–63]

L2DP[0–7]

L2CE
L2WE
L2CLK_OUT[A–B]

1

3

1

1

1

1

1

1

1

8

64

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CI 1

A[0–31]
32

L2SYNC_OUT

Address
Arbitration

Address
Bus

L2SYNC_IN

L2ZZ

L2 Cache
Clock/
Control

Address
Termination

Address
Start

Transfer
Attributes

Data
Transfer

Data
Termination

Interrupts/
Resets

Processor
Status/
Control

VDD VDD (I/O)

Clock
Control

Test
Interface

RSRV

17

2

1

1

1

64

8

1

1

L2VDD

L2AVDD

750

DBDIS
1

AVDD

Not supported in
the PowerPC 740
1-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

rface
rate a
put.

the
The
clock,
he PLL

ratios
s is
lock

ance
s the
The
o take

out the
ssor
ach

ming
on in

s the

s
in

ibes
al
1.2.9 Clocking
The 750 requires a single system clock input, SYSCLK, that represents the bus inte
frequency. Internally, the processor uses a phase-locked loop (PLL) circuit to gene
master core clock that is frequency-multiplied and phase-locked to the SYSCLK in
This core frequency is used to operate the internal circuitry.

The PLL is configured by the PLL_CFG[0–3] signals, which select the multiplier that
PLL uses to multiply the SYSCLK frequency up to the internal core frequency.
feedback in the PLL guarantees that the processor clock is phase locked to the bus
regardless of process variations, temperature changes, or parasitic capacitances. T
also ensures a 50% duty cycle for the processor clock.

The 750 supports various processor-to-bus clock frequency ratios, although not all
are available for all frequencies. Configuration of the processor/bus clock ratio
displayed through a 750-specific register, HID1. For information about supported c
frequencies, see the 750 hardware specifications.

1.3 PowerPC 750 Microprocessor: Implementation
The PowerPC architecture is derived from the POWER architecture (Perform
Optimized with Enhanced RISC architecture). The PowerPC architecture share
benefits of the POWER architecture optimized for single-chip implementations.
PowerPC architecture design facilitates parallel instruction execution and is scalable t
advantage of future technological gains.

This section describes the PowerPC architecture in general, and specific details ab
implementation of the 750 as a low-power, 32-bit member of the PowerPC proce
family. The structure of this section follows the organization of the user’s manual; e
subsection provides an overview of each chapter.

• Registers and programming model—Section 1.4, “PowerPC Registers and
Programming Model,” describes the registers for the operating environment
architecture common among PowerPC processors and describes the program
model. It also describes the registers that are unique to the 750. The informati
this section is described more fully in Chapter 2, “Programming Model.”

• Instruction set and addressing modes—Section 1.5, “Instruction Set,” describe
PowerPC instruction set and addressing modes for the PowerPC operating
environment architecture, and defines and describes the PowerPC instruction
implemented in the 750. The information in this section is described more fully
Chapter 2, “Programming Model.”

• Cache implementation—Section 1.6, “On-Chip Cache Implementation,” descr
the cache model that is defined generally for PowerPC processors by the virtu
environment architecture. It also provides specific details about the 750 cache
implementation. The information in this section is described more fully in
Chapter 3, “Instruction and Data Cache Operation.”
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-19

del
 750

ally
his
ry
y in

tion
ction

ower
 or

 the

eding
-
ms
 this
ent.”

,

t are
• Exception model—Section 1.7, “Exception Model,” describes the exception mo
of the PowerPC operating environment architecture and the differences in the
exception model. The information in this section is described more fully in
Chapter 4, “Exceptions.”

• Memory management—Section 1.8, “Memory Management,” describes gener
the conventions for memory management among the PowerPC processors. T
section also describes the 750’s implementation of the 32-bit PowerPC memo
management specification. The information in this section is described more full
Chapter 5, “Memory Management.”

• Instruction timing—Section 1.9, “Instruction Timing,” provides a general
description of the instruction timing provided by the superscalar, parallel execu
supported by the PowerPC architecture and the 750. The information in this se
is described more fully in Chapter 6, “Instruction Timing.”

• Power management—Section 1.10, “Power Management,” describes how the p
management can be used to reduce power consumption when the processor,
portions of it, are idle. The information in this section is described more fully in
Chapter 10, “Power and Thermal Management.”

• Thermal management—Section 1.11, “Thermal Management,” describes how
thermal management unit and its associated registers (THRM1–THRM3) and
exception can be used to manage system activity in a way that prevents exce
system and junction temperature thresholds. This is particularly useful in high
performance portable systems, which cannot use the same cooling mechanis
(such as fans) that control overheating in desktop systems. The information in
section is described more fully in Chapter 10, “Power and Thermal Managem

• Performance monitor—Section 1.12, “Performance Monitor,” describes the
performance monitor facility, which system designers can use to help bring up
debug, and optimize software performance. The information in this section is
described more fully in Chapter 11, “Performance Monitor.”

The following sections summarize the features of the 750, distinguishing those tha
defined by the architecture from those that are unique to the 750 implementation.
1-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

erPC
ture

el
,
 a

del
ribes
A

, and
 the

he and
of the
e, see

ssor

tional
or are

gister
rce

ically
cation
rpose
sor also

rating
ting
of the
ted only
The PowerPC architecture consists of the following layers, and adherence to the Pow
architecture can be described in terms of which of the following levels of the architec
is implemented:

• PowerPC user instruction set architecture (UISA)—Defines the base user-lev
instruction set, user-level registers, data types, floating-point exception model
memory models for a uniprocessor environment, and programming model for
uniprocessor environment.

• PowerPC virtual environment architecture (VEA)—Describes the memory mo
for a multiprocessor environment, defines cache control instructions, and desc
other aspects of virtual environments. Implementations that conform to the VE
also adhere to the UISA, but may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements
the exception model. Implementations that conform to the OEA also adhere to
UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cac
system interface implementations. The 750 implementations support the three levels
architecture described above. For more information about the PowerPC architectur
PowerPC Microprocessor Family: The Programming Environments.

Specific features of the 750 are listed in Section 1.2, “PowerPC 750 Microproce
Features.”

1.4 PowerPC Registers and Programming Model
The PowerPC architecture defines register-to-register operations for most computa
instructions. Source operands for these instructions are accessed from the registers
provided as immediate values embedded in the instruction opcode. The three-re
instruction format allows specification of a target register distinct from the two sou
operands. Load and store instructions transfer data between registers and memory.

PowerPC processors have two levels of privilege—supervisor mode of operation (typ
used by the operating system) and user mode of operation (used by the appli
software). The programming models incorporate 32 GPRs, 32 FPRs, special-pu
registers (SPRs), and several miscellaneous registers. Each PowerPC microproces
has its own unique set of hardware implementation-dependent (HID) registers.

Having access to privileged instructions, registers, and other resources allows the ope
system to control the application environment (providing virtual memory and protec
operating-system and critical machine resources). Instructions that control the state
processor, the address translation mechanism, and supervisor registers can be execu
when the processor is operating in supervisor mode.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-21

. The
f the
Figure 1-5 shows all the 750 registers available at the user and supervisor level
numbers to the right of the SPRs indicate the number that is used in the syntax o
instruction operands to access the register.

For more information, see Chapter 2, “Programming Model.”
1-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Figure 1-5. PowerPC 750 Microprocessor Programming Model—Registers

ICTC SPR 1019
SPR 1020

SPR 1021

SPR 1022

THRM1

THRM2

THRM3

SPR 937

SPR 938

SPR 941

SPR 942

Performance
Counters 1

Sampled
Instruction
Address 1

DSISR

Data Address
Register

SPRGs

Exception Handling Registers
Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State
Register

MSR

Processor
Version
Register

SPR 287PVR

Configuration Registers
Hardware
Implementation
Registers 1

SPR 1

USER MODEL—UISA

Floating-Point
Status and

Control Register

FPSCR

Condition
Register

General-Purpose
Registers

XER

XER

SPR 8

Link Register

LR

SUPERVISOR MODEL—OEA

DecrementerExternal Access
Register

EAR

SDR1

SPR 9

Count
Register

Miscellaneous Registers

Segment
Registers

1These registers are 750-specific registers. They may not be supported by other PowerPC processors.

CR

Floating-Point
RegistersPerformance

Monitor Registers
(For Reading)

Performance Counters 1

Monitor Control 1

SPR 939USIA

Sampled Instruction
Address 1

Performance Monitor Registers

Monitor Control 1

Time Base
(For Writing)

Power/Thermal Management Registers
Thermal Assist
Unit Registers 1

Instruction Cache
Throttling Control
Register 1

USER MODEL—VEA

TBL TBR 268

Time Base Facility (For Reading)

CTR

2Not supported by the 740.

GPR0

GPR1

GPR31

TBU TBR 269

IBAT0U

IBAT0L

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

DBAT0U

DBAT0L

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SR0

SR1

SR15

SDR1 SPR 25

HID0

HID1

SPR 1008

SPR 1009

FPR0

FPR1

FPR31

UPMC1

UPMC2

UPMC3

UPMC4

UMMCR0

UMMCR1

SPR 936

SPR 940

SPR 953

SPR 954

SPR 957

SPR 958

PMC1

PMC2

PMC3

PMC4

SIA SPR 955

MMCR0

MMCR1

SPR 952

SPR 956

SPRG0

SPRG1

SPRG2

SPRG3

SPR 272

SPR 273

SPR 274

SPR 275

DAR

DSISR

SPR 19

SPR 18

SRR0 SPR 26

SRR1 SPR 27

SPR 282 TBL SPR 284

TBU SPR 285

DEC SPR 22

Data Address
Breakpoint Register

DABR SPR 1013

L2 Control
Register 1, 2

L2CR SPR 1017

Instruction Address
Breakpoint Register 1

IABR SPR 1010
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-23

le 1-1

, such
ecial

wn in
ed by
rands
e use

f
and

SPRs
s
hese
es the
The following tables summarize the PowerPC registers implemented in the 750; Tab
describes registers (excluding SPRs) defined by the architecture.

The OEA defines numerous special-purpose registers that serve a variety of functions
as providing controls, indicating status, configuring the processor, and performing sp
operations. During normal execution, a program can access the registers, sho
Figure 1-5, depending on the program’s access privilege (supervisor or user, determin
the privilege-level (PR) bit in the MSR). GPRs and FPRs are accessed through ope
that are part of the instructions. Access to registers can be explicit (that is, through th
of specific instructions for that purpose such as Move to Special-Purpose Register (mtspr)
and Move from Special-Purpose Register (mfspr) instructions) or implicit, as the part o
the execution of an instruction. Some registers can be accessed both explicitly
implicitly.

In the 750, all SPRs are 32 bits wide. Table 1-2 describes the architecture-defined
implemented by the 750.The Programming Environments Manualdescribes these register
in detail, including bit descriptions. Section 2.1.1, “Register Set,” describes how t
registers are implemented in the 750. In particular, this section describes which featur
PowerPC architecture defines as optional are implemented on the 750.

Table 1-1. Architecture-Defined Registers (Excluding SPRs)

Register Level Function

CR User The condition register (CR) consists of eight four-bit fields that reflect the results of certain
operations, such as move, integer and floating-point compare, arithmetic, and logical
instructions, and provide a mechanism for testing and branching.

FPRs User The 32 floating-point registers (FPRs) serve as the data source or destination for floating-
point instructions. These 64-bit registers can hold either single- or double-precision floating-
point values.

FPSCR User The floating-point status and control register (FPSCR) contains the floating-point exception
signal bits, exception summary bits, exception enable bits, and rounding control bits needed
for compliance with the IEEE-754 standard.

GPRs User The 32 GPRs serve as the data source or destination for integer instructions.

MSR Supervisor The machine state register (MSR) defines the processor state. Its contents are saved when
an exception is taken and restored when exception handling completes. The 750 implements
MSR[POW], (defined by the architecture as optional), which is used to enable the power
management feature. The 750-specific MSR[PM] bit is used to mark a process for the
performance monitor.

SR0–
SR15

Supervisor The sixteen 32-bit segment registers (SRs) define the 4-Gbyte space as sixteen 256-Mbyte
segments. The 750 implements segment registers as two arrays—a main array for data
accesses and a shadow array for instruction accesses; see Figure 1-1. Loading a segment
entry with the Move to Segment Register (mtsr) instruction loads both arrays. The mfsr
instruction reads the master register, shown as part of the data MMU in Figure 1-1.
1-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

y the
tailed
Table 1-3 describes the supervisor-level SPRs in the 750 that are not defined b
PowerPC architecture. Section 2.1.2, “PowerPC 750-Specific Registers,” gives de
descriptions of these registers, including bit descriptions.

Table 1-2. Architecture-Defined SPRs Implemented

Register Level Function

LR User The link register (LR) can be used to provide the branch target address and to hold the
return address after branch and link instructions.

BATs Supervisor The architecture defines 16 block address translation registers (BATs), which operate in
pairs. There are four pairs of data BATs (DBATs) and four pairs of instruction BATs
(IBATs). BATs are used to define and configure blocks of memory.

CTR User The count register (CTR) is decremented and tested by branch-and-count instructions.

DABR Supervisor The optional data address breakpoint register (DABR) supports the data address
breakpoint facility.

DAR User The data address register (DAR) holds the address of an access after an alignment or DSI
exception.

DEC Supervisor The decrementer register (DEC) is a 32-bit decrementing counter that provides a way to
schedule decrementer exceptions.

DSISR User The DSISR defines the cause of data access and alignment exceptions.

EAR Supervisor The external access register (EAR) controls access to the external access facility through
the External Control In Word Indexed (eciwx) and External Control Out Word Indexed
(ecowx) instructions.

PVR Supervisor The processor version register (PVR) is a read-only register that identifies the processor.

SDR1 Supervisor SDR1 specifies the page table format used in virtual-to-physical page address translation.

SRR0 Supervisor The machine status save/restore register 0 (SRR0) saves the address used for restarting
an interrupted program when a Return from Interrupt (rfi) instruction executes.

SRR1 Supervisor The machine status save/restore register 1 (SRR1) is used to save machine status on
exceptions and to restore machine status when an rfi instruction is executed.

SPRG0–
SPRG3

Supervisor SPRG0–SPRG3 are provided for operating system use.

TB User: read
Supervisor:
read/write

The time base register (TB) is a 64-bit register that maintains the time of day and operates
interval timers. The TB consists of two 32-bit fields—time base upper (TBU) and time base
lower (TBL).

XER User The XER contains the summary overflow bit, integer carry bit, overflow bit, and a field
specifying the number of bytes to be transferred by a Load String Word Indexed (lswx) or
Store String Word Indexed (stswx) instruction.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-25

mats
rallel
eatly
1.5 Instruction Set
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction for
are consistent among all instruction types, permitting efficient decoding to occur in pa
with operand accesses. This fixed instruction length and consistent format gr
simplifies instruction pipelining.

For more information, see Chapter 2, “Programming Model.”

Table 1-3. Implementation-Specific Registers

Register Level Function

HID0 Supervisor The hardware implementation-dependent register 0 (HID0) provides checkstop enables
and other functions.

HID1 Supervisor The hardware implementation-dependent register 1 (HID1) allows software to read the
configuration of the PLL configuration signals.

IABR Supervisor The instruction address breakpoint register (IABR) supports instruction address
breakpoint exceptions. It can hold an address to compare with instruction addresses in
the IQ. An address match causes an instruction address breakpoint exception.

ICTC Supervisor The instruction cache-throttling control register (ICTC) has bits for controlling the interval
at which instructions are fetched into the instruction buffer in the instruction unit. This
helps control the 750’s overall junction temperature.

L2CR Supervisor The L2 cache control register (L2CR) is used to configure and operate the L2 cache. It
has bits for enabling parity checking, setting the L2-to-processor clock ratio, and
identifying the type of RAM used for the L2 cache implementation. (The L2 cache feature
is not supported in the 740.)

MMCR0–
MMCR1

Supervisor The monitor mode control registers (MMCR0–MMCR1) are used to enable various
performance monitoring interrupt functions. UMMCR0–UMMCR1 provide user-level read
access to MMCR0–MMCR1.

PMC1–
PMC4

Supervisor The performance monitor counter registers (PMC1–PMC4) are used to count specified
events. UPMC1–UPMC4 provide user-level read access to these registers.

SIA Supervisor The sampled instruction address register (SIA) holds the EA of an instruction executing
at or around the time the processor signals the performance monitor interrupt condition.
The USIA register provides user-level read access to the SIA.

THRM1,
THRM2

Supervisor THRM1 and THRM2 provide a way to compare the junction temperature against two
user-provided thresholds. The thermal assist unit (TAU) can be operated so that the
thermal sensor output is compared to only one threshold, selected in THRM1 or THRM2.

THRM3 Supervisor THRM3 is used to enable the TAU and to control the output sample time.

UMMCR0–
UMMCR1

User The user monitor mode control registers (UMMCR0–UMMCR1) provide user-level read
access to MMCR0–MMCR1.

UPMC1–
UPMC4

User The user performance monitor counter registers (UPMC1–UPMC4) provide user-level
read access to PMC1–PMC4.

USIA User The user sampled instruction address register (USIA) provides user-level read access to
the SIA register.
1-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

re

ster

ters.
1.5.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

• Integer instructions—These include computational and logical instructions.

— Integer arithmetic instructions

— Integer compare instructions

— Integer logical instructions

— Integer rotate and shift instructions

• Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR.

— Floating-point arithmetic instructions

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions

— Floating-point compare instructions

— Floating-point status and control instructions

• Load/store instructions—These include integer and floating-point load and sto
instructions.

— Integer load and store instructions

— Integer load and store multiple instructions

— Floating-point load and store

— Primitives used to construct atomic memory operations (lwarx and stwcx.
instructions)

• Flow control instructions—These include branching instructions, condition regi
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions

— Condition register logical instructions

• Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment regis

— Move to/from SPR instructions

— Move to/from MSR

— Synchronize

— Instruction synchronize

— Order loads and stores
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-27

Bs,

ion or

point
ouble
e four

and
-word
FPRs).

in a
tents
with

state;
f an
everal

signed
• Memory control instructions—These instructions provide control of caches, TL
and SRs.

— Supervisor-level cache management instructions

— User-level cache instructions

— Segment register manipulation instructions

— Translation lookaside buffer management instructions

This grouping does not indicate the execution unit that executes a particular instruct
group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-
instructions operate on single-precision (one word) and double-precision (one d
word) floating-point operands. The PowerPC architecture uses instructions that ar
bytes long and word-aligned. It provides for byte, half-word, and word operand loads
stores between memory and a set of 32 GPRs. It also provides for word and double
operand loads and stores between memory and a set of 32 floating-point registers (

Computational instructions do not modify memory. To use a memory operand
computation and then modify the same or another memory location, the memory con
must be loaded into a register, modified, and then written back to the target location
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution
however, the flow of instructions can be interrupted directly by the execution o
instruction or by an asynchronous event. Either kind of exception may cause one of s
components of the system software to be invoked.

Effective address computations for both data and instruction accesses use 32-bit un
binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

1.5.2 PowerPC 750 Microprocessor Instruction Set
The 750 instruction set is defined as follows:

• The 750 provides hardware support for all 32-bit PowerPC instructions.

• The 750 implements the following instructions optional to the PowerPC
architecture:

— External Control In Word Indexed (eciwx)

— External Control Out Word Indexed (ecowx)

— Floating Select (fsel)

— Floating Reciprocal Estimate Single-Precision (fres)

— Floating Reciprocal Square Root Estimate (frsqrte)

— Store Floating-Point as Integer Word (stfiwx)
1-28 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

he in
f the

ache

ns. For
a caches
wing

back or

VEA
t cache

and
the

ess to
ssing

750
in

flow
rising
f the

address
rs in
1.6 On-Chip Cache Implementation
The following subsections describe the PowerPC architecture’s treatment of cac
general, and the 750-specific implementation, respectively. A detailed description o
750 cache implementation is provided in Chapter 3, “Instruction and Data C
Operation.”

1.6.1 PowerPC Cache Model
The PowerPC architecture does not define hardware aspects of cache implementatio
example, PowerPC processors can have unified caches, separate instruction and dat
(Harvard architecture), or no cache at all. PowerPC microprocessors control the follo
memory access modes on a page or block basis:

• Write-back/write-through mode
• Caching-inhibited mode
• Memory coherency

The caches are physically addressed, and the data cache can operate in either write-
write-through mode, as specified by the PowerPC architecture.

The PowerPC architecture defines the term ‘cache block’ as the cacheable unit. The
and OEA define cache management instructions that a programmer can use to affec
contents.

1.6.2 PowerPC 750 Microprocessor Cache Implementation
The 750 cache implementation is described in Section 1.2.4, “On-Chip Instruction
Data Caches,” and Section 1.2.5, “L2 Cache Implementation (Not Supported in
PowerPC 740).” The BPU also contains a 64-entry BTIC that provides immediate acc
cached target instructions. For more information, see Section 1.2.2.2, “Branch Proce
Unit (BPU).”

1.7 Exception Model
The following sections describe the PowerPC exception model and the
implementation. A detailed description of the 750 exception model is provided
Chapter 4, “Exceptions.”

1.7.1 PowerPC Exception Model
The PowerPC exception mechanism allows the processor to interrupt the instruction
to handle certain situations caused by external signals, errors, or unusual conditions a
from the instruction execution. When exceptions occur, information about the state o
processor is saved to certain registers, and the processor begins execution at an
(exception vector) predetermined for each exception. Exception processing occu
supervisor mode.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-29

ore
the

tion

refore,
, they
ecuted

are
ptions
recise
tions
d the

nly one
ltiple
ption
eption
tially

n was
red in
reset

eption

ed
ption
trap
the

 the
ler).

h the
odes
ays
Although multiple exception conditions can map to a single exception vector, a m
specific condition may be determined by examining a register associated with
exception—for example, the DSISR and the FPSCR. Additionally, some excep
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; the
although a particular implementation may recognize exception conditions out of order
are handled in order. When an instruction-caused exception is recognized, any unex
instructions that appear earlier in the instruction stream, including any that
undispatched, are required to complete before the exception is taken, and any exce
those instructions cause must also be handled first; likewise, asynchronous, p
exceptions are recognized when they occur but are not handled until the instruc
currently in the completion queue successfully retire or generate an exception, an
completion queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, o
exception is handled at a time. For example, if one instruction encounters mu
exception conditions, those conditions are handled sequentially. After the exce
handler handles an exception, the instruction processing continues until the next exc
condition is encountered. Recognizing and handling exception conditions sequen
guarantees that exceptions are recoverable.

When an exception is taken, information about the processor state before the exceptio
taken is saved in SRR0 and SRR1. Exception handlers must save the information sto
SRR0 and SRR1 early to prevent the program state from being lost due to a system
and machine check exception or due to an instruction-caused exception in the exc
handler, and before enabling external interrupts.

The PowerPC architecture supports four types of exceptions:

• Synchronous, precise—These are caused by instructions. All instruction-caus
exceptions are handled precisely; that is, the machine state at the time the exce
occurs is known and can be completely restored. This means that (excluding the
and system call exceptions) the address of the faulting instruction is provided to
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of
faulting instruction (or at an alternate address provided by the exception hand
When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

• Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even thoug
750 provides a means to enable the imprecise modes, it implements these m
identically to the precise mode (that is, enabled floating-point exceptions are alw
precise).
1-30 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

y
tions
n of

s may
ns

bility,
cludes
pports
odes
tions
• Asynchronous, maskable—The PowerPC architecture defines external and
decrementer interrupts as maskable, asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and an
exceptions associated with that instruction, completes execution. If no instruc
are in the execution units, the exception is taken immediately upon determinatio
the correct restart address (for loading SRR0). As shown in Table 1-4, the 750
implements additional asynchronous, maskable exceptions.

• Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions: system reset and the machine check exception. These exception
not be recoverable, or may provide a limited degree of recoverability. Exceptio
report recoverability through the MSR[RI] bit.

1.7.2 PowerPC 750 Microprocessor Exception Implementation
The 750 exception classes described above are shown in Table 1-4.

Although exceptions have other characteristics, such as priority and recovera
Table 1-4 describes categories of exceptions the 750 handles uniquely. Table 1-4 in
no synchronous imprecise exceptions; although the PowerPC architecture su
imprecise handling of floating-point exceptions, the 750 implements these exception m
precisely. Table 1-5 lists 750 exceptions and conditions that cause them. Excep
specific to the 750 are indicated.

Table 1-4. PowerPC 750 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Type

Asynchronous, nonmaskable Imprecise Machine check, system reset

Asynchronous, maskable Precise External, decrementer, system management, performance
monitor, and thermal management interrupts

Synchronous Precise Instruction-caused exceptions

Table 1-5. Exceptions and Conditions

Exception Type
Vector Offset

(hex)
Causing Conditions

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an
address, data, or L2 bus parity error. MSR[ME] must be set.

DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.

ISI 00400 As defined by the PowerPC architecture.

External interrupt 00500 MSR[EE] = 1 and INT is asserted.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-31

erPC
750
1.8 Memory Management
The following subsections describe the memory management features of the Pow
architecture, and the 750 implementation, respectively. A detailed description of the
MMU implementation is provided in Chapter 5, “Memory Management.”

Alignment 00600 • A floating-point load/store, stmw , stwcx , lmw , lwarx , eciwx or ecowx
instruction operand is not word-aligned.

• A multiple/string load/store operation is attempted in little-endian mode.
• The operand of dcbz is in memory that is write-through-required or

caching-inhibited or the cache is disabled

Program 00700 As defined by the PowerPC architecture.

Floating-point
unavailable

00800 As defined by the PowerPC architecture.

Decrementer 00900 As defined by the PowerPC architecture, when the most significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1.

Reserved 00A00–00BFF —

System call 00C00 Execution of the System Call (sc) instruction.

Trace 00D00 MSR[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike the
architecture definition, isync does not cause a trace exception

Reserved 00E00 The 750 does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E10–00EFF —

Performance monitor1 00F00 The limit specified in a PMC register is reached and MMCR0[ENINT] = 1

Instruction address
breakpoint1

01300 IABR[0–29] matches EA[0–29] of the next instruction to complete, IABR[TE]
matches MSR[IR], and IABR[BE] = 1.

System management
interrupt1

01400 MSR[EE] = 1 and SMI is asserted.

Reserved 01500–016FF —

Thermal management
interrupt1

01700 Thermal management is enabled, the junction temperature exceeds the
threshold specified in THRM1 or THRM2, and MSR[EE] = 1.

Reserved 01800–02FFF —

Note :
1750-specific

Table 1-5. Exceptions and Conditions (Continued)

Exception Type
Vector Offset

(hex)
Causing Conditions
1-32 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

sical
ages of
ddress
, store,

he 750
odel
s with
byte

rtual

data
s that
tem

irtual
ysical
mory

etween
2, and
table

bytes
r table

data
as the

of the

MU.

earch
plete
1.8.1 PowerPC Memory Management Model
The primary functions of the MMU are to translate logical (effective) addresses to phy
addresses for memory accesses and to provide access protection on blocks and p
memory. There are two types of accesses generated by the 750 that require a
translation—instruction accesses, and data accesses to memory generated by load
and cache control instructions.

The PowerPC architecture defines different resources for 32- and 64-bit processors; t
implements the 32-bit memory management model. The memory-management m
provides 4 Gbytes of logical address space accessible to supervisor and user program
a 4-Kbyte page size and 256-Mbyte segment size. BAT block sizes range from 128 K
to 256 Mbyte and are software selectable. In addition, it defines an interim 52-bit vi
address and hashed page tables for generating 32-bit physical addresses.

The architecture also provides independent four-entry BAT arrays for instructions and
that maintain address translations for blocks of memory. These entries define block
can vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by sys
software.

The PowerPC MMU and exception model support demand-paged virtual memory. V
memory management permits execution of programs larger than the size of ph
memory; demand-paged implies that individual pages are loaded into physical me
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping b
virtual page numbers and physical page numbers. The page table size is a power of
its starting address is a multiple of its size. The page table contains a number of page
entry groups (PTEGs). A PTEG contains eight page table entries (PTEs) of eight
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points fo
search operations.

Setting MSR[IR] enables instruction address translations and MSR[DR] enables
address translations. If the bit is cleared, the respective effective address is the same
physical address.

1.8.2 PowerPC 750 Microprocessor Memory Management
Implementation

The 750 implements separate MMUs for instructions and data. It implements a copy
segment registers in the instruction MMU; however, read and write accesses (mfsr and
mtsr) are handled through the segment registers implemented as part of the data M
The 750 MMU is described in Section 1.2.3, “Memory Management Units (MMUs).”

The R (referenced) bit is updated in the PTE in memory (if necessary) during a table s
due to a TLB miss. Updates to the changed (C) bit are treated like TLB misses. A com
table search is performed and the entire TLB entry is rewritten to update the C bit.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-33

hich
erent
n pass

n. This

parate
dent

ions,
aving

store
s are
ctions

ch all
Some
units
tages

ename
1.9 Instruction Timing
The 750 is a pipelined, superscalar processor. A pipelined processor is one in w
instruction processing is divided into discrete stages, allowing work to be done on diff
instructions in each stage. For example, after an instruction completes one stage, it ca
on to the next stage leaving the previous stage available to the subsequent instructio
improves overall instruction throughput.

A superscalar processor is one that issues multiple independent instructions into se
execution units, allowing instructions to execute in parallel. The 750 has six indepen
execution units, two for integer instructions, and one each for floating-point instruct
branch instructions, load/store instructions, and system register instructions. H
separate GPRs and FPRs allows integer, floating-point calculations, and load and
operations to occur simultaneously without interference. Additionally, rename buffer
provided to allow operations to post execution results for use by subsequent instru
without committing them to the architected FPRs and GPRs.

As shown in Figure 1-6, the common pipeline of the 750 has four stages through whi
instructions must pass—fetch, decode/dispatch, execute, and complete/write back.
instructions occupy multiple stages simultaneously and some individual execution
have additional stages. For example, the floating-point pipeline consists of three s
through which all floating-point instructions must pass.

Figure 1-6. Pipeline Diagram

Note that Figure 1-6 does not show features, such as reservation stations and r
buffers that reduce stalls and improve instruction throughput.

Fetch

Complete (Write-Back)

Dispatch

Execute Stage

FPU3SRU IU2IU1

Maximum three-instruction dispatch
per clock cycle (includes one branch
instruction)

Maximum two-instruction
completion per clock cycle

FPU2

FPU1

LSU1

Maximum four-instruction fetch
per clock cycle

LSU2

BPU
1-34 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ws:

ory
des
r LR

e
the

from
f a
name

 the

e
um
tion.

for a

rites

ernal
tage
 is

PU
PU

 first
tage

 and
(and
ing

tom
sing

riate
The instruction pipeline in the 750 has four major pipeline stages, described as follo

• The fetch pipeline stage primarily involves retrieving instructions from the mem
system and determining the location of the next instruction fetch. The BPU deco
branches during the fetch stage and removes those that do not update CTR o
from the instruction stream.

• The dispatch stage is responsible for decoding the instructions supplied by th
instruction fetch stage and determining which instructions can be dispatched in
current cycle. If source operands for the instruction are available, they are read
the appropriate register file or rename register to the execute pipeline stage. I
source operand is not available, dispatch provides a tag that indicates which re
register will supply the operand when it becomes available. At the end of the
dispatch stage, the dispatched instructions and their operands are latched by
appropriate execution unit.

• Instructions executed by the IUs, FPU, SRU, and LSU are dispatched from th
bottom two positions in the instruction queue. In a single clock cycle, a maxim
of two instructions can be dispatched to these execution units in any combina
When an instruction is dispatched, it is assigned a position in the six-entry
completion queue. A branch instruction can be issued on the same clock cycle
maximum three-instruction dispatch.

• During the execute pipeline stage, each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), w
the instruction's result into the appropriate rename register, and notifies the
completion stage that the instruction has finished execution. In the case of an int
exception, the execution unit reports the exception to the completion pipeline s
and (except for the FPU) discontinues instruction execution until the exception
handled. The exception is not signaled until that instruction is the next to be
completed. Execution of most floating-point instructions is pipelined within the F
allowing up to three instructions to be executing in the FPU concurrently. The F
stages are multiply, add, and round-convert. Execution of most load/store
instructions is also pipelined. The load/store unit has two pipeline stages. The
stage is for effective address calculation and MMU translation and the second s
is for accessing the data in the cache.

• The complete pipeline stage maintains the correct architectural machine state
transfers execution results from the rename registers to the GPRs and FPRs
CTR and LR, for some instructions) as instructions are retired. As with dispatch
instructions from the instruction queue, instructions are retired from the two bot
positions in the completion queue. If completion logic detects an instruction cau
an exception, all following instructions are cancelled, their execution results in
rename registers are discarded, and instructions are fetched from the approp
exception vector.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-35

ty of

s for

in the

and
the
ill

is in
upt, a
to the
tate

 full-

ping,
turns
stem
chine
w

LL
t, a

aving
Because the PowerPC architecture can be applied to such a wide varie
implementations, instruction timing varies among PowerPC processors.

For a detailed discussion of instruction timing with examples and a table of latencie
each execution unit, see Chapter 6, “Instruction Timing.”

1.10 Power Management
The 750 provides four power modes, selectable by setting the appropriate control bits
MSR and HID0 registers. The four power modes are as follows:

• Full-power—This is the default power state of the 750. The 750 is fully powered
the internal functional units are operating at the full processor clock speed. If
dynamic power management mode is enabled, functional units that are idle w
automatically enter a low-power state without affecting performance, software
execution, or external hardware.

• Doze—All the functional units of the 750 are disabled except for the time
base/decrementer registers and the bus snooping logic. When the processor
doze mode, an external asynchronous interrupt, a system management interr
decrementer exception, a hard or soft reset, or machine check brings the 750 in
full-power state. The 750 in doze mode maintains the PLL in a fully powered s
and locked to the system external clock input (SYSCLK) so a transition to the
power state takes only a few processor clock cycles.

• Nap—The nap mode further reduces power consumption by disabling bus snoo
leaving only the time base register and the PLL in a powered state. The 750 re
to the full-power state upon receipt of an external asynchronous interrupt, a sy
management interrupt, a decrementer exception, a hard or soft reset, or a ma
check input (MCP). A return to full-power state from a nap state takes only a fe
processor clock cycles. When the processor is in nap mode, ifQACK is negated, the
processor is put in doze mode to support snooping.

• Sleep—Sleep mode minimizes power consumption by disabling all internal
functional units, after which external system logic may disable the PLL and
SYSCLK. Returning the 750 to the full-power state requires the enabling of the P
and SYSCLK, followed by the assertion of an external asynchronous interrup
system management interrupt, a hard or soft reset, or a machine check input (MCP)
signal after the time required to relock the PLL.

Chapter 10, “Power and Thermal Management,” provides information about power s
and thermal management modes for the 750.
1-36 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ility
size
t sink

high

rating
m can
r the

rature
from

ermal

ntrol
and

eshold

s
as

al
hold
RM1

le
rupt
ll as

e by
rough

aving
1.11 Thermal Management
The 750’s thermal assist unit (TAU) provides a way to control heat dissipation. This ab
is particularly useful in portable computers, which, due to power consumption and
limitations, cannot use desktop cooling solutions such as fans. Therefore, better hea
designs coupled with intelligent thermal management is of critical importance for
performance portable systems.

Primarily, the thermal management system monitors and regulates the system’s ope
temperature. For example, if the temperature is about to exceed a set limit, the syste
be made to slow down or even suspend operations temporarily in order to lowe
temperature.

The thermal management facility also ensures that the processor’s junction tempe
does not exceed the operating specification. To avoid the inaccuracies that arise
measuring junction temperature with an external thermal sensor, the 750’s on-chip th
sensor and logic tightly couples the thermal management implementation.

The TAU consists of a thermal sensor, digital-to-analog convertor, comparator, co
logic, and the dedicated SPRs described in Section 1.4, “PowerPC Registers
Programming Model.” The TAU does the following:

• Compares the junction temperature against user-programmable thresholds

• Generates a thermal management interrupt if the temperature crosses the thr

• Enables the user to estimate the junction temperature by way of a software
successive approximation routine

The TAU is controlled through the privilegedmtspr/mfspr instructions to the three SPR
provided for configuring and controlling the sensor control logic, which function
follows:

• THRM1 and THRM2 provide the ability to compare the junction temperature
against two user-provided thresholds. Having dual thresholds gives the therm
management software finer control of the junction temperature. In single thres
mode, the thermal sensor output is compared to only one threshold in either TH
or THRM2.

• THRM3 is used to enable the TAU and to control the comparator output samp
time. The thermal management logic manages the thermal management inter
generation and time multiplexed comparisons in the dual threshold mode as we
other control functions.

Instruction cache throttling provides control of the 750’s overall junction temperatur
determining the interval at which instructions are fetched. This feature is accessed th
the ICTC register.

Chapter 10, “Power and Thermal Management,” provides information about power s
and thermal management modes for the 750.
Chapter 1. PowerPC 740/PowerPC 750 Overview 1-37

o help
ounts
mory

to by
ccess
erPC
0 or
s for
tion
r the

gram

from

nitor
1.12 Performance Monitor
The 750 incorporates a performance monitor facility that system designers can use t
bring up, debug, and optimize software performance. The performance monitor c
events during execution of code, relating to dispatch, execution, completion, and me
accesses.

The performance monitor incorporates several registers that can be read and written
supervisor-level software. User-level versions of these registers provide read-only a
for user-level applications. These registers are described in Section 1.4, “Pow
Registers and Programming Model.” Performance monitor control registers, MMCR
MMCR1, can be used to specify which events are to be counted and the condition
which a performance monitoring interrupt is taken. Additionally, the sampled instruc
address register, SIA (USIA), holds the address of the first instruction to complete afte
counter overflowed.

Attempting to write to a user-read-only performance monitor register causes a pro
exception, regardless of the MSR[PR] setting.

When a performance monitoring interrupt occurs, program execution continues
vector offset 0x00F00.

Chapter 11, “Performance Monitor,” describes the operation of the performance mo
diagnostic tool incorporated in the 750.
1-38 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

atures
erPC

ew of
hese
isters.
ter 2,

on set
ent
for all
n-chip
egister
rce
g the
mory

ght of
of the
ss the
Chapter 2
Programming Model
20
20

This chapter describes the PowerPC 750 programming model, emphasizing those fe
specific to the 750 processor and summarizing those that are common to Pow
processors. It consists of three major sections, which describe the following:

• Registers implemented in the 750
• Operand conventions
• The 750 instruction set

For detailed information about architecture-defined features, seeThe Programming
Environments Manual.

2.1 The PowerPC 750 Processor Register Set
This section describes the registers implemented in the 750. It includes an overvi
registers defined by the PowerPC architecture, highlighting differences in how t
registers are implemented in the 750, and a detailed description of 750-specific reg
Full descriptions of the architecture-defined register set are provided in Chap
“PowerPC Register Set,” inThe Programming Environments Manual.

Registers are defined at all three levels of the PowerPC architecture—user instructi
architecture (UISA), virtual environment architecture (VEA), and operating environm
architecture (OEA). The PowerPC architecture defines register-to-register operations
computational instructions. Source data for these instructions are accessed from the o
registers or are provided as immediate values embedded in the opcode. The three-r
instruction format allows specification of a target register distinct from the two sou
registers, thus preserving the original data for use by other instructions and reducin
number of instructions required for certain operations. Data is transferred between me
and registers with explicit load and store instructions only.

2.1.1 Register Set
The registers implemented on the 750 are shown in Figure 2-1. The number to the ri
the special-purpose registers (SPRs) indicates the number that is used in the syntax
instruction operands to access the register (for example, the number used to acce
Chapter 2. Programming Model 2-1

integer exception register (XER) is SPR 1). These registers can be accessed using themtspr
andmfspr instructions.

Figure 2-1. Programming Model—PowerPC 750 Microprocessor Registers

ICTC SPR 1019
SPR 1020

SPR 1021

SPR 1022

THRM1

THRM2

THRM3

SPR 937

SPR 938

SPR 941

SPR 942

Performance
Counters 1

Sampled
Instruction
Address 1

DSISR

Data Address
Register

SPRGs

Exception Handling Registers
Save and Restore
Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State
Register

MSR

Processor
Version
Register

SPR 287PVR

Configuration Registers
Hardware
Implementation
Registers 1

SPR 1

USER MODEL—UISA

Floating-Point
Status and

Control Register

FPSCR

Condition
Register

General-Purpose
Registers

XER

XER

SPR 8

Link Register

LR

SUPERVISOR MODEL—OEA

DecrementerExternal Address
Register

EAR

SDR1

SPR 9

Count
Register

Miscellaneous Registers

Segment
Registers

1These registers are 750–specific registers. They may not be supported by other PowerPC processors.

CR

Floating-Point
RegistersPerformance

Monitor Registers
(For Reading)

Performance Counters 1

Monitor Control 1

SPR 939USIA

Sampled Instruction
Address 1

Performance Monitor Registers

Monitor Control 1

Time Base
(For Writing)

Power/Thermal Management Registers
Thermal Assist
Unit Registers 1

Instruction Cache
Throttling Control
Register 1

USER MODEL—VEA

TBL TBR 268

Time Base Facility (For Reading)

CTR

2May not be supported by the 740.

GPR0

GPR1

GPR31

TBU TBR 269

IBAT0U

IBAT0L

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

DBAT0U

DBAT0L

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SR0

SR1

SR15

SDR1 SPR 25

HID0

HID1

SPR 1008

SPR 1009

FPR0

FPR1

FPR31

UPMC1

UPMC2

UPMC3

UPMC4

UMMCR0

UMMCR1

SPR 936

SPR 940

SPR 953

SPR 954

SPR 957

SPR 958

PMC1

PMC2

PMC3

PMC4

SIA SPR 955

MMCR0

MMCR1

SPR 952

SPR 956

SPRG0

SPRG1

SPRG2

SPRG3

SPR 272

SPR 273

SPR 274

SPR 275

DAR

DSISR

SPR 19

SPR 18

SRR0 SPR 26

SRR1 SPR 27

SPR 282 TBL SPR 284

TBU SPR 285

DEC SPR 22

Data Address
Breakpoint Register

DABR SPR 1013

L2 Control
Register 1, 2

L2CR SPR 1017

Instruction Address
Breakpoint Register 1

IABR SPR 1010
2-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

) and
ss to

e to

are

PR
rPC’s

serve
data
ter 2,

 as

7,
for

rPC

ll
ble

l

ture

in
t of

or
ster

ead

ch
The PowerPC UISA registers are user-level. General-purpose registers (GPRs
floating-point registers (FPRs) are accessed through instruction operands. Acce
registers can be explicit (by using instructions for that purpose such as Mov
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr)
instructions) or implicit as part of the execution of an instruction. Some registers
accessed both explicitly and implicitly.

Implementation Note—The 750 fully decodes the SPR field of the instruction. If the S
specified is undefined, the illegal instruction program exception occurs. The Powe
user-level registers are described as follows:

• User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. They include the following:

— General-purpose registers (GPRs). The thirty-two GPRs (GPR0–GPR31)
as data source or destination registers for integer instructions and provide
for generating addresses. See “General Purpose Registers (GPRs),” in Chap
“PowerPC Register Set,” ofThe Programming Environments Manualfor more
information.

— Floating-point registers (FPRs). The thirty-two FPRs (FPR0–FPR31) serve
the data source or destination for all floating-point instructions. See
“Floating-Point Registers (FPRs),” in Chapter 2, “PowerPC Register Set,” ofThe
Programming Environments Manual.

— Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR
that reflect results of certain arithmetic operations and provide a mechanism
testing and branching. See “Condition Register (CR),” in Chapter 2, “Powe
Register Set,” ofThe Programming Environments Manual.

— Floating-point status and control register (FPSCR). The FPSCR contains a
floating-point exception signal bits, exception summary bits, exception ena
bits, and rounding control bits needed for compliance with the IEEE 754
standard. See “Floating-Point Status and Control Register (FPSCR),” in
Chapter 2, “PowerPC Register Set,” ofThe Programming Environments Manua.

The remaining user-level registers are SPRs. Note that the PowerPC architec
provides a separate mechanism for accessing SPRs (themtspr andmfspr
instructions). These instructions are commonly used to explicitly access certa
registers, while other SPRs may be more typically accessed as the side effec
executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries f
integer operations. See “XER Register (XER),” in Chapter 2, “PowerPC Regi
Set,” ofThe Programming Environments Manualfor more information.

Implementation Note—To allow emulation of thelscbx instruction defined by
the POWER architecture, XER[16–23] is implemented so that they can be r
with mfspr[XER] and written withmtxer[XER] instructions.

— Link register (LR). The LR provides the branch target address for the Bran
Chapter 2. Programming Model 2-3

2,

d
also
ister

ase
l
ore

other

sor.

tatus
tate

s

Conditional to Link Register (bclrx) instruction, and can be used to hold the
logical address of the instruction that follows a branch and link instruction,
typically used for linking to subroutines. See “Link Register (LR),” in Chapter
“PowerPC Register Set,” ofThe Programming Environments Manual.

— Count register (CTR). The CTR holds a loop count that can be decremente
during execution of appropriately coded branch instructions. The CTR can
provide the branch target address for the Branch Conditional to Count Reg
(bcctrx) instruction. See “Count Register (CTR),” in Chapter 2, “PowerPC
Register Set,” ofThe Programming Environments Manual.

• User-level registers (VEA)—The PowerPC VEA defines the time base facility
(TB), which consists of two 32-bit registers—time base upper (TBU) and time b
lower (TBL). The time base registers can be written to only by supervisor-leve
instructions but can be read by both user- and supervisor-level software. For m
information, see “PowerPC VEA Register Set—Time Base,” in Chapter 2,
“PowerPC Register Set,” ofThe Programming Environments Manual.

• Supervisor-level registers(OEA)—The OEA defines the registers an operating
system uses for memory management, configuration, exception handling, and
operating system functions. The OEA defines the following supervisor-level
registers for 32-bit implementations:

— Configuration registers

– Machine state register (MSR). The MSR defines the state of the proces
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. When an
exception is taken, the contents of the MSR are saved to the machine s
save/restore register 1 (SRR1), which is described below. See “Machine S
Register (MSR),” in Chapter 2, “PowerPC Register Set,” ofThe Programming
Environments Manualfor more information.

Implementation Note—Table 2-1 describes MSR bits the 750 implement
that are not required by the PowerPC architecture.

Table 2-1. Additional MSR Bits

Bit Name Description

13 POW Power management enable. Optional to the PowerPC architecture.
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when additional

conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in
the hardware implementation-dependent register 0 (HID0), described in Table 2-4.

29 PM Performance monitor marked mode. This bit is specific to the 750, and is defined as reserved by
the PowerPC architecture. See Chapter 11, “Performance Monitor.”
0 Process is not a marked process.
1 Process is a marked process.
2-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

rnal

ns.

at
or.
r 2,

for

an
our
ters

s.
ter

tions

 to
is

n
PC

ent

Us)
the
led
Note that setting MSR[EE] masks not only the architecture-defined exte
interrupt and decrementer exceptions but also the 750-specific system
management, performance monitor, and thermal management exceptio

– Processor version register (PVR). This register is a read-only register th
identifies the version (model) and revision level of the PowerPC process
For more information, see “Processor Version Register (PVR),” in Chapte
“PowerPC Register Set,” ofThe Programming Environments Manual.

Implementation Note—The processor version information is listed in the
PowerPC 740 and PowerPC 750 Embedded Microprocessor: Hardware
Specifications.The processor revision level starts at 0x0100 and is updated
each silicon revision.

— Memory management registers

– Block-address translation (BAT) registers. The PowerPC OEA includes
array of block address translation registers that can be used to specify f
blocks of instruction space and four blocks of data space. The BAT regis
are implemented in pairs—four pairs of instruction BATs (IBAT0U–IBAT3U
and IBAT0L–IBAT3L) and four pairs of data BATs (DBAT0U–DBAT3U and
DBAT0L–DBAT3L). Figure 2-1 lists the SPR numbers for the BAT register
For more information, see “BAT Registers,” in Chapter 2, “PowerPC Regis
Set,” ofThe Programming Environments Manual. Because BAT upper and
lower words are loaded separately, software must ensure that BAT transla
are correct during the time that both BAT entries are being loaded.

The 750 implements the G bit in the IBAT registers; however, attempting
execute code from an IBAT area with G = 1 causes an ISI exception. Th
complies with the revision of the architecture described inThe Programming
Environments Manual.

– SDR1. The SDR1 register specifies the page table base address used i
virtual-to-physical address translation. See “SDR1,” in Chapter 2, “Power
Register Set,” ofThe Programming Environments Manual.”

– Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segm
registers (SR0–SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “Segment Registers,” in
Chapter 2, “PowerPC Register Set,” ofThe Programming Environments
Manual for more information.

Note that the 750 implements separate memory management units (MM
for instruction and data. It associates the architecture-defined SRs with
data MMU (DMMU). It reflects the values of the SRs in separate, so-cal
‘shadow’ segment registers in the instruction MMU (IMMU).
Chapter 2. Programming Model 2-5

is
ee
f

ting
t,” of

ed to

us
,” of

ed to

0
750

e

ase
read
— Exception-handling registers

– Data address register (DAR). After a DSI or an alignment exception, DAR
set to the effective address (EA) generated by the faulting instruction. S
“Data Address Register (DAR),” in Chapter 2, “PowerPC Register Set,” o
The Programming Environments Manualfor more information.

– SPRG0–SPRG3. The SPRG0–SPRG3 registers are provided for opera
system use. See “SPRG0–SPRG3,” in Chapter 2, “PowerPC Register Se
The Programming Environments Manualfor more information.

– DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Set,” ofThe
Programming Environments Manualfor more information.

– Machine status save/restore register 0 (SRR0). The SRR0 register is us
save the address of the instruction at which execution continues whenrfi
executes at the end of an exception handler routine. See “Machine Stat
Save/Restore Register 0 (SRR0),” in Chapter 2, “PowerPC Register Set
The Programming Environments Manual for more information.

– Machine status save/restore register 1 (SRR1). The SRR1 register is us
save machine status on exceptions and to restore machine status whenrfi
executes. See “Machine Status Save/Restore Register 1 (SRR1),” in
Chapter 2, “PowerPC Register Set,” ofThe Programming Environments
Manual for more information.

Implementation Note—When a machine check exception occurs, the 75
sets one or more error bits in SRR1. Table 2-2 describes SRR1 bits the
implements that are not required by the PowerPC architecture.

— Miscellaneous registers

– Time base (TB). The TB is a 64-bit structure provided for maintaining th
time of day and operating interval timers. The TB consists of two 32-bit
registers—time base upper (TBU) and time base lower (TBL). The time b
registers can be written to only by supervisor-level software, but can be
by both user- and supervisor-level software. See “Time Base Facility
(TB)—OEA,” in Chapter 2, “PowerPC Register Set,” ofThe Programming

Table 2-2. Additional SRR1 Bits

Bit Name Description

11 L2DP Set by a data parity error on the L2 bus. The PowerPC 740 does not implement the L2 cache
interface.

12 MCPIN Set by the assertion of MCP

13 TEA Set by a TEA assertion on the 60x bus

14 DP Set by a data parity error on the 60x bus

15 AP Set by an address parity error on the 60x bus
2-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ter

ck.
,” of

ed

 to
. See

tion

rnal

at in

to
red.

rols
ling,

cts

 L2
ssor

nd

cord
vide

ble
Environments Manualfor more information.

– Decrementer register (DEC). This register is a 32-bit decrementing coun
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clo
See “Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set
The Programming Environments Manualfor more information.

Implementation Note—In the 750, the decrementer register is decrement
at a speed that is one-fourth the speed of the bus clock.

– Data address breakpoint register (DABR)—This optional register is used
cause a breakpoint exception if a specified data address is encountered
“Data Address Breakpoint Register (DABR),” in Chapter 2, “PowerPC
Register Set,” ofThe Programming Environments Manual.”

– External access register (EAR). This optional register is used in conjunc
with eciwx andecowx. Note that the EAR register and theeciwx andecowx
instructions are optional in the PowerPC architecture and may not be
supported in all PowerPC processors that implement the OEA. See “Exte
Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” ofThe
Programming Environments Manual for more information.

• 750-specific registers—The PowerPC architecture allows implementation-
specific SPRs. Those incorporated in the 750 are described as follows. Note th
the 750, these registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used
cause a breakpoint exception if a specified instruction address is encounte

— Hardware implementation-dependent register 0 (HID0)—This register cont
various functions, such as enabling checkstop conditions, and locking, enab
and invalidating the instruction and data caches.

— Hardware implementation-dependent register 1 (HID1)—This register refle
the state of PLL_CFG[0–3] clock signals.

— The L2 cache control register (L2CR) is used to configure and operate the
cache. It includes bits for enabling parity checking, setting the L2-to-proce
clock ratio, and identifying the type of RAM used for the L2 cache
implementation. (Not supported in the 740.)

— Performance monitor registers. The following registers are used to define a
count events for use by the performance monitor:

– The performance monitor counter registers (PMC1–PMC4) are used to re
the number of times a certain event has occurred. UPMC1–UPMC4 pro
user-level read access to these registers.

– The monitor mode control registers (MMCR0–MMCR1) are used to ena
various performance monitor interrupt functions. UMMCR0–UMMCR1
provide user-level read access to these registers.
Chapter 2. Programming Model 2-7

ress
s the

r the

ut

the

re
rmal
n
in
ther

d to

rs is
ilar or

in the

ction
resses

the
gers
n, see
n be
– The sampled instruction address register (SIA) contains the effective add
of an instruction executing at or around the time that the processor signal
performance monitor interrupt condition. USIA provides user-level read
access to the SIA.

– The 750 does not implement the sampled data address register (SDA) o
user-level, read-only USDA registers. However, for compatibility with
processors that do, those registers can be written to by boot code witho
causing an exception. SDA is SPR 959; USDA is SPR 943.

— The instruction cache throttling control register (ICTC) has bits for enabling
instruction cache throttling feature and for controlling the interval at which
instructions are forwarded to the instruction buffer in the fetch unit. This
provides control over the processor’s overall junction temperature.

— Thermal management registers (THRM1, THRM2, and THRM3). Used to
enable and set thresholds for the thermal management facility.

– THRM1 and THRM2 provide the ability to compare the junction temperatu
against two user-provided thresholds. The dual thresholds allow the the
management software differing degrees of action in lowering the junctio
temperature. The TAU can be also operated in a single threshold mode
which the thermal sensor output is compared to only one threshold in ei
THRM1 or THRM2.

– THRM3 is used to enable the thermal management assist unit (TAU) an
control the comparator output sample time.

Note that while it is not guaranteed that the implementation of 750-specific registe
consistent among PowerPC processors, other processors may implement sim
identical registers.

2.1.2 PowerPC 750-Specific Registers
This section describes registers that are defined for the 750 but are not included
PowerPC architecture.

2.1.2.1 Instruction Address Breakpoint Register (IABR)
The address breakpoint register (IABR), shown in Figure 2-2, supports the instru
address breakpoint exception. When this exception is enabled, instruction fetch add
are compared with an effective address stored in the IABR. If the word specified in
IABR is fetched, the instruction breakpoint handler is invoked. The instruction that trig
the breakpoint does not execute before the handler is invoked. For more informatio
Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).” The IABR ca
accessed withmtspr andmfspr using the SPR1010.
2-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

veral
Figure 2-2. Instruction Address Breakpoint Register

The IABR bits are described in Table 2-3.

2.1.2.2 Hardware Implementation-Dependent Register 0
The hardware implementation-dependent register 0 (HID0) controls the state of se
functions within the 750. The HID0 register is shown in Figure 2-3.

Figure 2-3 . Hardware Implementation-Dependent Register 0 (HID0)

The HID0 bits are described in Table 2-4.

Table 2-3. Instruction Address Breakpoint Register Bit Settings

Bits Name Description

0–29 Address Word address to be compared

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 TE Translation enabled. An IABR match is signaled if this bit matches MSR[IR].

Table 2-4. HID0 Bit Functions

Bit Name Function

0 EMCP Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions
caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.
0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes checkstop if MSR[ME] = 0 or a machine check exception if ME = 1.

1 DBP Enable/disable 60x bus address and data parity generation.
0 Parity generation is enabled.
1 If the system does not use address or data parity and the respective parity checking is disabled

(HID0[EBA] or HID0[EBD] = 0), input receivers for those signals are disabled, require no pull-up
resistors, and thus should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

2 EBA Enable/disable 60x bus address parity checking
0 Prevents address parity checking.
1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check

exception if MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

0 29 30 31

Address BE TE

EBDEBA PAR NAP DPM NHR ICE DCE DCFI

EMCP BCLK ECLK DOZE SLEEP ILOCK
DLOCK

ICFI SPD DCFA BTIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

BHTABE00DBP 00 0IFEM SGE

NOOPTI

0

Chapter 2. Programming Model 2-9

3 EBD Enable 60x bus data parity checking
0 Parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if

MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

4 BCLK CLK_OUT output enable and clock type selection. Used in conjunction with HID0[ECLK] and the
HRESET signal to configure CLK_OUT. See Table 2-5.

5 — Not used. Defined as EICE on some earlier processors.

6 ECLK CLK_OUT output enable and clock type selection. Used in conjunction with HID0[BCLK] and the
HRESET signal to configure CLK_OUT. See Table 2-5.

7 PAR Disable precharge of ARTRY.
0 Precharge of ARTRY enabled
1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated)

state. If this is done, the system must restore the signals to the high state.

8 DOZE Doze mode enable. Operates in conjunction with MSR[POW].
0 Doze mode disabled.
1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze

mode, the PLL, time base, and snooping remain active.

9 NAP Nap mode enable. Operates in conjunction with MSR[POW].
0 Nap mode disabled.
1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap

mode, the PLL and the time base remain active.

10 SLEEP Sleep mode enable. Operates in conjunction with MSR[POW].
0 Sleep mode disabled.
1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. QREQ is

asserted to indicate that the processor is ready to enter sleep mode. If the system logic
determines that the processor may enter sleep mode, the quiesce acknowledge signal, QACK,
is asserted back to the processor. Once QACK assertion is detected, the processor enters
sleep mode after several processor clocks. At this point, the system logic may turn off the PLL
by first configuring PLL_CFG[0–3] to PLL bypass mode, then disabling SYSCLK.

11 DPM Dynamic power management enable.
0 Dynamic power management is disabled.
1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect

operational performance and is transparent to software or any external hardware.

12–14 — Not used

15 NHR Not hard reset (software-use only)—Helps software distinguish a hard reset from a soft reset.
0 A hard reset occurred if software had previously set this bit.
1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs

and this bit remains set, software can tell it was a soft reset.

16 ICE Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were

marked cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, CI reflects the original state determined by address translation
regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

Table 2-4. HID0 Bit Functions (Continued)

Bit Name Function
2-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

17 DCE Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, CI reflects the original state determined by address translation
regardless of cache disabled status. DCE is zero at power-up.

1 The data cache is enabled.

18 ILOCK Instruction cache lock
0 Normal operation
1 Instruction cache is locked. A locked cache supplies data normally on a hit, but are treated as a

cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

19 DLOCK Data cache lock.
0 Normal operation
1 Data cache is locked. A locked cache supplies data normally on a hit but is treated as a

cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status. A snoop hit to a locked L1 data cache performs
as if the cache were not locked. A cache block invalidated by a snoop remains invalid until the
cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

20 ICFI Instruction cache flash invalidate
0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation

begins (usually the next cycle after the write operation to the register). The instruction cache
must be enabled for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each instruction cache block as invalid
without writing back modified cache blocks to memory. Cache access is blocked during this
time. Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting
ICFI clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set. Once
the L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets
these bits in the next cycle (provided that the corresponding cache enable bits are set in HID0).

Note, in the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits
was to set them and clear them in two consecutive mtspr operations. Software that already has
this sequence of operations does not need to be changed to run on the 750.

21 DCFI Data cache flash invalidate
0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins

(usually the next cycle after the write operation to the register). The data cache must be enabled
for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each data cache block as invalid without
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI
clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set. Once the
L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets these
bits in the next cycle (provided that the corresponding cache enable bits are set in HID0).

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way L0 of each set.
Note, In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits
was to set them and clear them in two consecutive mtspr operations. Software that already has
this sequence of operations does not need to be changed to run on the 750.

Table 2-4. HID0 Bit Functions (Continued)

Bit Name Function
Chapter 2. Programming Model 2-11

22 SPD Speculative cache access disable
0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and data

caches is enabled
1 Speculative bus accesses to nonguarded space in both caches is disabled

23 IFEM Enable M bit on bus for instruction fetches.
0 M bit disabled. Instruction fetches are treated as nonglobal on the bus
1 Instruction fetches reflect the M bit from the WIM settings.

24 SGE Store gathering enable
0 Store gathering is disabled
1 Integer store gathering is performed for write-through to nonguarded space or for

cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. The LSU combines
stores to form a double word that is sent out on the 60x bus as a single-beat operation. Stores
are gathered only if successive, eligible stores, are queued and pending. Store gathering is
performed regardless of address order or endian mode.

25 DCFA Data cache flush assist. (Force data cache to ignore invalid sets on miss replacement selection.)
0 The data cache flush assist facility is disabled
1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence

defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz
instructions to eight per set. The bit should be set just before beginning a cache flush routine
and should be cleared when the series of instructions is complete.

26 BTIC Branch Target Instruction Cache enable—used to enable use of the 64-entry branch instruction
cache.
0 The BTIC is disabled, the contents are invalidated, and the BTIC behaves as if it was empty.

New entries cannot be added until the BTIC is enabled.
1 The BTIC is enabled, and new entries can be added.

27 — Not used. Defined as FBIOB on earlier 603-type processors.

28 ABE Address broadcast enable—controls whether certain address-only operations (such as cache
operations, eieio , and sync) are broadcast on the 60x bus.
0 Address-only operations affect only local L1 and L2 caches and are not broadcast.
1 Address-only operations are broadcast on the 60x bus.Affected instructions are eieio , sync ,

dcbi , dcbf , and dcbst . A sync instruction completes only after a successful broadcast.
Execution of eieio causes a broadcast that may be used to prevent any external devices, such
as a bus bridge chip, from store gathering.

Note that dcbz (with M = 1, coherency required) always broadcasts on the 60x bus regardless of
the setting of this bit. An icbi is never broadcast. No cache operations, except dcbz , are snooped
by the 750 regardless of whether the ABE is set. Bus activity caused by these instructions results
directly from performing the operation on the 750 cache.

29 BHT Branch history table enable
0 BHT disabled. The 750 uses static branch prediction as defined by the PowerPC architecture

(UISA) for those branch instructions the BHT would have otherwise used to predict (that is,
those that use the CR as the only mechanism to determine direction). For more information on
static branch prediction, see “Conditional Branch Control,” in Chapter 4 of The Programming
Environments Manual.

1 Allows the use of the 512-entry branch history table (BHT).
The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.

30 — Not used

31 NOOPTI No-op the data cache touch instructions.
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

Table 2-4. HID0 Bit Functions (Continued)

Bit Name Function
2-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

re

f the
Table 2-5 shows how HID0[BCLK], HID0[ECLK], andHRESET are used to configure
CLK_OUT. See Section 7.2.11.2, “Clock Out (CLK_OUT)—Output,” for mo
information.

HID0 can be accessed withmtspr andmfspr using SPR1008.

2.1.2.3 Hardware Implementation-Dependent Register 1
The hardware implementation-dependent register 1 (HID1) reflects the state o
PLL_CFG[0–3] signals. The HID1 bits are shown in Figure 2-4.

Figure 2-4 . Hardware Implementation-Dependent Register 1 (HID1)

The HID1 bits are described in Table 2-6.

HID1 can be accessed withmtspr andmfspr using SPR 1009.

Table 2-5. HID0[BCLK] and HID0[ECLK] CLK_OUT Configuration

HRESET HID0[ECLK] HID0[BCLK] CLK_OUT

Asserted x x Bus

Negated 0 0 High impedance

Negated 0 1 Bus/ 2

Negated 1 0 Core

Negated 1 1 Bus

Note: For 750 chip revisions 3.0 and later, the ECLK/BCLK setting of 00 will not select the
Hi-Z state. Instead, it will select a diagnostic monitor signal for the DLL unit of the L2 cache.

Table 2-6. HID1 Bit Functions

Bit(s) Name Description

0 PC0 PLL configuration bit 0 (read-only)

1 PC1 PLL configuration bit 1 (read-only)

2 PC2 PLL configuration bit 2 (read-only)

3 PC3 PLL configuration bit 3 (read-only)

4–31 — Reserved

Note: The clock configuration bits reflect the state of the PLL_CFG[0–3] signals.

PC2PC0

0 1 2 3 4 31

PC1

Reserved

PC3 00 00000000000000000000000000
Chapter 2. Programming Model 2-13

ibed in

PR
d only
g an
de

ge its
2.1.2.4 Performance Monitor Registers
This section describes the registers used by the performance monitor, which is descr
Chapter 11, “Performance Monitor.”

2.1.2.4.1 Monitor Mode Control Register 0 (MMCR0)
The monitor mode control register 0 (MMCR0), shown in Figure 2-5, is a 32-bit S
provided to specify events to be counted and recorded. The MMCR0 can be accesse
in supervisor mode. User-level software can read the contents of MMCR0 by issuin
mfspr instruction to UMMCR0, described in Section 2.1.2.4.2, “User Monitor Mo
Control Register 0 (UMMCR0).”

Figure 2-5. Monitor Mode Control Register 0 (MMCR0)

This register must be cleared at power up. Reading this register does not chan
contents. The bits of the MMCR0 register are described in Table 2-7.

Table 2-7. MMCR0 Bit Settings

Bit Name Description

0 DIS Disables counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disables counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not

changed by hardware.

2 DU Disables counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not

changed by hardware.

3 DMS Disables counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disables counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

INTONBITTRANS

DISCOUNT

PMC1INTCONTROLENINT

PMC2INTCONTROL

RTCSELECT

PMCTRIGGER

DMSDU PMC1SELECT PMC2SELECT

0 1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

DPDIS DMR THRESHOLD
2-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

evel
MMCR0 can be accessed withmtspr andmfspr using SPR 952.

2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCR0)
The contents of MMCR0 are reflected to UMMCR0, which can be read by user-l
software. MMCR0 can be accessed withmfspr using SPR 936.

5 ENINT Enables performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
Cleared by hardware when a performance monitor interrupt is signaled. To reenable
these interrupt signals, software must set this bit after handling the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.

6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is,
((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an
enabled time base transition with ((INTONBITTRANS =1) & (ENINT = 1)).
0 Signaling a performance monitor interrupt does not affect counting status of PMCn.
1 The signaling of a performance monitor interrupt prevents changing of PMC1

counter. The PMCn counter do not change if PMC2COUNTCTL = 0.
Because a time base signal could have occurred along with an enabled counter
overflow condition, software should always reset INTONBITTRANS to zero, if the value
in INTONBITTRANS was a one.

7–8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. The 750 supports all 6 bits, allowing threshold values from 0–63. The
intent of the THRESHOLD support is to characterize L1 data cache misses.

16 PMC1INTCONTROL Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow

17 PMCINTCONTROL Enable interrupt signaling due to any PMC2–PMC4 counter overflow. Overrides the
setting of DISCOUNT.
0 Disable PMC2–PMC4 interrupt signaling due to PMC2–PMC4 counter overflow.
1 Enable PMC2–PMC4 interrupt signaling due to PMC2–PMC4 counter overflow.

18 PMCTRIGGER Can be used to trigger counting of PMC2–PMC4 after PMC1 has overflowed or after a
performance monitor interrupt is signaled.
0 Enable PMC2–PMC4 counting.
1 Disable PMC2–PMC4 counting until either PMC1[0] = 1 or a performance monitor

interrupt is signaled.

19–25 PMC1SELECT PMC1 input selector, 128 events selectable. See Table 2-10.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable. See Table 2-11.

Table 2-7. MMCR0 Bit Settings (Continued)

Bit Name Description
Chapter 2. Programming Model 2-15

for
ister

ribed

n

evel

d to
2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1)
The monitor mode control register 1 (MMCR1) functions as an event selector
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR1 reg
is shown in Figure 2-6.

Figure 2-6. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCR1 are shown in Table 2-8. The corresponding events are desc
in Section 2.1.2.4.5, “Performance Monitor Counter Registers (PMC1–PMC4).”

MMCR1 can be accessed withmtspr andmfspr using SPR 956. User-level software ca
read the contents of MMCR1 by issuing anmfspr instruction to UMMCR1, described in
Section 2.1.2.4.4, “User Monitor Mode Control Register 1 (UMMCR1).”

2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCR1)
The contents of MMCR1 are reflected to UMMCR1, which can be read by user-l
software. MMCR1 can be accessed withmfspr using SPR 940.

2.1.2.4.5 Performance Monitor Counter Registers (PMC1–PMC4)
PMC1–PMC4, shown in Figure 2-7, are 32-bit counters that can be programme
generate interrupt signals when they overflow.

Figure 2-7. Performance Monitor Counter Registers (PMC1–PMC4)

The bits contained in the PMCn registers are described in Table 2-9.

Table 2-8. MMCR1 Bit Settings

Bits Name Description

0–4 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 2-12 for defined selections.

5–9 PMC4SELECT PMC4 input selector. 32 events selectable. See Table 2-13 for defined selections.

10–31 — Reserved

0 4 5 10 31

PMC3SELECT

Reserved

PMC4SELECT 0 000000000000000000000

9

OV

0 1 31

Counter Value
2-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

t; that
naled

ition
tting
urs.

e
both

.

ts are
nce
ings.
Counters are considered to overflow when the high-order bit (the sign bit) becomes se
is, they reach the value 2147483648 (0x8000_0000). However, an interrupt is not sig
unless both PMCn[INTCONTROL] and MMCR0[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal cond
may occur with MSR[EE] cleared, but the exception is not taken until EE is set. Se
MMCR0[DISCOUNT] forces counters to stop counting when a counter interrupt occ

Software is expected to usemtspr to set PMC explicitly to nonoverflow values. If softwar
sets an overflow value, an erroneous exception may occur. For example, if
PMCn[INTCONTROL] and MMCR0[ENINT] are set andmtspr loads an overflow value,
an interrupt signal may be generated without any event counting having taken place

The event to be monitored can be chosen by setting MMCR0[0–9]. The selected even
counted beginning when MMCR0 is set until either MMCR0 is reset or a performa
monitor interrupt is generated. Table 2-10 lists the selectable events and their encod

Table 2-9. PMCn Bit Settings

Bits Name Description

0 OV Overflow. When this bit is set it indicates that this counter has reached its maximum value.

1–31 Counter value Indicates the number of occurrences of the specified event.

Table 2-10. PMC1 Events—MMCR0[19–25] Select Encodings

Encoding Description

000 0000 Register holds current value.

000 0001 Number of processor cycles

000 0010 Number of completed instructions. Does not include folded branches.

0000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT (MMRC0[7–8]). 00 = 15, 01 = 19, 10 = 23, 11 = 31

0000100 Number of instructions dispatched—0, 1, or 2 instructions per cycle

0000101 Number of eieio instructions completed

0000110 Number of cycles spent performing table search operations for the ITLB

0000111 Number of accesses that hit the L2

0001000 Number of valid instruction EAs delivered to the memory subsystem

0001001 Number of times the address of an instruction being completed matches the address in the IABR

0001010 Number of loads that miss the L1 with latencies that exceeded the threshold value

0001011 Number of branches that are unresolved when processed

0001100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

All others Reserved. May be used in a later revision.
Chapter 2. Programming Model 2-17

Bits MMCR0[26–31] specify events associated with PMC2, as shown in Table 2-11.

Bits MMCR1[0–4] specify events associated with PMC3, as shown in Table 2-12.

Table 2-11. PMC2 Events—MMCR0[26–31] Select Encodings

Encoding Description

00 0000 Register holds current value.

00 0001 Number of processor cycles

00 0010 Number of completed instructions. Does not include folded branches.

00 0011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT (MMRC0[7–8]). 00 = 15, 01 = 19, 10 = 23, 11 = 31.

00 0100 Number of instructions dispatched. 0, 1, or 2 instructions per cycle

00 0101 Number of eieio instructions completed

00 0110 Number of cycles spent performing table search operations for the ITLB

00 0111 Number of accesses that hit the L2

00 1000 Number of valid instruction EAs delivered to the memory subsystem

00 1001 Number of times that the address of an instruction being completed matches the address in the IABR

00 1010 Number of loads that miss the L1 and have latencies that exceeded the threshold value

00 1011 Number of branches that are unresolved when processed

00 1100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

All others Reserved. May be used in a later revision.

Table 2-12. PMC3 Events—MMCR1[0–4] Select Encodings

Encoding Description

0 0000 Register holds current value.

0 0001 Number of processor cycles

0 0010 Number of completed instructions, not including folded branches.

0 0011 Number of transitions from 0 to 1 of specified bits in the time base lower register. Bits are specified
through RTCSELECT (MMRC0[7–8]). 0 = 47, 1 = 51, 2 = 55, 3 = 63.

0 0100 Number of instructions dispatched. 0, 1, or 2 per cycle.

0 0101 Number of L1 data cache misses

0 0110 Number of DTLB misses

0 0111 Number of L2 data misses

0 1000 Number of taken branches, including predicted branches.

0 1001 Number of transitions between marked and unmarked processes while in user mode. That is, the
number of MSR[PM] toggles while the processor is in user mode.

0 1010 Number of store conditional instructions completed
2-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Bits MMCR1[5–9] specify events associated with PMC4, as shown in Table 2-13.

0 1011 Number of instructions completed from the FPU

0 1100 Number of L2 castouts caused by snoops to modified lines

0 1101 Number of cache operations that hit in the L2 cache

0 1110 Reserved

0 1111 Number of cycles generated by L1 load misses

1 0000 Number of branches in the second speculative stream that resolve correctly

1 0001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies

All others Reserved. May be used in a later revision.

Table 2-13. PMC4 Events—MMCR1[5–9] Select Encodings

Encoding Comments

00000 Register holds current value

00001 Number of processor cycles

00010 Number of completed instructions, not including folded branches

00011 Number of transitions from 0 to 1 of specified bits in the time base lower register. Bits are specified
through RTCSELECT (MMRC0[7–8]). 0 = 47, 1 = 51, 2 = 55, 3 = 63.

00100 Number of instructions dispatched. 0, 1, or 2 per cycle.

00101 Number of L2 castouts

00110 Number of cycles spent performing tables searches for DTLB accesses

00111 Reserved. May be used in a later revision.

01000 Number of mispredicted branches

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the
number of MSR[PM] toggles while the processor is in supervisor mode.

01010 Number of store conditional instructions completed with reservation intact

01011 Number of completed sync instructions

01100 Number of snoop request retries

01101 Number of completed integer operations

01110 Number of cycles the BPU cannot process new branches due to having two unresolved branches

All others Reserved. May be used in a later revision.

Table 2-12. PMC3 Events—MMCR1[0–4] Select Encodings (Continued)

Encoding Description
Chapter 2. Programming Model 2-19

:

ad by

ntains
essor

s the
.

event,
an be

SIA

-level,
ose
959;
The PMC registers can be accessed withmtspr andmfspr using following SPR numbers

• PMC1 is SPR 953
• PMC2 is SPR 954
• PMC3 is SPR 957
• PMC4 is SPR 958

2.1.2.4.6 User Performance Monitor Counter Registers (UPMC1–UPMC4)
The contents of the PMC1–PMC4 are reflected to UPMC1–UPMC4, which can be re
user-level software. The UPMC registers can be read withmfspr using the following SPR
numbers:

• UPMC1 is SPR 937
• UPMC2 is SPR 938
• UPMC3 is SPR 941
• UPMC4 is SPR 942

2.1.2.4.7 Sampled Instruction Address Register (SIA)
The sampled instruction address register (SIA) is a supervisor-level register that co
the effective address of an instruction executing at or around the time that the proc
signals the performance monitor interrupt condition. The SIA is shown in Figure 2-8.

Figure 2-8. Sampled Instruction Address Registers (SIA)

If the performance monitor interrupt is triggered by a threshold event, the SIA contain
exact instruction (called the sampled instruction) that caused the counter to overflow

If the performance monitor interrupt was caused by something besides a threshold
the SIA contains the address of the last instruction completed during that cycle. SIA c
accessed with themtspr andmfspr instructions using SPR 955.

2.1.2.4.8 User Sampled Instruction Address Register (USIA)
The contents of SIA are reflected to USIA, which can be read by user-level software. U
can be accessed with themfspr instructions using SPR 939.

2.1.2.4.9 Sampled Data Address Register (SDA) and User Sampled Data
Address Register (USDA)

The 750 does not implement the sampled data address register (SDA) or the user
read-only USDA registers. However, for compatibility with processors that do, th
registers can be written to by boot code without causing an exception. SDA is SPR
USDA is SPR 943.

0 31

Instruction Address
2-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

the
ntrol
evel

the
een

ions

ion
ion

.

eshold
2.1.3 Instruction Cache Throttling Control Register (ICTC)
Reducing the rate of instruction fetching can control junction temperature without
complexity and overhead of dynamic clock control. System software can co
instruction forwarding by writing a nonzero value to the ICTC register, a supervisor-l
register shown in Figure 2-9. The overall junction temperature reduction comes from
dynamic power management of each functional unit when the 750 is idle in betw
instruction fetches. PLL (phase-locked loop) and DLL (delay-locked loop) configurat
are unchanged.

Figure 2-9. Instruction Cache Throttling Control Register (ICTC)

Table 2-14 describes the bit fields for the ICTC register.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruct
forwarding interval into ICTC[FI]. Enabling, disabling, and changing the instruct
forwarding interval affect instruction forwarding immediately.

The ICTC register can be accessed with themtspr andmfspr instructions using SPR 1019

2.1.4 Thermal Management Registers (THRM1–THRM3)
The on-chip thermal management assist unit provides the following functions:

• Compares the junction temperature against user programmed thresholds

• Generates a thermal management interrupt if the temperature crosses the thr

• Provides a way for a successive approximation routine to estimate junction
temperature

Table 2-14. ICTC Bit Settings

Bits Name Description

0–22 — Reserved

23–30 FI Instruction forwarding interval expressed in processor clocks.
0x00 0 clock cycle.
0x01 1 clock cycle
..
0xFF 255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

0 22 23 30 31

EFI0 0000000000000000000000

Reserved
Chapter 2. Programming Model 2-21

ileged
in
two

ftware
n use
one

oing
eared
and
Control and access to the thermal management assist unit is through the priv
mtspr/mfspr instructions to the three THRM registers. THRM1 and THRM2, shown
Figure 2-10, provide the ability to compare the junction temperature against
user-provided thresholds. Having dual thresholds allows thermal management so
differing degrees of action in reducing junction temperature. Thermal management ca
a single-threshold mode in which the thermal sensor output is compared to only
threshold in either THRM1 or THRM2.

Figure 2-10. Thermal Management Registers 1–2 (THRM1–THRM2)

The bits in THRM1 and THRM2 are described in Table 2-15.

If an mtspr affects a THRM register that contains operating parameters for an ong
comparison during operation of the thermal assist unit, the respective TIV bits are cl
and the comparison is restarted. Changing THRM3 forces the TIV bits of both THRM1
THRM2 to 0, and restarts the comparison if THRM3[E] is set.

Table 2-15. THRM1–THRM2 Bit Settings

Bits Field Description

0 TIN Thermal management interrupt bit. Read-only. This bit is set if the thermal sensor output crosses
the threshold specified in the SPR. The state of TIN is valid only if TIV is set. The interpretation of
TIN is controlled by TID. See Table 2-16.

1 TIV Thermal management interrupt valid. Read-only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid. See Table 2-16.

2–8 Threshold Threshold that the thermal sensor output is compared to. The range is 0 —127 C, and each bit
represents 1 C. Note that this is not the resolution of the thermal sensor.

9–28 — Reserved. System software should clear these bits when writing to the THRMn SPRs.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature comparison to
set TIN and to assert a thermal management interrupt if TIE is set. If TID is cleared, TIN is set and
an interrupt occurs if the junction temperature exceeds the threshold. If TID is set, TIN is set and
an interrupt is indicated if the junction temperature is below the threshold. See Table 2-16.

30 TIE Thermal management interrupt enable. The thermal management interrupt is maskable by the
MSR[EE] bit. If TIE is cleared and THRMn is valid, the TIN bit records the status of the junction
temperature vs. threshold comparison without causing an exception. This lets system software
successively approximate the junction temperature. See Table 2-16.

31 V SPR valid bit. Setting this bit indicates the SPR contains a valid threshold, TID and TIE controls
bits. THRM1/2[V] = 1 and THRM3[E] = 1 enables the thermal sensor operation. See Table 2-16.

TIV THRESHOLD

0 1 2 8 9 28 29 30 31

TIDTIN

Reserved

TIE V0 0000000000000000000
2-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

nd to
ermal
shold
Examples of valid THRM1/THRM2 bit settings are shown in Table 2-16.

The THRM3 register, shown in Figure 2-11, is used to enable the thermal assist unit a
control the comparator output sample time. The thermal assist logic manages the th
management interrupt generation and time-multiplexed comparisons in dual-thre
mode as well as other control functions.

Figure 2-11. Thermal Management Register 3 (THRM3)

Table 2-16. Valid THRM1/THRM2 States

TIN1

1 TIN and TIV are read-only status bits.

TIV1 TID TIE V Description

x x x x 0 Invalid entry. The threshold in the SPR is not used for comparison.

x x x 0 1 Disable thermal management interrupt assertion.

x x 0 x 1 Set TIN and assert thermal management interrupt if TIE = 1 and the junction
temperature exceeds the threshold.

x x 1 x 1 Set TIN and assert thermal management interrupt if TIE = 1 and the junction
temperature is less than the threshold.

x 0 x x 1 The state of the TIN bit is not valid.

0 1 0 x 1 The junction temperature is less than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 0 x 1 The junction temperature is greater than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

0 1 1 x 1 The junction temperature is greater than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 1 x 1 The junction temperature is less than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

Note :

0 17 18 30 31

Reserved

ESampled Interval Timer Value0 00000000000000000
Chapter 2. Programming Model 2-23

vel,
d by a

The
The bits in THRM3 are described in Table 2-17.

The THRM registers can be accessed with themtspr and mfspr instructions using the
following SPR numbers:

• THRM1 is SPR 1020
• THRM2 is SPR 1021
• THRM3 is SPR 1022

2.1.5 L2 Cache Control Register (L2CR)
The L2 cache control register, shown in Figure 2-12, is a supervisor-le
implementation-specific SPR used to configure and operate the L2 cache. It is cleare
hard reset or power-on reset.

Figure 2-12 . L2 Cache Control Register (L2CR)

The L2 cache interface is described in Chapter 9, “L2 Cache Interface Operation.”
L2CR bits are described in Table 2-18.

Table 2-17. THRM3 Bit Settings

Bits Name Description

0–17 — Reserved for future use. System software should clear these bits when writing to the THRM3.

18–30 SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to allow
a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set.

L2SIZ L2CLK L2RAM L2OH

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 31

L2E

L2PE
L2WT

L2I

L2DR L2CTL L2TS L2SL
L2DF

L2BYP L2IP
ReservedL2DRO

L2CS

000

21 22 23 24

L2CTR
2-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table 2-18. L2CR Bit Settings

Bit Name Function

0 L2E L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the L2
cache unit receives. Before enabling the L2 cache, the L2 clock must be configured through
L2CR[2CLK], and the L2 DLL must stabilize (see the hardware specifications). All other L2CR bits
must be set appropriately. The L2 cache may need to be invalidated globally.

1 L2PE L2 data parity generation and checking enable. Enables parity generation and checking for the L2
data RAM interface. When disabled, generated parity is always zeros.
0 Prevents L2 data parity checking.
1 Allows data parity error on the L2 bus to cause a checkstop if msr(ME)=0, or a machine check

interrupt if mas(ME)=1.

2–3 L2SIZ L2 size—Should be set according to the size of the L2 data RAMs used. A 256-Kbyte L2 cache
requires a data RAM configuration of 32 Kbytes x 64 bits; a 512-Kbyte L2 cache requires a
configuration of 64 Kbyte x 64 bits; a 1-Mbyte L2 cache requires a configuration of 128K x 64 bits.
00 Reserved
01 256 Kbyte
10 512 Kbyte
11 1 Mbyte

4–6 L2CLK L2 clock ratio (core-to-L2 frequency divider). Specifies the clock divider ratio based from the core
clock frequency that the L2 data RAM interface is to operate at. When these bits are cleared, the L2
clock is stopped and the on-chip DLL for the L2 interface is disabled. For nonzero values, the
processor generates the L2 clock and the on-chip DLL is enabled. After the L2 clock ratio is chosen,
the DLL must stabilize before the L2 interface can be enabled. (See the hardware specifications). The
resulting L2 clock frequency cannot be slower than the clock frequency of the 60x bus interface.
000 L2 clock and DLL disabled
001 ÷1
010 ÷1.5
011 Reserved
100 ÷2
101 ÷2.5
110 ÷3
111 Reserved

7–8 L2RAM L2 RAM type—Configures the L2 RAM interface for the type of synchronous SRAMs used:
• Flow-through (register-buffer) synchronous burst SRAMs that clock addresses in and flow data out
• Pipelined (register-register) synchronous burst SRAMs that clock addresses in and clock data out
• Late-write synchronous SRAMs, for which the 750 requires a pipelined (register-register)

configuration. Late-write RAMs require write data to be valid on the cycle after WE is asserted,
rather than on the same cycle as the write enable as with traditional burst RAMs.

For burst RAM selections, the 750 does not burst data into the L2 cache, it generates an address for
each access. Pipelined SRAMs may be used for all L2 clock modes. Note that flow-through SRAMs
can be used only for L2 clock modes divide-by-2 or slower (divide-by-1 and divide-by-1.5 not
allowed).
00 Flow-through (register-buffer) synchronous burst SRAM
01 Reserved
10 Pipelined (register-register) synchronous burst SRAM
11 Pipelined (register-register) synchronous late-write SRAM

9 L2DO L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation, only
transactions from the L1 data cache can be cached in the L2 cache, which treats all transactions from
the L1 instruction cache as cache-inhibited (bypass L2 cache, no L2 checking done). This bit is
provided for L2 testing only.

10 L2I L2 global invalidate. Setting L2I invalidates the L2 cache globally by clearing the L2 bits including
status bits. This bit must not be set while the L2 cache is enabled.
Chapter 2. Programming Model 2-25

11 L2CTL L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ (low-power
mode) signal for cache RAMs that support the ZZ function. While L2CTL is asserted, L2ZZ asserts
automatically when the 750 enters nap or sleep mode and negates automatically when the 750 exits
nap or sleep mode. This bit should not be set when the 750 is in nap mode and snooping is to be
performed through deassertion of QACK. Additionally, the relatively long recovery time from ZZ
negation that many SRAM vendors require may only allow use of this function for deep-sleep
operation.

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back mode)
so all writes to the L2 cache also write through to the 60x bus. For these writes, the L2 cache entry is
always marked as clean (valid unmodified) rather than dirty (valid modified). This bit must never be
asserted after the L2 cache has been enabled as previously-modified lines can get remarked as
clean during normal operation.

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result from
dcbf and dcbst instructions to be written only into the L2 cache and marked valid, rather than being
written only to the 60x bus and marked invalid in the L2 cache in case of hit. This bit allows a
dcbz /dcbf instruction sequence to be used with the L1 cache enabled to easily initialize the L2 cache
with any address and data information. This bit also keeps dcbz instructions from being broadcast on
the 60x and single-beat cacheable store misses in the L2 from being written to the 60x bus.

14–15 L2OH L2 output hold. These bits configure output hold time for address, data, and control signals driven by
the 750 to the L2 data RAMs. They should generally be set according to the SRAM’s input hold time
requirements, for which late-write SRAMs usually differ from flow-through or burst SRAMs.
00 0.5 nS
01 1.0 nS
1x Reserved

16 L2SL L2 DLL slow. Setting L2SL increases the delay of each tap of the DLL delay line. It is intended to
increase the delay through the DLL to accommodate slower L2 RAM bus frequencies. Generally,
L2SL should be set if the L2 RAM interface is operated below 100 MHz.

17 L2DF L2 differential clock. Setting L2DF configures the two clock-out signals (L2CLK_OUTA and
L2CLK_OUTB) of the L2 interface to operate as one differential clock. In this mode, the B clock is
driven as the logical complement of the A clock. This mode supports the differential clock
requirements of late-write SRAMs. Generally, this bit should be set when late-write SRAMs are used.

18 L2BYP L2 DLL bypass. The DLL unit receives three input clocks:
• A square-wave clock from the PLL unit to phase adjust and export
• A non-square-wave clock for the internal phase reference
• A feedback clock (L2SYNC_IN) for the external phase reference.
Asserting L2BYP causes clock #2 to be used as clocks #1 and #2. (Clock #2 is the actual clock used
by the registers of the L2 interface circuitry.) L2BYP is intended for use when the PLL is being
bypassed, and for engineering evaluation. If the PLL is being bypassed, the DLL must be operated in
divide-by-1 mode, and SYSCLK must be fast enough for the DLL to support.

19–21 — Reserved. These bits are implemented but not used; keep at 0 for future compatibility.

22 L2CS L2 Clock Stop (for chip revisions 3.0 and later). Asserting this bit causes the L2 clocks to the SRAMS
to be automatically stopped whenever the 750 enters nap or sleep modes, and automatically
restarted when exiting those modes (including snooping during nap mode). The L2
SYNC_OUT/SYNC_IN path will remain operating to keep the DLL in sync. This bit is provided as a
power-saving alternative to the L2CTL bit and its corresponding ZZ pin, which may not be useful for
dynamic stopping/restarting of the L2 interface from nap and sleep modes due to the relatively long
recovery time from ZZ negation that many SRAM vendors require.

Table 2-18. L2CR Bit Settings (Continued)

Bit Name Function
2-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

.
The L2CR register can be accessed with themtspr andmfspr instructions using SPR 1017

23 L2DRO L2 DLL Rollover Checkstop Enable (for chip revisions 3.0 and later). Asserting this bit enables a
potential/actual rollover condition of the DLL to cause a checkstop for the processor. A potential
rollover condition occurs when the DLL is selecting the last tap of the delay line, and thus may risk
rolling over to the first tap with one adjustment while in the process of keeping in sync. Such a
condition is improper operation for the DLL, and while this condition is not expected, this bit allows
detection for added security. This bit should be set when the DLL is first enabled (set with the L2CLK
bits) to detect rollover during initial synchronization. It could also be set when the L2 cache is enabled
(with L2E bit) after the DLL has achieved initial lock.
0 Prevents DLL rollover to checkstop.
1 Enable a rollover or terminal count of the DLL to checkstop the processor (independent of

MSR(ME) bit.

24-30 L2CTR L2 DLL counter value (read only; for chip revisions 3.0 and later). These bits indicate the current
value of the DLL counter (0 to 127). They are asynchronously read when the L2CR is read, and as
such, should be read at least twice with the same value in case the value is asynchronously caught in
transition. These bits are intended to provide observability of where in the 128-bit delay chain the DLL
is at any given time. Generally, the DLL operation should be considered at risk if it is found to be
within a couple of taps of its beginning or end point (tap 0 or tap 128).

31 L2IP L2 global invalidate in progress (read only). This read-only bit indicates whether an L2 global
invalidate is occurring. It should be monitored after an L2 global invalidate has been initiated by the
L2I bit to determine when it has completed.

Table 2-18. L2CR Bit Settings (Continued)

Bit Name Function
Chapter 2. Programming Model 2-27

s of the
tions
, and

ndard
. The
oth)
metic

but

sion

one
itly

ls to
s for
ing

etic
xtra

econd
ing

dress

/store
s of a
2.2 Operand Conventions
This section describes the operand conventions as they are represented in two level
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conven
used for storing values in registers and memory, accessing PowerPC registers
representation of data in these registers.

2.2.1 Floating-Point Execution Models—UISA
The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The sta
requires that single-precision arithmetic be provided for single-precision operands
standard permits double-precision arithmetic instructions to have either (or b
single-precision or double-precision operands, but states that single-precision arith
instructions should not accept double-precision operands.

The PowerPC UISA follows these guidelines:

• Double-precision arithmetic instructions may have single-precision operands
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-preci
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be d
explicitly by software, while conversion from single- to double-precision is done implic
by the processor.

All PowerPC implementations provide the equivalent of the following execution mode
ensure that identical results are obtained. The definition of the arithmetic instruction
infinities, denormalized numbers, and NaNs follow conventions described in the follow
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithm
uses two additional bit positions to avoid potential transient overflow conditions. An e
bit is required when denormalized double-precision numbers are prenormalized. A s
bit is required to permit computation of the adjusted exponent value in the follow
examples when the corresponding exception enable bit is one:

• Underflow during multiplication using a denormalized operand
• Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the ad
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load
multiple and load/store string instructions, a sequence of bytes or words. The addres
2-28 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

yte).

ndary
dth.
own in
cause

mple,

ition,
e best

not
ent

ration
suffer

-point
ligned

oint
cture
EE

rand

alized
rming
ed by
rands.
memory operand is the address of its first byte (that is, of its lowest-numbered b
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has an alignment bou
equal to its length. An operand’s address is misaligned if it is not a multiple of its wi
Operands for single-register memory access instructions have the characteristics sh
Table 2-19. Although not permitted as memory operands, quad words are shown be
quad-word alignment is desirable for certain memory operands.

The concept of alignment is also applied more generally to data in memory. For exa
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In add
alignment may affect performance. For single-register memory access instructions, th
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

The 750 does not provide hardware support for floating-point memory that is
word-aligned. If a floating-point operand is not aligned, the 750 invokes an alignm
exception, and it is left up to software to break up the offending storage access ope
appropriately. In addition, some non-double-word–aligned memory accesses
performance degradation as compared to an aligned access of the same type.

In general, floating-point word accesses should always be word-aligned and floating
double-word accesses should always be double-word–aligned. Frequent use of misa
accesses is discouraged since they can degrade overall performance.

2.2.4 Floating-Point Operand
The 750 provides hardware support for all single- and double-precision floating-p
operations for most value representations and all rounding modes. This archite
provides for hardware to implement a floating-point system as defined in ANSI/IE
standard 754-1985,IEEE Standard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “Ope
Conventions,” inThe Programming Environments Manual.

The 750 supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denorm
numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE confo
manner. This is accomplished by delivering results that approximate the values requir
the IEEE standard. Table 2-19 summarizes the conditions and mode behavior for ope
Chapter 2. Programming Model 2-29

Table 2-19. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI = 0)

Non-IEEE Mode
(NI = 1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three Zero all three

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero Normalize A and B Zero A and B

Normalized or zero Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize B and C Zero B and C

Single denormalized
Double denormalized

Normalized or zero Single denormalized
Double denormalized

Normalize A and C Zero A and C

Single denormalized
Double denormalized

Normalized or zero Normalized or zero Normalize A Zero A

Normalized or zero Single denormalized
Double denormalized

Normalized or zero Normalize B Zero B

Normalized or zero Normalized or zero Single denormalized
Double denormalized

Normalize C Zero C

Single QNaN
Single SNaN
Double QNaN
Double SNaN

Don’t care Don’t care QNaN1 QNaN1

Don’t care Single QNaN
Single SNaN
Double QNaN
Double SNaN

Don’t care QNaN1 QNaN1

Don’t care Don’t care Single QNaN
Single SNaN
Double QNaN
Double SNaN

QNaN1 QNaN1

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Do the operation Do the operation

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.
2-30 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

These

re

, as
CR).

store

ster

ore
Table 2-20 summarizes the mode behavior for results.

2.3 Instruction Set Summary
This chapter describes instructions and addressing modes defined for the 750.
instructions are divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For mo
information, see Section 2.3.4.1, “Integer Instructions.”

• Floating-point instructions—These include floating-point arithmetic instructions
well as instructions that affect the floating-point status and control register (FPS
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

• Load and store instructions—These include integer and floating-point load and
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

• Flow control instructions—These include branching instructions, condition regi
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For m
information, see Section 2.3.4.6, “Processor Control Instructions—UISA,”
Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA.”

Table 2-20. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)

Single Denormalized Return single-precision denormalized number
with trailing zeros.

Return zero.

Single Normalized,
infinity, zero

Return the result. Return the result.

Single QNaN, SNaN Return QNaN. Return QNaN.

Single INT Place integer into low word of FPR. If (Invalid Operation)
then

Place (0x8000) into FPR[32–63]
else

Place integer into FPR[32–63].

Double Denormalized Return double-precision denormalized number. Return zero.

Double Normalized,
infinity, zero

Return the result. Return the result.

Double QNaN, SNaN Return QNaN. Return QNaN.

Double INT Not supported by 750 Not supported by 750
Chapter 2. Programming Model 2-31

ry

Bs,
ntrol
.”

rnal

it that
seful
g.”

te on
cture
ord,

urpose
tores

ts of
ation,
target

ands.
bols

fied

cs as
for the
in that

erPC
erPC
• Memory synchronization instructions—These instructions are used for memo
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

• Memory control instructions—These instructions provide control of caches, TL
and segment registers. For more information, see Section 2.3.5.3, “Memory Co
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA

• External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional Exte
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution un
processes a particular instruction or group of instructions. This information, which is u
for scheduling instructions most effectively, is provided in Chapter 6, “Instruction Timin

Integer instructions operate on word operands. Floating-point instructions opera
single-precision and double-precision floating-point operands. The PowerPC archite
uses instructions that are four bytes long and word-aligned. It provides for byte, half-w
and word operand loads and stores between memory and a set of 32 general-p
registers (GPRs). It also provides for word and double-word operand loads and s
between memory and a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not read or modify memory. To use the conten
a memory location in a computation and then modify the same or another memory loc
the memory contents must be loaded into a register, modified, and then written to the
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of oper
To simplify assembly language programming, a set of simplified mnemonics and sym
is provided for some of the frequently-used instructions; see Appendix F, “Simpli
Mnemonics,” inThe Programming Environments Manualfor a complete list of simplified
mnemonics. Note that the architecture specification refers to simplified mnemoni
extended mnemonics. Programs written to be portable across the various assemblers
PowerPC architecture should not assume the existence of mnemonics not described
document.

2.3.1 Classes of Instructions
The 750 instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the Pow
processors, the assignment of these classifications is not. For example, Pow
2-32 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

-bit

if any.
fined

n the
s.

s on
es the
urious
ed by
eeded.
ions,

tions,

ll

ram
ay be

rs to

for

ns to
instructions defined for 64-bit implementations are treated as illegal by 32
implementations such as the 750.

The class is determined by examining the primary opcode and the extended opcode,
If the opcode, or combination of opcode and extended opcode, is not that of a de
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions i
architecture or may be reserved by being assigned to processor-specific instruction

2.3.1.1 Definition of Boundedly Undefined
If instructions are encoded with incorrectly set bits in reserved fields, the result
execution can be said to be boundedly undefined. If a user-level program execut
incorrectly coded instruction, the resulting undefined results are bounded in that a sp
change from user to supervisor state is not allowed, and the level of privilege exercis
the program in relation to memory access and other system resources cannot be exc
Boundedly-undefined results for a given instruction may vary between implementat
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementa
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” inThe
Programming Environments Manual. The 750 provides hardware support for a
instructions defined for 32-bit implementations. It does not support the optionalfsqrt ,
fsqrts, andtlbia instructions.

A PowerPC processor invokes the illegal instruction error handler (part of the prog
exception) when the unimplemented PowerPC instructions are encountered so they m
emulated in software, as required. Note that the architecture specification refe
exceptions as interrupts.

A defined instruction can have invalid forms. The 750 provides limited support
instructions represented in an invalid form.

2.3.1.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1, 4, 5, 6, 9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture may define any of these instructio
perform new functions.
Chapter 2. Programming Model 2-33

cific
4-bit
750.

are

be
nd
or

codes.)

his
ory
that

lass.”

en it
-bit

egal
ros,

es not
erved
See

ails
PC

the
• Instructions defined in the PowerPC architecture but not implemented in a spe
PowerPC implementation. For example, instructions that can be executed on 6
PowerPC processors are considered illegal by 32-bit processors such as the

The following primary opcodes are defined for 64-bit implementations only and
illegal on the 750:

2, 30, 58, 62

• All unused extended opcodes are illegal. The unused extended opcodes can
determined from information in Section A.2, “Instructions Sorted by Opcode,” a
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes f
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended op

• An instruction consisting of only zeros is guaranteed to be an illegal instruction. T
increases the probability that an attempt to execute data or uninitialized mem
invokes the system illegal instruction error handler (a program exception). Note
if only the primary opcode consists of all zeros, the instruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction C

The 750 invokes the system illegal instruction error handler (a program exception) wh
detects any instruction from this class or any instructions defined only for 64
implementations.

See Section 4.5.7, “Program Exception (0x00700),” for additional information about ill
and invalid instruction exceptions. Except for an instruction consisting of binary ze
illegal instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purpos
defined by the PowerPC architecture. Attempting to execute an unimplemented res
instruction invokes the illegal instruction error handler (a program exception).
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” inThe Programming
Environments Manual for information about illegal and invalid instruction exceptions.

The PowerPC architecture defines four types of reserved instructions:

• Instructions in the POWER architecture not part of the PowerPC UISA. For det
on POWER architecture incompatibilities and how they are handled by Power
processors, see Appendix B, “POWER Architecture Cross Reference,” inThe
Programming Environments Manual.

• Implementation-specific instructions required for the processor to conform to
PowerPC architecture (none of these are implemented in the 750)

• All other implementation-specific instructions
2-34 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

for
2-bit

er 4,

y the
es the

s the

/store
s of a
yte).
both

dian.

ment
erand
if it

about

ing a
n. For
length
around
in the

signed
• Architecturally-allowed extended opcodes

2.3.2 Addressing Modes
This section provides an overview of conventions for addressing memory and
calculating effective addresses as defined by the PowerPC architecture for 3
implementations. For more detailed information, see “Conventions,” in Chapt
“Addressing Modes and Instruction Set Summary,” ofThe Programming Environments
Manual.

2.3.2.1 Memory Addressing
A program references memory using the effective (logical) address computed b
processor when it executes a memory access or branch instruction or when it fetch
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number i
address of the corresponding byte.

2.3.2.2 Memory Operands
Memory operands may be bytes, half words, words, or double words, or, for the load
multiple and load/store string instructions, a sequence of bytes or words. The addres
memory operand is the address of its first byte (that is, of its lowest-numbered b
Operand length is implicit for each instruction. The PowerPC architecture supports
big-endian and little-endian byte ordering. The default byte and bit ordering is big-en
See “Byte Ordering,” in Chapter 3, “Operand Conventions,” ofThe Programming
Environments Manual for more information about big- and little-endian byte ordering.

The operand of a single-register memory access instruction has a natural align
boundary equal to the operand length. In other words, the “natural” address of an op
is an integral multiple of the operand length. A memory operand is said to be aligned
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion
memory operands, see Chapter 3, “Operand Conventions,” ofThe Programming
Environments Manual.

2.3.2.3 Effective Address Calculation
An effective address is the 32-bit sum computed by the processor when execut
memory access or branch instruction or when fetching the next sequential instructio
a memory access instruction, if the sum of the effective address and the operand
exceeds the maximum effective address, the memory operand is considered to wrap
from the maximum effective address through effective address 0, as described
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit un
binary arithmetic. A carry from bit 0 is ignored.
Chapter 2. Programming Model 2-35

:

x)

tailed

that is

ing

use

n is

and

d

r to

have
es, but
nt. For

ld be
ode.
Load and store operations have the following modes of effective address generation

• EA = (rA|0) + offset (including offset = 0) (register indirect with immediate inde
• EA = (rA|0) + rB (register indirect with index)

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a de
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate
• Link register indirect
• Count register indirect

2.3.2.4 Synchronization
The synchronization described in this section refers to the state of the processor
performing the synchronization.

2.3.2.4.1 Context Synchronization
The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before perform
a change in context. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).

• All previous instructions have completed to a point where they can no longer ca
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instructio
executed.

• Previous instructions complete execution in the context (privilege, protection,
address translation) under which they were issued.

• The instructions following thescor rfi instruction execute in the context establishe
by these instructions.

2.3.2.4.2 Execution Synchronization
An instruction is execution synchronizing if all previously initiated instructions appea
have completed before the instruction is initiated or, in the case ofsyncandisync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions
completed execution and cannot cause an exception before the instruction execut
does not ensure subsequent instructions execute in the newly established environme
example, if themtmsr sets the MSR[PR] bit, unless anisync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access cou
performed without causing an exception even though the MSR[PR] bit indicates user m
2-36 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

of an
cause

ram
e the
ram
vel

s

D1

r DSI

t

r.

”

750
cular
ed in

d for
tecture

d.
2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 750—those caused directly by the execution
instruction and those caused by an asynchronous event (or interrupts). Either may
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (prog
exception) handler to be invoked. An attempt by a user-level program to execut
supervisor-level instructions listed below causes the privileged instruction (prog
exception) handler to be invoked. The 750 provides the following supervisor-le
instructions:dcbi, mfmsr, mfspr, mfsr, mfsrin , mtmsr, mtspr, mtsr, mtsrin , rfi ,
tlbie, andtlbsync. Note that the privilege level of themfspr andmtspr instructions
depends on the SPR encoding.

• Any mtspr, mfspr, ormftb instruction with an invalid SPR (or TBR) field cause
an illegal type program exception. Likewise, a program exception is taken if
user-level software tries to access a supervisor-level SPR. Anmtspr instruction
executing in supervisor mode (MSR[PR] = 0) with the SPR field specifying HI
or PVR (read-only registers) executes as a no-op.

• An attempt to access memory that is not available (page fault) causes the ISI o
exception handler to be invoked.

• The execution of ansc instruction invokes the system call exception handler tha
permits a program to request the system to perform a service.

• The execution of a trap instruction invokes the program exception trap handle

• The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

A detailed description of exception conditions is provided in Chapter 4, “Exceptions.

2.3.3 Instruction Set Overview
This section provides a brief overview of the PowerPC instructions implemented in the
and highlights any special information with respect to how the 750 implements a parti
instruction. Note that the categories used in this section correspond to those us
Chapter 4, “Addressing Modes and Instruction Set Summary,” inThe Programming
Environments Manual. These categorizations are somewhat arbitrary and are provide
the convenience of the programmer and do not necessarily reflect the PowerPC archi
specification.

Note that some instructions have the following optional features:

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
• Overflow option—Theo suffix indicates that the overflow bit in the XER is enable
Chapter 2. Programming Model 2-37

-level
sters,
es the

lts into
ds.
2.3.4 PowerPC UISA Instructions
The PowerPC UISA includes the base user-level instruction set (excluding a few user
cache control, synchronization, and time base instructions), user-level regi
programming model, data types, and addressing modes. This section discuss
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer logical instructions
• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place resu
GPRs, into the integer exception register (XER), and into condition register (CR) fiel

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-21 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-21. Integer Arithmetic Instructions

Name Mnemonic Syntax

Add Immediate addi r D,rA,SIMM

Add Immediate Shifted addis r D,rA,SIMM

Add add (add. addo addo.) rD,rA,rB

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addic r D,rA,SIMM

Add Immediate Carrying and Record addic. r D,rA,SIMM

Subtract from Immediate Carrying subfic r D,rA,SIMM

Add Carrying addc (addc. addco addco.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mulli r D,rA,SIMM
2-38 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ng an
ided

is

rflow
vent
ter 6,
mary
flect

gister
e of

R0.

see
Although there is no Subtract Immediate instruction, its effect can be achieved by usi
addi instruction with the immediate operand negated. Simplified mnemonics are prov
that include this negation. Thesubf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” inThe
Programming Environments Manual for examples.

The UISA states that an implementation that executes instructions that set the ove
enable bit (OE) or the carry bit (CA) may either execute these instructions slowly or pre
execution of the subsequent instruction until the operation completes. Chap
“Instruction Timing,” describes how the 750 handles CR dependencies. The sum
overflow bit (SO) and overflow bit (OV) in the integer exception register are set to re
an overflow condition of a 32-bit result. This can happen only when OE = 1.

2.3.4.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of re
rA with either the zero-extended value of the UIMM operand, the sign-extended valu
the SIMM operand, or the contents of registerrB. The comparison is signed for thecmpi
and cmp instructions, and unsigned for thecmpli and cmpl instructions. Table 2-22
summarizes the integer compare instructions.

The crfD operand can be omitted if the result of the comparison is to be placed in C
Otherwise the target CR field must be specified incrfD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions
Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manual.

Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. r D,rA,rB

Table 2-22. Integer Compare Instructions

Name Mnemonic Syntax

Compare Immediate cmpi crf D,L,rA,SIMM

Compare cmp crf D,L,rA,rB

Compare Logical Immediate cmpli crf D,L,rA,UIMM

Compare Logical cmpl crf D,L,rA,rB

Table 2-21. Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax
Chapter 2. Programming Model 2-39

the
) and
al

of the

t
most
nd
2.3.4.1.3 Integer Logical Instructions
The logical instructions shown in Table 2-23 perform bit-parallel operations on
specified operands. Logical instructions with the CR updating enabled (uses dot suffix
instructionsandi. and andis. set CR field CR0 to characterize the result of the logic
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manualfor
simplified mnemonic examples for integer logical operations.

2.3.4.1.4 Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” inThe
Programming Environments Manualfor a complete list of simplified mnemonics tha
allows simpler coding of often-used functions such as clearing the leftmost or right
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates a
shifts.

Table 2-23. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes

AND Immediate andi. r A,rS,UIMM —

AND Immediate Shifted andis. r A,rS,UIMM —

OR Immediate ori r A,rS,UIMM The PowerPC architecture defines ori r0,r0,0 as the
preferred form for the no-op instruction. The dispatcher
discards this instruction (except for pending trace or
breakpoint exceptions).

OR Immediate Shifted oris r A,rS,UIMM —

XOR Immediate xori r A,rS,UIMM —

XOR Immediate Shifted xoris r A,rS,UIMM —

AND and (and.) rA,rS,rB —

OR or (or.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

Equivalent eqv (eqv.) rA,rS,rB —

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —
2-40 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

either
ed bit
ciated
o the

cal
ertain
ed
f

sion
Integer rotate instructions rotate the contents of a register. The result of the rotation is
inserted into the target register under control of a mask (if a mask bit is 1 the associat
of the rotated data is placed into the target register, and if the mask bit is 0 the asso
bit in the target register is unchanged), or ANDed with a mask before being placed int
target register.

The integer rotate instructions are summarized in Table 2-24.

The integer shift instructions perform left and right shifts. Immediate-form logi
(unsigned) shift operations are obtained by specifying masks and shift values for c
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplifi
Mnemonics,” inThe Programming Environments Manual) are provided to make coding o
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Preci
Shifts,” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-25.

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions
• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions
• Floating-point move instructions

Table 2-24. Integer Rotate Instructions

Name Mnemonic Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 2-25. Integer Shift Instructions

Name Mnemonic Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB
Chapter 2. Programming Model 2-41

oint

754
oint

mode

mat.
ision
ision
cision

ding
.

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-p
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE
standard, but requires software support to conform with that standard. All floating-p
operations conform to the IEEE 754 standard, except if software sets the non-IEEE
FPSCR[NI].

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-26.

All single-precision arithmetic instructions are performed using a double-precision for
The floating-point architecture is a single-pass implementation for double-prec
products. In most cases, a single-precision instruction using only single-prec
operands, in double-precision format, has the same latency as its double-pre
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate roun
operation. The floating-point multiply-add instructions are summarized in Table 2-27

Table 2-26. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Reciprocal Estimate Single 1 fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate 1 frsqrte (frsqrte.) frD,frB

Floating Select 1 fsel fr D,frA,frC,frB

Note: 1The fsel instruction is optional in the PowerPC architecture.
2-42 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

it
The
ber

nd in

ters.
pare
2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-b
double-precision number to a 32-bit single-precision floating-point number.
floating-point convert instructions convert a 64-bit double-precision floating-point num
to a 32-bit signed integer number.

Examples of uses of these instructions to perform various conversions can be fou
Appendix D, “Floating-Point Models,” inThe Programming Environments Manual.

2.3.4.2.4 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point regis
The comparison ignores the sign of zero (that is +0 = –0). The floating-point com
instructions are summarized in Table 2-29.

Table 2-27. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Table 2-28. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax

Floating Round to Single frsp (frsp.) frD,frB

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

Table 2-29. Floating-Point Compare Instructions

Name Mnemonic Syntax

Floating Compare Unordered fcmpu crf D,frA,frB

Floating Compare Ordered fcmpo crf D,frA,frB
Chapter 2. Programming Model 2-43

ram

oint
that all
have
-point
n has

ons,
e
dation

oint
tions
point
The PowerPC architecture allows anfcmpu or fcmpo instruction with the Rc bit set to
produce a boundedly-undefined result, which may include an illegal instruction prog
exception. In the 750,crfD should be treated as undefined

2.3.4.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-p
instructions executed by a given processor. Executing an FPSCR instruction ensures
floating-point instructions previously initiated by the given processor appear to
completed before the FPSCR instruction is initiated and that no subsequent floating
instructions appear to be initiated by the given processor until the FPSCR instructio
completed. The FPSCR instructions are summarized in Table 2-30.

Implementation Note—The PowerPC architecture states that in some implementati
the Move to FPSCR Fields (mtfsf) instruction may perform more slowly when only som
of the fields are updated as opposed to all of the fields. In the 750, there is no degra
of performance.

2.3.4.2.6 Floating-Point Move Instructions
Floating-point move instructions copy data from one FPR to another. The floating-p
move instructions do not modify the FPSCR. The CR update option in these instruc
controls the placing of result status into CR1. Table 2-31 summarizes the floating-
move instructions.

Table 2-30. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crf D,crf S

Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crf D,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crb D

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crb D

Table 2-31. Floating-Point Move Instructions

Name Mnemonic Syntax

Floating Move Register fmr (fmr.) frD,frB

Floating Negate fneg (fneg.) frD,frB

Floating Absolute Value fabs (fabs.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB
2-44 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

r, the
strict
f the

those
ary.
nce.

reduce
thering

r Store
ction
.

use of
essor.

access
access

art. On

ction
tching
2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; howeve
accesses can occur out of order. Synchronizing instructions are provided to enforce
ordering. This section describes the load and store instructions, which consist o
following:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte-reverse instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Memory synchronization instructions

Implementation Notes—The following describes how the 750 handles misalignment:

The 750 provides hardware support for misaligned memory accesses. It performs
accesses within a single cycle if the operand lies within a double-word bound
Misaligned memory accesses that cross a double-word boundary degrade performa

For string operations, the hardware makes no attempt to combine register values to
the number of discrete accesses. Combining stores enhances performance if store ga
is enabled and the accesses meet the criteria described in Section 6.4.7, “Intege
Gathering.” Note that the PowerPC architecture requires load/store multiple instru
accesses to be aligned. At a minimum, additional cache access cycles are required

Although many unaligned memory accesses are supported in hardware, the frequent
them is discouraged since they can compromise the overall performance of the proc

Accesses that cross a translation boundary may be restarted. That is, a misaligned
that crosses a page boundary is completely restarted if the second portion of the
causes a page fault. This may cause the first access to be repeated.

On some processors, such as the 603, a TLB reload would cause an instruction rest
the 750, TLB reloads are done transparently and only a page fault causes a restart.

2.3.4.3.1 Self-Modifying Code
When a processor modifies a memory location that may be contained in the instru
cache, software must ensure that memory updates are visible to the instruction fe
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory
sync |wait for update
icbi |remove (invalidate) copy in instruction cache
isync |remove copy in own instruction buffer
Chapter 2. Programming Model 2-45

. Since
y not be

unified
ining

Model

ct to

ct with
See

ing
turally
ption
tions.

y the
te

,

ger

of the

these

of the

is is
other

d and
rm
ms
These operations are required because the data cache is a write-back cache
instruction fetching bypasses the data cache, changes to items in the data cache ma
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement
secondary caches, and designers should carefully follow the guidelines for mainta
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache
and Memory Coherency,” inThe Programming Environments Manual. Because the 750
does not broadcast the M bit for instruction fetches, external caches are subje
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indire
immediate index mode, register indirect with index mode, or register indirect mode.
Section 2.3.2.3, “Effective Address Calculation,” for information about calculat
effective addresses. Note that in some implementations, operations that are not na
aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exce
(0x00600),” for additional information about load and store address alignment excep

2.3.4.3.3 Register Indirect Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed b
EA (effective address) is loaded intorD. Many integer load instructions have an upda
form, in whichrA is updated with the generated effective address. For these forms, ifrA 0
andrA rD (otherwise invalid), the EA is placed intorA and the memory element (byte
half word, word, or double word) addressed by the EA is loaded intorD. Note that the
PowerPC architecture defines load with update instructions with operandrA = 0 or
rA = rD as invalid forms.

Implementation Notes—The following notes describe the 750 implementation of inte
load instructions:

• The PowerPC architecture cautions programmers that some implementations
architecture may execute the load half algebraic (lha, lhax) instructions with greater
latency than other types of load instructions. This is not the case for the 750;
instructions operate with the same latency as other load instructions.

• The PowerPC architecture cautions programmers that some implementations
architecture may run the load/store byte-reverse (lhbrx , lbrx , sthbrx, stwbrx)
instructions with greater latency than other types of load/store instructions. Th
not the case for the 750. These instructions operate with the same latency as the
load/store instructions.

• The PowerPC architecture describes some preferred instruction forms for loa
store multiple instructions and integer move assist instructions that may perfo
better than other forms in some implementations. None of these preferred for
affect instruction performance on the 750.
2-46 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

tions

ther
tection

tly

r
tions
g

en
• The PowerPC architecture defines thelwarx andstwcx.as a way to update memory
atomically. In the 750, reservations are made on behalf of aligned 32-byte sec
of the memory address space. Executinglwarx andstwcx. to a page marked
write-through does not cause a DSI exception if the W bit is set, but as with o
memory accesses, DSI exceptions can result for other reasons such as a pro
violations or page faults.

• In general, becausestwcx.always causes an external bus transaction it has sligh
worse performance characteristics than normal store operations.

Table 2-32 summarizes the integer load instructions.

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents ofrS are stored into the byte, half word, word o
double word in memory addressed by the EA (effective address). Many store instruc
have an update form, in whichrA is updated with the EA. For these forms, the followin
rules apply:

• If rA 0, the effective address is placed intorA.

• If rS =rA, the contents of registerrS are copied to the target memory element, th
the generated EA is placed intorA (rS).

Table 2-32. Integer Load Instructions

Name Mnemonic Syntax

Load Byte and Zero lbz r D,d(rA)

Load Byte and Zero Indexed lbzx r D,rA,rB

Load Byte and Zero with Update lbzu r D,d(rA)

Load Byte and Zero with Update Indexed lbzux r D,rA,rB

Load Half Word and Zero lhz r D,d(rA)

Load Half Word and Zero Indexed lhzx r D,rA,rB

Load Half Word and Zero with Update lhzu r D,d(rA)

Load Half Word and Zero with Update Indexed lhzux r D,rA,rB

Load Half Word Algebraic lha r D,d(rA)

Load Half Word Algebraic Indexed lhax r D,rA,rB

Load Half Word Algebraic with Update lhau r D,d(rA)

Load Half Word Algebraic with Update Indexed lhaux r D,rA,rB

Load Word and Zero lwz r D,d(rA)

Load Word and Zero Indexed lwzx r D,rA,rB

Load Word and Zero with Update lwzu r D,d(rA)

Load Word and Zero with Update Indexed lwzux r D,rA,rB
Chapter 2. Programming Model 2-47

bled
-33

e or to
y are
uble

can be
. Store
thering
and

n

The PowerPC architecture defines store with update instructions withrA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option ena
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2
summarizes the integer store instructions.

2.3.4.3.5 Integer Store Gathering
The 750 performs store gathering for write-through accesses to nonguarded spac
cache-inhibited stores to nonguarded space if the stores are 4 bytes and the
word-aligned. These stores are combined in the load/store unit (LSU) to form a do
word and are sent out on the 60x bus as a single-beat operation. However, stores
gathered only if the successive stores that meet the criteria are queued and pending
gathering takes place regardless of the address order of the stores. The store ga
feature is enabled by setting HID0[SGE]. Store gathering is done for both big-
little-endian modes.

Store gathering is not done for the following:

• Cacheable stores
• Stores to guarded cache-inhibited or write-through space
• Byte-reverse store
• stwcx. andecowxaccesses
• Floating-point stores
• Store operations attempted during a hardware table search

If store gathering is enabled and the stores do not fall under the above categories, aeieio
or sync instruction must be used to prevent two stores from being gathered.

Table 2-33. Integer Store Instructions

Name Mnemonic Syntax

Store Byte stb r S,d(rA)

Store Byte Indexed stbx r S,rA,rB

Store Byte with Update stbu r S,d(rA)

Store Byte with Update Indexed stbux r S,rA,rB

Store Half Word sth r S,d(rA)

Store Half Word Indexed sthx r S,rA,rB

Store Half Word with Update sthu r S,d(rA)

Store Half Word with Update Indexed sthux r S,rA,rB

Store Word stw r S,d(rA)

Store Word Indexed stwx r S,rA,rB

Store Word with Update stwu r S,d(rA)

Store Word with Update Indexed stwux r S,rA,rB
2-48 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

d in a
have

in a
effect
and

,” in

PRs.
mory
ay be
page.

he

es to
d and
ed to

uired.

ndian
ned
2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions
Table 2-34 describes integer load and store with byte-reverse instructions. When use
PowerPC system operating with the default big-endian byte order, these instructions
the effect of loading and storing data in little-endian order. Likewise, when used
PowerPC system operating with little-endian byte order, these instructions have the
of loading and storing data in big-endian order. For more information about big-endian
little-endian byte ordering, see “Byte Ordering,” in Chapter 3, “Operand Conventions
The Programming Environments Manual.

2.3.4.3.7 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the G
The load multiple and store multiple instructions may have operands that require me
accesses crossing a 4-Kbyte page boundary. As a result, these instructions m
interrupted by a DSI exception associated with the address translation of the second

Implementation Notes—The following describes the 750 implementation of t
load/store multiple instruction:

• For load/store string operations, the hardware does not combine register valu
reduce the number of discrete accesses. However, if store gathering is enable
the accesses fall under the criteria for store gathering the stores may be combin
enhance performance. At a minimum, additional cache access cycles are req

• The 750 supports misaligned, single-register load and store accesses in little-e
mode without causing an alignment exception. However, execution of misalig
load/store multiple/string operations causes an alignment exception.

The PowerPC architecture defines the load multiple word (lmw) instruction withrA in the
range of registers to be loaded as an invalid form.

Table 2-34. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax

Load Half Word Byte-Reverse Indexed lhbrx r D,rA,rB

Load Word Byte-Reverse Indexed lwbrx r D,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx r S,rA,rB

Store Word Byte-Reverse Indexed stwbrx r S,rA,rB

Table 2-35. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax

Load Multiple Word lmw r D,d(rA)

Store Multiple Word stmw r S,d(rA)
Chapter 2. Programming Model 2-49

ry to
s can
ove

ctions
than a
e 2-36

of a

ned.

ring
e type.
gned
eption.
lower

re

es to
d and
ed to

uired.

ndian
ned
2.3.4.3.8 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memo
registers or from registers to memory without concern for alignment. These instruction
be used for a short move between arbitrary memory locations or to initiate a long m
between misaligned memory fields. However, in some implementations, these instru
are likely to have greater latency and take longer to execute, perhaps much longer,
sequence of individual load or store instructions that produce the same results. Tabl
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution
load or string instruction invokes the alignment error handler; see “Byte Ordering,” inThe
Programming Environments Manual for more information.

Load string and store string instructions may involve operands that are not word-alig

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned st
operation suffers a performance penalty compared to an aligned operation of the sam
A non–word-aligned string operation that crosses a 4-Kbyte boundary, or a word-ali
string operation that crosses a 256-Mbyte boundary always causes an alignment exc
A non–word-aligned string operation that crosses a double-word boundary is also s
than a word-aligned string operation.

Implementation Note—The following describes the 750 implementation of load/sto
string instructions:

• For load/store string operations, the hardware does not combine register valu
reduce the number of discrete accesses. However, if store gathering is enable
the accesses fall under the criteria for store gathering the stores may be combin
enhance performance. At a minimum, additional cache access cycles are req

• The 750 supports misaligned, single-register load and store accesses in little-e
mode without causing an alignment exception. However, execution of misalig
load/store multiple/string operations cause an alignment exception.

Table 2-36. Integer Load and Store String Instructions

Name Mnemonic Syntax

Load String Word Immediate lswi r D,rA,NB

Load String Word Indexed lswx r D,rA,rB

Store String Word Immediate stswi r S,rA,NB

Store String Word Indexed stswx r S,rA,rB
2-50 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

egister
ssing
he use
ption.

and
-point
vert
PR.

0] =
 the
rlier

ne

of the
m is
int,
tore

the
2.3.4.3.9 Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the r
indirect with immediate index addressing mode and register indirect with index addre
mode. Floating-point loads and stores are not supported for direct-store accesses. T
of floating-point loads and stores for direct-store access results in an alignment exce

There are two forms of the floating-point load instruction—single-precision
double-precision operand formats. Because the FPRs support only the floating
double-precision format, single-precision floating-point load instructions con
single-precision data to double-precision format before loading an operand into an F

Implementation Notes—The 750 treats exceptions as follows:

• The FPU can be run in two different modes—ignore exceptions mode (MSR[FE
MSR[FE1] = 0) and precise mode (any other settings for MSR[FE0,FE1]). For
750, ignore exceptions mode allows floating-point instructions to complete ea
and thus may provide better performance than precise mode.

• The floating-point load and store indexed instructions (lfsx, lfsux, lfdx , lfdux , stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the 750, executing o
of these invalid instruction forms causes CR0 to be set to an undefined value.

The PowerPC architecture defines a load with update instruction withrA = 0 as an invalid
form. Table 2-37 summarizes the floating-point load instructions.

2.3.4.3.10 Floating-Point Store Instructions
This section describes floating-point store instructions. There are three basic forms
store instruction—single-precision, double-precision, and integer. The integer for
supported by the optionalstfiwx instruction. Because the FPRs support only floating-po
double-precision format for floating-point data, single-precision floating-point s
instructions convert double-precision data to single-precision format before storing
operands. Table 2-38 summarizes the floating-point store instructions.

Table 2-37. Floating-Point Load Instructions

Name Mnemonic Syntax

Load Floating-Point Single lfs fr D,d(rA)

Load Floating-Point Single Indexed lfsx fr D,rA,rB

Load Floating-Point Single with Update lfsu fr D,d(rA)

Load Floating-Point Single with Update Indexed lfsux fr D,rA,rB

Load Floating-Point Double lfd fr D,d(rA)

Load Floating-Point Double Indexed lfdx fr D,rA,rB

Load Floating-Point Double with Update lfdu fr D,d(rA)

Load Floating-Point Double with Update Indexed lfdux fr D,rA,rB
Chapter 2. Programming Model 2-51

hows
n.

e

Some floating-point store instructions require conversions in the LSU. Table 2-39 s
conversions the LSU makes when executing a Store Floating-Point Single instructio

Note: The FPRs are not initialized byHRESET, and they must be initialized with som
valid value after PORHRESET and before being stored.

Table 2-38. Floating-Point Store Instructions

Name Mnemonic Syntax

Store Floating-Point Single stfs fr S,d(rA)

Store Floating-Point Single Indexed stfsx fr S,r B

Store Floating-Point Single with Update stfsu fr S,d(rA)

Store Floating-Point Single with Update Indexed stfsux fr S,r B

Store Floating-Point Double stfd fr S,d(rA)

Store Floating-Point Double Indexed stfdx fr S,rB

Store Floating-Point Double with Update stfdu fr S,d(rA)

Store Floating-Point Double with Update Indexed stfdux fr S,r B

Store Floating-Point as Integer Word Indexed 1 stfiwx fr S,rB

Note: 1The stfiwx instruction is optional to the PowerPC architecture.

Table 2-39. Store Floating-Point Single Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero, infinity, QNaN Store

Single SNaN Store

Double Normalized If(exp 896)
then Denormalize and Store
else

Store

Double Denormalized Store zero

Double Zero, infinity, QNaN Store

Double SNaN Store
2-52 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ouble
red.

rmat

nt is
s this
lock
stored.

case

store
ould
etic

g the
These

n the
scans
t the
by

resses
-order
Table 2-40 shows the conversions made when performing a Store Floating-Point D
instruction. Most entries in the table indicate that the floating-point value is simply sto
Only in a few cases are any other actions taken.

Architecturally, all floating-point numbers are represented in double-precision fo
within the 750. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the expone
not greater than 896, this conversion requires denormalization. The 750 support
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 c
cycles are required to complete the denormalization, depending upon the value to be

Because of how floating-point numbers are implemented in the 750, there is also a
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a
floating-point double instruction is a denormalized single-precision value. The value c
be the result of a load floating-point single instruction, a single-precision arithm
instruction, or a floating round to single-precision instruction. In these cases, shiftin
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored.
cycles are incurred during the store.

2.3.4.4 Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based o
value of bits in the CR. When the processor encounters one of these instructions, it
the execution pipelines to determine whether an instruction in progress may affec
particular CR bit. If no interlock is found, the branch can be resolved immediately
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction add
are always assumed to be word aligned; the PowerPC processors ignore the two low
bits of the generated branch target address.

Table 2-40. Store Floating-Point Double Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and Store

Single Zero, infinity, QNaN Store

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero, infinity, QNaN Store

Double SNaN Store
Chapter 2. Programming Model 2-53

wing

se
n the
ct or
tively
. This

plify
vided
shift,

tion
Branch instructions compute the EA of the next instruction address using the follo
addressing modes:

• Branch relative
• Branch conditional to relative address
• Branch to absolute address
• Branch conditional to absolute address
• Branch conditional to link register
• Branch conditional to count register

Note that in the 750, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, bclr, bclrl ,
bcctr, bcctrl) and condition register logical instructions (crand, cror, crxor, crnand,
crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of the
instructions can redirect instruction execution conditionally based on the value of bits i
CR. Whenever the CR bits resolve, the branch direction is either marked as corre
mispredicted. Correcting a mispredicted branch requires that the 750 flush specula
executed instructions and restore the machine state to immediately after the branch
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions
Table 2-41 lists the branch instructions provided by the PowerPC processors. To sim
assembly language programming, a set of simplified mnemonics and symbols is pro
for the most frequently used forms of branch conditional, compare, trap, rotate and
and certain other instructions. See Appendix F, “Simplified Mnemonics,” inThe
Programming Environments Manualfor a list of simplified mnemonic examples.

2.3.4.4.3 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 2-42, and the Move Condi
Register Field (mcrf) instruction are also defined as flow control instructions.

Table 2-41. Branch Instructions

Name Mnemonic Syntax

Branch b (ba bl bla) target_addr

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

Table 2-42. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crb D,crb A,crb B

Condition Register OR cror crb D,crb A,crb B

Condition Register XOR crxor crb D,crb A,crb B
2-54 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

erPC

et of
type

ption
ally.

rm a
EA,”

r more

gister
. See
Note that if the LR update option is enabled for any of these instructions, the Pow
architecture defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions
The trap instructions shown in Table 2-43 are provided to test for a specified s
conditions. If any of the conditions tested by a trap instruction are met, the system trap
program exception is taken. For more information, see Section 4.5.7, “Program Exce
(0x00700).” If the tested conditions are not met, instruction execution continues norm

See Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manualfor
a complete set of simplified mnemonics.

2.3.4.5 System Linkage Instruction—UISA
The System Call (sc) instruction permits a program to call on the system to perfo
service; see Table 2-44. See also Section 2.3.6.1, “System Linkage Instructions—O
for additional information.

Executing this instruction causes the system call exception handler to be evoked. Fo
information, see Section 4.5.10, “System Call Exception (0x00C00).”

2.3.4.6 Processor Control Instructions—UISA
Processor control instructions are used to read from and write to the condition re
(CR), machine state register (MSR), and special-purpose registers (SPRs)

Condition Register NAND crnand crb D,crb A,crb B

Condition Register NOR crnor crb D,crb A,crb B

Condition Register Equivalent creqv crb D,crb A, crb B

Condition Register AND with Complement crandc crb D,crb A, crb B

Condition Register OR with Complement crorc crb D,crb A, crb B

Move Condition Register Field mcrf crf D,crf S

Table 2-43. Trap Instructions

Name Mnemonic Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB

Table 2-44. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —

Table 2-42. Condition Register Logical Instructions (Continued)

Name Mnemonic Syntax
Chapter 2. Programming Model 2-55

the

ister.

ions

gister
Section 2.3.5.1, “Processor Control Instructions—VEA,” for themftb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-45 summarizes the instructions for reading from or writing to the condition reg

Implementation Note—The PowerPC architecture indicates that in some implementat
the Move to Condition Register Fields (mtcrf) instruction may perform more slowly when
only a portion of the fields are updated as opposed to all of the fields. The condition re
access latency for the 750 is the same in both cases.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-46 lists themtspr andmfspr instructions.

Table 2-47 lists the SPR numbers for both user- and supervisor-level accesses.

Table 2-45. Move to/from Condition Register Instructions

Name Mnemonic Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crf D

Move from Condition Register mfcr r D

Table 2-46. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr r D,SPR

Table 2-47. PowerPC Encodings

Register Name
SPR

1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

CTR 9 00000 01001 User (UISA) Both

DABR 1013 11111 10101 Supervisor (OEA) Both

DAR 19 00000 10011 Supervisor (OEA) Both

DBAT0L 537 10000 11001 Supervisor (OEA) Both

DBAT0U 536 10000 11000 Supervisor (OEA) Both

DBAT1L 539 10000 11011 Supervisor (OEA) Both

DBAT1U 538 10000 11010 Supervisor (OEA) Both

DBAT2L 541 10000 11101 Supervisor (OEA) Both
2-56 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

DBAT2U 540 10000 11100 Supervisor (OEA) Both

DBAT3L 543 10000 11111 Supervisor (OEA) Both

DBAT3U 542 10000 11110 Supervisor (OEA) Both

DEC 22 00000 10110 Supervisor (OEA) Both

DSISR 18 00000 10010 Supervisor (OEA) Both

EAR 282 01000 11010 Supervisor (OEA) Both

IBAT0L 529 10000 10001 Supervisor (OEA) Both

IBAT0U 528 10000 10000 Supervisor (OEA) Both

IBAT1L 531 10000 10011 Supervisor (OEA) Both

IBAT1U 530 10000 10010 Supervisor (OEA) Both

IBAT2L 533 10000 10101 Supervisor (OEA) Both

IBAT2U 532 10000 10100 Supervisor (OEA) Both

IBAT3L 535 10000 10111 Supervisor (OEA) Both

IBAT3U 534 10000 10110 Supervisor (OEA) Both

LR 8 00000 01000 User (UISA) Both

PVR 287 01000 11111 Supervisor (OEA) mfspr

SDR1 25 00000 11001 Supervisor (OEA) Both

SPRG0 272 01000 10000 Supervisor (OEA) Both

SPRG1 273 01000 10001 Supervisor (OEA) Both

SPRG2 274 01000 10010 Supervisor (OEA) Both

SPRG3 275 01000 10011 Supervisor (OEA) Both

SRR0 26 00000 11010 Supervisor (OEA) Both

SRR1 27 00000 11011 Supervisor (OEA) Both

TBL 2 268 01000 01100 Supervisor (OEA) mtspr

284 01000 11100 Supervisor (OEA) mtspr

TBU 2 269 01000 01101 Supervisor (OEA) mtspr

285 01000 11101 Supervisor (OEA) mtspr

Table 2-47. PowerPC Encodings (Continued)

Register Name
SPR

1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]
Chapter 2. Programming Model 2-57

Encodings for the 750-specific SPRs are listed in Table 2-48.

XER 1 00000 00001 User (UISA) Both

Notes :
1 The order of the two 5-bit halves of the SPR number is reversed compared with actual

instruction coding. For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the instruction. The number
coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five
bits appearing in bits 16–20 of the instruction and the low-order five bits in bits 11–15.

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the
mtspr instruction in supervisor mode and the TBR numbers here. The TB registers can be read
in user mode using either the mftb or mtspr instruction and specifying TBR 268 for TBL and
SPR 269 for TBU.

Table 2-48. SPR Encodings for PowerPC 750-Defined Registers (mfspr)

Register
Name

SPR
1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]

DABR 1013 11111 10101 User Both

HID0 1008 11111 10000 Supervisor Both

HID1 1009 11111 10001 Supervisor Both

IABR 1010 11111 10010 Supervisor Both

ICTC 1019 11111 11011 Supervisor Both

L2CR 1017 11111 11001 Supervisor Both

MMCR0 952 11101 11000 Supervisor Both

MMCR1 956 11101 11100 Supervisor Both

PMC1 953 11101 11001 Supervisor Both

PMC2 954 11101 11010 Supervisor Both

PMC3 957 11101 11101 Supervisor Both

PMC4 958 11101 11110 Supervisor Both

SIA 955 11101 11011 Supervisor Both

THRM1 1020 11111 11100 Supervisor Both

THRM2 1021 11111 11101 Supervisor Both

THRM3 1022 11111 11110 Supervisor Both

UMMCR0 936 11101 01000 User mfspr

Table 2-47. PowerPC Encodings (Continued)

Register Name
SPR

1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]
2-58 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

are
ations
truction
about
2.3.4.7 Memory Synchronization Instructions—UISA
Memory synchronization instructions control the order in which memory operations
completed with respect to asynchronous events, and the order in which memory oper
are seen by other processors or memory access mechanisms. See Chapter 3, “Ins
and Data Cache Operation,” for additional information about these instructions and
related aspects of memory synchronization. See Table 2-49 for a summary.

UMMCR1 940 11101 01100 User mfspr

UPMC1 937 11101 01001 User mfspr

UPMC2 938 11101 01010 User mfspr

UPMC3 941 11101 01101 User mfspr

UPMC4 942 11101 01110 User mfspr

USIA 939 11101 01011 User mfspr

Note :
1Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual
instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into two
5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing in bits
16–20 of the instruction and the low-order 5 bits in bits 11–15.

Table 2-49. Memory Synchronization Instructions—UISA

Name Mnemonic Syntax Implementation Notes

Load Word
and Reserve
Indexed

lwarx r D,rA,rB Programmers can use lwarx with stwcx. to emulate common semaphore
operations such as test and set, compare and swap, exchange memory, and
fetch and add. Both instructions must use the same EA. Reservation
granularity is implementation-dependent. The 750 makes reservations on
behalf of aligned 32-byte sections of the memory address space. If the W bit is
set, executing lwarx and stwcx. to a page marked write-through does not
cause a DSI exception, but DSI exceptions can result for other reasons. If the
location is not word-aligned, an alignment exception occurs.
The stwcx. instruction is the only load/store instruction with a valid form if Rc is
set. If Rc is zero, executing stwcx. sets CR0 to an undefined value. In general,
stwcx. always causes a transaction on the external bus and thus operates with
slightly worse performance characteristics than normal store operations.

Store Word
Conditional
Indexed

stwcx. r S,rA,rB

Table 2-48. SPR Encodings for PowerPC 750-Defined Registers (mfspr) (Continued)

Register
Name

SPR
1

Access mfspr/mtspr
Decimal spr[5–9] spr[0–4]
Chapter 2. Programming Model 2-59

dware
ns to
e been

nal

tions.

f the
s of the
ssues.
sarily

EA
ase
tion.
System designs with an L2 cache should take special care to recognize the har
signaling caused by a SYNC bus operation and perform the appropriate actio
guarantee that memory references that may be queued internally to the L2 cache hav
performed globally.

See 2.3.5.2, “Memory Synchronization Instructions—VEA,” for details about additio
memory synchronization (eieio andisync) instructions.

In the PowerPC architecture, the Rc bit must be zero for most load and store instruc
If Rc is set, the instruction form is invalid forsync and lwarx instructions. If the 750
encounters one of these invalid instruction forms, it sets CR0 to an undefined value.

2.3.5 PowerPC VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics o
memory model that can be assumed by software processes, and includes description
cache model, cache control instructions, address aliasing, and other related i
Implementations that conform to the VEA also adhere to the UISA, but may not neces
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA
In addition to the move to condition register instructions (specified by the UISA), the V
defines themftb instruction (user-level instruction) for reading the contents of the time b
register; see Chapter 3, “Instruction and Data Cache Operation,” for more informa
Table 2-50 shows themftb instruction.

Synchronize sync — Because it delays subsequent instructions until all previous instructions
complete to where they cannot cause an exception, sync is a barrier against
store gathering. Additionally, all load/store cache/bus activities initiated by prior
instructions are completed. Touch load operations (dcbt , dcbtst) must
complete address translation, but need not complete on the bus. If HID0[ABE]
= 1, sync completes after a successful broadcast.
The latency of sync depends on the processor state when it is dispatched and
on various system-level situations. Therefore, frequent use of sync may
degrade performance.

Table 2-50. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb r D, TBR

Table 2-49. Memory Synchronization Instructions—UISA (Continued)

Name Mnemonic Syntax Implementation Notes
2-60 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

e
d. See

ase

ed
,

ores

e

use of

nd
B

bus

are
ations
truction
elated

e

rs
of this
Simplified mnemonics are provided for themftb instruction so it can be coded with th
TBR name as part of the mnemonic rather than requiring it to be coded as an operan
Appendix F, “Simplified Mnemonics,” inThe Programming Environments Manualfor
simplified mnemonic examples and for simplified mnemonics for Move from Time B
(mftb) and Move from Time Base Upper (mftbu), which are variants of themftb
instruction rather than ofmfspr. Themftb instruction serves as both a basic and simplifi
mnemonic. Assemblers recognize anmftb mnemonic with two operands as the basic form
and anmftb mnemonic with one operand as the simplified form. Note that the 750 ign
the extended opcode differences betweenmftb andmfspr by ignoring bit 25 and treating
both instructions identically.

Implementation Notes—The following information is useful with respect to using th
time base implementation in the 750:

• The 750 allows user-mode read access to the time base counter through the
the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a 32-bit PowerPC implementation, the 750 can access TBU a
TBL only separately, whereas 64-bit implementations can access the entire T
register at once.

• The time base counter is clocked at a frequency that is one-fourth that of the
clock. Counting is enabled by assertion of the time base enable (TBE) input signal.

2.3.5.2 Memory Synchronization Instructions—VEA
Memory synchronization instructions control the order in which memory operations
completed with respect to asynchronous events, and the order in which memory oper
are seen by other processors or memory access mechanisms. See Chapter 3, “Ins
and Data Cache Operation,” for more information about these instructions and about r
aspects of memory synchronization.

In addition to thesync instruction (specified by UISA), the VEA defines the Enforc
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete aneieio instruction depends on system paramete
and on the processor's state when the instruction is issued. As a result, frequent use
instruction may degrade performance slightly.
Chapter 2. Programming Model 2-61

VEA.
out
buffer

-chip
n,” for
ations

tions
other
ystem

t

Table 2-51 describes the memory synchronization instructions defined by the VEA.

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions can be classified as follows:

• Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions (OEA)
• Translation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions defined by the
See Section 2.3.6.3, “Memory Control Instructions—OEA,” for information ab
supervisor-level cache, segment register manipulation, and translation lookaside
management instructions.

2.3.5.3.1 User-Level Cache Instructions—VEA
The instructions summarized in this section help user-level programs manage on
caches if they are implemented. See Chapter 3, “Instruction and Data Cache Operatio
more information about cache topics. The following sections describe how these oper
are treated with respect to the 750’s cache.

As with other memory-related instructions, the effects of cache management instruc
on memory are weakly-ordered. If the programmer must ensure that cache or
instructions have been performed with respect to all other processors and s
mechanisms, async instruction must be placed after those instructions.

Note that the 750 interprets cache control instructions (icbi, dcbi, dcbf, dcbz, anddcbst)
as if they pertain only to the local L1 and L2 cache. Adcbz(with M set) is always broadcas
on the 60x bus. Thedcbi, dcbf, anddcbst operations are broadcast if HID0[ABE] is set.

Table 2-51. Memory Synchronization Instructions—VEA

Name Mnemonic Syntax Implementation Notes

Enforce
In-Order
Execution of
I/O

eieio — The eieio instruction is dispatched to the LSU and executes after all previous
cache-inhibited or write-through accesses are performed; all subsequent
instructions that generate such accesses execute after eieio . If HID0[ABE] = 1 an
EIEIO operation is broadcast on the external bus to enforce ordering in the
external memory system. The eieio operation bypasses the L2 cache and is
forwarded to the bus unit. If HID0[ABE] = 0, the operation is not broadcast.
Because the 750 does not reorder noncacheable accesses, eieio is not needed
to force ordering. However, if store gathering is enabled and an eieio is detected
in a store queue, stores are not gathered. If HID0[ABE] = 1, broadcasting eieio
prevents external devices, such as a bus bridge chip, from gathering stores.

Instruction
Synchronize

isync — The isync instruction is refetch serializing; that is, it causes the 750 to purge its
instruction queue and wait for all prior instructions to complete before refetching
the next instruction, which is not executed until all previous instructions complete
to the point where they cannot cause an exception. The isync instruction does
not wait for all pending stores in the store queue to complete. Any instruction
after an isync sees all effects of prior instructions.
2-62 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

nly
che
che

ntrol

these
The 750 never broadcasts anicbi. Of the broadcast cache operations, the 750 snoops o
dcbz, regardless of the HID0[ABE] setting. Any bus activity caused by other ca
instructions results directly from performing the operation on the 750 cache. All ca
control instructions to T = 1 space are no-ops. For information how cache co
instructions affect the L2, see Chapter 9, “L2 Cache Interface Operation.”

Table 2-52 summarizes the cache instructions defined by the VEA. Note that
instructions are accessible to user-level programs.

Table 2-52. User-Level Cache Instructions

Name Mnemonic Syntax Implementation Notes

Data Cache Block
Touch 1

dcbt r A,rB The VEA defines this instruction to allow for potential system performance
enhancements through the use of software-initiated prefetch hints.
Implementations are not required to take any action based on execution of
this instruction, but they may prefetch the cache block corresponding to
the EA into their cache. When dcbt executes, the 750 checks for
protection violations (as for a load instruction). This instruction is treated
as a no-op for the following cases:
• A valid translation is not found either in BAT or TLB
• The access causes a protection violation.
• The page is mapped cache-inhibited, G = 1 (guarded), or T = 1.
• The cache is locked or disabled
• HID0[NOOPTI] = 1
Otherwise, if no data is in the cache location, the 750 requests a cache
line fill (with intent to modify). Data brought into the cache is validated as if
it were a load instruction. The memory reference of a dcbt sets the
reference bit.

Data Cache Block
Touch for Store 1

dcbtst r A,rB This instruction behaves like dcbt .

Data Cache Block
Set to Zero

dcbz r A,rB The EA is computed, translated, and checked for protection violations. For
cache hits, four beats of zeros are written to the cache block and the tag is
marked M. For cache misses with the replacement block marked E, the
zero line fill is performed and the cache block is marked M. However, if the
replacement block is marked M, the contents are written back to memory
first. The instruction executes regardless of whether the cache is locked; if
the cache is disabled, an alignment exception occurs. If M = 1 (coherency
enforced), the address is broadcast to the bus before the zero line fill.
The exception priorities (from highest to lowest) are as follows:
1 Cache disabled—Alignment exception
2 Page marked write-through or cache Inhibited—Alignment exception
3 BAT protection violation—DSI exception
4 TLB protection violation—DSI exception
dcbz is the only cache instruction that broadcasts even if HID0[ABE] = 0.
Chapter 2. Programming Model 2-63

nted,

hese
2.3.5.4 Optional External Control Instructions
The PowerPC architecture defines an optional external control feature that, if impleme
is supported by the two external control instructions,eciwxandecowx. These instructions
allow a user-level program to communicate with a special-purpose device. T
instructions are provided and are summarized in Table 2-53.

Data Cache Block
Store

dcbst r A,rB The EA is computed, translated, and checked for protection violations.
• For cache hits with the tag marked E, no further action is taken.
• For cache hits with the tag marked M, the cache block is written back

to memory and marked E.
A dcbst is not broadcast unless HID0[ABE] = 1 regardless of WIMG
settings. The instruction acts like a load with respect to address
translation and memory protection. It executes regardless of whether the
cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbst are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception

Data Cache Block
Flush

dcbf r A,rB The EA is computed, translated, and checked for protection violations.
• For cache hits with the tag marked M, the cache block is written back

to memory and the cache entry is invalidated.
• For cache hits with the tag marked E, the entry is invalidated.
• For cache misses, no further action is taken.
A dcbf is not broadcast unless HID0[ABE] = 1 regardless of WIMG
settings. The instruction acts like a load with respect to address
translation and memory protection. It executes regardless of whether the
cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbf are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception

Instruction Cache
Block Invalidate

icbi r A,rB This instruction performs a virtual lookup into the instruction cache (index
only). The address is not translated, so it cannot cause an exception. All
ways of a selected set are invalidated regardless of whether the cache is
disabled or locked. The 750 never broadcasts icbi onto the 60x bus.

Note :
1 A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve

performance, HID0[NOOPTI] may be set, which causes dcbt and dcbtst to be no-oped at the
cache. They do not cause bus activity and cause only a 1-clock execution latency. The default
state of this bit is zero which enables the use of these instructions.

Table 2-53. External Control Instructions

Name Mnemonic Syntax Implementation Notes

External
Control In
Word Indexed

eciwx r D,rA,rB A transfer size of 4 bytes is implied; the TBST and TSIZ[0–2] signals are
redefined to specify the Resource ID (RID), copied from bits EAR[28–31]. For
these operations, TBST carries the EAR[28] data. Misaligned operands for
these instructions cause an alignment exception. Addressing a location
where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0 a programming
error occurs and the physical address on the bus is undefined.
Note : These instructions are optional to the PowerPC architecture.

External
Control Out
Word Indexed

ecowx r S,rA,rB

Table 2-52. User-Level Cache Instructions (Continued)

Name Mnemonic Syntax Implementation Notes
2-64 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ative
used
and that
signals
rce ID
s

ween
.”

f the
odel.

This

vel
es the

nd the
Theeciwx/ecowxinstructions let a system designer map special devices in an altern
way. The MMU translation of the EA is not used to select the special device, as it is
in most instructions such as loads and stores. Rather, it is used as an address oper
is passed to the device over the address bus. Four other signals (the burst and size
on the 60x bus) are used to select the device; these four signals output the 4-bit resou
(RID) field located in the EAR. Theeciwx instruction also loads a word from the data bu
that is output by the special device. For more information about the relationship bet
these instructions and the system interface, refer to Chapter 7, “Signal Descriptions

2.3.6 PowerPC OEA Instructions
The PowerPC operating environment architecture (OEA) includes the structure o
memory management model, supervisor-level registers, and the exception m
Implementations that conform to the OEA also adhere to the UISA and the VEA.
section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA
This section describes the system linkage instructions (see Table 2-54). The user-lesc
instruction lets a user program call on the system to perform a service and caus
processor to take a system call exception. The supervisor-levelrfi instruction is used for
returning from an exception handler.

2.3.6.2 Processor Control Instructions—OEA
This section describes the processor control instructions used to access the MSR a
SPRs. Table 2-55 lists instructions for accessing the MSR.

Table 2-54. System Linkage Instructions—OEA

Name Mnemonic Syntax Implementation Notes

System Call sc — The sc instruction is context-synchronizing.

Return from
Interrupt

rfi — The rfi instruction is context-synchronizing. For the 750, this means the rfi
instruction works its way to the final stage of the execution pipeline,
updates architected registers, and redirects the instruction flow.

Table 2-55. Move to/from Machine State Register Instructions

Name Mnemonic Syntax

Move to Machine State Register mtmsr r S

Move from Machine State Register mfmsr r D
Chapter 2. Programming Model 2-65

l

s for
s are

n
tion

.5.3,
ns.

that
ctive
The OEA defines encodings ofmtspr and mfspr to provide access to supervisor-leve
registers. The instructions are listed in Table 2-56.

Encodings for the architecture-defined SPRs are listed in Table 2-47. Encoding
750-specific, supervisor-level SPRs are listed in Table 2-48. Simplified mnemonic
provided for mtspr and mfspr in Appendix F, “Simplified Mnemonics,” inThe
Programming Environments Manual. For a discussion of context synchronizatio
requirements when altering certain SPRs, refer to Appendix E, “Synchroniza
Programming Examples,” inThe Programming Environments Manual.

2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following:

• Cache management instructions (supervisor-level and user-level)
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. Section 2.3
“Memory Control Instructions—VEA,” describes user-level memory control instructio

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-57 lists the only supervisor-level cache management instruction.

See Section 2.3.5.3.1, “User-Level Cache Instructions—VEA,” for cache instructions
provide user-level programs the ability to manage the on-chip caches. If the effe
address references a direct-store segment, the instruction is treated as a no-op.

Table 2-56. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr r D,SPR

Table 2-57. Supervisor-Level Cache Management Instruction

Name Mnemonic Syntax Implementation Notes

Data
Cache
Block
Invalidate

dcbi r A,rB The EA is computed, translated, and checked for protection violations. For cache
hits, the cache block is marked I regardless of whether it was marked E or M. A
dcbi is not broadcast unless HID0[ABE] = 1, regardless of WIMG settings. The
instruction acts like a store with respect to address translation and memory
protection. It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for dcbi are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception
2-66 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

2-bit
] and
and

ions

d page
ddress
egment

ons.

ented
B

ute
2.3.6.3.2 Segment Register Manipulation Instructions (OEA)
The instructions listed in Table 2-58 provide access to the segment registers for 3
implementations. These instructions operate completely independently of the MSR[IR
MSR[DR] bit settings. Refer to “Synchronization Requirements for Special Registers
for Lookaside Buffers,” in Chapter 2, “PowerPC Register Set,” ofThe Programming
Environments Manualfor serialization requirements and other recommended precaut
to observe when manipulating the segment registers.

2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)
The address translation mechanism is defined in terms of the segment descriptors an
table entries (PTEs) PowerPC processors use to locate the logical-to-physical a
mapping for a particular access. These segment descriptors and PTEs reside in s
registers and page tables in memory, respectively.

See Chapter 7, “Memory Management,” for more information about TLB operati
Table 2-59 summarizes the operation of the TLB instructions in the 750.

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. Therefore, it is not implem
on the 750. As described above,tlbie can be used to invalidate a particular index of the TL
based on EA[14–19]—a sequence of 64tlbie instructions followed by atlbsync instruction
invalidates all the TLB structures (for EA[14–19] = 0, 1, 2,..., 63). Attempting to exec
tlbia causes an illegal instruction program exception.

Table 2-58. Segment Register Manipulation Instructions

Name Mnemonic Syntax Implementation Notes

Move to Segment Register mtsr SR,rS —

Move to Segment Register Indirect mtsrin r S,rB —

Move from Segment Register mfsr r D,SR The shadow SRs in the instruction MMU can be read
by setting HID0[RISEG] before executing mfsr .

Move from Segment Register Indirect mfsrin r D,rB —

Table 2-59. Translation Lookaside Buffer Management Instruction

Name Mnemonic Syntax Implementation Notes

TLB
Invalidate
Entry

tlbie r B Invalidates both ways in both instruction and data TLB entries at the index
provided by EA[14–19]. It executes regardless of the MSR[DR] and MSR[IR]
settings.To invalidate all entries in both TLBs, the programmer should issue 64
tlbie instructions that each successively increment this field.

TLB
Synchronize

tlbsync — On the 750, the only function tlbsync serves is to wait for the TLBISYNC signal
to go inactive.
Chapter 2. Programming Model 2-67

are
ould

some
ter, and
for the
in this

,” in
The presence and exact semantics of the TLB management instructions
implementation-dependent. To minimize compatibility problems, system software sh
incorporate uses of these instructions into subroutines.

2.3.7 Recommended Simplified Mnemonics
To simplify assembly language coding, a set of alternative mnemonics is provided for
frequently used operations (such as no-op, load immediate, load address, move regis
complement register). Programs written to be portable across the various assemblers
PowerPC architecture should not assume the existence of mnemonics not described
document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics
The Programming Environments Manual.
2-68 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ciative
ess to
n and
cache

), the

ning
devices
asters

ture).

rithm

ag is

is the
 line.

tates:

two
Chapter 3
Instruction and Data Cache Operation
10

The PowerPC 750 microprocessor contains separate 32-Kbyte, eight-way set asso
instruction and data caches to allow the execution units and registers rapid acc
instructions and data. This chapter describes the organization of the on-chip instructio
data caches, the MEI cache coherency protocol, cache control instructions, various
operations, and the interaction between the caches, the load/store unit (LSU
instruction unit, and the bus interface unit (BIU).

Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintai
cache coherency. These multiprocessor devices could be actual processors or other
that can access system memory, maintain their own caches, and function as bus m
requiring cache coherency.

The 750 cache implementation has the following characteristics:

• There are two separate 32-Kbyte instruction and data caches (Harvard architec

• Both instruction and data caches are eight-way set associative.

• The caches implement a pseudo least-recently-used (PLRU) replacement algo
within each set.

• The cache directories are physically addressed. The physical (real) address t
stored in the cache directory.

• Both the instruction and data caches have 32-byte cache blocks. A cache block
block of memory that a coherency state describes, also referred to as a cache

• Two coherency state bits for each data cache block allow encoding for three s

— Modified (Exclusive) (M)

— Exclusive (Unmodified) (E)

— Invalid (I)

• A single coherency state bit for each instruction cache block allows encoding for
possible states:

— Invalid (INV)

— Valid (VAL)
Chapter 3. Instruction and Data Cache Operation 3-1

ister

oping
ncy of
ribed

burst
is

izing

ss to
ceives
es the
logic,
ue, and
• Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation-dependent register 0 (HID0), a special-purpose reg
(SPR) specific to the 750.

The 750 supports a fully-coherent 4-Gbyte physical memory address space. Bus sno
is used to drive the MEI three-state cache coherency protocol that ensures the cohere
global memory with respect to the processor’s data cache. The MEI protocol is desc
in Section 3.3.2, “MEI Protocol.”

On a cache miss, the 750’s cache blocks are filled in four beats of 64 bits each. The
fill is performed as a critical-double-word-first operation; the critical double word
simultaneously written to the cache and forwarded to the requesting unit, thus minim
stalls due to cache fill latency.

The instruction and data caches are integrated into the 750 as shown in Figure 3-1.

Figure 3-1. Cache Integration

Both caches are tightly coupled to the 750’s bus interface unit to allow efficient acce
the system memory controller and other bus masters. The bus interface unit re
requests for bus operations from the instruction and data caches, and execut
operations per the 60x bus protocol. The BIU provides address queues, prioritizing
and bus control logic. The BIU captures snoop addresses for data cache, address que
memory reservation (lwarx andstwcx. instruction) operations.

Instruction Unit
Load/Store Unit

Cache Tags

(LSU)

Instructions (0–127)

Instructions (0–63)

I-Cache
32-Kbyte

8-Way Set Associative

Cache Logic

EA (20–26)

PA (0–19)

PA (0–31)

Cache Tags

Cache Logic

D-Cache

32-Kbyte
8-Way Set Associative

Data (0–63)

Data (0–63)

EA: Effective Address
PA: Physical Address

MMU/L2 BIU (750 only)/60x BIU
3-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

r the
che. The
U. The
cy and

it. The
and
logic
cache,

ations
s.

four
The
high

h way
erPC
che
r the
ther

m an
ero);
20–26]

two
rent

. The
its

and

ust be
can be
if the
ing on
The data cache provides buffers for load and store bus operations. All the data fo
corresponding address queues (load and store data queues) is located in the data ca
data queues are considered temporary storage for the cache and not part of the BI
data cache also provides storage for the cache tags required for memory coheren
performs the cache block replacement PLRU function.

The data cache supplies data to the GPRs and FPRs by means of the load/store un
750’s LSU is directly coupled to the data cache to allow efficient movement of data to
from the general-purpose and floating-point registers. The load/store unit provides all
required to calculate effective addresses, handles data alignment to and from the data
and provides sequencing for load and store string and multiple operations. Write oper
to the data cache can be performed on a byte, half-word, word, or double-word basi

The instruction cache provides a 128-bit interface to the instruction unit, so
instructions can be made available to the instruction unit in a single clock cycle.
instruction unit accesses the instruction cache frequently in order to sustain the
throughput provided by the six-entry instruction queue.

3.1 Data Cache Organization
The data cache is organized as 128 sets of eight ways as shown in Figure 3-2. Eac
consists of 32 bytes, two state bits, and an address tag. Note that in the Pow
architecture, the term ‘cache block,’ or simply ‘block,’ when used in the context of ca
implementations, refers to the unit of memory at which coherency is maintained. Fo
750, this is the eight-word (32 byte) cache line. This value may be different for o
PowerPC implementations.

Each cache block contains eight contiguous words from memory that are loaded fro
eight-word boundary (that is, bits A[27–31] of the logical (effective) addresses are z
as a result, cache blocks are aligned with page boundaries. Note that address bits A[
provide the index to select a cache set. Bits A[27–31] select a byte within a block. The
state bits implement a three-state MEI (modified/exclusive/invalid) protocol, a cohe
subset of the standard four-state MESI (modified/exclusive/shared/invalid) protocol
MEI protocol is described in Section 3.3.2, “MEI Protocol.” The tags consist of b
PA[0–19]. Address translation occurs in parallel with set selection (from A[20–26]),
the higher-order address bits (the tag bits in the cache) are physical.

The 750’s on-chip data cache tags are single-ported, and load or store operations m
arbitrated with snoop accesses to the data cache tags. Load or store operations
performed to the cache on the clock cycle immediately following a snoop access
snoop misses; snoop hits may block the data cache for two or more cycles, depend
whether a copy-back to main memory is required.
Chapter 3. Instruction and Data Cache Operation 3-3

. Each
e, each
from
ero);
0–26]

ction
sical.

ache
her a
ssor
must
. This
Figure 3-2. Data Cache Organization

3.2 Instruction Cache Organization
The instruction cache also consists of 128 sets of eight ways, as shown in Figure 3-3
way consists of 32 bytes, a single state bit, and an address tag. As with the data cach
instruction cache block contains eight contiguous words from memory that are loaded
an eight-word boundary (that is, bits A[27–31] of the logical (effective) addresses are z
as a result, cache blocks are aligned with page boundaries. Also, address bits A[2
provide the index to select a set, and bits A[27–29] select a word within a block.

The tags consist of bits PA[0–19]. Address translation occurs in parallel with set sele
(from A[20–26]), and the higher order address bits (the tag bits in the cache) are phy

The instruction cache differs from the data cache in that it does not implement MEI c
coherency protocol, and a single state bit is implemented that indicates only whet
cache block is valid or invalid. The instruction cache is not snooped, so if a proce
modifies a memory location that may be contained in the instruction cache, software
ensure that such memory updates are visible to the instruction fetching mechanism
can be achieved with the following instruction sequence:

dcbst # update memory
sync # wait for update
icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

8 Words/Block

128 Sets

Way 5

Way 6

Way 7

Way 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Way 1

Way 2

Way 3

Way 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

State

State

State

Words [0–7]

State

Words [0–7]

Words [0–7]

Words [0–7]

State

State

State

Words [0–7]

State

Words [0–7]

Words [0–7]

Words [0–7]
3-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

truction
cy of
cache,
er the

e of
rative
aining
. Each
ction

te cache

to the
rency

cache
lash
These operations are necessary because the processor does not maintain ins
memory coherent with data memory. Software is responsible for enforcing coheren
instruction caches and data memory. Since instruction fetching may bypass the data
changes made to items in the data cache may not be reflected in memory until aft
instruction fetch completes.

Figure 3-3. Instruction Cache Organization

3.3 Memory and Cache Coherency
The primary objective of a coherent memory system is to provide the same imag
memory to all devices using the system. Coherency allows synchronization and coope
use of shared resources. Otherwise, multiple copies of a memory location, some cont
stale values, could exist in a system resulting in errors when the stale values are used
potential bus master must follow rules for managing the state of its cache. This se
describes the coherency mechanisms of the PowerPC architecture and the three-sta
coherency protocol of the 750 data cache.

Note that unless specifically noted, the discussion of coherency in this section applies
750’s data cache only. The instruction cache is not snooped. Instruction cache cohe
must be maintained by software. However, the 750 does support a fast instruction
invalidate capability as described in Section 3.4.1.4, “Instruction Cache F
Invalidation.”

8 Words/Block

128 Sets

Way 5

Way 6

Way 7

Way 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Way 1

Way 2

Way 3

Way 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Valid

Valid

Valid

Words [0–7]

Valid

Words [0–7]

Words [0–7]

Words [0–7]

Valid

Valid

Valid

Words [0–7]

Valid

Words [0–7]

Words [0–7]

Words [0–7]
Chapter 3. Instruction and Data Cache Operation 3-5

WIMG
utes

erous

block.
cache.
ssed

the

tion
llows:

e a
rded.

tem

rm the
erency.
).

upport
erency
bits is

d to the
dress
bits.
everal
ystem

lation
he
ng is
3.3.1 Memory/Cache Access Attributes (WIMG Bits)
Some memory characteristics can be set on either a block or page basis by using the
bits in the BAT registers or page table entry (PTE), respectively. The WIMG attrib
control the following functionality:

• Write-through (W bit)
• Caching-inhibited (I bit)
• Memory coherency (M bit)
• Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit num
system-level performance optimizations.

The WIMG attributes are programmed by the operating system for each page and
The W and I attributes control how the processor performing an access uses its own
The M attribute ensures that coherency is maintained for all copies of the addre
memory location. The G attribute prevents out-of-order loading and prefetching from
addressed memory location.

The WIMG attributes occupy four bits in the BAT registers for block address transla
and in the PTEs for page address translation. The WIMG bits are programmed as fo

• The operating system uses themtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs do not hav
G bit and all accesses that use the IBAT register pairs are considered not gua

• The operating system writes the WIMG bits for each page into the PTEs in sys
memory as it sets up the page tables.

When an access requires coherency, the processor performing the access must info
coherency mechanisms throughout the system that the access requires memory coh
The M attribute determines the kind of access performed on the bus (global or local

Software must exercise care with respect to the use of these bits if coherent memory s
is desired. Careless specification of these bits may create situations that present coh
paradoxes to the processor. In particular, this can happen when the state of these
changed without appropriate precautions (such as flushing the pages that correspon
changed bits from the caches of all processors in the system) or when the ad
translations of aliased real addresses specify different values for any of the WIMG
These coherency paradoxes can occur within a single processor or across s
processors. It is important to note that in the presence of a paradox, the operating s
software is responsible for correctness.

For real addressing mode (that is, for accesses performed with address trans
disabled—MSR[IR] = 0 or MSR[DR] = 0 for instruction or data access, respectively), t
WIMG bits are automatically generated as 0b0011 (the data is write-back, cachi
enabled, memory coherency is enforced, and memory is guarded).
3-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

r-state
32-byte
he are
the

ectory
hes, a

o state
re the
tates

g bus
e 750.
t is,
3.3.2 MEI Protocol
The 750 data cache coherency protocol is a coherent subset of the standard MESI fou
cache protocol that omits the shared state. The 750’s data cache characterizes each
block it contains as being in one of three MEI states. Addresses presented to the cac
indexed into the cache directory with bits A[20–26], and the upper-order 20 bits from
physical address translation (PA[0–19]) are compared against the indexed cache dir
tags. If neither of the indexed tags matches, the result is a cache miss. If a tag matc
cache hit occurred and the directory indicates the state of the cache block through tw
bits kept with the tag. The three possible states for a cache block in the cache a
modified state (M), the exclusive state (E), and the invalid state (I). The three MEI s
are defined in Table 3-1.

The 750 provides dedicated hardware to provide memory coherency by snoopin
transactions. Figure 3-4 shows the MEI cache coherency protocol, as enforced by th
Figure 3-4 assumes that the WIM bits for the page or block are set to 001; tha
write-back, caching-not-inhibited, and memory coherency enforced.

Table 3-1. MEI State Definitions

MEI State Definition

Modified (M) The addressed cache block is present in the cache, and is modified with respect to system
memory—that is, the modified data in the cache block has not been written back to memory. The
cache block may be present in the 750’s L2 cache, but it is not present in any other coherent cache.

Exclusive (E) The addressed cache block is present in the cache, and this cache has exclusive ownership of the
addressed block. The addressed block may be present in the 750’s L2 cache, but it is not present in
any other processor’s cache. The data in this cache block is consistent with system memory.

Invalid (I) This state indicates that the address block does not contain valid data or that the addressed cache
block is not resident in the cache.
Chapter 3. Instruction and Data Cache Operation 3-7

isses
n all
block
dcast

50 are
cache
ate

oped
010;
cache
che
ken,
Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

Since data cannot be shared, the 750 signals all cache block fills as if they were write m
(read-with-intent-to-modify), which flushes the corresponding copies of the data i
caches external to the 750 prior to the cache-block-fill operation. Following the cache
load, the 750 is the exclusive owner of the data and may write to it without a bus broa
transaction.

To maintain the three-state coherency, all global reads observed on the bus by the 7
snooped as if they were writes, causing the 750 to flush the cache block (write the
block back to memory and invalidate the cache block if it is modified, or simply invalid
the cache block if it is unmodified). The exception to this rule occurs when a sno
transaction is a caching-inhibited read (either burst or single-beat, where TT[0–4] = X1
see Table 7-1 for clarification), in which case the 750 does not invalidate the snooped
block. If the cache block is modified, the block is written back to memory, and the ca
block is marked exclusive. If the cache block is marked exclusive, no bus action is ta

Bus Transactions

SH = Snoop Hit = Snoop Push
RH = Read Hit
RM = Read Miss
WH = Write Hit = Cache Block Fill
WM = Write Miss
SH/CRW = Snoop Hit, Cacheable Read/Write
SH/CIR = Snoop Hit, Caching-Inhibited Read

SH/CRW

WM RM

SH/CRW

Invalid

ExclusiveModifiedRH RH

SH/CIRWH

WH

SH
3-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ibited
o read

for

750
access
s given
g the
a tag
op is

ccur if

cess
e 750
e bus

k but
ably
xxx).
dated

bus

shared
not
nd
mode

the
er of

an use
width
and the cache block remains in the exclusive state. This treatment of caching-inh
reads decreases the possibility of data thrashing by allowing noncaching devices t
data without invalidating the entry from the 750’s data cache.

Section 3.7, “MEI State Transactions,” provides a detailed list of MEI transitions
various operations and WIM bit settings.

3.3.2.1 MEI Hardware Considerations
While the 750 provides the hardware required to monitor bus traffic for coherency, the
data cache tags are single-ported, and a simultaneous load/store and snoop
represents a resource conflict. In general, the snoop access has highest priority and i
first access to the tags. The load or store access will then occur on the clock followin
snoop. The snoop is not given priority into the tags when the snoop coincides with
write (for example, validation after a cache block load). In these situations, the sno
retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries o
the cache is busy with a burst read or write when the snoop operation takes place.

Note that it is possible for a snoop to hit a modified cache block that is already in the pro
of being written to the copy-back buffer for replacement purposes. If this happens, th
retries the snoop, and raises the priority of the castout operation to allow it to go to th
before the cache block fill.

Another consideration is page table aliasing. If a store hits to a modified cache bloc
the page table entry is marked write-through (WIMG = 1xxx), then the page has prob
been aliased through another page table entry which is marked write-back (WIMG = 0
If this occurs, the 750 ignores the modified bit in the cache tag. The cache block is up
during the write-through operation and the block remains in the modified state.

The global (GBL) signal, asserted as part of the address attribute field during a
transaction, enables the snooping hardware of the 750. Address bus masters assertGBL to
indicate that the current transaction is a global access (that is, an access to memory
by more than one device). IfGBL is not asserted for the transaction, that transaction is
snooped by the 750. Note that theGBL signal is not asserted for instruction fetches, a
thatGBL is asserted for all data read or write operations when using real addressing
(that is, address translation is disabled).

Normally, GBL reflects the M-bit value specified for the memory reference in
corresponding translation descriptor(s). Care should be taken to minimize the numb
pages marked as global, because the retry protocol enforces coherency and c
considerable bus bandwidth if much data is shared. Therefore, available bus band
decreases as more memory is marked as global.
Chapter 3. Instruction and Data Cache Operation 3-9

r
e 750

block
e

r, the
e 3-4.

ystem:

urs.

s as
s not

to a

uring

that
that

t the

d other
dify.

ache.
heme.

re unit
store
uential
ations
ress

essing
to be
The 750 snoops a transaction if the transfer start (TS) andGBL signals are asserted togethe
in the same bus clock (this is a qualified snooping condition). No snoop update to th
cache occurs if the snooped transaction is not marked global. Also, because cache
castouts and snoop pushes do not require snooping, theGBL signal is not asserted for thes
operations.

When the 750 detects a qualified snoop condition, the address associated with theTS signal
is compared with the cache tags. Snooping finishes if no hit is detected. If, howeve
address hits in the cache, the 750 reacts according to the MEI protocol shown in Figur

3.3.3 Coherency Precautions in Single Processor Systems
The following coherency paradoxes can be encountered within a single-processor s

• Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occ

The 750 ignores any hits to a cache block in a memory space marked
caching-inhibited (WIMG = x1xx). The access is performed on the external bu
if there were no hit. The data in the cache is not pushed, and the cache block i
invalidated.

• Store to a page marked write-through (WIMG = 1xxx) and a cache hit occurs
modified cache block.

The 750 ignores the modified bit in the cache tag. The cache block is updated d
the write-through operation but the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it is critical
the cache contents reflect the new WIM bit settings. For example, if a block or page
had allowed caching becomes caching-inhibited, software should ensure tha
appropriate cache blocks are flushed to memory and invalidated.

3.3.4 Coherency Precautions in Multiprocessor Systems
The 750’s three-state coherency protocol permits no data sharing between the 750 an
caches. All burst reads initiated by the 750 are performed as read with intent to mo
Burst snoops are interpreted as read with intent to modify or read with no intent to c
This effectively places all caches in the system into a three-state coherency sc
Four-state caches may share data amongst themselves but not with the 750.

3.3.5 PowerPC 750-Initiated Load/Store Operations
Load and store operations are assumed to be weakly ordered on the 750. The load/sto
(LSU) can perform load operations that occur later in the program ahead of
operations, even when the data cache is disabled (see Section 3.3.5.2, “Seq
Consistency of Memory Accesses). However, strongly ordered load and store oper
can be enforced through the setting of the I bit (of the page WIMG bits) when add
translation is enabled. Note that when address translation is disabled (real addr
mode), the default WIMG bits cause the I bit to be cleared (accesses are assumed
3-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

“Real
n is

ing to
bout

dressed
cture
y other
nged
nd
ave

storage
t such
ooping

=
been

single
hat all
ns and

MMU.
efore
eption
in the
that

ue for
been
address
ovided

n
ch set
ces
ory
cacheable), and thus the accesses are weakly ordered. Refer to Section 5.2,
Addressing Mode,” for a description of the WIMG bits when address translatio
disabled.

The 750 does not provide support for direct-store segments. Operations attempt
access a direct-store segment will invoke a DSI exception. For additional information a
DSI exceptions, refer to Section 4.5.3, "DSI Exception (0x00300).”

3.3.5.1 Performed Loads and Stores
The PowerPC architecture defines a performed load operation as one that has the ad
memory location bound to the target register of the load instruction. The archite
defines a performed store operation as one where the stored value is the value that an
processor will receive when executing a load operation (that is of course, until it is cha
again). With respect to the 750, caching-allowed (WIMG = x0xx) loads a
caching-allowed, write-back (WIMG = 00xx) stores are performed when they h
arbitrated to address the cache block. Note that in the event of a cache miss, these
operations may place a memory request into the processor’s memory queue, bu
operations are considered an extension to the state of the cache with respect to sn
bus operations. Caching-inhibited (WIMG = x1xx) loads, caching-inhibited (WIMG
x1xx) stores, and write-through (WIMG = 1xxx) stores are performed when they have
successfully presented to the external 60x bus.

3.3.5.2 Sequential Consistency of Memory Accesses
The PowerPC architecture requires that all memory operations executed by a
processor be sequentially consistent with respect to that processor. This means t
memory accesses appear to be executed in program order with respect to exceptio
data dependencies.

The 750 achieves sequential consistency by operating a single pipeline to the cache/
All memory accesses are presented to the MMU in exact program order and ther
exceptions are determined in order. Loads are allowed to bypass stores once exc
checking has been performed for the store, but data dependency checking is handled
load/store unit so that a load will not bypass a store with an address match. Note
although memory accesses that miss in the cache are forwarded to the memory que
future arbitration for the external bus, all potential synchronous exceptions have
resolved before the cache. In addition, although subsequent memory accesses can
the cache, full coherency checking between the cache and the memory queue is pr
to avoid dependency conflicts.

3.3.5.3 Atomic Memory References
The PowerPC architecture defines the Load Word and Reserve Indexed (lwarx) and the
Store Word Conditional Indexed (stwcx.) instructions to provide an atomic update functio
for a single, aligned word of memory. These instructions can be used to develop a ri
of multiprocessor synchronization primitives. Note that atomic memory referen
constructed usinglwarx /stwcx. instructions depend on the presence of a coherent mem
Chapter 3. Instruction and Data Cache Operation 3-11

tomic
fer to

s a
. The
n
other

ess
from
cel the

ation
]

arked
n the
are a
s
s

hibited.

state.

he
e
ache

etes
pdated
If the
g

system for correct operation. These instructions should not be expected to provide a
access to noncoherent memory. For detailed information on these instructions, re
Chapter 2, “Programming Model,” in this book and Chapter 8, “Instruction Set,” inThe
Programming Environments Manual.

The lwarx instruction performs a load word from memory operation and create
reservation for the 32-byte section of memory that contains the accessed word
reservation granularity is 32 bytes. Thelwarx instruction makes a nonspecific reservatio
with respect to the executing processor and a specific reservation with respect to
masters. This means that any subsequentstwcx.executed by the same processor, regardl
of address, will cancel the reservation. Also, any bus write or invalidate operation
another processor to an address that matches the reservation address will can
reservation.

Thestwcx. instruction does not check the reservation for a matching address. Thestwcx.
instruction is only required to determine whether a reservation exists. Thestwcx.
instruction performs a store word operation only if the reservation exists. If the reserv
has been cancelled for any reason, then thestwcx. instruction fails and clears the CR0[EQ
bit in the condition register. The architectural intent is to follow thelwarx /stwcx.
instruction pair with a conditional branch which checks to see whether thestwcx.
instruction failed.

If the page table entry is marked caching-allowed (WIMG = x0xx), and anlwarx access
misses in the cache, then the 750 performs a cache block fill. If the page is m
caching-inhibited (WIMG = x1xx) or the cache is locked, and the access misses, the
lwarx instruction appears on the bus as a single-beat load. All bus operations that
direct result of either anlwarx instruction or anstwcx. instruction are placed on the bu
with a special encoding. Note that this does not force alllwarx instructions to generate bu
transactions, but rather provides a means for identifying when anlwarx instruction does
generate a bus transaction. If an implementation requires that alllwarx instructions
generate bus transactions, then the associated pages should be marked as caching-in

The state of the reservation is always presented onto theRSRV output signal. This can be
used to determine when an internal condition has caused a change in the reservation

The 750’s data cache treats allstwcx. operations as write-through independent of t
WIMG settings. However, if thestwcx. operation hits in the 750’s L2 cache, then th
operation completes with the reservation intact in the L2 cache. See Chapter 9, “L2 C
Interface Operation,” for more information. Otherwise, thestwcx. operation continues to
the bus interface unit for completion. When the write-through operation compl
successfully, either in the L2 cache or on the 60x bus, then the data cache entry is u
(assuming it hits), and CR0[EQ] is modified to reflect the success of the operation.
reservation is not intact, thestwcx.completes in the bus interface unit without performin
a bus transaction, and without modifying either of the caches.
3-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ID0
3.4.1,
and
.

lock

hard
e must
n is

abled

ion by

ce of

[DCE].

its are
le-beat
he
te of

ogic;

ust be
abled.

bled.
led.
3.4 Cache Control
The 750’s L1 caches are controlled by programming specific bits in the H
special-purpose register and by issuing dedicated cache control instructions. Section
“Cache Control Parameters in HID0,” describes the HID0 cache control bits,
Section 3.4.2, “Cache Control Instructions,” describes the cache control instructions

3.4.1 Cache Control Parameters in HID0
The HID0 special-purpose register contains several bits that invalidate, disable, and
the instruction and data caches. The following sections describe these facilities.

3.4.1.1 Data Cache Flash Invalidation
The data cache is automatically invalidated when the 750 is powered up and during a
reset. However, a soft reset does not automatically invalidate the data cache. Softwar
use the HID0 data cache flash invalidate bit (HID0[DCFI]) if data cache invalidatio
desired after a soft reset. Once HID0[DCFI] is set through anmtspr operation, the 750
automatically clears this bit in the next clock cycle (provided that the data cache is en
in the HID0 register).

Note that some PowerPC microprocessors accomplish data cache flash invalidat
setting and clearing HID0[DCFI] with two consecutivemtspr instructions (that is, the bit
is not automatically cleared by the microprocessor). Software that has this sequen
operations does not need to be changed to run on the 750.

3.4.1.2 Data Cache Enabling/Disabling
The data cache may be enabled or disabled by using the data cache enable bit, HID0
HID0[DCE] is cleared on power-up, disabling the data cache.

When the data cache is in the disabled state (HID0[DCE] = 0), the cache tag state b
ignored, and all accesses are propagated to the L2 cache or 60x bus as sing
transactions. Note that theCI (cache inhibit) signal always reflects the state of t
caching-inhibited memory/cache access attribute (the I bit) independent of the sta
HID0[DCE]. Also note that disabling the data cache does not affect the translation l
translation for data accesses is controlled by MSR[DR].

The setting of the DCE bit must be preceded by asyncinstruction to prevent the cache from
being enabled or disabled in the middle of a data access. In addition, the cache m
globally flushed before it is disabled to prevent coherency problems when it is re-en

Snooping is not performed when the data cache is disabled.

The dcbz instruction will cause an alignment exception when the data cache is disa
The touch load (dcbt anddcbtst) instructions are no-ops when the data cache is disab
Other cache operations (caused by thedcbf, dcbst, anddcbi instructions) are not affected
Chapter 3. Instruction and Data Cache Operation 3-13

ck to

k bit,
che.
or 60x
e
te of

ed data
ache

uring
ache.
if

ugh
ded

dation

ce of

cache
he.

e bits
us as
e
te of
tion
by disabling the cache. This can potentially cause coherency errors. For example, adcbf
instruction that hits a modified cache block in the disabled cache will cause a copyba
memory of potentially stale data.

3.4.1.3 Data Cache Locking
The contents of the data cache can be locked by setting the data cache loc
HID0[DLOCK]. A data access that hits in a locked data cache is serviced by the ca
However, all accesses that miss in the locked cache are propagated to the L2 cache
bus as single-beat transactions. Note that theCI signal always reflects the state of th
caching-inhibited memory/cache access attribute (the I bit) independent of the sta
HID0[DLOCK].

The 750 treats snoop hits to a locked data cache the same as snoop hits to an unlock
cache. However, any cache block invalidated by a snoop hit remains invalid until the c
is unlocked.

The setting of the DLOCK bit must be preceded by async instruction to prevent the data
cache from being locked during a data access.

3.4.1.4 Instruction Cache Flash Invalidation
The instruction cache is automatically invalidated when the 750 is powered up and d
a hard reset. However, a soft reset does not automatically invalidate the instruction c
Software must use the HID0 instruction cache flash invalidate bit (HID0[ICFI])
instruction cache invalidation is desired after a soft reset. Once HID0[ICFI] is set thro
anmtspr operation, the 750 automatically clears this bit in the next clock cycle (provi
that the instruction cache is enabled in the HID0 register).

Note that some PowerPC microprocessors accomplish instruction cache flash invali
by setting and clearing HID0[ICFI] with two consecutivemtspr instructions (that is, the bit
is not automatically cleared by the microprocessor). Software that has this sequen
operations does not need to be changed to run on the 750.

3.4.1.5 Instruction Cache Enabling/Disabling
The instruction cache may be enabled or disabled through the use of the instruction
enable bit, HID0[ICE]. HID0[ICE] is cleared on power-up, disabling the instruction cac

When the instruction cache is in the disabled state (HID[ICE] = 0), the cache tag stat
are ignored, and all instruction fetches are propagated to the L2 cache or 60x b
single-beat transactions. Note that theCI signal always reflects the state of th
caching-inhibited memory/cache access attribute (the I bit) independent of the sta
HID0[ICE]. Also note that disabling the instruction cache does not affect the transla
logic; translation for instruction accesses is controlled by MSR[IR].
3-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ache
it is

ck bit,
by
the L2

e
state

data

750
hes.
t to the

e 60x

the

e of
is, a

t
tion of
to the

T, is
ent, and
ps. The
anner
The setting of the ICE bit must be preceded by anisync instruction to prevent the cache
from being enabled or disabled in the middle of an instruction fetch. In addition, the c
must be globally flushed before it is disabled to prevent coherency problems when
re-enabled. Theicbi instruction is not affected by disabling the instruction cache.

3.4.1.6 Instruction Cache Locking
The contents of the instruction cache can be locked by setting the instruction cache lo
HID0[ILOCK]. An instruction fetch that hits in a locked instruction cache is serviced
the cache. However, all accesses that miss in the locked cache are propagated to
cache or 60x bus as single-beat transactions. Note that theCI signal always reflects the stat
of the caching-inhibited memory/cache access attribute (the I bit) independent of the
of HID0[ILOCK].

The setting of the ILOCK bit must be preceded by anisync instruction to prevent the
instruction cache from being locked during an instruction fetch.

3.4.2 Cache Control Instructions
The PowerPC architecture defines instructions for controlling both the instruction and
caches (when they exist). The cache control instructions,dcbt, dcbtst, dcbz, dcbst, dcbf,
dcbi, andicbi, are intended for the management of the local L1 and L2 caches. The
interprets the cache control instructions as if they pertain only to its own L1 or L2 cac
These instructions are not intended for managing other caches in the system (excep
extent necessary to maintain coherency).

The 750 does not snoop cache control instruction broadcasts, except fordcbzwhen M = 1.
Thedcbz instruction is the only cache control instruction that causes a broadcast on th
bus (when M = 1) to maintain coherency. All other data cache control instructions (dcbi,
dcbf, dcbst and dcbz) are not broadcast, unless broadcast is enabled through
HID0[ABE] configuration bit. Note thatdcbi, dcbf, dcbst anddcbz do broadcast to the
750’s L2 cache, regardless of HID0[ABE]. Theicbi instruction is never broadcast.

3.4.2.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance improvement through the us
software-initiated prefetch hints. The 750 treats these instructions identically (that
dcbtst instruction behaves exactly the same as adcbt instruction on the 750). Note tha
PowerPC implementations are not required to take any action based on the execu
these instructions, but they may choose to prefetch the cache block corresponding
effective address into their cache.

The 750 loads the data into the cache when the address hits in the TLB or the BA
permitted load access from the addressed page, is not directed to a direct-store segm
is directed at a cacheable page. Otherwise, the 750 treats these instructions as no-o
data brought into the cache as a result of this instruction is validated in the same m
Chapter 3. Instruction and Data Cache Operation 3-15

ence
the

d

ns as
e

s are
ssed
block

bytes

quired

x bus
cast

che is
sed by
ndler

ns as
ect to

tion is
e, the
e (E)

st is
the

r TLB
that a load instruction would be (that is, it is marked as exclusive). The memory refer
of a dcbt (or dcbtst) instruction causes the reference bit to be set. Note also that
successful execution of thedcbt (or dcbtst) instruction affects the state of the TLB an
cache LRU bits as defined by the PLRU algorithm.

3.4.2.2 Data Cache Block Zero (dcbz)
The effective address is computed, translated, and checked for protection violatio
defined in the PowerPC architecture. Thedcbz instruction is treated as a store to th
addressed byte with respect to address translation and protection.

If the block containing the byte addressed by the EA is in the data cache, all byte
cleared, and the tag is marked as modified (M). If the block containing the byte addre
by the EA is not in the data cache and the corresponding page is caching-allowed, the
is established in the data cache without fetching the block from main memory, and all
of the block are cleared, and the tag is marked as modified (M).

If the contents of the cache block are from a page marked memory coherence re
(M = 1), an address-only bus transaction is run prior to clearing the cache block. Thedcbz
instruction is the only cache control instruction that causes a broadcast on the 60
(when M = 1) tomaintain coherency. The other cache control instructions are not broad
unless broadcasting is specifically enabled through the HID0[ABE] configuration bit.

Thedcbz instruction executes regardless of whether the cache is locked, but if the ca
disabled, an alignment exception is generated. If the page containing the byte addres
the EA is caching-inhibited or write-through, then the system alignment exception ha
is invoked. BAT and TLB protection violations generate DSI exceptions.

3.4.2.3 Data Cache Block Store (dcbst)
The effective address is computed, translated, and checked for protection violatio
defined in the PowerPC architecture. This instruction is treated as a load with resp
address translation and memory protection.

If the address hits in the cache and the cache block is in the exclusive (E) state, no ac
taken. If the address hits in the cache and the cache block is in the modified (M) stat
modified block is written back to memory and the cache block is placed in the exclusiv
state.

The execution of adcbst instruction does not broadcast on the 60x bus unless broadca
enabled through the HID0[ABE] bit. The function of this instruction is independent of
WIMG bit settings of the block containing the effective address. Thedcbst instruction
executes regardless of whether the cache is disabled or locked; however, a BAT o
protection violation generates a DSI exception.
3-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ns as
ect to

block
dress
placed

bled
G

ction

ns as
ect to

rdless
ified
el,

bled
G

ction

nnot
into

t are
3.4.2.4 Data Cache Block Flush (dcbf)
The effective address is computed, translated, and checked for protection violatio
defined in the PowerPC architecture. This instruction is treated as a load with resp
address translation and memory protection.

If the address hits in the cache, and the block is in the modified (M) state, the modified
is written back to memory and the cache block is placed in the invalid (I) state. If the ad
hits in the cache, and the cache block is in the exclusive (E) state, the cache block is
in the invalid (I) state. If the address misses in the cache, no action is taken.

The execution ofdcbf does not broadcast on the 60x bus unless broadcast is ena
through the HID0[ABE] bit. The function of this instruction is independent of the WIM
bit settings of the block containing the effective address. Thedcbf instruction executes
regardless of whether the cache is disabled or locked; however, a BAT or TLB prote
violation generates a DSI exception.

3.4.2.5 Data Cache Block Invalidate (dcbi)
The effective address is computed, translated, and checked for protection violatio
defined in the PowerPC architecture. This instruction is treated as a store with resp
address translation and memory protection.

If the address hits in the cache, the cache block is placed in the invalid (I) state, rega
of whether the data is modified. Because this instruction may effectively destroy mod
data, it is privileged (that is,dcbi is available to programs at the supervisor privilege lev
MSR[PR] = 0).

The execution ofdcbi does not broadcast on the 60x bus unless broadcast is ena
through the HID0[ABE] bit. The function of this instruction is independent of the WIM
bit settings of the block containing the effective address. Thedcbi instruction executes
regardless of whether the cache is disabled or locked; however, a BAT or TLB prote
violation generates a DSI exception.

3.4.2.6 Instruction Cache Block Invalidate (icbi)
For theicbi instruction, the effective address is not computed or translated, so it ca
generate a protection violation or exception. This instruction performs a virtual lookup
the instruction cache (index only). All ways of the selected instruction cache se
invalidated.

The icbi instruction is not broadcast on the 60x bus. Theicbi instruction invalidates the
cache blocks independent of whether the cache is disabled or locked.
Chapter 3. Instruction and Data Cache Operation 3-17

ement
placed
data
eplaced

ory

t and
ight
ld be
3.5 Cache Operations
This section describes the 750 cache operations.

3.5.1 Cache Block Replacement/Castout Operations
Both the instruction and data cache use a pseudo least-recently-used (PLRU) replac
algorithm when a new block needs to be placed in the cache. When the data to be re
is in the modified (M) state, that data is written into a castout buffer while the missed
is being accessed on the bus. When the load completes, the 750 then pushes the r
cache block from the castout buffer to the L2 cache (if L2 is enabled) or to main mem
(if L2 is disabled).

The replacement logic first checks to see if there are any invalid blocks in the se
chooses the lowest-order, invalid block (L[0–7]) as the replacement target. If all e
blocks in the set are valid, the PLRU algorithm is used to determine which block shou
replaced. The PLRU algorithm is shown in Figure 3-5.
3-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Figure 3-5. PLRU Replacement Algorithm

Replace
L0

Replace
L1

Replace
L2

Replace
L3

Replace
L4

Replace
L5

Replace
L6

Replace
L7

B0 = 0

B4 = 0

B1 = 0 B1 = 1 B2 = 1B2 = 0

B0 = 1

B3 = 0 B3 = 1 B4 = 1 B5 = 0 B5 = 1 B6 = 0 B6 = 1

Allocate
L0L0 invalid

Allocate
L2L2 invalid

Allocate
L1L1 invalid

Allocate
L3L3 invalid

Allocate
L4L4 invalid

Allocate
L5L5 invalid

Allocate
L6L6 invalid

Allocate
L7L7 invalid

L7 valid

L0 valid

L1 valid

L2 valid

L3 valid

L4 valid

L5 valid

L6 valid
Chapter 3. Instruction and Data Cache Operation 3-19

r each
thm
set in

ified in

LRU
Each cache is organized as eight blocks per set by 128 sets. There is a valid bit fo
block in the cache, L[0–7]. When all eight blocks in the set are valid, the PLRU algori
is used to select the replacement target. There are seven PLRU bits, B[0–6] for each
the cache. For every hit in the cache, the PLRU bits are updated using the rules spec
Table 3-2.

If all eight blocks are valid, then a block is selected for replacement according to the P
bit encodings shown in Table 3-3.

Table 3-2. PLRU Bit Update Rules

If the
Current

Access is
To:

Then the PLRU bits are Changed to: 1

B0 B1 B2 B3 B4 B5 B6

L0 1 1 x 1 x x x

L1 1 1 x 0 x x x

L2 1 0 x x 1 x x

L3 1 0 x x 0 x x

L4 0 x 1 x x 1 x

L5 0 x 1 x x 0 x

L6 0 x 0 x x x 1

L7 0 x 0 x x x 0

Note: 1x = Does not change

Table 3-3. PLRU Replacement Block Selection

If the PLRU Bits Are:

Then the
Block

Selected for
Replacement

Is:

B0

0

B1

0
B3

0 L0

0 0 1 L1

0 1
B4

0 L2

0 1 1 L3

1

B2

0
B5

0 L4

1 0 1 L5

1 1
B6

0 L6

1 1 1 L7
3-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

bits
ta or
or

using

y other
ld be

ess.
alid
es the
d
ies of

uble
aused
nder
plete.
and

urs
a burst
in a

dified

ritical
ile the
owing

and
here
During power-up or hard reset, all the valid bits of the blocks are cleared and the PLRU
cleared to point to block L0 of each set. Note that this is also the state of the da
instruction cache after setting their respective flash invalidate bit (HID0[DCFI]
HID0[ICFI]).

3.5.2 Cache Flush Operations
The instruction cache can be invalidated by executing a series oficbi instructions or by
setting HID0[ICFI]. The data cache can be invalidated by executing a series ofdcbi
instructions or by setting HID0[DCFI].

Any modified entries in the data cache can be copied back to memory (flushed) by
the dcbf instruction or by executing a series of 12 uniquely addressed load ordcbz
instructions to each of the 128 sets. The address space should not be shared with an
process to prevent snoop hit invalidations during the flushing routine. Exceptions shou
disabled during this time so that the PLRU algorithm does not get disturbed.

The data cache flush assist bit, HID0[DCFA], simplifies the software flushing proc
When set, HID0[DCFA] forces the PLRU replacement algorithm to ignore the inv
entries and follow the replacement sequence defined by the PLRU bits. This reduc
series of uniquely addressed load ordcbz instructions to eight per set. HID0[DCFA] shoul
be set just prior to the beginning of the cache flush routine and cleared after the ser
instructions is complete.

3.5.3 Data Cache-Block-Fill Operations
The 750’s data cache blocks are filled in four beats of 64 bits each, with the critical do
word loaded first. The data cache is not blocked to internal accesses while the load (c
by a cache miss) completes. This functionality is sometimes referred to as ‘hits u
misses,’ because the cache can service a hit while a cache miss fill is waiting to com
The critical-double-word read from memory is simultaneously written to the data cache
forwarded to the requesting unit, thus minimizing stalls due to cache fill latency.

A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occ
in the cache. The cache block that corresponds to the missed address is updated by
transfer of the data from the L2 or system memory. Note that if a read miss occurs
system with multiple bus masters, and the data is modified in another cache, the mo
data is first written to external memory before the cache fill occurs.

3.5.4 Instruction Cache-Block-Fill Operations
The 750’s instruction cache blocks are loaded in four beats of 64 bits each, with the c
double word loaded first. The instruction cache is not blocked to internal accesses wh
fetch (caused by a cache miss) completes. On a cache miss, the critical and foll
double words read from memory are simultaneously written to the instruction cache
forwarded to the instruction queue, thus minimizing stalls due to cache fill latency. T
is no snooping of the instruction cache.
Chapter 3. Instruction and Data Cache Operation 3-21

data is
oping
e 750
loped
ped

nd then
ides a
e data
ta
an be
events

st is
mally,
e load
l, data
that
nal is
ped

, or in
tions
-beat

ccesses
, or

ligned

burst
erations,
ache,
ruction
3.5.5 Data Cache-Block-Push Operation
When a cache block in the 750 is snooped and hit by another bus master and the
modified, the cache block must be written to memory and made available to the sno
device. The cache block that is hit is said to be pushed out onto the 60x bus. Th
supports two kinds of push operations—normal push operations and enve
high-priority push operations, which are described in Section 3.5.5.1, “Envelo
High-Priority Cache-Block-Push Operation.”

3.5.5.1 Enveloped High-Priority Cache-Block-Push Operation
In cases where the 750 has completed the address tenure of a read operation, a
detects a snoop hit to a modified cache block by another bus master, the 750 prov
high-priority push operation. If the address snooped is the same as the address of th
to be returned by the read operation,ARTRY is asserted one or more times until the da
tenure of the read operation is completed. The cache-block-push transaction c
enveloped within the address and data tenures of a read operation. This feature pr
deadlocks in system organizations that support multiple memory-mapped buses.

More specifically, the 750 internally detects the scenario where a load reque
outstanding and the processor has pipelined a write operation on top of the load. Nor
when the data bus is granted to the 750, the resulting data bus tenure is used for th
operation. The enveloped high-priority cache block push feature defines a bus signa
bus write only (DBWO), which when asserted with a qualified data bus grant indicates
the resulting data tenure should be used for the store operation instead. This sig
described in Section 8.10, “Using Data Bus Write Only.” Note that the envelo
copy-back operation is an internally pipelined bus operation.

3.6 L1 Caches and 60x Bus Transactions
The 750 transfers data to and from the cache in single-beat transactions of two words
four-beat transactions of eight words which fill a cache block. Single-beat bus transac
can transfer from one to eight bytes to or from the 750, and can be misaligned. Single
transactions can be caused by cache write-through accesses, caching-inhibited a
(WIMG = x1xx), accesses when the cache is disabled (HID0[DCE] bit is cleared)
accesses when the cache is locked (HID0[DLOCK] bit is cleared).

Burst transactions on the 750 always transfer eight words of data at a time, and are a
to a double-word boundary. The 750 transfer burst (TBST) output signal indicates to the
system whether the current transaction is a single-beat transaction or four-beat
transfer. Burst transactions have an assumed address order. For cacheable read op
instruction fetches, or cacheable, non-write-through write operations that miss the c
the 750 presents the double-word-aligned address associated with the load/store inst
or instruction fetch that initiated the transaction.
3-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

re or
code
other
ed).
ction

ns on
us as
om

e 60x
reted

on the
MESI
As shown in Figure 3-6, the first quad word contains the address of the load/sto
instruction fetch that missed the cache. This minimizes latency by allowing the critical
or data to be forwarded to the processor before the rest of the block is filled. For all
burst operations, however, the entire block is transferred in order (oct-word-align
Critical-double-word-first fetching on a cache miss applies to both the data and instru
cache.

Figure 3-6. Double-Word Address Ordering—Critical Double Word First

3.6.1 Read Operations and the MEI Protocol
The MEI coherency protocol affects how the 750 data cache performs read operatio
the 60x bus. All reads (except for caching-inhibited reads) are encoded on the b
read-with-intent-to-modify (RWITM) to force flushing of the addressed cache block fr
other caches in the system.

The MEI coherency protocol also affects how the 750 snoops read operations on th
bus. All reads snooped from the 60x bus (except for caching-inhibited reads) are interp
as RWITM to cause flushing from the 750’s cache. Single-beat reads (TBST negated) are
interpreted by the 750 as caching inhibited.

These actions for read operations allow the 750 to operate successfully (coherently)
bus with other bus masters that implement either the three-state MEI or a four-state
cache coherency protocol.

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and
the four data beats are ordered in the following manner:

If the address requested is in double-word C, the address placed on the bus will be that of double-word
C, and the four data beats are ordered in the following manner:

A B C D

111000 01

A B C D

320 1
Beat

750 Cache Address
Bits (27... 28)

C D A B

320 1
Beat
Chapter 3. Instruction and Data Cache Operation 3-23

y the
f the
letion

-only

tion
of

by the
trol
r 8,

tions.
rating
3.6.2 Bus Operations Caused by Cache Control Instructions
The cache control, TLB management, and synchronization instructions supported b
750 may affect or be affected by the operation of the 60x bus. The operation o
instructions may also indirectly cause bus transactions to be performed, or their comp
may be linked to the bus.

The dcbz instruction is the only cache control instruction that causes an address
broadcast on the 60x bus. All other data cache control instructions (dcbi, dcbf, dcbst, and
dcbz) are not broadcast unless specifically enabled through the HID0[ABE] configura
bit. Note thatdcbi, dcbf, dcbst, anddcbzdo broadcast to the 750’s L2 cache, regardless
HID0[ABE]. HID0[ABE] also controls the broadcast of thesync andeieio instructions.
The icbi instruction is never broadcast. No broadcasts by other masters are snooped
750 (except fordcbzkill block transactions). For detailed information on the cache con
instructions, refer to Chapter 2, “Programming Model,” in this book and Chapte
“Instruction Set,” inThe Programming Environments Manual.

Table 3-4 provides an overview of the bus operations initiated by cache control instruc
Note that Table 3-4 assumes that the WIM bits are set to 001; that is, the cache is ope
in write-back mode, caching is permitted and coherency is enforced.

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Instruction
Current

Cache State
Next Cache State Bus Operation Comment

sync Don’t care No change sync
(if enabled in
HID0[ABE])

Waits for memory queues
to complete bus activity

tlbie — — None —

tlbsync — — None Waits for the negation of
the TLBSYNC input signal
to complete

eieio Don’t care No change eieio
(if enabled in
HID0[ABE])

Address-only bus
operation

icbi Don’t care I None —

dcbi Don’t care I Kill block
(if enabled in
HID0[ABE])

Address-only bus
operation

dcbf I, E I Flush block
(if enabled in
HID0[ABE])

Address-only bus
operation

dcbf M I Write with kill Block is pushed

dcbst I, E No change Clean block
(if enabled in
HID0[ABE])

Address-only bus
operation

dcbst M E Write with kill Block is pushed
3-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

, see

en the
has a

other
block,

ry must
e 750,

ooping
ops the
p

ons
of
nying
For additional details about the specific bus operations performed by the 750
Chapter 8, “Bus Interface Operation.”

3.6.3 Snooping
The 750 maintains data cache coherency in hardware by coordinating activity betwe
data cache, the bus interface logic, the L2 cache, and the memory system. The 750
copy-back cache which relies on bus snooping to maintain cache coherency with
caches in the system. For the 750, the coherency size of the bus is the size of a cache
32 bytes. This means that any bus transactions that cross an aligned 32-byte bounda
present a new address onto the bus at that boundary for proper snoop operation by th
or they must operate noncoherently with respect to the 750.

As bus operations are performed on the bus by other bus masters, the 750 bus sn
logic monitors the addresses and transfer attributes that are referenced. The 750 sno
bus transactions during the cycle thatTS is asserted for any of the following qualified snoo
conditions:

• The global signal (GBL) is asserted indicating that coherency enforcement is
required.

• A reservation is currently active in the 750 as the result of anlwarx instruction, and
the transfer type attributes (TT[0–4]) indicate a write or kill operation. These
transactions are snooped regardless of whetherGBL is asserted to support
reservations in the MEI cache protocol.

The state ofABB is not sampled to determine a qualified snoop condition. All transacti
snooped by the 750 are checked for correct address bus parity. Every assertionTS
detected by the 750 (whether snooped or not) must be followed by an accompa
assertion ofAACK.

dcbz I M Write with kill —

dcbz E, M M Kill block Writes over modified data

dcbt I E Read-with-intent-t
o-modify

Fetched cache block is
stored in the cache

dcbt E, M No change None —

dcbtst I E Read-with-intent-t
o-modify

Fetched cache block is
stored in the cache

dcbtst E,M No change None —

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Instruction
Current

Cache State
Next Cache State Bus Operation Comment
Chapter 3. Instruction and Data Cache Operation 3-25

ociated
torage
tandard

rency.

sions.
e that
/L2

aster
from
erform.

ueue
the
, so
mory
ion on
ed to
a cache
e the

as
e, the
rogress
obal
ache.
750

ta bus
ry to
tem to
Note
do not
occur

ns in
d in

sy
Once a qualified snoop condition is detected on the bus, the snooped address ass
with TS is compared against the data cache tags, memory queues, and/or other s
elements as appropriate. The L1 data cache tags and L2 cache tags are snooped for s
data cache coherency support. No snooping is done in the instruction cache for cohe

The memory queues are snooped for pipeline collisions and memory coherency colli
A pipeline collision is detected when another bus master addresses any portion of a lin
this 750’s data cache is currently in the process of loading (L1 loading from L2, or L1
loading from memory). A memory coherency collision occurs when another bus m
addresses any portion of a line that the 750 has currently queued to write to memory
the data cache (castout or copy-back), but has not yet been granted bus access to p

If a snooped transaction results in a cache hit or pipeline collision or memory q
collision, the 750 assertsARTRY on the 60x bus. The current bus master, detecting
assertion of theARTRY signal, should abort the transaction and retry it at a later time
that the 750 can first perform a write operation back to memory from its cache or me
queues. The 750 may also retry a bus transaction if it is unable to snoop the transact
that cycle due to internal resource conflicts. Additional snoop action may be forward
the cache as a result of a snoop hit in some cases (a cache push of modified data, or
block invalidation). There is no immediate way for another CPU bus agent to determin
cause of the 750ARTRY.

Implementation Note: Snooping of the memory queues for pipeline collisions,
described above, is performed for burst read operations in progress only. In this cas
read address has completed on the bus, however, the data tenure may be either in-p
or not yet started by the processor. During this time the 750 will retry any other gl
access to that line by another bus master until all data has been received in it’s L1 c
Pipeline collisions, however, do not apply for burst write operations in progress. If the
has completed an address tenure for a burst write, and is currently waiting for a da
grant or is currently transferring data to memory, it will not generate an address ret
another bus master that addresses the line. It is the responsibility of the memory sys
handle this collision (usually by keeping the data transactions to memory in order).
also that all burst writes by the 750 and 603e are performed as non-global, and hence
normally enable snooping, even for address collision purposes. (Snooping may still
for reservation cancelling purposes.)

3.6.4 Snoop Response to 60x Bus Transactions
There are several bus transaction types defined for the 60x bus. The transactio
Table 3-5 correspond to the transfer type signals TT[0–4], which are describe
Section 7.2.4.1, “Transfer Type (TT[0–4]).”

The 750 never retries a transaction in whichGBL is not asserted, even if the tags are bu
or there is a tag hit. Reservations are snooped regardless of the state ofGBL.
3-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table 3-5. Response to Snooped Bus Transactions

Snooped Transaction TT[0–4] 750 Response

Clean block 00000 No action is taken.

Flush block 00100 No action is taken.

SYNC 01000 No action is taken.

Kill block 01100 The kill block operation is an address-only bus transaction initiated
when a dcbz or dcbi instruction is executed
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, the 750

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

EIEIO 10000 No action is taken.

External control word
write

10100 No action is taken.

TLB invalidate 11000 No action is taken.

External control word
read

11100 No action is taken.

lwarx reservation set 00001 No action is taken.

Reserved 00101 —

TLBSYNC 01001 No action is taken.

ICBI 01101 No action is taken.

Reserved 1XX01 —

Write-with-flush 00010 A write-with-flush operation is a single-beat or burst transaction
initiated when a caching-inhibited or write-through store instruction is
executed.
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, the 750

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

Write-with-kill 00110 A write-with-kill operation is a burst transaction initiated due to a
castout, caching-allowed push, or snoop copy -back.
• If the address hits in the cache, the cache block is placed in the

invalid (I) state (killing modified data that may have been in the
block).

• If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.
Chapter 3. Instruction and Data Cache Operation 3-27

Read 01010 A read operation is used by most single-beat and burst load
transactions on the bus.
For single-beat, caching-inhibited read transaction:
• If the addressed cache block is in the exclusive (E) state, the cache

block remains in the exclusive (E) state.
• If the addressed cache block is in the modified (M) state, the 750

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the exclusive (E) state.

• If the address misses in the cache, no action is taken.
For burst read transactions:
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, the 750

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.

Read-with-intent-to-mo
dify (RWITM)

01110 A RWITM operation is issued to acquire exclusive use of a memory
location for the purpose of modifying it.
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, the 750

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.

Write-with-flush-atomic 10010 Write-with-flush-atomic operations occur after the processor issues
an stwcx. instruction.
• If the addressed cache block is in the exclusive (E) state, the cache

block is placed in the invalid (I) state.
• If the addressed cache block is in the modified (M) state, the 750

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the invalid (I) state.

• If the address misses in the cache, no action is taken.
Any reservation is canceled, regardless of the address.

Reserved 10110 —

Read-atomic 11010 Read atomic operations appear on the bus in response to lwarx
instructions and generate the same snooping responses as read
operations.

Read-with-intent-to-mo
dify-atomic

11110 The RWITM atomic operations appear on the bus in response to
stwcx. instructions and generate the same snooping responses as
RWITM operations.

Reserved 00011 —

Reserved 00111 —

Read-with-no-intent-to-
cache (RWNITC)

01011 A RWNITC operation is issued to acquire exclusive use of a memory
location with no intention of modifying the location.
• If the addressed cache block is in the exclusive (E) state, the cache

block remains in the exclusive (E) state.
• If the addressed cache block is in the modified (M) state, the 750

asserts ARTRY and initiates a push of the modified block out of the
cache and the cache block is placed in the exclusive (E) state.

• If the address misses in the cache, no action is taken.

Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0–4] 750 Response
3-28 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

tribute
e

the

p
ot
at

it) of
es are
f

bit)
snoop

wever,

he bus
3.6.5 Transfer Attributes
In addition to the address and transfer type signals, the 750 supports the transfer at
signalsTBST, TSIZ[0–2],WT, CI, andGBL. The TBST and TSIZ[0–2] signals indicat
the data transfer size for the bus transaction.

The WT signal reflects the write-through status (the complement of the W bit) for
transaction as determined by the MMU address translation during write operations.WT is
asserted for burst writes due todcbf (flush) anddcbst (clean) instructions, and for snoo
pushes;WT is negated forecowx transactions. Since the write-through status is n
meaningful for reads, the 750 uses theWT signal during read transactions to indicate th
the transaction is an instruction fetch (WT negated), or not an instruction fetch (WT
asserted).

TheCI signal reflects the caching-inhibited/allowed status (the complement of the I b
the transaction as determined by the MMU address translation even if the L1 cach
disabled or locked.CI is always asserted foreciwx/ecowxbus transactions independent o
the address translation.

TheGBL signal reflects the memory coherency requirements (the complement of the M
of the transaction as determined by the MMU address translation. Castout and
copy-back operations (TT[0–4] = 00110) are generally marked as nonglobal (GBL
negated) and are not snooped (except for reservation monitoring). Other masters, ho
may perform DMA write operations with this encoding but marked global (GBL asserted)
and thus must be snooped.

Table 3-6 summarizes the address and transfer attribute information presented on t
by the 750 for various master or snoop-related transactions.

Reserved 01111 —

Reserved 1XX11 —

Table 3-6. Address/Transfer Attribute Summary

Bus Transaction A[0–31] TT[0–4] TBST TSIZ[0–2] GBL WT CI

Instruction fetch operations:

Burst (caching-allowed) PA[0–28] || 0b000 0 1 1 1 0 0 0 1 0 ¬ M 1 1*

Single-beat read
(caching-inhibited or cache
disabled)

PA[0–28] || 0b000 0 1 0 1 0 1 0 0 0 ¬ M 1 ¬ I

Data cache operations:

Cache block fill (due to load or
store miss)

PA[0–28] || 0b000 A 1 1 1 0 0 0 1 0 ¬ M 0 1*

Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0–4] 750 Response
Chapter 3. Instruction and Data Cache Operation 3-29

Castout
(normal replacement)

CA[0–26] || 0b00000 0 0 1 1 0 0 0 1 0 1 1 1*

Push (cache block push due to
dcbf /dcbst)

PA[0–26] || 0b00000 0 0 1 1 0 0 0 1 0 1 0 1*

Snoop copyback CA[0–26] || 0b00000 0 0 1 1 0 0 0 1 0 1 0 1*

Data cache bypass operations:

Single-beat read
(caching-inhibited or cache
disabled)

PA[0–31] A 1 0 1 0 1 S S S ¬ M 0 ¬ I

Single-beat write
(caching-inhibited, write-through,
or cache disabled)

PA[0–31] 0 0 0 1 0 1 S S S ¬ M ¬W ¬ I

Special instructions:

dcbz (addr-only) PA[0–28] || 0b000 0 1 1 0 0 0 0 1 0 0* 0 1*

dcbi (if HID0[ABE] = 1,
addr-only)

PA[0–26] || 0b00000 0 1 1 0 0 0 0 1 0 ¬ M 0 1*

dcbf (if HID0[ABE] = 1,
addr-only)

PA[0–26] || 0b00000 0 0 1 0 0 0 0 1 0 ¬ M 0 1*

dcbst (if HID0[ABE] = 1,
addr-only)

PA[0–26] || 0b00000 0 0 0 0 0 0 0 1 0 ¬ M 0 1*

sync (if HID0[ABE] = 1,
addr-only)

0x0000_0000 0 1 0 0 0 0 0 1 0 0 0 0

eieio (if HID0[ABE] = 1,
addr-only)

0x0000_0000 1 0 0 0 0 0 0 1 0 0 0 0

stwcx. (always single-beat write) PA[0–29] || 0b00 1 0 0 1 0 1 1 0 0 ¬ M ¬ W ¬ I

eciwx PA[0–29] || 0b00 1 1 1 0 0 EAR[28–31] 1 0 0

ecowx PA[0–29] || 0b00 1 0 1 0 0 EAR[28–31] 1 1 0

Notes:
PA = Physical address, CA = Cache address.
W,I,M = WIM state from address translation; ¬ = complement; 0*or 1* = WIM state implied by transaction type in table
For instruction fetches, reflection of the M bit must be enabled through HID0[IFEM].
A = Atomic; high if lwarx , low otherwise
S = Transfer size
Special instructions listed may not generate bus transactions depending on cache state.

Table 3-6. Address/Transfer Attribute Summary (Continued)

Bus Transaction A[0–31] TT[0–4] TBST TSIZ[0–2] GBL WT CI
3-30 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

cribed
3.7 MEI State Transactions
Table 3-7 shows MEI state transitions for various operations. Bus operations are des
in Table 3-5.

Table 3-7. MEI State Transitions

Operation
Cache

Operation
Bus
sync

WIM
Current
Cache
State

Next
Cache
State

Cache Actions
Bus

Operation

Load
(T = 0)

Read No x0x I Same 1 Cast out of modified
block (as required)

Write-with-kill

2 Pass four-beat read
to memory queue

Read

Load
(T = 0)

Read No x0x E,M Same Read data from cache —

Load (T = 0) Read No x1x I Same Pass single-beat read to
memory queue

Read

Load (T = 0) Read No x1x E I CRTRY read —

Load (T = 0) Read No x1x M I CRTRY read (push
sector to write queue)

Write-with-kill

lwarx Read Acts like other reads but bus operation uses special encoding

Store
(T = 0)

Write No 00x I Same Cast out of modified
block (if necessary)

Write-with-kill

Pass RWITM to
memory queue

RWITM

Store
(T = 0)

Write No 00x E,M M Write data to cache —

Store stwcx.
(T = 0)

Write No 10x I Same Pass single-beat write
to memory queue

Write-with-flus
h

Store stwcx.
(T = 0)

Write No 10x E Same Write data to cache —

Pass single-beat write
to memory queue

Write-with-flus
h

Store stwcx.
(T = 0)

Write No 10x M Same CRTRY write —

Push block to write
queue

Write-with-kill

Store (T = 0)
or stwcx.
(WIM = 10x)

Write No x1x I Same Pass single-beat write
to memory queue

Write-with-flus
h

Store (T = 0)
or stwcx.
(WIM = 10x)

Write No x1x E I CRTRY write —
Chapter 3. Instruction and Data Cache Operation 3-31

Store (T = 0)
or stwcx.
(WIM = 10x)

Write No x1x M I CRTRY write —

Push block to write
queue

Write-with-kill

stwcx. Conditional
write

If the reserved bit is set, this operation is like other writes except the bus operation
uses a special encoding.

dcbf Data cache
block flush

No xxx I,E Same CRTRY dcbf —

Pass flush Flush

Same I State change only —

dcbf Data cache
block flush

No xxx M I Push block to write
queue

Write-with-kill

dcbst Data cache
block store

No xxx I,E Same CRTRY dcbst —

Pass clean Clean

Same Same No action —

dcbst Data cache
block store

No xxx M E Push block to write
queue

Write-with-kill

dcbz Data cache
block set to
zero

No x1x x x Alignment trap —

dcbz Data cache
block set to
zero

No 10x x x Alignment trap —

dcbz Data cache
block set to
zero

Yes 00x I Same CRTRY dcbz —

Cast out of modified
block

Write-with-kill

Pass kill Kill

Same M Clear block —

dcbz Data cache
block set to
zero

No 00x E,M M Clear block —

dcbt Data cache
block touch

No x1x I Same Pass single-beat read to
memory queue

Read

dcbt Data cache
block touch

No x1x E I CRTRY read —

dcbt Data cache
block touch

No x1x M I CRTRY read —

Push block to write
queue

Write-with-kill

Table 3-7. MEI State Transitions (Continued)

Operation
Cache

Operation
Bus
sync

WIM
Current
Cache
State

Next
Cache
State

Cache Actions
Bus

Operation
3-32 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Note that single-beat writes are not snooped in the write queue.

dcbt Data cache
block touch

No x0x I Same Cast out of modified
block (as required)

Write-with-kill

Pass four-beat read to
memory queue

Read

dcbt Data cache
block touch

No x0x E,M Same No action —

Single-beat
read

Reload
dump 1

No xxx I Same Forward data_in —

Four-beat read
(double-word-al
igned)

Reload
dump

No xxx I E Write data_in to cache —

Four-beat write
(double-word-al
igned)

Reload
dump

No xxx I M Write data_in to cache —

E→I Snoop
write or kill

No xxx E I State change only
(committed)

—

M→I Snoop
kill

No xxx M I State change only
(committed)

—

Push
M→I

Snoop
flush

No xxx M I Conditionally push Write-with-kill

Push
M→E

Snoop
clean

No xxx M E Conditionally push Write-with-kill

tlbie TLB
invalidate

No xxx x x CRTRY TLBI —

Pass TLBI —

No action —

sync Synchroni-
zation

No xxx x x CRTRY sync —

Pass sync —

No action —

Table 3-7. MEI State Transitions (Continued)

Operation
Cache

Operation
Bus
sync

WIM
Current
Cache
State

Next
Cache
State

Cache Actions
Bus

Operation
Chapter 3. Instruction and Data Cache Operation 3-33

3-34 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

erPC
ation).
e, the
s the

te as a
rnal
ation
begins
sing of

more
the

ister
.

refore,
, they
tion-
in the
ired to
nters
tially.
occur,
fully

tored
ption is
ken.
ltiple
ry state
Chapter 4
Exceptions
40
40

The OEA portion of the PowerPC architecture defines the mechanism by which Pow
processors implement exceptions (referred to as interrupts in the architecture specific
Exception conditions may be defined at other levels of the architecture. For exampl
UISA defines conditions that may cause floating-point exceptions; the OEA define
mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor sta
result of unusual conditions arising in the execution of instructions and from exte
signals, bus errors, or various internal conditions. When exceptions occur, inform
about the state of the processor is saved to certain registers and the processor
execution at an address (exception vector) predetermined for each exception. Proces
exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a
specific condition may be determined by examining a register associated with
exception—for example, the DSISR and the floating-point status and control reg
(FPSCR). Also, software can explicitly enable or disable some exception conditions

The PowerPC architecture requires that exceptions be taken in program order; the
although a particular implementation may recognize exception conditions out of order
are handled strictly in order with respect to the instruction stream. When an instruc
caused exception is recognized, any unexecuted instructions that appear earlier
instruction stream, including any that have not yet entered the execute state, are requ
complete before the exception is taken. For example, if a single instruction encou
multiple exception conditions, those exceptions are taken and handled sequen
Likewise, exceptions that are asynchronous and precise are recognized when they
but are not handled until all instructions currently in the execute stage success
complete execution and report their results.

To prevent loss of state information, exception handlers must save the information s
in the machine status save/restore registers, SRR0 and SRR1, soon after the exce
taken to prevent this information from being lost due to another exception being ta
Because exceptions can occur while an exception handler routine is executing, mu
exceptions can become nested. It is up to the exception handler to save the necessa
information if control is to return to the excepting program.
Chapter 4. Exceptions 4-1

mpt to
til the
itions
resume

sing:

e an

t is
ed

sor

In this
es to
word

se a
s may
IEEE

ise and
events
ctions.

r the
eption
In many cases, after the exception handler handles an exception, there is an atte
execute the instruction that caused the exception. Instruction execution continues un
next exception condition is encountered. Recognizing and handling exception cond
sequentially guarantees that the machine state is recoverable and processing can
without losing instruction results.

In this book, the following terms are used to describe the stages of exception proces

Recognition Exception recognition occurs when the condition that can caus
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the contex
saved and the instruction at the appropriate vector offset is fetch
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervi
mode (referred to as privileged state in the architecture
specification).

Note that the PowerPC architecture documentation refers to exceptions as interrupts.
book, the term ‘interrupt’ is reserved to refer to asynchronous exceptions and sometim
the event that causes the exception. Also, the PowerPC architecture uses the
‘exception’ to refer to IEEE-defined floating-point exception conditions that may cau
program exception to be taken; see 4.5.7.” The occurrence of these IEEE exception
not cause an exception to be taken. IEEE-defined exceptions are referred to as
floating-point exceptions or floating-point exceptions.

4.1 PowerPC 750 Microprocessor Exceptions
As specified by the PowerPC architecture, exceptions can be either precise or imprec
either synchronous or asynchronous. Asynchronous exceptions are caused by
external to the processor’s execution; synchronous exceptions are caused by instru

The types of exceptions are shown in Table 4-1. Note that all exceptions except fo
system management interrupt, thermal management, and performance monitor exc
are defined, at least to some extent, by the PowerPC architecture.

Table 4-1. PowerPC 750 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Types

Asynchronous, nonmaskable Imprecise Machine check, system reset

Asynchronous, maskable Precise External interrupt, decrementer, system management interrupt,
performance monitor interrupt, thermal management interrupt

Synchronous Precise Instruction-caused exceptions
4-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ing of
in the
These classifications are discussed in greater detail in 4.2.” For a better understand
how the 750 implements precise exceptions, see Chapter 6.” Exceptions implemented
750, and conditions that cause them, are listed in Table 4-2.

Table 4-2. Exceptions and Conditions

Exception Type
Vector Offset

(hex)
Causing Conditions

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an
address, data, or L2 bus parity error. MSR[ME] must be set.

DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.

ISI 00400 As defined by the PowerPC architecture

External interrupt 00500 MSR[EE] = 1 and INT is asserted

Alignment 00600 • A floating-point load/store, stmw , stwcx. , lmw , lwarx , eciwx , or ecowx
instruction operand is not word-aligned.

• A multiple/string load/store operation is attempted in little-endian mode
• An operand of a dcbz instruction is on a page that is write-through or

cache-inhibited for a virtual mode access.
• An attempt to execute a dcbz instruction occurs when the cache is

disabled.

Program 00700 As defined by the PowerPC architecture

Floating-point
unavailable

00800 As defined by the PowerPC architecture

Decrementer 00900 As defined by the PowerPC architecture, when the most-significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1

Reserved 00A00–00BFF —

System call 00C00 Execution of the System Call (sc) instruction

Trace 00D00 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. The 750
differs from the OEA by not taking this exception on an isync .

Reserved 00E00 The 750 does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E10–00EFF —

Performance monitor 00F00 The limit specified in PMCn is met and MMCR0[ENINT] = 1 (750-specific)

Instruction address
breakpoint

01300 IABR[0–29] matches EA[0–29] of the next instruction to complete, IABR[TE]
matches MSR[IR], and IABR[BE] = 1 (750-specific)

System management
interrupt

01400 MSR[EE] = 1 and SMI is asserted (750-specific)

Reserved 01500–016FF —
Chapter 4. Exceptions 4-3

s—
eption
 into

r

 strict

e

ment,
yed

up to
ate is
uction
ed. If
ned
oving

further

des
4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exception
system reset and machine check exceptions (although the machine check exc
condition can be disabled so the condition causes the processor to go directly
the checkstop state). These exceptions cannot be delayed and do not wait fo
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions ar
taken. Note that the 750 does not implement an exception of this type.

4. Maskable asynchronous exceptions (external, decrementer, thermal manage
system management, performance monitor, and interrupt exceptions) are dela
until higher priority exceptions are taken.

The following list of exception categories describes how the 750 handles exceptions
the point of signaling the appropriate interrupt to occur. Note that a recoverable st
reached if the completed store queue is empty (drained, not canceled) and any instr
that is next in program order and has been signaled to complete has complet
MSR[RI] = 0, the 750 is in a nonrecoverable state. Also, instruction completion is defi
as updating all architectural registers associated with that instruction, and then rem
that instruction from the completion buffer.

• Exceptions caused by asynchronous events (interrupts). These exceptions are
distinguished by whether they are maskable and recoverable.
— Asynchronous, nonmaskable, nonrecoverable

System reset for assertion ofHRESET—Has highest priority and is taken
immediately regardless of other pending exceptions or recoverability. (Inclu
power-on reset)

Thermal
management
interrupt

01700 Thermal management is enabled, junction temperature exceeds the threshold
specified in THRM1 or THRM2, and MSR[EE] = 1 (750-specific)

Reserved 01800–02FFF —

Table 4-2. Exceptions and Conditions (Continued)

Exception Type
Vector Offset

(hex)
Causing Conditions
4-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

f

en

l, and

her

ther

point

 and

y be
e all
e ISI

tion
 or
ons

n. If
takes
en
mes).

n of
ces
st-
— Asynchronous, maskable, nonrecoverable

Machine check exception—Has priority over any other pending exception
except system reset for assertion ofHRESET. Taken immediately regardless o
recoverability.

— Asynchronous, nonmaskable, recoverable

System reset forSRESET—Has priority over any other pending exception
except system reset forHRESET (or power-on reset), or machine check. Tak
immediately when a recoverable state is reached.

— Asynchronous, maskable, recoverable

System management, performance monitor, thermal management, externa
decrementer interrupts—Before handling this type of exception, the next
instruction in program order must complete. If that instruction causes anot
type of exception, that exception is taken and the asynchronous, maskable
recoverable exception remains pending, until the instruction completes. Fur
instruction completion is halted. The asynchronous, maskable recoverable
exception is taken when a recoverable state is reached.

• Instruction-related exceptions. These exceptions are further organized into the
in instruction processing in which they generate an exception.
— Instruction fetch

ISI exceptions—Once this type of exception is detected, dispatching stops
the current instruction stream is allowed to drain out of the machine. If
completing any of the instructions in this stream causes an exception, that
exception is taken and the instruction fetch exception is discarded (but ma
encountered again when instruction processing resumes). Otherwise, onc
pending instructions have executed and a recoverable state is reached, th
exception is taken.

— Instruction dispatch/execution

Program, DSI, alignment, floating-point unavailable, system call, and instruc
address breakpoint—This type of exception is determined during dispatch
execution of an instruction. The exception remains pending until all instructi
before the exception-causing instruction in program order complete. The
exception is then taken without completing the exception-causing instructio
completing these previous instructions causes an exception, that exception
priority over the pending instruction dispatch/execution exception, which is th
discarded (but may be encountered again when instruction processing resu

— Post-instruction execution

Trace—Trace exceptions are generated following execution and completio
an instruction while trace mode is enabled. If executing the instruction produ
conditions for another type of exception, that exception is taken and the po
instruction exception is forgotten for that instruction.
Chapter 4. Exceptions 4-5

ed, as
Note that these exception classifications correspond to how exceptions are prioritiz
described in Table 4-3.

Table 4-3. PowerPC 750 Exception Priorities

Priority Exception Cause

Asynchronous Exceptions (Interrupts)

0 System reset Power on reset, assertion of HRESET and TRST (hard reset)

1 Machine check Any enabled machine check condition (L1 address or data parity error, L2 data
parity error, assertion of TEA or MCP)

2 System reset Assertion of SRESET (soft reset)

3 System management Assertion of SMI

4 External interrupt Assertion of INT

5 Performance monitor Any programmer-specified performance monitor condition

6 Decrementer Decrementer passes through zero

7 Thermal management Any programmer-specified thermal management condition

Instruction Fetch Exceptions

0 ISI Any ISI exception condition

Instruction Dispatch/Execution Exceptions

0 Instruction address
breakpoint

Any instruction address breakpoint exception condition

1 Program Occurrence of an illegal instruction, privileged instruction, or trap exception
condition. Note that floating-point enabled program exceptions have lower priority.

2 System call System Call (sc) instruction

3 Floating-point
unavailable

Any floating-point unavailable exception condition

4 Program A floating-point enabled exception condition (lowest-priority program exception)

5 DSI DSI exception due to eciwx , ecowx with EAR[E] = 0 (DSISR[11]). Lower priority
DSI exception conditions are shown below.

6 Alignment Any alignment exception condition, prioritized as follows:
1 Floating-point access not word-aligned
2 lmw , stmw , lwarx , stwcx. not word-aligned
3 eciwx or ecowx not word-aligned
4 Multiple or string access with MSR[LE] set
5 dcbz to write-through or cache-inhibited page or cache is disabled

7 DSI BAT page protection violation

8 DSI Any access except cache operations to a segment where SR[T] = 1 (DSISR[5]) or
an access crosses from a T = 0 segment to one where T = 1 (DSISR[5])

9 DSI TLB page protection violation

10 DSI DABR address match
4-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ed even
ption

may

ts of the
after

ruction
upted
ddress
ve
ay be
se of a

bits as

ecific
R1.
System reset and machine check exceptions may occur at any time and are not delay
if an exception is being handled. As a result, state information for an interrupted exce
may be lost; therefore, these exceptions are typically nonrecoverable. An exception
not be taken immediately when it is recognized.

4.3 Exception Processing
When an exception is taken, the processor uses SRR0 and SRR1 to save the conten
MSR for the current context and to identify where instruction execution should resume
the exception is handled.

When an exception occurs, the address saved in SRR0 helps determine where inst
processing should resume when the exception handler returns control to the interr
process. Depending on the exception, this may be the address in SRR0 or at the next a
in the program flow. All instructions in the program flow preceding this one will ha
completed execution and no subsequent instruction will have begun execution. This m
the address of the instruction that caused the exception or the next one (as in the ca
system call, trace, or trap exception). The SRR0 register is shown in Figure 4-1.

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0)

SRR1 is used to save machine status (selected MSR bits and possibly other status
well) on exceptions and to restore those values when anrfi instruction is executed. SRR1
is shown in Figure 4-2.

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

For most exceptions, bits 2–4 and 10–12 of SRR1 are loaded with exception-sp
information and MSR[5–9, 16–31] are placed into the corresponding bit positions of SR

Post-Instruction Execution Exceptions

11 Trace MSR[SE] = 1 (or MSR[BE] = 1 for branches)

Table 4-3. PowerPC 750 Exception Priorities (Continued)

Priority Exception Cause

SRR0 (Holds EA for Instruction in Interrupted Program Flow)

0 31

Exception-Specific Information and MSR Bit Values

0 31
Chapter 4. Exceptions 4-7

The 750’s MSR is shown in Figure 4-3.

Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-4.

Table 4-4. MSR Bit Settings

Bit(s) Name Description

0 — Reserved. Full function.1

1–4 — Reserved. Partial function.1

5–9 — Reserved. Full function.1

10–12 — Reserved. Partial function.1

13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Power management functions are implementation-dependent. See Chapter 10.”

14 — Reserved. Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select
the endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point loads,

stores, and moves.
1 The processor can execute floating-point instructions and can take floating-point enabled

program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 IEEE floating-point exception mode 0 (see Table 4-5).

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of every

instruction except rfi , isync , and sc . Successful execution means that the instruction caused
no other exception.

ILE EE PR SEFE0 BE IP IR

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PM0

Reserved

LERIDR0FE1MEFP0POW0 000000000000
4-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ther
en at
ecise.
ption
The IEEE floating-point exception mode bits (FE0 and FE1) together define whe
floating-point exceptions are handled precisely, imprecisely, or whether they are tak
all. As shown in Table 4-5, if either FE0 or FE1 are set, the 750 treats exceptions as pr
MSR bits are guaranteed to be written to SRR1 when the first instruction of the exce
handler is encountered. For further details, see Chapter 6, “Exceptions,” ofThe
Programming Environments Manual.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception when a branch instruction executes

successfully.

23 FE1 IEEE floating-point exception mode 1 (see Table 4-5).

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended
with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5.”

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5.”

28 — Reserved. Full function1

29 PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
750–specific; defined as reserved by the PowerPC architecture. For more information about the
performance monitor, see 4.5.13.”

30 RI Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRR0 is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Note: Full function reserved bits are saved in SRR1 when an exception occurs; partial function reserved bits
are not saved.

Table 4-4. MSR Bit Settings (Continued)

Bit(s) Name Description
Chapter 4. Exceptions 4-9

rmined

red

of
n an
.

top
heck
ich is

tion-
nd by
does

tion.
sed

first
4.3.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be dete
whether the exception is enabled for that condition.

• IEEE floating-point enabled exceptions (a type of program exception) are igno
when both MSR[FE0] and MSR[FE1] are cleared. If either bit is set, all IEEE
enabled floating-point exceptions are taken and cause a program exception.

• Asynchronous, maskable exceptions (such as the external and decrementer
interrupts) are enabled by setting MSR[EE]. When MSR[EE] = 0, recognition
these exception conditions is delayed. MSR[EE] is cleared automatically whe
exception is taken to delay recognition of conditions causing those exceptions

• A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checks
state when a machine check exception condition occurs. Individual machine c
exceptions can be enabled and disabled through bits in the HID0 register, wh
described in Table 4-10.

• System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruc
caused exceptions occurring earlier in the instruction stream have been handled, a
confirming that the exception is enabled for the exception condition), the processor
the following:

1. SRR0 is loaded with an instruction address that depends on the type of excep
See the individual exception description for details about how this register is u
for specific exceptions.

2. SRR1[1–4, 10–15] are loaded with information specific to the exception type.

3. SRR1[5–9, 16–31] are loaded with a copy of the corresponding MSR bits.
Depending on the implementation, reserved bits may not be copied.

4. The MSR is set as described in Table 4-4. The new values take effect as the
instruction of the exception-handler routine is fetched.

Table 4-5. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Imprecise nonrecoverable. For this setting, the 750 operates in floating-point precise mode.

1 0 Imprecise recoverable. For this setting, the 750 operates in floating-point precise mode.

1 1 Floating-point precise mode
4-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

,

ion
ion's
red,

e
ct to

hat a
set

and

ugh
ot

g
ss. In

use
tion,

and

 this

s,” of
Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a locat
specific to the exception type. The location is determined by adding the except
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is clea
exceptions are vectored to the physical address 0x000n_nnnn. If IP is set, exceptions
are vectored to the physical address 0xFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See .”

4.3.3 Setting MSR[RI]
An operating system may handle MSR[RI] as follows:

• In the machine check and system reset exceptions—If MSR[RI] is cleared, th
exception is not recoverable. If it is set, the exception is recoverable with respe
the processor.

• In each exception handler—When enough state information has been saved t
machine check or system reset exception can reconstruct the previous state,
MSR[RI].

• In each exception handler—Clear MSR[RI], set SRR0 and SRR1 appropriately,
then executerfi .

• Note that the RI bit being set indicates that, with respect to the processor, eno
processor state data remains valid for the processor to continue, but it does n
guarantee that the interrupted process can resume.

4.3.4 Returning from an Exception Handler
The Return from Interrupt (rfi) instruction performs context synchronization by allowin
previously-issued instructions to complete before returning to the interrupted proce
general, execution of therfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer ca
an exception. If a previous instruction causes a direct-store interface error excep
the results must be determined before this instruction is executed.

• Previous instructions complete execution in the context (privilege, protection,
address translation) under which they were issued.

• Therfi instruction copies SRR1 bits back into the MSR.

• Instructions fetched after this instruction execute in the context established by
instruction.

• Program execution resumes at the instruction indicated by SRR0

For a complete description of context synchronization, refer to Chapter 6, “Exception
The Programming Environments Manual.
Chapter 4. Exceptions 4-11

ing:

r

d (or
nd

ttings
on the
4.4 Process Switching
The following instructions are useful for restoring proper context during process switch

• Thesync instruction orders the effects of instruction execution. All instructions
previously initiated appear to have completed before thesyncinstruction completes,
and no subsequent instructions appear to be initiated until thesync instruction
completes. For an example showing use ofsync, see Chapter 2, “PowerPC Registe
Set,” ofThe Programming Environments Manual.

• The isync instruction waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetche
refetched) from memory and to execute in the context (privilege, translation, a
protection) established by the previous instructions.

• Thestwcx. instruction clears any outstanding reservations, ensuring that anlwarx
instruction in an old process is not paired with anstwcx. instruction in a new one.

The operating system should set MSR[RI] as described in 4.3.3.”

4.5 Exception Definitions
Table 4-6 shows all the types of exceptions that can occur with the 750 and MSR se
when the processor goes into supervisor mode due to an exception. Depending
exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-6. MSR Setting Due to Exception

Exception Type
MSR Bit 1

POW ILE EE PR FP ME FE0 SE BE FE1 IP IR DR PM RI LE

System reset 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Machine check 0 — 0 0 0 0 0 0 0 0 — 0 0 0 0 ILE

DSI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

ISI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

External interrupt 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Alignment 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Program 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Floating-point unavailable 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Decrementer interrupt 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

System call 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Trace exception 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

System management 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Performance monitor 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE

Thermal management 0 — 0 0 0 — 0 0 0 0 — 0 0 0 0 ILE
4-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

If the

ndler

ecture
aled to
tion is

soft
set this
mining

ll
The setting of the exception prefix bit (IP) determines how exceptions are vectored.
bit is cleared, exceptions are vectored to the physical address 0x000n_nnnn(wherennnnn
is the vector offset); if IP is set, exceptions are vectored to physical address 0xFFFn_nnnn.
Table 4-2 shows the exception vector offset of the first instruction of the exception ha
routine for each exception type.

4.5.1 System Reset Exception (0x00100)
The 750 implements the system reset exception as defined in the PowerPC archit
(OEA). The system reset exception is a nonmaskable, asynchronous exception sign
the processor through the assertion of system-defined signals. In the 750, the excep
signaled by the assertion of either the soft reset (SRESET) or hard reset (HRESET) inputs,
described more fully in Chapter 7.”

The 750 implements HID0[NHR], which helps software distinguish a hard reset from a
reset. Because this bit is cleared by a hard reset, but not by a soft reset, software can
bit after a hard reset and tell whether a subsequent reset is a hard or soft reset by exa
whether this bit is still set. See 2.1.2.2.”

The first bus operation following the negation ofHRESET or the assertion of SRESET wi
be a single-beat instruction fetch (caching will be inhibited) to x00100.

Table 4-7 lists register settings when a system reset exception is taken.

Note:
1. 0 Bit is cleared.

ILEBit is copied from the MSR[ILE].
— Bit is not altered
Reserved bits are read as if written as 0.

Table 4-7. System Reset Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits
Note that if the processor state is corrupted to the extent that execution cannot resume reliably,
MSR[RI] (SRR1[30]) is cleared.

Table 4-6. MSR Setting Due to Exception (Continued)

Exception Type
MSR Bit 1

POW ILE EE PR FP ME FE0 SE BE FE1 IP IR DR PM RI LE
Chapter 4. Exceptions 4-13

e 750
tion,
rain.

erPC
ffset,
either
and

e does

serted
are

tion.

s of
AG
on on

ses
ation
4.5.1.1 Soft Reset
If SRESET is asserted, the processor is first put in a recoverable state. To do this, th
allows any instruction at the point of completion to either complete or take an excep
blocks completion of any following instructions, and allows the completion queue to d
The state before the exception occurred is then saved as specified in the Pow
architecture and instruction fetching begins at the system reset interrupt vector o
0x00100. The vector address on a soft reset depends on the setting of MSR[IP] (
0x0000_0100 or 0xFFF0_0100). Soft resets are third in priority, after hard reset
machine check. This exception is recoverable provided attaining a recoverable stat
not generate a machine check.

SRESET is an effectively edge-sensitive signal that can be asserted and deas
asynchronously, provided the minimum pulse width specified in the hardw
specifications is met. AssertingSRESET causes the 750 to take a system reset excep
This exception modifies the MSR, SRR0, and SRR1, as described inThe Programming
Environments Manual. Unlike hard reset, soft reset does not directly affect the state
output signals. Attempts to useSRESET during a hard reset sequence or while the JT
logic is non-idle cause unpredictable results (see Section 7.2.9.6.2 for more informati
soft reset).

SRESET can be asserted duringHRESET assertion (see Figure 4-4). In all three ca
shown in Figure 4-4, theSRESET assertion and deassertion have no effect on the oper
or state of the machine.SRESET asserted coincident to, or after the assertion of,HRESET
will also have no effect on the operation or state of the machine.

Figure 4-4. SRESET Asserted During HRESET

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE

Table 4-7. System Reset Exception—Register Settings (Continued)

HRESET
SRESET

HRESET
SRESET

HRESET
SRESET

OK

OK

OK
4-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

n
tart a

ain
reset.
lected

er IO
set

the
ns

n hard

. When
es to
ighest
f the
hard
ered.
may
rrect
4.5.1.2 Hard Reset
A hard reset is initiated by assertingHRESET. Hard reset is used primarily for power-o
reset (POR) (in which caseTRST must also be asserted), but it can also be used to res
running processor. TheHRESET signal must be asserted during power up and must rem
asserted for a period that allows the PLL to achieve lock and the internal logic to be
This period is specified in the hardware specifications. Table 4-8 shows the state of se
750 signals during HRESET (whileHRESET is held asserted) and fromHRESET
deassertion until the L2 interface is enabled. Unless noted, the 750 tri-states all oth
drivers within five clocks ofHRESET assertion The 750 internal state after the hard re
interval is defined in Table 4-9. IfHRESET is asserted for less than this amount of time,
results are not predictable. IfHRESET is asserted during normal operation, all operatio
cease, and the machine state is lost (see Section 7.2.9.6.1 for more information o
reset).

The hard reset exception is a nonrecoverable, nonmaskable asynchronous exception
HRESET is asserted or at power-on reset (POR), the 750 immediately branch
0xFFF0_0100 without attempting to reach a recoverable state. A hard reset has the h
priority of any exception. It is always nonrecoverable. Table 4-9 shows the state o
machine just before it fetches the first instruction of the system reset handler after a
reset. In Table 4-9, the term “Unknown” means that the content may have been disord
These facilities must be properly initialized before use. The FPRs, BATs, and TLBs
have been disordered. To initialize the BATs, first set them all to zero, then to the co
values before any address translation occurs.

Table 4-8. HRESET Signal States

Signal Name
During
HRESET

HRESET Deassertion to L2
Enabled

L2ADDR hi-z 0

L2DATA hi-z 0

L2DP hi-z 0

L2CE 1 1

L2WE 1 1

L2LCK_OUTA 0 0

L2LCK_OUTB 0 0

L2SYNC_OUT 0 0

L2ZZ 0 0
Chapter 4. Exceptions 4-15

Table 4-9. Settings Caused by Hard Reset

Register Setting Register Setting

GPRs Unknown PVR see the PowerPC 740 and
PowerPC 750 Embedded
Microprocessor: Hardware
Specifications

FPRs Unknown HID0 00000000

FPSCR 00000000 HID1 00000000

CR All 0s DMISS and
IMISS

All 0s

SRs Unknown DCMP and
ICMP

All 0s

MSR 00000040 (only IP set) RPA All 0s

XER 00000000 IABR All 0s (break point disabled)

TBU 00000000 DSISR 00000000

TBL 00000000 DAR 00000000

LR 00000000 DEC FFFFFFFF

CTR 00000000 HASH1 00000000

SDR1 00000000 HASH2 00000000

SRR0 00000000 TLBs Unknown

SRR1 00000000 Reservation
Address

Unknown (reservation flag
-cleared)

SPRGs 00000000 BATs Unknown

Tag directory,
Icache, and
Dcache

All entries are marked invalid,
all LRU bits are set to 0, and
caches are disabled.

Cache, Icache,
and Dcache

All blocks are unchanged from
before HRESET.

DABR Breakpoint is disabled.
Address is unknown.

L2_CR 00000000

MMCRn 00000000

THRMn 00000000

UMMCRn 00000000

UPMCn 00000000

USIA 00000000

XER 00000000

PMCn Unknown

ICTC 00000000
4-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

or

DR]
de

ecture
arity
nsfer
upt
en if

ts, as
The following is also true after a hard reset operation:

• External checkstops are enabled.
• The on-chip test interface has given control of the I/Os to the rest of the chip f

functional use.
• Since the reset exception has data and instruction translation disabled (MSR[

and MSR[IR] both cleared), the chip operates in direct address translation mo
(referred to as the real addressing mode in the architecture specification).

• Time from HRESET deassertion until the 750 asserts the firstTS (bus parked on the
750) orBG is 8 to 12 bus clocks (SYSCLK).

4.5.2 Machine Check Exception (0x00200)
The 750 implements the machine check exception as defined in the PowerPC archit
(OEA). It conditionally initiates a machine check exception after an address or data p
error occurred on the bus or in either the L1 or L2 cache, after receiving a qualified tra
error acknowledge (TEA) indication on the 750 bus, or after the machine check interr
(MCP) signal had been asserted. As defined in the OEA, the exception is not tak
MSR[ME] is cleared, in which case the processor enters checkstop state.

Certain machine check conditions can be enabled and disabled using HID0 bi
described in Table 4-10.

Table 4-10. HID0 Machine Check Enable Bits

Bit Name Function

0 EMCP Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused
by assertion of MCP, similar to how MSR[EE] can mask external interrupts.
0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1.

1 DBP Enable/disable 60x bus address and data parity generation.
0 If address or data parity is not used by the system and the respective parity checking is disabled

(HID0[EBA] or HID0[EBD] = 0), input receivers for those signals are disabled, do not require pull-up
resistors, and therefore should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

1 Parity generation is enabled.

2 EBA Enable/disable 60x bus address parity checking.
0 Prevents address parity checking.
1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if

MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD Enable 60x bus data parity checking
0 Parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if

MSR[ME] = 1.
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

15 NHR Not hard reset (software use only)
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.
Chapter 4. Exceptions 4-17

the
at a
t the

the

and
en the
erates

ress,

achine
mory.
urces

the
sor

heck

cannot
d the
A TEA indication on the bus can result from any load or store operation initiated by
processor. In general,TEA is expected to be used by a memory controller to indicate th
memory parity error or an uncorrectable memory ECC error has occurred. Note tha
resulting machine check exception is imprecise and unordered with respect to
instruction that originated the bus operation.

If MSR[ME] and the appropriate HID0 bits are set, the exception is recognized
handled; otherwise, the processor generates an internal checkstop condition. Wh
exception is recognized, all incomplete stores are discarded. The bus protocol op
normally.

A machine check exception may result from referencing a nonexistent physical add
either directly (with MSR[DR] = 0) or through an invalid translation. If adcbz instruction
introduces a block into the cache associated with a nonexistent physical address, a m
check exception can be delayed until an attempt is made to store that block to main me
Not all PowerPC processors provide the same level of error checking. Checkstop so
are implementation-dependent.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
following section, 4.5.2.1.” If MSR[ME] = 0 and a machine check occurs, the proces
enters the checkstop state. Checkstop state is described in 4.5.2.2.”

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
Machine check exceptions are enabled when MSR[ME] = 1. When a machine c
exception is taken, registers are updated as shown in Table 4-11.

The machine check exception is usually unrecoverable in the sense that execution
resume in the context that existed before the exception. If the condition that cause

Table 4-11. Machine Check Exception—Register Settings

Register Setting Description

SRR0 On a best-effort basis the 750 can set this to an EA of some instruction that was executing or about to be
executing when the machine check condition occurred.

SRR1 0–10 Cleared
11 Set when an L2 data cache parity error is detected, otherwise zero
12 Set when MCP signal is asserted, otherwise zero
13 Set when TEA signal is asserted, otherwise zero
14 Set when a data bus parity error is detected, otherwise zero
15 Set when an address bus parity error is detected, otherwise zero
16–31 MSR[16–31]

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME 0
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE

Note that to handle another machine check exception, the exception handler should set MSR[ME] as soon
as it is practical after a machine check exception is taken. Otherwise, subsequent machine check excep-
tions cause the processor to enter the checkstop state.
4-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

allow
dress.
se the
check

0200

ate. In
by

nerally
frozen

ition
efined
ache

page

-store
ment
werPC

tional
kpoint
ility
cture

fetch
erPC
machine check does not otherwise prevent continued execution, MSR[ME] is set to
the processor to continue execution at the machine check exception vector ad
Typically, earlier processes cannot resume; however, operating systems can u
machine check exception handler to try to identify and log the cause of the machine
condition.

When a machine check exception is taken, instruction fetching resumes at offset 0x0
from the physical base address indicated by MSR[IP].

4.5.2.2 Checkstop State (MSR[ME] = 0)
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop st
addition, the assertion ofCKSTP_IN to the 750 causes checkstop. Also, if enabled
L2CR (L2DRO), a DLL rollover causes checkstop.

When a processor is in checkstop state, instruction processing is suspended and ge
cannot resume without the processor being reset. The contents of all latches are
within two cycles upon entering checkstop state.

4.5.3 DSI Exception (0x00300)
A DSI exception occurs when no higher priority exception exists and an error cond
related to a data memory access occurs. The DSI exception is implemented as it is d
in the PowerPC architecture (OEA). In case of a TLB miss for a load, store, or c
operation, a DSI exception is taken if the resulting hardware table search causes a
fault.

On the 750, a DSI exception is taken when a load or store is attempted to a direct
segment (SR[T] = 1). In the 750, a floating-point load or store to a direct-store seg
causes a DSI exception rather than an alignment exception, as specified by the Po
architecture.

The 750 also implements the data address breakpoint facility, which is defined as op
in the PowerPC architecture and is supported by the optional data address brea
register (DABR). Although the architecture does not strictly prescribe how this fac
must be implemented, the 750 follows the recommendations provided by the archite
and described in the Chapter 2, “Programming Model,” and Chapter 6 “Exceptions,” inThe
Programming Environments Manual.

4.5.4 ISI Exception (0x00400)
An ISI exception occurs when no higher priority exception exists and an attempt to
the next instruction fails. This exception is implemented as it is defined by the Pow
architecture (OEA), and is taken for the following conditions:

• The effective address cannot be translated.
• The fetch access is to a no-execute segment (SR[N] = 1).
• The fetch access is to guarded storage and MSR[IR] = 1.
Chapter 4. Exceptions 4-19

the

rrupt
rnal
ot
m can

need
tions
efined

] is
bed in

ffset

cture

a DSI
re. For

cture
e or
• The fetch access is to a segment for which SR[T] is set.
• The fetch access violates memory protection.

When an ISI exception is taken, instruction fetching resumes at offset 0x00400 from
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)
An external interrupt is signaled to the processor by the assertion of the external inte
signal (INT). TheINT signal is expected to remain asserted until the 750 takes the exte
interrupt exception. IfINT is negated early, recognition of the interrupt request is n
guaranteed. After the 750 begins execution of the external interrupt handler, the syste
safely negate theINT. When the 750 detects assertion ofINT, it stops dispatching and waits
for all pending instructions to complete. This allows any instructions in progress that
to take an exception to do so before the external interrupt is taken. After all instruc
have vacated the completion buffer, the 750 takes the external interrupt exception as d
in the PowerPC architecture (OEA).

An external interrupt may be delayed by other higher priority exceptions or if MSR[EE
cleared when the exception occurs. Register settings for this exception are descri
Chapter 6, “Exceptions,” inThe Programming Environments Manual.

When an external interrupt exception is taken, instruction fetching resumes at o
0x00500 from the physical base address indicated by MSR[IP].

4.5.6 Alignment Exception (0x00600)
The 750 implements the alignment exception as defined by the PowerPC archite
(OEA). An alignment exception is initiated when any of the following occurs:

• The operand of a floating-point load or store is not word-aligned.
• The operand oflmw, stmw, lwarx , orstwcx. is not word-aligned.
• The operand ofdcbz is in a page that is write-through or cache-inhibited.
• An attempt is made to executedcbz when the data cache is disabled.
• An eciwx or ecowx is not word-aligned
• A multiple or string access is attempted with MSR[LE] set

Note that in the 750, a floating-point load or store to a direct-store segment causes
exception rather than an alignment exception, as specified by the PowerPC architectu
more information, see 4.5.3.”

4.5.7 Program Exception (0x00700)
The 750 implements the program exception as it is defined by the PowerPC archite
(OEA). A program exception occurs when no higher priority exception exists and on
more of the exception conditions defined in the OEA occur.
4-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

any
the

m
ition

tes that

ide a
hese

by the
), all

from

erPC
rity
ding
the
d in

offset

erPC
ists, a
r has
ter is
n are

0900

,
cture.
The 750 invokes the system illegal instruction program exception when it detects
instruction from the illegal instruction class. The 750 fully decodes the SPR field of
instruction. If an undefined SPR is specified, a program exception is taken.

The UISA definesmtspr and mfspr with the record bit (Rc) set as causing a progra
exception or giving a boundedly-undefined result. In the 750, the appropriate cond
register (CR) should be treated as undefined. Likewise, the PowerPC architecture sta
the Floating Compared Unordered (fcmpu) or Floating Compared Ordered (fcmpo)
instruction with the record bit set can either cause a program exception or prov
boundedly-undefined result. In the 750, an the BF field in an instruction encoding for t
cases is considered undefined.

The 750 does not support either of the two floating-point imprecise modes supported
PowerPC architecture. Unless exceptions are disabled (MSR[FE0] = MSR[FE1] = 0
floating-point exceptions are treated as precise.

When a program exception is taken, instruction fetching resumes at offset 0x00700
the physical base address indicated by MSR[IP]. Chapter 6, “Exceptions,” inThe
Programming Environments Manualdescribes register settings for this exception.

4.5.8 Floating-Point Unavailable Exception (0x00800)
The floating-point unavailable exception is implemented as defined in the Pow
architecture. A floating-point unavailable exception occurs when no higher prio
exception exists, an attempt is made to execute a floating-point instruction (inclu
floating-point load, store, or move instructions), and the floating-point available bit in
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are describe
Chapter 6, “Exceptions,” inThe Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction fetching resumes at
0x00800 from the physical base address indicated by MSR[IP].

4.5.9 Decrementer Exception (0x00900)
The decrementer exception is implemented in the 750 as it is defined by the Pow
architecture. The decrementer exception occurs when no higher priority exception ex
decrementer exception condition occurs (for example, the decrementer registe
completed decrementing), and MSR[EE] = 1. In the 750, the decrementer regis
decremented at one fourth the bus clock rate. Register settings for this exceptio
described in Chapter 6, “Exceptions,” inThe Programming Environments Manual.

When a decrementer exception is taken, instruction fetching resumes at offset 0x0
from the physical base address indicated by MSR[IP].

4.5.10 System Call Exception (0x00C00)
A system call exception occurs when a System Call (sc) instruction is executed. In the 750
the system call exception is implemented as it is defined in the PowerPC archite
Chapter 4. Exceptions 4-21

from

ode
values
n in

that

m the

s not

ount
he data
s, and
onitor

ure.
Register settings for this exception are described in Chapter 6, “Exceptions,” inThe
Programming Environments Manual.

When a system call exception is taken, instruction fetching resumes at offset 0x00C00
the physical base address indicated by MSR[IP].

4.5.11 Trace Exception (0x00D00)
The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently
completing instruction is a branch. Each instruction considered during trace m
completes before a trace exception is taken. When a trace exception is taken, the
written to SRR1 are implementation-specific; those values for the 750 are show
Table 4-12.

Implementation Note—The 750 processor diverges from the PowerPC architecture in
it does not take trace exceptions on theisync instruction.

When a trace exception is taken, instruction fetching resumes as offset 0x00D00 fro
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (0x00E00)
The optional floating-point assist exception defined by the PowerPC architecture i
implemented in the 750.

4.5.13 Performance Monitor Interrupt (0x00F00)
The 750 microprocessor provides a performance monitor facility to monitor and c
predefined events such as processor clocks, misses in either the instruction cache or t
cache, instructions dispatched to a particular execution unit, mispredicted branche
other occurrences. The count of such events can be used to trigger the performance m
exception. The performance monitor facility is not defined by the PowerPC architect

Table 4-12. Trace Exception—SRR1 Settings

Register Setting

SRR1 0–2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5–9 Cleared
10 Set for lswx or stswx , otherwise cleared
11 Set for mtspr to SDR1, EAR, HID0, PIR, IBATs, DBATs, SRs
12 Set for taken branch, otherwise cleared
13–15 Cleared
16–31 MSR[16–31]
4-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

died
at

 the
evel

ous
el

 of an

l

taken.

rmal
iority

the
.2.4.”

met:
The performance monitor can be used for the following:

• To increase system performance with efficient software, especially in a
multiprocessing system. Memory hierarchy behavior must be monitored and stu
to develop algorithms that schedule tasks (and perhaps partition them) and th
structure and distribute data optimally.

• To help system developers bring up and debug their systems.

The performance monitor uses the following SPRs:

• The performance monitor counter registers (PMC1–PMC4) are used to record
number of times a certain event has occurred. UPMC1–UPMC4 provide user-l
read access to these registers.

• The monitor mode control registers (MMCR0–MMCR1) are used to enable vari
performance monitor interrupt functions. UMMCR0–UMMCR1 provide user-lev
read access to these registers.

• The sampled instruction address register (SIA) contains the effective address
instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. The USIA register provides user-leve
read access to the SIA.

Table 4-13 lists register settings when a performance monitor interrupt exception is

As with other PowerPC exceptions, the performance monitor interrupt follows the no
PowerPC exception model with a defined exception vector offset (0x00F00). The pr
of the performance monitor interrupt lies between the external interrupt and
decrementer interrupt (see Table 4-3). The contents of the SIA are described in 2.1
The performance monitor is described in Chapter 11.”

4.5.14 Instruction Address Breakpoint Exception (0x01300)
An instruction address breakpoint interrupt occurs when the following conditions are

Table 4-13. Performance Monitor Interrupt Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE
Chapter 4. Exceptions 4-23

tion

d to
The
ption

taken.

g
nizing

if the

es as
• The instruction breakpoint address IABR[0–29] matches EA[0–29] of the next
instruction to complete in program order. The instruction that triggers the instruc
address breakpoint exception is not executed before the exception handler is
invoked.

• The translation enable bit (IABR[TE]) matches MSR[IR].
• The breakpoint enable bit (IABR[BE]) is set. The address match is also reporte

the JTAG/COP block, which may subsequently generate a soft or hard reset.
instruction tagged with the match does not complete before the breakpoint exce
is taken.

Table 4-14 lists register settings when an instruction address breakpoint exception is

The 750 requires that anmtspr to the IABR be followed by a context-synchronizin
instruction. The 750 cannot generate a breakpoint response for that context-synchro
instruction if the breakpoint is enabled by themtspr(IABR) immediately preceding it. The
750 also cannot block a breakpoint response on the context-synchronizing instruction
breakpoint was disabled by themtspr(IABR) instruction immediately preceding it. The
format of the IABR register is shown in 2.1.2.1.”

When an instruction address breakpoint exception is taken, instruction fetching resum
offset 0x01300 from the base address indicated by MSR[IP].

Table 4-14. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE
4-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

by the
ternal
ority
ption

taken.

y the

e
stem

ding
e an

es as
4.5.15 System Management Interrupt (0x01400)
The 750 implements a system management interrupt exception, which is not defined
PowerPC architecture. The system management exception is very similar to the ex
interrupt exception and is particularly useful in implementing the nap mode. It has pri
over an external interrupt (see Table 4-3), and it uses a different vector in the exce
table (offset 0x01400).

Table 4-15 lists register settings when a system management interrupt exception is

Like the external interrupt, a system management interrupt is signaled to the 750 b
assertion of an input signal. The system management interrupt signal (SMI) is expected to
remain asserted until the interrupt is taken. IfSMI is negated early, recognition of th
interrupt request is not guaranteed. After the 750 begins execution of the sy
management interrupt handler, the system can safely negateSMI. After the assertion of
SMI is detected, the 750 stops dispatching instructions and waits for all pen
instructions to complete. This allows any instructions in progress that need to tak
exception to do so before the system management interrupt is taken.

When a system management interrupt exception is taken, instruction fetching resum
offset 0x01400 from the base address indicated by MSR[IP].

Table 4-15. System Management Interrupt Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE
Chapter 4. Exceptions 4-25

ses a
TIE

 taken.

ternal
ke an
tore
ermal

which
gement
base
4.5.16 Thermal Management Interrupt Exception (0x01700)
A thermal management interrupt is generated when the junction temperature cros
threshold programmed in either THRM1 or THRM2. The exception is enabled by the
bit of either THRM1 or THRM2, and can be masked by setting MSR[EE].

Table 4-16 lists register settings when a thermal management interrupt exception is

The thermal management interrupt is similar to the system management and ex
interrupts. The 750 requires the next instruction in program order to complete or ta
exception, blocks completion of any following instructions, and allows the completed s
queue to drain. Any exceptions encountered in this process are taken first and the th
management interrupt exception is delayed until a recoverable halt is achieved, at
point the 750 saves the machine state, as shown in Table 4-16. When a thermal mana
interrupt exception is taken, instruction fetching resumes as offset 0x01700 from the
address indicated by MSR[IP].

Chapter 10,” gives details about thermal management.

Table 4-16. Thermal Management Interrupt Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1–4 Cleared
5–9 Loaded with equivalent MSR bits
10–15 Cleared
16–31 Loaded with equivalent MSR bits

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0

BE 0
FE1 0
IP —
IR 0

DR 0
PM 0
RI 0
LE Set to value of ILE
4-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

mory
ent

n a
resses
and I/O
MMU

bes the
r to

nt the

address
store

f the
e the
ation
ation

red as
, two
used
MMU
ces for
ously).
MU)

tores
s pairs
. There
in the
Chapter 5
Memory Management
50
50

This chapter describes the PowerPC 750 microprocessor’s implementation of the me
management unit (MMU) specifications provided by the operating environm
architecture (OEA) for PowerPC processors. The primary function of the MMU i
PowerPC processor is the translation of logical (effective) addresses to physical add
(referred to as real addresses in the architecture specification) for memory accesses
accesses (I/O accesses are assumed to be memory-mapped). In addition, the
provides access protection on a segment, block, or page basis. This chapter descri
specific hardware used to implement the MMU model of the OEA in the 750. Refe
Chapter 7, “Memory Management,” inThe Programming Environments Manualfor a
complete description of the conceptual model. Note that the 750 does not impleme
optional direct-store facility and it is not likely to be supported in future devices.

Two general types of memory accesses generated by PowerPC processors require
translation—instruction accesses and data accesses generated by load and
instructions. Generally, the address translation mechanism is defined in terms o
segment descriptors and page tables PowerPC processors use to locat
effective-to-physical address mapping for memory accesses. The segment inform
translates the effective address to an interim virtual address, and the page table inform
translates the interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are sto
on-chip segment registers on 32-bit implementations (such as the 750). In addition
translation lookaside buffers (TLBs) are implemented on the 750 to keep recently-
page address translations on-chip. Although the PowerPC OEA describes one
(conceptually), the 750 hardware maintains separate TLBs and table search resour
instruction and data accesses that can be performed independently (and simultane
Therefore, the 750 is described as having two MMUs, one for instruction accesses (IM
and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that s
the available block address translations on-chip. BAT array entries are implemented a
of BAT registers that are accessible as supervisor special-purpose registers (SPRs)
are separate instruction and data BAT mechanisms, and in the 750, they reside
instruction and data MMUs, respectively.
Chapter 5. Memory Management 5-1

ssary
nd for
ed in
hich

A for
ible to
ize. In
bits)
cessors
from

n be

nd

ace.
hange

52-bit

ent
h of

erPC

ns

LB
sing

B

The MMUs, together with the exception processing mechanism, provide the nece
support for the operating system to implement a paged virtual memory environment a
enforcing protection of designated memory areas. Exception processing is describ
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR, w
controls some of the critical functionality of the MMUs.

5.1 MMU Overview
The 750 implements the memory management specification of the PowerPC OE
32-bit implementations. Thus, it provides 4 Gbytes of effective address space access
supervisor and user programs, with a 4-Kbyte page size and 256-Mbyte segment s
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52
and hashed page tables in the generation of 32-bit physical addresses. PowerPC pro
also have a BAT mechanism for mapping large blocks of memory. Block sizes range
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 750 MMU implementation defined by the OEA are as follows:

• Support for real addressing mode—Effective-to-physical address translation ca
disabled separately for data and instruction accesses.

• Block address translation—Each of the BAT array entries (four IBAT entries a
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory sp
This can be used for translating large address ranges whose mappings do not c
frequently.

• Segmented address translation—The 32-bit effective address is extended to a
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segm
register file. This 52-bit virtual address space is divided into 4-Kbyte pages, eac
which can be mapped to a physical page.

The 750 also provides the following features that are not required by the Pow
architecture:

• Separate translation lookaside buffers (TLBs)—The 128-entry, two-way
set-associative ITLBs and DTLBs keep recently-used page address translatio
on-chip.

• Table search operations performed in hardware—The 52-bit virtual address is
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the translation is not found in a T
(that is, a TLB miss occurs), the hardware performs a table search operation (u
a hashing function) to search for the PTE.

• TLB invalidation—The 750 implements the optional TLB Invalidate Entry (tlbie)
and TLB Synchronize (tlbsync) instructions, which can be used to invalidate TL
entries. For more information on thetlbie andtlbsync instructions, see
Section 5.4.3.2, “TLB Invalidation.”
5-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

erPC
Table 5-1 summarizes the 750 MMU features, including those defined by the Pow
architecture (OEA) for 32-bit processors and those specific to the 750.

Table 5-1. MMU Feature Summary

Feature Category
Architecturally Defined/
PowerPC 750-Specific

Feature

Address ranges Architecturally defined 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

Page size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address
translation

Architecturally defined Range of 128 Kbyte–256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history Architecturally defined Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync
instructions in 750)

750-specific 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors Architecturally defined Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

750-specific The 750 performs the table search operation in hardware.
Chapter 5. Memory Management 5-3

y the
etches
ing to

ry

ective

-bit
nt the
nally

es for

le

lts of

data
y the

ange of
cache

ective

], are
After

emory
5.1.1 Memory Addressing
A program references memory using the effective (logical) address computed b
processor when it executes a load, store, branch, or cache instruction, and when it f
the next instruction. The effective address is translated to a physical address accord
the procedures described in Chapter 7, “Memory Management,” inThe Programming
Environments Manual, augmented with information in this chapter. The memo
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Eff
Address Calculation.”

5.1.2 MMU Organization
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32
implementation; note that it does not describe the specific hardware used to impleme
memory management function for a particular processor. Processors may optio
implement on-chip TLBs, hardware support for the automatic search of the page tabl
PTEs, and other hardware features (invisible to the system software) not shown.

The 750 maintains two on-chip TLBs with the following characteristics:

• 128 entries, two-way set associative (64 x 2), LRU replacement
• Data TLB supports the DMMU; instruction TLB supports the IMMU
• Hardware TLB update
• Hardware update of referenced (R) and changed (C) bits in the translation tab

In the event of a TLB miss, the hardware attempts to load the TLB based on the resu
a translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the 750 instruction and
MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated b
processor for sequential instruction fetches and addresses that correspond to a ch
program flow. Data addresses shown in Figure 5-3 are generated by load, store, and
instructions.

As shown in the figures, after an address is generated, the high-order bits of the eff
address, EA[0–19] (or a smaller set of address bits, EA[0–n], in the cases of blocks), are
translated into physical address bits PA[0–19]. The low-order address bits, A[20–31
untranslated and are therefore identical for both effective and physical addresses.
translating the address, the MMUs pass the resulting 32-bit physical address to the m
subsystem.
5-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

er the
is a load
ress
stem.
f the

data
ed with
ine if
r data
e of a

warded
The MMUs record whether the translation is for an instruction or data access, wheth
processor is in user or supervisor mode and, for data accesses, whether the access
or a store operation. The MMUs use this information to appropriately direct the add
translation and to enforce the protection hierarchy programmed by the operating sy
Section 4.3, “Exception Processing,” describes the MSR, which controls some o
critical functionality of the MMUs.

The figures show how address bits A[20–26] index into the on-chip instruction and
caches to select a cache set. The remaining physical address bits are then compar
the tag fields (comprised of bits PA[0–19]) of the two selected cache blocks to determ
a cache hit has occurred. In the case of a cache miss on the 750, the instruction o
access is then forwarded to the L2 interface tags to check for an L2 cache hit. In cas
miss (and in all cases of an on-chip cache miss on the PowerPC 740) the access is for
to the bus interface unit which initiates an external memory access.
Chapter 5. Memory Management 5-5

Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations

Optional

Instruction
Accesses

Data
Accesses

EA[0–19]

Segment Registers

•
•
•

On-Chip
TLBs

(Optional)

Page Table
Search Logic

(Optional)

SDR1 SPR 25

PA[0–14]

X

PA[0–19]

PA[15–19]

PA[0–31]

A[20–31]

IBAT0U
IBAT0L

IBAT3U
IBAT3L

•
•

DBAT0U
DBAT0L

DBAT3U
DBAT3L

•
•

EA[0–14]

EA[15–19]

EA[0–14]

EA[15–19]

A[20–31]

BAT
Hit

Upper 24-Bits
of Virtual Address

0

15

MMU
(32-Bit)

EA[0–3]

EA[4–19]

EA[0–19]

X

X

X

5-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Figure 5-2. PowerPC 750 Microprocessor IMMU Block Diagram

BPU

ITLB

IBAT Array

0

63

127

Tag

PA[0–19]

I Cache

Select

I Cache

Compare

CompareCompare
0

7

Instruction
Unit A[20–31]

Hit/Miss

Segment Registers

•
•
•

0

15

IBAT0U
IBAT0L

IBAT3U
IBAT3L

•
•

X

PA[0–31]

SDR1 SPR25

EA[0–14]

EA[0–3]

Select

EA[4–19]

EA[0–19]

Page Table
Search Logic

EA[0–19]

A[20–26]

PA[0–19]

IMMU

7

0

Chapter 5. Memory Management 5-7

Figure 5-3. PowerPC 750 Microprocessor DMMU Block Diagram

DTLB

DBAT Array

0

63

127

Tag

PA[0–19]

D Cache

Select

D Cache

Compare

CompareCompare
0

7

A[20–31]

Hit/Miss

Segment Registers

•
•
•

0

15

DBAT0U
DBAT0L

DBAT3U
DBAT3L

•
•

X

PA[0–31]

SDR1 SPR 25

EA[0–14]

EA[0–3]

Select

EA[4–19]

EA[0–19]

Page Table
Search Logic

EA[0–19]

A[20–26]

PA[0–19]

DMMU

Load/Store
Unit

7

0

5-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ge size

size

ed, the

. The
anism.
riptor is
m the

is to
-store
ices

750
space,
ption
, “ISI

ress is
slation

used
s in an

lation
using
sical

bits to
7) are
ad of
ters as
r, the
e, the
5.1.3 Address Translation Mechanisms
PowerPC processors support the following three types of address translation:

• Page address translation—translates the page frame address for a 4-Kbyte pa

• Block address translation—translates the block number for blocks that range in
from 128 Kbytes to 256 Mbytes.

• Real addressing mode address translation—when address translation is disabl
physical address is identical to the effective address.

Figure 5-4 shows the three address translation mechanisms provided by the MMUs
segment descriptors shown in the figure control the page address translation mech
When an access uses page address translation, the appropriate segment desc
required. In 32-bit implementations, the appropriate segment descriptor is selected fro
16 on-chip segment registers by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access
memory (memory-mapped) or to the direct-store interface space. Note that the direct
interface was present in the architecture only for compatibility with existing I/O dev
that used this interface. However, it is being removed from the architecture, and the
does not support it. When an access is determined to be to the direct-store interface
the 750 takes a DSI exception if it is a data access (see Section 4.5.3, “DSI Exce
(0x00300)”), and takes an ISI exception if it is an instruction access (see Section 4.5.4
Exception (0x00400)”).

For memory accesses translated by a segment descriptor, the interim virtual add
generated using the information in the segment descriptor. Page address tran
corresponds to the conversion of this virtual address into the 32-bit physical address
by the memory subsystem. In most cases, the physical address for the page reside
on-chip TLB and is available for quick access. However, if the page address trans
misses in the on-chip TLB, the MMU causes a search of the page tables in memory (
the virtual address information and a hashing function) to locate the required phy
address.

Because blocks are larger than pages, there are fewer upper-order effective address
be translated into physical address bits (more low-order address bits (at least 1
untranslated to form the offset into a block) for block address translation. Also, inste
segment descriptors and a TLB, block address translations use the on-chip BAT regis
a BAT array. If an effective address matches the corresponding field of a BAT registe
information in the BAT register is used to generate the physical address; in this cas
results of the page translation (occurring in parallel) are ignored.
Chapter 5. Memory Management 5-9

n enable
s and

data
Figure 5-4. Address Translation Types

When the processor generates an access, and the corresponding address translatio
bit in MSR is cleared, the resulting physical address is identical to the effective addres
all other translation mechanisms are ignored. Instruction address translation and
address translation are enabled by setting MSR[IR] and MSR[DR], respectively.

(T = 1)

0 31
Physical Address

0 31

Physical Address

0 31

Physical Address

(T = 0)

0 31

Effective Address

0 51

Virtual Address

Segment Descriptor
Located

Match with BAT
Registers

Look Up in
Page Table

Address Translation Dis-

Page Address
Translation

Direct-Store Interface
Translation

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address = Physical Address

(See Section 5.2)

Block Address
Translation

(See Section 5.3)

DSI/ISI Exception
5-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

MUs
areas of
ection

ogram
ining
r and
tions
ss the

ded,
e, areas
ses do

in
5.1.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the M
provide access protection of supervisor areas from user access and can designate
memory as read-only as well as no-execute or guarded. Table 5-2 shows the prot
options supported by the MMUs for pages.

The no-execute option provided in the segment register lets the operating system pr
determine whether instructions can be fetched from an area of memory. The rema
options are enforced based on a combination of information in the segment descripto
the page table entry. Thus, the supervisor-only option allows only read and write opera
generated while the processor is operating in supervisor mode (MSR[PR] = 0) to acce
page. User accesses that map into a supervisor-only page cause an exception.

Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guar
preventing out-of-order accesses that may cause undesired side effects. For exampl
of the memory map used to control I/O devices can be marked as guarded so acces
not occur unless they are explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,”
Chapter 7, “Memory Management,” in theThe Programming Environments Manual.

Table 5-2. Access Protection Options for Pages

Option
User Read

User
Write

Supervisor Read
Supervisor

Write
I-Fetch Data I-Fetch Data

Supervisor-only — — —

Supervisor-only-no-execute — — — —

Supervisor-write-only —

Supervisor-write-only-no-execute — — —

Both (user/supervisor)

Both (user-/supervisor) no-execute — —

Both (user-/supervisor) read-only — —

Both (user/supervisor)
read-only-no-execute

— — — —

 Access permitted
 — Protection violation
Chapter 5. Memory Management 5-11

in the
t to the
o write
s are
cifies
some

ged
search
750
arch
d bit is
when
of the
and
see

nslate

or data
d
emory

ssing
ddress
5.1.5 Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits
page address translation mechanism that can be used as history information relevan
page. The operating system can use these bits to determine which areas of memory t
back to disk when new pages must be allocated in main memory. While these bit
initially programmed by the operating system into the page table, the architecture spe
that they can be maintained either by the processor hardware (automatically) or by
software-assist mechanism.

Implementation Note—When loading the TLB, the 750 checks the state of the chan
and referenced bits for the matched PTE. If the referenced bit is not set and the table
operation is initially caused by a load operation or by an instruction fetch, the
automatically sets the referenced bit in the translation table. Similarly, if the table se
operation is caused by a store operation and either the referenced bit or the change
not set, the hardware automatically sets both bits in the translation table. In addition,
the address translation of a store operation hits in the DTLB, the 750 checks the state
changed bit. If the bit is not already set, the hardware automatically updates the DTLB
the translation table in memory to set the changed bit. For more information,
Section 5.4.1, “Page History Recording.”

5.1.6 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to tra
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is use
(physical address equals effective address) and the access continues to the m
subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-5 shows the flow the MMUs use in determining whether to select real addre
mode, block address translation, or the segment descriptor to select page a
translation.
5-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

riate
r DSI
Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the approp
protection bits. If the access violates the protection mechanism, an exception (ISI o
exception) is generated.

Perform Address
Translation with Segment

Descriptor

Access Faulted

Compare Address with
Instruction or Data BAT Array

(As Appropriate)

Translate Address

Perform Real
Addressing Mode

Translation

Effective Address
Generated

Continue Access
to Memory
Subsystem

(See The Programming
Environments Manual)

(See Figure 5-6)

Instruction
Translation Disabled

(MSR[IR] = 0)

BAT Array
Miss

I-Access

Access
Protected

Access
Permitted

Instruction
Translation Enabled

(MSR[IR] = 1)

Data
Translation Enabled

(MSR[DR] = 1)

Data
Translation Disabled

(MSR[DR] = 0)

D-Access

BAT Array
Hit

Perform Real
Addressing Mode

Translation
Chapter 5. Memory Management 5-13

a BAT
tor is

e or to
ment

ective

these
hich

d the
emory

es are
nd are
5.1.6.2 Page Address Translation Selection
If address translation is enabled and the effective address information does not match
array entry, the segment descriptor must be located. When the segment descrip
located, the T bit in the segment descriptor selects whether the translation is to a pag
a direct-store segment as shown in Figure 5-6. For 32-bit implementations, the seg
descriptor for an access is contained in one of 16 on-chip segment registers; eff
address bits EA[0–3] select one of the 16 segment registers.

Note that the 750 does not implement the direct-store interface, and accesses to
segments cause a DSI or ISI exception. In addition, Figure 5-6 also shows the way in w
the no-execute protection is enforced; if the N bit in the segment descriptor is set an
access is an instruction fetch, the access is faulted as described in Chapter 7, “M
Management,” inThe Programming Environments Manual. Note that the figure shows the
flow for these cases as described by the PowerPC OEA, and so the TLB referenc
shown as optional. Because the 750 implements TLBs, these branches are valid a
described in more detail throughout this chapter.
5-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

Address Translation
with

Access Faulted

Access Faulted

Perform Page Table
Search Operation

Continue Access to
Memory Subsystem

Translate Address

*In the case of
instruction accesses,
causes ISI exception

Load TLB Entry

(See Figure 5-8)

(See Figure 5-9)

Otherwise

Check T-Bit in
Segment Descriptor

Use EA[0–3] to
Select One of 16 On-Chip

Segment Registers

Page Address
Translation

(T = 0)

Direct-Store
Segment Address

(T = 1)*

I-Fetch with N-Bit Set in
Segment Descriptor

 (No-Execute)

PTE Not
Found PTE Found

Access
ProtectedAccess

Permitted

Optional to the PowerPC architecture. Implemented in the 750.

DSI/ISI Exception

Compare Virtual Address with
TLB Entries

Generate 52-Bit Virtual Address
from Segment Descriptor

TLB
Hit

TLB
Miss
Chapter 5. Memory Management 5-15

riptor
sed to
s) in a
cache

ddress
t, the

ry is
eed to
ction
rated.

nd an

hysical
this

the
on.

ause

n that
ore
If SR[T] = 0, page address translation is selected. The information in the segment desc
is then used to generate the 52-bit virtual address. The virtual address is then u
identify the page address translation information (stored as page table entries (PTE
page table in memory). For increased performance, the 750 has two on-chip TLBs to
recently-used translations on-chip.

If an access hits in the appropriate TLB, page translation succeeds and the physical a
bits are forwarded to the memory subsystem. If the required translation is not residen
MMU performs a search of the page table. If the required PTE is found, a TLB ent
allocated and the page translation is attempted again. This time, the TLB is guarant
hit. When the translation is located, the access is qualified with the appropriate prote
bits. If the access causes a protection violation, either an ISI or DSI exception is gene

If the PTE is not found by the table search operation, a page fault condition exists, a
ISI or DSI exception occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary
To complete any memory access, the effective address must be translated to a p
address. As specified by the architecture, an MMU exception condition occurs if
translation fails for one of the following reasons:

• Page fault—there is no valid entry in the page table for the page specified by
effective address (and segment descriptor) and there is no valid BAT translati

• An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations c
either the ISI or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains informatio
identifies the address of the failing instruction. Refer to Chapter 4, “Exceptions,” for a m
detailed description of exception processing.
5-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

e of
cture)
cessor
hen
more

icular

t up as
in
cy,”

o

In addition to the translation exceptions, there are other MMU-related conditions (som
them defined as implementation-specific, and therefore not required by the archite
that can cause an exception to occur. These exception conditions map to pro
exceptions as shown in Table 5-4. The only MMU exception conditions that occur w
MSR[DR] = 0 are those that cause an alignment exception for data accesses. For
detailed information about the conditions that cause an alignment exception (in part
for string/multiple instructions), see Section 4.5.6, “Alignment Exception (0x00600).”

Note that some exception conditions depend upon whether the memory area is se
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully
“Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and Memory Coheren
of The Programming Environments Manual.Refer to Chapter 4, “Exceptions,” and t
Chapter 6, “Exceptions,” inThe Programming Environments Manualfor a complete
description of the SRR1 and DSISR bit settings for these exceptions.

Table 5-3. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and
no matching BAT array entry)

I access: ISI exception
SRR1[1] = 1

D access: DSI exception
DSISR[1] =1

Block protection violation Conditions described for block in “Block
Memory Protection” in Chapter 7, “Memory
Management,” in The Programming
Environments Manual.“

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

Page protection violation Conditions described for page in “Page
Memory Protection” in Chapter 7, “Memory
Management,” in The Programming
Environments Manual.

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

No-execute protection violation Attempt to fetch instruction when SR[N] = 1 ISI exception
SRR1[3] = 1

Instruction fetch from
direct-store segment

Attempt to fetch instruction when SR[T] = 1 ISI exception
SRR1[3] =1

Data access to direct-store
segment (including
floating-point accesses)

Attempt to perform load or store (including FP
load or store) when SR[T] = 1

DSI exception
DSISR[5] =1

Instruction fetch from guarded
memory

Attempt to fetch instruction when MSR[IR] = 1
and either matching xBAT[G] = 1, or no
matching BAT entry and PTE[G] = 1

ISI exception
SRR1[3] =1
Chapter 5. Memory Management 5-17

dress

er to
the page
ween
. When
of the
the

nded
routines
5.1.8 MMU Instructions and Register Summary
The MMU instructions and registers allow the operating system to set up the block ad
translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that ref
these structures are also optional. However, as these structures serve as caches of
table, the architecture specifies a software protocol for maintaining coherency bet
these caches and the tables in memory whenever the tables in memory are modified
the tables in memory are changed, the operating system purges these caches
corresponding entries, allowing the translation caching mechanism to refetch from
tables when the corresponding entries are required.

Note that the 750 implements all TLB-related instructions excepttlbia , which is treated as
an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recomme
that the software that uses these instructions and registers be encapsulated into sub
to minimize the impact of migrating across the family of implementations.

Table 5-4. Other MMU Exception Conditions for the PowerPC 750 Processor

Condition Description Exception

dcbz with W = 1 or I = 1 dcbz instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

lwarx or stwcx. with W = 1 Reservation instruction to write-through
segment or block

DSI exception
DSISR[5] =1

lwarx , stwcx. , eciwx , or ecowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSI exception
DSISR[5] =1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1 See data access to
direct-store segment in
Table 5-3.

Load or store that results in a
direct-store error

Does not occur in 750 Does not apply

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with EAR[E] = 0 DSI exception
DSISR[11] = 1

lmw , stmw , lswi , lswx , stswi , or
stswx instruction attempted in
little-endian mode

lmw , stmw , lswi , lswx , stswi , or stswx
instruction attempted while MSR[LE] = 1

Alignment exception

Operand misalignment Translation enabled and a floating-point
load/store, stmw , stwcx. , lmw , lwarx , eciwx ,
or ecowx instruction operand is not
word-aligned

Alignment exception (some
of these cases are
implementation-specific)
5-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ore
l,” in

e 750
ers are
Table 5-5 summarizes 750 instructions that specifically control the MMU. For m
detailed information about the instructions, refer to Chapter 2, “Programming Mode
this book and Chapter 8, “Instruction Set,” inThe Programming Environments Manual

Table 5-6 summarizes the registers that the operating system uses to program th
MMUs. These registers are accessible to supervisor-level software only. These regist
described in Chapter 2, “Programming Model.”

Table 5-5. PowerPC 750 Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#]← rS

mtsrin r S,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr r D,SR Move from Segment Register
rD←SR[SR#]

mfsrin r D,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

tlbie rB* TLB Invalidate Entry
For effective address specified by rB, TLB[V]←0
The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds to
bits 14–19 of the EA.
In addition, depending on the setting of HIDxx, execution of this instruction causes all entries in
the congruence class corresponding to the EA to be invalidated in the other processors attached
to the same bus.
Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync* TLB Synchronize
Synchronizes the execution of all other tlbie instructions in the system. In the 750, when the
TLBISYNC signal is negated, instruction execution may continue or resume after the completion
of a tlbsync instruction. When the TLBISYNC signal is asserted, instruction execution stops after
the completion of a tlbsync instruction.

*These instructions are defined by the PowerPC architecture, but are optional.
Chapter 5. Memory Management 5-19

ess,
emory

heable
he data
load
ust be
set to

memory
idered
idered
hard

and
nd
” in
5.2 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular acc
the effective address is treated as the physical address and is passed directly to the m
subsystem as described in Chapter 7, “Memory Management,” inThe Programming
Environments Manual.

Note that the default WIMG bits (0b0011) cause data accesses to be considered cac
(I = 0) and thus load and store accesses are weakly ordered. This is the case even if t
cache is disabled in the HID0 register (as it is out of hard reset). If I/O devices require
and store accesses to occur in strict program order (strongly ordered), translation m
enabled so that the corresponding I bit can be set. Note also, that the G bit must be
ensure that the accesses are strongly ordered. For instruction accesses, the default
access mode bits (WIMG) are also 0b0011. That is, instruction accesses are cons
cacheable (I = 0), and the memory is guarded. Again, instruction accesses are cons
cacheable even if the instruction cache is disabled in the HID0 register (as it is out of
reset). The W and M bits have no effect on the instruction cache.

For information on the synchronization requirements for changes to MSR[IR]
MSR[DR], refer to Section 2.3.2.4, “Synchronization,” in this manual, a
“Synchronization Requirements for Special Registers and for Lookaside Buffers
Chapter 2, “PowerPC Register Set,” inThe Programming Environments Manual.

Table 5-6. PowerPC 750 Microprocessor MMU Registers

Register Description

Segment registers
(SR0–SR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of
the PowerPC architecture. The fields in the segment register are interpreted
differently depending on the value of bit 0. The segment registers are accessed by
the mtsr , mtsrin , mfsr , and mfsrin instructions.

BAT registers
(IBAT0U–IBAT3U,
IBAT0L–IBAT3L,
DBAT0U–DBAT3U, and
DBAT0L–DBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBAT0U–IBAT3U paired with IBAT0L–IBAT3L) and four pairs of data BAT registers
(DBAT0U–DBAT3U paired with DBAT0L–DBAT3L). The BAT registers are defined as
32-bit registers in 32-bit implementations. These are special-purpose registers that
are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in
memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.
5-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

nges
mory.
dling
erical

t,” in

the
BATs
ether

hile

mory

nted
byte

ming

address
.” If

ntity
e byte

A that

page.
ystem
mory
d and
5.3 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ra
of effective addresses larger than a single page into contiguous areas of physical me
Such areas can be used for data that is not subject to normal virtual memory han
(paging), such as a memory-mapped display buffer or an extremely large array of num
data.

Block address translation in the 750 is described in Chapter 7, “Memory Managemen
The Programming Environments Manualfor 32-bit implementations.

Implementation Note—The 750 BAT registers are not initialized by the hardware after
power-up or reset sequence. Consequently, all valid bits in both instruction and data
must be cleared before setting any BAT for the first time. This is true regardless of wh
address translation is enabled. Also, software must avoid overlapping blocks w
updating a BAT or areas.Even if translation is disabled, multiple BAT hits are treated
as programming errors and can corrupt the BAT registers and produce unpredictable
results. Always re-zero during the reset ISR. After zeroing all BATs, set them (in
order) to the desired values.HRESET disorders the BATs.SRESET does not.

5.4 Memory Segment Model
The 750 adheres to the memory segment model as defined in Chapter 7, “Me
Management,” inThe Programming Environments Manualfor 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segme
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-K
pages in physical memory (page address translation), while providing the program
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block
translation (BAT) mechanism described in Section 5.3, “Block Address Translation
not, the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific e
but can be considered to be the concatenation of the virtual page number and th
offset within a page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OE
are specific to the 750.

5.4.1 Page History Recording
Referenced (R) and changed (C) bits in each PTE keep history information about the
They are maintained by a combination of the 750 table search hardware and the s
software. The operating system uses this information to determine which areas of me
to write back to disk when new pages must be allocated in main memory. Reference
Chapter 5. Memory Management 5-21

ion and
nd to
esses

. The
ed on

it) is
set in

its in
ages

or
ted as

bits.

ed as if
it in the
ey are

abled).

page
in the
etting
se the
it in all
s the
changed recording is performed only for accesses made with page address translat
not for translations made with the BAT mechanism or for accesses that correspo
direct-store (T = 1) segments. Furthermore, R and C bits are maintained only for acc
made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 750, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-7.

• For TLB misses, when a table search operation is in progress to locate a PTE
R and C bits are updated (set, if required) to reflect the status of the page bas
this access.

The table shows that the status of the C bit in the TLB entry (in the case of a TLB h
what causes the processor to update the C bit in the PTE (the R bit is assumed to be
the page tables if there is a TLB hit). Therefore, when software clears the R and C b
the page tables in memory, it must invalidate the TLB entries associated with the p
whose referenced and changed bits were cleared.

Thedcbt anddcbtst instructions can execute if there is a TLB/BAT hit or if the process
is in real addressing mode. In case of a TLB or BAT miss, these instructions are trea
no-ops; they do not initiate a table search operation and they do not set either the R or C

As defined by the PowerPC architecture, the referenced and changed bits are updat
address translation were disabled (real addressing mode). If these update accesses h
data cache, they are not seen on the external bus. If they miss in the data cache, th
performed as typical cache line fill accesses on bus (assuming the data cache is en

5.4.1.1 Referenced Bit
The referenced (R) bit of a page is located in the PTE in the page table. Every time a
is referenced (with a read or write access) and the R bit is zero, the 750 sets the R bit
page table. The OEA specifies that the referenced bit may be set immediately, or the s
may be delayed until the memory access is determined to be successful. Becau
reference to a page is what causes a PTE to be loaded into the TLB, the referenced b
750 TLB entries is effectively always set. The processor never automatically clear
referenced bit.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

R and C bits
in TLB Entry

Processor Action

00 Combination doesn’t occur

01 Combination doesn’t occur

10 Read: No special action
Write: The 750 initiates a table search operation to update C.

11 No special action for read or write
5-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

e. At
by the
his in

 a

of the
tore

esults
not

et the
h the

store
anteed

to be

th is

tore is

d by
narios,
allows

ts are
The referenced bit is only a hint to the operating system about the activity of a pag
times, the referenced bit may be set although the access was not logically required
program or even if the access was prevented by memory protection. Examples of t
PowerPC systems include the following:

• Fetching of instructions not subsequently executed

• A memory reference caused by a speculatively executed instruction that is
mispredicted

• Accesses generated by anlswx or stswx instruction with a zero length

• Accesses generated by anstwcx. instruction when no store is performed because
reservation does not exist

• Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit
The changed bit of a page is located both in the PTE in the page table and in the copy
PTE loaded into the TLB (if a TLB is implemented, as in the 750). Whenever a data s
instruction is executed successfully, if the TLB search (for page address translation) r
in a hit, the changed bit in the matching TLB entry is checked. If it is already set, it is
updated. If the TLB changed bit is 0, the 750 initiates the table search operation to s
C bit in the corresponding PTE in the page table. The 750 then reloads the TLB (wit
C bit set).

The changed bit (in both the TLB and the PTE in the page tables) is set only when a
operation is allowed by the page memory protection mechanism and the store is guar
to be in the execution path (unless an exception, other than those caused by thesc, rfi , or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit
set:

• The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

• The execution of anstswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified leng
zero.

• The store operation is not performed because an exception occurs before the s
performed.

Again, note that although the execution of thedcbt anddcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) that is use
PowerPC processors for maintaining the referenced and changed bits. In some sce
the bits are guaranteed to be set by the processor, in some scenarios, the architecture
that the bits may be set (not absolutely required), and in some scenarios, the bi
Chapter 5. Memory Management 5-23

ry, the
le

tries
rring
bottom
is

e that

respect
ted by
that
guaranteed to not be set. Note that when the 750 updates the R and C bits in memo
accesses are performed as if MSR[DR] = 0 and G = 0(that is, as nonguarded cacheab
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The en
in the table are prioritized from top to bottom, such that a matching scenario occu
closer to the top of the table takes precedence over a matching scenario closer to the
of the table. For example, if anstwcx. instruction causes a protection violation and there
no reservation, the C bit is not altered, as shown for the protection violation case. Not
in the table, load operations include those generated by load instructions, by theeciwx
instruction, and by the cache management instructions that are treated as a load with
to address translation. Similarly, store operations include those operations genera
store instructions, by theecowxinstruction, and by the cache management instructions
are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings

Priority Scenario

Causes Setting of R Bit Causes Setting of C Bit

OEA
PowerPC

750
OEA

PowerPC
750

1 No-execute protection violation No No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation. Would be required
by the sequential execution model in the absence
of system-caused or imprecise exceptions, or of
floating-point assist exception for instructions that
would cause no other kind of precise exception.

Maybe1 No No No

5 All other out-of-order store operations Maybe1 No Maybe1 No

6 Zero-length load (lswx) Maybe No No No

7 Zero-length store (stswx) Maybe1 No Maybe1 No

8 Store conditional (stwcx.) that does not store Maybe1 Yes Maybe1 Yes

9 In-order instruction fetch Yes2 Yes No No

10 Load instruction or eciwx Yes Yes No No

11 Store instruction, ecowx or dcbz instruction Yes Yes Yes Yes

12 icbi , dcbt , or dcbtst instruction Maybe No No No

13 dcbst or dcbf instruction Maybe Yes No No

14 dcbi instruction Maybe1 Yes Maybe1 Yes

Notes :
1 If C is set, R is guaranteed to be set also.
2 Includes the case in which the instruction is fetched out of order and R is not set (does not apply for 750).
5-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ory

ory

mize
cilitate

not
s not

the
MU to
set of
sters,
ent

ets as
ress
to a

40-bit
TLB
For more information, see “Page History Recording” in Chapter 7, “Mem
Management,” ofThe Programming Environments Manual.

5.4.2 Page Memory Protection
The 750 implements page memory protection as it is defined in Chapter 7, “Mem
Management,” inThe Programming Environments Manual.

5.4.3 TLB Description
The 750 implements separate 128-entry data and instruction TLBs to maxi
performance. This section describes the hardware resources provided in the 750 to fa
page address translation. Note that the hardware implementation of the MMU is
specified by the architecture, and while this description applies to the 750, it doe
necessarily apply to other PowerPC processors.

5.4.3.1 TLB Organization
Because the 750 has two MMUs (IMMU and DMMU) that operate in parallel, some of
MMU resources are shared, and some are actually duplicated (shadowed) in each M
maximize performance. For example, although the architecture defines a single
segment registers for the MMU, the 750 maintains two identical sets of segment regi
one for the IMMU and one for the DMMU; when an instruction that updates the segm
register executes, the 750 automatically updates both sets.

Each TLB contains 128 entries organized as a two-way set-associative array with 64 s
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an add
is being translated, a set of two TLB entries is indexed in parallel with the access
segment register. If the address in one of the two TLB entries is valid and matches the
virtual page number, that TLB entry contains the translation. If no match is found, a
miss occurs.
Chapter 5. Memory Management 5-25

eration
ion is
order.
y the
again,

bits
Figure 5-7. Segment Register and DTLB Organization

Unless the access is the result of an out-of-order access, a hardware table search op
begins if there is a TLB miss. If the access is out of order, the table search operat
postponed until the access is required, at which point the access is no longer out of
When the matching PTE is found in memory, it is loaded into the TLB entry selected b
least-recently-used (LRU) replacement algorithm, and the translation process begins
this time with a TLB hit.

To uniquely identify a TLB entry as the required PTE, the PTE also contains four more
of the page index, EA[0–13] (in addition to the API bits in of the PTE).

Software cannot access the TLB arrays directly, except to invalidate an entry with thetlbie
instruction.

T

0 7 8 31

0

15 T VSID

Segment Registers

V
DTLB

0

63

V

EA[0–31]

EA[0–3]

EA[14–19]

VSID

Select

Compare

Compare

EA[4–13]

Line 1

Line 0

MUX

RPN
Line1/Line 0 Hit

PA[0–19]
5-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

d any
e first

rs and
rted at
to be
when
ing,”
tions.

opriate
dress
then
mber
B

these
itiated
emory

tries
stem
ess
nd so

in
g PTE.

any

the

ered,
LBs,
each
Each set of TLB entries has one associated LRU bit. The LRU bit for a set is update
time either entry is used, even if the access is speculative. Invalid entries are always th
to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registe
TLBs can be accessed in the same clock), only one exception condition can be repo
a time. ITLB miss exceptions are reported when there are no more instructions
dispatched or retired (the pipeline is empty), and DTLB miss conditions are reported
the load or store instruction is ready to be retired. Refer to Chapter 6, “Instruction Tim
for more detailed information about the internal pipelines and the reporting of excep

When an instruction or data access occurs, the effective address is routed to the appr
MMU. EA0–EA3 select one of the 16 segment registers and the remaining effective ad
bits and the VSID field from the segment register is passed to the TLB. EA[14–19]
select two entries in the TLB; the valid bits are checked and the 40-bit virtual page nu
(24-bit VSID and EA4–EA19]) must match the VSID, EAPI, and API fields of the TL
entries. If one of the entries hits, the PP bits are checked for a protection violation. If
bits don’t cause an exception, the C bit is checked and a table search operation is in
if C must be updated. If C does not require updating, the RPN value is passed to the m
subsystem and the WIMG bits are then used as attributes for the access.

Although address translation is disabled on a reset condition, the valid bits of TLB en
are not automatically cleared. Thus, TLB entries must be explicitly cleared by the sy
software (with thetlbie instruction) before the valid entries are loaded and addr
translation is enabled. Also, note that the segment registers do not have a valid bit, a
they should also be initialized before translation is enabled.

5.4.3.2 TLB Invalidation
The 750 implements the optionaltlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of thetlbie instruction always invalidates four
entries—both the ITLB and DTLB entries indexed by EA[14–19].

The architecture allowstlbie to optionally enable a TLB invalidate signaling mechanism
hardware so that other processors also invalidate their resident copies of the matchin
The 750 does not signal the TLB invalidation to other processors nor does it perform
action when a TLB invalidation is performed by another processor.

The tlbsync instruction causes instruction execution to stop if theTLBISYNC signal is
asserted. IfTLBISYNC is negated, instruction execution may continue or resume after
completion of atlbsync instruction. Section 8.8.2, “TLBISYNC Input,” describes the TLB
synchronization mechanism in further detail.

The tlbia instruction is not implemented on the 750 and when its opcode is encount
an illegal instruction program exception is generated. To invalidate all entries of both T
64 tlbie instructions must be executed, incrementing the value in EA14–EA19 by one
Chapter 5. Memory Management 5-27

pages

does

ands
f
in the

ent
s is
time. See Chapter 8, “Instruction Set,” inThe Programming Environments Manualfor
detailed information about thetlbie instruction.

Software must ensure that instruction fetches or memory references to the virtual
specified by thetlbie have been completed prior to executing thetlbie instruction.

Other than the possible TLB miss on the next instruction prefetch, thetlbie instruction does
not affect the instruction fetch operation—that is, the prefetch buffer is not purged and
not cause these instructions to be refetched.

5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then exp
on the ‘TLB Hit’ branch of Figure 5-6. The detailed flow for the ‘TLB Miss’ branch o
Figure 5-6 is described in Section 5.4.5, “Page Table Search Operation.” Note that as
case of block address translation, if an attempt is made to execute adcbz instruction to a
page marked either write-through or caching-inhibited (W = 1 or I = 1), an alignm
exception is generated. The checking of memory protection violation condition
described in Chapter 7, “Memory Management,” inThe Programming Environments
Manual.
5-28 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Figure 5-8. Page Address Translation Flow—TLB Hit

(See The
Programming
Environments

Manual)

(See Figure 5-9)

(See The Programming
Environments Manual)

TLB Hit Case

Alignment Exception

Effective Address
Generated

Continue Access to Memory Sub-
system with WIMG-Bits from PTE

Page Table
Search Operation

PA[0–31]←RPN||A[20–31]

Page Address
Translation

Check Page Memory
 Protection Violation Conditions

Instruction Fetch with N-Bit
Set in Segment Descriptor

 (No-Execute)

Page Memory
Protection Violation

Access Permitted

Otherwise
Store Access with

PTE [C] = 0

Otherwise
dcbz Instruction
with W or I = 1

Otherwise

(See Figure 5-6)

Generate 52-Bit Virtual Address
from Segment Descriptor

Compare Virtual Address
with TLB Entries

Access Prohibited
Chapter 5. Memory Management 5-29

arch
rmat

Page

ccur
re,
he

ber
 field

 the
ribed

ress

ause
 into

page
:

 the
5.4.5 Page Table Search Operation
If the translation is not found in the TLBs (a TLB miss), the 750 initiates a table se
operation which is described in this section. Formats for the PTE are given in “PTE Fo
for 32-Bit Implementations,” in Chapter 7, “Memory Management,” ofThe Programming
Environments Manual.

The following is a summary of the page table search process performed by the 750:

1. The 32-bit physical address of the primary PTEG is generated as described in “
Table Addresses” in Chapter 7, “Memory Management,” ofThe Programming
Environments Manual.

2. The first PTE (PTE0) in the primary PTEG is read from memory. PTE reads o
with an implied WIM memory/cache mode control bit setting of 0b001. Therefo
they are considered cacheable and read (burst) from memory and placed in t
cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page num
(VPN) of the access. The VPN is the VSID concatenated with the page index
of the virtual address. For a match to occur, the following must be true:

— PTE[H] = 0
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in
primary PTEG. If a match is found, the table search process continues as desc
in step 8. If a match is not found within the 8 PTEs of the primary PTEG, the add
of the secondary PTEG is generated.

5. The first PTE (PTE0) in the secondary PTEG is read from memory. Again, bec
PTE reads have a WIM bit combination of 0b001, an entire cache line is read
the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual
number (VPN) of the access. For a match to occur, the following must be true

— PTE[H] = 1
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in
secondary PTEG. If it is never found, an exception is taken (step 9).
5-30 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ted
the
le

fails,

ndary

d
ed or
on is
8. If a match is found, the PTE is written into the on-chip TLB and the R bit is upda
in the PTE in memory (if necessary). If there is no memory protection violation,
C bit is also updated in memory (if the access is a write operation) and the tab
search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search
and a page fault exception condition occurs (either an ISI exception or a DSI
exception).

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and seco
page table search operations, described inThe Programming Environments Manual, are
realized in the 750.

Figure 5-9 shows the case of adcbz instruction that is executed with W = 1 or I = 1, an
that the R bit may be updated in memory (if required) before the operation is perform
the alignment exception occurs. The R bit may also be updated if memory protecti
violated.
Chapter 5. Memory Management 5-31

Figure 5-9. Primary Page Table Search

(From Figure 5-10)

Fetch PTE from PTEG

Otherwise

Perform Secondary
Page Table Search

Alignment Exception
TLB[PTE[C]] ← 1

Generate PA Using Primary Hash Function
PA ← Base PA of PTEG

PA ← PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64-Bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 0, 1

PTE[C] ←1
(Update PTE[C] in Memory)

Also Update PTE[R]
in Memory if R_Flag = 1

PTE[R] ←1
(Update PTE[R] in

Memory)

Last PTE in PTEG PTE[R] = 0

R_Flag = 1

Store Operation
with PTE[C] = 0

Otherwise

R_Flag = 1

PTE[R] ←1 (Update
PTE[R] in Memory)

Primary Page
Table Search

Write PTE into
TLB

Otherwise

Secondary Page Table
Search Hit

PTE[R] = 1

dcbz Instruction
with W or I = 1

Check Memory Protection
Violation Conditions

R_Flag = 1

PTE[R] ←1
(Update PTE[R]

in Memory)

Otherwise

PTE[R] ← 1
R_Flag ← 1

Memory Protection
Violation

Page Table
Search Complete

Page Table
Search Complete

OtherwiseOtherwise

Access Permitted
Access Prohibited

Otherwise
5-32 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

o so.
til the
etect
s
d by

ated

MU
lizes
uencer
d, the

ever,
g as
ns can
Figure 5-10. Secondary Page Table Search Flow

The LSU initiates out-of-order accesses without knowledge of whether it is legal to d
Therefore, the MMU does not perform hardware table search due to TLB misses un
request is required by the program flow. In these out-of-order cases, the MMU does d
protection violations and whether adcbz instruction specifies a page marked a
write-through or cache-inhibited. The MMU also detects alignment exceptions cause
the dcbz instruction and prevents the changed bit in the PTE from being upd
erroneously in these cases.

If an MMU register is being accessed by an instruction in the instruction stream, the IM
stalls for one translation cycle to perform that operation. The sequencer seria
instructions to ensure the data correctness. For updating the IBATs and SRs, the seq
classifies those operations as fetch serializing. After such an instruction is dispatche
instruction buffer is flushed and the fetch stalls until the instruction completes. How
for reading from the IBATs, the operation is classified as execution serializing. As lon
the LSU ensures that all previous instructions can be executed, subsequent instructio
be fetched and dispatched.

Page Fault (See Figure 5-9)

Fetch PTE from PTEG

Otherwise

Generate PA Using Primary Hash Function
PA ← Base PA of PTEG

PA ← PA+ 8
(Fetch Next PTE in PTEG)

Fetch PTE (64-Bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 1, 1

Last PTE in PTEG

Secondary Page
Table Search

Otherwise

Secondary Page Table
Search Hit

ISI Exception DSI Exception

Set SRR1[1] = 1 Set DSISR[1] = 1

Instruction Access Data Access
Chapter 5. Memory Management 5-33

of the
try

ded
een

TLB

store
efore,
.

ive or
ind of
d an
not be
et,” in
t

s are
side
5.4.6 Page Table Updates
When TLBs are implemented (as in the 750) they are defined as noncoherent caches
page tables. TLB entries must be flushed explicitly with the TLB invalidate en
instruction (tlbie) whenever the corresponding PTE is modified. As the 750 is inten
primarily for uniprocessor environments, it does not provide coherency of TLBs betw
multiple processors. If the 750 is used in a multiprocessor environment where
coherency is required, all synchronization must be implemented in software.

Processors may write referenced and changed bits with unsynchronized, atomic byte
operations. Note that the V, R, and C bits each reside in a distinct byte of a PTE. Ther
extreme care must be taken to use byte writes when updating only one of these bits

Explicitly altering certain MSR bits (using themtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effect
physical addresses from which the current instruction stream is being fetched. This k
side effect is defined as an implicit branch. Implicit branches are not supported an
attempt to perform one causes boundedly-undefined results. Therefore, PTEs must
changed in a manner that causes an implicit branch. Chapter 2, “PowerPC Register S
The Programming Environments Manual, lists the possible implicit branch conditions tha
can occur when system registers and MSR bits are changed.

5.4.7 Segment Register Updates
Synchronization requirements for using the move to segment register instruction
described in “Synchronization Requirements for Special Registers and for Looka
Buffers” in Chapter 2, “PowerPC Register Set,” inThe Programming Environments
Manual.
5-34 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

s, and
tailed
ther
aches.

ow to
ach

ation

hese
t out

Such
oes

g.

n. A
tion

he
ee

the
Chapter 6
Instruction Timing
60
60

This chapter describes how the PowerPC 750 microprocessor fetches, dispatche
executes instructions and how it reports the results of instruction execution. It gives de
descriptions of how the 750 execution units work, and how those units interact with o
parts of the processor, such as the instruction fetching mechanism, register files, and c
It gives examples of instruction sequences, showing potential bottlenecks and h
minimize their effects. Finally, it includes tables that identify the unit that executes e
instruction implemented on the 750, the latency for each instruction, and other inform
that is useful for the assembly language programmer.

6.1 Terminology and Conventions
This section provides an alphabetical glossary of terms used in this chapter. T
definitions are provided as a review of commonly used terms and as a way to poin
specific ways these terms are used in this chapter.

• Branch prediction—The process of guessing whether a branch will be taken.
predictions can be correct or incorrect; the term ‘predicted’ as it is used here d
not imply that the prediction is correct (successful). The PowerPC architecture
defines a means for static branch prediction as part of the instruction encodin

• Branch resolution—The determination of whether a branch is taken or not take
branch is said to be resolved when the processor can determine which instruc
path to take. If the branch is resolved as predicted, the instructions following t
predicted branch that may have been speculatively executed can complete (s
completion). If the branch is not resolved as predicted, instructions on the
mispredicted path, and any results of speculative execution, are purged from
pipeline and fetching continues from the nonpredicted path.

• Completion—Completion occurs when an instruction has finished executing,
written back any results, and is removed from the completion queue. When an
instruction completes, it is guaranteed that this instruction and all previous
instructions can cause no exceptions.
Chapter 6. Instruction Timing 6-1

gh
 is,
atch
ition

r

h
her

ion

ake

 are
al
 is

omes

ber
the
) is

llows
 the

.

er the
latter

n, or
lock
rite-

 stage.
• Fall-through (branch fall-through)—A not-taken branch. On the 750, fall-throu
branch instructions are removed from the instruction stream at dispatch. That
these instructions are allowed to fall through the instruction queue via the disp
mechanism, without either being passed to an execution unit and or given a pos
in the completion queue.

• Fetch—The process of bringing instructions from memory (such as a cache o
system memory) into the instruction queue.

• Folding (branch folding)—The replacement with target instructions of a branc
instruction and any instructions along the not-taken path when a branch is eit
taken or predicted as taken.

• Finish—Finishing occurs in the last cycle of execution. In this cycle, the complet
queue entry is updated to indicate that the instruction has finished executing.

• Latency— The number of clock cycles necessary to execute an instruction and m
ready the results of that execution for a subsequent instruction.

• Pipeline—In the context of instruction timing, the term ‘pipeline’ refers to the
interconnection of the stages. The events necessary to process an instruction
broken into several cycle-length tasks to allow work to be performed on sever
instructions simultaneously—analogous to an assembly line. As an instruction
processed, it passes from one stage to the next. When it does, the stage bec
available for the next instruction.

Although an individual instruction may take many cycles to complete (the num
of cycles is called instruction latency), pipelining makes it possible to overlap
processing so that the throughput (number of instructions completed per cycle
greater than if pipelining were not implemented.

• Program order—The order of instructions in an executing program. More
specifically, this term is used to refer to the original order in which program
instructions are fetched into the instruction queue from the cache.

• Rename register—Temporary buffers used by instructions that have finished
execution but have not completed.

• Reservation station—A buffer between the dispatch and execute stages that a
instructions to be dispatched even though the results of instructions on which
dispatched instruction may depend are not available.

• Retirement—Removal of the completed instruction from the completion queue

• Stage—The term ‘stage’ is used in two different senses, depending on wheth
pipeline is being discussed as a physical entity or a sequence of events. In the
case, a stage is an element in the pipeline during which certain actions are
performed, such as decoding the instruction, performing an arithmetic operatio
writing back the results. A stage is typically described as taking a processor c
cycle to perform its operation; however, some events (such as dispatch and w
back) happen instantaneously, and may be thought to occur at the end of the
6-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

quent

ously,
ample,
ueue

ccupy

ons

 time.

ycle.
s a

not

clock
results
access
-back
ble or
ccess
nother

esses.

scalar
ative
allel.

ction
veral
r an

uction
An instruction can spend multiple cycles in one stage. An integer multiply, for
example, takes multiple cycles in the execute stage. When this occurs, subse
instructions may stall.

In some cases, an instruction may also occupy more than one stage simultane
especially in the sense that a stage can be seen as a physical resource—for ex
when instructions are dispatched they are assigned a place in the completion q
at the same time they are passed to the execute stage. They can be said to o
both the complete and execute stages in the same clock cycle.

• Stall—An occurrence when an instruction cannot proceed to the next stage.

• Superscalar—A superscalar processor is one that can issue multiple instructi
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the execute stage at the same

• Throughput—A measure of the number of instructions that are processed per c
For example, a series of double-precision floating-point multiply instructions ha
throughput of one instruction per clock cycle.

• Write-back—Write-back (in the context of instruction handling) occurs when a
result is written into the architectural registers (typically the GPRs and FPRs).
Results are written back at completion time. Results in the write-back buffer can
be flushed. If an exception occurs, these buffers must write back before the
exception is taken.

6.2 Instruction Timing Overview
The 750 design minimizes average instruction execution latency, the number of
cycles it takes to fetch, decode, dispatch, and execute instructions and make the
available for a subsequent instruction. Some instructions, such as loads and stores,
memory and require additional clock cycles between the execute phase and the write
phase. These latencies vary depending on whether the access is to cachea
noncacheable memory, whether it hits in the L1 or L2 cache, whether the cache a
generates a write-back to memory, whether the access causes a snoop hit from a
device that generates additional activity, and other conditions that affect memory acc

The 750 implements many features to improve throughput, such as pipelining, super
instruction issue, branch folding, removal of fall-through branches, two-level specul
branch handling, and multiple execution units that operate independently and in par

As an instruction passes from stage to stage in a pipelined system, the following instru
can follow through the stages as the former instruction vacates them, allowing se
instructions to be processed simultaneously. While it may take several cycles fo
instruction to pass through all the stages, when the pipeline has been filled, one instr
can complete its work on every clock cycle.
Chapter 6. Instruction Timing 6-3

plete,
750’s

rallel:

ides

sses
wn in
r to
Figure 6-1 represents a generic pipelined execution unit.

Figure 6-1. Pipelined Execution Unit

The entire path that instructions take through the fetch, decode/dispatch, execute, com
and write-back stages is considered the 750’s master pipeline, and two of the
execution units (the FPU and LSU) are also multiple-stage pipelines.

The 750 contains the following execution units that operate independently and in pa

• Branch processing unit (BPU)
• Integer unit 1 (IU1)—executes all integer instructions
• Integer unit 2 (IU2)—executes all integer instructions except multiplies and div
• 64-bit floating-point unit (FPU)
• Load/store unit (LSU)
• System register unit (SRU)

The 750 can retire two instructions on every clock cycle. In general, the 750 proce
instructions in four stages—fetch, decode/dispatch, execute, and complete as sho
Figure 6-2. Note that the example of a pipelined execution unit in Figure 6-1 is simila
the three-stage FPU pipeline in Figure 6-2.

Clock 0

Clock 1

Clock 2

Clock 3

Instruction A — —

Instruction B

Instruction C

Instruction D

Instruction A

Instruction B

Instruction C

—

Instruction A

Instruction B

Stage 1 Stage 2 Stage 3
6-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

to
ch as

ry to
k
are

ion

ted.

ction

an

cle.
Figure 6-2. Superscalar/Pipeline Diagram

The instruction pipeline stages are described as follows:

• The instruction fetch stage includes the clock cycles necessary to request
instructions from the memory system and the time the memory system takes
respond to the request. Instruction fetch timing depends on many variables, su
whether the instruction is in the branch target instruction cache, the on-chip
instruction cache, or the L2 cache. Those factors increase when it is necessa
fetch instructions from system memory, and include the processor-to-bus cloc
ratio, the amount of bus traffic, and whether any cache coherency operations
required.

Because there are so many variables, unless otherwise specified, the instruct
timing examples below assume optimal performance, that the instructions are
available in the instruction queue in the same clock cycle that they are reques
The fetch stage ends when the instruction is dispatched.

• The decode/dispatch stage consists of the time it takes to fully decode the instru
and dispatch it from the instruction queue to the appropriate execution unit.
Instruction dispatch requires the following:

— Instructions can be dispatched only from the two lowest instruction queue
entries, IQ0 and IQ1.

— A maximum of two instructions can be dispatched per clock cycle (although
additional branch instruction can be handled by the BPU).

— Only one instruction can be dispatched to each execution unit per clock cy

— There must be a vacancy in the specified execution unit.

Fetch

Complete (Write-back)

Decode/Dispatch

Execute Stage

FPU3SRU IU2IU1

Maximum three-instruction dispatch
per clock cycle (includes one branch
instruction)

Maximum two -instruction
completion per clock cycle

FPU2

FPU1

LSU1

Maximum four-instruction fetch
per clock cycle

LSU2

BPU
Chapter 6. Instruction Timing 6-5

y the

able

t (or
unit.

can
ver,
he
ions

roper
tus,
ters

 be
eue

n is
can
the
can

slation
ually
hen
six

nd
cribe

etch

d by
the
in
— A rename register must be available for each destination operand specified b
instruction.

— For an instruction to dispatch, the appropriate execution unit must be avail
and there must be an open position in the completion queue. If no entry is
available, the instruction remains in the IQ.

• The execute stage consists of the time between dispatch to the execution uni
reservation station) and the point at which the instruction vacates the execution

Most integer instructions have a one-cycle latency; results of these instructions
be used in the clock cycle after an instruction enters the execution unit. Howe
integer multiply and divide instructions take multiple clock cycles to complete. T
IU1 can process all integer instructions; the IU2 can process all integer instruct
except multiply and divide instructions.

The LSU and FPU are pipelined (as shown in Figure 6-2).

• The complete (complete/write-back) pipeline stage maintains the correct
architectural machine state and commits it to the architectural registers at the p
time. If the completion logic detects an instruction containing an exception sta
all following instructions are cancelled, their execution results in rename regis
are discarded, and the correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can
retired per cycle. Instructions are retired only from the two lowest completion qu
entries, CQ0 and CQ1.

The notation conventions used in the instruction timing examples are as follows:

Fetch—The fetch stage includes the time between when an instructio
requested and when it is brought into the instruction queue. This latency
be very variable, depending upon whether the instruction is in the BTIC,
on-chip cache, the L2 cache, or system memory (in which case latency
be affected by bus speed and traffic on the system bus, and address tran
issues). Therefore, in the examples in this chapters, the fetch stage is us
idealized, that is, an instruction is usually shown to be in the fetch stage w
it is a valid instruction in the instruction queue. The instruction queue has
entries, IQ0–IQ5.

In dispatch entry (IQ0/IQ1)—Instructions can be dispatched from IQ0 a
IQ1. Because dispatch is instantaneous, it is perhaps more useful to des
it as an event that marks the point in time between the last cycle in the f
stage and the first cycle in the execute stage.

Execute—The operations specified by an instruction are being performe
the appropriate execution unit. The black stripe is a reminder that
instruction occupies an entry in the completion queue, described
Figure 6-3.
6-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

, the
n is

and
end

to the
tions

. Only

750
re to
es the
Complete—The instruction is in the completion queue. In the final stage
results of the executed instruction are written back and the instructio
retired. The completion queue has six entries, CQ0–CQ5.

In retirement entry—Completed instructions can be retired from CQ0
CQ1. Like dispatch, retirement is an event that in this case occurs at the
of the final cycle of the complete stage.

Figure 6-3 shows the stages of 750 execution units.

Figure 6-3. PowerPC 750 Microprocessor Pipeline Stages

6.3 Timing Considerations
The 750 is a superscalar processor; as many as three instructions can be issued
execution units (one branch instruction to the branch processing unit, and two instruc
issued from the dispatch queue to the other execution units) during each clock cycle
one instruction can be dispatched to each execution unit.

Although instructions appear to the programmer to execute in program order, the
improves performance by executing multiple instructions at a time, using hardwa
manage dependencies. When an instruction is dispatched, the register file provid

Fetch In Dispatch Execute1 Complete/Retire

Fetch In Dispatch Complete/RetireEA

Fetch In Dispatch Complete/Retire

IU1/IU2/SRU Instructions

LSU Instructions

FPU Instructions

NormalizeMultiply Add Round/

1 Several integer instructions, such as multiply and divide instructions, require multiple cycles in

Execute

Execute

Calculation
Cache Align

Entry

Entry

Entry

the execute stage.

BPU Instructions

Fetch Fetch
Predict

Complete/Retire2In Dispatch
Entry

In Completion
Queue2

2 Only those branch instructions that update the LR or CTR take an entry in the completion queue.
Chapter 6. Instruction Timing 6-7

ficient

hen a
rection
rrect,

wed

the
t GPR
source
llows
e data
their

clock
the

ache

er of
les in
ons in
ally
tched
TIC,
next
the
hip

ache
e by
t.”
source data to the execution unit. The register files and rename register have suf
bandwidth to allow dispatch of two instructions per clock under most conditions.

The 750’s BPU decodes and executes branches immediately after they are fetched. W
conditional branch cannot be resolved due to a CR data dependency, the branch di
is predicted and execution continues from the predicted path. If the prediction is inco
the following steps are taken:

1. The instruction queue is purged and fetching continues from the correct path.

2. Any instructions ahead of the predicted branch in the completion queue are allo
to complete.

3. Instructions after the mispredicted branch are purged.

4. Dispatching resumes from the correct path.

After an execution unit finishes executing an instruction, it places resulting data into
appropriate GPR or FPR rename register. The results are then stored into the correc
or FPR during the write-back stage. If a subsequent instruction needs the result as a
operand, it is made available simultaneously to the appropriate execution unit, which a
a data-dependent instruction to be decoded and dispatched without waiting to read th
from the register file. Branch instructions that update either the LR or CTR write back
results in a similar fashion.

The following section describes this process in greater detail.

6.3.1 General Instruction Flow
As many as four instructions can be fetched into the instruction queue (IQ) in a single
cycle. Instructions enter the IQ and are issued to the various execution units from
dispatch queue. The 750 tries to keep the IQ full at all times, unless instruction c
throttling is operating.

The number of instructions requested in a clock cycle is determined by the numb
vacant spaces in the IQ during the previous clock cycle. This is shown in the examp
this chapter. Although the instruction queue can accept as many as four new instructi
a single clock cycle, if only one IQ entry is vacant, only one instruction is fetched. Typic
instructions are fetched from the on-chip instruction cache, but they may also be fe
from the branch target instruction cache (BTIC). If the instruction request hits in the B
it can usually present the first two instructions of the new instruction stream in the
clock cycle, giving enough time for the next pair of instructions to be fetched from
instruction cache with no idle cycles. If instructions are not in the BTIC or the on-c
instruction cache, they are fetched from the L2 cache or from system memory.

The 750’s instruction cache throttling feature, managed through the instruction c
throttling control (ICTC) register, can lower the processor’s overall junction temperatur
slowing the instruction fetch rate. See Chapter 10, “Power and Thermal Managemen
6-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ctly,
itions
tion is
, the
quick
ions.

rget

ream
n be

n or
h

.3.1,

ction
ribed
ns.”
(even
osition

n the
letion
s are
ne in
Branch instructions are identified by the fetcher, and forwarded to the BPU dire
bypassing the dispatch queue. If the branch is unconditional or if the specified cond
are already known, the branch can be resolved immediately. That is, the branch direc
known and instruction fetching can continue from the correct location. Otherwise
branch direction must be predicted. The 750 offers several resources to aid in
resolution of branch instructions and for improving the accuracy of branch predict
These include the following:

• Branch target instruction cache—The 64-entry (four-way-associative) branch ta
instruction cache (BTIC) holds branch target instructions so when a branch is
encountered in a repeated loop, usually the first two instructions in the target st
can be fetched into the instruction queue on the next clock cycle. The BTIC ca
disabled and invalidated through bits in HID0.

• Dynamic branch prediction—The 512-entry branch history table (BHT) is
implemented with two bits per entry for four degrees of prediction—not-taken,
strongly not-taken, taken, strongly taken. Whether a branch instruction is take
not-taken can change the strength of the next prediction. This dynamic branc
prediction is not defined by the PowerPC architecture.

To reduce aliasing, only predicted branches update the BHT entries. Dynamic
branch prediction is enabled by setting HID0[BHT]; otherwise, static branch
prediction is used.

• Static branch prediction—Static branch prediction is defined by the PowerPC
architecture and involves encoding the branch instructions. See Section 6.4.1
“Static Branch Prediction.”

Branch instructions that do not update the LR or CTR are removed from the instru
stream either by branch folding or removal of fall-through branch instructions, as desc
in Section 6.4.1.1, “Branch Folding and Removal of Fall-Through Branch Instructio
Branch instructions that update the LR or CTR are treated as if they require dispatch
through they are not issued to an execution unit in the process). They are assigned a p
in the completion queue to ensure that the CTR and LR are updated sequentially.

All other instructions are issued from the IQ0 and IQ1. The dispatch rate depends upo
availability of resources such as the execution units, rename registers, and comp
queue entries, and upon the serializing behavior of some instructions. Instruction
dispatched in program order; an instruction in IQ1 cannot be dispatched ahead of o
IQ0.
Chapter 6. Instruction Timing 6-9

Figure 6-4 shows the paths taken by instructions.

Figure 6-4. Instruction Flow Diagram

SRUIU2

FPU

Complete (Retire)

Fetch

LSU

DispatchBranch

Instruction Queue

Completion Queue

Completion Queue

IU1

Store Queue

Processing Unit

(In program order)

Assignment

(In program order)

CQ5 CQ4 CQ3 CQ2 CQ1 CQ0

IQ5 IQ4 IQ3 IQ2 IQ1 IQ0

(Maximum 2 instructions per clock cycle; 1 instruction per unit)

(Maximum four instructions per clock cycle)

Reservation
Stations
6-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

chip
mory
peed,
s.

hings
t, they
to a
letes.

the
cache
s). The
sting

che.
t add
how
s are

lines
6.3.2 Instruction Fetch Timing
Instruction fetch latency depends on whether the fetch hits the BTIC, the on-
instruction cache, or the L2 cache, if one is implemented. If no cache hit occurs, a me
transaction is required in which case fetch latency is affected by bus traffic, bus clock s
and memory translation. These issues are discussed further in the following section

6.3.2.1 Cache Arbitration
When the instruction fetcher requests instructions from the instruction cache, two t
may happen. If the instruction cache is idle and the requested instructions are presen
are provided on the next clock cycle. However, if the instruction cache is busy due
cache-line-reload operation, instructions cannot be fetched until that operation comp

6.3.2.2 Cache Hit
If the instruction fetch hits the instruction cache, it takes only one clock cycle after
request for as many as four instructions to enter the instruction queue. Note that the
is not blocked to internal accesses during a cache reload completes (hits under misse
critical double word is written simultaneously to the cache and forwarded to the reque
unit, minimizing stalls due to load delays.

Figure 6-5 shows a simple example of instruction fetching that hits in the on-chip ca
This example uses a series of integer add and double-precision floating-poin
instructions to show how the number of instructions to be fetched is determined,
program order is maintained by the instruction and completion queues, how instruction
dispatched and retired in pairs (maximum), and how the FPU, IU1, and IU2 pipe
function. The following instruction sequence is examined:

3 add
4 fadd
5 add
6 fadd
7 br 6
8 fsub
9 fadd
10 fadd
11 add
12 add
13 add
14 add
15 fadd
16 add
17 fadd
18 .
19 .
20 .
Chapter 6. Instruction Timing 6-11

and
e

Figure 6-5. Instruction Timing—Cache Hit

The instruction timing for this example is described cycle-by-cycle as follows:

0. In cycle 0, instructions 0–3 are fetched from the instruction cache. Instructions 0
1 are placed in the two entries in the instruction queue from which they can b
dispatched on the next clock cycle.

6 fadd

1 fadd

0 add

10 11

8 add

1 2 3 4 5 6 7 80

Fetch (in IQ)

In dispatch entry (IQ0/IQ1)

Execute
2 add

3 fadd

9 add

4 b

10 add

11 add

12 fadd

9

7 fadd

•••

Complete (In CQ)

13 add

14 fadd

3

2

1

0

7

6

11

10

9

8

7

12

11

10

9

8

7

12

11

10

9

14

13

12

11

(16)

(15)

14

13

(18)

(17)

(16)

(15)

14

13

(18)

(17)

(16)

(15)

5

4

3

2

3

2

1

0

6

3

2

1

6

3

2

1

8

7

6

3

10

9

8

7

6

12

11

10

9

8

7

12

11

10

9

8

7

14

13

12

11

10

9

14

13

12

11

14

13

1

0

Instruction
Queue

Completion
Queue

5 fsub

In retirement entry (CQ0/CQ1)
6-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ly.
in the
tions
drop
wo
and
al
it can

into

ue by
,
first
either
ded.

5 in

ction

, and
cle

lock

ons

not be
tion
on
e is

he
s 9
 are
le 4.
ute

IU1,
1. In cycle 1, instructions 0 and 1 are dispatched to the IU2 and FPU, respective
Notice that for instructions to be dispatched they must be assigned positions
completion queue. In this case, since the completion queue was empty, instruc
0 and 1 take the two lowest entries in the completion queue. Instructions 2 and 3
into the two dispatch positions in the instruction queue. Because there were t
positions available in the instruction queue in clock cycle 0, two instructions (4
5) are fetched into the instruction queue. Instruction 4 is a branch uncondition
instruction, which resolves immediately as taken. Because the branch is taken,
therefore be folded from the instruction queue.

2. In cycle 2, assume a BTIC hit occurs and target instructions 6 and 7 are fetched
the instruction queue, replacing the foldedb instruction (4) and instruction 5.
Instruction 0 completes, writes back its results and vacates the completion que
the end of the clock cycle. Instruction 1 enters the second FPU execute stage
instruction 2 is dispatched to the IU2, and instruction 3 is dispatched into the
FPU execute stage. Because the taken branch instruction (4) does not update
CTR or LR, it does not require a position in the completion queue and can be fol

3. In cycle 3, target instructions (6 and 7) are fetched, replacing instructions 4 and
IQ0 and IQ1. This replacement on taken branches is called branch folding.
Instruction 1 proceeds through the last of the three FPU execute stages. Instru
2 has executed but must remain in the completion queue until instruction 1
completes. Instruction 3 replaces instruction 1 in the second stage of the FPU
instruction 6 replaces instruction 3 in the first stage. Also, as will be shown in cy
4, there is a single-cycle stall that occurs when the FPU pipeline is full.

Because there were three vacancies in the instruction queue in the previous c
cycle, instructions 8–11 are fetched in this clock cycle.

4. Instruction 1 completes in cycle 4, allowing instruction 2 to complete. Instructi
3 and 6 continue through the FPU pipeline. Although instruction 7 is in IQ1, it
cannot be dispatched because the FPU is busy, and because instruction 7 can
dispatched neither can instruction 8. The additional cycle stall allows the instruc
queue to be completely filled. Because there was one opening in the instructi
queue in clock cycle 3, one instruction is fetched (12) and the instruction queu
full.

5. In cycle 5, instruction 3 completes, allowing instruction 7 to be dispatched to t
FPU, which in turn allows instruction 8 to be dispatched to the IU2. Instruction
and 10 drop to the dispatch positions in the instruction queue. No instructions
fetched in this clock cycle because there were no vacant IQ entries in clock cyc

6. In cycle 6, instruction 6 completes, instruction 7 is in stage 2 of the FPU exec
stage, and although instruction 8 has executed, it must wait for instruction 7 to
complete. The two integer instructions, 9 and 10, are dispatched to the IU2 and
respectively. Fetching resumes with instructions 13 and 14.
Chapter 6. Instruction Timing 6-13

wait
FPU,

hed.
lete,

s full,
n

the
ction

he. A
as in

s not
annot

stage
uired

clock
cycle
rded
7. In cycle 7, instruction 7 is in the final FPU execute stage and instructions 8–10
in the completion queue. Instructions 11 and 12 are dispatched to the IU2 and
respectively. Note that at this point the completion queue is full. Two more
instructions (15 and 16, which are shown only in the instruction queue) are fetc

8. In cycle 8, instructions 7–11 are through executing. Instructions 7 and 8 comp
write back, and vacate the completion queue. Because the completion queue i
instructions 13 and 14 cannot be dispatched and must remain in the instructio
queue. Only the FPU is executing during this cycle (instruction 12). Additional
instructions (instructions 16 and 17, shown only in the instruction queue) are
fetched, filling the instruction queue.

9. In cycle 9, two more instructions (instructions 7 and 8) are retired from the
completion queue allowing instructions 13 and 14 to be dispatched, again filling
completion queue. No instructions are fetched on this cycle because the instru
queue was full on the previous clock cycle.

6.3.2.3 Cache Miss
Figure 6-6 shows an instruction fetch that misses both the on-chip cache and L2 cac
processor/bus clock ratio is 1:2 is used. The same instruction sequence is used
Section 6.3.2.2, “Cache Hit,” however in this example, the branch target instruction i
in either the L1 or L2 cache. Because the target instruction is not in the L1 cache, it c
be in the BTIC.

A cache miss, extends the latency of the fetch stage, so in this example, the fetch
shown represents not only the time the instruction spends in the IQ, but the time req
for the instruction to be loaded from system memory, beginning in clock cycle 2.

During clock cycle 3, the target instruction for theb instruction is not in the BTIC, the
instruction cache or the L2 cache; therefore, a memory access must occur. During
cycle 5, the address of the block of instructions is sent to the system bus. During clock
7, two instructions (64 bits) are returned from memory on the first beat and are forwa
both to the cache and the instruction fetcher.
6-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

next
50 in
Figure 6-6. Instruction Timing—Cache Miss

6.3.2.4 L2 Cache Access Timing Considerations (PowerPC 750 Only)
If an instruction fetch misses both the BTIC and the on-chip instruction cache, the 750
looks in the L2 cache. If the requested instructions are there, they are burst into the 7

6 fadd *

7 fadd *

1 fadd

0 add

10 11

8 add *

1 2 3 4 5 6 7 80

2 add

3 fadd

9 add *

4 b

10 add *

11 add *

12 fadd *

9

•••

3

2

1

0 7

9

8

5

4

3

2

3

2

1

0

3

2

1

3

2

1 3 6

7

6

9

8

7

6

1

0

Instruction
Queue

Completion
Queue

5 fsub
Address

Data

Fetch *

In dispatch entry (IQ0/IQ1)

Execute

Complete (In CQ)

In retirement entry (CQ0/CQ1)

7

6

13 fadd *

* Instructions 5 and 6 are not in the IQ in clock cycle 5. Here, the fetch stage shows cache latency.
Chapter 6. Instruction Timing 6-15

y for

clock
ed to
tely.

ache

per
etion
these

ides a
ation
, that

t (and
eue so
same

nt on.

IQ1
vides

the
odel.

cted
en the

rst-
ction
lls. A
tion
s the
d and
are

etion
d when
much the same way as shown in Figure 6-6. The formula for the L2 cache latenc
instruction accesses is as follows:

1 processor clock + 3 L2 clocks + 1 processor clock

Therefore, if the L2 is operating in 2:1 mode, the instruction fetch takes 8 processor
cycles. Additional factors can also affect this latency, including the type of memory us
implement the L2 and whether the processor clock and L2 clocks are aligned immedia

For more information about the L2 cache implementation, see Chapter 9, “L2 C
Interface Operation.”

6.3.3 Instruction Dispatch and Completion Considerations
Several factors affect the 750’s ability to dispatch instructions at a peak rate of two
cycle—the availability of the execution unit, destination rename registers, and compl
queue, as well as the handling of completion-serialized instructions. Several of
limiting factors are illustrated in the previous instruction timing examples.

To reduce dispatch unit stalls due to instruction data dependencies, the 750 prov
single-entry reservation station for the FPU, SRU, and each IU, and a two-entry reserv
station for the LSU. If a data dependency keeps an instruction from starting execution
instruction is dispatched to the reservation station associated with its execution uni
the rename registers are assigned), thereby freeing the positions in the instruction qu
instructions can be dispatched to other execution units. Execution begins during the
clock cycle that the rename buffer is updated with the data the instruction is depende

If both instructions in IQ0 and IQ1 require the same execution unit, the instruction in
cannot be dispatched until the first instruction proceeds through the pipeline and pro
the subsequent instruction with a vacancy in the requested execution unit.

The completion unit maintains program order after instructions are dispatched from
instruction queue, guaranteeing in-order completion and a precise exception m
Completing an instruction implies committing execution results to the archite
destination registers. In-order completion ensures the correct architectural state wh
750 must recover from a mispredicted branch or an exception.

Instruction state and all information required for completion is kept in the six-entry, fi
in/first-out completion queue. An completion queue entry is allocated for each instru
when it is dispatched to an execute unit; if no entry is available, the dispatch unit sta
maximum of two instructions per cycle may be completed and retired from the comple
queue, and the flow of instructions can stall when a longer-latency instruction reache
last position in the completion queue. Subsequent instructions cannot be complete
retired until that longer-latency instruction completes and retires. Examples of this
shown in Section 6.3.2.2, “Cache Hit,” and Section 6.3.2.3, “Cache Miss.”

The 750 can execute instructions out-of-order, but in-order completion by the compl
unit ensures a precise exception mechanism. Program-related exceptions are signale
6-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ueue.

tion,
letion
x FPR

name
to a
y, the
r that
egister,

ters by
out
ueue

tions
hose

alled
e are

d in
. A
r

for
s are
tion
h

—
ns

it
tions
the instruction causing the exception reaches the last position in the completion q
Prior instructions are allowed to complete before the exception is taken.

6.3.3.1 Rename Register Operation
To avoid contention for a given register file location in the course of out-of-order execu
the 750 provides rename registers for holding instruction results before the comp
commits them to the architected register. There are six GPR rename registers, si
rename registers, and one each for the CR, LR, and CTR.

When the dispatch unit dispatches an instruction to its execution unit, it allocates a re
register (or registers) for the results of that instruction. If an instruction is dispatched
reservation station associated with an execution unit due to a data dependenc
dispatcher also provides a tag to the execution unit identifying the rename registe
forwards the required data at completion. When the source data reaches the rename r
execution can begin.

Instruction results are transferred from the rename registers to the architected regis
the completion unit when an instruction is retired from the completion queue with
exceptions and after any predicted branch conditions preceding it in the completion q
have been resolved correctly. If a branch prediction was incorrect, the instruc
following the branch are flushed from the completion queue, and any results of t
instructions are flushed from the rename registers.

6.3.3.2 Instruction Serialization
Although the 750 can dispatch and complete two instructions per cycle, so-c
serializing instructions limit dispatch and completion to one instruction per cycle. Ther
three types of instruction serialization:

• Execution serialization—Execution-serialized instructions are dispatched, hel
the functional unit and do not execute until all prior instructions have completed
functional unit holding an execution-serialized instruction will not accept furthe
instructions from the dispatcher. For example, execution serialization is used
instructions that modify nonrenamed resources. Results from these instruction
generally not available or forwarded to subsequent instructions until the instruc
completes (usingmtspr to write to LR or CTR does provide forwarding to branc
instructions).

• Completion serialization (also referred to as post-dispatch or tail serialization)
Completion-serialized instructions inhibit dispatching of subsequent instructio
until the serialized instruction completes. Completion serialization is used for
instructions that bypass the normal rename mechanism.

• Refetch serialization (flush serialization)—Refetch-serialized instructions inhib
dispatch of subsequent instructions and force refetching of subsequent instruc
after completion.
Chapter 6. Instruction Timing 6-17

the

) are
in the

with
while
target
ome
.3.2.3,

anch
vel
alties
tion

the

ins to
er the
the

e case
the
ueue

cycle
, or if
6.4 Execution Unit Timings
The following sections describe instruction timing considerations within each of
respective execution units in the 750.

6.4.1 Branch Processing Unit Execution Timing
Flow control operations (conditional branches, unconditional branches, and traps
typically expensive to execute in most machines because they disrupt normal flow
instruction stream. When a change in program flow occurs, the IQ must be reloaded
the target instruction stream. Previously issued instructions will continue to execute
the new instruction stream makes its way into the IQ, but depending on whether the
instruction is in the BTIC, instruction cache, L2 cache, or in system memory, s
opportunities may be missed to execute instructions, as the example in Section 6
“Cache Miss,” shows.

Performance features such as the branch folding, removal of fall-through br
instructions, BTIC, dynamic branch prediction (implemented in the BHT), two-le
branch prediction, and the implementation of nonblocking caches minimize the pen
associated with flow control operations on the 750. The timing for branch instruc
execution is determined by many factors including the following:

• Whether the branch is taken

• Whether instructions in the target stream, typically the first two instructions in
target stream, are in the branch target instruction cache (BTIC)

• Whether the target instruction stream is in the on-chip cache

• Whether the branch is predicted

• Whether the prediction is correct

6.4.1.1 Branch Folding and Removal of Fall-Through Branch
Instructions

When a branch instruction is encountered by the fetcher, the BPU immediately beg
decode it and tries to resolve it. All branch instructions except those that update eith
LR or CTR are removed from the instruction flow before they would take a position in
completion queue.

Branch folding occurs either when a branch is taken or is predicted as taken (as is th
with unconditional branches). When the BPU folds the branch instruction out of
instruction stream, the target instruction stream that is fetched into the instruction q
overwrites the branch instruction.

Figure 6-7 shows branch folding. Here abr instruction is encountered in a series ofadd
instructions. The branch is resolved as taken. What happens on the next clock
depends on whether the target instruction stream is in the BTIC, the instruction cache
it must be fetched from the L2 cache or from system memory.
6-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

(and

t

pts
). In
ck.

which
s, new

en a

m the
n unit
Figure 6-7 shows cases where there is a BTIC hit, and when there is a BTIC miss
instruction cache hit).

If there is a BTIC hit on the next clock cycle theb instruction is replaced by the targe
instruction,and1, that was found in the BTIC; the secondand instruction is also fetched
from the BTIC. On the next clock cycle, the next fourand instructions from the target
stream are fetched from the instruction cache.

If the target instruction is not in the BTIC, there is an idle cycle while the fetcher attem
to fetch the first four instructions from the instruction cache (on the next clock cycle
the example in Figure 6-7, the first four target instruction are fetched on the next clo

If it misses in the caches, an L2 cache or memory access is required, the latency of
is dependent on several factors, such as processor/bus clock ratios. In most case
instructions arrive in the IQ before the execution units become idle.

Figure 6-7. Branch Folding

Figure 6-8 shows the removal of fall-through branch instructions, which occurs wh
branch is not taken or is predicted as not taken.

Figure 6-8. Removal of Fall-Through Branch Instruction

In this case the branch instruction remains in the instruction queue and is removed fro
instruction stream as if it were dispatched. However, it is not dispatched to an executio
and is not assigned an entry in the completion queue.

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

and2
and1

and6
and5
and4
and3

Branch Folding
(Taken Branch/BTIC Hit)

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

and4
and3
and2
and1

Branch Folding
(Taken Branch/BTIC Miss)

Clock 0 Clock 1 Clock 2 Clock 0 Clock 1 Clock 2

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 b
IQ1 add2
IQ0 add1

add5
add4
add3

b

add7
add6
add5
add4

Branch Fall-Through
(Not-Taken Branch)

Clock 0 Clock 1 Clock 2
Chapter 6. Instruction Timing 6-19

ranch
the

ution

only
ranch
from
h an

CTR
her by
nch
ctions
must

s and

like
ution

not-
,
.

When a branch instruction is detected before it reaches a dispatch position, and if the b
is correctly predicted as taken, folding the branch instruction (and any instructions from
incorrect path) reduces the latency required for flow control to zero; instruction exec
proceeds as though the branch was never there.

The advantage of removing the fall-through branch instructions at dispatch is
marginally less than that of branch folding. Because the branch is not taken, only the b
instruction needs to be discarded. The only cost of expelling the branch instruction
one of the dispatch entries rather than folding it is missing a chance to dispatc
executable instruction from that position.

6.4.1.2 Branch Instructions and Completion
As described in the previous section, instructions that do not update either the LR or
are removed from the instruction stream before they reach the completion queue, eit
branch folding (in the case of taken branches) or by removing fall-through bra
instructions at dispatch (in the case of non-taken branches). However, branch instru
that update the architected LR and CTR must do so in program order and therefore
perform write-back in the completion stage, like the instructions that update the FPR
GPRs.

Branch instructions that update the CTR or LR pass through the instruction queue
nonbranch instructions. At the point of dispatch, however, they are not sent to an exec
unit, but rather are assigned a slot in the completion queue, as shown in Figure 6-9.

Figure 6-9. Branch Completion

In this example, thebc instruction is encoded to decrement the CTR. It is predicted as
taken in clock cycle 0. In clock cycle 2,bc andadd3 are both dispatched. In clock cycle 3
the architected CTR is updated and thebc instruction is retired from the completion queue

IQ5 add5
IQ4 add4
IQ3 add3
IQ2 bc
IQ1 add2
IQ0 add1

add5
add4
add3

bc

Branch Completion
(LR/CTR Write-Back)

CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

add2
add1

Clock 0 Clock 1

add7
add6
add5
add4

add3
bc

Clock 2

add9
add8
add7
add6

add5
add4

Clock 3
6-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

f the

nted
ch
f the

BPU
path.
uently
ch are

lved
econd
d and
an be
tions

ranch
may
t is,
in the
n, it
letion
n be

se the
ctions
letion

ranch
ction

hit,
uction

branch
quent
6.4.1.3 Branch Prediction and Resolution
The 750 supports the following two types of branch prediction:

• Static branch prediction—This is defined by the PowerPC architecture as part o
encoding of branch instructions.

• Dynamic branch prediction—This is a processor-specific mechanism impleme
in hardware (in particular the branch history table, or BHT) that monitors bran
instruction behavior and maintains a record from which the next occurrence o
branch instruction is predicted.

When a conditional branch cannot be resolved due to a CR data dependency, the
predicts whether it will be taken, and instruction fetching proceeds down the predicted
If the branch prediction resolves as incorrect, the instruction queue and all subseq
executed instructions are purged, instructions executed prior to the predicted bran
allowed to complete, and instruction fetching resumes down the correct path.

The 750 executes through two levels of prediction. Instructions from the first unreso
branch can execute, but they cannot complete until the branch is resolved. If a s
branch instruction is encountered in the predicted instruction stream, it can be predicte
instructions can be fetched, but not executed, from the second branch. No action c
taken for a third branch instruction until at least one of the two previous branch instruc
is resolved.

The number of instructions that can be executed after the issue of a predicted b
instruction is limited by the fact that no instruction executed after a predicted branch
actually update the register files or memory until the branch is completed. Tha
instructions may be issued and executed, but cannot reach the write-back stage
completion unit. When an instruction following a predicted branch completes executio
does not write back its results to the architected registers, instead, it stalls in the comp
queue. Of course, when the completion queue is full, no additional instructions ca
dispatched, even if an execution unit is idle.

In the case of a misprediction, the 750 can easily redirect its machine state becau
programming model has not been updated. When a branch is mispredicted, all instru
that were dispatched after the predicted branch instruction are flushed from the comp
queue and any results are flushed from the rename registers.

The BTIC is a cache of recently used branch target instructions. If the search for the b
target hits in the cache, the first one or two branch instructions is available in the instru
queue on the next cycle (shown in Figure 6-5). Two instructions are fetched on a BTIC
unless the branch target is the last instruction in a cache block, in which case one instr
is fetched.

In some situations, an instruction sequence creates dependencies that keep a
instruction from being resolved immediately, thereby delaying execution of the subse
Chapter 6. Instruction Timing 6-21

uction
s:

e

ch

of
 a
e

llow
ction
edict
path.
was
s any
along

tory
tatic
and

taken
correct
instruction stream based on the predicted outcome of the branch instruction. The instr
sequences and the resulting action of the branch instruction are described as follow

• An mtspr(LK) followed by abclr—Fetching stops and the branch waits for the
mtspr to execute.

• An mtspr(CTR) followed by abcctr—Fetching stops and the branch waits for th
mtspr to execute.

• An mtspr(CTR) followed by abc (CTR decrement)—Fetching stops and the bran
waits for themtspr to execute.

• A third bc(based-on-CR) is encountered while there are two unresolvedbc(based-
on-CR). The thirdbc(based-on-CR) is not executed and fetching stops until one
the previousbc(based-on-CR) is resolved. (Note that branch conditions can be
function of the CTR and the CR; if the CTR condition is sufficient to resolve th
branch, then a CR-dependency is ignored.)

6.4.1.3.1 Static Branch Prediction
The PowerPC architecture provides a field in branch instructions (the BO field) to a
software to hint whether a branch is likely to be taken. Rather than delaying instru
processing until the condition is known, the 750 uses the instruction encoding to pr
whether the branch is likely to be taken and begins fetching and executing along that
When the branch condition is known, the prediction is evaluated. If the prediction
correct, program flow continues along that path; otherwise, the processor flushe
instructions and their results from the mispredicted path, and program flow resumes
the correct path.

Static branch prediction is used when HID0[BHT] is cleared. That is, the branch his
table, which is used for dynamic branch prediction, is disabled. For information about s
branch prediction, see “Conditional Branch Control,” in Chapter 4, “Addressing Modes
Instruction Set Summary,” inThe Programming Environments Manual.

6.4.1.3.2 Predicted Branch Timing Examples
Figure 6-10 shows cases where branch instructions are predicted. It shows how both
and not-taken branches are handled and how the 750 handles both correct and in
predictions. The example shows the timing for the following instruction sequence:

0 add
1 add
2 bc
3 mulhw
4 bc T0
5 fadd
6 and
add
T7 add
T8 add
T9 add
T10 add
T11 or
6-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

s

Figure 6-10. Branch Instruction Timing

0. During clock cycle 0, instructions 0 and 1 are dispatched to their respective
execution units. Instruction 2 is a branch instruction that updates the CTR. It i
predicted as not taken in clock cycle 0. Instruction 3 is amulhw instruction on which
instruction 4 depends.

5 fadd

T3 add

4 bc

1 2 3 4 5 6 7 80 9 10

•••

•••

Fetch

In dispatch entry (IQ0/IQ1)

Predict

Execute

Complete (In CQ)

In retirement entry (CQ0/CQ1)

1 add

T2 add

3

2 (bc)

1

0

T1

T0

T5

T4

T3

T2

T5

T4

T3

T2

(8)

(7)

6

5

5

4

3

2

3

2

1

0

T1

T0

3

2

T1

T0

3

6

5

(8)

(7)

6

5

(8)

(7)

6

5

(8)

(7)

6

5

1

0

Instruction
Queue

Completion
Queue

0 add

T1 add

T0 add

2 bc

3 mulhw

T5 or

T4 and

5 fadd *

6 and*

* Instructions 5 and 6 are not in the IQ in clock cycle 5. Here, the fetch stage shows cache latency.
Chapter 6. Instruction Timing 6-23

tion

ack.

hed
hey

cond
 until

hed.

ed,
Q1,

 in
ters.

, the
the

2 can
n in
nteger
le 6-6

n of
ree
ions
hree

t
onal
g.
1. In clock cycle 1, instructions 2 and 3 enter the dispatch entries in the IQ. Instruc
4 (a secondbc instruction) and 5 are fetched. The secondbc instruction is predicted
as taken. It can be folded, but it cannot be resolved until instruction 3 writes b

2. In clock cycle 2, instruction 4 has been folded and instruction 5 has been flus
from the IQ. The two target instructions, T0 and T1, are both in the BTIC, so t
are fetched in this cycle. Note that even though the firstbc instruction may not have
resolved by this point (we can assume it has), the 750 allows fetching from a se
predicted branch stream. However, these instructions could not be dispatched
the previous branch has resolved.

3. In clock cycle 3, target instructions T2–T5 are fetched as T0 and T1 are dispatc

4. In clock cycle 4, instruction 3, on which the second branch instruction depend
writes back and the branch prediction is proven incorrect. Even though T0 is in C
from which it could be written back, it is not written back because the branch
prediction was incorrect. All target instructions are flushed from their positions
the pipeline at the end of this clock cycle, as are any results in the rename regis

After one clock cycle required to refetch the original instruction stream, instruction 5
same instruction that was fetched in clock cycle 1, is brought back into the IQ from
instruction cache, along with three others (not all of which are shown).

6.4.2 Integer Unit Execution Timing
The 750 has two integer units. The IU1 can execute all integer instructions; and the IU
execute all integer instructions except multiply and divide instructions. As show
Figure 6-2, each integer unit has one execute pipeline stage, thus when a multicycle i
instruction is being executed, no other integer instructions can begin to execute. Tab
lists integer instruction latencies.

Most integer instructions have an execution latency of one clock cycle.

6.4.3 Floating-Point Unit Execution Timing
The floating-point unit on the 750 executes all floating-point instructions. Executio
most floating-point instructions is pipelined within the FPU, allowing up to th
instructions to be executing in the FPU concurrently. While most floating-point instruct
execute with three- or four-cycle latency, and one- or two-cycle throughput, t
instructions (fdivs, fdiv, andfres) execute with latencies of 11 to 33 cycles. Thefdivs, fdiv,
fres, mtfsb0, mtfsb1, mtfsfi, mffs, andmtfsf instructions block the floating-point uni
pipeline until they complete execution, and thereby inhibit the dispatch of additi
floating-point instructions. See Table 6-7 for floating-point instruction execution timin
6-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ffer a
0] =

zing,
the

assist
dler is
E

ld be

eline
ond is
cy and

ment
cache
d store

ds in
s affect
wn in

daries.
mmer
ns,” in

ndian
ment
6.4.4 Effect of Floating-Point Exceptions on Performance
((BRAD: one review said only the last sentence is correct. Wanted to verify.

Floating-point operations that reset the exception sticky bits in the FPSCR may su
performance penalty. When an exception is disabled in the FPSCR and MSR[FE
MSR[FE1] = 0, updates to the FPSCR exception sticky bits are completion seriali
which may delay execution by one or two cycles. The penalty occurs only when
exception bit is toggled and not on subsequent operations with the same exception.

When an exception is enabled in the FPSCR, the instruction traps to the floating-point
handler without updating the FPSCR or the target FPR. The floating-point assist han
required to complete the instruction and is invoked regardless of the setting of MSR[Fn].

For the fastest and most predictable floating-point performance, all exceptions shou
disabled in the FPSCR and MSR.

6.4.5 Load/Store Unit Execution Timing
The execution of most load and store instructions is pipelined. The LSU has two pip
stages. The first is for effective address calculation and MMU translation and the sec
for accessing data in the cache. Load and store instructions have a two-cycle laten
one-cycle throughput.

If operands are misaligned, additional latency may be required either for an align
exception to be taken or for additional bus accesses. Load instructions that miss in the
block subsequent cache accesses during the cache line refill. Table 6-8 gives load an
instruction execution latencies.

6.4.6 Effect of Operand Placement on Performance
The PowerPC VEA states that the placement (location and alignment) of operan
memory may affect the relative performance of memory accesses, and in some case
it significantly. The effects memory operand placement has on performance are sho
Table 6-1.

The best performance is guaranteed if memory operands are aligned on natural boun
For the best performance across the widest range of implementations, the progra
should assume the performance model described in Chapter 3, “Operand Conventio
The Programming Environments Manual.

The effect of misalignment on memory access latency is the same for big- and little-e
addressing modes except for multiple and string operations that cause an align
exception in little-endian mode.
Chapter 6. Instruction Timing 6-25

ce. It
These
s as a
eet the
s order
red in
6.4.7 Integer Store Gathering
The 750 performs store gathering for write-through operations to nonguarded spa
performs cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores.
stores are combined in the LSU to form a double word and are sent out on the 60x bu
single-beat operation. However, stores are gathered only if the successive stores m
criteria and are queued and pending. Store gathering occurs regardless of the addres
of the stores. Store gathering is enabled by setting HID0[SGE]. Stores can be gathe
both endian modes.

Store gathering is not done for the following:

• Cacheable store operations
• Stores to guarded cache-inhibited or write-through space
• Byte-reverse store operations

Table 6-1. Performance Effects of Memory Operand Placement

Operand Boundary Crossing

Size Byte Alignment None 8 Byte Cache Block Protection Boundary

Integer

4 byte 4 Optimal1

1 Optimal means one EA calculation occurs.

— — —

< 4 Optimal Good Good Good

2 byte 2 Optimal — — —

< 2 Optimal Good Good Good

1 byte 1 Optimal — — —

lmw ,
stmw 2

2 Not supported in little-endian mode, causes an alignment exception.

4 Good 3

3 Good means multiple EA calculations occur that may cause additional bus activities with multiple bus transfers.

Good Good Good

< 4 Poor 4

4 Poor means that an alignment exception occurs.

Poor Poor Poor

String 2 — Good Good Good Good

Floating-Point

8 byte 8 Optimal — — —

4 — Good Good Good

< 4 — Poor Poor Poor

4 byte 4 Optimal — — —

< 4 Poor Poor Poor Poor

Notes :
6-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

n

access
from

ction
ore
and

clock
ize

e bus
er (for

that
esses
ss hits
ed, it
mory

dify
ry

when
uring
cially
s, is

ng
ssary
from

itors
that is
• stwcx. instructions
• ecowxinstructions
• A store that occurs during a table search operation
• Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, aeieio
or sync instruction must be used to prevent two stores from being gathered.

6.4.8 System Register Unit Execution Timing
Most instructions executed by the SRU either directly access renamed registers or
or modify nonrenamed registers. They generally execute in a serial manner. Results
these instructions are not available to subsequent instructions until the instru
completes and is retired. See Section 6.3.3.2, “Instruction Serialization,” for m
information on serializing instructions executed by the SRU, and refer to Table 6-4
Table 6-5 for SRU instruction execution timings.

6.5 Memory Performance Considerations
Because the 750 can have a maximum instruction throughput of three instructions per
cycle, lack of memory bandwidth can affect performance. For the 750 to maxim
performance, it must be able to read and write data efficiently. If a system has multipl
devices, one of them may experience long memory latencies while another bus mast
example, a direct-memory access controller) is using the external bus.

6.5.1 Caching and Memory Coherency
To minimize the effect of bus contention, the PowerPC architecture defines WIM bits
are used to configure memory regions as caching-enforced or caching-inhibited. Acc
to such memory locations never update the on-chip cache. If a cache-inhibited acce
the on-chip cache, the cache block is invalidated. If the cache block is marked modifi
is copied back to memory before being invalidated. Where caching is permitted, me
is configured as either write-back or write-through, which are described as follows:

• Write-back— Configuring a memory region as write-back lets a processor mo
data in the cache without updating system memory. For such locations, memo
updates occur only on modified cache block replacements, cache flushes, or
one processor needs data that is modified in another’s cache. Therefore, config
memory as write-back can help when bus traffic could cause bottlenecks, espe
for multiprocessor systems and for regions in which data, such as local variable
used often and is coupled closely to a processor.

If multiple devices use data in a memory region marked write-through, snoopi
must be enabled to allow the copy-back and cache invalidation operations nece
to ensure cache coherency. The 750’s snooping hardware keeps other devices
accessing invalid data. For example, when snooping is enabled, the 750 mon
transactions of other bus devices. For example, if another device needs data
Chapter 6. Instruction Timing 6-27

dified

ate
he
ther

arked
it
ernal

nal
ded

mory

les and
or the
modified on the 750’s cache, the access is delayed so the 750 can copy the mo
data to memory.

• Write-through—Store operations to memory marked write-through always upd
both system memory and the on-chip cache on cache hits. Because valid cac
contents always match system memory marked write-through, cache hits from o
devices do not cause modified data to be copied back as they do for locations m
write-back. However, all write operations are passed to the bus, which can lim
performance. Load operations that miss the on-chip cache must wait for the ext
store operation.

Write-through configuration is useful when cached data must agree with exter
memory (for example, video memory), when shared (global) data may be nee
often, or when it is undesirable to allocate a cache block on a cache miss.

Chapter 3, “Instruction and Data Cache Operation,” describes the caches, me
configuration, and snooping in detail.

6.5.2 Effect of TLB Miss
If a page address translation is not in a TLB, the 750 hardware searches the page tab
updates the TLB when a translation is found. Table 6-2 shows the estimated latency f
hardware TLB load for different cache configurations and conditions.

The PTE table search assumes a hit in the first entry of the primary PTEG.

Table 6-2. TLB Miss Latencies

L1 Condition
(Instruction and Data)

L2 Condition
Processor/L2
Clock Ratio

Processor/System Bus
Clock Ratio

Estimated Latency
(Cycles)

100% cache hit — — — 7

100% cache miss 100% cache hit 1:1 — 13

100% cache miss 100% cache hit 1.5:1 — 18

100% cache miss 100% cache hit 2:1 — 20

100% cache miss 100% cache miss 1:1 2.5:1 (6:3:3:3 memory) 62

100% cache miss 100% cache miss 1:1 4:1 (5:2:2:2 memory) 77
6-28 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

duling
uling

anch
ctions
anch

the

anch

-
fect

ed as

tation

rs

ranch
6.6 Instruction Scheduling Guidelines
The performance of the 750 can be improved by avoiding resource conflicts and sche
instructions to take fullest advantage of the parallel execution units. Instruction sched
on the 750 can be improved by observing the following guidelines:

• To reduce mispredictions, separate the instruction that sets CR bits from the br
instruction that evaluates them. Because there can be no more than 12 instru
in the processor (with the instruction that sets CR in CQ0 and the dependent br
instruction in IQ5), there is no advantage to having more than 10 instructions
between them.

• Likewise, when branching to a location specified by the CTR or LR, separate
mtspr instruction that initializes the CTR or LR from the dependent branch
instruction. This ensures the register values are immediately available to the br
instruction.

• Schedule instructions such that two can be dispatched at a time.

• Schedule instructions to minimize stalls due to execution units being busy.

• Avoid scheduling high-latency instructions close together. Interspersing single
cycle latency instructions between longer-latency instructions minimizes the ef
that instructions such as integer divide and multiply can have on throughput.

• Avoid using serializing instructions.

• Schedule instructions to avoid dispatch stalls:

— Six instructions can be tracked in the completion queue; therefore, only six
instructions can be in the execute stages at any one time

— There are six GPR rename registers; therefore only six GPRs can be specifi
destination operands at any time. If no rename registers are available,
instructions cannot enter the execute stage and remain in the reservation s
or instruction queue until they become available.

Note that load with update address instructions use two destination registe

— Similarly, there are six FPR rename registers, so only six FPR destination
operands can be in the execute and complete stages at any time.

6.6.1 Branch, Dispatch, and Completion Unit Resource
Requirements

This section describes the specific resources required to avoid stalls during b
resolution, instruction dispatching, and instruction completion.
Chapter 6. Instruction Timing 6-29

g the

TR

ved

and

that
the
6.6.1.1 Branch Resolution Resource Requirements
The following is a list of branch instructions and the resources required to avoid stallin
fetch unit in the course of branch resolution:

• Thebclr instruction requires LR availability.

• Thebcctr instruction requires CTR availability.

• Branch and link instructions require shadow LR availability.

• The “branch conditional on counter decrement and the CR” condition requires C
availability or the CR condition must be false, and the 750 cannot execute
instructions after an unresolved predicted branch when the BPU encounters a
branch.

• A branch conditional on CR condition cannot be executed following an unresol
predicted branch instruction.

6.6.1.2 Dispatch Unit Resource Requirements
The following is a list of resources required to avoid stalls in the dispatch unit. IQ[0]
IQ[1] are the two dispatch entries in the instruction queue:

• Requirements for dispatching from IQ[0] are as follows:

— Needed execution unit available
— Needed GPR rename registers available
— Needed FPR rename registers available
— Completion queue is not full.
— A completion-serialized instruction is not being executed.

• Requirements for dispatching from IQ[1] are as follows:

— Instruction in IQ[0] must dispatch.
— Instruction dispatched by IQ[0] is not completion- or refetch-serialized.
— Needed execution unit is available (after dispatch from IQ[0]).
— Needed GPR rename registers are available (after dispatch from IQ[0]).
— Needed FPR rename register is available (after dispatch from IQ[0]).
— Completion queue is not full (after dispatch from IQ[0]).

6.6.1.3 Completion Unit Resource Requirements
The following is a list of resources required to avoid stalls in the completion unit; note
the two completion entries are described as CQ[0] and CQ[1], where CQ[0] is
completion queue located at the end of the completion queue (see Figure 6-4).

• Requirements for completing an instruction from CQ[0] are as follows:

— Instruction in CQ[0] must be finished.
— Instruction in CQ[0] must not follow an unresolved predicted branch.
— Instruction in CQ[0] must not cause an exception.
6-30 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

.

each
• Requirements for completing an instruction from CQ[1] are as follows:

— Instruction in CQ[0] must complete in same cycle.
— Instruction in CQ[1] must be finished.
— Instruction in CQ[1] must not follow an unresolved predicted branch.
— Instruction in CQ[1] must not cause an exception.
— Instruction in CQ[1] must be an integer or load instruction.
— Number of CR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of GPR updates from both CQ[0] and CQ[1] must not exceed two
— Number of FPR updates from both CQ[0] and CQ[1] must not exceed two.

6.7 Instruction Latency Summary
Table 6-3 through Table 6-8 list latencies associated with instructions executed by
execution unit. Table 6-3 describes branch instruction latencies.

Table 6-4 lists system register instruction latencies.

Table 6-3. Branch Instructions

Mnemonic Primary Extended Latency

b[l][a] 18 — Unless these instructions update either the CTR or the LR, branch
operations are folded if they are either taken or predicted as taken. They fall
through if they are not taken or predicted as not taken.bc [l][a] 16 —

bcctr [l] 19 528

bclr [l] 19 16

Table 6-4. System Register Instructions

Mnemonic Primary Extended Unit Cycles Serialization

eieio 31 854 SRU 1 —

isync 19 150 SRU 2 Completion, refetch

mfmsr 31 83 SRU 1 —

mfspr (DBATs) 31 339 SRU 3 Execution

mfspr (IBATs) 31 339 SRU 3 —

mfspr (not I/DBATs) 31 339 SRU 1 Execution

mfsr 31 595 SRU 3 —

mfsrin 31 659 SRU 3 Execution

mftb 31 371 SRU 1 —

mtmsr 31 146 SRU 1 Execution

mtspr (DBATs) 31 467 SRU 2 Execution

mtspr (IBATs) 31 467 SRU 2 Execution
Chapter 6. Instruction Timing 6-31

teger
IU2

add,
Table 6-5 lists condition register logical instruction latencies.

Table 6-6 shows integer instruction latencies. Note that the IU1 executes all in
arithmetic instructions—multiply, divide, shift, rotate, add, subtract, and compare. The
executes all integer instructions except multiply and divide (that is, shift, rotate,
subtract, and compare).

mtspr (not I/DBATs) 31 467 SRU 2 Execution

mtsr 31 210 SRU 2 Execution

mtsrin 31 242 SRU 2 Execution

mttb 31 467 SRU 1 Execution

rfi 19 50 SRU 2 Completion, refetch

sc 17 - -1 SRU 2 Completion, refetch

sync 31 598 SRU 31 —

tlbsync 2 31 566 — —

Notes:
1 This assumes no pending stores in the store queue. If there are, the sync completes after they complete to memory.

If broadcast is enabled on the 60x bus, sync completes only after a successful broadcast.

2 tlbsync is dispatched only to the completion buffer (not to any execution unit) and is marked finished as it is
dispatched. Upon retirement, it waits for an external TLBISYNC signal to be asserted. In most systems TLBISYNC
is always asserted so the instruction is a no-op.

Table 6-5. Condition Register Logical Instructions

Mnemonic Primary Extended Unit Cycles Serialization

crand 19 257 SRU 1 Execution

crandc 19 129 SRU 1 Execution

creqv 19 289 SRU 1 Execution

crnand 19 225 SRU 1 Execution

crnor 19 33 SRU 1 Execution

cror 19 449 SRU 1 Execution

crorc 19 417 SRU 1 Execution

crxor 19 193 SRU 1 Execution

mcrf 19 0 SRU 1 Execution

mcrxr 31 512 SRU 1 Execution

mfcr 31 19 SRU 1 Execution

mtcrf 31 144 SRU 1 Execution

Table 6-4. System Register Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
6-32 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table 6-6. Integer Instructions

Mnemonic Primary Extended Unit Cycles Serialization

addc [o][.] 31 10 IU1/IU2 1 —

adde [o][.] 31 138 IU1/IU2 1 Execution

addi 14 — IU1/IU2 1 —

addic 12 — IU1/IU2 1 —

addic. 13 — IU1/IU2 1 —

addis 15 — IU1/IU2 1 —

addme [o][.] 31 234 IU1/IU2 1 Execution

addze [o][.] 31 202 IU1/IU2 1 Execution

add [o][.] 31 266 IU1/IU2 1 —

andc [.] 31 60 IU1/IU2 1 —

andi. 28 — IU1/IU2 1 —

andis. 29 — IU1/IU2 1 —

and [.] 31 28 IU1/IU2 1 —

cmp 31 0 IU1/IU2 1 —

cmpi 11 — IU1/IU2 1 —

cmpl 31 32 IU1/IU2 1 —

cmpli 10 — IU1/IU2 1 —

cntlzw [.] 31 26 IU1/IU2 1 —

divwu [o][.] 31 459 IU1 19 —

divw [o][.] 31 491 IU1 19 —

eqv [.] 31 284 IU1/IU2 1 —

extsb [.] 31 954 IU1/IU2 1 —

extsh [.] 31 922 IU1/IU2 1 —

mulhwu [.] 31 11 IU1/IU2 2,3,4,5,6 —

mulhw [.] 31 75 IU1/IU2 2,3,4,5 —

mulli 7 — IU1 2,3 —

mull [o][.] 31 235 IU1 2,3,4,5 —

nand [.] 31 476 IU1/IU2 1 —

neg [o][.] 31 104 IU1/IU2 1 —

nor [.] 31 124 IU1/IU2 1 —

orc [.] 31 412 IU1/IU2 1 —

ori 24 — IU1/IU2 1 —
Chapter 6. Instruction Timing 6-33

oint
ashes.
hen
on of
Table 6-7 shows latencies for floating-point instructions. Pipelined floating-p
instructions are shown with number of clocks in each pipeline stage separated by d
Floating-point instructions with a single entry in the cycles column are not pipelined; w
the FPU executes these nonpipelined instructions, it remains busy for the full durati
the instruction execution and is not available for subsequent instructions.

oris 25 — IU1/IU2 1 —

or [.] 31 444 IU1/IU2 1 —

rlwimi [.] 20 — IU1/IU2 1 —

rlwinm [.] 21 — IU1/IU2 1 —

rlwnm [.] 23 — IU1/IU2 1 —

slw [.] 31 24 IU1/IU2 1 —

srawi [.] 31 824 IU1/IU2 1 —

sraw [.] 31 792 IU1/IU2 1 —

srw [.] 31 536 IU1/IU2 1 —

subfc [o][.] 31 8 IU1/IU2 1 —

subfe [o][.] 31 136 IU1/IU2 1 Execution

subfic 8 — IU1/IU2 1 —

subfme [o][.] 31 232 IU1/IU2 1 Execution

subfze [o][.] 31 200 IU1/IU2 1 Execution

subf [.] 31 40 IU1/IU2 1 —

tw 31 4 IU1/IU2 2 —

twi 3 — IU1/IU2 2 —

xori 26 — IU1/IU2 1 —

xoris 27 — IU1/IU2 1 —

xor [.] 31 316 IU1/IU2 1 —

Table 6-7. Floating-Point Instructions

Mnemonic Primary Extended Unit Cycles Serialization

fabs [.] 63 264 FPU 1-1-1 —

fadds [.] 59 21 FPU 1-1-1 —

fadd [.] 63 21 FPU 1-1-1 —

fcmpo 63 32 FPU 1-1-1 —

fcmpu 63 0 FPU 1-1-1 —

Table 6-6. Integer Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
6-34 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

fctiwz [.] 63 15 FPU 1-1-1 —

fctiw [.] 63 14 FPU 1-1-1 —

fdivs [.] 59 18 FPU 17 —

fdiv [.] 63 18 FPU 31 —

fmadds [.] 59 29 FPU 1-1-1 —

fmadd [.] 63 29 FPU 2-1-1 —

fmr [.] 63 72 FPU 1-1-1 —

fmsubs [.] 59 28 FPU 1-1-1 —

fmsub [.] 63 28 FPU 2-1-1 —

fmuls [.] 59 25 FPU 1-1-1 —

fmul [.] 63 25 FPU 2-1-1 —

fnabs [.] 63 136 FPU 1-1-1 —

fneg [.] 63 40 FPU 1-1-1 —

fnmadds [.] 59 31 FPU 1-1-1 —

fnmadd [.] 63 31 FPU 2-1-1 —

fnmsubs [.] 59 30 FPU 1-1-1 —

fnmsub [.] 63 30 FPU 2-1-1 —

fres [.] 59 24 FPU 10 —

frsp [.] 63 12 FPU 1-1-1 —

frsqrte [.] 63 26 FPU 1-1-1 —

fsel [.] 63 23 FPU 1-1-1 —

fsubs [.] 59 20 FPU 1-1-1 —

fsub [.] 63 20 FPU 1-1-1 —

mcrfs 63 64 FPU 1-1-1 Execution

mffs [.] 63 583 FPU 1-1-1 Execution

mtfsb0 [.] 63 70 FPU 3 —

mtfsb1 [.] 63 38 FPU 3 —

mtfsfi [.] 63 134 FPU 3 —

mtfsf [.] 63 711 FPU 3 —

Table 6-7. Floating-Point Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
Chapter 6. Instruction Timing 6-35

ns are
Table 6-8 shows load and store instruction latencies. Pipelined load/store instructio
shown with cycles of total latency and throughput cycles separated by a colon.

Table 6-8. Load and Store Instructions

Mnemonic Primary Extended Unit Cycles Serialization

dcbf 31 86 LSU 3:51 Execution

dcbi 31 470 LSU 3:31 Execution

dcbst 31 54 LSU 3:51 Execution

dcbt 31 278 LSU 2:1 —

dcbtst 31 246 LSU 2:1 —

dcbz 31 1014 LSU 3:61, 2 Execution

eciwx 31 310 LSU 2:1 —

ecowx 31 438 LSU 2:1 —

icbi 31 982 LSU 3:41 Execution

lbz 34 — LSU 2:1 —

lbzu 35 — LSU 2:1 —

lbzux 31 119 LSU 2:1 —

lbzx 31 87 LSU 2:1 —

lfd 50 — LSU 2:1 —

lfdu 51 — LSU 2:1 —

lfdux 31 631 LSU 2:1 —

lfdx 31 599 LSU 2:1 —

lfs 48 — LSU 2:1 —

lfsu 49 — LSU 2:1 —

lfsux 31 567 LSU 2:1 —

lfsx 31 535 LSU 2:1 —

lha 42 — LSU 2:1 —

lhau 43 — LSU 2:1 —

lhaux 31 375 LSU 2:1 —

lhax 31 343 LSU 2:1 —

lhbrx 31 790 LSU 2:1 —

lhz 40 — LSU 2:1 —

lhzu 41 — LSU 2:1 —

lhzux 31 311 LSU 2:1 —

lhzx 31 279 LSU 2:1 —
6-36 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

lmw 46 — LSU 2 + n 3 Completion, execution

lswi 31 597 LSU 2 + n 3 Completion, execution

lswx 31 533 LSU 2 + n 3 Completion, execution

lwarx 31 20 LSU 3:1 Execution

lwbrx 31 534 LSU 2:1 —

lwz 32 — LSU 2:1 —

lwzu 33 — LSU 2:1 —

lwzux 31 55 LSU 2:1 —

lwzx 31 23 LSU 2:1 —

stb 38 — LSU 2:1 —

stbu 39 — LSU 2:1 —

stbux 31 247 LSU 2:1 —

stbx 31 215 LSU 2:1 —

stfd 54 — LSU 2:1 —

stfdu 55 — LSU 2:1 —

stfdux 31 759 LSU 2:1 —

stfdx 31 727 LSU 2:1 —

stfiwx 31 983 LSU 2:1 —

stfs 52 — LSU 2:1 —

stfsu 53 — LSU 2:1 —

stfsux 31 695 LSU 2:1 —

stfsx 31 663 LSU 2:1 —

sth 44 — LSU 2:1 —

sthbrx 31 918 LSU 2:1 —

sthu 45 — LSU 2:1 —

sthux 31 439 LSU 2:1 —

sthx 31 407 LSU 2:1 —

stmw 47 — LSU 2 + n 3 Execution

stswi 31 725 LSU 2 + n 3 Execution

stswx 31 661 LSU 2 + n 3 Execution

stw 36 — LSU 2:1 —

stwbrx 31 662 LSU 2:1 —

Table 6-8. Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
Chapter 6. Instruction Timing 6-37

stwcx. 31 150 LSU 8:8 Execution

stwu 37 — LSU 2:1 —

stwux 31 183 LSU 2:1 —

stwx 31 151 LSU 2:1 —

tlbie 31 306 LSU 3:41 Execution

Notes :
1 For cache-ops, the first number indicates the latency in finishing a single instruction; the second indicates the

throughput for back-to-back cache-ops. Throughput may be larger than the initial latency as more cycles may be
needed to complete the instruction to the cache, which stays busy keeping subsequent cache-ops from executing.

2 The throughput number of 6 cycles for dcbz assumes it is to nonglobal (M = 0) address space. For global address
space, throughput is at least 11 cycles.

3 Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of
cycles, where n is the number of words accessed by the instruction.

Table 6-8. Load and Store Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
6-38 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ains a
d and

ignals.
er.

er,
, or

of the
s that

ship.

used

ata
s also
ignals
Chapter 7
Signal Descriptions
70
70

This chapter describes the PowerPC 750 microprocessor’s external signals. It cont
concise description of individual signals, showing behavior when the signal is asserte
negated and when the signal is an input and an output.

NOTE
A bar over a signal name indicates that the signal is active
low—for example,ARTRY (address retry) andTS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as AP[0–3] (address bus parity signals)
and TT[0–4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

The 750 signals are grouped as follows:

• Address arbitration—The 750 uses these signals to arbitrate for address bus
mastership.

• Address transfer start—These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer—These signals include the address bus and address parity s
They are used to transfer the address and to ensure the integrity of the transf

• Transfer attribute—These signals provide information about the type of transf
such as the transfer size and whether the transaction is bursted, write-through
cache-inhibited.

• Address transfer termination—These signals are used to acknowledge the end
address phase of the transaction. They also indicate whether a condition exist
requires the address phase to be repeated.

• Data arbitration—The 750 uses these signals to arbitrate for data bus master

• Data transfer—These signals, which consist of the data bus and data parity, are
to transfer the data and to ensure the integrity of the transfer.

• Data transfer termination—Data termination signals are required after each d
beat in a data transfer. In a single-beat transaction, the data termination signal
indicate the end of the tenure; while in burst accesses, the data termination s
Chapter 7. Signal Descriptions 7-1

 data
to be

cessing

op
 and,

in
ity.

also

chip
oard-
apply to individual beats and indicate the end of the tenure only after the final
beat. They also indicate whether a condition exists that requires the data phase
repeated.

• L2 cache address/data—The 750 has separate address and data buses for ac
the L2 cache (not supported in the PowerPC 740).

• L2 cache clock/control—These signals provide clocking and control for the L2
cache (not supported in the 740).

• Interrupts/resets—These signals include the external interrupt signal, checkst
signals, and both soft reset and hard reset signals. They are used to interrupt
under various conditions, to reset the processor.

• Processor status and control—These signals are used to set the reservation
coherency bit, enable the time base, and other functions. They are also used
conjunction with such resources as secondary caches and the time base facil

• Clock control—These signals determine the system clock frequency. They can
be used to synchronize multiprocessor systems.

• Test interface—The JTAG (IEEE 1149.1a-1993) interface and the common on-
processor (COP) unit provide a serial interface to the system for performing b
level boundary-scan interconnect tests.
7-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ped.
7.1 Signal Configuration
Figure 7-1 illustrates the 750’s signal configuration, showing how the signals are grou
A pinout showing pin numbers is included in the 750 hardware specifications.

Figure 7-1. PowerPC 750 Signal Groups

Data
Arbitration

L2 Cache
Address/

Data

BR
BG

ABB

TS

AP[0–3]

GBL

TSIZ[0–2]

AACK

ARTRY

SYSCLK

DBG

DBWO

DBB

D[0–63]

DP[0–7]

TA
DRTRY

TEA

INT

JTAG/COP

Factory Test

1

1

1

1

1

5

3

4

TBST

WT

PLL_CFG[0–3]

TT[0–4]
5

4

TBEN

1
CLK_OUT

MCP

SRESET

TLBISYNC

L2ADDR[16–0]

SMI

HRESET

QREQ

QACK

CKSTP_IN

CKSTP_OUT

L2DATA[0–63]

L2DP[0–7]

L2CE
L2WE
L2CLK_OUT[A–B]

1

3

1

1

1

1

1

1

1

8

64

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CI 1

A[0–31]
32

L2SYNC_OUT

Address
Arbitration

Address
Bus

L2SYNC_IN

L2ZZ

L2 Cache
Clock/

Control

Address
Termination

Address
Start

Transfer
Attributes

Data
Transfer

Data
Termination

Interrupts/
Resets

Processor
Status/
Control

VDD VDD (I/O)

Clock
Control

Test
Interface

RSRV

17

2

1

1

1

64

8

1

1

Not supported in the 740
L2VDD

L2AVDD

750

DBDIS
1

AVDD
Chapter 7. Signal Descriptions 7-3

that
ion,”
ignals

est the
s when
t, see

e
,
uest

us.
the

tion
ses

ted,

 the

curs
7.2 Signal Descriptions
This section describes individual 750 signals, grouped according to Figure 7-1. Note
the following sections summarize signal functions. Chapter 8, “Bus Interface Operat
describes many of these signals in greater detail, both with respect to how individual s
function and how groups of signals interact.

7.2.1 Address Bus Arbitration Signals
The address arbitration signals are input and output signals the 750 uses to requ
address bus, recognize when the request is granted, and indicate to other device
mastership is granted. For a detailed description of how these signals interac
Section 8.3.1, “Address Bus Arbitration.”

7.2.1.1 Bus Request (BR)—Output
Following are the state meaning and timing comments for theBR output signal.

State Meaning Asserted—Indicates that the 750 is requesting mastership of th
address bus. Note thatBR may be asserted for one or more cycles
and then de-asserted due to an internal cancellation of the bus req
(for example, due to a load hit in the touch load buffer). See
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 750 is not requesting the address b
The 750 may have no bus operation pending, it may be parked, or
ARTRY input was asserted on the previous bus clock cycle.

Timing Comments Assertion—Occurs when the 750 is not parked and a bus transac
is needed. This may occur even if the two possible pipeline acces
have occurred.BR will also be asserted for one cycle during the
execution of adcbz instruction, and during the execution of a load
instruction which hits in the touch load buffer.

Negation—Occurs for at least one bus clock cycle after an accep
qualified bus grant (seeBG andABB), even if another transaction is
pending. It is also negated for at least one bus clock cycle when
assertion ofARTRY is detected on the bus.

7.2.1.2 Bus Grant (BG)—Input
Following are the state meaning and timing comments for theBG input signal.

State Meaning Asserted—Indicates that the 750 may, with proper qualification,
assume mastership of the address bus. A qualified bus grant oc
whenBG is asserted andABB andARTRY are not asserted the bus
cycle following the assertion ofAACK. TheABB andARTRY
signals are driven by the 750 or other bus masters. If the 750 is
parked,BR need not be asserted for the qualified bus grant. See
Section 8.3.1, “Address Bus Arbitration.”
7-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

bus

e
heck

ion to

the
ycle

e

nt,

n
p,

r bus
 a
Negated— Indicates that the 750 is not the next potential address
master.

Timing Comments Assertion—May occur at any time to indicate the 750 can use th
address bus. After the 750 assumes bus mastership, it does not c
for a qualified bus grant again until the cycle during which the
address bus tenure completes (assuming it has another transact
run). The 750 does not accept aBG in the cycles between the
assertion of anyTS andAACK.

Negation—May occur at any time to indicate the 750 cannot use
bus. The 750 may still assume bus mastership on the bus clock c
of the negation ofBG because during the previous cycleBG
indicated to the 750 that it could take mastership (if qualified).

7.2.1.3 Address Bus Busy (ABB)
The address bus busy (ABB) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy (ABB)—Output
Following are the state meaning and timing comments for theABB output signal.

State Meaning Asserted—Indicates that the 750 is the address bus master. Se
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 750 is not using the address bus. IfABB
is negated during the bus clock cycle following a qualified bus gra
the 750 did not accept mastership even ifBR was asserted. This can
occur if a potential transaction is aborted internally before the
transaction begins.

Timing Comments Assertion—Occurs on the bus clock cycle following a qualifiedBG
that is accepted by the processor (see Negated).

Negation—Occurs for a minimum of one-half bus clock cycle
following the assertion ofAACK. If ABB is negated during the bus
clock cycle after a qualified bus grant, the 750 did not accept
mastership, even ifBR was asserted.

High Impedance—Occurs afterABB is negated.

7.2.1.3.2 Address Bus Busy (ABB)—Input
Following are the state meaning and timing comments for theABB input signal.

State Meaning Asserted—Indicates that the address bus is in use. This conditio
effectively blocks the 750 from assuming address bus ownershi
regardless of theBG input; see Section 8.3.1, “Address Bus
Arbitration.”

Negated—Indicates that the address bus is not owned by anothe
master and that it is available to the 750 when accompanied by
qualified bus grant.
Chapter 7. Signal Descriptions 7-5

e

us.

ss bus
ry

.2,

s are
lso
an

ction
 for

monitor
, refer
Timing Comments Assertion—May occur when the 750 must be kept from using th
address bus (and the processor is not currently assertingABB).

Negation—May occur whenever the 750 can use the address b

7.2.2 Address Transfer Start Signals
Address transfer start signals are input and output signals that indicate that an addre
transfer has begun. The transfer start (TS) signal identifies the operation as a memo
transaction.

For detailed information about howTS interacts with other signals, refer to Section 8.3
“Address Transfer.”

7.2.2.1 Transfer Start (TS)
TheTS signal is both an input and an output signal on the 750.

7.2.2.1.1 Transfer Start (TS)—Output
Following are the state meaning and timing comments for theTS output signal.

State Meaning Asserted—Indicates that the 750 has begun a memory bus
transaction and that the address bus and transfer attribute signal
valid. When asserted with the appropriate TT[0–4] signals it is a
an implied data bus request for a memory transaction (unless it is
address-only operation).

Negated—Indicates that no bus transaction is occurring during
normal operation.

Timing Comments Assertion—Coincides with the assertion ofABB.
Negation—Occurs one bus clock cycle afterTS is asserted.
High Impedance—Coincides with the negation ofABB.

7.2.2.1.2 Transfer Start (TS)—Input
Following are the state meaning and timing comments for theTS input signal.

State Meaning Asserted—Indicates that another master has begun a bus transa
and that the address bus and transfer attribute signals are valid
snooping (seeGBL).

Negated—Indicates that no bus transaction is occurring.

Timing Comments Assertion—May occur during the assertion ofABB.
Negation—Must occur one bus clock cycle afterTS is asserted.

7.2.3 Address Transfer Signals
The address transfer signals are used to transmit the address and to generate and
parity for the address transfer. For a detailed description of how these signals interact
to Section 8.3.2, “Address Transfer.”
7-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

als.

s.

ss in
urst
dress
d

not

ed

p

the

g one
e bus.

ls on

s of
odd
al

”

7.2.3.1 Address Bus (A[0–31])
The address bus (A[0–31]) consists of 32 signals that are both input and output sign

7.2.3.1.1 Address Bus (A[0–31])—Output
Following are the state meaning and timing comments for the A[0–31] output signal

State Meaning Asserted/Negated—Represents the physical address (real addre
the architecture specification) of the data to be transferred. On b
transfers, the address bus presents the double-word-aligned ad
containing the critical code/data that missed the cache on a rea
operation, or the first double word of the cache line on a write
operation. Note that the address output during burst operations is
incremented. See Section 8.3.2, “Address Transfer.”

Timing Comments Assertion/Negation—Occurs on the bus clock cycle after a qualifi
bus grant (coincides with assertion ofABB andTS).

High Impedance—Occurs one bus clock cycle afterAACK is
asserted.

7.2.3.1.2 Address Bus (A[0–31])—Input
Following are the state meaning and timing comments for the A[0–31] input signals.

State Meaning Asserted/Negated—Represents the physical address of a snoo
operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle as
assertion ofTS; is sampled by 750 only on this cycle.

7.2.3.2 Address Bus Parity (AP[0–3])
The address bus parity (AP[0–3]) signals are both input and output signals reflectin
bit of odd-byte parity for each of the 4 bytes of address when a valid address is on th

7.2.3.2.1 Address Bus Parity (AP[0–3])—Output
Following are the state meaning and timing comments for the AP[0–3] output signa
the 750.

State Meaning Asserted/Negated—Represents odd parity for each of the 4 byte
the physical address for a transaction. Odd parity means that an
number of bits, including the parity bit, are driven high. The sign
assignments correspond to the following:

AP0 A[0–7]
AP1 A[8–15]
AP2 A[16–23]
AP3 A[24–31]

For more information, see Section 8.3.2.1, “Address Bus Parity.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].
Chapter 7. Signal Descriptions 7-7

n the

s of
rity
r the
0
ent

such
burst
, see

mory

or a
-1.

ls on

n the

ee
7.2.3.2.2 Address Bus Parity (AP[0–3])—Input
Following are the state meaning and timing comments for the AP[0–3] input signal o
750.

State Meaning Asserted/Negated—Represents odd parity for each of the 4 byte
the physical address for snooping operations. Detected even pa
causes the processor to take a machine check exception or ente
checkstop state if address parity checking is enabled in the HID
register; see Section 2.1.2.2, “Hardware Implementation-Depend
Register 0.”

Timing Comments Assertion/Negation—The same as A[0–31].

7.2.4 Address Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer—
as the size of the transfer, whether it is a read or write operation, and whether it is a
or single-beat transfer. For a detailed description of how these signals interact
Section 8.3.2, “Address Transfer.”

Note that some signal functions vary depending on whether the transaction is a me
access or an I/O access.

7.2.4.1 Transfer Type (TT[0–4])
The transfer type (TT[0–4]) signals consist of five input/output signals on the 750. F
complete description of TT[0–4] signals and for transfer type encodings, see Table 7

7.2.4.1.1 Transfer Type (TT[0–4])—Output
Following are the state meaning and timing comments for the TT[0–4] output signa
the 750.

State Meaning Asserted/Negated—Indicates the type of transfer in progress.

Timing Comments Assertion/Negation/High Impedance—The same as A[0–31].

7.2.4.1.2 Transfer Type (TT[0–4])—Input
Following are the state meaning and timing comments for the TT[0–4] input signals o
750.

State Meaning Asserted/Negated—Indicates the type of transfer in progress (s
Table 7-2).

Timing Comments Assertion/Negation—The same as A[0–31].
7-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table 7-1 describes the transfer encodings for an 750 bus master.

Table 7-1. Transfer Type Encodings for PowerPC 750 Bus Master

PowerPC 750
Bus Master
Transaction

Transaction
Source

TT0 TT1 TT2 TT3 TT4
60x Bus

Specification
Command

Transaction

Address only1 dcbst 0 0 0 0 0 Clean block Address only

Address only1 dcbf 0 0 1 0 0 Flush block Address only

Address only1 sync 0 1 0 0 0 sync Address only

Address only1 dcbz or dcbi 0 1 1 0 0 Kill block Address only

Address only1 eieio 1 0 0 0 0 eieio Address only

Single-beat
write (nonGBL)

ecowx 1 0 1 0 0 External control
word write

Single-beat
write

N/A N/A 1 1 0 0 0 TLB invalidate Address only

Single-beat
read (nonGBL)

eciwx 1 1 1 0 0 External control
word read

Single-beat
read

N/A N/A 0 0 0 0 1 lwarx
reservation set

Address only

N/A N/A 0 0 1 0 1 Reserved —

N/A N/A 0 1 0 0 1 tlbsync Address only

N/A N/A 0 1 1 0 1 icbi Address only

N/A N/A 1 X X 0 1 Reserved —

Single-beat
write

Caching-inhibited
or write-through
store

0 0 0 1 0 Write-with-flush Single-beat
write or burst

Burst
(nonGBL)

Cast-out, or
snoop copyback

0 0 1 1 0 Write-with-kill Burst

Single-beat
read

Caching-inhibited
load or instruction
fetch

0 1 0 1 0 Read Single-beat
read or burst

Burst Load miss, store
miss, or
instruction fetch

0 1 1 1 0 Read-with-intent-
to-modify

Burst

Single-beat
write

stwcx. 1 0 0 1 0 Write-with-flush-
atomic

Single-beat
write

N/A N/A 1 0 1 1 0 Reserved N/A

Single-beat
read

lwarx (caching-
inhibited load)

1 1 0 1 0 Read-atomic Single-beat
read or burst

Burst lwarx
(load miss)

1 1 1 1 0 Read-with-intent-
to-modify-atomic

Burst

N/A N/A 0 0 0 1 1 Reserved —
Chapter 7. Signal Descriptions 7-9

snoop
Table 7-2 describes the 60x bus specification transfer encodings and the 750 bus
response on an address hit.

N/A N/A 0 0 1 1 1 Reserved —

N/A N/A 0 1 0 1 1 Read-with-no-
intent-to-cache

Single-beat
read or burst

N/A N/A 0 1 1 1 1 Reserved —

N/A N/A 1 X X 1 1 Reserved —

Note : 1Address-only transaction occurs if enabled by setting HID0[ABE] bit to 1.

Table 7-2. PowerPC 750 Snoop Hit Response

60x Bus Specification
Command

Transaction TT0 TT1 TT2 TT3 TT4
PowerPC 750
Bus Snooper;
Action on Hit

Clean block Address only 0 0 0 0 0 N/A

Flush block Address only 0 0 1 0 0 N/A

sync Address only 0 1 0 0 0 N/A

Kill block Address only 0 1 1 0 0 Flush, cancel
reservation

eieio Address only 1 0 0 0 0 N/A

External control word write Single-beat write 1 0 1 0 0 N/A

TLB Invalidate Address only 1 1 0 0 0 N/A

External control word read Single-beat read 1 1 1 0 0 N/A

lwarx
reservation set

Address only 0 0 0 0 1 N/A

Reserved — 0 0 1 0 1 N/A

tlbsync Address only 0 1 0 0 1 N/A

icbi Address only 0 1 1 0 1 N/A

Reserved — 1 X X 0 1 N/A

Write-with-flush Single-beat write or burst 0 0 0 1 0 Flush, cancel
reservation

Write-with-kill Single-beat write or burst 0 0 1 1 0 Kill, cancel
reservation

Read Single-beat read or burst 0 1 0 1 0 Clean or flush

Read-with-intent-to-modify Burst 0 1 1 1 0 Flush

Table 7-1. Transfer Type Encodings for PowerPC 750 Bus Master (Continued)

PowerPC 750
Bus Master
Transaction

Transaction
Source

TT0 TT1 TT2 TT3 TT4
60x Bus

Specification
Command

Transaction
7-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

–2])

 with
, as
are
ows
for
ible
7.2.4.2 Transfer Size (TSIZ[0–2])—Output
Following are the state meaning and timing comments for the transfer size (TSIZ[0
output signals on the 750.

State Meaning Asserted/Negated—For memory accesses, these signals along
TBST, indicate the data transfer size for the current bus operation
shown in Table 7-3. Table 8-4 shows how the transfer size signals
used with the address signals for aligned transfers. Table 8-5 sh
how the transfer size signals are used with the address signals
misaligned transfers. Note that the 750 does not generate all poss
TSIZ[0–2] encodings.

For external control instructions (eciwxandecowx), TSIZ[0–2] are
used to output bits 29–31 of the external access register (EAR),
which are used to form the resource ID (TBST||TSIZ0–TSIZ2).

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

Write-with-flush-atomic Single-beat write 1 0 0 1 0 Flush, cancel
reservation

Reserved N/A 1 0 1 1 0 N/A

Read-atomic Single-beat read or burst 1 1 0 1 0 Clean or flush

Read-with-intent-to modify-
atomic

Burst 1 1 1 1 0 Flush

Reserved — 0 0 0 1 1 N/A

Reserved — 0 0 1 1 1 N/A

Read-with-no-intent-to-cache Single-beat read or burst 0 1 0 1 1 Clean

Reserved — 0 1 1 1 1 N/A

Reserved — 1 X X 1 1 N/A

Table 7-3. Data Transfer Size

TBST TSIZ[0–2] Transfer Size

Asserted 010 Burst (32 bytes)

Negated 000 8 bytes

Negated 001 1 byte

Negated 010 2 bytes

Negated 011 3 bytes

Table 7-2. PowerPC 750 Snoop Hit Response (Continued)

60x Bus Specification
Command

Transaction TT0 TT1 TT2 TT3 TT4
PowerPC 750
Bus Snooper;
Action on Hit
Chapter 7. Signal Descriptions 7-11

read

ning

d,
ns

a

7.2.4.3 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on the 750.

7.2.4.3.1 Transfer Burst (TBST)—Output
Following are the state meaning and timing comments for theTBST output signal.

State Meaning Asserted—Indicates that a burst transfer is in progress.

Negated—Indicates that a burst transfer is not in progress.

For external control instructions (eciwxandecowx), TBST is used to
output bit 28 of the EAR, which is used to form the resource ID
(TBST||TSIZ0–TSIZ2).

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.3.2 Transfer Burst (TBST)—Input
Following are the state meaning and timing comments for theTBST input signal.

State Meaning Asserted/Negated—Used when snooping for single-beat reads (
with no intent to cache).

Timing Comments Assertion/Negation—The same as A[0–31].

7.2.4.4 Cache Inhibit (CI)—Output
The cache inhibit (CI) signal is an output signal on the 750. Following are the state mea
and timing comments for theCI signal.

State Meaning Asserted—Indicates that a single-beat transfer will not be cache
reflecting the setting of the I bit for the block or page that contai
the address of the current transaction.

Negated—Indicates that a burst transfer will allocate an 750 dat
cache block.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

Negated 100 4 bytes

Negated 101 5 bytes1

Negated 110 6 bytes1

Negated 111 7 bytes1

Note : 1Not generated by 750.

Table 7-3. Data Transfer Size (Continued)

TBST TSIZ[0–2] Transfer Size
7-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ate

-
at
 a

;

ting
e
and

 750.

0.

phase
uld be
8.3.3,
7.2.4.5 Write-Through (WT)—Output
The write-through (WT) signal is an output signal on the 750. Following are the st
meaning and timing comments for theWT signal.

State Meaning Asserted—Indicates that a single-beat write transaction is write
through, reflecting the value of the W bit for the block or page th
contains the address of the current transaction. Assertion during
read operation indicates instruction fetching.

Negated—Indicates that a write transaction is not write-through
during a read operation negation indicates a data load.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.6 Global (GBL)
The global (GBL) signal is an input/output signal on the 750.

7.2.4.6.1 Global (GBL)—Output
Following are the state meaning and timing comments for theGBL output signal.

State Meaning Asserted—Indicates that a transaction is global, reflecting the set
of the M bit for the block or page that contains the address of th
current transaction (except in the case of copy-back operations
instruction fetches, which are nonglobal.)

Negated—Indicates that a transaction is not global.

Timing Comments Assertion/Negation—The same as A[0–31].
High Impedance—The same as A[0–31].

7.2.4.6.2 Global (GBL)—Input
Following are the state meaning and timing comments for theGBL input signal.

State Meaning Asserted—Indicates that a transaction must be snooped by the

Negated—Indicates that a transaction is not snooped by the 75

Timing Comments Assertion/Negation—The same as A[0–31].

7.2.5 Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address
of the transaction has completed successfully or must be repeated, and when it sho
terminated. For detailed information about how these signals interact, see Section
“Address Transfer Termination.”
Chapter 7. Signal Descriptions 7-13

re

 the

ccess
ts
rtion

f

date
serts

ped

of

es,
nce
ck
to
7.2.5.1 Address Acknowledge (AACK)—Input
The address acknowledge (AACK) signal is an input-only signal on the 750. Following a
the state meaning and timing comments for theAACK signal.

State Meaning Asserted—Indicates that the address phase of a transaction is
complete. The address bus will go to a high-impedance state on
next bus clock cycle. The 750 samplesARTRY on the bus clock
cycle following the assertion ofAACK.

Negated—(DuringABB) indicates that the address bus and the
transfer attributes must remain driven.

Timing Comments Assertion—May occur as early as the bus clock cycle afterTS is
asserted; assertion can be delayed to allow adequate address a
time for slow devices. For example, if an implementation suppor
slow snooping devices, an external arbiter can postpone the asse
of AACK.

Negation—Must occur one bus clock cycle after the assertion o
AACK.

7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY) signal is both an input and output signal on the 750.

7.2.5.2.1 Address Retry (ARTRY)—Output
Following are the state meaning and timing comments for theARTRY output signal.

State Meaning Asserted—Indicates that the 750 detects a condition in which a
snooped address tenure must be retried. If the 750 needs to up
memory as a result of the snoop that caused the retry, the 750 as
BR the second cycle afterAACK if ARTRY is asserted.

High Impedance—Indicates that the 750 does not need the snoo
address tenure to be retried.

Timing Comments Assertion—Asserted the third bus cycle following the assertion
TS if a retry is required.

Negation—Occurs the second bus cycle after the assertion ofAACK.
Since this signal may be simultaneously driven by multiple devic
it negates in a unique fashion. First the buffer goes to high impeda
for a minimum of one-half processor cycle (dependent on the clo
mode), then it is driven negated for one bus cycle before returning
high impedance.

This special method of negation may be disabled by setting
precharge disable in HID0.
7-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

tely
y
f the
ster,

t
e

d to

e
ly

f

rderly
signal

or
how

ut

ate

n,
 data
7.2.5.2.2 Address Retry (ARTRY)—Input
Following are the state meaning and timing comments for theARTRY input signal.

State Meaning Asserted—If the 750 is the address bus master,ARTRY indicates
that the 750 must retry the preceding address tenure and immedia
negateBR (if asserted). If the associated data tenure has alread
started, the 750 also aborts the data tenure immediately, even i
burst data has been received. If the 750 is not the address bus ma
this input indicates that the 750 should immediately negateBR to
allow an opportunity for a copy-back operation to main memory
after a snooping bus master assertsARTRY. Note that the subsequen
address presented on the address bus may not be the same on
associated with the assertion of theARTRY signal.

Negated/High Impedance—Indicates that the 750 does not nee
retry the last address tenure.

Timing Comments Assertion—May occur as early as the second cycle following th
assertion ofTS, and must occur by the bus clock cycle immediate
following the assertion ofAACK if an address retry is required.

Negation—Must occur two bus clock cycles after the assertion o
AACK.

7.2.6 Data Bus Arbitration Signals
Like the address bus arbitration signals, data bus arbitration signals maintain an o
process for determining data bus mastership. Note that there is no data bus arbitration
equivalent to the address bus arbitration signalBR (bus request), because, except f
address-only transactions,TS implies data bus requests. For a detailed description on
these signals interact, see Section 8.4.1, “Data Bus Arbitration.”

One special signal,DBWO, allows the 750 to be configured dynamically to write data o
of order with respect to read data. For detailed information about usingDBWO, see
Section 8.10, “Using Data Bus Write Only.”

7.2.6.1 Data Bus Grant (DBG)—Input
The data bus grant (DBG) signal is an input-only signal on the 750. Following are the st
meaning and timing comments for theDBG signal.

State Meaning Asserted—Indicates that the 750 may, with the proper qualificatio
assume mastership of the data bus. The 750 derives a qualified
bus grant whenDBG is asserted andDBB, DRTRY, andARTRY are
negated; that is, the data bus is not busy (DBB is negated), there is no
outstanding attempt to retry the current data tenure (DRTRY is
negated), and there is no outstanding attempt to perform anARTRY
of the associated address tenure.

Negated—Indicates that the 750 must hold off its data tenures.
Chapter 7. Signal Descriptions 7-15

e

me

re

r an
fore

the

ing

0
d is

d

Timing Comments Assertion—May occur any time to indicate the 750 is free to tak
data bus mastership. It is not sampled untilTS is asserted.

Negation—May occur at any time to indicate the 750 cannot assu
data bus mastership.

7.2.6.2 Data Bus Write Only (DBWO)—Input
The data bus write only (DBWO) signal is an input-only signal on the 750. Following a
the state meaning and timing comments for theDBWO signal.

State Meaning Asserted—Indicates that the 750 may run the data bus tenure fo
outstanding write address even if a read address is pipelined be
the write address. Refer to Section 8.10, “Using Data Bus Write
Only,” for detailed instructions for usingDBWO.

Negated—Indicates that the 750 must run the data bus tenures in
same order as the address tenures.

Timing Comments Assertion—Must occur no later than a qualifiedDBG for an
outstanding write tenure.DBWO is sampled by the 750 on the clock
of a qualifiedDBG. If no write requests are pending, the 750 will
ignoreDBWO and assume data bus ownership for the next pend
read request.

Negation—May occur any time after a qualifiedDBG and before the
next assertion ofDBG.

7.2.6.3 Data Bus Busy (DBB)
The data bus busy (DBB) signal is both an input and output signal on the 750.

7.2.6.3.1 Data Bus Busy (DBB)—Output
Following are the state meaning and timing comments for theDBB output signal.

State Meaning Asserted—Indicates that the 750 is the data bus master. The 75
always assumes data bus mastership if it needs the data bus an
given a qualified data bus grant (seeDBG).

Negated—Indicates that the 750 is not using the data bus.

Timing Comments Assertion—Occurs during the bus clock cycle following a qualifie
DBG.

Negation—Occurs for a minimum of one-half bus clock cycle
(dependent on clock mode) following the assertion of the finalTA.

High Impedance—Occurs afterDBB is negated.

7.2.6.3.2 Data Bus Busy (DBB)—Input
Following are the state meaning and timing comments for theDBB input signal.

State Meaning Asserted—Indicates that another device is bus master.
Negated—Indicates that the data bus is free (with proper
qualification, seeDBG) for use by the 750.
7-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ing

and to
data

and
and

 low

r

nals.

te.
ta.

of
Timing Comments Assertion—Must occur when the 750 must be prevented from us
the data bus.

Negation—May occur whenever the data bus is available.

7.2.7 Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data
generate and monitor parity for the data transfer. For a detailed description of how the
transfer signals interact, see Section 8.4.3, “Data Transfer.”

7.2.7.1 Data Bus (DH[0–31], DL[0–31])
The data bus (DH[0–3]1 and DL[0–31]) consists of 64 signals that are both inputs
outputs on the 750. Following are the state meaning and timing comments for the DH
DL signals.

State Meaning The data bus has two halves—data bus high (DH) and data bus
(DL). See Table 7-4 for the data bus lane assignments.

Timing Comments The data bus is driven once for noncached transactions and fou
times for cache transactions (bursts).

7.2.7.1.1 Data Bus (DH[0–31], DL[0–31])—Output
Following are the state meaning and timing comments for the DH and DL output sig

State Meaning Asserted/Negated—Represents the state of data during a data wri
Byte lanes not selected for data transfer will not supply valid da

Timing Comments Assertion/Negation—Initial beat coincides withDBB and, for
bursts, transitions on the bus clock cycle following each assertion
TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion ofTA, following the assertion ofTEA, or in certain
ARTRY cases.

Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DH[0–7] 0

DH[8–15] 1

DH[16–23] 2

DH[24–31] 3

DL[0–7] 4

DL[8–15] 5

DL[16–23] 6

DL[24–31] 7
Chapter 7. Signal Descriptions 7-17

als.

read

cle

nals.

s of
its,

 is

ata.
the
rors
7.2.7.1.2 Data Bus (DH[0–31], DL[0–31])—Input
Following are the state meaning and timing comments for the DH and DL input sign

State Meaning Asserted/Negated—Represents the state of data during a data
transaction.

Timing Comments Assertion/Negation—Data must be valid on the same bus clock cy
thatTA is asserted.

7.2.7.2 Data Bus Parity (DP[0–7])
The eight data bus parity (DP[0–7]) signals on the 750 are both output and input sig

7.2.7.2.1 Data Bus Parity (DP[0–7])—Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning Asserted/Negated—Represents odd parity for each of the 8 byte
data write transactions. Odd parity means that an odd number of b
including the parity bit, are driven high. The generation of parity
enabled through HID0. The signal assignments are listed in
Table 7-5.

Timing Comments Assertion/Negation—The same as DL[0–31].
High Impedance—The same as DL[0–31].

7.2.7.2.2 Data Bus Parity (DP[0–7])—Input
Following are the state meaning and timing comments for the DP input signals.

State Meaning Asserted/Negated—Represents odd parity for each byte of read d
Parity is checked on all data byte lanes, regardless of the size of
transfer. Detected even parity causes a checkstop if data parity er
are enabled in the HID0 register.

Timing Comments Assertion/Negation—The same as DL[0–31].

Table 7-5. DP[0–7] Signal Assignments

Signal Name Signal Assignments

DP0 DH[0–7]

DP1 DH[8–15]

DP2 DH[16–23]

DP3 DH[24–31]

DP4 DL[0–7]

DP5 DL[8–15]

DP6 DL[16–23]

DP7 DL[24–31]
7-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ring

the

.

 the
ed

at in a
enure,
dicate

ansfer

).

.”

t to

ata
ur at

o

y)
rt
7.2.7.3 Data Bus Disable (DBDIS)—Input
Following are the state meaning and timing comments for theDBDIS signal.

State Meaning Asserted—Indicates (for a write transaction) that the 750 must
release the data bus and the data bus parity to high impedance du
the following cycle. The data tenure remains active,DBB remains
driven, and the transfer termination signals are still monitored by
750.

Negated—Indicates the data bus should remain normally driven
DBDIS is ignored during read transactions.

Timing Comments Assertion/Negation—May be asserted on any clock cycle when
750 is driving or will be driving the data bus; may remain assert
multiple cycles.

7.2.8 Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note th
single-beat transaction, the data termination signals also indicate the end of the t
while in burst accesses, the data termination signals apply to individual beats and in
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, “Data Tr
Termination.”

7.2.8.1 Transfer Acknowledge (TA)—Input
Following are the state meaning and timing comments for theTA signal.

State Meaning Asserted— Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully (unlessDRTRY is asserted on the next bus clock cycle
Note thatTA must be asserted for each data beat in a burst
transaction and must be asserted during assertion ofDRTRY. For
more information, see Section 8.4.4, “Data Transfer Termination

Negated—(DuringDBB) indicates that, untilTA is asserted, the 750
must continue to drive the data for the current write or must wai
sample the data for reads.

Timing Comments Assertion—Must not occur beforeAACK for the current transaction
(if the address retry mechanism is to be used to prevent invalid d
from being used by the processor); otherwise, assertion may occ
any time during the assertion ofDBB. The system can withhold
assertion ofTA to indicate that the 750 should insert wait states t
extend the duration of the data beat.

Negation—Must occur after the bus clock cycle of the final (or onl
data beat of the transfer. For a burst transfer, the system can asseTA
Chapter 7. Signal Descriptions 7-19

eat.

the

r

ta

e

nt

are
as
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next b

7.2.8.2 Data Retry (DRTRY)—Input
Following are the state meaning and timing comments for theDRTRY signal.

State Meaning Asserted—Indicates that the 750 must invalidate the data from
previous read operation.

Negated—Indicates that data presented withTA on the previous read
operation is valid. Note thatDRTRY is ignored for write
transactions.

Timing Comments Assertion—Must occur during the bus clock cycle immediately afte
TA is asserted if a retry is required. TheDRTRY signal may be held
asserted for multiple bus clock cycles. WhenDRTRY is negated,
data must have been valid on the previous clock withTA asserted.

Negation—Must occur during the bus clock cycle after a valid da
beat. This may occur several cycles afterDBB is negated, effectively
extending the data bus tenure.

Start-up—TheDRTRY signal is sampled at the negation of
HRESET; ifDRTRY is asserted, no-DRTRY mode is selected. If
DRTRY is negated at start-up,DRTRY is enabled.

7.2.8.3 Transfer Error Acknowledge (TEA)—Input
Following are the state meaning and timing comments for theTEA signal.

State Meaning Asserted—Indicates that a bus error occurred. Causes a machin
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared
(MSR[ME] = 0)). For more information, see Section 4.5.2.2,
“Checkstop State (MSR[ME] = 0).” Assertion terminates the curre
transaction; that is, assertion ofTA andDRTRY are ignored. The
assertion ofTEA causes the negation/high impedance ofDBB in the
next clock cycle. However, data entering the GPR or the cache
not invalidated. (Note that the term ‘exception’ is also referred to
‘interrupt’ in the architecture specification.)

Negated—Indicates that no bus error was detected.

Timing Comments Assertion—May be asserted whileDBB is asserted, and the cycle
afterTA during a read operation.TEA should be asserted for one
cycle only.

Negation—TEA must be negated no later than the negation ofDBB.
7-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

eived,
e 750
r a
Reset

50

l

n if

lly
7.2.9 System Status Signals
Most system status signals are input signals that indicate when exceptions are rec
when checkstop conditions have occurred, and when the 750 must be reset. Th
generates the output signal,CKSTP_OUT, when it detects a checkstop condition. Fo
detailed description of these signals, see Section 8.7, “Interrupt, Checkstop, and
Signals.”

7.2.9.1 Interrupt (INT)—Input
Following are the state meaning and timing comments for theINT signal.

State Meaning Asserted—The 750 initiates an interrupt if MSR[EE] is set;
otherwise, the 750 ignores the interrupt. To guarantee that the 7
will take the external interrupt,INT must be held active until the 750
takes the interrupt; otherwise, whether the 750 takes an externa
interrupt depends on whether the MSR[EE] bit was set while theINT
signal was held active.

Negated—Indicates that normal operation should proceed. See
Section 8.7.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. TheINT input is level-sensitive.
Negation—Should not occur until interrupt is taken.

7.2.9.2 System Management Interrupt (SMI)—Input
Following are the state meaning and timing comments forSMI.

State Meaning Asserted—The 750 initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 750 ignores the
exception condition. The system must holdSMI active until the
exception is taken.

Negated—Indicates that normal operation should proceed. See
Section 8.7.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. TheSMI input is level-sensitive.

. Negation—Should not occur until interrupt is taken.

7.2.9.3 Machine Check Interrupt (MCP)—Input
Following are the state meaning and timing comments for theMCP signal.

State Meaning Asserted—The 750 initiates a machine check interrupt operatio
MSR[ME] and HID0[EMCP] are set; if MSR[ME] is cleared and
HID0[EMCP] is set, the 750 must terminate operation by interna
gating off all clocks, and releasing all outputs (exceptCKSTP_OUT)
to the high-impedance state. If HID0[EMCP] is cleared, the 750
Chapter 7. Signal Descriptions 7-21

reset.

rnal
e
the

ition
ignores the interrupt condition. TheMCP signal must be held
asserted for two bus clock cycles.

Negated—Indicates that normal operation should proceed. See
Section 8.7.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. TheMCP input is negative edge-
sensitive.

Negation—May be negated two bus cycles after assertion.

7.2.9.4 Checkstop Input (CKSTP_IN)—Input
Following are the state meaning and timing comments for theCKSTP_IN signal.

State Meaning Asserted—Indicates that the 750 must terminate operation by
internally gating off all clocks, and release all outputs (except
CKSTP_OUT) to the high-impedance state. OnceCKSTP_IN has
been asserted it must remain asserted until the system has been

Negated—Indicates that normal operation should proceed. See
Section 8.7.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks.

Negation—May occur any time after theCKSTP_OUT output signal
has been asserted.

7.2.9.5 Checkstop Output (CKSTP_OUT)—Output
Note that theCKSTP_OUT signal is an open-drain type output, and requires an exte
pull-up resistor (for example, 10 k to Vdd) to assure proper de-assertion of th
CKSTP_OUT signal. Following are the state meaning and timing comments for
CKSTP_OUT signal.

State Meaning Asserted—Indicates that the 750 has detected a checkstop cond
and has ceased operation.

Negated—Indicates that the 750 is operating normally.
See Section 8.7.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 750 input clocks.

Negation—Is negated upon assertion ofHRESET.

7.2.9.6 Reset Signals
There are two reset signals on the 750—hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:
7-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

iming

put
as
.”

r a
et.

th

d in

emory
, and

750
7.2.9.6.1 Hard Reset (HRESET)—Input
The hard reset (HRESET) signal must be used at power-on in conjunction with theTRST
signal to properly reset the processor. Following are the state meaning and t
comments for theHRESET signal.

State Meaning Asserted—Initiates a complete hard reset operation when this in
transitions from asserted to negated. Causes a reset exception
described in Section 4.5.1, “System Reset Exception (0x00100)
Output drivers are released to high impedance within five clocks
after the assertion ofHRESET.

Negated—Indicates that normal operation should proceed. See
Section 8.7.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 750 input clock; must be held asserted fo
minimum of 255 clock cycles after the PLL lock time has been m
Refer to the 750 hardware specifications for further timing
comments.

Negation—May occur any time after the minimum reset pulse wid
has been met.

This input has additional functionality in certain test modes.

7.2.9.6.2 Soft Reset (SRESET)—Input
Following are the state meaning and timing comments for theSRESET signal.

State Meaning Asserted— Initiates processing for a reset exception as describe
Section 4.5.1, “System Reset Exception (0x00100).”

Negated—Indicates that normal operation should proceed. See
Section 8.7.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 750 input clock. TheSRESET input is
negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

This input has additional functionality in certain test modes.

7.2.9.7 Processor Status Signals
Processor status signals indicate the state of the processor. This includes the m
reservation signal, machine quiesce control signals, time base enable signal
TLBISYNC signal.

7.2.9.7.1 Quiescent Request (QREQ)—Output
Following are the state meaning and timing comments forQREQ.

State Meaning Asserted—Indicates that the 750 is requesting all bus activity
normally required to be snooped to terminate or to pause so the
Chapter 7. Signal Descriptions 7-23

ed a

the

as
t (or

, and

us

CK

 the

.

may enter a quiescent (low power) state. When the 750 has enter
quiescent state, it no longer snoops bus activity.

Negated—Indicates that the 750 is not making a request to enter
quiescent state.

Timing Comments Assertion/Negation—May occur on any cycle.QREQ will remain
asserted for the duration of the quiescent state.

7.2.9.7.2 Quiescent Acknowledge (QACK)—Input
Following are the state meaning and timing comments for theQACK signal.

State Meaning Asserted—Indicates that all bus activity that requires snooping h
terminated or paused, and that the 750 may enter the quiescen
low power) state.

Negated—Indicates that the 750 may not enter a quiescent state
must continue snooping the bus.

Timing Comments Assertion/Negation—May occur on any cycle following the
assertion ofQREQ, and must be held asserted for at least one b
clock cycle.

Start-Up—QACK is sampled at the negation ofHRESET to select
reduced-pinout mode; ifQACK is asserted at start-up, reduced-
pinout mode is disabled.

Note: Since the 750 does not support reduced pinout mode, QA
must be asserted during start-up.

7.2.9.7.3 Reservation (RSRV)—Output
Following are the state meaning and timing comments forRSRV.

State Meaning Asserted/Negated—Represents the state of the reservation
coherency bit in the reservation address register that is used by
lwarx andstwcx. instructions. See Section 8.8.1, “Support for the
lwarx/stwcx. Instruction Pair.”

Timing Comments Assertion/Negation—Occurs synchronously with respect to bus
clock cycles. The execution of anlwarx instruction sets the internal
reservation condition.

7.2.9.7.4 Time Base Enable (TBEN)—Input
Following are the state meaning and timing comments for the TBEN signal.

State Meaning Asserted—Indicates that the time base should continue clocking
This input is essentially a count enable control for the time base
counter.

Negated—Indicates the time base should stop clocking.

Timing Comments Assertion/Negation—May occur on any cycle.
7-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

he

tion

 or

-

ort of
arity
s on
ress
as

nals.

ith

te
not

n the

.

ite
7.2.9.7.5 TLBI Sync (TLBISYNC)—Input
The TLBI Sync (TLBISYNC) signal is an input-only signal on the 750. Following are t
state meaning and timing comments for theTLBISYNC signal.

State Meaning Asserted—Indicates that instruction execution stops after execu
of a tlbsync instruction.

Negated—Indicates that the instruction execution may continue
resume after the completion of atlbsync instruction.

Timing Comments Assertion/Negation—May occur on any cycle. TheTLBISYNC
signal must be held negated duringHRESET.

Start-Up—TLBISYNC is sampled at the negation ofHRESET to
select 32-bit data bus mode; ifTLBISYNC is negated at start-up, 32
bit mode is disabled, and the default 64-bit mode is selected.

7.2.9.7.6 L2 Cache Interface
The 750’s dedicated L2 cache interface provides all the signals required for the supp
up to 1 Mbyte of synchronous SRAM for data storage. The use of the L2 data p
(L2DP[0–7]) and L2 low-power mode enable (L2ZZ) signals is optional, and depend
the SRAMs selected for use with the 750. Note that the least-significant bit of L2 add
(L2ADDR[16–0]) signals is identified as bit 0, and the most-significant bit is identified
bit 16.

Note that the L2 cache interface is not implemented in the 740.

7.2.9.8 L2 Address (L2ADDR[16–0])—Output
Following are the state meaning and timing comments for the L2 address output sig

State Meaning Asserted/Negated—Represents the address of the data to be
transferred to the L2 cache. The L2 address bus is configured w
bit 0 as the least-significant bit. Address bit 14 determines which
cache tag set is selected.

Timing Comments Assertion/Negation—Driven valid by the 750 during read and wri
operations; driven with static data when the L2 cache memory is
being accessed.

7.2.9.9 L2 Data (L2DATA[0–63])
The data bus (L2DATA[0–63]) consists of 64 signals that are both input and output o
750.

7.2.9.9.1 L2 Data (L2DATA[0–63])—Output
Following are the state meaning and timing comments for the L2 data output signals

State Meaning Asserted/Negated—Represents the state of data during a data wr
transaction; data is always transferred as double words.
Chapter 7. Signal Descriptions 7-25

;

read

ad

nals.

nals.

s of
an

.

che

g

Timing Comments Assertion/Negation—Driven valid by 750 during write operations
driven with static data when the L2 cache memory is not being
accessed by a read operation.

High Impedance—Occurs for at least one cycle when changing
between read and write operations to the L2 cache memory.

7.2.9.9.2 L2 Data (L2DATA[0–63])—Input
Following are the state meaning and timing comments for the L2 data input signals.

State Meaning Asserted/Negated—Represents the state of data during a data
transaction; data is always transferred as double words.

Timing Comments Assertion/Negation—Driven valid by L2 cache memory during re
operations.

7.2.9.10 L2 Data Parity (L2DP[0–7])
The eight data bus parity (L2DP[0–7]) signals on the 750 are both output and input sig

7.2.9.10.1 L2 Data Parity (L2DP[0–7]) —Output
Following are the state meaning and timing comments for the L2 data parity output sig

State Meaning Asserted/Negated—Represents odd parity for each of the 8 byte
L2 cache data during write transactions. Odd parity means that
odd number of bits, including the parity bit, are driven high. Note
that parity bit 0 is associated with bits 0–7 (byte lane 0) of the
L2DATA bus.

Timing Comments Assertion/Negation—The same as L2DATA[0–63].
High Impedance—The same as L2DATA[0–63].

7.2.9.10.2 L2 Data Parity (L2DP[0–7]) —Input
Following are the state meaning and timing comments for the L2 parity input signals

State Meaning Asserted/Negated—Represents odd parity for each byte of L2 ca
read data.

Timing Comments Assertion/Negation—The same as L2DATA[0–63].

7.2.9.11 L2 Chip Enable (L2CE)—Output
Following are the state meaning and timing comments for theL2CE signal.

State Meaning Asserted—Indicates that the L2 cache memory devices are bein
selected for a read or write operation.

Negated—Indicates that the 750 is not selecting the L2 cache
memory devices for a read or write operation.

Timing Comments Assertion/Negation—May occur on any cycle.L2CE is driven high
duringHRESET assertion.
7-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

 to

he

r
d
n

or

he

r
d
n

for
g

.

he
he
al
7.2.9.12 L2 Write Enable (L2WE)—Output
Following are the state meaning and timing comments for theL2WE signal.

State Meaning Asserted—Indicates that the 750 is performing a write operation
the L2 cache memory.

Negated—Indicates that the 750 is not performing an L2 cache
memory write operation.

Timing Comments Assertion/Negation—May occur on any cycle.L2WE is driven high
duringHRESET assertion.

7.2.9.13 L2 Clock Out A (L2CLK_OUTA)—Output
Following are the state meaning and timing comments for the L2CLK_OUTA signal.

State Meaning Asserted/Negated—Clock output for L2 cache memory devices. T
L2CLK_OUTA signal is identical and synchronous with the
L2CLK_OUTB signal, and provides the capability to drive up to fou
L2 cache memory devices. If differential L2 clocking is configure
through the setting of the L2CR, the L2CLK_OUTB signal is drive
phase inverted with relation to the L2CLK_OUTA signal.

Timing Comments Assertion/Negation—Refer to the 750 hardware specifications f
timing comments. The L2CLK_OUTA signal is driven low during
assertion ofHRESET.

7.2.9.14 L2 Clock Out B (L2CLK_OUTB)—Output
Following are the state meaning and timing comments for the L2CLK_OUTB signal.

State Meaning Asserted/Negated—Clock output for L2 cache memory devices. T
L2CLK_OUTB signal is identical and synchronous with the
L2CLK_OUTA signal, and provides the capability to drive up to fou
L2 cache memory devices. If differential L2 clocking is configure
through the setting of the L2CR, the L2CLK_OUTA signal is drive
phase inverted with relation to the L2CLK_OUTB signal.

Timing Comments Assertion/Negation—Refer to the 750 hardware specifications
timing comments. The L2CLK_OUTB signal is driven low durin
assertion ofHRESET.

7.2.9.15 L2 Sync Out (L2SYNC_OUT)—Output
Following are the state meaning and timing comments for the L2SYNC_OUT signal

State Meaning Asserted/Negated—Clock output for L2 clock synchronization. T
L2SYNC_OUT signal should be routed half of the trace length to t
L2 cache memory devices and returned to the L2SYNC_IN sign
input.
Chapter 7. Signal Descriptions 7-27

or

e
.

or
t

e

he

en
ation
2

ing

t data
ell as

trolled
elect
CK).
Timing Comments Assertion/Negation—Refer to the 750 hardware specifications f
timing comments. The L2SYNC_OUT signal is driven low during
assertion ofHRESET.

7.2.9.16 L2 Sync In (L2SYNC_IN)—Input
Following are the state meaning and timing comments for the L2SYNC_IN signal.

State Meaning Asserted/Negated—Clock input for L2 clock synchronization. Th
L2SYNC_IN signal is driven by the L2SYNC_OUT signal output

Timing Comments Assertion/Negation—Refer to the 750 hardware specifications f
timing comments. The routing of this signal on the printed circui
board should ensure that the rising edge at L2SYNC_IN is
coincident with the rising edge of the clock at the clock input of th
L2 cache memory devices.

7.2.9.17 L2 Low-Power Mode Enable (L2ZZ)—Output
Following are the state meaning and timing comments for the L2ZZ signal.

State Meaning Asserted/Negated—Enables low-power mode for certain L2 cac
memory devices. Operation of the signal is enabled through the
L2CR.

Timing Comments Assertion/Negation—Occurs synchronously with the L2 clock wh
the 750 enters and exits the nap or sleep power modes; after neg
of this signal, at least two L2 clock cycles will elapse before L
cache operations resume. The L2ZZ signal is driven low dur
assertion ofHRESET.

7.2.10 IEEE 1149.1a-1993 Interface Description
The 750 has five dedicated JTAG signals which are described in Table 7-6. The tes
input (TDI) and test data output (TDO) scan ports are used to scan instructions as w
data into the various scan registers for JTAG operations. The scan operation is con
by the test access port (TAP) controller which in turn is controlled by the test mode s
(TMS) input sequence. The scan data is latched in at the rising edge of test clock (T

Table 7-6. IEEE Interface Pin Descriptions

Signal Name Input/Output
Weak Pullup

Provided
IEEE 1149.1a Function

TDI Input Yes Serial scan input signal

TDO Output No Serial scan output signal

TMS Input Yes TAP controller mode signal

TCK Input Yes Scan clock

TRST Input Yes TAP controller reset
7-28 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ller
the
ith the

xible
ystem

nals.

cy of
ircuit
itry)
er or
the
than

ut

alf-

al
ng

ing

nd

s
, or

or
Test reset (TRST) is a JTAG optional signal which is used to reset the TAP contro
asynchronously. TheTRST signal assures that the JTAG logic does not interfere with
normal operation of the chip, and must be asserted and deasserted coincident w
assertion of theHRESET signal.

7.2.11 Clock Signals
The 750 clock signal inputs determine the system clock frequency and provide a fle
clocking scheme that allows the processor to operate at an integer multiple of the s
clock frequency.

Refer to the 750 hardware specifications for exact timing relationships of the clock sig

7.2.11.1 System Clock (SYSCLK)—Input
The 750 requires a single system clock (SYSCLK) input. This input sets the frequen
operation for the bus interface. Internally, the 750 uses a phase-locked loop (PLL) c
to generate a master clock for all of the CPU circuitry (including the bus interface circu
which is phase-locked to the SYSCLK input. The master clock may be set to an integ
half-integer multiple (2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, or 7:1) of
SYSCLK frequency allowing the CPU core to operate at an equal or greater frequency
the bus interface.

State Meaning Asserted/Negated—The SYSCLK input is the primary clock inp
for the 750, and represents the bus clock frequency for 750 bus
operation. Internally, the 750 may be operating at an integer or h
integer multiple of the bus clock frequency.

Timing Comments Duty cycle—Refer to the 750 hardware specifications for timing
comments.
Note: SYSCLK is used as the frequency reference for the intern
PLL clock generator, and must not be suspended or varied duri
normal operation to ensure proper PLL operation.

7.2.11.2 Clock Out (CLK_OUT)—Output
The clock out (CLK_OUT) signal is an output signal (output-only) on the 750. Follow
are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/Negated—Provides PLL clock output for PLL testing a
monitoring. The configuration of the HID0[SBCLK] and
HID0[ECLK] bits determines whether the CLK_OUT signal clock
at either the processor clock frequency, the bus clock frequency
half of the bus clock frequency. See Table 2-5 for HID0 register
configuration of the CLK_OUT signal. The CLK_OUT signal
defaults to a high-impedance state following the assertion of
HRESET. The CLK_OUT signal is provided for testing only.

Timing Comments Assertion/Negation—Refer to the 750 hardware specifications f
timing comments.
Chapter 7. Signal Descriptions 7-29

iven
cy of

s.

e
ired

ld

D1

r

m

-
this

p.
This

ND
7.2.11.3 PLL Configuration (PLL_CFG[0–3])—Input
The PLL (phase-locked loop) is configured by the PLL_CFG[0–3] signals. For a g
SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU frequen
operation. Refer to the 750 hardware specifications for PLL configuration.

Following are the state meaning and timing comments for the PLL_CFG[0–3] signal

State Meaning Asserted/Negated— Configures the operation of the PLL and th
internal processor clock frequency. Settings are based on the des
bus and internal frequency of operation.

Timing Comments Assertion/Negation—Must remain stable during operation; shou
only be changed during the assertion ofHRESET or during sleep
mode. These bits may be read through the PC[0–3] bits in the HI
register.

7.2.12 Power and Ground Signals
The 750 provides the following connections for power and ground:

• VDD—The VDD signals provide the supply voltage connection for the processo
core.

• OVDD—The OVDD signals provide the supply voltage connection for the syste
interface drivers.

• L2VDD—The L2VDD signals provide the supply voltage connection for the L2
cache interface drivers. These power supply signals are isolated from the VDD and
OVDD power supply signals. These signals are not implemented on the 740.

• AVDD—The AVDD power signal provides power to the clock generation phase
locked loop. See the 750 hardware specifications for information on how to use
signal.

• L2AVDD—The L2AVDD power signal provides power to the L2 delay-locked loo
See the 750 hardware specifications for information on how to use this signal.
signal is not implemented on the 740.

• GND and OGND—The GND and OGND signals provide the connection for
grounding the 750. On the 750, there is no electrical distinction between the G
and OGND signals.

• L2GND—The L2GND signals provide the ground connection for the L2 cache
interface. These ground signals are isolated from the GND and OGND ground
signals. These signals are not implemented on the 740.
7-30 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

tion. It
form

ecutes
logic,
in the
ress for
rs) are
for the

rs

cated

ress
sue on
o two
lining.
Chapter 8
Bus Interface Operation
80
80

This chapter describes the PowerPC 750 microprocessor bus interface and its opera
shows how the 750 signals, defined in Chapter 7, “Signal Descriptions,” interact to per
address and data transfers.

The bus interface buffers bus requests from the instruction and data caches, and ex
the requests per the 60x bus protocol. It includes address register queues, prioritizing
and bus control logic. It captures snoop addresses for snooping in the cache and
address register queues. It also snoops for reservations and holds the touch load add
the cache. All data storage for the address register buffers (load and store data buffe
located in the cache section. The data buffers are considered temporary storage
cache and not part of the bus interface.

The general functions and features of the bus interface are as follows:

• Seven address register buffers that include the following:

— Instruction cache load address buffer

— Data cache load address buffer

— Two data cache castout/store address buffers (associated data block buffe
located in cache)

— Data cache snoop copy-back address buffer (associated data block buffer lo
in cache)

— Reservation address buffer for snoop monitoring

• Pipeline collision detection for data cache buffers
• Reservation address snooping forlwarx /stwcx. instructions
• One-level address pipelining
• Load ahead of store capability

A conceptual block diagram of the bus interface is shown in Figure 8-1. The add
register queues in the figure hold transaction requests that the bus interface may is
the bus independently of the other requests. The bus interface may have up t
transactions operating on the bus at any given time through the use of address pipe
Chapter 8. Bus Interface Operation 8-1

data
in the

rface
queues,

for
ions
ses are

unit
clock.
o and

ddress
bits to
kup,
dress
(real
Figure 8-1. Bus Interface Address Buffers

8.1 Bus Interface Overview
The bus interface prioritizes requests for bus operations from the instruction and
caches, and performs bus operations in accordance with the protocol described
PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors. It
includes address register queues, prioritization logic, and bus control unit. The bus inte
latches snoop addresses for snooping in the data cache and in the address register
and for reservations controlled by the Load Word and Reserve Indexed (lwarx) and Store
Word Conditional Indexed (stwcx.) instructions, and maintains the touch load address
the cache. The interface allows one level of pipelining; that is, with certain restrict
discussed later, there can be two outstanding transactions at any given time. Acces
prioritized with load operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction
where they are dispatched to the execution units at a peak rate of two instructions per
Conversely, load and store instructions explicitly specify the movement of operands t
from the integer and floating-point register files and the memory system.

When the 750 encounters an instruction or data access, it calculates the logical a
(effective address in the architecture specification) and uses the low-order address
check for a hit in the on-chip, 32-Kbyte instruction and data caches. During cache loo
the instruction and data memory management units (MMUs) use the higher-order ad
bits to calculate the virtual address, from which they calculate the physical address

Snoop

Control Addr Addr Data

L2 or System Bus

I-Cache

D-Cache

D-Cache
CST/ST Addr 1

D-Cache
SNP Addr

D-Cache
CST/ST Addr 0

I-Cache
LD Addr

D-Cache
LD Addr

Data

BIU
Control
8-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

d with
ction
is used

cache

table
cently
sh-out

aster.

rough

nals for
4 bits

driven
clock

is a
onsist

, the
tions,

or
-only
s that

ty (for

snoop
re given

ase the
at are
p.

lusive,
ESI
tems

che
address in the architecture specification). The physical address bits are then compare
the corresponding cache tag bits to determine if a cache hit occurred in the L1 instru
or data cache. If the access misses in the corresponding cache, the physical address
to access the L2 cache tags (if the L2 cache is enabled). If no match is found in the L2
tags, the physical address is used to access system memory.

In addition to the loads, stores, and instruction fetches, the 750 performs hardware
search operations following TLB misses, L2 cache cast-out operations when least-re
used cache lines are written to memory after a cache miss, and cache-line snoop pu
operations when a modified cache line experiences a snoop hit from another bus m

Figure 8-2 shows the address path from the execution units and instruction fetcher, th
the translation logic to the caches and bus interface logic.

The 750 uses separate address and data buses and a variety of control and status sig
performing reads and writes. The address bus is 32 bits wide and the data bus is 6
wide. The interface is synchronous—all 750 inputs are sampled at and all outputs are
from the rising edge of the bus clock. The processor runs at a multiple of the bus-
speed.

8.1.1 Operation of the Instruction and Data L1 Caches
The 750 provides independent instruction and data L1 caches. Each cache
physically-addressed, 32-Kbyte cache with eight-way set associativity. Both caches c
of 128 sets of eight cache lines, with eight words in each cache line.

Because the data cache on the 750 is an on-chip, write-back primary cache
predominant type of transaction for most applications is burst-read memory opera
followed by burst-write memory operations and single-beat (noncacheable
write-through) memory read and write operations. Additionally, there can be address
operations, variants of the burst and single-beat operations (global memory operation
are snooped, and atomic memory operations, for example), and address retry activi
example, when a snooped read access hits a modified line in the cache).

Since the 750 data cache tags are single ported, simultaneous load or store and
accesses cause resource contention. Snoop accesses have the highest priority and a
first access to the tags, unless the snoop access coincides with a tag write, in which c
snoop is retried and must re-arbitrate for access to the cache. Loads or stores th
deferred due to snoop accesses are performed on the clock cycle following the snoo

The 750 supports a three-state coherency protocol that supports the modified, exc
and invalid (MEI) cache states. The protocol is a subset of the M
(modified/exclusive/shared/invalid) four-state protocol and operates coherently in sys
that contain four-state caches. With the exception of thedcbz instruction (and thedcbi,
dcbst, anddcbf instructions, if HID0[ABE] is enabled), the 750 does not broadcast ca
Chapter 8. Bus Interface Operation 8-3

of the

rmed
che

s. If
ed to
control instructions. The cache control instructions are intended for the management
local cache but not for other caches in the system.

Cache lines in the 750 are loaded in four beats of 64 bits each. The burst load is perfo
as critical double word first. The critical double word is simultaneously written to the ca
and forwarded to the requesting unit, thus minimizing stalls due to load delay
subsequent loads follow in sequential order, the instructions or data will be forward
the requesting unit as the cache block is written.
8-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Figure 8-2. PowerPC 750 Microprocessor Block Diagram

Ad
di

tio
na

l F
ea

tu
re

s
•T

im
e

Ba
se

C
ou

nt
er

/D
ec

re
m

en
te

r
• C

lo
ck

 M
ul

tip
lie

r
• J

TA
G

/C
O

P
In

te
rfa

ce
• T

he
rm

al
/P

ow
er

 M
an

ag
em

en
t

• P
er

fo
rm

an
ce

 M
on

ito
r

+

+

Fe
tc

he
r

Br
an

ch
 P

ro
ce

ss
in

g

BT
IC

64
 E

nt
ry

+
 x

F

P
S

C
R

C
R

FP
SC

R

L2
C

R

C
TR LR

BH
T

Da
ta

 M
M

U

In
st

ru
ct

io
n

M
M

U

N
ot

 in
 th

e
74

0

PA
EA

+
 x

In
st

ru
ct

io
n

Un
it

Un
it

In
st

ru
ct

io
n

Q
ue

ue
(6

 W
or

d)

2
In

st
ru

ct
io

ns

R
es

er
va

tio
n

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

R
es

er
va

tio
n

St
at

io
n

In
te

ge
r U

ni
t 1

Sy
st

em
 R

eg
ist

er
Un

it

D
is

pa
tc

h
U

ni
t

64
-B

it
(2

 In
st

ru
ct

io
ns

)

SR
s

IT
LB

(S
ha

do
w

)
IB

AT
Ar

ra
y

32
-K

by
te

I C
ac

he
Ta

gs

12
8-

Bi
t

(4
 In

st
ru

ct
io

ns
)

R
es

er
va

tio
n

St
at

io
n

32
-B

it

Fl
oa

tin
g-

Po
in

t
Un

it

R
en

am
e

Bu
ffe

rs
(6

)

FP
R

 F
ile

32
-B

it
64

-B
it

64
-B

it

R
es

er
va

tio
n

St
at

io
n

(2
 E

nt
ry

)

Lo
ad

/S
to

re
 U

ni
t

(E
A

C
al

cu
la

tio
n)

St
or

e
Q

ue
ue

G
PR

 F
ile

R
en

am
e

Bu
ffe

rs
(6

)

32
-B

it

SR
s

(O
rig

in
al

)

D
TL

B

D
BA

T
Ar

ra
y

64
-B

it
Co

m
pl

et
io

n
Un

it

R
eo

rd
er

 B
uf

fe
r

(6
 E

nt
ry

)

Ta
gs

32
-K

by
te

D
 C

ac
he

60
x

Bu
s

In
te

rfa
ce

 U
ni

t
In

st
ru

ct
io

n
Fe

tc
h

Q
ue

ue

L1
 C

as
to

ut
 Q

ue
ue

D
at

a
Lo

ad
 Q

ue
ue

L2
 C

on
tro

lle
r

L2
 T

ag
s

L2
 B

us
 In

te
rfa

ce
Un

it

L2
 C

as
to

ut
 Q

ue
ue

32
-B

it
Ad

dr
es

s
Bu

s
64

-B
it

D
at

a
Bu

s

17
-B

it
L2

 A
dd

re
ss

 B
us

64
-B

it
L2

 D
at

a
Bu

s

In
te

ge
r U

ni
t 2
Chapter 8. Bus Interface Operation 8-5

(PLRU)
line of
least

dified
eing
from

rite

ed L2
rage.
erency
nt the
, and

ruction
data or
are

being
s in the
sfers
valid

an L2
o the
er to

bytes)
esses to
ctions

allows
g the
rking
Cache lines are selected for replacement based on a pseudo least-recently-used
algorithm. Each time a cache line is accessed, it is tagged as the most-recently-used
the set. When a miss occurs, and all eight lines in the set are marked as valid, the
recently used line is replaced with the new data. When data to be replaced is in the mo
state, the modified data is written into a write-back buffer while the missed data is b
read from memory. When the load completes, the 750 then pushes the replaced line
the write-back buffer to the L2 cache (if enabled), or to main memory in a burst w
operation.

8.1.2 Operation of the L2 Cache
The 750 provides an on-chip, two-way set associative tag memory, and a dedicat
cache port with support for up to 1 Mbyte of external synchronous SRAMs for data sto
The L2 cache normally operates in copy-back mode and supports system cache coh
through snooping. Designers should note that the PowerPC 740 does not impleme
on-chip L2 tag memory, or the signals required for the support of the external SRAMs
memory accesses go directly to the bus interface unit.

The L2 cache receives independent memory access requests from both the L1 inst
and data caches. The L1 accesses are compared to the L2 cache tags and the
instructions are forwarded from the L2 to the L1 cache if there is a cache hit, or
forwarded on to the bus interface unit if there is an L2 cache miss, or if the address
accessed is from a page marked as caching-inhibited. Burst read accesses that mis
L2 cache initiate a load operation from the bus interface. As the load operation tran
data to the L1 cache, the data is also loaded into the L2 cache, and marked as
unmodified in the L2 cache tags. An L1 load, store, or castout operation can cause
cache block allocation resulting in the castout of an L2 cache block marked modified t
bus interface. For additional information about the operation of the L2 cache, ref
Chapter 9, “L2 Cache Interface Operation.”

8.1.3 Operation of the Bus Interface
Memory accesses can occur in single-beat (1, 2, 3, 4, and 8 bytes) and four-beat (32
burst data transfers. The address and data buses are independent for memory acc
support pipelining and split transactions. The 750 can pipeline as many as two transa
and has limited support for out-of-order split-bus transactions.

Access to the bus interface is granted through an external arbitration mechanism that
devices to compete for bus mastership. This arbitration mechanism is flexible, allowin
750 to be integrated into systems that implement various fairness and bus-pa
procedures to avoid arbitration overhead.
8-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

bus
store
red to
e the
rall

ming
ing

ls are
ns for

tes the
in the
equired
on the
itional

t-store
it in the
s. An
aking
Typically, memory accesses are weakly ordered to maximize the efficiency of the
without sacrificing coherency of the data. The 750 allows load operations to bypass
operations (except when a dependency exists). In addition, the 750 can be configu
reorder high-priority store operations ahead of lower-priority store operations. Becaus
processor can dynamically optimize run-time ordering of load/store traffic, ove
performance is improved.

Note that the synchronize (sync) and enforce in-order execution of IO (eieio) instructions
can be used to enforce strong ordering.

The following sections describe how the 750 interface operates, providing detailed ti
diagrams that illustrate how the signals interact. A collection of more general tim
diagrams are included as examples of typical bus operations.

Figure 8-3 is a legend of the conventions used in the timing diagrams.

This is a synchronous interface—all 750 input signals are sampled and output signa
driven on the rising edge of the bus clock cycle (see the 750 hardware specificatio
exact timing information).

8.1.4 Optional 32-Bit Data Bus Mode
The 750 supports an optional 32-bit data bus mode. The 32-bit data bus mode opera
same as the 64-bit data bus mode with the exception of the byte lanes involved
transfer and the number of data beats that are performed. The number of data beats r
for a data tenure in the 32-bit data bus mode is one, two, or eight beats depending
size of the program transaction and the cache mode for the address. For add
information about 32-bit data bus mode, see Section 8.6.1, “32-Bit Data Bus Mode.”

8.1.5 Direct-Store Accesses
The 750 does not support the extended transfer protocol for accesses to the direc
storage space. The transfer protocol used for any given access is selected by the T b
MMU segment registers; if the T bit is set, the memory access is a direct-store acces
attempt to access instructions or data in a direct-store segment will result in the 750 t
an ISI or DSI exception.
Chapter 8. Bus Interface Operation 8-7

hases—
ctions.

nd that
data

egins
ted at
nsists
cache
Figure 8-3. Timing Diagram Legend

8.2 Memory Access Protocol
Memory accesses are divided into address and data tenures. Each tenure has three p
bus arbitration, transfer, and termination. The 750 also supports address-only transa
Note that address and data tenures can overlap, as shown in Figure 8-4.

Figure 8-4 shows that the address and data tenures are distinct from one another a
both consist of three phases—arbitration, transfer, and termination. Address and
tenures are independent (indicated in Figure 8-4 by the fact that the data tenure b
before the address tenure ends), which allows split-bus transactions to be implemen
the system level in multiprocessor systems. Figure 8-4 shows a data transfer that co
of a single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte
lines require data transfer termination signals for each beat of data.

750 input (while 750 is a bus master)

750 output (while 750 is a bus master)

750 output (grouped: here, address plus attributes)

750 internal signal (inaccessible to the user, but used in
diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

750 three-state output or input

750 nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Bar over signal name indicates active low

ap0

BR

ADDR+

qual BG
8-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ain

on the
 the
re the

enure

data

read
data

data
 also

n
r the

retry
ory
Figure 8-4. Overlapping Tenures on the 750 Bus for a Single-Beat Transfer

The basic functions of the address and data tenures are as follows:

• Address tenure

— Arbitration: During arbitration, address bus arbitration signals are used to g
mastership of the address bus.

— Transfer: After the 750 is the address bus master, it transfers the address
address bus. The address signals and the transfer attribute signals control
address transfer. The address parity and address parity error signals ensu
integrity of the address transfer.

— Termination: After the address transfer, the system signals that the address t
is complete or that it must be repeated.

• Data tenure

— Arbitration: To begin the data tenure, the 750 arbitrates for mastership of the
bus.

— Transfer: After the 750 is the data bus master, it samples the data bus for
operations or drives the data bus for write operations. The data parity and
parity error signals ensure the integrity of the data transfer.

— Termination: Data termination signals are required after each data beat in a
transfer. Note that in a single-beat transaction, the data termination signals
indicate the end of the tenure, while in burst accesses, the data terminatio
signals apply to individual beats and indicate the end of the tenure only afte
final data beat.

The 750 generates an address-only bus transfer during the execution of thedcbz instruction
(and for thedcbi, dcbf, dcbst, sync, andeieio instructions, if HID0[ABE] is enabled),
which uses only the address bus with no data transfer involved. Additionally, the 750’s
capability provides an efficient snooping protocol for systems with multiple mem
systems (including caches) that must remain coherent.

ARBITRATION TRANSFER TERMINATION

ADDRESS TENURE

ARBITRATION SINGLE-BEAT TRANSFER TERMINATION

DATA TENURE

INDEPENDENT ADDRESS AND DATA
Chapter 8. Bus Interface Operation 8-9

ternal
Bus
nate

hip of
sistors

the

curs

n,

ith

e
elined

s for

r

us
 and is

,

8.2.1 Arbitration Signals
Arbitration for both address and data bus mastership is performed by a central, ex
arbiter and, minimally, by the arbitration signals shown in Section 7.2.1, “Address
Arbitration Signals.” Most arbiter implementations require additional signals to coordi
bus master/slave/snooping activities. Note that address bus busy (ABB) and data bus busy
(DBB) are bidirectional signals. These signals are inputs unless the 750 has masters
one or both of the respective buses; they must be connected high through pull-up re
so that they remain negated when no devices have control of the buses.

The following list describes the address arbitration signals:

• BR (bus request)—Assertion indicates that the 750 is requesting mastership of
address bus.

• BG (bus grant)—Assertion indicates that the 750 may, with the proper
qualification, assume mastership of the address bus. A qualified bus grant oc
whenBG is asserted andABB andARTRY are negated.

If the 750 is parked,BR need not be asserted for the qualified bus grant.

• ABB (address bus busy)— Assertion by the 750 indicates that the 750 is the
address bus master.

The following list describes the data arbitration signals:

• DBG (data bus grant)—Indicates that the 750 may, with the proper qualificatio
assume mastership of the data bus. A qualified data bus grant occurs whenDBG is
asserted whileDBB, DRTRY, andARTRY are negated.

TheDBB signal is driven by the current bus master,DRTRY is only driven from the
bus, andARTRY is from the bus, but only for the address bus tenure associated w
the current data bus tenure (that is, not from another address tenure).

• DBWO (data bus write only)—Assertion indicates that the 750 may perform th
data bus tenure for an outstanding write address even if a read address is pip
before the write address. IfDBWO is asserted, the 750 will assume data bus
mastership for a pending data bus write operation; the 750 will take the data bu
a pending read operation if this input is asserted along withDBG and no write is
pending. Care must be taken withDBWO to ensure the desired write is queued (fo
example, a cache-line snoop push-out operation).

• DBB (data bus busy)—Assertion by the 750 indicates that the 750 is the data b
master. The 750 always assumes data bus mastership if it needs the data bus
given a qualified data bus grant (seeDBG).

For more detailed information on the arbitration signals, refer to Section 7.2.1
“Address Bus Arbitration Signals,” and Section 7.2.6, “Data Bus Arbitration
Signals.”
8-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

elined
dress
ion has
the

s of a

ress
hput.
aster
stem

r the
s bus

d
nt data
s tenure

ning);
ls of
ning).
asters

ct to
nd data
nures.
n with
l bus

plement

a the

s and
se this
ne to
8.2.2 Address Pipelining and Split-Bus Transactions
The 750 protocol provides independent address and data bus capability to support pip
and split-bus transaction system organizations. Address pipelining allows the ad
tenure of a new bus transaction to begin before the data tenure of the current transact
finished. Split-bus transaction capability allows other bus activity to occur (either from
same master or from different masters) between the address and data tenure
transaction.

While this capability does not inherently reduce memory latency, support for add
pipelining and split-bus transactions can greatly improve effective bus/memory throug
For this reason, these techniques are most effective in shared-memory multim
implementations where bus bandwidth is an important measurement of sy
performance.

External arbitration is required in systems in which multiple devices must compete fo
system bus. The design of the external arbiter affects pipelining by regulating addres
grant (BG), data bus grant (DBG), and address acknowledge (AACK) signals. For example,
a one-level pipeline is enabled by assertingAACK to the current address bus master an
granting mastership of the address bus to the next requesting master before the curre
bus tenure has completed. Two address tenures can occur before the current data bu
completes.

The 750 can pipeline its own transactions to a depth of one level (intraprocessor pipeli
however, the 750 bus protocol does not constrain the maximum number of leve
pipelining that can occur on the bus between multiple masters (interprocessor pipeli
The external arbiter must control the pipeline depth and synchronization between m
and slaves.

In a pipelined implementation, data bus tenures are kept in strict order with respe
address tenures. However, external hardware can further decouple the address a
buses, allowing the data tenures to occur out of order with respect to the address te
This requires some form of system tag to associate the out-of-order data transactio
the proper originating address transaction (not defined for the 750 interface). Individua
requests and data bus grants from each processor can be used by the system to im
tags to support interprocessor, out-of-order transactions.

The 750 supports a limited intraprocessor out-of-order, split-transaction capability vi
data bus write only (DBWO) signal. For more information about usingDBWO, see
Section 8.10, “Using Data Bus Write Only.”

Note that the 750 drops out of pipeline mode between consecutive burst data read
between consecutive burst instruction fetches. No other sequences of operations cau
effect. In this case, the address tenure of the second transaction will not begin until o
three bus clocks after the end of the data tenure of the first transaction.
Chapter 8. Bus Interface Operation 8-11

itration,

(see
ter by
s is

hip by

aster.

e
ed bus
clock
ory

r

8.3 Address Bus Tenure
This section describes the three phases of the address tenure—address bus arb
address transfer, and address termination.

8.3.1 Address Bus Arbitration
When the 750 needs access to the external bus and it is not parked (BG is negated), it asserts
bus request (BR) until it is granted mastership of the bus and the bus is available
Figure 8-5). The external arbiter must grant master-elect status to the potential mas
asserting the bus grant (BG) signal. The 750 requesting the bus determines that the bu
available when theABB input is negated. When the address bus is not busy(ABB input is
negated),BG is asserted and the address retry (ARTRY) input is negated. This is referred
to as a qualified bus grant. The potential master assumes address bus masters
assertingABB when it receives a qualified bus grant.

Figure 8-5. Address Bus Arbitration

External arbiters must allow only one device at a time to be the address bus m
Implementations in which no other device can be a master,BG can be grounded (always
asserted) to continually grant mastership of the address bus to the 750.

If the 750 assertsBR before the external arbiter assertsBG, the 750 is considered to b
unparked, as shown in Figure 8-5. Figure 8-6 shows the parked case, where a qualifi
grant exists on the clock edge following a need_bus condition. Notice that the bus
cycle required for arbitration is eliminated if the 750 is parked, reducing overall mem
latency for a transaction. The 750 always negatesABB for at least one bus clock cycle afte
AACK is asserted, even if it is parked and has another transaction pending.

-1 0 1

need_bus

BR

bg

abb

artry

qual BG

ABB

Logical Bus Clock
8-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ster;
ted bus
bus

sserting
the

g bus
her
e 750
e 750

t the

d
nally
Typically, bus parking is provided to the device that was the most recent bus ma
however, system designers may choose other schemes such as providing unreques
grants in situations where it is easy to correctly predict the next device requesting
mastership.

Figure 8-6. Address Bus Arbitration Showing Bus Parking

When the 750 receives a qualified bus grant, it assumes address bus mastership by a
ABB and negating theBR output signal. Meanwhile, the 750 drives the address for
requested access onto the address bus and assertsTS to indicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 750 may assertBR without
using the bus after it receives the qualified bus grant. For example, in a system usin
snooping, if the 750 assertsBR to perform a replacement copy-back operation, anot
device can invalidate that line before the 750 is granted mastership of the bus. Once th
is granted the bus, it no longer needs to perform the copy-back operation; therefore, th
does not assertABB and does not use the bus for the copy-back operation. Note tha
750 assertsBR for at least one clock cycle in these instances.

System designers should note that it is possible to ignore theABB signal, and regenerate
the state ofABB locally within each device by monitoring theTS andAACK input signals.
The 750 allows this operation by using both theABB input signal and a locally regenerate
version ofABB to determine if a qualified bus grant state exists (both sources are inter
ORed together). TheABB signal may only be ignored ifABB and TS are asserted
simultaneously by all masters, or where arbitration (through assertion ofBG) is properly
managed in cases where the regeneratedABB may not properly track theABB signal on

-1 0 1

need_bus

BR

bg

abb

artry

qual BG

ABB
Chapter 8. Bus Interface Operation 8-13

-up
ring
t the
rtion

on are
r the
8.3.3,

)

DDR+
sfer

onous

ent

ccurs
ram,
g
the

tion of
the bus. If the 750’sABB signal is ignored by the system, it must be connected to a pull
resistor to ensure proper operation. Additionally, the 750 will not qualify a bus grant du
the cycle thatTS is asserted on the bus by any master. Address bus arbitration withou
use of theABB signal requires that every assertion of TS be acknowledged by an asse
of AACK while the processor is not in sleep mode.

8.3.2 Address Transfer
During the address transfer, the physical address and all attributes of the transacti
transferred from the bus master to the slave device(s). Snooping logic may monito
transfer to enforce cache coherency; see discussion about snooping in Section
“Address Transfer Termination.”

The signals used in the address transfer include the following signal groups:

• Address transfer start signal: transfer start (TS)

• Address transfer signals: address bus (A[0–31]), and address parity (AP[0–3]

• Address transfer attribute signals: transfer type (TT[0–4]), transfer size
(TSIZ[0–2]), transfer burst (TBST), cache inhibit (CI), write-through (WT), and
global (GBL)

Figure 8-7 shows that the timing for all of these signals, exceptTS, is identical. All of the
address transfer and address transfer attribute signals are combined into the A
grouping in Figure 8-7. TheTS signal indicates that the 750 has begun an address tran
and that the address and transfer attributes are valid (within the context of a synchr
bus). The 750 always assertsTS coincident withABB. As an input,TS need not coincide
with the assertion ofABB on the bus (that is,TS can be asserted with, or on, a subsequ
clock cycle afterABB is asserted; the 750 tracks this transaction correctly).

In Figure 8-7, the address transfer occurs during bus clock cycles 1 and 2 (arbitration o
in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this diag
the address bus termination input,AACK, is asserted to the 750 on the bus clock followin
assertion ofTS (as shown by the dependency line). This is the minimum duration of
address transfer for the 750; the duration can be extended by delaying the asser
AACK for one or more bus clocks.
8-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

dress
utputs

lated
arity
. An
more

r type
,

e

oding
and

n in

hich
burst
Figure 8-7. Address Bus Transfer

8.3.2.1 Address Bus Parity
The 750 always generates 1 bit of correct odd-byte parity for each of the 4 bytes of ad
when a valid address is on the bus. The calculated values are placed on the AP[0–3] o
when the 750 is the address bus master. If the 750 is not the master andTS andGBL are
asserted together (qualified condition for snooping memory operations), the calcu
values are compared with the AP[0–3] inputs. If there is an error, and address p
checking is enabled (HID0[EBA] set to 1), a machine check exception is generated
address bus parity error causes a checkstop condition if MSR[ME] is cleared to 0. For
information about checkstop conditions, see Chapter 4, “Exceptions.”

8.3.2.2 Address Transfer Attribute Signals
The transfer attribute signals include several encoded signals such as the transfe
(TT[0–4]) signals, transfer burst (TBST) signal, transfer size (TSIZ[0–2]) signals
write-through (WT), and cache inhibit (CI). Section 7.2.4, “Address Transfer Attribut
Signals,” describes the encodings for the address transfer attribute signals.

8.3.2.2.1 Transfer Type (TT[0–4]) Signals
Snooping logic should fully decode the transfer type signals if theGBL signal is asserted.
Slave devices can sometimes use the individual transfer type signals without fully dec
the group. For a complete description of the encoding for TT[0–4], refer to Table 8-1
Table 8-2.

8.3.2.2.2 Transfer Size (TSIZ[0–2]) Signals
The TSIZ[0–2] signals indicate the size of the requested data transfer as show
Table 8-1. The TSIZ[0–2] signals may be used along withTBST and A[29–31] to
determine which portion of the data bus contains valid data for a write transaction or w
portion of the bus should contain valid data for a read transaction. Note that for a

0 1 2 3 4

qual BG

TS

ABB

ADDR+

aack

artry_in
Chapter 8. Bus Interface Operation 8-15

.
eight

cache
a new
ate as
with a

the

h

etting

ctions
ss
transaction (as indicated by the assertion ofTBST), TSIZ[0–2] are always set to 0b010
Therefore, if theTBST signal is asserted, the memory system should transfer a total of
words (32 bytes), regardless of the TSIZ[0–2] encodings.

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one
line). Data transfers that cross an aligned, 32-byte boundary either must present
address onto the bus at that boundary (for coherency consideration) or must oper
noncoherent data with respect to the 750. The 750 never generates a bus transaction
transfer size of 5 bytes, 6 bytes, or 7 bytes.

8.3.2.2.3 Write-Through (WT) Signal
The 750 provides theWT signal to indicate a write-through operation as determined by
WIM bit settings during address translation by the MMU. TheWT signal is also asserted
for burst writes due to the execution of thedcbf anddcbst instructions, and snoop pus
operations. TheWT signal is deasserted for accesses caused by the execution of theecowx
instruction. During read operations the 750 uses theWT signal to indicate whether the
transaction is an instruction fetch (WT set to 1), or a data read operation (WT cleared to 0).

8.3.2.2.4 Cache Inhibit (CI) Signal
The 750 indicates the caching-inhibited status of a transaction (determined by the s
of the WIM bits by the MMU) through the use of theCI signal. TheCI signal is asserted
even if the L1 caches are disabled or locked. This signal is also asserted for bus transa
caused by the execution ofeciwx and ecowx instructions independent of the addre
translation.

Table 8-1. Transfer Size Signal Encodings

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size

Asserted 0 1 0 Eight-word burst

Negated 0 0 0 Eight bytes

Negated 0 0 1 One byte

Negated 0 1 0 Two bytes

Negated 0 1 1 Three bytes

Negated 1 0 0 Four bytes

Negated 1 0 1 Five bytes (N/A)

Negated 1 1 0 Six bytes (N/A)

Negated 1 1 1 Seven bytes (N/A)
8-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

d to or
first,

ay not
und
8.3.2.3 Burst Ordering During Data Transfers
During burst data transfer operations, 32 bytes of data (one cache line) are transferre
from the cache in order. Burst write transfers are always performed zero double word
but since burst reads are performed critical double word first, a burst read transfer m
start with the first double word of the cache line, and the cache line fill may wrap aro
the end of the cache line.

Table 8-2 describes the data bus burst ordering.

Table 8-3 describes the burst ordering when the 750 is configured with a 32-bit bus.

Table 8-2. Burst Ordering

Data Transfer
For Starting Address:

A[27–28] = 00 A[27–28] = 01 A[27–28] = 10 A[27–28] = 11

First data beat DW0 DW1 DW2 DW3

Second data beat DW1 DW2 DW3 DW0

Third data beat DW2 DW3 DW0 DW1

Fourth data beat DW3 DW0 DW1 DW2

Note: A[29–31] are always 0b000 for burst transfers by the 750.

Table 8-3. Burst Ordering—32-Bit Bus

Data Transfer
For Starting Address:

A[27–28] = 00 A[27–28] = 01 A[27–28] = 10 A[27–28] = 11

First data beat DW0-U DW1-U DW2-U DW3-U

Second data beat DW0-L DW1-L DW2-L DW3-L

Third data beat DW1-U DW2-U DW3-U DW0-U

Fourth data beat DW1-L DW2-L DW3-L DW0-L

Fifth data beat DW2-U DW3-U DW0-U DW1-U

Sixth data beat DW2-L DW3-L DW0-L DW1-L

Seventh data beat DW3-U DW0-U DW1-U DW2-U

Eighth data beat DW3-L DW0-L DW1-L DW2-L

Notes: A[29–31] are always 0b000 for burst transfers by the 750.

“U” and “L” represent the upper and lower word of the double word respectively.
Chapter 8. Bus Interface Operation 8-17

fers in
data.
-byte

ntially
ned to
ress).

mory
word
e 8-5
ross a
ple, a
rosses
8.3.2.4 Effect of Alignment in Data Transfers
Table 8-4 lists the aligned transfers that can occur on the 750 bus. These are trans
which the data is aligned to an address that is an integral multiple of the size of the
For example, Table 8-4 shows that 1-byte data is always aligned; however, for a 4
word to be aligned, it must be oriented on an address that is a multiple of 4.

The 750 supports misaligned memory operations, although their use may substa
degrade performance. Misaligned memory transfers address memory that is not alig
the size of the data being transferred (such as, a word read of an odd byte add
Although most of these operations hit in the primary cache (or generate burst me
operations if they miss), the 750 interface supports misaligned transfers within a
(32-bit aligned) boundary, as shown in Table 8-5. Note that the 4-byte transfer in Tabl
is only one example of misalignment. As long as the attempted transfer does not c
word boundary, the 750 can transfer the data on the misaligned address (for exam
half-word read from an odd byte-aligned address). An attempt to address data that c
a word boundary requires two bus transfers to access the data.

Table 8-4. Aligned Data Transfers

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29–31]
Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

Byte 0 0 1 000 — — — — — — —

0 0 1 001 — — — — — — —

0 0 1 010 — — — — — — —

0 0 1 011 — — — — — — —

0 0 1 100 — — — — — — —

0 0 1 101 — — — — — — —

0 0 1 110 — — — — — — —

0 0 1 111 — — — — — — —

Half word 0 1 0 000 — — — — — —

0 1 0 010 — — — — — —

0 1 0 100 — — — — — —

0 1 0 110 — — — — — —

Word 1 0 0 000 — — — —

1 0 0 100 — — — —

Double word 0 0 0 000

Notes: These entries indicate the byte portions of the requested operand that are read or written during
that bus transaction.
These entries are not required and are ignored during read transactions and are driven with unde-
fined data during all write transactions.
8-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

s, they
dress
ultiple
d that

of the
t for
erated
All
Due to the performance degradations associated with misaligned memory operation
are best avoided. In addition to the double-word straddle boundary condition, the ad
translation logic can generate substantial exception overhead when the load/store m
and load/store string instructions access misaligned data. It is strongly recommende
software attempt to align data where possible.

8.3.2.4.1 Effect of Alignment in Data Transfers (32-Bit Bus)
The aligned data transfer cases for 32-bit data bus mode are shown in Table 8-6. All
transfers require a single data beat (if caching-inhibited or write-through) excep
double-word cases which require two data beats. The double-word case is only gen
by the 750 for load or store double operations to/from the floating-point GPRs.
caching-inhibited instruction fetches are performed as word operations.

Table 8-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ[0–2] A[29–31]
Data Bus Byte Lanes

0 1 2 3 4 5 6 7

Aligned 1 0 0 0 0 0 A A A A — — — —

Misaligned—first access

second access

0 1 1 0 0 1 A A A — — — —

0 0 1 1 0 0 — — — — A — — —

Misaligned—first access

second access

0 1 0 0 1 0 — — A A — — — —

0 1 1 1 0 0 — — — — A A — —

Misaligned—first access

second access

0 0 1 0 1 1 — — — A — — — —

0 1 1 1 0 0 — — — — A A A —

Aligned 1 0 0 1 0 0 — — — — A A A A

Misaligned—first access

second access

0 1 1 1 0 1 — — — — — A A A

0 0 1 0 0 0 A — — — — — — —

Misaligned—first access

second access

0 1 0 1 1 0 — — — — — — A A

0 1 0 0 0 0 A A — — — — — —

Misaligned—first access

second access

0 0 1 1 1 1 — — — — — — — A

0 1 1 0 0 0 A A A — — — — —

Notes:

A: Byte lane used
—: Byte lane not used
Chapter 8. Bus Interface Operation 8-19

in the
y the
nsfer
Misaligned data transfers when the 750 is configured with a 32-bit data bus operate
same way as when configured with a 64-bit data bus, with the exception that onl
DH[0–31] data bus is used. See Table 8-7 for an example of a 4-byte misaligned tra
starting at each possible byte address within a double word.

Table 8-6. Aligned Data Transfers (32-Bit Bus Mode)

Transfer Size TSIZ0 TSIZ1 TSIZ2 A[29–31]
Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

Byte 0 0 1 000 A — — — x x x x

0 0 1 001 — A x — x x x x

0 0 1 010 — — A — x x x x

0 0 1 011 — — — A x x x x

0 0 1 100 A — — — x x x x

0 0 1 101 — A — — x x x x

0 0 1 110 — — A — x x x x

0 0 1 111 — — — A x x x x

Half word 0 1 0 000 A A — — x x x x

0 1 0 010 — — A A x x x x

0 1 0 100 A A — — x x x x

0 1 0 110 — — A A x x x x

Word 1 0 0 000 A A A A x x x x

1 0 0 100 A A A A x x x x

Double word

Second beat

0 0 0 000 A A A A x x x x

0 0 0 000 A A A A x x x x

Notes:

A: Byte lane used
—: Byte lane not used
x: Byte lane not used in 32-bit bus mode
8-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

the

tion of
ss
can

hese
cycle,
8.3.2.5 Alignment of External Control Instructions
The size of the data transfer associated with theeciwx andecowx instructions is always
4 bytes. If theeciwxor ecowxinstruction is misaligned and crosses any word boundary,
750 will generate an alignment exception.

8.3.3 Address Transfer Termination
The address tenure of a bus operation is terminated when completed with the asser
AACK, or retried with the assertion ofARTRY. The 750 does not terminate the addre
transfer until theAACK (address acknowledge) input is asserted; therefore, the system
extend the address transfer phase by delaying the assertion ofAACK to the 750. The
assertion ofAACK can be as early as the bus clock cycle followingTS (see Figure 8-8),
which allows a minimum address tenure of two bus cycles. As shown in Figure 8-8, t
signals are asserted for one bus clock cycle, three-stated for half of the next bus clock
driven high till the following bus cycle, and finally three-stated. Note thatAACK must be
asserted for only one bus clock cycle.

Table 8-7. Misaligned 32-Bit Data Bus Transfer (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ[0–2] A[29–31]
Data Bus Byte Lanes

0 1 2 3 4 5 6 7

Aligned 1 0 0 0 0 0 A A A A x x x x

Misaligned—first access

second access

0 1 1 0 0 1 A A A x x x x

0 0 1 1 0 0 A — — — x x x x

Misaligned—first access

second access

0 1 0 0 1 0 — — A A x x x x

0 1 0 1 0 0 A A — x x x x x

Misaligned—first access

second access

0 0 1 0 1 1 — — — A x x x x

0 1 1 1 0 0 A A A — x x x x

Aligned 1 0 0 1 0 0 A A A A x x x x

Misaligned—first access

second access

0 1 1 1 0 1 — A A A x x x x

0 0 1 0 0 0 A — — — x x x x

Misaligned—first access

second access

0 1 0 1 1 0 — — A A x x x x

0 1 0 0 0 0 A A — — x x x x

Misaligned—first access

second access

0 0 1 1 1 1 — — — A x x x x

0 1 1 0 0 0 A A A — x x x x

Notes:

A: Byte lane used
—: Byte lane not used
x: Byte lane not used in 32-bit bus mode
Chapter 8. Bus Interface Operation 8-21

device,
che
iced.

e next

ng

begun,
s been
st
it is
its. If

hat
ssert
the bus
arbiter

bus

biter
g
tenures
n also
s are
The address transfer can be terminated with the requirement to retry ifARTRY is asserted
anytime during the address tenure and through the cycle followingAACK. The assertion
causes the entire transaction (address and data tenure) to be rerun. As a snooping
the 750 assertsARTRY for a snooped transaction that hits modified data in the data ca
that must be written back to memory, or if the snooped transaction could not be serv
As a bus master, the 750 responds to an assertion ofARTRY by aborting the bus transaction
and re-requesting the bus. Note that after recognizing an assertion ofARTRY and aborting
the transaction in progress, the 750 is not guaranteed to run the same transaction th
time it is granted the bus due to internal reordering of load and store operations.

If an address retry is required, theARTRY response will be asserted by a bus snoopi
device as early as the second cycle after the assertion ofTS. Once asserted,ARTRY must
remain asserted through the cycle after the assertion ofAACK. The assertion ofARTRY
during the cycle after the assertion ofAACK is referred to as a qualifiedARTRY. An earlier
assertion ofARTRY during the address tenure is referred to as an earlyARTRY.

As a bus master, the 750 recognizes either an early or qualifiedARTRY and prevents the
data tenure associated with the retried address tenure. If the data tenure has already
the 750 aborts and terminates the data tenure immediately even if the burst data ha
received. If the assertion ofARTRY is received up to or on the bus cycle following the fir
(or only) assertion ofTA for the data tenure, the 750 ignores the first data beat, and if
a load operation, does not forward data internally to the cache and execution un
ARTRY is asserted after the first (or only) assertion ofTA, improper operation of the bus
interface may result.

During the clock of a qualifiedARTRY, the 750 also determines if it should negateBR and
ignoreBG on the following cycle. On the following cycle, only the snooping master t
assertedARTRY and needs to perform a snoop copy-back operation is allowed to a
BR. This guarantees the snooping master an opportunity to request and be granted
before the just-retried master can restart its transaction. Note that a nonclocked bus
may detect the assertion of address bus request by the bus master that assertedARTRY, and
return a qualified bus grant one cycle earlier than shown in Figure 8-8.

Note that if the 750 assertsARTRY due to a snoop operation, and assertsBR in the bus
cycle followingARTRY in order to perform a snoop push to memory it may be several
cycles later before the 750 will be able to accept aBG. (The delay in responding to the
assertion ofBG only occurs during snoop pushes from the L2 cache.) The bus ar
should keepBG asserted until it detectsBR negated orTS asserted from the 750 indicatin
that the snoop copy-back has begun. The system should ensure that no other address
occur until the current snoop push from the 750 is completed. Snoop push delays ca
be avoided by operating the L2 cache in write-through mode so no snoop pushe
required by the L2 cache.
8-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ned by
e of the

us

is an
. If the
Figure 8-8. Snooped Address Cycle with ARTRY

8.4 Data Bus Tenure
This section describes the data bus arbitration, transfer, and termination phases defi
the 750 memory access protocol. The phases of the data tenure are identical to thos
address tenure, underscoring the symmetry in the control of the two buses.

8.4.1 Data Bus Arbitration
Data bus arbitration uses the data arbitration signal group—DBG, DBWO, andDBB.
Additionally, the combination ofTS and TT[0–4] provides information about the data b
request to external logic.

TheTS signal is an implied data bus request from the 750; the arbiter must qualifyTS with
the transfer type (TT) encodings to determine if the current address transfer
address-only operation, which does not require a data bus transfer (see Figure 8-8)
data bus is needed, the arbiter grants data bus mastership by asserting theDBG input to the
750. As with the address bus arbitration phase, the 750 must qualify theDBG input with a
number of input signals before assuming bus mastership, as shown in Figure 8-9.

1 2 3 4 5 6 7

ts

abb

addr

aack

ARTRY

BR

qualBG

ABB

8

Chapter 8. Bus Interface Operation 8-23

ership

e may
In this

left to
rectly

if the

the
rting it

r
nt
a

Figure 8-9. Data Bus Arbitration

A qualified data bus grant can be expressed as the following:

QDBG =DBG asserted whileDBB, DRTRY, andARTRY (associated with the data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a qualifiedARTRY
assertion coincident with a data bus grant signal does not result in data bus mast
(DBB is not asserted). Otherwise, the 750 always assertsDBB on the bus clock cycle after
recognition of a qualified data bus grant. Since the 750 can pipeline transactions, ther
be an outstanding data bus transaction when a new address transaction is retried.
case, the 750 becomes the data bus master to complete the previous transaction.

8.4.1.1 Using the DBB Signal
TheDBB signal should be connected between masters if data tenure scheduling is
the masters. Optionally, the memory system can control data tenure scheduling di
with DBG. However, it is possible to ignore theDBB signal in the system if theDBB input
is not used as the final data bus allocation control between data bus masters, and
memory system can track the start and end of the data tenure. IfDBB is not used to signal
the end of a data tenure,DBG is only asserted to the next bus master the cycle before
cycle that the next bus master may actually begin its data tenure, rather than asse
earlier (usually during another master’s data tenure) and allowing the negation ofDBB to
be the final gating signal for a qualified data bus grant. Even ifDBB is ignored in the
system, the 750 always recognizes its own assertion ofDBB, and requires one cycle afte
data tenure completion to negate its ownDBB before recognizing a qualified data bus gra
for another data tenure. IfDBB is ignored in the system, it must still be connected to
pull-up resistor on the 750 to ensure proper operation.

0 1 2 3

TS

dbg

dbb

drtry

qual DBG

DBB
8-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ed to
ed
wever,

been

erform

bus to

) to
s,
a

ory
ns.

ations
Effect
are

higher

ta is
rough
pport
le (and
take

e- or
of
ns that
MU),
ta that
o be
burst
8.4.2 Data Bus Write Only
As a result of address pipelining, the 750 may have up to two data tenures queu
perform when it receives a qualifiedDBG. Generally, the data tenures should be perform
in strict order (the same order) as their address tenures were performed. The 750, ho
also supports a limited out-of-order capability with the data bus write only (DBWO) input.
When recognized on the clock of a qualifiedDBG, DBWO may direct the 750 to perform
the next pending data write tenure even if a pending read tenure would have normally
performed first. For more information on the operation ofDBWO, refer to Section 8.10,
“Using Data Bus Write Only.”

If the 750 has any data tenures to perform, it always accepts data bus mastership to p
a data tenure when it recognizes a qualifiedDBG. If DBWO is asserted with a qualified
DBG and no write tenure is queued to run, the 750 still takes mastership of the data
perform the next pending read data tenure.

Generally,DBWO should only be used to allow a copy-back operation (burst write
occur before a pending read operation. IfDBWO is used for single-beat write operation
it may negate the effect of theeieio instruction by allowing a write operation to precede
program-scheduled read operation.

8.4.3 Data Transfer
The data transfer signals include DH[0–31], DL[0–31], and DP[0–7]. For mem
accesses, the DH and DL signals form a 64-bit data path for read and write operatio

The 750 transfers data in either single- or four-beat burst transfers. Single-beat oper
can transfer from 1 to 8 bytes at a time and can be misaligned; see Section 8.3.2.4, “
of Alignment in Data Transfers.” Burst operations always transfer eight words and
aligned on eight-word address boundaries. Burst transfers can achieve significantly
bus throughput than single-beat operations.

The type of transaction initiated by the 750 depends on whether the code or da
cacheable and, for store operations whether the cache is in write-back or write-th
mode, which software controls on either a page or block basis. Burst transfers su
cacheable operations only; that is, memory structures must be marked as cacheab
write-back for data store operations) in the respective page or block descriptor to
advantage of burst transfers.

The 750 outputTBST indicates to the system whether the current transaction is a singl
four-beat transfer (except duringeciwx/ecowx transactions, when it signals the state
EAR[28]). A burst transfer has an assumed address order. For load or store operatio
miss in the cache (and are marked as cacheable and, for stores, write-back in the M
the 750 uses the double-word-aligned address associated with the critical code or da
initiated the transaction. This minimizes latency by allowing the critical code or data t
forwarded to the processor before the rest of the cache line is filled. For all other
Chapter 8. Bus Interface Operation 8-25

igned

f
ta that

a is
us
erted
e

ation

st the
r the

.

t may

ly
been
of

n the

,

fer
operations, however, the cache line is transferred beginning with the eight-word-al
data.

8.4.4 Data Transfer Termination
Four signals are used to terminate data bus transactions—TA, DRTRY (data retry),TEA
(transfer error acknowledge), andARTRY. TheTA signal indicates normal termination o
data transactions. It must always be asserted on the bus cycle coincident with the da
it is qualifying. It may be withheld by the slave for any number of clocks until valid dat
ready to be supplied or accepted.DRTRY indicates invalid read data in the previous b
clock cycle.DRTRY extends the current data beat and does not terminate it. If it is ass
after the last (or only) data beat, the 750 negatesDBB but still considers the data beat activ
and waits for another assertion ofTA. DRTRY is ignored on write operations.TEA
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termin
condition, the 750 always negatesDBB for one cycle.

If DRTRY is asserted by the memory system to extend the last (or only) data beat pa
negation ofDBB, the memory system should three-state the data bus on the clock afte
final assertion ofTA, even though it will negateDRTRY on that clock. This is to prevent a
potential momentary data bus conflict if a write access begins on the following cycle

TheTEA signal is used to signal a nonrecoverable error during the data transaction. I
be asserted on any cycle duringDBB, or on the cycle after a qualifiedTA during a read
operation, except when no-DRTRY mode is selected (where no-DRTRY mode cancels
checking the cycle afterTA). The assertion ofTEA terminates the data tenure immediate
even if in the middle of a burst; however, it does not prevent incorrect data that has just
acknowledged withTA from being written into the 750’s cache or GPRs. The assertion
TEA initiates either a machine check exception or a checkstop condition based o
setting of the MSR[ME] bit.

An assertion ofARTRY causes the data tenure to be terminated immediately if theARTRY
is for the address tenure associated with the data tenure in operation. IfARTRY is
connected for the 750, the earliest allowable assertion ofTA to the 750 is directly
dependent on the earliest possible assertion ofARTRY to the 750; see Section 8.3.3
“Address Transfer Termination.”

8.4.4.1 Normal Single-Beat Termination
Normal termination of a single-beat data read operation occurs whenTA is asserted by a
responding slave. TheTEA andDRTRY signals must remain negated during the trans
(see Figure 8-10).
8-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Figure 8-10. Normal Single-Beat Read Termination

TheDRTRY signal is not sampled during data writes, as shown in Figure 8-11.

Figure 8-11. Normal Single-Beat Write Termination

0 1 2 3 4

TS

qual DBG

DBB

data

ta

drtry

AACK

0 1 2 3

TS

qual DBG

DBB

data

ta

drtry

AACK
Chapter 8. Bus Interface Operation 8-27

,

inate
sts,
.

on
at can
d

tion of

se the

even
Normal termination of a burst transfer occurs whenTA is asserted for four bus clock cycles
as shown in Figure 8-12. The bus clock cycles in whichTA is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to term
successfully,TEA andDRTRY must remain negated during the transfer. For write bur
TEA must remain negated for a successful transfer.DRTRY is ignored during data writes

Figure 8-12. Normal Burst Transaction

For read bursts,DRTRY may be asserted one bus clock cycle afterTA is asserted to signal
that the data presented withTA is invalid and that the processor must wait for the negati
of DRTRY before forwarding data to the processor (see Figure 8-13). Thus, a data be
be terminated by a predicted branch withTA and then one bus clock cycle later confirme
with the negation ofDRTRY. TheDRTRY signal is valid only for read transactions.TA
must be asserted on the bus clock cycle before the first bus clock cycle of the asser
DRTRY; otherwise the results are undefined.

TheDRTRY signal extends data bus mastership such that other processors cannot u
data bus untilDRTRY is negated. Therefore, in the example in Figure 8-13,DBB cannot
be asserted until bus clock cycle 6. This is true for both read and write operations
thoughDRTRY does not extend bus mastership for write operations.

1 2 3 4 5 6 7

TS

qual DBG

DBB

data

ta

drtry
8-28 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ct
-14,
til bus

uch
n the
Figure 8-13. Termination with DRTRY

Figure 8-14 shows the effect of usingDRTRY during a burst read. It also shows the effe
of usingTA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8
TA is negated for the second data beat. The 750 data pipeline does not proceed un
clock cycle 4 when theTA is reasserted.

Figure 8-14. Read Burst with TA Wait States and DRTRY

Note thatDRTRY is useful for systems that implement predicted forwarding of data s
as those with direct-mapped, third-level caches where hit/miss is determined o
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note thatDRTRY may not be implemented on other PowerPC processors.

1 2 3 4 5

TS

qual DBG

DBB

data

ta

drtry

TS

qual DBG

DBB

data

ta

drtry

1 2 3 4 5 6 7 8 9
Chapter 8. Bus Interface Operation 8-29

stop
on is
d or at
pting
. It is
es the
term
st be
d. To
dress
error
saved
tion of
ater).
he.
t
cause

icate
).

plete.

must
en
s to

ring
dition

g bus
erency

oped

an one
hen
8.4.4.2 Data Transfer Termination Due to a Bus Error
TheTEA signal indicates that a bus error occurred. It may be asserted whileDBB (and/or
DRTRY for read operations) is asserted. AssertingTEA to the 750 terminates the
transaction; that is, further assertions ofTA andDRTRY are ignored andDBB is negated.

Assertion of theTEA signal causes a machine check exception (and possibly a check
condition within the 750). For more information, see Section , “The hard reset excepti
a nonrecoverable, nonmaskable asynchronous exception. When HRESET is asserte
power-on reset (POR), the 750 immediately branches to 0xFFF0_0100 without attem
to reach a recoverable state. A hard reset has the highest priority of any exception
always nonrecoverable. Table 4-9 shows the state of the machine just before it fetch
first instruction of the system reset handler after a hard reset. In Table 4-9, the
“Unknown” means that the content may have been disordered. These facilities mu
properly initialized before use. The FPRs, BATs, and TLBs may have been disordere
initialize the BATs, first set them all to zero, then to the correct values before any ad
translation occurs..” Note also that the 750 does not implement a synchronous
capability for memory accesses. This means that the exception instruction pointer
into the SRR0 register does not point to the memory operation that caused the asser
TEA, but to the instruction about to be executed (perhaps several instructions l
However, assertion ofTEA does not invalidate data entering the GPR or the cac
Additionally, the address corresponding to the access that causedTEA to be asserted is no
latched by the 750. To recover, the exception handler must determine and remedy the
of theTEA, or the 750 must be reset; therefore, this function should only be used to ind
fatal system conditions to the processor (such as parity or uncorrectable ECC errors

After the 750 has committed to run a transaction, that transaction must eventually com
Address retry causes the transaction to be restarted;TA wait states andDRTRY assertion
for reads delay termination of individual data beats. Eventually, however, the system
either terminate the transaction or assert theTEA signal. For this reason, care must be tak
to check for the end of physical memory and the location of certain system facilitie
avoid memory accesses that result in the assertion ofTEA.

Note thatTEA generates a machine check exception depending on MSR[ME]. Clea
the machine check exception enable control bits leads to a true checkstop con
(instruction execution halted and processor clock stopped).

8.4.5 Memory Coherency—MEI Protocol
The 750 provides dedicated hardware to provide memory coherency by snoopin
transactions. The address retry capability enforces the three-state, MEI cache-coh
protocol (see Figure 8-15).

The global (GBL) output signal indicates whether the current transaction must be sno
by other snooping devices on the bus. Address bus masters assertGBL to indicate that the
current transaction is a global access (that is, an access to memory shared by more th
device). IfGBL is not asserted for the transaction, that transaction is not snooped. W
8-30 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

cast

the
e the
evious

n
oping
is not

wever,
wn in
and
other devices detect theGBL input asserted, they must respond by snooping the broad
address.

Normally, GBL reflects the M bit value specified for the memory reference in
corresponding translation descriptor(s). Note that care must be taken to minimiz
number of pages marked as global, because the retry protocol discussed in the pr
section is used to enforce coherency and can require significant bus bandwidth.

When the 750 is not the address bus master,GBL is an input. The 750 snoops a transactio
if TS andGBL are asserted together in the same bus clock cycle (this is a qualified sno
condition). No snoop update to the 750 cache occurs if the snooped transaction
marked global. This includes invalidation cycles.

When the 750 detects a qualified snoop condition, the address associated with theTS is
compared against the data cache tags. Snooping completes if no hit is detected. If, ho
the address hits in the cache, the 750 reacts according to the MEI protocol sho
Figure 8-15, assuming the WIM bits are set to write-back, caching-allowed,
coherency-enforced modes (WIM = 001).
Chapter 8. Bus Interface Operation 8-31

Figure 8-15. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

BUS TRANSACTIONS

SH =Snoop Hit = Snoop Push
RH =Read Hit
WH =Write Hit = Cache Line Fill
WM=Write Miss
RM =Read Miss
SH/CRW=Snoop Hit, Cacheable Read/Write
SH/CIR =Snoop Hit, Caching-Inhibited Read

RH

WH

RH

MODIFIED
WH

SH

SH/CIR

SH/CRW

WM

EXCLUSIVE

INVALID

SH/CRW

RM
8-32 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

astest
and
ases,

ss the
8.5 Timing Examples
This section shows timing diagrams for various scenarios. Figure 8-16 illustrates the f
single-beat reads possible for the 750. This figure shows both minimal latency
maximum single-beat throughput. By delaying the data bus tenure, the latency incre
but, because of split-transaction pipelining, the overall throughput is not affected unle
data bus latency causes the third address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.

Figure 8-16. Fastest Single-Beat Reads

BR

BG

ABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0–63]

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

Read Read Read

In In In
Chapter 8. Bus Interface Operation 8-33

ional
Figure 8-17 illustrates the fastest single-beat writes supported by the 750. All bidirect
signals are three-stated between bus tenures.

Figure 8-17. Fastest Single-Beat Writes

BR

BG

ABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0–63]

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

SBW SBW SBW

Out Out Out
8-34 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ls:

.

ta.

lining
le, an
Figure 8-18 shows three ways to delay single-beat reads showing data-delay contro

• TheTA signal can remain negated to insert wait states in clock cycles 3 and 4
• For the second access,DBG could have been asserted in clock cycle 6.
• In the third access,DRTRY is asserted in clock cycle 11 to flush the previous da

Note that all bidirectional signals are three-stated between bus tenures. The pipe
shown in Figure 8-18 can occur if the second access is not another load (for examp
instruction fetch).

Figure 8-18. Single-Beat Reads Showing Data-Delay Controls

BR

BG

ABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0–63]

TA

DRTRY

TEA

CPU A CPU A CPU A

Read Read Read

In In Bad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In
Chapter 8. Bus Interface Operation 8-35

t all
d in the
Figure 8-19 shows data-delay controls in a single-beat write operation. Note tha
bidirectional signals are three-stated between bus tenures. Data transfers are delaye
following ways:

• TheTA signal is held negated to insert wait states in clocks 3 and 4.
• In clock 6,DBG is held negated, delaying the start of the data tenure.

The last access is not delayed (DRTRY is valid only for read operations).

Figure 8-19. Single-Beat Writes Showing Data Delay Controls

BR

BG

ABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0–63]

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

SBW SBW SBW

Out Out Out
8-36 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

t all
Figure 8-20 shows the use of data-delay controls with burst transfers. Note tha
bidirectional signals are three-stated between bus tenures. Note the following:

• The first data beat of bursted read data (clock 0) is the critical quad word.
• The write burst shows the use ofTA signal negation to delay the third data beat.
• The final read burst shows the use ofDRTRY on the third data beat.
• The address for the third transfer is delayed until the first transfer completes.

Figure 8-20. Burst Transfers with Data Delay Controls

BR

BG

ABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0–63]

TA

DRTRY

TEA

CPU A

In 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CPU A CPU A

Read Write Read

In 1 In 2 In 3 Out 0 Out 1 Out 2 Out 3 In 0 In 1 In 2 In 3In 2
Chapter 8. Bus Interface Operation 8-37

e
Figure 8-21 shows the use of theTEA signal. Note that all bidirectional signals ar
three-stated between bus tenures. Note the following:

• The first data beat of the read burst (in clock 0) is the critical quad word.

• TheTEA signal truncates the burst write transfer on the third data beat.

• The 750 eventually causes an exception to be taken on theTEA event.

Figure 8-21. Use of Transfer Error Acknowledge (TEA)

BR

BG

ABB

TS

A[0–31]

TT[0–4]

TBST

GBL

AACK

ARTRY

DBG

DBB

D[0–63]

TA

DRTRY

TEA

CPU A

In 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CPU A CPU A

Read Write Read

In 1 In 2 In 3 Out 0 Out 1 Out 2 In 0 In 1 In 3In 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
8-38 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

of the
ribed

tes the
in the
mode,
Byte
ode.

nd they

e, two,
for the
ibited

s are
ns are
for a
. All

nto or
e way
2

s and
. Late

eat is
ter

hown
8.6 Optional Bus Configuration
The 750 supports optional bus configurations that is selected during the negation
HRESET signal. The operation and selection of the optional bus configuration is desc
in the following sections.

8.6.1 32-Bit Data Bus Mode
The 750 supports an optional 32-bit data bus mode. The 32-bit data bus mode opera
same as the 64-bit data bus mode with the exception of the byte lanes involved
transfer and the number of data beats that are performed. When in 32-bit data bus
only byte lanes 0 through 3 are used corresponding to DH0–DH31 and DP0–DP3.
lanes 4 through 7 corresponding to DL0–DL31 and DP4–DP7 are never used in this m
The unused data bus signals are not sampled by the 750 during read operations, a
are driven low during write operations.

The number of data beats required for a data tenure in the 32-bit data bus mode is on
or eight beats depending on the size of the program transaction and the cache mode
address. Data transactions of one or two data beats are performed for caching-inh
load/store or write-through store operations. These transactions do not assert theTBST
signal even though a two-beat burst may be performed (having the sameTBST and
TSIZ[0–2] encodings as the 64-bit data bus mode). Single-beat data transaction
performed for bus operations of 4 bytes or less, and double-beat data transactio
performed for 8-byte operations only. The 750 only generates an 8-byte operation
double-word-aligned load or store double operation to or from the floating-point GPRs
cache-inhibited instruction fetches are performed as word (single-beat) operations.

Data transactions of eight data beats are performed for burst operations that load i
store from the 750’s internal caches. These transactions transfer 32 bytes in the sam
as in 64-bit data bus mode, asserting theTBST signal, and signaling a transfer size of
(TSIZ(0–2) = 0b010).

The same bus protocols apply for arbitration, transfer, and termination of the addres
data tenures in the 32-bit data bus mode as they apply to the 64-bit data bus mode
ARTRY cancellation of the data tenure applies on the bus clock after the first data b
acknowledged (after the firstTA) for word or smaller transactions, or on the bus clock af
the second data beat is acknowledged (after the secondTA) for double-word or burst
operations (or coincident with respectiveTA if no-DRTRY mode is selected).

An example of an eight-beat data transfer while the 750 is in 32-bit data bus mode is s
in Figure 8-22.
Chapter 8. Bus Interface Operation 8-39

is

of the
Figure 8-22. 32-Bit Data Bus Transfer (Eight-Beat Burst)

An example of a two-beat data transfer (withDRTRY asserted during each data tenure)
shown in Figure 8-23.

Figure 8-23. 32-Bit Data Bus Transfer (Two-Beat Burst with DRTRY)

The 750 selects 64-bit or 32-bit data bus mode at startup by sampling the state
TLBISYNC signal at the negation ofHRESET. If theTLBISYNC signal is negated at the

TS

ABB

ADDR

TBST

AACK

ARTRY

DBB

DH[0–31]

TA

DRTRY

TEA

0 1 2 3 4 5 6 7

TS

ABB

ADDR

TBST

AACK

ARTRY

DBB

DH[0–31]

TA

DRTRY

TEA

0 1
Chapter 8. Bus Interface Operation 8-40

vided
g
tocol.

mally

hold
ata is
the

the

r it

ration

after

the

rface.
r
e

ter
r bus
negation ofHRESET, 64-bit data mode is entered by the 750. IfTLBISYNC is asserted at
the negation ofHRESET, 32-bit data mode is entered.

8.6.2 No-DRTRY Mode
The 750 supports an optional mode to disable the use of the data retry function pro
through theDRTRY signal. The no-DRTRY mode allows the forwarding of data durin
load operations to the internal CPU one bus cycle sooner than in the normal bus pro

The 60x bus protocol specifies that, during load operations, the memory system nor
has the capability to cancel data that was read by the master on the bus cycle afterTA was
asserted. In the 750 implementation, this late cancellation protocol requires the 750 to
any loaded data at the bus interface for one additional bus clock to verify that the d
valid before forwarding it to the internal CPU. For systems that do not implement
DRTRY function, the 750 provides an optional no-DRTRY mode that eliminates this
one-cycle stall during all load operations, and allows for the forwarding of data to
internal CPU immediately whenTA is recognized.

When the 750 is in the no-DRTRY mode, data can no longer be cancelled the cycle afte
is acknowledged by an assertion ofTA. Data is immediately forwarded to the CPU
internally, and any attempt at late cancellation by the system may cause improper ope
by the 750.

When the 750 is following normal bus protocol, data may be cancelled the bus cycle
TA by either of two means—late cancellation byDRTRY, or late cancellation byARTRY.
When no-DRTRY mode is selected, both cancellation cases must be disallowed in
system design for the bus protocol.

When no-DRTRY mode is selected for the 750, the system must ensure thatDRTRY is not
asserted to the 750. If it is asserted, it may cause improper operation of the bus inte
The system must also ensure that an assertion ofARTRY by a snooping device must occu
before or coincident with the first assertion ofTA to the 750, but not on the cycle after th
first assertion ofTA.

Other than the inability to cancel data that was read by the master on the bus cycle afTA
was asserted, the bus protocol for the 750 is identical to that for the basic transfe
protocols described in this chapter, including 32-bit data bus mode.

The 750 selects the desiredDRTRY mode at startup by sampling the state of theDRTRY
signal itself at the negation of theHRESET signal. If theDRTRY signal is negated at the
negation ofHRESET, normal operation is selected. If theDRTRY signal is asserted at the
negation ofHRESET, no-DRTRY mode is selected.

8.6.3 Reduced Pinout Mode
This mode is not supported on the 750.
Chapter 8. Bus Interface Operation 8-41

ft reset

ctor if
P]

t pin
ar the

put
by

essing
ons
re
= 0).”

pt
he 750

ge
8.7 Interrupt, Checkstop, and Reset Signals
This section describes external interrupts, checkstop operations, and hard and so
inputs.

8.7.1 External Interrupts
The external interrupt input signals (INT, SMI andMCP) of the 750 eventually force the
processor to take the external interrupt vector or the system management interrupt ve
the MSR[EE] is set, or the machine check interrupt if the MSR[ME] and the HID0[EMC
bits are set.

8.7.2 Checkstops
A checkstop causes the processor to halt and assert the checkstop outpu
CKSTP_OUT_. Once the 750 enters a checkstop state, only a hard reset can cle
processor from the checkstop state.

The 750 has two checkstop input signals—CKSTP_IN (nonmaskable) andMCP (enabled
when MSR[ME] is cleared, and HID0[EMCP] is set), and a checkstop out
(CKSTP_OUT) signal. IfCKSTP_IN orMCP is asserted, the 750 halts operations
gating off all internal clocks. The 750 assertsCKSTP_OUT ifCKSTP_IN is asserted.

If CKSTP_OUT is asserted by the 750, it has entered the checkstop state, and proc
has halted internally. TheCKSTP_OUT signal can be asserted for various reas
including receiving aTEA signal and detection of external parity errors. For mo
information about checkstop state, see Section 4.5.2.2, “Checkstop State (MSR[ME]

Following is the list of checkstop sources:

• Machine Check with MSR(ME)=0. If MSR(ME)=0 when a machine check interru
occurs, then the checkstop state is entered. The machine check sources for t
are as follows.

— TEA_ assertion on the 60X bus

— Address parity error on the 60X bus

— Data parity error on the 60X bus

— Data parity error on the L2 bus

• Machine check input pin (MCP_)

• Checkstop input pin (CKSTP_IN_)

• DLL rollover (for chip revision 3.0 and later for the 750) (see Table 2-18 on pa
2-25)

8.7.3 Reset Inputs
The 750 has two reset inputs, described as follows:
Chapter 8. Bus Interface Operation 8-42

es,
e of

is
e.

pts
00100
prefix

p
hion.

When

t state,
ower

The
nap

use of

d
be

tion is
alf of

nd
er; see
tion
• HRESET (hard reset)—TheHRESET signal is used for power-on reset sequenc
or for situations in which the 750 must go through the entire cold start sequenc
internal hardware initializations.

• SRESET (soft reset)—The soft reset input provides warm reset capability. Th
input can be used to avoid forcing the 750 to complete the cold start sequenc

When eitherHRESET is negated orSRESET transitions to asserted, the processor attem
to fetch code from the system reset exception vector. The vector is located at offset 0x
from the exception prefix (all zeros or ones, depending on the setting of the exception
bit in the machine state register (MSR[IP]). The MSR[IP] bit is set forHRESET.

8.7.4 System Quiesce Control Signals
The system quiesce control signals (QREQ andQACK) allow the processor to enter the na
or sleep low-power states, and bring bus activity to a quiescent state in an orderly fas

Prior to entering the nap or sleep power state, the 750 asserts theQREQ signal. This signal
allows the system to terminate or pause any bus activities that are normally snooped.
the system is ready to enter the system quiesce state, it asserts theQACK signal. At this
time the 750 may enter a quiescent (low power) state. When the 750 is in the quiescen
it stops snooping bus activity. While the 750 is in the nap power state, the system p
controller can enable snooping by the 750 by deasserting theQACK signal for at least eight
bus clock cycles, after which the 750 is capable of snooping bus transactions.
reassertion ofQACK following the snoop transactions will cause the 750 to reenter the
power state.

8.8 Processor State Signals
This section describes the 750's support for atomic update and memory through the
the lwarx /stwcx. opcode pair, and includes a description of theTLBISYNC input.

8.8.1 Support for the lwarx/stwcx. Instruction Pair
The Load Word and Reserve Indexed (lwarx) and the Store Word Conditional Indexe
(stwcx.) instructions provide a means for atomic memory updating. Memory can
updated atomically by setting a reservation on the load and checking that the reserva
still valid before the store is performed. In the 750, the reservations are made on beh
aligned, 32-byte sections of the memory address space.

The reservation (RSRV) output signal is driven synchronously with the bus clock a
reflects the status of the reservation coherency bit in the reservation address regist
Chapter 3, “Instruction and Data Cache Operation,” for more information. For informa
about timing, see Section 7.2.9.7.3, “Reservation (RSRV)—Output.”
Chapter 8. Bus Interface Operation 8-43

les
ystem
uld be

any

tion

table

EE
TAG)

tailed
ever,

e test

3

8.8.2 TLBISYNC Input
TheTLBISYNC input allows for the hardware synchronization of changes to MMU tab
when the 750 and another DMA master share the same MMU translation tables in s
memory. It is asserted by a DMA master when it is using shared addresses that co
changed in the MMU tables by the 750 during the DMA master’s tenure.

The TLBISYNC input, when asserted to the 750, prevents the 750 from completing
instructions past atlbsync instruction. Generally, during the execution of aneciwx or
ecowxinstruction by the 750, the selected DMA device should assert the 750’sTLBISYNC
signal and maintain it asserted during its DMA tenure if it is using a shared transla
address. Subsequent instructions by the 750 should include asyncandtlbsync instruction
before any MMU table changes are performed. This will prevent the 750 from making
changes disruptive to the other master during the DMA period.

8.9 IEEE 1149.1a-1993 Compliant Interface
The 750 boundary-scan interface is a fully-compliant implementation of the IE
1149.1a-1993 standard. This section describes the 750’s IEEE 1149.1a-1993 (J
interface.

8.9.1 JTAG/COP Interface
The 750 has extensive on-chip test capability including the following:

• Debug control/observation (COP)
• Boundary scan (standard IEEE 1149.1a-1993 (JTAG) compliant interface)
• Support for manufacturing test

The COP and boundary scan logic are not used under typical operating conditions. De
discussion of the 750 test functions is beyond the scope of this document; how
sufficient information has been provided to allow the system designer to disable th
functions that would impede normal operation.

The JTAG/COP interface is shown in Figure 8-24. For more information, refer toIEEE
Standard Test Access Port and Boundary Scan Architecture IEEE STD 1149-1a-199.

Figure 8-24. IEEE 1149.1a-1993 Compliant Boundary Scan Interface

TDI (Test Data Input)

TMS (Test Mode Select)

TCK (Test Clock Input)

TDO (Test Data Output)

TRST (Test Reset)
Chapter 8. Bus Interface Operation 8-44

order

enure

same
from

d data
0 can
rform
750
use of

ion.
te

ction,
d that

 the

ure,
8.10 Using Data Bus Write Only
The 750 supports split-transaction pipelined transactions. It supports a limited out-of-
capability for its own pipelined transactions through the data bus write only (DBWO)
signal. When recognized on the clock of a qualifiedDBG, the assertion ofDBWO directs
the 750 to perform the next pending data write tenure (if any), even if a pending read t
would have normally been performed because of address pipelining. TheDBWO signal
does not change the order of write tenures with respect to other write tenures from the
750. It only allows that a write tenure be performed ahead of a pending read tenure
the same 750.

In general, an address tenure on the bus is followed strictly in order by its associate
tenure. Transactions pipelined by the 750 complete strictly in order. However, the 75
run bus transactions out of order only when the external system allows the 750 to pe
a cache-line-snoop-push-out operation (or other write transaction, if pending in the
write queues) between the address and data tenures of a read operation through the
DBWO. This effectively envelopes the write operation within the read operat
Figure 8-25 shows how theDBWO signal is used to perform an enveloped wri
transaction.

Figure 8-25. Data Bus Write Only Transaction

Note that although the 750 can pipeline any write transaction behind the read transa
special care should be used when using the enveloped write feature. It is envisione
most system implementations will not need this capability; for these applications,DBWO
should remain negated. In systems where this capability is needed,DBWO should be
asserted under the following scenario:

1. The 750 initiates a read transaction (either single-beat or burst) by completing
read address tenure with no address retry.

2. Then, the 750 initiates a write transaction by completing the write address ten
with no address retry.

AACK

DBG

ABB

BG

(2) (1)

DBB

Enveloped Write

DBWO

Transaction

(1) (2)

Read Address Write Address

Write Data Read Data
Chapter 8. Bus Interface Operation 8-45

50
t to

 read

f these

 write

write

st
ay

g data

es with

and

the
3. At this point, ifDBWO is asserted with a qualified data bus grant to the 750, the 7
assertsDBB and drives the write data onto the data bus, out of order with respec
the address pipeline. The write transaction concludes with the 750 negatingDBB.

4. The next qualified data bus grant signals the 750 to complete the outstanding
transaction by latching the data on the bus. This assertion ofDBG should not be
accompanied by an assertedDBWO.

Any number of bus transactions by other bus masters can be attempted between any o
steps.

Note the following regardingDBWO:

• DBWO can be asserted if no data bus read is pending, but it has no effect on
ordering.

• The ordering and presence of data bus writes is determined by the writes in the
queues at the timeBG is asserted for the write address (notDBG). If a particular
write is desired (for example, a cache-line-snoop-push-out operation), thenBG must
be asserted after that particular write is in the queue and it must be the highe
priority write in the queue at that time. A cache-line-snoop-push-out operation m
be the highest priority write, but more than one may be queued.

• Because more than one write may be in the write queue whenDBG is asserted for
the write address, more than one data bus write may be enveloped by a pendin
bus read.

The arbiter must monitor bus operations and coordinate the various masters and slav
respect to the use of the data bus whenDBWO is used. IndividualDBG signals associated
with each bus device should allow the arbiter to synchronize both pipelined
split-transaction bus organizations. IndividualDBG andDBWO signals provide a primitive
form of source-level tagging for the granting of the data bus.

Note that use of theDBWO signal allows some operation-level tagging with respect to
750 and the use of the data bus.
Chapter 8. Bus Interface Operation 8-46

nd its
ignal
. Note

e tag
byte
er two
(four
r 256
r L2
byte

s own

the
core
nd is
Chapter 9 L2 Cache Interface Operation
This chapter describes the PowerPC 750 microprocessor L2 cache interface, a
configuration and operation. It describes how the 750 signals, defined in Chapter 7, “S
Descriptions,” interact to perform address and data transfers to and from the L2 cache
that the PowerPC 740 microprocessor does not implement the L2 cache interface.

9.1 L2 Cache Interface Overview
The 750’s L2 cache interface is implemented with an on-chip, two-way set associativ
memory with 4096 tags per way, and a dedicated interface with support for up to 1 M
of external synchronous SRAM for data storage. The tags are sectored to support eith
cache blocks per tag entry (two sectors, 64 bytes), or four cache blocks per tag entry
sectors, 128 bytes) depending on the L2 cache size. If the L2 cache is configured fo
Kbytes or 512 Kbytes of external SRAM, the tags are configured for two sectors pe
cache block. The L2 tags are configured for four sectors per L2 cache block when 1 M
of external SRAM is used. Each sector (32-byte L1 cache block) in the L2 cache has it
valid and modified bits.

The L2 cache control register (L2CR) allows control of the following:

• L2 cache configuration and timing

• Byte-level data parity generation and checking

• global invalidation of L2 contents

• write-through operation

• L2 test support.

The L2 cache interface provides two clock outputs that allow the clock inputs of
SRAMs to be driven at frequency divisions of 1, 1.5, 2, 2.5, and 3 of the processor
frequency. The 750’s L2 cache maintains cache coherency through snooping a
normally configured to operate in copy-back mode.

Figure 9-26 shows the 750 configured with a 1-Mbyte L2 cache.
Chapter 9. L2 Cache Interface Operation 9-1

quests
lly the
ns, or
the L2
e L2
block

to the
e L2
dified,
x bus.
Figure 9-26. Typical 1-Mbyte L2 Cache Configuration

9.1.1 L2 Cache Operation
The 750’s L2 cache is a combined instruction and data cache that receives memory re
from both L1 instruction and data caches independently. The L1 requests are genera
result of instruction fetch misses, data load or store misses, write-through operatio
cache management instructions. Each L1 request generates an address lookup in
tags. If a hit occurs, the instructions or data are forwarded to the L1 cache. A miss in th
tags causes the L1 request to be forwarded to the 60x bus interface. The cache
received from the bus is forwarded to the L1 cache immediately, and is also loaded in
L2 cache with the tag marked valid and unmodified. If the cache block loaded into th
causes a new tag entry to be allocated and the current tag entry is marked valid mo
the modified sectors of the tag to be replaced are castout from the L2 cache to the 60

L2ADDR[16–0]
L2DATA[0–63]

L2DP[0–7]
L2CE
L2WE
L2ZZ

L2CLK_OUTA

L2SYNC_OUT
L2SYNC_IN

L2CLK_OUTB

ADDR[16–0]
DATA[0–31]
PARITY[0–3]
E
W
ADSC
ADSP
ZZ
K

750
ADDR[16–0]
DATA[0–31]
PARITY[0–3]
E
W
ADSC
ADSP
ZZ
K

1
0

0
1

(Optional)

(Optional)

Notes :
– For a 1-Mbyte L2, use address bits 16–0 (bit 0 is LSB).
– For a 512-Kbyte L2, use address bits 15–0 (bit 0 is LSB).
– For a 256-Kbyte L2, use address bits 14–0 (bit 0 is LSB).
– External clock routing should ensure that the rising edge of the L2 clock is

coincident at the K input of all SRAMs and at the L2Sync_In input of the 750. The
clock A network can be used solely or the clock B network can also be used
depending on loading, frequency, and number of SRAMs.

– No pull-up resistors are normally required for the L2 interface.
– The 750 supports only one bank of SRAMs.
– For high-speed operation, no more than two loads should be presented on each L2

interface signal.

(Optional)

128k x 36
SRAM

128k x 36
SRAM
9-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

d the
2 cache
ests to
quests
ity in

he can
ction
nder-
ulting

che is
re in
cache
rites
he L2
g burst
50 for

d the
be

to be

se any
single-
cache
le-beat
quests
n of
us
the
e that
fault

hange.
At any given time the L1 instruction cache may have one instruction fetch request, an
L1 data cache may have one load and two stores requesting L2 cache access. The L
also services snoop requests from the 60x bus. When there are multiple pending requ
the L2 cache, snoop requests have highest priority, followed by data load and store re
(serviced on a first-in, first-out basis). Instruction fetch requests have the lowest prior
accessing the L2 cache when there are multiple accesses pending.

If read requests from both the L1 instruction and data caches are pending, the L2 cac
perform hit-under-miss and supplies the available instruction or data while a bus transa
for the previous L2 cache miss is performed. The L2 cache does not support miss-u
miss, and the second instruction fetch or data load stalls until the bus operation res
from the first L2 miss completes.

All requests to the L2 cache that are marked cacheable (even if the respective L1 ca
disabled or locked) cause tag lookup and will be serviced if the instructions or data a
the L2 cache. Burst and single-beat read requests from the L1 caches that hit in the L2
are forwarded instructions or data, and the L2 LRU bit for that tag is updated. Burst w
from the L1 data cache due to a castout or replacement copyback are written only to t
cache, and the L2 cache sector is marked modified. Designers should note that durin
transfers into and out of the L2 cache SRAM array, an address is generated by the 7
each data beat.

If the L2 cache is configured as write-through, the L2 sector is marked unmodified, an
write is forwarded to the 60x bus. If the L1 castout requires a new L2 tag entry to
allocated and the current tag is marked modified, any modified sectors of the tag
replaced are cast out of the L2 cache to the 60x bus.

Single-beat read requests from the L1 caches that miss in the L2 cache do not cau
state changes in the L2 cache and are forwarded on the 60x bus interface. Cacheable
beat store requests marked copy-back that hit in the L2 are allowed to update the L2
sector, but do not cause L2 cache sector allocation or deallocation. Cacheable, sing
store requests that miss in the L2 are forwarded to the 60x bus. Single-beat store re
marked write-through (through address translation or through the configuratio
L2CR[L2WT]) are written to the L2 cache if they hit and are written to the 60x b
independent of the L2 hit/miss status. If the store hits in the L2 cache,
modified/unmodified status of the tag remains unchanged. All requests to the L2 cach
are marked cache-inhibited by address translation (through either the MMU or by de
WIMG configuration) bypass the L2 cache and do not cause any L2 cache tag state c
Chapter 9. L2 Cache Interface Operation 9-3

he.
L1 and
d with
, the
If the
ions

gh

in
or

The
L1

m the
r
-only

uires
must
e L2

2 byte
ive) of
must

ation
st if
er

hits
letes.
for

che

s.
The execution of thestwcx. instruction results in single-beat writes from the L1 data cac
These single-beat writes are processed by the L2 cache according to hit/miss status,
L2 write-through configuration, and reservation-active status. If the address associate
thestwcx. instruction misses in the L2 cache or if the reservation is no longer active
stwcx. instruction bypasses the L2 cache and is forwarded to the 60x bus interface.
stwcx. hits in the L2 cache and the reservation is still active, one of the following act
occurs:

• If the stwcx. hits a modified sector in the L2 cache (independent of write-throu
status), or if thestwcx.hits both the L1 and L2 caches in copy-back mode, thestwcx.
is written to the L2 and the reservation completes.

• If the stwcx.hits an unmodified sector in the L2 cache, and either the L1 or L2 is
write-through mode, thestwcx. is forwarded to the 60x bus interface and the sect
hit in the L2 cache is invalidated.

L1 cache-block-push operations generated by the execution ofdcbf anddcbst instructions
write through to the 60x bus interface and invalidate the L2 cache sector if they hit.
execution ofdcbf anddcbst instructions that do not cause a cache-block-push from the
cache are forwarded to the L2 cache to perform a sector invalidation and/or push fro
L2 cache to the 60x bus as required. If thedcbf anddcbst instructions do not cause a secto
push from the L2 cache, they are forwarded to the 60x bus interface for address
broadcast if HID0[ABE] is set to 1.

The L2 flush mechanism is similar to the L1 data cache flush mechanism. L2 flush req
that the entire L1 data cache be flushed prior to flushing the L2 cache. Also, interrupts
be disabled during the L2 flush so that the LRU algorithm does not get disturbed. Th
can be flushed by executing uniquely addressed load instructions to each of the 3
blocks of the L2 cache. This requires a load to each of the 2 sets (2-way set associat
the 32-byte block (sector) within each 64 or 128-byte line of the L2 cache. The loads
not hit in the L1 cache in order to effect a flush of the L2 cache.

Thedcbi instruction is always forwarded to the L2 cache and causes a segment invalid
if a hit occurs. The instruction is also forwarded to the 60x bus interface for broadca
HID0[ABE] is set to 1. Theicbi instruction invalidates only L1 cache blocks and is nev
forwarded to the L2 cache.

Any dcbz instructions marked global do not affect the L2 cache state. If an instruction
in the L1 and L2 caches, the L1 data cache block is cleared and the instruction comp
If an instruction misses in the L2 cache, it is forwarded to the 60x bus interface
broadcast. Anydcbz instructions that are marked nonglobal act only on the L1 data ca
without reference to the state of the L2.

Thesync andeieio instructions bypass the L2 cache and are forwarded to the 60x bu
9-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

R is a
1017.
L2CR
.1.5,
9.1.2 L2 Cache Control Register (L2CR)
The L2 cache control register is used to configure and enable the L2 cache. The L2C
supervisor-level read/write, implementation-specific register that is accessed as SPR
The contents of the L2CR are cleared during power-on reset. Table 9-8 describes the
bits. For additional information about the configuration of the L2CR, refer to Section 2
“L2 Cache Control Register (L2CR).”

Table 9-8. L2 Cache Control Register

Bit Name Function

0 L2E L2 enable

1 L2PE L2 data parity generation and checking enable

2–3 L2SIZ L2 size—Should be set according to the size of the L2 data RAMs used
00 Reserved
01 256 Kbyte
10 512 Kbyte
11 1 Mbyte

4–6 L2CLK L2 clock ratio (core-to-L2 frequency divider)
000 L2 clock and DLL disabled
001 ÷1
010 ÷1.5
011 Reserved
100 ÷2
101 ÷2.5
110 ÷3
111 Reserved

7–8 L2RAM L2 RAM type—Configures the L2 RAM interface for the type of synchronous SRAMs used
00 Flow-through (register-buffer) synchronous burst SRAM
01 Reserved
10 Pipelined (register-register) synchronous burst SRAM
11 Pipelined (register-register) synchronous late-write SRAM

9 L2DO L2 data-only. Setting this bit disables the caching of instructions in the L2 cache.

10 L2I L2 global invalidate. Setting L2I invalidates the L2 cache globally by clearing the L2 status
bits.

11 L2CTL L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ
(low-power mode) signal for cache RAMs that support the ZZ function. This bit should not
be set when the 750 is in nap mode and snooping is being performed through deassertion
of QACK.

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default copy-
back mode) so all writes to the L2 cache also write through to the 60x bus.

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that
result from dcbf and dcbst instructions to be written only into the L2 cache and marked
valid, rather than being written only to the 60x bus and marked invalid in the L2 cache in
case of hit. If L2TS is set, causes single-beat store operations that miss in the L2 cache to
be discarded.
Chapter 9. L2 Cache Interface Operation 9-5

ally.
CR

efore
the L2
start-

ro
uld
nd

bal
9.1.3 L2 Cache Initialization
Following a power-on or hard reset, the L2 cache and the L2 DLL are disabled initi
Before enabling the L2 cache, the L2 DLL must first be configured through the L2
register, and the DLL must be allowed 640 L2 clock periods to achieve phase lock. B
enabling the L2 cache, other configuration parameters must be set in the L2CR, and
tags must be globally invalidated. The L2 cache should be initialized during system
up.

The sequence for initializing the L2 cache is as follows:

1. Power-on reset (automatically performed by the assertion ofHRESET signal).

2. Disable interrupts and Dynamic Power Management (DPM).

3. Disable L2 cache by clearing L2 CR[L2E].

4. Set the L2CR[L2CLK] bits to the desired clock divider setting. Setting a nonze
value automatically enables the DLL. All other L2 cache configuration bits sho
be set to properly configure the L2 cache interface for the SRAM type, size, a
interface timing required.

5. Wait for the L2 DLL to achieve phase lock. This can be timed by setting the
decrementer for a time period equal to 640 L2 clocks, or by performing an L2 glo
invalidate.

14–15 L2OH L2 output hold. These bits configure the output hold time of the address, data, and control
signals driven by the 750 to the L2 data RAMs.
00 0.5 nS
01 1.0 nS
10 Reserved
11 Reserved

16 L2SL L2 DLL slow. Setting L2SL enables L2 data RAM clocking at frequencies less than
100 MHz.

17 L2DF L2 differential clock. Setting L2DF configures the two clock-out signals (L2CLK_OUTA and
L2CLK_OUTB) of the L2 interface to operate as one differential clock.

18 L2BYP L2 DLL bypass. L2BYP is intended for use when the PLL is being bypassed, and for
engineering evaluation.

19–21 — Reserved. These bits are implemented but not used; keep at 0 for future compatibility.

22 L2CS L2 Clock Stop (for chip revisions 3.0 and later).

23 L2DRO L2 DLL Rollover Checkstop Enable (for chip revisions 3.0 and later).

24-30 L2CTR L2 DLL counter value (read only).

31 L2IP L2 global invalidate in progress (read only)—This read-only bit indicates whether an L2
global invalidate is occurring.

Table 9-8. L2 Cache Control Register (Continued)

Bit Name Function
9-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ore

he
n it

ther
 by

(tag
ware
ction
is

e L2

re

n the

is

L2

ion of
tions
ddress
arded

nts
ain
tents
load
6. Perform an L2 global invalidate. The global invalidate could be performed bef
enabling the DLL, or in parallel with waiting for the DLL to stabilize. Refer to
Section 9.1.4, “L2 Cache Global Invalidation,” for more information about L2 cac
global invalidation. Note that a global invalidate always takes much longer tha
takes for the DLL to stabilize.

7. After the DLL stabilizes, an L2 global invalidate has been performed, and the o
L2 configuration bits have been set, enable the L2 cache for normal operation
setting the L2CR[L2E] bit to 1.

9.1.4 L2 Cache Global Invalidation
The L2 cache supports a global invalidation function in which all bits of the L2 tags
data bits, tag status bits, and LRU bit) are cleared. It is performed by an on-chip hard
state machine that sequentially cycles through the L2 tags. The global invalidation fun
is controlled through L2CR[L2I], and it must be performed only while the L2 cache
disabled. The 750 can continue operation during a global invalidation provided th
cache has been properly disabled before the global invalidation operation starts.

The sequence for performing a global invalidation of the L2 cache is as follows:

1. Execute async instruction to finish any pending store operations in the load/sto
unit, disable the L2 cache by clearing L2CR[L2E], and execute an additionalsync
instruction after disabling the L2 cache to ensure that any pending operations i
L2 cache unit have completed.

2. Initiate the global invalidation operation by setting the L2CR[L2I] bit to 1.

3. Monitor the L2CR[L2IP] bit to determine when the global invalidation operation
completed (indicated by the clearing of L2CR[L2IP]). The global invalidation
requires approximately 32K core clock cycles to complete.

4. After detecting the clearing of L2CR[L2IP], clear L2CR[L2I] and re-enable the
cache for normal operation by setting L2CR[L2E].

9.1.5 L2 Cache Test Features and Methods
In the course of system power-up, testing may be required to verify the proper operat
the L2 tag memory, external SRAM, and overall L2 cache system. The following sec
describe the 750’s features and methods for testing the L2 cache. The L2 cache a
space should be marked as guarded (G = 1) so spurious load operations are not forw
to the 60x bus interface before branch resolution during L2 cache testing.

9.1.5.1 L2CR Support for L2 Cache Testing
L2CR[DO] and L2CR[TS] support the testing of the L2 cache. L2CR[DO] preve
instructions from being cached in the L2. This allows the L1 instruction cache to rem
enabled during the testing process without having L1 instruction misses affect the con
of the L2 cache and allows all L2 cache activity to be controlled by program-specified
and store operations.
Chapter 9. L2 Cache Interface Operation 9-7

e.
ing a
ache.

ck.

o hit in
he L2
ddress
hen
age table
e has
s then

eable
miss.

ts and
roper

rnal

fault

can

ng a
d
the L2
execute
terns

ts or

nown
of store
s

sses
bus
an be
L2CR[TS] is used with thedcbf anddcbst instructions to push data into the L2 cach
When L2CR[TS] is set, and the L1 data cache is enabled, an instruction loop contain
dcbf instruction can be used to store any address or data pattern to the L2 c
Additionally, 60x bus broadcasting is inhibited when adcbz instruction is executed. This
allows the use of adcbz instruction to clear an L1 cache block, followed by adcbf
instruction to push the cache block into the L2 cache and invalidate the L1 cache blo

When the L2 cache is enabled, cacheable single-beat read operations are allowed t
the L2 cache and cacheable write operations are allowed to modify the contents of t
cache when a hit occurs. Cacheable single-beat read and writes occur when a
translation is disabled (invoking the use of the default WIMG bits (0b0011)), or w
address translation is enabled and accesses are marked as cacheable through the p
entries or the BATs, and the L1 data cache is disabled or locked. When the L2 cach
been initialized and the L1 cache has been disabled or locked, load or store instruction
bypass the L1 cache and hit in the L2 cache directly. When L2CR[TS] is set, cach
single-beat writes are inhibited from accessing the 60x bus interface after an L2 cache

During L2 cache testing, the performance monitor can be used to count L2 cache hi
misses, thereby providing a numerical signature for test routines and a way to verify p
L2 cache operation.

9.1.5.2 L2 Cache Testing
A typical test for verifying the proper operation of the 750’s L2 cache memory (exte
SRAM and tag) would perform the following steps:

1. Initialize the L2 test sequence by disabling address translation to invoke the de
WIMG setting (0b0011). Set L2CR[DO] and L2CR[TS] and perform a global
invalidation of the L1 data cache and the L2 cache. The L1 instruction cache
remain enabled to improve execution efficiency.

2. Test the L2 cache external SRAM by enabling the L1 data cache and executi
sequence ofdcbz, stw, anddcbf instructions to initialize the L2 cache with a desire
range of consecutive addresses and with cache data consisting of zeros. Once
cache holds a sequential range of addresses, disable the L1 data cache and
a series of single-beat load and store operations employing a variety of bit pat
to test for stuck bits and pattern sensitivities in the L2 cache SRAM. The
performance monitor can be used to verify whether the number of L2 cache hi
misses corresponds to the tests performed.

3. Test the L2 cache tag memory by enabling the L1 data cache and executing a
sequence ofdcbz, stw, anddcbf instructions to initialize the L2 cache with a wide
range of addresses and cache data. Once the L2 cache is populated with a k
range of addresses and data, disable the L1 data cache and execute a series
operations to addresses not previously in the L2 cache. These store operation
should miss in every case. Note that setting the L2CR[TS] inhibits L2 cache mi
from being forwarded to the 60x bus interface, thereby avoiding the potential for
errors due to addressing hardware or nonexistent memory. The L2 cache then c
9-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ether
ance
and

ring

gram
n be

. The
by

k is
rface

L).

ternal
tment
nal

urst
che
ing
select
ners
y, an

stem
e the
-offs

data
ugh
, but
bus

nd 3.
further verified by reading the previously loaded addresses and observing wh
all the tags hit, and that the associated data compares correctly. The perform
monitor can also be used to verify whether the proper number of L2 cache hits
misses correspond to the test operations performed.

4. The entire L2 cache can be tested by clearing L2CR[DO] and L2CR[TS], resto
the L1 and L2 caches to their normal operational state, and executing a
comprehensive test program designed to exercise all the caches. The test pro
should include operations that cause L2 hit, reload, and castout activity that ca
subsequently verified through the performance monitor.

9.1.6 L2 Clock Configuration
The 750 provides a programmable clock for the L2 external synchronous data RAM
clock frequency for the external SRAM is provided by dividing the 750’s internal clock
ratios of 1, 1.5, 2, 2.5, or 3, programmed through the L2CR[CLK] bits. The L2 cloc
phase-adjusted to synchronize the clocking of the latches in the 750’s L2 cache inte
with the clocking of the external SRAM by means of an on-chip delay-locked loop (DL

The ratio selected for the L2 clock is dependent on the frequency supported by the ex
SRAMs, the 750’s internal frequency of operation, and the range of phase adjus
supported by the L2 DLL. Refer to the 750 hardware specifications for additio
information about L2 clock configuration.

9.1.7 L2 Cache SRAM Timing Examples
This section describes the signal timing for the three types of SRAM (flow-through b
SRAM, pipelined burst SRAM, and late-write SRAM) supported by the 750’s L2 ca
interface. The timing diagrams illustrate the best case logical (ideal, non AC-tim
accurate) interface operations. For proper interface operation, the designer must
SRAMs that support the signal sequencing illustrated in the timing diagrams. Desig
should also note that during burst transfers into and out of the L2 cache SRAM arra
address is generated by the 750 for each data beat.

The SRAM selected for a system design is usually a function of desired sy
performance, L2 bus frequency, and SRAM unit cost. The following sections describ
operation of the three SRAM types supported by the 750, and the design trade
associated with each.

9.1.7.1 Flow-Through Burst SRAM
Flow-through burst SRAMs operate by clocking in the address, and driving the
directly to the bus from the SRAM memory array. This behavior allows the flow-thro
burst SRAMs to provide initial read data one cycle sooner than pipelined burst SRAMs
the flow-through burst SRAM frequencies available may only support the slowest L2
frequencies. The 750 supports flow-through burst SRAM at L2 clock ratios of 2, 2.5,a
Chapter 9. L2 Cache Interface Operation 9-9

cache

cache
Figure 9-27 shows a burst read-write-read memory access sequence when the L2
interface is configured with flow-through burst SRAM.

Figure 9-27. Burst Read-Write-Read L2 Cache Access (Flow-Through)

Figure 9-28 shows a burst read-modify-write memory access sequence when the L2
interface is configured with flow-through burst SRAM.

Figure 9-28. Burst Read-Modify-Write L2 Cache Access (Flow-Through)

burst wrburst rd burst rd

Note :
 Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the

data bus for the last read.

hiZ hiZ

R0 R1 R2 R3 Rxtr W4 W5 W6 W7 R8 R9 R10 R11 Rxtr

R0 R1 R2 R3 Rxtr W4 W5 W6 W7 R8 R9 R10 R11 Rxtr

R0 R1 R2 R3 Rxtr W4 W5 W6 W7 R8 R9 R10 R11 Rxtr

SRAMClk

L2CE

L2WE

SRAMAddress

SRAMMemory

SRAMData

rd modify wr

Note :
 Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the

data bus for the last read.

hiZ

burst wrburst rdburst rd

R0 R1 R2 R3 W9 W10 W11 W12 W13RxtrR4 R5 R6 R7 R8

R0 R1 R2 R3 W9 W10 W11 W12 W13RxtrR4 R5 R6 R7 R8

R0 R1 R2 R3 W9 W10 W11 W12 W13RxtrR4 R5 R6 R7 R8

SRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory
9-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

cache

s by
o the
e cycle
igher.
elined

cache
Figure 9-29 shows a burst read-write-write memory access sequence when the L2
interface is configured with flow-through burst SRAM.

Figure 9-29. Burst Read-Write-Write L2 Cache Access (Flow-Through)

9.1.7.2 Pipelined Burst SRAM
Pipelined burst SRAMs operate at higher frequencies than flow-through burst SRAM
clocking the read data from the memory array into a buffer before driving the data ont
data bus. This causes initial read accesses by the pipelined burst SRAMs to occur on
later than flow-through burst SRAMs, but the L2 bus frequencies supported can be h
Note that the 750’s L2 cache interface requires the use of single-cycle deselect pip
burst SRAM for proper operation.

Figure 9-30 shows a burst read-write-read memory access sequence when the L2
interface is configured with pipelined burst SRAM.

Figure 9-30. Burst Read-Write-Read L2 Cache Access (Pipelined)

Note :
 Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the

data bus for the last read.

burst wrburst rd burst wraborted rd
R0 R1 R2 R3 W8 W9 W10 W11 W12R4 W7W6Rxtr W5

R0 R1 R2 R3 W8 W9 W10 W11 W12R4 W7W6Rxtr W5

R0 R1 R2 R3 W8 W9 W10 W11 W12R4 W7W6Rxtr W5hiZhiZSRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory

burst wrburst rd burst rd

Notes :
 Rdrv indicates where some burst RAMs may begin driving the data bus.
 Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the

data bus for the last read.

R0 R1 R2 R3 Rxtr W4 W5 W6 W7 R8 R9 R10 R11 Rxtr

R0 R1 R2 R3 Rxtr W4 W5 W6 W7 R8 R9 R10 R11 Rxtr

R0 R1 R2 W4 W5 W6 W7 RdrvRdrv R3 R8 R9 R10 R11hiZ hiZSRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory
Chapter 9. L2 Cache Interface Operation 9-11

cache

cache

AMs
less
an
tion
on the

en read
Figure 9-31 shows a burst read-modify-write memory access sequence when the L2
interface is configured with pipelined burst SRAM.

Figure 9-31. Burst Read-Modify-Write L2 Cache Access (Pipelined)

Figure 9-32 shows a burst read-write-write memory access sequence when the L2
interface is configured with pipelined burst SRAM.

Figure 9-32. Burst Read-Write-Write L2 Cache Access (Pipelined)

9.1.7.3 Late-Write SRAM
Late-write SRAMs offer improved performance when compared to pipelined burst SR
by not requiring an extra read cycle during read operations, and requiring one cycle
when transitioning from a read to write operation. Late-write SRAMs implement
internal write queue, allowing write data to be provided one cycle after the write opera
is signaled on the address and control buses. In this way write operations are queued
address and data bus in the same way as read operations, allowing transitions betwe
and write operations to occur more efficiently.

rd modify wr

Notes :
 Rdrv indicates where some burst RAMs may begin driving the data bus.
 Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the

data bus for the last read.

burst wrburst rdburst rd

R0 R1 R2 R3 W9 W10 W11 W12 W13RxtrR4 R5 R6 R7 R8

W9 W10 W11 W12 W13Rdrv

R0 R1 R2 R3 W9 W10 W11 W12 W13RxtrR4 R5 R6 R7 R8

R0 R1 R2 R3 R4 R5 R6 R7 R8 hiZSRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory

Notes :
 Rdrv indicates where some burst RAMs may begin driving the data bus.
 Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the

data bus for the last read.

burst wrburst rd burst wraborted rd
R0 R1 R2 R3 W8 W9 W10 W11 W12R4 W7W6Rxtr W5

R0 R1 R2 R3 W8 W9 W10 W11 W12R4 W7W6Rxtr W5

W8 W9 W10 W11 W12W7W6Rdrv W5R1 R2 R3 R4Rdrv hiZhiZSRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory
9-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

cache

cache
Figure 9-33 shows a burst read-write-read memory access sequence when the L2
interface is configured with late-write SRAM.

Figure 9-33. Burst Read-Write-Read L2 Cache Access (Late-Write SRAM)

Figure 9-34 shows a burst read-modify-write memory access sequence when the L2
interface is configured with late-write SRAM.

Figure 9-34. Burst Read-Modify-Write L2 Cache Access (Late-Write SRAM)

burst wrburst rd burst rd

Note :
 WQ is the last previous write that was queued in the late-write RAM.

R0 R1 R2 R3 W4 W5 W6 W7 R8 R9 R10 R11

R0 R1 R2 R3 (WQ) W4 W5 W6 R8 R9 R10 R11

R0 R1 R2 W4 W5 W6 W7R3 R8 R9 R10 R11hiZhiZSRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory

rd modify wr burst wrburst rdburst rd

Note :
 WQ is the last previous write that was queued in the late-write RAM.

R0 R1 R2 R3 R4 R5 R6 R7 R8

W9 W10 W11 W12 W13

R0 R1 R2 R3 W9 W10 W11 W12 W13R4 R5 R6 R7 R8

R0 R1 R2 R3 R4 R5 R6 R7 R8

W9 W10 W11 W12(WQ)

hiZSRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory
Chapter 9. L2 Cache Interface Operation 9-13

cache
Figure 9-35 shows a burst read-write-write memory access sequence when the L2
interface is configured with late-write SRAM.

Figure 9-35. Burst Read-Write-Write L2 Cache Access (Late-Write SRAM)

Note :
 WQ is the last previous write that was queued in the late-write RAM.

burst wrburst rd burst wraborted rd
R0 R1 R2 R3 W8 W9 W10 W11 W12R4 W7W6W5

R0 R1 R2 R3 W8 W9 W10 W11R4 W7W6W5

W8 W9 W10 W11 W12W7W6W5R1 R2 R3 R4R0

(WQ)

hiZhiZ

W12

SRAMData

L2WE

L2CE

SRAMClk

SRAMAddress

SRAMMemory
9-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

n. It
ssive
on-

high-
by the

dual
mple,
ally
each
on a

not
wer
ernal

leep.
mode
ternal

flow to
750

ystem
enter
ower
power

ode
erency
power
Chapter 10
Power and Thermal Management
100
100

The PowerPC 750 microprocessor is specifically designed for low-power operatio
provides both automatic and program-controlled power reduction modes for progre
reduction of power consumption. It also provides a thermal assist unit (TAU) to allow
chip thermal measurement, allowing sophisticated thermal management for
performance portable systems. This chapter describes the hardware support provided
750 for power and thermal management.

10.1 Dynamic Power Management
Dynamic power management (DPM) automatically powers up and down the indivi
execution units of the 750, based upon the contents of the instruction stream. For exa
if no floating-point instructions are being executed, the floating-point unit is automatic
powered down. Power is not actually removed from the execution unit; instead,
execution unit has an independent clock input, which is automatically controlled
clock-by-clock basis. Since CMOS circuits consume negligible power when they are
switching, stopping the clock to an execution unit effectively eliminates its po
consumption. The operation of DPM is completely transparent to software or any ext
hardware. Dynamic power management is enabled by setting HID0[DPM] to 1.

10.2 Programmable Power Modes
The 750 provides four programmable power states—full power, doze, nap, and s
Software selects these modes by setting one (and only one) of the three power saving
bits in the HID0 register. Hardware can enable a power management state through ex
asynchronous interrupts. Such a hardware interrupt causes the transfer of program
interrupt handler code that then invokes the appropriate power saving mode. The
provides a separate interrupt and interrupt vector for power management—the s
management interrupt (SMI). The 750 also contains a decrementer which allows it to
the nap or doze mode for a predetermined amount of time and then return to full p
operation through a decrementer interrupt. Note that the 750 cannot switch from one
management mode to another without first returning to full-power mode. The sleep m
disables bus snooping; therefore, a hardware handshake is provided to ensure coh
before the 750 enters this power management mode. Table 10-1 summarizes the four
states.
Chapter 10. Power and Thermal Management 10-1

odes,
bilities

ID0

er

ng the
e, copy
10.2.1 Power Management Modes
The following sections describe the characteristics of the 750’s power management m
the requirements for entering and exiting the various modes, and the system capa
provided by the 750 while the power management modes are active.

10.2.1.1 Full-Power Mode with DPM Disabled
Full-power mode with DPM disabled is selected when the DPM enable bit (bit 11) in H
is cleared.

• Default state following power-up andHRESET
• All functional units are operating at full processor speed at all times.

10.2.1.2 Full-Power Mode with DPM Enabled
Full-power mode with DPM enabled (HID0[DPM] = 1) provides on-chip pow
management without affecting the functionality or performance of the 750.

• Required functional units are operating at full processor speed.
• Functional units are clocked only when needed.
• No software or hardware intervention is required after mode is set.
• Software/hardware and performance transparent

10.2.1.3 Doze Mode
Doze mode disables most functional units but maintains cache coherency by enabli
bus interface unit and snooping. A snoop hit causes the 750 to enable the data cach
the data back to memory, disable the cache, and fully return to the doze state.

Table 10-1. PowerPC 750 Microprocessor Programmable Power Modes

PM Mode Functioning Units Activation Method Full-Power Wake Up Method

Full power All units active — —

Full power
(with DPM)

Requested logic by
demand

By instruction dispatch —

Doze • Bus snooping
• Data cache as needed
• Decrementer timer

Controlled by SW External asynchronous exceptions*
Decrementer interrupt
Performance monitor interrupt
Thermal management interrupt
Hard or soft reset

Nap • Bus snooping
— enabled by deassertion

of QACK
• Decrementer timer

Controlled by hardware
and software

External asynchronous exceptions*
Decrementer interrupt
Hard or soft reset

Sleep None Controlled by hardware
and software

External asynchronous exceptions*
Hard or soft reset

Note : * Exceptions are referred to as interrupts in the architecture specification.
10-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

0)

 or

delay
e/
fter a
r nap
request

ooping
e
t

cycle.
ity.
e

es to
this
has
llows
y time
.

ry to
Z
wer
ng the
n of
• Most functional units disabled
• Bus snooping and time base/decrementer still enabled
• Doze mode sequence

— Set doze bit (HID0[8] = 1), clear nap and sleep bits (HID0[9] and HID0[10] =
— The 750 enters doze mode after several processor clocks

• Several methods of returning to full-power mode

— AssertINT, SMI, MCP, decrementer, performance monitor, machine check,
thermal management interrupts

— Assert hard reset or soft reset

• Transition to full-power state takes no more than a few processor cycles
• PLL running and locked to SYSCLK

10.2.1.4 Nap Mode
The nap mode disables the 750 but still maintains the phase-locked loop (PLL),
locked loop (DLL), L2CLK_OUTA and L2CLK_OUTB output signals, and the time bas
decrementer. The time base can be used to restore the 750 to full-power state a
programmed amount of time. To maintain data coherency, bus snooping is disabled fo
and sleep modes through a hardware handshake sequence using the quiesce
(QREQ) and quiesce acknowledge (QACK) signals. The 750 asserts theQREQ signal to
indicate that it is ready to disable bus snooping. When the system has ensured that sn
is no longer necessary, it will assertQACK and the 750 will enter the nap mode. If th
system determines that a bus snoop cycle is required,QACK is deasserted to the 750 for a
least eight bus clock cycles, and the 750 will then be able respond to a snoop
Assertion ofQACK following the snoop cycle will again disable the 750’s snoop capabil
The 750’s power dissipation while in nap mode withQACK deasserted is the same as th
power dissipation while in doze mode.

The 750 (2.0 and later) also allows dynamic switching between nap and doze mod
allow the use of nap mode without sacrificing hardware snoop coherency. For
operation, negatingQACK at any time for at least 8 bus cycles guarantees that the 750
transitioned from nap mode to doze mode in order to snoop. Reasserting QACK then a
the 750 to return to nap mode. This sequencing could be used by the system at an
with knowledge of what power management mode, if any, that the 750 is currently in

Note that when in nap mode the DLL should be kept locked to enable a quick recove
full-power mode without having to wait for the DLL to re-lock. Additionally, an L2Z
signal is provided by the 750’s L2 cache interface to drive external SRAM into a low po
mode when the nap or sleep modes are invoked. The L2ZZ signal is enabled by setti
L2CR[CTL] bit to 1. Note that if bus snooping is to be performed through deassertio
theQACK signal, the L2CR[CTL] bit should always be cleared to 0.

• Time base/decrementer still enabled

• Thermal management unit enabled
Chapter 10. Power and Thermal Management 10-3

0)

l units
d by
that
will
mode.
nd
y

n no
the 750
l time

efore
o
essary,
• Most functional units disabled

• All nonessential input receivers disabled

• Nap mode sequence

— Set nap bit (HID0[9] = 1), clear doze and sleep bits (HID0[8] and HID0[10] =

— The 750 asserts quiesce request (QREQ) signal

— System asserts quiesce acknowledge (QACK) signal

— The 750 enters sleep mode after several processor clocks

• Nap mode bus snoop sequence

— System deassertsQACK signal for eight or more bus clock cycles

— The 750 snoops address tenure(s) on bus

— System assertsQACK signal to restore full nap mode

• Several methods of returning to full-power mode

— AssertINT, SMI, MCP, machine check, or decrementer interrupts
— Assert hard reset or soft reset

• Transition to full-power takes no more than a few processor cycles
• PLL and DLL running and locked to SYSCLK.

10.2.1.5 Sleep Mode
Sleep mode consumes the least amount of power of the four modes since all functiona
are disabled. To conserve the maximum amount of power, the PLL may be disable
placing the PLL_CFG signals in the PLL bypass mode, and disabling SYSCLK. Note
forcing the SYSCLK signal into a static state does not disable the 750’s PLL, which
continue to operate internally at an undefined frequency unless placed in PLL bypass
Additionally, if the PLL is not disabled, the L2 cache interface DLL will remain locked a
the L2CLK_OUTA and L2CLK_OUTB signals will remain active. The DLL is disabled b
clearing the L2CR[L2E] bit to 0.

Due to the fully static design of the 750, internal processor state is preserved whe
internal clock is present. Because the time base and decrementer are disabled while
is in sleep mode, the 750’s time base contents will have to be updated from an externa
base after exiting sleep mode if maintaining an accurate time-of-day is required. B
entering the sleep mode, the 750 asserts theQREQ signal to indicate that it is ready t
disable bus snooping. When the system has ensured that snooping is no longer nec
it assertsQACK and the 750 will enter sleep mode.

• All functional units disabled (including bus snooping and time base)
• All nonessential input receivers disabled

— Internal clock regenerators disabled
— PLL and DLL still running (see below)
10-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

)

ode

SMI)

2

ust be
modes
ement
ower
ter on,
clean
ecute
• Sleep mode sequence

— Set sleep bit (HID0[10] = 1), clear doze and nap bits (HID0[8] and HID0[9]
— The 750 asserts quiesce request (QREQ)
— System asserts quiesce acknowledge (QACK)
— The 750 enters sleep mode after several processor clocks

• Several methods of returning to full-power mode

— AssertINT, SMI, orMCP interrupts
— Assert hard reset or soft reset

• PLL and DLL may be disabled and SYSCLK may be removed while in sleep m
• Return to full-power mode after PLL and SYSCLK are disabled in sleep mode

— Enable SYSCLK
— Reconfigure PLL into desired processor clock mode
— System logic waits for PLL startup and relock time (100 sec)
— System logic asserts one of the sleep recovery signals (for example, INT or

— Reconfigure DLL, wait for DLL relock (640 L2 clock cycles) and re-enable L
cache through the L2CR

10.2.2 Power Management Software Considerations
Since the 750 is a dual-issue processor with out-of-order execution capability, care m
taken in how the power management mode is entered. Furthermore, nap and sleep
require all outstanding bus operations to be completed before these power manag
modes are entered. Normally, during system configuration time, one of the p
management modes would be selected by setting the appropriate HID0 mode bit. La
the power management mode is invoked by setting the MSR[POW] bit. To ensure a
transition into and out of a power management mode, set the MSR[EE] bit to 1 and ex
the following code sequence:

sync

mtmsr[POW = 1]

isync

continue
Chapter 10. Power and Thermal Management 10-5

rating
ermal
tion of
nction
ile the
onstant
lead to
eviate

ction
mable

the

alog
10-1

ion
gement
ine the
10.3 Thermal Assist Unit
With the increasing power dissipation of high-performance processors and ope
conditions that span a wider range of temperatures than desktop systems, th
management becomes an essential part of system design to ensure reliable opera
portable systems. One key aspect of thermal management is ensuring that the ju
temperature of the microprocessor does not exceed the operating specification. Wh
case temperature can be measured with an external thermal sensor, the thermal c
from the junction to the case can be large, and accuracy can be a problem. This may
lower overall system performance due to the necessary compensation to all
measurement deficiencies.

The 750 provides the system designer an efficient means of monitoring jun
temperature through the incorporation of an on-chip thermal sensor and program
control logic to enable a thermal management implementation tightly coupled to
processor for improved performance and reliability.

10.3.1 Thermal Assist Unit Overview
The on-chip thermal assist unit (TAU) is composed of a thermal sensor, a digital-to-an
converter (DAC), a comparator, control logic, and three dedicated SPRs. See Figure
for a block diagram of the TAU.

Figure 10-1. Thermal Assist Unit Block Diagram

The TAU provides thermal control by periodically comparing the 750’s junct
temperature against user-programmed thresholds, and generating a thermal mana
interrupt if the threshold values are crossed. The TAU also enables the user to determ
junction temperature through a software successive approximation routine.

Thermal Sensor

Thermal Sensor
Control Logic

DAC

Decoder

Latch

Interrupt Control

THRM1 THRM2

TH
R

M
3

Thermal Interrupt
Request
(0x1700)
10-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

hold
enable
TAU
and
ower
The TAU is controlled through three supervisor-level SPRs, accessed through themtspr/
mfspr instructions. Two of the SPRs (THRM1 and THRM2) provide temperature thres
values that can be compared to the junction temperature value, and control bits that
comparison and thermal interrupt generation. The third SPR (THRM3) provides a
enable bit and a sample interval timer. Note that all the bits in THRM1, THRM2,
THRM3 are cleared to 0 during a hard reset, and the TAU remains idle and in a low-p
state until configured and enabled.

The bit fields in the THRM1 and THRM2 SPRs are described in Table 10-2.

The bit fields in the THRM3 SPR are described in Table 10-3.

Table 10-2. THRM1 and THRM2 Bit Field Settings

Bits Field Description

0 TIN Thermal management interrupt bit. Read only. This bit is set if the thermal sensor output
crosses the threshold specified in the SPR. The state of this bit is valid only if TIV is set. The
interpretation of the TIN bit is controlled by the TID bit.

1 TIV Thermal management interrupt valid. Read only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid.

2–8 Threshold Threshold value that the output of the thermal sensor is compared to. The threshold range is
between 0 and 127 C, and each bit represents 1 C. Note that this is not the resolution of the
thermal sensor.

9–28 — Reserved. System software should clear these bits to 0.

29 TID Thermal management interrupt direction bit. Selects the result of the temperature
comparison to set TIN. If TID is cleared to 0, TIN is set and an interrupt occurs if the junction
temperature exceeds the threshold. If TID is set to 1, TIN is set and an interrupt is indicated
if the junction temperature is below the threshold.

30 TIE Thermal management interrupt enable. Enables assertion of the thermal management
interrupt signal. The thermal management interrupt is maskable by the MSR[EE] bit. If TIE is
cleared to 0 and THRMn is valid, the TIN bit records the status of the junction temperature
vs. threshold comparison without asserting an interrupt signal. This feature allows system
software to make a successive approximation to estimate the junction temperature.

31 V SPR valid bit. This bit is set to indicate that the SPR contains a valid threshold, TID, and TIE
controls bits. Setting THRM1/2[V] and THRM3[E] to 1 enables operation of the thermal
sensor.

Table 10-3. THRM3 Bit Field Settings

Bits Name Description

0–17 — Reserved for future use. System software should clear these bits to 0.

18–30 SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to
allow a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set to 1.
Chapter 10. Power and Thermal Management 10-7

ults in
es are
ctly

on of

be
d when
et the
he
his
to

the
s or
of
tput;
can

, the
t is

750’s
ature

rt
10.3.2 Thermal Assist Unit Operation
The TAU can be programmed to operate in single or dual threshold modes, which res
the TAU generating a thermal management interrupt when one or both threshold valu
crossed. In addition, with the appropriate software routine, the TAU can also dire
determine the junction temperature. The following sections describe the configurati
the TAU to support these modes of operation.

10.3.2.1 TAU Single Threshold Mode
When the TAU is configured for single threshold mode, either THRM1 or THRM2 can
used to contain the threshold value, and a thermal management interrupt is generate
the threshold value is crossed. To configure the TAU for single threshold operation, s
desired temperature threshold, TID, TIE, and V bits for either THRM1 or THRM2. T
unused THRMn threshold SPR should be disabled by clearing the V bit to 0. In t
discussion THRMn refers to the THRM threshold SPR (THRM1 or THRM2) selected
contain the active threshold value.

After setting the desired operational parameters, the TAU is enabled by setting
THRM3[E] bit to 1, and placing a value allowing a sample interval of 20 microsecond
greater in the THRM3[SITV] field. The THRM3[SITV] setting determines the number
processor clock cycles between input to the DAC and sampling of the comparator ou
accordingly, the use of a value smaller than recommended in the THRM3[SITV] field
cause inaccuracies in the sensed temperature.

If the junction temperature does not cross the programmed threshold, the THRMn[TIN] bit
is cleared to 0 to indicate that no interrupt is required, and the THRMn[TIV] bit is set to 1
to indicate that the TIN bit state is valid. If the threshold value has been crossed
THRMn[TIN] and THRMn[TIV] bits are set to 1, and a thermal management interrup
generated if both the THRMn[TIE] and MSR[EE] bits are set to 1.

A thermal management interrupt is held asserted internally until recognized by the
interrupt unit. Once a thermal management interrupt is recognized, further temper
sampling is suspended, and the THRMn[TIN] and THRMn[TIV] values are held until an
mtspr instruction is executed to THRMn.

The execution of anmtspr instruction to THRMn anytime during TAU operation will clear
the THRMn[TIV] bit to 0 and restart the temperature comparison. Executing anmtspr
instruction to THRM3 will clear both THRM1[TIV] and THRM2[TIV] bits to 0, and resta
temperature comparison in THRMn if the THRM3[E] bit is set to 1.

Examples of valid THRM1 and THRM2 bit settings are shown in Table 10-4.
10-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

gle
hold
1 to
e with
er of
with
the
1.

urs, or
h the
other
utine
that

eases
f

10.3.2.2 TAU Dual-Threshold Mode
The configuration and operation of the TAU’s dual-threshold mode is similar to sin
threshold mode, except both THRM1 and THRM2 are configured with desired thres
and TID values, and the TIE and V bits are set to 1. When the THRM3[E] bit is set to
enable temperature measurement and comparison, the first comparison is mad
THRM1. If no thermal management interrupt results from the comparison, the numb
processor cycles specified in THRM3[SITV] elapses, and the next comparison is made
THRM2. If no thermal management interrupt results from the THRM2 comparison,
time specified by THRM3[SITV] again elapses, and the comparison returns to THRM

This sequence of comparisons continues until a thermal management interrupt occ
the TAU is disabled. When a comparison results in an interrupt, the comparison wit
threshold SPR causing the interrupt is halted, but comparisons continue with the
threshold SPR. Following a thermal management interrupt, the interrupt service ro
must read both THRM1 and THRM2 to determine which threshold was crossed. Note
it is possible for both threshold values to have been crossed, in which case the TAU c
making temperature comparisons until anmtspr instruction is executed to one or both o
the threshold SPRs.

Table 10-4. Valid THRM1 and THRM2 Bit Settings

TIN1 TIV1 TID TIE V Description

x x x x 0 The threshold in the SPR will not be used for comparison.

x x x 0 1 Threshold is used for comparison, thermal management interrupt
assertion is disabled.

x x 0 0 1 Set TIN and do not assert thermal management interrupt if the
junction temperature exceeds the threshold.

x x 0 1 1 Set TIN and assert thermal management interrupt if the junction
temperature exceeds the threshold.

x x 1 0 1 Set TIN and do not assert thermal management interrupt if the
junction temperature is less than the threshold.

x x 1 1 1 Set TIN and assert thermal management interrupt if the junction
temperature is less than the threshold.

x 0 x x 1 The state of the TIN bit is not valid.

0 1 0 x 1 The junction temperature is less than the threshold and as a result
the thermal management interrupt is not generated for TIE = 1.

1 1 0 x 1 The junction temperature is greater than the threshold and as a
result the thermal management interrupt is generated if TIE = 1.

0 1 1 x 1 The junction temperature is greater than the threshold and as a
result the thermal management interrupt is not generated for TIE = 1.

1 1 1 x 1 The junction temperature is less than the threshold and as a result
the thermal management interrupt is generated if TIE = 1.

Note : 1The TIN and TIV bits are read-only status bits.
Chapter 10. Power and Thermal Management 10-9

irect
essive

uired
red to
, the

R, and
IN
then
ss is

) allow
he use
nal in
mains

U is
TAU
anted

the
trol.
mic
xible
inue

rate
ache
the
r-level
ced
ling
rom
g for
ttling
10.3.2.3 PowerPC 750 Junction Temperature Determination
While the 750’s TAU does not implement an analog-to-digital converter to enable the d
determination of the junction temperature, system software can execute a simple succ
approximation routine to find the junction temperature.

The TAU configuration used to approximate the junction temperature is the same req
for single-threshold mode, except that the threshold SPR selected has its TIE bit clea
0 to disable thermal management interrupt generation. Once the TAU is enabled
successive approximation routine loads a threshold value into the active threshold SP
then continuously polls the threshold SPRs TIV bit until it is set to 1, indicating a valid T
bit. The successive approximation routine can then evaluate the TIN bit value, and
increment or decrement the threshold value for another comparison. This proce
continued until the junction temperature is determined.

10.3.2.4 Power Saving Modes and TAU Operation
The static power saving modes provided by the 750 (the nap, doze, and sleep modes
the temperature of the processor to be lowered quickly, and can be invoked through t
of the TAU and associated thermal management interrupt. The TAU remains operatio
the nap and doze modes, and in sleep mode as long as the SYSCLK signal input re
active. If the SYSCLK signal is made static when sleep mode is invoked, the TA
rendered inactive. If the 750 is entering sleep mode with SYSCLK disabled, the
should be configured to disable thermal management interrupts to avoid an unw
thermal management interrupt when the SYSCLK input signal is restored.

Note: For 750 revision 3.0 and later, the TAU will no longer be operational in sleep
mode.

10.4 Instruction Cache Throttling
The 750 provides an instruction cache throttling mechanism to effectively reduce
instruction execution rate without the complexity and overhead of dynamic clock con
Instruction cache throttling, when used in conjunction with the TAU and the dyna
power management capability of the 750, provides the system designer with a fle
means of controlling device temperature while allowing the processor to cont
operating.

The instruction cache throttling mechanism simply reduces the instruction forwarding
from the instruction cache to the instruction dispatcher. Normally, the instruction c
forwards four instructions to the instruction dispatcher every clock cycle if all
instructions hit in the cache. For thermal management the 750 provides a superviso
instruction cache throttling control (ICTC) SPR. The instruction forwarding rate is redu
by writing a nonzero value into the ICTC[FI] field, and enabling instruction cache thrott
by setting the ICTC[E] bit to 1. The overall junction temperature reduction results f
dynamic power management reducing the power to the execution units while waitin
instructions to be forwarded from the instruction cache; thus, instruction cache thro
10-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ring
.

does not provide thermal reduction unless HID0[DPM] is set to 1. Note that du
instruction cache throttling the configuration of the PLL and DLL remain unchanged

The bit field settings of the ICTC SPR are shown in Table 10-5.

Table 10-5. ICTC Bit Field Settings

Bits Name Description

23–30 FI Instruction forwarding interval expressed in processor clocks.
0x00—0 clock cycle
0x01—1 clock cycle
..
0xFF—255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.
Chapter 10. Power and Thermal Management 10-11

10-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ned
cache,
count
ance

rPC

died
) and

’s
me

PRs):

 the
evel

ous

 of an

s to
Chapter 11
Performance Monitor
110
110

The performance monitor facility provides the ability to monitor and count predefi
events such as processor clocks, misses in the instruction cache, data cache, or L2
types of instructions dispatched, mispredicted branches, and other occurrences. The
of such events (which may be an approximation) can be used to trigger the perform
monitor exception. The performance monitor facility is not defined by the Powe
architecture.

The performance monitor can be used for the following:

• To increase system performance with efficient software, especially in a
multiprocessing system. Memory hierarchy behavior may be monitored and stu
in order to develop algorithms that schedule tasks (and perhaps partition them
that structure and distribute data optimally.

• To improve processor architecture, the detailed behavior of the PowerPC 750
structure must be known and understood in many software environments. So
environments may not be easily characterized by a benchmark or trace.

• To help system developers bring up and debug their systems.

The performance monitor uses the following 750-specific special-purpose registers (S

• The performance monitor counter registers (PMC1–PMC4) are used to record
number of times a certain event has occurred. UPMC1–UPMC4 provide user-l
read access to these registers.

• The monitor mode control registers (MMCR0–MMCR1) are used to enable vari
performance monitor interrupt functions and select events to count.
UMMCR0–UMMCR1 provide user-level read access to these registers.

• The sampled instruction address register (SIA) contains the effective address
instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. USIA provides user-level read acces
the SIA.
Chapter 11. Performance Monitor 11-1

. Two
itor
, in the
te SPRs
nts
ption,

rmal
ity is

rrupt
nter
ave

also
vides

tion

ds on
eing

ruction
eted

ction
Four 32-bit counters in the 750 count occurrences of software-selectable events
control registers (MMCR0 and MMCR1) are used to control performance mon
operation. The counters and the control registers are supervisor-level SPRs; however
750, the contents of these registers can be read by user-level software using separa
(UMMCR0 and UMMCR1). Control fields in the MMCR0 and MMCR1 select the eve
to be counted, can enable a counter overflow to initiate a performance monitor exce
and specify the conditions under which counting is enabled.

As with other PowerPC exceptions, the performance monitor interrupt follows the no
PowerPC exception model with a defined exception vector offset (0x00F00). Its prior
below the external interrupt and above the decrementer interrupt.

11.1 Performance Monitor Interrupt
The performance monitor provides the ability to generate a performance monitor inte
triggered by a counter overflow condition in one of the performance monitor cou
registers (PMC1–PMC4), shown in Figure 11-3. A counter is considered to h
overflowed when its most-significant bit is set. A performance monitor interrupt may
be caused by the flipping from 0 to 1 of certain bits in the time base register, which pro
a way to generate a time reference-based interrupt.

Although the interrupt signal condition may occur with MSR[EE] = 0, the actual excep
cannot be taken until MSR[EE] = 1.

As a result of a performance monitor exception being taken, the action taken depen
the programmable events, as follows: To help track which part of the code was b
executed when an exception was signaled, the address of the last completed inst
during that cycle is saved in the SIA. The SIA is not updated if no instruction compl
the cycle in which the exception was taken.

Exception handling for the performance monitor interrupt exception is described in Se
4.5.13, “Performance Monitor Interrupt (0x00F00).”
11-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

ese

PR
ly in
g an
de
11.2 Special-Purpose Registers Used by
Performance Monitor

The performance monitor incorporates the SPRs listed in Table 11-1. All of th
supervisor-level registers are accessed throughmtspr and mfspr instructions. The
following table shows more information about all performance monitor SPRs.

11.2.1 Performance Monitor Registers
This section describes the registers used by the performance monitor.

11.2.1.1 Monitor Mode Control Register 0 (MMCR0)
The monitor mode control register 0 (MMCR0), shown in Figure 11-1, is a 32-bit S
provided to specify events to be counted and recorded. MMCR0 can be written to on
supervisor mode. User-level software can read the contents of MMCR0 by issuin
mfspr instruction to UMMCR0, described in Section 11.2.1.2, “User Monitor Mo
Control Register 0 (UMMCR0).”

Table 11-1. Performance Monitor SPRs

SPR Number spr[5-9] || spr[0-4] Register Name Access Level

952 0b11101 11000 MMCR0 Supervisor

953 0b11101 11001 PMC1 Supervisor

954 0b11101 11010 PMC2 Supervisor

955 0b11101 11011 SIA Supervisor

956 0b11101 11100 MMCR1 Supervisor

957 0b11101 11101 PMC3 Supervisor

958 0b11101 11110 PMC4 Supervisor

936 0b11101 01000 UMMCR0 User (read only)

937 0b11101 01001 UPMC1 User (read only)

938 0b11101 01010 UPMC2 User (read only)

939 0b11101 01011 USIA User (read only)

940 0b11101 01100 UMMCR1 User (read only)

941 0b11101 01101 UPMC3 User (read only)

942 0b11101 01110 UPMC4 User (read only)
Chapter 11. Performance Monitor 11-3

ge its
Figure 11-1. Monitor Mode Control Register 0 (MMCR0)

This register must be cleared at power up. Reading this register does not chan
contents. Table 11-2 describes the bits of the MMCR0 register.

Table 11-2. MMCR0 Bit Settings

Bit Name Description

0 DIS Disables counting unconditionally.
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disables counting while in supervisor mode.
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not

changed by hardware.

2 DU Disables counting while in user mode.
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not

changed by hardware.

3 DMS Disables counting while MSR[PM] is set.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disables counting while MSR[PM] is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enables performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
Cleared by hardware when a performance monitor interrupt is taken. To re-enable
these interrupt signals, software must set this bit after servicing the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.

6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is,
((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an
enabled time base transition with ((INTONBITTRANS =1) & (ENINT = 1)).
0 Signaling a performance monitor interrupt does not affect counting status of

PMCn.
1 The signaling of a performance monitor interrupt prevents changing of PMC1

counter. The PMCn counter does not change if PMC2COUNTCTL = 0.
Because a time base signal could have occurred along with an enabled counter
overflow condition, software should always reset INTONBITTRANS to zero, if the value
in INTONBITTRANS was a one.

0 1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

DMSDU THRESHOLD

INTONBITTRANS

DISCOUNT

PMC1SELECTDP PMC2SELECTDIS DMR

PMC1INTCONTROLENINT

PMC2INTCONTROL

RTCSELECT

PMCTRIGGER
11-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

evel

for
ister
MMCR0 can be accessed with themtspr andmfspr instructions using SPR 952.

11.2.1.2 User Monitor Mode Control Register 0 (UMMCR0)
The contents of MMCR0 are reflected to UMMCR0, which can be read by user-l
software. UMMCR0 can be accessed with themfspr instructions using SPR 936.

11.2.1.3 Monitor Mode Control Register 1 (MMCR1)
The monitor mode control register 1 (MMCR1) functions as an event selector
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR1 reg
is shown in Figure 11-2.

Figure 11-2. Monitor Mode Control Register 1 (MMCR1)

7–8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Causes interrupt signaling on bit transition (identified in RTCSELECT) from off to on.
0 Do not allow interrupt signal on the transition of a chosen bit.
1 Signal interrupt on the transition of a chosen bit.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. All 6 bits are supported by the 750; allowing threshold values from 0
to 63. The intent of the THRESHOLD support is to characterize L1 data cache misses.

16 PMC1INTCONTROL Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow.
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow.

17 PMCINTCONTROL Enable interrupt signaling due to any PMC2–PMC4 counter overflow. Overrides the
setting of DISCOUNT.
0 Disable PMC2–PMC4 interrupt signaling due to PMC2–PMC4 counter overflow.
1 Enable PMC2–PMC4 interrupt signaling due to PMC2–PMC4 counter overflow.

18 PMCTRIGGER Can be used to trigger counting of PMC2–PMC4 after PMC1 has overflowed or after a
performance monitor interrupt is signaled.
0 Enable PMC2–PMC4 counting.
1 Disable PMC2–PMC4 counting until either PMC1[0] = 1 or a performance monitor

interrupt is signaled.

19–25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 11-5.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 11-6.

Table 11-2. MMCR0 Bit Settings (Continued)

Bit Name Description

0 4 5 9 10 31

Reserved

PMC3SELECT PMC4SELECT 0
Chapter 11. Performance Monitor 11-5

ribed

l

evel

d to

ch the
both

ition
set.
rupt
Bit settings for MMCR1 are shown in Table 11-3. The corresponding events are desc
in Section 11.2.1.5, “Performance Monitor Counter Registers (PMC1–PMC4).”

MMCR1 can be accessed with themtspr andmfspr instructions using SPR 956. User-leve
software can read the contents of MMCR1 by issuing anmfspr instruction to UMMCR1,
described in Section 11.2.1.4, “User Monitor Mode Control Register 1 (UMMCR1).”

11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1)
The contents of MMCR1 are reflected to UMMCR1, which can be read by user-l
software. UMMCR1 can be accessed with themfspr instructions using SPR 940.

11.2.1.5 Performance Monitor Counter Registers (PMC1–PMC4)
PMC1–PMC4, shown in Figure 11-3, are 32-bit counters that can be programme
generate interrupt signals when they overflow.

Figure 11-3. Performance Monitor Counter Registers (PMC1–PMC4)

The bits contained in the PMC registers are described in Table 11-4.

Counters overflow when the high-order bit (the sign bit) becomes set; that is, they rea
value 2147483648 (0x8000_0000). However, an interrupt is not signaled unless
MMCR0[ENINT] and either PMC1INTCONTROL or PMCINTCONTROL in the
MMCR0 register are also set as appropriate.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal cond
may occur with MSR[EE] cleared, but the exception is not taken until MSR[EE] is
Setting MMCR0[DISCOUNT] forces counters to stop counting when a counter inter
occurs.

Table 11-3. MMCR1 Bit Settings

Bits Name Description

0–4 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 11-7 for defined selections.

5–9 PMC4SELECT PMC4 input selector. 32 events selectable. See Table 11-8 for defined selections.

10–31 — Reserved

Table 11-4. PMCn Bit Settings

Bits Name Description

0 OV Overflow. When this bit is set, it indicates this counter has reached its maximum value.

1–31 Counter value Indicates the number of occurrences of the specified event.

0 1 31

OV Counter Value
11-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

if both
e

ut an

vents
ance
ings.
Software is expected to use themtspr instruction to explicitly set PMC to non-overflowed
values. Setting an overflowed value may cause an erroneous exception. For example,
MMCR0[ENINT] and either PMC1INTCONTROL or PMCINTCONTROL are set and th
mtspr instruction loads an overflow value, an interrupt signal may be generated witho
event counting having taken place.

The event to be monitored can be chosen by setting MMCR0[19–31]. The selected e
are counted beginning when MMCR0 is set until either MMCR0 is reset or a perform
monitor interrupt is generated. Table 11-5 lists the selectable events and their encod

Bits MMCR0[26–31] specify events associated with PMC2, as shown in Table 11-6.

Table 11-5. PMC1 Events—MMCR0[19–25] Select Encodings

Encoding Description

000 0000 Register holds current value.

000 0001 Number of processor cycles

000 0010 Number of instructions that have completed. Does not include folded branches.

0000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT, MMRC0[7–8]. 00 = 15, 01 = 19, 10 = 23, 11 = 31

0000100 Number of instructions dispatched—0, 1, or 2 instructions per cycle

0000101 Number of eieio instructions completed

0000110 Number of cycles spent performing table search operations for the ITLB

0000111 Number of accesses that hit the L2. This event includes cache ops (i.e., dcbz)

0001000 Number of valid instruction EAs delivered to the memory subsystem

0001001 Number of times the address of an instruction being completed matches the address in the IABR

0001010 Number of loads that miss the L1 with latencies that exceeded the threshold value

0001011 Number of branches that are unresolved when processed

0001100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

0001101 Number of times an instruction fetch missed the L1 Icache.

All others Reserved. May be used in a later revision.

Table 11-6. PMC2 Events—MMCR0[26–31] Select Encodings

Encoding Description

00 0000 Nothing Register holds current value.

00 0001 Processor cycles Count every cycle

00 0010 Number of instructions that have completed. Indicates number of instructions that have
completed. Does not include folded branches
Chapter 11. Performance Monitor 11-7

Bits MMCR1[0–4] specify events associated with PMC3, as shown in Table 11-7.

00 0011 Time-base (lower) bit transitions. Counts transitions from 0 to 1 of specified bits in
time base lower register. Bits are specified through
RTCSELECT, MMRC0[7-8]. 00 = 15, 01 = 19, 10 =
23, 11 = 31.

00 0100 Number of instructions dispatched. 0, 1, or 2 instructions per cycle

00 0101 Number of L1 Icache misses Indicates the number of times an instruction fetch
missed the L1 instruction cache.

00 0110 Number of ITLB misses Indicates the number of times the needed
instruction address translation was not in the ITLB.

00 0111 L1 I-misses Counts the number of accesses which miss the L2
due to an I-side request.

00 1000 Number of fall-through branches Indicates the number of branches that were
predicted not taken.

00 1001 Switches between Privileged and User Counts the number of times that the MSR[PR] bit
toggles.

00 1010 Reserved loads Incremented every time that a reserved load
completes.

00 1011 Loads and stores Counts all load and store instructions completed.

00 1100 Number of snoops Gives the total number of snoops to the L1 and the
L2.

001101 L1 castouts to L2 Number of times the L1 castout goes to the L2.

001110 System Unit Instructions Number of system unit instructions completed.

001111 Instruction Miss cycles Counts the total number of L1 miss cycles of
instruction fetches.

010000 First speculative branch resolved correctly Indicates the number of branches that allow
speculative execution beyond those that resolved
correctly

All others RESERVED May be used in a later revision.

Table 11-7. PMC3 Events—MMCR1[0–4] Select Encodings

Encoding Description

0 0000 Register holds current value.

0 0001 Number of processor cycles

0 0010 Number of completed instructions, not including folded branches.

0 0011 Number of TBL bit transitions from 0 to 1 of specified bits in time base lower register. Bits are
specified through RTCSELECT (MMRC0[7–8]). 0 = 47, 1 = 51, 2 = 55, 3 = 63.

0 0100 Number of instructions dispatched. 0, 1, or 2 per cycle.

Table 11-6. PMC2 Events—MMCR0[26–31] Select Encodings (Continued)

Encoding Description
11-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Bits MMCR1[5–9] specify events associated with PMC4, as shown in Table 11-8.

0 0101 Number of L1 data cache misses. Does not include cache ops.

0 0110 Number of DTLB misses

0 0111 Number of L2 data misses

0 1000 Number of predicted branches that were taken

0 1001 Number of transitions between marked and unmarked processes while in user mode. That is, the
number of MSR[PM] toggles while the processor is in user mode. RESERVED

0 1010 Number of store conditional instructions completed

0 1011 Number of instructions completed from the FPU

0 1100 Number of L2 castouts caused by snoops to modified lines

0 1101 Number of cache operations that hit in the L2 cache

0 1110 Reserved

0 1111 Number of cycles generated by L1 load misses

1 0000 Number of branches in the second speculative stream that resolve correctly

1 0001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies

All others Reserved. May be used in a later revision.

Table 11-8. PMC4 Events—MMCR1[5–9] Select Encodings

Encoding Comments

00000 Register holds current value

00001 Number of processor cycles

00010 Number of completed instructions, not including folded branches

00011 Number of TBL bit transitions from 0 to 1 of specified bits in time-base lower register. Bits are specified
through RTCSELECT (MMRC0[7–8]). 0 = 47, 1 = 51, 2 = 55, 3 = 63.

00100 Number of instructions dispatched. 0, 1, or 2 per cycle

00101 Number of L2 castouts

00110 Number of cycles spent performing table searches for DTLB accesses.

00111 Reserved. May be used in a later revision.

01000 Number of mispredicted branches. Reserved for future use.

01001 Reserved. May be used in a later revision.

01010 Number of store conditional instructions completed with reservation intact

01011 Number of completed sync instructions

01100 Number of snoop request retries

Table 11-7. PMC3 Events—MMCR1[0–4] Select Encodings (Continued)

Encoding Description
Chapter 11. Performance Monitor 11-9

ad by

ntains
essor
.

s the
nter to

event,
an be
The PMC registers can be accessed with themtspr and mfspr instructions using the
following SPR numbers:

• PMC1 is SPR 953
• PMC2 is SPR 954
• PMC3 is SPR 957
• PMC4 is SPR 958

11.2.1.6 User Performance Monitor Counter Registers
(UPMC1–UPMC4)

The contents of the PMC1–PMC4 are reflected to UPMC1–UPMC4, which can be re
user-level software. The UPMC registers can be read with themfspr instructions using the
following SPR numbers:

• UPMC1 is SPR 937
• UPMC2 is SPR 938
• UPMC3 is SPR 941
• UPMC4 is SPR 942

11.2.1.7 Sampled Instruction Address Register (SIA)
The sampled instruction address register (SIA) is a supervisor-level register that co
the effective address of an instruction executing at or around the time that the proc
signals the performance monitor interrupt condition. The SIA is shown in Figure 11-4

Figure 11-4. Sampled instruction Address Registers (SIA)

If the performance monitor interrupt is triggered by a threshold event, the SIA contain
address of the exact instruction (called the sampled instruction) that caused the cou
overflow.

If the performance monitor interrupt was caused by something besides a threshold
the SIA contains the address of the last instruction completed during that cycle. SIA c
accessed with themtspr andmfspr instructions using SPR 955.

01101 Number of completed integer operations

01110 Number of cycles the BPU cannot process new branches due to having two unresolved branches

11111 Number of L1 Data cache misses. Does not include cache ops.

All others Reserved. May be used in a later revision.

Table 11-8. PMC4 Events—MMCR1[5–9] Select Encodings

Encoding Comments

0 31

Instruction Address
11-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

SIA

cified
mong
rest, a
sed
. This
states

or or
atches
g is

nerate
tion

up to
used
11.2.1.8 User Sampled Instruction Address Register (USIA)
The contents of SIA are reflected to USIA, which can be read by user-level software. U
can be accessed with themfspr instructions using SPR 939.

11.3 Event Counting
Counting can be enabled if conditions in the processor state match a software-spe
condition. Because a software task scheduler may switch a processor’s execution a
multiple processes and because statistics on only a particular process may be of inte
facility is provided to mark a process. The performance monitor (PM) bit, MSR[29] is u
for this purpose. System software may set this bit when a marked process is running
enables statistics to be gathered only during the execution of the marked process. The
of MSR[PR] and MSR[PM] together define a state that the processor (supervis
program) and the process (marked or unmarked) may be in at any time. If this state m
a state specified by the MMCR, the state for which monitoring is enabled, countin
enabled.

The following are states that can be monitored:

• (Supervisor) only
• (User) only
• (Marked and user) only
• (Not marked and user) only
• (Marked and supervisor) only
• (Not marked and supervisor) only
• (Marked) only
• (Not marked) only

In addition, one of two unconditional counting modes may be specified:

• Counting is unconditionally enabled regardless of the states of MSR[PM] and
MSR[PR]. This can be accomplished by clearing MMCR0[0–4].

• Counting is unconditionally disabled regardless of the states of MSR[PM] and
MSR[PR]. This is done by setting MMCR0[0].

The performance monitor counters count specified events and are used to ge
performance monitor exceptions when an overflow (most-significant bit is a 1) situa
occurs. The 750 performance monitor has four, 32-bit registers that can count
0x7FFFFFFF (2,147,483,648 in decimal) before overflowing. Bit 0 of the registers is
to determine when an interrupt condition exists.
Chapter 11. Performance Monitor 11-11

and

le;

le;

ee

raced,

se
7,

o or

eues

ypes
11.4 Event Selection
Event selection is handled through MMCR0 and MMCR1, described in Table 11-2
Table 11-3, respectively. Event selection is described as follows:

• The four event-select fields in MMCR0 and MMCR1 are as follows:

— MMCR0[19–25] PMC1SELECT—PMC1 input selector, 128 events selectab
25 defined. See Table 11-5.

— MMCR0[26–31] PMC2SELECT—PMC2 input selector, 64 events selectab
21 defined. See Table 11-6.

— MMCR0[0–4] PMC3SELECT—PMC3 input selector. 32 events selectable,
defined. See Table 11-7.

— MMCR0[5–9] PMC4SELECT—PMC4 input selector. 32 events selectable. S
Table 11-8.

• In the tables, a correlation is established between each counter, events to be t
and the pattern required for the desired selection.

• The first five events are common to all four counters and are considered to be
reference events. These are as follows:

— 00000—Register holds current value

— 00001—Number of processor cycles

— 00010—Number of completed instructions, not including folded branches

— 00011—Number of TBL bit transitions from 0 to 1 of specified bits in time ba
lower register. Bits are specified through RTCSELECT (MMCR0[7–8]). 0 = 4
1 = 51, 2 = 55, 3 = 63.

— 00100—Number of instructions dispatched. 0, 1, or 2 per cycle

• Some events can have multiple occurrences per cycle, and therefore need tw
three bits to represent them.

11.5 Notes
The following warnings should be noted:

• Only those load and store in queue position 0 of their respective load/store qu
are monitored when a threshold event is selected in PMC1.

• The 750 cannot accurately track threshold events with respect to the following t
of loads and stores:

— Unaligned load and store operations that cross a word boundary

— Load and store multiple operations

— Load and store string operations
11-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

s the
d by

ence
l, and
-bit

t, are

tical
Appendix A
PowerPC Instruction Set Listings
A0
A0

This appendix lists the PowerPC 750 microprocessor’s instruction set as well a
additional PowerPC instructions not implemented in the 750. Instructions are sorte
mnemonic, opcode, function, and form. Also included in this appendix is a quick refer
table that contains general information, such as the architecture level, privilege leve
form, and indicates if the instruction is 64-bit and optional. Note that the 750 is a 32
microprocessor, and doesn’t implement any 64-bit instructions.

Note that split fields, that represent the concatenation of sequences from left to righ
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” inThe
Programming Environments Manual.

A.1 Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the PowerPC architecture in alphabe
order by mnemonic.

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

Reserved bits

Key:
Appendix A. PowerPC Instruction Set Listings A-1

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzd x 1 31 S A 0 0 0 0 0 58 Rc

cntlzw x 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcba 2,7 31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 3 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divd x 1 31 D A B OE 489 Rc

divdu x 1 31 D A B OE 457 Rc

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

extsw x 1 31 S A 0 0 0 0 0 986 Rc

fabs x 63 D 0 0 0 0 0 B 264 Rc

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fcfid x 1 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctid x 1 63 D 0 0 0 0 0 B 814 Rc

fctidz x 1 63 D 0 0 0 0 0 B 815 Rc

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

fres x 2 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-3

frsp x 63 D 0 0 0 0 0 B 12 Rc

frsqrte x 2 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsel x 2 63 D A B C 23 Rc

fsqrt x 2,7 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts x 2,7 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc

fsubs x 59 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 1 58 D A ds 0

ldarx 1 31 D A B 84 0

ldu 1 58 D A ds 1

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lmw 4 46 D A d

lswi 4 31 D A NB 597 0

lswx 4 31 D A B 533 0

lwa 1 58 D A ds 2

lwarx 31 D A B 20 0

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 3 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 5 31 D spr 339 0

mfsr 3,6 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 3,6 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsf x 63 0 FM 0 B 711 Rc

mtfsfi x 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 3,6 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtmsrd 1,3 31 S 0 0 0 0 0 0 0 0 0 0 178 0

mtspr 5 31 S spr 467 0

mtsr 3,6 31 S 0 SR 0 0 0 0 0 210 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-5

mtsrd 3,6 31 S 0 SR 0 0 0 0 0 82 0

mtsrdin 3,6 31 S 0 0 0 0 0 B 114 0

mtsrin 3,6 31 S 0 0 0 0 0 B 242 0

mulhd x 1 31 D A B 0 73 Rc

mulhdu x1 31 D A B 0 9 Rc

mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulld x 1 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullw x 31 D A B OE 235 Rc

nand x 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 3,6 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rfid 1,3 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

rldcl x 1 30 S A B mb 8 Rc

rldcr x 1 30 S A B me 9 Rc

rldic x 1 30 S A sh mb 2 sh Rc

rldicl x 1 30 S A sh mb 0 sh Rc

rldicr x 1 30 S A sh me 1 sh Rc

rldimi x 1 30 S A sh mb 3 sh Rc

rlwimi x 20 S A SH MB ME Rc

rlwinm x 21 S A SH MB ME Rc

rlwnm x 23 S A B MB ME Rc

sc 17 0 1 0

slbia 1,2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,2,3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sld x 1 31 S A B 27 Rc

slw x 31 S A B 24 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

srad x 1 31 S A B 794 Rc

sradi x 1 31 S A sh 413 sh Rc

sraw x 31 S A B 792 Rc

srawi x 31 S A SH 824 Rc

srd x 1 31 S A B 539 Rc

srw x 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 1 62 S A ds 0

stdcx. 1 31 S A B 214 1

stdu 1 62 S A ds 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 2 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 4 47 S A d

stswi 4 31 S A NB 725 0

stswx 4 31 S A B 661 0

stw 36 S A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-7

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfe x 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 1 31 TO A B 68 0

tdi 1 02 TO A SIMM

tlbia 2,3,7 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2,3 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xor x 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Notes :
1 64-bit instruction
2 Optional instruction
3 Supervisor-level instruction
4 Load/store string/multiple instruction
5 Supervisor- and user-level instruction
6 Optional 64-bit bridge instruction
7 32-bit instruction not implemented by the PowerPC 750.

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

r by
A.2 Instructions Sorted by Opcode
Table A-2 lists the instructions defined in the PowerPC architecture in numeric orde
opcode.

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 1 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclr x 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

rfid 1,2 0 1 0 0 1 1 0 1 0 0 1 0 0

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 32,4 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

Reserved bits

Key:
Appendix A. PowerPC Instruction Set Listings A-9

bcctr x 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimi x 0 1 0 1 0 0 S A SH MB ME Rc

rlwinm x 0 1 0 1 0 1 S A SH MB ME Rc

rlwnm x 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldicl x 1 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicr x 1 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldic x 1 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimi x 1 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldcl x 1 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcr x 1 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfc x 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

mulhdu x 1 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 0 1 Rc

addc x 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwu x 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 1 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slw x 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzw x 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

sld x 1 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subf x 0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

ldux 1 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

cntlzd x 1 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andc x 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

td 1 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhd x 1 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 0 1 Rc

mulhw x 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mtsrd 2,4 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0

mfmsr 2,3 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 1 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

mtsrdin 2,4 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 0 1 1 1 0 0 1 0 0

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

nor x 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfe x 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 2,4 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 1 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

mtmsrd 1,2 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0

stdux 1 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfze x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr 2,3,4 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 1 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfme x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

mulld 1 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 0 1 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-11

addme x 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

mullw x 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin 3,2,4 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 3,2,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xor x 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 6 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 1 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 3,2,5,7 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 1 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orc x 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradi x 1 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 1 sh Rc

slbie 1,2,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdu x 1 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 0 1 Rc

divwu x 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

mtspr 6 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi 2,3 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nand x 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divd x 1 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 0 1 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

divw x 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

slbia 1,2,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx 7 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srw x 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srd x 1 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync 3,2,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 2,4 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 7 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 2,4 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 7 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 7 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

dcba 5,7 0 1 1 1 1 1 0 0 0 0 0 A B 1 0 1 1 1 1 0 1 1 0 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

sraw x 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

srad x 1 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawi x 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extsh x 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsb x 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-13

stfiwx 5 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extsw 1 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 7 1 0 1 1 1 0 D A d

stmw 7 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

ld 1 1 1 1 0 1 0 D A ds 0 0

ldu 1 1 1 1 0 1 0 D A ds 0 1

lwa 1 1 1 1 0 1 0 D A ds 1 0

fdivs x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubs x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

fadds x 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

fsqrts x 5,7 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fres x 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmuls x 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubs x 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmadds x 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubs x 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmadds x 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 1 1 1 1 1 1 0 S A ds 0 0

stdu 1 1 1 1 1 1 0 S A ds 0 1

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frsp x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiw x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwz x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdiv x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsub x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

fadd x 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrt x 5,7 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fsel x 5 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmul x 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrte x 4 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsub x 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmadd x 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsub x 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmadd x 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1 x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fneg x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0 x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmr x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfi x 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

fnabs x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabs x 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Appendix A. PowerPC Instruction Set Listings A-15

mffs x 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsf x 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctid x 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidz x 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfid x 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

Notes :
1 64-bit instruction
2 Supervisor-level instruction
3 Supervisor-level instruction
4 Optional 64-bit bridge instruction
5 Optional instruction
6 Supervisor- and user-level instruction
7 Load/store string/multiple instruction. 32-bit instruction not implemented by the PowerPC 750.

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
A-16 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-30 list the PowerPC instructions grouped by function.

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divd x 1

1 64-bit instruction

31 D A B OE 489 Rc

divdu x 1 31 D A B OE 457 Rc

divw x 31 D A B OE 491 Rc

divwu x 31 D A B OE 459 Rc

mulhd x 1 31 D A B 0 73 Rc

mulhdu x1 31 D A B 0 9 Rc

mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulld 1 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullw x 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfic x 08 D A SIMM

subfe x 31 D A B OE 136 Rc

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc

Note:

Reserved bitsKey:
Appendix A. PowerPC Instruction Set Listings A-17

Table A-4. Integer Compare Instructions

Table A-5. Integer Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzd x 1

1 64-bit instruction

31 S A 0 0 0 0 0 58 Rc

cntlzw x 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

extsw x 1 31 S A 0 0 0 0 0 986 Rc

nand x 31 S A B 476 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xor x 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Note :
A-18 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table A-6. Integer Rotate Instructions

Table A-7. Integer Shift Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldcl x 1

1 64-bit instruction

30 S A B mb 8 Rc

rldcr x 1 30 S A B me 9 Rc

rldic x 1 30 S A sh mb 2 sh Rc

rldicl x 1 30 S A sh mb 0 sh Rc

rldicr x 1 30 S A sh me 1 sh Rc

rldimi x 1 30 S A sh mb 3 sh Rc

rlwimi x 22 S A SH MB ME Rc

rlwinm x 20 S A SH MB ME Rc

rlwnm x 21 S A SH MB ME Rc

Note :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sld x 1

1 64-bit instruction

31 S A B 27 Rc

slw x 31 S A B 24 Rc

srad x 1 31 S A B 794 Rc

sradi x 1 31 S A sh 413 sh Rc

sraw x 31 S A B 792 Rc

srawi x 31 S A SH 824 Rc

srd x 1 31 S A B 539 Rc

srw x 31 S A B 536 Rc

Note:
Appendix A. PowerPC Instruction Set Listings A-19

Table A-8. Floating-Point Arithmetic Instructions

Table A-9. Floating-Point Multiply-Add Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fres x 1

1 Optional instruction
2 32-bit instruction not implemented by the PowerPC 750

59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrte x 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc

fsubs x 59 D A B 0 0 0 0 0 20 Rc

fsel x 1 63 D A B C 23 Rc

fsqrt x 1,2 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts x 1,2 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Note :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc
A-20 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table A-10. Floating-Point Rounding and Conversion Instructions

Table A-11. Floating-Point Compare Instructions

Table A-12. Floating-Point Status and Control Register Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfid x 1

1 64-bit instruction

63 D 0 0 0 0 0 B 846 Rc

fctid x 1 63 D 0 0 0 0 0 B 814 Rc

fctidz x 1 63 D 0 0 0 0 0 B 815 Rc

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

Note :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsf x 31 0 FM 0 B 711 Rc

mtfsfi x 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc
Appendix A. PowerPC Instruction Set Listings A-21

Table A-13. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 1

1 64-bit instruction

58 D A ds 0

ldu 1 58 D A ds 1

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwa 1 58 D A ds 2

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

Note:
A-22 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table A-14. Integer Store Instructions

Table A-15. Integer Load and Store with Byte Reverse Instructions

Table A-16. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 1

1 64-bit instruction

62 S A ds 0

stdu 1 62 S A ds 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Note:

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 46 D A d

stmw 47 S A d

Note :
Appendix A. PowerPC Instruction Set Listings A-23

Table A-17. Integer Load and Store String Instructions

Table A-18. Memory Synchronization Instructions

Table A-19. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 31 D A NB 597 0

lswx 31 D A B 533 0

stswi 31 S A NB 725 0

stswx 31 S A B 661 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

ldarx 1

1 64-bit instruction

31 D A B 84 0

lwarx 31 D A B 20 0

stdcx. 1 31 S A B 214 1

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Note :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0
A-24 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table A-20. Floating-Point Store Instructions

Table A-21. Floating-Point Move Instructions

Table A-22. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1

1 Optional instruction

31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Note :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabs x 63 D 0 0 0 0 0 B 264 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK
Appendix A. PowerPC Instruction Set Listings A-25

Table A-23. Condition Register Logical Instructions

Table A-24. System Linkage Instructions

Table A-25. Trap Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi 1,2

1 Supervisor-level instruction
2 Optional 64-bit bridge instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rfid 1,3

3 64-bit instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

sc 17 0 1 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

td 1

1 64-bit instruction

31 TO A B 68 0

tdi 1 03 TO A SIMM

tw 31 TO A B 4 0

twi 03 TO A SIMM

Note :
A-26 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table A-26. Processor Control Instructions

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr 1

1 Supervisor-level instruction

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2

2 Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1,3

3 Optional 64-bit bridge instruction

31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtmsrd 1,4

4 64-bit instruction

31 S 0 0 0 0 0 0 0 0 0 0 178 0

mtspr 2 31 D spr 467 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcba 1,3

1 Optional instruction

31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 2

2 Supervisor-level instruction
3 32-bit instruction not implemented by the PowerPC 750

31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

Notes :
Appendix A. PowerPC Instruction Set Listings A-27

Table A-28. Segment Register Manipulation Instructions.

Table A-29. Lookaside Buffer Management Instructions

Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1,2

1 Supervisor-level instruction
2 Optional 64-bit bridge instruction

31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1,2 31 D 0 0 0 0 0 B 659 0

mtsr 1,2 31 S 0 SR 0 0 0 0 0 210 0

mtsrd 1,2 31 S 0 SR 0 0 0 0 0 82 0

mtsrdin 1,2 31 S 0 0 0 0 0 B 114 0

mtsrin 1,2 31 S 0 0 0 0 0 B 242 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbia 1,2,3

1 Supervisor-level instruction
2 Optional instruction
3 64-bit instruction
4 32-bit instruction not implemented by the PowerPC 750

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,2,3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

tlbia
1,2,44,5

4 Supervisor-level instruction
5 Optional instruction

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,2 4,

5
31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 1,2

4
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Notes :

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0
A-28 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

A.4 Instructions Sorted by Form
Table A-31 through Table A-45 list the PowerPC instructions grouped by form.

Table A-31. I-Form

Table A-32. B-Form

Table A-33. SC-Form

Table A-34. D-Form

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

OPCD 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:
Appendix A. PowerPC Instruction Set Listings A-29

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 1 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 1 47 S A d
A-30 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table A-35. DS-Form

Table A-36. X-Form

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

tdi 2 02 TO A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

Note :
1 Load/store string/multiple instruction
2 64-bit instruction

OPCD D A ds XO

OPCD S A ds XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ld 1

1 64-bit instruction

58 D A ds 0

ldu 1 58 D A ds 1

lwa 1 58 D A ds 2

std 1 62 S A ds 0

stdu 1 62 S A ds 1

Note :

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc
Appendix A. PowerPC Instruction Set Listings A-31

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andc x 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzd x 1 31 S A 0 0 0 0 0 58 Rc

cntlzw x 31 S A 0 0 0 0 0 26 Rc

dcba 2,6 31 0 0 0 0 0 A B 758 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 3 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0
A-32 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

eqvx 31 S A B 284 Rc

extsb x 31 S A 0 0 0 0 0 954 Rc

extsh x 31 S A 0 0 0 0 0 922 Rc

extsw x 1 31 S A 0 0 0 0 0 986 Rc

fabs x 63 D 0 0 0 0 0 B 264 Rc

fcfid x 1 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctid x 1 63 D 0 0 0 0 0 B 814 Rc

fctidz x 1 63 D 0 0 0 0 0 B 815 Rc

fctiw x 63 D 0 0 0 0 0 B 14 Rc

fctiwz x 63 D 0 0 0 0 0 B 15 Rc

fmr x 63 D 0 0 0 0 0 B 72 Rc

fnabs x 63 D 0 0 0 0 0 B 136 Rc

fneg x 63 D 0 0 0 0 0 B 40 Rc

frsp x 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ldarx 1 31 D A B 84 0

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 4 31 D A NB 597 0

lswx 4 31 D A B 533 0

lwarx 31 D A B 20 0

lwaux 1 31 D A B 373 0
Appendix A. PowerPC Instruction Set Listings A-33

lwax 1 31 D A B 341 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffs x 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 3 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 3,5 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 3,5 31 D 0 0 0 0 0 B 659 0

mtfsb0 x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1 x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfi x 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 3,5 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtmsrd 1,3 31 S 0 0 0 0 0 0 0 0 0 0 178 0

mtsr 3,5 31 S 0 SR 0 0 0 0 0 210 0

mtsrd 3,5 31 S 0 SR 0 0 0 0 0 82 0

mtsrin 3,5 31 S 0 0 0 0 0 B 242 0

mtsrdin 3,5 31 S 0 0 0 0 0 B 114 0

nand x 31 S A B 476 Rc

nor x 31 S A B 124 Rc

orx 31 S A B 444 Rc

orc x 31 S A B 412 Rc

slbia 1,2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,2,3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sld x 1 31 S A B 27 Rc

slw x 31 S A B 24 Rc

srad x 1 31 S A B 794 Rc

sraw x 31 S A B 792 Rc

srawi x 31 S A SH 824 Rc

srd x 1 31 S A B 539 Rc

srw x 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0
A-34 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Ap
pendix A. PowerPC Instruction Set Listings A-35

stdcx. 1 31 S A B 214 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 2 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi 4 31 S A NB 725 0

stswx 4 31 S A B 661 0

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 1 31 TO A B 68 0

tlbia 2,3,6 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2,3 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync 2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xor x 31 S A B 316 Rc

Notes :
1 64-bit instruction
2 Optional instruction
3 Supervisor-level instruction
4 Load/store string/multiple instruction
5 Optional 64-bit bridge instruction
6 32-bit instruction not implemented by the PowerPC 750

Table A-37. XL-Form

Table A-38. XFX-Form

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctr x 19 BO BI 0 0 0 0 0 528 LK

bclr x 19 BO BI 0 0 0 0 0 16 LK

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi 1,2

1 Supervisor-level instruction
2 Optional 64-bit bridge instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rfid 1, 3

3 64-bit instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

Notes :

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 1 31 D spr 339 0
A-36 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table A-39. XFL-Form

Table A-40. XS-Form

Table A-41. XO-Form

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr 1 31 D spr 467 0

Note :
1 Supervisor- and user-level instruction

OPCD 0 FM 0 B XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsf x 63 0 FM 0 B 711 Rc

OPCD S A sh XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sradi x 1

1 64-bit instruction

31 S A sh 413 sh Rc

Note :

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addc x 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addme x 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divd x 1 31 D A B OE 489 Rc

divdu x 1 31 D A B OE 457 Rc

divw x 31 D A B OE 491 Rc
Appendix A. PowerPC Instruction Set Listings A-37

Table A-42. A-Form

divwu x 31 D A B OE 459 Rc

mulhd x 1 31 D A B 0 73 Rc

mulhdu x 1 31 D A B 0 9 Rc

mulhw x 31 D A B 0 75 Rc

mulhwu x 31 D A B 0 11 Rc

mulld x 1 31 D A B OE 233 Rc

mullw x 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subf x 31 D A B OE 40 Rc

subfc x 31 D A B OE 8 Rc

subfe x 31 D A B OE 136 Rc

subfme x 31 D A 0 0 0 0 0 OE 232 Rc

subfze x 31 D A 0 0 0 0 0 OE 200 Rc

Note :
1 64-bit instruction

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fadd x 63 D A B 0 0 0 0 0 21 Rc

fadds x 59 D A B 0 0 0 0 0 21 Rc

fdiv x 63 D A B 0 0 0 0 0 18 Rc

fdivs x 59 D A B 0 0 0 0 0 18 Rc

fmadd x 63 D A B C 29 Rc

fmadds x 59 D A B C 29 Rc

fmsub x 63 D A B C 28 Rc

fmsubs x 59 D A B C 28 Rc

fmul x 63 D A 0 0 0 0 0 C 25 Rc

fmuls x 59 D A 0 0 0 0 0 C 25 Rc

fnmadd x 63 D A B C 31 Rc

fnmadds x 59 D A B C 31 Rc
A-38 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Table A-43. M-Form

Table A-44. MD-Form

fnmsub x 63 D A B C 30 Rc

fnmsubs x 59 D A B C 30 Rc

fres x 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrte x 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsel x 1 63 D A B C 23 Rc

fsqrt x 1,2 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts x 1,2 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsub x 63 D A B 0 0 0 0 0 20 Rc

fsubs x 59 D A B 0 0 0 0 0 20 Rc

Note :
1 Optional instruction
2 32-bit instruction not implemented by the PowerPC 750

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimi x 20 S A SH MB ME Rc

rlwinm x 21 S A SH MB ME Rc

rlwnm x 23 S A B MB ME Rc

OPCD S A sh mb XO sh Rc

OPCD S A sh me XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldic x 1

1 64-bit instruction

30 S A sh mb 2 sh Rc

rldicl x 1 30 S A sh mb 0 sh Rc

rldicr x 1 30 S A sh me 1 sh Rc

rldimi x 1 30 S A sh mb 3 sh Rc

Note :
Appendix A. PowerPC Instruction Set Listings A-39

Table A-45. MDS-Form

OPCD S A B mb XO Rc

OPCD S A B me XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldcl x 1

1 64-bit instruction

30 S A B mb 8 Rc

rldcr x 1 30 S A B me 9 Rc

Note :
A-40 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

such
A.5 Instruction Set Legend
Table A-46Table A-47 provides general information on the PowerPC instruction set (
as the architectural level, privilege level, and form).

Table A-46. PowerPC Instruction Set Legend

UISA VEA OEA Supervisor Level Optional Form

addx XO

addc x XO

addex XO

addi D

addic D

addic. D

addis D

addmex XO

addzex XO

andx X

andc x X

andi. D

andis. D

bx I

bcx B

bcctr x XL

bclr x XL

cmp X

cmpi D

cmpl X

cmpli D

cntlzw x X

crand XL

crandc XL

creqv XL

crnand XL

crnor XL

cror XL

crorc XL
Appendix A. PowerPC Instruction Set Listings A-41

crxor XL

dcba X

dcbf X

dcbi X

dcbst X

dcbt X

dcbtst X

dcbz X

divw x XO

divwu x XO

eciwx X

ecowx X

eieio X

eqvx X

extsb x X

extsh x X

fabs x X

fadd x A

fadds x A

fcmpo X

fcmpu X

fctiw x X

fctiwz x X

fdiv x A

fdivs x A

fmadd x A

fmadds x A

fmr x X

fmsub x A

fmsubs x A

fmul x A

fmuls x A

Table A-46. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form
A-42 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

fnabs x X

fneg x X

fnmadd x A

fnmadds x A

fnmsub x A

fnmsubs x A

fres x A

frsp x X

frsqrte x A

fsel x A

fsqrt x A

fsqrts x A

fsub x A

fsubs x A

icbi X

isync XL

lbz D

lbzu D

lbzux X

lbzx X

lfd D

lfdu D

lfdux X

lfdx X

lfs D

lfsu D

lfsux X

lfsx X

lha D

lhau D

lhaux X

lhax X

Table A-46. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form
Appendix A. PowerPC Instruction Set Listings A-43

lhbrx X

lhz D

lhzu D

lhzux X

lhzx X

lmw 2 D

lswi 2 X

lswx 2 X

lwarx X

lwbrx X

lwz D

lwzu D

lwzux X

lwzx X

mcrf XL

mcrfs X

 mcrxr X

mfcr X

mffs X

mfmsr X

mfspr 1 XFX

mfsr X

mfsrin X

mftb XFX

mtcrf XFX

mtfsb0 x X

mtfsb1 x X

mtfsf x XFL

mtfsfi x X

mtmsr X

mtspr 1 XFX

mtsr X

Table A-46. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form
A-44 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

mtsrin X

mulhw x XO

mulhwu x XO

mulli D

mullw x XO

nand x X

negx XO

nor x X

orx X

orc x X

ori D

oris D

rfi XL

rlwimi x M

rlwinm x M

rlwnm x M

sc SC

slw x X

sraw x X

srawi x X

srw x X

stb D

stbu D

stbux X

stbx X

stfd D

stfdu D

stfdux X

stfdx X

stfiwx X

 stfs D

stfsu D

Table A-46. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form
Appendix A. PowerPC Instruction Set Listings A-45

stfsux X

stfsx X

sth D

sthbrx X

sthu D

sthux X

sthx X

stmw 2 D

stswi 2 X

stswx 2 X

stw D

stwbrx X

stwcx. X

stwu D

stwux X

stwx X

subf x XO

subfc x XO

subfe x XO

subfic D

subfme x XO

subfze x XO

sync X

tlbia x X

tlbie x X

tlbsync X

tw X

twi D

xor x X

Table A-46. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form
A-46 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

1 Supervisor- and user-level instruction
2 Load/store string or multiple instruction
3 Optional instruction provided to support temporary 64-bit bridge
4 Defined for the 32-bit architecture and by the temporary 64-bit bridge

xori D

xoris D

Notes:

Table A-47. PowerPC Instruction Set Legend

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional Form

addx XO

addc x XO

addex XO

addi D

addic D

addic. D

addis D

addmex XO

addzex XO

andx X

andc x X

andi. D

andis. D

bx I

bcx B

bcctr x XL

bclr x XL

cmp X

cmpi D

cmpl X

cmpli D

cntlzd x X

Table A-46. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA Supervisor Level Optional Form
Appendix A. PowerPC Instruction Set Listings A-47

cntlzw x X

crand XL

crandc XL

creqv XL

crnand XL

crnor XL

cror XL

crorc XL

crxor XL

dcba 3 X

dcbf X

dcbi X

dcbst X

dcbt X

dcbtst X

dcbz X

divd x XO

divdu x XO

divw x XO

divwu x XO

eciwx X

ecowx X

eieio X

eqvx X

extsb x X

extsh x X

extsw x X

fabs x X

fadd x A

fadds x A

fcfid x X

fcmpo X

Table A-47. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional Form
A-48 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

fcmpu X

fctid x X

fctidz x X

fctiw x X

fctiwz x X

fdiv x A

fdivs x A

fmadd x A

fmadds x A

fmr x X

fmsub x A

fmsubs x A

fmul x A

fmuls x A

fnabs x X

fneg x X

fnmadd x A

fnmadds x A

fnmsub x A

fnmsubs x A

fres x A

frsp x X

frsqrte x A

fsel x A

fsqrt x 3 A

fsqrts x 3 A

fsub x A

fsubs x A

icbi X

isync XL

lbz D

lbzu D

Table A-47. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional Form
Appendix A. PowerPC Instruction Set Listings A-49

lbzux X

lbzx X

ld DS

ldarx X

ldu DS

ldux X

ldx X

lfd D

lfdu D

lfdux X

lfdx X

lfs D

lfsu D

lfsux X

lfsx X

lha D

lhau D

lhaux X

lhax X

lhbrx X

lhz D

lhzu D

lhzux X

lhzx X

lmw 2 D

lswi 2 X

lswx 2 X

lwa DS

lwarx X

lwaux X

lwax X

lwbrx X

Table A-47. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional Form
A-50 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

lwz D

lwzu D

lwzux X

lwzx X

mcrf XL

mcrfs X

mcrxr X

mfcr X

mffs X

mfmsr X

mfspr 1 XFX

mfsr 4 X

mfsrin 4 X

mftb XFX

mtcrf XFX

mtfsb0 x X

mtfsb1 x X

mtfsf x XFL

mtfsfi x X

mtmsr 4 X

mtmsrd X

mtspr 1 XFX

mtsr 4 X

mtsrd 4 X

mtsrdin 4 X

mtsrin 4 X

mulhd x XO

mulhdu x XO

mulhw x XO

mulhwu x XO

mulld x XO

mulli D

Table A-47. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional Form
Appendix A. PowerPC Instruction Set Listings A-51

mullw x XO

nand x X

negx XO

nor x X

orx X

orc x X

ori D

oris D

rfi 4 XL

rfid XL

rldcl x MDS

rldcr x MDS

rldic x MD

rldicl x MD

rldicr x MD

rldimi x MD

rlwimi x M

rlwinm x M

rlwnm x M

sc SC

slbia X

slbie X

sld x X

slw x X

srad x X

sradi x XS

sraw x X

srawi x X

srd x X

srw x X

stb D

stbu D

Table A-47. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional Form
A-52 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

stbux X

stbx X

std DS

stdcx. X

stdu DS

stdux X

stdx X

stfd D

stfdu D

stfdux X

stfdx X

stfiwx X

stfs D

stfsu D

stfsux X

stfsx X

sth D

sthbrx X

sthu D

sthux X

sthx X

stmw 2 D

stswi 2 X

stswx 2 X

stw D

stwbrx X

stwcx. X

stwu D

stwux X

stwx X

subf x XO

subfc x XO

Table A-47. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional Form
Appendix A. PowerPC Instruction Set Listings A-53

1 Supervisor- and user-level instruction
2 Load/store string or multiple instruction
3 32-bit instruction not implemented by the PowerPC 750
4 Instruction is optional for 64-bit implementations only

subfe x XO

subfic D

subfme x XO

subfze x XO

sync X

td X

tdi D

tlbia x3 X

tlbie x X

tlbsync X

tw X

twi D

xor x X

xori D

xoris D

Notes:

Table A-47. PowerPC Instruction Set Legend (Continued)

UISA VEA OEA
Supervisor

Level
64-Bit
Only

64-Bit
Bridge

Optional Form
A-54 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

not
ecute
tion
ation.

erPC
Appendix B
Instructions Not Implemented

B.1 Lists of Instructions
B0
B0

This appendix provides a list of the 32-bit and 64-bit PowerPC instructions that are
implemented in the PowerPC 750 microprocessor. Note that any attempt to ex
instructions that are not implemented on the 750 will generate an illegal instruc
exception. Note that exceptions are referred to as interrupts in the architecture specific

Table B-1 provides the 32-bit PowerPC instructions that are optional to the Pow
architecture but not implemented by the 750.

Table B-2 provides a list of 64-bit instructions that are not implemented by the 750.

Table B-1. 32-Bit Instructions Not Implemented

Mnemonic Instruction

dcba Data Cache Block Allocate

fsqrt Floating Square Root (Double-Precision)

fsqrts Floating Square Root Single

tlbia TLB Invalidate All

Table B-2. 64-Bit Instructions Not Implemented

Mnemonic Instruction

cntlzd Count Leading Zeros Double Word

divd Divide Double Word

divdu Divide Double Word Unsigned

extsw Extend Sign Word

fcfid Floating Convert From Integer Double Word

fctid Floating Convert to Integer Double Word

fctidz Floating Convert to Integer Double Word with Round toward Zero

ld Load Double Word

ldarx Load Double Word and Reserve Indexed
Appendix B. Instructions Not Implemented B-1

ldu Load Double Word with Update

ldux Load Double Word with Update Indexed

ldx Load Double Word Indexed

lwa Load Word Algebraic

lwaux Load Word Algebraic with Update Indexed

lwax Load Word Algebraic Indexed

mtmsrd Move to Machine State Register Double Word

mtsrd Move to Segment Register Double Word

mtsrdin Move to Segment Register Double Word Indirect

mulld Multiply Low Double Word

mulhd Multiply High Double Word

mulhdu Multiply High Double Word Unsigned

rldcl Rotate Left Double Word then Clear Left

rldcr Rotate Left Double Word then Clear Right

rldic Rotate Left Double Word Immediate then Clear

rldicl Rotate Left Double Word Immediate then Clear Left

rldicr Rotate Left Double Word Immediate then Clear Right

rldimi Rotate Left Double Word Immediate then Mask Insert

slbia SLB Invalidate All

slbie SLB Invalidate Entry

sld Shift Left Double Word

srad Shift Right Algebraic Double Word

sradi Shift Right Algebraic Double Word Immediate

srd Shift Right Double Word

std Store Double Word

stdcx. Store Double Word Conditional Indexed

stdu Store Double Word with Update

stdux Store Double Word Indexed with Update

stdx Store Double Word Indexed

td Trap Double Word

tdi Trap Double Word Immediate

Table B-2. 64-Bit Instructions Not Implemented (Continued)

Mnemonic Instruction
B-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

in this

EEE.

or
r or

s a

to
ous

tion
dress

The
the

nt
es
es.

f a

0

56
are
Glossary of Terms and Abbreviations

G.1 Alphabetical List
The glossary contains an alphabetical list of terms, phrases, and abbreviations used
book. Some of the terms and definitions included in the glossary are reprinted fromIEEE
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the I

Architecture. A detailed specification of requirements for a processor
computer system. It does not specify details of how the processo
computer system must be implemented; instead it provide
template for a family of compatibleimplementations.

Asynchronous exception. Exceptionsthat are caused by events external
the processor’s execution. In this document, the term ‘asynchron
exception’ is used interchangeably with the wordinterrupt.

Atomic access. A bus access that attempts to be part of a read-write opera
to the same address uninterrupted by any other access to that ad
(the term refers to the fact that the transactions are indivisible).
PowerPC architecture implements atomic accesses through
lwarx /stwcx. instruction pair.

BAT (block address translation) mechanism. A software-controlled array
that stores the available block address translations on-chip.

Biased exponent. An exponentwhose range of values is shifted by a consta
(bias). Typically a bias is provided to allow a range of positive valu
to express a range that includes both positive and negative valu

Big-endian. A byte-ordering method in memory where the address n o
word corresponds to themost-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with
being the most-significant byte.See Little-endian.

Block. (Memory) An area of memory that ranges from 128 Kbyte to 2
Mbyte whose size, translation, and protection attributes
controlled by theBAT mechanism(see Cache Block).

A

B

Glossary of Terms and Abbreviations Glossary-1

re
ly-
ng
ame

r for
s of
be

been
ons,
re

ch
n a

be
rm
is

s for

ot
can
as
ay

n). If
the
are

he

o a

d/or
Boundedly undefined. A characteristic of certain operation results that a
not rigidly prescribed by the PowerPC architecture. Bounded
undefined results for a given operation may vary amo
implementations and between execution attempts in the s
implementation.

Although the architecture does not prescribe the exact behavio
when results are allowed to be boundedly undefined, the result
executing instructions in contexts where results are allowed to
boundedly undefined are constrained to ones that could have
achieved by executing an arbitrary sequence of defined instructi
in valid form, starting in the state the machine was in befo
attempting to execute the given instruction.

Branch folding. The replacement with target instructions of a bran
instruction and any instructions along the not-taken path whe
branch is either taken or predicted as taken.

Branch prediction—The process of guessing whether a branch will
taken. Such predictions can be correct or incorrect; the te
‘predicted’ as it is used here does not imply that the prediction
correct (successful). The PowerPC architecture defines a mean
static branch prediction as part of the instruction encoding.

Branch resolution—The determination of whether a branch is taken or n
taken. A branch is said to be resolved when the processor
determine which instruction path to take. If the branch is resolved
predicted, the instructions following the predicted branch that m
have been speculatively executed can complete (see completio
the branch is not resolved as predicted, instructions on
mispredicted path, and any results of speculative execution,
purged from the pipeline and fetching continues from t
nonpredicted path.

Burst. A multiple-beat data transfer whose total size is typically equal t
cache block.

Cache. High-speed memory containing recently accessed data an
instructions (subset of main memory).

C

Glossary-2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

m
g

s.
ith

of
ory
from
alue

a
ified
ain

che

iss

med
it.

ed
the
eed
no

in
an

xt
ions
ion
Cache block. A small region of contiguous memory that is copied fro
memory into acache. The size of a cache block may vary amon
processors; the maximum block size is onepage. In PowerPC
processors,cache coherencyis maintained on a cache-block basi
Note that the term ‘cache block’ is often used interchangeably w
‘cache line’.

Cache coherency. An attribute wherein an accurate and common view
memory is provided to all devices that share the same mem
system. Caches are coherent if a processor performing a read
its cache is supplied with data corresponding to the most recent v
written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from
specified address range. This operation ensures that any mod
data within the specified address range is written back to m
memory. This operation is generated typically by a Data Ca
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which thecacheis bypassed
and the load or store is performed to or from main memory.

Cast-outs. Cache blocksthat must be written to memory when a cache m
causes a cache block to be replaced.

Changed bit. One of twopage history bitsfound in eachpage table entry
(PTE). The processor sets the changed bit if any store is perfor
into thepage. See alsoPage access history bits and Referenced b

Clear. To cause a bit or bit field to register a value of zero.See alsoSet.

Completion—Completion occurs when an instruction has finish
executing, written back any results, and is removed from
completion queue. When an instruction completes, it is guarant
that this instruction and all previous instructions can cause
exceptions.

Context synchronization. An operation that ensures that all instructions
execution complete past the point where they can produce
exception, that all instructions in execution complete in the conte
in which they began execution, and that all subsequent instruct
arefetchedand executed in the new context. Context synchronizat
may result from executing specific instructions (such asisyncor rfi)
or when certain events occur (such as an exception).

Copy-back. An operation in which modified data in acache blockis copied
back to memory.
Glossary of Terms and Abbreviations Glossary-3

nt
ose

an
kly

re,
U

.

cial,

is
hat
(that
The
tion
the

s

tion
to
the

he
wer
he

C
he
wed
sm,
n a
Denormalized number. A nonzero floating-point number whose expone
has a reserved value, usually the format's minimum, and wh
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address c
appear in only one location within the cache, operates more quic
when the memory request is a cache hit.

Effective address (EA). The 32- or 64-bit address specified for a load, sto
or an instruction fetch. This address is then submitted to the MM
for translation to either aphysical memoryaddress or an I/O address

Exception. A condition encountered by the processor that requires spe
supervisor-level processing.

Exception handler. A software routine that executes when an exception
taken. Normally, the exception handler corrects the condition t
caused the exception, or performs some other meaningful task
may include aborting the program that caused the exception).
address for each exception handler is identified by an excep
vector offset defined by the architecture and a prefix selected via
MSR.

Exclusive state.MEI state (E) in which only one caching device contain
data that is also in system memory.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execu
(appearing to begin execution) of the next instruction. Similar
context synchronization but doesn't force the contents of
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, t
exponent is the component that normally signifies the integer po
to which the value two is raised in determining the value of t
represented number.See alsoBiased exponent.

Fall-through (branch fall-through) —A not-taken branch. On the PowerP
750, fall-through branch instructions are removed from t
instruction stream at dispatch. That is, these instructions are allo
to fall through the instruction queue via the dispatch mechani
without either being passed to an execution unit and or give
position in the completion queue.

D

E

F

Glossary-4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

nd

t
and
ns
ata

ing-

and

of

l-
s and
ns.
tore

n a
t be

for

cs
nary

a
not
bit
bit
-bit
bit
Fetch. Retrieving instructions from either the cache or main memory a
placing them into the instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-poin
register file. These registers provide the source operands
destination results for floating-point instructions. Load instructio
move data from memory to FPRs and store instructions move d
from FPRs to memory. The FPRs are 64 bits wide and store float
point values in double-precision format

Flush. An operation that causes a modified cache block to be invalidated
the data to be written to memory.

Fraction. In the binary representation of a floating-point number, the field
thesignificand that lies to the right of its implied binary point.

General-purpose register (GPR). Any of the 32 registers in the genera
purpose register file. These registers provide the source operand
destination results for all integer data manipulation instructio
Integer load instructions move data from memory to GPRs and s
instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. Whe
page is designated as guarded, instructions and data canno
accessed out-of-order.

Harvard architecture . An architectural model featuring separate caches
instruction and data.

Hashing. An algorithm used in thepage table search process.

IEEE 754. A standard written by the Institute of Electrical and Electroni
Engineers that defines operations and representations of bi
floating-point numbers.

Illegal instructions. A class of instructions that are not implemented for
particular PowerPC processor. These include instructions
defined by the PowerPC architecture. In addition, for 32-
implementations, instructions that are defined only for 64-
implementations are considered to be illegal instructions. For 64
implementations instructions that are defined only for 32-
implementations are considered to be illegal instructions.

G

H

HI
Glossary of Terms and Abbreviations Glossary-5

C
nt
nd
as

be

nt

er

. An
is

ion

ute

ts

alid

ster
r or

ata

er,
Implementation. A particular processor that conforms to the PowerP
architecture, but may differ from other architecture-complia
implementations for example in design, feature set, a
implementation ofoptional features. The PowerPC architecture h
many different implementations.

Imprecise exception. A type ofsynchronous exceptionthat is allowed not to
adhere to the precise exception model (seePrecise exception). The
PowerPC architecture allows only floating-point exceptions to
handled imprecisely.

Instruction queue. A holding place for instructions fetched from the curre
instruction stream.

Integer unit . A functional unit in the 750 responsible for executing integ
instructions.

In-order. An aspect of an operation that adheres to a sequential model
operation is said to be performed in-order if, at the time that it
performed, it is known to be required by the sequential execut
model.See Out-of-order.

Instruction latency. The total number of clock cycles necessary to exec
an instruction and make ready the results of that instruction.

Interrupt . An asynchronous exception. On PowerPC processors, interrup
are a special case of exceptions.See also asynchronous exception.

Invalid state. State of a cache entry that does not currently contain a v
copy of a cache block from memory.

Key bits. A set of key bits referred to as Ks and Kp in each segment regi
and each BAT register. The key bits determine whether superviso
user programs can access apage within thatsegment or block.

Kill . An operation that causes acache block to be invalidated.

L2 cache. SeeSecondary cache.

Least-significant bit (lsb). The bit of least value in an address, register, d
element, or instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, regist
data element, or instruction encoding.

K

LL
Glossary-6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

3

tem.
the

r
hich

lock
that

n
tem

ct
hip

f
,
s.

ce
ernal

rs,

s,

in
Ns

ters
Little-endian . A byte-ordering method in memory where the addressn of a
word corresponds to theleast-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with
being themost-significant byte. See Big-endian.

MESI (modified/exclusive/shared/invalid). Cache coherencyprotocol used
to manage caches on different devices that share a memory sys
Note that the PowerPC architecture does not specify
implementation of a MESI protocol to ensure cache coherency.

Memory access ordering. The specific order in which the processo
performs load and store memory accesses and the order in w
those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or b
address translation mechanisms provided by the MMU and
occur externally with the bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that a
accurate view of memory is provided to all devices that share sys
memory.

Memory consistency. Refers to agreement of levels of memory with respe
to a single processor and system memory (for example, on-c
cache, secondary cache, and system memory).

Memory management unit (MMU). The functional unit that is capable o
translating aneffective (logical) address to a physical address
providing protection mechanisms, and defining caching method

Modified state. MEI state (M) in which one, and only one, caching devi
has the valid data for that address. The data at this address in ext
memory is not valid.See MESI.

Most-significant bit (msb). The highest-order bit in an address, registe
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an addres
registers, data element, or instruction encoding.

NaN. An abbreviation for not a number; a symbolic entity encoded
floating-point format. There are two types of NaNs—signaling Na
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect regis
or generate bus activity.

M

N

Glossary of Terms and Abbreviations Glossary-7

ed
iate
to
the

isor-
tion
evel
EA

at is
be

ad
for
be

ot

d
the

the
For
be

of

set
rite
Normalization. A process by which a floating-point value is manipulat
such that it can be represented in the format for the appropr
precision (single- or double-precision). For a floating-point value
be representable in the single- or double-precision format,
leading implied bit must be a 1.

OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model, superv
level registers, synchronization requirements, and the excep
model. It also defines the time-base feature from a supervisor-l
perspective. Implementations that conform to the PowerPC O
also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, th
defined by the PowerPC architecture but not required to
implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahe
of one that may have preceded it in the sequential model,
example, speculative operations. An operation is said to
performed out-of-order if, at the time that it is performed, it is n
known to be required by the sequential execution model.See
In-order.

Out-of-order execution. A technique that allows instructions to be issue
and completed in an order that differs from their sequence in
instruction stream.

Overflow. An condition that occurs during arithmetic operations when
result cannot be stored accurately in the destination register(s).
example, if two 32-bit numbers are multiplied, the result may not
representable in 32 bits.

Packet. A term used in the 750 with respect to direct-store operations.

Page. A region in memory. The OEA defines a page as a 4-Kbyte area
memory, aligned on a 4-Kbyte boundary.

Page access history bits. Thechangedandreferencedbits in the PTE keep
track of the access history within the page. The referenced bit is
by the MMU whenever the page is accessed for a read or w
operation. The changed bit is set when the page is stored into.See
Changed bit and Referenced bit.

O

P

Glossary-8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

sor
in a

a

try
size

to
e
sor

the

ion
ures
the

e
can
and

n

AT
only

ption
is
ed to
be
Page fault. A page fault is a condition that occurs when the proces
attempts to access a memory location that does not reside with
page not currently resident inphysical memory. On PowerPC
processors, a page fault exception condition occurs when
matching, validpage table entry(PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised ofpage table entries, or PTEs.
It is further organized into eight PTEs per PTEG (page table en
group). The number of PTEGs in the page table depends on the
of the page table (as specified in the SDR1 register).

Page table entry (PTE). Data structures containing information used
translateeffective addressto physical address on a 4-Kbyte pag
basis. A PTE consists of 8 bytes of information in a 32-bit proces
and 16 bytes of information in a 64-bit processor.

Physical memory. The actual memory that can be accessed through
system’s memory bus.

Pipelining. A technique that breaks operations, such as instruct
processing or bus transactions, into smaller distinct stages or ten
(respectively) so that a subsequent operation can begin before
previous one has completed.

Precise exceptions. A category of exception for which the pipeline can b
stopped so instructions that preceded the faulting instruction
complete, and subsequent instructions can be flushed
redispatched after exception handling has completed.SeeImprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instructio
encoding that identifies the type of instruction. See Secondary
opcode.

Protection boundary. A boundary betweenprotection domains.

Protection domain. A protection domain is a segment, a virtual page, a B
area, or a range of unmapped effective addresses. It is defined
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Quiesce. To come to rest. The processor is said to quiesce when an exce
is taken or async instruction is executed. The instruction stream
stopped at the decode stage and executing instructions are allow
complete to create a controlled context for instructions that may
affected by out-of-order, parallel execution. SeeContext
synchronization.

Q

Glossary of Terms and Abbreviations Glossary-9

tic
to

alid

rce

rce.

s a

rce.

is
e
ress
led

t,
the

R

of a

s
rget
Quiet NaN. A type of NaN that can propagate through most arithme
operations without signaling exceptions. A quiet NaN is used
represent the results of certain invalid operations, such as inv
arithmetic operations on infinities or on NaNs, when invalid.See
Signaling NaN.

rA . TherA instruction field is used to specify a GPR to be used as a sou
or destination.

rB . TherB instruction field is used to specify a GPR to be used as a sou

rD . The rD instruction field is used to specify a GPR to be used a
destination.

rS. TherS instruction field is used to specify a GPR to be used as a sou

Real address mode. An MMU mode when no address translation
performed and theeffective addressspecified is the same as th
physical address. The processor’s MMU is operating in real add
mode if its ability to perform address translation has been disab
through the MSR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is se
updates the condition register (CR) to reflect the result of
operation.

Referenced bit. One of twopage history bitsfound in eachpage table entry
(PTE). The processor sets thereferenced bitwhenever the page is
accessed for a read or write.See alsoPage access history bits.

Register indirect addressing. A form of addressing that specifies one GP
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that specifies an immediate value to be added to the contents
specified GPR to form the target address for the load or store.

Register indirect with index addressing. A form of addressing that specifie
that the contents of two GPRs be added together to yield the ta
address for the load or store.

Reservation. The processor establishes a reservation on acache blockof
memory space when it executes anlwarx instruction to read a
memory semaphore into a GPR.

R

Glossary-10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

d
ory

er
y be
he.

of a

en
er-
to the

is
a
set,

m

ists

re

n the
the

d for

n

RISC (reduced instruction set computing). An architecturecharacterized
by fixed-length instructions with nonoverlapping functionality an
by a separate set of load and store instructions that perform mem
accesses.

Secondary cache. A cache memory that is typically larger and has a long
access time than the primary cache. A secondary cache ma
shared by multiple devices. Also referred to as L2, or level-2, cac

Set(v). To write a nonzero value to a bit or bit field; the opposite ofclear. The
term ‘set’ may also be used to generally describe the updating
bit or bit field.

Set (n). A subdivision of acache. Cacheable data can be stored in a giv
location in any one of the sets, typically corresponding to its low
order address bits. Because several memory locations can map
same location, cached data is typically placed in the set whosecache
blockcorresponding to that address was used least recently.SeeSet-
associative.

Set-associative. Aspect of cache organization in which the cache space
divided into sections, calledsets. The cache controller associates
particular main memory address with the contents of a particular
or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation progra
exception when it is specified as arithmetic operands.SeeQuiet
NaN.

Significand. The component of a binary floating-point number that cons
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Simplified mnemonics. Assembler mnemonics that represent a mo
complex form of a common operation.

Slave. The device addressed by a master device. The slave is identified i
address tenure and is responsible for supplying or latching
requested data for the master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the nee
coherency actions.

Snoop push. Write-backs due to a snoop hit. The block will transition to a
invalid or exclusive state.

S

Glossary of Terms and Abbreviations Glossary-11

nse

om

,
n a

s

In
can
mory

f
pes

tion.
es.

sed

tion
ata

the
nd
end
Split-transaction. A transaction with independent request and respo
tenures.

Split-transaction bus. A bus that allows address and data transactions fr
different processors to occur independently.

Static branch prediction. Mechanism by which software (for example
compilers) can hint to the machine hardware about the directio
branch is likely to take.

Superscalar machine. A machine that can issue multiple instruction
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor.
supervisor mode, software, typically the operating system,
access all control registers and can access the supervisor me
space, among other privileged operations.

Synchronization.A process to ensure that operations occur strictlyin order.
See Context synchronization and Execution synchronization.

Synchronous exception.An exceptionthat is generated by the execution o
a particular instruction or instruction sequence. There are two ty
of synchronous exceptions,precise andimprecise.

System memory.The physical memory available to a processor.

Tenure. A tenure consists of three phases: arbitration, transfer, termina
There can be separate address bus tenures and data bus tenur

TLB (translation lookaside buffer) A cache that holds recently-usedpage
table entries.

Throughput . The measure of the number of instructions that are proces
per clock cycle.

Transaction. A complete exchange between two bus devices. A transac
is minimally comprised of an address tenure; one or more d
tenures may be involved in the exchange.

Transfer termination . Signal that refers to both signals that acknowledge
transfer of individual beats (of both single-beat transfer a
individual beats of a burst transfer) and to signals that mark the
of the tenure.

T

Glossary-12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

the
pes,

by

he
ister.
ns

her

tion
trol
ged

.

ple
odel,
ility

rily

an

ment
is

les
ted

ite
UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines
base user-level instruction set, user-level registers, data ty
floating-point memory conventions and exception model as seen
user programs, and the memory and programming models.

Underflow. A condition that occurs during arithmetic operations when t
result cannot be represented accurately in the destination reg
For example, underflow can happen if two floating-point fractio
are multiplied and the result requires a smallerexponentand/or
mantissa than the single-precision format can provide. In ot
words, the result is too small to be represented accurately.

User mode. The operating state of a processor used typically by applica
software. In user mode, software can access only certain con
registers and can access only user memory space. No privile
operations can be performed. Also referred to as problem state

VEA (virtual environment architecture) . The level of thearchitecturethat
describes the memory model for an environment in which multi
devices can access memory, defines aspects of the cache m
defines cache control instructions, and defines the time-base fac
from a user-level perspective.Implementationsthat conform to the
PowerPC VEA also adhere to the UISA, but may not necessa
adhere to the OEA.

Virtual address. An intermediate address used in the translation of
effective address to a physical address.

Virtual memory . The address space created using the memory manage
facilities of the processor. Program access to virtual memory
possible only when it coincides withphysical memory.

Word . A 32-bit data element.

Write-back . A cache memory update policy in which processor write cyc
are directly written only to the cache. External memory is upda
only indirectly, for example, when a modified cache block iscast out
to make room for newer data.

Write-through . A cache memory update policy in which all processor wr
cycles are written to both the cache and memory.

U

V

VW
Glossary of Terms and Abbreviations Glossary-13

Glossary-14 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Index

A
AACK (address acknowledge) signal 7-14
ABB (address bus busy) signal 7-5, 8-10
Address bus

address tenure 8-9
address transfer

An 7-7
APE 8-15
APn 7-7

address transfer attribute
CI 7-12
GBL 7-13
TBST 7-12, 8-16
TSIZn 7-11, 8-15
TTn 7-8, 8-15
WT 7-13

address transfer start
TS 7-6, 8-14

address transfer termination
AACK 7-14
ARTRY 7-14
terminating address transfer 8-21

arbitration signals 7-4, 8-10
bus parking 8-13

Address translation,see Memory management
unit

Addressing modes 2-35
Aligned data transfer 8-18, 8-21
Alignment

data transfers 8-18
exception 4-20
misaligned accesses 2-29
rules 2-29

An (address bus) signals 7-7
APE (address parity error) signal 8-15
APn (address parity) signals 7-7
Arbitration, system bus 8-12, 8-23
Arithmetic instructions

floating-point A-20
integer A-17

ARTRY (address retry) signal 7-14

B
BG (bus grant) signal 7-4, 8-10
Block address translation

block address translation flow 5-12
definition 1-12
registers

description 2-5
initialization 5-21

selection of block address translation 5-9
Boundedly undefined, definition 2-33
BR (bus request) signal 7-4, 8-10
Branch fall-through 6-18
Branch folding 6-18
Branch instructions

address calculation 2-53
condition register logical 2-54, A-26
description A-25
list of instructions 2-54, A-25
system linkage 2-55, 2-65, A-26
trap 2-55, A-26

Branch prediction 6-1, 6-22
Branch processing unit

branch instruction timing 6-23
execution timing 6-18
latency, branch instructions 6-31
overview 1-9

Branch resolution
definition 6-1
resource requirements 6-30

BTIC (branch target instruction cache) 6-9
Burst data transfers

32-bit data bus 8-17
64-bit data bus 8-17
transfers with data delays, timing 8-37

Bus arbitration,see Data bus
Bus configurations 8-41
Bus interface unit (BIU) 3-2, 8-1
Bus transactions and L1 cache 3-22
Byte ordering 2-35

C
Cache
Index Index - 1

3-

2,

0

bus interface unit 3-2, 8-1
cache arbitration 6-11
cache block, definition 3-3
cache characteristics 3-1
cache coherency

description 3-5
overview 3-25
reaction to bus operations 3-26

cache control 3-13
cache control instructions

bus operations 3-24
cache control 3-13
dcbi 2-66
dcbt 2-63

cache hit 6-11
cache integration 3-2
cache management instructions A-27
cache miss 6-14
cache operations

cache block push operations 9-4
data cache transactions 3-22
instruction cache block fill 3-21
load/store operations, processor initiat-

ed 3-10
operations 3-18
overview 3-1, 8-3
snoop response to bus transactions 3-26

cache unit overview 3-3
cache-inhibited accesses (I bit) 3-6
data cache configuration 3-3
dcbf/dcbst execution 9-4
icbi 9-4
instruction cache configuration 3-4
instruction cache throttling 10-10
L1 cache and bus transactions 3-22
L2 interface

cache configuration 9-2
cache global invalidation 9-7
cache initialization 9-6
cache testing 9-8
clock configuration 9-9
dcbi 9-4
eieio 9-4
L2 cache considerations 6-15
L2 cache interface signals 7-25
operation 9-2

overview 9-1
SRAM timing examples 9-9
stwcx. execution 9-4
sync 9-4

load/store operations, processor initiated
10

PLRU replacement 3-19
stwcx. execution 9-4

Changed (C) bit maintenance recording 5-1
5-23

Checkstop
signal 7-22, 8-42
state 4-19

CI (cache inhibit) signal 7-12
CKSTP_IN/CKSTP_OUT<Default Para

Font (checkstop input/output) sig-
nals> 7-22

Classes of instructions 2-32
Clean block operation 3-27
CLK_OUT signal 7-29
Clock signals

PLL_CFGn 7-30
SYSCLK 7-29

Compare instructions
floating-point A-21
integer A-18

Completion
completion unit resource requirements 6-3
considerations 6-16
definition 6-1

Context synchronization 2-36
Conventions xxx, xxxiv, 6-1
COP/scan interface 8-44
Copy-back mode 6-27
CR (condition register)

CR logical instructions 2-54, A-26
CR, description 2-3

CTR register 2-4

D
DABR (data address breakpoint register) 2-7
DAR (data address register) 2-6
Data bus

arbitration signals 7-15, 8-10
bus arbitration 8-23
data tenure 8-9
Index - 2 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

-

4-
data transfer 7-17, 8-25
data transfer termination 7-19, 8-26

Data cache
block push operation 3-22
configuration 3-3
DCFI, DCE, DLOCK bits 3-13
organization 3-4

Data organization in memory 2-28
Data transfers

alignment 8-18
burst ordering 8-17
eciwx and ecowx instructions, alignment 8-

21
operand conventions 2-28
signals 8-25

DBB (data bus busy) signal 7-16, 8-10, 8-24
DBDIS (data bus disable) signal 7-19
DBG (data bus grant) signal 7-15, 8-10
DBWO (data bus write only) signal 7-16, 8-10,

8-25, 8-45
dcbi 2-66
dcbt 2-63
DEC (decrementer register) 2-7
Decrementer exception 4-21
Defined instruction class 2-33
DHn/DLn (data bus) signals 7-17
Dispatch

considerations 6-16
dispatch unit resource requirements 6-30

DPn (data bus parity) signals 7-18
DRTRY (data retry) signal 7-20, 8-26, 8-29
DSI exception 4-19
DSISR register 2-6
DTLB organization 5-25
Dynamic branch prediction 6-9

E
EAR (external access register) 2-7
Effective address calculation

address translation 5-4
branches 2-35
loads and stores 2-35, 2-46, 2-51

eieio 2-62
EMI protocol, enforcing memory coherency 8-

30

Enveloped high-priority cache block push op
eration 3-22

Error termination 8-30
Event counting 11-11
Event selection 11-12
Exceptions

alignment exception 4-20
decrementer exception 4-21
definitions 4-12
DSI exception 4-19
enabling and disabling exceptions 4-10
exception classes 4-2
exception prefix (IP) bit 4-13
exception priorities 4-4
exception processing 4-7, 4-10
external interrupt 4-20
FP assist exception 4-22
FP unavailable exception 4-21
instruction-related exceptions 2-37
ISI exception 4-19
machine check exception 4-17
performance monitor interrupt 4-22
program exception 4-20
register settings

MSR 4-8, 4-12
SRR0/SRR1 4-7

reset exception 4-13
returning from an exception handler 4-11
summary table 4-3
system call exception 4-21
system management interrupt 4-25
terminology 4-2
thermal management interrupt exception

26
Execution synchronization 2-36
Execution unit timing examples 6-18
Execution units 1-10
External control instructions 2-64, 8-21, A-28

F
Features, list 1-4
Finish cycle, definition 6-2
Floating-Point Execution Models—UISA 2-28
Floating-point model

FE0/FE1 bits 4-10
Index Index - 3

r)

-

1

1

FP arithmetic instructions 2-42, A-20
FP assist exceptions 4-22
FP compare instructions 2-43, A-21
FP load instructions A-24
FP move instructions A-25
FP multiply-add instructions 2-42, A-20
FP operand 2-30
FP rounding/conversion instructions 2-43,

A-21
FP store instructions 2-52, A-25
FP unavailable exception 4-21
FPSCR instructions 2-44, A-21
IEEE-754 compatibility 2-28
NI bit in FPSCR 2-30

Floating-point unit
execution timing 6-24
latency, FP instructions 6-34
overview 1-10, 1-11

Flush block operation 3-27
FPRn (floating-point registers) 2-3
FPSCR (floating-point status and control regis-

ter)
FPSCR instructions 2-44, A-21
FPSCR register description 2-3
NI bit 2-29

G
GBL (global) signal 7-13
GPRn (general-purpose registers) 2-3
Guarded memory bit (G bit) 3-6

H
HIDn (hardware implementation-dependent)

registers
HID0

description 2-9
doze bit 10-3
DPM enable bit 10-2
nap bit 10-4

HID1
description 2-13
PLL configuration 2-13, 7-30

HRESET (hard reset) signal 7-23, 8-43

I
IABR (instruction address breakpoint registe

2-8
ICTC (instruction cache throttling control) reg

ister 2-21, 10-11
IEEE 1149.1-compliant interface 8-44
Illegal instruction class 2-33
Instruction cache

configuration 3-4
instruction cache block fill operations 3-2
organization 3-5

Instruction cache throttling 10-10
Instruction timing

examples
cache hit 6-12
cache miss 6-15

execution unit 6-18
instruction flow 6-8
memory performance considerations 6-27
overview 6-3
terminology 6-1

Instructions
branch address calculation 2-53
branch instructions 6-9, 6-18, 6-20, A-25
cache control instructions 9-4
cache management instructions A-27
classes 2-32
condition register logical 2-54, A-26
defined instructions 2-33
external control instructions 2-64, A-28
floating-point

arithmetic 2-42, A-20
compare 2-43, A-21
FP load instructions A-24
FP move instructions A-25
FP rounding and conversion 2-43, A-2
FP status and control register 2-44
FP store instructions A-25
FPSCR instructions A-21
multiply-add 2-42, A-20

illegal instructions 2-33
instruction cache throttling 10-10
instruction flow diagram 6-10
instruction serialization 6-17
instruction serialization types 6-17
instruction set summary 2-31
Index - 4 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

instructions not implemented B-1
integer

arithmetic 2-38, A-17
compare 2-39, A-18
load A-22
load/store multiple A-23
load/store string A-24
load/store with byte reverse A-23
logical 2-40, A-18
rotate and shift 2-40, A-19
store A-23

integer instructions 6-33
isync 4-12
latency summary 6-31
load and store

address generation
floating-point 2-51
integer 2-46

byte reverse instructions 2-49, A-23
floating-point load A-24
floating-point move 2-44, A-25
floating-point store 2-51
handling misalignment 2-45
integer load 2-46, A-22
integer multiple 2-49
integer store 2-47, A-23
memory synchronization 2-59, 2-61, A-

24
multiple instructions A-23
string instructions 2-50, A-24

lookaside buffer management instructions
A-28

memory control instructions 2-62, 2-66
memory synchronization instructions 2-59,

2-61, A-24
PowerPC instructions, list A-1, A-9, A-17
processor control instructions 2-55, 2-60,

2-65, A-27
reserved instructions 2-34
rfi 4-11
segment register manipulation instructions

A-28
SLB management instructions A-28
stwcx. 4-12
support for lwarx/stwcx. 8-43

sync 4-12
system linkage instructions 2-55, A-26
TLB management instructions A-28
tlbie 2-67
tlbsync 2-67
trap instructions 2-55, A-26

INT (interrupt) signal 7-21, 8-42
Integer arithmetic instructions 2-38, A-17
Integer compare instructions 2-39, A-18
Integer load instructions 2-46, A-22
Integer logical instructions 2-40, A-18
Integer rotate/shift instructions 2-40, A-19
Integer store gathering 6-26
Integer store instructions 2-47, A-23
Integer unit execution timing 6-24
Interrupt, external 4-20
ISI exception 4-19
isync 2-62, 4-12
ITLB organization 5-25

K
Kill block operation 3-27

L
L1/L2 interface operation,see Cache
L2ADDRn (L2 address) signals 7-25
L2CE (L2 chip enable) signals 7-26
L2CLK_OUTA (L2 clock out A) signal 7-27
L2CLK_OUTB (L2 clock out B) signal 7-27
L2CR (L2 cache control register) 2-24, 9-5
L2DATAn (L2 data) signals 7-25
L2DPn (L2 data parity) signals 7-26
L2SYNC_IN (L2 sync in) signal 7-28
L2SYNC_OUT (L2 sync out) signal 7-27
L2WE (L2 write enable) signal 7-27
L2ZZ (L2 low-power mode enable) signal 7-28
Latency

load/store instructions 6-36
Latency, definition 6-2
Load/store

address generation 2-46
byte reverse instructions 2-49, A-23
execution timing 6-25
floating-point load instructions 2-51, A-24
Index Index - 5

-

-

-

n-

h

floating-point move instructions 2-44, A-
25

floating-point store instructions 2-52, A-25
handling misalignment 2-45
integer load instructions 2-46, A-22
integer store instructions 2-47, A-23
latency, load/store instructions 6-36
load/store multiple instructions 2-49, A-23
memory synchronization instructions A-24
string instructions 2-50, A-24

Logical address translation 5-1
Logical instructions, integer A-18
Lookaside buffer management instructions A-

28
LR (link register) 2-3
lwarx/stwcx. support 8-43

M
Machine check exception 4-17
MCP (machine check interrupt) signal 7-21
MEI protocol

hardware considerations 3-9
read operations 3-23
state transitions 3-31

Memory accesses 8-6
Memory coherency bit (M bit)

cache interactions 3-6
timing considerations 6-27

Memory control instructions
description 2-62, 2-66
segment register manipulation A-28
SLB management A-28

Memory management unit
address translation flow 5-12
address translation mechanisms 5-9, 5-12
block address translation 5-9, 5-12, 5-21
block diagrams

32-bit implementations 5-6
DMMU 5-8
IMMU 5-7

exceptions summary 5-16
features summary 5-3
implementation-specific features 5-2
instructions and registers 5-18
memory protection 5-11
overview 1-12, 5-2

page address translation 5-9, 5-12, 5-28
page history status 5-12, 5-21–5-25
real addressing mode 5-12, 5-20
segment model 5-21

Memory synchronization instructions 2-59, 2
61, A-24

Misaligned data transfer 8-21
Misalignment

misaligned accesses 2-29
misaligned data transfer 8-19

MMCRn (monitor mode control registers) 2
14, 4-23, 11-3

MSR (machine state register)
bit settings 4-8
FE0/FE1 bits 4-10
IP bit 4-13
PM bit 2-4
RI bit 4-11
settings due to exception 4-12

Multiple-precision shifts 2-41
Multiply-add instructions A-20

N
No-DRTRY mode 8-41

O
OEA

exception mechanism 4-1
memory management specifications 5-1
registers 2-4

Operand conventions 2-28
Operand placement and performance 6-25
Operating environment architecture (OEA) 1

21
Operating environment architecture (OEA)

xxvi
Operations

bus operations caused by cache control i
structions 3-24

cache operations 3-1
data cache block push 3-22
enveloped high-priority cache block pus

3-22
instruction cache block fill 3-21
read operation 3-23
Index - 6 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

)

)

-

5,

-

response to snooped bus transactions 3-27
single-beat write operations 8-34

Optional instructions A-41, A-47
Overview 1-1

P
Page address translation

definition 1-12
page address translation flow 5-28
page size 5-21
selection of page address translation 5-9, 5-

16
TLB organization 5-26

Page history status
cases of dcbt and dcbtst misses 5-22
R and C bit recording 5-12, 5-21–5-25

Page table updates 5-34
Performance monitor

event counting 11-11
event selecting 11-12
performance monitor interrupt 4-22, 11-2
performance monitor SPRs 11-3
purposes 11-1
registers 11-3
warnings 11-12

Phase-locked loop 10-3
Physical address generation 5-1
Pipeline

instruction timing, definition 6-2
pipeline stages 6-7
pipelined execution unit 6-4
superscalar/pipeline diagram 6-5

PMC1 and PMC2 registers 1-26
PMCn (performance monitor counter) registers

2-16, 4-23, 11-6
Power and ground signals 7-30
Power management

doze mode 10-2
doze, nap, sleep, DPM bits 2-13
dynamic power management 10-1
full-power mode 10-2
nap mode 10-3
programmable power modes 10-2
sleep mode 10-4
software considerations 10-5

PowerPC architecture
instruction list A-1, A-9, A-17
operating environment architecture (OEA

1-21
operating environment architecture (OEA

xxvi
user instruction set architecture (UISA) 1

21
user instruction set architecture (UISA)

xxv
virtual environment architecture (VEA) 1-

21
virtual environment architecture (VEA)

xxvi
Priorities, exception 4-4
Process switching 4-12
Processor control instructions 2-55, 2-60, 2-6

A-27
Program exception 4-20
Program order, definition 6-2
Programmable power states

doze mode 10-2
full-power mode with DPM enabled/dis-

abled 10-2
nap mode 10-3
sleep mode 10-4

Protection of memory areas
no-execute protection 5-14
options available 5-11
protection violations 5-16

PVR (processor version register) 2-5

Q
QACK (quiescent acknowledge) signal 7-24
QREQ (quiescent request) signal 7-23, 8-43
Qualified bus grant 8-10
Qualified data bus grant 8-24

R
Read operation 3-27
Read-atomic operation 3-27
Read-with-intent-to-modify operation 3-27
Real address (RA),see Physical address gen

eration
Index Index - 7

2-
Real addressing mode (translation disabled)
data accesses 5-12, 5-20
instruction accesses 5-12, 5-20
support for real addressing mode 5-2

Referenced (R) bit maintenance recording 5-
12, 5-22, 5-31

Registers
implementation-specific

ICTC 2-21, 10-11
L2CR 2-24, 9-5
MMCR0 2-14, 4-23, 11-3
MMCR1 2-16, 4-23, 11-5
SIA 2-20, 4-23
THRMn 2-21, 10-7
UMMCR0 2-15
UMMCR1 2-16
UPMCn 2-20
USIA 2-20

performance monitor registers 2-14
programming model 2-2
SPR encodings 2-58
supervisor-level

BAT registers 2-5
DABR 2-7
DAR 2-6
DEC 2-7
DSISR 2-6
EAR 2-7
HID0 2-9, 10-2
HID1 2-13
IABR 2-8
ICTC 2-21, 10-11
L2CR 2-24, 9-5
MMCR0 2-14, 4-23, 11-3
MMCR1 2-16, 4-23, 11-5
MSR 2-4
PMC1 and PMC2 1-26
PMCn 2-16, 4-23
PVR 2-5
SDR1 2-5
SIA 2-20, 4-23, 11-10
SPRGn 2-6
SPRs for performance monitor 11-1
SRn 2-5
SRR0/SRR1 2-6
THRMn 2-21, 10-7

time base (TB) 2-6
user-level

CR 2-3
CTR 2-4
FPRn 2-3
FPSCR 2-3
GPRn 2-3
LR 2-3
time base (TB) 2-4, 2-6
UMMCR0 2-15
UMMCR1 2-16
UPMCn 2-20
USIA 2-20, 11-11
XER 2-3

Rename buffer, definition 6-2
Rename register operation 6-17
Reservation station, definition 6-2
Reserved instruction class 2-34
Reset

HRESET signal 7-23, 8-43
reset exception 4-13
SRESET signal 7-23, 8-43

Retirement, definition 6-2
rfi 4-11
Rotate/shift instructions 2-40, A-19
RSRV (reserve) signal 7-24, 8-43

S
SDR1 register 2-5
Segment registers

SR description 2-5
SR manipulation instructions 2-67, A-28

Segmented memory model,see Memory man-
agement unit

Serializing instructions 6-17
Shift/rotate instructions 2-40, A-19
SIA (sampled instruction address) register

20, 4-23, 11-10
Signals

AACK 7-14
ABB 7-5, 8-10
address arbitration 7-4, 8-10
address transfer 8-14
address transfer attribute 8-15
An 7-7
APn 7-7
Index - 8 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

-

,

ARTRY 7-14, 8-26
BG 7-4, 8-10
BR 7-4, 8-10
checkstop 8-42
CI 7-12
CKSTP_IN/CKSTP_OUT 7-22
CLK_OUT 7-29
configuration 7-3
COP/scan interface 8-44
data arbitration 8-10, 8-23
data transfer termination 8-26
DBB 7-16, 8-10, 8-24
DBDIS 7-19
DBG 7-15, 8-10
DBWO 7-16, 8-10, 8-25, 8-45
DHn/DLn 7-17
DPn 7-18
DRTRY 7-20, 8-26, 8-29
GBL 7-13
HRESET 7-23
INT 7-21, 8-42
L2 cache interface signals 7-25
L2ADDRn 7-25
L2CE 7-26
L2CLK_OUTA 7-27
L2CLK_OUTB 7-27
L2DATAn 7-25
L2DP 7-26
L2SYNC_IN 7-28
L2SYNC_OUT 7-27
L2WE 7-27
L2ZZ 7-28
MCP 7-21
PLL_CFGn 7-30
power and ground signals 7-30
QACK 7-24
QREQ 7-23, 8-43
reset 8-43
RSRV 7-24, 8-43
SMI 4-25, 7-21
SRESET 7-23, 8-43
system quiesce control 8-43
TA 7-19
TBEN 7-24
TBST 7-12, 8-16, 8-25

TEA 7-20, 8-26, 8-30
TLBISYNC 7-25
transfer encoding 7-9
TS 7-6
TSIZn 7-11, 8-15
TTn 7-8, 8-15
WT 7-13

Single-beat transfer
reads with data delays, timing 8-35
reads, timing 8-33
termination 8-26
writes, timing 8-34

SLB management instructions A-28
SMI (system management interrupt) signal 4

25, 7-21
Snooping 3-25
Split-bus transaction 8-11
SPRGn registers 2-6
SRESET (soft reset) signal 7-23, 8-43
SRR0/SRR1 (status save/restore registers)

description 2-6
exception processing 4-7

Stage, definition 6-2
Stall, definition 6-3
Static branch prediction 6-9, 6-22
stwcx. 4-12
Superscalar, definition 6-3
sync 4-12
SYNC operation 3-27
Synchronization

context/execution synchronization 2-36
execution of rfi 4-11
memory synchronization instructions 2-59

2-61, A-24
SYSCLK (system clock) signal 7-29
System call exception 4-21
System linkage instructions 2-55, 2-65

list of instructions A-26
System management interrupt 4-25, 10-1
System quiesce control signals (QACK/

QREQ) 8-43
System register unit

execution timing 6-27
latency, CR logical instructions 6-32
latency, system register instructions 6-31
Index Index - 9

6,

r

r

)

s-
T
TA (transfer acknowledge) signal 7-19
Table search flow (primary and secondary) 5-

31
TBEN (time base enable) signal 7-24
TBL/TBU (time base lower and upper) regis-

ters 2-4, 2-6
TBST (transfer burst) signal 7-12, 8-16, 8-25
TEA (transfer error acknowledge) signal 7-20,

8-30
Termination 8-21, 8-26
Thermal assist unit (TAU) 10-6
Thermal management interrupt exception 4-26
THRMn (thermal management) registers 2-21,

10-7
Throughput, definition 6-3
Timing considerations 6-7
Timing diagrams, interface

address transfer signals 8-14
burst transfers with data delays 8-37
L2 cache SRAM timing 9-9
single-beat reads 8-33
single-beat reads with data delays 8-35
single-beat writes 8-34
single-beat writes with data delays 8-36
use ofTEA 8-38
usingDBWO 8-45

Timing, instruction
BPU execution timing 6-18
branch timing example 6-23
cache hit 6-12
cache miss 6-15
execution unit 6-18
FPU execution timing 6-24
instruction dispatch 6-16
instruction flow 6-8
instruction scheduling guidelines 6-29
IU execution timing 6-24
latency summary 6-31
load/store unit execution timing 6-25
overview 6-3
SRU execution timing 6-27
stage, definition 6-2

TLB
description 5-25
invalidate (tlbie instruction) 5-27, 5-34

LRU replacement 5-27
organization for ITLB and DTLB 5-25
TLB miss and table search operation 5-2

5-30
TLB invalidate

description 5-27
TLB management instructions 2-67, A-28

TLB miss, effect 6-28
tlbie 2-67
TLBISYNC (TLBI sync) signal 7-25
tlbsync 2-67
Transactions, data cache 3-22
Transfer 8-14, 8-25
Trap instructions 2-55
TS (transfer start) signal 7-6, 8-14
TSIZn (transfer size) signals 7-11, 8-15
TTn (transfer type) signals 7-8, 8-15

U
UMMCR0 (user monitor mode control registe

0) 2-15, 11-5
UMMCR1 (user monitor mode control registe

1) 2-16, 11-6
UPMCn (user performance monitor counter

registers 2-20, 11-10
Use ofTEA, timing 8-38
User instruction set architecture (UISA)

description 1-21
registers 2-3

User instruction set architecture (UISA)
description xxv

USIA (user sampled instruction address) regi
ter 2-20, 11-11

UsingDBWO, timing 8-45

V
Virtual environment architecture (VEA) 1-21
Virtual environment architecture (VEA) xxvi

W
WIMG bits 8-30
Write-back, definition 6-3
Write-through mode (W bit)

cache interactions 3-6
Write-with-Atomic operation 3-27
Index - 10 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

Write-with-Flush operation 3-27
Write-with-Kill operation 3-27
WT (write-through) signal 7-13

X
XER register 2-3
Index Index - 11

Index - 12 IBM PowerPC 740 / PowerPC 750 RISC Microprocessor User’s Manual

1

2

3

4

5

6

8

7

A

B

IND

GLO

9

10

11
PowerPC 740/PowerPC 750 Overview

Processor Programming Model

L1 Instruction and Data Cache Operation

Exceptions

Memory Management

Instruction Timing

Signal Descriptions

Bus Interface Operation

L2 Cache Interface Operation

Power and Thermal Management

Performance Monitor

PowerPC Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

1

2

3

4

5

6

8

7

A

B

IND

GLO

9

10

11
PowerPC 740/PowerPC 750 Overview

Processor Programming Model

L1 Instruction and Data Cache Operation

Exceptions

Memory Management

Instruction Timing

Signal Descriptions

Bus Interface Operation

L2 Cache Interface Operation

Power and Thermal Management

Performance Monitor

PowerPC Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

	Contents
	About This Book
	Audience
	Organization
	Suggested Reading
	Conventions
	Acronyms and Abbreviations
	Terminology Conventions

	Chapter�1 PowerPC 740/PowerPC 750 Overview
	1.1 PowerPC 750 Microprocessor Overview
	1.2 PowerPC 750 Microprocessor Features
	1.2.1 Overview of the PowerPC 750 Microprocessor Features
	1.2.2 Instruction Flow
	1.2.2.1 Instruction Queue and Dispatch Unit
	1.2.2.2 Branch Processing Unit (BPU)
	1.2.2.3 Completion Unit
	1.2.2.4 Independent Execution Units
	1.2.2.4.1 Integer Units (IUs)
	1.2.2.4.2 Floating-Point Unit (FPU)
	1.2.2.4.3 Load/Store Unit (LSU)
	1.2.2.4.4 System Register Unit (SRU)

	1.2.3 Memory Management Units (MMUs)
	1.2.4 On-Chip Instruction and Data Caches
	1.2.5 L2 Cache Implementation (Not Supported in the PowerPC 740)
	1.2.6 System Interface/Bus Interface Unit (BIU)
	1.2.7 Signals
	1.2.8 Signal Configuration
	1.2.9 Clocking

	1.3 PowerPC 750 Microprocessor: Implementation
	1.4 PowerPC Registers and Programming Model
	1.5 Instruction Set
	1.5.1 PowerPC Instruction Set
	1.5.2 PowerPC 750 Microprocessor Instruction Set

	1.6 On-Chip Cache Implementation
	1.6.1 PowerPC Cache Model
	1.6.2 PowerPC 750 Microprocessor Cache Implementation

	1.7 Exception Model
	1.7.1 PowerPC Exception Model
	1.7.2 PowerPC 750 Microprocessor Exception Implementation

	1.8 Memory Management
	1.8.1 PowerPC Memory Management Model
	1.8.2 PowerPC 750 Microprocessor Memory Management Implementation

	1.9 Instruction Timing
	1.10 Power Management
	1.11 Thermal Management
	1.12 Performance Monitor

	Chapter�2 Programming Model
	2.1 The PowerPC 750 Processor Register Set
	2.1.1 Register Set
	2.1.2 PowerPC 750-Specific Registers
	2.1.2.1 Instruction Address Breakpoint Register (IABR)
	2.1.2.2 Hardware Implementation-Dependent Register 0
	2.1.2.3 Hardware Implementation-Dependent Register 1
	2.1.2.4 Performance Monitor Registers
	2.1.2.4.1 Monitor Mode Control Register 0 (MMCR0)
	2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCR0)
	2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1)
	2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCR1)
	2.1.2.4.5 Performance Monitor Counter Registers (PMC1–PMC4)
	2.1.2.4.6 User Performance Monitor Counter Registers (UPMC1–UPMC4)
	2.1.2.4.7 Sampled Instruction Address Register (SIA)
	2.1.2.4.8 User Sampled Instruction Address Register (USIA)
	2.1.2.4.9 Sampled Data Address Register (SDA) and User Sampled Data Address Register (USDA)

	2.1.3 Instruction Cache Throttling Control Register (ICTC)
	2.1.4 Thermal Management Registers (THRM1–THRM3)
	2.1.5 L2 Cache Control Register (L2CR)

	2.2 Operand Conventions
	2.2.1 Floating-Point Execution Models—UISA
	2.2.2 Data Organization in Memory and Data Transfers
	2.2.3 Alignment and Misaligned Accesses
	2.2.4 Floating-Point Operand

	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization
	2.3.2.4.1 Context Synchronization
	2.3.2.4.2 Execution Synchronization
	2.3.2.4.3 Instruction-Related Exceptions

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	2.3.4.1.1 Integer Arithmetic Instructions
	2.3.4.1.2 Integer Compare Instructions
	2.3.4.1.3 Integer Logical Instructions
	2.3.4.1.4 Integer Rotate and Shift Instructions

	2.3.4.2 Floating-Point Instructions
	2.3.4.2.1 Floating-Point Arithmetic Instructions
	2.3.4.2.2 Floating-Point Multiply-Add Instructions
	2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
	2.3.4.2.4 Floating-Point Compare Instructions
	2.3.4.2.5 Floating-Point Status and Control Register Instructions
	2.3.4.2.6 Floating-Point Move Instructions

	2.3.4.3 Load and Store Instructions
	2.3.4.3.1 Self-Modifying Code
	2.3.4.3.2 Integer Load and Store Address Generation
	2.3.4.3.3 Register Indirect Integer Load Instructions
	2.3.4.3.4 Integer Store Instructions
	2.3.4.3.5 Integer Store Gathering
	2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions
	2.3.4.3.7 Integer Load and Store Multiple Instructions
	2.3.4.3.8 Integer Load and Store String Instructions
	2.3.4.3.9 Floating-Point Load and Store Address Generation
	2.3.4.3.10 Floating-Point Store Instructions

	2.3.4.4 Branch and Flow Control Instructions
	2.3.4.4.1 Branch Instruction Address Calculation
	2.3.4.4.2 Branch Instructions
	2.3.4.4.3 Condition Register Logical Instructions
	2.3.4.4.4 Trap Instructions

	2.3.4.5 System Linkage Instruction—UISA
	2.3.4.6 Processor Control Instructions—UISA
	2.3.4.6.1 Move to/from Condition Register Instructions
	2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)

	2.3.4.7 Memory Synchronization Instructions—UISA

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions—VEA
	2.3.5.2 Memory Synchronization Instructions—VEA
	2.3.5.3 Memory Control Instructions—VEA
	2.3.5.3.1 User-Level Cache Instructions—VEA

	2.3.5.4 Optional External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions—OEA
	2.3.6.2 Processor Control Instructions—OEA
	2.3.6.3 Memory Control Instructions—OEA
	2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
	2.3.6.3.2 Segment Register Manipulation Instructions (OEA)
	2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)

	2.3.7 Recommended Simplified Mnemonics

	Chapter�3 Instruction and Data Cache Operation
	3.1 Data Cache Organization
	3.2 Instruction Cache Organization
	3.3 Memory and Cache Coherency
	3.3.1 Memory/Cache Access Attributes (WIMG Bits)
	3.3.2 MEI Protocol
	3.3.2.1 MEI Hardware Considerations

	3.3.3 Coherency Precautions in Single Processor Systems
	3.3.4 Coherency Precautions in Multiprocessor Systems
	3.3.5 PowerPC 750-Initiated Load/Store Operations
	3.3.5.1 Performed Loads and Stores
	3.3.5.2 Sequential Consistency of Memory Accesses
	3.3.5.3 Atomic Memory References

	3.4 Cache Control
	3.4.1 Cache Control Parameters in HID0
	3.4.1.1 Data Cache Flash Invalidation
	3.4.1.2 Data Cache Enabling/Disabling
	3.4.1.3 Data Cache Locking
	3.4.1.4 Instruction Cache Flash Invalidation
	3.4.1.5 Instruction Cache Enabling/Disabling
	3.4.1.6 Instruction Cache Locking

	3.4.2 Cache Control Instructions
	3.4.2.1 Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
	3.4.2.2 Data Cache Block Zero (dcbz)
	3.4.2.3 Data Cache Block Store (dcbst)
	3.4.2.4 Data Cache Block Flush (dcbf)
	3.4.2.5 Data Cache Block Invalidate (dcbi)
	3.4.2.6 Instruction Cache Block Invalidate (icbi)

	3.5 Cache Operations
	3.5.1 Cache Block Replacement/Castout Operations
	3.5.2 Cache Flush Operations
	3.5.3 Data Cache-Block-Fill Operations
	3.5.4 Instruction Cache-Block-Fill Operations
	3.5.5 Data Cache-Block-Push Operation
	3.5.5.1 Enveloped High-Priority Cache-Block-Push Operation

	3.6 L1 Caches and 60x Bus Transactions
	3.6.1 Read Operations and the MEI Protocol
	3.6.2 Bus Operations Caused by Cache Control Instructions
	3.6.3 Snooping
	3.6.4 Snoop Response to 60x Bus Transactions
	3.6.5 Transfer Attributes

	3.7 MEI State Transactions

	Chapter�4 Exceptions
	4.1 PowerPC 750 Microprocessor Exceptions
	4.2 Exception Recognition and Priorities
	4.3 Exception Processing
	4.3.1 Enabling and Disabling Exceptions
	4.3.2 Steps for Exception Processing
	4.3.3 Setting MSR[RI]
	4.3.4 Returning from an Exception Handler

	4.4 Process Switching
	4.5 Exception Definitions
	4.5.1 System Reset Exception (0x00100)
	4.5.1.1 Soft Reset
	4.5.1.2 Hard Reset

	4.5.2 Machine Check Exception (0x00200)
	4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
	4.5.2.2 Checkstop State (MSR[ME] = 0)

	4.5.3 DSI Exception (0x00300)
	4.5.4 ISI Exception (0x00400)
	4.5.5 External Interrupt Exception (0x00500)
	4.5.6 Alignment Exception (0x00600)
	4.5.7 Program Exception (0x00700)
	4.5.8 Floating-Point Unavailable Exception (0x00800)
	4.5.9 Decrementer Exception (0x00900)
	4.5.10 System Call Exception (0x00C00)
	4.5.11 Trace Exception (0x00D00)
	4.5.12 Floating-Point Assist Exception (0x00E00)
	4.5.13 Performance Monitor Interrupt (0x00F00)
	4.5.14 Instruction Address Breakpoint Exception (0x01300)
	4.5.15 System Management Interrupt (0x01400)
	4.5.16 Thermal Management Interrupt Exception (0x01700)

	Chapter�5 Memory Management
	5.1 MMU Overview
	5.1.1 Memory Addressing
	5.1.2 MMU Organization
	5.1.3 Address Translation Mechanisms
	5.1.4 Memory Protection Facilities
	5.1.5 Page History Information
	5.1.6 General Flow of MMU Address Translation
	5.1.6.1 Real Addressing Mode and Block Address Translation Selection
	5.1.6.2 Page Address Translation Selection

	5.1.7 MMU Exceptions Summary
	5.1.8 MMU Instructions and Register Summary

	5.2 Real Addressing Mode
	5.3 Block Address Translation
	5.4 Memory Segment Model
	5.4.1 Page History Recording
	5.4.1.1 Referenced Bit
	5.4.1.2 Changed Bit
	5.4.1.3 Scenarios for Referenced and Changed Bit Recording

	5.4.2 Page Memory Protection
	5.4.3 TLB Description
	5.4.3.1 TLB Organization
	5.4.3.2 TLB Invalidation

	5.4.4 Page Address Translation Summary
	5.4.5 Page Table Search Operation
	5.4.6 Page Table Updates
	5.4.7 Segment Register Updates

	Chapter�6 Instruction Timing
	6.1 Terminology and Conventions
	6.2 Instruction Timing Overview
	6.3 Timing Considerations
	6.3.1 General Instruction Flow
	6.3.2 Instruction Fetch Timing
	6.3.2.1 Cache Arbitration
	6.3.2.2 Cache Hit
	6.3.2.3 Cache Miss
	6.3.2.4 L2 Cache Access Timing Considerations (PowerPC 750 Only)

	6.3.3 Instruction Dispatch and Completion Considerations
	6.3.3.1 Rename Register Operation
	6.3.3.2 Instruction Serialization

	6.4 Execution Unit Timings
	6.4.1 Branch Processing Unit Execution Timing
	6.4.1.1 Branch Folding and Removal of Fall-Through Branch Instructions
	6.4.1.2 Branch Instructions and Completion
	6.4.1.3 Branch Prediction and Resolution
	6.4.1.3.1 Static Branch Prediction
	6.4.1.3.2 Predicted Branch Timing Examples

	6.4.2 Integer Unit Execution Timing
	6.4.3 Floating-Point Unit Execution Timing
	6.4.4 Effect of Floating-Point Exceptions on Performance
	6.4.5 Load/Store Unit Execution Timing
	6.4.6 Effect of Operand Placement on Performance
	6.4.7 Integer Store Gathering
	6.4.8 System Register Unit Execution Timing

	6.5 Memory Performance Considerations
	6.5.1 Caching and Memory Coherency
	6.5.2 Effect of TLB Miss

	6.6 Instruction Scheduling Guidelines
	6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements
	6.6.1.1 Branch Resolution Resource Requirements
	6.6.1.2 Dispatch Unit Resource Requirements
	6.6.1.3 Completion Unit Resource Requirements

	6.7 Instruction Latency Summary

	Chapter�7 Signal Descriptions
	7.1 Signal Configuration
	7.2 Signal Descriptions
	7.2.1 Address Bus Arbitration Signals
	7.2.1.1 Bus Request (BR)—Output
	7.2.1.2 Bus Grant (BG)—Input
	7.2.1.3 Address Bus Busy (ABB)
	7.2.1.3.1 Address Bus Busy (ABB)—Output
	7.2.1.3.2 Address Bus Busy (ABB)—Input

	7.2.2 Address Transfer Start Signals
	7.2.2.1 Transfer Start (TS)
	7.2.2.1.1 Transfer Start (TS)—Output
	7.2.2.1.2 Transfer Start (TS)—Input

	7.2.3 Address Transfer Signals
	7.2.3.1 Address Bus (A[0–31])
	7.2.3.1.1 Address Bus (A[0–31])—Output
	7.2.3.1.2 Address Bus (A[0–31])—Input

	7.2.3.2 Address Bus Parity (AP[0–3])
	7.2.3.2.1 Address Bus Parity (AP[0–3])—Output
	7.2.3.2.2 Address Bus Parity (AP[0–3])—Input

	7.2.4 Address Transfer Attribute Signals
	7.2.4.1 Transfer Type (TT[0–4])
	7.2.4.1.1 Transfer Type (TT[0–4])—Output
	7.2.4.1.2 Transfer Type (TT[0–4])—Input

	7.2.4.2 Transfer Size (TSIZ[0–2])—Output
	7.2.4.3 Transfer Burst (TBST)
	7.2.4.3.1 Transfer Burst (TBST)—Output
	7.2.4.3.2 Transfer Burst (TBST)—Input

	7.2.4.4 Cache Inhibit (CI)—Output
	7.2.4.5 Write-Through (WT)—Output
	7.2.4.6 Global (GBL)
	7.2.4.6.1 Global (GBL)—Output
	7.2.4.6.2 Global (GBL)—Input

	7.2.5 Address Transfer Termination Signals
	7.2.5.1 Address �Acknowledge (AACK)—Input
	7.2.5.2 Address Retry (ARTRY)
	7.2.5.2.1 Address Retry (ARTRY)—Output
	7.2.5.2.2 Address Retry (ARTRY)—Input

	7.2.6 Data Bus Arbitration Signals
	7.2.6.1 Data Bus Grant (DBG)—Input
	7.2.6.2 Data Bus Write Only (DBWO)—Input
	7.2.6.3 Data Bus Busy (DBB)
	7.2.6.3.1 Data Bus Busy (DBB)—Output
	7.2.6.3.2 Data Bus Busy (DBB)—Input

	7.2.7 Data Transfer Signals
	7.2.7.1 Data Bus (DH[0–31], DL[0–31])
	7.2.7.1.1 Data Bus (DH[0–31], DL[0–31])—Output
	7.2.7.1.2 Data Bus (DH[0–31], DL[0–31])—Input

	7.2.7.2 Data Bus Parity (DP[0–7])
	7.2.7.2.1 Data Bus Parity (DP[0–7])—Output
	7.2.7.2.2 Data Bus Parity (DP[0–7])—Input

	7.2.7.3 Data Bus Disable (DBDIS)—Input

	7.2.8 Data Transfer Termination Signals
	7.2.8.1 Transfer �Acknowledge (TA)—Input
	7.2.8.2 Data Retry (DRTRY)—Input
	7.2.8.3 Transfer Error Acknowledge (TEA)—Input

	7.2.9 System Status Signals
	7.2.9.1 Interrupt (INT)—Input
	7.2.9.2 System Management Interrupt (SMI)—Input
	7.2.9.3 Machine Check Interrupt (MCP)—Input
	7.2.9.4 Checkstop Input (CKSTP_IN)—Input
	7.2.9.5 Checkstop Output (CKSTP_OUT)—Output
	7.2.9.6 Reset Signals
	7.2.9.6.1 Hard Reset (HRESET)—Input
	7.2.9.6.2 Soft Reset (SRESET)—Input

	7.2.9.7 Processor Status Signals
	7.2.9.7.1 Quiescent Request (QREQ)—Output
	7.2.9.7.2 Quiescent Acknowledge (QACK)—Input
	7.2.9.7.3 Reservation (RSRV)—Output
	7.2.9.7.4 Time Base Enable (TBEN)—Input
	7.2.9.7.5 TLBI Sync (TLBISYNC)—Input
	7.2.9.7.6 L2 Cache Interface

	7.2.9.8 L2 Address (L2ADDR[16–0])—Output
	7.2.9.9 L2 Data (L2DATA[0–63])
	7.2.9.9.1 L2 Data (L2DATA[0–63])—Output
	7.2.9.9.2 L2 Data (L2DATA[0–63])—Input

	7.2.9.10 L2 Data Parity (L2DP[0–7])
	7.2.9.10.1 L2 Data Parity (L2DP[0–7])—Output
	7.2.9.10.2 L2 Data Parity (L2DP[0–7])—Input

	7.2.9.11 L2 Chip Enable (L2CE)—Output
	7.2.9.12 L2 Write Enable (L2WE)—Output
	7.2.9.13 L2 Clock Out A (L2CLK_OUTA)—Output
	7.2.9.14 L2 Clock Out B (L2CLK_OUTB)—Output
	7.2.9.15 L2 Sync Out (L2SYNC_OUT)—Output
	7.2.9.16 L2 Sync In (L2SYNC_IN)—Input
	7.2.9.17 L2 Low-Power Mode Enable (L2ZZ)—Output

	7.2.10 IEEE 1149.1a-1993 Interface Description
	7.2.11 Clock Signals
	7.2.11.1 System Clock (SYSCLK)—Input
	7.2.11.2 Clock Out (CLK_OUT)—Output
	7.2.11.3 PLL Configuration (PLL_CFG[0–3])—Input

	7.2.12 Power and Ground Signals

	Chapter�8 Bus Interface Operation
	8.1 Bus Interface Overview
	8.1.1 Operation of the Instruction and Data L1 Caches
	8.1.2 Operation of the L2 Cache
	8.1.3 Operation of the Bus Interface
	8.1.4 Optional 32-Bit Data Bus Mode
	8.1.5 Direct-Store Accesses

	8.2 Memory Access Protocol
	8.2.1 Arbitration Signals
	8.2.2 Address Pipelining and Split-Bus Transactions

	8.3 Address Bus Tenure
	8.3.1 Address Bus Arbitration
	8.3.2 Address Transfer
	8.3.2.1 Address Bus Parity
	8.3.2.2 Address Transfer Attribute Signals
	8.3.2.2.1 Transfer Type (TT[0–4]) Signals
	8.3.2.2.2 Transfer Size (TSIZ[0–2]) Signals
	8.3.2.2.3 Write-Through (WT) Signal
	8.3.2.2.4 Cache Inhibit (CI) Signal

	8.3.2.3 Burst Ordering During Data Transfers
	8.3.2.4 Effect of Alignment in Data Transfers
	8.3.2.4.1 Effect of Alignment in Data Transfers (32-Bit Bus)

	8.3.2.5 Alignment of External Control Instructions

	8.3.3 Address Transfer Termination

	8.4 Data Bus Tenure
	8.4.1 Data Bus Arbitration
	8.4.1.1 Using the DBB Signal

	8.4.2 Data Bus Write Only
	8.4.3 Data Transfer
	8.4.4 Data Transfer Termination
	8.4.4.1 Normal Single-Beat Termination
	8.4.4.2 Data Transfer Termination Due to a Bus Error

	8.4.5 Memory Coherency—MEI Protocol

	8.5 Timing Examples
	8.6 Optional Bus Configuration
	8.6.1 32-Bit Data Bus Mode
	8.6.2 No-DRTRY Mode
	8.6.3 Reduced Pinout Mode

	8.7 Interrupt, Checkstop, and Reset Signals
	8.7.1 External Interrupts
	8.7.2 Checkstops
	8.7.3 Reset Inputs
	8.7.4 System Quiesce Control Signals

	8.8 Processor State Signals
	8.8.1 Support for the lwarx/stwcx. Instruction Pair
	8.8.2 TLBISYNC Input

	8.9 IEEE 1149.1a-1993 Compliant Interface
	8.9.1 JTAG/COP Interface

	8.10 Using Data Bus Write Only

	Chapter�9 L2 Cache Interface Operation
	9.1 L2 Cache Interface Overview
	9.1.1 L2 Cache Operation
	9.1.2 L2 Cache Control Register (L2CR)
	9.1.3 L2 Cache Initialization
	9.1.4 L2 Cache Global Invalidation
	9.1.5 L2 Cache Test Features and Methods
	9.1.5.1 L2CR Support for L2 Cache Testing
	9.1.5.2 L2 Cache Testing

	9.1.6 L2 Clock Configuration
	9.1.7 L2 Cache SRAM Timing Examples
	9.1.7.1 Flow-Through Burst SRAM
	9.1.7.2 Pipelined Burst SRAM
	9.1.7.3 Late-Write SRAM

	Chapter�10 Power and Thermal Management
	10.1 Dynamic Power Management
	10.2 Programmable Power Modes
	10.2.1 Power Management Modes
	10.2.1.1 Full-Power Mode with DPM Disabled
	10.2.1.2 Full-Power Mode with DPM Enabled
	10.2.1.3 Doze Mode
	10.2.1.4 Nap Mode
	10.2.1.5 Sleep Mode

	10.2.2 Power Management Software Considerations

	10.3 Thermal Assist Unit
	10.3.1 Thermal Assist Unit Overview
	10.3.2 Thermal Assist Unit Operation
	10.3.2.1 TAU Single Threshold Mode
	10.3.2.2 TAU Dual-Threshold Mode
	10.3.2.3 PowerPC 750 Junction Temperature Determination
	10.3.2.4 Power Saving Modes and TAU Operation

	10.4 Instruction Cache Throttling

	Chapter�11 Performance Monitor
	11.1 Performance Monitor Interrupt
	11.2 Special-Purpose Registers Used by Performance Monitor
	11.2.1 Performance Monitor Registers
	11.2.1.1 Monitor Mode Control Register 0 (MMCR0)
	11.2.1.2 User Monitor Mode Control Register 0 (UMMCR0)
	11.2.1.3 Monitor Mode Control Register 1 (MMCR1)
	11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1)
	11.2.1.5 Performance Monitor Counter Registers (PMC1–PMC4)
	11.2.1.6 User Performance Monitor Counter Registers (UPMC1–UPMC4)
	11.2.1.7 Sampled Instruction Address Register (SIA)
	11.2.1.8 User Sampled Instruction Address Register (USIA)

	11.3 Event Counting
	11.4 Event Selection
	11.5 Notes

	Appendix�A PowerPC Instruction Set Listings
	A.1 Instructions Sorted by Mnemonic
	A.2 Instructions Sorted by Opcode
	A.3 Instructions Grouped by Functional Categories
	A.4 Instructions Sorted by Form
	A.5 Instruction Set Legend

	Appendix�B Instructions Not Implemented
	B.1 Lists of Instructions

	Glossary of Terms and Abbreviations
	G.1 Alphabetical List

	Index

