ARM" Architecture Reference Manual
ARMv7-A and ARMv7-R edition

ARM

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
ARM DDI 0406C.b (ID072512)

ARM Architecture Reference Manual
ARMv7-A and ARMv7-R edition

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date

Issue Confidentiality Change

05 April 2007

29 April 2008

23 November 2011

24 July 2012

Non-Confidential New edition for ARMv7-A and ARMv7-R architecture profiles.
Document number changed from ARM DDI 0100 to ARM DDI 0406 and contents restructured.

Non-Confidential Addition of the VFP Half-precision and Multiprocessing Extensions, and many clarifications and enhancements.

C(C.a) Non-Confidential Addition of the Virtualization Extensions, Large Physical Address Extension, Generic Timer Extension, and other

additions. Many other clarifications and enhancements.

Cb Non-Confidential Errata release for issue C.a.

Note that issue C.a, the first publication of issue C of this manual, was originally identified as issue C.

From ARMv7, the ARM® architecture defines different architectural profiles and this edition of this manual describes only the A
and R profiles. For details of the documentation of the ARMv7-M profile see Additional reading on page xxiii. Before ARMv7
there was only a single ARM Architecture Reference Manual, with document number DDI 0100. The first issue of this was in
February 1996, and the final issue, issue I, was in July 2005. For more information see Additional reading on page xxiii.

Proprietary Notice

This ARM Architecture Reference Manual is protected by copyright and the practice or implementation of the information herein
may be protected by one or more patents or pending applications. No part of this ARM Architecture Reference Manual may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this ARM Architecture Reference Manual.

Your access to the information in this ARM Architecture Reference Manual is conditional upon your acceptance that you will not
use or permit others to use the information for the purposes of determining whether implementations of the ARM architecture
infringe any third party patents.

This ARM Architecture Reference Manual is provided “as is”. ARM makes no representations or warranties, either express or
implied, included but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement, that the
content of this ARM Architecture Reference Manual is suitable for any particular purpose or that any practice or implementation
of the contents of the ARM Architecture Reference Manual will not infringe any third party patents, copyrights, trade secrets, or
other rights.

This ARM Architecture Reference Manual may include technical inaccuracies or typographical errors.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation any direct loss,
lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages, however caused and regardless
of the theory of liability, arising out of or related to any furnishing, practicing, modifying or any use of this ARM Architecture
Reference Manual, even if ARM has been advised of the possibility of such damages.

Words and logos marked with ® or TM are registered trademarks or trademarks of ARM Limited, except as otherwise stated
below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Copyright © 1996-1998, 2000, 2004-2012 ARM Limited
110 Fulbourn Road, Cambridge, England CB1 9NJ

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws.

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and the acceptance by
the recipient of, the conditions set out above.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Note

The term ARM can refer to versions of the ARM architecture, for example ARMv6 refers to version 6 of the ARM architecture.
The context makes it clear when the term is used in this way.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. iii
Non-Confidential

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

ARM DDI 0406C.b
ID072512

Contents

ARM Architecture Reference Manual ARMv7-A and
ARMv7-R edition

Preface
About thiS MaNUAL ... Xiv
UsiNg thiS ManUALooiiiiiii e XVi
(701 0)Y7=T o111] o =T PP XXi
PN [o 11 Te] g F= 1N (=T To [10T SO OPPP xXiii
FEEADACK ... e XXiV
Part A Application Level Architecture
Chapter A1 Introduction to the ARM Architecture
A1A1 About the ARM architeCturecccooiiiiiii e A1-28
A1.2 THE INSITUCHION SEESoiiiiiiiiiie e e A1-29
A1.3 Architecture versions, profiles, and variantscccccoooiiiiiii A1-30
Al14 Architecture exXtENSIONSc..oiiiiiii e A1-32
A1.5 The ARM Memory MOlcooiiiiiiiciie e A1-35
Chapter A2 Application Level Programmers’ Model
A2.1 About the Application level programmers’ modelcccccoviiiiiiiiiiiiieenee. A2-38
A2.2 ARM core data types and arithmeticccccoiiiii A2-40
A2.3 ARM COTE rEQISTEISeeiiiiiieiiee et e e e e e staee e e e eeaees A2-45
A2.4 The Application Program Status Register (APSR)ccocoviiiiiiiiiinieeeiee e A2-49
A2.5 Execution state registers ... A2-50
A2.6 Advanced SIMD and Floating-point EXtENSIioNnscccccceeviiiiiieiiiee e A2-54
A2.7 Floating-point data types and arithmetic ... A2-63
A2.8 Polynomial arithmetic over {0, 1}ooooiiiiie e A2-93
A2.9 (0] o] (oTer=T1To) g =101 o] o Lo] APPSR A2-94

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
ID072512 Non-Confidential

Contents

Chapter A3

Chapter A4

Chapter A5

Chapter A6

Chapter A7

Chapter A8

A2.10 Thumb Execution Environmentc.cooiiiiiiiiiiiie e
A2.11 Jazelle direct bytecode execution SUPPOrtccoueeiiiiiiiiiii i
A2.12 Exceptions, debug events and checksccooiiiii e
Application Level Memory Model
A3.1 AdArESS SPACE ..oiiiiiieiie e aaaaaaaa e e e e e
A3.2 AlIGNMENT SUPPOI ...t e
A3.3 [Lo 1= TaI=T0] o] oo o USROS
A3.4 Synchronization and SEMAPNOIEScccuviiiiiiiiiiiee e
A3.5 Memory types and attributes and the memory order modelcccc.......
A3.6 ACCESS MGNES .
A3.7 Virtual and physical addresSSing ..o
A3.8 MEMOIY @CCESS OFAEI ...t
A3.9 Caches and memory hi€rarChyccccoeeicciiiiei i
The Instruction Sets
A4 About the INSIrUCION SELSeviiiiiiie e
A4.2 Unified Assembler Languagecceeoieieiiieiiniiie e
A4.3 Branch inStrUCHIONS ...
Ad.4 Data-processing inStruCtioNSoooiiiiiiiii e
A4.5 Status register access iNStrUCtONScociiiiiiiie e
A4.6 Load/store iNStrUCIONScooiiiiiiie e
A4.7 Load/store multiple instructionsccceieiiiiiiii e,
A4.8 Miscellaneous INSTFUCLIONScc.eeiiiiiiiiiiei e
A4.9 Exception-generating and exception-handling instructionsc.cccccocvienee.
A4.10 Coprocessor iNSIIUCHIONSoiiiiiiiiiiie e
A4.11 Advanced SIMD and Floating-point load/store instructionscccc.cccceevvernne
A4.12 Advanced SIMD and Floating-point register transfer instructions
A4.13 Advanced SIMD data-processing iNStructionsccccoeeeveriireniieeniieeesiee e
A4.14 Floating-point data-processing iNStructionsccccceeiiiieeiiiiieniiee e
ARM Instruction Set Encoding
A5.1 ARM instruction set €NCOdINGccccviiiiiiiiiiie e
A5.2 Data-processing and miscellaneous instructionsccccccoviiiiiieiiiiiinneenes
A5.3 Load/store word and unsigned byte ...
A5.4 Media INSIUCIONSoooie e
A5.5 Branch, branch with link, and block data transferccccoviiiiiieieens
A5.6 Coprocessor instructions, and Supervisor Callccccecovvieiiiiiciiiiee e,
A5.7 Unconditional iNSTrUCLIONScc.uviiiiiiii e
Thumb Instruction Set Encoding
A6.1 Thumb instruction set enNCodiNgccceiiiiiiiiie e
AB6.2 16-bit Thumb instruction encodingccoocoiiiiiiii e
AB6.3 32-bit Thumb instruction encodingccccviiiiiiiiii
Advanced SIMD and Floating-point Instruction Encoding

A7 A1 OVEIVIEBW ..ttt e ettt e e e ettt e e e e e nbe e e e e e eanete e e e e e nnseeeaeesnneneeas
A7.2 Advanced SIMD and Floating-point instruction syntaxccccoccceevieeniinennne.
A7.3 Register @NCOAINGccooiiiiiiiiii e
A7.4 Advanced SIMD data-processing instructionscccocceeriieinie e
A7.5 Floating-point data-processing instructionscccocccoviiiiiiin e
A7.6 Extension register load/store inStructionsccceciiiiiniiciic e
A7.7 Advanced SIMD element or structure load/store instructionsccccc.e.
A7.8 8, 16, and 32-bit transfer between ARM core and extension registers
A7.9 64-bit transfers between ARM core and extension registersccccceeceennnee.
Instruction Details
A8.1 Format of instruction descriptionscccoviiiiiiiee e,

Vi

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

ARM DDI 0406C.b
ID072512

Chapter A9

Part B

Chapter B1

Chapter B2

Chapter B3

A8.2
A8.3
A8.4
A8.5
A8.6
A8.7
A8.8

A9.1
A9.2
A9.3
A9.4
A9.5

B1.1
B1.2
B1.3
B1.4
B1.5
B1.6
B1.7
B1.8
B1.9
B1.10
B1.11
B1.12
B1.13
B1.14

B2.1
B2.2
B2.3
B2.4

B3.1
B3.2
B3.3
B3.4
B3.5
B3.6
B3.7
B3.8
B3.9
B3.10
B3.11
B3.12
B3.13
B3.14
B3.15
B3.16
B3.17

Standard assembler syntax fieldscccoviiiiiiiin A8-287
Conditional EXECULION ..o A8-288
Shifts applied t0 @ regiStercooviiie e A8-291
MEMOIY GCCESSES ...uuuiiiiiiiiiiiiiiee e ettt ee e e e e e aaeaeaeeaeeeeeeeeaannnsnsnenes A8-294
Encoding of lists of ARM COre registersccooouvieeiiiiiiieee e A8-295
Additional pseudocode support for instruction descriptionsc.ccccceveeinnes A8-296
Alphabetical list of INStrUCtIONSc.eoiiiiiii e A8-300

The ThumbEE Instruction Set

About the ThumMbEE instruction setoovvviiiieiieeiieeeeeee e, A9-1112
ThumbEE instruction set encodingccceoiiiiiiiiii e A9-1115
Additional instructions in Thumb and ThumbEE instruction sets A9-1116
ThumbEE instructions with modified behaviorccccccvvvviiiiiiiiieeies A9-1117
Additional ThRUMbEE inStruCtionsooooiiiiiiiieeeee e A9-1123

System Level Architecture

The System Level Programmers’ Model

About the System level programmers’ modelcccoeveeeriiieeiiee e B1-1134
System level concepts and terminologycccovceeeniiriiie e B1-1135
ARM processor modes and ARM core registersoccocevevvniiieieeiiiiiieeee s B1-1139
INStruction Set Statesooiiiiiiiiii i B1-1155
The Security EXIENSIONSo.veiiiiiiiiiiie e B1-1156
The Large Physical Address EXteNSIONccccveiiieiiriiiiniiic e B1-1159
The Virtualization EXtENSIONScccoiiiiiiiiiiee e B1-1161
Exception handling ..o B1-1164
EXception desCriplioNSuuiiiiiiiiiiieee e B1-1204
Coprocessors and SyStem CONLrOlceoiiiieiiiiiiiiee e B1-1225
Advanced SIMD and floating-point SUPPOItoovciiiiiiiiii e B1-1228
Thumb Execution ENVIroNMENtcccooiiiiiiiiiiiiieee e B1-1239
Jazelle direct bytecode executioncccooiiiiii i B1-1240
Traps to the NYPEIVISOr ..o B1-1247

Common Memory System Architecture Features

About the memory system architectureccoccoiiiie B2-1264
Caches and branch prediCtorsccccccooiiiiiiiicciee e B2-1266
IMPLEMENTATION DEFINED memory system featurescccccocoeeviinne B2-1291
Pseudocode details of general memory system operationsccccceeevuneen. B2-1292

Virtual Memory System Architecture (VMSA)

ADOUE the VIMSA ... et b B3-1308
The effects of disabling MMUs on VMSA behaviorccccccovvieiiiieiiiinnnee B3-1314
Translation tables ... B3-1318
Secure and Non-secure address SPACEScccuveeeieeiiiieeeeeieiieeeeeeeeireee e e B3-1323
Short-descriptor translation table formatcc.coooviiiiiiiii B3-1324
Long-descriptor translation table formatccccooi B3-1338
MemOory acCeSS CONIOlcocuiiiiiiiiiie e B3-1356
Memory region attributesocceiiiiiiiii B3-1366
Translation Lookaside Buffers (TLBS)cccccvrceieiiieeriiee e B3-1378
TLB maintenance requUIremMentsccoooveiiiiiiiciiiiiiiiiieeeeie e e e e e e B3-1381
Caches in a VMSA implementationcccoeeiiiiiiiiei e B3-1392
VMSA MEMOIY @DOIS ...eiiiiiiiiiiii e e e e e e B3-1395
Exception reporting in a VMSA implementationcccceeiiniiiiiiieiniincee. B3-1409
Virtual Address to Physical Address translation operationsccccoccveens B3-1438
About the system control registers for VIMSAccooiiiiiiiiiieeee e B3-1444
Organization of the CP14 registers in a VMSA implementation B3-1468
Organization of the CP15 registers in a VMSA implementation B3-1469

Contents

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

vii

Contents

Chapter B4

Chapter B5

Chapter B6

Chapter B7

Chapter B8

Chapter B9

Part C

Chapter C1

Chapter C2

Chapter C3

B3.18
B3.19

B4.1
B4.2

B5.1
B5.2
B5.3
B5.4
B5.5
B5.6
B5.7
B5.8
B5.9
B5.10

B6.1
B6.2

B7.1
B7.2
B7.3

B8.1
B8.2

B9.1
B9.2
B9.3

C11
C1.2
C1.3
C1.4

C2.1
C2.2
c23
C24

C3.1
C3.2
C3.3
C34

Functional grouping of VMSAV7 system control registerscccceeveeneenn.
Pseudocode details of VMSA memory system operationsccccceecueeenneen.

System Control Registers in a VMSA implementation
VMSA System control registers descriptions, in register order
VMSA system control operations described by functionccccocceiiins

Protected Memory System Architecture (PMSA)

ADOUE the PIMSA ...ttt e
Memory acCesS CONTIOIuuiiiiiieiieee e e e e neneees
Memory region attributesoccviiiiiiiiiii
PMSA MEMOIY @bOortsoooiiiiiiiiiie e
Exception reporting in a PMSA implementationcccceeiiiiiiiiiiiie,
About the system control registers for PMSAcccoiiiiieiiieee e,
Organization of the CP14 registers in a PMSA implementation
Organization of the CP15 registers in a PMSA implementation
Functional grouping of PMSAV7 system control registerscccccoevvveeeenn.
Pseudocode details of PMSA memory system operationscccccoeveeerineen.

System Control Registers in a PMSA implementation
PMSA System control registers descriptions, in register order
PMSA system control operations described by functionc..o.

The CPUID Identification Scheme

Introduction to the CPUID SChemecocviiiiiiiiiiiiee e
The CPUID FegiStersSc.veiiiiiiiiiieeeiiee ettt
Advanced SIMD and Floating-point Extension feature identification registers

The Generic Timer
About the GENENC TIMETooiiiiieiie e eeseee e
Generic Timer registers SUMMACYccoooiieviiee e

System Instructions

General restrictions on system instructionscccccccovviiiiee i
Encoding and use of Banked register transfer instructionsccccc.cc....
Alphabetical list of INSrUCtioNScoooiiiiiiiiii e

Debug Architecture

Introduction to the ARM Debug Architecture

Scope of part C of this manualcccccooeiiiiiii e
About the ARM Debug architecturecccccoviiiiiiiii e
Security Extensions and debugccocviiiiiiii
Register iNterfaces ...

Invasive Debug Authentication

About invasive debug authenticationccociiiiiini
Invasive debug with no Security EXENSIONScooviiiiiiiiiiiii e
Invasive debug with the Security EXtensionscccccoviiiiiiiiencee e
Invasive debug authentication security considerationsccccccoviiiienenne

Debug Events

About debUG BVENESoiiiii e
BKPT instruction debug events ..o
Breakpoint debug eVENEScccviiiiiiiiiie e
Watchpoint debug eventscooiiiiiii e

B3-1491
B3-1503

B4-1522
B4-1740

B5-1754
B5-1759
B5-1760
B5-1763
B5-1767
B5-1772
B5-1784
B5-1785
B5-1797
B5-1804

B6-1808
B6-1941

B7-1948
B7-1949
B7-1955

B8-1958
B8-1967

B9-1970
B9-1971
B9-1976

C1-2020
C1-2021
C1-2025
C1-2026

C2-2028
C2-2029
C2-2031
C2-2033

C3-2036
C3-2038
C3-2039
C3-2057

viii

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

ARM DDI 0406C.b
ID072512

Chapter C4

Chapter C5

Chapter C6

Chapter C7

Chapter C8

Chapter C9

Chapter C10

Chapter C11

C35
C3.6
C3.7
C3.8
C3.9

C4.1
C4.2

C5.1
C5.2
C5.3
C54
C55
C5.6
C5.7

C6.1
C6.2
C6.3
C6.4
C6.5
C6.6
C6.7

C7.1
C7.2
C7.3
C74

C8.1
C8.2
C8.3
C8.4

C91
C9.2
C9.3

C10.1

C111
C11.2
C11.3
C11.4
C11.5
C11.6
C11.7
C11.8

Vector catch debug eVeNntscooiiiiiiiiiii e C3-2065
Halting debug events ... C3-2073
Generation of debug EVENLScocciiiiiiieiee e C3-2074
Debug event prionitization ... C3-2076
Pseudocode details of Software debug eventsccocceiiiiiiiiniecnee, C3-2078

Debug Exceptions
About debug EXCEPLIONSeiiiiiiiiiiii e C4-2088
Avoiding debug exceptions that might cause UNPREDICTABLE behavior C4-2090

Debug State

ADOUL DEDUQG SEAE ...coiiiiiiiiiii i C5-2092
Entering Debug stateccoooiiiiii C5-2093
Executing instructions in Debug stateccccooiiiiii C5-2096
Behavior of non-invasive debug in Debug stateccoccoociiiiiii C5-2104
Exceptions in Debug state ... C5-2105
Memory system behavior in Debug statecccccoiiiiiiiin, C5-2109
EXiting DEbUQG StAteccvveiiiiiiee e C5-2110

Debug Register Interfaces

About the debug register interfacescccccoiiiiiiiiiiei C6-2114
Synchronization of debug register updatesccccooiiiiiii C6-2115
ACCESS PEIMISSIONS ..eoiiiiiiiiieiie ettt e e e C6-2117
The CP14 debug register interface ..o C6-2121
The memory-mapped and recommended external debug interfaces C6-2126
Summary of the v7 Debug register interfacescccoccoviiiiiieiiiiieie C6-2128
Summary of the v7.1 Debug register interfacesccccvvviiiieeinin i, C6-2137

Debug Reset and Powerdown Support

Debug guidelines for systems with energy management capability C7-2148
Power domains and debugcccoouiiiiiiiinieeiice e C7-2149
The OS Save and Restore mechanismccccceeviiiiiiieiiiiiee e C7-2152
Reset and debug ... C7-2160

Contents

The Debug Communications Channel and Instruction Transfer Register

About the DCC and DBGITRooiiiiiiiiiee e C8-2164
Operation of the DCC and Instruction Transfer Registercccccceviieennee. C8-2167
Behavior of accesses to the DCC registers and DBGITRcccccceveviieennnen. C8-2171
Synchronization of accesses to the DCC and the DBGITRccccccvveeenes C8-2176

Non-invasive Debug Authentication

About non-invasive debug authenticationcccccviiiiiiiii s C9-2182
Non-invasive debug authenticationccccccoiiiiiiiii e C9-2183
Effects of non-invasive debug authenticationccccoiiiiiiine, C9-2185

Sample-based Profiling
Sample-based Profilingcoceiiiiiiii C10-2188

The Debug Registers

About the debug registers ... C11-2192
Debug register SUMMArYc..ooiiiiiiiiie e C11-2193
Debug identification registersoocveiiiiiiie i C11-2196
Control and status regiStersccceviiriiieere e C11-2197
Instruction and data transfer registersccocccoveiiiii i C11-2198
Software debug event registers ... C11-2199
Sample-based profiling registerscccooviiiiiiini e C11-2200
OS Save and Restore registersooooieiieeiiii e C11-2201

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

Contents

C11.9 Memory system control registerscoccvovieiiiieeiii e C11-2202
C11.10 Management reQIStEISccciieicieeiiieeerieeeie e etee e e e e e e snneeesnneeas C11-2203
C11.11 Register descriptions, in register orderccceeeieeiieeeiee e C11-2209
Chapter C12 The Performance Monitors Extension
C12.1 About the Performance MONItOrScccooiuiiiiiiiiiiiiieeec e C12-2300
C12.2 Accuracy of the Performance Monitors C12-2304
C12.3 Behavior on OVErflOWccocuiiiiiiiiiiieeiec e C12-2305
C12.4 Effect of the Security Extensions and Virtualization Extensions C12-2307
C12.5 Eventfiltering, PMUV2coooiiiiiii e C12-2309
C12.6 CoUNtEr €NADIESoouviiiiiiiiieie e C12-2311
C12.7 COUNLEI @CCESS ...oiitieiiiriiieiie ettt sttt ettt ettt et sb et na e ne e i C12-2312
C12.8 Event numbers and MNEMONICSccccoviirirrieeniiiireenee st C12-2313
C12.9 Performance Monitors registersccoovveeiiiiiie e e C12-2326
Part D Appendixes
Appendix A Recommended External Debug Interface
A1 About the recommended external debug interfacecccccovevceeencnens AppxA-2336
A.2 Authentication SIgNals ... AppxA-2338
A3 Run-control and cross-triggering signalsccooccoieeiiiiiiieiieeeee AppxA-2340
A4 Recommended debug slave portccccceveiiiiiiiiiieee e AppxA-2344
A5 Other debug SIgNaIScooiiiiiiii AppxA-2346
Appendix B Recommended Memory-mapped and External Debug Interfaces for the
Performance Monitors
B.1 About the memory-mapped views of the Performance Monitors registers AppxB-2352
B.2 PMU register descriptions for memory-mapped register views AppxB-2361
Appendix C Recommendations for Performance Monitors Event Numbers for

IMPLEMENTATION DEFINED Events
C.1 ARM recommendations for IMPLEMENTATION DEFINED event numbers AppxC-2376

Appendix D Example OS Save and Restore Sequences for External Debug Over
Powerdown

D.1 Example OS Save and Restore sequences for v7 Debugccccecueeene AppxD-2388
D.2 Example OS Save and Restore sequences for v7.1 Debug AppxD-2392

Appendix E System Level Implementation of the Generic Timer
E.1 About the Generic Timer specificationccccccoiiiiiiiiiiiie e AppxE-2396
E.2 Memory-mapped counter Moduleccceviiiiiiiiiinii e AppxE-2397
E.3 Counter module control and status register summarycccccccevveeerneen. AppxE-2400
E.4 About the memory-mapped view of the counter and timer AppxE-2402
E.5 The CNTBaseN and CNTPLOBaseN frames AppxE-2403
E.6 The CNTCTLBASsE framec..eeeviiiiiiiee e AppxE-2405
E.7 System level Generic Timer register descriptions, in register order AppxE-2406
E.8 Providing a complete set of counter and timer featurescccccceevneee AppxE-2423
E.9 Gray-count scheme for timer distribution schemecccccocoii AppxE-2425

Appendix F Common VFP Subarchitecture Specification
F.A Scope of this aPPENAIXcueiiiiiiiiiiiie e AppxF-2429
F.2 Introduction to the Common VFP subarchitectureccccooiiinnnnes AppxF-2430
F.3 EXCeption ProCeSSINGeviiiiiiiiiiiie it AppxF-2432
F.4 Support code reqUIrEMENESeeeiieiiiiiiie e AppxF-2436
F.5 Context SWItChINGuiiiiiiiiiie e AppxF-2438

F.6 Subarchitecture additions to the Floating-point Extension system registers AppxF-2439

X Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

F.7

Appendix G
G.1
G.2
G.3
G.4
G5

Appendix H
H.1
H.2
H.3

Appendix |
1.1
1.2
1.3
1.4
1.5

Appendix J
J.1
J.2
J.3

Appendix K
K.1
K.2
K.3
K.4

Appendix L
L1
L.2
L.3
L4
L.5
L.6
L.7

Appendix M
M.1
M.2
M.3
M.4
M.5
M.6
M.7
M.8
M.9
M.10
M.11
M.12

Appendix N
N.1

Earlier versions of the Common VFP subarchitectureccccceennee. AppxF-2446

Barrier Litmus Tests

INErOAUCHION ..o AppxG-2448
Simple ordering and barrier CASEscceccvveriiieiiieeeree e AppxG-2451
Exclusive accesses and barriersccccovviiieiiiieeeieee e AppxG-2458
Using a mailbox to send an interrupt AppxG-2460
Cache and TLB maintenance operations and barrierscccccoecueennee. AppxG-2461

Legacy Instruction Mnemonics

Thumb iNStruction MNEMONICSc.eiiiiiieiiie e AppxH-2468
Other UAL mnemonic Changescccccieeiiiiiiiiee e AppxH-2469
Pre-UAL pseudo-instruction NOPcccccoiiiiiiiiiiiee e AppxH-2472
Deprecated and Obsolete Features

Deprecated features ..o AppxI-2474
ODbsolete fEAtUrESooiiiiiiiieiie e AppxI-2483
Use of the SP as a general-purpose registerccccovcvevieeeieenieeeeeeen. Appxl-2484
Explicit use of the PC in ARM instructionscccocceviiiiiiiiiiciciee e AppxI-2485
Deprecated Thumb insStructionscccoceiiiiiiii e Appx|-2486
Fast Context Switch Extension (FCSE)

ADOULTthe FCSE ... AppxJ-2488
Modified virtual addreSSEScooocuiiiiiiiiieeiiee e AppxJ-2489
Debug and traceoooiiiiiiii AppxJ-2491
VFP Vector Operation Support

About VFP VECIOr MOooiiiiiiiiiiiee e AppxK-2494
Vector length and stride controlccoceveiiiiiiii e AppxK-2495
VEP register banksoooo i AppxK-2496
VFP instruction type selection ... AppxK-2497
ARMVv6 Differences

INtroduction 10 ARMVG ... AppxL-2500
Application level register SUPPOItoooeiiiiiiiiiiie e AppxL-2501
Application level memory SUPPOMtcceeeiuiiiiieeeiiiee e AppxL-2504
Instruction Set SUPPOITooiiiiiii e AppxL-2508
System level register SUPPOItcoccviiiiiiiii e AppxL-2513
System level memory Modelcccoiiiiiiiii i AppxL-2516
System Control coprocessor, CP15, SUPPOItccooceeeiiieriieeeieeeeee e AppxL-2523
v6 Debug and v6.1 Debug Differences

About v6 Debug and v6.1 Debugcocciiiiiiiiii AppxM-2548
Invasive debug authentication, v6 Debug and v6.1 Debug AppxM-2549
Debug events, v6 Debug and v6.1 Debugccccceevieiiiiiiiiiiiiieeeees AppxM-2550
Debug exceptions, v6 Debug and v6.1 Debugcccovviiiiiiiiniiie AppxM-2554
Debug state, v6 Debug and v6.1 DebuUgcccocviiriiiiiiiieeiiie e AppxM-2555
Debug register interfaces, v6 Debug and v6.1 Debugcccceeviverrneenn. AppxM-2559
Reset and powerdown SUPPOItcoooiiiiiiiiiiiiiiiieeeeeee e e AppxM-2562
The Debug Communications Channel and Instruction Transfer Register . AppxM-2563
Non-invasive debug authentication, v6 Debug and v6.1 Debug AppxM-2564
Sample-based profiling, v6 Debug and v6.1 Debugc.ccccevvviiiiiiinnnen. AppxM-2566
The debug registers, v6 Debug and v6.1 Debugccccevvviiiieiiniennns AppxM-2567
Performance monitors, v6 Debug and v6.1 Debugccccevvvreriieennenn. AppxM-2578
Secure User Halting Debug

About Secure User halting debugcccveiiiiiiiiiiee e AppxN-2580

Contents

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

Xi

Contents

N.2 Invasive debug authentication in an implementation that supports SUHD AppxN-2581

N.3 Effects of SUHD on Debug statecccceeiiiiiiiieee e AppxN-2582
Appendix O ARMv4 and ARMv5 Differences
01 Introduction to ARMv4 and ARMVScccoiiiiiiiiiieccceee e Appx0-2588
0.2 Application level register SUPPOrtcceeiiiiiiiiie e Appx0-2589
0.3 Application level memory SUPPOMtccceiiiiiriiee e Appx0-2590
0.4 Instruction Set SUPPOITooiiiiiiiii e Appx0-2595
0.5 System level register SUPPOItc.eveviieiiciiiee e Appx0O-2601
0.6 System level memory model ..o Appx0-2604
0.7 System Control coprocessor, CP15 SUPPOrtccccoceeeeiieeviieeiieeseeee Appx0-2612
Appendix P Pseudocode Definition
P.1 About the ARMV7 pseudocodecccccuiuiiiiiiiiiiieieeee e AppxP-2642
P.2 Pseudocode for instruction descriptionscccccoieiiiiiiiii e, AppxP-2643
P.3 Data fYPES i ——————— AppxP-2645
P.4 EXPIrESSIONS .ooiiiiiiiiiiei ettt e e e e e e s e e e e e snbae e e e nnees AppxP-2649
P.5 Operators and built-in fUNCHONScooviiiiiii e AppxP-2651
P.6 Statements and program Structureccccooveiiiieeni AppxP-2656
P.7 Miscellaneous helper procedures and functionsccccceeiiiiiiiiennns AppxP-2660
Appendix Q Pseudocode Index
Q1 Pseudocode operators and KEyWordscoceeeviiienieiinieeeniie e AppxQ-2666
Q.2 Pseudocode functions and procedurescccocceeerieeeiiieeeniee e AppxQ-2669
Appendix R Register Index
R.1 Alphabetic index of ARMv7 registers, by register nameccccccceeee AppxR-2684
R.2 FUll registers iNAEXc.eeiiiiiii e AppxR-2695
Glossary
Xii Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

Preface

This preface introduces the ARM™ Architecture Reference Manual, ARM*v7-A and ARM*v7-R edition. It contains
the following sections:

About this manual on page xiv
Using this manual on page xvi
Conventions on page Xxi
Additional reading on page xxiii
Feedback on page xxiv.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

xiii

Preface
About this manual

About this manual

This manual describes the A and R profiles of the ARM® architecture v7, ARMv7. It includes descriptions of:

The processor instruction sets:

— the original ARM instruction set

— the high code density Thumb® instruction set

— the ThumbEE instruction set, that includes specific support for Just-In-Time (JIT) or Ahead-Of-Time
(AOT) compilation.

The modes and states that determine how a processor operates, including the current execution privilege and
security.

The exception model.

The memory model, that defines memory ordering and memory management:
— the ARMV7-A architecture profile defines a Virtual Memory System Architecture (VMSA)
— the ARMV7-R architecture profile defines a Protected Memory System Architecture (PMSA).

The programmers’ model, and its use of a coprocessor interface to access system control registers that control
most processor and memory system features.

The OPTIONAL Floating-point (VFP) Extension, that provides high-performance floating-point instructions
that support:

— single-precision and double-precision operations
— conversions between double-precision, single-precision, and half-precision floating-point values.

The OPTIONAL Advanced SIMD Extension, that provides high-performance integer and single-precision
floating-point vector operations.

The OPTIONAL Security Extensions, that facilitate the development of secure applications.
The OPTIONAL Virtualization Extensions, that support the virtualization of Non-secure operation.

The Debug architecture, that provides software access to debug features in the processor.

Note

ARMV7 introduces the architecture profiles. A separate Architecture Reference Manual describes the third profile,
the Microcontroller profile, ARMv7-M. For more information see Architecture versions, profiles, and variants on
page A1-30.

This manual gives the assembler syntax for the instructions it describes, meaning it can specify instructions in
textual form. However, this manual is not a tutorial for ARM assembler language, nor does it describe ARM
assembler language, except at a very basic level. To make effective use of ARM assembler language, read the
documentation supplied with the assembler being used.

This manual is organized into parts:

Part A Describes the application level view of the architecture. It describes the application level view of

the programmers’ model and the memory model. It also describes the precise effects of each
instruction in User mode, the normal operating mode, including any restrictions on its use. This
information is of primary importance to authors and users of compilers, assemblers, and other
programs that generate ARM machine code. Software execution in User mode is at the PLO
privilege level, also described as unprivileged.

Note

User mode is the only mode where software execution is unprivileged.

Xiv

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Preface
About this manual

Part B Describes the system level view of the architecture. It gives details of system registers, most of
which are not accessible from PL0, and the system level view of the memory model. It also gives
full details of the effects of instructions executed with some level of privilege, where these are
different from their effects in unprivileged execution.

Part C Describes the Debug architecture. This is an extension to the ARM architecture that provides
configuration, breakpoint and watchpoint support, and a Debug Communications Channel (DCC)
to a debug host.

Appendixes Provide additional information that is not part of the ARMv7 architectural requirements, including
descriptions of:

. features that are recommended but not required
. differences in previous versions of the architecture.
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. XV

ID072512 Non-Confidential

Preface
Using this manual

Using this manual

The information in this manual is organized into parts, as described in this section.

Part A, Application Level Architecture

Part A describes the application level view of the architecture. It contains the following chapters:

Chapter A1l Introduction to the ARM Architecture

Gives an overview of the ARM architecture, and the ARM and Thumb instruction sets.

Chapter A2 Application Level Programmers’ Model
Describes the application level view of the ARM programmers’ model, including the application
level view of the Advanced SIMD and Floating-point Extensions. It describes the types of values
that ARM instructions operate on, the ARM core registers that contain those values, and the
Application Program Status Register.

Chapter A3 Application Level Memory Model
Describes the application level view of the memory model, including the ARM memory types and
attributes, and memory access control.

Chapter A4 The Instruction Sets
Describes the range of instructions available in the ARM, Thumb, Advanced SIMD, and VFP
instruction sets. It also contains some details of instruction operation that are common to several
instructions.

Chapter AS ARM Instruction Set Encoding

Describes the encoding of the ARM instruction set.

Chapter A6 Thumb Instruction Set Encoding

Describes the encoding of the Thumb instruction set.

Chapter A7 Advanced SIMD and Floating-point Instruction Encoding
Describes the encoding of the Advanced SIMD and Floating-point Extension (VFP) instruction sets.

Chapter A8 Instruction Details

Gives a full description of every instruction available in the Thumb, ARM, Advanced SIMD, and
Floating-point Extension instruction sets, with the exception of information only relevant to
execution with some level of privilege.

Chapter A9 The ThumbEE Instruction Set

Gives a full description of the Thumb Execution Environment variant of the Thumb instruction set.
This means it describes the ThumbEE instruction set.

xvi

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Preface
Using this manual

Part B, System Level Architecture

Part B describes the system level view of the architecture. It contains the following chapters:

Chapter B1 The System Level Programmers’ Model

Describes the system level view of the programmers’ model.

Chapter B2 Common Memory System Architecture Features
Describes the system level view of the memory model features that are common to all memory
systems.

Chapter B3 Virtual Memory System Architecture (VMSA)
Describes the system level view of the Virtual Memory System Architecture (VMSA) that is part of
all ARMv7-A implementations. This chapter includes a description of the organization and general
properties of the system control registers in a VMSA implementation.

Chapter B4 System Control Registers in a VMSA implementation
Describes all of the system control registers in VMSA implementation, including the registers that
are part of the OPTIONAL extensions to a VMSA implementation. The registers are described in
alphabetical order.

Chapter BS Protected Memory System Architecture (PMSA)
Describes the system level view of the Protected Memory System Architecture (PMSA) that is part
of all ARMv7-R implementations. This chapter includes a description of the organization and
general properties of the system control registers in a PMSA implementation.

Chapter B6 System Control Registers in a PMSA implementation
Describes all of the system control registers in PMSA implementation, including the registers that
are part of the OPTIONAL extensions to a PMSA implementation. The registers are described in
alphabetical order.

Chapter B7 The CPUID Identification Scheme

Describes the CPUID scheme. This provides registers that identify the architecture version and
many features of the processor implementation. This chapter also describes the registers that
identify the implemented Advanced SIMD and VFP features, if any.

Chapter B8 The Generic Timer

Describes the OPTIONAL Generic Timer architecture extension.

Chapter B9 System Instructions

Provides detailed reference information about system instructions, and more information about
instructions that behave differently when executed with some level of privilege.

Part C, Debug Architecture

Part C describes the Debug architecture. It contains the following chapters:

Chapter C1 Introduction to the ARM Debug Architecture
Introduces the Debug architecture, defining the scope of this part of the manual.

Chapter C2 Invasive Debug Authentication

Describes the authentication of invasive debug.

Chapter C3 Debug Events

Describes the debug events.

ARM DDI 0406C.b

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. Xvii
Non-Confidential

Preface
Using this manual

Chapter C4 Debug Exceptions

Describes the debug exceptions that handle debug events when the processor is configured for
Monitor debug-mode.

Chapter CS Debug State

Describes Debug state that is entered if a debug event occurs when the processor is configured for
Halting debug-mode.

Chapter C6 Debug Register Interfaces

Describes the permitted debug register interfaces and the options for their implementation.

Chapter C7 Debug Reset and Powerdown Support

Describes the reset and powerdown support in the Debug architecture, including support for debug
over powerdown.

Chapter C8 The Debug Communications Channel and Instruction Transfer Register

Describes the Debug Communication Channel (DCC) and Instruction Transfer Register (ITR), and
how an external debugger uses these features to communicate with the debug logic.

Chapter C9 Non-invasive Debug Authentication

Describes the authentication of non-invasive debug.
Chapter C10 Sample-based Profiling

Describes sample-based profiling, that provides sampling of the program counter.
Chapter C11 The Debug Registers

Describes the debug registers.

Chapter C12 The Performance Monitors Extension

Describes the OPTIONAL Performance Monitors Extension.

Part D, Appendixes

This manual contains the following appendixes:

Appendix A Recommended External Debug Interface

Describes the recommended external interface to the ARM debug architecture.

Note

This description is not part of the ARM architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix B Recommended Memory-mapped and External Debug Interfaces for the Performance Monitors

Describes the recommended external interfaces to the Performance Monitors Extension.

Note

This description is not part of the ARM architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

xviii

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Preface
Using this manual

Appendix C Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION
DEFINED Events

Gives the ARM recommendations for the use of the event numbers in the IMPLEMENTATION
DEFINED event number space.
Note

This description is not part of the ARM architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix D Example OS Save and Restore Sequences for External Debug Over Powerdown
Gives software examples that perform the OS Save and Restore sequences, for v7 Debug and v7.1
Debug implementations.

Note

Chapter C7 Debug Reset and Powerdown Support describes the OS Save and Restore mechanism,
for both v7 Debug and v7.1 Debug.

Appendix E System Level Implementation of the Generic Timer
Contains the ARM Generic Timer architecture specification for the memory-mapped interface to
the Generic Timer.

Note

This description is not part of the ARM architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix F Common VFP Subarchitecture Specification

Defines version 2 of the Common VFP Subarchitecture.

Note

This specification is not part of the ARM architecture specification. This sub-architectural
information is included here as supplementary information, for the convenience of developers and
users who might require this information.

Appendix G Barrier Litmus Tests

Gives examples of the use of the barrier instructions provided by the ARMv?7 architecture.

Note

These examples are not part of the ARM architecture specification. They are included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix H Legacy Instruction Mnemonics

Describes the legacy mnemonics and their Unified Assembler Language equivalents.

Appendix I Deprecated and Obsolete Features
Lists the deprecated architectural features, with references to their descriptions in parts A to C of
the manual.

Appendix J Fast Context Switch Extension (FCSE)

Describes the Fast Context Switch Extension (FCSE). See the appendix for information about the
status of this in different versions of the ARM architecture.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. Xix
ID072512 Non-Confidential

Preface
Using this manual

Appendix K VFP Vector Operation Support

Describes the VFP vector operations. ARM deprecates the use of these operations.

Appendix L. ARMv6 Differences
Describes how the ARMv6 architecture differs from the description given in parts A and B of this
manual.

Appendix M v6 Debug and v6.1 Debug Differences
Describes how the two debug architectures for ARMv6 differ from the description given in part C
of this manual.

Appendix N Secure User Halting Debug
Describes the Secure User halting debug (SUHD) feature.

Appendix O ARMv4 and ARMvS Differences
Describes how the ARMv4 and ARMVS5 architectures differ from the description given in parts A
and B of this manual.

Appendix P Pseudocode Definition

The formal definition of the pseudocode used in this manual.

Appendix Q Pseudocode Index

Gives indexes to definitions of pseudocode operators, keywords, functions, and procedures.

Appendix R Register Index

Gives indexes to register descriptions in the manual.

XX

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Conventions

Preface
Conventions

The following sections describe conventions that this book can use:

. Typographic conventions

. Signals

. Numbers on page xxil

. Pseudocode descriptions on page xxii

. Assembler syntax descriptions on page xxii.

Typographic conventions

Signals

The typographical conventions are:

italic

bold

monospace

Introduces special terminology, and denotes citations.
Denotes signal names, and is used for terms in descriptive lists, where appropriate.

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Colored text

Used in body text for a few terms that have specific technical meanings, and are defined in the
Glossary.

Indicates a link. This can be:

. a URL, for example, http://infocenter.arm.com

. a cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Pseudocode descriptions on page xxii

. a link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example Simple sequential execution or SCTLR.

Note

Many links are to a register or instruction definition. Remember that:

. many system control registers are defined both in Chapter B4 System Control Registers in a
VMSA implementation and in Chapter B6 System Control Registers in a PMSA
implementation

. many instructions are defined in multiple forms, and in some cases the ARM encodings of an

instruction are defined separately to the Thumb encodings.

Ensure that any linked definition you refer to is appropriate to your context.

In general this specification does not define processor signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level

Lower-case n

The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

. HIGH for active-HIGH signals
. LOW for active-LOW signals.

At the start or end of a signal name denotes an active-LOW signal.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. XXi

Non-Confidential

Preface
Conventions

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and is described in Appendix P Pseudocode Definition.

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in Assembler syntax on

page A8-283.

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

XXii
Non-Confidential ID072512

Preface
Additional reading

Additional reading

This section lists relevant publications from ARM and third parties.

See the Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

Other publications

ARM® Debug Interface v5 Architecture Specification (ARM THI 0031).
ARM®v7-M Architecture Reference Manual (ARM DDI 0403).
CoreSight™ Architecture Specification (ARM IHI 0029).

ARM® Architecture Reference Manual (ARM DDI 01001).

Note

— Issuel of the ARM Architecture Reference Manual (DDI 01001) was issued in July 2005 and describes
the first version of the ARMv6 architecture, and all previous architecture versions.

— Addison-Wesley Professional publish ARM Architecture Reference Manual, Second Edition
(December 27, 2000). The contents of this are identical to issue E of the ARM Architecture Reference
Manual (DDI 0100E). It describes ARMVSTE and earlier versions of the ARM architecture, and is
superseded by DDI 01001.

Embedded Trace Macrocell Architecture Specification (ARM IHI 0014).
CoreSight™ Program Flow Trace Architecture Specification (ARM IHI 0035).
ARM* Generic Interrupt Controller Architecture Specification (ARM IHI 0048).

The following books are referred to in this manual, or provide more information:

IEEE Std 1596.5-1993, IEEE Standard for Shared-Data Formats Optimized for Scalable Coherent Interface
(SCI) Processors, ISBN 1-55937-354-7.

IEEE Std 1149.1-2001, IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG).

ANSU/IEEE Std 754-2008, and ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic. See also Floating-point standards, and terminology on page A2-55.

JEDEC Solid State Technology Association, Standard Manufacturer’s ldentification Code, JEP106.

Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification, Second Edition, Addison Wesley,
ISBN: 0-201-43294-3.

Kourosh Gharachorloo, Memory Consistency Models for Shared Memory-Multiprocessors, 1995, Stanford
University Technical Report CSL-TR-95-685.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. xxiii
Non-Confidential

Preface
Feedback

Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual

If you have comments on the content of this manual, send e-mail to errata@arm.com. Give:

. the title

. the number, ARM DDI 0406C.b

. the page numbers to which your comments apply
. a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

XXiv Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Part A

Application Level Architecture

Chapter A1
Introduction to the ARM Architecture

This chapter introduces the ARM architecture and contains the following sections:

. About the ARM architecture on page A1-28

. The instruction sets on page A1-29
. Architecture versions, profiles, and variants on page A1-30
. Architecture extensions on page A1-32

. The ARM memory model on page A1-35.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

A1-27

A1 Introduction to the ARM Architecture
A1.1 About the ARM architecture

A11 About the ARM architecture

The ARM architecture supports implementations across a wide range of performance points. The architectural

simplicity of ARM processors leads to very small implementations, and small implementations mean devices can

have very low power consumption. Implementation size, performance, and very low power consumption are key

attributes of the ARM architecture.

The ARM architecture is a Reduced Instruction Set Computer (RISC) architecture, as it incorporates these RISC

architecture features:

. a large uniform register file

. a load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents

. simple addressing modes, with all load/store addresses being determined from register contents and
instruction fields only.

In addition, the ARM architecture provides:

. instructions that combine a shift with an arithmetic or logical operation

. auto-increment and auto-decrement addressing modes to optimize program loops

. Load and Store Multiple instructions to maximize data throughput

. conditional execution of many instructions to maximize execution throughput.

These enhancements to a basic RISC architecture mean ARM processors achieve a good balance of high

performance, small program size, low power consumption, and small silicon area.

This Architecture Reference Manual defines a set of behaviors to which an implementation must conform, and a set

of rules for software to use the implementation. It does not describe how to build an implementation.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation must be

the same as a simple sequential execution of the program. This programmer-visible behavior does not include the

execution time of the program.

The ARM architecture includes definitions of:

. An associated debug architecture, see Debug architecture versions on page A1-31 and Part C of this manual.

. Associated trace architectures, that define trace macrocells that implementers can implement with the
associated processor. For more information see the Embedded Trace Macrocell Architecture Specification
and the CoreSight Program Flow Trace Architecture Specification.

A1-28 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A1 Introduction to the ARM Architecture
A1.2 The instruction sets

A1.2 The instruction sets

The ARM instruction set is a set of 32-bit instructions providing comprehensive data-processing and control
functions.

The Thumb instruction set was developed as a 16-bit instruction set with a subset of the functionality of the ARM
instruction set. It provides significantly improved code density, at a cost of some reduction in performance. A
processor executing Thumb instructions can change to executing ARM instructions for performance critical
segments, in particular for handling interrupts.

ARMV6T?2 introduced Thumb-2 technology. This technology extends the original Thumb instruction set with many
32-bit instructions. The range of 32-bit Thumb instructions included in ARMv6T2 permits Thumb code to achieve
performance similar to ARM code, with code density better than that of earlier Thumb code.

From ARMv6T2, the ARM and Thumb instruction sets provide almost identical functionality. For more
information, see Chapter A4 The Instruction Sets.

A1.21 Execution environment support

Two additional instruction sets support execution environments:

. The architecture can provide hardware acceleration of Java bytecodes. For more information, see:
— Jazelle direct bytecode execution support on page A2-97, for application level information
— Jazelle direct bytecode execution on page B1-1240, for system level information.

The Virtualization Extensions do not support hardware acceleration of Java bytecodes. That is, they support
only a trivial implementation of the Jazelle® extension.

. The ThumbEE instruction set is a variant of the Thumb instruction set that minimizes the code size overhead
of a Just-In-Time (JIT) or Ahead-Of-Time (AOT) compiler. JIT and AOT compilers convert execution
environment source code to a native executable. For more information, see:

— Thumb Execution Environment on page A2-95, for application level information
— Thumb Execution Environment on page B1-1239, for system level information.

From the publication of issue C.a of this manual, ARM deprecates any use of the ThumbEE instruction set.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A1-29
Non-Confidential

A1 Introduction to the ARM Architecture
A1.3 Architecture versions, profiles, and variants

A1.3 Architecture versions, profiles, and variants
The ARM architecture has evolved significantly since its introduction, and ARM continues to develop it. Seven
major versions of the architecture have been defined to date, denoted by the version numbers 1 to 7. Of these, the
first three versions are now obsolete.
ARMV7 provides three profiles:
ARMV7-A Application profile, described in this manual:

. Implements a traditional ARM architecture with multiple modes.

. Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit MMU). An ARMv7-A implementation can be called a VMSAv7 implementation.

. Supports the ARM and Thumb instruction sets.

ARMvV7-R Real-time profile, described in this manual:

. Implements a traditional ARM architecture with multiple modes.

. Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU). An ARMv7-R implementation can be called a PMSAv7 implementation.

. Supports the ARM and Thumb instruction sets.

ARMv7-M Microcontroller profile, described in the ARMv7-M Architecture Reference Manual:

. Implements a programmers' model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

. Implements a variant of the ARMv7 PMSA.

. Supports a variant of the Thumb instruction set.

Note
Parts A, B, and C of this Architecture Reference Manual describe the ARMv7-A and ARMv7-R profiles:
. Appendixes describe how the ARMv4-ARMV6 architecture versions differ from ARMv7.
. Separate Architecture Reference Manuals define the M-profile architectures, see Additional reading on
page xxiii.
Architecture versions can be qualified with variant letters to specify additional instructions and other functionality
that are included as an architecture extension.
Some extensions are described separately instead of using a variant letter. For details of these extensions see
Architecture extensions on page A1-32.
The valid variants of ARMv4, ARMv5, and ARMv6 are as follows:
ARMv4 The earliest architecture variant covered by this manual. It includes only the ARM instruction set.
ARMV4T Adds the Thumb instruction set.
ARMVST Improves interworking of ARM and Thumb instructions. Adds Count Leading Zeros (CLZ) and
software Breakpoint (BKPT) instructions.
ARMVSTE Enhances arithmetic support for digital signal processing (DSP) algorithms. Adds Preload Data
(PLD), Load Register Dual (LDRD), Store Register Dual (STRD), and 64-bit coprocessor register transfer
(MCRR, MRRC) instructions.
ARMVSTEJ Adds the BXJ instruction and other support for the Jazelle® architecture extension.
ARMVvV6 Adds many new instructions to the ARM instruction set. Formalizes and revises the memory model
and the Debug architecture.
A1-30 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A1 Introduction to the ARM Architecture
A1.3 Architecture versions, profiles, and variants

ARMv6K Adds instructions to support multiprocessing to the ARM instruction set, and some extra memory
model features.

ARMv6T2 Introduces Thumb-2 technology, that supports a major development of the Thumb instruction set to
provide a similar level of functionality to the ARM instruction set.

Note

Where appropriate, the terms ARMv6KZ or ARMv6Z describe the ARMv6K architecture with the ARMv6
Security Extensions, that were an OPTIONAL addition to the VMSAV6 architecture.

For detailed information about how earlier versions of the ARM architecture differ from ARMv7, see Appendix L
ARMV6 Differences and Appendix O ARMv4 and ARMvS Differences.

The following architecture variants are now obsolete:

ARMvl1, ARMv2, ARMv2a, ARMv3, ARMv3G, ARMv3M, ARMv4xM, ARMv4TxM, ARMv5, ARMvS5xM,
ARMvV5TxM, and ARMVS5TEXP.

Contact ARM if you require details of obsolete variants.

Each instruction description in this manual specifies the architecture versions that include the instruction.

A1.31 Debug architecture versions

Before ARMv6, the debug implementation for an ARM processor was IMPLEMENTATION DEFINED. ARMv6 defined
the first debug architecture.

The debug architecture versions are:
v6 Debug Introduced with the original ARMv®6 architecture definition.

v6.1 Debug Introduced to ARMv6K with the OPTIONAL Security Extensions, described in Architecture
extensions on page A1-33. A VMSAv6 implementation that includes the Security Extensions must
implement v6.1 Debug.

v7 Debug First defined in issue A of this manual, and required by any ARMv7-R implementation

An ARMv7-A implementation that does not include the Virtualization Extensions must implement
either v7 Debug or v7.1 Debug.

For more information about the Virtualization Extensions, see Architecture extensions on
page A1-33.

v7.1 Debug First defined in issue C.a of this manual, and required by any ARMv7-A implementation that
includes the Virtualization Extensions.

For more information, see:
. Chapter C1 Introduction to the ARM Debug Architecture, for v7 Debug and v7.1 Debug
. About v6 Debug and v6.1 Debug on page AppxM-2548, for v6 Debug and v6.1 Debug.

Note
In this manual:
. debug usually refers to invasive debug, that permits modification of the state of the processor
. trace usually refers to non-invasive debug, that does not permit modification of the state of the processor.

For more information see About the ARM Debug architecture on page C1-2021.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A1-31
ID072512 Non-Confidential

A1 Introduction to the ARM Architecture
A1.4 Architecture exensions

Al1.4 Architecture extensions

Instruction set architecture extensions summarizes the extensions that mainly affect the Instruction Set Architecture
(ISA), either extending the instructions implemented in the ARM and Thumb instruction sets, or implementing an
additional instruction set.

Architecture extensions on page A1-33 describes other extensions to the architecture.

A1.41 Instruction set architecture extensions
This manual describes the following extensions to the ISA:

Jazelle Is the Java bytecode execution extension that extended ARMVSTE to ARMvSTEJ. From
ARMV6, the architecture requires at least the trivial Jazelle implementation, but a Jazelle
implementation is still often described as a Jazelle extension.

The Virtualization Extensions require that the Jazelle implementation is the trivial Jazelle
implementation.

ThumbEE Is a variant of the Thumb instruction set that is designed as a target for dynamically
generated code. In the original release of the ARMv7 architecture, ThumbEE was:
. A required extension to the ARMv7-A profile.
. An optional extension to the ARMv7-R profile.

From publication of issue C.a of this manual, ARM deprecates any use of ThumbEE
instructions. However, ARMv7-A implementations must continue to include ThumbEE
support, for backwards compatibility.

Floating-point Is a floating-point coprocessor extension to the instruction set architectures. For historic
reasons, the Floating-point Extension is also called the VFP Extension. There have been the
following versions of the Floating-point (VFP) Extension:

VFPv1 Obsolete. Details are available on request from ARM.
VFPv2 An optional extension to:

. the ARM instruction set in the ARMvVSTE, ARMvS5TEJ, ARMv6, and
ARMvVO6K architectures

. the ARM and Thumb instruction sets in the ARMv6T2 architecture.

VFPv3 An OPTIONAL extension to the ARM, Thumb, and ThumbEE instruction sets in
the ARMv7-A and ARMv7-R profiles.

VFPv3 can be implemented with either thirty-two or sixteen doubleword
registers, as described in Advanced SIMD and Floating-point Extension
registers on page A2-56. Where necessary, the terms VFPv3-D32 and
VFPv3-D16distinguish between these two implementation options. Where the
term VFPV3 is used it covers both options.

VFPv3U is a variant of VFPv3 that supports the trapping of floating-point
exceptions to support code, see VFPv3U and VFPv4U on page A2-62.

VFPv3 with Half-precision Extension

VFPv3 and VFPv3U can be extended by the OPTIONAL Half-precision
Extension, that provides conversion functions in both directions between
half-precision floating-point and single-precision floating-point.

VFPv4 An OPTIONAL extension to the ARM, Thumb, and ThumbEE instruction sets in
the ARMv7-A and ARMv7-R profiles.

VFPv4U is a variant of VFPv4 that supports the trapping of floating-point
exceptions to support code, see VFPv3U and VFPv4U on page A2-62.

A1-32 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Advanced SIMD

A1 Introduction to the ARM Architecture
A1.4 Architecture exensions

VFPv4 and VFPv4U add both the Half-precision Extension and the fused
multiply-add instructions to the features of VFPv3. VFPv4 can be implemented
with either thirty-two or sixteen doubleword registers, see Advanced SIMD and
Floating-point Extension registers on page A2-56. Where necessary, these
implementation options are distinguished using the terms:

. VFPv4-D32, or VFPv4U-D32, for a thirty-two register implementation
. VFPv4-D16, or VFPv4U-D16, for a sixteen register implementation.
Where the term VFPv4 is used it covers both options.

If an implementation includes both the Floating-point and Advanced SIMD Extensions:

. It must implement the corresponding versions of the extensions:

if the implementation includes VFPv3 it must include Advanced SIMDv1

— if the implementation includes VFPv3 with the Half-precision Extension it
must include Advanced SIMDv1 with the half-precision extensions

if the implementation includes VFPv4 it must include Advanced SIMDv2.

. The two extensions use the same register bank. This means VFP must be
implemented as VFPv3-D32, or as VFPv4-D32.

. Some instructions apply to both extensions.

Is an instruction set extension that provides Single Instruction Multiple Data (SIMD)
integer and single-precision floating-point vector operations on doubleword and quadword
registers. There have been the following versions of Advanced SIMD:
Advanced SIMDv1

It is an OPTIONAL extension to the ARMv7-A and ARMv7-R profiles.

Advanced SIMDv1 with Half-precision Extension
Advanced SIMDv1 can be extended by the OPTIONAL Half-precision Extension,
that provides conversion functions in both directions between half-precision
floating-point and single-precision floating-point.

Advanced SIMDv2
It is an OPTIONAL extension to the ARMv7-A and ARMv7-R profiles.
Advanced SIMDv2 adds both the Half-precision Extension and the fused
multiply-add instructions to the features of Advanced SIMDv].

See the description of the Floating-point Extension for more information about
implementations that include both the Floating-point Extension and the Advanced SIMD
Extension.

A1.4.2 Architecture extensions

This manual also describes the following extensions to the ARMv7 architecture:

Security Extensions

Are an OPTIONAL set of extensions to VMSAv6 implementations of the ARMv6K architecture, and
to the ARMv7-A architecture profile, that provide a set of security features that facilitate the
development of secure applications.

Multiprocessing Extensions

Are an OPTIONAL set of extensions to the ARMv7-A and ARMv7-R profiles, that provides a set of
features that enhance multiprocessing functionality.

Large Physical Address Extension

Is an OPTIONAL extension to VMSAv7 that provides an address translation system supporting
physical addresses of up to 40 bits at a fine grain of translation.

The Large Physical Address Extension requires implementation of the Multiprocessing Extensions.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A1-33

Non-Confidential

A1 Introduction to the ARM Architecture
A1.4 Architecture exensions

Virtualization Extensions

Are an OPTIONAL set of extensions to VMSAV7 that provides hardware support for virtualizing the
Non-secure state of a VMSAv7 implementation. This supports system use of a virtual machine
monitor, also called a hypervisor, to switch Guest operating systems.

The Virtualization Extensions require implementation of:

. the Security Extensions

. the Large Physical Address Extension

. the v7.1 Debug architecture, see Scope of part C of this manual on page C1-2020.

If an implementation that includes the Virtualization Extensions also implements:

. The Performance Monitors Extension, then it must implement version 2 of that extension,
PMUV2, see About the Performance Monitors on page C12-2300.

. A trace macrocell, that trace macrocell must support the Virtualization Extensions. In
particular, if the trace macrocell is:

— an Embedded Trace Macrocell (ETM), the macrocell must implement ETMv3.5 or
later, see the Embedded Trace Macrocell Architecture Specification

— a Program Trace Macrocell (PTM), the macrocell must implement PFTv1.1 or later,
see the CoreSight Program Flow Trace Architecture Specification.

In some tables in this manual, an ARMv7-A implementation that includes the Virtualization
Extensions is described as ARMv7VE, or as v7VE.
Generic Timer Extension

Is an OPTIONAL extension to any ARMv7-A or ARMv7-R, that provides a system timer, and a
low-latency register interface to it.

This extension is introduced with the Large Physical Address Extension and Virtualization
Extensions, but can be implemented with any earlier version of the ARMv7 architecture. The
Generic Timer Extension does not require the implementation of any of the extensions described in
this subsection.

For more information see Chapter B8 The Generic Timer.

Performance Monitors Extension

The ARMV7 architecture:
. reserves CP15 register space for IMPLEMENTATION DEFINED performance monitors
. defines a recommended performance monitors implementation.

From issue C.a of this manual, this recommended implementation is called the Performance
Monitors Extension.

The Performance Monitors Extension does not require the implementation of any of the extensions
described in this subsection.

If an ARMv7 implementation that includes v7.1 Debug also includes the Performance Monitors
Extension, it must implement PMUv2.

For more information see Chapter C12 The Performance Monitors Extension.

Note
The Fast Context Switch Extension (FCSE) is an older ARM extension, described in Appendix J:

. ARM deprecates any use of this extension. This means in ARMv7 implementations before the introduction
of the Multiprocessing Extensions, the FCSE is OPTIONAL and deprecated.

. The Multiprocessing Extensions obsolete the FCSE. This means that any processor that includes the
Multiprocessing Extensions cannot include the FCSE. This includes all processors that implement the Large
Physical Address Extension.

A1-34 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A1 Introduction to the ARM Architecture
A1.5 The ARM memory model

A1.5 The ARM memory model

The ARM instruction sets address a single, flat address space of 232 8-bit bytes. This address space is also regarded
as 230 32-bit words or 23! 16-bit halfwords.

The architecture provides facilities for:

generating an exception on an unaligned memory access

restricting access by applications to specified areas of memory

translating virtual addresses provided by executing instructions into physical addresses
altering the interpretation of word and halfword data between big-endian and little-endian
controlling the order of accesses to memory

controlling caches

synchronizing access to shared memory by multiple processors.

For more information, see:

Chapter A3 Application Level Memory Model

Chapter B2 Common Memory System Architecture Features
Chapter B3 Virtual Memory System Architecture (VMSA)
Chapter B5 Protected Memory System Architecture (PMSA).

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A1-35
Non-Confidential

A1 Introduction to the ARM Architecture
A1.5 The ARM memory model

A1-36 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Chapter A2
Application Level Programmers’ Model

This chapter gives an application level view of the ARM programmers’ model. It contains the following sections:

About the Application level programmers’ model on page A2-38
ARM core data types and arithmetic on page A2-40

ARM core registers on page A2-45

The Application Program Status Register (APSR) on page A2-49
Execution state registers on page A2-50

Advanced SIMD and Floating-point Extensions on page A2-54
Floating-point data types and arithmetic on page A2-63
Polynomial arithmetic over {0, 1} on page A2-93

Coprocessor support on page A2-94

Thumb Execution Environment on page A2-95

Jazelle direct bytecode execution support on page A2-97
Exceptions, debug events and checks on page A2-102.

Note

In this chapter, system register names usually link to the description of the register in Chapter B4 System Control
Registers in a VMSA implementation, for example FPSCR. If the register is included in a PMSA implementation,

then it is also described in Chapter B6 System Control Registers in a PMSA implementation.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

A2-37

A2 Application Level Programmers’ Model
A2.1 About the Application level programmers’ model

A2.1

About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of that system
information is needed to put the Application level programmers' model into context.

Depending on the implemented architecture extensions, the architecture supports multiple levels of execution
privilege, that number upwards from PLO, where PLO is the lowest privilege level and is often described as
unprivileged. The Application level programmers’ model is the programmers’ model for software executing at PLO.
For more information see Processor privilege levels, execution privilege, and access privilege on page A3-141.

System software determines the privilege level at which application software runs. When an operating system
supports execution at both PL1 and PLO0, an application usually runs unprivileged. This:

. permits the operating system to allocate system resources to an application in a unique or shared manner

. provides a degree of protection from other processes and tasks, and so helps protect the operating system
from malfunctioning applications.

This chapter indicates where some system level understanding is helpful, and if appropriate it gives a reference to
the system level description in Chapter Bl The System Level Programmers’ Model, or elsewhere.

The Security Extensions extend the architecture to provide hardware security features that support the development
of secure applications, by providing two Security states. The Virtualization Extensions further extend the
architecture to provide virtualization of operation in Non-secure state. However, application level software is
generally unaware of these extensions. For more information, see The Security Extensions on page B1-1156 and The
Virtualization Extensions on page B1-1161.

Note

. When an implementation includes the Security Extensions, application and operating system software
normally executes in Non-secure state.

. The virtualization features accessible only at PL2 are implemented only in Non-secure state. Secure state has
only two privilege levels, PLO and PL1.

. Older documentation, describing implementations or architecture versions that support only two privilege
levels, often refers to execution at PL1 as privileged execution.

. In this manual, the following terms have special meanings, defined in the Glossary:
— IMPLEMENTATION DEFINED, see IMPLEMENTATION DEFINED.
— OPTIONAL, see OPTIONAL.
— SUBARCHITECTURE DEFINED, see SUBARCHITECTURE DEFINED.
— UNDEFINED, see UNDEFINED.
— UNKNOWN, see UNKNOWN.
— UNPREDICTABLE, see UNPREDICTABLE.

A2-38

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.1 About the Application level programmers’ model

A2.1.1 Instruction sets, arithmetic operations, and register files

The ARM and Thumb instruction sets both provide a wide range of integer arithmetic and logical operations, that
operate on register file of sixteen 32-bit registers, the ARM core registers. As described in ARM core registers on
page A2-45, these registers include the special registers SP, LR, and PC. ARM core data types and arithmetic on
page A2-40 gives more information about these operations.

In addition, if an implementation includes:
. the Floating-point (VFP) Extension, the ARM and Thumb instruction sets include floating-point instructions
. the Advanced SIMD Extension, the ARM and Thumb instruction sets include vector instructions.

Floating-point and vector instructions operate on an independent register file, described in Advanced SIMD and
Floating-point Extension registers on page A2-56. In an implementation that includes both of these extensions, they
share a common register file. The following sections give more information about these extensions and the
instructions they provide:

. Advanced SIMD and Floating-point Extensions on page A2-54
. Floating-point data types and arithmetic on page A2-63
. Polynomial arithmetic over {0, 1} on page A2-93.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-39
Non-Confidential

A2 Application Level Programmers’ Model
A2.2 ARM core data types and arithmetic

A2.2

ARM core data types and arithmetic

All ARMv7-A and ARMv7-R processors support the following data types in memory:
Byte 8 bits

Halfword 16 bits

Word 32 bits

Doubleword 64 bits.

Processor registers are 32 bits in size. The instruction set contains instructions supporting the following data types
held in registers:

. 32-bit pointers

. unsigned or signed 32-bit integers

. unsigned 16-bit or 8-bit integers, held in zero-extended form
. signed 16-bit or 8-bit integers, held in sign-extended form

. two 16-bit integers packed into a register

. four 8-bit integers packed into a register

. unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or halfwords
zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory. Software
can load and store doublewords using these instructions.

Note

For information about the atomicity of memory accesses see Atomicity in the ARM architecture on page A3-127.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer in the
range 0 to 2N-1, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range -2N-1 to
+2N-1-1, using two's complement format.

The instructions that operate on packed halfwords or bytes include some multiply instructions that use just one of
two halfwords, and SIMD instructions that perform parallel addition or subtraction on all of the halfwords or bytes.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two or more
instructions to synthesize them.

A2-40

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.2 ARM core data types and arithmetic

A2.21 Integer arithmetic

The instruction set provides a wide variety of operations on the values in registers, including bitwise logical
operations, shifts, additions, subtractions, multiplications, and many others. The pseudocode described in
Appendix P Pseudocode Definition defines these operations, usually in one of three ways:

. By direct use of the pseudocode operators and built-in functions defined in Operators and built-in functions
on page AppxP-2651.

. By use of pseudocode helper functions defined in the main text. These can be located using the table in
Appendix Q Pseudocode Index.

. By a sequence of the form:

1. Use of the SInt(), UInt(), and Int() built-in functions defined in Converting bitstrings to integers on
page AppxP-2653 to convert the bitstring contents of the instruction operands to the unbounded
integers that they represent as two's complement or unsigned integers.

2. Use of mathematical operators, built-in functions and helper functions on those unbounded integers to
calculate other such integers.

3. Use of either the bitstring extraction operator defined in Bitstring extraction on page AppxP-2652 or
of the saturation helper functions described in Pseudocode details of saturation on page A2-44 to
convert an unbounded integer result into a bitstring result that can be written to a register.

Shift and rotate operations
The following types of shift and rotate operations are used in instructions:

Logical Shift Left
(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at the right

end of the bitstring. Bits that are shifted off the left end of the bitstring are discarded, except that the
last such bit can be produced as a carry output.

Logical Shift Right
(LSR) moves each bit of a bitstring right by a specified number of bits. Zeros are shifted in at the left

end of the bitstring. Bits that are shifted off the right end of the bitstring are discarded, except that
the last such bit can be produced as a carry output.

Arithmetic Shift Right
(ASR) moves each bit of a bitstring right by a specified number of bits. Copies of the leftmost bit are

shifted in at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Rotate Right (ROR) moves each bit of a bitstring right by a specified number of bits. Each bit that is shifted off the
right end of the bitstring is re-introduced at the left end. The last bit shifted off the right end of the
bitstring can be produced as a carry output.

Rotate Right with Extend

(RRX) moves each bit of a bitstring right by one bit. A carry input is shifted in at the left end of the
bitstring. The bit shifted off the right end of the bitstring can be produced as a carry output.

Pseudocode details of shift and rotate operations
These shift and rotate operations are supported in pseudocode by the following functions:

// LSL_C()

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-41
Non-Confidential

A2 Application Level Programmers’ Model
A2.2 ARM core data types and arithmetic

return (result, carry_out);
// LSL(O)
]/ =====

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSL_C(x, shift);
return result;

// LSR_C()
/] =======

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSR_C(x, shift);
return result;

// ASR_C()
/] =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = ASR_C(x, shift);
return result;

// ROR_C()
/] =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

A2-42 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

ARM DDI 0406C.b
ID072512

A2 Application Level Programmers’ Model
A2.2 ARM core data types and arithmetic

bits(N) ROR(bits(N) x, integer shift)
if shift == 0 then
result = x;
else
(result, -) = ROR_C(x, shift);
return result;

// RRX_C()
/] =======

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);

bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, carry_in);
return result;

Pseudocode details of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and bitstrings,
provided that if they are performed on two bitstrings, the bitstrings must be identical in length. The result is another
unbounded integer if both operands are unbounded integers, and a bitstring of the same length as the bitstring
operand(s) otherwise. For the precise definition of these operations, see Addition and subtraction on

page AppxP-2654.

The main addition and subtraction instructions can produce status information about both unsigned carry and signed
overflow conditions. When necessary, multi-word additions and subtractions are synthesized from this status
information. In pseudocode the AddwithCarry() function provides an addition with a carry input and carry and
overflow outputs:

// AddWithCarry()
/] ===mmmmmmmmame

(bits(N), bit, bit) AddwithCarry(bits(N) x, bits(N) y, bit carry_in)
unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
carry_out = if UInt(result) == unsigned_sum then '0Q' else '1l';
overflow = if SInt(result) == signed_sum then '0' else '1';

return (result, carry_out, overflow);
An important property of the AddwithCarry() function is that if:

(result, carry_out, overflow) = AddwithCarry(x, NOT(y), carry_in)

then:
. if carry_in == '1', then result == x-y with:

— overflow == '1' if signed overflow occurred during the subtraction

— carry_out == '1" if unsigned borrow did not occur during the subtraction, that is, if x >= y
. if carry_in == '0', then result == x-y-1 with:

— overflow == '1"' if signed overflow occurred during the subtraction

— carry_out == '1' if unsigned borrow did not occur during the subtraction, that is, if x > y.

Together, these mean that the carry_in and carry_out bits in AddwithCarry() calls can act as NOT borrow flags for
subtractions as well as carry flags for additions.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-43
Non-Confidential

A2 Application Level Programmers’ Model
A2.2 ARM core data types and arithmetic

Pseudocode details of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the destination
signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that range, rather than
wrapping around modulo 2N. This is supported in pseudocode by:

. the SignedSatQ() and UnsignedSatQ() functions when an operation requires, in addition to the saturated result,
a Boolean argument that indicates whether saturation occurred

. the SignedSat() and UnsignedSat() functions when only the saturated result is required.

// SignedSatQ()
/] ====m=======

(bits(N), boolean) SignedSatQ(integer i, integer N)
if i > 2A(N-1) - 1 then
result = 2A(N-1) - 1; saturated = TRUE;
elsif i < -(2A(N-1)) then
result = -(2A(N-1)); saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);
// UnsignedSatQ()
/] ==mm=mmmmmmm=s

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2AN - 1 then
result = 2AN - 1; saturated = TRUE;
elsif i < 0 then
result = 0; saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

// SignedSat()
/] sm=mmmmmm==

bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;

// UnsignedSat()
/] =====mmm=====

bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;

SatQ(i, N, unsigned) returns either UnsignedSatQ(i, N) or SignedSatQ(i, N) depending on the value of its third
argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on the value of
its third argument:

// 5atQQ)
7

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

// Sat()

/] =====

bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;

A2-44

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.3 ARM core registers

A2.3 ARM core registers

In the application level view, an ARM processor has:
. thirteen general-purpose 32-bit registers, RO to R12
. three 32-bit registers with special uses, SP, LR, and PC, that can be described as R13 to R15.

The special registers are:

SP, the stack pointer
The processor uses SP as a pointer to the active stack.

In the Thumb instruction set, most instructions cannot access SP. The only instructions that can
access SP are those designed to use SP as a stack pointer.

The ARM instruction set provides more general access to the SP, and it can be used as a
general-purpose register. However, ARM deprecates the use of SP for any purpose other than as a
stack pointer.

Note

Using SP for any purpose other than as a stack pointer is likely to break the requirements of
operating systems, debuggers, and other software systems, causing them to malfunction.

Software can refer to SP as R13.

LR, the link register

The link register is a special register that can hold return link information. Some cases described in
this manual require this use of the LR. When software does not require the LR for linking, it can use
it for other purposes. It can refer to LR as R14.

PC, the program counter

. When executing an ARM instruction, PC reads as the address of the current instruction
plus 8.

. When executing a Thumb instruction, PC reads as the address of the current instruction
plus 4.

. Writing an address to PC causes a branch to that address.

Most Thumb instructions cannot access PC.

The ARM instruction set provides more general access to the PC, and many ARM instructions can
use the PC as a general-purpose register. However, ARM deprecates the use of PC for any purpose
other than as the program counter. See Writing to the PC on page A2-46 for more information.

Software can refer to PC as R15.

See ARM core registers on page B1-1143 for the system level view of these registers.

Note

In general, ARM strongly recommends using the names SP, LR and PC instead of R13, R14 and R15. However,
sometimes it is simpler to use the R13-R15 names when referring to a group of registers. For example, it is simpler
to refer to Registers RS to R15, rather than to Registers RS to R12, the SP, LR and PC. These two descriptions of the
group of registers have exactly the same meaning.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-45
ID072512 Non-Confidential

A2 Application Level Programmers’ Model

A2.3 ARM core registers

A2.31 Writing to the PC

In ARMv7, many data-processing instructions can write to the PC. Writes to the PC are handled as follows:

In Thumb state, the following 16-bit Thumb instruction encodings branch to the value written to the PC:
— encoding T2 of ADD (register, Thumb) on page A8-310
— encoding T1 of MOV (register, Thumb) on page A8-486.

The value written to the PC is forced to be halfword-aligned by ignoring its least significant bit, treating that
bit as being 0.

The B, BL, CBNZ, CBZ, CHKA, HB, HBL, HBLP, HBP, TBB, and TBH instructions remain in the same instruction set state
and branch to the value written to the PC.
The definition of each of these instructions ensures that the value written to the PC is correctly aligned for

the current instruction set state.

The BLX (immediate) instruction switches between ARM and Thumb states and branches to the value written
to the PC. Its definition ensures that the value written to the PC is correctly aligned for the new instruction
set state.

The following instructions write a value to the PC, treating that value as an interworking address to branch
to, with low-order bits that determine the new instruction set state:

— BLX(register), BX, and BX]J

— LDR instructions with <Rt> equal to the PC

— POP and all forms of LDM except LDM (exception return), when the register list includes the PC

— in ARM state only, ADC, ADD, ADR, AND, ASR (immediate), BIC, EOR, LSL (immediate), LSR (immediate), MOV,
MVN, ORR, ROR (immediate), RRX, RSB, RSC, SBC, and SUB instructions with <Rd> equal to the PC and without
flag-setting specified.

For details of how an interworking address specifies the new instruction set state and instruction address, see
Pseudocode details of operations on ARM core registers on page A2-47.
Note

— The register-shifted register instructions, that are available only in the ARM instruction set and are
summarized inData-processing (register-shifted register) on page A5-198, cannot write to the PC.

— The LDR, POP, and LDM instructions first have interworking branch behavior in ARMv5T.

— The instructions listed as having interworking branch behavior in ARM state only first have this
behavior in ARMv7.

In the cases where later versions of the architecture introduce interworking branch behavior, the behavior in
earlier architecture versions is a branch that remains in the same instruction set state. For more information,
see:

— Interworking on page AppxL-2501, for ARMv6

— Interworking on page Appx0-2589, for ARMv5 and ARMv4.

Some instructions are treated as exception return instructions, and write both the PC and the CPSR. For more
information, including which instructions are exception return instructions, see Exception return on
page B1-1193.

Some instructions cause an exception, and the exception handler address is written to the PC as part of the
exception entry. Similarly, in ThumbEE state, an instruction that fails its null check causes the address of the
null check handler to be written to the PC, see Null checking on page A9-1113.

A2-46

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.3 ARM core registers

Pseudocode details of operations on ARM core registers

In pseudocode, the uses of the R[] function are:
. reading or writing RO-R12, SP, and LR, using n == 0-12, 13, and 14 respectively
. reading the PC, using n == 15.

This function has prototypes:

bits(32) R[integer n]
assert n >= 0 & n <= 15;
R[integer n] = bits(32) value
assert n >= 0 && n <= 14;

Pseudocode details of ARM core register operations on page B1-1144 explains the full operation of this function.

Descriptions of ARM store instructions that store the PC value use the PCStoreValue() pseudocode function to
specify the PC value stored by the instruction:

// PCStoreValue()
/] =m=mm=mmmm====

bits(32) PCStoreValue()
// This function returns the PC value. On architecture versions before ARMv7, it
// is permitted to instead return PC+4, provided it does so consistently. It is
// used only to describe ARM instructions, so it returns the address of the current
// instruction plus 8 (normally) or 12 (when the alternative is permitted).
return PC;

Writing an address to the PC causes either a simple branch to that address or an interworking branch that also selects
the instruction set to execute after the branch. A simple branch is performed by the BranchWritePC() function:

// BranchWritePC()
/S

BranchWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_ARM then
if ArchVersion() < 6 && address<1:0> != '00' then UNPREDICTABLE;
BranchTo(address<31:2>:'00"');
elsif CurrentInstrSet() == InstrSet_Jlazelle then
if JazelleAcceptsExecution() then
BranchTo(address<31:0>);
else
newaddress = address;
newaddress<1:0> = bits(2) UNKNOWN;
BranchTo(newaddress);
else
BranchTo(address<31:1>:'0"');

An interworking branch is performed by the BXwritePC() function:

// BXWritePC()
/] =mmmmmmm==s

BXWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_ThumbEE then
if address<@> == '1' then
BranchTo(address<31:1>:'0"); // Remaining in ThumbEE state
else
UNPREDICTABLE;
else
if address<@> == '1' then
SelectInstrSet(InstrSet_Thumb);
BranchTo(address<31:1>:'0");
elsif address<l> == '0' then
SelectInstrSet(InstrSet_ARM);
BranchTo(address);
else // address<1:0> == '10'

ARM DDI 0406C.b

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-47
Non-Confidential

A2 Application Level Programmers’ Model
A2.3 ARM core registers

UNPREDICTABLE;

The LoadWritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically
modified between architecture versions:

// LoadWritePC()
[/

LoadWritePC(bits(32) address)
if ArchVersion() >= 5 then
BXWritePC(address);
else
BranchWritePC(address);
// ALUWritePC()
/] ==m==m======

ALUWritePC(bits(32) address)
if ArchVersion() >= 7 && CurrentInstrSet() == InstrSet_ARM then
BXWritePC(address);
else
BranchWritePC(address);

Note

The behavior of the PC writes performed by the ALUWritePC() function is different in Debug state, where there are
more UNPREDICTABLE cases. The pseudocode in this section only handles the non-debug cases. For more
information, see Behavior of Data-processing instructions that access the PC in Debug state on page C5-2100.

A2-48 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.4 The Application Program Status Register (APSR)

A2.4 The Application Program Status Register (APSR)

Program status is reported in the 32-bit Application Program Status Register (APSR). The APSR bit assignments

are:
313029282726 2423 2019 16.15 0
RAZ/ | Reserved, .
N|lZ[C[V|Q SBZP | UNK/SBZP GE[3:0] Reserved, UNK/SBZP
The APSR bit categories are:
. Reserved bits, that are allocated to system features, or are available for future expansion. Unprivileged

execution ignores writes to fields that are accessible only at PL1 or higher. However, application level
software that writes to the APSR must treat reserved bits as Do-Not-Modify (DNM) bits. For more
information about the reserved bits, see Format of the CPSR and SPSRs on page B1-1148.

. Bits that can be set by many instructions:
— The Condition flags:

N, bit[31] Negative condition flag. Set to bit[31] of the result of the instruction. If the result is
regarded as a two's complement signed integer, then the processor sets N to 1 if the result
is negative, and sets N to 0 if it is positive or zero.

Z, bit[30] Zero condition flag. Set to 1 if the result of the instruction is zero, and to 0 otherwise. A
result of zero often indicates an equal result from a comparison.

C, bit[29] Carry condition flag. Set to 1 if the instruction results in a carry condition, for example an
unsigned overflow on an addition.

V, bit[28] Overflow condition flag. Set to 1 if the instruction results in an overflow condition, for
example a signed overflow on an addition.

— The Overflow or saturation flag:

Q, bit[27] Setto 1 to indicate overflow or saturation occurred in some instructions, normally related
to digital signal processing (DSP). For more information, see Pseudocode details of
saturation on page A2-44.

— The Greater than or Equal flags:
GE|[3:0], bits[19:16]
The instructions described in Parallel addition and subtraction instructions on
page A4-171 update these flags to indicate the results from individual bytes or halfwords

of the operation. These flags can control a later SEL instruction. For more information, see
SEL on page A8-602.

. Bits[26:24] are RAZ/SBZP. Therefore, software can use MSR instructions that write the top byte of the APSR
without using a read, modify, write sequence. If it does this, it must write zeros to bits[26:24].

Instructions can test the N, Z, C, and V condition flags, combining these with the condition code for the instruction
to determine whether the instruction must be executed. In this way, execution of the instruction is conditional on the
result of a previous operation. For more information about conditional execution see Conditional execution on
page A4-161 and Conditional execution on page A8-288.

In ARMv7-A and ARMv7-R, the APSR is the same register as the CPSR, but the APSR must be used only to access
the N, Z, C, V, Q, and GE[3:0] bits. For more information, see Program Status Registers (PSRs) on page B1-1147.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-49
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.5 Egcution state registers

A2.5 Execution state registers

The execution state registers modify the execution of instructions. They control:

. Whether instructions are interpreted as Thumb instructions, ARM instructions, ThumbEE instructions, or
Java bytecodes. For more information, see Instruction set state register, ISETSTATE.

. In Thumb state and ThumbEE state only, the condition codes that apply to the next one to four instructions.
For more information, see /7T block state register, ITSTATE on page A2-51.

. Whether data is interpreted as big-endian or little-endian. For more information, see Endianness mapping
register, ENDIANSTATE on page A2-53.

In ARMv7-A and ARMv7-R, the execution state registers are part of the Current Program Status Register. For more
information, see Program Status Registers (PSRs) on page B1-1147.

There is no direct access to the execution state registers from application level instructions, but they can be changed
by side-effects of application level instructions.

A2.5.1 Instruction set state register, ISETSTATE

The instruction set state register, ISETSTATE, format is:

10

JIT

The J bit and the T bit determine the current instruction set state for the processor. Table A2-1 shows the encoding

of these bits.

ARM state

Thumb state

Jazelle state

ThumbEE state

Table A2-1 J and T bit encoding in ISETSTATE

J T Instruction set state

0 0 ARM
0 1 Thumb
1 0 Jazelle

1 1 ThumbEE

The processor executes the ARM instruction set described in Chapter AS ARM Instruction
Set Encoding.

The processor executes the Thumb instruction set as described in Chapter A6 Thumb
Instruction Set Encoding.

The processor executes Java bytecodes as part of a Java Virtual Machine (JVM). For more
information, see:

. Jazelle direct bytecode execution support on page A2-97, for application level
information

. Jazelle direct bytecode execution on page B1-1240, for system level information.

The processor executes a variation of the Thumb instruction set specifically targeted for use
with dynamic compilation techniques associated with an execution environment. This can
be Java or other execution environments. This feature is required in ARMv7-A, and optional
in ARMv7-R. For more information, see:

. Thumb Execution Environment on page A2-95, for application level information

. Thumb Execution Environment on page B1-1239, for system level information.

A2-50 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.5 Eecution state registers

Pseudocode details of ISETSTATE operations

The following pseudocode functions return the current instruction set and select a new instruction set:

enumeration InstrSet {InstrSet_ARM, InstrSet_Thumb, InstrSet_lazelle, InstrSet_ThumbEE};
// CurrentInstrSet()
/] =================

InstrSet CurrentInstrSet()
case ISETSTATE of
when '00' result = InstrSet_ARM;
when '01" result = InstrSet_Thumb;
when '10" result = InstrSet_Jlazelle;
when '11" result = InstrSet_ThumbEE;
return result;

// SelectInstrSet()

SelectInstrSet(InstrSet iset)
case iset of
when InstrSet_ARM
if CurrentInstrSet() == InstrSet_ThumbEE then
UNPREDICTABLE;
else
ISETSTATE = '00';
when InstrSet_Thumb
ISETSTATE = '01';
when InstrSet_lazelle
ISETSTATE = '10';
when InstrSet_ThumbEE
ISETSTATE = '11';
return;

A2.5.2 IT block state register, ITSTATE
The IT block state register, ITSTATE, format is:

7 0

IT[7:0]

This field holds the If-Then execution state bits for the Thumb IT instruction, that applies to the IT block of one to
four instructions that immediately follow the IT instruction. See /7 on page A8-390 for a description of the IT
instruction and the associated IT block.

ITSTATE divides into two subfields:
IT[7:5] Holds the base condition for the current IT block. The base condition is the top 3 bits of the
condition code specified by the <firstcond> field of the IT instruction.

This subfield is 0b000 when no IT block is active.

1T[4:0] Encodes:

. The size of the IT block. This is the number of instructions that are to be conditionally
executed. The size of the block is implied by the position of the least significant 1 in this field,
as shown in Table A2-2 on page A2-52.

. The value of the least significant bit of the condition code for each instruction in the block.

Note

Changing the value of the least significant bit of a condition code from 0 to 1 has the effect
of inverting the condition code.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-51
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.5 Egcution state registers

This subfield is 0b00000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the <firstcond> condition code in the instruction,
and the Then and Else (T and E) parameters in the instruction. For more information, see /7 on page A8-390.

When permitted, an instruction in an IT block is conditional, see Conditional instructions on page A4-162 and
Conditional execution on page A8-288. The condition code used is the current value of IT[7:4]. When an instruction
in an IT block completes its execution normally, ITSTATE advances to the next line of Table A2-2. A few instructions,
for example BKPT, cannot be conditional and therefore are always executed, ignoring the current ITSTATE.

For details of what happens if an instruction in an IT block:
. Takes an exception see Overview of exception entry on page B1-1170.
. In ThumbEE state, causes a branch to a check handler, see /7 block and check handlers on page A9-1114.

An instruction that might complete its normal execution by branching is only permitted in an IT block as the last
instruction in the block. This means that normal execution of the instruction always results in ITSTATE advancing to
normal execution.

Table A2-2 Effect of IT execution state bits

IT bits 2
Note

[7:5] [4 31 [2 [11 [0]

cond base Pl P2 P3 P4 1 Entry point for 4-instruction IT block

cond base Pl P2 P3 1 0 Entry point for 3-instruction IT block

cond base Pl P2 1 0 0 Entry point for 2-instruction IT block
cond base Pl 1 0 0 0 Entry point for 1-instruction IT block

000 0 0 0 0 0 Normal execution, not in an IT block

a. Combinations of the IT bits not shown in this table are reserved.

On a branch or an exception return, if ITSTATE is set to a value that is not consistent with the instruction stream
being branched to or returned to, then instruction execution is UNPREDICTABLE.

ITSTATE affects instruction execution only in Thumb and ThumbEE states. In ARM and Jazelle states, ITSTATE must
be '00000000', otherwise the behavior is UNPREDICTABLE.

Pseudocode details of ITSTATE operations

ITSTATE advances after normal execution of an IT block instruction. This is described by the ITAdvance() pseudocode
function:

// ITAdvance()
/] s==mm==m===

ITAdvance()
if ITSTATE<2:0> == '000' then
ITSTATE.IT = '00000000';
else
ITSTATE.IT<4:0> = LSL(ITSTATE.IT<4:0>, 1);

The following functions test whether the current instruction is in an IT block, and whether it is the last instruction
of an IT block:

// InITBlock()
/] ===mm==m===

boolean InITBlock()
return (ITSTATE.IT<3:0> != '0000');

A2-52

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.5 Eecution state registers

// LastInITBlock()
/] ====m=m=mm=m===

boolean LastInITBlock()
return (ITSTATE.IT<3:0> == '1000');

A2.5.3 Endianness mapping register, ENDIANSTATE

ARMvV7-A and ARMv7-R support configuration between little-endian and big-endian interpretations of data
memory, as shown in Table A2-3. The endianness is controlled by ENDIANSTATE.

Table A2-3 ENDIANSTATE encoding of endianness

ENDIANSTATE Endian mapping

0 Little-endian

1 Big-endian

The ARM and Thumb instruction sets both include an instruction to manipulate ENDIANSTATE:
SETEND BE Sets ENDIANSTATE to 1, for big-endian operation.
SETEND LE Sets ENDIANSTATE to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see SETEND on page A8-604.

Pseudocode details of ENDIANSTATE operations
The BigEndian() pseudocode function tests whether big-endian memory accesses are currently selected.

// BigEndian()
/] ==mmmm====s

boolean BigEndian()
return (ENDIANSTATE == '1');

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-53
Non-Confidential

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

A2.6 Advanced SIMD and Floating-point Extensions
Advanced SIMD and Floating-point (VFP) are two OPTIONAL extensions to ARMv7.

The Advanced SIMD Extension performs packed Single Instruction Multiple Data (SIMD) operations, either
integer or single-precision floating-point. The Floating-point Extension performs single-precision or
double-precision floating-point operations.

Both extensions permit floating-point exceptions, such as overflow or division by zero, to be handled without
trapping. When handled in this way, a floating-point exception causes a cumulative status register bit to be set to 1
and a default result to be produced by the operation.

The ARMvV7 Floating-point Extension implementation can be VFPv3 or VFPv4, see Architecture extensions on
page A1-32. ARMv7 also defines variants of VFPv3 and VFPv4, VFPv3U and VFPv4U, that support the trapping
of floating-point exceptions, see VFPv3U and VFPv4U on page A2-62. VFPv2 also supports the trapping of
floating-point exceptions.

The Advanced SIMD implementation can be Advanced SIMDv1 or Advanced SIMDv2.

If an implementation includes both the Advanced SIMD and the Floating-point Extensions then the versions of the
two extensions must align, as described in /nstruction set architecture extensions on page A1-32.

For more information about floating-point exceptions see Floating-point exceptions on page A2-70.

Each version of these extensions can be implemented at a number of levels. Table A2-4 shows the permitted
combinations of implementations of the two extensions.

Table A2-4 Permitted combinations of Advanced SIMD and Floating-point Extensions

Advanced SIMD Floating-point (VFP)

Not implemented Not implemented

Integer only Not implemented

Integer and single-precision floating-point Single-precision floating-point only?

Integer and single-precision floating-point Single-precision and double-precision floating-point
Not implemented Single-precision floating-point only2

Not implemented Single-precision and double-precision floating-point

a. Must be able to load and store double-precision data using the bottom 16 double-precision registers, D0-D15.

The Half-precision Extension provides conversion functions in both directions between half-precision
floating-point and single-precision floating-point. This extension:

. Can be implemented with any Advanced SIMDv1 or VFPv3 implementation that supports single-precision
floating-point, and the Half-precision extension applies to both VFP and Advanced SIMD if they are both
implemented.

. Is included in any Advanced SIMDv2 or VFPv4 implementation that supports single-precision

floating-point.

For system level information about the Advanced SIMD and Floating-point Extensions see Advanced SIMD and
floating-point support on page B1-1228.

A2-54 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

Note

Before ARMv7, the Floating-point Extension was called the Vector Floating-point Architecture, and was used for
vector operations. For details of these deprecated operations see Appendix K VFP Vector Operation Support. In

ARMVT:
. ARM recommends that the Advanced SIMD Extension is used for single-precision vector floating-point
operations.
. An implementation that requires support for vector operations must implement the Advanced SIMD
Extension.
A2.6.1 Floating-point standards, and terminology

The ARM floating-point implementation includes support for all the required features of ANSI/IEEE Std 754-2008,
IEEFE Standard for Binary Floating-Point Arithmetic, referred to as IEEE 754-2008. However, the original
implementation was based on the 1985 version of this standard, referred to as [EEE 754-1985, In this manual:

. Floating-point terminology generally uses the IEEE 754-1985 terms. This section summarizes how
IEEE 754-2008 changes these terms.

. References to IEEE 754 that do not include the issue year apply to either issue of the standard.

Table A2-5 shows how the terminology in this manual differs from that used in IEEE 754-2008.

Table A2-5 Floating-point terminology

This manual, based on IEEE 754-19852 IEEE 754-2008

Normalized Normal

Denormal, or denormalized Subnormal

Round towards Minus Infinity roundTowardsNegative
Round towards Plus Infinity roundTowardsPositive
Round to Zero roundTowardZero

Round towards Nearest roundTiesToEven
Rounding mode Rounding-direction attribute

a. Except that normalized number is used in preference to normal number, because of
the other specific uses of normal in this manual.

The fused multiply add operations are first defined in IEEE 754-2008, and are introduced in VFPv4 and
Advanced SIMDV2. The following sections describe the instructions that perform these operations:

. VEMA, VFMS on page A8-892
. VENMA, VENMS on page A8-894.

All other ARMV7 floating-point operations are defined in both issues of IEEE 754.

Note

ARMV7 does not support the IEEE 754-2008 roundTiesToAway rounding mode. However, IEEE 754-compliance
does not require support for this mode.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-55
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

A2.6.2 Advanced SIMD and Floating-point Extension registers

From VFPv3, the Advanced SIMD and Floating-point (VFP) Extensions use the same register set. This is distinct
from the ARM core register set. These registers are generally referred to as the extension registers.

The extension register set consists of either thirty-two or sixteen doubleword registers, as follows:

. If VFPv2 is implemented, it consists of sixteen doubleword registers.

. If VFPv3 is implemented, it consists of either thirty-two or sixteen doubleword registers. Where necessary,
these two implementation options are distinguished using the terms:
— VFPv3-D32, for an implementation with thirty-two doubleword registers
— VFPv3-D16, for an implementation with sixteen doubleword registers.

. If VFPv4 is implemented, it consists of either thirty-two or sixteen doubleword registers. Where necessary,
these two implementation options are distinguished using the terms:
— VFPv4-D32, for an implementation with thirty-two doubleword registers

— VFPv4-D16, for an implementation with sixteen doubleword registers.
. If Advanced SIMD is implemented, it consists of thirty-two doubleword registers.

. If Advanced SIMD and Floating-point are both implemented, Floating-point must be implemented as
VFPv3-D32 or VFPv4-D32.

The Advanced SIMD and Floating-point views of the extension register set are not identical. The following sections
describe these different views.

Figure A2-1 on page A2-57 shows the views of the extension register set, and the way the word, doubleword, and
quadword registers overlap.

Advanced SIMD views of the extension register set

Advanced SIMD can view this register set as:
. Sixteen 128-bit quadword registers, Q0-Q15.
. Thirty-two 64-bit doubleword registers, D8-D31. This view is also available in VFPv3-D32 and VFPv4-D32.

These views can be used simultaneously. For example, a program might hold 64-bit vectors in D@ and D1 and a
128-bit vector in Q1.

Floating-point views of the extension register set

In VFPv4-D32 or VFPv3-D32, the extension register set consists of thirty-two doubleword registers, that VFP can
view as:

. Thirty-two 64-bit doubleword registers, D8-D31. This view is also available in Advanced SIMD.
. Thirty-two 32-bit single word registers, S8-S31. Only half of the set is accessible in this view.

In VFPv4-D16, VFPv3-D16, and VFPv2, the extension register set consists of sixteen doubleword registers, that
VFP can view as:

. Sixteen 64-bit doubleword registers, D@-D15.
. Thirty-two 32-bit single word registers, S0-S31.

In each case, the two views can be used simultaneously.

A2-56 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

Advanced SIMD and Floating-point register mapping

Figure A2-1 shows the different views of Advanced SIMD and Floating-point register banks, and the relationship
between them.

S0-S31 D0-D15 D0-D31 Qo-Q15
VFPV2, VFPv3-D32,
VFP only VFPV3-D16, or VFPv4-D32, or Adva”gﬁld SIMD
VFPv4-D16 Advanced SIMD Y

:(1) - D0 — - D0 — - —
S I E e — Q0 —
- D1 — - D1 — - —

S e e e
:g - D2 — - D2 — - —
- 1 T————1 — Q1 —
- D3 — - D3 — - —

Y e e e
zzg - D14 — - D14 — - —
e — Q7 —
- D15 — - D15 — - —

s« | -/
- D16 — - —
L Q8 —
- D17 — - —
- D30 — - —
- Q15 —
- D31 — - —

Figure A2-1 Advanced SIMD and Floating-point Extensions register set

The mapping between the registers is as follows:

. S<2n> maps to the least significant half of D<n>
. S<2n+1> maps to the most significant half of D<n>
. D<2n> maps to the least significant half of Q<n>
. D<2n+1> maps to the most significant half of Q<n>.

For example, software can access the least significant half of the elements of a vector in Q6 by referring to D12, and
the most significant half of the elements by referring to D13.

Pseudocode details of Advanced SIMD and Floating-point Extension registers

The pseudocode function VFPSmal1RegisterBank() returns FALSE if all of the 32 registers D0-D31 can be accessed,
and TRUE if only the 16 registers D@-D15 can be accessed:

booTean VFPSmallRegisterBank()

In more detail, VFPSmal1RegisterBank():
. returns TRUE for a VFPv2, VFPv3-D16, or VFPv4-D16 implementation
. for a VFPv3-D32 or VFPv4-D32 implementation:
— returns FALSE if CPACR.D32DIS is set to 0
— returns TRUE if CPACR.D32DIS and CPACR.ASEDIS are both set to 1
— results in UNPREDICTABLE behavior if CPACR.D32DIS is set to 1 and CPACR.ASEDIS is set to 0.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-57
Non-Confidential

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

For details of the CPACR, see either:
. CPACR, Coprocessor Access Control Register, VMSA on page B4-1551
. CPACR, Coprocessor Access Control Register, PMSA on page B6-1829.

The following functions provide the S0-S31, D0-D31, and Q0-Q15 views of the registers:
// The 64-bit extension register bank for Advanced SIMD and VFP.
array bits(64) _D[0..31];

// Clone the 64-bit Advanced SIMD and VFP extension register bank for use as input to

// instruction pseudocode, to avoid read-after-write for Advanced SIMD and VFP operations.

array bits(64) _Dclone[0..31];

// S[] - non-assignment form

//

bits(32) S[integer n]
assert n >= 0 & n <= 31;
if (n MOD 2) == @ then
result = D[n DIV 2]<31:0>;
else
result = D[n DIV 2]<63:32>;
return result;

// S[] - assignment form
/!

S[integer n] = bits(32) value
assert n >= 0 & n <= 31;
if (n MOD 2) == @ then
D[n DIV 2]<31:0> = value;
else
D[n DIV 2]<63:32> = value;
return;

// D[] - non-assignment form

//

bits(64) D[integer n]
assert n >= 0 && n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
return _D[n];

// D[] - assignment form
/!

D[integer n] = bits(64) value
assert n >= 0 & n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
_D[n] = value;
return;

// Q] - non-assignment form

//

bits(128) Q[integer n]
assert n >= 0 & n <= 15;
return D[2xn+1]:D[2%n];

A2-58 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

// Q[]1 - assignment form
//

Q[integer n] = bits(128) value
assert n >= 0 && n <= 15;
D[2xn] = value<63:0>;
D[2«n+1] = value<127:64>;
return;

The Din[] function returns a Doubleword register from the _Dclone[] copy of the Advanced SIMD and
Floating-point register bank, and the Qin[] function returns a Quadword register from that register bank.

Note

The CheckAdvancedSIMDEnabled() function copies the _D[] register bank to _Dclone[], see Pseudocode details of
enabling the Advanced SIMD and Floating-point Extensions on page B1-1234.

// Din[] - non-assignment form

//

bits(64) Din[integer n]
assert n >= 0 && n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
return _Dclone[n];

// Qin[] - non-assignment form

//

bits(128) Qin[integer n]
assert n >= 0 & n <= 15;
return Din[2«n+1]:Din[2xn];

A2.6.3 Data types supported by the Advanced SIMD Extension

In an implementation that includes the Advanced SIMD Extension, the Advanced SIMD instructions can operate
on integer and floating-point data, and the extension defines a set of data types to represent the different data
formats. Table A2-6 shows the available formats. Each instruction description specifies the data types that the
instruction supports.

Table A2-6 Advanced SIMD data types

Data type specifier = Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

I<size> Signed or unsigned integer of <size> bits
.P<size> Polynomial over {0, 1} of degree less than <size>
.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits

Polynomial arithmetic over {0, 1} on page A2-93 describes the polynomial data type.

The .F16 data type is the half-precision data type selected by the FPSCR.AHP bit. It is supported only if an
implementation includes the Half-precision extension.

The .F32 data type is the ARM standard single-precision floating-point data type, see Advanced SIMD and
Floating-point single-precision format on page A2-64.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-59
Non-Confidential

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

The instruction definitions use a data type specifier to define the data types appropriate to the operation. Figure A2-2
shows the hierarchy of Advanced SIMD data types.

S8
18
o .us
: P8
516
. 116 6
: P16t
F16 ¢
532
132
u32
32 us
F32
564
164
Ue4
64 ue

T Output format only. See VMULL instruction description.
I Supported only if the implementation includes the Half-precision Extension.

Figure A2-2 Advanced SIMD data type hierarchy
For example, a multiply instruction must distinguish between integer and floating-point data types.

An integer multiply instruction that generates a double-width (long) result must specify the input data types as
signed or unsigned. However, some integer multiply instructions use modulo arithmetic, and therefore do not have
to distinguish between signed and unsigned inputs.

A2.6.4 Advanced SIMD vectors

In an implementation that includes the Advanced SIMD Extension, a register can hold one or more packed elements,
all of the same size and type. The combination of a register and a data type describes a vector of elements. The vector
is considered to be an array of elements of the data type specified in the instruction. The number of elements in the
vector is implied by the size of the data elements and the size of the register.

Vector indices are in the range 0 to (number of elements — 1). An index of 0 refers to the least significant end of the
vector. Figure A2-3 on page A2-61 shows examples of Advanced SIMD vectors:

A2-60 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

127 12111 96 95 80 79 64 63 48 47 32 31 1615 0
Qn

128-bit vector of single-precision

(32-bit) floating-point numbers F32 F32 F32 F32

(3] [2] (1] []
128-bit vector of 16-bit signed integers| .S16 .S16 .S16 .S516 .S16 .S16 .S16 .S516
[71 [6] (8] [4] (3] [2] (1] [

63 48 47 32 31 16 15 0
Dn

64-bit vector of 32-bit signed integers .S32 .S832

(] [0]

64-bit vector of 16-bit unsigned integers| .U16 .u1e .U16 .U16
3] [2] (1] [0]

Figure A2-3 Examples of Advanced SIMD vectors

Pseudocode details of Advanced SIMD vectors
The pseudocode function Elem[] accesses the element of a specified index and size in a vector:

// Elem[] - non-assignment form

//

bits(size) Elem[bits(N) vector, integer e, integer size]
assert e >= 0 && (e+l)«size <= N;
return vector<(e+l)=size-1l:exsize>;

// Elem[] - assignment form

//

Elem[bits(N) vector, integer e, integer size] = bits(size) value
assert e >= 0 && (e+l)+size <= N;
vector<(e+l)xsize-1l:exsize> = value;
return;

A2.6.5 Advanced SIMD and Floating-point system registers

The Advanced SIMD and Floating-point (VFP) Extensions have a shared register space for system registers. Only
one register in this space is accessible at the Application level, see either:

. FPSCR, Floating-point Status and Control Register, VMSA on page B4-1569
. FPSCR, Floating-point Status and Control Register, PMSA on page B6-1845.

Note

In this chapter, short links to the FPSCR are to the description in Chapter B4 System Control Registers in a VMSA
implementation. The FPSCR description in Chapter B6 System Control Registers in a PMSA implementation is
identical to this description.

Writes to the FPSCR can have side-effects on various aspects of processor operation. All of these side-effects are
synchronous to the FPSCR write. This means they are guaranteed not to be visible to earlier instructions in the
execution stream, and they are guaranteed to be visible to later instructions in the execution stream.

See Advanced SIMD and Floating-point Extension system registers on page B1-1235 for the system level view of
the registers.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-61
Non-Confidential

A2 Application Level Programmers’ Model
A2.6 Advanced SIMD and Floating-point Exensions

A2.6.6 VFPv3U and VFPv4U
The VFPv3 and VFPv4 versions of the Floating-point Extension do not support the exception trap enable bits in the
FPSCR. With these versions of the Floating-point Extension, all floating-point exceptions are untrapped.
The VFPv3U variant of the VFPv3 extension, and the VFPv4U variant of the VFPv4 extension, implement
exception trap enable bits in the FPSCR, and provide exception handling as described in Floating-point support
code on page B1-1236. There is a separate trap enable bit for each of the six floating-point exceptions described in
Floating-point exceptions on page A2-70. Except for support for this trapping mechanism:
. the VFPv3U architecture is identical to VFPv3
. the VFPv4U architecture is identical to VFPv4.
Trapped exception handling never causes the corresponding cumulative exception bit of the FPSCR to be set to 1.
If this behavior is desired, the trap handler routine must use a read, modify, write sequence on the FPSCR to set the
cumulative exception bit.
Both VFPv3U and VFPv4U can be implemented with either thirty-two or sixteen doubleword registers. That is:
. VFPv3U can be implemented as VFPv3U-D32, or as VFPv3U-D16
. VFPv4U can be implemented as VFPv4U-D32, or as VFPv4U-D16.
VFPv3U-D16 and VFPv4U-D16 are backwards compatible with VFPv2.

A2-62 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

A2.7 Floating-point data types and arithmetic

The Floating-point (VFP) Extension supports single-precision (32-bit) and double-precision (64-bit) floating-point
data types and arithmetic as defined by the IEEE 754 floating-point standard. It also supports the half-precision
(16-bit) floating-point data type for data storage only, by supporting conversions between single-precision and
half-precision data types.

ARM standard floating-point arithmetic means IEEE 754 floating-point arithmetic with the following restrictions:
. denormalized numbers are flushed to zero, see Flush-to-zero on page A2-68

. only default NaNs are supported, see NaN handling and the Default NaN on page A2-69

. the Round to Nearest rounding mode selected, by setting FPSCR.RMode to 0b0o

. untrapped exception handling selected for all floating-point exceptions, by setting FPSCR[15, 12:8] to
0b000000.

In ARMv7 implementations, trapped floating-point exception handling is supported in the VFPv3U and VFPv4U
variants of the Floating-point Extension, see VFPv3U and VFPv4U on page A2-62. In implementations of previous
architecture versions, it is supported in VFPv2.

The Advanced SIMD Extension supports only single-precision ARM standard floating-point arithmetic.

Note

Implementations of the Floating-point Extension require support code to be installed in the system if trapped
floating-point exception handling is required. See Floating-point support code on page B1-1236.

Some implementations might also require support code to support other aspects of their floating-point arithmetic.
However, with the ARMv7 architecture, ARM deprecates using support code in this way.

It is IMPLEMENTATION DEFINED which aspects of Floating-point Extension floating-point arithmetic are supported
in a system without support code installed.

Aspects of floating-point arithmetic that are implemented in support code are likely to run much more slowly than
those that are executed in hardware.

ARM recommends that:

. To maximize the chance of getting high floating-point performance, software developers use ARM standard
floating-point arithmetic.

. Software developers check whether their systems have support code installed, and if not, observe the
IMPLEMENTATION DEFINED restrictions on what operations their Floating-point Extension implementation
can handle without support code.

. Floating-point Extension implementation developers implement at least ARM standard floating-point
arithmetic in hardware, so that it can be executed without any need for support code.

A2.71 ARM standard floating-point input and output values

ARM standard floating-point arithmetic supports the following input formats defined by the IEEE 754
floating-point standard:

. Zeros.

. Normalized numbers.

. Denormalized numbers are flushed to 0 before floating-point operations, see Flush-to-zero on page A2-68.
. NaNs.

. Infinities.

ARM standard floating-point arithmetic supports the Round to Nearest rounding mode defined by the IEEE 754
standard.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-63
Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

ARM standard floating-point arithmetic supports the following output result formats defined by the IEEE 754

standard:

. Zeros.

. Normalized numbers.

. Results that are less than the minimum normalized number are flushed to zero, see Flush-to-zero on
page A2-68.

. NaNs produced in floating-point operations are always the default NaN, see NaN handling and the Default
NaN on page A2-69.

. Infinities.

A2.7.2 Advanced SIMD and Floating-point single-precision format

The single-precision floating-point format used by the Advanced SIMD and Floating-point Extensions is as defined
by the IEEE 754 standard.

This description includes ARM-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word with the format:

3130 23 22 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits[30:23]:

0 < exponent < 0xFF
The value is a normalized number and is equal to:
(—1)S x 2(exponent —127) x (1 fraction)
The minimum positive normalized number is 2-126, or approximately 1.175 x 10-38,

The maximum positive normalized number is (2 — 2-23) x 2127 or approximately 3.403 x 1038,

exponent ==

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros:
+0 When S==0.
-0 When S==1.
These usually behave identically. In particular, the result is equal if +0 and —0 are
compared as floating-point numbers. However, they yield different results in some
circumstances. For example, the sign of the infinity produced as the result of dividing
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer comparison of the two words.

fraction !=0
The value is a denormalized number and is equal to:
(=1)S x 27126 x (0.fraction)

The minimum positive denormalized number is 2-149, or approximately 1.401 x 1045,

Denormalized numbers are always flushed to zero in the Advanced SIMD Extension. They are

optionally flushed to zero in the Floating-point Extension. For details see Flush-to-zero on

page A2-68.

A2-64 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

exponent == OxFF
The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:
fraction ==
The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute value

that is too big to be represented accurately as a normalized number.
fraction !=0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

In the Floating-point Extension, the two types of NaN are distinguished on the basis of

their most significant fraction bit, bit[22]:

bit[22] ==
The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[22] ==
The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-69.

Note
NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

A2.7.3 Floating-point double-precision format

The double-precision floating-point format used by the Floating-point Extension is as defined by the IEEE 754
standard.

This description includes Floating-point Extension-specific details that are left open by the standard. It is only
intended as an introduction to the formats and to the values they can contain. For full details, especially of the
handling of infinities, NaNs and signed zeros, see the IEEE 754 standard.

A double-precision value is a 64-bit doubleword, with the format:

63 62 52 51 32 31 0

(¢

S exponent fraction

(¢ ((((
)T)T)T

Double-precision values represent numbers, infinities and NaNs in a similar way to single-precision values, with
the interpretation of the format depending on the value of the exponent:

0 < exponent < 0x7FF
The value is a normalized number and is equal to:
(=1)S x 2(exponent-1023) x (1 fraction)
The minimum positive normalized number is 2-1022, or approximately 2.225 x 10-308,

The maximum positive normalized number is (2 — 2-52) x 21023 or approximately 1.798 x 10308,

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-65
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==

The value is a zero. There are two distinct zeros that behave analogously to the two
single-precision zeros:

+0 when S==0
-0 when S==1.
fraction !=0
The value is a denormalized number and is equal to:
(-1)8 x 271022 x (0.fraction)
The minimum positive denormalized number is 2-1074, or approximately 4.941 x 10-324,

Optionally, denormalized numbers are flushed to zero in the Floating-point Extension. For details
see Flush-to-zero on page A2-68.

exponent == Ox7FF
The value is either an infinity or a NaN, depending on the fraction bits:
fraction ==
the value is an infinity. As for single-precision, there are two infinities:
+infinity When S==0.
-infinity = When S==1.
fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
In the Floating-point Extension, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit[19] of the most significant word:
bit[19] ==
The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.
bit[19] ==
The NaN is a quiet NaN. The sign bit and the remaining fraction bits can

take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-69.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

A2.7.4 Advanced SIMD and Floating-point half-precision formats

The Half-precision Extension to the Advanced SIMD and Floating-point Extensions uses two half-precision
floating-point formats:
. IEEE half-precision, as described in the IEEE 754-2008 standard

. Alternative half-precision.

The description of IEEE half-precision includes ARM-specific details that are left open by the standard, and is only
an introduction to the formats and to the values they can contain. For more information, especially on the handling
of infinities, NaNs and signed zeros, see the IEEE 754 standard.

A2-66 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

For both half-precision floating-point formats, the layout of the 16-bit number is the same. The format is:

1514 10 9 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which half-precision
format is being used.
0 < exponent < 0x1F
The value is a normalized number and is equal to:
(—1)S x 2(exponent-15) x (1.fraction)
The minimum positive normalized number is 2-14, or approximately 6.104 x 10-3,
The maximum positive normalized number is (2 — 2-10) x 215 or 65504.
Larger normalized numbers can be expressed using the alternative format when the
exponent == Ox1F.
exponent ==

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros:
+0 when S==0
-0 when S==1.

fraction !=0

The value is a denormalized number and is equal to:
(=1)S x 2-14 x (0.fraction)

The minimum positive denormalized number is 2-24, or approximately 5.960 x 10-8.

exponent == 0x1F
The value depends on which half-precision format is being used:
IEEE half-precision
The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:
fraction ==
The value is an infinity. There are two distinct infinities:
+infinity When S==0. This represents all positive numbers that are too
big to be represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an
absolute value that is too big to be represented accurately as a
normalized number.
fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN. The two
types of NaN are distinguished by their most significant fraction bit, bit[9]:

bit[9] == 0 The NaN is a signaling NaN. The sign bit can take any value,
and the remaining fraction bits can take any value except all
Zeros.

bit[9] ==1 The NaN is a quiet NaN. The sign bit and remaining fraction
bits can take any value.

Alternative half-precision
The value is a normalized number and is equal to:
-18 x 216 x (1.fraction)

The maximum positive normalized number is (2-2-10) x 216 or 131008.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-67
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

A2.7.5 Flush-to-zero

The performance of floating-point implementations can be significantly reduced when performing calculations

involving denormalized numbers and Underflow exceptions. In particular this occurs for implementations that only

handle normalized numbers and zeros in hardware, and invoke support code to handle any other types of value. For
an algorithm where a significant number of the operands and intermediate results are denormalized numbers, this
can result in a considerable loss of performance.

In many of these algorithms, this performance can be recovered, without significantly affecting the accuracy of the

final result, by replacing the denormalized operands and intermediate results with zeros. To permit this

optimization, Floating-point Extension implementations have a special processing mode called Flush-to-zero mode.

Advanced SIMD implementations always use Flush-to-zero mode.

Behavior in Flush-to-zero mode differs from normal IEEE 754 arithmetic in the following ways:

. All inputs to floating-point operations that are double-precision denormalized numbers or single-precision
denormalized numbers are treated as though they were zero. This causes an Input Denormal exception, but
does not cause an Inexact exception. The Input Denormal exception occurs only in Flush-to-zero mode.

Note
Combinations of exceptions on page A2-71 defines the floating-point operations.
The FPSCR contains a cumulative exception bit FPSCR.IDC and trap enable bit FPSCR.IDE corresponding
to the Input Denormal exception.
The occurrence of all exceptions except Input Denormal is determined using the input values after
flush-to-zero processing has occurred.

. The result of a floating-point operation is flushed to zero if the result of the operation before rounding
satisfies the condition:

0 < Abs(result) < MinNorm, where:

— MinNorm is 2-126 for single-precision

— MinNorm is 2-1022 for double-precision.

This causes the FPSCR.UFC bit to be set to 1, and prevents any Inexact exception from occurring for the
operation.

Underflow exceptions occur only when a result is flushed to zero.

In a VFPv2, VEPv3U, or VFPv4U implementation Underflow exceptions that occur in Flush-to-zero mode
are always treated as untrapped, even when the Underflow trap enable bit, FPSCR.UFE, is set to 1.

. An Inexact exception does not occur if the result is flushed to zero, even though the final result of zero is not
equivalent to the value that would be produced if the operation were performed with unbounded precision
and exponent range.

When an input or a result is flushed to zero the value of the sign bit of the zero is determined as follows:

. In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, the sign bit of the zero matches the sign bit
of the input or result that is being flushed to zero.

. In VFPv2, it is IMPLEMENTATION DEFINED whether it is preserved or always positive. The same choice must
be made for all cases of flushing an input or result to zero.

Flush-to-zero mode has no effect on half-precision numbers that are inputs to floating-point operations, or results

from floating-point operations.

A2-68 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

Note

Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when IEEE 754 compatibility
is a requirement. Flush-to-zero mode must be used with care. Although it can improve performance on some
algorithms, there are significant limitations on its use. These are application dependent:

. On many algorithms, it has no noticeable effect, because the algorithm does not normally use denormalized
numbers.

. On other algorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results of the
algorithm.

A2.7.6 NaN handling and the Default NaN

The IEEE 754 standard specifies that:

. an operation that produces an Invalid Operation floating-point exception generates a quiet NaN as its result
if that exception is untrapped

. an operation involving a quiet NaN operand, but not a signaling NaN operand, returns an input NaN as its
result.

The Floating-point Extension behavior when Default NaN mode is disabled adheres to this, with the following
additions:
. If an untrapped Invalid Operation floating-point exception is produced, the quiet NaN result is derived from:

— the first signaling NaN operand, if the exception was produced because at least one of the operands is
a signaling NaN

— otherwise, the default NaN

. If an untrapped Invalid Operation floating-point exception is not produced, but at least one of the operands
is a quiet NaN, the result is derived from the first quiet NaN operand.

Depending on the operation, the exact value of a derived quiet NaN result may differ in both sign and number of
fraction bits from its source.For a quiet NaN result derived from signaling NaN operand, the most-significant
fraction bit is set to 1.

Note

. In these descriptions, first operand relates to the left-to-right ordering of the arguments to the pseudocode
function that describes the operation.

. The IEEE 754 standard specifies that the sign bit of a NaN has no significance.

The Floating-point Extension behavior when Default NaN mode is enabled, and the Advanced SIMD behavior in
all circumstances, is that the Default NaN is the result of all floating-point operations that either:

. generate untrapped Invalid Operation floating-point exceptions
. have one or more quiet NaN inputs, but no signaling NaN inputs.

Table A2-7 on page A2-70 shows the format of the default NaN for ARM floating-point processors.
Default NaN mode is selected for the Floating-point Extension by setting the FPSCR.DN bit to 1.

Other aspects of the functionality of the Invalid Operation exception are not affected by Default NaN mode. These
are that:

. If untrapped, it causes the FPSCR.IOC bit be set to 1.
. Iftrapped, it causes a user trap handler to be invoked. This is only possible in VFPv2, VFPv3U, and VFPv4U.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-69
Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

A2.7.7

Table A2-7 Default NaN encoding

Half-precision, IEEE Format Single-precision Double-precision
Sign bit 0 0a 0a
Exponent 0x1F OxFF Ox7FF
Fraction Bit[9] == 1, bits[8:0] == bit[22] == 1, bits[21:0] == bit[51] == 1, bits[50:0] ==

a. In VFPv2, the sign bit of the Default NaN is UNKNOWN.

Floating-point exceptions

The Advanced SIMD and Floating-point Extensions record the following floating-point exceptions in the FPSCR
cumulative bits:

FPSCR.IOC

FPSCR.DZC

FPSCR.OFC

FPSCR.UFC

FPSCR.IXC

FPSCR.IDC

Invalid Operation. The bit is set to 1 if the result of an operation has no mathematical value or cannot
be represented. Cases include, for example:

. (infinity) X 0
. (+infinity) + (—infinity).

These tests are made after flush-to-zero processing. For example, if flush-to-zero mode is selected,
multiplying a denormalized number and an infinity is treated as (0 x infinity), and causes an Invalid
Operation floating-point exception.

10C is also set on any floating-point operation with one or more signaling NaNs as operands, except
for negation and absolute value, as described in Floating-point negation and absolute value on
page A2-75.

Division by Zero. The bit is set to 1 if a divide operation has a zero divisor and a dividend that is
not zero, an infinity or a NaN. These tests are made after flush-to-zero processing, so if flush-to-zero
processing is selected, a denormalized dividend is treated as zero and prevents Division by Zero
from occurring, and a denormalized divisor is treated as zero and causes Division by Zero to occur
if the dividend is a normalized number.

For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be +1.0.
This means that a zero or denormalized operand to these functions sets the DZC bit.

Overflow. The bit is set to 1 if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow. The bit is set to 1 if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision, and
the rounded result is inexact.

The criteria for the Underflow exception to occur are different in Flush-to-zero mode. For details,
see Flush-to-zero on page A2-68.

Inexact. The bit is set to 1 if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

The criteria for the Inexact exception to occur are different in Flush-to-zero mode. For details, see

Flush-to-zero on page A2-68.

Input Denormal. The bit is set to 1 if a denormalized input operand is replaced in the computation
by a zero, as described in Flush-to-zero on page A2-68.

With the Advanced SIMD Extension and the VFPv3 or VFPv4 versions of the Floating-point Extension these are
non-trapping exceptions and the data-processing instructions do not generate any trapped exceptions.

A2-70

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

With the VFPv2, VFPv3U, and VFPv4U versions of the Floating-point Extension:

. These exceptions can be trapped, by setting trap enable bits in the FPSCR, see VFPv3U and VFPv4U on

page A2-

62. The way in which trapped floating-point exceptions are delivered to user software is

IMPLEMENTATION DEFINED. However, ARM recommends use of the VFP subarchitecture defined in
Appendix F Common VFP Subarchitecture Specification.

. The definition of the Underflow exception is different in the trapped and cummulative exception cases. In the
trapped case, meaning for VFPv2, VFPv3U, or VFPv4U, the definition is:

— the trapped Underflow exception occurs if the absolute value of the result of an operation, produced
before rounding, is less than the minimum positive normalized number for the destination precision,
regardless of whether the rounded result is inexact.

. As with cumulative exceptions, higher priority trapped exceptions can prevent lower priority exceptions from
occurring, as described in Combinations of exceptions.

Table A2-8 shows the results of untrapped floating-point exceptions:

Table A2-8 Results of untrapped floating-point exceptions

Exception type Default result for positive sign Default result for negative sign
10C, Invalid Operation ~ Quiet NaN Quiet NaN
DZC, Division by Zero +infinity -infinity
OFC, Overflow RN, RP: +infinity RN, RM: -infinity
RM, RZ: +MaxNorm RP, RZ: -MaxNorm
UFC, Underflow Normal rounded result Normal rounded result
IXC, Inexact Normal rounded result Normal rounded result
IDC, Input Denormal Normal rounded result Normal rounded result

In Table A2-8:

MaxNorm The maximum normalized number of the destination precision.

RM Round towards Minus Infinity mode, as defined in the IEEE 754 standard.

RN Round to Nearest mode, as defined in the IEEE 754 standard.

RP Round towards Plus Infinity mode, as defined in the IEEE 754 standard.

RZ Round towards Zero mode, as defined in the IEEE 754 standard.

. For Invalid Operation exceptions, for details of which quiet NaN is produced as the default result see NaN

handling and the Default NaN on page A2-69.

. For Division by Zero exceptions, the sign bit of the default result is determined normally for a division. This
means it is the exclusive OR of the sign bits of the two operands.

. For Overflow exceptions, the sign bit of the default result is determined normally for the overflowing
operation.

Combinations of exceptions

The following pseudocode functions perform floating-point operations:

FixedToFP()
FPAdd()
FPCompare()
FPCompareEQ()
FPCompareGE()
FPCompareGT()
FPDiv()

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-71

ID072512

Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

FPDoubleToSingle()
FPHalfToSingle()
FPMax ()

FPMin()

FPMuT()

FPMuTAdd()
FPRecipEstimate()
FPRecipStep()
FPRSqrtEstimate()
FPRSqrtStep()
FPSingleToDouble()
FPSingleToHalf()
FPSqrt()

FPSub()
FPToFixed()

All of these operations can generate floating-point exceptions.

Note
FPAbs() and FPNeg() are not classified as floating-point operations because:
. they cannot generate floating-point exceptions
. the floating-point operation behavior described in the following sections does not apply to them:

— Flush-to-zero on page A2-68
— NaN handling and the Default NaN on page A2-69.

More than one exception can occur on the same operation. The only combinations of exceptions that can occur are:

. Overflow with Inexact
. Underflow with Inexact
. Input Denormal with other exceptions.

When none of the exceptions caused by an operation are trapped, any exception that occurs causes the associated
cumulative bit in the FPSCR to be set.

When one or more exceptions caused by an operation are trapped, the behavior of the instruction depends on the
priority of the exceptions. The Inexact exception is treated as lowest priority, and Input Denormal as highest priority:

. If the higher priority exception is trapped, its trap handler is called. It is IMPLEMENTATION DEFINED whether
the parameters to the trap handler include information about the lower priority exception. Apart from this,
the lower priority exception is ignored in this case.

. If the higher priority exception is untrapped, its cumulative bit is set to 1 and its default result is evaluated.
Then the lower priority exception is handled normally, using this default result.

Some floating-point instructions specify more than one floating-point operation, as indicated by the pseudocode
descriptions of the instruction. In such cases, an exception on one operation is treated as higher priority than an
exception on another operation if the occurrence of the second exception depends on the result of the first operation.
Otherwise, it is UNPREDICTABLE which exception is treated as higher priority.

For example, a VMLA.F32 instruction specifies a floating-point multiplication followed by a floating-point addition.
The addition can generate Overflow, Underflow and Inexact exceptions, all of which depend on both operands to
the addition and so are treated as lower priority than any exception on the multiplication. The same applies to Invalid
Operation exceptions on the addition caused by adding opposite-signed infinities. The addition can also generate an
Input Denormal exception, caused by the addend being a denormalized number while in Flush-to-zero mode. It is
UNPREDICTABLE which of an Input Denormal exception on the addition and an exception on the multiplication is
treated as higher priority, because the occurrence of the Input Denormal exception does not depend on the result of
the multiplication. The same applies to an Invalid Operation exception on the addition caused by the addend being
a signaling NaN.

A2-72

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

Note

. The VFMA instruction performs a vector addition and a vector multiplication as a single operation. The VFMS
instruction performs a vector subtraction and a vector multiplication as a single operation.

. Like other details of Floating-point instruction execution, these rules about exception handling apply to the
overall results produced by an instruction when the system uses a combination of hardware and support code
to implement it. See Floating-point support code on page B1-1236 for more information.

These principles also apply to the multiple floating-point operations generated by Floating-point instructions
in the deprecated VFP vector mode of operation. For details of this mode of operation see Appendix K VFP
Vector Operation Support.

A2.7.8 Pseudocode details of floating-point operations

The following subsections contain pseudocode definitions of the floating-point functionality supported by the
ARMV7 architecture:

. Generation of specific floating-point values

. Floating-point negation and absolute value on page A2-75

. Floating-point value unpacking on page A2-75

. Floating-point exception and NaN handling on page A2-76

. Floating-point rounding on page A2-78

. Selection of ARM standard floating-point arithmetic on page A2-79

. Floating-point comparisons on page A2-80

. Floating-point maximum and minimum on page A2-81

. Floating-point addition and subtraction on page A2-82

. Floating-point multiplication and division on page A2-83

. Floating-point fused multiply-add on page A2-84

. Floating-point reciprocal estimate and step on page A2-85

. Floating-point square root on page A2-87

. Floating-point reciprocal square root estimate and step on page A2-87
. Floating-point conversions on page A2-90.

Generation of specific floating-point values

The following pseudocode functions generate specific floating-point values. The sign argument of FPInfinity(),
FPMaxNormal(), and FPZero() is '@" for the positive version and '1" for the negative version.

// FPZero()
/) =mmm=m==

bits(N) FPZero(bit sign, integer N)
assert N IN {16,32,64};
if N == 16 then
return sign : '00000 0000000000 ;
elsif N == 32 then
return sign : '00000000 000 '
else
return sign : '00000000000 00" ;
// FPTwo()

J/——

bits(N) FPTwo(integer N)
assert N IN {32,64};
if N == 32 then
return '0 1 00 00 '3
else
return '0 10000000000 00" ;

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-73
Non-Confidential

A2 Application Level Programmers’ Mo

del

A2.7 Floating-point data types and arithmetic

// FPThree()
/] mmmm==s

bits(N) FPThree(integer N)
assert N IN {32,64};

if N == 32
return
else

return '0 10000000000 1000" ;

// FPMaxNormal(

then
'0 1

)

/R

bits(N) FPMaxNormal(bit sign, integer N)

assert N IN {16,32,64};

if N == 16
return

elsif N ==
return

else
return

// FPInfinity()
/] =====mm=e=s

then
sign :
32 then
sign :

sign :

'11110 1111111111";

'11111110 1111111111111713111111111°;

'11111111110 111111111111111111111111111112121111117121111111111212211°;

bits(N) FPInfinity(bit sign, integer N)

assert N IN {16,32,64};

if N == 16
return

elsif N ==
return

else
return

// FPDefauTltNaN
/] ====m=mmm===

bits(N) FPDefaultNaN(integer N)
assert N IN {16,32,64};

if N == 16
return

elsif N ==
return

else
return

Note

then
sign :
32 then
sign :

sign :

O

then

'11111 0000000000" ;

'11111111 000

'0 11111 1000000000' ;

32 then

'0 11111111 10000000000000000000000" ;

'0 11111111111 10000

11111111111 00 ' ;

This definition of FPDefaultNaN() applies to VFPv4, VFPv4U, VFPv3, and VFPv3U implementations. For VFPv2,

the sign bit of the result is a single-bit UNKNOWN value, instead of 0.

A2-74 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

ARM DDI 0406C.b

ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

Floating-point negation and absolute value

The floating-point negation and absolute value operations only affect the sign bit. They do not treat NaN operands
specially, nor denormalized number operands when flush-to-zero is selected.

// FPNeg()
/] =======

bits(N) FPNeg(bits(N) operand)
assert N IN {32,64};
return NOT(operand<N-1>) : operand<N-2:0>;

// FPAbs()

bits(N) FPAbs(bits(N) operand)
assert N IN {32,64};
return '0' : operand<N-2:0>;

Floating-point value unpacking

The FPUnpack() function determines the type and numerical value of a floating-point number. It also does
flush-to-zero processing on input operands.

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};
// FPUnpack()

/] ==========

/!

// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)

/!

// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(FPType, bit, real) FPUnpack(bits(N) fpval, bits(32) fpscr_val)
assert N IN {16,32,64};

if N == 16 then
sign = fpval<15>;
exp = fpval<14:10>;
frac = fpval<9:0>;
if IsZero(exp) then
// Produce zero if value is zero
if IsZero(frac) then
type = FPType_Zero; value = 0.0;
else
type = FPType_Nonzero; value = 2A-14 « (UInt(frac) = 2A-10);
elsif IsOnes(exp) & fpscr_val<26> == '0' then // Infinity or NaN in IEEE format
if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;
else
type = if
value = 0

frac<9> == '1' then FPType_QNaN else FPType_SNaN;
.0;
else
type = FPType_Nonzero; value = 2A(UInt(exp)-15) = (1.0 + UInt(frac) = 2A-10);

elsif N == 32 then

sign = fpval<3l>;
exp = fpval<30:23>;
frac = fpval<22:0>;
if IsZero(exp) then
// Produce zero if value is zero or flush-to-zero is selected.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-75
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

elsi

else

if IsZero(frac) || fpscr_val<24> == '1' then

type = FPType_Ze
if !IsZero(frac)

ro; va
then

Tue = 0.0;
// Denormalized input flushed to zero

FPProcessException(FPExc_InputDenorm, fpscr_val);

else
type = FPType_No
f IsOnes(exp) then
if IsZero(frac) then
type = FPType_In
else
type = if
0

1:
value = 0.0;

type = FPType_Nonzero;

else // N == 64

sign
exp
frac
if I

elsi

else

= fpval<63>;

= fpval<62:52>;
= fpval<51:0>;
sZero(exp) then

nzero;

finity;

value = 2A-126 = (UInt(frac) = 2A-23);

value = 2A1000000;

rac<22> == 'l' then FPType_QNaN else FPType_SNaN;

// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac) || fpscr_val<24> == '1' then

type = FPType_Ze

ro; va

Tue = 0.0;

if !IsZero(frac) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpscr_val);

else
type = FPType_No
f IsOnes(exp) then
if IsZero(frac) then
type = FPType_In
else
type = if
0

.F
value = 0.0;

type = FPType_Nonzero;

if sign == '1' then value =
return (type, sign, value);

nzero;

finity;

-value;

value = 2A-1022 « (UInt(frac) = 2A-52);

value = 2A1000000;

rac<51> == '1' then FPType_QNaN else FPType_SNaN;

Floating-point exception and NaN handling

value = 2A(UInt(exp)-127) = (1.0 + UInt(frac) = 2A-23);

value = 2A(UInt(exp)-1023) = (1.0 + UInt(frac) = 2A-52);

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handles it

accordin

gly:

enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};
// FPProcessException()

//

//

// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

FPProcessException(FPExc exception, bits(32) fpscr_val)
// Get appropriate FPSCR bit numbers
case exception of

when
when
when
when
when
when

FPExc_InvalidOp
FPExc_DivideByZero
FPExc_Overflow
FPExc_UnderfTow
FPExc_Inexact
FPExc_InputDenorm

if fpscr_val<enable> then
IMPLEMENTATION_DEFINED floating-point trap handling;

else

FPSC

R<cumul> = '1";

enable =

enable
enable
enable
enable
enable

8; cumul = 0;
=9; cumul = 1;
= 10; cumul = 2;
= 11; cumul = 3;
=12; cumul = 4;
=15; cumul = 7;

A2-76

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

ARM DDI 0406C.b
ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

return;

The FPProcessNaN() function processes a NaN operand, producing the correct result value and generating an Invalid
Operation exception if necessary:

// FPProcessNaN()

/!

// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPProcessNaN(FPType type, bits(N) operand, bits(32) fpscr_val)
assert N IN {32,64};
topfrac = if N == 32 then 22 else 51;
result = operand;
if type == FPType_SNaN then
result<topfrac> = '1';
FPProcessException(FPExc_InvalidOp, fpscr_val);
if fpscr_val<25> == '1' then // DefaultNaN requested
result = FPDefaultNaN(N);
return result;

The FPProcessNaNs() function performs the standard NaN processing for a two-operand operation:

// FPProcessNaNs()

/| ===============

/!

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

/!

// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(booTean, bits(N)) FPProcessNaNs(FPType typel, FPType type2,
bits(N) opl, bits(N) op2,
bits(32) fpscr_val)
assert N IN {32,64};
if typel == FPType_SNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif typel == FPType_QNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
else
done = FALSE; result = Zeros(N); // 'Don't care' result
return (done, result);

The FPProcessNaNs3() function performs the standard NaN processing for a three-operand operation:

// FPProcessNaNs3()

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

/!

// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(booTean, bits(N)) FPProcessNaNs3(FPType typel, FPType type2, FPType type3,
bits(N) opl, bits(N) op2, bits(N) op3,
bits(32) fpscr_val)

assert N IN {32,64};
if typel == FPType_SNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_SNaN then

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-77
Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif type3 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val);
elsif typel == FPType_QNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type2, op
elsif type3 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val);
else

done = FALSE; result = Zeros(N); // 'Don't care' result
return (done, result);

N

, fpscr_val);

Floating-point rounding

The FPRound() function rounds and encodes a floating-point result value to a specified destination format. This
includes processing Overflow, Underflow and Inexact floating-point exceptions and performing flush-to-zero
processing on result values.

// FPRound()

/!

// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPRound(real result, integer N, bits(32) fpscr_val)
assert N IN {16,32,64};
assert result != 0.0;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then
minimum_exp = -14; E =5; F = 10;
elsif N == 32 then
minimum_exp = -126; E = 8; F = 23;
else // N == 64
minimum_exp = -1022; E = 11; F = 52;

// Split value into sign, unrounded mantissa and exponent.
if result < 0.0 then

sign = '1'; mantissa = -result;
else

sign = 'Q'; mantissa = result;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// Deal with flush-to-zero.
if fpscr_val<24> == '1' & N != 16 && exponent < minimum_exp then

result = FPZero(sign, N);

FPSCR.UFC = '1"; // Flush-to-zero never generates a trapped exception
else

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, Tower values @ (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);

if biased_exp == @ then mantissa = mantissa / 2A(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the "units in Tlast place" rounding error.
int_mant = RoundDown(mantissa = 2AF); // < 2AF if biased_exp == 0, >= 2AF if not
error = mantissa = 2AF - int_mant;

// Underflow occurs if exponent is too small before rounding, and result is inexact or

// the Underflow exception is trapped.

if biased_exp == 0 && (error != 0.0 || fpscr_val<ll> == '1') then
FPProcessException(FPExc_Underflow, fpscr_val);

A2-78

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

// Round result according to rounding mode.
case fpscr_val<23:22> of
when '00' // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
overflow_to_inf = TRUE;
when '01' // Round towards PTus Infinity
round_up = (error != 0.0 & sign == '0');
overflow_to_inf = (sign == '0');
when '10" // Round towards Minus Infinity
round_up = (error != 0.0 & sign == '1');
overflow_to_inf = (sign == '1');
when '11' // Round towards Zero
round_up = FALSE;
overflow_to_inf = FALSE;
if round_up then
int_mant = int_mant + 1;
if int_mant == 2AF then // Rounded up from denormalized to normalized
biased_exp = 1;
if int_mant == 2A(F+1) then // Rounded up to next exponent
biased_exp = biased_exp + 1; dint_mant = int_mant DIV 2;

// Deal with overflow and generate result.
if N 1= 16 || fpscr_val<26> == '@' then // Single, double or IEEE half precision
if biased_exp >= 2AE - 1 then
result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
FPProcessException(FPExc_Overflow, fpscr_val);
error = 1.0; // Ensure that an Inexact exception occurs
else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;
else // Alternative half precision
if biased_exp >= 2AE then
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
error = 0.0; // Ensure that an Inexact exception does not occur
else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;

// Deal with Inexact exception.
if error != 0.0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;

Selection of ARM standard floating-point arithmetic

The StandardFPSCRValue() function returns the FPSCR value that selects ARM standard floating-point arithmetic.
Most of the arithmetic functions have a Boolean fpscr_controlled argument that is TRUE for Floating-point
operations and FALSE for Advanced SIMD operations, and that selects between using the real FPSCR value and this
value.

// StandardFPSCRValue()
//

bits(32) StandardFPSCRValue()
return '00000' : FPSCR<26> : '11000000000000000000000000";

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-79
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

Floating-point comparisons

The FPCompare() function compares two floating-point numbers, producing a {N, Z, C, V} condition flags result as
shown in Table A2-9:

Table A2-9 Effect of a Floating-point comparison on the condition flags

Comparisonresut N Z C V

Equal 0 1 1 0
Less than 1 0 0 0
Greater than 0 0 1 0
Unordered 0 0 1 1

This result defines the operation of the VCMP instruction in the Floating-point Extension. The VCMP instruction writes
these flag values in the FPSCR. After using a VMRS instruction to transfer them to the APSR, they can control
conditional execution as shown in Table A8-1 on page A8-288.

// FPCompare()
/] ==mmmmmm==s

(bit, bit, bit, bit) FPCompare(bits(N) opl, bits(N) op2, boolean quiet_nan_exc,
boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = ('0','0",'1",'1");
if typel==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
if valuel == value2 then
result = ('0','1",'1",'0");
elsif valuel < value2 then
result = ('1','0','0','0");
else // valuel > value2
result = ('0','0",'1",'0");
return result;

The FPCompareEQ(), FPCompareGE() and FPCompareGT() functions describe the operation of Advanced SIMD
instructions that perform floating-point comparisons.

// FPCompareEQ()
/] =====mm======

boolean FPCompareEQ(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
if typel==FPType_SNaN || type2==FPType_SNaN then

FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel == value2);

return result;

A2-80

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

// FPCompareGE()
/] ==m=mmmmmmees

boolean FPCompareGE(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// ATT1 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel >= value2);

return result;

// FPCompareGT()
/] ==m=m=mmmmees

boolean FPCompareGT(bits(32) opl, bits(32) op2, boolean fpscr_controlled)

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpscr_val);

else
// A11 non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (valuel > value2)

return result;

Floating-point maximum and minimum

// FPMax()
J/—

bits(N) FPMax(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
if valuel > value2 then
(type,sign,value) = (typel,signl,valuel);
else
(type,sign,value) = (type2,sign2,value2);
if type == FPType_Infinity then
result = FPInfinity(sign, N);
elsif type == FPType_Zero then
sign = signl AND sign2; // Use most positive sign
result = FPZero(sign, N);
else
result = FPRound(value, N, fpscr_val);
return result;

// FPMin()
J/—

bits(N) FPMin(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
if valuel < value2 then

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-81
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

(type,sign,value) = (typel,signl,valuel);
else

(type,sign,value) = (type2,sign2,value2);
if type == FPType_Infinity then

result = FPInfinity(sign, N);
elsif type == FPType_Zero then

sign = signl OR sign2; // Use most negative sign

result = FPZero(sign, N);
else

result = FPRound(value, N, fpscr_val);

return result;

Floating-point addition and subtraction

// FPAdd()
J/———

bits(N) FPAdd(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == NOT(sign2) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl & signl == '0') || (inf2 && sign2 == '0') then
result = FPInfinity('0', N);
elsif (infl && signl == '1") || (inf2 && sign2 == '1') then
result = FPInfinity('1", N);
elsif zerol & zero2 &% signl == sign2 then
result = FPZero(signl, N);
else
result_value = valuel + value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == '10' then '1l' else '0';
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

// FPSub()
/] =======

bits(N) FPSub(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == sign2 then
result = FPDefauTtNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl && signl == '0") || (inf2 && sign2 == '1') then
result = FPInfinity('0', N);
elsif (infl & signl == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1l', N);
elsif zerol &% zero2 && signl == NOT(sign2) then
result = FPZero(signl, N);
else
result_value = valuel - value2;

A2-82 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == '10' then '1l' else '0';

result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

Floating-point multiplication and division

// FPMuT()
/.

bits(N) FPMul(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then

infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);

if (infl && zero2) || (zerol && inf2) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || inf2 then
result_sign = if signl == sign2 then '0' else 'l';
result = FPInfinity(result_sign, N);
elsif zerol || zero2 then
result_sign = if signl == sign2 then '0' else '1';
result = FPZero(result_sign, N);
else
result = FPRound(valuelzvalue2, N, fpscr_val);
return result;
// FPDiv()
/] =======

bits(N) FPDiv(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then

infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);

zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && inf2) || (zerol && zero2) then
result = FPDefauTtNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || zero2 then
result_sign = if signl == sign2 then '0' else 'l';
result = FPInfinity(result_sign, N);
if linfl then FPProcessException(FPExc_DivideByZero);
elsif zerol || inf2 then
result_sign = if signl == sign2 then '0' else 'l';
result = FPZero(result_sign, N);
else
result = FPRound(valuel/value2, N, fpscr_val);
return result;

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

A2-83

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

Floating-point fused multiply-add

// FPMulAdd()
/!
// Calculates addend + oplxop2 with a single rounding.

bits(N) FPMulAdd(bits(N) addend, bits(N) opl, bits(N) op2,
booTean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typeA,signA,valueA) = FPUnpack(addend, fpscr_val);
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
infl = (typel == FPType_Infinity); zerol = (typel == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
(done, result) = FPProcessNaNs3(typeA, typel, type2, opA, opl, op2, fpscr_val);

if typeA == FPType_QNaN && ((infl && zero2) || (zerol & inf2)) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an Invalid
// Operation.

signP = if signl == sign2 then '0' else '1';

infP = infl || inf2;

zeroP = zerol || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
// additions of opposite-signed infinities.
if (infl && zero2) || (zerol && inf2) || (infA & infP && signA == NOT(signP)) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0") || (infP && signP == '0') then

result = FPInfinity('0', N);
elsif (infA & signA == '1') || (infP && signP == '1") then

result = FPInfinity('1l', N);

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA & zeroP && signA == signP then

result = FPZero(signA, N);

// Otherwise calculate numerical result and round it.
else
result_value = valueA + (valuel = value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == '10' then '1' else '0';
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);

return result;

A2-84 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

Floating-point reciprocal estimate and step

The Advanced SIMD Extension includes instructions that support Newton-Raphson calculation of the reciprocal of

a number.

The VRECPE instruction produces the initial estimate of the reciprocal. It uses the following pseudocode functions:

// FPRecipEstimate()

bits(32) FPRecipEstimate(bits(32) operand)

(type,sign,

if type ==
result
elsif type
result
elsif type
result

value) = FPUnpack(operand, StandardFPSCRValue());
FPType_SNaN || type == FPType_QNaN then

= FPProcessNaN(type, operand, StandardFPSCRValue());
== FPType_Infinity then

= FPZero(sign, 32);

== FPType_Zero then

= FPInfinity(sign, 32);

FPProcessException(FPExc_DivideByZero, StandardFPSCRValue());
elsif Abs(value) >= 2A126 then // Result underflows to zero of correct sign

result

= FPZero(sign, 32);

FPProcessException(FPExc_Underflow, StandardFPSCRValue());

else

// Operand must be normalized, since denormalized numbers are flushed to zero. Scale to a
// doubTle-precision value in the range 0.5 <= x < 1.0, and calculate result exponent.

// Scaled value is positive, with:

// exponent = 1022 = double-precision representation of 2A(-1)

// fraction = original fraction extended with zeros.

scaled

result_

= 'Q 01111111110" : operand<22:0> : Zeros(29)
exp = 253 - UInt(operand<30:23>); // In range 253-252 = 1 to 253-1 = 252

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_estimate(scaled);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256. Convert
// to scaled single-precision result with the original sign bit, the copied high-order
// fraction bits, and the exponent calculated above.

result

= sign : result_exp<7:0> : estimate<51:29>;

return result;

// UnsignedRecipEstimate()

//

bits(32) UnsignedRecipEstimate(bits(32) operand)

if operand<31> == '0' then // Operands <= Ox7FFFFFFF produce OxFFFFFFFF

result
else

= Ones(32);

// Generate double-precision value = operand % 2A(-32). This has zero sign bit, with:

//
//

exponent = 1022 = double-precision representation of 2A(-1)
fraction taken from operand, excluding its most significant bit.

dp_operand = '@ 01111111110" : operand<30:0> : Zeros(21)

// Cal11 C function to get reciprocal estimate of scaled value.
estimate = recip_estimate(dp_operand);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
// Multiply by 2A31 and convert to an unsigned integer - this just involves
// concatenating the implicit units bit with the top 31 fraction bits.

result

= "1" : estimate<51:21>;

return result;

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-85

ID072512

Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

where recip_estimate() is defined by the following C function:

double recip_estimate(double a)

{
int q, s;
double r;
q = (int)(a = 512.0); /% a in units of 1/512 rounded down =/
r=1.0/ (((double)g + 0.5) / 512.0); /* reciprocal r =/
s = (int)(256.0 = r + 0.5); /+ r in units of 1/256 rounded to nearest =/
return (double)s / 256.0;

}

Table A2-10 shows the results where input values are out of range.

Table A2-10 VRECPE results for out of range inputs

Number type Input Vm[i] Result Vd[i]
Integer <= OX7FFFFFFF OXFFFFFFFF
Floating-point NaN Default NaN
Floating-point +0 or denormalized number +infinity 2
Floating-point +infinity +0
Floating-point Absolute value >= 2126 +0

a. FPSCR.DZCissetto 1

The Newton-Raphson iteration:
Xni1 = Xn(2-dXp)
converges to (1/d) if xp is the result of VRECPE applied to d.

The VRECPS instruction performs a (2 - op1xop2) calculation and can be used with a multiplication to perform a
step of this iteration. The functionality of this instruction is defined by the following pseudocode function:

// FPRecipStep()

bits(32) FPRecipStep(bits(32) opl, bits(32) op2)
(typel,signl,valuel) = FPUnpack(opl, StandardFPSCRValue());
(type2,sign2,value2) = FPUnpack(op2, StandardFPSCRValue());
(done, result) = FPProcessNaNs(typel, type2, opl, op2, StandardFPSCRValue());
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
product = FPZero('Q', 32);
else
product = FPMul(opl, op2, FALSE);
result = FPSub(FPTwo(32), product, FALSE)
return result;

A2-86

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

Table A2-11 shows the results where input values are out of range.

Table A2-11 VRECPS results for out of range inputs

Input Vn[i] Input Vm[i] Result Vd[i]
Any NaN - Default NaN
- Any NaN Default NaN
+0.0 or denormalized number +infinity 2.0

+infinity +0.0 or denormalized number 2.0

Floating-point square root

// FPSart()
// mmmmmemm

bits(N) FPSqrt(bits(N) operand, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, fpscr_val);
elsif type == FPType_Zero then
result = FPZero(sign, N);
elsif type == FPType_Infinity && sign == '@' then
result = FPInfinity(sign, N);
elsif sign == '1' then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPRound(Sqrt(value), N, fpscr_val);
return result;

Floating-point reciprocal square root estimate and step

The Advanced SIMD Extension includes instructions that support Newton-Raphson calculation of the reciprocal of

the square root of a number.

The VRSQRTE instruction produces the initial estimate of the reciprocal of the square root. It uses the following
pseudocode functions:

// FPRSqrtEstimate()
/] =================

bits(32) FPRSqrtEstimate(bits(32) operand)

(type,sign,value) = FPUnpack(operand, StandardFPSCRValue());
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, StandardFPSCRValue());
elsif type == FPType_Zero then
result = FPInfinity(sign, 32);
FPProcessException(FPExc_DivideByZero, StandardFPSCRValue());
elsif sign == '1' then
result = FPDefaultNaN(32);
FPProcessException(FPExc_InvalidOp, StandardFPSCRValue());
elsif type == FPType_Infinity then
result = FPZero('0', 32);
else
// Operand must be normalized, since denormalized numbers are flushed to zero. Scale to a
// doubTle-precision value in the range 0.25 <= x < 1.0, with the evenness or oddness of
// the exponent unchanged, and calculate result exponent.
// Scaled value has positive sign bit, with:

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-87

Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

// exponent = 1022 or 1021 = double-precision representation of 2A(-1) or 2A(-2)
// fraction = original fraction extended with zeros.
if operand<23> == '0' then
scaled = '0 01111111110" : operand<22:0> : Zeros(29)
else
scaled = '0 01111111101" : operand<22:0> : Zeros(29)
result_exp = (380 - UInt(operand<30:23>)) DIV 2;

// Call C function to get reciprocal estimate of scaled value.
estimate = recip_sqrt_estimate(scaled);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256. Convert
// to scaled single-precision result with positive sign bit and high-order fraction bits,
// and exponent calculated above.

result = '0' : result_exp<7:0> : estimate<51:29>;

return result;

// UnsignedRSqrtEstimate()
/!

bits(32) UnsignedRSqrtEstimate(bits(32) operand)

if operand<31:30> == '00' then // Operands <= Ox3FFFFFFF produce OxFFFFFFFF
result = Ones(32);
else
// Generate double-precision value = operand = 2A(-32). This has zero sign bit, with:
// exponent = 1022 or 1021 = double-precision representation of 2A(-1) or 2A(-2)
// fraction taken from operand, excluding its most significant one or two bits.
if operand<31> == '1' then
dp_operand = '0 01111111110"' : operand<30:0> : Zeros(21)
else // operand<31:30> == '01'
dp_operand = 'Q 01111111101" : operand<29:0> : Zeros(22);

// Cal11 C function to get reciprocal estimate of scaled value.
estimate = recip_sqrt_estimate(dp_operand);

// Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
// Multiply by 2A31 and convert to an unsigned integer - this just involves

// concatenating the implicit units bit with the top 31 fraction bits.

result = '1' : estimate<51:21>;

return result;
where recip_sqrt_estimate() is defined by the following C function:

double recip_sqrt_estimate(double a)
{
int 0, ql, s;
doubTe r;
if (a < 0.5) /+ range 0.25 <= a < 0.5 */

n units of 1/512 rounded down s/

g0 = (int)(a = 512.0); /% ai
0.5) / 512.0); / reciprocal root r =/

a
r=1.0/ sqrt(((double)qd + 0.5)
}
else /% range 0.5 <=a < 1.0 /
{
gl = (int)(a = 256.0); /x
0.

r=1.0/ sqrt(((double)ql +

a in units of 1/256 rounded down =/

5) / 256.0); /« reciprocal root r =/

}

s = (int)(256.0 * r + 0.5); /+ r in units of 1/256 rounded to nearest x/

return (double)s / 256.0;

A2-88

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

Table A2-12 shows the results where input values are out of range.

Table A2-12 VRSQRTE results for out of range inputs

Number type Input Vm[i] Result Vd[i]
Integer <= Ox3FFFFFFF OXFFFFFFFF
Floating-point NaN, —(normalized number), —infinity =~ Default NaN
Floating-point —0 or —(denormalized number) — infinity 2

Floating-point

Floating-point

+0 or +(denormalized number)

+infinity

+infinity 2

+0

a. FPSCR.DZCissetto 1.

The Newton-Raphson iteration:

Xm1 = Xn(3-dxs2)/2

converges to (1/Vd) if xg is the result of VRSQRTE applied to d.

The VRSQRTS instruction performs a (3 — op1xop2)/2 calculation and can be used with two multiplications to perform
a step of this iteration. The FPRSqrtStep() pseudocode function defines the functionality of this instruction:

// FPRSqrtStep()

bits(32) FPRSqrtStep(bits(32) opl, bits(32) op2)

(typel,signl,valuel) = FPUnpack(opl, StandardFPSCRValue());
(type2,sign2,value2) = FPUnpack(op2, StandardFPSCRValue());
(done, result) = FPProcessNaNs(typel, type2, opl, op2, StandardFPSCRValue());

if !done then

infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);

zerol = (typel == FPType_Zero); zero2 =

if (infl && zero2) || (zerol & inf2) then
product = FPZero('0', 32);

else
product = FPMul(opl, op2, FALSE);

(type2 == FPType_Zero);

result = FPHalvedSub(FPThree(32), product, FALSE);

return result;

Table A2-13 shows the results where input values are out of range.

Table A2-13 VRSQRTS results for out of range inputs

Input Vnl[i] Input Vm([i] Result Vd[i]
Any NaN - Default NaN
- Any NaN Default NaN
+0.0 or denormalized number +infinity 1.5
+infinity +0.0 or denormalized number 1.5

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-89

ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

FPRSqrtStep() calls the FPHalvedSub() pseudocode function:

// FPHalvedSub()
/R

bits(N) FPHalvedSub(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done, result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == sign2 then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl & signl == '0') || (inf2 && sign2 == '1") then
result = FPInfinity('0', N);
elsif (infl && signl == '1") || (inf2 && sign2 == 'Q') then
result = FPInfinity('1", N);
elsif zerol && zero2 &% signl == NOT(sign2) then
result = FPZero(signl, N);
else
result_value = (valuel - value2) / 2.0;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == '10' then '1l' else '0';
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

Floating-point conversions
The following functions perform conversions between half-precision and single-precision floating-point numbers.

// FPHalfToSingle()
// ================

bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == '1' then // DN bit set
result = FPDefaultNaN(32);
else
result = sign : '11111111 1' : operand<8:0> : Zeros(13);
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type == FPType_Infinity then
result = FPInfinity(sign, 32);
elsif type == FPType_Zero then
result = FPZero(sign, 32);
else
result = FPRound(value, 32, fpscr_val); // Rounding will be exact
return result;

// FPSingleToHalf()
e

bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<26> == '1' then // AH bit set
result = FPZero(sign, 16);
elsif fpscr_val<25> == '1' then // DN bit set

A2-90 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

result = FPDefaultNaN(16);
else
result = sign : '11111 1' : operand<21:13>;
if type == FPType_SNaN || fpscr_val<26> == '1' then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type == FPType_Infinity then
if fpscr_val<26> == '1' then // AH bit set
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPInfinity(sign, 16);
elsif type == FPType_Zero then
result = FPZero(sign, 16);
else
result = FPRound(value, 16, fpscr_val);
return result;

The following functions perform conversions between single-precision and double-precision floating-point
numbers.

// FPSingleToDouble()
/] ====m===mmmmmmeame

bits(64) FPSingleToDouble(bits(32) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == '1' then // DN bit set
result = FPDefaultNaN(64);
else
result = sign : '11111111111 1' : operand<21:0> : Zeros(29);
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type == FPType_Infinity then
result = FPInfinity(sign, 64);
elsif type == FPType_Zero then
result = FPZero(sign, 64);
else
result = FPRound(value, 64, fpscr_val); // Rounding will be exact
return result;

// FPDoubleToSingle()
/] ===mmmmmmmmmecec—s

bits(32) FPDoubleToSingle(bits(64) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == '1' then // DN bit set
result = FPDefaultNaN(32);
else
result = sign : '11111111 1' : operand<50:29>;
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type == FPType_Infinity then
result = FPInfinity(sign, 32);
elsif type == FPType_Zero then
result = FPZero(sign, 32);
else
result = FPRound(value, 32, fpscr_val);
return result;

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-91
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.7 Floating-point data types and arithmetic

The following functions perform conversions between floating-point numbers and integers or fixed-point numbers:

// FPToFixed()
/] =

bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
boolean round_towards_zero, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
if round_towards_zero then fpscr_val<23:22> = '11';
(type,sign,value) = FPUnpack(operand, fpscr_val);

// For NaNs and infinities, FPUnpack() has produced a value that will round to the
// required result of the conversion. Also, the value produced for infinities will
// cause the conversion to overflow and signal an Invalid Operation floating-point
// exception as required. NaNs must also generate such a floating-point exception.
if type == FPType_SNaN || type == FPType_QNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);

// Scale value by specified number of fraction bits, then start rounding to an integer
// and determine the rounding error.

value = value = 2Afraction_bits;

int_result = RoundDown(value);

error = value - int_result;

// Apply the specified rounding mode.
case fpscr_val<23:22> of
when '00' // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
when '01' // Round towards Plus Infinity
round_up = (error != 0.0);
when '10' // Round towards Minus Infinity
round_up = FALSE;
when '11' // Round towards Zero
round_up = (error != 0.0 & int_result < 0);
if round_up then int_result = int_result + 1;

// Bitstring result is the integer result saturated to the destination size, with
// saturation indicating overflow of the conversion (signaled as an Invalid
// Operation floating-point exception).
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif error != 0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;

// FixedToFP()
I ———

bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,
boolean round_to_nearest, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
if round_to_nearest then fpscr_val<23:22> = '00';
int_operand = if unsigned then UInt(operand) else SInt(operand);
real_operand = int_operand / 2Afraction_bits;
if real_operand == 0.0 then
result = FPZero('0', N);
else
result = FPRound(real_operand, N, fpscr_val);
return result;

A2-92 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A2 Application Level Programmers’ Model
A2.8 Polynomial arithmetic over {0, 1}

A2.8 Polynomial arithmetic over {0, 1}

Some Advanced SIMD instructions can operate on polynomials over {0, 1}, see Data types supported by the
Advanced SIMD Extension on page A2-59. The polynomial data type represents a polynomial in x of the form
by 1x01 + ... +bix + by where by is bit[k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:
. 0+0=1+1=0

. 0+1=1+0=1

. 0x0=0x1=1x0=0

. Ix1=1.

That is:

. adding two polynomials over {0, 1} is the same as a bitwise exclusive OR

. multiplying two polynomials over {0, 1} is the same as integer multiplication except that partial products are

exclusive-ORed instead of being added.

Note

The instructions that can perform polynomials arithmetic over {0, 1} are VUL and VMULL, see VMUL, VMULL
(integer and polynomial) on page A8-958.

A2.8.1 Pseudocode details of polynomial multiplication

In pseudocode, polynomial addition is described by the EOR operation on bitstrings.
Polynomial multiplication is described by the PolynomialMult() function:

// PolynomialMult()
// ================

bits(M+N) PolynomialMult(bits(M) opl, bits(N) op2)
result = Zeros(M+N);
extended_op2 = Zeros(M) : op2;
for i=0 to M-1
if opl<i> == 'l' then
result = result EOR LSL(extended_op2, i);
return result;

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-93
Non-Confidential

A2 Application Level Programmers’ Model

A2.9 Coprocessor support

A2.9

Coprocessor support

The ARM architecture supports coprocessors, to extend the functionality of an ARM processor. The coprocessor
instructions summarized in Coprocessor instructions on page A4-180 provide access to sixteen coprocessors,
described as CPO to CP15. The following coprocessors are reserved by ARM for specific purposes:

Coprocessor 15 (CP15) provides system control functionality. This includes architecture and feature
identification, as well as control, status information and configuration support.

For a VMSA implementation, the following sections give a general description of CP15:

— About the system control registers for VMSA on page B3-1444

— Organization of the CP15 registers in a VMSA implementation on page B3-1469

— Functional grouping of VMSAv7 system control registers on page B3-1491.

For a PMSA implementation, the following sections give a general description of CP15:

— About the system control registers for PMSA on page B5-1772

— Organization of the CP15 registers in a PMSA implementation on page B5-1785

— Functional grouping of PMSAv7 system control registers on page B5-1797.

CP15 also provides performance monitor registers, see Chapter C12 The Performance Monitors Extension.

Coprocessor 14 (CP14) supports:

— debug, see Chapter C6 Debug Register Interfaces

— the Thumb Execution Environment, see Thumb Execution Environment on page A2-95

— direct Java bytecode execution, see Jazelle direct bytecode execution support on page A2-97.

Coprocessors 10 and 11 (CP10 and CP11) together support floating-point and vector operations, and the
control and configuration of the Floating-point and Advanced SIMD architecture extensions.

Coprocessors 8, 9, 12, and 13 are reserved for future use by ARM. Any coprocessor access instruction
attempting to access one of these coprocessors is UNDEFINED.

Note

In an implementation that includes either or both of the Advanced SIMD Extension and the Floating-point (VFP)
Extension, to permit execution of any floating-point or Advanced SIMD instructions, software must enable access
to both CP10 and CP11, see Enabling Advanced SIMD and floating-point support on page B1-1228.

The following sections give information more information about permitted accesses to coprocessors CP14 and

CP15:

UNPREDICTABLE and UNDEFINED behavior for CP14 and CP15 accesses on page B3-1446, for a
VMSA implementation

UNPREDICTABLE and UNDEFINED behavior for CP14 and CP15 accesses on page B5-1774, fora PMSA
implementation.

Most CP14 and CP15 functions cannot be accessed by software executing at PLO. This manual clearly identifies
those functions that can be accessed at PLO.

Software executing at PL1 can enable the unprivileged execution of all load, store, branch and data operation
instructions associated with floating-point, Advanced SIMD and execution environment support.

Coprocessors 0 to 7 can provide vendor-specific features.

A2-94

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.10 Thumb Eecution Environment

A2.10 Thumb Execution Environment

Thumb Execution Environment (ThumbEE) is a variant of the Thumb instruction set designed as a target for
dynamically generated code. This is code that is compiled on the device, from a portable bytecode or other
intermediate or native representation, either shortly before or during execution. ThumbEE provides support for
Just-In-Time (JIT), Dynamic Adaptive Compilation (DAC), and Ahead-Of-Time (AOT) compilers, but cannot
interwork freely with the ARM and Thumb instruction sets.

From the publication of issue C.a of this manual, ARM deprecates any use of the ThumbEE instruction set.

ThumbEE is particularly suited to languages that feature managed pointers and array types. The processor executes
ThumbEE instructions when it is in the ThumbEE instruction set state. For information about instruction set states
see Instruction set state register, ISETSTATE on page A2-50.

ThumbEE is both the name of the instruction set and the name of the extension that provides support for that
instruction set. The ThumbEE Extension is:

. required in implementations of the ARMv7-A profile
. optional in implementations of the ARMv7-R profile.

See Thumb Execution Environment on page B1-1239 for system level information about ThumbEE.

A2.10.1 ThumbEE instructions

In ThumbEE state, the processor executes almost the same instruction set as in Thumb state. However some
instructions behave differently, some are removed, and some ThumbEE instructions are added.

The key differences are:

. additional instructions to change instruction set in both Thumb state and ThumbEE state
. new ThumbEE instructions to branch to handlers

. null pointer checking on load/store instructions executed in ThumbEE state

. an additional instruction in ThumbEE state to check array bounds

. some other modifications to load, store, and control flow instructions.

For more information about the ThumbEE instructions see Chapter A9 The ThumbEE Instruction Set.

A2.10.2 ThumbEE configuration

ThumbEE introduces two new CP14 registers, that Table A2-14 shows. These are 32-bit registers:

Table A2-14 ThumbEE register summary

Name, VMSA2 Name, PMSA2 CRn opc1 CRm opc2 Width Type Description

TEECR TEECR c0 6 c0 0 32-bit RW ThumbEE Configuration Register

TEEHBR TEEHBR cl 6 c0 0 32-bit RW ThumbEE Handler Base Register

a. VMSA and PMSA definitions of the register fields are identical. These columns link to the descriptions in Chapter B4 and in Chapter B6.

ThumbEE is an unprivileged, user-level facility, and there are no special provisions for using it securely. For more
information, see ThumbEE and the Security Extensions and Virtualization Extensions on page B1-1239.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-95
ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.10 Thumb Eecution Environment

Use of HandlerBase

ThumbEE handlers are entered by reference to a HandlerBase address, defined by the TEEHBR. In addition to the
handlers for IndexCheck and NullCheck, there are 256 handlers, Handler 00 to Handler FF, at 32-byte offsets from
HandlerBase. Table A2-15 shows the arrangement of handlers relative to the value of HandlerBase:

Table A2-15 Access to ThumbEE handlers

Offset from HandlerBase = Name Value stored

-0x0008 IndexCheck Branch to IndexCheck handler
-0x0004 NullCheck Branch to NullCheck handler
0x0000 Handler 00 Implementation of Handler 00
0x0020 Handler 01 Implementation of Handler 01
0x1FCO Handler FE Implementation of Handler FE
0x1FEQ Handler FF Implementation of Handler FF

The IndexCheck occurs when a CHKA instruction detects an index out of range. For more information, see CHKA on
page A9-1124.

The NullCheck occurs when any memory access instruction is executed with a value of 0 in the base register. For
more information, see Null checking on page A9-1113.

Note
Checks are similar to conditional branches, with the added property that they clear the IT bits when taken.

The other handlers are called using explicit handler call instructions:
. HB and HBL can call any handler, that is, can call Handler 00-Handler FF
. HBLP and HBP can call only Handler 00-Handler 31.

For more information see the following instruction descriptions:
. HB, HBL on page A9-1125

. HBLP on page A9-1126

. HBP on page A9-1127.

A2-96

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.11 Jazelle direct bytecode ercution support

A2.11 Jazelle direct bytecode execution support

From ARMvVS5TEJ, the architecture requires every system to include an implementation of the Jazelle extension. The
Jazelle extension provides architectural support for hardware acceleration of bytecode execution by a Java Virtual
Machine (JVM).

In the simplest implementations of the Jazelle extension, the processor does not accelerate the execution of any
bytecodes, and the JVM uses software routines to execute all bytecodes. Such an implementation is called a trivial
implementation of the Jazelle extension, and has minimal additional cost compared with not implementing the
Jazelle extension at all. An implementation that provides hardware acceleration of bytecode execution is a
non-trivial Jazelle implementation.

The Virtualization Extensions require that the Jazelle implementation is the trivial Jazelle implementation.
These requirements for the Jazelle extension mean a JVM can be written to both:
. function correctly on all processors that include a Jazelle extension implementation

. automatically take advantage of the accelerated bytecode execution provided by a processor that includes a
non-trivial implementation.

A non-trivial implementation of the Jazelle extension implements a subset of the bytecodes in hardware, choosing
bytecodes that:

. can have simple hardware implementations

. account for a large percentage of bytecode execution time.

The required features of a non-trivial implementation are:

. provision of the Jazelle state

. a new instruction, BXJ, to enter Jazelle state

. system support that enables an operating system to regulate the use of the Jazelle extension hardware
. system support that enables a JVM to configure the Jazelle extension hardware to its specific needs.

The required features of a trivial implementation are:

. Normally, the Jazelle instruction set state is never entered. In some implementations, an incorrect exception
return can cause entry to the Jazelle instruction set state. If this happens, the next instruction executed is
treated as UNDEFINED. For more information, see Unimplemented instruction sets on page B1-1155.

. The BXJ instruction behaves as a BX instruction.
. Configuration support that maintains the interface to the Jazelle extension is permanently disabled.

For more information about trivial implementations see 7rivial implementation of the Jazelle extension on
page B1-1244.

A JVM that has been written to take advantage automatically of hardware-accelerated bytecode execution is called
an Enabled JVM (EJVM).

A2.11.1 Subarchitectures

A processor implementation that includes the Jazelle extension expects the ARM core register values and other
resources of the ARM processor to conform to an interface standard defined by the Jazelle implementation when
Jazelle state is entered and exited. For example, a specific ARM core register might be reserved for use as the pointer
to the current bytecode.

For an EJVM, and any associated debug support, to function correctly, it must be written to comply with the
interface standard defined by the acceleration hardware at Jazelle state execution entry and exit points.

An implementation of the Jazelle extension might define other configuration registers in addition to the
architecturally defined ones.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-97
Non-Confidential

A2 Application Level Programmers’ Model
A2.11 Jazelle direct bytecode ercution support

A2.11.2

A2.11.3

The interface standard and any additional configuration registers used for communication with the Jazelle extension
are known collectively as the subarchitecture of the implementation. They are not described in this manual. Only
EJVM implementations and debug or similar software can depend on the subarchitecture. All other software must
rely only on the architectural definition of the Jazelle extension given in this manual. A particular subarchitecture
is identified by reading the JIDR.

Jazelle state

While the processor is in Jazelle state, it executes bytecode programs. A bytecode program is defined as an
executable object that comprises one or more class files, or is derived from and functionally equivalent to one or
more class files. See The Java Virtual Machine Specification for the definition of class files.

While the processor is in Jazelle state, the PC identifies the next JVM bytecode to be executed. A JVM bytecode is
a bytecode defined in The Java Virtual Machine Specification, or a functionally equivalent transformed version of
a bytecode defined in that specification.

For the Jazelle extension, the functionality of Native methods, as described in The Java Virtual Machine
Specification, must be specified using only instructions from the ARM, Thumb, and ThumbEE instruction sets.

An implementation of the Jazelle extension must not be documented or promoted as performing any task while it is
in Jazelle state other than the acceleration of bytecode programs in accordance with this section and the descriptions
in the The Java Virtual Machine Specification.

Jazelle state entry instruction, BX]

ARMV7 includes an ARM instruction similar to BX. The BXJ instruction has a single register operand that specifies
a target instruction set state, ARM state or Thumb state, and branch target address for use if entry to Jazelle state is
not available. For more information, see BXJ on page A8-354.

Correct entry into Jazelle state involves the EJVM executing the BXJ instruction at a time when both:

. the Jazelle extension Control and Configuration registers are initialized correctly, see Application level
configuration and control of the Jazelle extension on page A2-99

. application level registers and any additional configuration registers are initialized as required by the
subarchitecture of the implementation.

Executing BXJ with Jazelle extension enabled

Executing a BXJ instruction when the JMCR.JE bit is 1 causes the Jazelle hardware to do one of the following:
. enter Jazelle state and start executing bytecodes directly from a SUBARCHITECTURE DEFINED address
. branch to a SUBARCHITECTURE DEFINED handler.

Which of these occurs is SUBARCHITECTURE DEFINED.

The Jazelle subarchitecture can use Application level registers, but not System level registers, to transfer
information between the Jazelle extension and the EJVM. There are SUBARCHITECTURE DEFINED restrictions on
what Application level registers must contain when a BXJ instruction is executed, and Application level registers
have SUBARCHITECTURE DEFINED values when Jazelle state execution ends and ARM or Thumb state execution
resumes.

Jazelle subarchitectures and implementations must not use any unallocated bits in Application level registers such
as the CPSR or FPSCR. All such bits are reserved for future expansion of the ARM architecture.
Executing BX] with Jazelle extension disabled

If a BXJ instruction is executed when the JIMCR.JE bit is 0, it is executed identically to a BX instruction with the same
register operand.

A2-98

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.11 Jazelle direct bytecode ercution support

This means that BXJ instructions can be executed freely when the JMCR.JE bit is 0. In particular, if an EIVM
determines that it is executing on a processor whose Jazelle extension implementation is trivial or uses an
incompatible subarchitecture, it can set JE to 0 and execute correctly. In this case it executes without the benefit of
any Jazelle hardware acceleration that might be present.

A211.4 Application level configuration and control of the Jazelle extension

The Jazelle extension registers are implemented as CP14 registers. Table A2-16 summarizes the
architecturally-defined Jazelle registers. Additional SUBARCHITECTURE DEFINED configuration registers might be
provided.

Table A2-16 Jazelle architecturally-defined registers summary

Name, VMSA2 Name, PMSA2 CRn opc1l CRm opc2 Width Typeb Description

JIDR JIDR c0 7 c0 0 32-bit RO Jazelle ID Register

JOSCR JOSCR cl 7 c0 0 32-bit RW Jazelle OS Control Register

JMCR JMCR c2 7 c0 0 32-bit RW Jazelle Main Configuration Register

a. VMSA and PMSA definitions of the register fields are identical. These columns link to the descriptions in Chapter B4 and Chapter B6.

b. Type, for a non-trivial Jazelle implementation. Trivial implementation of the Jazelle extension on page B1-1244 describes the register
requirements for a trivial Jazelle implementation.

An EJVM can read the JIDR to determine the architecture and subarchitecture under which it is running, and:
. the IMCR gives application level control of Jazelle operation
. the JOSCR gives OS level control of Jazelle operation

The following rules apply to all Jazelle extension control and configuration registers, including any
SUBARCHITECTURE DEFINED registers:

. Registers are accessed by CP14 MRC and MCR instructions with <opcl> set to 7.

. The values contained in configuration registers are changed only by the execution of MCR instructions. In
particular, they are never changed by Jazelle state execution of bytecodes.

. The access policy for each architecturally-defined register is fully defined in the register description. The
access policy of other configuration registers is SUBARCHITECTURE DEFINED.

When execution is unprivileged, MRC and MCR accesses that are restricted to execution at PL1 or higher are
UNDEFINED.

For more information see Access to Jazelle registers on page A2-100.

. In an implementation that includes the Security Extensions, the registers are Common registers, meaning
they are common to the Secure and Non-secure security states. For more information, see Classification of
system control registers on page B3-1451.

. When a configuration register is readable, reading the register:
— returns the last value written to it

— has no side-effects.
When a configuration register is not readable, attempting to read it returns an UNKNOWN value.

. When a configuration register can be written, the effect of writing to it must be idempotent. That is, the
overall effect of writing the same value more than once must not differ from the effect of writing it once.

Changes to these CP14 registers have the same synchronization requirements as changes to the CP15 registers.
These are described in:

. Synchronization of changes to system control registers on page B3-1461 for a VMSA implementation
. Synchronization of changes to system control registers on page B5-1777 for a PMSA implementation.

For more information, see Jazelle state configuration and control on page B1-1242.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-99
Non-Confidential

A2 Application Level Programmers’ Model
A2.11 Jazelle direct bytecode ercution support

A2.11.5 Access to Jazelle registers

For a non-trivial Jazelle implementation, Table A2-17 shows the access permissions for the Jazelle registers, and
how unprivileged access to the registers depends on the value of the JOSCR.

Table A2-17 Access to Jazelle registers in a non-trivial Jazelle implementation

Jazelle register

Unprivileged access

Access at PL1

VMSA PMSA JOSCR.CD is 0 JOSCR.CD is 1

JOSCR JOSCR Read and write access Read and write access Read and write access permitted
UNDEFINED UNDEFINED
Read access permitted Read access UNDEFINED Read access permitted

JIDR JIDR
Write access UNDEFINED ~ Write access UNDEFINED ~ Write access UNPREDICTABLE
Read access UNDEFINED .

JMCR JMCR Read and write access Read and write access permitted

Write access permitted UNDEFINED

SUBARCHITECTURE DEFINED
configuration registers

Read access UNDEFINED Read access SUBARCHITECTURE DEFINED

Read and write access
UNDEFINED

Write access permitted Write access permitted

Trivial implementation of the Jazelle extension on page B1-1244 describes the required behavior of Jazelle register
accesses for a trivial Jazelle implementation.

A2.11.6 EJVM operation
The following subsections summarize how an EJVM must operate, to meet the requirements of the architecture:
. Initialization
. Bytecode execution
. Jazelle exception conditions on page A2-101
. Other considerations on page A2-101.
Initialization
During initialization, the EJVM must first check which subarchitecture is present, by checking the Implementer and
Subarchitecture codes in the value read from the JIDR.
If the EJVM is incompatible with the subarchitecture, it must do one of the following:
. write to the JMCR with JE set to 0
. if unaccelerated bytecode execution is unacceptable, generate an error.
If the EJVM is compatible with the subarchitecture, it must write its required configuration to the JMCR and any
SUBARCHITECTURE DEFINED configuration registers.
Bytecode execution
The EJVM must contain a handler for each bytecode.
The EJVM initiates bytecode execution by executing a BXJ instruction with:
. the register operand specifying the target address of the bytecode handler for the first bytecode of the program
. the Application level registers set up in accordance with the SUBARCHITECTURE DEFINED interface standard.
The bytecode handler:
. performs the data-processing operations required by the bytecode indicated

A2-100 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.11 Jazelle direct bytecode ercution support

. determines the address of the next bytecode to be executed
. determines the address of the handler for that bytecode

. performs a BXJ to that handler address with the registers again set up to the SUBARCHITECTURE DEFINED
interface standard.

Jazelle exception conditions

During bytecode execution, the EJVM might encounter SUBARCHITECTURE DEFINED Jazelle exception conditions
that must be resolved by a software handler. For example, in the case of a configuration invalid handler, the handler
rewrites the desired configuration to the JMCR and to any SUBARCHITECTURE DEFINED configuration registers.

On entry to a Jazelle exception condition handler the contents of the Application level registers are
SUBARCHITECTURE DEFINED. This interface to the Jazelle exception condition handler might differ from the
interface standard for the bytecode handler, in order to supply information about the Jazelle exception condition.

The Jazelle exception condition handler:

. resolves the Jazelle exception condition

. determines the address of the next bytecode to be executed

. determines the address of the handler for that bytecode

. performs a BXJ to that handler address with the registers again set up to the SUBARCHITECTURE DEFINED

interface standard.

Other considerations

To ensure application execution and correct interaction with an operating system, an EJVM must only perform
operations that are permitted in unprivileged operation. In particular, for register accesses they must only:
. read the JIDR,

. write to the JMCR, and other configuration registers.

An EJVM must not attempt to access the JOSCR.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-101
Non-Confidential

A2 Application Level Programmers’ Model
A2.12 Exeptions, debug events and checks

A2.12 Exceptions, debug events and checks
ARMV7 uses the following terms to describe various types of exceptional condition:

Exceptions In the ARM architecture, an exception causes entry into a processor mode that executes software at
PL1 or PL2, and execution of a software handler for the exception.

Note

The terms floating-point exception and Jazelle exception condition do not use this meaning of
exception. These terms are described later in this list.

Exceptions include:

. reset

. interrupts

. memory system aborts
. undefined instructions

. supervisor calls (SVCs), Secure Monitor calls (SMCs), and hypervisor calls (HVCs).

Most details of exception handling are not visible to application level software, and are described in
Exception handling on page B1-1164. Aspects that are visible to application level software are:

. The SVC instruction causes a Supervisor Call exception. This provides a mechanism for
unprivileged software to make a call to the operating system, or other system component that
is accessible only at PL1.

. In an implementation that includes the Security Extensions, the SMC instruction causes a
Secure Monitor Call exception, but only if software execution is at PL1 or higher.
Unprivileged software can only cause a Secure Monitor Call exception by methods defined
by the operating system, or by another component of the software system that executes at PL1
or higher.

. In an implementation that includes the Virtualization Extensions, the HVC instruction causes
a Hypervisor Call exception, but only if software execution is at PL1 or higher. Unprivileged
software can only cause a Hypervisor Call exception by methods defined by the hypervisor,
or by another component of the software system that executes at PL1 or higher.

. The WFI instruction provides a hint that nothing needs to be done until the processor takes an
interrupt or similar exception, see Wait For Interrupt on page B1-1202. This permits the
processor to enter a low-power state until that happens.

. The WFE instruction provides a hint that nothing needs to be done until either an SEV instruction
generates an event, or the processor takes an interrupt or similar exception, see Wait For
Event and Send Event on page B1-1199. This permits the processor to enter a low-power state
until one of these happens.

Floating-point exceptions

These relate to exceptional conditions encountered during floating-point arithmetic, such as division
by zero or overflow. For more information see:

. Floating-point exceptions on page A2-70

. FPSCR, Floating-point Status and Control Register, VMSA on page B4-1569, or FPSCR,
Floating-point Status and Control Register, PMSA on page B6-1845

. ANSVIEEE Std. 754, IEEE Standard for Binary Floating-Point Arithmetic.

Jazelle exception conditions

These are conditions that cause Jazelle hardware acceleration to exit into a software handler, as
described in Jazelle exception conditions on page A2-101.

A2-102 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A2 Application Level Programmers’ Model
A2.12 Exeptions, debug events and checks

Debug events These are conditions that cause a debug system to take action. Most aspects of debug events are not
visible to application level software, and are described in Chapter C3 Debug Events. Aspects that
are visible to application level software include:

. The BKPT instruction causes a BKPT instruction debug event to occur, see BKPT instruction
debug events on page C3-2038.
. The DBG instruction provides a hint to the debug system.
Checks These are provided in the ThumbEE Extension. A check causes an unconditional branch to a
specific handler entry point. The base address of the ThumbEE check handlers is held in the
TEEHBR.
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A2-103

ID072512 Non-Confidential

A2 Application Level Programmers’ Model
A2.12 Exeptions, debug events and checks

A2-104 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Chapter A3

Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

Address space on page A3-106

Alignment support on page A3-108

Endian support on page A3-110

Synchronization and semaphores on page A3-114

Memory types and attributes and the memory order model on page A3-125
Access rights on page A3-141

Virtual and physical addressing on page A3-144

Memory access order on page A3-145

Caches and memory hierarchy on page A3-155.

Note

In this chapter, system register names usually link to the description of the register in Chapter B4 System Control
Registers in a VMSA implementation, for example SCTLR. If the register is included in a PMSA implementation,
then it is also described in Chapter B6 System Control Registers in a PMSA implementation.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-105
Non-Confidential

A3 Application Level Memory Model
A3.1 Address space

A3.1 Address space

The ARM architecture Application level memory model uses a single, flat address space of 232 8-bit bytes, covering
4GBytes. Byte addresses are treated as unsigned numbers, running from 0 to 232 - 1. The address space is also
regarded as:

. 230 32-bit words:

— the address of each word is word-aligned, meaning that the address is divisible by 4 and the least
significant bits of the address are 0b00

— the word at word-aligned address A consists of the four bytes with addresses A, A+1, A+2 and A+3.

. 231 16-bit halfwords:

— the address of each halfword is halfword-aligned, meaning that the address is divisible by 2 and the
least significant bit of the address is 0

— the halfword at halfword-aligned address A consists of the two bytes with addresses A and A+1.

In some situations the ARM architecture supports accesses to halfwords and words that are not aligned to the
appropriate access size, see Alignment support on page A3-108.

Normally, address calculations are performed using ordinary integer instructions. This means that the address wraps
around if the calculation overflows or underflows the address space. Another way of describing this is that any
address calculation is reduced modulo 232,

A3.1.1 Address space overflow or underflow

Address space overflow occurs when the memory address increments beyond the top byte of the address space at
OXFFFFFFFF. When this happens, the address wraps round, so that, for example, incrementing OxFFFFFFFF by 2 gives
a result of 0x00000001.

Address space underflow occurs when the memory address decrements below the first byte of the address space at
0x00000000. When this happens, the address wraps round, so that, for example, decrementing 0x00000002 by 4 gives
a result of OxFFFFFFFE.

When a processor performs normal sequential execution of instructions, after each instruction it finds the address
of the next instruction by calculating:

(address_of_current_instruction) + (size_of_executed_instruction)
This calculation can result in address space overflow.

Note

The size of the executed instruction depends on the current instruction set, and can depend on the instruction
executed.

Any multi-byte memory access that depends on address space overflow or underflow is UNPREDICTABLE. This
applies to both data and instruction accesses.

The following rules define the accesses that are UNPREDICTABLE:

1. Ifthe processor executes an instruction for which the instruction address, size, and alignment mean it contains
the bytes OxFFFFFFFF and 0x00000000, the result is UNPREDICTABLE.
Examples of this UNPREDICTABLE behavior include:
. relying on sequential execution of the instruction at 0x00000000 after any of:
— executing a 4-byte instruction at OxFFFFFFFC
— executing a 2-byte instruction at OxFFFFFFFE
— executing a 1-byte instruction at OxFFFFFFFF.

A3-106 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.1 Address space

. attempting to execute an instruction that spans the top of memory, for example:
— a4-byte instruction at OxFFFFFFFE
— a2-byte instruction at OxFFFFFFFF.

2. If the processor executes a load or store instruction for which the computed address, total access size, and

alignment mean it accesses the bytes 0xFFFFFFFF and 0x00000000, the result is UNPREDICTABLE.

Examples of this UNPREDICTABLE behavior include:

. attempting to perform an unaligned load or store operation that spans the top of memory, for example:
— aword load or store from or to address 0xFFFFFFFD
— ahalfword load or store from or to address OxFFFFFFFF

. attempting to perform a multiple load or store operation that spans the top of memory, for example:
— atwo-word load or store from or to addresses 0xFFFFFFFC and 0x00000000
— an Advanced SIMD multiple-element load or store that includes bytes 0xFFFFFFFF and

0x00000000.

This UNPREDICTABLE behavior only applies to instructions that are executed, including those that fail their condition
code check. Most ARM implementations fetch instructions ahead of the currently-executing instruction. If this
prefetching overflows the top of the address space, it does not cause UNPREDICTABLE behavior unless the prefetched
instruction with an overflowed address is executed.

Note

In some cases, instructions that operate on multiple words can decrement the memory address by 4 after each word
access. If this calculation underflows the address space, the result is UNPREDICTABLE.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-107
ID072512 Non-Confidential

A3 Application Level Memory Model

A3.2 Alignment support
A3.2 Alignment support
Instructions in the ARM architecture are aligned as follows:
. ARM instructions are word-aligned
. Thumb and ThumbEE instructions are halfword-aligned
. Java bytecodes are byte-aligned.

In the ARMvV7 architecture, some load and store instructions support unaligned data accesses, as described in
Unaligned data access.

For more information about the alignment support in previous versions of the ARM architecture, see A/ignment on
page AppxL-2504.

A3.21 Unaligned data access

An ARMv7 implementation must support unaligned data accesses by some load and store instructions, as
Table A3-1 shows. Software can set the SCTLR.A bit to control whether a misaligned access by one of these
instructions causes an Alignment fault Data Abort exception.

Table A3-1 Alignment requirements of load/store instructions

Result if check fails when:

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with standard alignment?

Element size

Unaligned access

. Alignment

Instructions check

SCTLR.Ais 0 SCTLR.Ais 1
LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, SWPB, TBB None - -
LDRH, LDRHT, LDRSH, LDRSHT, STRH, STRHT, TBH Halfword Unaligned access Alignment fault
LDREXH, STREXH Halfword Alignment fault Alignment fault
LDR, LDRT, STR, STRT Word Unaligned access Alignment fault
PUSH, encodings T3 and A2 only
POP, encodings T3 and A2 only
LDREX, STREX Word Alignment fault Alignment fault
LDREXD, STREXD Doubleword Alignment fault Alignment fault
All forms of LDM and STM, LDRD, RFE, SRS, STRD, SWP Word Alignment fault Alignment fault
PUSH, except for encodings T3 and A2
POP, except for encodings T3 and A2
LDC, LDC2, STC, STC2 Word Alignment fault Alignment fault
VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR Word Alignment fault Alignment fault

Alignment fault

VLD, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with :<align> specifieda b

As specified
by :<align>

Alignment fault

Alignment fault

a. These element and structure load/store instructions are only in the Advanced SIMD Extension to the ARMv7 ARM and Thumb instruction
sets. ARMv7 does not support the pre-ARMv6 alignment model, so software cannot use that model with these instructions.

b. Previous versions of this document used @<align> to specify alignment. Both forms are supported, see Advanced SIMD addressing mode
on page A7-277 for more information.

A3-108

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

ARM DDI 0406C.b
ID072512

A3 Application Level Memory Model
A3.2 Alignment support

A3.2.2 Cases where unaligned accesses are UNPREDICTABLE

The following cases cause the resulting unaligned accesses to be UNPREDICTABLE, and overrule any permitted load
or store behavior shown in Table A3-1 on page A3-108:

Any load instruction that is not faulted by the alignment restrictions shown in Table A3-1 on page A3-108
and that loads the PC has UNPREDICTABLE behavior if the address it loads from is not word-aligned.

In an implementation that does not include the Virtualization Extensions, any unaligned access that is not
faulted by the alignment restrictions shown in Table A3-1 on page A3-108 and that accesses memory with
the Strongly-ordered or Device memory attribute has UNPREDICTABLE behavior.

Note

— In an implementation that includes the Virtualization Extensions, such an unaligned access to Device
or Strongly-ordered memory generates an Alignment fault, see Alignment faults on page B3-1402.

— Memory types and attributes and the memory order model on page A3-125 describes the
Strongly-ordered and Device memory attributes.

A3.2.3 Unaligned data access restrictions in ARMv7 and ARMv6

ARMvV7 and ARMvV6 have the following restrictions on unaligned data accesses:

Accesses are not guaranteed to be single-copy atomic except at the byte access level, see Atomicity in the
ARM architecture on page A3-127. An access can be synthesized out of a series of aligned operations in a
shared memory system without guaranteeing locked transaction cycles.

Unaligned accesses typically take a number of additional cycles to complete compared to a naturally aligned
transfer. The real-time implications must be analyzed carefully and key data structures might need to have
their alignment adjusted for optimum performance.

An operation that performs an unaligned access can abort on any memory access that it makes, and can abort
on more than one access. This means that an unaligned access that occurs across a page boundary can
generate an abort on either side of the boundary, or on both sides of the boundary.

Shared memory schemes must not rely on seeing single-copy atomic updates of unaligned data of loads and stores
for data items larger than byte wide. For more information, see Atomicity in the ARM architecture on page A3-127.

Unaligned access operations must not be used for accessing memory-mapped registers in a Device or
Strongly-ordered memory region.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-109
Non-Confidential

A3 Application Level Memory Model

A3.3 Endian support

A3.3 Endian support

The rules in Address space on page A3-106 require that for a word-aligned address A:
. the doubleword at address A comprises the bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, and A+7

. the word:
— ataddress A comprises the bytes at addresses A, A+1, A+2 and A+3
— ataddress A+4 comprises the bytes at addresses A+4, A+5, A+6 and A+7

. the halfword:
— ataddress A comprises the bytes at addresses A and A+1
— at address A+2 comprises the bytes at addresses A+2 and A+3
— at address A+4 comprises the bytes at addresses A+4 and A+5
— at address A+6 comprises the bytes at addresses A+6 and A+7

. this means that:
— the doubleword at address A comprises the words at addresses A and A+4
— the word at address A comprises the halfwords at addresses A and A+2
— the word at address A+4 comprises the halfwords at addresses A+4 and A+6.

However, this does not specify completely the mappings between words, halfwords, and bytes.

A memory system uses one of the two following mapping schemes. This choice is called the endianness of the
memory system.

In a little-endian memory system:

. the byte, halfword, or word at an address is the least significant byte, halfword, or word in the doubleword at
that address

. the byte or halfword at an address is the least significant byte or halfword in the word at that address

. the byte at an address is the least significant byte in the halfword at that address.

In a big-endian memory system:

. the byte, halfword, or word at an address is the most significant byte, halfword or word in the doubleword at
that address
. the byte or halfword at an address is the most significant byte or halfword in the word at that address

. the byte at an address is the most significant byte in the halfword at that address.

For an address A, Figure A3-1 on page A3-111 shows, for big-endian and little-endian memory systems, the
relationship between:

. the doubleword at address A

. the words at addresses A and A+4

. the halfwords at addresses A, A+2, A+4, and A+6

. the bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, and A+7.

A3-110

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.3 Endian support

Big-endian memory system

MSByte

MSByte-1 MSByte-2 MSByte-3 LSByte+3 LSByte+2 LSByte+1 LSByte

Doubleword at address A

Word at address A Word at address A+4

Halfword at address A

Halfword at address A+2 Halfword at address A+4 Halfword at address A+6

Byte, A Byte, A+1 Byte, A+2 Byte, A+3 Byte, A+4 Byte, A+5 Byte, A+6 Byte, A+7
Little-endian memory system
MSByte MSByte-1 MSByte-2 MSByte-3 LSByte+3 LSByte+2 LSByte+1 LSByte

Doubleword at address A

Word at address A+4 Word at address A

Halfword at address A+6

Halfword at address A+4 Halfword at address A+2 Halfword at address A

Byte, A+7

Byte, A+6 Byte, A+5 Byte, A+4 Byte, A+3 Byte, A+2 Byte, A+1 Byte, A

In this figure, Byte, A+1 is an abbreviation for Byte at address A+1

A3.3.1

Figure A3-1 Endianness relationships

The big-endian and little-endian mapping schemes determine the order in which the bytes of a doubleword, word
or halfword are interpreted. For example, a load of a word from address 0x1000 always results in an access to the
bytes at memory locations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme determines the
significance of these four bytes.

Instruction endianness

In ARMV7-A, the mapping of instruction memory is always little-endian. In ARMv7-R, instruction endianness can
be controlled at the system level, see Instruction endianness static configuration, ARMv7-R only on page A3-112.

Note

For information about data memory endianness control, see Endianness mapping register, ENDIANSTATE on
page A2-53.

Before ARMv7, the ARM architecture included legacy support for an alternative big-endian memory model,
described as BE-32 and controlled by SCTLR.B bit, bit[7] of the register, see Endian configuration and control on
page AppxL-2516. ARMv7 does not support BE-32 operation, and bit SCTLR[7] is RAZ/SBZP.

Where legacy object code for ARM processors contains instructions with a big-endian byte order, the removal of
support for BE-32 operation requires the instructions in the object files to have their bytes reversed for the code to
be executed on an ARMv7 processor. This means that:

. each Thumb instruction, whether a 32-bit Thumb instruction or a 16-bit Thumb instruction, must have the
byte order of each halfword of instruction reversed

. each ARM instruction must have the byte order of each word of instruction reversed.

For most situations, this can be handled in the link stage of a tool-flow, provided the object files include sufficient
information to permit this to happen. In practice, this is the situation for all applications with the ARMv7-A profile.

For applications of the ARMv7-R profile, there are some legacy code situations where the arrangement of the bytes
in the object files cannot be adjusted by the linker. For these object files to be used by an ARMv7-R processor the
byte order of the instructions must be reversed by the processor at runtime. Therefore, the ARMv7-R profile permits
configuration of the instruction endianness.

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-111

Non-Confidential

A3 Application Level Memory Model

A3.3 Endian support

Instruction endianness static configuration, ARMv7-R only

To provide support for legacy big-endian object code, the ARMv7-R profile supports optional byte order reversal
hardware as a static option from reset. The ARMv7-R profile includes a read-only bit in the CP15 Control Register,
SCTLR.IE, bit[31], that indicates the instruction endianness configuration.

A3.3.2 Element size and endianness

The effect of the endianness mapping on data transfers depends on the size of the data element or elements
transferred by the load/store instructions. Table A3-2 lists the element sizes of all the load/store instructions, for all
instruction sets.

Table A3-2 Element size of load/store instructions

Instructions Element size
LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, SWPB, TBB Byte

LDRH, LDREXH, LDRHT, LDRSH, LDRSHT, STRH, STREXH, STRHT, TBH Halfword

LDR, LDRT, LDREX, STR, STRT, STREX Word

LDRD, LDREXD, STRD, STREXD Word

All forms of LDM, PUSH, POP, RFE, SRS, all forms of STM, SWP Word

LDC, LDC2, STC, STC2 Word

Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 32-bit Si registers Word

Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 64-bit Di registers ~ Doubleword

VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4 Element size of the Advanced SIMD access

A3.3.3 Instructions to reverse bytes in an ARM core register

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory
structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating
system might not match that of the peripheral registers or shared memory. In these cases, the processor requires an
efficient method to transform explicitly the endianness of the data.

In ARMv7, in the ARM and Thumb instruction sets, the following instructions provide this functionality:

REV Reverse word (four bytes) register, for transforming big-endian and little-endian 32-bit
representations, see REV on page A8-562.

REVSH Reverse halfword and sign-extend, for transforming signed 16-bit representations, see REVSH on
page A8-566.
REV16 Reverse packed halfwords in a register for transforming big-endian and little-endian 16-bit

representations, see REV16 on page A8-564.

A3.3.4 Endianness in Advanced SIMD

Advanced SIMD element load/store instructions transfer vectors of elements between memory and the Advanced
SIMD register bank. An instruction specifies both the length of the transfer and the size of the data elements being
transferred. This information is used by the processor to load and store data correctly in both big-endian and
little-endian systems.

Consider, for example, the instruction:

VLD1.16 {D@}, [R1]

A3-112

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model

A3.

3 Endian support

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the
lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the

endianness configuration, as shown in Figure A3-2. Therefore, the order of the elements in the registers is the same
regardless of the endianness configuration.

64-bit register containing four 16-bit elements

D[15:8] D[7:0] C[15:8] C[7:0] B[15:8] B[7:0] A[15:8] A[7:0]
{)
A
ofarar | | (o [A[5E]

1 [A[15:8] 1 [AI7:0]

2 BI7:0] 2 [B[15:8]
3[B[15:8] | 3 [B[7:0]

4 |C[7:0] VLD1.16 {DO}, [R1] VLD1.16 {DO}, [R1] | 4 [C[15:8]
5[C[15:8] 5 [C[7:0]

6 DI7:0] 6 [D[15:8]

7 |D[15:8] 7 [D[7:0]

—
Memory system with
little-endian addressing (LE)

N—
Memory system with
big-endian addressing (BE)

Figure A3-2 Advanced SIMD byte order example

For information about the alignment of Advanced SIMD instructions see Unaligned data access on page A3-108.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

A3-113

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

A3.4 Synchronization and semaphores

In architecture versions before ARMvo6, support for the synchronization of shared memory depends on the SWP and

SWPB instructions. These are read-locked-write operations that swap register contents with memory, and are

described in SWP, SWPB on page A8-722. These instructions support basic busy/free semaphore mechanisms, but

do not support mechanisms that require calculation to be performed on the semaphore between the read and write
phases.

From ARMv6, ARM deprecates any use of SWP or SWPB, and the ARMv7 Virtualization Extensions make these

instructions OPTIONAL and deprecated.

Note

. ARM strongly recommends that all software uses the synchronization primitives described in this section,
rather than SWP or SWPB.

. If an implementation does not support the SWP and SWPB instructions, the ID ISARO.Swap_instrs and
ID ISAR4.SWP_frac fields are zero, see About the Instruction Set Attribute registers on page B7-1950.

ARMV6 introduced a new mechanism to support more comprehensive non-blocking synchronization of shared

memory, using synchronization primitives that scale for multiprocessor system designs. ARMv7 extends support for

this mechanism, and provides the following synchronization primitives in the ARM and Thumb instruction sets:

. Load-Exclusives:

— LDREX, see LDREX on page A8-432

— LDREXB, see LDREXB on page A8-434

— LDREXD, see LDREXD on page A8-436

— LDREXH, see LDREXH on page A8-438
. Store-Exclusives:

— STREX, see STREX on page A8-690

— STREXB, see STREXB on page A8-692

— STREXD, see STREXD on page A8-694

— STREXH, see STREXH on page A8-696
. Clear-Exclusive, CLREX, see CLREX on page A8-360.

Note

This section describes the operation of a Load-Exclusive/Store-Exclusive pair of synchronization primitives using,

as examples, the LDREX and STREX instructions. The same description applies to any other pair of synchronization

primitives:

. LDREXB used with STREXB

. LDREXD used with STREXD

. LDREXH used with STREXH.

Software must use a Load-Exclusive instruction only with the corresponding Store-Exclusive instruction.

The model for the use of a Load-Exclusive/Store-Exclusive instruction pair, accessing a non-aborting memory

address x is:

. The Load-Exclusive instruction reads a value from memory address x.

. The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other
observer, process, or thread has performed a more recent store to address x. The Store-Exclusive operation
returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction tags a small block of memory for exclusive access. The size of the tagged block is

IMPLEMENTATION DEFINED, see Tagging and the size of the tagged memory block on page A3-121. A

Store-Exclusive instruction to the same address clears the tag.

A3-114 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

Note

In this section, the term processor includes any observer that can generate a Load-Exclusive or a Store-Exclusive.

A3.4.1 Exclusive access instructions and Non-shareable memory regions

For memory regions that do not have the Shareable attribute, the exclusive access instructions rely on a local
monitor that tags any address from which the processor executes a Load-Exclusive. Any non-aborted attempt by the
same processor to use a Store-Exclusive to modify any address is guaranteed to clear the tag.

A Load-Exclusive performs a load from memory, and:

. the executing processor tags the physical memory address for exclusive access

. the local monitor of the executing processor transitions to the Exclusive Access state.
A Store-Exclusive performs a conditional store to memory, that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

. If the address of the Store-Exclusive is the same as the address that has been tagged in the
monitor by an earlier Load-Exclusive, then the store occurs, otherwise it is IMPLEMENTATION
DEFINED whether the store occurs.

. A status value is returned to a register:
— if the store took place the status value is 0

— otherwise, the status value is 1.

. The local monitor of the executing processor transitions to the Open Access state.

If the local monitor is in the Open Access state

. no store takes place
. a status value of 1 is returned to a register.
. the local monitor remains in the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.
When a processor writes using any instruction other than a Store-Exclusive:

. if the write is to a physical address that is not covered by its local monitor the write does not affect the state
of the local monitor

. if the write is to a physical address that is covered by its local monitor it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

If the local monitor is in the Exclusive Access state and the processor performs a Store-Exclusive to any address
other than the last one from which it performed a Load-Exclusive, it is IMPLEMENTATION DEFINED whether the store
updates memory, but in all cases the local monitor is reset to the Open Access state. This mechanism:

. is used on a context switch, see Context switch support on page A3-122
. must be treated as a software programming error in all other cases.
Note

It is IMPLEMENTATION DEFINED whether a store to a tagged physical address causes a tag in the local monitor to be
cleared if that store is by an observer other than the one that caused the physical address to be tagged.

Figure A3-3 on page A3-116 shows the state machine for the local monitor. Table A3-3 on page A3-116 shows the
effect of each of the operations shown in the figure.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-115
ID072512 Non-Confidential

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

LoadExc1(x)

LoadExc1(x)

v |

Open

Exclusive
Access

|

M]

CLREX
StoreExc1(x)
Store(x)

CLREX
Store(!Tagged_address)*
Store(Tagged_address)*
StoreExcl1(Tagged_address)
StoreExcl1(!Tagged_address)

Store(!Tagged_address)*
Store(Tagged_address)*

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcT represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction

Sto

re represents any other store instruction.

Any LoadExc1 operation updates the tagged address to the most significant bits of the address x used for the operation.

Figure A3-3 Local monitor state machine diagram

For more information about tagging see Tagging and the size of the tagged memory block on page A3-121.

Note

For the local monitor state machine, as shown in Figure A3-3:

. The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any physical address, but instead treats any access as matching the address

of the previous LoadExc].

. A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive operations from

other processors.

. The architecture does not require a load instruction by another processor, that is not a Load-Exclusive
instruction, to have any effect on the local monitor.

. It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs
when the Store or StoreExc] is from another observer.

Table A3-3 shows the effect of the operations shown in Figure A3-3.

Table A3-3 Effect of Exclusive instructions and write operations on the local monitor

Initial state Operation2 Effect

Final state

Open Access CLREX No effect

StoreExc1(x) Does not update memory, returns status 1

Open Access

Open Access

LoadExc1(x) Loads value from memory, tags address x Exclusive Access
Store(x) Updates memory, no effect on monitor Open Access
Exclusive Access CLREX Clears tagged address Open Access

StoreExc1(t) Updates memory, returns status 0 Open Access
Updates memory, returns status 0b

StoreExcl(!t) Open Access
Does not update memory, returns status 1

LoadExc1(x) Loads value from memory, changes tag to address x Exclusive Access

A3-116 Copyright © 1996-1998, 2000,

2004-2012 ARM. All rights reserved.

Non-Confidential

ARM DDI 0406C.b
ID072512

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

Table A3-3 Effect of Exclusive instructions and write operations on the local monitor (continued)

Initial state Operationa Effect Final state

Exclusive Access Exclusive Accessb

Store(!t) Updates memory
Open Access®

Exclusive Access?

Store(t) Updates memory
Open Access®

a.

b.

In the table:

LoadExc1 represents any Load-Exclusive instruction

StoreExc] represents any Store-Exclusive instruction

Store represents any store operation other than a Store-Exclusive operation.

t is the tagged address, bits[31:a] of the address of the last Load-Exclusive instruction. For more information, see
Tagging and the size of the tagged memory block on page A3-121.

IMPLEMENTATION DEFINED alternative actions.

Note

Normal memory that is Inner Non-cacheable, Outer Non-cacheable is inherently coherent between different
processors, and it is IMPLEMENTATION DEFINED whether such memory, if it does not have the Shareable attribute, is
treated as Non-shareable or as Shareable.

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution
of an operation shown in Table A3-3 on page A3-116.

An implementation must ensure that:

the local monitor cannot be seen to transition to the Exclusive Access state except as a result of the
architectural execution of one of the operations shown in Table A3-3 on page A3-116

any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown in Table A3-3 on page A3-116 must not indefinitely delay forward progress of execution.

A3.4.2 Exclusive access instructions and Shareable memory regions

For memory regions that have the Shareable attribute, exclusive access instructions rely on:

A local monitor for each processor in the system, that tags any address from which the processor executes a
Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable
memory regions on page A3-115, except that for Shareable memory any Store-Exclusive is then subject to
checking by the global monitor if it is described in that section as doing at least one of:

— updating memory

— returning a status value of 0.

The local monitor can ignore accesses from other processors in the system.

A global monitor that tags a physical address as exclusive access for a particular processor. This tag is used
later to determine whether a Store-Exclusive to that address that has not been failed by the local monitor can
occur. Any successful write to the tagged address by any other observer in the shareability domain of the
memory location is guaranteed to clear the tag. For each processor in the system, the global monitor:

— can hold at least one tagged address

— maintains a state machine for each tagged address it can hold.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-117
Non-Confidential

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

Note

For each processor, the architecture only requires global monitor support for a single tagged address. Any
situation that might benefit from the use of multiple tagged addresses on a single processor is
UNPREDICTABLE, see Load-Exclusive and Store-Exclusive usage restrictions on page A3-122.

In addition, in an implementation that includes the Large Physical Address Extension, when the implementation is
using the Short-descriptor translation table format, it is IMPLEMENTATION DEFINED whether Load-Exclusive and
Store-Exclusive accesses to Non-shareable regions with the Normal, Inner Non-cacheable, Outer Non-cacheable
attribute use the global monitor in addition to the local monitor.

Note

The global monitor can either reside in a processor block or exist as a secondary monitor at the memory
interfaces. The IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor
can be combined into a single unit, provided that unit performs the global monitor and local monitor functions
defined in this manual.

For Shareable regions of memory, in some implementations and for some memory types, the properties of the global
monitor can be met only by functionality outside the processor. Some system implementations might not implement
this functionality for all regions of memory, In particular, this can apply to:

. any type of memory in the system implementation that does not support hardware cache coherency

. Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such a system, it is defined by the system:
. whether the global monitor is implemented

. if the global monitor is implemented, which address ranges or memory types it monitors.

The behavior of Load Exclusive and Store Exclusive instructions when accessing a memory address not monitored
by the global monitor is UNPREDICTABLE.

Note

An implementation can combine the functionality of the global and local monitors into a single unit.

Operation of the global monitor

A Load-Exclusive from Shareable memory performs a load from memory, and causes the physical address of the
access to be tagged as exclusive access for the requesting processor. This access also causes the exclusive access
tag to be removed from any other physical address that has been tagged by the requesting processor.

The global monitor only supports a single outstanding exclusive access to Shareable memory per processor. A
Load-Exclusive by one processor has no effect on the global monitor state for any other processor.

Store-Exclusive performs a conditional store to memory:

. The store is guaranteed to succeed only if the physical address accessed is tagged as exclusive access for the
requesting processor and both the local monitor and the global monitor state machines for the requesting
processor are in the Exclusive Access state. In this case:

— astatus value of 0 is returned to a register to acknowledge the successful store

— the final state of the global monitor state machine for the requesting processor is IMPLEMENTATION
DEFINED

— ifthe address accessed is tagged for exclusive access in the global monitor state machine for any other
processor then that state machine transitions to Open Access state.

A3-118

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

. If no address is tagged as exclusive access for the requesting processor, the store does not succeed:
— astatus value of 1 is returned to a register to indicate that the store failed
— the global monitor is not affected and remains in Open Access state for the requesting processor.
. If a different physical address is tagged as exclusive access for the requesting processor, it is
IMPLEMENTATION DEFINED whether the store succeeds or not:
— ifthe store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned

— if the global monitor state machine for the processor was in the Exclusive Access state before the
Store-Exclusive it is IMPLEMENTATION DEFINED whether that state machine transitions to the Open
Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each processor in the
system. The state machine for accesses to Shareable memory by processor (n) can respond to all the Shareable
memory accesses visible to it. This means it responds to:

. accesses generated by the associated processor (n)

. accesses generated by the other observers in the shareability domain of the memory location (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive in the system.

Figure A3-4 shows the state machine for processor(n) in a global monitor. Table A3-4 on page A3-120 shows the
effect of each of the operations shown in the figure.

LoadExc1(x,n) LoadExc1(x,n)

| L[
Open Exclusive

|—> Access Access
Tt mmall

CLREX(n) StoreExc1(Tagged_address, In)t StoreExc1(Tagged_address, In)t
CLREX(!n) Store(Tagged_address, !'n) Store(!Tagged_address,n)
LoadExc1(x, In) StoreExcl1(Tagged_address,n)* StoreExcl1(Tagged_address,n)*
StoreExc1(x,n) StoreExcl1(!Tagged_address,n)* StoreExcl1(!Tagged_address,n)*

StoreExcT(x, !'n) Store(Tagged_address,n)* Store(Tagged_address,n)*
Store(x,n) CLREX(n)* CLREX(n)*
Store(x, !'n) StoreExc1(!Tagged_address, !n)
Store(!Tagged_address, !'n)
CLREX(!n)

$StoreExcl(Tagged_Address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcT represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the tagged address to the most significant bits of the address x used for the operation.

Figure A3-4 Global monitor state machine diagram for processor(n) in a multiprocessor system

For more information about tagging see Tagging and the size of the tagged memory block on page A3-121.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-119
ID072512 Non-Confidential

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

Note

For the global monitor state machine, as shown in Figure A3-4 on page A3-119:

. The architecture does not require a load instruction by another processor, that is not a Load-Exclusive
instruction, to have any effect on the global monitor.

. Whether a Store-Exclusive successfully updates memory or not depends on whether the address accessed
matches the tagged Shareable memory address for the processor issuing the Store-Exclusive instruction. For
this reason, Figure A3-4 on page A3-119 and Table A3-4 only show how the (!n) entries cause state
transitions of the state machine for processor(n).

. An Load-Exclusive can only update the tagged Shareable memory address for the processor issuing the
Load-Exclusive instruction.

. The effect of the CLREX instruction on the global monitor is IMPLEMENTATION DEFINED.

. It is IMPLEMENTATION DEFINED:

— whether a modification to a non-shareable memory location can cause a global monitor to transition
from Exclusive Access to Open Access state

— whether a Load-Exclusive to a non-shareable memory location can cause a global monitor to transition
from Open Access to Exclusive Access state.

Table A3-4 shows the effect of the operations shown in Figure A3-4 on page A3-119.

Table A3-4 Effect of load/store operations on global monitor for processor(n)

Initial state Operation? Effect Final state
Exclusive LoadExc1(x, n) Loads value from memory, tags address x Exclusive Access
Access
Exclusive Accessd
CLREX(n) None. Effect on the final state is IMPLEMENTATION DEFINED.
Open Accessd
CLREX(!n) None Exclusive Access
Updates memory, returns status 0b Open Access

StoreExcl(t, !n)
Does not update memory, returns status 1o Exclusive Access

Open Access

StoreExcl(t, n) Updates memory, returns status 0¢
Exclusive Access

Open Access
Updates memory, returns status 04
Exclusive Access
StoreExcl(!t, n)
Open Access
Does not update memory, returns status 19
Exclusive Access

StoreExcl1(!t, !'n) Depends on state machine and tag address for processor issuing STREX Exclusive Access

Exclusive Accessd

Store(t, n) Updates memory
Open Accessd
Store(t, !n) Updates memory Open Access
Store(!t, n), Updates memory, no effect on monitor Exclusive Access
Store(!t, !n)
A3-120 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

Table A3-4 Effect of load/store operations on global monitor for processor(n) (continued)

Initial state Operation? Effect Final state
Open Access CLREX(n), None Open Access
CLREX(!n)
StoreExcl(x, n) Does not update memory, returns status 1 Open Access
LoadExc1(x, !n) Loads value from memory, no effect on tag address for processor(n) Open Access

Storekxcl(x, !n) Depends on state machine and tag address for processor issuing STREX Open Access

Store(x, n), Updates memory, no effect on monitor Open Access
Store(x, !n)
LoadExcT1(x, n) Loads value from memory, tags address x Exclusive Access

a. In the table:

LoadExc1 represents any Load-Exclusive instruction

StoreExc] represents any Store-Exclusive instruction

Store represents any store operation other than a Store-Exclusive operation.

t is the tagged address for processor(n), bits[31:a] of the address of the last Load-Exclusive instruction issued by processor(n), see Tagging
and the size of the tagged memory block.

b. The result of a STREX(x, !n) ora STREX(t, !n) operation depends on the state machine and tagged address for the processor issuing the STREX
instruction. This table shows how each possible outcome affects the state machine for processor(n).

c. After a successful STREX to the tagged address, the state of the state machine is IMPLEMENTATION DEFINED. However, this state has no effect
on the subsequent operation of the global monitor.

d. Effect is IMPLEMENTATION DEFINED. The table shows all permitted implementations.

A3.4.3 Tagging and the size of the tagged memory block

As stated in the footnotes to Table A3-3 on page A3-116 and Table A3-4 on page A3-120, when a Load-Exclusive
instruction is executed, the resulting tag address ignores the least significant bits of the memory address.

Tagged_address = Memory_address[31:a]

The value of a in this assignment is IMPLEMENTATION DEFINED, between a minimum value of 3 and a maximum
value of 11. For example, in an implementation where a is 4, a successful LDREX of address 0x000341B4 gives a tag
value of bits[31:4] of the address, giving 0x000341B. This means that the four words of memory from 0x000341B0 to
0x000341BF are tagged for exclusive access.

The size of the tagged memory block is called the Exclusives Reservation Granule. The Exclusives Reservation
Granule is IMPLEMENTATION DEFINED in the range 2-512 words:

. 2 words in an implementation where a is 3

. 512 words in an implementation where a is 11.

In some implementations the CTR identifies the Exclusives Reservation Granule, see either:
. CTR, Cache Type Register, VMSA on page B4-1556
. CTR, Cache Type Register, PMSA on page B6-1833.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-121
Non-Confidential

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

A3.4.4

A3.4.5

Context switch support

After a context switch, software must ensure that the local monitor is in the Open Access state. This requires it to

either:

execute a CLREX instruction
execute a dummy STREX to a memory address allocated for this purpose.

Note

Using a dummy STREX for this purpose is backwards-compatible with the ARMv6 implementation of the
exclusive operations. The CLREX instruction is introduced in ARMv6K.

Context switching is not an application level operation. However, this information is included here to
complete the description of the exclusive operations.

The STREX or CLREX instruction that follows a context switch might cause a subsequent Store-Exclusive to fail,
requiring a Load-Exclusive ... Store-Exclusive sequence to be repeated. To minimize the possibility of this
happening, ARM recommends that the Store-Exclusive instruction is kept as close as possible to the associated
Load-Exclusive instruction, see Load-Exclusive and Store-Exclusive usage restrictions.

Load-Exclusive and Store-Exclusive usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together, as a pair, for example a
LDREX/STREX pair or a LDREXB/STREXB pair. To support different implementations of these functions, software must
follow the notes and restrictions given here.

These

notes describe use of an LDREX/STREX pair, but apply equally to any other Load-Exclusive/Store-Exclusive pair:

The exclusives support a single outstanding exclusive access for each processor thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal()
function. If the target virtual address of an STREX is different from the virtual address of the preceding LDREX
in the same thread of execution, behavior can be UNPREDICTABLE. As a result, an LDREX/STREX pair can only
be relied upon to eventually succeed if they are executed with the same address. Where a context switch or
exception might change the thread of execution, a CLREX instruction or a dummy STREX instruction must be
executed to avoid unwanted effects, as described in Context switch support. Using an STREX in this way is the
only occasion where software can program an STREX with a different address from the previously executed
LDREX.

If two STREX instructions are executed without an intervening LDREX the second STREX returns a status value
of 1. This means that:

— ARM recommends that, in a given thread of execution, every STREX has a preceding LDREX associated
with it
— itis not necessary for every LDREX to have a subsequent STREX.

An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a Store-Exclusive is the same as the transaction size of the preceding
Load-Exclusive executed in that thread. If the transaction size of a Store-Exclusive is different from the
preceding Load-Exclusive in the same thread of execution, behavior can be UNPREDICTABLE. As a result,
software can rely on an LDREX/STREX pair to eventually succeed only if they have the same size. Where a
context switch or exception might change the thread of execution, the software must execute a CLREX
instruction, or a dummy STREX instruction, to avoid unwanted effects, as described in Context switch support.
Using an STREX in this way is the only occasion where software can use a Store-Exclusive instruction with a
different transaction size from the previously executed Load-Exclusive instruction.

An implementation might clear an exclusive monitor between the LDREX and the STREX, without any
application-related cause. For example, this might happen because of cache evictions. Software written for
such an implementation must, in any single thread of execution, avoid having any explicit memory accesses
or cache maintenance operations between the LDREX instruction and the associated STREX instruction.

A3-122

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

In some implementations, an access to Strongly-ordered or Device memory might clear the exclusive
monitor. Therefore, software must not place a load or a store to Strongly-ordered or Device memory between
an LDREX and an STREX in a single thread of execution.

Implementations can benefit from keeping the LDREX and STREX operations close together in a single thread of
execution. This minimizes the likelihood of the exclusive monitor state being cleared between the LDREX
instruction and the STREX instruction. Therefore, for best performance, ARM strongly recommends a limit of
128 bytes between LDREX and STREX instructions in a single thread of execution.

The architecture sets an upper limit of 2048 bytes on the size of a region that can be marked as exclusive.
Software can read the implemented size of the Exclusives reservation granule from the CTR.ERG field, see:

— CTR, Cache Type Register, VMSA on page B4-1556 for a VMSA implementation.
— CTR, Cache Type Register, PMSA on page B6-1833 for a PMSA implementation.

In a heavily contended system, having multiple objects that are in the same exclusive reservation granule
accessed by exclusive accesses can lead to starvation of a process accessing that granule. Therefore, in such
systems, ARM recommends that objects that are accessed by exclusive accesses are separated by the size of
the Exclusive Reservation Granule.

It is IMPLEMENTATION DEFINED whether LDREX and STREX operations can be performed to a memory region
with the Device or Strongly-ordered memory attribute. Unless the implementation documentation explicitly
states that LDREX and STREX operations to a memory region with the Device or Strongly-ordered attribute are
permitted, the effect of such operations is UNPREDICTABLE.

After taking a Data Abort exception, the state of the exclusive monitors is UNKNOWN. Therefore ARM
strongly recommends that the abort handling software performs a CLREX instruction, or a dummy STREX
instruction, to clear the monitor state.

If the memory attributes for the memory being accessed by an LDREX/STREX pair are changed between the LDREX
and the STREX, behavior is UNPREDICTABLE.

The effect of a data or unified cache invalidate instruction on a local or global exclusive monitor that is in the
Exclusive Access state is UNPREDICTABLE. The operation might clear the monitor, or it might leave it in the
Exclusive Access state. For address-based invalidation this also applies to the monitors of other processors
in the same shareability domain as the processor executing the cache invalidation instruction, as determined
by the shareability domain of the address being invalidated.

Note

ARM strongly recommends that implementations ensure that the use of such maintenance operations by a
processor in the Non-secure state cannot cause a denial of service on a processor in the Secure state.

Note

In the event of repeatedly-contending load-exclusive/store-exclusive sequences from multiple processors, an
implementation must ensure that forward progress is made by at least one processor.

A3.4.6 Semaphores

The Swap (SWP) and Swap Byte (SWPB) instructions must be used with care to ensure that expected behavior is
observed. Two examples are as follows:

L.

A system with multiple bus masters that uses Swap instructions to implement semaphores that control
interactions between different bus masters.

In this case, the semaphores must be placed in an uncached region of memory, where any buffering of writes
occurs at a point common to all bus masters using the mechanism. The Swap instruction then causes a locked
read-write bus transaction.

A system with multiple threads running on a uniprocessor that uses Swap instructions to implement
semaphores that control interaction of the threads.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-123
Non-Confidential

A3 Application Level Memory Model
A3.4 Synchronization and semaphores

A3.4.7

A3.4.8

In this case, the semaphores can be placed in a cached region of memory, and a locked read-write bus
transaction might or might not occur. The Swap and Swap Byte instructions are likely to have better
performance on such a system than they do on a system with multiple bus masters, such as that described in
example 1.

Note

From ARMv6, ARM deprecates use of the Swap and Swap Byte instructions, and strongly recommends that all new
software uses the Load-Exclusive and Store-Exclusive synchronization primitives described in Synchronization and
semaphores on page A3-114, for example LDREX and STREX.

Synchronization primitives and the memory order model

The synchronization primitives follow the memory order model of the memory type accessed by the instructions.
For this reason:

. Portable software for claiming a spin-lock must include a Data Memory Barrier (DMB) operation, performed
by a DMB instruction, between claiming the spin-lock and making any access that makes use of the spin-lock.

. Portable software for releasing a spin-lock must include a DMB instruction before writing to clear the spin-lock.

This requirement applies to software using:
. the Load-Exclusive/Store-Exclusive instruction pairs, for example LDREX/STREX
. the deprecated synchronization primitives, SWP/SWPB.

Use of WFE and SEV instructions by spin-locks

ARMvV7 and ARMv6K provide Wait For Event and Send Event instructions, WFE and SEV, that can assist with
reducing power consumption and bus contention caused by processors repeatedly attempting to obtain a spin-lock.
These instructions can be used at the application level, but a complete understanding of what they do depends on
system level understanding of exceptions. They are described in Wait For Event and Send Event on page B1-1199.

A3-124

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

A3.5 Memory types and attributes and the memory order model

ARMV6 defined a set of memory attributes with the characteristics required to support the memory and devices in
the system memory map. In ARMv7 this set of attributes is extended by the addition of the Outer Shareable attribute
for Normal memory and, in an implementation that does not include the Large Physical Address Extension, for
Device memory.

Note

Whether an ARMv7 implementation distinguishes between Inner Shareable and Outer Shareable memory is
IMPLEMENTATION DEFINED.

The ordering of accesses for regions of memory, referred to as the memory order model, is defined by the memory
attributes. This model is described in the following sections:

. Memory types

. Summary of ARMv7 memory attributes on page A3-126

. Atomicity in the ARM architecture on page A3-127

. Concurrent modification and execution of instructions on page A3-129
. Normal memory on page A3-131

. Device and Strongly-ordered memory on page A3-135

. Memory access restrictions on page A3-137

. The effect of the Security Extensions on page A3-140.

A3.5.1 Memory types

For each memory region, the most significant memory attribute specifies the memory type. There are three mutually
exclusive memory types:

. Normal
. Device
. Strongly-ordered.

Normal and Device memory regions have additional attributes.

Usually, memory used for programs and for data storage is suitable for access using the Normal memory attribute.
Examples of memory technologies for which the Normal memory attribute is appropriate are:
. programmed Flash ROM

Note

During programming, Flash memory can be ordered more strictly than Normal memory.

. ROM
. SRAM
. DRAM and DDR memory.

System peripherals (I/O) generally conform to different access rules. Examples of I/O accesses are:

. FIFOs where consecutive accesses:
— add queued values on write accesses

— remove queued values on read accesses.

. interrupt controller registers where an access can be used as an interrupt acknowledge, changing the state of
the controller itself

. memory controller configuration registers that are used for setting up the timing and correctness of areas of
Normal memory

. memory-mapped peripherals, where accessing a memory location can cause side-effects in the system.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-125
Non-Confidential

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

In ARMV7, the Strongly-ordered or Device memory attribute provides suitable access control for such peripherals.
To ensure correct system behavior, the access rules for Device and Strongly-ordered memory are more restrictive
than those for Normal memory, so that:

. Neither read nor write accesses can be performed speculatively.

Note

However, translation table walks can be made speculatively to memory marked as Device or
Strongly-ordered, see Device and Strongly-ordered memory on page A3-135.

. Read and write accesses cannot be repeated, for example, on return from an exception.
. The number, order and sizes of the accesses are maintained.

For more information, see Device and Strongly-ordered memory on page A3-135.

A3.5.2 Summary of ARMv7 memory attributes

Table A3-5 summarizes the memory attributes. For more information about these attributes see:

. Normal memory on page A3-131 and Shareable attribute for Device memory regions on page A3-136, for

the shareability attribute

. Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal memory on page A3-133, for

cacheability and cache allocation hint attributes.
Note

The cacheability and cache allocation hint attributes apply only to Normal memory. Device and Strongly-ordered

memory regions are Non-cacheable.

In this table:

Shareability Applies only to Normal memory, and to Device memory in an implementation that does not include
the Large Physical Address Extensions. In an implementation that includes the Large Physical
Address Extensions, Device memory is always Outer Shareable,

When it is possible to assign a shareability attribute to Device memory, ARM deprecates assigning
any attribute other than Shareable or Outer Shareable, see Shareable attribute for Device memory
regions on page A3-136

Whether an ARMv7 implementation distinguishes between Inner Shareable and Outer Shareable
memory is IMPLEMENTATION DEFINED.

Cacheability Applies only to Normal memory, and can be defined independently for Inner and Outer cache
regions. Some cacheability attributes can be complemented by a cache allocation hint. This is an
indication to the memory system of whether allocating a value to a cache is likely to improve
performance. For more information see Cacheability and cache allocation hint attributes on
page B2-1264.

An implementation might not make any distinction between memory regions with attributes that
differ only in their cache allocation hint.
Table A3-5 Memory attribute summary
Memory type Implementation includes LPAE2? Shareability Cacheability
Strongly- ordered - - -
A3-126 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

Table A3-5 Memory attribute summary (continued)

Memory type Implementation includes LPAEa? Shareability Cacheability
Device Yes Outer Shareable -
No Outer Shareable

Inner Shareable

Non-shareable

Normal - Outer Shareable One of:
Inner Shareable) Nor.1-cacheable
. Write-Through Cacheable
Non-shareable . Write-Back Cacheable.

a. LPAE means the Large Physical Address Extension.

Memory model and memory ordering on page Appx0-2593 compares these attributes with the memory attributes
in architecture versions before ARMvo6.

A3.5.3 Atomicity in the ARM architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The ARM architecture description refers
to two types of atomicity, defined in:

. Single-copy atomicity
. Multi-copy atomicity on page A3-129.

Single-copy atomicity
A read or write operation is single-copy atomic if the following conditions are both true:

. After any number of write operations to a memory location, the value of the memory location is the value
written by one of the write operations. It is impossible for part of the value of the memory location to come
from one write operation and another part of the value to come from a different write operation.

. When a read operation and a write operation are made to the same memory location, the value obtained by
the read operation is one of:

— the value of the memory location before the write operation

— the value of the memory location after the write operation.

It is never the case that the value of the read operation is partly the value of the memory location before the
write operation and partly the value of the memory location after the write operation.

In ARMv7, the single-copy atomic processor accesses are:

. all byte accesses

. all halfword accesses to halfword-aligned locations

. all word accesses to word-aligned locations

. memory accesses caused by LDREXD and STREXD instructions to doubleword-aligned locations.

LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD, PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR instructions are executed as a
sequence of word-aligned word accesses. Each 32-bit word access is guaranteed to be single-copy atomic. The
architecture does not require subsequences of two or more word accesses from the sequence to be single-copy
atomic.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-127
ID072512 Non-Confidential

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

In an implementation that includes the Large Physical Address Extension, LDRD and STRD accesses to 64-bit aligned
locations are 64-bit single-copy atomic as seen by translation table walks and accesses to translation tables.

Note

The Large Physical Address Extension adds this requirement to avoid the need for complex measures to avoid
atomicity issues when changing translation table entries, without creating a requirement that all locations in the
memory system are 64-bit single-copy atomic. This addition means:

. The system designer must ensure that all writable memory locations that might be used to hold translations,
such as bulk SDRAM, can be accessed with 64-bit single-copy atomicity.

. Software must ensure that translation tables are not held in memory locations that cannot meet this atomicity
requirement, such as peripherals that are typically accessed using a narrow bus.

This requirement places no burden on read-only memory locations for which reads have no side effects, since it is
impossible to detect the size of memory accesses to such locations.

Advanced SIMD element and structure loads and stores are executed as a sequence of accesses of the element or
structure size. The architecture requires the element accesses to be single-copy atomic if and only if both:

. the element size is 32 bits, or smaller
. the elements are naturally aligned.

Accesses to 64-bit elements or structures that are at least word-aligned are executed as a sequence of 32-bit accesses,
each of which is single-copy atomic.The architecture does not require subsequences of two or more 32-bit accesses
from the sequence to be single-copy atomic.

When a store that, by the rules given in this section, would be single-copy atomic is made to a memory location at
a time when there is at least one store to the same memory location that has not completed and that would be
single-copy atomic at a different size, then the architecture does not give any assurance of atomicity between
accesses to the bytes of that location.

When an access is not single-copy atomic, it is executed as a sequence of smaller accesses, each of which is
single-copy atomic, at least at the byte level.

Note

In this section, the terms before the write operation and after the write operation mean before or after the write
operation has had its effect on the coherence order of the bytes of the memory location accessed by the write
operation.

If, according to these rules, an instruction is executed as a sequence of accesses, some exceptions can be taken
during that sequence. Such an exception causes execution of the instruction to be abandoned. These exceptions are:

. Synchronous Data Abort exceptions.
. The following, if low interrupt latency configuration is selected and the accesses are to Normal memory:
— IRQ interrupts

— FIQ interrupts

— asynchronous aborts.

For more information about this configuration, see Low interrupt latency configuration on page B1-1197.
If any of these exceptions are returned from using their preferred return address, the instruction that generated the

sequence of accesses is re-executed and so any access that had been performed before the exception was taken is
repeated.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writes to
memory for the purpose of software synchronization.

A3-128

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

For implicit accesses:

. Cache linefills and evictions have no effect on the single-copy atomicity of explicit transactions or instruction
fetches.
. Instruction fetches are single-copy atomic:

— at 32-bit granularity in ARM state
— at 16-bit granularity in Thumb and ThumbEE states

— at 8-bit granularity in Jazelle state.

Concurrent modification and execution of instructions describes additional constraints on the behavior of
instruction fetches.

. Translation table walks are performed using accesses that are single-copy atomic:
— at 32-bit granularity when using Short-descriptor format translation tables
— at 64-bit granularity when using Long-descriptor format translation tables.

Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both
true:

. All writes to the same location are serialized, meaning they are observed in the same order by all observers,
although some observers might not observe all of the writes.

. A read of a location does not return the value of a write until all observers observe that write.
Writes to Normal memory are not multi-copy atomic.
All writes to Device and Strongly-ordered memory that are single-copy atomic are also multi-copy atomic.

All write accesses to the same location are serialized. Write accesses to Normal memory can be repeated up to the
point that another write to the same address is observed.

For Normal memory, serialization of writes does not prohibit the merging of writes.

A3.5.4 Concurrent modification and execution of instructions

The ARMvV7 architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Except for the instructions identified in this section, the effect of the concurrent modification and execution of an
instruction is UNPREDICTABLE.

For the following instructions only, the architecture guarantees that, after modification of the instruction, behavior
is consistent with execution of either:

. The instruction originally fetched.
. A fetch of the new instruction. That is, a fetch of the instruction that results from the modification.

The instructions to which this guarantee applies are:

In the Thumb instruction set
The 16-bit encodings of the B, NOP, BKPT, and SVC instructions.
In addition:
. The most-significant halfword of a BL instruction can be concurrently modified to the most
significant halfword of another BL instruction.

The most-significant halfword of a BLX instruction can be concurrently modified to the most
significant halfword of another BLX instruction.

These cases mean that the most significant bits of the immediate value can be modified.

. The most-significant halfword of a BL or BLX instruction can be concurrently modified to a
16-bit B, BKPT, or SVC instruction.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-129
Non-Confidential

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

. The least-significant halfword of a BL instruction can be concurrently modified to the least
significant halfword of another BL instruction.

The least-significant halfword of a BLX instruction can be concurrently modified to the least
significant halfword of another BLX instruction.

These cases mean that the least significant bits of the immediate value can be modified.
. The least-significant halfword of a 32-bit B immediate instruction:

— with a condition field can be concurrently modified to the least significant halfword of
another 32-bit B immediate instruction with a condition field

— without a condition field can be concurrently modified to the least significant halfword
of another 32-bit B immediate instruction without a condition field.
These cases mean that the least significant bits of the immediate value can be modified.

. A 16-bit B, BKPT, or SVC instruction can be concurrently modified to the most-significant
halfword of a BL instruction.

Note

In the Thumb instruction set:

. the only encodings of BKPT and SVC are 16-bit
. the only encoding of BL is 32-bit.

In the ARM instruction set
The B, BL, NOP, BKPT, SVC, HVC, and SMC instructions.

For all other instructions, to avoid UNPREDICTABLE behavior, instruction modifications must be explicitly
synchronized before they are executed. The required synchronization is as follows:

1. To ensure that the modified instructions are observable, the thread of execution that is modifying the
instructions must issue the following sequence of instructions and operations:

DCCMVAU [instruction location] ; Clean data cache by MVA to point of unification
DSB ; Ensure visibility of the data cleaned from the cache
ICIMVAU [instruction location] ; Invalidate instruction cache by MVA to PoU
BPIMVAU [instruction location] ; Invalidate branch predictor by MVA to PoU
DSB ; Ensure completion of the invalidations

2. Once the modified instructions are observable, the thread of execution that is executing the modified
instructions must issue the following instructions or operations to ensure execution of the modified
instructions:

ISB ; Synchronize fetched instruction stream

Note

Issue C.a of this manual first describes this behavior, but the description applies to all ARMv7 implementations.

In addition, for both instruction sets, if one thread of execution changes a conditional branch instruction to another
conditional branch instruction, and the change affects both the condition field and the branch target, execution of
the changed instruction by another thread of execution before the change is synchronized can lead to either:

. the old condition being associated with the new target address

. the new condition being associated with the old target address.

These possibilities apply regardless of whether the condition, either before or after the change to the branch
instruction, is the always condition.

A3-130 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

A3.5.5 Normal memory

Accesses to normal memory region are idempotent, meaning that they exhibit the following properties:

. read accesses can be repeated with no side-effects

. repeated read accesses return the last value written to the resource being read
. read accesses can fetch additional memory locations with no side-effects

. write accesses can be repeated with no side-effects in the following cases:

— if the contents of the location accessed are unchanged between the repeated writes
— as the result of an exception, as described in this section

. unaligned accesses can be supported

. accesses can be merged before accessing the target memory system.

Normal memory can be read/write or read-only, and a Normal memory region is defined as being either Shareable
or Non-shareable. For Shareable Normal memory, whether a VMSA implementation distinguishes between Inner
Shareable and Outer Shareable is IMPLEMENTATION DEFINED. A PMSA implementation makes no distinction
between Inner Shareable and Outer Shareable regions.

The Normal memory type attribute applies to most memory used in a system.

Accesses to Normal Memory have a weakly consistent model of memory ordering. See a standard text describing
memory ordering issues for a description of weakly consistent memory models, for example chapter 2 of Memory
Consistency Models for Shared Memory-Multiprocessors. In general, for Normal memory, barrier operations are
required where the order of memory accesses observed by other observers must be controlled. This requirement
applies regardless of the cacheability and shareability attributes of the Normal memory region.

The ordering requirements of accesses described in Ordering requirements for memory accesses on page A3-148
apply to all explicit accesses.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on

page A3-127 might be abandoned as a result of an exception being taken during the sequence of accesses. On return
from the exception the instruction is restarted, and therefore one or more of the memory locations might be accessed
multiple times. This can result in repeated write accesses to a location that has been changed between the write
accesses.

The architecture permits speculative accesses to memory locations marked as Normal if the access permissions and
domain permit an access to the locations.

A Normal memory region has shareability attributes that define the data coherency properties of the region. These
attributes do not affect the coherency requirements of:

. Instruction fetches, see Instruction coherency issues on page A3-157.

. Translation table walks for VMSA implementations of:
— ARMv7-A without the Multiprocessing extensions
— versions of the architecture before ARMv7.

For more information, see 7LB maintenance operations and the memory order model on page B3-1383.

Non-shareable Normal memory

For a Normal memory region, the Non-shareable attribute identifies Normal memory that is likely to be accessed
only by a single processor.

A region of Normal memory with the Non-shareable attribute does not have any requirement to make data accesses
by different observers coherent, unless the memory is Non-cacheable. If other observers share the memory system,
software must use cache maintenance operations if the presence of caches might lead to coherency issues when
communicating between the observers. This cache maintenance requirement is in addition to the barrier operations
that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and
Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-131
Non-Confidential

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

Shareable, Inner Shareable, and Outer Shareable Normal memory

For Normal memory, the Shareable and Outer Shareable memory attributes describe Normal memory that is
expected to be accessed by multiple processors or other system masters:

. In a VMSA implementation, Normal memory that has the Shareable attribute but not the Outer Shareable
attribute assigned is described as having the Inner Shareable attribute.

. In a PMSA implementation, no distinction is made between Inner Shareable and Outer Shareable Normal
memory.

A region of Normal memory with the Shareable attribute is one for which data accesses to memory by different
observers within the same shareability domain are coherent.

The Outer Shareable attribute is introduced in ARMv7, and can be applied only to a Normal memory region in a
VMSA implementation that has the Shareable attribute assigned. It creates three levels of shareability for a Normal
memory region:

Non-shareable A Normal memory region that does not have the Shareable attribute assigned.

Inner Shareable A Normal memory region that has the Shareable attribute assigned, but not the Outer
Shareable attribute.

Outer Shareable A Normal memory region that has both the Shareable and the Outer Shareable attributes
assigned.

These attributes can define sets of observers for which the shareability attributes make the data or unified caches
transparent for data accesses. The sets of observers that are affected by the shareability attributes are described as
shareability domains. The details of the use of these attributes are system-specific. Example A3-1 shows how they
might be used:

Example A3-1 Use of shareability attributes

In a VMSA implementation, a particular subsystem with two clusters of processors has the requirement that:

. in each cluster, the data or unified caches of the processors in the cluster are transparent for all data accesses
with the Inner Shareable attribute

. however, between the two clusters, the caches:
— are not transparent for data accesses that have only the Inner Shareable attribute
— are transparent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different shareability domain for the Inner Shareable attribute, but all components
of the subsystem are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data or unified caches of one subsystem are not transparent
to the accesses from the other subsystem, this system has two Outer Shareable shareability domains.

However, for a Normal memory region that is Non-cacheable, as described in Write-Through Cacheable,
Write-Back Cacheable and Non-cacheable Normal memory on page A3-133, the only significance of the
Shareability attribute is the behavior of Load-Exclusive and Store-Exclusive instructions. For more information
about this behavior see Synchronization and semaphores on page A3-114.

Having two levels of shareability attribute means system designers can reduce the performance and power overhead
for shared memory regions that do not need to be part of the Outer Shareable shareability domain.

In a VMSA implementation, for Shareable Normal memory, whether there is a distinction between Inner Shareable
and Outer Shareable is IMPLEMENTATION DEFINED.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account
of the possibility of accesses by more than one observer in the same Shareability domain.

A3-132

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

Note

. System designers can use the Shareable concept to specify the locations in Normal memory that must have
coherency requirements. However, to facilitate porting of software, software developers must not assume that
specifying a memory region as Non-shareable permits software to make assumptions about the incoherency
of memory locations between different processors in a shared memory system. Such assumptions are not
portable between different multiprocessing implementations that make use of the Shareable concept. Any
multiprocessing implementation might implement caches that, inherently, are shared between different
processing elements.

. This architecture is written with an expectation that all processors using the same operating system or
hypervisor are in the same Inner Shareable shareability domain.

Write-Through Cacheable, Write-Back Cacheable and Non-cacheable Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory is assigned
a cacheability attribute that is one of:

. Write-Through Cacheable
. Write-Back Cacheable
. Non-cacheable.

Also, for cacheable Normal memory regions:
. a region might be assigned a cache allocation hint

. in an ARMv7-A implementation that includes the Large Physical Address Extension, it is IMPLEMENTATION
DEFINED whether the Write-Through Cacheable and Write-Back Cacheable attributes can have an additional
attribute of Transient or Non-transient, see Transient cacheability attribute, Large Physical Address
Extension on page A3-134.

A memory location can be marked as having different cacheability attributes, for example when using aliases in a
virtual to physical address mapping:

. if the attributes differ only in the cache allocation hint this does not affect the behavior of accesses to that
location
. for other cases see Mismatched memory attributes on page A3-138.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the shareability
domain of a region of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable regions of
memory might provide a better mechanism for controlling coherency than the use of hardware coherency
mechanisms or the use of cache maintenance routines. To this end, the architecture requires the following properties
for Non-cacheable or Write-Through Cacheable memory:

. a completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of
cache made by an observer accessing the memory system inside the level of cache is visible to all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance

. a completed write to a memory location that is Non-cacheable for a level of cache made by an observer
accessing the memory system outside the level of cache is visible to all observers accessing the memory
system inside the level of cache without the need of explicit cache maintenance.

Note

Implementations can use the cache allocation hints to indicate a probable performance benefit of caching. For
example, a programmer might know that a piece of memory is not going to be accessed again and would be better
treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache
allocation hints exists only as a hint for performance.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-133
Non-Confidential

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

The ARM architecture provides independent cacheability attributes for Normal memory for two conceptual levels
of cache, the inner and the outer cache. The relationship between these conceptual levels of cache and the
implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the boundaries between the
Inner and Outer Shareability domains. However:

. inner refers to the innermost caches, and always includes the lowest level of cache

. no cache controlled by the Inner cacheability attributes can lie outside a cache controlled by the Outer
cacheability attributes

. an implementation might not have any outer cache.

Example A3-2, Example A3-3, and Example A3-4 describe the possible ways of implementing a system with three
levels of cache, level 1 (L1) to level 3 (L3).

Note
. L1 cache is the level closest to the processor, see Memory hierarchy on page A3-155.
. When managing coherency, system designs must consider both the inner and outer cacheability attributes, as

well as the shareability attributes. This is because hardware might have to manage the coherency of caches
at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

Example A3-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:
. the Inner cacheability attribute applied to L1 and L2 cache
. the Outer cacheability attribute applied to L3 cache.

Example A3-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to L1, L2,
and L3 cache. Do not use the Outer cacheability attribute.

Example A3-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:
. the Inner cacheability attribute applied to L1 cache
. the Outer cacheability attribute applied to L2 and L3 cache.

Transient cacheability attribute, Large Physical Address Extension

For an ARMv7-A implementation that includes the Large Physical Address Extension, it is IMPLEMENTATION
DEFINED whether a Transient attribute is supported for cacheable Normal memory regions. If an implementation
supports this attribute, the set of possible cacheability attributes for a Normal memory region becomes:

. Write-Through Cacheable, Non-transient
. Write-Back Cacheable, Non-transient

. Write-Through Cacheable, Transient

. Write-Back Cacheable, Transient

. Non-cacheable.

The cacheability attribute can be defined independently for the inner and outer levels of caching.

A3-134

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

The transient attribute indicates that the benefit of caching is for a relatively short period, and that therefore it might
be better to restrict allocation, to avoid possibly casting-out other, less transient, entries.

Note

The architecture does not specify what is meant by a relatively short period.

The description of the MAIR® registers includes the assignment of the Transient attribute in an implementation that
supports this option.

A3.5.6 Device and Strongly-ordered memory

The Device and Strongly-ordered memory type attributes define memory locations where an access to the location
can cause side-effects, or where the value returned for a load can vary depending on the number of loads performed.
In ARMvV7, Device and Strongly-ordered memory differ only in their shareability options, as this section describes.

Note

See Ordering of instructions that change the CPSR interrupt masks on page AppxL-2506 for additional
requirements that apply to accesses to Strongly-ordered memory in ARMv6.

Examples of memory regions normally marked as being Device or Strongly-ordered memory are Memory-mapped
peripherals and I/O locations.

For explicit accesses from the processor to memory marked as Device or Strongly-ordered:
. all accesses occur at their program size
. the number of accesses is the number specified by the program.

An implementation must not perform more accesses to a Device or Strongly-ordered memory location than are
specified by a simple sequential execution of the program, except as a result of an exception. This section describes
this permitted effect of an exception.

The architecture does not permit speculative data accesses to memory marked as Device or Strongly-ordered.
However, it does not prohibit speculative translation table walks to Device or Strongly-ordered memory.

Note

. For an implementation that includes the Virtualization Extensions, for accesses from an application running
in Non-secure state, a speculative translation table walk to Device or Strongly-ordered memory might result
from the second stage of address translation defined by a hypervisor. For more information, see Overlaying
the memory type attribute on page B3-1376.

. For information about restrictions on speculative instruction fetching see:
— Execute-never restrictions on instruction fetching on page B3-1359 for a VMSA implementation

— The XN (Execute-never) attribute and instruction fetching on page B5-1759 for a PMSA
implementation.

The architecture permits an Advanced SIMD element or structure load instruction to access bytes in Device or
Strongly-ordered memory that are not explicitly accessed by the instruction, provided the bytes accessed are in a
16-byte window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by the instruction.

Address locations marked as Device or Strongly-ordered are never held in a cache.

Address locations marked as Strongly-ordered, and on an implementation that includes the Large Physical Address
Extension, address locations marked as Device, are always treated as Shareable. For more information about the
effect of the Large Physical Address Extension on the shareability of these locations see Device and
Strongly-ordered memory shareability, Large Physical Address Extension on page A3-137.

On an implementation that does not include the Large Physical Address Extension, the shareability of an address
location marked as Device is configurable, as described in Shareable attribute for Device memory regions on
page A3-136.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-135
Non-Confidential

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

All explicit accesses to Device or Strongly-ordered memory must comply with the ordering requirements of
accesses described in Ordering requirements for memory accesses on page A3-148. On an implementation that does
not include the Large Physical Address Extension, the requirements for Device memory depend on the shareability
of the Device memory locations.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on

page A3-127 might be abandoned as a result of an exception being taken during the sequence of accesses. On return
from the exception the instruction is restarted, and therefore one or more of the memory locations might be accessed
multiple times. This can result in repeated write accesses to a location that has been changed between the write
accesses.

Note

Software must not use an instruction that generates a sequence of accesses to access Device or Strongly-ordered
memory if the instruction might generate a synchronous Data Abort exception on any access other than the first one.

The only architecturally-required difference between Device and Strongly-ordered memory is that:

. awrite to Strongly-ordered memory can complete only when it reaches the peripheral or memory component
accessed by the write

. a write to Device memory is permitted to complete before it reaches the peripheral or memory component
accessed by the write.

Note

In addition, as described in Shareable attribute for Device memory regions, in an implementation that does not
include the Large Physical Address Extension, Device memory has Shareability attributes, the interpretation of
which is IMPLEMENTATION DEFINED, and might mean a Device memory region is not shareable.

The architecture does not permit unaligned accesses to Strongly-ordered or Device memory. Memory access
restrictions on page A3-137 summarizes the behavior of such accesses.

Shareable attribute for Device memory regions

In an implementation that does not include the Large Physical Address Extension, Device memory regions can be
given the Shareable attribute. When a Device memory region is give the Shareable attribute it can also be given the
Outer Shareable attribute. This means that a region of Device memory can be described as one of:

. Outer Shareable Device memory
. Inner Shareable Device memory
. Non-shareable Device memory.

Some implementations make no distinction between Outer Shareable Device memory and Inner Shareable Device
memory, and refer to both memory types as Shareable Device memory.

Some implementations make no distinction between Shareable Device memory and Non-shareable Device memory,
and refer to both memory types as Shareable Device memory.

For Device memory regions, the significance of shareability is IMPLEMENTATION DEFINED. However, an example
of a system supporting Shareable and Non-shareable Device memory is an implementation that supports both:

. a local bus for its private peripherals

. system peripherals implemented on the main shared system bus.

Such a system might have more predictable access times for local peripherals such as watchdog timers or interrupt
controllers. In particular, a specific address in a Non-shareable Device memory region might access a different
physical peripheral for each processor.

ARM deprecates the marking of Device memory with a shareability attribute other than Outer Shareable or
Shareable. This means ARM strongly recommends that Device memory is never assigned a shareability attribute of
Non-shareable or Inner Shareable.

A3-136

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

Device and Strongly-ordered memory shareability, Large Physical Address Extension

In an implementation that includes the Large Physical Address Extension, the Long-descriptor translation table
format does not distinguish between Shareable and Non-shareable Device memory.

In an implementation that includes the Large Physical Address Extension and is using the Short-descriptor
translation table format:

An address-based cache maintenance operation for an addresses in a region with the Strongly-ordered or
Device memory type applies to all processors in the same Outer Shareable domain, regardless of any
shareability attributes applied to the region.

Device memory transactions to a single peripheral must not be reordered, regardless of any shareability
attributes that are applied to the corresponding Device memory region.

Any single peripheral has an IMPLEMENTATION DEFINED size of not less than 1KB.

A3.5.7 Memory access restrictions

The following restrictions apply to memory accesses:

For accesses to any two bytes, p and ¢, that are generated by the same instruction:

— The bytes p and ¢ must have the same memory type and shareability attributes, otherwise the results
are UNPREDICTABLE. For example, an LDC, LDM, LDRD, STC, STM, STRD, or unaligned load or store that spans
a boundary between Normal and Device memory is UNPREDICTABLE.

— Except for possible differences in the cache allocation hints, ARM deprecates having different
cacheability attributes for the bytes p and g.

Unaligned data access on page A3-108 identifies the instructions that can make an unaligned memory
access, and the required configuration setting. If such an access is to Device or Strongly-ordered memory
then:

— if the implementation does not include the Large Physical Address Extension, the effect is
UNPREDICTABLE

— if the implementation includes the Large Physical Address Extension, the access generates an
Alignment fault.

An instruction that causes multiple accesses to Device or Strongly-ordered memory must not cross a 4KB
address boundary, otherwise the effect is UNPREDICTABLE. For this reason, it is important that an access to a
volatile memory device is not made using a single instruction that crosses a 4KB address boundary.

ARM expects this restriction to impose constraints on the placing of volatile memory devices in the memory
map of a system, rather than expecting a compiler to be aware of the alignment of memory accesses.

For any instruction that generates accesses to Device or Strongly-ordered memory, implementations must not
change the sequence of accesses specified by the pseudocode of the instruction. This includes not changing:

— how many accesses there are

— the time order of the accesses at any particular memory-mapped peripheral

— the data size and other properties of each access.

In addition, processor implementations expect any attached memory system to be able to identify the memory

type of accesses, and to obey similar restrictions with regard to the number, time order, data sizes and other
properties of the accesses.

Exceptions to this rule are:

— Animplementation of a processor can break this rule, provided that the original number, time order,
and other details of the accesses can be reconstructed from the information it supplies to the memory
system. In addition, the implementation must place a requirement on attached memory systems to do
this reconstruction when the accesses are to Device or Strongly-ordered memory.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-137
Non-Confidential

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

For example, an implementation with a 64-bit bus might pair the word loads generated by an LDM into
64-bit accesses. This is because the instruction semantics ensure that the 64-bit access is always a word
load from the lower address followed by a word load from the higher address. However the
implementation must permit the memory systems to unpack the two word loads when the access is to
Device or Strongly-ordered memory.

— An Advanced SIMD element or structure load instruction can access bytes in Device or
Strongly-ordered memory that are not explicitly accessed by the instruction, provided the bytes
accessed are within a 16-byte window, aligned to 16-bytes, that contains at least one byte that is
explicitly accessed by the instruction.

— There is no requirement for the memory system to be able to identify the size of the elements accessed
by an Advanced SIMD element or structure load/store instruction.

. In a PMSA implementation, and in a VMSA implementation when any associated MMU is enabled, any
multi-access instruction that loads or stores the PC must access only Normal memory. If the instruction
accesses Device or Strongly-ordered memory the result is UNPREDICTABLE.

. Any instruction fetch must access only Normal memory. If it accesses Device or Strongly-ordered memory,
the result is UNPREDICTABLE.

. If a single physical memory location has more than one set of attributes assigned to it, ARM strongly
recommends that software ensures that the sets of attributes are identical. For more information see
Mismatched memory attributes.

An example of where multiple sets of attributes might be assigned to the same physical memory location is
the use of aliases in a virtual to physical address mapping.
Mismatched memory attributes

A physical memory location is accessed with mismatched attributes if all accesses to the location do not use a
common definition of all of the following attributes of that location:

. memory type, Strongly-ordered, Device, or Normal
. shareability
. cacheability, for both the inner and outer levels of cache, but excluding any cache allocation hints.

The following rules apply when a physical memory location is accessed with mismatched attributes:

1. When a memory location is accessed with mismatched attributes the only software visible effects are one or
more of the following:
. Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

— aread of the memory location by a thread of execution might not return the value most recently
written to that memory location by that thread of execution

— multiple writes to the memory location by a thread of execution, that use different memory
attributes, might not be ordered in program order.

. There might be a loss of coherency when multiple threads of execution attempt to access a memory
location.

. There might be a loss of properties derived from the memory type, see rule 2.

. If multiple threads of execution attempt to use Load-Exclusive or Store-Exclusive instructions to

access a location with different memory attributes, the exclusive monitor state becomes UNKNOWN.

2. The loss of properties associated with mismatched memory type attributes refers only to the following
properties of Strongly-ordered or Device memory, that are additional to the properties of Normal memory:
. prohibition of speculative accesses
. preservation of the size of accesses
. preservation of the order of accesses
. the guarantee that the write acknowledgement comes from the endpoint of the access.
A3-138 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

If the only memory type mismatch is between Strongly-ordered and Device memory, then the only property
that can be lost is:

. the guarantee that the write acknowledgement comes from the endpoint of the access.

If all aliases of a memory location that permit write access to the location assign the same shareability and
cacheability attributes to that location, and all these aliases use a definition of the shareability attribute that
includes all the threads of execution that can access the location, then any thread of execution that reads the
memory location using these shareability and cacheability attributes accesses it coherently, to the extent
required by that common definition of the memory attributes.

The possible loss of properties caused by mismatched attributes for a memory location are defined more
precisely if all of the mismatched attributes define the memory location as one of:

. Strongly-ordered memory
. Device memory
. Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only possible software-visible effects of the mismatched attributes are one or more of:

. possible loss of properties derived from the memory type when multiple threads of execution attempt
to access the memory location.

. possible re-ordering of memory transactions to the memory location that use different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory location that might use different attributes.

If the mismatched attributes for a memory location all assign the same shareability attribute to the location,
any loss of coherency within a shareability domain can be avoided. To do so, software must use the
techniques that are required for the software management of the coherency of cacheable locations between
threads of execution in different shareability domains. This means:

. If any thread of execution might have written to the location with the write-back attribute, before
writing to the location not using the write-back attribute, a thread of execution must invalidate, or
clean, the location from the caches. This avoids the possibility of overwriting the location with stale
data.

. After writing to the location with the write-back attribute, a thread of execution must clean the location
from the caches, to make the write visible to external memory.

. Before reading the location with a cacheable attribute, a thread of execution must invalidate the
location from the caches, to ensure that any value held in the caches reflects the last value made visible
in external memory.

In all cases:

. location refers to any byte within the current coherency granule

. a clean and invalidate operation can be used instead of a clean operation, or instead of an invalidate
operation

. to ensure coherency, all cache maintenance and memory transactions must be completed, or ordered

by the use of barrier operations.

Note

With software management of coherency, race conditions can cause loss of data. A race condition occurs
when different threads of execution write simultaneously to bytes that are in the same location, and the
(invalidate or clean), write, clean sequence of one thread overlaps the equivalent sequence of another thread.

If the mismatched attributes for a location mean that multiple cacheable accesses to the location might be
made with different shareability attributes, then coherency is guaranteed only if each thread of execution that
accesses the location with a cacheable attribute performs a clean and invalidate of the location.

Note

The Note in rule 5, about possible race conditions, also applies to this rule.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-139
Non-Confidential

A3 Application Level Memory Model
A3.5 Memory types and attributes and the memory order model

A3.5.8

In addition, if multiple threads attempt to use Load-Exclusive or Store-Exclusive instructions to access a location
with different memory attributes associated with it, the exclusive monitor state becomes UNKNOWN.

ARM strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

The effect of the Security Extensions

The Security Extensions can be included as part of an ARMv7-A implementation, with a VMSA. They provide two
distinct 4GByte virtual memory spaces:

. a Secure virtual memory space

. a Non-secure virtual memory space.

The Secure virtual memory space is accessed by memory accesses in the Secure state, and the Non-secure virtual
memory space is accessed by memory accesses in the Non-secure state.

By providing different virtual memory spaces, the Security Extensions permit memory accesses made from the
Non-secure state to be distinguished from those made from the Secure state.

A3-140

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.6 Access rights

A3.6 Access rights

ARMV7 defines additional memory region attributes, that define access permissions that can:

. Restrict data accesses, based on the privilege level of the access. See Privilege level access controls for data
accesses on page A3-142.

. Restrict instruction fetches, based on the privilege level of the process or thread making the fetch. See
Privilege level access controls for instruction accesses on page A3-142.

. On a system that implements the Security Extensions, restrict accesses so that only memory accesses with
the Secure memory attribute are permitted. See Memory region security status on page A3-143.

These attributes are defined:

. In a VMSA implementation, in the MMU, see Memory access control on page B3-1356, Memory region
attributes on page B3-1366, and The effects of disabling MMUs on VMSA behavior on page B3-1314.

. In a PMSA implementation, in the MPU, see Memory access control on page B5-1759 and Memory region
attributes on page B5-1760.

A3.6.1 Processor privilege levels, execution privilege, and access privilege

As introduced in About the Application level programmers’ model on page A2-38, within a security state, the
ARMV7 architecture defines different levels of execution privilege:

. in Secure state, the privilege levels are PL1 and PLO
. in Non-secure state, the privilege levels are PL2, PL1, and PLO.

PLO indicates unprivileged execution in the current security state.

The current processor mode determines the execution privilege level, and therefore the execution privilege level can
be described as the processor privilege level.

Every memory access has an access privilege, that is either unprivileged or privileged.
The characteristics of the privilege levels are:

PLO The privilege level of application software, that executes in User mode. Therefore, software
executed in User mode is described as unprivileged software. This software cannot access some
features of the architecture. In particular, it cannot change many of the configuration settings.

Software executing at PLO makes only unprivileged memory accesses.

PL1 Software execution in all modes other than User mode and Hyp mode is at PL1. Normally, operating
system software executes at PL1. Software executing at PL1 can access all features of the
architecture, and can change the configuration settings for those features, except for some features
added by the Virtualization Extensions that are only accessible at PL2.

Note

In many implementation models, system software is unaware of the PL2 level of privilege, and of
whether the implementation includes the Virtualization Extensions.

The PL1 modes refers to all the modes other than User mode and Hyp mode.
Software executing at PL1 makes privileged memory accesses by default, but can also make
unprivileged accesses.

PL2 Software executing in Hyp mode executes at PL2.

Software executing at PL2 can perform all of the operations accessible at PL1, and can access some
additional functionality.

Hyp mode is normally used by a hypervisor, that controls, and can switch between, Guest OSs, that
execute at PL1.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-141
ID072512 Non-Confidential

A3 Application Level Memory Model

A3.6 Access rights

Hyp mode is implemented only as part of the Virtualization Extensions, and only in Non-secure
state. This means that:

. implementations that do not include the Virtualization Extensions have only two privilege
levels, PLO and PL1

. execution in Secure state has only two privilege levels, PLO and PL1.

In an implementation that includes the Security Extensions, the execution privilege levels are defined independently
in each security state, and there is no relationship between the Secure and Non-secure privilege levels.

Note

The fact that Non-secure Hyp mode executes at PL2 does not indicate that it is more privileged than the Secure PL1
modes. Secure PL1 modes can change the configuration and control settings for Non-secure operation in all modes,
but Non-secure modes can never change the configuration and control settings for Secure operation.

Memory access permissions can be assigned:

. at PL1, for accesses made at PL1 and at PLO

. in Non-secure state, at PL2, independently for:
— Non-secure accesses made at PL2

— Non-secure accesses made at PL1, and at PLO.

A3.6.2 Privilege level access controls for data accesses

The memory access permissions assigned at PL1 can define that a memory region is:
. Not accessible to any accesses.

. Accessible only to accesses at PL1.

. Accessible to accesses at any level of privilege.

In Non-secure state, separate memory access permissions can be assigned at PL2 for:
. Accesses made at PL1 and PLO.
. Accesses made at PL2.

The access privilege level is defined separately for explicit read and explicit write accesses. However, a system that
specifies the memory attributes is not required to support all combinations of memory attributes for read and write
accesses.

A privileged memory access is an access made during execution at PL1 or higher, as a result of a load or store
operation other than LDRT, STRT, LDRBT, STRBT, LDRHT, STRHT, LDRSHT, or LDRSBT.

An unprivileged memory access is an access made as a result of load or store operation performed in one of these
cases:

. When the processor is at PLO.

. When the processor is at PL1, and the access is made as a result of a LDRT, STRT, LDRBT, STRBT, LDRHT, STRHT,
LDRSHT, or LDRSBT instruction.

A Data Abort exception is generated if the processor attempts a data access that the access rights do not permit. For
example, a Data Abort exception is generated if the processor is at PLO and attempts to access a memory region that
is marked as only accessible to privileged memory accesses.

A3.6.3 Privilege level access controls for instruction accesses

Memory attributes access permissions assigned at PL1 can define that a memory region is:
. Not accessible for execution.

. Not accessible for execution at PL1 Only implementations that include the Large Physical Address Extension
support this attribute.

A3-142

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.6 Access rights

. Accessible for execution only at PL1.
. Accessible for execution at any level of privilege.

In Non-secure state, in an implementation that includes the Virtualization Extensions, separate memory access
permissions can be assigned at PL2 for:

. Accesses made at PL1 and PLO.
. Accesses made at PL2.

To define the instruction access rights to a memory region, the memory attributes describe, separately, for the

region:

. Its read access rights. These are equivalent to the read access rights described in Privilege level access
controls for data accesses on page A3-142.

. Whether software can be executed from the region. This is indicated by whether or not an Execute-never
(XN) attribute is assigned to the region.

. For an implementation that includes the Large Physical Address Extension, whether software can be
executed at PL1 from the region. This is indicated by whether or not a Privileged execute-never (PXN)
attribute is assigned to the region.

This means there is a linkage between the memory attributes that define the accessibility of a region to data accesses,
and those that define whether instructions can be executed from the region. For example, a region that is accessible
for execution only at PL1 or higher:

. Has the memory attribute indicating that it is accessible only to read accesses at PL1 or higher.
. Does not have the Execute-never attribute
. If the implementation includes the Large Physical Address Extension, does not have the Privileged

execute-never attribute.

Any attempt to execute an instruction from a memory location with an applicable execute-never attribute generates
a memory fault.

A3.6.4 Memory region security status

If an implementation includes the Security Extensions, an additional memory attribute determines whether the
memory region is Secure or Non-secure. Such an implementation checks this attribute, to ensure that a region of
memory that the system designates as Secure is not accessed by memory accesses with the Non-secure memory
attribute. For more information, see Memory region attributes on page B3-1366.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-143
Non-Confidential

A3 Application Level Memory Model
A3.7 Virtual and physical addressing

A3.7 Virtual and physical addressing

ARMV7 provides three alternative architectural profiles, ARMv7-A, ARMv7-R and ARMv7-M. Each of the
profiles specifies a different memory system. This manual describes two of these profiles:

ARMV7-A profile

The ARMv7-A memory system incorporates a Memory Management Unit (MMU), controlled by
CP15 registers. The memory system supports virtual addressing, with the MMU performing virtual
to physical address translation, in hardware, as part of program execution.

An ARMv7-A processor that implements the Virtualization Extensions provides two stages of
address translation for processes running at the Application level:

. The operating system defines the mappings from virtual addresses to intermediate physical
addresses (IPAs). When it does this, it believes it is mapping virtual addresses to physical
addresses.

. The hypervisor defines the mappings from IPAs to physical addresses. These translations are

invisible to the operating system.

For more information see About address translation on page B3-1311.

ARMV7-R profile

The ARMv7-R memory system incorporates a Memory Protection Unit (MPU), controlled by CP15
registers. The MPU does not support virtual addressing.

At the Application level, the difference between the ARMv7-A and ARMv7-R memory systems is transparent.
Regardless of which profile is implemented, an application accesses the memory map described in Address space
on page A3-106, and the implemented memory system makes the features described in this chapter available to the
application.

For a system level description of the ARMv7-A and ARMv7-R memory models see:
. Chapter B2 Common Memory System Architecture Features

. Chapter B3 Virtual Memory System Architecture (VMSA)

. Chapter B5 Protected Memory System Architecture (PMSA).

Note

This manual does not describe the ARMv7-M profile. For details of this profile see the ARMv7-M Architecture
Reference Manual.

A3-144 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.8 Memory access order

A3.8 Memory access order

ARMV7 provides a set of three memory types, Normal, Device, and Strongly-ordered, with well-defined memory
access properties.

The ARMV7 application level view of the memory attributes is described in:
. Memory types and attributes and the memory order model on page A3-125
. Access rights on page A3-141.

When considering memory access ordering, an important feature of the ARMv7 memory model is the Shareable
memory attribute, that indicates whether a region of memory appears coherent for data accesses made by multiple
observers.

The key issues with the memory order model depend on the target audience:

. For software programmers, considering the model at the Application level, the key factor is that for accesses
to Normal memory barriers are required in some situations where the order of accesses observed by other
observers must be controlled.

. For silicon implementers, considering the model at the system level, the Strongly-ordered and Device
memory attributes place certain restrictions on the system designer in terms of what can be built and when to
indicate completion of an access.

Note

Implementations remain free to choose the mechanisms required to implement the functionality of the
memory model.

More information about the memory order model is given in the following subsections:
. Reads and writes
. Ordering requirements for memory accesses on page A3-148

. Memory barriers on page A3-150.

Additional attributes and behaviors relate to the memory system architecture. These features are defined in the
system level section of this manual:

. Virtual memory systems based on an MMU, described in Chapter B3 Virtual Memory System Architecture
(VMSA).

. Protected memory systems based on an MPU, described in Chapter BS Protected Memory System
Architecture (PMSA).

. Caches, described in Caches and branch predictors on page B2-1266.

Note

In these system level descriptions, some attributes are described in relation to an MMU. In general, these
descriptions can also be applied to an MPU based system.

A3.8.1 Reads and writes

Each memory access is either a read or a write. Explicit memory accesses are the memory accesses required by the
function of an instruction. The following can cause memory accesses that are not explicit:

. instruction fetches
. cache loads and write-backs
. translation table walks.

Except where otherwise stated, the memory ordering requirements only apply to explicit memory accesses.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-145
Non-Confidential

A3 Application Level Memory Model
A3.8 Memory access order

Reads
Reads are defined as memory operations that have the semantics of a load.

The memory accesses of the following instructions are reads:

. LDR, LDRB, LDRH, LDRSB, and LDRSH.

. LDRT, LDRBT, LDRHT, LDRSBT, and LDRSHT.

. LDREX, LDREXB, LDREXD, and LDREXH.

. LDM, LDRD, POP, and RFE.

. LDC, LDC2, VLDM, VLDR, VLD1, VLD2, VLD3, VLD4, and VPOP.

. The return of status values by STREX, STREXB, STREXD, and STREXH.

. SWP and SWPB. These instructions are available only in the ARM instruction set.
. TBB and TBH. These instructions are available only in the Thumb instruction set.

Hardware-accelerated opcode execution by the Jazelle extension can cause a number of reads to occur, according
to the state of the operand stack and the implementation of the Jazelle hardware acceleration.

Writes
Writes are defined as memory operations that have the semantics of a store.

The memory accesses of the following instructions are Writes:

. STR, STRB, and STRH.

. STRT, STRBT, and STRHT.

. STREX, STREXB, STREXD, and STREXH.

. STM, STRD, PUSH, and SRS.

. STC, STC2, VPUSH, VSTM, VSTR, VSTL, VST2, VST3, and VST4.

. SWP and SWPB. These instructions are available only in the ARM instruction set.

Hardware-accelerated opcode execution by the Jazelle extension can cause a number of writes to occur, according
to the state of the operand stack and the implementation of the Jazelle hardware acceleration.

Synchronization primitives

Synchronization primitives must ensure correct operation of system semaphores in the memory order model. The
synchronization primitive instructions are defined as those instructions that are executed to ensure memory
synchronization. They are the following instructions:

. LDREX, STREX, LDREXB, STREXB, LDREXD, STREXD, LDREXH, STREXH.
. SWP, SWPB. From ARMv6, ARM deprecates the use of these instructions.

Observability and completion

An observer is an agent in the system that can access memory. For a processor, the following mechanisms must be
treated as independent observers:

. the mechanism that performs reads or writes to memory

. a mechanism that causes an instruction cache to be filled from memory or that fetches instructions to be
executed directly from memory

. a mechanism that performs translation table walks.
The set of observers that can observe a memory access is defined by the system.

In the definitions in this subsection, subsequent means whichever of the following is appropriate to the context:

. after the point in time where the location is observed by that observer
. after the point in time where the location is globally observed.
A3-146 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A3 Application Level Memory Model
A3.8 Memory access order

For all memory:

. a write to a location in memory is said to be observed by an observer when:

— asubsequent read of the location by the same observer will return the value written by the observed
write, or written by a write to that location by any observer that is sequenced in the Coherence order
of the location after the observed write

— asubsequent write of the location by the same observer will be sequenced in the Coherence order of
the location after the observed write
. a write to a location in memory is said to be globally observed for a shareability domain when:

— asubsequent read of the location by any observer in that shareability domain will return the value
written by the globally observed write, or written by a write to that location by any observer that is
sequenced in the Coherence order of the location after the globally observed write

— asubsequent write of the location by any observer in that shareability domain will be sequenced in the
Coherence order of the location after the globally observed write

. aread of a location in memory is said to be observed by an observer when a subsequent write to the location
by the same observer will have no effect on the value returned by the read

. a read of a location in memory is said to be globally observed for a shareability domain when a subsequent
write to the location by any observer in that shareability domain will have no effect on the value returned by
the read.

Additionally, for Strongly-ordered memory:

. A read or write of a memory-mapped location in a peripheral that exhibits side-effects is said to be observed,
and globally observed, only when the read or write:
— meets the general conditions listed
— can begin to affect the state of the memory-mapped peripheral

— can trigger all associated side-effects, whether they affect other peripheral devices, processors, or
memory.

Note

This definition is consistent with the memory access having reached the peripheral.

For all memory, the completion rules are defined as:

. A read or write is complete for a shareability domain when all of the following are true:
— the read or write is globally observed for that shareability domain
— any translation table walks associated with the read or write are complete for that shareability domain.

. A translation table walk is complete for a shareability domain when the memory accesses associated with the
translation table walk are globally observed for that shareability domain, and the TLB is updated.

. A cache, branch predictor, or TLB maintenance operation is complete for a shareability domain when the
effects of the operation are globally observed for that shareability domain, and any translation table walks
that arise from the operation are complete for that shareability domain.

The completion of any cache, branch predictor or TLB maintenance operation includes its completion on all
processors that are affected by both the operation and the DSB operation that is required to guarantee
visibility of the maintenance operation.

Completion of side-effects of accesses to Strongly-ordered and Device memory

The completion of a memory access to Strongly-ordered or Device memory is not guaranteed to be sufficient to
determine that the side-effects of the memory access are visible to all observers. The mechanism that ensures the
visibility of side-effects of a memory access is IMPLEMENTATION DEFINED.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-147
Non-Confidential

A3 Application Level Memory Model
A3.8 Memory access order

A3.8.2 Ordering requirements for memory accesses
ARMv7 and ARMv6 define access restrictions in the permitted ordering of memory accesses. These restrictions
depend on the memory attributes of the accesses involved.
Two terms used in describing the memory access ordering requirements are:
Address dependency
An address dependency exists when the value returned by a read access is used for the computation
of'the virtual address of a subsequent read or write access. An address dependency exists even if the
value read by the first read access does not change the virtual address of the second read or write
access. This might be the case if the value returned is masked off before it is used, or if it has no
effect on the predicted address value for the second access.
Control dependency
A control dependency exists when the data value returned by a read access determines the condition
flags, and the values of the flags are used in the condition code checking that determines the address
of a subsequent read access. This address determination might be through conditional execution, or
through the evaluation of a branch.
Figure A3-5 shows the memory ordering between two explicit accesses Al and A2, where A1 occurs before A2 in
program order. In the figure, an access refers to a read or a write access to the specified memory type. For example,
Normal access refers to a read or write access to Normal memory. The symbols used in the figure are as follows:
< Accesses must arrive at any particular memory-mapped peripheral or block of memory in program
order, that is, A1 must arrive before A2. There are no ordering restrictions about when accesses
arrive at different peripherals or blocks of memory, provided that accesses follow the general
ordering rules given in this section.
- Accesses can arrive at any memory-mapped peripheral or block of memory in any order, provided
that the accesses follow the general ordering rules given in this section.
The size of a memory mapped peripheral, or a block of memory, is IMPLEMENTATION DEFINED, but is not smaller
than 1KByte.
Note
This implies that the maximum memory-mapped peripheral size for which the architecture guarantees order for all
implementations is 1KB.
A1 A2 Normal access Device access t Strongly-ordered access f
Normal access - - -
Device access - < <
Strongly-ordered access - < <
I The ordering requirements for Device and Strongly-ordered accesses are identical.
Figure A3-5 Memory ordering restrictions
There are no ordering requirements for implicit accesses to any type of memory.
The following additional restrictions apply to the ordering of all memory accesses:
. For all accesses from a single observer, the requirements of uniprocessor semantics must be maintained, for
example:
— respecting dependencies between instructions in a single processor
— coherency.
A3-148 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A3 Application Level Memory Model
A3.8 Memory access order

. If there is an address dependency then the two memory accesses are observed in program order by any
observer in the common shareability domain of the two accesses.

This ordering restriction does not apply if there is only a control dependency between the two read accesses.
If there is both an address dependency and a control dependency between two read accesses the ordering

requirements of the address dependency apply.

. If the value returned by a read access is used as data written by a subsequent write access, then the two
memory accesses are observed in program order by any observer in the common shareability domain of the
two accesses.

. It is impossible for an observer in the shareability domain of a memory location to observe an access by a
store instruction that has not been architecturally executed.

. It is impossible for an observer in the shareability domain of a memory location to observe two reads to the
same memory location performed by the same observer in an order that would not occur in a sequential
execution of a program.

. For an implementation that does not include the Multiprocessing Extensions, it is IMPLEMENTATION DEFINED
whether all writes complete in a finite period of time, or whether some writes require the execution of a DSB
instruction to guarantee their completion.

. For an implementation that includes the Multiprocessing Extensions, all writes complete in a finite period of
time.

Note

This applies for all writes, including repeated writes to the same location.

Program order for instruction execution

The program order of instruction execution is the order of the instructions in a simple sequential execution of the
program.

Explicit memory accesses in an execution can be either:
Strictly Ordered

Denoted by <. Must occur strictly in order.

Ordered Denoted by <=. Can occur either in order or simultaneously.

Load/store multiple instructions, such as LDM, LDRD, STM, and STRD, generate multiple word accesses, each of which is
a separate access for the purpose of determining ordering.

The rules for determining program order for two accesses Al and A2 are:

If A1 and A2 are generated by two different instructions:
. Al < A2 if the instruction that generates A1 occurs before the instruction that generates A2 in program order

. A2 < Al if the instruction that generates A2 occurs before the instruction that generates A1 in program order.
If Al and A2 are generated by the same instruction:

. If A1 and A2 are the load and store generated by a SWP or SWPB instruction:
— A1 <A2if Al is the load and A2 is the store
— A2 <A1if A2 is the load and Al is the store.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-149
Non-Confidential

A3 Application Level Memory Model
A3.8 Memory access order

. In these descriptions:

— an LDM-class instruction is any form of LDM, LDMDA, LDMDB, or LDMIB, or a POP instruction that operates
on more than one register

— an LDC-class instruction is an LDC, VLDM, VLDR, or VPOP instruction

— an STM-class instruction is any form of STM, STMDA, STMDB, or STMIB, or a PUSH instruction that operates
on more than one register

— an STC-class instruction is an STC, VSTM, VSTR, or VPUSH instruction.
If A1 and A2 are two word loads generated by an LDC-class or LDM-class instruction, or two word stores

generated by an STC-class or STM-class instruction, excluding LDM-class and STM-class instructions with
a register list that includes the PC:

— Al <= A2 if the address of Al is less than the address of A2
— A2 <= Al if the address of A2 is less than the address of Al.

If A1 and A2 are two word loads generated by an LDM-class instruction with a register list that includes the
PC or two word stores generated by an STM-class instruction with a register list that includes the PC, the
program order of the memory accesses is not defined.

. If A1 and A2 are two word loads generated by an LDRD instruction or two word stores generated by an STRD
instruction, the program order of the memory accesses is not defined.

. If A1 and A2 are load or store accesses generated by Advanced SIMD element or structure load/store
instructions, the program order of the memory accesses is not defined.

. For any instruction or operation not explicitly mentioned in this section, if the single-copy atomicity rules
described in Single-copy atomicity on page A3-127 mean the operation becomes a sequence of accesses, then
the time-ordering of those accesses is not defined.

A3.8.3 Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, that forces synchronization
events by a processor with respect to retiring load/store instructions. The ARM architecture defines a number of
memory barriers that provide a range of functionality, including:

. ordering of load/store instructions
. completion of load/store instructions
. context synchronization.

ARMvV7 and ARMV6 require three explicit memory barriers to support the memory order model described in this
chapter. In ARMv7 the memory barriers are provided as instructions that are available in the ARM and Thumb
instruction sets, and in ARMv6 the memory barriers are performed by CP15 register writes. The three memory
barriers are:

. Data Memory Barrier, see Data Memory Barrier (DMB) on page A3-151

. Data Synchronization Barrier, see Data Synchronization Barrier (DSB) on page A3-152
. Instruction Synchronization Barrier, see Instruction Synchronization Barrier (ISB) on page A3-152.
Note

Depending on the required synchronization, a program might use memory barriers on their own, or it might use them
in conjunction with cache and memory management maintenance operations that are only available when software
execution is at PL1 or higher.

The DMB and DSB memory barriers affect reads and writes to the memory system generated by load/store
instructions and data or unified cache maintenance operations being executed by the processor. Instruction fetches
or accesses caused by a hardware translation table access are not explicit accesses.

A3-150 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.8 Memory access order

Data Memory Barrier (DMB)

The DMB instruction is a data memory barrier. The processor that executes the DMB instruction is referred to as the
executing processor, Pe. The DMB instruction takes the required shareability domain and required access types as
arguments, see Shareability and access limitations on the data barrier operations on page A3-152. If the required
shareability is Full system then the operation applies to all observers within the system.

A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

. All explicit memory accesses of the required access types from observers in the same
required shareability domain as Pe that are observed by Pe before the DMB instruction. These
accesses include any accesses of the required access types performed by Pe.

. All loads of required access types from an observer Px in the same required shareability
domain as Pe that have been observed by any given different observer, Py, in the same
required shareability domain as Pe before Py has performed a memory access that is a
member of Group A.

Group B Contains:

. All explicit memory accesses of the required access types by Pe that occur in program order
after the DMB instruction.

. All explicit memory accesses of the required access types by any given observer Px in the
same required shareability domain as Pe that can only occur after a load by Px has returned
the result of a store that is a member of Group B.

Any observer with the same required shareability domain as Pe observes all members of Group A before it observes
any member of Group B to the extent that those group members are required to be observed, as determined by the
shareability and cacheability of the memory locations accessed by the group members.

Where members of Group A and members of Group B access the same memory-mapped peripheral or block of
memory, of arbitrary system-defined size, then members of Group A that are accessing Strongly-ordered, Device,
or Normal Non-cacheable memory arrive at that peripheral or block of memory before members of Group B that
are accessing Strongly-ordered, Device, or Normal Non-cacheable memory.

Note

. Where the members of Group A and Group B that must be ordered are from the same processor, a DMB NSH is
sufficient for this guarantee.

. A memory access might be in neither Group A nor Group B. The DMB does not affect the order of
observation of such a memory access.

. The second part of the definition of Group A is recursive. Ultimately, membership of Group A derives from
the observation by Py of a load before Py performs an access that is a member of Group A as a result of the
first part of the definition of Group A.

. The second part of the definition of Group B is recursive. Ultimately, membership of Group B derives from
the observation by any observer of an access by Pe that is a member of Group B as a result of the first part of
the definition of Group B.

DMB only affects memory accesses and data and unified cache maintenance operations, see Cache and branch
predictor maintenance operations on page B2-1277. It has no effect on the ordering of any other instructions
executing on the processor.

For details of the DMB instruction in the Thumb and ARM instruction sets see DMB on page A8-378.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-151
ID072512 Non-Confidential

A3 Application Level Memory Model
A3.8 Memory access order

Data Synchronization Barrier (DSB)

The DSB instruction is a special memory barrier, that synchronizes the execution stream with memory accesses. The
DSB instruction takes the required shareability domain and required access types as arguments, see Shareability and
access limitations on the data barrier operations. If the required shareability is Full system then the operation
applies to all observers within the system.

A DSB behaves as a DMB with the same arguments, and also has the additional properties defined here.
A DSB completes when:

. all explicit memory accesses that are observed by Pe before the DSB is executed, are of the required access
types, and are from observers in the same required shareability domain as Pe, are complete for the set of
observers in the required shareability domain

. all cache and branch predictor maintenance operations issued by Pe before the DSB are complete for the
required shareability domain.

. if the required accesses types of the DSB is reads and writes, all TLB maintenance operations issued by Pe
before the DSB are complete for the required shareability domain.

In addition, no instruction that appears in program order after the DSB instruction can execute until the DSB completes.

For details of the DSB instruction in the Thumb and ARM instruction sets see DSB on page A8-380.

Note

Historically, this operation was referred to as Drain Write Buffer or Data Write Barrier (DWB). From ARMV6,
these names and the use of DWB were deprecated in favor of the new Data Synchronization Barrier name and DSB
abbreviation. DSB better reflects the functionality provided from ARMv6, because DSB is architecturally defined
to include all cache, TLB and branch prediction maintenance operations as well as explicit memory operations.

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the processor, so that all instructions that come after the ISB instruction in
program order are fetched from cache or memory only after the ISB instruction has completed. Using an ISB ensures
that the effects of context-changing operations executed before the ISB are visible to the instructions fetched after
the ISB instruction. Examples of context-changing operations that require the insertion of an ISB instruction to ensure
the effects of the operation are visible to instructions fetched after the ISB instruction are:

. completed cache, TLB, and branch predictor maintenance operations
. changes to system control registers.

Any context-changing operations appearing in program order after the ISB instruction only take effect after the ISB
has been executed.

For more information about the ISB instruction in the Thumb and ARM instruction sets, see /SB on page A8-389.

Shareability and access limitations on the data barrier operations

The DMB and DSB instructions can each take an optional limitation argument that specifies:
. the shareability domain over which the instruction must operate, as one of:

— full system

— Outer Shareable

— Inner Shareable

— Non-shareable
. the accesses for which the instruction operates, as one of:

— read and write accesses

— write accesses only.

A3-152

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model

A3.8 Memory access order

By default, each instruction operates for read and write accesses, over the full system, and whether an
implementation supports any other options is IMPLEMENTATION DEFINED. See the instruction descriptions for more

information about these arguments.

Note

ISB also supports an optional limitation argument, but supports only one value for that argument, that corresponds

to full system operation.

In an implementation that includes the Virtualization Extensions, and supports shareability limitations on the data
barrier operations, the HCR.BSU field can upgrade the required shareability of the operation for an instruction that
is executed in a Non-secure PL1 or PLO mode. Table A3-6 shows the encoding of this field:

Table A3-6 HCR.BSU encoding

HCR.BSU Minimum shareability of instruction

00 No effect, shareability is as specified by the instruction
01 Inner Shareable

10 Outer Shareable

11 Full system

For an instruction executed in a Non-secure PL1 or PLO mode, Table A3-7 shows how HCR.BSU upgrades the

shareability specified by the argument of the DMB or DSB instruction:

Table A3-7 Upgrading the shareability of data barrier operations

Shareability from DVMB or DSB argument HCR.BSU

Resultant shareability

Full system Any

Outer Shareable 00, 01, or 10

Full system

Outer Shareable

11, Full system

Full system

Inner Shareable 00 or 01

Inner Shareable

10, Outer Shareable
11, Full system
Non-shareable 00, No effect

01, Inner Shareable

Outer Shareable
Full system
Non-shareable

Inner Shareable

10, Outer Shareable

Outer Shareable

11, Full system

Full system

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

A3-153

A3 Application Level Memory Model
A3.8 Memory access order

Pseudocode details of memory barriers

The following types define the required shareability domains and required access types used as arguments for DMB
and DSB instructions:
enumeration MBRegDomain {MBRegDomain_Ful1System,

MBRegDomain_QOuterShareable,

MBRegDomain_InnerShareable,

MBRegDomain_Nonshareable};

enumeration MBReqTypes {MBReqTypes_A11, MBReqTypes_Writes};

The following procedures perform the memory barriers:
DataMemoryBarrier(MBRegDomain domain, MBReqTypes types)
DataSynchronizationBarrier(MBRegDomain domain, MBReqTypes types)

InstructionSynchronizationBarrier()

A3-154 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.9 Caches and memory hierarchy

A3.9 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore the details of the
system are IMPLEMENTATION DEFINED. ARMvV7 defines the application level interface to the memory system, and
supports a hierarchical memory system with multiple levels of cache. This section provides an application level
view of this system. It contains the subsections:

. Introduction to caches

. Memory hierarchy

. Implication of caches for the application programmer on page A3-156
. Preloading caches on page A3-157.

A3.9.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:
. main memory address information, commonly called a fag
. the associated data.

Caches increase the average speed of a memory access. Cache operation takes account of two principles of locality:

Spatial locality
An access to one location is likely to be followed by accesses to adjacent locations. Examples of this
principle are:
. sequential instruction execution
. accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example of this
principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations
together under the same tag. This logical block is commonly called a cache line. When data is loaded into a cache,
access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access to
information already in a cache is called a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the processor wants to
access a cacheable location, the cache is checked. If the access is a cache hit, the access occurs in the cache,
otherwise a location is allocated and the cache line loaded from memory. Different cache topologies and access
policies are possible, however, they must comply with the memory coherency model of the underlying architecture.

Caches introduce a number of potential problems, mainly because of:
. memory accesses occurring at times other than when the programmer would otherwise expect them

. there being multiple physical locations where a data item can be held.

A3.9.2 Memory hierarchy

Memory close to a processor has very low latency, but is limited in size and expensive to implement. Further from
the processor it is easier to implement larger blocks of memory but these have increased latency. To optimize overall
performance, an ARMv7 memory system can include multiple levels of cache in a hierarchical memory system.
Figure A3-6 on page A3-156 shows such a system, in an ARMv7-A implementation of a VMSA, supporting virtual
addressing.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-155
ID072512 Non-Confidential

A3 Application Level Memory Model
A3.9 Caches and memory hierarchy

A3.9.3

Virtual
address . Address Physical address
translation
CP15 configuration
and control
Y Y A\ 4
Level 1 Level 2 Level 3
Processor y » Cache Cache
R15 __Instruction . ‘ < DRAM
fetch h N SRAM
T T ¢ Load Flash Level 4
RO Store | +—> 1« > —> [« » ROM ¢ for example,
" CF card, disk

Figure A3-6 Multiple levels of cache in a memory hierarchy

Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the processor, as shown in
Figure A3-6.

Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become
visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

when memory locations are updated by other agents in the system

when memory updates made from the application software must be made visible to other agents in the
system.

For example:

In a system with a DMA controller that reads memory locations that are held in the data cache of a processor,
a breakdown of coherency occurs when the processor has written new data in the data cache, but the DMA
controller reads the old data held in memory.

In a Harvard architecture of caches, where there are separate instruction and data caches, a breakdown of
coherency occurs when new instruction data has been written into the data cache, but the instruction cache
still contains the old instruction data.

Data coherency issues

Software can ensure the data coherency of caches in the following ways:

By not using the caches in situations where coherency issues can arise. This can be achieved by:
— using Non-cacheable or, in some cases, Write-Through Cacheable memory
— not enabling caches in the system.

By using cache maintenance operations to manage the coherency issues in software, see About ARMv7 cache
and branch predictor maintenance functionality on page B2-1273. Many of these operations are only
available to system software.

By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable
locations by observers within the different shareability domains, see Non-shareable Normal memory on
page A3-131 and Shareable, Inner Shareable, and Outer Shareable Normal memory on page A3-132.

A3-156

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A3 Application Level Memory Model
A3.9 Caches and memory hierarchy

The performance of these hardware coherency mechanisms is highly implementation-specific. In some
implementations the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency between
observers within the shareability domains.

Instruction coherency issues

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such
prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory:

. the processor might have fetched the instructions from memory at any time since the last context
synchronization operation on that processor

. any instructions fetched in this way might be executed multiple times, if this is required by the execution of
the program, without being refetched from memory

Note

See Context synchronization operation for the definition of this term.

In addition, the ARM architecture does not require the hardware to ensure coherency between instruction caches
and memory, even for regions of memory with Shareable attributes. This means that for cacheable regions of
memory, an instruction cache can hold instructions that were fetched from memory before the context
synchronization operation.

If software requires coherency between instruction execution and memory, it must manage this coherency using the
ISB and DSB memory barriers and cache maintenance operations, see Ordering of cache and branch predictor
maintenance operations on page B2-1289. Many of these operations are only available to system software.

A3.9.4 Preloading caches

The ARM architecture provides memory system hints PLD (Preload Data), PLDW (Preload Data with intent to write),
and PLI (Preload Instruction) to permit software to communicate the expected use of memory locations to the
hardware. The memory system can respond by taking actions that are expected to speed up the memory accesses if
and when they do occur. The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically,
implementations use this information to bring the data or instruction locations into caches that have faster access
times than normal memory.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. The instructions do not generate synchronous Data Abort exceptions, but the memory system
operations might, under exceptional circumstances, generate asynchronous aborts. For more information, see Data
Abort exception on page B1-1214.

For more information about the operation of these instructions see Behavior of Preload Data (PLD, PLDW) and
Preload Instruction (PLI) with caches on page B2-1269.

Hardware implementations can provide other implementation-specific mechanisms to fetch memory locations in
the cache. These must comply with the general cache behavior described in Cache behavior on page B2-1267.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A3-157
ID072512 Non-Confidential

A3 Application Level Memory Model
A3.9 Caches and memory hierarchy

A3-158 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Chapter A4

The Instruction Sets

This chapter describes the ARM and Thumb instruction sets. It contains the following sections:

About the instruction sets on page A4-160

Unified Assembler Language on page A4-162

Branch instructions on page A4-164

Data-processing instructions on page A4-165

Status register access instructions on page A4-174

Load/store instructions on page A4-175

Load/store multiple instructions on page A4-177

Miscellaneous instructions on page A4-178

Exception-generating and exception-handling instructions on page A4-179
Coprocessor instructions on page A4-180

Advanced SIMD and Floating-point load/store instructions on page A4-181
Advanced SIMD and Floating-point register transfer instructions on page A4-183
Advanced SIMD data-processing instructions on page A4-184

Floating-point data-processing instructions on page A4-191.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-159
Non-Confidential

A4 The Instruction Sets
A4.1 About the instruction sets

A4.1

Ad4.1.1

About the instruction sets

ARMV7 contains two main instruction sets, the ARM and Thumb instruction sets. Much of the functionality
available is identical in the two instruction sets. This chapter describes the functionality available in the instruction
sets, and the Unified Assembler Language (UAL) that can be assembled to either instruction set.

The two instruction sets differ in how instructions are encoded:

. Thumb instructions are either 16-bit or 32-bit, and are aligned on a two-byte boundary. 16-bit and 32-bit
instructions can be intermixed freely. Many common operations are most efficiently executed using 16-bit
instructions. However:

— Most 16-bit instructions can only access the first eight of the ARM core registers, R0-R7. These are
called the low registers. A small number of 16-bit instructions can also access the high registers,
R8-R15.

— Many operations that would require two or more 16-bit instructions can be more efficiently executed
with a single 32-bit instruction.

— All 32-bit instructions can access all of the ARM core registers, RO-R15.
. ARM instructions are always 32-bit, and are aligned on a four-byte boundary.

The ARM and Thumb instruction sets can interwork freely, that is, different procedures can be compiled or
assembled to different instruction sets, and still be able to call each other efficiently.

ThumbEE is a variant of the Thumb instruction set that is designed as a target for dynamically generated code.
However, it cannot interwork freely with the ARM and Thumb instruction sets.

In an implementation that includes a non-trivial Jazelle extension, the processor can execute some Java bytecodes
in hardware. For more information see Jazelle direct bytecode execution support on page A2-97. The processor
executes Java bytecodes when it is in Jazelle state. However, this execution is outside the scope of this manual.

See:

. Chapter A5 ARM Instruction Set Encoding for encoding details of the ARM instruction set

. Chapter A6 Thumb Instruction Set Encoding for encoding details of the Thumb instruction set
. Chapter A8 Instruction Details for detailed descriptions of the instructions

. Chapter A9 The ThumbEE Instruction Set for encoding details of the ThumbEE instruction set.

Changing between Thumb state and ARM state

A processor in ARM state executes ARM instructions, and a processor in Thumb state executes Thumb instructions.
A processor in Thumb state can enter ARM state by executing any of the following instructions: BX, BLX, or an LDR
or LDM that loads the PC.

A processor in ARM state can enter Thumb state by executing any of the same instructions.

In ARMV7, a processor in ARM state can also enter Thumb state by executing an ADC, ADD, AND, ASR, BIC, EOR, LSL,
LSR, MOV, MVN, ORR, ROR, RRX, RSB, RSC, SBC, or SUB instruction that has the PC as destination register and does not set the
condition flags.

Note

This permits calls and returns between ARM code written for ARMv4 processors and Thumb code running on
ARMV7 processors to function correctly. ARM recommends that new software uses BX or BLX instructions instead.
In particular, ARM recommends that software uses BX LR to return from a procedure, not MOV PC, LR.

The target instruction set is either encoded directly in the instruction (for the immediate offset version of BLX), or is
held as bit[0] of an interworking address. For details, see the description of the BXWritePC() function in Pseudocode
details of operations on ARM core registers on page A2-47.

Exception entries and returns can also change between ARM and Thumb states. For details see Exception handling
on page B1-1164.

A4-160

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A4 The Instruction Sets
A4.1 About the instruction sets

A4.1.2 Conditional execution

In the ARM and Thumb instruction sets, most instructions can be conditionally executed.

In the ARM instruction set, conditional execution means that an instruction only has its normal effect on the
programmers’ model operation, memory and coprocessors if the N, Z, C and V condition flags in the APSR satisfy
a condition specified by the cond field in the instruction encoding. If the flags do not satisfy this condition, the
instruction acts as a NOP, that is, execution advances to the next instruction as normal, including any relevant checks
for exceptions being taken, but has no other effect.

In the Thumb instruction set, different mechanisms control conditional execution:

. For the following Thumb encodings, conditional execution is controlled in a similar way to the ARM
instructions:

— A 16-bit conditional branch instruction encoding, with a branch range of —256 to +254 bytes. Before
ARMV6T?2, this was the only mechanism for conditional execution in Thumb code.

— A 32-bit conditional branch instruction encoding, with a branch range of approximately +1MB.

For more information about these encodings see B on page A8-334.

. The CBZ and CBNZ instructions, Compare and Branch on Zero and Compare and Branch on Nonzero, are 16-bit
conditional instructions with a branch range of +4 to +130 bytes. For details see CBNZ, CBZ on page A8-356.

. The 16-bit If-Then instruction makes up to four following instructions conditional, and can make most other
Thumb instructions conditional. For details see /7 on page A8-390. The instructions that are made
conditional by an IT instruction are called its /7 block. For any IT block, either:

— all instructions have the same condition

— some instructions have one condition, and the other instructions have the inverse condition.

ARM deprecates the conditional execution of any instruction encoding provided by the Advanced SIMD Extension
that is not also provided by the Floating-point (VFP) Extension, and strongly recommends that any such instruction
that can be conditionally executed is specified with the <c> field omitted or set to AL. For more information, see
Conditional execution on page A8-288.

For more information about conditional execution see Conditional execution on page A8-288.

A4.1.3 Writing to the PC

Writing to the PC on page A2-46 gives an overview of instructions that write to the PC, including the required
behavior of these writes. This information is also given in the appropriate sections of this chapter.

Ad41.4 Permanently UNDEFINED encodings

All versions of the ARM architecture define some encodings as permanently UNDEFINED. That is, permanently
UNDEFINED encodings are defined in the ARM instruction set encodings, and in the 16-bit and 32-bit Thumb
encodings. From issue C.a of this manual, ARM defines an assembler mnemonic for the unconditional forms of
these instructions, see UDF on page A8-758.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-161
Non-Confidential

A4 The Instruction Sets
A4.2 Unified Assembler Language

A4.2

A4.2.1

A4.2.2

Unified Assembler Language

This document uses the ARM Unified Assembler Language (UAL). This assembly language syntax provides a
canonical form for all ARM and Thumb instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes that
instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor what
assembler directives and options are available. See your assembler documentation for these details.

Most earlier ARM assembly language mnemonics are still supported as synonyms, as described in the instruction
details.

Note

Most earlier Thumb assembly language mnemonics are not supported. For more information, see Appendix H
Legacy Instruction Mnemonics.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than one
can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an ADD R0, R1, R2
instruction. The most common instruction selection rule is that when both a 16-bit encoding and a 32-bit encoding
are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is
selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original code,
and in some other situations.

Conditional instructions

For maximum portability of UAL assembly language between the ARM and Thumb instruction sets, ARM
recommends that:

. IT instructions are written before conditional instructions in the correct way for the Thumb instruction set.

. When assembling to the ARM instruction set, assemblers check that any IT instructions are correct, but do
not generate any code for them.

Although other Thumb instructions are unconditional, all instructions that are made conditional by an IT instruction
must be written with a condition. These conditions must match the conditions imposed by the IT instruction. For
example, an ITTEE EQ instruction imposes the EQ condition on the first two following instructions, and the NE
condition on the next two. Those four instructions must be written with EQ, EQ, NE and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they are
the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition code field cannot be made conditional by an IT
instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction,
it is assembled using a branch instruction encoding that does not include a condition code field.

Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed offset
from the instruction being specified. The assembler must:

1. Calculate the PC or ATign(PC, 4) value of the instruction. The PC value of an instruction is its address plus 4
for a Thumb instruction, or plus 8 for an ARM instruction. The Align(PC, 4) value of an instruction is its PC
value ANDed with @xFFFFFFFC to force it to be word-aligned. There is no difference between the PC and
Align(PC, 4) values for an ARM instruction, but there can be for a Thumb instruction.

2. Calculate the offset from the PC or Align(PC, 4) value of the instruction to the address of the labelled
instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC, 4) value and
adds the calculated offset to form the required address.

A4-162

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A4 The Instruction Sets
A4.2 Unified Assembler Language

Note
For instructions that can encode a subtraction operation, if the instruction cannot encode the calculated offset
but can encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the
calculated offset.

The syntax of the following instructions includes a label:

B, BL, and BLX (immediate). The assembler syntax for these instructions always specifies the label of the
instruction that they branch to. Their encodings specify a sign-extended immediate offset that is added to the
PC value of the instruction to form the target address of the branch.

CBNZ and (BZ. The assembler syntax for these instructions always specifies the label of the instruction that they
branch to. Their encodings specify a zero-extended immediate offset that is added to the PC value of the
instruction to form the target address of the branch. They do not support backward branches.

LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLDW, PLI, and VLDR. The normal assembler syntax of these
load instructions can specify the label of a literal data item that is to be loaded. The encodings of these
instructions specify a zero-extended immediate offset that is either added to or subtracted from the
Align(PC, 4) value of the instruction to form the address of the data item. A few such encodings perform a
fixed addition or a fixed subtraction and must only be used when that operation is required, but most contain
a bit that specifies whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must assemble an
encoding that adds 0 to the A1ign(PC, 4) value of the instruction. Encodings that subtract 0 from the Align(PC,
4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the Align(PC, 4) value, or -
if it is to be subtracted.

<imm> Is the immediate offset.

This alternative syntax makes it possible to assemble the encodings that subtract 0 from the Align(PC, 4)
value, and to disassemble them to a syntax that can be re-assembled correctly.

ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal data item
whose address is to be calculated. Its encoding specifies a zero-extended immediate offset that is either added
to or subtracted from the Align(PC, 4) value of the instruction to form the address of the data item, and some
opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must assemble the
encoding that adds 0 to the Align(PC, 4) value of the instruction. The encoding that subtracts 0 from the
Align(PC, 4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the immediate
value explicitly, by writing them as additions ADD <Rd>, PC, #<imm> or subtractions SUB <Rd>, PC, #<imm>.
This alternative syntax makes it possible to assemble the encoding that subtracts 0 from the Align(PC, 4)
value, and to disassemble it to a syntax that can be re-assembled correctly.

Note

ARM recommends that where possible, software avoids using:

The alternative syntax for the ADR, LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, PLDW, and VLDR
instructions.

The encodings of these instructions that subtract 0 from the Align(PC, 4) value.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-163
Non-Confidential

A4 The Instruction Sets
A4.3 Branch instructions

A4.3 Branch instructions
Table A4-1 summarizes the branch instructions in the ARM and Thumb instruction sets. In addition to providing
for changes in the flow of execution, some branch instructions can change instruction set.
Table A4-1 Branch instructions
Instruction See Range, Thumb Range, ARM
Branch to target address B on page A8-334 +16MB +32MB
Compare and Branch on Nonzero, CBNZ, CBZ on page A8-356 0-126 bytes a
Compare and Branch on Zero
Call a subroutine BL, BLX (immediate) on +16MB +32MB
Call a subroutine, change instruction set® page A8-348 +16MB +32MB
Call a subroutine, optionally change instruction set ~ BLX (register) on page A8-350 Any Any
Branch to target address, change instruction set BX on page A8-352 Any Any
Change to Jazelle state BXJ on page A8-354 - -
Table Branch (byte offsets) TBB, TBH on page A8-736 0-510 bytes a
Table Branch (halfword offsets) 0-131070 bytes
a. These instructions do not exist in the ARM instruction set.
b. The range is determined by the instruction set of the BLX instruction, not of the instruction it branches to.
Branches to loaded and calculated addresses can be performed by LDR, LDM and data-processing instructions. For
details see Load/store instructions on page A4-175, Load/store multiple instructions on page A4-177, Standard
data-processing instructions on page A4-165, and Shift instructions on page A4-167.
In addition to the branch instructions shown in Table A4-1:
. In the ARM instruction set, a data-processing instruction that targets the PC behaves as a branch instruction.
For more information, see Data-processing instructions on page A4-165.
. In the ARM and Thumb instruction sets, a load instruction that targets the PC behaves as a branch instruction.
For more information, see Load/store instructions on page A4-175.
A4-164 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A4 The Instruction Sets
A4.4 Data-processing instructions

Ad.4 Data-processing instructions

Core data-processing instructions belong to one of the following groups:
. Standard data-processing instructions.

These instructions perform basic data-processing operations, and share a common format with some
variations.

. Shift instructions on page A4-167.
. Multiply instructions on page A4-167.

. Saturating instructions on page A4-169.

. Saturating addition and subtraction instructions on page A4-169.
. Packing and unpacking instructions on page A4-170.

. Parallel addition and subtraction instructions on page A4-171.

. Divide instructions on page A4-172.

. Miscellaneous data-processing instructions on page A4-173.

For extension data-processing instructions, see Advanced SIMD data-processing instructions on page A4-184 and
Floating-point data-processing instructions on page A4-191.

Ad.4.1 Standard data-processing instructions

These instructions generally have a destination register Rd, a first operand register Rn, and a second operand. The
second operand can be another register Rm, or an immediate constant.

If the second operand is an immediate constant, it can be:
. Encoded directly in the instruction.

. A modified immediate constant that uses 12 bits of the instruction to encode a range of constants. Thumb and
ARM instructions have slightly different ranges of modified immediate constants. For more information, see
Modified immediate constants in Thumb instructions on page A6-232 and Modified immediate constants in
ARM instructions on page A5-200.

If the second operand is another register, it can optionally be shifted in any of the following ways:

LSL Logical Shift Left by 1-31 bits.

LSR Logical Shift Right by 1-32 bits.

ASR Arithmetic Shift Right by 1-32 bits.

ROR Rotate Right by 1-31 bits.

RRX Rotate Right with Extend. For details see Shift and rotate operations on page A2-41.

In Thumb code, the amount to shift by is always a constant encoded in the instruction. In ARM code, the amount to
shift by is either a constant encoded in the instruction, or the value of a register, Rs.

For instructions other than CMN, CMP, TEQ, and TST, the result of the data-processing operation is placed in the
destination register. In the ARM instruction set, the destination register can be the PC, causing the result to be treated
as a branch address. In the Thumb instruction set, this is only permitted for some 16-bit forms of the ADD and MOV
instructions.

These instructions can optionally set the condition flags, according to the result of the operation. If they do not set
the flags, existing flag settings from a previous instruction are preserved.

Table A4-2 on page A4-166 summarizes the main data-processing instructions in the Thumb and ARM instruction
sets. Generally, each of these instructions is described in three sections in Chapter A8 Instruction Details, one
section for each of the following:

. INSTRUCTION (immediate) where the second operand is a modified immediate constant.
. INSTRUCTION (register) where the second operand is a register, or a register shifted by a constant.

. INSTRUCTION (register-shifted register) where the second operand is a register shifted by a value obtained from
another register. These are only available in the ARM instruction set.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-165
Non-Confidential

A4 The Instruction Sets

A4.4 Data-processing instructions

Table A4-2 Standard data-processing instructions

Instruction Mnemonic Notes
Add with Carry ADC -
Add ADD Thumb instruction set permits use of a modified immediate constant or a

zero-extended 12-bit immediate constant.

Form PC-relative Address ADR First operand is the PC. Second operand is an immediate constant. Thumb instruction
set uses a zero-extended 12-bit immediate constant. Operation is an addition or a
subtraction.

Bitwise AND AND -

Bitwise Bit Clear BIC -

Compare Negative CMN Sets flags. Like ADD but with no destination register.

Compare cvp Sets flags. Like SUB but with no destination register.

Bitwise Exclusive OR EOR -

Copy operand to destination MoV Has only one operand, with the same options as the second operand in most of these
instructions. If the operand is a shifted register, the instruction is an LSL, LSR, ASR, or
ROR instruction instead. For details see Shift instructions on page A4-167.

The ARM and Thumb instruction sets permit use of a modified immediate constant
or a zero-extended 16-bit immediate constant.

Bitwise NOT MVN Has only one operand, with the same options as the second operand in most of these
instructions.

Bitwise OR NOT ORN Not available in the ARM instruction set.

Bitwise OR ORR -

Reverse Subtract RSB Subtracts first operand from second operand. This permits subtraction from constants
and shifted registers.

Reverse Subtract with Carry RSC Not available in the Thumb instruction set.

Subtract with Carry SBC -

Subtract SUB Thumb instruction set permits use of a modified immediate constant or a
zero-extended 12-bit immediate constant.

Test Equivalence TEQ Sets flags. Like EOR but with no destination register.

Test TST Sets flags. Like AND but with no destination register.

A4-166 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A4.4.2 Shift instructions

Table A4-3 lists the shift instructions in the ARM and Thumb instruction sets.

A4 The Instruction Sets
A4.4 Data-processing instructions

Table A4-3 Shift instructions

Instruction

See

Arithmetic Shift Right

ASR (immediate) on page A8-330

Arithmetic Shift Right

ASR (register) on page A8-332

Logical Shift Left

LSL (immediate) on page A8-468

Logical Shift Left
Logical Shift Right
Logical Shift Right

Rotate Right

LSL (register) on page A8-470
LSR (immediate) on page A8-472
LSR (register) on page A8-474

ROR (immediate) on page A8-568

Rotate Right

ROR (register) on page A8-570

Rotate Right with Extend

RRX on page A8-572

In the ARM instruction set only, the destination register of these instructions can be the PC, causing the result to be
treated as an address to branch to.

A4.43 Multiply instructions

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are same
whether the operands are signed or unsigned.

Table A4-4 summarizes the multiply instructions where there is no distinction between signed and unsigned

quantities.

The least significant 32 bits of the result are used. More significant bits are discarded.

Table A4-5 on page A4-168 summarizes the signed multiply instructions.

Table A4-6 on page A4-168 summarizes the unsigned multiply instructions.

Table A4-4 General multiply instructions

Instruction See

Operation (number of bits)

Multiply Accumulate ~ MLA on page A8-480

Multiply and Subtract ~ MLS on page A8-482

32=32+32x32

32=32-32x32

Multiply MUL on page A8-502

32=32x32

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

A4-167

A4 The Instruction Sets
A4.4 Data-processing instructions

Table A4-5 Signed multiply instructions

Instruction

See

Operation (number of bits)

Signed Multiply Accumulate (halfwords)

Signed Multiply Accumulate Dual

Signed Multiply Accumulate Long

SMLABB, SMLABT, SMLATB, SMLATT
on page A8-620

SMLAD on page A8-622

SMLAL on page A8-624

32=32+16x16

32=32+16%x16+16%16

64 =64 +32 x32

Signed Multiply Accumulate Long (halfwords)

SMLALBB, SMLALBT, SMLALTB,
SMLALTT on page A8-626

64=64+16x16

Signed Multiply Accumulate Long Dual

SMLALD on page A8-628

64=64+16x16+16x16

Signed Multiply Accumulate (word by halfword)
Signed Multiply Subtract Dual
Signed Multiply Subtract Long Dual

Signed Most Significant Word Multiply Accumulate

SMLAWB, SMLAWT on page A8-630
SMLSD on page A8-632
SMLSLD on page A8-634

SMMLA on page A8-636

32=32+32x162
32=32+16%x16—-16 x 16
64=64+16%x16—-16 x 16

32=32+32x32b

Signed Most Significant Word Multiply Subtract

SMMLS on page A8-638

32=32-32x320

Signed Most Significant Word Multiply

Signed Dual Multiply Add

SMMUL on page A8-640

SMUAD on page A8-642

32=32x32b

32=16x16+16 x 16

Signed Multiply (halfwords) SMULBB, SMULBT, SMULTB, SMULTT 32=16x 16
on page A8-644

Signed Multiply Long SMULL on page A8-646 64 =32 x32

Signed Multiply (word by halfword) SMULWB, SMULWT on page A8-648 32=32x162

Signed Dual Multiply Subtract

SMUSD on page A8-650

32=16x16-16 %16

a. The most significant 32 bits of the 48-bit product are used. Less significant bits are discarded.

b. The most significant 32 bits of the 64-bit product are used. Less significant bits are discarded.

Table A4-6 Unsigned multiply instructions

Instruction

See

Operation (number of bits)

Unsigned Multiply Accumulate Accumulate Long

UMAAL on page A8-774

64=32+32+32x32

Unsigned Multiply Accumulate Long

UMLAL on page A8-776

64 =64 +32 x32

Unsigned Multiply Long

UMULL on page A8-778

64 =32x32

A4-168

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

ARM DDI 0406C.b
ID072512

A4.4.4

A4.4.5

Saturating instructions

A4 The Instruction Sets
A4.4 Data-processing instructions

Table A4-7 lists the saturating instructions in the ARM and Thumb instruction sets. For more information, see
Pseudocode details of saturation on page A2-44.

Table A4-7 Saturating instructions

Instruction See

Operation

Signed Saturate SSAT on page A8-652 Saturates optionally shifted 32-bit value to selected range

Signed Saturate 16 SSATI6 on page A8-654 Saturates two 16-bit values to selected range

Unsigned Saturate USAT on page A8-796 Saturates optionally shifted 32-bit value to selected range

Unsigned Saturate 16 ~ USAT16 on page A8-798 Saturates two 16-bit values to selected range

Saturating addition and subtraction instructions

Table A4-8 lists the saturating addition and subtraction instructions in the ARM and Thumb instruction sets. For
more information, see Pseudocode details of saturation on page A2-44.

Table A4-8 Saturating addition and subtraction instructions

Instruction

See

Operation

Saturating Add 0ADD on page A8-540

Add, saturating result to the 32-bit signed integer range

Saturating Subtract OSUB on page A8-554

Saturating Double and Add ~ ODADD on page A8-548

Saturating Double and ODSUB on page A8-550

Subtract

Subtract, saturating result to the 32-bit signed integer range

Doubles one value and adds a second value, saturating the doubling and
the addition to the 32-bit signed integer range

Doubles one value and subtracts the result from a second value, saturating
the doubling and the subtraction to the 32-bit signed integer range

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-169

Non-Confidential

A4 The Instruction Sets

A4.4 Data-processing instructions

A4.4.6 Packing and unpacking instructions
Table A4-9 lists the packing and unpacking instructions in the ARM and Thumb instruction sets. These are all
available from ARMv6T?2 in the Thumb instruction set, and from ARMv6 onwards in the ARM instruction set.
Table A4-9 Packing and unpacking instructions
Instruction See Operation
Pack Halfword PKH on page A8-522 Combine halfwords
Signed Extend and Add Byte SXTAB on page A8-724 Extend 8 bits to 32 and add
Signed Extend and Add Byte 16 SXTABI16 on page A8-726 Dual extend 8 bits to 16 and add
Signed Extend and Add Halfword SXTAH on page A8-728 Extend 16 bits to 32 and add
Signed Extend Byte SXTB on page A8-730 Extend 8 bits to 32
Signed Extend Byte 16 SXTB16 on page A8-732 Dual extend 8 bits to 16
Signed Extend Halfword SXTH on page A8-734 Extend 16 bits to 32
Unsigned Extend and Add Byte UXTAB on page A8-806 Extend 8 bits to 32 and add
Unsigned Extend and Add Byte 16 UXTABI6 on page A8-808 Dual extend 8 bits to 16 and add
Unsigned Extend and Add Halfword ~ UXTAH on page A8-810 Extend 16 bits to 32 and add
Unsigned Extend Byte UXTB on page A8-812 Extend 8 bits to 32
Unsigned Extend Byte 16 UXTB16 on page A8-814 Dual extend 8 bits to 16
Unsigned Extend Halfword UXTH on page A8-816 Extend 16 bits to 32
A4-170 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A4 The Instruction Sets
A4.4 Data-processing instructions

A4.4.7 Parallel addition and subtraction instructions

These instructions perform additions and subtractions on the values of two registers and write the result to a
destination register, treating the register values as sets of two halfwords or four bytes. That is, they perform SIMD
additions or subtractions on the registers. They are available in ARMv6 and above.

These instructions consist of a prefix followed by a main instruction mnemonic. The prefixes are as follows:

S
Q
SH
U
uQ
UH

Signed arithmetic modulo 28 or 216,
Signed saturating arithmetic.

Signed arithmetic, halving the results.
Unsigned arithmetic modulo 28 or 216,
Unsigned saturating arithmetic.

Unsigned arithmetic, halving the results.

The main instruction mnemonics are as follows:

ADD16 Adds the top halfwords of two operands to form the top halfword of the result, and the bottom
halfwords of the same two operands to form the bottom halfword of the result.

ASX Exchanges halfwords of the second operand, and then adds top halfwords and subtracts bottom
halfwords.

SAX Exchanges halfwords of the second operand, and then subtracts top halfwords and adds bottom
halfwords.

SUB16 Subtracts each halfword of the second operand from the corresponding halfword of the first operand
to form the corresponding halfword of the result.

ADD8 Adds each byte of the second operand to the corresponding byte of the first operand to form the
corresponding byte of the result.

SUB8 Subtracts each byte of the second operand from the corresponding byte of the first operand to form

the corresponding byte of the result.

The instruction set permits all 36 combinations of prefix and main instruction operand, as Table A4-10 shows.

See also Advanced SIMD parallel addition and subtraction on page A4-185.

Table A4-10 Parallel addition and subtraction instructions

Main instruction Signed Saturating ﬁla?\:?\(; Unsigned g;iig:ﬁ% g:liiial;ed
ADD16, add, two halfwords SADD16 QADD16 SHADD16 UADD16 UQADD16 UHADD16
ASX, add and subtract with exchange SASX QASX SHASX UASX UQASX UHASX
SAX, subtract and add with exchange SSAX QSAX SHSAX USAX UQSAX UHSAX
SUB16, subtract, two halfwords SSUB16 QSUB16 SHSUB16 USUB16 UQSUB16 UHSUB16
ADD8, add, four words SADD8 QADD8 SHADD8 UADD8 UQADD8 UHADD8
SUBS, subtract, four words SSUB8 QSUB8 SHSUB8 USUB8 UQsuBs UHSUB8
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-171

ID072512

Non-Confidential

A4 The Instruction Sets
A4.4 Data-processing instructions

A4.4.8 Divide instructions

The ARMV7-R profile introduces support for signed and unsigned integer divide instructions, implemented in
hardware, in the Thumb instruction set. For more information see ARMv7 implementation requirements and options
for the divide instructions.

For descriptions of the instructions see:
. SDIV on page A8-600
. UDIV on page A8-760.

Note

. The Virtualization Extensions introduce the requirement for an ARMv7-A implementation to include SDIV
and UDIV.

. The ARMvV7-M profile also includes the SDIV and UDIV instructions.

In the ARMv7-R profile, the SCTLR.DZ bit enables divide by zero fault detection:
SCTLR.DZ == 0 Divide-by-zero returns a zero result.
SCTLR.DZ == 1 SDIV and UDIV generate an Undefined Instruction exception on a divide-by-zero.

The SCTLR.DZ bit is cleared to zero on reset.

In an ARMv7-A profile implementation that supports the SDIV and UDIV instructions, divide-by-zero always returns
a zero result.

ARMv7 implementation requirements and options for the divide instructions

Any implementation of the ARMv7-R profile must include the SDIV and UDIV instructions in the Thumb instruction
set.

Any implementation of the Virtualization Extensions must include the SDIV and UDIV instructions in the Thumb and
ARM instruction sets.

In the ARMV7-R profile, the implementation of SDIV and UDIV in the ARM instruction set is OPTIONAL.

In an ARMv7-A implementation that does not include the Virtualization Extensions, the implementation of SDIV
and UDIV in both instruction sets is OPTIONAL, but the architecture permits an ARMv7-A implementation to not
implement SDIV and UDIV.

Note

Previous issues of this document have stated that a VMSAv7 implementation might implement SDIV and UDIV in the
Thumb instruction set but not in the ARM instruction set. ARM strongly recommends against this implementation
option.

The ID ISARO0.Divide_instrs field indicates the level of support for these instructions, see ID_ISARO, Instruction
Set Attribute Register 0, VMSA on page B4-1607 or ID_ISARO, Instruction Set Attribute Register 0, PMSA on
page B6-1854:

. a field value of 0b0001 indicates they are implemented in the Thumb instruction set

. a field value of 0b0010 indicates they are implemented in both the Thumb and ARM instruction sets.

A4-172 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A4 The Instruction Sets
A4.4 Data-processing instructions

A4.49 Miscellaneous data-processing instructions
Table A4-11 lists the miscellaneous data-processing instructions in the ARM and Thumb instruction sets.
Immediate values in these instructions are simple binary numbers.
Table A4-11 Miscellaneous data-processing instructions
Instruction See Notes
Bit Field Clear BFC on page A8-336 -
Bit Field Insert BFI on page A8-338 -

Count Leading Zeros

CLZ on page A8-362

Move Top

MOVT on page A8-491

Moves 16-bit immediate value to top
halfword. Bottom halfword unchanged.

Reverse Bits

RBIT on page A8-560

Byte-Reverse Word
Byte-Reverse Packed Halfword
Byte-Reverse Signed Halfword

Signed Bit Field Extract

REV on page A8-562
REV16 on page A8-564
REVSH on page A8-566

SBFX on page A8-598

Select Bytes using GE flags

SEL on page A8-602

Unsigned Bit Field Extract

UBFX on page A8-756

Unsigned Sum of Absolute Differences

Unsigned Sum of Absolute Differences and Accumulate

USADS on page A8-792

USADAS on page A8-794

ARM DDI 0406C.b
ID072512

Non-Confidential

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-173

A4 The Instruction Sets
A4.5 Status register access instructions

A4.5 Status register access instructions
The MRS and MSR instructions move the contents of the Application Program Status Register (APSR) to or from an
ARM core register, see:
. MRS on page A8-496
. MSR (immediate) on page A8-498
. MSR (register) on page A8-500.
The Application Program Status Register (APSR) on page A2-49 described the APSR.
The condition flags in the APSR are normally set by executing data-processing instructions, and normally control
the execution of conditional instructions. However, software can set the condition flags explicitly using the MSR
instruction, and can read the current state of the condition flags explicitly using the MRS instruction.
At system level, software can also:
. use these instructions to access the SPSR of the current mode
. use the CPS instruction to change the CPSR.M field and the CPSR.{A, I, F} interrupt mask bits.
For details of the system level use of status register access instructions CPS, MRS, and MSR, see:
. CPS (Thumb) on page B9-1976
. CPS (ARM) on page B9-1978
. MRS on page B9-1988
. MSR (immediate) on page B9-1994
. MSR (register) on page B9-1996.
A4.51 Banked register access instructions
In a processor that implements the Virtualization Extensions, in all modes except User mode, the MRS (Banked
register) and MSR (Banked register) instructions move the contents of a Banked ARM core register, the SPSR, or the
ELR hyp, to or from an ARM core register. For instruction descriptions see:
. MRS (Banked register) on page B9-1990
. MSR (Banked register) on page B9-1992.
Note
These are system level instructions.
A4-174 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A4.6

A4.6.1

A4.6.2

A4.6.3

A4 The Instruction Sets
A4.6 Load/store instructions

Load/store instructions

Table A4-12 summarizes the ARM core register load/store instructions in the ARM and Thumb instruction sets. See
also:

. Load/store multiple instructions on page A4-177
. Advanced SIMD and Floating-point load/store instructions on page A4-181.

Load/store instructions have several options for addressing memory. For more information, see Addressing modes
on page A4-176.

Table A4-12 Load/store instructions

Data type Load Store Load. . Stor(? . Load- . Store- .
unprivileged unprivileged Exclusive Exclusive

32-bit word LDR STR LDRT STRT LDREX STREX

16-bit halfword - STRH - STRHT - STREXH

16-bit unsigned halfword LDRH - LDRHT - LDREXH -

16-bit signed halfword LDRSH - LDRSHT - - -

8-bit byte - STRB - STRBT - STREXB

8-bit unsigned byte LDRB - LDRBT - LDREXB -

8-bit signed byte LDRSB - LDRSBT - - -

Two 32-bit words LDRD STRD - - - -

64-bit doubleword - - - - LDREXD STREXD

Loads to the PC

The LDR instruction can load a value into the PC. The value loaded is treated as an interworking address, as described
by the LoadWritePC() pseudocode function in Pseudocode details of operations on ARM core registers on
page A2-47.

Halfword and byte loads and stores

Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of memory
respectively. There is no distinction between signed and unsigned stores.

Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a register.
Unsigned loads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to 32 bits.

Load unprivileged and Store unprivileged

When executing at PL0, a Load unprivileged or Store unprivileged instruction operates in exactly the same way as
the corresponding ordinary load or store instruction. For example, an LDRT instruction executes in exactly the same
way as the equivalent LDR instruction. When executed at PL1, Load unprivileged and Store unprivileged instructions
behave as they would if they were executed at PLO. For example, an LDRT instruction executes in exactly the way
that the equivalent LDR instruction would execute at PLO. In particular, the instructions make unprivileged memory
accesses.

The Load unprivileged and Store unprivileged instructions are UNPREDICTABLE if executed at PL2.

For more information, see Privilege level access controls for data accesses on page A3-142.

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-175
Non-Confidential

A4 The Instruction Sets
A4.6 Load/store instructions

A4.6.4 Exclusive loads and stores

Exclusive loads and stores provide shared memory synchronization. For more information, see Synchronization and
semaphores on page A3-114.

A4.6.5 Addressing modes
The address for a load or store is formed from two parts: a value from a base register, and an offset.
The base register can be any one of the ARM core registers R0-R12, SP, or LR.

For loads, the base register can be the PC. This permits PC-relative addressing for position-independent code.
Instructions marked (literal) in their title in Chapter A8 Instruction Details are PC-relative loads.

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base register
value. Immediate offset addressing is useful for accessing data elements that are a fixed
distance from the start of the data object, such as structure fields, stack offsets and
input/output registers.

Register The offset is a value from an ARM core register. This register cannot be the PC. The value
can be added to, or subtracted from, the base register value. Register offsets are useful for
accessing arrays or blocks of data.

Scaled register The offset is an ARM core register, other than the PC, shifted by an immediate value, then
added to or subtracted from the base register. This means an array index can be scaled by
the size of each array element.

The offset and base register can be used in three different ways to form the memory address. The addressing modes
are described as follows:

Offset The offset is added to or subtracted from the base register to form the memory address.

Pre-indexed The offset is added to or subtracted from the base register to form the memory address. The
base register is then updated with this new address, to permit automatic indexing through an
array or memory block.

Post-indexed The value of the base register alone is used as the memory address. The offset is then added
to or subtracted from the base register. The result is stored back in the base register, to permit
automatic indexing through an array or memory block.

Note

Not every variant is available for every instruction, and the range of permitted immediate values and the options for
scaled registers vary from instruction to instruction. See Chapter A8 Instruction Details for full details for each
instruction.

A4-176 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A4.7

A4.71

Load/store multiple instructions

A4 The Instruction Sets
A4.7 Load/store multiple instructions

Load Multiple instructions load a subset, or possibly all, of the ARM core registers from memory.

Store Multiple instructions store a subset, or possibly all, of the ARM core registers to memory.

The memory locations are consecutive word-aligned words. The addresses used are obtained from a base register,
and can be either above or below the value in the base register. The base register can optionally be updated by the

total size of the data transferred.

Table A4-13 summarizes the load/store multiple instructions in the ARM and Thumb instruction sets.

Table A4-13 Load/store multiple instructions

Instruction

See

Load Multiple, Increment After or Full Descending

LDM/LDMIA/LDMFD (Thumb) on page A8-396

Load Multiple, Decrement After or Full Ascending 2

LDMDA/LDMFA on page A8-400

Load Multiple, Decrement Before or Empty Ascending
Load Multiple, Increment Before or Empty Descending 2

Pop multiple registers off the stack b

LDMDB/LDMEA on page A8-402
LDMIB/LDMED on page A8-404

POP (Thumb) on page A8-534

Push multiple registers onto the stack ©

PUSH on page A8-538

Store Multiple, Increment After or Empty Ascending
Store Multiple, Decrement After or Empty Descending 2

Store Multiple, Decrement Before or Full Descending

STM (STMIA, STMEA) on page A8-664
STMDA (STMED) on page A8-666

STMDB (STMFD) on page A8-668

Store Multiple, Increment Before or Full Ascending 2

STMIB (STMFA) on page A8-670

a. Not available in the Thumb instruction set.

b. This instruction is equivalent to an LDM instruction with the SP as base register, and base register updating.

c. This instruction is equivalent to an STMDB instruction with the SP as base register, and base register updating.

When executing at PL1, variants of the LDM and STM instructions load and store User mode registers. Another
system level variant of the LDM instruction performs an exception return. For details of these variants, see Chapter B9

System Instructions.

Loads to the PC

The LDM, LDMDA, LDMDB, LDMIB, and POP instructions can load a value into the PC. The value loaded is treated as an
interworking address, as described by the LoadWritePC() pseudocode function in Pseudocode details of operations

on ARM core registers on page A2-47.

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

A4-177

A4 The Instruction Sets
A4.8 Miscellaneous instructions

A4.8 Miscellaneous instructions

Table A4-14 summarizes the miscellaneous instructions in the ARM and Thumb instruction sets.

Table A4-14 Miscellaneous instructions

Instruction

See

Clear-Exclusive

CLREX on page A8-360

Debug Hint
Data Memory Barrier
Data Synchronization Barrier

Instruction Synchronization Barrier

DBG on page A8-377
DMB on page A8-378
DSB on page A8-380

ISB on page A8-389

If-Then

IT on page A8-390

No Operation

NOP on page A8-510

Preload Data

Preload Instruction

PLD, PLDW (immediate) on page A8-524
PLD (literal) on page A8-526
PLD, PLDW (register) on page A8-528

PLI (immediate, literal) on page A8-530
PLI (register) on page A8-532

Set Endianness

SETEND on page A8-604

Send Event

Swap, Swap Byte. Deprecated. 2

SEV on page A8-606

SWP, SWPB on page A8-722

Wait For Event WFE on page A8-1104
Wait For Interrupt WFI on page A8-1106
Yield YIELD on page A8-1108

a. Use Load/Store-Exclusive instructions instead, see Load/store instructions on page A4-175.

A4.8.1 The Yield instruction

In a Symmetric Multi-Threading (SMT) design, a thread can use the YIELD instruction to give a hint to the processor
that it is running on. The YIELD hint indicates that whatever the thread is currently doing is of low importance, and
so could yield. For example, the thread might be sitting in a spin-lock. A similar use might be in modifying the
arbitration priority of the snoop bus in a multiprocessor (MP) system. Defining such an instruction permits binary
compatibility between SMT and SMP systems.

ARMV7 defines a YIELD instruction as a specific NOP (No Operation) hint instruction.

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use on migration to a multiprocessor or multithreading system. Operating systems
can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no
implementation benefit.

A4-178 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

ARM DDI 0406C.b
ID072512

A4 The Instruction Sets
A4.9 Exeption-generating and egeption-handling instructions

A4.9 Exception-generating and exception-handling instructions
The following instructions are intended specifically to cause a synchronous processor exception to occur:

. The SVC instruction generates a Supervisor Call exception. For more information, see Supervisor Call (SVC)
exception on page B1-1209.

. The Breakpoint instruction BKPT provides software breakpoints. For more information, see About debug
events on page C3-2036.

. In a processor that implements the Security Extensions, when executing at PL1 or higher, the SMC instruction
generates a Secure Monitor Call exception. For more information, see Secure Monitor Call (SMC) exception
on page B1-1210.

. In a processor that implements the Virtualization Extensions, in software executing in a Non-secure PL1
mode, the HVC instruction generates a Hypervisor Call exception. For more information, see Hypervisor Call
(HVC) exception on page B1-1211.

For an exception taken to a PL1 mode:
. The system level variants of the SUBS and LDM instructions perform a return from an exception.

Note
The variants of SUBS include MOVS. See the references to SUBS PC, LR in Table A4-15 for more information.

. From ARMv6, the SRS instruction can be used near the start of the handler, to store return information. The
RFE instruction can then perform a return from the exception using the stored return information.

In a processor that implements the Virtualization Extensions, the ERET instruction performs a return from an
exception taken to Hyp mode.

For more information, see Exception return on page B1-1193.

Table A4-15 summarizes the instructions, in the ARM and Thumb instruction sets, for generating or handling an
exception. Except for BKPT and SVC, these are system level instructions.

Table A4-15 Exception-generating and exception-handling instructions

Instruction See
Supervisor Call SVC (previously SWI) on page A8-720
Breakpoint BKPT on page A8-346
Secure Monitor Call SMC (previously SMI) on page B9-2000
Return From Exception RFE on page B9-1998
Subtract (exception return) SUBS PC, LR (Thumb) on page B9-2008
SUBS PC, LR and related instructions (ARM) on page B9-2010
Hypervisor Call HVC on page B9-1982
Exception Return ERET on page B9-1980

Load Multiple (exception return) LDM (exception return) on page B9-1984

Store Return State SRS (Thumb) on page B9-2002
SRS (ARM) on page B9-2004

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-179
ID072512 Non-Confidential

A4 The Instruction Sets
A4.10 Coprocessor instructions

A4.10

Coprocessor instructions

There are three types of instruction for communicating with coprocessors. These permit the processor to:
. Initiate a coprocessor data-processing operation. For details see CDP, CDP2 on page A8-358.

. Transfer ARM core registers to and from coprocessor registers. For details, see:
— MCR, MCR2 on page A8-476
— MCRR, MCRR?2 on page A8-478
— MRC, MRC2 on page A8-492
— MRRC, MRRC?2 on page A8-494.

. Load or store the values of coprocessor registers. For details, see:
— LDC, LDC? (immediate) on page A8-392
— LDC, LDC? (literal) on page A8-394
— STC, STC2 on page A8-662.

The instruction set distinguishes up to 16 coprocessors with a 4-bit field in each coprocessor instruction, so each
coprocessor is assigned a particular number.

Note

One coprocessor can use more than one of the 16 numbers if a large coprocessor instruction set is required.

Coprocessors 10 and 11 are used, together, for Floating-point Extension and some Advanced SIMD Extension
functionality. There are different instructions for accessing these coprocessors, of similar types to the instructions
for the other coprocessors, that is, to:

. Initiate a coprocessor data-processing operation. For details see Floating-point data-processing instructions
on page A4-191.

. Transfer ARM core registers to and from coprocessor registers. For details, see Advanced SIMD and
Floating-point register transfer instructions on page A4-183.

. Load or store the values of coprocessor registers. For details, see Advanced SIMD and Floating-point
load/store instructions on page A4-181.

Coprocessors execute the same instruction stream as the processor, ignoring non-coprocessor instructions and
coprocessor instructions for other coprocessors. Coprocessor instructions that cannot be executed by any
coprocessor hardware cause an Undefined Instruction exception.

Coprocessors 8, 9, 12, and 13 are reserved for future use by ARM. Any coprocessor access instruction attempting
to access one of these coprocessors is UNDEFINED.

For more information about specific coprocessors see Coprocessor support on page A2-94.

A4-180

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A4 The Instruction Sets
A4.11 Advanced SIMD and Floating-point load/store instructions

A4.11 Advanced SIMD and Floating-point load/store instructions

Table A4-16 summarizes the extension register load/store instructions in the Advanced SIMD and Floating-point
(VFP) instruction sets.

Advanced SIMD also provides instructions for loading and storing multiple elements, or structures of elements, see
Element and structure load/store instructions.

Table A4-16 Extension register load/store instructions

Instruction See Operation

Vector Load Multiple VLDM on page A8-922 Load 1-16 consecutive 64-bit registers, Advanced SIMD and Floating-point
Load 1-16 consecutive 32-bit registers, Floating-point only

Vector Load Register VLDR on page A8-924 Load one 64-bit register, Advanced SIMD and Floating-point
Load one 32-bit register, Floating-point only

Vector Store Multiple VSTM on page A8-1080 Store 1-16 consecutive 64-bit registers, Advanced SIMD and Floating-point

Store 1-16 consecutive 32-bit registers, Floating-point only

Vector Store Register VSTR on page A8-1082 Store one 64-bit register, Advanced SIMD and Floating-point
Store one 32-bit register, Floating-point only

A4.11.1 Element and structure load/store instructions

Table A4-17 shows the element and structure load/store instructions available in the Advanced SIMD instruction
set. Loading and storing structures of more than one element automatically de-interleaves or interleaves the
elements, see Figure A4-1 on page A4-182 for an example of de-interleaving. Interleaving is the inverse process.

Table A4-17 Element and structure load/store instructions

Instruction See

Load single element
Multiple elements VLDI (multiple single elements) on page A8-898

To one lane VLDI1 (single element to one lane) on page A8-900

To all lanes VLDI (single element to all lanes) on page A8-902

Load 2-element structure

Multiple structures ~ VLD2 (multiple 2-element structures) on page A8-904
To one lane VLD?2 (single 2-element structure to one lane) on page A8-906
To all lanes VLD?2 (single 2-element structure to all lanes) on page A8-908

Load 3-element structure

Multiple structures VLD3 (multiple 3-element structures) on page A8-910

To one lane VLD3 (single 3-element structure to one lane) on page A8-912
To all lanes VLD3 (single 3-element structure to all lanes) on page A8-914
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-181

ID072512 Non-Confidential

A4 The Instruction Sets

A4.11 Advanced SIMD and Floating-point load/store instructions

Table A4-17 Element and structure load/store instructions (continued)

Instruction

See

Load 4-element structure

Multiple structures
To one lane

To all lanes

VLD4 (multiple 4-element structures) on page A8-916
VLD4 (single 4-element structure to one lane) on page A8-918

VLD4 (single 4-element structure to all lanes) on page A8-920

Store single element

Multiple elements VSTI (multiple single elements) on page A8-1064

From one lane VSTI (single element from one lane) on page A8-1066

Store 2-element structure
Multiple structures ~ VST2 (multiple 2-element structures) on page A8-1068
From one lane VST?2 (single 2-element structure from one lane) on page A8-1070

Store 3-element structure

Multiple structures VST3 (multiple 3-element structures) on page A8-1072

From one lane VST3 (single 3-element structure from one lane) on page A8-1074

Store 4-element structure
Multiple structures VST4 (multiple 4-element structures) on page A8-1076

From one lane VST4 (single 4-element structure from one lane) on page A8-1078

Figure A4-1 shows the de-interleaving of a VLD3.16 (multiple 3-element structures) instruction:

Memory
A[0].x
Al0L.y
Al0].z \
Al1].x _\\
Ais a packed array of Allly
3-element structures. All].z \ \ \
Each element is a 16-bit | A[2].x
halfword. A[2]y \ \
A
A[3].x
ABly |\ .\,\\ X[Xa[X Xo] DO
Al3].z —y \ \ \ Y3[Y2|Yq|Yo|D1 Registers

Z3|25|Z4|Zo| D2

Figure A4-1 De-interleaving an array of 3-element structures

Figure A4-1 shows the VLD3.16 instruction operating to three 64-bit registers that comprise four 16-bit elements:

Different instructions in this group would produce similar figures, but operate on different numbers of
registers. For example, VLD4 and VST4 instructions operate on four registers.

Different element sizes would produce similar figures but with 8-bit or 32-bit elements.

These instructions operate only on doubleword (64-bit) registers.

A4-182

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

ARM DDI 0406C.b
ID072512

A4 The Instruction Sets

A4.12 Advanced SIMD and Floating-point register transfer instructions

A4.12

Advanced SIMD and Floating-point register transfer instructions

Table A4-18 summarizes the extension register transfer instructions in the Advanced SIMD and Floating-point
(VFP) instruction sets. These instructions transfer data from ARM core registers to extension registers, or from

extension registers to ARM core registers.

Advanced SIMD vectors, and single-precision and double-precision Floating-point registers, are all views of the
same extension register set. For details see Advanced SIMD and Floating-point Extension registers on page A2-56.

Table A4-18 Extension register transfer instructions

Instruction

See

Copy element from ARM core register to every element of Advanced SIMD vector

Copy byte, halfword, or word from ARM core register to extension register

Copy byte, halfword, or word from extension register to ARM core register

Copy from single-precision Floating-point register to ARM core register, or from
ARM core register to single-precision Floating-point register

Copy two words from ARM core registers to consecutive single-precision
Floating-point registers, or from consecutive single-precision Floating-point
registers to ARM core registers

Copy two words from ARM core registers to doubleword extension register, or from
doubleword extension register to ARM core registers

Copy from Advanced SIMD and Floating-point Extension System Register to ARM
core register

VDUP (ARM core register) on page A8-886

VMOV (ARM core register to scalar) on
page A8-940

VMOV (scalar to ARM core register) on
page A8-942

VMOV (between ARM core register and
single-precision register) on page A8-944

VMOV (between two ARM core registers and
two single-precision registers) on page A8-946

VMOV (between two ARM core registers and a
doubleword extension register) on page A8-948

VMRS on page A8-954
VMRS on page B9-2012 (system level view)

Copy from ARM core register to Advanced SIMD and Floating-point Extension
System Register

VMSR on page A8-956
VMSR on page B9-2014 (system level view)

ARM DDI 0406C.b

ID072512 Non-Confidential

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

A4-183

A4 The Instruction Sets
A4.13 Advanced SIMD data-processing instructions

A4.13

Advanced SIMD data-processing instructions

Advanced SIMD data-processing instructions process registers containing vectors of elements of the same type
packed together, enabling the same operation to be performed on multiple items in parallel.

Instructions operate on vectors held in 64-bit or 128-bit registers. Figure A4-2 shows an operation on two 64-bit
operand vectors, generating a 64-bit vector result.

Note

Figure A4-2 and other similar figures show 64-bit vectors that consist of four 16-bit elements, and 128-bit vectors
that consist of four 32-bit elements. Other element sizes produce similar figures, but with one, two, eight, or sixteen
operations performed in parallel instead of four.

N R T
[N

A
ENENCIE]

!
N I I

Figure A4-2 Advanced SIMD instruction operating on 64-bit registers

Many Advanced SIMD instructions have variants that produce vectors of elements double the size of the inputs. In
this case, the number of elements in the result vector is the same as the number of elements in the operand vectors,
but each element, and the whole vector, is double the size.

Figure A4-3 shows an example of an Advanced SIMD instruction operating on 64-bit registers, and generating a
128-bit result.
A I I

{1
WAWAYAY.

ENEIEEY

| IHI\i

Figure A4-3 Advanced SIMD instruction producing wider result

|Qd

There are also Advanced SIMD instructions that have variants that produce vectors containing elements half the
size of the inputs. Figure A4-4 on page A4-185 shows an example of an Advanced SIMD instruction operating on
one 128-bit register, and generating a 64-bit result.

A4-184

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A4 The Instruction Sets
A4.13 Advanced SIMD data-processing instructions

| | | | Jon

ENEIEEY

A A 4 A 4 A 4

N I I

Figure A4-4 Advanced SIMD instruction producing narrower result

Some Advanced SIMD instructions do not conform to these standard patterns. Their operation patterns are
described in the individual instruction descriptions.

Advanced SIMD instructions that perform floating-point arithmetic use the ARM standard floating-point arithmetic
defined in Floating-point data types and arithmetic on page A2-63.

Ad4.13.1 Advanced SIMD parallel addition and subtraction

Table A4-19 shows the Advanced SIMD parallel add and subtract instructions.

Table A4-19 Advanced SIMD parallel add and subtract instructions

Instruction

See

Vector Add

VADD (integer) on page A8-828
VADD (floating-point) on page A8-830

Vector Add and Narrow, returning High Half

VADDHN on page A8-832

Vector Add Long, Vector Add Wide

VADDL, VADDW on page A8-834

Vector Halving Add, Vector Halving Subtract

Vector Pairwise Add and Accumulate Long

VHADD, VHSUB on page A8-896

VPADAL on page A8-978

Vector Pairwise Add VPADD (integer) on page A8-980
VPADD (floating-point) on page A8-982
Vector Pairwise Add Long VPADDL on page A8-984

Vector Rounding Add and Narrow, returning High Half

VRADDHN on page A8-1022

Vector Rounding Halving Add
Vector Rounding Subtract and Narrow, returning High Half
Vector Saturating Add

Vector Saturating Subtract

VRHADD on page A8-1030
VRSUBHN on page A8-1044
VOADD on page A8-996

VOSUB on page A8-1020

Vector Subtract

Vector Subtract and Narrow, returning High Half

Vector Subtract Long, Vector Subtract Wide

VSUB (integer) on page A8-1084
VSUB (floating-point) on page A8-1086

VSUBHN on page A8-1088

VSUBL, VSUBW on page A8-1090

ARM DDI 0406C.b

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

A4-185

A4 The Instruction Sets

A4.13 Advanced SIMD data-processing instructions

A4.13.2 Bitwise Advanced SIMD data-processing instructions

Table A4-20 shows bitwise Advanced SIMD data-processing instructions. These operate on the doubleword
(64-bit) or quadword (128-bit) extension registers, and there is no division into vector elements.

Table A4-20 Bitwise Advanced SIMD data-processing instructions

Instruction

See

Vector Bitwise AND

VAND (register) on page A8-836

Vector Bitwise Bit Clear (AND complement) VBIC (immediate) on page A8-838

VBIC (register) on page A8-840

Vector Bitwise Exclusive OR

VEOR on page A8-888

Vector Bitwise Insert if False
Vector Bitwise Insert if True

Vector Bitwise Move

VBIF, VBIT, VBSL on page A8-842

VMOV (immediate) on page A8-936
VMOV (register) on page A8-938

Vector Bitwise NOT VMVN (immediate) on page A8-964
VMVN (register) on page A8-966

Vector Bitwise OR VORR (immediate) on page A8-974
VORR (register) on page A8-976

Vector Bitwise OR NOT VORN (register) on page A8-972

Vector Bitwise Select

VBIF, VBIT, VBSL on page A8-842

A4.13.3 Advanced SIMD comparison instructions

Table A4-21 shows Advanced SIMD comparison instructions.

Table A4-21 Advanced SIMD comparison instructions

Instruction

See

Vector Absolute Compare

VACGE, VACGT, VACLE, VACLT on page A8-826

Vector Compare Equal

VCEQ (register) on page A8-844

Vector Compare Equal to Zero
Vector Compare Greater Than or Equal
Vector Compare Greater Than or Equal to Zero

Vector Compare Greater Than

VCEQ (immediate #0) on page A8-846
VCGE (register) on page A8-848
VCGE (immediate #0) on page A8-850

VCGT (register) on page A8-852

Vector Compare Greater Than Zero

VCGT (immediate #0) on page A8-854

Vector Compare Less Than or Equal to Zero

VCLE (immediate #0) on page A8-856

Vector Compare Less Than Zero

Vector Test Bits

VCLT (immediate #0) on page A8-860

VTST on page A8-1098

A4-186

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A4 The Instruction Sets
A4.13 Advanced SIMD data-processing instructions

A4.13.4 Advanced SIMD shift instructions

Table A4-22 lists the shift instructions in the Advanced SIMD instruction set.

Table A4-22 Advanced SIMD shift instructions

Instruction See

Vector Saturating Rounding Shift Left VORSHL on page A8-1010

Vector Saturating Rounding Shift Right and Narrow VORSHRN, VORSHRUN on page A8-1012

Vector Saturating Shift Left VOSHL (register) on page A8-1014
VOSHL, VOSHLU (immediate) on page A8-1016
Vector Saturating Shift Right and Narrow VOSHRN, VOSHRUN on page A8-1018
Vector Rounding Shift Left VRSHL on page A8-1032
Vector Rounding Shift Right VRSHR on page A8-1034
Vector Rounding Shift Right and Accumulate VRSRA on page A8-1042
Vector Rounding Shift Right and Narrow VRSHRN on page A8-1036
Vector Shift Left VSHL (immediate) on page A8-1046
VSHL (register) on page A8-1048
Vector Shift Left Long VSHLL on page A8-1050
Vector Shift Right VSHR on page A8-1052
Vector Shift Right and Narrow VSHRN on page A8-1054
Vector Shift Left and Insert VSLI on page A8-1056
Vector Shift Right and Accumulate VSRA on page A8-1060
Vector Shift Right and Insert VSRI on page A8-1062
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-187

ID072512

Non-Confidential

A4 The Instruction Sets
A4.13 Advanced SIMD data-processing instructions

A4.13.5 Advanced SIMD multiply instructions

Table A4-23 summarizes the Advanced SIMD multiply instructions.

Table A4-23 Advanced SIMD multiply instructions

Instruction

See

Vector Multiply Accumulate

Vector Multiply Accumulate Long

Vector Multiply Subtract

Vector Multiply Subtract Long
Vector Multiply

Vector Multiply Long

VMLA, VMLAL, VMLS, VMLSL (integer) on page A8-930
VMLA, VMLS (floating-point) on page A8-932
VMLA, VMLAL, VMLS, VMLSL (by scalar) on page A8-934

VMUL, VMULL (integer and polynomial) on page A8-958
VMUL (floating-point) on page A8-960
VMUL, VMULL (by scalar) on page A8-962

Vector Fused Multiply Accumulate

Vector Fused Multiply Subtract

VEMA, VFMS on page A8-892

Vector Saturating Doubling Multiply Accumulate Long
Vector Saturating Doubling Multiply Subtract Long

Vector Saturating Doubling Multiply Returning High Half

Vector Saturating Rounding Doubling Multiply Returning High Half

VODMLAL, VODMLSL on page A8-998

VODMULH on page A8-1000

VORDMULH on page A8-1008

Vector Saturating Doubling Multiply Long

VODMULL on page A8-1002

Advanced SIMD multiply instructions can operate on vectors of:

. 8-bit, 16-bit, or 32-bit unsigned integers.

. 8-bit, 16-bit, or 32-bit signed integers.

. 8-bit polynomials over {0, 1}. VMUL and VMULL are the only instructions that operate on polynomials. VMULL

produces a 16-bit polynomial over {0, 1}.

. Single-precision (32-bit) floating-point numbers.

They can also act on one vector and one scalar.

Long instructions have doubleword (64-bit) operands, and produce quadword (128-bit) results. Other Advanced
SIMD multiply instructions can have either doubleword or quadword operands, and produce results of the same

size.

Floating-point multiply instructions can operate on:

. single-precision (32-bit) floating-point numbers

. double-precision (64-bit) floating-point numbers.

Some Floating-point Extension implementations do not support double-precision numbers.

A4-188 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.
Non-Confidential

ARM DDI 0406C.b
ID072512

A4 The Instruction Sets
A4.13 Advanced SIMD data-processing instructions

A4.13.6 Miscellaneous Advanced SIMD data-processing instructions

Table A4-24 shows miscellaneous Advanced SIMD data-processing instructions.

Table A4-24 Miscellaneous Advanced SIMD data-processing instructions

Instruction

See

Vector Absolute Difference and Accumulate

VABA, VABAL on page A8-818

Vector Absolute Difference

VABD, VABDL (integer) on page A8-820
VABD (floating-point) on page A8-822

Vector Absolute

Vector Convert between floating-point and fixed

point

Vector Convert between floating-point and integer

Vector Convert between half-precision and

single-precision
Vector Count Leading Sign Bits

Vector Count Leading Zeros

VABS on page A8-824

VCVT (between floating-point and fixed-point, Advanced SIMD) on
page A8-872

VCVT (between floating-point and integer, Advanced SIMD) on page A8-868

VCVT (between half-precision and single-precision, Advanced SIMD) on
page A8-878

VCLS on page A8-858

VCLZ on page A8-862

Vector Count Set Bits

VCNT on page A8-866

Vector Duplicate scalar

VDUP (scalar) on page A8-884

Vector Extract
Vector Move and Narrow
Vector Move Long

Vector Maximum, Minimum

VEXT on page A8-890
VMOVN on page A8-952
VMOVL on page A8-950

VMAX, VMIN (integer) on page A8-926
VMAX, VMIN (floating-point) on page A8-928

Vector Negate

VNEG on page A8-968

Vector Pairwise Maximum, Minimum

Vector Reciprocal Estimate

Vector Reciprocal Step

VPMAX, VPMIN (integer) on page A8-986
VPMAX, VPMIN (floating-point) on page A8-988

VRECPE on page A8-1024

VRECPS on page A8-1026

Vector Reciprocal Square Root Estimate

VRSORTE on page A8-1038

Vector Reciprocal Square Root Step

VRSORTS on page A8-1040

Vector Reverse
Vector Saturating Absolute
Vector Saturating Move and Narrow

Vector Saturating Negate

VREV16, VREV32, VREV64 on page A8-1028
VOABS on page A8-994
VOMOVN, VOMOVUN on page A8-1004

VONEG on page A8-1006

Vector Swap

VSWP on page A8-1092

Vector Table Lookup

VTBL, VTBX on page A8-1094

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A4-189

Non-Confidential

A4 The Instruction Sets
A4.13 Advanced SIMD data-processing instructions

Table A4-24 Miscellaneous Advanced SIMD data-processing instructions (continued)

Instruction See
Vector Transpose VTRN on page A8-1096
Vector Unzip VUZP on page A8-1100
Vector Zip VZIP on page A8-1102
A4-190 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A4 The Instruction Sets
A4.14 Floating-point data-processing instructions

A4.14 Floating-point data-processing instructions
Table A4-25 summarizes the data-processing instructions in the Floating-point (VFP) instruction set.
For details of the floating-point arithmetic used by Floating-point instructions, see Floating-point data types and
arithmetic on page A2-63.
Table A4-25 Floating-point data-processing instructions
Instruction See

Absolute value

VABS on page A8-824

Add

VADD (floating-point) on page A8-830

Compare, optionally with exceptions enabled

Convert between floating-point and integer

Convert between floating-point and fixed-point

Convert between double-precision and single-precision

Convert between half-precision and single-precision

VCMP, VCMPE on page A8-864

VCVT, VCVTR (between floating-point and integer, Floating-point) on
page A8-870

VCVT (between floating-point and fixed-point, Floating-point) on
page A8-874

VCVT (between double-precision and single-precision) on page A8-876

VCVTB, VCVTT on page A8-880

Divide VDIV on page A8-882
Multiply Accumulate VMLA, VMLS (floating-point) on page A8-932
Multiply Subtract

Fused Multiply Accumulate
Fused Multiply Subtract
Move immediate value to extension register

Copy from one extension register to another

VFMA, VFMS on page A8-892

VMOV (immediate) on page A8-936

VMOV (register) on page A8-938

Multiply

VMUL (floating-point) on page A8-960

Negate, by inverting the sign bit

VNEG on page A8-968

Multiply Accumulate and Negate
Multiply Subtract and Negate
Multiply and Negate

Fused Negate Multiply Accumulate

Fused Negate Multiply Subtract

VNMLA, VNMLS, VNMUL on page A8-970

VFNMA, VFNMS on page A8-894

Square Root

VSORT on page A8-1058

Subtract

VSUB (floating-point) on page A8-1086

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

A4-191
Non-Confidential

A4 The Instruction Sets
A4.14 Floating-point data-processing instructions

A4-192 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Chapter A5

ARM Instruction Set Encoding

This chapter describes the encoding of the ARM instruction set. It contains the following sections:

ARM instruction set encoding on page A5-194

Data-processing and miscellaneous instructions on page A5-196
Load/store word and unsigned byte on page A5-208

Media instructions on page A5-209

Branch, branch with link, and block data transfer on page A5-214
Coprocessor instructions, and Supervisor Call on page A5-215

Unconditional instructions on page A5-216.

Note

Architecture variant information in this chapter describes the architecture variant or extension in which the
instruction encoding was introduced into the ARM instruction set. A// means that the instruction encoding
was introduced in ARMv4 or earlier, and so is in all variants of the ARM instruction set covered by this
manual.

In the decode tables in this chapter, an entry of - for a field value means the value of the field does not affect
the decoding.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-193
Non-Confidential

A5 ARM Instruction Set Encoding
Ab5.1 ARM instruction set encoding

A5.1 ARM instruction set encoding
The ARM instruction stream is a sequence of word-aligned words. Each ARM instruction is a single 32-bit word in
that stream. The encoding of an ARM instruction is:
3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond | op1 | |op|
Table AS-1 shows the major subdivisions of the ARM instruction set, determined by bits[31:25, 4].
Most ARM instructions can be conditional, with a condition determined by bits[31:28] of the instruction, the cond
field. For more information see The condition code field. This applies to all instructions except those with the cond
field equal to 0b1111.
Table A5-1 ARM instruction encoding
cond op1 op Instruction classes
not 1111 00x - Data-processing and miscellaneous instructions on page A5-196.
010 - Load/store word and unsigned byte on page A5-208.
011 0 Load/store word and unsigned byte on page A5-208.
1 Media instructions on page A5-209.
10x - Branch, branch with link, and block data transfer on page A5-214.
11x - Coprocessor instructions, and Supervisor Call on page A5-215.
Includes Floating-point instructions and Advanced SIMD data transfers, see Chapter A7 Advanced SIMD
and Floating-point Instruction Encoding.
1111 - - If the cond field is 0b1111, the instruction can only be executed unconditionally, see Unconditional
instructions on page A5-216.
Includes Advanced SIMD instructions, see Chapter A7 Advanced SIMD and Floating-point
Instruction Encoding.
A5.1.1 The condition code field
Every conditional instruction contains a 4-bit condition code field, the cond field, in bits 31 to 28:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond |
This field contains one of the values 0b0000-0b1110, as shown in Table A8-1 on page A8-288. Most instruction
mnemonics can be extended with the letters defined in the mnemonic extension column of this table.
If the always (AL) condition is specified, the instruction is executed irrespective of the value of the condition flags.
The absence of a condition code on an instruction mnemonic implies the AL condition code.
A5-194 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A5 ARM Instruction Set Encoding
Ab5.1 ARM instruction set encoding

A5.1.2 UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

. Unpredictable behavior. The instruction is described as UNPREDICTABLE.

. An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter.
An instruction is UNPREDICTABLE if:

. it is declared as UNPREDICTABLE in an instruction description or in this chapter

. the pseudocode for that encoding does not indicate that a different special case applies, and a bit marked (0)
or (1) in the encoding diagram of an instruction is not 0 or 1 respectively.

For more information about UNDEFINED and UNPREDICTABLE instruction behavior, see Undefined Instruction
exception on page B1-1205.

Unless otherwise specified:
. ARM instructions introduced in an architecture variant are UNDEFINED in earlier architecture variants.

. ARM instructions introduced in one or more architecture extensions are UNDEFINED in an implementation
that does not include any of those extensions.

A5.1.3 The PC and the use of 0b1111 as a register specifier

In ARM instructions, the use of 0b1111 as a register specifier specifies the PC.

Many instructions are UNPREDICTABLE if they use 0b1111 as a register specifier. This is specified by pseudocode in
the instruction description.

Note
In ARMv7, ARM deprecates use of the PC as the base register in any store instruction.

A5.1.4 The SP and the use of 0b1101 as a register specifier

In ARM instructions, the use of 0b1101 as a register specifier specifies the SP.

ARM deprecates using SP for any purpose other than as a stack pointer.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-195
Non-Confidential

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

Ab5.2 Data-processing and miscellaneous instructions
The encoding of ARM data-processing instructions, and some miscellaneous, instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [0 0Jop] op1 | [op2 |
Table A5-2 shows the allocation of encodings in this space.
Table A5-2 Data-processing and miscellaneous instructions
op opi op2 Instruction or instruction class Variant
0 not 10xx0 xxx0 Data-processing (register) on page A5-197 -
0xx1 Data-processing (register-shifted register) on page A5-198 -
10xx0 Oxxx Miscellaneous instructions on page A5-207 -
1xx0 Halfword multiply and multiply accumulate on page A5-203 -
Oxxxx 1001 Multiply and multiply accumulate on page A5-202 -
1xxxx 1001 Synchronization primitives on page A5-205 -
not Oxx1x 1011 Extra load/store instructions on page A5-203 -
11x1 Extra load/store instructions on page A5-203 -
Oxx1x 1011 Extra load/store instructions, unprivileged on page A5-204 -
11x1 Extra load/store instructions on page A5-203 -
1 not 10xx0 - Data-processing (immediate) on page A5-199 -
10000 - 16-bit immediate load, MOV (immediate) on page A8-484 v6oT2
10100 - High halfword 16-bit immediate load, MOVT on page A8-491 v6T2
10x10 - MSR (immediate), and hints on page A5-206 -
A5-196 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A5.2.1

Data-processing (register)

A5 ARM Instruction Set Encoding

Ab.2 Data-processing and miscellaneous instructions

The encoding of ARM data-processing (register) instructions is:

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

cond

[0 0 O]

op

imm5

[op2 [0]

Table A5-3 shows the allocation of encodings in this space. These encodings are in all architecture variants.

Table A5-3 Data-processing (register) instructions

op op2 immb5 Instruction See
0000x - - Bitwise AND AND (register) on page A8-326
0001x - - Bitwise Exclusive OR EOR (register) on page A8-384
0010x - - Subtract SUB (register) on page A8-712
00llx - - Reverse Subtract RSB (register) on page A8-576
0100x - - Add ADD (register, ARM) on page A8-312
0101x - - Add with Carry ADC (register) on page A8-302
0110x - - Subtract with Carry SBC (register) on page A8-594
0111x - - Reverse Subtract with Carry ~ RSC (register) on page A8-582
10xx0 - - See Data-processing and miscellaneous instructions on page A5-196
10001 - - Test TST (register) on page A8-746
10011 - - Test Equivalence TEQ (register) on page A8-740
10101 - - Compare CMP (register) on page A8-372
10111 - - Compare Negative CMN (register) on page A8-366
1100x - - Bitwise OR ORR (register) on page A8-518
1101x 00 00000 Move MOV (register, ARM) on page A8-488
not 00000 Logical Shift Left LSL (immediate) on page A8-468

01 - Logical Shift Right LSR (immediate) on page A8-472

10 - Arithmetic Shift Right ASR (immediate) on page A8-330

11 00000 Rotate Right with Extend RRX on page A8-572

not 00000 Rotate Right ROR (immediate) on page A8-568

1110x - - Bitwise Bit Clear BIC (register) on page A8-342
Iix - - Bitwise NOT MVN (register) on page A8-506

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

A5-197

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

A5.2.2 Data-processing (register-shifted register)
The encoding of ARM data-processing (register-shifted register) instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [0 0 O op1 | [0] op2 [1]
Table A5-4 shows the allocation of encodings in this space. These encodings are in all architecture variants.
Table A5-4 Data-processing (register-shifted register) instructions

op1 op2 Instruction See
0000x - Bitwise AND AND (register-shifted register) on page A8-328
0001x - Bitwise Exclusive OR EOR (register-shifted register) on page A8-386
0010x - Subtract SUB (register-shified register) on page A8-714
0011x - Reverse Subtract RSB (register-shifted register) on page A8-578
0100x - Add ADD (register-shifted register) on page A8-314
0101x - Add with Carry ADC (register-shifted register) on page A8-304
0110x - Subtract with Carry SBC (register-shifted register) on page A8-596
0111x - Reverse Subtract with Carry ~ RSC (register-shified register) on page A8-584
10xx0 - See Data-processing and miscellaneous instructions on page A5-196
10001 - Test TST (register-shifted register) on page A8-748
10011 - Test Equivalence TEQ (register-shifted register) on page A8-742
10101 - Compare CMP (register-shifted register) on page A8-374
10111 - Compare Negative CMN (register-shifted register) on page A8-368
1100x - Bitwise OR ORR (register-shifted register) on page A8-520
1101x 00 Logical Shift Left LSL (register) on page A8-470

01 Logical Shift Right LSR (register) on page A8-474

10 Arithmetic Shift Right ASR (register) on page A8-332

11 Rotate Right ROR (register) on page A8-570
1110x - Bitwise Bit Clear BIC (register-shifted register) on page A8-344
1111x - Bitwise NOT MVN (register-shifted register) on page A8-508

A5-198 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A5.2.3 Data-processing (immediate)

The encoding of ARM data-processing (immediate) instructions is:

A5 ARM Instruction Set Encoding

Ab.2 Data-processing and miscellaneous instructions

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

cond [0 0 1]

op

[R |

Table AS-5 shows the allocation of encodings in this space. These encodings are in all architecture variants.

Table A5-5 Data-processing (immediate) instructions

op Rn Instruction See

0000x - Bitwise AND AND (immediate) on page A8-324

0001x - Bitwise Exclusive OR EOR (immediate) on page A8-382

0010x not 1111 Subtract SUB (immediate, ARM) on page A8-710
1111 Form PC-relative address ADR on page A8-322

0011x - Reverse Subtract RSB (immediate) on page A8-574

0100x not 1111 Add ADD (immediate, ARM) on page A8-308
1111 Form PC-relative address ADR on page A8-322

0101x - Add with Carry ADC (immediate) on page A8-300

0110x - Subtract with Carry SBC (immediate) on page A8-592

0111x - Reverse Subtract with Carry ~ RSC (immediate) on page A8-580

10xx0 - See Data-processing and miscellaneous instructions on page A5-196

10001 - Test TST (immediate) on page A8-744

10011 - Test Equivalence TEQ (immediate) on page A8-738

10101 - Compare CMP (immediate) on page A8-370

10111 - Compare Negative CMN (immediate) on page A8-364

1100x - Bitwise OR ORR (immediate) on page A8-516

1101x - Move MOV (immediate) on page A8-484

111ox - Bitwise Bit Clear BIC (immediate) on page A8-340

11ix - Bitwise NOT MVN (immediate) on page A8-504

These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This provides
a more useful range of values. For details see Modified immediate constants in ARM instructions on page A5-200.

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-199

ID072512

Non-Confidential

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

A5.24 Modified immediate constants in ARM instructions

The encoding of a modified immediate constant in an ARM instruction is:

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2
b cdef

0
| rotation [a h

1
9

Table AS5-6 shows the range of modified immediate constants available in ARM data-processing instructions, and
their encoding in the a, b, ¢, d, ¢, f, g, and h bits and the rotation field in the instruction.

Table A5-6 Encoding of modified immediates in ARM processing instructions

rotation <const>a

0000 00000000 00000000 00000000 abcdefgh
0001 gh000000 00000000 0 00 00abcdef
0010 efgh0000 00000000 00000000 0000abcd
0011 cdefgh00 00000000 00000000 000000ab
0100 abcdefgh 00000000 00000000 00000000

8-bit values shifted to other even-numbered positions

1001 00000000 00abcdef gh000000 00000000

8-bit values shifted to other even-numbered positions

1110 00000000 00000000 0000abcd efgh000o

1111 00000000 00000000 0 ab cdefgh0o

a. This table shows the immediate constant value in binary form, to relate abcdefgh to the encoding diagram.
In assembly syntax, the immediate value is specified in the usual way (a decimal number by default).

Note

The range of values available in ARM modified immediate constants is slightly different from the range of values
available in 32-bit Thumb instructions. See Modified immediate constants in Thumb instructions on page A6-232.

Carry out

A logical instruction with the rotation field set to 0b0000 does not affect APSR.C. Otherwise, a logical flag-setting
instruction sets APSR.C to the value of bit[31] of the modified immediate constant.

Constants with multiple encodings

Some constant values have multiple possible encodings. In this case, a UAL assembler must select the encoding
with the lowest unsigned value of the rotation field. This is the encoding that appears first in Table A5-6. For
example, the constant #3 must be encoded with (rotation, abcdefgh) == (0b0000, 0b00000011), not (0b0001,
0b00001100), (0b0010, 0h00110000), or (0b0011, 0b11000000).

A5-200 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

In particular, this means that all constants in the range 0-255 are encoded with rotation == 0b0000, and permitted
constants outside that range are encoded with rotation != 0b0000. A flag-setting logical instruction with a modified
immediate constant therefore leaves APSR.C unchanged if the constant is in the range 0-255 and sets it to the most
significant bit of the constant otherwise. This matches the behavior of Thumb modified immediate constants for all
constants that are permitted in both the ARM and Thumb instruction sets.

An alternative syntax is available for a modified immediate constant that permits the programmer to specify the
encoding directly. In this syntax, #<const> is instead written as #<byte>, #<rot>, where:

<byte> is the numeric value of abcdefgh, in the range 0-255
<rot> is twice the numeric value of rotation, an even number in the range 0-30.

This syntax permits all ARM data-processing instructions with modified immediate constants to be disassembled
to assembler syntax that assembles to the original instruction.

This syntax also makes it possible to write variants of some flag-setting logical instructions that have different

effects on APSR.C to those obtained with the normal #<const> syntax. For example, ANDS R1, R2, #12, #2 has the
same behavior as ANDS R1, R2, #3 except that it sets APSR.C to 0 instead of leaving it unchanged. Such variants of
flag-setting logical instructions do not have equivalents in the Thumb instruction set, and ARM deprecates their use.

Operation of modified immediate constants, ARM instructions

// ARMExpandImm()

bits(32) ARMExpandImm(bits(12) imml2)

// APSR.C argument to following function call does not affect the imm32 result.
(imm32, -) = ARMExpandImm_C(imm12, APSR.C);

return imm32;
// ARMExpandImm_C()
/] ================
(bits(32), bit) ARMExpandImm_C(bits(12) imml2, bit carry_in)

unrotated_value = ZeroExtend(imml2<7:0>, 32);
(imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2:UInt(imml2<11:8>), carry_in);

return (imm32, carry_out);

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-201
Non-Confidential

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

A5.2.5 Multiply and multiply accumulate
The encoding of ARM multiply and multiply accumulate instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [0 00 O[] op | [1 00 1]
Table AS5-7 shows the allocation of encodings in this space.

Table A5-7 Multiply and multiply accumulate instructions
op Instruction See Variant
000x Multiply MUL on page A8-502 All
001x Multiply Accumulate MLA on page A8-480 All
0100 Unsigned Multiply Accumulate Accumulate Long ~UMAAL on page A8-774 vo
0101 UNDEFINED - -

0110 Multiply and Subtract MLS on page A8-482 voT2
0111 UNDEFINED - -
100x Unsigned Multiply Long UMULL on page A8-778 All
101x Unsigned Multiply Accumulate Long UMLAL on page A8-776 All
110x Signed Multiply Long SMULL on page A8-646 All
111x Signed Multiply Accumulate Long SMLAL on page A8-624 All
A5.2.6 Saturating addition and subtraction
The encoding of ARM saturating addition and subtraction instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [0 0 0 1[0] op [O] [0 1 0 1]
Table AS-8 shows the allocation of encodings in this space. These encodings are all available in ARMVS5TE and
above, and are UNDEFINED in earlier variants of the architecture.
Table A5-8 Saturating addition and subtraction instructions
op Instruction See
00 Saturating Add QOADD on page A8-540
01 Saturating Subtract OSUB on page A8-554
10 Saturating Double and Add ODADD on page A8-548
11 Saturating Double and Subtract ~ QDSUB on page A8-550
A5-202 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

A5.2.7 Halfword multiply and multiply accumulate
The encoding of ARM halfword multiply and multiply accumulate instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [0 0 0 1[0]opt]0] [1]
Table A5-9 shows the allocation of encodings in this space.
These encodings are signed multiply (SMUL) and signed multiply accumulate (SMLA) instructions, operating on 16-bit
values, or mixed 16-bit and 32-bit values. The results and accumulators are 32-bit or 64-bit.
These encodings are all available in ARMVSTE and above, and are UNDEFINED in earlier variants of the architecture.
Table A5-9 Halfword multiply and multiply accumulate instructions
op1l op Instruction See
00 - Signed 16-bit multiply, 32-bit accumulate SMLABB, SMLABT, SMLATB, SMLATT on page A8-620
01 0 Signed 16-bit x 32-bit multiply, 32-bit accumulate ~ SMLAWB, SMLAWT on page A8-630
1 Signed 16-bit x 32-bit multiply, 32-bit result SMULWB, SMULWT on page A8-648
10 - Signed 16-bit multiply, 64-bit accumulate SMLALBB, SMLALBT, SMLALTB, SMLALTT on page A8-626
11 - Signed 16-bit multiply, 32-bit result SMULBB, SMULBT, SMULTB, SMULTT on page A8-644
A5.2.8 Extra load/store instructions
The encoding of extra ARM load/store instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0 0 O | Rn] [1]op2 [1]
If (op2 == 0b00) or (op1 == 0bOxx11) or (op1 == 0bOxx10 AND op2 == 0b0x) then see Data-processing and
miscellaneous instructions on page A5-196.
Otherwise, Table A5-10 shows the allocation of encodings in this space.

Table A5-10 Extra load/store instructions
op2 opi Rn Instruction See Variant
01 xx0x0 - Store Halfword STRH (register) on page A8-702 All

xx0x1 - Load Halfword LDRH (register) on page A8-446 All
xx1x0 - Store Halfword STRH (immediate, ARM) on page A8-700 All
xx1x1 not 1111 Load Halfword LDRH (immediate, ARM) on page A8-442 All
1111 Load Halfword LDRH (literal) on page A8-444 All

10 xx0x0 - Load Dual LDRD (register) on page A8-430 v5TE
xx0x1 - Load Signed Byte LDRSB (register) on page A8-454 All

xx1x0 not 1111 Load Dual LDRD (immediate) on page A8-426 v5TE

1111 Load Dual LDRD (literal) on page A8-428 v5TE
xx1x1 not 1111 Load Signed Byte LDRSB (immediate) on page A8-450 All
1111 Load Signed Byte LDRSB (literal) on page A8-452 All

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-203

ID072512

Non-Confidential

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

Table A5-10 Extra load/store instructions (continued)

op2 op1 Rn Instruction See Variant
11 xx0x0 - Store Dual STRD (register) on page A8-688 All
xx0x1 - Load Signed Halfword ~ LDRSH (register) on page A8-462 All
xx1x0 - Store Dual STRD (immediate) on page A8-686 All
xx1x1 not 1111 Load Signed Halfword = LDRSH (immediate) on page A8-458 All
1111 Load Signed Halfword ~ LDRSH (literal) on page A8-460 All
A5.2.9 Extra load/store instructions, unprivileged
The encoding of unprivileged extra ARM load/store instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0 0 0 O] [1 [op| | [1]op2 [1]
If op2 == 0b00 then see Data-processing and miscellaneous instructions on page AS5-196.
If (op == 0b@ AND op2 == 0b1x) then see Extra load/store instructions on page A5-203.
Otherwise, Table A5-11 shows the allocation of encodings in this space.

Table A5-11 Extra load/store instructions, unprivileged
op2 op Instruction See Variant
01 0 Store Halfword Unprivileged STRHT on page A8-704 v6T2

1 Load Halfword Unprivileged LDRHT on page A8-448 v6T2

10 1 Load Signed Byte Unprivileged LDRSBT on page A8-456 v6oT2

11 1 Load Signed Halfword Unprivileged = LDRSHT on page A8-464 v6T2
A5-204 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A5.2.10 Synchronization primitives

The encoding of ARM synchronization primitive instructions is:

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

cond [0 0 0 1]

op |

100 1

Table AS5-12 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

Table A5-12 Synchronization primitives

op Instruction See Variant
0x00 Swap Word, Swap Byte SWP, SWPB on page A8-7222 All
1000 Store Register Exclusive STREX on page A8-690 v6

1001 Load Register Exclusive LDREX on page A8-432 v6

1010 Store Register Exclusive Doubleword ~ STREXD on page A8-694 voK
1011 Load Register Exclusive Doubleword = LDREXD on page A8-436 v6K
1100 Store Register Exclusive Byte STREXB on page A8-692 voK
1101 Load Register Exclusive Byte LDREXB on page A8-434 voK
1110 Store Register Exclusive Halfword STREXH on page A8-696 voK
1111 Load Register Exclusive Halfword LDREXH on page A8-438 voK

a. ARM deprecates the use of these instructions.
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-205

ID072512

Non-Confidential

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

A5.2.11 MSR (immediate), and hints

The encoding of ARM MSR (immediate) and hint instructions is:

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

cond

[0 0 11 0fop[1 O] opt]

| op2

Table AS-13 shows the allocation of encodings in this space. Encodings with op set to 0, opl set to 0b000, and a value
of op2 that is not shown in the table, are unallocated hints and behave as if op2 is set to 0b00000000. These unallocated

hint encodings are reserved and software must not use them.

Table A5-13 MSR (immediate), and hints

op op1l op2 Instruction See Variant
0 0000 00000000 No Operation hint NOP on page A8-510 voK, v6T2
00000001 Yield hint YIELD on page A8-1108 voK
00000010 Wait For Event hint WFE on page A8-1104 voK
00000011 Wait For Interrupt hint WFI on page A8-1106 voK
00000100 Send Event hint SEV on page A8-606 voK
1111xxxx Debug hint DBG on page A8-377 v7
0100 - Move to Special register, Application level ~ MSR (immediate) on page A8-498 All
1x00
xx01 - Move to Special register, System level MSR (immediate) on page B9-1994 All
xx1x
1 - - Move to Special register, System level MSR (immediate) on page B9-1994 All
A5-206 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A5 ARM Instruction Set Encoding
Ab.2 Data-processing and miscellaneous instructions

A5.2.12 Miscellaneous instructions
The encoding of some miscellaneous ARM instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [0 0 0f[1 0] op [O] op1 [B] Jo] op2 |
Table AS5-14 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-14 Miscellaneous instructions

op2 B op op1 Instruction orinstruction class See Variant
000 1 x0 =xxxx Move from Banked or Special register MRS (Banked register) on page B9-1990 vIVE

x1 xxxXx Move to Banked or Special register MSR (Banked register) on page B9-1992 vIVE

0 x0 xxxx Move from Special register MRS on page A8-496 All
MRS on page B9-1988
01 xx00 Move to Special register, Application level ~ MSR (register) on page A8-500 All
xx01 Move to Special register, System level MSR (register) on page B9-1996 All
xx1x

11 - Move to Special register, System level MSR (register) on page B9-1996 All
001 - 01 - Branch and Exchange BX on page A8-352 v4T

11 - Count Leading Zeros CLZ on page A8-362 v5T
010 - 01 - Branch and Exchange Jazelle BXJ on page A8-354 v5TEJ
011 - 01 - Branch with Link and Exchange BLX (register) on page A8-350 v5T
101 - - - Saturating addition and subtraction Saturating addition and subtraction on -

page A5-202

110 - 11 - Exception Return ERET on page B9-1980 v7VE
1t - 01 - Breakpoint BKPT on page A8-346 v5T

10 - Hypervisor Call HVC on page B9-1982 vIVE

11 - Secure Monitor Call SMC (previously SMI) on page B9-2000 Security

Extensions
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-207

ID072512

Non-Confidential

A5 ARM Instruction Set Encoding

Ab5.3 Load/store word and unsigned byte

A5.3 Load/store word and unsigned byte
The encoding of ARM load/store word and unsigned byte instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0 1]A] opt | Rn] [B]
These instructions have either A == 0 or B == 0. For instructions with A == 1 and B == 1, see Media instructions
on page A5-209.
Otherwise, Table A5-15 shows the allocation of encodings in this space. These encodings are in all architecture
variants.
Table A5-15 Single data transfer instructions
A opl B Rn Instruction See
0 xx0x0not 0x010 - - Store Register STR (immediate, ARM) on page A8-674
1 xx0x0not0x010 0 - Store Register STR (register) on page A8-676
0 0x010 - - Store Register Unprivileged STRT on page A8-706
1 0x010 0o -
0 xx0x1 not0x011 - not 1111 Load Register (immediate) LDR (immediate, ARM) on page A8-408
1111 Load Register (literal) LDR (literal) on page A8-410
1 xx0xlnot0x011 0 - Load Register LDR (register, ARM) on page A8-414
0 0x011 - - Load Register Unprivileged LDRT on page A8-466
1 0x011 0o -
0 xx1x0not0x110 - - Store Register Byte (immediate) STRB (immediate, ARM) on page A8-680
1 xx1x0not0x110 0 - Store Register Byte (register) STRB (register) on page A8-682
0 0x110 - - Store Register Byte Unprivileged STRBT on page A8-684
1 0x110 0o -
0 xxIxlnotOx111 - not 1111 Load Register Byte (immediate) LDRB (immediate, ARM) on page A8-418
1111 Load Register Byte (literal) LDRB (literal) on page A8-420
1 xxIxlnotOxIll 0 - Load Register Byte (register) LDRB (register) on page A8-422
0 0x111 - - Load Register Byte Unprivileged ~ LDRBT on page A8-424
1 0xl111 0o -
A5-208 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A5 ARM Instruction Set Encoding
Ab.4 Media instructions

A5.4 Media instructions
The encoding of ARM media instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0 1 1] opt | | Rd op2 [1] Rn
Table AS5-16 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED.

Table A5-16 Media instructions
op1 op2 Rd Rn cond Instructions See Variant
000xx - - - - - Parallel addition and subtraction, signed on

page A5-210
001xx - - - - - Parallel addition and subtraction, unsigned on
page A5-211
Olxxx - - - - - Packing, unpacking, saturation, and reversal
on page A5-212
10xxx - - - - - Signed multiply, signed and unsigned divide on
page A5-213
11000 000 1111 - - Unsigned Sum of Absolute Differences =~ USADS8 on page A8-792 v6
000 not - - Unsigned Sum of Absolute Differences ~ USADAS on page A8-794 v6
1111 and Accumulate
1101x x10 - - - Signed Bit Field Extract SBFX on page A8-598 voT2
1110x x00 - i - Bit Field Clear BFC on page A8-336 voT2
not - Bit Field Insert BFI on page A8-338 v6T2
1111
Iix x10 - - - Unsigned Bit Field Extract UBFX on page A8-756 v6T2
e 1 - - 1110 Permanently UNDEFINED UDF on page A8-758 Alla
not -a All
1110

a. Issue C.a of this manual first defines an assembler mnemonic for this encoding. This mnemonic applies only to the unconditional encoding,
with cond set to 0b1110.

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-209

Non-Confidential

A5 ARM Instruction Set Encoding
Ab.4 Media instructions

A5.4.1 Parallel addition and subtraction, signed
The encoding of ARM signed parallel addition and subtraction instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [0 1 10 0 0fopt] [op2 [1]
Table AS5-17 shows the allocation of encodings in this space. These encodings are all available in ARMv6 and
above, and are UNDEFINED in earlier variants of the architecture.
Other encodings in this space are UNDEFINED.
Table A5-17 Signed parallel addition and subtraction instructions
op1l op2 Instruction See
01 000 Add 16-bit SADD16 on page A8-586
001 Add and Subtract with Exchange, 16-bit SASX on page A8-590
010 Subtract and Add with Exchange, 16-bit SSAX on page A8-656
011 Subtract 16-bit SSUB16 on page A8-658
100 Add 8-bit SADDS on page A8-588
111 Subtract 8-bit SSUBS on page A8-660
Saturating instructions
10 000 Saturating Add 16-bit 0ADDI16 on page A8-542
001 Saturating Add and Subtract with Exchange, 16-bit ~ QASX on page A8-546
010 Saturating Subtract and Add with Exchange, 16-bit ~ OS4X on page A8-552
011 Saturating Subtract 16-bit OSUBI16 on page A8-556
100 Saturating Add 8-bit 0ADDS on page A8-544
111 Saturating Subtract 8-bit OSUBS on page A8-558
Halving instructions
11 000 Halving Add 16-bit SHADD16 on page A8-608
001 Halving Add and Subtract with Exchange, 16-bit SHASX on page A8-612
010 Halving Subtract and Add with Exchange, 16-bit SHSAX on page A8-614
011 Halving Subtract 16-bit SHSUB16 on page A8-616
100 Halving Add 8-bit SHADDS on page A8-610
111 Halving Subtract 8-bit SHSUBS on page A8-618
A5-210 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A5 ARM Instruction Set Encoding
Ab.4 Media instructions

A5.4.2 Parallel addition and subtraction, unsigned
The encoding of ARM unsigned parallel addition and subtraction instructions is:

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
cond [0 1 10 0 1]opt] [op2 [1]

Table AS5-18 shows the allocation of encodings in this space. These encodings are all available in ARMv6 and
above, and are UNDEFINED in earlier variants of the architecture.

Other encodings in this space are UNDEFINED.

Table A5-18 Unsigned parallel addition and subtractions instructions

op1l op2 Instruction See

01 000 Add 16-bit UADDI6 on page A8-750
001 Add and Subtract with Exchange, 16-bit UASX on page A8-754
010 Subtract and Add with Exchange, 16-bit USAX on page A8-800
011 Subtract 16-bit USUBI6 on page A8-802
100 Add 8-bit UADDS on page A8-752
111 Subtract 8-bit USUBS on page A8-804

Saturating instructions

10 000 Saturating Add 16-bit UQADD16 on page A8-780

001 Saturating Add and Subtract with Exchange, 16-bit ~ UQASX on page A8-784

010 Saturating Subtract and Add with Exchange, 16-bit ~ UQSAX on page A8-786

011 Saturating Subtract 16-bit UQSUBI16 on page A8-788
100 Saturating Add 8-bit UQADDS on page A8-782
111 Saturating Subtract 8-bit UQSUBS on page A8-790

Halving instructions

11 000 Halving Add 16-bit UHADDI6 on page A8-762
001 Halving Add and Subtract with Exchange, 16-bit UHASX on page A8-766

010 Halving Subtract and Add with Exchange, 16-bit UHSAX on page A8-768

011 Halving Subtract 16-bit UHSUBI6 on page A8-770

100 Halving Add 8-bit UHADDS on page A8-764

111 Halving Subtract 8-bit UHSUBS on page A8-772
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-211

ID072512 Non-Confidential

A5 ARM Instruction Set Encoding

AS5.4 Media instructions

A5.4.3 Packing, unpacking, saturation, and reversal
The encoding of ARM packing, unpacking, saturation, and reversal instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [0 110 1] opt | A] [op2 [1]
Table AS5-19 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED.

Table A5-19 Packing, unpacking, saturation, and reversal instructions
opl op2 A Instructions See Variant
000 xx0 - Pack Halfword PKH on page A8-522 v6

011 not1111 Signed Extend and Add Byte 16-bit SXTABI6 on page A8-726 v6
1111 Signed Extend Byte 16-bit SXTB16 on page A8-732 v6
101 - Select Bytes SEL on page A8-602 v6
0lx xx0 - Signed Saturate SSAT on page A8-652 v6
010 o001 - Signed Saturate, two 16-bit SSAT16 on page A8-654 v6
011 not1111 Signed Extend and Add Byte SXTAB on page A8-724 v6
1111 Signed Extend Byte SXTB on page A8-730 v6
011 o001 - Byte-Reverse Word REV on page A8-562 v6
011 not1111 Signed Extend and Add Halfword SXTAH on page A8-728 v6
1111 Signed Extend Halfword SXTH on page A8-734 v6
101 - Byte-Reverse Packed Halfword REV16 on page A8-564 v6
100 011 not1111 Unsigned Extend and Add Byte 16-bit ~ UXTABI6 on page A8-808 v6
1111 Unsigned Extend Byte 16-bit UXTB16 on page A8-814 v6
IIx xx0 - Unsigned Saturate USAT on page A8-796 v6
110 001 - Unsigned Saturate, two 16-bit USAT16 on page A8-798 v6
011 not1111 Unsigned Extend and Add Byte UXTAB on page A8-806 v6
1111 Unsigned Extend Byte UXTB on page A8-812 v6

111 001 - Reverse Bits RBIT on page A8-560 voT2
011 not 1111 Unsigned Extend and Add Halfword UXTAH on page A8-810 v6
1111 Unsigned Extend Halfword UXTH on page A8-816 v6
101 - Byte-Reverse Signed Halfword REVSH on page A8-566 v6

A5-212 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A5.4.4

Signed multiply, signhed and unsigned divide

The encoding of ARM signed multiply and divide instructions is:

A5 ARM Instruction Set Encoding
Ab.4 Media instructions

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

cond [0 1 1 1 0] opt |

op2 [1]

Table AS5-20 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

Table A5-20 Signed multiply instructions

opl op2 A Instruction See Variant
000 00x notllll Signed Multiply Accumulate Dual SMLAD on page A8-622 v6
1111 Signed Dual Multiply Add SMUAD on page A8-642 vo
0lx not1111 Signed Multiply Subtract Dual SMLSD on page A8-632 vo
1111 Signed Dual Multiply Subtract SMUSD on page A8-650 v6
001 000 - Signed Divide SDIV on page A8-600 v74
011 000 - Unsigned Divide UDIV on page A8-760 v7a
100 00x - Signed Multiply Accumulate Long Dual SMLALD on page A8-628 v6
0lx - Signed Multiply Subtract Long Dual SMLSLD on page A8-634 v6
101 00x not1111 Signed Most Significant Word Multiply Accumulate =~ SMMLA on page A8-636 vo
1111 Signed Most Significant Word Multiply SMMUL on page A8-640 vo
Ix - Signed Most Significant Word Multiply Subtract SMMLS on page A8-638 v6

a. Optional in some ARMv7 implementations, see ARMv7 implementation requirements and options for the divide instructions on
page A4-172.

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

A5-213

A5 ARM Instruction Set Encoding

Ab.5 Branch, branch with link, and block data transfer

A5.5 Branch, branch with link, and block data transfer
The encoding of ARM branch, branch with link, and block data transfer instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
cond [1 0] op | Rn |R]
Table AS5-21 shows the allocation of encodings in this space. These encodings are in all architecture variants.
Table A5-21 Branch, branch with link, and block data transfer instructions
op R Rn Instructions See
0000x0 - - Store Multiple Decrement After STMDA (STMED) on page A8-666
0000x1 - - Load Multiple Decrement After LDMDA/LDMFA on page A8-400
0010x0 - - Store Multiple Increment After STM (STMIA4, STMEA) on page A8-664
001001 - - Load Multiple Increment After LDM/LDMIA/LDMFD (ARM) on page A8-398
001011 - not 1101 Load Multiple Increment After LDM/LDMIA/LDMFD (ARM) on page A8-398
1101 Pop multiple registers POP (ARM) on page A8-536

010000 - - Store Multiple Decrement Before ~ STMDB (STMFD) on page A8-668
010010 - not 1101 Store Multiple Decrement Before ~ STMDB (STMFD) on page A8-668

- 1101 Push multiple registers PUSH on page A8-538
0100x1 - - Load Multiple Decrement Before = LDMDB/LDMEA on page A8-402
0110x0 - - Store Multiple Increment Before ~ STMIB (STMFA) on page A8-670
0110x1 - - Load Multiple Increment Before ~ LDMIB/LDMED on page A8-404
Oxx1x0 - - Store Multiple (user registers) STM (User registers) on page B9-2006
OxxIxl 0 - Load Multiple (user registers) LDM (User registers) on page B9-1986

1 - Load Multiple (exception return) LDM (exception return) on page B9-1984
10xxxx - - Branch B on page A8-334
11xxxx - - Branch with Link BL, BLX (immediate) on page A8-348

A5-214 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A5 ARM Instruction Set Encoding
Ab.6 Coprocessor instructions, and Supervisor Call

A5.6 Coprocessor instructions, and Supervisor Call

The encoding of ARM coprocessor instructions and the Supervisor Call instruction is:

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

cond

[+ 1]

op1 [Rn |

| coproc | [op]

Table AS5-22 shows the allocation of encodings in this space:

Table A5-22 Coprocessor instructions, and Supervisor Call

coproc op1 op Rn Instructions See Variant
- 00000x - - UNDEFINED - -
11xxxx - - Supervisor Call SVC (previously SWI) on page A8-720 All
not 0xxxx0 - - Store Coprocessor STC, STC2 on page A8-662 All
101x not 000x00
Oxxxx1 - not 1111 Load Coprocessor (immediate) LDC, LDC?2 (immediate) on page A8-392 All
not 000x01
1111 Load Coprocessor (literal) LDC, LDC? (literal) on page A8-394 All
000100 - - Move to Coprocessor fromtwo ~ MCRR, MCRR2 on page A8-478 v5TE
ARM core registers
000101 - - Move to two ARM core MRRC, MRRC?2 on page A8-494 v5TE
registers from Coprocessor
10xxxx 0 - Coprocessor data operations CDP, CDP2 on page A8-358 All
10xxx0 1 - Move to Coprocessor from MCR, MCR?2 on page A8-476 All
ARM core register
10xxx1 1 - Move to ARM core register MRC, MRC?2 on page A8-492 All
from Coprocessor
101x Oxxxxx - - Advanced SIMD, Extension register load/store instructions on
not 000x0x Floating-point page A7-274
00010x - - Advanced SIMD, 64-bit transfers between ARM core and extension
Floating-point registers on page A7-279
10xxxx 0 - Floating-point data processing Floating-point data-processing instructions on
page A7-272
10xxxx 1 - Advanced SIMD, 8, 16, and 32-bit transfer between ARM core and

Floating-point

extension registers on page A7-278

For more information about specific coprocessors see Coprocessor support on page A2-94.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

A5-215

A5 ARM Instruction Set Encoding
Ab.7 Unconditional instructions

A5.7 Unconditional instructions
The encoding of ARM unconditional instructions is:
3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
111 1] op1 | Rn] |op]
Table A5-23 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED in ARMvS and above.
All encodings in this space are UNPREDICTABLE in ARMv4 and ARMv4T.

Table A5-23 Unconditional instructions
op1 op Rn Instruction See Variant
OXXXXXXX - - - Memory hints, Advanced SIMD instructions, and

miscellaneous instructions on page A5-217
100xx1x0 - - Store Return State SRS (ARM) on page B9-2004 v6
100xx0x1 - - Return From Exception RFE on page B9-1998 v6
101xxxxx - - Branch with Link and Exchange BL, BLX (immediate) on page A8-348 v5
110xxxx0 - - Store Coprocessor STC, STC2 on page A8-662 v5
not 11000x00
110xxxx1 - not 1111 Load Coprocessor (immediate) LDC, LDC?2 (immediate) on page A8-392 v5
not 11000x01
1111 Load Coprocessor (literal) LDC, LDC? (literal) on page A8-394 v5
11000100 - - Move to Coprocessor from two ARM ~ MCRR, MCRR?2 on page A8-478 v6
core registers
11000101 - - Move to two ARM core registers MRRC, MRRC?2 on page A8-494 v6
from Coprocessor
1110xxxx% 0 - Coprocessor data operations CDP, CDP2 on page A8-358 v5
1110xxx0 1 - Move to Coprocessor from ARM MCR, MCR2 on page A8-476 v5
core register
1110xxx1 1 - Move to ARM core register from MRC, MRC2 on page A8-492 v5
Coprocessor
A5-216 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A5 ARM Instruction Set Encoding
Ab.7 Unconditional instructions

A5.7.1 Memory hints, Advanced SIMD instructions, and miscellaneous instructions
The encoding of ARM memory hint and Advanced SIMD instructions, and some miscellaneous instruction is:
3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0
111 10] op1 [Rn | [op2 |
Table AS5-24 shows the allocation of encodings in this space.
Other encodings in this space are UNDEFINED in ARMvS5 and above. All these encodings are UNPREDICTABLE in
ARMvV4 and ARMv4T.

Table A5-24 Hints, and Advanced SIMD instructions
op1 op2 Rn Instruction See Variant
0010000 xx0x xxx0 Change Processor State CPS (ARM) on page B9-1978 v6
0010000 0000 xxx1 Set Endianness SETEND on page A8-604 v6
Olxxxxx - - See Advanced SIMD data-processing instructions on page A7-261 v7
100xxx0 - - See Advanced SIMD element or structure load/store instructions on page A7-275 v7
100x001 - - Unallocated memory hint (treat as NOP) MP Exta
100x101 - - Preload Instruction PLI (immediate, literal) on page A8-530 v7
100xx11 - - UNPREDICTABLE - -
101x001 - not 1111 Preload Data with intent to Write PLD, PLDW (immediate) on page A8-524 MP Exta

1111 UNPREDICTABLE - -
101x101 - not 1111 Preload Data PLD, PLDW (immediate) on page A8-524 v5TE

1111 Preload Data PLD (literal) on page A8-526 v5TE
1010011 - - UNPREDICTABLE - -
1010111 0000 - UNPREDICTABLE - -

0001 - Clear-Exclusive CLREX on page A8-360 voK

001x - UNPREDICTABLE - -

0100 - Data Synchronization Barrier DSB on page A8-380 voT2

0101 - Data Memory Barrier DMB on page A8-378 v7

0110 - Instruction Synchronization Barrier ISB on page A8-389 v6oT2

o1 - UNPREDICTABLE - -

Ixxx - UNPREDICTABLE - -
1011x11 - - UNPREDICTABLE -
110x001 xxx0 - Unallocated memory hint (treat as NOP) MP Exta
110x101 xxx0 - Preload Instruction PLI (register) on page A8-532 v7
111x001 xxx0 - Preload Data with intent to Write PLD, PLDW (register) on page A8-528 MP Exta

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A5-217

ID072512

Non-Confidential

A5 ARM Instruction Set Encoding
Ab.7 Unconditional instructions

Table A5-24 Hints, and Advanced SIMD instructions (continued)

op1 op2 Rn Instruction See Variant
111x101 xxx0 - Preload Data PLD, PLDW (register) on page A8-528 vSTE
11xxx11 xxx0 - UNPREDICTABLE - -
1111111 1111 Permanently UNDEFINEDD - v5

a. Multiprocessing Extensions.

b. See Table A5-16 on page A5-209 for the full range of encodings in this permanently UNDEFINED group.

A5-218

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Chapter A6
Thumb Instruction Set Encoding

This chapter introduces the Thumb instruction set and describes how it uses the ARM programmers’ model. It
contains the following sections:

. Thumb instruction set encoding on page A6-220
. 16-bit Thumb instruction encoding on page A6-223
. 32-bit Thumb instruction encoding on page A6-230.

For details of the differences between the Thumb and ThumbEE instruction sets see Chapter A9 The ThumbEE
Instruction Set.

Note

. Architecture variant information in this chapter describes the architecture variant or extension in which the
instruction encoding was introduced into the Thumb instruction set.

. In the decode tables in this chapter, an entry of - for a field value means the value of the field does not affect
the decoding.
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A6-219

ID072512 Non-Confidential

A6 Thumb Instruction Set Encoding
AG6.1 Thumb instruction set encoding

A6.1

A6.1.1

A6.1.2

Thumb instruction set encoding

The Thumb instruction stream is a sequence of halfword-aligned halfwords. Each Thumb instruction is either a
single 16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If the value of bits[15:11] of the halfword being decoded is one of the following, the halfword is the first halfword
of a 32-bit instruction:

. 0b11101
. 0b11110
. 0b11111.

Otherwise, the halfword is a 16-bit instruction.
For details of the encoding of 16-bit Thumb instructions see /6-bit Thumb instruction encoding on page A6-223.

For details of the encoding of 32-bit Thumb instructions see 32-bit Thumb instruction encoding on page A6-230.

UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:
. Unpredictable behavior. The instruction is described as UNPREDICTABLE.
. An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter.

An instruction is UNPREDICTABLE if:

. a bit marked (0) in the encoding diagram of an instruction is not 0, and the pseudocode for that encoding does
not indicate that a different special case applies when that bit is not 0

. a bit marked (1) in the encoding diagram of an instruction is not 1, and the pseudocode for that encoding does
not indicate that a different special case applies when that bit is not 1

. it is declared as UNPREDICTABLE in an instruction description or in this chapter.

For more information about UNDEFINED and UNPREDICTABLE instruction behavior, see Undefined Instruction
exception on page B1-1205.

Unless otherwise specified:

. Thumb instructions introduced in an architecture variant are either UNPREDICTABLE or UNDEFINED in earlier
architecture variants.

. A Thumb instruction that is provided by one or more of the architecture extensions is either UNPREDICTABLE
or UNDEFINED in an implementation that does not include any of those extensions.

In both cases, the instruction is UNPREDICTABLE if it is a 32-bit instruction in an architecture variant before
ARMv6T2, and UNDEFINED otherwise.

Use of the PC, and use of 0b1111 as a register specifier

The use of 0b1111 as a register specifier is not normally permitted in Thumb instructions. When a value of 0b1111 is
permitted, a variety of meanings is possible. For register reads, these meanings include:

. Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch
instructions TBB and TBH can be the PC. This means branch tables can be placed in memory immediately after
the instruction.

Note
In ARMv7, ARM deprecates use of the PC as the base register in the STC instruction.

AB-220

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A6 Thumb Instruction Set Encoding
A6.1 Thumb instruction set encoding

. Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits[1:0] forced to
zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no writeback), LDRH, LDRSB, and LDRSH instructions
can be the word-aligned PC. This provides PC-relative data addressing. In addition, some encodings of the
ADD and SUB instructions permit their source registers to be 0b1111 for the same purpose.

. Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a
special case in the pseudocode for the more general instruction cross-referencing the other page.

For register writes, these meanings include:

. The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as
0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address. Bit[0]
of the loaded value selects whether to execute ARM or Thumb instructions after the branch.

. Some other instructions write the PC in similar ways. An instruction can specify that the PC is written:
— implicitly, for example, branch instructions
— explicitly by a register specifier of @b1111, for example 16-bit MOV (register) instructions
— explicitly by using a register mask, for example LDM instructions.
The address to branch to can be:
— aloaded value, for example, RFE
— aregister value, for example, BX
— the result of a calculation, for example, TBB or TBH.
The method of choosing the instruction set used after the branch can be:
— similar to the LDR case, for example, LDM or BX
— afixed instruction set other than the one currently being used, for example, the immediate form of BLX
— unchanged, for example, branch instructions or 16-bit MOV (register) instructions

— set from the {J, T} bits of the SPSR, for RFE and SUBS PC, LR, #imms.

. Discard the result of a calculation. This is done in some cases when one instruction is a special case of
another, more general instruction, but with the result discarded. In these cases, the instructions are listed on
separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the
other page.

. If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is @b1111, the instruction is a
memory hint instead of a load operation.

. If the destination register specifier of an MRC instruction is Ob1111, bits[31:28] of the value transferred from
the coprocessor are written to the N, Z, C, and V condition flags in the APSR, and bits[27:0] are discarded.

A6.1.3 Use of the SP, and use of 0b1101 as a register specifier

R13 is defined in the Thumb instruction set so that its use is primarily as a stack pointer, and R13 is normally
identified as SP in Thumb instructions. In 32-bit Thumb instructions, if software uses R13 as a general-purpose
register beyond the architecturally defined constraints described in this section, the results are UNPREDICTABLE.

The restrictions applicable to R13 are described in:
. R13[1:0] definition
. 32-bit Thumb instruction support for R13 on page A6-222.

See also 16-bit Thumb instruction support for R13 on page A6-222.

R13[1:0] definition

Bits[1:0] of R13 are SBZP. Writing a nonzero value to bits[1:0] causes UNPREDICTABLE behavior.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A6-221
Non-Confidential

A6 Thumb Instruction Set Encoding
AG6.1 Thumb instruction set encoding

32-bit Thumb instruction support for R13

R13 instruction support is restricted to the following:

R13 as the source or destination register of a MOV instruction. Only register to register transfers without shifts
are supported, with no flag-setting:

Mov SP, <Rm>
MoV <Rn>, SP

Using the following instructions to adjust R13 up or down by a multiple of 4:

ADD{W} SP, SP, #<imm>
SuB{w} SP, SP, #<imm>
ADD SP, SP, <Rm>

ADD SP, SP, <Rm>, LSL #<n> ; For <n> =1, 2, 3
SUB SP, SP, <Rm>
SUB SP, SP, <Rm>, LSL #<n> ; For <n> =1, 2, 3

R13 as a base register <Rn> of any load/store instruction. This supports SP-based addressing for load, store,
or memory hint instructions, with positive or negative offsets, with and without writeback.

R13 as the first operand <Rn> in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract instructions
support SP-based address generation, with the address going into an ARM core register, RO-R12 or R14. CMN
and CMP are useful for stack checking in some circumstances.

R13 as the transferred register <Rt> in any LDR or STR instruction.

16-bit Thumb instruction support for R13

For 16-bit data-processing instructions that affect high registers, R13 can only be used as described in 32-bit Thumb
instruction support for R13. ARM deprecates any other use. This affects the high register forms of CMP and ADD,
where ARM deprecates the use of R13 as <Rm>.

AB-222

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A6 Thumb Instruction Set Encoding
A6.2 16-bit Thumb instruction encoding

A6.2 16-bit Thumb instruction encoding

The encoding of a 16-bit Thumb instruction is:

1514131211109 8 7 6 5 4 3 2 1 0

Opcode

Table A6-1 shows the allocation of 16-bit instruction encodings.

Table A6-1 16-bit Thumb instruction encoding

Opcode Instruction or instruction class Variant
00xxxx Shift (immediate), add, subtract, move, and compare on page A6-224 -
010000 Data-processing on page A6-225 -
010001 Special data instructions and branch and exchange on page A6-226 -
01001x Load from Literal Pool, see LDR (literal) on page A8-410 v4T
0101xx Load/store single data item on page A6-227 -
011xxx

100xxx

10100x Generate PC-relative address, see ADR on page A8-322 v4T
10101x Generate SP-relative address, see ADD (SP plus immediate) on page A8-316 v4T
1011xx Miscellaneous 16-bit instructions on page A6-228 -
11000x Store multiple registers, see STM (STMIA, STMEA) on page A8-664 2 VAT
11001x Load multiple registers, see LDM/LDMIA/LDMFD (Thumb) on page A8-396 2 v4T
1101xx Conditional branch, and Supervisor Call on page A6-229 -
11100x Unconditional Branch, see B on page A8-334 v4T

a. In ThumbEE, 16-bit load/store multiple instructions are not available. This encoding is used for special

ThumbEE instructions. For details see Chapter A9 The ThumbEE Instruction Set.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

AB-223

A6 Thumb Instruction Set Encoding
AG6.2 16-bit Thumb instruction encoding

A6.2.1 Shift (immediate), add, subtract,

move, and com pare

The encoding of 16-bit Thumb shift (immediate), add, subtract, move, and compare instructions is:

1514131211109 8 7 6 5

43210

0 0] Opcode |

Table A6-2 shows the allocation of

encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMv4T.

Table A6-2 16-bit Thumb shift (immediate), add, subtract, move, and compare instructions

Opcode Instruction

See

000xx

Logical Shift Left2

LSL (immediate) on page A8-468

001xx

010xx

01100

Logical Shift Right
Arithmetic Shift Right

Add register

LSR (immediate) on page A8-472
ASR (immediate) on page A8-330

ADD (register, Thumb) on page A8-310

01101

Subtract register

SUB (register) on page A8-712

01110

Add 3-bit immediate

ADD (immediate, Thumb) on page A8-306

01111

100xx

101xx

110xx

Subtract 3-bit immediate
Move
Compare

Add 8-bit immediate

SUB (immediate, Thumb) on page A8-708
MOV (immediate) on page A8-484
CMP (immediate) on page A8-370

ADD (immediate, Thumb) on page A8-306

111xx

Subtract 8-bit immediate

SUB (immediate, Thumb) on page A8-708

a. When Opcode is 0b00000, and bits[8:6] are 0b000, this is an encoding for MOV, see
MOV (register, Thumb) on page A8-486.

AB-224 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A6.2.2

Data-processing

The encoding of 16-bit Thumb data-processing instructions is:

1514131211109 8 7 6 56 4 3 2 1 0

01000 0] Opcode |

Table A6-3 shows the allocation of encodings in this space.

A6 Thumb Instruction Set Encoding

A6.2 16-bit Thumb instruction encoding

All these instructions are available since the Thumb instruction set was introduced in ARMv4T.

Table A6-3 16-bit Thumb data-processing instructions

Opcode Instruction See

0000 Bitwise AND AND (register) on page A8-326
0001 Bitwise Exclusive OR EOR (register) on page A8-384
0010 Logical Shift Left LSL (register) on page A8-470
0011 Logical Shift Right LSR (register) on page A8-474
0100 Arithmetic Shift Right ASR (register) on page A8-332
0101 Add with Carry ADC (register) on page A8-302
0110 Subtract with Carry SBC (register) on page A8-594
0111 Rotate Right ROR (register) on page A8-570
1000 Test TST (register) on page A8-746
1001 Reverse Subtract from 0 RSB (immediate) on page A8-574
1010 Compare CMP (register) on page A8-372
1011 Compare Negative CMN (register) on page A8-366
1100 Bitwise OR ORR (register) on page A8-518
1101 Multiply MUL on page A8-502

1110 Bitwise Bit Clear BIC (register) on page A8-342
1111 Bitwise NOT MVN (register) on page A8-506

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

AB-225

A6 Thumb Instruction Set Encoding
AG6.2 16-bit Thumb instruction encoding

A6.2.3 Special data instructions and branch and exchange
The encoding of 16-bit Thumb special data instructions and branch and exchange instructions is:

1514131211109 8 7 6 5 4 3 2 1 0
01000 1] Opcode |

Table A6-4 shows the allocation of encodings in this space.

Table A6-4 16-bit Thumb special data instructions and branch and exchange

Opcode Instruction See Variant
0000 Add Low Registers ADD (register, Thumb) on page A8-310 v6T2 2
0001 Add High Registers ADD (register, Thumb) on page A8-310 v4T
001x

01xx Compare High Registers CMP (register) on page A8-372 v4T
1000 Move Low Registers MOV (register, Thumb) on page A8-486 v62
1001 Move High Registers MOV (register, Thumb) on page A8-486 v4T
101x

110x Branch and Exchange BX on page A8-352 v4T
111x Branch with Link and Exchange ~ BLX (register) on page A8-350 v5T 2

a. UNPREDICTABLE in earlier variants.

A6-226 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

A6.2.4

Load/store single data item

A6 Thumb Instruction Set Encoding
A6.2 16-bit Thumb instruction encoding

The encoding of 16-bit Thumb instructions that load or store a single data item is:

1514131211109 8 7 6 56 4 3 2 1 0

opA

| opB |

These instructions have one of the following values of opA:

. 0bo101
. 0b011x
. 0b100x.

Table A6-5 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMvA4T.

Table A6-5 16-bit Thumb Load/store single data item instructions

opA opB Instruction See
0101 000 Store Register STR (register) on page A8-676
001 Store Register Halfword STRH (register) on page A8-702
010 Store Register Byte STRB (register) on page A8-682
011 Load Register Signed Byte LDRSB (register) on page A8-454
100 Load Register LDR (register, Thumb) on page A8-412
101 Load Register Halfword LDRH (register) on page A8-446
110 Load Register Byte LDRB (register) on page A8-422
111 Load Register Signed Halfword ~ LDRSH (register) on page A8-462
0110 0Oxx Store Register STR (immediate, Thumb) on page A8-672
1xx Load Register LDR (immediate, Thumb) on page A8-406
0111 Oxx Store Register Byte STRB (immediate, Thumb) on page A8-678
1xx Load Register Byte LDRB (immediate, Thumb) on page A8-416
1000 Oxx Store Register Halfword STRH (immediate, Thumb) on page A8-698
1xx Load Register Halfword LDRH (immediate, Thumb) on page A8-440
1001 Oxx Store Register SP relative STR (immediate, Thumb) on page A8-672
1xx Load Register SP relative LDR (immediate, Thumb) on page A8-406

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

AG-227

A6 Thumb Instruction Set Encoding

AG6.2 16-bit Thumb instruction encoding

A6.2.5 Miscellaneous 16-bit instructions
The encoding of 16-bit Thumb miscellaneous instructions is:
1514131211109 8 7 6 5 4 3 2 1 0
10 1 1] Opcode |
Table A6-6 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A6-6 Miscellaneous 16-bit instructions
Opcode Instruction See Variant
00000xx Add Immediate to SP ADD (SP plus immediate) on page A8-316 v4T
00001xx Subtract Immediate from SP SUB (SP minus immediate) on page A8-716 v4T
0001xxx Compare and Branch on Zero CBNZ, CBZ on page A8-356 v6T2
001000x Signed Extend Halfword SXTH on page A8-734 v6
001001x Signed Extend Byte SXTB on page A8-730 v6
001010x Unsigned Extend Halfword UXTH on page A8-816 v6
001011x Unsigned Extend Byte UXTB on page A8-812 v6
0011xxx Compare and Branch on Zero CBNZ, CBZ on page A8-356 v6T2
010xxxx Push Multiple Registers PUSH on page A8-538 v4T
0110010 Set Endianness SETEND on page A8-604 v6
0110011 Change Processor State CPS (Thumb) on page B9-1976 v6
1001xxx Compare and Branch on Nonzero CBNZ, CBZ on page A8-356 v6T2
101000x Byte-Reverse Word REV on page A8-562 v6
101001x Byte-Reverse Packed Halfword REV16 on page A8-564 v6
101011x Byte-Reverse Signed Halfword REVSH on page A8-566 v6
1011xxx Compare and Branch on Nonzero = CBNZ, CBZ on page A8-356 v6T2
110xxxx Pop Multiple Registers POP (Thumb) on page A8-534 v4T
1110xxx Breakpoint BKPT on page A8-346 v5
1111xxx If-Then, and hints If-Then, and hints on page A6-229 -
A6-228 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A6 Thumb Instruction Set Encoding
A6.2 16-bit Thumb instruction encoding

If-Then, and hints
The encoding of 16-bit Thumb If-Then and hint instructions is:

1514131211109 8 7 6 5 4 3 2 1 0
101 1[1 11 1] opA | opB

Table A6-7 shows the allocation of encodings in this space.

Other encodings in this space are unallocated hints. They execute as NOPs, but software must not use them.

Table A6-7 16-bit If-Then and hint instructions

opA opB Instruction See Variant
- not 0000 If-Then IT on page A8-390 v6oT2
0000 0000 No Operation hint NOP on page A8-510 voT2
0001 0000 Yield hint YIELD on page A8-1108 v7

0010 0000 Wait For Event hint WFE on page A8-1104 v7

0011 0000 Wait For Interrupt hint ~ WFI on page A8-1106 v7

0100 0000 Send Event hint SEV on page A8-606 v7

A6.2.6 Conditional branch, and Supervisor Call

The encoding of 16-bit Thumb conditional branch and Supervisor Call instructions is:

1514131211109 8 7 6 5 4 3 2 10
1710 1| Opcode |

Table A6-8 shows the allocation of encodings in this space.

All these instructions are available since the Thumb instruction set was introduced in ARMvA4T.

Table A6-8 Conditional branch and Supervisor Call instructions

Opcode Instruction See

not 111x Conditional branch B on page A8-334

1110 Permanently UNDEFINED UDF on page A8-7582

1111 Supervisor Call SVC (previously SWI) on page A8-720

a. Issue C.a of this manual first defines an assembler mnemonic for this encoding.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A6-229
Non-Confidential

A6 Thumb Instruction Set Encoding
AG6.3 32-bit Thumb instruction encoding

A6.3 32-bit Thumb instruction encoding
The encoding of a 32-bit Thumb instruction is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1] opt] op2 | op|
If opl == 0b00, a 16-bit instruction is encoded, see 16-bit Thumb instruction encoding on page A6-223.
Otherwise, Table A6-9 shows the allocation of encodings in this space.
Table A6-9 32-bit Thumb instruction encoding
op1l op2 op Instruction class, see
01 00xx0xx - Load/store multiple on page A6-237
00xx1xx - Load/store dual, load/store exclusive, table branch on page A6-238
0lxxxxx - Data-processing (shifted register) on page A6-243
IXXxXXX - Coprocessor, Advanced SIMD, and Floating-point instructions on page A6-251
10 x0xxxxx 0 Data-processing (modified immediate) on page A6-231
xlxxxxx 0 Data-processing (plain binary immediate) on page A6-234
- 1 Branches and miscellaneous control on page A6-235
11 000xxx0 - Store single data item on page A6-242
00xx001 - Load byte, memory hints on page A6-241
00xx011 - Load halfword, memory hints on page A6-240
00xx101 - Load word on page A6-239
00xx111 - UNDEFINED
001xxx0 - Advanced SIMD element or structure load/store instructions on page A7-275
010xxxx - Data-processing (register) on page A6-245
0110xxx - Multiply, multiply accumulate, and absolute difference on page A6-249
0111xxx - Long multiply, long multiply accumulate, and divide on page A6-250
Ixxxxxx - Coprocessor, Advanced SIMD, and Floating-point instructions on page A6-251
AB-230 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A6.3.1 Data-processing (modified immediate)

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

The encoding of the 32-bit Thumb data-processing (modified immediate) instructions is:

1514131211109 8 7 6 56 4 3 2 1 0

1514131211109 8 7 6 56 4 3 2 1 0

11 1[1 0]

[0]

op

[s]

Rn 0] |

Rd |

Table A6-10 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-10 32-bit modified immediate data-processing instructions

op Rn Rd:S Instruction See
0000 - not 11111 Bitwise AND AND (immediate) on page A8-324
11111 Test TST (immediate) on page A8-744
0001 - - Bitwise Bit Clear BIC (immediate) on page A8-340
0010 not 1111 - Bitwise OR ORR (immediate) on page A8-516
1111 - Move MOV (immediate) on page A8-484
0011 not1111 - Bitwise OR NOT ORN (immediate) on page A8-512
1111 - Bitwise NOT MVN (immediate) on page A8-504
0100 - not 11111 Bitwise Exclusive OR EOR (immediate) on page A8-382
11111 Test Equivalence TEQ (immediate) on page A8-738
1000 - not 11111 Add ADD (immediate, Thumb) on page A8-306
11111 Compare Negative CMN (immediate) on page A8-364
1010 - - Add with Carry ADC (immediate) on page A8-300
1011 - - Subtract with Carry SBC (immediate) on page A8-592
1101 - not 11111 Subtract SUB (immediate, Thumb) on page A8-708
11111 Compare CMP (immediate) on page A8-370
1110 - - Reverse Subtract RSB (immediate) on page A8-574

These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This provides
a more useful range of values. For details see Modified immediate constants in Thumb instructions on page A6-232.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A6-231
Non-Confidential

A6 Thumb Instruction Set Encoding

AG6.3 32-bit Thumb instruction encoding

A6.3.2 Modified immediate constants in Thumb instructions

The encoding of a modified immediate constant in a 32-bit Thumb instruction is:

15141312 11

[i] [imm3 | |

109 87 6 543 2 10(1514131211109 8 7 6 5 4 3 2 0
abocdef h

1
9

Table A6-11 shows the range of modified immediate constants available in Thumb data-processing instructions, and
their encoding in the a, b, ¢, d, ¢, f, g, h, and i bits, and the imm3 field, in the instruction.

Table A6-11 Encoding of modified immediates in Thumb data-processing instructions

izimm3:a <const> 2

0000x 00000000 00000000 00000000 abcdefgh
0001x 00000000 abcdefgh 00000000 abcdefgh b
0010x abcdefgh 00000000 abcdefgh 00000000 b
0011x abcdefgh abcdefgh abcdefgh abcdefgh ®
01000 1bcdefgh 00000000 00000000 00000000
01001 0lbcdefg h0000000 00000000 00000000 ©
01010 001bcdef gh000000 00000000 00000000
01011 0001bcde fgh00000 00000000 00000000 ©

8-bit values shifted to other positions

11101 00000000 00000000 000001bc defgh0oo ©
11110 00000000 00000000 0000001b cdefghoo
11111 00000000 00000000 00000001 bcdefgho ©

Note

This table shows the immediate constant value in binary form, to relate abcdefgh to the encoding diagram.
In assembly syntax, the immediate value is specified in the usual way (a decimal number by default).

Not available in ARM instructions. UNPREDICTABLE if abcdefgh == 00000000.
Not available in ARM instructions if h == 1.

As the footnotes to Table A6-11 show, the range of values available in Thumb modified immediate constants is
slightly different from the range of values available in ARM instructions. See Modified immediate constants in ARM
instructions on page A5-200 for the ARM values.

Carry out

A logical instruction with i:imm3:a == '00xxx' does not affect the Carry flag. Otherwise, a logical flag-setting
instruction sets the Carry flag to the value of bit[31] of the modified immediate constant.

AB-232 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

Operation of modified immediate constants, Thumb instructions

// ThumbExpandImm()
// ================

bits(32) ThumbExpandImm(bits(12) imml2)

// APSR.C argument to following function call does not affect the imm32 result.
(imm32, -) = ThumbExpandImm_C(imm12, APSR.C);

return imm32;

// ThumbExpandImm_C()
/] ==================

(bits(32), bit) ThumbExpandImm_C(bits(12) imml2, bit carry_in)
if imml2<11:10> == '00' then

case imml12<9:8> of
when '00'
imm32 = ZeroExtend(imm12<7:0>, 32);
when '01'
if imml2<7:0> == '00000000' then UNPREDICTABLE;
imm32 = '00000000' : imml2<7:0> : '00000000' : imml12<7:0>;
when '10'
if imml2<7:0> == '00000000' then UNPREDICTABLE;
imm32 = imm12<7:0> : '00000000' : imml2<7:0> : '00000000';
when '11'
if imml2<7:0> == '00000000' then UNPREDICTABLE;
imm32 = imml2<7:0> : imml2<7:0> : imm12<7:0> : imml2<7:0>;
carry_out = carry_in;

else

unrotated_value = ZeroExtend('l':imm12<6:0>, 32);
(imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

return (imm32, carry_out);

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A6-233
Non-Confidential

A6 Thumb Instruction Set Encoding

AG6.3 32-bit Thumb instruction encoding

A6.3.3 Data-processing (plain binary immediate)
The encoding of the 32-bit Thumb data-processing (plain binary immediate) instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 of [1] op | Rn 0]
Table A6-12 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.
Table A6-12 32-bit unmodified immediate data-processing instructions
op Rn Instruction See
00000 not 1111 Add Wide (12-bit) ADD (immediate, Thumb) on page A8-306
1111 Form PC-relative Address ADR on page A8-322
00100 - Move Wide (16-bit) MOV (immediate) on page A8-484
01010 not 1111 Subtract Wide (12-bit) SUB (immediate, Thumb) on page A8-708
1111 Form PC-relative Address ADR on page A8-322
01100 - Move Top (16-bit) MOVT on page A8-491
10000 - Signed Saturate SSAT on page A8-652
10010 2
10010b - Signed Saturate, two 16-bit SSAT16 on page A8-654
10100 - Signed Bit Field Extract SBFX on page A8-598
10110 not 1111 Bit Field Insert BFI on page A8-338
1111 Bit Field Clear BFC on page A8-336
11000 - Unsigned Saturate USAT on page A8-796
110102
11010 - Unsigned Saturate, two 16-bit ~ USAT16 on page A8-798
11100 - Unsigned Bit Field Extract UBFX on page A8-756
a. In the second halfword of the instruction, bits[14:12, 7:6] != 0b00000.
b. In the second halfword of the instruction, bits[14:12, 7:6] == 0b00000.
A6-234 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A6 Thumb Instruction Set Encoding

A6.3 32-bit Thumb instruction encoding

A6.3.4 Branches and miscellaneous control
The encoding of the 32-bit Thumb branch instructions and miscellaneous control instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 0] op | 1] opt | op2 imm8
Table A6-13 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A6-13 Branches and miscellaneous control instructions
op1 imm8 op op2 Instruction See Variant
0x0 - not - Conditional branch B on page A8-334 v6T2
x111xxx
xxIxxxxx 011100x - Move to Banked or Special register MSR (Banked register) on vIVE
page B9-1992
xx0Oxxxxx 0111000 xx00 Move to Special register, Application ~ MSR (register) on page A8-500 All
level
xx01 Move to Special register, MSR (register) on page B9-1996 All
xx1x System level
0111001 - Move to Special register, MSR (register) on page B9-1996 All
System level
- 0111010 - - Change Processor State, and hints on page A6-236
- 0111011 - - Miscellaneous control instructions on page A6-237
- 0111100 - Branch and Exchange Jazelle BXJ on page A8-354 voT2
00000000 0111101 - Exception Return ERET on page B9-1980 v6T22
not oririor - - Exception Return SUBS PC, LR (Thumb) on voT2
00000000 page B9-2008
xxlxxxxx 011111x - Move from Banked or Special MRS (Banked register) on vIVE
register page B9-1990
xx0xxxxx 0111110 - Move from Special register, MRS on page A8-496 voT2
Application level
0111111 - Move from Special register, System MRS on page B9-1988 voT2
level
000 - 1o - Hypervisor Call HVC on page B9-1982 vIVE
miiir - - Secure Monitor Call SMC (previously SMI) on Security
page B9-2000 Extensions
oxl - - - Branch B on page A8-334 voT2
010 - i - Permanently UNDEFINED UDF on page A8-758 AlIb
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. AB6-235

ID072512

Non-Confidential

A6 Thumb Instruction Set Encoding

AG6.3 32-bit Thumb instruction encoding
Table A6-13 Branches and miscellaneous control instructions (continued)
op1 imm8 op op2 Instruction See Variant
1x0 - - - Branch with Link and Exchange BL, BLX (immediate) on v5T ¢
page A8-348
1x1 - - - Branch with Link BL, BLX (immediate) on v4T
page A8-348
a. V7VE, that is, ARMv7 with the Virtualization Extensions, first defines ERET as an assembler mnemonic for this encoding. From ARMv6T2
this is an encoding for SUBS PC, LR (Thumb) on page B9-2008 with an immS8 value of zero. The Virtualization Extensions do not change
the behavior of the encoded instruction when it is executed at PL1.
b. Issue C.a of this manual first defines an assembler mnemonic for this encoding.

c. UNDEFINED in ARMvV4T.

Change Processor State, and hints

The encoding of 32-bit Thumb Change Processor State and hint instructions is:

1514131211109 8 7 6 5 4 3 2 1 0

1514131211109 8 7
11

6
11 1]1 0o 1 0

543210
10]

10| |0| | op1 | op2

Table A6-14 shows the allocation of encodings in this space. Encodings with opl set to 0b@00 and a value of op2 that
is not shown in the table are unallocated hints, and behave as if op2 is set to 0b00000000. These unallocated hint
encodings are reserved and software must not use them.

Table A6-14 Change Processor State, and hint instructions

op1 op2 Instruction See Variant

not 000 - Change Processor State ~ CPS (Thumb) on page B9-1976 ~ v6T2

000 00000000 No Operation hint NOP on page A8-510 voT2
00000001 Yield hint YIELD on page A8-1108 v7
00000010 Wait For Event hint WFE on page A8-1104 v7
00000011 Wait For Interrupt hint WFI on page A8-1106 v7
00000100 Send Event hint SEV on page A8-606 v7
1111xxxx Debug hint DBG on page A8-377 v7

AB-236

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

ARM DDI 0406C.b
ID072512

Miscellaneous control instructions

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

The encoding of some 32-bit Thumb miscellaneous control instructions is:

1514131211109 8 7 6 56 4 3 2 1 0

151413121110 9 8 7
11

6543210
11 1[1 o]0 1 0 1

1]

1 0] Jo] [op |

Table A6-15 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED in

ARMV7. They are UNPREDICTABLE in ARMvV6T2.

Table A6-15 Miscellaneous control instructions

op Instruction See Variant
0000 Exit ThumbEE state 2 ENTERX, LEAVEX on page A9-1116 ~ ThumbEE
0001 Enter ThumbEE state ENTERX, LEAVEX on page A9-1116 ~ ThumbEE
0010 Clear-Exclusive CLREX on page A8-360 v7

0100 Data Synchronization Barrier DSB on page A8-380 v7

0101 Data Memory Barrier DMB on page A8-378 v7

0110 Instruction Synchronization Barrier ~ ISB on page A8-389 v7

a. This instruction is a NOP in Thumb state.

A6.3.5 Load/store multiple
The encoding of 32-bit Thumb load/store multiple instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[0 1 0 0] op J[OJW]L] Rn
Table A6-16 shows the allocation of encodings in this space.
These encodings are all available in ARMv6T2 and above.
Table A6-16 Load/store multiple instructions
op W:Rn Instruction See
00 - Store Return State SRS (Thumb) on page B9-2002
- Return From Exception RFE on page B9-1998
01 - Store Multiple (Increment After, Empty Ascending) STM (STMIA4, STMEA) on page A8-664
not 11101 Load Multiple (Increment After, Full Descending) LDM/LDMIA/LDMFD (Thumb) on page A8-396
11101 Pop Multiple Registers from the stack POP (Thumb) on page A8-534
10 not 11101 Store Multiple (Decrement Before, Full Descending) STMDB (STMFD) on page A8-668
11101 Push Multiple Registers to the stack. PUSH on page A8-538
- Load Multiple (Decrement Before, Empty Ascending) LDMDB/LDMEA on page A8-402
11 - Store Return State SRS (Thumb) on page B9-2002

Return From Exception

RFE on page B9-1998

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

AB-237

A6 Thumb Instruction Set Encoding
AG6.3 32-bit Thumb instruction encoding

A6.3.6 Load/store dual, load/store exclusive, table branch
The encoding of 32-bit Thumb load/store dual, load/store exclusive and table branch instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[0 1 0 0[opt[1]op2] Rn [op3 |
Table A6-17 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A6-17 Load/store double or exclusive, table branch
opl op2 op3 Rn Instruction See Variant
00 00 - - Store Register Exclusive STREX on page A8-690 voT2
01 - - Load Register Exclusive LDREX on page A8-432 voT2
0x 10 - - Store Register Dual STRD (immediate) on page A8-686 v6T2
1x x0 - -
0x 11 - not 1111 Load Register Dual (immediate) LDRD (immediate) on page A8-426 ~ v6T2
Ix x1 - not 1111
0x 11 - 1111 Load Register Dual (literal) LDRD (literal) on page A8-428 voT2
1x x1 - 1111
01 00 0100 - Store Register Exclusive Byte STREXB on page A8-692 v7
0101 - Store Register Exclusive Halfword STREXH on page A8-696 v7
0111 - Store Register Exclusive Doubleword ~ STREXD on page A8-694 v7
01 0000 - Table Branch Byte TBB, TBH on page A8-736 v6T2
0001 - Table Branch Halfword TBB, TBH on page A8-736 v6T2
0100 - Load Register Exclusive Byte LDREXB on page A8-434 v7
0101 - Load Register Exclusive Halfword LDREXH on page A8-438 v7
0111 - Load Register Exclusive Doubleword ~ LDREXD on page A8-436 v7
A6-238 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A6.3.7 Load word

The encoding of 32-bit Thumb load word instructions is:

1514131211109 8 7 6 56 4 3 2 1 0

1514131211109 8 7 6 56 4 3 2 1 0

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

11 1[1 1 0 0[opt |1 O]J1] Rn |

op2 |

Table A6-18 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-18 Load word

opl op2 Rn Instruction See

00 000000 not 1111 Load Register LDR (register, Thumb) on page A8-412

00 Ixxlxx not 1111 Load Register LDR (immediate, Thumb) on page A8-406
1100xx not 1111

01 - not 1111

00 1110xx not 1111 Load Register Unprivileged =~ LDRT on page A8-466

(1) - 1111 Load Register LDR (literal) on page A8-410

ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A6-239

ID072512

Non-Confidential

A6 Thumb Instruction Set Encoding
AG6.3 32-bit Thumb instruction encoding

A6.3.8 Load halfword, memory hints
The encoding of 32-bit Thumb load halfword instructions and some memory hint instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1]1 10 0fJopt|0 1[1] Rn Rt op2 |
Table A6-19 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Except where otherwise noted, these encodings are available in ARMv6T2 and above.
Table A6-19 Load halfword, preload
op1 op2 Rn Rt Instruction See
0x - 1111 not 1111 Load Register Halfword LDRH (literal) on page A8-444
1111 Preload Data PLD (literal) on page A8-526
00 Ixxlxx mnot 1111 - Load Register Halfword LDRH (immediate, Thumb) on
1100xx not 1111 not 1111 page AS-H0
01 - not 1111 not 1111
00 000000 not 1111 not1111 Load Register Halfword LDRH (register) on page A8-446
1110xx not 1111 - Load Register Halfword Unprivileged LDRHT on page A8-448
000000 not 1111 1111 Preload Data with intent to Write? PLD, PLDW (register) on page A8-528
1100xx not 1111 1111 Preload Data with intent to Write2 PLD, PLDW (immediate) on
o - not 1111 1111 page AS-324
10 Ixx1xx not 1111 - Load Register Signed Halfword LDRSH (immediate) on page A8-458
1100xx not 1111 not 1111
11 - not 1111 not 1111
1x - 1111 not 1111 Load Register Signed Halfword LDRSH (literal) on page A8-460
10 000000 not 1111 not1111 Load Register Signed Halfword LDRSH (register) on page A8-462
1110xx not 1111 - Load Register Signed Halfword Unprivileged ~ LDRSHT on page A8-464
10 000000 not 1111 1111 Unallocated memory hint (treat as NOP) -
1100xx not 1111 1111
1x - 1111 1111
11 - not 1111 1111 Unallocated memory hint (treat as NOP) -

a. Available in ARMv7 with the Multiprocessing Extensions. In an ARMv7 implementation that does not include the Multiprocessing

Extensions, and in ARMv6T2, these are unallocated memory hints, that are treated as NOPs.

AB-240

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

ARM DDI 0406C.b
ID072512

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

A6.3.9 Load byte, memory hints
The encoding of 32-bit Thumb load byte instructions and some memory hint instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 1 0 0[opt]O O]J1] Rn Rt | op2 |
Table A6-20 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.
Table A6-20 Load byte, memory hints
opl op2 Rn Rt Instruction See
00 000000 not 1111 not1111 Load Register Byte LDRB (register) on page A8-422
1111 Preload Data PLD, PLDW (register) on page A8-528
0x - 1111 not 1111 Load Register Byte LDRB (literal) on page A8-420
1111 Preload Data PLD (literal) on page A8-526
00 Ixxlxx not1l11l - Load Register Byte LDRB (immediate, Thumb) on page A8-416
1100xx not 1111 not 1111 Load Register Byte
1111 Preload Data PLD, PLDW (immediate) on page A8-524
1110xx not 1111 - Load Register Byte Unprivileged LDRBT on page A8-424
01 - not 1111 not 1111 Load Register Byte LDRB (immediate, Thumb) on page A8-416
1111 Preload Data PLD, PLDW (immediate) on page A8-524
10 000000 not1111 not1111 Load Register Signed Byte LDRSB (register) on page A8-454
1111 Preload Instruction PLI (register) on page A8-532
Ix - 1111 not 1111 Load Register Signed Byte LDRSB (literal) on page A8-452
1111 Preload Instruction PLI (immediate, literal) on page A8-530
10 Ixxlxx not 1111 - Load Register Signed Byte LDRSB (immediate) on page A8-450
1100xx not 1111 not 1111 Load Register Signed Byte LDRSB (immediate) on page A8-450
1111 Preload Instruction PLI (immediate, literal) on page A8-530
1110xx not 1111 - Load Register Signed Byte Unprivileged =~ LDRSBT on page A8-456
11 - not 1111 not 1111 Load Register Signed Byte LDRSB (immediate) on page A8-450
1111 Preload Instruction PLI (immediate, literal) on page A8-530

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

ABG-241

A6 Thumb Instruction Set Encoding

AG6.3 32-bit Thumb instruction encoding

A6.3.10 Store single data item
The encoding of 32-bit Thumb store single data item instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 1 0 o]o] opt [O] | op2 |
Table A6-21 show the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.
Table A6-21 Store single data item
opl op2 Instruction See
000 1xxlxx Store Register Byte STRB (immediate, Thumb) on page A8-678
1100xx
100 -
000 000000 Store Register Byte STRB (register) on page A8-682
1110xx Store Register Byte Unprivileged STRBT on page A8-684
001 Ixx1xx Store Register Halfword STRH (immediate, Thumb) on page A8-698
1100xx
101 -
001 000000 Store Register Halfword STRH (register) on page A8-702
1110xx Store Register Halfword Unprivileged STRHT on page A8-704
010 Ixxlxx Store Register STR (immediate, Thumb) on page A8-672
1100xx
110 -
010 000000 Store Register STR (register) on page A8-676
1110xx Store Register Unprivileged STRT on page A8-706
A6-242 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A6.3.11 Data-processing (shifted register)

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

The encoding of 32-bit Thumb data-processing (shifted register) instructions is:

1514131211109 8 7 6 5 4 3 2 1 0

1514131211109 8 7 6 56 4 3 2 1 0

11 1[0 1 0 1]

op

[s| Rn

| Rd |

Table A6-22 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These encodings are all available in ARMv6T2 and above.

Table A6-22 Data-processing (shifted register)

op Rn Rd:S Instruction See
0000 - not 11111 Bitwise AND AND (register) on page A8-326
11111 Test TST (register) on page A8-746
0001 - - Bitwise Bit Clear BIC (register) on page A8-342
0010 not 1111 - Bitwise OR ORR (register) on page A8-518
1111 - - Move register and immediate shifis on page A6-244
0011 not 1111 - Bitwise OR NOT ORN (register) on page A8-514
1111 - Bitwise NOT MYVN (register) on page A8-506
0100 - not 11111 Bitwise Exclusive OR EOR (register) on page A8-384
11111 Test Equivalence TEQ (register) on page A8-740
0110 - - Pack Halfword PKH on page A8-522
1000 - not 11111 Add ADD (register, Thumb) on page A8-310
11111 Compare Negative CMN (register) on page A8-366
1010 - - Add with Carry ADC (register) on page A8-302
1011 - - Subtract with Carry SBC (register) on page A8-594
1101 - not 11111 Subtract SUB (register) on page A8-712
11111 Compare CMP (register) on page A8-372
1110 - - Reverse Subtract RSB (register) on page A8-576
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A6-243

ID072512

Non-Confidential

A6 Thumb Instruction Set Encoding
AG6.3 32-bit Thumb instruction encoding

Move register and immediate shifts

The encoding of the 32-bit Thumb move register and immediate shift instructions is:

1514131211109 8 7 6 5 4 3 2 1 0]1514131211109 8 7 6 5 4 3 2 1 0
11 1]Jo101]o0 10 [1 11 1] [imm3] [imm2] type |

Table A6-23 shows the allocation of encodings in this space.

These encodings are all available in ARMv6T2 and above.

Table A6-23 Move register and immediate shifts

type imm3:imm2 Instruction See

00 00000 Move MOV (register, Thumb) on page A8-486
not 00000 Logical Shift Left LSL (immediate) on page A8-468

01 - Logical Shift Right LSR (immediate) on page A8-472

10 - Arithmetic Shift Right ASR (immediate) on page A8-330

11 00000 Rotate Right with Extend =~ RRX on page A8-572
not 00000 Rotate Right ROR (immediate) on page A8-568

A6-244 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

A6.3.12 Data-processing (register)
The encoding of 32-bit Thumb data-processing (register) instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 10 1]o] opt | Rn 111 1] [op2 |
If, in the second halfword of the instruction, bits[15:12] !=0b1111, the instruction is UNDEFINED.
Table A6-24 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
These encodings are all available in ARMv6T2 and above.
Table A6-24 Data-processing (register)
op1 op2 Rn Instruction See
000x 0000 - Logical Shift Left LSL (register) on page A8-470
001x 0000 - Logical Shift Right LSR (register) on page A8-474
010x 0000 - Arithmetic Shift Right ASR (register) on page A8-332
011x 0000 - Rotate Right ROR (register) on page A8-570
0000 Ixxx mnotllll Signed Extend and Add Halfword SXTAH on page A8-728
1111 Signed Extend Halfword SXTH on page A8-734
0001 1xxx notllll Unsigned Extend and Add Halfword UXTAH on page A8-810
1111 Unsigned Extend Halfword UXTH on page A8-816
0010 1xxx notl1l11l Signed Extend and Add Byte 16-bit SXTABI16 on page A8-726
1111 Signed Extend Byte 16-bit SXTB16 on page A8-732
0011 1xxx not1111 Unsigned Extend and Add Byte 16-bit ~ UXTABI16 on page A8-808
1111 Unsigned Extend Byte 16-bit UXTB16 on page A8-814
0100 1xxx notl1l111 Signed Extend and Add Byte SXTAB on page A8-724
1111 Signed Extend Byte SXTB on page A8-730
0101 1xxx not1111 Unsigned Extend and Add Byte UXTAB on page A8-806
1111 Unsigned Extend Byte UXTB on page A8-812
Ixxx 00xx - - Parallel addition and subtraction, signed on page A6-246
Ixxx Olxx - - Parallel addition and subtraction, unsigned on page A6-247
10xx 10xx - - Miscellaneous operations on page A6-248

ARM DDI 0406C.b

ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

AB-245

Non-Confidential

A6 Thumb Instruction Set Encoding
AG6.3 32-bit Thumb instruction encoding

A6.3.13 Parallel addition and subtraction, signed
The encoding of 32-bit Thumb signed parallel addition and subtraction instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 10 1[0 1] opt | 11 1 1] [0 0] op2 |
If, in the second halfword of the instruction, bits[15:12] != 0b1111, the instruction is UNDEFINED.
Table A6-25 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED. These
encodings are all available in ARMv6T2 and above.
Table A6-25 Signed parallel addition and subtraction instructions
op1l op2 Instruction See
001 00 Add 16-bit SADD16 on page A8-586
010 00 Add and Subtract with Exchange, 16-bit SASX on page A8-590
110 00 Subtract and Add with Exchange, 16-bit SSAX on page A8-656
101 00 Subtract 16-bit SSUB16 on page A8-658
000 00 Add 8-bit SADDS on page A8-588
100 00 Subtract 8-bit SSUBS on page A8-660
Saturating instructions
001 01 Saturating Add 16-bit 0ADDI16 on page A8-542
010 01 Saturating Add and Subtract with Exchange, 16-bit ~ QASX on page A8-546
110 01 Saturating Subtract and Add with Exchange, 16-bit OSAX on page A8-552
101 01 Saturating Subtract 16-bit OSUBI16 on page A8-556
000 01 Saturating Add 8-bit 0ADDS on page A8-544
100 01 Saturating Subtract 8-bit OSUBS on page A8-558
Halving instructions
001 10 Halving Add 16-bit SHADD16 on page A8-608
010 10 Halving Add and Subtract with Exchange, 16-bit SHASX on page A8-612
110 10 Halving Subtract and Add with Exchange, 16-bit SHSAX on page A8-614
101 10 Halving Subtract 16-bit SHSUBI16 on page A8-616
000 10 Halving Add 8-bit SHADDS on page A8-610
100 10 Halving Subtract 8-bit SHSUBS on page A8-618
A6-246 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A6.3.14

A6 Thumb Instruction Set Encoding

A6.3 32-bit Thumb instruction encoding

Parallel addition and subtraction, unsigned

The encoding of 32-bit Thumb unsigned parallel addition and subtraction instructions is:

1514131211109 8 7 6 56 4 3 2 1 0

1514131211109 8 7 6 56 4 3 2 1 0

11 1[1 10 1[0 1] opt |

11 1 1]

[0 1] op2]

If, in the second halfword of the instruction, bits[15:12] != 0b1111, the instruction is UNDEFINED.

Table A6-26 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED. These
encodings are all available in ARMv6T2 and above.

Table A6-26 Unsigned parallel addition and subtraction instructions

op1l op2 Instruction See

001 00 Add 16-bit UADDI6 on page A8-750
010 00 Add and Subtract with Exchange, 16-bit UASX on page A8-754
110 00 Subtract and Add with Exchange, 16-bit USAX on page A8-800
101 00 Subtract 16-bit USUBI6 on page A8-802
000 00 Add 8-bit UADDS on page A8-752
100 00 Subtract 8-bit USUBS on page A8-804

Saturating instructions

001 01 Saturating Add 16-bit UQADD16 on page A8-780
010 01 Saturating Add and Subtract with Exchange, 16-bit ~ UQASX on page A8-784
110 01 Saturating Subtract and Add with Exchange, 16-bit ~ UQSAX on page A8-786
101 01 Saturating Subtract 16-bit UQSUBI6 on page A8-788
000 01 Saturating Add 8-bit UQADDS on page A8-782
100 01 Saturating Subtract 8-bit UQSUBS on page A8-790

Halving instructions

001 10 Halving Add 16-bit UHADDI6 on page A8-762
010 10 Halving Add and Subtract with Exchange, 16-bit UHASX on page A8-766
110 10 Halving Subtract and Add with Exchange, 16-bit UHSAX on page A8-768
101 10 Halving Subtract 16-bit UHSUBI6 on page A8-770
000 10 Halving Add 8-bit UHADDS on page A8-764
100 10 Halving Subtract 8-bit UHSUBS on page A8-772

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

AG-247

A6 Thumb Instruction Set Encoding
AG6.3 32-bit Thumb instruction encoding

A6.3.15 Miscellaneous operations
The encoding of some 32-bit Thumb miscellaneous instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 10 1]/0 1 0]opt] 11 1 1] [1 0] op2]
If, in the second halfword of the instruction, bits[15:12] != 0b1111, the instruction is UNDEFINED.
Table A6-27 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED. These
encodings are all available in ARMv6T2 and above.
Table A6-27 Miscellaneous operations
op1l op2 Instruction See
00 00 Saturating Add QADD on page A8-540
01 Saturating Double and Add ODADD on page A8-548
10 Saturating Subtract OSUB on page A8-554
11 Saturating Double and Subtract ~ QDSUB on page A8-550
01 00 Byte-Reverse Word REV on page A8-562
01 Byte-Reverse Packed Halfword ~ REV16 on page A8-564
10 Reverse Bits RBIT on page A8-560
11 Byte-Reverse Signed Halfword ~ REVSH on page A8-566
10 00 Select Bytes SEL on page A8-602
11 00 Count Leading Zeros CLZ on page A8-362
A6-248 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

A6.3.16 Multiply, multiply accumulate, and absolute difference
The encoding of 32-bit Thumb multiply, multiply accumulate, and absolute difference instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 10 1][1 0] opt | Ra | [0 0] op2 |
If, in the second halfword of the instruction, bits[7:6] != 0b00, the instruction is UNDEFINED.
Table A6-28 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED. These
encodings are all available in ARMv6T2 and above.
Table A6-28 Multiply, multiply accumulate, and absolute difference operations
opl op2 Ra Instruction See
000 00 not 1111 Multiply Accumulate MLA on page A8-480
1111 Multiply MUL on page A8-502
01 - Multiply and Subtract MLS on page A8-482
001 - not 1111 Signed Multiply Accumulate (Halfwords) SMLABB, SMLABT, SMLATB, SMLATT on
page A8-620
1111 Signed Multiply (Halfwords) SMULBB, SMULBT, SMULTB, SMULTT on
page A8-644
010 Ox not 1111 Signed Multiply Accumulate Dual SMLAD on page A8-622
1111 Signed Dual Multiply Add SMUAD on page A8-642
011 Ox not 1111 Signed Multiply Accumulate (Word by halfword) SMLAWB, SMLAWT on page A8-630
1111 Signed Multiply (Word by halfword) SMULWB, SMULWT on page A8-648
100 Ox not 1111 Signed Multiply Subtract Dual SMLSD on page A8-632
1111 Signed Dual Multiply Subtract SMUSD on page A8-650
101 Ox not 1111 Signed Most Significant Word Multiply Accumulate =~ SMMLA on page A8-636
1111 Signed Most Significant Word Multiply SMMUL on page A8-640
110 0x - Signed Most Significant Word Multiply Subtract SMMLS on page A8-638
111 00 not 1111 Unsigned Sum of Absolute Differences, Accumulate ~ USADAS on page A8-794
1111 Unsigned Sum of Absolute Differences USADS on page A8-792

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

AB-249

A6 Thumb Instruction Set Encoding
AG6.3 32-bit Thumb instruction encoding

A6.3.17 Long multiply, long multiply accumulate, and divide
The encoding of 32-bit Thumb long multiply, long multiply accumulate, and divide instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 10 11 1] opt | [op2 |
Table A6-29 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A6-29 Multiply, multiply accumulate, and absolute difference operations

op1l op2 Instruction See Variant
000 0000 Signed Multiply Long SMULL on page A8-646 voT2
001 1111 Signed Divide SDIV on page A8-600 v7-Ra
010 0000 Unsigned Multiply Long UMULL on page A8-778 voT2
011 1111 Unsigned Divide UDIV on page A8-760 v7-Ra
100 0000 Signed Multiply Accumulate Long SMLAL on page A8-624 voT2

10xx Signed Multiply Accumulate Long (Halfwords) SMLALBB, SMLALBT, SMLALTB, SMLALTT on v6oT2

page A8-626

110x Signed Multiply Accumulate Long Dual SMLALD on page A8-628 v6oT2
101 110x Signed Multiply Subtract Long Dual SMLSLD on page A8-634 v6T2
110 0000 Unsigned Multiply Accumulate Long UMLAL on page A8-776 voT2

0110 Unsigned Multiply Accumulate Accumulate Long ~ UMAAL on page A8-774 voT2

a. Optional in some ARMv7 implementations, see ARMv7 implementation requirements and options for the divide instructions on
page A4-172.
A6-250 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential

ID072512

A6 Thumb Instruction Set Encoding
A6.3 32-bit Thumb instruction encoding

A6.3.18 Coprocessor, Advanced SIMD, and Floating-point instructions
The encoding of 32-bit Thumb coprocessor instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1] [1 1] op1 | Rn | coproc | [op]
Table A6-30 shows the allocation of encodings in this space. These encodings are all available in ARMv6T2 and
above:
Table A6-30 Coprocessor, Advanced SIMD, and Floating-point instructions
coproc op1 op Rn Instructions See
- 00000x - - UNDEFINED -
11xxxx - - Advanced SIMD Advanced SIMD data-processing instructions on
page A7-261
not 101x Oxxxx0 - - Store Coprocessor STC, STC2 on page A8-662
not 000x0x
Oxxxx1 - not 1111 Load Coprocessor (immediate) LDC, LDC2 (immediate) on page A8-392
not 000x0x
1111 Load Coprocessor (literal) LDC, LDC? (literal) on page A8-394
000100 - - Move to Coprocessor fromtwo ~ MCRR, MCRR2 on page A8-478
ARM core registers
000101 - - Move to two ARM core MRRC, MRRC?2 on page A8-494
registers from Coprocessor
10xxxx% 0 - Coprocessor data operations CDP, CDP2 on page A8-358
10xxx0 1 - Move to Coprocessor from MCR, MCR?2 on page A8-476
ARM core register
10xxx1 1 - Move to ARM core register MRC, MRC?2 on page A8-492
from Coprocessor
101x 0XXXXX - - Advanced SIMD, Extension register load/store instructions on
not 000x0x Floating-point page A7-274
00010x - - Advanced SIMD, 64-bit transfers between ARM core and extension
Floating-point registers on page A7-279
10xxxx 0 - Floating-point data processing Floating-point data-processing instructions on
page A7-272
10xxxX 1 - Advanced SIMD, 8, 16, and 32-bit transfer between ARM core and

Floating-point

extension registers on page A7-278

For more information about specific coprocessors see Coprocessor support on page A2-94.

ARM DDI 0406C.b
ID072512

Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved.

Non-Confidential

ABG-251

A6 Thumb Instruction Set Encoding
AG6.3 32-bit Thumb instruction encoding

A6-252 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b
Non-Confidential ID072512

Chapter A7
Advanced SIMD and Floating-point
Instruction Encoding

This chapter gives an overview of the Advanced SIMD and Floating-point (VFP) instruction sets. It contains the
following sections:

. Overview on page A7-254

. Advanced SIMD and Floating-point instruction syntax on page A7-255
. Register encoding on page A7-259

. Advanced SIMD data-processing instructions on page A7-261

. Floating-point data-processing instructions on page A7-272
. Extension register load/store instructions on page A7-274
. Advanced SIMD element or structure load/store instructions on page A7-275
. 8, 16, and 32-bit transfer between ARM core and extension registers on page A7-278
. 64-bit transfers between ARM core and extension registers on page A7-279.
Note
. The Advanced SIMD architecture extension, its associated implementations, and supporting software, are

commonly referred to as NEON™ technology.

. In the decode tables in this chapter, an entry of - for a field value means the value of the field does not affect
the decoding.
ARM DDI 0406C.b Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. A7-253

ID072512 Non-Confidential

A7 Advanced SIMD and Floating-point Instruction Encoding
A7.1 Overview

A7.1 Overview

All Advanced SIMD and Floating-point instructions are available in both ARM state and Thumb state.

A7.1.1 Advanced SIMD

The following sections describe the classes of instruction in the Advanced SIMD Extension:
. Advanced SIMD data-processing instructions on page A7-261

. Advanced SIMD element or structure load/store instructions on page A7-275

. Extension register load/store instructions on page A7-274

. 8, 16, and 32-bit transfer between ARM core and extension registers on page A7-278
. 64-bit transfers between ARM core and extension registers on page A7-279.

A7.1.2 Floating-point

The following sections describe the classes of instruction in the Floating-point Extension:

. Extension register load/store instructions on page A7-274
. 8, 16, and 32-bit transfer between ARM core and extension registers on page A7-278
. 64-bit transfers between ARM core and extension registers on page A7-279
. Floating-point data-processing instructions on page A7-272.
A7-254 Copyright © 1996-1998, 2000, 2004-2012 ARM. All rights reserved. ARM DDI 0406C.b

Non-Confidential ID072512

A7 Advanced SIMD and Floating-point Instruction Encoding
A7.2 Advanced SIMD and Floating-point instruction syntax

A7.2 Advanced SIMD and Floating-point instruction syntax

Advanced SIMD and Floating-point (VFP) instructions use the general conventions of the A