[|
SECTION 4
ADDRESS GENERATION UNIT
L MOTOROLA ADDRESS GENERATION UNIT 4-1 J

SECTION CONTENTS

SECTION 4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES3

SECTION 4.2 AGU ARCHITECTURE ...coooiiiiiiieiee ettt 3
4.2.1 Address Register Files (RN)ccoovviiiiiiiiiieeee e 3
4.2.2 Offset Register Files (NN)cooooiiiiiii e 4
4.2.3 Modifier Register FilesS (MN)uuuiiiiiiiiiiiiieeeee e 5
4.2.4 AAArESS ALU .ottt 5
4.2.5 Address Output MUILIPIEXEIScooiiiiiiiiiiiiie e 6

SECTION 4.3 PROGRAMMING MODELcccoeiiiieiiecceciieeeeeeeee e 6
4.3.1 Address Register Files (RO - R3and R4 - R7)coooeeeeviiiiiiiiiiinn, 7
4.3.2 Offset Register Files (NO - N3 and N4 - N7) ..ccooovveeiiiiiiiiieeiiiiiien 7
4.3.3 Modifier Register Files (MO - M3 and M4 - M7)ooooiiiiiiiiiiiiiiiieeeee 8

SECTION 4.4 ADDRESSINGootiiiiiiiiiiiiiieee et a e e e e e e e e e 8
4.4.1 Address Register INdireCt MOAEScovviiiiiiiiiiiiieeeeeie e 9

2 g O N [0 T U T = (PSP 9
4.4.1.2 PostincremMent BY 1ovvuiiiiiiiiiii e 9
4.4.1.3 POStdeCremMENt BY 1ceuiiiiiiiiiiiiiiiiieeeeeeeee e 9
4.4.1.4 Postincrement By OffSEt NNcooooiiiiiiiiiiciie e, 10
4.4.1.5 Postdecrement By OffSet NNcooiiiiiiiiiiiiiiiie e, 11
4.4.1.6 Indexed By OffSEt NNuuiiiiiiiiiiiiiiiieieeee e 12
4.4.1.7 Predecrement BY 1uuuiiiiiiiieeeeeeeeeeeeeeeiiiee e e e e e e e e e e e e eeeennnnens 13
4.4.2 Address Modifier ArithmetiC TYPES ...oovvviiiiieiiiiiieeeeeeie e 14
4.4.2.1 Linear Modifier (MN=8FFFF)coooiiiiieeiiiiee e 16
4.4.2.2 MOdUIO MOIfIEE ...t 18
4.4.2.3 Reverse-Carry Modifier (MN=3$0000)ccccvrrreerriiiririeeeeennnnn 22
4.4.2.4 Address-Modifier-Type Encoding Summarycccccevvvveeeeeeen. 25

4-2 ADDRESS GENERATION UNIT MOTOROLA

(ADDRESS GENERATION UNIT AND ADDRESSING MODES \]

4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES

This section contains three major subsections. The first subsection describes the hard-
ware architecture of the address generation unit (AGU), the second subsection
describes the programming model, and the third subsection describes the addressing
modes, explaining how the Rn, Nn, and Mn registers work together to form a memory
address.

4.2 AGU ARCHITECTURE

The AGU is shown in the DSP56K block diagram in Figure 4-1. It uses integer arithmetic
to perform the effective address calculations necessary to address data operands in
memory, and contains the registers used to generate the addresses. It implements lin-
ear, modulo, and reverse-carry arithmetic, and operates in parallel with other chip
resources to minimize address-generation overhead.

The AGU is divided into two identical halves, each of which has an address arithmetic
logic unit (ALU) and four sets of three registers (see Figure 4-2). They are the address
registers (RO - R3 and R4 - R7), offset registers (NO - N3 and N4 - N7), and the modifier
registers (MO - M3 and M4 - M7). The eight Rn, Nn, and Mn registers are treated as reg-
ister triplets — e.g., only N2 and M2 can be used to update R2. The eight triplets are
RO:NO:MO, R1:N1:M1, R2:N2:M2, R3:N3:M3, R4:N4:M4, R5:N5:M5, R6:N6:M6, and
R7:N7:M7.

The two arithmetic units can generate two 16-bit addresses every instruction cycle — one
for any two of the XAB, YAB, or PAB. The AGU can directly address 65,536 locations on
the XAB, 65,536 locations on the YAB, and 65,536 locations on the PAB. The two inde-
pendent address ALUs work with the two data memories to feed the data ALU two
operands in a single cycle. Each operand may be addressed by an Rn, Nn, and Mn triplet.

4.2.1 Address Register Files (Rn)
Each of the two address register files (see Figure 4-2) consists of four 16-bit registers. The

two files contain address registers RO - R3 and R4 - R7, which usually contain addresses
used as pointers to memory. Each register may be read or written by the global data bus
(GDB). When read by the GDB, 16-bit registers are written into the two least significant
bytes of the GBD, and the most significant byte is set to zero. When written from the GBD,
only the two least significant bytes are written, and the most significant byte is truncated.
Each address register can be used as input to its associated address ALU for a register
update calculation. Each register can also be written by the output of its respective ad-
dress ALU. One Rn register from the low address ALU and one Rn register from the high
address ALU can be accessed in a single instruction.

L MOTOROLA ADDRESS GENERATION UNIT 4-3 J

(AGU ARCHITECTURE \]

EXPANSION
AREA
. PROGRAM X MEMORY Y MEMORY
- PERIPHERAL RAM/ROM RAM/ROM RAM/ROM
3 MODULES EXPANSION | [[[ExPansion [||| ExrPansion
&
w 1
I Y
: |
%)
Mz
on %
ADDRESS " EXTERNAL &
. GENERATION | — |~ ADDRESS [a)
24-Bit 56K UNIT BUS <D(
Module SWITCH
<
BUS 6‘ E
4
CONTROL |« > E 8
O
@)
INTERNAL EXTERNAL
DATA DATA BUS <
BUS <
SWITCH SWITCH a
- ~| PLL T Y
PROGRAM PROGRAM PROGRAM DATA ALU
INTERRUPT __ _ DECODE _ , ADDRESS 24X24+56 - 56-BIT MAC OnCE™ |« >
GEELE(;%c)R CONTROLLER | CONTROLLER GENERATOR TWO 56-BIT ACCUMULATORS
AL A Program Control Unit
L— MODC/NMI
—— 16 BITS
—— MODB/IRQB m— 24 BITS
MODA/TRQA
RESET

Figure 4-1 DSP56K Block Diagram

4.2.2 Offset Register Files (Nn)
Each of two offset register files shown in Figure 4-2 consists of four 16-bit registers. The

two files contain offset registers NO - N3 and N4 - N7, which contain either data or offset
values used to update address pointers. Each offset register can be read or written by the

t 4-4 ADDRESS GENERATION UNIT MOTOROLA J

(AGU ARCHITECTURE \]

}7 LOW ADDRESS ALU HIGH ADDRESS ALU 4{

XAB YAB PAB

TRIPLE MULTIPLEXER

NO MO RO R4 M4 N4
N1 M1 ADDRESS R1 R5 ADDRESS M5 N5
N2 | M2 ALU R2 | R6 ALU M6 | N6
N3 M3 R3 R7 M7 N7

GLOBAL DATA BUS

16 bits
24 bits

Figure 4-2 AGU Block Diagram

GDB. When read by the GDB, the contents of a register are placed in the two least signif-
icant bytes, and the most significant byte on the GDB is zero extended. When a register
is written, only the least significant 16 bits of the GDB are used; the upper portion is
truncated.

4.2.3 Modifier Register Files (Mn)

Each of the two modifier register files shown in Figure 4-2 consists of four 16-bit registers.
The two files contain modifier registers MO - M3 and M4 - M7, which specify the type of
arithmetic used during address register update calculations or contain data. Each modifier
register can be read or written by the GDB. When read by the GDB, the contents of a reg-
ister are placed in the two least significant bytes, and the most significant byte on the GDB
is zero extended. When a register is written, only the least significant 16 bits of the GDB
are used; the upper portion is truncated. Each modifier register is preset to $FFFF during
a processor reset.

4.2.4 Address ALU
The two address ALUs are identical (see Figure 4-2) in that each contains a 16-bit full

adder (called an offset adder), which can add 1) plus one, 2) minus one, 3) the contents
of the respective offset register N, or 4) the twos complement of N to the contents of the

L MOTOROLA ADDRESS GENERATION UNIT 4-5 J

(PROGRAMMING MODEL \]

selected address register. A second full adder (called a modulo adder) adds the summed
result of the first full adder to a modulo value, M or minus M, where M-1 is stored in the
respective modifier register. A third full adder (called a reverse-carry adder) can add 1)
plus one, 2) minus one, 3) the offset N (stored in the respective offset register), or 4) minus
N to the selected address register with the carry propagating in the reverse direction —
i.e., from the most significant bit (MSB) to the least significant bit (LSB). The offset adder
and the reverse-carry adder are in parallel and share common inputs. The only difference
between them is that the carry propagates in opposite directions. Test logic determines
which of the three summed results of the full adders is output.

Each address ALU can update one address register, Rn, from its respective address reg-
ister file during one instruction cycle and can perform linear, reverse-carry, and modulo
arithmetic. The contents of the selected modifier register specify the type of arithmetic to
be used in an address register update calculation. The modifier value is decoded in the
address ALU.

The output of the offset adder gives the result of linear arithmetic (e.g., Rn £ 1; Rn £ N)
and is selected as the modulo arithmetic unit output for linear arithmetic addressing mod-
ifiers. The reverse-carry adder performs the required operation for reverse-carry
arithmetic and its result is selected as the address ALU output for reverse-carry address-
ing modifiers. Reverse-carry arithmetic is useful for 2k-point fast Fourier transform (FFT)
addressing. For modulo arithmetic, the modulo arithmetic unit will perform the function
(Rn £ N) modulo M, where N can be one, minus one, or the contents of the offset register
Nn. If the modulo operation requires wraparound for modulo arithmetic, the summed out-
put of the modulo adder gives the correct updated address register value; if wraparound
is not necessary, the output of the offset adder gives the correct result.

4.2.5 Address Output Multiplexers

The address output multiplexers (see Figure 4-2) select the source for the XAB, YAB, and
PAB. These multiplexers allow the XAB, YAB, or PAB outputs to originate from RO - R3
or R4 - RY.

4.3 PROGRAMMING MODEL
The programmer’s view of the AGU is eight sets of three registers (see Figure 4-3). These

registers can act as temporary data registers and indirect memory pointers. Automatic up-
dating is available when using address register indirect addressing. The Mn registers can
be programmed for linear addressing, modulo addressing, and bit-reverse addressing.

L 4-6 ADDRESS GENERATION UNIT MOTOROLA J

(PROGRAMMING MODEL \]

23 1615 0 23 1615 0 23 1615 0
% R7 « N7 N M7
% R6 - NG N M6
* RS . NG N VG UPPER FILE
* R4 % N4 N M4
* R3 * N3 % M3
* R2 * N2 * M2 LOWER FILE
* R1 % N1 « M1
* RO * NO % MO
ADDRESS REGISTERS OFFSET REGISTERS MODIFIER REGISTERS

* Written as don't care; read as zero

Figure 4-3 AGU Programming Model

4.3.1 Address Register Files (RO - R3 and R4 - R7)

The eight 16-bit address registers, RO - R7, can contain addresses or general-purpose
data. The 16-bit address in a selected address register is used in the calculation of the
effective address of an operand. When supporting parallel X and Y data memory moves,
the address registers must be thought of as two separate files, RO - R3 and R4 - R7. The
contents of an Rn may point directly to data or may be offset. In addition, Rn can be pre-
updated or post-updated according to the addressing mode selected. If an Rn is updated,
modifier registers, Mn, are always used to specify the type of update arithmetic. Offset
registers, Nn, are used for the update-by-offset addressing modes. The address register
modification is performed by one of the two modulo arithmetic units. Most addressing
modes modify the selected address register in a read-modify-write fashion; the address
register is read, its contents are modified by the associated modulo arithmetic unit, and
the register is written with the appropriate output of the modulo arithmetic unit. The form
of address register modification performed by the modulo arithmetic unit is controlled by
the contents of the offset and modifier registers discussed in the following paragraphs. Ad-
dress registers are not affected by a processor reset.

4.3.2 Offset Register Files (NO- N3 and N4 - N7)

The eight 16-bit offset registers, NO - N7, can contain offset values used to increment/dec-
rement address registers in address register update calculations or can be used for 16-bit
general-purpose storage. For example, the contents of an offset register can be used to
step through a table at some rate (e.g., five locations per step for waveform generation),
or the contents can specify the offset into a table or the base of the table for indexed ad-
dressing. Each address register, Rn, has its own offset register, Nn, associated with it.

L MOTOROLA ADDRESS GENERATION UNIT 4-7 J

(ADDRESSING

Table 4-1 Address Register Indirect Summary

Address Register Indirect l'\J/ISOedsif'i\g? Operand Reference AsSsyenr?:)ler
S|IC|ID|A|P|X]|Y]|L]|XY
No Update No X|X|X|[X]| X | (Rn)
Postincrement by 1 Yes XX | X|[X]|] X | (Rn)+
Postdecrement by 1 Yes X|X|X|X]|] X | (Rn)-
Postincrement by Offset Nn Yes X| X|X|X] X | (Rn)+Nn

NOTE:

= System Stack Reference

= Program Control Unit Register Reference
= Data ALU Register Reference

= Address ALU Register Reference

= Program Memory Reference

= X Memory Reference

=Y Memory Reference

=L Memory Reference

= XY Memory Reference

<F<X<XT>O00W0

Offset registers are not affected by a processor reset.

4.3.3 Modifier Register Files (MO - M3 and M4 - M7)
The eight 16-bit modifier registers, MO - M7, define the type of address arithmetic to be

performed for addressing mode calculations, or they can be used for general-purpose
storage. The address ALU supports linear, modulo, and reverse-carry arithmetic types for
all address register indirect addressing modes. For modulo arithmetic, the contents of Mn
also specify the modulus. Each address register, Rn, has its own modifier register, Mn,
associated with it. Each modifier register is set to $FFFF on processor reset, which spec-
ifies linear arithmetic as the default type for address register update calculations.

4.4 ADDRESSING

The DSP56K provides three different addressing modes: register direct, address register
indirect, and special. Since the register direct and special addressing modes do not nec-
essarily use the AGU registers, they are described in SECTION 6 - INSTRUCTION SET
INTRODUCTION. The address register indirect addressing modes use the registers in

t 4-8 ADDRESS GENERATION UNIT MOTOROLA

(ADDRESSING \]

the AGU and are described in the following paragraphs.

4.4.1 Address Register Indirect Modes
When an address register is used to point to a memory location, the addressing mode is

called “address register indirect” (see Table 4-1). The term indirect is used because the
register contents are not the operand itself, but rather the address of the operand. These
addressing modes specify that an operand is in memory and specify the effective
address of that operand.

A portion of the data bus movement field in the instruction specifies the memory space to
be referenced. The contents of specific AGU registers that determine the effective
address are modified by arithmetic operations performed in the AGU. The type of
address arithmetic used is specified by the address modifier register, Mn. The offset reg-
ister, Nn, is only used when the update specifies an offset.

Not all possible combinations are available, such as + (Rn). The 24-bit instruction word
size is not large enough to allow a completely orthogonal instruction set for all instruc-
tions used by the DSP.

An example and description of each mode is given in the following paragraphs. SEC-
TION 6 - INSTRUCTION SET INTRODUCTION and APPENDIX A - INSTRUCTION SET
DETAILS give a complete description of the instruction syntax used in these examples.
In particular, XY: memory references refer to instructions in which an operand in X mem-
ory and an operand in Y memory are referenced in the same instruction.

4.4.1.1 No Update

The address of the operand is in the address register, Rn (see Table 4-1). The contents
of the Rn register are unchanged by executing the instruction. Figure 4-4 shows a MOVE
instruction using address register indirect addressing with no update. This mode can be
used for making XY: memory references. This mode does not use Nn or Mn registers.

4.4.1.2 Postincrement By 1

The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-5).
After the operand address is used, it is incremented by 1 and stored in the same address
register. This mode can be used for making XY: memory references and for modifying
the contents of Rn without an associated data move.

4.4.1.3 Postdecrement By 1

The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-6).
After the operand address is used, it is decremented by 1 and stored in the same
address register. This mode can be used for making XY: memory references and for

L MOTOROLA ADDRESS GENERATION UNIT 4-9 J

(ADDRESSING \]

EXAMPLE: MOVE A1,X: (R0)

BEFORE EXECUTION AFTER EXECUTION
A2 AL AO A2 AL A0
55 48 47 24 23 0 55 48 47 24 23 0
l[o 112 3 4 5 6 7189 A B C D [o 1/2 3 4 5 6 7/ 8 9 A B C D
7 023 0 23 0 7 023 0 23 0
X MEMORY X MEMORY
$1000 [X X X X X X |« $1000 [$ 2 3 4 5 6 7 |
15 0 15 0
RO [$1000 RO [$1000
15 0 15 0
NO [xxxx NO [xxxx
15 0 15 0
MO [$FFFF MO [SFFFF

Assembler Syntax: (Rn)

Memory Spaces: P:, X:, Y:, XY, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 4-4 Address Register Indirect — No Update

modifying the contents of Rn without an associated data move.

4.4.1.4 Postincrement By Offset Nn
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-7).

After the operand address is used, it is incremented by the contents of the Nn register and
stored in the same address register. The contents of the Nn register are unchanged. This
mode can be used for making XY: memory references and for modifying the contents of

t 4-10 ADDRESS GENERATION UNIT MOTOROLA J

(ADDRESSING \]

EXAMPLE: MOVE BO,Y: (R1)+

BEFORE EXECUTION AFTER EXECUTION
B2 B1 BO B2 B1 BO
55 48 47 24 23 0 55 48 47 24 23 0
[A Fl|6 54 3 2 1] F ED CcB A [A Fle6 5 4 3 2 1]lF E D Cc B A
7 023 0 23 0 7 023 0 23 0
Y MEMORY Y MEMORY
0

2&,
[

A

$2501 [X X X X X X $2501 | X X X X X X X
$2500 [X X X X X X = $2500 | $ FE D C B A

|
:

15 0 15 0
R1| $2500 R1 $2501

15 0 15 0
N1 XXXX N1 XXXX

15 0 15 0
M1 $FFFF M1 SFFFF

Assembler Syntax: (Rn)+

Memory Spaces: P:, X:, Y:, XY, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 4-5 Address Register Indirect — Postincrement
Rn without an associated data move.

4.4.1.5 Postdecrement By Offset Nn
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-8).

After the operand address is used, it is decremented by the contents of the Nn register
and stored in the same address register. The contents of the Nn register are unchanged.
This mode cannot be used for making XY: memory references, but it can be used to mod-

t MOTOROLA ADDRESS GENERATION UNIT 4-11 J

(ADDRESSING \]

EXAMPLE: MOVE YO0,Y: (R3)-

BEFORE EXECUTION AFTER EXECUTION
Y1 YO Y1l YO
47 24 23 0 47 24 23 0
1 2 3 1 2 3/ 45 6 4 5 6 12 3 1 2 3|4 5 6 4 5 6
23 0 23 0 23 0 23 0
Y MEMORY Y MEMORY
$4735 [X X X X X X |= $4735 | 4 5 6 4 5 6
$4734 | X X X X X X $4734 | X X X X X X |«
15 0 15 0
R3 $4735 R3 $4734
15 0 15 0
N3 XXXX N3 XXXX
15 0 15 0
M3 $FFFF M3 $FFFF

Assembler Syntax: (Rn)—

Memory Spaces: P:, X:, Y:, XY, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 4-6 Address Register Indirect — Postdecrement

ify the contents of Rn without an associated data move.

4.4.1.6 Indexed By Offset Nn

The address of the operand is the sum of the contents of the address register, Rn, and
the contents of the address offset register, Nn (see Table 4-1 and Figure 4-9). The con-
tents of the Rn and Nn registers are unchanged. This addressing mode, which requires

t 4-12 ADDRESS GENERATION UNIT MOTOROLA J

(ADDRESSING

EXAMPLE: MOVE X1,X: (R2)+N2

BEFORE EXECUTION AFTER EXECUTION
X1 X0 X1 X0
47 24 23 0 47 24 23 0
A5 B4 C 6/ 00000 1 A5 B 4C 6/ 000001
23 0 23 0 23 0 23 0
X MEMORY X MEMORY
$3204 [X X X X X X $3204 [X X X X X X |=
$3200 [X X X X X X |« $3200 | $ A5 B 4 C6

|
|

15 0 15 0
R2 | $3200 R2 $3204
15 0 15 0
N2 $0004 N2 $0004
15 0 15 0
M2 $FFFF M2 $FFFF

Assembler Syntax: (Rn)+Nn

Memory Spaces: P:, X:, Y:, XY, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 4-7 Address Register Indirect — Postincrement by Offset Nn

an extra instruction cycle, cannot be used for making XY: memory references.

4.4.1.7 Predecrement By 1

The address of the operand is the contents of the address register, Rn, decremented by
1 before the operand address is used (see Table 4-1 and Figure 4-10). The contents of
Rn are decremented and stored in the same address register. This addressing mode re-
quires an extra instruction cycle. This mode cannot be used for making XY: memory
references, nor can it be used for modifying the contents of Rn without an associated data

t MOTOROLA ADDRESS GENERATION UNIT 4-13

(ADDRESSING \]

EXAMPLE: MOVE X:(R4)-N4,A0

BEFORE EXECUTION AFTER EXECUTION
A2 Al A0 A2 Al AO
55 48 47 24 23 0 55 48 47 24 23 0
[o F|7 4105 A3 FAG®6 B O [o F|7 4 105 Al5 050 50
7 023 0 23 0 7 023 023 0
X MEMORY X MEMORY
$7706 | $50505 0 |e $7706 | $50 5 0 5 0
$7703 [X X X X X X $7703 [X X X X X X |=
15 0 15 0
Ra| $7706 R4 | $7703
15 0 15 0
N4 | $0003 N4 | $0003
15 0 15 0
M4 [SFFFF Ma [$FFFF

Assembler Syntax: (Rn)-Nn

Memory Spaces: P:, X:, Y:, L:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 4-8 Address Register Indirect — Postdecrement by Offset Nn
move.

4.4.2 Address Modifier Arithmetic Types
The address ALU supports linear, modulo, and reverse-carry arithmetic for all address

register indirect modes. These arithmetic types easily allow the creation of data structures
in memory for FIFOs (queues), delay lines, circular buffers, stacks, and bit-reversed FFT
buffers.

t 4-14 ADDRESS GENERATION UNIT MOTOROLA J

$6000

XX X X X X

Assembler Syntax: (Rn+Nn)

Memory Spaces: P:, X:,Y:,

L:

Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: O

$6000

(ADDRESSING \]
EXAMPLE: MOVE Y1,X: (R6+N6)
BEFORE EXECUTION AFTER EXECUTION
Y1 YO Y1l YO
47 24 23 0 47 24 23 0
6 21 0 0 9B A 4 C 2 2 6 2 1 0 0 9B A 4 C 2 2
23 0 23 0 23 0 23 0
X MEMORY X MEMORY
n__° 2
$6004 | X X X X X X —— $6004 | $ 62 1 0 0 9

XX X X X X

|

15 0

R6 $6000

5 0

1
N6 $0004
1

5 0

M6 $FFFF

Figure 4-9 Address Register Indirect — Indexed by Offset Nn

The contents of the address modifier register, Mn, defines the type of arithmetic to be per-
formed for addressing mode calculations. For modulo arithmetic, the contents of Mn also
specifies the modulus, or the size of the memory buffer whose addresses will be refer-
enced. See Table 4-2 for a summary of the address modifiers implemented on the

t MOTOROLA

ADDRESS GENERATION UNIT

4-15 J

(ADDRESSING \]

EXAMPLE: MOVE X: —(R5),B1

BEFORE EXECUTION AFTER EXECUTION
B2 B1 BO B2 B1 BO
55 48 47 24 23 0 55 48 47 24 23 0
[3 B|B 6 2 Do 4/A 5 5 4 Cc 0 [3 B|[1 23 4 5 6/]A 55 4 Cc o0
7 023 0 23 0 7 023 0 23 0
X MEMORY X MEMORY
$3007 | $ AB C D E F |« $3007 | $ ABCDEF
$3006 | $ 12 3 4 56 $3006 | $ 12 3 4 5 6
15 0 15 0
R5 | $3007 R5 | $3006
15 0 15 0
N5 | XXXX N5 | XXXX
15 0 15 0
M5 | $FFFF M5 | $FFFF

Assembler Syntax: —Rn

Memory Spaces: P:, X:,Y:, L:

Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

Figure 4-10 Address Register Indirect — Predecrement

DSP56K. The MMMM column indicates the hex value which should be stored in the Mn
register.

4421 Linear Modifier (Mn=$FFFF)
When the value in the modifier register is $FFFF, address modification is performed using

normal 16-bit linear arithmetic (see Table 4-2). A 16-bit offset, Nn, and + 1 or —1 can be
used in the address calculations. The range of values can be considered as signed (Nn
from —32,768 to + 32,767) or unsigned (Nn from O to + 65,535) since there is no arithmetic

t 4-16 ADDRESS GENERATION UNIT MOTOROLA J

(ADDRESSING \]

difference between these two data representations. Addresses are normally considered
unsigned, and data is normally considered signed.

4.4.2.2 Modulo Modifier

When the value in the modifier register falls into one of two ranges (Mn=$0001 to $7FFF
or Mn= $8001 to $BFFF with the reserved gaps noted in the table), address modification
is performed using modulo arithmetic (see Table 4-2).

Modulo arithmetic normally causes the address register value to remain within an address
range of size M, whose lower boundary is determined by Rn. The upper boundary is de-
termined by the modulus, or M. The modulus value, in turn, is determined by Mn, the value
in the modifier register (see Figure 4-11).

There are certain cases where modulo arithmetic addressing conditions may cause the
address register to jump linearly to the same relative address in a different buffer. Other
cases firmly restrict the address register to the same buffer, causing the address register
to wrap around within the buffer. The range in which the value contained in the modifier
register falls determines how the processor will handle modulo addressing.

44221 Mn=$0001 to $7FFF
In this range, the modulus (M) equals the value in the modifier register (Mn) plus 1. The

memory buffer's lower boundary (base address) value, determined by Rn, must have ze-
ros in the k LSBs, where 2K = M, and therefore must be a multiple of 2K, The upper
boundary is the lower boundary plus the modulo size minus one (base address plus M-
1). Since M<2X once M is chosen, a sequential series of memory blocks (each of length
2") is created where these circular buffers can be located. If M<2X, there will be a space
between sequential circular buffers of (2k)—M.

For example, to create a circular buffer of 21 stages, M is 21, and the lower address
boundary must have its five LSBs equal to zero (2K = 21, thus k = 5). The Mn register is
loaded with the value 20. The lower boundary may be chosen as 0, 32, 64, 96, 128, 160,
etc. The upper boundary of the buffer is then the lower boundary plus 21. There will be an
unused space of 11 memory locations between the upper address and next usable lower
address. The address pointer is not required to start at the lower address boundary or to
end on the upper address boundary; it can initially point anywhere within the defined mod-
ulo address range. Neither the lower nor the upper boundary of the modulo region is
stored; only the size of the modulo region is stored in Mn. The boundaries are determined
by the contents of Rn. Assuming the (Rn)+ indirect addressing mode, if the address reg-
ister pointer increments past the upper boundary of the buffer (base address plus M-1),
it will wrap around through the base address (lower boundary). Alternatively, assuming
the (Rn)- indirect addressing mode, if the address decrements past the lower boundary

L MOTOROLA ADDRESS GENERATION UNIT 4-17 J

ADDRESSING

Table 4-2 Address Modifier Summary

MMMM Addressing Mode Arithmetic
0000 Reverse Carry (Bit Reverse)
0001 Modulo 2
0002 Modulo 3
7FFE Modulo 32767
7FFF Modulo 32768
8000 Reserved
8001 Multiple Wrap-Around Modulo 2
8002 Reserved
8003 Multiple Wrap-Around Modulo 4
: Reserved

8007 Multiple Wrap-Around Modulo 8
: Reserved

800F Multiple Wrap-Around Modulo 24
: Reserved

801F Multiple Wrap-Around Modulo 2°
: Reserved

803F Multiple Wrap-Around Modulo 2°
: Reserved

807F Multiple Wrap-Around Modulo 27
: Reserved

80FF Multiple Wrap-Around Modulo 28
: Reserved

81FF Multiple Wrap-Around Modulo 2°
: Reserved

83FF Multiple Wrap-Around Modulo 210
: Reserved

87FF Multiple Wrap-Around Modulo 21
: Reserved

8FFF Multiple Wrap-Around Modulo 212
: Reserved

OFFF Multiple Wrap-Around Modulo 213
: Reserved

BFFF Multiple Wrap-Around Modulo 214

Reserved

—————

L 4-18

ADDRESS GENERATION UNIT

MOTOROLA J

(ADDRESSING \]

UPPER BOUNDARY

ADDRESS CIRCULAR T _
POINTER BUFFER M=MODULUS

1

LOWER BOUNDARY

Figure 4-11 Circular Buffer

(base address), it will wrap around through the base address plus M-1 (upper boundary).

If an offset (Nn) is used in the address calculations, the 16-bit absolute value, [Nn|, must
be less than or equal to M for proper modulo addressing in this range. If Nn>M, the result
is data dependent and unpredictable, except for the special case where Nn=P x 2% a mul-
tiple of the block size where P is a positive integer. For this special case, when using the
(Rn)+ Nn addressing mode, the pointer, Rn, will jump linearly to the same relative address
in a new buffer, which is P blocks forward in memory (see Figure 4-12).

Similarly, for (Rn)—Nn, the pointer will jump P blocks backward in memory. This technique
is useful in sequentially processing multiple tables or N-dimensional arrays. The range of
values for Nn is —32,768 to + 32,767. The modulo arithmetic unit will automatically wrap
around the address pointer by the required amount. This type of address modification is
useful for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up
to 32,768 words long as well as for decimation, interpolation, and waveform generation.
The special case of (Rn) £ Nn mod M with Nn=P x 2K is useful for performing the same
algorithm on multiple blocks of data in memory — e.g., parallel infinite impulse response
(IIR) filtering.

An example of address register indirect modulo addressing is shown in Figure 4-13. Start-
ing at location 64, a circular buffer of 21 stages is created. The addresses generated are
offset by 15 locations. The lower boundary = L x (2K) where 2K = 21; therefore, k=5 and
the lower address boundary must be a multiple of 32. The lower boundary may be chosen

L MOTOROLA ADDRESS GENERATION UNIT 4-19 J

(ADDRESSING \]

/ } "
(Rn) = Nn MOD M

k% WHERE Nn = 2 (ie., P = 1)

N }M

Figure 4-12 Linear Addressing with a Modulo Modifier

as 0, 32, 64, 96, 128, 160, etc. For this example, L is arbitrarily chosen to be 2, making
the lower boundary 64. The upper boundary of the buffer is then 84 (the lower boundary
plus 20 (M-1)). The Mn register is loaded with the value 20 (M-1). The offset register is
arbitrarily chosen to be 15 (Nn<M). The address pointer is not required to start at the lower
address boundary and can begin anywhere within the defined modulo address range —
i.e., within the lower boundary + (2") address region. The address pointer, Rn, is arbitrarily
chosen to be 75 in this example. When R2 is post-incremented by the offset by the MOVE
instruction, instead of pointing to 90 (as it would in the linear mode) it wraps around to 69.
If the address register pointer increments past the upper boundary of the buffer (base ad-
dress plus M-1), it will wrap around to the base address. If the address decrements past
the lower boundary (base address), it will wrap around to the base address plus M—1.

If Rn is outside the valid modulo buffer range and an operation occurs that causes Rn to
be updated, the contents of Rn will be updated according to modulo arithmetic rules. For
example, a MOVE BO0,X:(R0)+ NO instruction (where R0O=6, M0=5, and NO=0) would ap-
parently leave RO unchanged since NO=0. However, since RO is above the upper
boundary, the AGU calculates RO+ NO—-MO-1 for the new contents of RO and sets RO=0.

L 4-20 ADDRESS GENERATION UNIT MOTOROLA J

(ADDRESSING \]

EXAMPLE: MOVE X0,X:(R2)+N

LET:

M2 | 00.....0010100 | MODULUS=21
N2 | 00.....0001111 | OFFSET=15
R2 | 00.....1001011 | POINTER=75

(90)

- :
\
+(- - (8T4)
R (75) y XD BUS

— <
(69) 21
S
0..010 00000 (64)
—
k=5

Figure 4-13 Modulo Modifier Example

The MOVE instruction in Figure 4-13 takes the contents of the X0 register and moves it
to a location in the X memory pointed to by (R2), and then (R2) is updated modulo 21. The
new value of R2 is not 90 (75+ 15), which would be the case if linear arithmetic had been
used, but rather is 69 since modulo arithmetic was used.

44222 Mn=$8001 to $BFFF

In this range, the modulo (M) equals (Mn+1)-$8000, where Mn is the value in the modi-
fier register (see Table 4-2). This range firmly restricts the address register to the same
buffer, causing the address register to wrap around within the buffer. This multiple wrap-
around addressing feature reduces argument overhead and is useful for decimation,
interpolation, and waveform generation.

The address modification is performed modulo M, where M may be any power of 2 in the
range from 21 to 214. Modulo M arithmetic causes the address register value to remain
within an address range of size M defined by a lower and upper address boundary. The
value M-1 is stored in the modifier register Mn least significant 14 bits while the two most
significant bits are setto ‘10’. The lower boundary (base address) value must have zeroes
in the k LSBs, where 2X = M, and therefore must be a multiple of 2% The upper boundary
is the lower boundary plus the modulo size minus one (base address plus M-1).

L MOTOROLA ADDRESS GENERATION UNIT 4-21 J

(ADDRESSING \]

For example, to create a circular buffer of 32 stages, M is chosen as 32 and the lower ad-
dress boundary must have its 5 least significant bits equal to zero (2k = 32, thus k = 5).
The Mn register is loaded with the value $801F. The lower boundary may be chosen as
0, 32, 64, 96, 128, 160, etc. The upper boundary of the buffer is then the lower boundary
plus 31.

The address pointer is not required to start at the lower address boundary and may begin
anywhere within the defined modulo address range (between the lower and upper bound-
aries). If the address register pointer increments past the upper boundary of the buffer
(base address plus M-1) it will wrap around to the base address. If the address decre-
ments past the lower boundary (base address) it will wrap around to the base address
plus M-1. If an offset Nn is used in the address calculations, it is not required to be less
than or equal to M for proper modulo addressing since multiple wrap around is supported
for (Rn)+Nn, (Rn)-Nn and (Rn+Nn) address updates (multiple wrap-around cannot occur
with (Rn)+, (Rn)- and -(Rn) addressing modes).

The multiple wrap-around address modifier is useful for decimation, interpolation and
waveform generation since the multiple wrap-around capability may be used for argument
reduction.

4.4.2.3 Reverse-Carry Modifier (Mn=$0000)

Reverse carry is selected by setting the modifier register to zero (see Table 4-2). The ad-
dress modification is performed in hardware by propagating the carry in the reverse
direction — i.e., from the MSB to the LSB. Reverse carry is equivalent to bit reversing the
contents of Rn (i.e., redefining the MSB as the LSB, the next MSB as bit 1, etc.) and the
offset value, Nn, adding normally, and then bit reversing the result. If the + Nn addressing
mode is used with this address modifier and Nn contains the value 2(¢1) (a power of two),
this addressing modifier is equivalent to bit reversing the k LSBs of Rn, incrementing Rn
by 1, and bit reversing the k LSBs of Rn again. This address modification is useful for ad-
dressing the twiddle factors in 2k-point FFT addressing and to unscramble 2k-point FFT
data. The range of values for Nn is 0 to + 32K (i.e., Nn=21°), which allows bit-reverse ad-
dressing for FFTs up to 65,536 points.

To make bit-reverse addressing work correctly for a 2K point FFT, the following proce-
dures must be used:

1. Set Mn=0; this selects reverse-carry arithmetic.

2. Set Nn=2k1),

L 4-22 ADDRESS GENERATION UNIT MOTOROLA J

(ADDRESSING \]

3. Set Rn between the lower boundary and upper boundary in the buffer mem-
ory. The lower boundary is L x (2"), where L is an arbitrary whole number. This
boundary gives a 16-bit binary number “xx . . . xx00 . .. 00", where xx . . . xx=L
and 00 . . . 00 equals k zeros. The upper boundary is L x (24)+ ((24-1). This
boundary gives a 16-bit binary number “xx ... xx11...11", where xx . . . Xxx=L
and 11 ... 11 equals k ones.

4. Use the (Rn)+ Nn addressing mode.

As an example, consider a 1024-point FFT with real data stored in the X memory and
imaginary data stored in the Y memory. Since 1,024=219, k=10. The modifier register (Mn)
is zero to select bit-reverse addressing. Offset register (Nn) contains the value 512 (2~
1)), and the pointer register (Rn) contains 3,072 (L x (24=3 x (219)), which is the lower
boundary of the memory buffer that holds the results of the FFT. The upper boundary is
4,095 (lower boundary + (2¥)-1=3,072+ 1,023).

Postincrementing by + N generates the address sequence (0, 512, 256, 768, 128, 640,...),
which is added to the lower boundary. This sequence (0, 512, etc.) is the scrambled FFT
data order for sequential frequency points from 0 to 2TU Table 4-3 shows the successive
contents of Rn when using (Rn)+ Nn updates.

Table 4-3 Bit-Reverse Addressing
Sequence Example

Rn Contents LOSV]ngo:rr?(;nary
3072 0
3584 512
3328 256
3840 768
3200 128
3712 640

The reverse-carry modifier only works when the base address of the FFT data buffer is a
multiple of 2K such as 1,024, 2,048, 3,072, etc. The use of addressing modes other than
postincrement by + Nn is possible but may not provide a useful result.

t MOTOROLA ADDRESS GENERATION UNIT 4-23 J

(ADDRESSING \]

The term bit reverse with respect to reverse-carry arithmetic is descriptive. The lower
boundary that must be used for the bit-reverse address scheme to work is L x (2"). In the
previous example shown in Table 4-3, L=3 and k=10. The first address used is the lower
boundary (3072); the calculation of the next address is shown in Figure 4-14. The k LSBs
of the current contents of Rn (3,072) are swapped:

EACH UPDATE, (Rn)+Nn, IS EQUIVALENT TO:

L k BITS
—
1. BIT REVERSING: Rn=000011 0000000000=3072
0000000000
2. INCREMENT Rn BY 1: Rn=000011 0000000000
+1

000011 0000000001

3. BIT REVERSING AGAIN: Rn=000011 0000000001

1000000000
000011 1000000000=3584

Figure 4-14 Bit-Reverse Address Calculation Example

* Bits 0 and 9 are swapped.
» Bits 1 and 8 are swapped.
* Bits 2 and 7 are swapped.
» Bits 3 and 6 are swapped.
* Bits 4 and 5 are swapped.

The result is incremented (3,073), and then the k LSBs are swapped again:

* Bits 0 and 9 are swapped.
* Bits 1 and 8 are swapped.
* Bits 2 and 7 are swapped.
* Bits 3 and 6 are swapped.
* Bits 4 and 5 are swapped.

The result is Rn equals 3,584.

L 4-24 ADDRESS GENERATION UNIT MOTOROLA J

(ADDRESSING \]

4.4.2.4 Address-Modifier-Type Encoding Summary
There are three address modifier types:

* Linear Addressing

* Reverse-Carry Addressing

* Modulo Addressing

Bit-reverse addressing is useful for 2"-point FFT addressing. Modulo addressing is useful
for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up to
32,768 words long. The linear addressing is useful for general-purpose addressing. There
is a reserved set of modifier values (from 32,768 to 65,534) that should not be used.

Figure 4-15 gives examples of the three addressing modifiers using 8-bit registers for sim-
plification (all AGU registers are 16 bit). The addressing mode used in the example,
postincrement by offset Nn, adds the contents of the offset register to the contents of the
address register after the address register is accessed. The results of the three examples
are as follows:

* The linear address modifier addresses every fifth location since the offset register
contains $5.

* Using the bit-reverse address modifier causes the postincrement by offset Nn
addressing mode to use the address register, bit reverse the four LSBs, increment by
1, and bit reverse the four LSBs again.

* The modulo address modifier has a lower boundary at a predetermined location, and
the modulo number plus the lower boundary establishes the upper boundary. This
boundary creates a circular buffer so that, if the address register is pointing within the
boundaries, addressing past a boundary causes a circular wraparound to the other
boundary.

L MOTOROLA ADDRESS GENERATION UNIT 4-25 J

(ADDRESSING \]

LINEAR ADDRESS MODIFIER , %0
MO = 255 = 11111111 FOR LINEAR ADDRESSING WITH RO
- 85
ORIGINAL REGISTERS: NO = 5, RO = 75 = 0100 1011
POSTINCREMENT BY OFFSET NO: RO = 80 = 0101 0000 — 80
POSTINCREMENT BY OFFSET NO: RO = 85 = 0101 0101
RO —> 75
POSTINCREMENT BY OFFSET NO: RO = 90 = 0101 1010
UPPER
BOUNDARY
83
MODULO ADDRESS MODIFIER
N 80
MO = 19 = 0001 0011 FOR MODULO 20 ADDRESSING WITH RO
ORIGINAL REGISTERS: NO = 5, RO = 75 = 0100 1011 RO— 75
POSTINCREMENT BY OFFSET NO: RO = 80 = 0101 0000
— 70
POSTINCREMENT BY OFFSET NO: RO = 65 = 0100 0001
. 65
POSTINCREMENT BY OFFSET NO: RO = 70 = 0100 0110 o4
LOWER
BOUNDARY
REVERSE-CARRY ADDRESS MODIFIER — 76
MO = 0= 0000 0000 FOR REVERSE-CARRY ADDRESSING WITH RO
—> 72
ORIGINAL REGISTERS: NO = 8, RO = 64 = 0100 0000
POSTINCREMENT BY OFFSET NO: RO = 72 = 0100 1000 — 68
POSTINCREMENT BY OFFSET NO: RO = 68 = 0100 0100
RO —>] 64
POSTINCREMENT BY OFFSET NO: RO = 76 = 0100 1100

Figure 4-15 Address Modifier Summary

t 4 -26 ADDRESS GENERATION UNIT MOTOROLA J

	4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES
	4.2 AGU ARCHITECTURE
	Figure 4-1 DSP56K Block Diagram
	Figure 4-2 AGU Block Diagram

	4.2.1 Address Register Files (Rn)
	4.2.2 Offset Register Files (Nn)
	4.2.3 Modifier Register Files (Mn)
	4.2.4 Address ALU
	4.2.5 Address Output Multiplexers
	4.3 PROGRAMMING MODEL
	Figure 4-3 AGU Programming Model

	4.3.1 Address Register Files (R0 - R3 and R4 - R7)...
	4.3.2 Offset Register Files (N0 - N3 and N4 - N7)
	4.3.3 Modifier Register Files (M0 - M3 and M4 - M7...
	4.4 ADDRESSING
	Table 4-1 Address Register Indirect Summary
	4.4.1 Address Register Indirect Modes
	Figure 4-4 Address Register Indirect — No Update
	4.4.1.1 No Update
	4.4.1.2 Postincrement By 1
	Figure 4-5 Address Register Indirect — Postincreme...

	4.4.1.3 Postdecrement By 1
	Figure 4-6 Address Register Indirect — Postdecreme...

	4.4.1.4 Postincrement By Offset Nn
	Figure 4-7 Address Register Indirect — Postincreme...

	4.4.1.5 Postdecrement By Offset Nn
	Figure 4-8 Address Register Indirect — Postdecreme...

	4.4.1.6 Indexed By Offset Nn
	Figure 4-9 Address Register Indirect — Indexed by ...

	4.4.1.7 Predecrement By 1
	Figure 4-10 Address Register Indirect — Predecreme...

	4.4.2 Address Modifier Arithmetic Types
	4.4.2.1 Linear Modifier (Mn=$FFFF)

	Table 4-2 Address Modifier Summary
	4.4.2.2 Modulo Modifier
	4.4.2.2.1 Mn=$0001 to $7FFF
	Figure 4-11 Circular Buffer
	Figure 4-12 Linear Addressing with a Modulo Modifi...
	Figure 4-13 Modulo Modifier Example

	4.4.2.2.2 Mn=$8001 to $BFFF

	4.4.2.3 Reverse-Carry Modifier (Mn=$0000)

	Table 4-3 Bit-Reverse Addressing Table 4-3 Sequenc...
	Figure 4-14 Bit-Reverse Address Calculation Exampl...
	4.4.2.4 Address-Modifier-Type Encoding Summary
	Figure 4-15 Address Modifier Summary

	SECTION 4 SECTION 4 ADDRESS GENERATION UNIT

