SECTION 6
INSTRUCTION SET INTRODUCTION

Fetch F1 | F2 | F3 | F3e| F4 |F5 | F6
Decode D1 | D2 | D3 | D3e| D4 | D5
Execute El | E2 | E3 | E3e| E4
Instruction

Cycle: 1 2 3 4 5 6 7

L MOTOROLA INSTRUCTION SET INTRODUCTION

SECTION CONTENTS

SECTION 6.1 INSTRUCTION SET INTRODUCTIONcuuuiiiiiiiieieeeeiiieeeeeiiienns 3
SECTION 6.2 SYNTAX ittt e eaeba s e e e e e e e e e e e e aeeeeeesnnnnns 3
SECTION 6.3 INSTRUCTION FORMATS ...t 3
6.3.1 OPEraNd SIZESiiiieei i e e 5
6.3.2 Data Organization in REQISIErSciiiiiiiiiiiiiieeeeei e 6
6.3.2.1 Data ALU REQISTEIScooiiiiiiiiiiiiiiieee et 6
6.3.2.2 AGU REQISIEIS ...uiiiiiie ettt e e e e e 7
6.3.2.3 Program Control REQISLErSccoiiiiiiiiiiiiiiieeeeiiie e 8
6.3.3 Data Organization in MEMOIYcoouiiiiiiiiiiiiiiie e 9
6.3.4 Operand REfEreNCEScoovviiiiiiiiicii e 11
6.3.4.1 Program REfErenCeSoovviiiiiiiiiiiiiii e 11
6.3.4.2 STACK REFEIENCES ...ooiiiiiiiiiiiiiieie e 11
6.3.4.3 Register REfEreNCEScccovvuiiiiiiiiiiie e 11
6.3.4.4 Memory REfEIENCESoooiiiiiiiiiiiiiiie e 11
6.3.4.4.1 X Memory REeferenCeSoouuuuuuuiiiiiiieeiee e 11
6.3.4.4.2 Y Memory ReferenCescccocovviiiiiiiiiiiiiiiee e 12
6.3.4.4.3 L Memory ReferenCesccoooviiiiiiiiiiiiiiiiieeeeeeeee e 12
6.3.4.4.4 YX Memory RefErencCesuuuuuiiiiiiiiiieeeeeeeeeeeeeee s 12
6.3.5 Addressing MOAEScoiiiiiiiiiiiiei e 12
6.3.5.1 Register DIreCt MOUESooovveiiiiiiiiiiieiie e 13
6.3.5.1.1 Data or Control Register Dir€Ctccccceeeeeeeeiiiiiiiiiiiiceeen, 13
6.3.5.1.2 Address Register DIr€Ctccoeuuiiiiieiiiiiiiiiie e, 13
6.3.5.2 Address Register Indirect Modescccccuvviiiiiiiiiiiiiiiieeeeee 13
6.3.5.3 Special Addressing MOdEsSccceeiiiiiiiiiiiiiiieeeeee e 14
6.3.5.3.1 Immediate Dataccooeiiiiiiiiiiiiiiiee e 14
6.3.5.3.2 ADSOIULE AAIESScoeeeeeeeeeeeee e 14
6.3.5.3.3 Immediate SNOIcovvviiiiiiiiiii 14
6.3.5.3.4 Short Jump Addresscooieiiiiiiiiiiee e 14
6.3.5.3.5 ADSOIULE SNOIT ..o 14
6.3.5.3.6 1/O SNOMoviiiiiiiiiiiiiiiieeeee s 16
6.3.5.3.7 IMpIiCit REFEIENCEcooviiiiiiiiiiee e 16
6.3.5.4 Addressing Modes SUMMAIYceeieiiieeeeeeieiieeeeiiiiiee e eeeeeeeas 20
SECTION 6.4 INSTRUCTION GROUPS ..ot 20
6.4.1 ArithmetiC INSIIUCLIONSiveiiiii e eas 22
6.4.2 Logical INSIIUCLIONSccooiiiiieeeeies e e e e e e e e 23
6.4.3 Bit Manipulation INSIUCIONSccuuiiiiiiiiiiiie e 24
6.4.4 LOOP INSITUCHIONSiiiiiiiiiiiiieeieiee e e e 24
6.4.5 MOVE INSTIUCLIONSuuiiiiiiiiiiiiiiieieeee e e eeaeeeaeeeas 26
6.4.6 Program Control INStrUCtIONScccovviiiiiiiiiiie et 27

6-2 INSTRUCTION SET INTRODUCTION MOTOROLA

(INSTRUCTION SET INTRODUCTION \]

6.1 INSTRUCTION SET INTRODUCTION

The programming model shown in Figure 6-1 suggests that the DSP56K central pro-
cessing module architecture can be viewed as three functional units which operate in
parallel: data arithmetic logic unit (data ALU), address generation unit (AGU), and pro-
gram control unit (PCU). The instruction set keeps each of these units busy throughout
each instruction cycle, achieving maximal speed and maintaining minimal program size.

This section introduces the DSP56K instruction set and instruction format. The complete
range of instruction capabilities combined with the flexible addressing modes used in this
processor provide a very powerful assembly language for implementing digital signal pro-
cessing (DSP) algorithms. The instruction set has been designed to allow efficient coding
for DSP high-level language compilers such as the C compiler. Execution time is mini-
mized by the hardware looping capabilities, use of an instruction pipeline, and parallel
moves.

6.2 SYNTAX

The instruction syntax is organized into four columns: opcode, operands, and two parallel-
move fields. The assembly-language source code for a typical one-word instruction is
shown in the following illustration. Because of the multiple bus structure and the parallel-
ism of the DSP, up to three data transfers can be specified in the instruction word — one
on the X data bus (XDB), one on the Y data bus (YDB), and one within the data ALU.
These transfers are explicitly specified. A fourth data transfer is implied and occurs in the
program control unit (instruction word prefetch, program looping control, etc.). Each data
transfer involves a source and a destination.

Opcode Operands XDB YDB
MAC X0,YO0,A X:(RO)+,X0 Y:(R4)+,YO

The opcode column indicates the data ALU, AGU, or program control unit operation to be
performed and must always be included in the source code. The operands column spec-
ifies the operands to be used by the opcode. The XDB and YDB columns specify optional
data transfers over the XDB and/or YDB and the associated addressing modes. The
address space qualifiers (X:, Y:, and L:) indicate which address space is being referenced.
Parallel moves are allowed in 30 of the 62 instructions. Additional information is presented
in APPENDIX A - INSTRUCTION SET DETAILS.

6.3 INSTRUCTION FORMATS
The DSP56K instructions consist of one or two 24-bit words — an operation word and an
optional effective address extension word. The general format of the operation word is

L MOTOROLA INSTRUCTION SET INTRODUCTION 6-3 J

INSTRUCTION FORMATS

DATA ARITHMETIC LOGIC UNIT
INPUT REGISTERS

47 X 0 47 Y 0
X1 | X0 | | Y1 | YO
23 0 23 0 23 0 23 0
ACCUMULATOR REGISTERS
55 A 0
| # | A2 | AL | A0 |
23 87 0 23 023 0
55 B 0
| # | B2 | B1 | BO |
23 87 0 23 023 0
ADDRESS GENERATION UNIT
23 1615 0 23 1615 0 23 1615 o
* R7 * N7 * M7
. R6 . N6 . M6 \ UPPER FILE
* R5 * N5 * M5
* R4 * N4 * M4
* R3 * N3 * M3
* R2 * N2 * M2
* R1 * N1 * M1 y LOWER FILE
* RO * NO * MO
POINTER OFFSET MODIFIER
REGISTERS REGISTERS REGISTERS
PROGRAM CONTROL UNIT
23 1615 023 1615 0
L+ L * |
LOOP ADDRESS LOOP COUNTER (LC)
REGISTER (LA)
23 1615 023 1615 87 0 23 87 6 5 4 3 2 1 0
] Lol [oo | [[s[solecfro]ocfue]]
PROGRAM STATUS OPERATING MODE REGISTER (OMR)
COUNTER (PC) REGISTER (SR)
31 SSH 16 15 SSL 0 23 65 0
bk |

15

SYSTEM STACK

*

STACK POINTER (SP)

READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

READ AS SIGN EXTENSION BITS,

WRITTEN AS DON'T CARE

Figure 6-1 DSP56K Central Processing Module Programming Model

o

INSTRUCTION SET INTRODUCTION

MOTOROLA J

INSTRUCTION FORMATS

shown in Figure 6-2. Most instructions specify data movement on the XDB, YDB, and data
ALU operations in the same operation word. The DSP56K performs each of these oper-
ations in parallel.

23 87 0
OPCODE
XXX X[X[X[x[x

OPTIONAL EFFECTIVE ADDRESS EXTENSION

DATA BUS MOVEMENT

Figure 6-2 General Format of an Instruction Operation Word

The data bus movement field provides the operand reference type. It selects the type of
memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An effective
address extension word following the operation word provides an immediate data address
or an absolute address if required (see Section 6.3.5.3 for the description of special
addressing modes). Examples of operations that may include the extension word include
the move operations X:, X:R, Y:, R:Y, and L:. Additional information is presented in
APPENDIX A - INSTRUCTION SET DETAILS.

The opcode field of the operation word specifies the data ALU operation or the program
control unit operation to be performed, and any additional operands required by the
instruction. Only those data ALU and program control unit operations that can accompany
data bus movement will be specified in the opcode field of the instruction. Other data ALU,
program control unit, and all address ALU operations will be specified in an instruction
word with a different format. These formats include operation words which contain short
immediate data or short absolute addresses (see Section 6.3.5.3 for the description of
special addressing modes).

6.3.1 Operand Sizes

Operand sizes are defined as follows: a byte is 8 bits long, a short word is16 bits long, a
word is 24 bits long, a long word is 48 bits long, and an accumulator is 56 bits long (see
Figure 6-3). The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation. Implicit instructions support
some subset of the five sizes shown in Figure 6-3.

L MOTOROLA INSTRUCTION SET INTRODUCTION 6-5 J

(INSTRUCTION FORMATS \]

7 0
15 0
| SHORT WORD
23 0
| WORD
47 0
| LONG WORD
55 0
| ACCUMULATOR

Figure 6-3 Operand Sizes

6.3.2 Data Organization in Registers

The ten data ALU registers support 8- or 24-bit data operands. Instructions also support
48- or 56-bit data operands by concatenating groups of specific data ALU registers. The
eight address registers in the AGU support 16-bit address or data operands. The eight
AGU offset registers support 16-bit offsets or may support 16-bit address or data oper-
ands. The eight AGU modifier registers support 16-bit modifiers or may support 16-bit
address or data operands. The program counter (PC) supports 16-bit address operands.
The status register (SR) and operating mode register (OMR) support 8- or 16-bit data
operands. Both the loop counter (LC) and loop address (LA) registers support 16-bit
address operands.

6.3.2.1 Data ALU Registers

The eight main data ALU registers are 24 bits wide. Word operands occupy one register;
long-word operands occupy two concatenated registers. The least significant bit (LSB) is
the right-most bit (bit 0) and the most significant bit (MSB) is the left-most bit (bit 23 for
word operands and bit 47 for long-word operands). The two accumulator extension regis-
ters are eight bits wide.

When an accumulator extension register acts as a source operand, it occupies the low-
order portion (bits 0—7) of the word and the high-order portion (bits 8-23) is sign extended
(see Figure 6-4). When used as a destination operand, this register receives the low-order
portion of the word, and the high-order portion is not used. Accumulator operands occupy
an entire group of three registers (i.e., A2:A1:A0 or B2:B1:B0). The LSB is the right-most
bit (bit 0), and the MSB is the left-most bit (bit 55).

t 6-6 INSTRUCTION SET INTRODUCTION MOTOROLA J

(INSTRUCTION FORMATS \]

23 87 0
BUS
_’W—‘/ LSB OF
REGISTER A2, B2 USED Ry
AS A DESTINATION NOT USED ,
23 87 0
REGISTER A2, B2 NOT USED A2 REGISTER A2, B2
USED AS A SOURCE
23 87 0
SIGN EXTENSION |CONTENTS
OF A2 OF A2 BUS

Figure 6-4 Reading and Writing the ALU Extension Registers

23 0
BUS
ADDRESS ALU REGISTERS Y LSB OF
AS A DESTINATION NOT USED WORD \
15 0
ADDRESS ALU
ADDRESS ALU REGISTERS REGISTERS
AS A SOURCE | |
\j \
23 16 15 0
ZERO FILL BUS

Figure 6-5 Reading and Writing the Address ALU Registers

6.3.2.2 AGU Registers

The 24 AGU registers are 16 bits wide. They may be accessed as word operands for
address, address modifier, and data storage. When used as a source operand, these reg-
isters occupy the low-order portion of the 24-bit word; the high-order portion is read as
zeros (see Figure 6-5). When used as a destination operand, these registers receive the
low-order portion of the word; the high-order portion is not used. The notation “Rn” desig-
nates one of the eight address registers, RO—R7; the notation “Nn” designates one of the
eight address offset registers, NO-N7; and the notation “Mn” designates one of the eight

t MOTOROLA INSTRUCTION SET INTRODUCTION 6-7 J

(INSTRUCTION FORMATS

address modifier registers, MO—-M7.

23 87 0
BUS
_’_V_“/
MR, CCR, OMR, AND SP
AS A DESTINATION NOT USED LSB
4 \
MR, CCR, OMR, AND SP MR, CCR, OMR, AND SP
AS A SOURCE
\

23 87 0

ZERO FILL BUS

(a) 16 Bit

23 0

BUS

LC, LA, SR, SSH,ANDSSL v — LSB OF
AS A DESTINATION NOT USED WORD
15 0
LC, LA, SR, SSH, AND SSL LC. LA SR SSH. AND SSL
AS A SOURCE

23 16 15 0

ZERO FILY BUS

(b) 8Bit

Figure 6-6 Reading and Writing Control Registers

6.3.2.3 Program Control Registers

The 8-bit operating mode register (OMR) may be accessed as a word operand. However,
not all eight bits are defined, and those that are defined will vary depending on the
DSP56K family member. In general, undefined bits are written as “don’t care” and read as

Zero.

The 16-bit SR has the system mode register (MR) occupying the high-order eight bits and

t 6-8 INSTRUCTION SET INTRODUCTION MOTOROLA J

(INSTRUCTION FORMATS \]

the user condition code register (CCR) occupying the low-order eight bits. The SR may
be accessed as a word operand.

The MR and CCR may be accessed individually as word operands (see Figure 6-6(b)).
The LC, LA, system stack high (SSH), and system stack low (SSL) registers are 16 bits
wide and may be accessed as word operands (see Figure 6-6(a)). When used as a source
operand, these registers occupy the low-order portion of the 24-bit word; the high-order
portion is zero. When used as a destination operand, they receive the low-order portion
of the 24-bit word; the high-order portion is not used. The system stack pointer (SP) is a
6-bit register that may be accessed as a word operand.

The PC, a special 16-bit-wide program control register, is always referenced implicitly as
a short-word operand.

6.3.3 Data Organization in Memory
The 24-bit program memory can store both 24-bit instruction words and instruction exten-

sion words. The 32-bit system stack (SS) can store the concatenated PC and SR registers
(PC:SR) for subroutine calls, interrupts, and program looping. The SS also supports the
concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-wide X and Y
memories can store word, short-word, and byte operands. Short-word and byte operands,
which usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign extended on the XDB or YDB.

The symbols used to abbreviate the various operands and operations in each instruction
and their respective meanings are shown in the following list:

Data ALU
Xn Input Registers X1, X0 (24 Bits)
Yn Input Registers Y1, YO (24 Bits)
An Accumulator Registers A2 (8 Bits), Al, AO (24 Bits)
Bn Accumulator Registers B2 (8 Bits), B1, BO (24 Bits)
X Input Register X (X1:X0, 48 Bits)
Y Input Register Y (Y1:YO, 48 Bits)
A Accumulator A (A2:A1:A0, 56 Bits)"
B Accumulator B (B2:B1:B0, 56 Bits)"
AB Accumulators A and B (A1:B1, 48 Bits)"

*Data Move Operations: when specified as a source operand, shifting and limiting
are performed. When specified as a destination operand, sign extension and zero
filling are performed.

L MOTOROLA INSTRUCTION SET INTRODUCTION 6-9 J

INSTRUCTION FORMATS

Address ALU

BA
Al10
B10

Rn
Nn
Mn

Accumulators B and A (B1:A1, 48 Bits)
Accumulator A (A1:A0, 48 Bits)
Accumulator B (B1:B0, 48 Bits)

Address Registers RO-R7 (16 Bits)
Address Offset Registers NO-N7 (16 Bits)
Address Modifier Registers MO—M7 (16 Bits)

Program Control Unit

Addresses

Miscellaneous

PC
MR
CCR
SR
OMR
LA
LC
SP
SS
SSH
SSL

ea
XXXX
XXX

#XX
HXXX

HXXXXXX

#n
S,Sn
D,Dn

Program Counter (16 Bits)

Mode Register (8 Bits)

Condition Code Register (8 Bits)

Status Register (MR:CCR, 16 Bits)

Operating Mode Register (8 Bits)

Hardware Loop Address Register (16 Bits)

Hardware Loop Counter (16 Bits)

System Stack Pointer (6 Bits)

System Stack RAM (15X32 Bits)

Upper 16 Bits of the Contents of the Current Top of Stack
Lower 16 Bits of the Contents of the Current Top of Stack

Effective Address

Absolute Address (16 Bits)

Short Jump Address (12 Bits)

Absolute Short Address (6 Bits Zero Extended)
I/O Short Address (6 Bits Ones Extended)
Contents of the Specified Address

X Memory Reference

Y Memory Reference

Long Memory Reference — X Concatenated with Y
Program Memory Reference

Immediate Short Data (8 Bits)
Immediate Short Data (12 Bits)

Immediate Data (24 Bits)
Immediate Short Data (5 Bits)

Source Operand Register
Destination Operand Register

L 6-10

INSTRUCTION SET INTRODUCTION

MOTOROLA J

(INSTRUCTION FORMATS

D[n] Bit n of D Affected

r Rounding Constant

11,10 Interrupt Priority Level in SR
LF Loop Flag in SR

6.3.4 Operand References

The DSP separates operand references into four classes: program, stack, register, and
memory references. The type of operand reference(s) required for an instruction is spec-
ified by both the opcode field and the data bus movement field of the instruction. However,
not all operand reference types can be used with all instructions. The operand size for
each instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. Implicit instructions support some subset of the five operand sizes.

6.3.4.1 Program References

Program (P) references, which are references to 24-bit-wide program memory space, are
usually instruction reads. Instructions or data operands may be read from or written to pro-
gram memory space using the move program memory (MOVEM) and move peripheral
data (MOVEP) instructions. Depending on the address and the chip operating mode, pro-
gram references may be internal or external memory references.

6.3.4.2 Stack References

Stack (S) references, which are references to the System Stack (SS), a separate 32-bit-
wide internal memory space, are used implicitly to store the PC and SR for subroutine
calls, interrupts, and returns. In addition to the PC and SR, the LA and LC registers are
stored on the stack when a program loop is initiated. S references are always implied by
the instruction. Data is written to the stack memory to save the processor state and is read
from the stack memory to restore the processor state. In contrast to S references, refer-
ences to SSL and SSH are always explicit.

6.3.4.3 Register References
Register (R) references are references to the data ALU, AGU, and program control unit
registers. Data can be read from one register and written into another register.

6.3.4.4 Memory References

Memory references, which are references to the 24-bit-wide X or Y memory spaces, can
be internal or external memory references, depending on the effective address of the
operand in the data bus movement field of the instruction. Data can be read or written from
any address in either memory space.

L MOTOROLA INSTRUCTION SET INTRODUCTION 6-11

(INSTRUCTION FORMATS \]

6.3.4.4.1 X Memory References
The operand, which is in X memory space, is a word reference. Data can be transferred
from memory to a register or from a register to memory.

t 6-12 INSTRUCTION SET INTRODUCTION MOTOROLA J

(INSTRUCTION FORMATS \]

6.3.4.4.2 Y Memory References
The operand, a word reference, is in Y memory space. Data can be transferred from mem-
ory to a register or from a register to memory.

6.3.4.4.3 L Memory References

Long (L) memory space references both X and Y memory spaces with one operand
address. The data operand is a long-word reference developed by concatenating the X
and Y memory spaces (X:Y). The high-order word of the operand is in the X memory; the
low-order word of the operand is in the Y memory. Data can be read from memory to con-
catenated registers X1:X0, A1:AO0, etc. or from concatenated registers to memory.

6.3.44.4 YX Memory References

XY memory space references both X and Y memory spaces with two operand addresses.
Two independent addresses are used to access two word operands — one word operand
is in X memory space, and one word operand is in Y memory space. Two effective
addresses in the instruction are used to derive two independent operand addresses — one
operand address may reference either X or Y memory space and the other operand
address must reference the other memory space. One of these two effective addresses
specified in the instruction must reference one of the address registers, RO—R3, and the
other effective address must reference one of the address registers, R4-R7. Addressing
modes are restricted to no-update and post-update by +1, —1, and +N addressing modes.
Each effective address provides independent read/write control for its memory space.
Data may be read from memory to a register or from a register to memory.

6.3.5 Addressing Modes
The DSP instruction set contains a full set of operand addressing modes. To minimize

execution time and loop overhead, all address calculations are performed concurrently in
the address ALU.

Addressing modes specify whether the operand(s) is in a register or in memory, and pro-
vide the specific address of the operand(s). An effective address in an instruction will
specify an addressing mode, and, for some addressing modes, the effective address will
further specify an address register. In addition, address register indirect modes require
additional address modifier information that is not encoded in the instruction. The address
modifier information is specified in the selected address modifier register(s). All indirect
memory references require one address modifier, and the XY memory reference requires
two address modifiers. The definition of certain instructions implies the use of specific reg-
isters and addressing modes.

L MOTOROLA INSTRUCTION SET INTRODUCTION 6-13 J

(INSTRUCTION FORMATS \]

Some address register indirect modes require an offset and a modifier register for use in
address calculations. These registers are implied by the address register specified in an
effective address in the instruction word. Each offset register (Nn) and each modifier reg-
ister (Mn) is assigned to an address register (Rn) having the same register number (n).
Thus, the assigned register triplets are RO;NO;MO, R1;N1;M1, R2;N2;M2, R3;N3;M3,
R4;N4;M4, R5;N5;M5, R6;N6;M6, and R7;N7;M7. Rn is used as the address register; Nn
is used to specify an optional offset; and Mn is used to specify the type of arithmetic used
to update the Rn.

The addressing modes are grouped into three categories: register direct, address register
indirect, and special. These addressing modes are described in the following paragraphs.
Refer to Table 6-1 for a summary of the addressing modes and allowed operand
references.

6.3.5.1 Register Direct Modes
These effective addressing modes specify that the operand source or destination is one
of the data, control, or address registers in the programming model.

6.3.5.1.1 Data or Control Register Direct

The operand is in one, two, or three data ALU register(s) as specified in a portion of the
data bus movement field in the instruction. Classified as a register reference, this address-
ing mode is also used to specify a control register operand for special instructions such
as OR immediate to control registers (ORI) and AND immediate to control registers
(ANDI).

6.3.5.1.2 Address Register Direct
Classified as a register reference, the operand is in one of the 24 address registers (Rn,
Nn, or Mn) specified by an effective address in the instruction.

Note: Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed with
a MOVE instruction, the new contents will not be available for use as a pointer until the
second following instruction.

6.3.5.2 Address Register Indirect Modes
The address register indirect mode description is presented in SECTION 4 - ADDRESS
GENERATION UNIT.

L 6-14 INSTRUCTION SET INTRODUCTION MOTOROLA J

(INSTRUCTION FORMATS \]

6.3.5.3 Special Addressing Modes

The special addressing modes do not use specific registers to specify an effective
address. These modes specify the operand or the operand address in a field of the
instruction, or they implicitly reference an operand. Figure examples are given for each of
the special addressing modes discussed in the following paragraphs.

6.3.5.3.1 Immediate Data

Classified as a program reference, this addressing mode requires one word of instruction
extension containing the immediate data. Figure 6-7 shows three examples. Example A
moves immediate data to register AO without affecting Al or A2. Examples B and C zero
fill register AO and sign extend register A2.

6.3.5.3.2 Absolute Address

This addressing mode requires one word of instruction extension containing the absolute
address. Figure 6-8 shows that MOVE Y:$5432,B0 copies the contents of address $5432
into BO without changing memory location $5432, register B1, or register B2. This
addressing mode is classified as both a memory reference and program reference. The
16-bit absolute address is stored in the 16 LSBs of the extension word; the eight MSBs
are zero filled.

6.3.5.3.3 Immediate Short

The 8- or 12-bit operand, which is in the instruction operation word, is classified as a pro-
gram reference. The immediate data is interpreted as an unsigned integer (low-order
portion) or signed fraction (high-order portion), depending on the destination register. Fig-
ure 6-9 shows the use of immediate short addressing in four examples.

6.3.5.34 Short Jump Address
The operand occupies 12 bits in the instruction operation word, which allows addresses

$0000—-3$0FFF to be accessed (see Figure 6-10). The address is zero extended to 16 bits

L MOTOROLA INSTRUCTION SET INTRODUCTION 6 -15 J

(INSTRUCTION FORMATS \]

EXAMPLE A: IMMEDIATE INTO 24-BIT REGISTER

(MOVE #$123456,A0)
BEFORE EXECUTION AFTER EXECUTION
A2 Al A0 A2 Al A0
55 4847 2423 0 55 48 47 2423 0
[X X[X X XX X X[XXX XX X| [X X[X XXX XX/ 1234568]
7 0 23 0 23 0 7 0 23 0 23 0

EXAMPLE B:POSITIVE IMMEDIATE INTO 56-BIT REGISTER

(MOVE #$123456,A)
BEFORE EXECUTION AFTER EXECUTION
A2 Al AO A2 Al AO
55 4847 2423 0 55 48 47 2423 0
[X X[X X XX X X X XX XX X| [0 0[123456/000000]
7 0 23 0 23 0 7 0 23 0 23 0

EXAMPLE C: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER

(MOVE #$801234,A)
BEFORE EXECUTION AFTER EXECUTION
A2 Al A0 A2 Al A0
55 4847 2423 0 55 48 47 24 23 0
[X X[X X XX X X[XXX XX X| | F F|8 01234 000000|
7 0 23 0 23 0 7 0 23 0 23 0

Assembler Syntax: #XXXXXX

Memory Spaces: P:

Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

Figure 6-7 Special Addressing — Immediate Data

when used to address program memory. This addressing mode Is classified as a program
reference.

t 6-16 INSTRUCTION SET INTRODUCTION MOTOROLA J

(INSTRUCTION FORMATS \]

EXAMPLE: MOVE Y:$5432,B0

BEFORE EXECUTION AFTER EXECUTION
B2 B1 BO B2 B1 BO
55 4847 24 23 0 55 4847 2423 0
[X X[X X XX X X[X XX XX X| [X X[XX XXXX[ABCDE F|
7 0 23 0 23 0 7 0 23 0 23 0
23 Y MEMORY 0 23 Y MEMORY 0
f f
$5432 | ABCDEF $5432 | ABCDEF
\/\ \/\

Assembler Syntax: XXXX or aa

Memory Spaces: P:

Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

Figure 6-8 Special Addressing — Absolute Addressing

6.3.5.3.5 Absolute Short

The address of the operand occupies six bits in the instruction operation word, allowing
addresses $0000—-$003F to be accessed (see Figure 6-11). Classified as both a memory
reference and program reference, the address is zero extended to 16 bits when used to
address an operand or program memory.

6.3.5.3.6 I/O Short
Classified as a memory reference, the I/O short addressing mode is similar to absolute

short addressing. The address of the operand occupies six bits in the instruction operation
word. I/O short is used with the bit manipulation and MOVEP instructions. The 1/O short
address is ones extended to 16 bits to address the I/O portion of X and Y memory
(addresses $FFCO-$FFFF — see Figure 6-12).

6.3.5.3.7 Implicit Reference

Some instructions make implicit reference to PC, SS, LA, LC, or SR. For example, the
jump instruction (JMP) implicitly references the PC; whereas, the repeat next instruction
(REP) implicitly references LC. The registers implied and their uses are defined by the
individual instruction descriptions (see APPENDIX A - INSTRUCTION SET DETAILS).

6.3.5.4 Addressing Modes Summary

L MOTOROLA INSTRUCTION SET INTRODUCTION 6-17 J

(INSTRUCTION FORMATS \]

EXAMPLE A: IMMEDIATE SHORT INTO AQ, Al, A2, BO, B1, B2, Rn, Nn

(MOVE #$FF,AL)
BEFORE EXECUTION AFTER EXECUTION
A2 Al A0 A2 Al AO
55 4847 2423 0 55 48 47 2423 0
[X X[X X XX X X XXX XX X| [X X]0000FF XXXXXX]
7 0 23 0 23 0 7 0 23 0 23 0

EXAMPLE B:POSITIVE IMMEDIATE SHORT INTO X0, X1, Y0, Y1, A, B
(MOVE #$1F, Y1)

BEFORE EXECUTION AFTER EXECUTION

Y1 YO Y1 YO
47 24 23 0 47 24 23 0
[X X X X X X[X X X X X X [1 FOoO 0o0O0O[XX XXX X
23 023 0 23 023 0

EXAMPLE C: POSITIVE IMMEDIATE SHORT INTO X, Y, A, B
(MOVE #$1F, A)

BEFORE EXECUTION AFTER EXECUTION
A2 Al AO A2 Al AO

55 4847 2423 0 55 4847 2423 0

[X X[X X XX X X XX XXXX| [0 0]1 Foooo0/0000ODO]

7 0 23 0 23 0 7 0 23 0 23 0

L 6-18 INSTRUCTION SET INTRODUCTION MOTOROLA J

(INSTRUCTION GROUPS \]

EXAMPLE: JMP $123

BEFORE EXECUTION AFTER EXECUTION
P MEMORY P MEMORY
/\/ /\/
| PC —— JMP$0123 JMP $0123
/\/ /\/
/\/ /\/
$OFFF $OFFF
—_ SHORT —
RANGE PC
$0123 4,096 $0123|—> NEXT INSTRUCTION
WORDS |
/\/ /\/
/\/ /\/
$0000 $0000

Assembler Syntax: XXX

Memory Spaces: P:

Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 6-10 Special Addressing — Short Jump Address

6.4 INSTRUCTION GROUPS
The instruction set is divided into the following groups:

* Arithmetic * Logical
¢ Bit Manipulation * Loop
* Move * Program Control

Each instruction group is described in the following paragraphs; detailed information on
each instruction is given in APPENDIX A - INSTRUCTION SET DETAILS.

6.4.1 Arithmetic Instructions
The arithmetic instructions, which perform all of the arithmetic operations within the data

t MOTOROLA INSTRUCTION SET INTRODUCTION 6-19 J

INSTRUCTION GROUPS

EXAMPLE A: MOVE P: $3200,X0

BEFORE EXECUTION

X1 X0

47 24 23 0

[O00 0 00 1[]X X X X X X

23 023 0
P MEMORY

23 0

$3204| X X X X X X

$3200($A5 B 4 C 6

/\/

EXAMPLE B: MOVE A1, X: $3

BEFORE EXECUTION

AFTER EXECUTION

X1 X0

47 24 23 0

[0 00 00 1/A5 B 4 C 6

23 023 0
P MEMORY

23 0

/_/

$3204| X X X X X X

3200A5 B 4 C 6

AFTER EXECUTION

A2 Al A0 A2 Al A0
55 48 47 24 23 0 55 48 47 24 23 0
[X X[3 4 F5EG®6B[XXXXX X| [X X[3 4 F5E 6]/ XXXXX X|
7 0 23 0 23 0 7 0 23 0 23 0
X MEMORY X MEMORY
3 3
$0040 $0040
$003F J $003F
ABSOLUTE
> > SHORT > >
ADDRESSIN-
$0003| X X X X X X GRANGE $0003{ 34 E 5 E 6
$0000 l $0000
Assembler Syntax: aa
Memory Spaces: P:, X:,Y:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0
Ficiwe ~ £ 11 CuhrnAnin I ANAA ~ln A~ AA~AliibtA ChAavd AAAvA~A~
L 6 -20 INSTRUCTION SET INTRODUCTION MOTOROLA J

INSTRUCTION GROUPS \]

EXAMPLE: MOVEP A1, X:<<$FFFE

BEFORE EXECUTION AFTER EXECUTION
A2 Al AO A2 Al A0
55 4847 24 23 0 55 48 47 24 23 0
[X X|1 2345 6] XXXXXX| [X X1 234586 XXXXXX|
7 023 023 0 7 023 023 0
X MEMORY X MEMORY
3 0 23
$FFFF $FFFF
$FFFE| 0 O F F F F* $FFFE| 0 0 3 4 5 6
L 1 I/O SHORT L 1
ABSOLUTE
ADDRESS
SPACE
$FFCO l $FFCO
\/\

*Contents of Bus Control Register (X:$FFFE) After Reset

Assembler Syntax: pp

Operands Referenced: X:, Y Memories
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Figure 6-12 Special Addressing —1/0O Short Address

ALU, execute In one instruction cycle. These instructions may affect all of the CCR bits.
Arithmetic instructions are register based (register direct addressing modes used for oper-
ands) so that the data ALU operation indicated by the instruction does not use the XDB,
the YDB, or the global data bus (GDB). Optional data transfers may be specified with most
arithmetic instructions, which allows for parallel data movement over the XDB and YDB
or over the GDB during a data ALU operation. This parallel movement allows new data to
be prefetched for use in subsequent instructions and allows results calculated in previous
instructions to be stored. The following list contains the arithmetic instructions:

MOTOROLA INSTRUCTION SET INTRODUCTION 6-21 J

(INSTRUCTION GROUPS

Table 6-1 Addressing Modes Summary

- Operand Reference
. Modifier
Addressing Mode MMMM
P C|DJ|A X Y L XY
Register Direct
Data or Control Register No X | X
Address Register No X
Address Modifier Register No X
Address Offset Register No X
Address Register Indirect
No Update No X X | X X X
Postincrement by 1 Yes X X | X X X
Postdecrement by 1 Yes X X | X] X X
Postincrement by Offset Nn Yes X X | X X X
Whére: MMMM = Addréss Madifier T X X | X | X
P = Program Reference X XX X
X X | X] X
S = Stack Reference
C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = AGU Register Reference
X = X Memory Reference
Y =Y Memory Reference
L = L Memory Reference
XY = XY Memory Reference
L 6-22 INSTRUCTION SET INTRODUCTION MOTOROLA J

INSTRUCTION GROUPS

ABS
ADC
ADD
ADDL
ADDR
ASL
ASR
CLR
CMP
CMPM
DEC*
DIV
INC*
MAC
MACR
MPY
MPYR
NEG
NORM"
RND
SBC
SUB
SUBL
SUBR
Tec
TFR
TST

Absolute Value

Add Long with Carry
Addition

Shift Left and Add

Shift Right and Add
Arithmetic Shift Left
Arithmetic Shift Right

Clear an Operand

Compare

Compare Magnitude
Decrement by One

Divide Iteration

Increment by One

Signed Multiply-Accumulate”™
Signed Multiply-Accumulate and Round**
Signed Multiply**

Signed Multiply and Round**
Negate Accumulator
Normalize

Round

Subtract Long with Carry
Subtract

Shift Left and Subtract

Shift Right and Subtract
Transfer Conditionally
Transfer Data ALU Register
Test an Operand

6.4.2 Logical Instructions
The logical instructions execute in one instruction cycle and perform all of the logical oper-

ations within the data ALU (except ANDI and ORI). They may affect all of the CCR bits
and, like the arithmetic instructions, are register based.

Logical instructions are the only instructions that allow apparent duplicate destinations,

such as:

AND X0,A X:(RO):AO

A logical instruction uses only the MSP portion of the A and B registers (A1 and B1).

*These instructions do not allow parallel data moves.

**Certain applications of these instructions do not allow parallel data moves.

L MOTOROLA

INSTRUCTION SET INTRODUCTION

6-23 J

(INSTRUCTION GROUPS \]

Therefore, the instruction actually ignores what appears to be a duplicate destination and
logically ANDs the value in the X0 register with the bits in the Al portion (bits 47-24) of
the A accumulator. The parallel move shown above can simultaneously write to either of
the other two portions of the A or the B accumulator without conflict. Avoid confusion by
explicitly stating A1 or B1 in the original instruction.

Optional data transfers may be specified with most logical instructions, allowing parallel
data movement over the XDB and YDB or over the GDB during a data ALU operation.
This parallel movement allows new data to be prefetched for use in subsequent instruc-
tions and allows results calculated in previous instructions to be stored. The following list
includes the logical instructions:

AND Logical AND

ANDI" AND Immediate to Control Register
EOR Logical Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

NOT Logical Complement

OR Logical Inclusive OR

ORI OR Immediate to Control Register
ROL Rotate Left

ROR Rotate Right

*These instructions do not allow parallel data moves.

L 6-24 INSTRUCTION SET INTRODUCTION MOTOROLA J

(INSTRUCTION GROUPS \]

6.4.3 Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location or a
register and then optionally set, clear, or invert the bit. The carry bit of the CCR will contain
the result of the bit test. The following list defines the bit manipulation instructions:

BCLR Bit Test and Clear

BSET Bit Test and Set

BCHG Bit Test and Change

BTST Bit Test on Memory and Registers

6.4.4 Loop Instructions
The hardware DO loop executes with no overhead cycles after the DO instruction itself

has been executed-i.e., it runs as fast as straight-line code. Replacing straight-line code
with DO loops can significantly reduce program memory. The loop instructions control
hardware looping by 1) initiating a program loop and establishing looping parameters or
by 2) restoring the registers by pulling the SS when terminating a loop. Initialization
includes saving registers used by a program loop (LA and LC) on the SS so that program
loops can be nested. The address of the first instruction in a program loop is also saved
to allow no-overhead looping. The loop instructions are as follows:

DO Start Hardware Loop
ENDDO Exit from Hardware Loop

Both static and dynamic loop counts are supported in the following forms:

DO #xXX,Expr ; (Static)

DO S,Expr ; (Dynamic)
Expr is an assembler expression or absolute address, and S is a directly addressable reg-
ister such as XO.

The operation of a DO loop is shown in Figure 6-13. When a program loop is initiated with
the execution of a DO instruction, the following events occur:

1. The stack is pushed.
A. The SP is incremented.

B. The current 16-bit LA and 16-bit LC registers are pushed onto the SS to
allow nested loops.

C. The LC register is initiated with the loop count value specified in the DO
instruction.

L MOTOROLA INSTRUCTION SET INTRODUCTION 6-25 J

(INSTRUCTION GROUPS \]

START OF LOOP

1)SP+1 » SP; LA ®» SSH; LC #SSL; #xxx #LC
2)SP+1» SP; PC » SSH; SR #SSL; Expr-1 sLA

3)1» LF

END OF LOOP
1)SSL(LF)» SR
2)SP-1» SP; SSH » LA; SSL #LC; SP-1 »SP
3)PC + 1y PC
NOTE:

#xxx=Loop Count Number
Expr=Expression

Figure 6-13 Hardware DO Loop

2. The stack is pushed again.
A. The SP is incremented.

B. The address of the first instruction in the program loop (PC) and the current
SR contents are pushed onto the SS.

C. The LA register is initialized with the value specified in the DO instruction
decremented by one.

3. The LF bit in the SR is set. The LF bit is set when a program loop is in
progress and enables the end-of-loop detection.
The program loop continues execution until the program address fetched equals the LA
register contents (last address of program loop). The contents of the LC are then tested
for one. If the LC is not one, it is decremented, and the top location in the stack RAM is
read (but not pulled) into the PC to return to the start of the loop. If the LC is one, the pro-
gram loop is terminated by the following sequence:

1. Reading the previous LF bit from the top location in the SS into the SR

2. Purging the SS (pulling the top location and discarding the contents), pulling
the LA and LC registers off the SS, and restoring the respective registers

3. Incrementing the PC

The LF bit (pulled from the SS when a loop is terminated) indicates if the terminated loop
was a nested loop. Figure 6-14 shows two DO loops, one nested inside the other. If the
stack is managed to prevent a stack overflow, DO loops can be stacked indefinitely.

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to
terminate a DO loop before the LC has been decremented to one.

t 6 -26 INSTRUCTION SET INTRODUCTION MOTOROLA J

(INSTRUCTION GROUPS

— DO #nl,END1

DO #n2,END2

MOVE AX:(RO)+

END2 ADD AB X:(R1)+,X0
L END1

Figure 6-14 Nested DO Loops

6.4.5 Move Instructions
The move instructions perform data movement over the XDB and YDB or over the GDB.

Move instructions only affect the CCR bits S and L The S bit is affected if data growth is
detected when the A or B registers are moved onto the bus. The L bit is affected if limiting
is performed when reading a data ALU accumulator register. An address ALU instruction
(LUA) is also included in the following move instructions. The MOVE instruction is the par-
allel move with a data ALU no-operation (NOP).

LUA Load Updated Address
MOVE Move Data Register
MOVEC Move Control Register
MOVEM Move Program Memory
MOVEP Move Peripheral Data

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with a MOVE-type instruction, the new contents may not be available for use until the sec-
ond following instruction. See the restrictions discussed in SECTION 7 - PROCESSING
STATES on page 7-10.

There are nine classifications of parallel data moves between registers and memory. Fig-
ure 6-15 shows seven parallel moves. The source of the data to be moved and the
destination are separated by a comma.

Examples of the other two classifications, XY and long (L) moves, are shown in Figure 6-
16. Example A illustrates the following steps: 1) register X0 is added to register A and the
result is placed in register A; 2) register X0 is moved to the X memory register location
pointed to by R3, and R3 is incremented; and 3) the contents of the Y memory location
pointed to by R7 is moved to the B register, and R7 is decremented.

Example B depicts the following sequence: 1) register X0 is added to register A and the
resultis placed in register A; and 2) registers A and B are moved, respectively, to the loca-

L MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 27

(INSTRUCTION GROUPS \]

OPCODE/OPERANDS PARALLEL MOVE EXAMPLES

IMMEDIATE SHORT DATA ADD X0,A #$05,Y1

ADDRESS REGISTER UPDATE ADD X0,A (RO)+NO

REGISTER TO REGISTER ADD X0,A A1,Y0

X MEMORY ADD X0,A X0,X:(R3)+

X MEMORY PLUS REGISTER ADD X0,A X:(R4)-X1 AYO

Y MEMORY ADD X0,A Y:(R6)+N6,X0

Y MEMORY PLUS REGISTER ADD X0,A A, X0 B,Y:(RO)

NOTE: Parallel Move Syntax—Source(Src), Destination(Dst)

Figure 6-15 Classifications of Parallel Data Moves

contents of the 56-bit registers A and B were rounded to 24 bits before moving to the 24-
bit memory registers.

The DSP offers parallel processing of the data ALU, AGU, and program control unit. For
the instruction word above, the DSP will perform the designated operation (data ALU), the
data transfers specified with address register updates (AGU), and will decode the next
instruction and fetch an instruction from program memory (program control unit) all in one
instruction cycle. When an instruction is more than one word in length, an additional
instruction execution cycle is required. Most instructions involving the data ALU are reg-
ister based (all operands are in data ALU registers), thereby allowing the programmer to
keep each parallel processing unit busy. An instruction that is memory oriented (such as
a bit manipulation instruction) or that causes a control-flow change (such as a JMP) pre-
vents the use of parallel processing resources during its execution.

6.4.6 Program Control Instructions
The program control instructions include jumps, conditional jumps, and other instructions

affecting the PC and SS. Program control instructions may affect the CCR bits as speci-
fied in the instruction. Optional data transfers over the XDB and YDB may be specified in
some of the program control instructions. The following list contains the program control
instructions:

DEBUG Enter Debug Mode

DEBUGcc Enter Debug Mode Conditionally
1] lllegal Instruction

Jcec Jump Conditionally

JMP Jump

t 6-28 INSTRUCTION SET INTRODUCTION MOTOROLA J

INSTRUCTION GROUPS

JCLR Jump if Bit Clear

JSET Jump if Bit Set

JScc Jump to Subroutine Conditionally
JSR Jump to Subroutine

JSCLR Jump to Subroutine if Bit Clear
JSSET Jump to Subroutine if Bit Set

NOP No Operation

REP Repeat Next Instruction

RESET Reset On-Chip Peripheral Devices

RTI Return from Interrupt

RTS Return from Subroutine

STOP Stop Processing (Low-Power Standby)

Swi Software Interrupt

WAIT Wait for Interrupt (Low-Power Standby)
Example A

XY MEMORY MOVE ADD X0,A X0,X:(R3)+

+1
N

- R7
Z -1

Y:(R

7)-B

B2 SIGN EXTENDED

BO CLEARED
X MEMORY Y MEMORY
[X0 — | Bl | BO
Example B
LONG MEMORY MOVE ADD X0,A AB,L:(R2)+N2
+ N2
R2 cav <
X MEMORY Y MEMORY
L A2 | Al A0 | [B2] B1 | BO

A,B ARE SHIFTED AND LIMITED

Figure 6-16 Parallel Move Examples

t MOTOROLA

INSTRUCTION SET INTRODUCTION

(INSTRUCTION GROUPS \]

t 6-30 INSTRUCTION SET INTRODUCTION MOTOROLA J

	6.1 INSTRUCTION SET INTRODUCTION
	Figure 6-1 DSP56K Central Processing Module Progra...

	6.2 SYNTAX
	6.3 INSTRUCTION FORMATS
	Figure 6-2 General Format of an Instruction Operat...

	6.3.1 Operand Sizes
	Figure 6-3 Operand Sizes

	6.3.2 Data Organization in Registers
	6.3.2.1 Data ALU Registers
	Figure 6-4 Reading and Writing the ALU Extension R...
	Figure 6-5 Reading and Writing the Address ALU Reg...

	6.3.2.2 AGU Registers
	Figure 6-6 Reading and Writing Control Registers

	6.3.2.3 Program Control Registers

	6.3.3 Data Organization in Memory
	6.3.4 Operand References
	6.3.4.1 Program References
	6.3.4.2 Stack References
	6.3.4.3 Register References
	6.3.4.4 Memory References
	6.3.4.4.1 X Memory References
	6.3.4.4.2 Y Memory References
	6.3.4.4.3 L Memory References
	6.3.4.4.4 YX Memory References

	6.3.5 Addressing Modes
	6.3.5.1 Register Direct Modes
	6.3.5.1.1 Data or Control Register Direct
	6.3.5.1.2 Address Register Direct

	6.3.5.2 Address Register Indirect Modes
	6.3.5.3 Special Addressing Modes
	6.3.5.3.1 Immediate Data
	Figure 6-7 Special Addressing – Immediate Data

	6.3.5.3.2 Absolute Address
	6.3.5.3.3 Immediate Short
	Figure 6-8 Special Addressing – Absolute Addressin...
	Figure 6-9 Special Addressing – Immediate Short Da...

	6.3.5.3.4 Short Jump Address
	Figure 6-10 Special Addressing – Short Jump Addres...

	6.3.5.3.5 Absolute Short
	Figure 6-11 Special Addressing – Absolute Short Ad...

	6.3.5.3.6 I/O Short
	Figure 6-12 Special Addressing – I/O Short Address...

	6.3.5.3.7 Implicit Reference

	6.3.5.4 Addressing Modes Summary

	Table 6-1 Addressing Modes Summary
	6.4 INSTRUCTION GROUPS
	6.4.1 Arithmetic Instructions
	6.4.2 Logical Instructions
	6.4.3 Bit Manipulation Instructions
	6.4.4 Loop Instructions
	1. The stack is pushed.
	A. The SP is incremented.
	B. The current 16-bit LA and 16-bit LC registers a...
	C. The LC register is initiated with the loop coun...

	2. The stack is pushed again.
	A. The SP is incremented.
	B. The address of the first instruction in the pro...
	C. The LA register is initialized with the value s...

	3. The LF bit in the SR is set. The LF bit is set ...
	Figure 6-13 Hardware DO Loop
	1. Reading the previous LF bit from the top locati...
	2. Purging the SS (pulling the top location and di...
	3. Incrementing the PC

	Figure 6-14 Nested DO Loops

	6.4.5 Move Instructions
	Figure 6-15 Classifications of Parallel Data Moves...

	6.4.6 Program Control Instructions
	Figure 6-16 Parallel Move Examples

	SECTION 6 SECTION 6 INSTRUCTION SET INTRODUCTION

