

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 1

SECTION 6
INSTRUCTION SET INTRODUCTION

Fetch F1 F2 F3 F3e F4 F5 F6 . . .
Decode D1 D2 D3 D3e D4 D5 . . .
Execute E1 E2 E3 E3e E4 . . .
Instruction
Cycle: 1 2 3 4 5 6 7 . . .

SECTION CONTENTS

6 - 2 INSTRUCTION SET INTRODUCTION

MOTOROLA

SECTION 6.1 INSTRUCTION SET INTRODUCTION 3

SECTION 6.2 SYNTAX ... 3

SECTION 6.3 INSTRUCTION FORMATS .. 3
6.3.1 Operand Sizes .. 5
6.3.2 Data Organization in Registers ... 6

6.3.2.1 Data ALU Registers .. 6
6.3.2.2 AGU Registers .. 7
6.3.2.3 Program Control Registers ... 8

6.3.3 Data Organization in Memory ... 9
6.3.4 Operand References .. 11

6.3.4.1 Program References ... 11
6.3.4.2 Stack References ... 11
6.3.4.3 Register References ... 11
6.3.4.4 Memory References ... 11

6.3.4.4.1 X Memory References .. 11
6.3.4.4.2 Y Memory References .. 12
6.3.4.4.3 L Memory References ... 12
6.3.4.4.4 YX Memory References .. 12

6.3.5 Addressing Modes .. 12
6.3.5.1 Register Direct Modes .. 13

6.3.5.1.1 Data or Control Register Direct ... 13
6.3.5.1.2 Address Register Direct .. 13

6.3.5.2 Address Register Indirect Modes .. 13
6.3.5.3 Special Addressing Modes ... 14

6.3.5.3.1 Immediate Data ... 14
6.3.5.3.2 Absolute Address .. 14
6.3.5.3.3 Immediate Short .. 14
6.3.5.3.4 Short Jump Address ... 14
6.3.5.3.5 Absolute Short .. 14
6.3.5.3.6 I/O Short .. 16
6.3.5.3.7 Implicit Reference ... 16

6.3.5.4 Addressing Modes Summary .. 20

SECTION 6.4 INSTRUCTION GROUPS .. 20
6.4.1 Arithmetic Instructions .. 22
6.4.2 Logical Instructions ... 23
6.4.3 Bit Manipulation Instructions ... 24
6.4.4 Loop Instructions .. 24
6.4.5 Move Instructions .. 26
6.4.6 Program Control Instructions .. 27

INSTRUCTION SET INTRODUCTION

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 3

6.1 INSTRUCTION SET INTRODUCTION

The programming model shown in Figure 6-1 suggests that the DSP56K central pro-
cessing module architecture can be viewed as three functional units which operate in
parallel: data arithmetic logic unit (data ALU), address generation unit (AGU), and pro-
gram control unit (PCU). The instruction set keeps each of these units busy throughout
each instruction cycle, achieving maximal speed and maintaining minimal program size.

This section introduces the DSP56K instruction set and instruction format. The complete
range of instruction capabilities combined with the flexible addressing modes used in this
processor provide a very powerful assembly language for implementing digital signal pro-
cessing (DSP) algorithms. The instruction set has been designed to allow efficient coding
for DSP high-level language compilers such as the C compiler. Execution time is mini-
mized by the hardware looping capabilities, use of an instruction pipeline, and parallel
moves.

6.2 SYNTAX

The instruction syntax is organized into four columns: opcode, operands, and two parallel-
move fields. The assembly-language source code for a typical one-word instruction is
shown in the following illustration. Because of the multiple bus structure and the parallel-
ism of the DSP, up to three data transfers can be specified in the instruction word – one
on the X data bus (XDB), one on the Y data bus (YDB), and one within the data ALU.
These transfers are explicitly specified. A fourth data transfer is implied and occurs in the
program control unit (instruction word prefetch, program looping control, etc.). Each data
transfer involves a source and a destination.

Opcode Operands XDB YDB

MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0

The opcode column indicates the data ALU, AGU, or program control unit operation to be
performed and must always be included in the source code. The operands column spec-
ifies the operands to be used by the opcode. The XDB and YDB columns specify optional
data transfers over the XDB and/or YDB and the associated addressing modes. The
address space qualifiers (X:, Y:, and L:) indicate which address space is being referenced.
Parallel moves are allowed in 30 of the 62 instructions. Additional information is presented
in APPENDIX A - INSTRUCTION SET DETAILS.

6.3 INSTRUCTION FORMATS

The DSP56K instructions consist of one or two 24-bit words – an operation word and an
optional effective address extension word. The general format of the operation word is

INSTRUCTION FORMATS

6 - 4 INSTRUCTION SET INTRODUCTION

MOTOROLA

23 1615 0

55 B 0

55 A 0

47 Y 0

23 1615 0

*

*
*

*
*
*

*

R7

R6

R5

R4

R3

R1

R2

R0

23 1615 0

*

*
*
*

*
*
*

*

N7

N6

N5

N4

N3

N1

N2

N0

23 1615 0

*

*
*
*

*
*
*

*

M7

M6

M5

M4

M3

M1

M2

M0

UPPER FILE

LOWER FILE

MODIFIER
REGISTERS

OFFSET
REGISTERS

POINTER
REGISTERS

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

23 1615 0

23 1615 0

*
23 1615 8 7 0

*

PROGRAM
COUNTER (PC)

31 SSH 16 15 SSL 0

1

15

SYSTEM STACK

STATUS
REGISTER (SR)

MR CCR

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

47 X 0

X1 X0

23 0 23 0

Y1 Y0

INPUT REGISTERS

ACCUMULATOR REGISTERS

23 0

B1 B0

23 8 7 0

#

23 0

B2

23 0

A1 A0

23 8 7 0

#

23 0

A2

DATA ARITHMETIC LOGIC UNIT

*

23 0 23 0

*

*

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

READ AS SIGN EXTENSION BITS,
WRITTEN AS DON’T CARE

Figure 6-1 DSP56K Central Processing Module Programming Model

23 6 5 0

*
23 8 7 6 5 4 3 2 1 0

OPERATING MODE REGISTER (OMR)

MADE MBSD *

STACK POINTER (SP)
*

YDMC*

INSTRUCTION FORMATS

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 5

shown in Figure 6-2. Most instructions specify data movement on the XDB, YDB, and data
ALU operations in the same operation word. The DSP56K performs each of these oper-
ations in parallel.

The data bus movement field provides the operand reference type. It selects the type of
memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An effective
address extension word following the operation word provides an immediate data address
or an absolute address if required (see Section 6.3.5.3 for the description of special
addressing modes). Examples of operations that may include the extension word include
the move operations X:, X:R, Y:, R:Y, and L:. Additional information is presented in
APPENDIX A - INSTRUCTION SET DETAILS.

The opcode field of the operation word specifies the data ALU operation or the program
control unit operation to be performed, and any additional operands required by the
instruction. Only those data ALU and program control unit operations that can accompany
data bus movement will be specified in the opcode field of the instruction. Other data ALU,
program control unit, and all address ALU operations will be specified in an instruction
word with a different format. These formats include operation words which contain short
immediate data or short absolute addresses (see Section 6.3.5.3 for the description of
special addressing modes).

6.3.1 Operand Sizes

Operand sizes are defined as follows: a byte is 8 bits long, a short word is16 bits long, a
word is 24 bits long, a long word is 48 bits long, and an accumulator is 56 bits long (see
Figure 6-3). The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation. Implicit instructions support
some subset of the five sizes shown in Figure 6-3.

Figure 6-2 General Format of an Instruction Operation Word

 23 8 7 0

X X X X X X X X
DATA BUS MOVEMENT

OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

INSTRUCTION FORMATS

6 - 6 INSTRUCTION SET INTRODUCTION

MOTOROLA

6.3.2 Data Organization in Registers

The ten data ALU registers support 8- or 24-bit data operands. Instructions also support
48- or 56-bit data operands by concatenating groups of specific data ALU registers. The
eight address registers in the AGU support 16-bit address or data operands. The eight
AGU offset registers support 16-bit offsets or may support 16-bit address or data oper-
ands. The eight AGU modifier registers support 16-bit modifiers or may support 16-bit
address or data operands. The program counter (PC) supports 16-bit address operands.
The status register (SR) and operating mode register (OMR) support 8- or 16-bit data
operands. Both the loop counter (LC) and loop address (LA) registers support 16-bit
address operands.

6.3.2.1 Data ALU Registers

The eight main data ALU registers are 24 bits wide. Word operands occupy one register;
long-word operands occupy two concatenated registers. The least significant bit (LSB) is
the right-most bit (bit 0) and the most significant bit (MSB) is the left-most bit (bit 23 for
word operands and bit 47 for long-word operands). The two accumulator extension regis-
ters are eight bits wide.

When an accumulator extension register acts as a source operand, it occupies the low-
order portion (bits 0–7) of the word and the high-order portion (bits 8–23) is sign extended
(see Figure 6-4). When used as a destination operand, this register receives the low-order
portion of the word, and the high-order portion is not used. Accumulator operands occupy
an entire group of three registers (i.e., A2:A1:A0 or B2:B1:B0). The LSB is the right-most
bit (bit 0), and the MSB is the left-most bit (bit 55).

Figure 6-3 Operand Sizes

55 0

47 0

23 0

7 0

15 0

ACCUMULATOR

LONG WORD

WORD

SHORT WORD

BYTE

INSTRUCTION FORMATS

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 7

6.3.2.2 AGU Registers

The 24 AGU registers are 16 bits wide. They may be accessed as word operands for
address, address modifier, and data storage. When used as a source operand, these reg-
isters occupy the low-order portion of the 24-bit word; the high-order portion is read as
zeros (see Figure 6-5). When used as a destination operand, these registers receive the
low-order portion of the word; the high-order portion is not used. The notation “Rn” desig-
nates one of the eight address registers, R0–R7; the notation “Nn” designates one of the
eight address offset registers, N0–N7; and the notation “Mn” designates one of the eight

Figure 6-4 Reading and Writing the ALU Extension Registers

23 8 7 0

 23 8 7 0

23 8 7 0

BUS

NOT USED

LSB OF
WORD

A2

BUS

REGISTER A2, B2 USED
AS A DESTINATION

REGISTER A2, B2
USED AS A SOURCE

SIGN EXTENSION
OF A2

CONTENTS
OF A2

NOT USED REGISTER A2, B2

Figure 6-5 Reading and Writing the Address ALU Registers

23 0

BUS

NOT USED

 23 16 15 0
BUS

ADDRESS ALU

ADDRESS ALU REGISTERS
AS A DESTINATION

 AS A SOURCE
ADDRESS ALU REGISTERS

 15 0

ZERO FILL

REGISTERS

LSB OF
WORD

INSTRUCTION FORMATS

6 - 8 INSTRUCTION SET INTRODUCTION

MOTOROLA

address modifier registers, M0–M7.

6.3.2.3 Program Control Registers

The 8-bit operating mode register (OMR) may be accessed as a word operand. However,
not all eight bits are defined, and those that are defined will vary depending on the
DSP56K family member. In general, undefined bits are written as “don’t care” and read as
zero.

The 16-bit SR has the system mode register (MR) occupying the high-order eight bits and

(b) 8 Bit

(a) 16 Bit

Figure 6-6 Reading and Writing Control Registers

23 8 7 0

23 8 7 0
BUS

NOT USED LSB

A2

BUS

MR, CCR, OMR, AND SP
AS A DESTINATION

 AS A SOURCE
MR, CCR, OMR, AND SP MR, CCR, OMR, AND SP

ZERO FILL

23 16 15 0

23 0
BUS

NOT USED
LSB OF
WORD

BUS

LC, LA, SR, SSH, AND SSL
AS A DESTINATION

 AS A SOURCE
LC, LA, SR, SSH, AND SSL

15 0

ZERO FILL

LC, LA, SR, SSH, AND SSL

INSTRUCTION FORMATS

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 9

the user condition code register (CCR) occupying the low-order eight bits. The SR may
be accessed as a word operand.

The MR and CCR may be accessed individually as word operands (see Figure 6-6(b)).
The LC, LA, system stack high (SSH), and system stack low (SSL) registers are 16 bits
wide and may be accessed as word operands (see Figure 6-6(a)). When used as a source
operand, these registers occupy the low-order portion of the 24-bit word; the high-order
portion is zero. When used as a destination operand, they receive the low-order portion
of the 24-bit word; the high-order portion is not used. The system stack pointer (SP) is a
6-bit register that may be accessed as a word operand

.

The PC, a special 16-bit-wide program control register, is always referenced implicitly as
a short-word operand.

6.3.3 Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction exten-
sion words. The 32-bit system stack (SS) can store the concatenated PC and SR registers
(PC:SR) for subroutine calls, interrupts, and program looping. The SS also supports the
concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-wide X and Y
memories can store word, short-word, and byte operands. Short-word and byte operands,
which usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign extended on the XDB or YDB.

The symbols used to abbreviate the various operands and operations in each instruction
and their respective meanings are shown in the following list:

Data ALU

Xn Input Registers X1, X0 (24 Bits)
Yn Input Registers Y1, Y0 (24 Bits)
An Accumulator Registers A2 (8 Bits), A1, A0 (24 Bits)
Bn Accumulator Registers B2 (8 Bits), B1, B0 (24 Bits)
X Input Register X (X1:X0, 48 Bits)
Y Input Register Y (Y1:Y0, 48 Bits)
A Accumulator A (A2:A1:A0, 56 Bits)

*

B Accumulator B (B2:B1:B0, 56 Bits)

*

AB Accumulators A and B (A1:B1, 48 Bits)

*

*Data Move Operations: when specified as a source operand, shifting and limiting
are performed. When specified as a destination operand, sign extension and zero
filling are performed.

INSTRUCTION FORMATS

6 - 10 INSTRUCTION SET INTRODUCTION

MOTOROLA

BA Accumulators B and A (B1:A1, 48 Bits)

*

A10 Accumulator A (A1:A0, 48 Bits)
B10 Accumulator B (B1:B0, 48 Bits)

Address ALU

Rn Address Registers R0–R7 (16 Bits)
Nn Address Offset Registers N0–N7 (16 Bits)
Mn Address Modifier Registers M0–M7 (16 Bits)

Program Control Unit

PC Program Counter (16 Bits)
MR Mode Register (8 Bits)
CCR Condition Code Register (8 Bits)
SR Status Register (MR:CCR, 16 Bits)
OMR Operating Mode Register (8 Bits)
LA Hardware Loop Address Register (16 Bits)
LC Hardware Loop Counter (16 Bits)
SP System Stack Pointer (6 Bits)
SS System Stack RAM (15X32 Bits)
SSH Upper 16 Bits of the Contents of the Current Top of Stack
SSL Lower 16 Bits of the Contents of the Current Top of Stack

Addresses

ea Effective Address
 xxxx Absolute Address (16 Bits)
xxx Short Jump Address (12 Bits)
aa Absolute Short Address (6 Bits Zero Extended)
pp I/O Short Address (6 Bits Ones Extended)
< . . . > Contents of the Specified Address
X: X Memory Reference
Y: Y Memory Reference
L: Long Memory Reference – X Concatenated with Y
P: Program Memory Reference

 Miscellaneous

#xx Immediate Short Data (8 Bits)
#xxx Immediate Short Data (12 Bits)
#xxxxxx Immediate Data (24 Bits)
#n Immediate Short Data (5 Bits)
S,Sn Source Operand Register
D,Dn Destination Operand Register

INSTRUCTION FORMATS

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 11

D[n] Bit n of D Affected
r Rounding Constant
I1,I0 Interrupt Priority Level in SR
LF Loop Flag in SR

6.3.4 Operand References

The DSP separates operand references into four classes: program, stack, register, and
memory references. The type of operand reference(s) required for an instruction is spec-
ified by both the opcode field and the data bus movement field of the instruction. However,
not all operand reference types can be used with all instructions. The operand size for
each instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. Implicit instructions support some subset of the five operand sizes.

6.3.4.1 Program References

Program (P) references, which are references to 24-bit-wide program memory space, are
usually instruction reads. Instructions or data operands may be read from or written to pro-
gram memory space using the move program memory (MOVEM) and move peripheral
data (MOVEP) instructions. Depending on the address and the chip operating mode, pro-
gram references may be internal or external memory references.

6.3.4.2 Stack References

Stack (S) references, which are references to the System Stack (SS), a separate 32-bit-
wide internal memory space, are used implicitly to store the PC and SR for subroutine
calls, interrupts, and returns. In addition to the PC and SR, the LA and LC registers are
stored on the stack when a program loop is initiated. S references are always implied by
the instruction. Data is written to the stack memory to save the processor state and is read
from the stack memory to restore the processor state. In contrast to S references, refer-
ences to SSL and SSH are always explicit.

6.3.4.3 Register References

Register (R) references are references to the data ALU, AGU, and program control unit
registers. Data can be read from one register and written into another register.

6.3.4.4 Memory References

Memory references, which are references to the 24-bit-wide X or Y memory spaces, can
be internal or external memory references, depending on the effective address of the
operand in the data bus movement field of the instruction. Data can be read or written from
any address in either memory space.

INSTRUCTION FORMATS

6 - 12 INSTRUCTION SET INTRODUCTION

MOTOROLA

6.3.4.4.1 X Memory References

The operand, which is in X memory space, is a word reference. Data can be transferred
from memory to a register or from a register to memory.

INSTRUCTION FORMATS

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 13

6.3.4.4.2 Y Memory References

The operand, a word reference, is in Y memory space. Data can be transferred from mem-
ory to a register or from a register to memory.

6.3.4.4.3 L Memory References

Long (L) memory space references both X and Y memory spaces with one operand
address. The data operand is a long-word reference developed by concatenating the X
and Y memory spaces (X:Y). The high-order word of the operand is in the X memory; the
low-order word of the operand is in the Y memory. Data can be read from memory to con-
catenated registers X1:X0, A1:A0, etc. or from concatenated registers to memory.

6.3.4.4.4 YX Memory References

XY memory space references both X and Y memory spaces with two operand addresses.
Two independent addresses are used to access two word operands – one word operand
is in X memory space, and one word operand is in Y memory space. Two effective
addresses in the instruction are used to derive two independent operand addresses – one
operand address may reference either X or Y memory space and the other operand
address must reference the other memory space. One of these two effective addresses
specified in the instruction must reference one of the address registers, R0–R3, and the
other effective address must reference one of the address registers, R4–R7. Addressing
modes are restricted to no-update and post-update by +1, –1, and +N addressing modes.
Each effective address provides independent read/write control for its memory space.
Data may be read from memory to a register or from a register to memory.

6.3.5 Addressing Modes

The DSP instruction set contains a full set of operand addressing modes. To minimize
execution time and loop overhead, all address calculations are performed concurrently in
the address ALU.

Addressing modes specify whether the operand(s) is in a register or in memory, and pro-
vide the specific address of the operand(s). An effective address in an instruction will
specify an addressing mode, and, for some addressing modes, the effective address will
further specify an address register. In addition, address register indirect modes require
additional address modifier information that is not encoded in the instruction. The address
modifier information is specified in the selected address modifier register(s). All indirect
memory references require one address modifier, and the XY memory reference requires
two address modifiers. The definition of certain instructions implies the use of specific reg-
isters and addressing modes.

INSTRUCTION FORMATS

6 - 14 INSTRUCTION SET INTRODUCTION

MOTOROLA

Some address register indirect modes require an offset and a modifier register for use in
address calculations. These registers are implied by the address register specified in an
effective address in the instruction word. Each offset register (Nn) and each modifier reg-
ister (Mn) is assigned to an address register (Rn) having the same register number (n).
Thus, the assigned register triplets are R0;N0;M0, R1;N1;M1, R2;N2;M2, R3;N3;M3,
R4;N4;M4, R5;N5;M5, R6;N6;M6, and R7;N7;M7. Rn is used as the address register; Nn
is used to specify an optional offset; and Mn is used to specify the type of arithmetic used
to update the Rn.

The addressing modes are grouped into three categories: register direct, address register
indirect, and special. These addressing modes are described in the following paragraphs.
Refer to Table 6-1 for a summary of the addressing modes and allowed operand
references.

6.3.5.1 Register Direct Modes

These effective addressing modes specify that the operand source or destination is one
of the data, control, or address registers in the programming model.

6.3.5.1.1 Data or Control Register Direct

The operand is in one, two, or three data ALU register(s) as specified in a portion of the
data bus movement field in the instruction. Classified as a register reference, this address-
ing mode is also used to specify a control register operand for special instructions such
as OR immediate to control registers (ORI) and AND immediate to control registers
(ANDI).

6.3.5.1.2 Address Register Direct

Classified as a register reference, the operand is in one of the 24 address registers (Rn,
Nn, or Mn) specified by an effective address in the instruction.

Note:

 Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed with
a MOVE instruction, the new contents will not be available for use as a pointer until the
second following instruction.

6.3.5.2 Address Register Indirect Modes

The address register indirect mode description is presented in SECTION 4 - ADDRESS
GENERATION UNIT.

INSTRUCTION FORMATS

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 15

6.3.5.3 Special Addressing Modes

The special addressing modes do not use specific registers to specify an effective
address. These modes specify the operand or the operand address in a field of the
instruction, or they implicitly reference an operand. Figure examples are given for each of
the special addressing modes discussed in the following paragraphs.

6.3.5.3.1 Immediate Data

Classified as a program reference, this addressing mode requires one word of instruction
extension containing the immediate data. Figure 6-7 shows three examples. Example A
moves immediate data to register A0 without affecting A1 or A2. Examples B and C zero
fill register A0 and sign extend register A2

.

6.3.5.3.2 Absolute Address

This addressing mode requires one word of instruction extension containing the absolute
address. Figure 6-8 shows that MOVE Y:$5432,B0 copies the contents of address $5432
into B0 without changing memory location $5432, register B1, or register B2. This
addressing mode is classified as both a memory reference and program reference. The
16-bit absolute address is stored in the 16 LSBs of the extension word; the eight MSBs
are zero filled.

6.3.5.3.3 Immediate Short

The 8- or 12-bit operand, which is in the instruction operation word, is classified as a pro-
gram reference. The immediate data is interpreted as an unsigned integer (low-order
portion) or signed fraction (high-order portion), depending on the destination register. Fig-
ure 6-9 shows the use of immediate short addressing in four examples.

6.3.5.3.4 Short Jump Address

The operand occupies 12 bits in the instruction operation word, which allows addresses
$0000–$0FFF to be accessed (see Figure 6-10). The address is zero extended to 16 bits

INSTRUCTION FORMATS

6 - 16 INSTRUCTION SET INTRODUCTION MOTOROLA

when used to address program memory. This addressing mode is classified as a program
reference.

Figure 6-7 Special Addressing – Immediate Data

F F 8 0 1 2 3 4 0 0 0 0 0 0

0 0 1 2 3 4 5 6 0 0 0 0 0 0

X X X X X X X X 1 2 3 4 5 6

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

EXAMPLE A: IMMEDIATE INTO 24-BIT REGISTER
(MOVE #$123456,A0)

BEFORE EXECUTION AFTER EXECUTION

EXAMPLE B:POSITIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE #$123456,A)

AFTER EXECUTION

EXAMPLE C: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE #$801234,A)

AFTER EXECUTION

Assembler Syntax: #XXXXXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

INSTRUCTION FORMATS

MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 17

6.3.5.3.5 Absolute Short
The address of the operand occupies six bits in the instruction operation word, allowing
addresses $0000–$003F to be accessed (see Figure 6-11). Classified as both a memory
reference and program reference, the address is zero extended to 16 bits when used to
address an operand or program memory.

6.3.5.3.6 I/O Short
Classified as a memory reference, the I/O short addressing mode is similar to absolute
short addressing. The address of the operand occupies six bits in the instruction operation
word. I/O short is used with the bit manipulation and MOVEP instructions. The I/O short
address is ones extended to 16 bits to address the I/O portion of X and Y memory
(addresses $FFC0–$FFFF – see Figure 6-12).

6.3.5.3.7 Implicit Reference
Some instructions make implicit reference to PC, SS, LA, LC, or SR. For example, the
jump instruction (JMP) implicitly references the PC; whereas, the repeat next instruction
(REP) implicitly references LC. The registers implied and their uses are defined by the
individual instruction descriptions (see APPENDIX A - INSTRUCTION SET DETAILS).

6.3.5.4 Addressing Modes Summary

Figure 6-8 Special Addressing – Absolute Addressing

B2 B1 B0

BEFORE EXECUTION

B2 B1 B0

AFTER EXECUTION

EXAMPLE: MOVE Y:$5432,B0

23 Y MEMORY 0

$5432 A B C D E F

Assembler Syntax: XXXX or aa
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0
X X X X X X X X A B C D E F

55 48 47 24 23 0

7 0 23 0 23 0

23 Y MEMORY 0

$5432 A B C D E F

INSTRUCTION FORMATS

6 - 18 INSTRUCTION SET INTRODUCTION MOTOROLA

X X 0 0 0 0 F F X X X X X X

0 0 1 F 0 0 0 0 0 0 0 0 0 0

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

EXAMPLE A: IMMEDIATE SHORT INTO A0, A1, A2, B0, B1, B2, Rn, Nn
(MOVE #$FF,A1)

BEFORE EXECUTION AFTER EXECUTION

EXAMPLE B:POSITIVE IMMEDIATE SHORT INTO X0, X1, Y0, Y1, A, B
(MOVE #$1F, Y1)

AFTER EXECUTION

AFTER EXECUTION

Y1 Y0
47 24 23 0

 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

 X X X X X X X X X X X X

Y1 Y0
47 24 23 0

 23 0 23 0
 1 F 0 0 0 0 X X X X X X

EXAMPLE C: POSITIVE IMMEDIATE SHORT INTO X, Y, A, B
(MOVE #$1F, A)

INSTRUCTION GROUPS

MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 19

6.4 INSTRUCTION GROUPS
The instruction set is divided into the following groups:

• Arithmetic • Logical
• Bit Manipulation • Loop
• Move • Program Control

Each instruction group is described in the following paragraphs; detailed information on
each instruction is given in APPENDIX A - INSTRUCTION SET DETAILS.

6.4.1 Arithmetic Instructions
The arithmetic instructions, which perform all of the arithmetic operations within the data

Figure 6-10 Special Addressing – Short Jump Address

AFTER EXECUTION

$0FFF

JMP $0123

$0123

$0000

P MEMORY

PC
NEXT INSTRUCTION

BEFORE EXECUTION

EXAMPLE: JMP $123

$0FFF

Assembler Syntax: XXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

P MEMORY

PC JMP $0123

$0123

$0000

SHORT
JUMP

RANGE
4,096

WORDS

INSTRUCTION GROUPS

6 - 20 INSTRUCTION SET INTRODUCTION MOTOROLA

Figure 6-11 Special Addressing – Absolute Short Address

P MEMORY
23 0

AFTER EXECUTIONBEFORE EXECUTION

EXAMPLE A: MOVE P: $3200,X0

Assembler Syntax: aa
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

X X X X X X

$0000

ABSOLUTE
SHORT

ADDRESSIN-
GRANGE

A2 A1 A0

X X 3 4 F 5 E 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

X1 X0
47 24 23 0

 23 0 23 0
 0 0 0 0 0 1 X X X X X X

$3204

$3200 $ A 5 B 4 C 6

X1 X0
47 24 23 0

 23 0 23 0
 0 0 0 0 0 1 A 5 B 4 C 6

P MEMORY
23 0

X X X X X X$3204

$3200 $ A 5 B 4 C 6

EXAMPLE B: MOVE A1, X: $3

BEFORE EXECUTION

A2 A1 A0

X X 3 4 F 5 E 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

AFTER EXECUTION

X MEMORY
23 0

X X X X X X$0003

$003F
$0040

$0000

X MEMORY
23 0

3 4 F 5 E 6$0003

$003F
$0040

INSTRUCTION GROUPS

MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 21

ALU, execute in one instruction cycle. These instructions may affect all of the CCR bits.
Arithmetic instructions are register based (register direct addressing modes used for oper-
ands) so that the data ALU operation indicated by the instruction does not use the XDB,
the YDB, or the global data bus (GDB). Optional data transfers may be specified with most
arithmetic instructions, which allows for parallel data movement over the XDB and YDB
or over the GDB during a data ALU operation. This parallel movement allows new data to
be prefetched for use in subsequent instructions and allows results calculated in previous
instructions to be stored. The following list contains the arithmetic instructions:

Figure 6-12 Special Addressing – I/O Short Address

EXAMPLE: MOVEP A1, X:<<$FFFE

Assembler Syntax: pp
Operands Referenced: X:, Y Memories
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$FFC0

I/O SHORT
ABSOLUTE
ADDRESS

SPACE

A2 A1 A0

X X 1 2 3 4 5 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X 1 2 3 4 5 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

AFTER EXECUTION

X MEMORY
23 0

0 0 F F F F*$FFFE
$FFFF

$FFC0

X MEMORY
23 0

0 0 3 4 5 6$FFFE
$FFFF

*Contents of Bus Control Register (X:$FFFE) After Reset

INSTRUCTION GROUPS

6 - 22 INSTRUCTION SET INTRODUCTION MOTOROLA

Addressing Mode
Modifier
MMMM

Operand Reference

P S C D A X Y L XY

Register Direct
Data or Control Register
Address Register
Address Modifier Register
Address Offset Register

No
No
No
No

X X
X
X
X

Address Register Indirect
No Update
Postincrement by 1
Postdecrement by 1
Postincrement by Offset Nn
Postdecrement by Offset Nn
Indexed by Offset Nn
Predecrement by 1

No
Yes
Yes
Yes
Yes
Yes
Yes

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X

Table 6-1 Addressing Modes Summary

Where: MMMM = Address Modifier
P = Program Reference
S = Stack Reference
C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = AGU Register Reference
X = X Memory Reference
Y = Y Memory Reference
L = L Memory Reference
XY = XY Memory Reference

INSTRUCTION GROUPS

MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 23

ABS Absolute Value
ADC Add Long with Carry
ADD Addition
ADDL Shift Left and Add
ADDR Shift Right and Add
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
CLR Clear an Operand
CMP Compare
CMPM Compare Magnitude
DEC* Decrement by One
DIV* Divide Iteration
INC* Increment by One
MAC Signed Multiply-Accumulate**

MACR Signed Multiply-Accumulate and Round**
MPY Signed Multiply**
MPYR Signed Multiply and Round**
NEG Negate Accumulator
NORM* Normalize
RND Round
SBC Subtract Long with Carry
SUB Subtract
SUBL Shift Left and Subtract
SUBR Shift Right and Subtract
Tcc* Transfer Conditionally
TFR Transfer Data ALU Register
TST Test an Operand

6.4.2 Logical Instructions
The logical instructions execute in one instruction cycle and perform all of the logical oper-
ations within the data ALU (except ANDI and ORI). They may affect all of the CCR bits
and, like the arithmetic instructions, are register based.

Logical instructions are the only instructions that allow apparent duplicate destinations,
such as:

AND X0,A X:(R0):A0

A logical instruction uses only the MSP portion of the A and B registers (A1 and B1).

*These instructions do not allow parallel data moves.
**Certain applications of these instructions do not allow parallel data moves.

INSTRUCTION GROUPS

6 - 24 INSTRUCTION SET INTRODUCTION MOTOROLA

Therefore, the instruction actually ignores what appears to be a duplicate destination and
logically ANDs the value in the X0 register with the bits in the A1 portion (bits 47-24) of
the A accumulator. The parallel move shown above can simultaneously write to either of
the other two portions of the A or the B accumulator without conflict. Avoid confusion by
explicitly stating A1 or B1 in the original instruction.

Optional data transfers may be specified with most logical instructions, allowing parallel
data movement over the XDB and YDB or over the GDB during a data ALU operation.
This parallel movement allows new data to be prefetched for use in subsequent instruc-
tions and allows results calculated in previous instructions to be stored. The following list
includes the logical instructions:

AND Logical AND
ANDI* AND Immediate to Control Register
EOR Logical Exclusive OR
LSL Logical Shift Left
LSR Logical Shift Right
NOT Logical Complement
OR Logical Inclusive OR
ORI* OR Immediate to Control Register
ROL Rotate Left
ROR Rotate Right

*These instructions do not allow parallel data moves.

INSTRUCTION GROUPS

MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 25

6.4.3 Bit Manipulation Instructions
The bit manipulation instructions test the state of any single bit in a memory location or a
register and then optionally set, clear, or invert the bit. The carry bit of the CCR will contain
the result of the bit test. The following list defines the bit manipulation instructions:

BCLR Bit Test and Clear
BSET Bit Test and Set
BCHG Bit Test and Change
BTST Bit Test on Memory and Registers

6.4.4 Loop Instructions
The hardware DO loop executes with no overhead cycles after the DO instruction itself
has been executed– i.e., it runs as fast as straight-line code. Replacing straight-line code
with DO loops can significantly reduce program memory. The loop instructions control
hardware looping by 1) initiating a program loop and establishing looping parameters or
by 2) restoring the registers by pulling the SS when terminating a loop. Initialization
includes saving registers used by a program loop (LA and LC) on the SS so that program
loops can be nested. The address of the first instruction in a program loop is also saved
to allow no-overhead looping. The loop instructions are as follows:

DO Start Hardware Loop
ENDDO Exit from Hardware Loop

Both static and dynamic loop counts are supported in the following forms:

DO #xxx,Expr ; (Static)
DO S,Expr ; (Dynamic)

Expr is an assembler expression or absolute address, and S is a directly addressable reg-
ister such as X0.

The operation of a DO loop is shown in Figure 6-13. When a program loop is initiated with
the execution of a DO instruction, the following events occur:

1. The stack is pushed.
A. The SP is incremented.
B. The current 16-bit LA and 16-bit LC registers are pushed onto the SS to

allow nested loops.
C. The LC register is initiated with the loop count value specified in the DO

instruction.

INSTRUCTION GROUPS

6 - 26 INSTRUCTION SET INTRODUCTION MOTOROLA

2. The stack is pushed again.
A. The SP is incremented.
B. The address of the first instruction in the program loop (PC) and the current

SR contents are pushed onto the SS.
C. The LA register is initialized with the value specified in the DO instruction

decremented by one.

3. The LF bit in the SR is set. The LF bit is set when a program loop is in
progress and enables the end-of-loop detection.

The program loop continues execution until the program address fetched equals the LA
register contents (last address of program loop). The contents of the LC are then tested
for one. If the LC is not one, it is decremented, and the top location in the stack RAM is
read (but not pulled) into the PC to return to the start of the loop. If the LC is one, the pro-
gram loop is terminated by the following sequence:

1. Reading the previous LF bit from the top location in the SS into the SR

2. Purging the SS (pulling the top location and discarding the contents), pulling
the LA and LC registers off the SS, and restoring the respective registers

3. Incrementing the PC

The LF bit (pulled from the SS when a loop is terminated) indicates if the terminated loop
was a nested loop. Figure 6-14 shows two DO loops, one nested inside the other. If the
stack is managed to prevent a stack overflow, DO loops can be stacked indefinitely.

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to
terminate a DO loop before the LC has been decremented to one.

Figure 6-13 Hardware DO Loop

1)SP+1 - SP; LA - SSH; LC - SSL; #xxx - LC
2)SP+1 - SP; PC - SSH; SR - SSL; Expr–1 - LA
3)1 - LF

START OF LOOP

END OF LOOP

1)SSL(LF) - SR
2)SP–1 - SP; SSH - LA; SSL - LC; SP–1 - SP
3)PC + 1 - PC

NOTE:
#xxx=Loop Count Number
Expr=Expression

INSTRUCTION GROUPS

MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 27

6.4.5 Move Instructions
The move instructions perform data movement over the XDB and YDB or over the GDB.
Move instructions only affect the CCR bits S and L The S bit is affected if data growth is
detected when the A or B registers are moved onto the bus. The L bit is affected if limiting
is performed when reading a data ALU accumulator register. An address ALU instruction
(LUA) is also included in the following move instructions. The MOVE instruction is the par-
allel move with a data ALU no-operation (NOP).

LUA Load Updated Address
MOVE Move Data Register
MOVEC Move Control Register
MOVEM Move Program Memory
MOVEP Move Peripheral Data

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with a MOVE-type instruction, the new contents may not be available for use until the sec-
ond following instruction. See the restrictions discussed in SECTION 7 - PROCESSING
STATES on page 7-10.

There are nine classifications of parallel data moves between registers and memory. Fig-
ure 6-15 shows seven parallel moves. The source of the data to be moved and the
destination are separated by a comma.

Examples of the other two classifications, XY and long (L) moves, are shown in Figure 6-
16. Example A illustrates the following steps: 1) register X0 is added to register A and the
result is placed in register A; 2) register X0 is moved to the X memory register location
pointed to by R3, and R3 is incremented; and 3) the contents of the Y memory location
pointed to by R7 is moved to the B register, and R7 is decremented.

Example B depicts the following sequence: 1) register X0 is added to register A and the
result is placed in register A; and 2) registers A and B are moved, respectively, to the loca-

Figure 6-14 Nested DO Loops

DO #n1,END1
:

DO #n2,END2
:
:

MOVE A,X:(R0)+

END2 ADD A,B X:(R1)+,X0
END1

INSTRUCTION GROUPS

6 - 28 INSTRUCTION SET INTRODUCTION MOTOROLA

contents of the 56-bit registers A and B were rounded to 24 bits before moving to the 24-
bit memory registers.

The DSP offers parallel processing of the data ALU, AGU, and program control unit. For
the instruction word above, the DSP will perform the designated operation (data ALU), the
data transfers specified with address register updates (AGU), and will decode the next
instruction and fetch an instruction from program memory (program control unit) all in one
instruction cycle. When an instruction is more than one word in length, an additional
instruction execution cycle is required. Most instructions involving the data ALU are reg-
ister based (all operands are in data ALU registers), thereby allowing the programmer to
keep each parallel processing unit busy. An instruction that is memory oriented (such as
a bit manipulation instruction) or that causes a control-flow change (such as a JMP) pre-
vents the use of parallel processing resources during its execution.

6.4.6 Program Control Instructions
The program control instructions include jumps, conditional jumps, and other instructions
affecting the PC and SS. Program control instructions may affect the CCR bits as speci-
fied in the instruction. Optional data transfers over the XDB and YDB may be specified in
some of the program control instructions. The following list contains the program control
instructions:

DEBUG Enter Debug Mode
DEBUGcc Enter Debug Mode Conditionally
IIl Illegal Instruction
Jcc Jump Conditionally
JMP Jump

Figure 6-15 Classifications of Parallel Data Moves

IMMEDIATE SHORT DATA ADD X0,A #$05,Y1
ADDRESS REGISTER UPDATE ADD X0,A (R0)+N0
REGISTER TO REGISTER ADD X0,A A1,Y0
X MEMORY ADD X0,A X0,X:(R3)+
X MEMORY PLUS REGISTER ADD X0,A X:(R4)–,X1 A,Y0
Y MEMORY ADD X0,A Y:(R6)+N6,X0
Y MEMORY PLUS REGISTER ADD X0,A A,X0 B,Y:(R0)

NOTE: Parallel Move Syntax—Source(Src), Destination(Dst)

OPCODE/OPERANDS PARALLEL MOVE EXAMPLES

INSTRUCTION GROUPS

MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 29

JCLR Jump if Bit Clear
JSET Jump if Bit Set
JScc Jump to Subroutine Conditionally
JSR Jump to Subroutine
JSCLR Jump to Subroutine if Bit Clear
JSSET Jump to Subroutine if Bit Set
NOP No Operation
REP Repeat Next Instruction
RESET Reset On-Chip Peripheral Devices
RTI Return from Interrupt
RTS Return from Subroutine
STOP Stop Processing (Low-Power Standby)
SWI Software Interrupt
WAIT Wait for Interrupt (Low-Power Standby)

XY MEMORY MOVE

+1

R3

X MEMORY

X0

ADD X0,A X0,X:(R3)+ Y:(R7)-,B

R7

Y MEMORY

-1

B1 B0

B2 SIGN EXTENDED
B0 CLEARED

Example A

A2 A1 A0 B2

ADD X0,A AB,L:(R2)+N2

Y MEMORY

B1 B0

LONG MEMORY MOVE

X MEMORY

R2

+ N2

A,B ARE SHIFTED AND LIMITED

Example B

Figure 6-16 Parallel Move Examples

INSTRUCTION GROUPS

6 - 30 INSTRUCTION SET INTRODUCTION MOTOROLA

	6.1 INSTRUCTION SET INTRODUCTION
	Figure 6-1 DSP56K Central Processing Module Progra...

	6.2 SYNTAX
	6.3 INSTRUCTION FORMATS
	Figure 6-2 General Format of an Instruction Operat...

	6.3.1 Operand Sizes
	Figure 6-3 Operand Sizes

	6.3.2 Data Organization in Registers
	6.3.2.1 Data ALU Registers
	Figure 6-4 Reading and Writing the ALU Extension R...
	Figure 6-5 Reading and Writing the Address ALU Reg...

	6.3.2.2 AGU Registers
	Figure 6-6 Reading and Writing Control Registers

	6.3.2.3 Program Control Registers

	6.3.3 Data Organization in Memory
	6.3.4 Operand References
	6.3.4.1 Program References
	6.3.4.2 Stack References
	6.3.4.3 Register References
	6.3.4.4 Memory References
	6.3.4.4.1 X Memory References
	6.3.4.4.2 Y Memory References
	6.3.4.4.3 L Memory References
	6.3.4.4.4 YX Memory References

	6.3.5 Addressing Modes
	6.3.5.1 Register Direct Modes
	6.3.5.1.1 Data or Control Register Direct
	6.3.5.1.2 Address Register Direct

	6.3.5.2 Address Register Indirect Modes
	6.3.5.3 Special Addressing Modes
	6.3.5.3.1 Immediate Data
	Figure 6-7 Special Addressing – Immediate Data

	6.3.5.3.2 Absolute Address
	6.3.5.3.3 Immediate Short
	Figure 6-8 Special Addressing – Absolute Addressin...
	Figure 6-9 Special Addressing – Immediate Short Da...

	6.3.5.3.4 Short Jump Address
	Figure 6-10 Special Addressing – Short Jump Addres...

	6.3.5.3.5 Absolute Short
	Figure 6-11 Special Addressing – Absolute Short Ad...

	6.3.5.3.6 I/O Short
	Figure 6-12 Special Addressing – I/O Short Address...

	6.3.5.3.7 Implicit Reference

	6.3.5.4 Addressing Modes Summary

	Table 6-1 Addressing Modes Summary
	6.4 INSTRUCTION GROUPS
	6.4.1 Arithmetic Instructions
	6.4.2 Logical Instructions
	6.4.3 Bit Manipulation Instructions
	6.4.4 Loop Instructions
	1. The stack is pushed.
	A. The SP is incremented.
	B. The current 16-bit LA and 16-bit LC registers a...
	C. The LC register is initiated with the loop coun...

	2. The stack is pushed again.
	A. The SP is incremented.
	B. The address of the first instruction in the pro...
	C. The LA register is initialized with the value s...

	3. The LF bit in the SR is set. The LF bit is set ...
	Figure 6-13 Hardware DO Loop
	1. Reading the previous LF bit from the top locati...
	2. Purging the SS (pulling the top location and di...
	3. Incrementing the PC

	Figure 6-14 Nested DO Loops

	6.4.5 Move Instructions
	Figure 6-15 Classifications of Parallel Data Moves...

	6.4.6 Program Control Instructions
	Figure 6-16 Parallel Move Examples

	SECTION 6 SECTION 6 INSTRUCTION SET INTRODUCTION

