
28 February 2002 05-ASM-10001 v1.0 SuperH, Inc. 1/9

Introduction

The purpose of this document is to define a common assembly language subset to be followed by
toolchains for the SH-5 architecture.

Scope and aims

The common assembly language subset is a minimal set of conventions to be followed by all SH-5
toolchains. The aim of defining this subset is to ease portability of assembly language code
between the various toolchains.

SH-5 toolchains should accept assembly language which follows all of the rules in this document.
Individual toolchains are free to adopt their own unique extensions to these rules.

Reference

Please refer to the SH-5 CPU Core Architecture manuals (05-CC-1000n) for further information.

SH-5 Common Assembly Language
Syntax

 SH-5 Common Assembly Language Syntax

2/9 SuperH, Inc. 05-ASM-10001 v1.0

Table of Contents

Introduction .1

Scope and aims . 1

Chapter 1 General principles .3

Chapter 2 Syntax rules .3

2.1 Instructions . 3

2.1.1 Instruction mnemonics . 3

2.2 Instruction operands . 3

2.2.1 Register names . 3

2.2.2 Immediate operands . 4

2.2.3 Scaled operands . 4

2.2.4 SHmedia branch targets . 5

2.2.5 Pseudo-ops . 7

2.3 Expressions . 7

2.3.1 Symbols . 7

2.3.2 Program counter ($) . 8

2.3.3 Operators . 8

 05-ASM-10001 v1.0 SuperH, Inc. 3/9

SH-5 Common Assembly Language Syntax 1 General principles

1 General principles

The syntax used by the SH-5 CPU Core Architecture manual (05-CC-1000n) shall be followed.

2 Syntax rules

2.1 Instructions

2.1.1 Instruction mnemonics

All instruction mnemonics specified in the SH-5 CPU Core Architecture manual (05-CC-1000n) will
be accepted.

The spelling of the mnemonics must be identical to that specified in the SH-5 CPU Core
Architecture manual, however all mnemonics shall be accepted both entirely in upper case and
entirely in lower case.

For example, both LD.L and ld.l shall be accepted.

This rule does not require instructions written in a mixture of upper and lower case to be accepted,
however, individual toolchains may accept such a mixture as an extension to this common assembly
language subset.

As specified in the SH-5 CPU Core Architecture manual, all PT and conditional branch instructions
have an optional suffix, /L or /U, to indicate whether the target is likely to be reached. This suffix
must be written in the same case as the instruction. Omitting the suffix is equivalent to /L.

The syntax of the PTA and PTB instructions is

PTA label, TRn
PTB label, TRn

where the value of label is the value to be loaded into the target register. Direct usage of PTA and
PTB should be discouraged, expect in cases where it is necessary to select either SHmedia or
SHcompact explicitly). The pseudo-instruction PT (see Section 2.2.5: Pseudo-ops on page 7)
should be used in preference to PTA and PTB wherever possible.

2.2 Instruction operands

2.2.1 Register names

All register names specified in the SH-5 CPU Core Architecture manual (05-CC-1000n) will be
accepted. This includes the architecturally defined control register names: SR, SSR, PSSR, INTEVT,
EXPEVT, PEXPEVT, TRA, SPC, PSPC, RESVEC, VBR, TEA, DCR, KCR0, KCR1, CTC, USR.

The spelling of the register names must be identical to that specified in the SH-5 CPU Core
Architecture manual, however all register names shall be accepted both entirely in upper case and
entirely in lower case.

For example., both CR0 and CR0 shall be accepted.

2 Syntax rules SH-5 Common Assembly Language Syntax

4/9 SuperH, Inc. 05-ASM-10001 v1.0

2.2.2 Immediate operands

In SHcompact instructions, immediate operands must be preceded by the # symbol.

In SHmedia instructions, immediate operands are not preceded by #.

Individual toolchains may choose to accept SHmedia immediate operands preceded by # as an
extension to this common assembly language subset, but all toolchains must accept SHmedia
immediate operands not preceded by #.

2.2.3 Scaled operands

SHmedia load, store, prepare-target and cache instructions automatically scale their immediate
operands at run-time, for example LD.L scales the immediate offset by 4. Similarly, SHcompact
load, store and branch instructions automatically scale their immediate operands at run-time.

In both SHmedia and SHcompact assembly language, the assembler should accept the scaled form
of the operand, and remove the scaling when encoding the instruction. For example, in the
assembly language

MOV.L @(8,R4),R0

the effective address is R4+8 (not R4 + 32). This is consistent with existing usage for SH-series
architectures.

Table 1 indicates the SHmedia instructions that scale their operands and the amount of scaling.
Table 2 indicates the same for SHcompact. For all of these instructions, the assembler should
accept the scaled form, and remove the scaling when encoding the instruction. Note that for

SHmedia prepare-target instructions and SHcompact branch instructions, the immediate operand is
specified as a label indicating the required destination, rather than as a scaled operand.

SHmedia instruction
Scaling applied to

immediate operand

LD.UW, LD.W, ST.W << 1

LD.L, ST.L << 2

FLD.S, FST.S << 2

PTA, PTB << 2

LD.Q, ST.Q << 3

FLD.D, FST.D << 3

FLD.P, FST.P << 3

ALLOCO, ICBI, OCBI, OCBP,
OCBWB, PREFI

<< 5

Table 1:

 05-ASM-10001 v1.0 SuperH, Inc. 5/9

SH-5 Common Assembly Language Syntax 2 Syntax rules

2.2.4 SHmedia branch targets

In SH-5 assembly language (both SHmedia and SHcompact), every label reference is implicitly
treated as

BranchTarget(label)

unless the programmer explicitly writes

DATALABEL label

in which case the reference is treated as

DataLabel(label)

where

DATALABEL is an operator recognized by the assembler. It may also be spelled entirely in lower
case, that is, datalabel. As for instruction mnemonics and register names, an implementation is
allowed to accept mixed case, for example, DataLabel, as an extension to the common assembly
syntax subset.

SHcompact instruction
Scaling applied to

immediate operand

MOV.W @(disp,PC),Rn
MOV.W @(disp,Rm),R0
MOV.W @(disp.GBR),R0
MOV.W R0.@(disp,Rn)
MOV.W R0,@(disp,GBR)

<< 1

BF, BT, BRA, BSR << 1

MOV.L @(disp,PC),Rn
MOV.L @(disp,Rm),Rn
MOV.L @(disp,GBR),R0
MOVA @(disp,PC),R0
MOV.L Rm,@(disp,Rn)
MOV.L R0,@(disp,GBR)

<< 2

Table 2:

BranchTarget(x) = (value(x) BITOR 1) if shmedia(x) is TRUE,

= value(x) if shmedia(x) is FALSE

DataLabel(x) = value(x)

value(x), for some symbol x, is the symbol’s value, as contained in the ELF st_value
field,

shmedia(x), for some symbol x, is TRUE if the symbol is an SHmedia symbol, or more
exactly, if the STO_SH5_ISA32 bit is set in the ELF st_other field.

2 Syntax rules SH-5 Common Assembly Language Syntax

6/9 SuperH, Inc. 05-ASM-10001 v1.0

Relocations need to take into account whether a label reference is a BranchTarget reference or a
DataLabel reference, for example

.long DATALABEL label

can be relocated using R_SH_DIR32, but for

.long label + addend

the reference to label is treated as BranchTarget(label), and needs a relocation for
BranchTarget(S)+A, where S is label and A is addend.

Note: It is the reference that specifies whether a label is to be used as a branch target or as the address
of a piece of data, so a single label definition can be used as a branch target in one reference, and
as a data label in another reference.

Examples

1 Literal pool entry to be used as a branch target.

.long label

The reference to label will be treated as a branch target. If label is an SHmedia symbol then the
bottom bit of the value inserted will be set.

Note: The behavior of the .long directive is to append a 32-bit value to the current section. This is only an
example: this document places no requirement upon the spelling of the name of such a directive.

2 Longword containing the address of the instruction at label (for example, debug information).

.long DATALABEL label

The reference to label will not be treated as a branch target due to the use of the DATALABEL
operator, so the value inserted will be the address labelled by label.

3 Calling a function from SHcompact code.

This will work whether function is an SHcompact function or an SHmedia function, as the
reference to function in the literal pool is treated as a branch target.

 MOV.L litpool,R0
 JSR @R0
 ...
litpool:
 .long function

4 Absolute call of a function from SHmedia code.

This will work whether function is an SHcompact function or an SHmedia function, as the
reference to function used in the SHORI instruction will be treated as a branch target and will
have the bottom bit set if function is an SHmedia function. JSR is a pseudo-op described in
Section 2.2.5.

 MOVI (function >> 16) & 65535,R0
 SHORI function & 65535, R0
 PTABS R0,TR0
 JSR TR0

Note: This document does not specify the syntax of hexadecimal constants, so the decimal constant
65535 rather than hexadecimal FFFF has been used in this example.

 05-ASM-10001 v1.0 SuperH, Inc. 7/9

SH-5 Common Assembly Language Syntax 2 Syntax rules

5 Relative call of a function from SHmedia code.

This will work whether function is an SHcompact function or an SHmedia function, as the
reference to function used in the MOVI instruction will be treated as a branch target. Note
the use of the datalabel operator to ensure that the reference to lab is not treated as a
branch target.

 MOVI (function - DATALABEL lab), R0
lab:
 PTREL R0,TR0
 JSR TR0

6 Relative call of a nearby function from SHmedia code.

PT is a pseudo-op described in Section 2.2.5. This will work whether function is an
SHcompact function or an SHmedia function, as the PT pseudo-op will expand to PTA if
function is an SHmedia function, or PTB if function is an SHcompact function.

 PT function,TR0
 JSR TR0

2.2.5 Pseudo-ops

The following pseudo-operations shall be supported, and will be expanded to an appropriate
sequence of instructions by all toolchains. The register R25 is reserved by the ABI for use in such
expansions.

PT label,TRa This pseudo-op will be expanded into either a PTA or a PTB instruction,
depending on whether the instruction at label is an SHmedia or an
SHcompact instruction.

MOV Rm,Rd In SHmedia code this pseudo-op will be expanded into the most efficient
instruction that performs a register copy operation on the target processor. For
the SH-5, this is ORI Rm,0,Rd.

JMP TRb In SHmedia code this pseudo-op will be expanded into the most efficient
instruction that performs an unconditional branch on the target processor. For
the SH-5, this is BLINK TRb,R63.

JSR TRb In SHmedia code this pseudo-op will be expanded into the most efficient
instruction that performs a subroutine call on the target processor. For the SH-
5, this is BLINK TRb,R18.

RTS TRb In SHmedia code this pseudo-op will be expanded into the most efficient
instruction that performs a subroutine return on the target processor. For the
SH-5, this is BLINK TRb,R63.

2.3 Expressions

2.3.1 Symbols

Toolchains should accept symbol names that consist of an alphabetic or underscore character,
followed by a sequence of alphanumeric or underscore characters.

2 Syntax rules SH-5 Common Assembly Language Syntax

8/9 SuperH, Inc. 05-ASM-10001 v1.0

2.3.2 Program counter ($)

The symbol $ is a special symbol representing the program counter of the current instruction or
directive.

References to $ are treated just as references to labels, i.e. as BranchTarget($), unless the
DATALABEL operator is used explicitly. This means that in SHmedia code, bit 0 of $ will always be
set. The following are synonymous:

MOVI lab-$,R40

tmplab: MOVI lab-tmplab,R40

Examples

1 This is a (rather contrived) example of performing a position-independent function call from
SHcompact code. It will work whether function is an SHmedia function or an SHcompact
function:

 MOVA litpool,R1
 MOV.L @R1,R0
 ADD R1,R0
 BSRF R0
 ...
litpool:
 .long function - DATALABEL $

2.3.3 Operators

The following expression operators shall be accepted:

+ - << >> ~ & | * /

They shall have the same meaning and operator precedence as is defined for the C language.

SH-5 Common Assembly Language Syntax

9/9 SuperH, Inc. 05-ASM-10001 v1.0

SuperH, Inc.

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the consequences of use
of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. SuperH, Inc. products are not authorized for

use as critical components in life support devices or systems without the express written approval of SuperH, Inc.

 is a registered trademark of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by Hitachi Ltd.

© 2002 SuperH, Inc. All Rights Reserved.

SuperH, Inc.
San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

www.superh.com

http://www.superh.com/

	Introduction
	Scope and aims
	Reference

	1 General principles
	2 Syntax rules
	2.1 Instructions
	2.1.1 Instruction mnemonics

	2.2 Instruction operands
	2.2.1 Register names
	2.2.2 Immediate operands
	2.2.3 Scaled operands
	2.2.4 SHmedia branch targets
	2.2.5 Pseudo-ops

	2.3 Expressions
	2.3.1 Symbols
	2.3.2 Program counter ($)
	2.3.3 Operators

