z/Architecture

Principles of Operation

SA22-7832-02

z/Architecture

Principles of Operation

SA22-7832-02

Note:

Before using this information and the product it supports, be sure to read the general information under FNotices” on page Xviil

— Softcopy Note:

The reader should be aware of the fact that this publication contains many symbols, such as superscripts, that may not display
correctly with any given hardware or software. The definitive version of this publication is the hardcopy version.

Third Edition (June, 2003)
This edition obsoletes and replaces z/Architecture Principles of Operation, SA22-7832-01.

This publication is provided for use in conjunction with other relevant IBM publications, and IBM makes no warranty, express or
implied, about its completeness or accuracy. The information in this publication is current as of its publication date but is subject to
change without notice.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department 55JA Mail Station P384

2455 South Road

Poughkeepsie, N.Y., 12601-5400

United States of America

FAX (United States and Canada): 1-845-432-9405

FAX (Other Countries): Your International Access Code + 1-845-432-9405
IBMLink (United States customers only): IBMUSM10(MHVRCFS)

Internet e-mail: mhvrcfs @us.ibm.com

World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webgs.html

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990-2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Xvii
Trademarks XVii
Preface Xix

Size and Number Notation XX

Bytes, Characters, and Codes XXi

Other Publications XXi
Summary of Changes in Third Edition XXii
Summary of Changes in Second Edition . . . xxiii
Chapter 1. Introduction 1-1
Highlights of Original z/Architecture 1-1

General Instructions for 64-Bit Integers . . 1-2

Other New General Instructions 1-2
Floating-Point Instructions 1-4
Control Instructions 1-4
Trimodal Addressing 1-4
Modal Instructions 1-5
Effects on Bits 0-31 of a General
Register 1-5
Input/Output 1-5
Additions to z/Architecture 1-6
Extended-Translation Facility 2 1-7

HFP Multiply-and-Add/Subtract Facility . . 1-7
Message-Security Assist 1-7
Long-Displacement Facility
Extended-1/0-Measurement-Block Facility .1-8
Extended-1/0-Measurement-Word Facility .1-8

The ESA/390Base 1-8
The ESA/370 and 370-XA Base 1-14
System Program 1-16
Compatibility 1-16
Compeatibility among z/Architecture
Systems 1-16
Compatibility between z/Architecture and
ESA/390 1-16
Control-Program Compatibility 1-16
Problem-State Compatibility 1-16
Availability oo 1-17
Chapter 2. Organization 2-1
Main Storage 2-2
Expanded Storage 2-2
CPU 2-2
PSW 2-3
General Registers 2-3
Floating-Point Registers 2-3
Floating-Point-Control Register 2-4
Control Registers 2-4
Access Registers 2-4

© Copyright IBM Corp. 1990-2003

Cryptographic Facility
External Time Reference
VO

Channel Subsystem

Channel Paths

I/0 Devices and Control Units
Operator Facilities

Chapter 3. Storage
Storage Addressing
Information Formats
Integral Boundaries
Address Types and Formats
Address Types
Absolute Address
Real Address
Virtual Address
Primary Virtual Address
Secondary Virtual Address
AR-Specified Virtual Address
Home Virtual Address
Logical Address
Instruction Address
Effective Address
Address Size and Wraparound
Address Wraparound
Storage Key
Protection
Key-Controlled Protection
Storage-Protection-Override Control
Fetch-Protection-Override Control
Access-List-Controlled Protection
Page Protection
Low-Address Protection
Suppression on Protection
Reference Recording
Change Recording
Prefixing
Address Spaces
Changing to Different Address Spaces .
Address-Space Number
ASN Translation
ASN-Translation Controls
Control Register 14
ASN-Translation Tables
ASN-First-Table Entries
ASN-Second-Table Entries
ASN-Translation Process
ASN-First-Table Lookup
ASN-Second-Table Lookup

Recognition of Exceptions during ASN

Translation 3-23
ASN Authorization 3-23
ASN-Authorization Controls 3-23
Control Register 4 3-23
ASN-Second-Table Entry 3-24
Authority-Table Entries 3-24
ASN-Authorization Process 3-24
Authority-Table Lookup 3-25
Recognition of Exceptions during ASN
Authorization 3-26
Dynamic Address Translation 3-26
Translation Control 3-28
Translation Modes 3-28
Control Register0 3-29
Control Register 1 3-29
Control Register 7 3-30
Control Register 13 3-31
Translation Tables 3-31
Region-Table Entries 3-32
Segment-Table Entries 3-33
Page-Table Entries 3-33
Translation Process 3-34
Inspection of Real-Space Control 3-39

Inspection of Designation-Type Control 3-39
Lookup in a Table Designated by an

Address-Space-Control Element . . 3-39
Lookup in a Table Designated by a
Region-Table Entry 3-41
Page-Table Lookup 3-42
Formation of the Real Address 3-42
Recognition of Exceptions during
Translation 3-42
Translation-Lookaside Buffer 3-43
TLB Structure 3-43
Formation of TLB Entries 3-43
Use of TLB Entries 3-44
Modification of Translation Tables . . . 3-45
Address Summary L. 3-48
Addresses Translated 3-48
Handling of Addresses 3-48
Assigned Storage Locations 3-51
Chapter 4. Control 4-1
Stopped, Operating, Load, and Check-Stop
States 4-1
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-3
Program-Status Word 4-3
Program-Status-Word Format 4-5
Control Registers 4-7
Tracing 4-10

iV z/Architecture Principles of Operation

Control-Register Allocation 4-13
Trace Entries 4-13
Operation 4-23
Program-Event Recording 4-24
Control-Register Allocation and
Address-Space-Control Element 4-24
Operation 4-25
Identification of Cause 4-26
Priority of Indication 4-28
Storage-Area Designation 4-30
PEREvents 4-30
Successful Branching 4-30
Instruction Fetching 4-31
Storage Alteration 4-31
Store Using Real Address 4-32
Indication of PER Events Concurrently
with Other Interruption Conditions . . . 4-32
Timing 4-36
Time-of-Day Clock 4-36
Format 4-36
States 4-36
Changes in Clock State 4-37
Setting and Inspecting the Clock 4-37
TOD Programmable Register 4-38
TOD-Clock Synchronization 4-40
Clock Comparator 4-41
CPU Timer 4-42
Externally Initiated Functions 4-43
Resets 4-43
CPUReset 4-47
Initial CPU Reset 4-48
Subsystem Reset 4-48
ClearReset 4-48
Power-On Reset 4-49
Initial Program Loading 4-50
Store Status 4-50
Multiprocessing 4-51
Shared Main Storage 4-51
CPU-Address Identification 4-51
CPU Signaling and Response 4-52
Signal-Processor Orders 4-52
Conditions Determining Response 4-55

Conditions Precluding Interpretation of

the Order Code 4-55
Status Bits 4-56
Chapter 5. Program Execution 5-1
Instructions L 5-2
Operands 5-2
Instruction Formats 5-3
Register Operands 5-6
Immediate Operands 5-6
Storage Operands 5-7
Address Generation 5-7

Instruction Execution and Sequencing

Authorization Mechanisms

Trimodal Addressing
Sequential Instruction-Address Generation
Operand-Address Generation
Formation of the Intermediate Value . .
Formation of the Operand Address . . .
Branch-Address Generation
Formation of the Intermediate Value
Formation of the Branch Address . . .

Decision Making
Loop Control
Subroutine Linkage without the Linkage
Stack
Simple Branch Instructions
Other Linkage Instructions
Interruptions
Types of Instruction Ending
Completion
Suppression
Nullification
Termination
Interruptible Instructions
Point of Interruption
Unit of Operation
Execution of Interruptible Instructions
Condition-Code Alternative to
Interruptibility
Exceptions to Nullification and
Suppression
Storage Change and Restoration for
DAT-Associated Access Exceptions
Modification of DAT-Table Entries
Trial Execution for Editing Instructions
and Translate Instruction

Mode Requirements
Extraction-Authority Control
PSW-Key Mask
Secondary-Space Control

Subsystem-Linkage Control
ASN-Translation Control
Authorization Index

PC-Number Translation

PC-Number Translation Control
Control Register5
PC-Number Translation Tables
Linkage-Table Entries
Entry-Table Entries
PC-Number-Translation Process
Obtaining the Linkage-Table
Designation
Linkage-Table Lookup
Entry-Table Lookup

.5-8
5-8
5-8

5-9
5-9

. 5-10
. 5-10

5-10
5-11

5-11
5-11
5-15
5-20
5-20
5-20
5-20
5-21
5-21
5-21
5-21
5-21

. 5-21

5-22

5-23

5-23

. 5-24

5-24
5-24
5-25
5-25
5-25
5-26
5-26
5-26
5-26
5-30
5-30
5-30
5-30
5-30
5-31
5-32

5-33
5-34
5-34

Recognition of Exceptions during

Contents

PC-Number Translation 5-34
Home Address Space 5-35
Access-Register Introduction 5-35

Summary 5-36
Access-Register Functions 5-36
Access-Register-Specified Address
Spaces 5-36
Access-Register Instructions 5-43
Access-Reqgister Translation 5-44
Access-Register-Translation Control 5-44
Control Register2 5-44
Control Register5 5-44
Control Register8 5-44
Access Registers 5-45
Access-Register-Translation Tables 5-45
Dispatchable-Unit Control Table and
Access-List Designations 5-46
Access-List Entries 5-47
ASN-Second-Table Entries 5-48
Access-Register-Translation Process 5-49
Selecting the Access-List-Entry Token . 5-52
Obtaining the Primary or Secondary
Address-Space-Control Element 5-52
Checking the First Byte of the ALET . . 5-52
Obtaining the Effective Access-List
Designation 5-52
Access-List Lookup 5-52
Locating the ASN-Second-Table Entry . 5-53
Authorizing the Use of the Access-List
Entry 5-53
Checking for Access-List-Controlled
Protection 5-54
Obtaining the Address-Space-Control
Element from the ASN-Second-Table
Entry 5-54
Recognition of Exceptions during
Access-Reqgister Translation . 5-54
ART-Lookaside Buffer 5-54
ALB Structure 5-54
Formation of ALB Entries 5-55
Use of ALB Entries 5-55
Modification of ART Tables 5-56
Subspace Groups 5-56
Subspace-Group Tables 5-56
Subspace-Group Dispatchable-Unit
Control Table 5-56
Subspace-Group ASN-Second-Table
Entries 5-58
Subspace-Replacement Operations 5-60
Linkage-Stack Introduction 5-61
Summary 5-61
Linkage-Stack Functions 5-61
Transferring Program Control 5-61

\'}

Branching Using the Linkage Stack
Adding and Retrieving Information
Testing Authorization
Program-Problem Analysis
Linkage-Stack Entry-Table Entries
Linkage-Stack Operations
Linkage-Stack-Operations Control
Control Register 15
Linkage Stack
Entry Descriptors
Header Entries
Trailer Entries
State Entries
Stacking Process
Locating Space for a New Entry .
Forming the New Entry
Updating the Current Entry
Updating Control Register 15
Recognition of Exceptions during the
Stacking Process
Unstacking Process
Locating the Current Entry and
Processing a Header Entry
Checking for a State Entry
Restoring Information
Updating the Preceding Entry
Updating Control Register 15
Recognition of Exceptions during the
Unstacking Process
Sequence of Storage References
Conceptual Sequence
Overlapped Operation of Instruction
Execution
Divisible Instruction Execution
Interlocks for Virtual-Storage References
Interlocks between Instructions
Interlocks within a Single Instruction
Instruction Fetching
ART-Table and DAT-Table Fetches . . .
Storage-Key Accesses
Storage-Operand References
Storage-Operand Fetch References
Storage-Operand Store References
Storage-Operand Update References
Storage-Operand Consistency
Single-Access References
Multiple-Access References
Block-Concurrent References
Consistency Specification
Relation between Operand Accesses
Other Storage References
Relation between Storage-Key Accesses
Serialization
CPU Serialization

Vi z/Architecture Principles of Operation

. . 5-63
. 5-64

5-64
5-65
5-65
5-66
5-68
5-68
5-68
5-68
5-69
5-70
5-71
5-73

. 5-73

5-74
5-75
5-75

5-75
5-76

5-76
5-77
5-77
5-78
5-78

5-78
5-78
5-78

5-79
5-79

. 5-80

5-80

. 5-81

5-82

. 5-84

5-84
5-85

. 5-86
. 5-86
. 5-86

5-87
5-88
5-88
5-89
5-89

. 5-90

5-91

. 5-91

5-91
5-91

Channel-Program Serialization 5-93
Chapter 6. Interruptions 6-1
Interruption Action 6-2

Interruption Code 6-5

Enabling and Disabling 6-6

Handling of Floating Interruption Conditions 6-7

Instruction-Length Code 6-7
ZeroILC 6-7
ILC on Instruction-Fetching Exceptions .6-8
Exceptions Associated with the PSW . . . 6-9
Early Exception Recognition 6-9
Late Exception Recognition 6-10
External Interruption 6-10
Clock Comparator 6-11
CPU Timer 6-11
Emergency Signal 6-12
ETR 6-12
External Call 6-12
InterruptKey, .. 6-12
Malfunction Alert 6-13
Service Signal 6-13
I/O Interruption 6-13
Machine-Check Interruption 6-14
Program Interruption 6-14
Data-Exception Code (DXC) 6-15
Priority of Program Interruptions for
Data Exceptions 6-15
Program-Interruption Conditions 6-15
Addressing Exception 6-15
AFX-Translation Exception 6-19
ALEN-Translation Exception 6-19
ALE-Sequence Exception 6-19
ALET-Specification Exception 6-19
ASCE-Type Exception 6-19
ASTE-Sequence Exception 6-20
ASTE-Validity Exception 6-20
ASX-Translation Exception 6-21
Crypto-Operation Exception 6-21
Data Exception 6-21
Decimal-Divide Exception 6-22

Decimal-Overflow Exception 6-22

Execute Exception 6-22
EX-Translation Exception 6-22
Extended-Authority Exception 6-22
Fixed-Point-Divide Exception 6-23

Fixed-Point-Overflow Exception 6-23

HFP-Divide Exception 6-23
HFP-Exponent-Overflow Exception . . . 6-23
HFP-Exponent-Underflow Exception 6-23
HFP-Significance Exception 6-24
HFP-Square-Root Exception 6-24
LX-Translation Exception 6-24
Monitor Event 6-24

Operand Exception
Operation Exception
Page-Translation Exception
PC-Translation-Specification Exception
PEREvent
Primary-Authority Exception
Privileged-Operation Exception
Protection Exception
Region-First-Translation Exception
Region-Second-Translation Exception
Region-Third-Translation Exception :
Secondary-Authority Exception
Segment-Translation Exception
Space-Switch Event
Special-Operation Exception
Specification Exception
Stack-Empty Exception
Stack-Full Exception
Stack-Operation Exception
Stack-Specification Exception
Stack-Type Exception
Trace-Table Exception
Translation-Specification Exception . . .
Collective Program-Interruption Names . .
Recognition of Access Exceptions
Multiple Program-Interruption Conditions .
Access Exceptions
ASN-Translation Exceptions
Subspace-Replacement Exceptions .
Trace Exceptions
Restart Interruption
Supervisor-Call Interruption
Priority of Interruptions

Chapter 7. General Instructions
Data Format
Binary-Integer Representation
Binary Arithmetic
Signed Binary Arithmetic
Addition and Subtraction
Fixed-Point Overflow
Unsigned Binary Arithmetic
Signed and Logical Comparison
Instructions L.
ADD
ADD HALFWORD
ADD HALFWORD IMMEDIATE
ADD LOGICAL
ADD LOGICAL WITH CARRY
AND
AND IMMEDIATE
BRANCH AND LINK
BRANCH AND SAVE
BRANCH AND SAVE AND SET MODE

BRANCH AND SET MODE 7-24
BRANCH ON CONDITION 7-25
BRANCH ON COUNT 7-26
BRANCH ON INDEX HIGH 7-27
BRANCH ON INDEX LOW OR EQUAL . . 7-27
BRANCH RELATIVE AND SAVE 7-28

BRANCH RELATIVE AND SAVE LONG . 7-28
BRANCH RELATIVE ON CONDITION . . 7-29
BRANCH RELATIVE ON CONDITION

LONG 7-29
BRANCH RELATIVE ON COUNT 7-29
BRANCH RELATIVE ON INDEX HIGH . . 7-30
BRANCH RELATIVE ON INDEX LOW

OREQUAL 7-30
CHECKSUM 7-31
CIPHER MESSAGE (KM) 7-35
CIPHER MESSAGE WITH CHAINING

(KMC) . .. 7-35
COMPARE 7-45
COMPARE AND FORM CODEWORD . . 7-46
COMPARE AND SWAP 7-53
COMPARE DOUBLE AND SWAP 7-53
COMPARE HALFWORD 7-55
COMPARE HALFWORD IMMEDIATE . . 7-55
COMPARE LOGICAL 7-56
COMPARE LOGICAL CHARACTERS

UNDERMASK 7-57
COMPARE LOGICAL LONG 7-58

COMPARE LOGICAL LONG EXTENDED 7-60
COMPARE LOGICAL LONG UNICODE . 7-64

COMPARE LOGICAL STRING 7-67
COMPARE UNTIL SUBSTRING EQUAL . 7-68
COMPRESSION CALL 7-72
COMPUTE INTERMEDIATE MESSAGE

DIGEST (KIMD) 7-84
COMPUTE LAST MESSAGE DIGEST

(KLMD) . . . 7-84
COMPUTE MESSAGE

AUTHENTICATION CODE (KMAC) .. 7-91
CONVERT TOBINARY 7-97
CONVERT TODECIMAL 7-98
CONVERT UNICODE TO UTF-8 7-98
CONVERT UTF-8 TO UNICODE 7-101
COPY ACCESS 7-104
DIVIDEo 7-104
DIVIDE LOGICAL 7-105
DIVIDE SINGLE 7-106
EXCLUSIVEOR 7-106
EXECUTE oo oo 7-107
EXTRACT ACCESS 7-108
EXTRACTPSW 7-109
INSERT CHARACTER 7-109
INSERT CHARACTERS UNDER MASK 7-109
INSERT IMMEDIATE 7-110

Contents Vii

INSERT PROGRAM MASK 7-111 SHIFT RIGHT DOUBLE LOGICAL . .. 7-165

LOAD 7-111 SHIFT RIGHT SINGLE 7-166
LOAD ACCESS MULTIPLE 7-111 SHIFT RIGHT SINGLE LOGICAL 7-166
LOAD ADDRESS 7-112 STORE 7-167
LOAD ADDRESS EXTENDED 7-112 STORE ACCESS MULTIPLE 7-167
LOAD ADDRESS RELATIVE LONG .. 7-113 STORE CHARACTER 7-168
LOAD AND TEST 7-114 STORE CHARACTERS UNDER MASK 7-168
LOADBYTE 7-114 STORE CLOCK 7-169
LOAD COMPLEMENT 7-114 STORE CLOCK EXTENDED 7-170
LOAD HALFWORD 7-115 STORE HALFWORD 7-172
LOAD HALFWORD IMMEDIATE 7-115 STORE MULTIPLE 7-172
LOAD LOGICAL 7-116 STORE MULTIPLEHIGH 7-172
LOAD LOGICAL CHARACTER 7-116 STORE PAIR TO QUADWORD 7-173
LOAD LOGICAL HALFWORD 7-116 STORE REVERSED 7-173
LOAD LOGICAL IMMEDIATE 7-116 SUBTRACT 7-174
LOAD LOGICAL THIRTY ONE BITS . . 7-117 SUBTRACT HALFWORD 7-174
LOAD MULTIPLE 7-117 SUBTRACT LOGICAL 7-175
LOAD MULTIPLE DISJOINT 7-118 SUBTRACT LOGICAL WITH BORROW 7-176
LOAD MULTIPLE HIGH 7-118 SUPERVISOR CALL 7-177
LOAD NEGATIVE 7-118 TEST ADDRESSING MODE 7-177
LOAD PAIR FROM QUADWORD 7-119 TESTANDSET 7-177
LOAD POSITIVE 7-119 TEST UNDER MASK (TEST UNDER

LOAD REVERSED 7-120 MASK HIGH, TEST UNDER MASK

MONITOR CALL 7-121 LOW) 7-178
MOVE 7-121 TRANSLATE 7-179
MOVE INVERSE 7-122 TRANSLATE AND TEST 7-180
MOVELONG 7-123 TRANSLATE EXTENDED 7-181
MOVE LONG EXTENDED 7-127 TRANSLATEONETOONE 7-183
MOVE LONG UNICODE 7-130 TRANSLATE ONE TOTWO 7-183
MOVE NUMERICS 7-134 TRANSLATE TWO TOONE 7-183
MOVE STRING 7-134 TRANSLATE TWO TOTWO 7-183
MOVE WITH OFFSET 7-135 UNPACK 7-188
MOVE ZONES 7-136 UNPACK ASCII 7-189
MULTIPLY 7-136 UNPACK UNICODE 7-190
MULTIPLY HALFWORD 7-137 UPDATETREE 7-191
MULTIPLY HALFWORD IMMEDIATE . . 7-137

MULTIPLY LOGICAL 7-138 Chapter 8. Decimal Instructions 8-1
MULTIPLY SINGLE 7-138 Decimal-Number Formats 8-1
OR 7-139 Zoned Format 8-1
OR IMMEDIATE 7-140 Packed Format 8-1
PACK 7-141 DecimalCodes 8-2
PACKASCII 7-142 Decimal Operations 8-2
PACKUNICODE 7-143 Decimal-Arithmetic Instructions 8-2
PERFORM LOCKED OPERATION . .. 7-144 Editing Instructions 8-3
ROTATE LEFT SINGLE LOGICAL ... 7-159 Execution of Decimal Instructions 8-3
SEARCH STRING 7-160 Other Instructions for Decimal Operands . 8-3
SETACCESS 7-161 Decimal-Operand Data Exception 8-4
SET ADDRESSING MODE 7-161 Instructions 8-4
SET PROGRAM MASK 7-162 ADD DECIMAL 8-5
SHIFT LEFT DOUBLE 7-162 COMPARE DECIMAL 8-6
SHIFT LEFT DOUBLE LOGICAL 7-163 DIVIDE DECIMAL 8-6
SHIFT LEFT SINGLE 7-163 EDIT 8-7
SHIFT LEFT SINGLE LOGICAL 7-164 EDIT AND MARK 8-9
SHIFT RIGHT DOUBLE 7-165 MULTIPLY DECIMAL 8-11

Viii z/Architecture Principles of Operation

SHIFT AND ROUND DECIMAL 8-11

SUBTRACT DECIMAL 8-12
TESTDECIMAL 8-13
ZEROANDADD 8-13
Chapter 9. Floating-Point Overview and
Support Instructions 9-1
Registers And Controls 9-2
Floating-Point Registers 9-2
Additional Floating-Point (AFP)
Registers 9-2
Valid Floating-Point-Register
Designations 9-2
Floating-Point-Control (FPC) Register . . . 9-2
AFP-Register-Control Bit 9-2
Explicit Rounding Methods 9-3
Summary of Rounding Action 9-3
Comparison of BFP and HFP Number
Representations 9-4
BFP and HFP Number Ranges 9-4
Equivalent BFP and HFP Number
Representations 9-4
Instructions 9-6
CONVERT BFP TOHFP 9-8
CONVERT HFP TOBFP 9-9
LOAD 9-10
LOAD ZERO 9-11
STORE 9-11
Summary of All Floating-Point Instructions . . 9-12
Chapter 10. Control Instructions 10-1
BRANCH AND SET AUTHORITY 10-6
BRANCH AND STACK 10-10
BRANCH IN SUBSPACE GROUP 10-13
COMPARE AND SWAP AND PURGE . 10-18
DIAGNOSE 10-19
EXTRACT AND SET EXTENDED
AUTHORITY 10-21
EXTRACT PRIMARY ASN 10-21
EXTRACT SECONDARY ASN 10-21
EXTRACT STACKED REGISTERS . .. 10-22
EXTRACT STACKED STATE 10-23
INSERT ADDRESS SPACE CONTROL 10-26
INSERT PSWKEY 10-27
INSERT STORAGE KEY EXTENDED . 10-27
INSERT VIRTUAL STORAGE KEY ... 10-28
INVALIDATE DAT TABLE ENTRY 10-29
INVALIDATE PAGE TABLE ENTRY . . . 10-33
LOAD ADDRESS SPACE
PARAMETERS 10-35
LOAD CONTROL 10-44
LOAD PSW 10-44
LOAD PSW EXTENDED 10-45
LOAD REAL ADDRESS 10-46

LOAD USING REAL ADDRESS 10-51
MODIFY STACKED STATE 10-51
MOVEPAGE 10-53
MOVE TO PRIMARY 10-55
MOVE TO SECONDARY 10-55
MOVE WITH DESTINATION KEY 10-57
MOVEWITHKEY 10-58
MOVE WITH SOURCE KEY 10-59
PAGEIN 10-60
PAGEOUT 10-61
PROGRAM CALL 10-62
PROGRAM RETURN 10-75
PROGRAM TRANSFER 10-79
PURGEALB 10-85
PURGETLB 10-85
RESET REFERENCE BIT EXTENDED . 10-85
RESUME PROGRAM 10-86
SET ADDRESS SPACE CONTROL . . . 10-89
SET ADDRESS SPACE CONTROL

FAST 10-89
SETCLOCK 10-90
SET CLOCK COMPARATOR 10-91
SET CLOCK PROGRAMMABLE FIELD 10-91
SETCPUTIMER 10-92
SETPREFIX 10-92
SET PSW KEY FROM ADDRESS 10-93
SET SECONDARY ASN 10-93
SET STORAGE KEY EXTENDED 10-97
SET SYSTEM MASK 10-97
SIGNAL PROCESSOR 10-98
STORE CLOCK COMPARATOR 10-99
STORE CONTROL 10-99
STORE CPU ADDRESS 10-100
STORECPUID 10-100
STORECPUTIMER 10-101
STORE FACILITY LIST 10-102
STORE PREFIX 10-102
STORE REAL ADDRESS 10-1083
STORE SYSTEM INFORMATION . . . 10-104

STORE THEN AND SYSTEM MASK . 10-115
STORE THEN OR SYSTEM MASK . . 10-115

STORE USING REAL ADDRESS ... 10-115
TESTACCESS 10-116
TESTBLOCK 10-118
TEST PROTECTION 10-120
TRACE 10-123
TRAP 10-124
Chapter 11. Machine-Check Handling . . . 11-1
Machine-Check Detection 11-2
Correction of Machine Malfunctions 11-2
Error Checking and Correction 11-2
CPURetry 11-2
Effects of CPURetry 11-3

Contents iX

Checkpoint Synchronization
Handling of Machine Checks during
Checkpoint Synchronization
Checkpoint-Synchronization Operations
Checkpoint-Synchronization Action . . .
Channel-Subsystem Recovery
Unit Deletion
Handling of Machine Checks
Validation
Invalid CBC in Storage
Programmed Validation of Storage . .
Invalid CBC in Storage Keys
Invalid CBC in Registers
Check-Stop State
System Check Stop
Machine-Check Interruption
Exigent Conditions
Repressible Conditions
Interruption Action
Point of Interruption
Machine-Check-Interruption Code
Subclass
System Damage
Instruction-Processing Damage
System Recovery
Timing-Facility Damage
External Damage
Degradation
Warning
Channel Report Pending
Service-Processor Damage
Channel-Subsystem Damage
Subclass Modifiers
Backed Up
Delayed Access Exception
Ancillary Report
Synchronous
Machine-Check-Interruption Conditions
Processing Backup
Processing Damage
Storage Errors
Storage Error Uncorrected
Storage Error Corrected
Storage-Key Error Uncorrected
Storage Degradation
Indirect Storage Error
Machine-Check Interruption-Code
Validity Bits
PSW-MWP Validity
PSW Mask and Key Validity
PSW Program-Mask and
Condition-Code Validity
PSW-Instruction-Address Validity . . .
Failing-Storage-Address Validity

X z/Architecture Principles of Operation

11-3
11-3
11-4
11-4
11-4
11-5
11-5
11-6

C11-7

External-Damage-Code Validity 11-21
Floating-Point-Register Validity 11-21
General-Register Validity 11-21
Control-Register Validity 11-21
Storage Logical Validity 11-22
Access-Register Validity 11-22
TOD-Programmable-Register Validity 11-22
Floating-Point-Control-Register
Validity 11-22
CPU-Timer Validity 11-22
Clock-Comparator Validity 11-22
Machine-Check Extended Interruption
Information 11-22
Register-Save Areas 11-22
External-Damage Code 11-23
Failing-Storage Address 11-23
Handling of Machine-Check Conditions 11-23
Floating Interruption Conditions 11-23
Floating Machine-Check-Interruption
Conditions 11-24
Floating I/O Interruptions 11-24
Machine-Check Masking 11-24
Channel-Report-Pending Subclass
Mask 11-24
Recovery Subclass Mask 11-25
Degradation Subclass Mask 11-25
External-Damage Subclass Mask . . . 11-25
Warning Subclass Mask 11-25
Machine-Check Logout 11-25
Summary of Machine-Check Masking 11-25
Chapter 12. Operator Facilities 12-1
Manual Operation 12-1
Basic Operator Facilites 12-1
Address-Compare Controls 12-1
Alter-and-Display Controls 12-2
Architectural-Mode Indicator 12-2
Architectural-Mode-Selection Controls . . . 12-2
Check-Stop Indicator 12-3
IML Controls 12-3
InterruptKey 12-3
Load Indicator 12-3
Load-ClearKey 12-3
Load-NormalKey 12-3
Load-Unit-Address Controls 12-3
Manual Indicator 12-3
Power Controls 12-4
Rate Control 12-4
RestartKey 12-4
StartKey 12-4
StopKey 12-4
Store-Status Key 12-5
System-Reset-Clear Key 12-5
System-Reset-Normal Key 12-5

Test Indicator
TOD-Clock Control
Wait Indicator
Multiprocessing Configurations

Chapter 13. 1/0 Overview
Input/Output (I/O)
The Channel Subsystem
Subchannels
Attachment of Input/Output Devices
Channel Paths
Control Units
I/O Devices
I/O Addressing
Channel-Path Identifier
Subchannel Number
Device Number
Device Identifier
Execution of /0O Operations
Start-Function Initiation
Path Management
Channel-Program Execution
Conclusion of I/0O Operations
I/O Interruptions

Chapter 14. 1/O Instructions
I/O-Instruction Formats
I/O-Instruction Execution
Serialization
Operand Access
Condition Code
Program Exceptions
Instructions
CANCEL SUBCHANNEL
CLEAR SUBCHANNEL
HALT SUBCHANNEL
MODIFY SUBCHANNEL
RESET CHANNEL PATH
RESUME SUBCHANNEL
SET ADDRESS LIMIT
SET CHANNEL MONITOR
START SUBCHANNEL
STORE CHANNEL PATH STATUS
STORE CHANNEL REPORT WORD
STORE SUBCHANNEL
TEST PENDING INTERRUPTION
TEST SUBCHANNEL

Chapter 15. Basic I/O Functions
Control of Basic I/0 Functions
Subchannel-Information Block
Path-Management-Control Word
Subchannel-Status Word

Model-Dependent Area/Measurement

Block Address 15-8
Summary of Modifiable Fields 15-9
Channel-Path Allegiance 15-11
Working Allegiance 15-12
Active Allegiance 15-12
Dedicated Allegiance 15-12
Channel-Path Availability 15-13
Control-Unit Type 15-13
Clear Function 15-14
Clear-Function Path Management 15-14
Clear-Function Subchannel Modification 15-14
Clear-Function Signaling and

Completion 15-15

Halt Function 15-15
Halt-Function Path Management 15-16
Halt-Function Signaling and Completion 15-16

Start Function and Resume Function 15-18
Start-Function and Resume-Function

Path Management 15-19

Execution of I/O Operations 15-21
Blockingof Data 15-22
Operation-Request Block 15-22
Channel-Command Word 15-27
Command Code 15-29
Designation of Storage Area 15-29
Chaining 15-31

Data Chaining 15-33
Command Chaining 15-34
Skipping 15-35
Program-Controlled Interruption 15-35
CCW Indirect Data Addressing 15-36
Suspension of Channel-Program
Execution 15-38
Commands and Flags 15-40
Branching in Channel Programs 15-41
Transfer in Channel 15-41
Command Retry 15-42

Concluding I/O Operations before Initiation 15-42

Concluding I/O Operations during Initiation 15-42

Immediate Conclusion of I/0O Operations . . 15-43

Concluding I/O Operations during Data

Transfer 15-43

Channel-Path-Reset Function 15-45
Channel-Path-Reset-Function Signaling . 15-45
Channel-Path-Reset-Function-

Completion Signaling 15-45
Chapter 16. 1/O Interruptions 16-1
Interruption Conditions 16-2

Intermediate Interruption Condition 16-4
Primary Interruption Condition 16-4
Secondary Interruption Condition 16-4
Alert Interruption Condition 16-4

Contents XI

Priority of Interruptions 16-4

Interruption Action 16-5
Interruption-Response Block 16-6
Subchannel-Status Word 16-6
SubchannelKey 16-8
Suspend Control (S) 16-8
Extended-Status-Word Format (L) . . . 16-8
Deferred Condition Code (CC) 16-8
Format(F) 16-10
Prefetch (P) 16-10

Initial-Status-Interruption Control (I) . . 16-11
Address-Limit-Checking Control (A) . 16-11
Suppress-Suspended Interruption (U) 16-11

Subchannel-Control Field 16-11
Zero Condition Code (2) 16-11
Extended Control (E) 16-11
Path Not Operational (N) 16-12
Function Control (FC) 16-12
Activity Control (AC) 16-13
Status Control (SC) 16-16

CCW-Address Field 16-18

Device-Status Field 16-23

Subchannel-Status Field 16-23
Program-Controlled Interruption 16-23
Incorrect Length 16-23
Program Check 16-24
Protection Check 16-26
Channel-Data Check 16-26
Channel-Control Check 16-27
Interface-Control Check 16-28
Chaining Check 16-29

CountField 16-29

Extended-Status Word 16-32

Extended-Status Format0 16-32
Subchannel Logout 16-32
Extended-Report Word 16-36
Failing-Storage Address 16-37
Secondary-CCW Address 16-38

Extended-Status Format1 16-38

Extended-Status Format2 16-38

Extended-Status Format3 16-39

Extended-Control Word 16-40
Extended-Measurement Word 16-40
Chapter 17. 1/0 Support Functions 17-1
Channel-Subsystem Monitoring 17-1

Channel-Subsystem Timing 17-2
Channel-Subsystem Timer 17-2

Measurement-Block Update 17-3
Measurement Block 17-3
Measurement-Block Format 17-7
Measurement-Block Origin 17-7
Measurement-Block Address 17-8
Measurement-Block Key 17-8

Xii z/Architecture Principles of Operation

Measurement-Block Index 17-8
Measurement-Block-Update Mode . . . 17-8
Measurement-Block-Format Control . . 17-9
Measurement-Block-Update Enable . . 17-9
Control-Unit-Queuing Measurement . . 17-9
Control-Unit-Defer Time 17-9
Device-Active-Only Measurement 17-9
Initial-Command-Response
Measurement 17-10
Time-Interval-Measurement Accuracy 17-10
Device-Connect-Time Measurement . . . 17-10
Device-Connect-Time-Measurement
Mode 17-10
Device-Connect-Time-Measurement
Enable 17-11
Extended Measurement Word 17-11
Extended-Measurement-Word Enable 17-11
Signalsand Resets 17-12
Signals 17-12
Halt Signal 17-12
Clear Signal 17-12
Reset Signal 17-13
Resets 17-13
Channel-Path Reset 17-13
I/O-System Reset 17-13
Externally Initiated Functions 17-17
Initial Program Loading 17-17
Reconfiguration of the /O System 17-20
Status Verification 17-20
Address-Limit Checking 17-20
Configuration Alert 17-21
Incorrect-Length-Indication Suppression . . 17-21
ConcurrentSense 17-21
Channel-Subsystem Recovery 17-21
Channel Report 17-22
Channel-Report Word 17-23
Channel-Subsystem-I/O-Priority Facility . . 17-25

Number of
Channel-Subsystem-Priority Levels 17-26

Chapter 18. Hexadecimal-Floating-Point

Instructions 18-1
HFP Arithmetic 18-1
HFP Number Representation 18-1
Normalization 18-3
HFP Data Format 18-3
Instructions 18-4
ADD NORMALIZED 18-8
ADD UNNORMALIZED 18-10
COMPARE 18-10
CONVERT FROMFIXED 18-11
CONVERTTOFIXED 18-11
DIVIDE 18-12
HALVE 18-13

LOAD AND TEST
LOAD COMPLEMENT
LOAD FP INTEGER

LOAD LENGTHENED
LOAD NEGATIVE
LOAD POSITIVE
LOAD ROUNDED
MULTIPLY
MULTIPLY AND ADD
MULTIPLY AND SUBTRACT
SQUARE ROOT
SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED

Chapter 19. Binary-Floating-Point
Instructions
Binary-Floating-Point Facility
Floating-Point-Control (FPC) Register . . .
IEEE Masks and Flags
FPC DXC Byte
Operations on the FPC Register
BFP Arithmetic
BFP Data Formats
BFP Short Format
BFP Long Format
BFP Extended Format
Biased Exponent
Significand
Values of Nonzero Numbers
Classes of BFP Data
Zeros
Denormalized Numbers
Normalized Numbers
Infinities
Signaling and Quiet NaNs
BFP-Format Conversion
BFP Rounding
Rounding Mode
Normalization and Denormalization
BFP Comparison
Condition Codes for BFP Instructions . . .
Remainder
IEEE Exception Conditions
IEEE Invalid Operation
IEEE Division-By-Zero
IEEE Overflow
IEEE Underflow
IEEE Inexact
Result Figures
Data-Exception Codes (DXC) and
Abbreviations
Instructions
ADD
COMPARE

COMPARE AND SIGNAL
CONVERT FROM FIXED
CONVERT TO FIXED
DIVIDE
DIVIDE TO INTEGER
EXTRACT FPC
LOAD AND TEST
LOAD COMPLEMENT
LOAD FP INTEGER
LOAD FPC
LOAD LENGTHENED
LOAD NEGATIVE
LOAD POSITIVE

LOAD ROUNDED
MULTIPLY o ..
MULTIPLY AND ADD
MULTIPLY AND SUBTRACT
SET FPC
SET ROUNDING MODE
SQUARE ROOT
STORE FPC
SUBTRACT

TEST DATA CLASS

Appendix A. Number Representation and
Instruction-Use Examples
Number Representation
Binary Integers
Signed Binary Integers
Unsigned Binary Integers
Decimal Integers
Hexadecimal-Floating-Point Numbers . . .
Conversion Example
Instruction-Use Examples
Machine Format
Assembler-Language Format
Addressing Mode in Examples
General Instructions
ADD HALFWORD (AH)

AND (N, NC, NI, NR)
NI Example
Linkage Instructions (BAL, BALR, BAS,
BASR, BASSM, BSM)
Other BALR and BASR Examples
BRANCH AND STACK (BAKR)
BAKR Example 1
BAKR Example 2
BAKR Example 3

BRANCH ON CONDITION (BC, BCR)
BRANCH ON COUNT (BCT, BCTR) .
BRANCH ON INDEX HIGH (BXH)
BXH Example 1
BXH Example 2

Contents

xiii

BRANCH ON INDEX LOW OR EQUAL
(BXLE)
BXLE Example 1
BXLE Example2
COMPARE AND FORM CODEWORD
(CFC)
COMPARE HALFWORD (CH)
COMPARE LOGICAL (CL, CLC, CLI,
CLR)
CLC Example
CLIExample
CLR Example
COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM)
COMPARE LOGICAL LONG (CLCL)
COMPARE LOGICAL STRING (CLST)
CONVERT TO BINARY (CVB)
CONVERT TO DECIMAL (CVD)
DIVIDE (D,DR)
EXCLUSIVE OR (X, XC, XI, XR)
XC Example
XI Example
EXECUTE (EX)
INSERT CHARACTERS UNDER MASK
(ICM)
LOAD (L,LR)
LOAD ADDRESS (LA)
LOAD HALFWORD (LH)
MOVE (MVC,MVI)
MVC Example
MVI Example
MOVE INVERSE (MVCIN)
MOVE LONG (MVCL)
MOVE NUMERICS (MVN)
MOVE STRING (MVST)
MOVE WITH OFFSET (MVO)
MOVE ZONES (MVZ)
MULTIPLY (M, MR)
MULTIPLY HALFWORD (MH)
OR(0,0C,0OILOR)
Ol Example
PACK (PACK)
SEARCH STRING (SRST)
SRST Example 1
SRST Example2
SHIFT LEFT DOUBLE (SLDA)
SHIFT LEFT SINGLE (SLA)
STORE CHARACTERS UNDER MASK
(STCM)
STORE MULTIPLE (STM)
TEST UNDER MASK (TM)
TRANSLATE (TR)
TRANSLATE AND TEST (TRT)
UNPACK (UNPK)

XiV z/Architecture Principles of Operation

UPDATE TREE (UPT) A-34
Decimal Instructions A-34
ADD DECIMAL (AP) A-34
COMPARE DECIMAL (CP) A-34
DIVIDE DECIMAL (DP) A-34
EDIT(ED) A-35
EDIT AND MARK (EDMK) A-36
MULTIPLY DECIMAL (MP) A-36
SHIFT AND ROUND DECIMAL (SRP) . A-37
Decimal Left Shift A-37
Decimal Right Shift A-37
Decimal Right Shift and Round A-38
Multiplying by a Variable Power of 10 . A-38
ZERO AND ADD (ZAP) A-38
Hexadecimal-Floating-Point Instructions . . A-39
ADD NORMALIZED (AD, ADR, AE, AER,

AXR) A-39
ADD UNNORMALIZED (AU, AUR, AW,

AWR) A-39
COMPARE (CD, CDR, CE,CER) A-40
DIVIDE (DD, DDR, DE, DER) A-40
HALVE (HDR,HER) A-41

MULTIPLY (MD, MDR, MDE, MDER,

MXD, MXDR, MXR) A-41
Hexadecimal-Floating-Point-Number

Conversion A-42

Fixed Point to Hexadecimal Floating
Point A-42

Hexadecimal Floating Point to Fixed
Point A-42

Multiprogramming and Multiprocessing
Examples, A-43
Example of a Program Failure Using OR

Immediate A-43

Conditional Swapping Instructions (CS,

CDS) A-44
Setting a Single Bit A-44
Updating Counters A-45

Bypassing Post and Wait A-45
Bypass Post Routine A-45
Bypass Wait Routine A-46

Lock/Unlock A-46
Lock/Unlock with LIFO Queuing for

Contentions A-46
Lock/Unlock with FIFO Queuing for
Contentions A-47

Free-Pool Manipulation A-48
PERFORM LOCKED OPERATION (PLO) A-50

Sorting Instructions L. A-51
Tree Format A-51
Example of Use of Sort Instructions . . . A-583

Appendix B. Lists of Instructions B-1

Appendix C. Condition-Code Settings . . C-1 Appendix I. EBCDIC and Other Codes . . . I-1
Appendix G. Table of Powersof 2 G-1 Index X-1

Appendix H. Hexadecimal Tables H-1

Contents XV

XVi z/Architecture Principles of Operation

Notices

References in this publication to IBM* products,
programs or services do not imply that IBM
intends to make these available in all countries in
which IBM operates. Any reference to an IBM
product, program, or service is not intended to
state or imply that only IBM's product, program, or
service may be used. Any functionally equivalent
product, program, or service that does not infringe
any of IBM's intellectual property rights may be
used instead of the IBM product, program, or
service. Evaluation and verification of operation in
conjunction with other products, except those
expressly designated by IBM, is the user's respon-
sibility.

IBM may have patents or pending patent applica-
tions covering subject matter in this document.
The furnishing of this document does not give you
any license to these patents. You can send
license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive,
Armonk, NY, 10504-1785 USA.

© Copyright IBM Corp. 1990-2003

Trademarks

The following terms, denoted by an asterisk (*) at
the first or most prominent occurrence in this pub-
lication, are trademarks of the International Busi-
ness Machines Corporation in the United States or
other countries:

AIX/ESA

BookMaster

CICs

DB2

Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
Enterprise Systems Connection Architecture
ESA/370

ESA/390

ESCON

FICON

IBM

IBMLink

MVS/ESA

0S/390

Processor Resource/Systems Manager
PR/SM

Sysplex Timer

System/370

VM/ESA

z/Architecture

z/OS

Xvii

XViii z/Architecture Principles of Operation

Preface

This publication provides, for reference purposes,
a detailed z/Architecture* description.

The publication applies only to systems operating
as defined by z/Architecture. For systems oper-
ating in accordance with the Enterprise Systems
Architecture/390* (ESA/390%) definition, the IBM
ESA/390 Principles of QOperation, SA22-7201,
should be consulted.

The publication describes each function at the
level of detail needed to prepare an assembler-
language program that relies on that function. It
does not, however, describe the notation and con-
ventions that must be employed in preparing such
a program, for which the user must instead refer
to the appropriate assembler-language publication.

The information in this publication is provided prin-
cipally for use by assembler-language program-
mers, although anyone concerned with the func-
tional details of z/Architecture will find it useful.

This publication is written as a reference and
should not be considered an introduction or a text-
book. It assumes the user has a basic knowledge
of data-processing systems.

All facilities discussed in this publication are not
necessarily available on every model. Further-
more, in some instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain capabilities may
be described or implied that are not offered on
any model. Examples of such capabilities are the
use of a 16-bit field in the subsystem-identification
word to identify the subchannel number, the size
of the CPU address, and the number of CPUs
sharing main storage. The allowance for this type
of extendibility should not be construed as
implying any intention by IBM to provide such
capabilities. For information about the character-
istics and availability of faciliies on a specific
model, see the functional characteristics publica-
tion for that model.

Largely because this publication is arranged for
reference, certain words and phrases appear, of
necessity, earlier in the publication than the prin-
cipal discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index, which indi-
cates the location of the key description.

The information presented in this publication is
grouped in 19 chapters and several appendixes:

Chapter 1, Introduction, highlights the major facili-
ties of z/Architecture.

Chapter 2, Organization, describes the major
groupings within the system — main storage,
expanded storage, the central processing unit
(CPU), the external time reference (ETR), and
input/output — with some attention given to the
composition and characteristics of those
groupings.

Chapter 3, Storage, explains the information
formats, the addressing of storage, and the facili-
ties for storage protection. It also deals with
dynamic address translation (DAT), which,
coupled with special programming support, makes
the use of a virtual storage possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally
initiated operations, for debugging, and for timing.
It deals specifically with CPU states, control
modes, the program-status word (PSW), control
registers, tracing, program-event recording, timing
facilities, resets, store status, and initial program
loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use
of the program-status word (PSW), of branching,
and of interruptions. It contains the principal
description of the advanced address-space facili-
ties that were introduced in ESA/370*. It also
details the aspects of program execution on one

z/Architecture, Enterprise Systems Architecture/390, ESA/390, and ESA/370 are trademarks of the International Business

Machines Corporation.

© Copyright IBM Corp. 1990-2003

Xix

CPU as observed by other CPUs and by channel
programs.

Chapter 6, Interruptions, details the mechanism
that permits the CPU to change its state as a
result of conditions external to the system, within
the system, or within the CPU itself. Six classes
of interruptions are identified and described:
machine-check interruptions, program inter-
ruptions, supervisor-call interruptions, external
interruptions, input/output interruptions, and restart
interruptions.

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data
formats and of all unprivileged instructions except
the decimal and floating-point instructions.

Chapter 8, Decimal Instructions, describes in
detail decimal data formats and the decimal
instructions.

Chapter 9, Floating-Point Overview and Support
Instructions, includes an introduction to the
floating-point operations, detailed descriptions of
those instructions common to both hexadecimal-
floating-point and binary-floating-point operations,
and summaries of all floating-point instructions.

Chapter 10, Control Instructions, contains detailed
descriptions of all of the semiprivileged and privi-
leged instructions except for the I/O instructions.

Chapter 11, Machine-Check Handling, describes
the mechanisms for detecting, correcting, and
reporting machine malfunctions.

Chapter 12, QOperator Facilities, describes the
basic manual functions and controls available for
operating and controlling the system.

Chapters 13-17 of this publication provide a
detailed definition of the functions performed by
the channel subsystem and the logical interface
between the CPU and the channel subsystem.

Chapter 13, I/O Overview, provides a brief

description of the basic components and operation
of the channel subsystem.

XX z/Architecture Principles of Operation

Chapter 14, /O Instructions, contains the

description of the I/O instructions.

Chapter 15, Basic I/O Functions, describes the
basic 1/0O functions performed by the channel sub-
system, including the initiation, control, and con-
clusion of I/0O operations.

Chapter 16, I/O Interruptions, covers /O inter-
ruptions and interruption conditions.

Chapter 17, I/0O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

Chapter 18, Hexadecimal-Floating-Point
Instructions, contains detailed descriptions of the
hexadecimal-floating-point (HFP) data formats and
the HFP instructions.

Chapter 19, Binary-Floating-Point Instructions,
contains detailed descriptions of the binary-
floating-point (BFP) data formats and the BFP
instructions.

The Appendixes include:

¢ Information about number representation

¢ [nstruction-use examples

e Lists of the instructions arranged in several
sequences

¢ A summary of the condition-code settings

¢ A table of the powers of 2

e Tabular information helpful in dealing with
hexadecimal numbers

¢ A table of EBCDIC and other codes.

Size and Number Notation

In this publication, the letters K, M, G, T, P, and E
denote the multipliers 210, 220 230 2406 250 and
260, respectively. Although the letters are bor-
rowed from the decimal system and stand for kilo
(103), mega (108), giga (109), tera (1012), peta
(1015), and exa (1018), they do not have the
decimal meaning but instead represent the power
of 2 closest to the corresponding power of 10.
Their meaning in this publication is as follows:

Symbol Value

K (kilo) 1,024 = 210
M (mega) 1,048,576 = 220
G (giga) 1,073,741,824 = 230
T (tera) 1,099,511,627,776 = 24°
P (peta) 1,125,899,906,842,624 = 25°
E (exa) 1,152,921,504,606,846,976 = 260

The following are some examples of the use of K,
M, G, T, and E:

2,048 is expressed as 2K.

4,096 is expressed as 4K.

65,536 is expressed as 64K (not 65K).
224 js expressed as 16M.

231 js expressed as 2G.

242 is expressed as 4T.

264 is expressed as 16E.

When the words “thousand” and “million” are
used, no special power-of-2 meaning is assigned
to them.

All numbers in this publication are in decimal
unless they are explicitly noted as being in binary
or hexadecimal (hex).

Bytes, Characters, and Codes

Although the System/360 architecture was ori-
ginally designed to support the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC), the
instructions and data formats of the architecture
are for the most part independent of the external
code which is to be processed by the machine.
For most instructions, all 256 possible combina-
tions of bit patterns for a particular byte can be
processed, independent of the character which the
bit pattern is intended to represent. For
instructions which use the zoned format, and for
those few instructions which are dependent on a
particular external code, the instruction TRANS-
LATE may be used to convert data from one code
to another code. Thus, a machine operating in
accordance with z/Architecture can process

EBCDIC, ASCII, or any other code which can be
represented in eight or fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by
considering the bits of the byte to represent a
binary code. Thus, when a byte is said to contain
a zero, the value 00000000 binary, or 00 hex, is
meant, and not the value for an EBCDIC character
“0,” which would be FO hex.

Other Publications

The parallel-I/O interface is described in the publi-
cation IBM System/360 and System/370 I/O Inter-
face Channel to Control Unit Original Equipment
Manufacturers' Information, GA22-6974.

The parallel-l/O channel-to-channel adapter is
described in the publication IBM Enterprise
Systems Architecture/390 Channel-to-Channel
Adapter for the System/360 and System/370 I/O
Interface, SA22-7091.

The Enterprise Systems Connection Architecture®
(ESCON*) 1/O interface, referred to in this publi-
cation along with the FICON I/O interface as the
serial-I/O interface, is described in the publication
IBM Enterprise Systems Architecture/390 ESCON
I/O Interface, SA22-7202.

The FICON 1/O interface is described in the
ANSI® standards document Fibre Channel -
Single-Byte Command Code Sets-2 (FC-SB-2).

The channel-to-channel adapter for the serial-I/O
interface is described in the publication IBM Enter-
prise Systems Architecture/390 ESCON Channel-
to-Channel-Adapter, SA22-7203.

The commands, status, and sense data that are
common to all /O devices that comply with
z/Architecture are described in the publication IBM
Enterprise Systems Architecture/390 Common
I/O-Device Commands and Self Description,
SA22-7204.

The compression facility is described in the publi-
cation IBM Enterprise Systems Architecture/390
Data Compression, SA22-7208. The

Enterprise Systems Connection Architecture and ESCON are trademarks of the International Business Machines Corporation.

ANSI is a registered trademark of the American National Standards Institute.

Preface XXi

z/Architecture form of the COMPRESSION CALL
instruction is described in this publication.

The interpretive-execution facility is described in
the publication IBM 370-XA Interpretive Execution,
SA22-7095.

Summary of Changes in Third
Edition

The current, third edition of this publication differs
from the previous edition principally by containing
the definitions of the DAT-enhancement,
HFP-multiply-add/subtract, and long-displacement
facilities and the message-security assist. The
third edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

¢ In Chapter 3, “Storage”:

— Clarifications are added to the description
of dynamic-address-translation process.

— The primary address-space-control
element (ASCE) in control register 1 is an
attaching ASCE even when the CPU is in
the home-space mode, and the home
ASCE in control register 13 is an attaching

ASCE even when the CPU is in the
secondary-space mode.
¢ In Chapter 4, “Control”:
— The relationships between ETR time

(TOD-clock time), UTC, and International
Atomic Time are described in a program-

ming note on page

— Code 0 of the SIGNAL PROCESSOR set-
architecture order, and also a CPU reset
due to activation of the load normal key,
are changed to save the current
z/Architecture PSW when switching to the
ESA/390 architectural mode. Also, code 2
of the order is added, and this restores,
for CPUs other than the one executing
SIGNAL PROCESSOR, the saved PSW
when switching to the z/Architecture archi-
tectural mode, provided that the saved
PSW has not been set to all zeros by
certain resets.

¢ In Chapter 5, “Program Execution”:

— The RSY, RXY, and SIY instruction
formats are added, and the RSE format is

XXii z/Architecture Principles of Operation

deleted. (Al instructions that were of
format RSE are now referred to as being
of format RSY.)

— The formation of an operand address
using the 20-bit signed displacement of
instructions of formats RSY, RXY, and SIY
is described.

— The results when a PER instruction-
fetching event occurs along with certain
exceptions or exception conditions are

clarified. See [‘Indication of PER Events

Concurrently with Other __Interruption

Conditions” on page 4-32}

— The fetch of the address-space-control
element from the ASN-second-table entry
during access-register translation is
doubleword concurrent as observed by
other CPUs.

— The change bit is not necessarily set to
one currently with the related storage ref-
erence, as observed by other CPUs; it
may be set to one before or after the ref-
erence, within certain limits. See
[Storage-Key Accesses” on page 5-84] for
a detailed description of when the change
bit is set.

— The five instructions of the message-
security assist are added to the list of
instructions having multiple-access refer-
ences.

¢ In Chapter 6, “Interruptions,” the list of condi-
tions causing a specification exception to be
recognized is extended to include those
caused by the message-security assist
instructions.

¢ In Chapter 7, “General Instructions”:

— Thirty-nine instructions provided by the
long-displacement facility are added. With
the exception of the new LOAD BYTE
instruction, the instructions added by the
long-displacement facility have names and
functions that are the same as existing
instructions (but the mnemonics and
opcodes are new). The new instructions
are of formats RSY, RXY, and SIY and
have a 20-bit signed displacement instead
of a 12-bit unsigned displacement.

— All previously existing format-RSE and
format-RXE instructions are changed to be

of formats RSY and RXY, respectively, by
use of a previously unused byte in the
instructions. These changes are not
marked by a bar in the margin.

Five instructions provided by the
message-security assist are added.

¢ In Chapter 9, “Floating-Point Overview and
Support Instructions,” four instructions pro-
vided by the long-displacement facility are
added. These are the LOAD (long and short)
and STORE (long and short) instructions.

¢ In Chapter 10, “Control Instructions”:

The COMPARE AND SWAP AND PURGE
(CSPG) and INVALIDATE DAT TABLE
ENTRY instructions provided by the
DAT-enhancement facility are added.
CSPG operates on a doubleword operand
in storage.

The definition of LOAD ADDRESS SPACE
PARAMETERS is clarified.

The LOAD REAL ADDRESS (LRAY)
instruction provided by the long-
displacement facility is added.

All previously existing format-RSE
instructions are changed to be of format
RSY by use of a previously unused byte
in the instructions. These changes are
not marked by a bar in the margin.

The description of the bits set by STORE
FACILITY LIST is clarified, and new bits
are assigned.

¢ |n Chapter 14, “I/O Instructions”:

The definition of MODIFY SUBCHANNEL
is modified.

The definiton of SET CHANNEL
MONITOR is modified.

¢ In Chapter 15, “Basic I/0O Functions,” the fol-
lowing changes are made to the subchannel-
information-block (SCHIB):

Bit 29 of word 6 of the path-
management-control word (PMCW) is
defined as the measurement-block-format
control.

Bit 30 of word 6 of the PMCW is defined
as the extended-measurement-word-mode
enablement bit.

— The definition of words 10-11 (words 0-1
of the model-dependent area) are
changed to contain a measurement-block

address, when the
extended-l/O-measurement-block facility is
installed.

e In Chapter 16, “l/O Interruptions,” the
interruption-response block (IRB) is extended
to include the extended-measurement word.

¢ In Chapter 17, “I/O Support Functions”:

— The requirement that the measurement
block be updated when secondary status
is accepted is clarified.

— The extended-measurement-block facility
is added.

— The extended-measurement-word facility
is added.

¢ In Chapter 18, “Hexadecimal-Floating-Point
Instructions,” the MULTIPLY AND ADD (four
instructions) and MULTIPLY AND SUBTRACT
(four instructions) instructions provided by the
HFP-multiply-add/subtract facility are added.

The above changes may affect other chapters
besides the ones listed. All technical changes to
the text or to an illustration are indicated by a ver-
tical line to the left of the change.

Summary of Changes in Second
Edition

The second edition of this publication differs from
the previous edition mainly by containing clarifica-

tions and corrections. The significant changes are
as follows:

¢ |n Chapter 1, “Introduction”:

— Summaries of DIVIDE LOGICAL and
MULTIPLY LOGICAL, TEST
ADDRESSING MODE, the set-architecture
order of SIGNAL PROCESSOR, and
STORE FACILITY LIST are added or
improved.

— An extensive summary of the input/output
enhancements placed in z/Architecture is
added.

¢ In Chapter 3, “Storage”:

Preface XXiil

— Definitions of absolute locations 0-23 are — STORE SYSTEM INFORMATION
deleted since they pertain only to an

ESA/390 initial program load. Chapters 13-17 contain many clarifying changes,

all indicated by a vertical line in the margin, in

— The definition of real locations 200-203, addition to the significant changes listed below.
stored in by STORE FACILITY LIST, is
corrected to state that bit 16 indicates the
extended-translation facility 2.

e In Chapter 13, “lI/O Overview,” statements
about the suspend flag in a CCW are clarified
to describe the flag being specified as a one

¢ In Chapter 4, “Control,” a description of unas- and being valid because of a one value of the
signed fields in the PSW is corrected to state suspend control in the associated ORB.

that bit 4 is unassigned and bit 31 is assigned. « In Chapter 14, “l/O Instructions,” the results of

¢ In Chapter 5, “Program Execution,” the RSL MODIFY SUBCHANNEL when the device-
format and an RIL format with an M: field are number-valid bit at the designated subchannel
added. is zero are corrected.

¢ In Chapter 7, “General Instructions”: ¢ In Chapter 15, “Basic I/0O Functions”:

— The definition of BRANCH AND SET — It is clarified that unlimited prefetching of
MODE is corrected to state that bit 63 of data and IDAWs associated with the
the Ri general register remains current and prefetched CCWs is allowed
unchanged in the 24-bit or 31-bit independent of the value of the prefetch
addressing mode; the bit is not set to control in the associated ORB.
zero. — A specified control-unit-priority number is

— The definitions of PACK ASCIl, PACK ignored if the
UNICODE, UNPACK ASCII, and UNPACK channel-subsystem-I/O-priority facility is
UNICODE are clarified. not operational due to an operator action.

— It is clarified that the following instructions — It is clarified that address-limit checking
perform multiple-access references to their applies to data locations and not to
storage operands: locations containing a CCW or IDAW.

- CHECKSUM ¢ In Chapter 16, “I/O Interruptions,” the form of
- COMPARE AND FORM CODEWORD the address stored in the failing-
- CONVERT UNICODE TO UTF-8 storage-address field is described in terms of
- CONVERT UTF-8 TO UNICODE the format-2-IDAW control instead of an

— It is clarified that the following instructions addressing mode.

do not necessarily process their storage ¢ In Chapter 17, “I/O Support Functions”:
operands left to right as observed by other
CPUs: MOVE LONG, MOVE LONG
EXTENDED, and MOVE LONG

— The introduction to the channel-subsystem
monitoring facilities is clarified.

UNICODE. Special padding characters of — References to the measurement block by
MOVE LONG and MOVE LONG the measurement-block-update facility are
EXTENDED specify whether left-to-right single-access references and appear to be
processing should be performed, as word concurrent as observed by CPUs.
observed by other CPUs, and whether the They do not appear to be block concur-
data being moved should or should not be rent.
placed in the caghe for availability for sub- _ The description of the
sequent processing. channel-subsystem-I/O-priority facility is
* In Chapter 10, “Control Instructions,” it is clari- corrected by including mention of control-
fied that the following instructions perform unit priority for fibre-channel-attached
multiple-access references to their storage control units.

operands:

— LOAD ADDRESS SPACE PARAMETERS
- RESUME PROGRAM

The above changes may affect other chapters
besides the ones listed.

XXiV z/Architecture Principles of Operation

Chapter 1. Introduction

Highlights of Original z/Architecture 1-1
General Instructions for 64-Bit Integers 1-2
Other New General Instructions 1-2
Floating-Point Instructions 1-4
Control Instructions 1-4
Trimodal Addressing 1-4

Modal Instructions 1-5
Effects on Bits 0-31 of a General

Register 1-5

Input/Output 1-5

Additions to z/Architecture 1-6
Extended-Translation Facility 2 1-7
HFP Multiply-and-Add/Subtract Facility 1-7
Message-Security Assist 1-7

Long-Displacement Facility 1-8
Extended-1/0O-Measurement-Block Facility .1-8
Extended-1/0-Measurement-Word Facility .1-8
The ESA/390Base 1-8
The ESA/370 and 370-XA Base 1-14
System Program 1-16
Compatibility 1-16
Compatibility among z/Architecture
Systems 1-16
Compatibility between z/Architecture and
ESA/390 L. 1-16
Control-Program Compatibility 1-16
Problem-State Compatibility 1-16
Availability oo 1-17

This publication provides, for reference purposes,
a detailed description of z/Architecture.

The architecture of a system defines its attributes
as seen by the programmer, that is, the concep-
tual structure and functional behavior of the
machine, as distinct from the organization of the
data flow, the logical design, the physical design,
and the performance of any particular implementa-
tion. Several dissimilar machine implementations
may conform to a single architecture. When the
execution of a set of programs on different
machine implementations produces the results
that are defined by a single architecture, the
implementations are considered to be compatible
for those programs.

Highlights of Original
z/Architecture

z/Architecture is the next step in the evolution
from the System/360 to the System/370%,
System/370 extended architecture (370-XA),
Enterprise Systems Architecture/370* (ESA/370),
and Enterprise ~ Systems Architecture/390
(ESA/390). z/Architecture includes all of the facili-
ties of ESA/390 except for the asynchronous-
pageout, asynchronous-data-mover, program-call-

fast, and vector facilities. z/Architecture also pro-
vides significant extensions, as follows:

¢ Sixty-four-bit general registers and control reg-
isters.

¢ A 64-bit addressing mode, in addition to the

24-bit and 31-bit addressing modes of
ESA/390, which are carried forward to
z/Architecture.

Both operand addresses and instruction

addresses can be 64-bit addresses. The
program-status word (PSW) is expanded to 16
bytes to contain the larger instruction address.
The PSW also contains a newly assigned bit
that specifies the 64-bit addressing mode.

e Up to three additional levels of dynamic-
address-translation (DAT) tables, called region
tables, for translating 64-bit virtual addresses.

A virtual address space may be specified
either by a segment-table designation as in
ESA/390 or by a region-table designation, and
either of these types of designation is called
an address-space-control element (ASCE).
An ASCE may alternatively be a real-space
designation that causes virtual addresses to
be treated simply as real addresses without
the use of DAT tables.

¢ An 8K-byte prefix area for containing larger
old and new PSWs and register save areas.

System/370 and Enterprise Systems Architecture/370 are trademarks of the International Business Machines Corporation.

© Copyright IBM Corp. 1990-2003

1-1

¢ A SIGNAL PROCESSOR order for switching
between the ESA/390 and z/Architecture
architectural modes.

Initial program loading sets the ESA/390 archi-
tectural mode. The new SIGNAL
PROCESSOR order then can be used to set
the z/Architecture mode or to return from
z/Architecture to ESA/390. This order causes
all CPUs in the configuration always to be in
the same architectural mode.

¢ Many new instructions, many of which operate
on 64-bit binary integers

Some of the new instructions that do not operate
on 64-bit binary integers have also been added to
ESA/390.

All of the ESA/390 instructions, except for those of
the four facilities named above, are included in
z/Architecture.

The bit positions of the general registers and
control registers of z/Architecture are numbered
0-63. An ESA/390 instruction that operates on bit
positions 0-31 of a 32-bit register in ESA/390
operates instead on bit positions 32-63 of a 64-bit
register in z/Architecture.

z/Architecture was announced in October, 2000.
The remainder of this section summarizes the ori-
ginal contents of z/Architecture. Subsequent addi-
tions are described in FAdditions to z/Architecture’]
on page 1-6}

General Instructions for 64-Bit
Integers

The 32-bit-binary-integer instructions of ESA/390
have new analogs in z/Architecture that operate
on 64-bit binary integers. There are two types of
analogs:

¢ Analogs that use two 64-bit binary integers to
produce a 64-bit binary integer. For example,
the ESA/390 ADD instruction (A for a storage-
to-register operation or AR for a register-to-
register operation) has the analogs AG (adds
64 bits from storage to the contents of a 64-bit
general register) and AGR (adds the contents
of a 64-bit general register to the contents of
another 64-bit general register). These
analogs are distinguished by having “G” in
their mnemonics.

1-2 z/Architecture Principles of Operation

¢ Analogs that use a 64-bit binary integer and a
32-bit binary integer to produce a 64-bit binary
integer. The 32-bit integer is either sign-
extended or extended on the left with zeros,
depending on whether the operation is signed
or unsigned, respectively. For example, the
ESA/390 ADD (A or AR) instruction has the
analogs AGF (adds 32 bits from storage to the
contents of a 64-bit general register) and
AGFR (adds the contents of bit positions
32-63 of a 64-bit general register to the con-
tents of another 64-bit general register).
These analogs are distinguished by having
“GF” in their mnemonics.

Other New General Instructions

The other additional or significantly enhanced
general instructions of z/Architecture are high-
lighted as follows:

e ADD LOGICAL WITH CARRY and SUB-
TRACT LOGICAL WITH BORROW operate
on either 32-bit or 64-bit unsigned binary inte-
gers and include a carry or borrow, as repres-
ented by the leftmost bit of the two-bit condi-
tion code in the PSW, in the computation.
This can improve the performance of oper-
ating on extended-precision integers (integers
longer than 64 bits).

¢ AND IMMEDIATE and OR IMMEDIATE
combine a two-byte immediate operand with
any of the two bytes on two-byte boundaries
in a 64-bit general register.

¢ BRANCH AND SAVE AND SET MODE and
BRANCH AND SET MODE are enhanced so
that they set bit 63 of the R1 general register
to one if the current addressing mode is the
64-bit mode, and they set the 64-bit
addressing mode if bit 63 of the Rz general
register is one. This allows “pointer-directed”
linkages between programs in different
addressing modes, including any of the 24-bit,
31-bit, and 64-bit modes.

¢ BRANCH RELATIVE AND SAVE LONG and
BRANCH RELATIVE ON CONDITION LONG
are like the BRANCH RELATIVE AND SAVE
and BRANCH RELATIVE ON CONDITION
instructions of ESA/390 except that the new
instructions use a 32-bit immediate field. This
increases the target range available through
relative branching.

COMPARE AND FORM CODEWORD is
enhanced so that, in the 64-bit addressing
mode, the comparison unit is six bytes instead
of two and the resulting codeword is eight
bytes instead of four. UPDATE TREE is
enhanced so that, in the 64-bit addressing
mode, a node is 16 bytes instead of eight and
the codeword in a node is eight bytes instead
of four. This improves the performance of
sorting records having long keys.

DIVIDE LOGICAL uses a 64-bit or 128-bit
unsigned binary dividend and a 32-bit or 64-bit
unsigned binary divisor, respectively, to
produce a 32-bit or 64-bit quotient and
remainder, respectively. MULTIPLY LOGICAL
uses a 32-bit or 64-bit unsigned binary multi-
plicand and multiplier to produce a 64-bit or
128-bit product, respectively.

DIVIDE SINGLE divides a 64-bit dividend by a
32-bit or 64-bit divisor and produces a 64-bit
quotient and remainder. MULTIPLY SINGLE
is enhanced so it can multiply a 64-bit multipli-
cand by a 32-bit or 64-bit multiplier and
produce a 64-bit product.

EXTRACT PSW extracts the entire current
PSW to allow determination of the current
machine state, for example, determination of
whether the CPU is in the problem state or
the supervisor state.

INSERT IMMEDIATE inserts a two-byte imme-
diate operand into a 64-bit general register on
any of the two-byte boundaries in the register.
LOAD LOGICAL IMMEDIATE does the same
and also clears the remainder of the register.

LOAD ADDRESS RELATIVE LONG forms an
address relative to the current (unupdated)
instruction address by means of a signed
32-bit immediate field.

LOAD LOGICAL THIRTY ONE BITS places
the rightmost 31 bits of either a general reg-
ister or a word in storage, with 33 zeros
appended on the left, in a general register.

LOAD MULTIPLE DISJOINT loads the left-
most 32 bits of each register in a range of
general registers from one area in storage and
the rightmost 32 bits of each of those registers
from another area in storage. This is for use
in place of a LOAD MULTIPLE HIGH instruc-
tion and a 32-bit LOAD MULTIPLE instruction

when one of the storage areas is addressed
by one of the registers loaded.

LOAD MULTIPLE HIGH and STORE MUL-
TIPLE HIGH load or store the leftmost 32 bits
of each register in a range of general regis-
ters, allowing augmentation of existing pro-
grams that load or store the rightmost 32 bits
by means of LOAD MULTIPLE and STORE
MULTIPLE. (Sixty-four-bit forms of LOAD
MULTIPLE and STORE MULTIPLE also are
provided.)

LOAD PAIR FROM QUADWORD and STORE
PAIR TO QUADWORD operate between an
even-odd pair of 64-bit general registers and a
quadword in storage (16 bytes aligned on a
16-byte boundary). These instructions provide
quadword consistency (all bytes appear to be
loaded or stored concurrently in a
multiple-CPU system). (Only the 64-bit form
of COMPARE DOUBLE AND SWAP also pro-
vides quadword consistency.)

LOAD REVERSED and STORE REVERSED
load or store a two-byte, four-byte, or eight-
byte unit in storage with the left-to-right
sequence of the bytes reversed. LOAD
REVERSED also can move a four-byte or
eight-byte unit between two general registers.
These operations allow conversion between
“little-endian” and “big-endian” formats.

PERFORM LOCKED OPERATION is
enhanced with two more sets of function
codes, with each set providing six different
operations. One of the additional sets pro-
vides operations on 64-bit operands in 64-bit
general registers, and the other provides oper-
ations on 128-bit operands in a parameter list.

ROTATE LEFT SINGLE LOGICAL obtains 32
bits or 64 bits from a general register, rotates
them (the leftmost bit replaces the rightmost
bit), and places the result in another general
register (a nondestructive rotate).

SET ADDRESSING MODE can set any of the
24-bit, 31-bit, and 64-bit addressing modes.

SHIFT LEFT SINGLE, SHIFT LEFT SINGLE
LOGICAL, SHIFT RIGHT SINGLE, and SHIFT
RIGHT SINGLE LOGICAL are enhanced with
64-bit forms that obtain the source operand
from one general register and place the result
operand in another general register (a nonde-
structive shift).

Chapter 1. Introduction 1-3

e TEST ADDRESSING MODE sets the condi-
tion code to indicate whether bits 31 and 32 of
the current PSW specify the 24-bit, 31-bit, or
64-bit addressing mode.

e TEST UNDER MASK HIGH and TEST
UNDER MASK LOW, which are ESA/390
instructions, are given the alternative name
TEST UNDER MASK, and two additional
forms are added so that a two-byte immediate
operand can be used to test the bits of two
bytes located on any of the two-byte bounda-
ries in a 64-bit general register. (The
ESA/390 instruction TEST UNDER MASK,
which uses a one-byte immediate operand to
test a byte in storage, continues to be pro-
vided.)

Floating-Point Instructions

The z/Architecture floating-point instructions are
the same as in ESA/390 except that instructions
are added for converting between 64-bit signed
binary integers and either hexadecimal or binary
floating-point data. These new instructions have
“G” in their mnemonics.

Control Instructions

The new or enhanced control instructions of
z/Architecture are highlighted as follows:

¢ EXTRACT AND SET EXTENDED
AUTHORITY is a privileged instruction for
changing the extended authorization index in
a control register. This enables real-space
designations to be used more efficiently by
means of access lists.

¢ EXTRACT STACKED REGISTERS is
enhanced to extract optionally all 64 bits of
the contents of one or more saved general
registers.

e EXTRACT STACKED STATE is enhanced to
extract optionally the entire contents of the
saved PSW, including a 64-bit instruction
address.

¢ LOAD CONTROL and STORE CONTROL are
enhanced for operating optionally on 64-bit
control registers.

e LOAD PSW wuses an eight-byte storage
operand as in ESA/390 and expands this
operand to a 16-byte z/Architecture PSW.

1-4 z/Architecture Principles of Operation

« LOAD PSW EXTENDED directly loads a
16-byte PSW.

e LOAD REAL ADDRESS in its ESA/390 form
and in the 24-bit or 31-bit addressing mode
operates as in ESA/390 if the translation is
successful and the obtained real address has
a value less than 2G bytes. LOAD REAL
ADDRESS in its ESA/390 form and in the
64-bit addressing mode, or in its enhanced
z/Architecture form in any addressing mode,
loads a 64-bit real address.

e LOAD USING REAL ADDRESS and STORE
USING REAL ADDRESS are enhanced to
have optionally 64-bit operands.

¢ SIGNAL PROCESSOR has a new order that
can be used to switch all CPUs in the config-
uration either from the ESA/390 architectural
mode to the z/Architecture architectural mode
or from z/Architecture to ESA/390. (A system
that is to operate using z/Architecture must
first be IPLed in the ESA/390 mode.)

e STORE FACILITY LIST is a privileged instruc-
tion that stores at real location 200 an indi-
cation of whether z/Architecture is installed
and of whether it is active. This instruction is
added also to ESA/390 and also stores an
indication of whether the new z/Architecture
instructions that have been added to ESA/390
are available. Real location 200 has previ-
ously contained all zeros in most systems and
normally can be examined by a problem-state
program whether or not STORE FACILITY
LIST is installed. The information stored at
real location 200 also indicates whether the
extended-translation facility 2 is installed.

¢ STORE REAL ADDRESS is like LOAD REAL
ADDRESS except that STORE REAL
ADDRESS stores the resulting address
instead of placing it in a register.

e TRACE is enhanced to record optionally the
contents of 64-bit general registers.

Trimodal Addressing

“Trimodal addressing” refers to the ability to switch
between the 24-bit, 31-bit, and 64-bit addressing
modes. This switching can be done by means of:

e The old instructions BRANCH AND SAVE
AND SET MODE and BRANCH AND SET
MODE. Both of these instructions set the

64-bit addressing mode if bit 63 of the R
general register is one. If bit 63 is zero, the
instructions set the 24-bit or 31-bit addressing
mode if bit 32 of the register is zero or one,
respectively.

e The new instruction SET ADDRESSING
MODE (SAM24, SAM31, and SAM64). The
instruction sets the 24-bit, 31-bit, or 64-bit
addressing mode as determined by the opera-
tion code.

Modal Instructions

Trimodal addressing affects the general
instructions only in the manner in which logical
storage addresses are handled, except as follows.

e The instructions BRANCH AND LINK,
BRANCH AND SAVE, BRANCH AND SAVE
AND SET MODE, BRANCH AND SET MODE,
and BRANCH RELATIVE AND SAVE place
information in bit positions 32-39 of general
register R1 as in ESA/390 in the 24-bit or
31-bit addressing mode or place address bits
in those bit positions in the 64-bit addressing
mode. The new instruction BRANCH RELA-
TIVE AND SAVE LONG does the same.

¢ The instructions BRANCH AND SAVE AND
SET MODE and BRANCH AND SET MODE
place a one in bit position 63 of general reg-
ister R1 in the 64-bit addressing mode. In the
24-bit or 31-bit mode, BRANCH AND SAVE
AND SET MODE sets bit 63 to zero, and
BRANCH AND SET MODE leaves it
unchanged.

e Certain instructions leave bits 0-31 of a
general register unchanged in the 24-bit or
31-bit addressing mode but place or update
address or length information in them in the
64-bit addressing mode. These are listed in a
programming note on page [7-6 and are some-
times called modal instructions.

Effects on Bits 0-31 of a General
Register

Bits 0-31 of general registers are changed by two
types of instructions. The first type is a modal
instruction (see the preceding section) when the
instruction is executed in the 64-bit addressing
mode. The second type is an instruction having,
independent of the addressing mode, either a
64-bit result operand in a single general register or
a 128-bit result operand in an even-odd general-
register pair.

Most of the instructions of the second type are
indicated by a “G,” either alone or in “GF,” in their
mnemonics. The other instructions that change or
may change bits 0-31 of a general register regard-
less of the current addressing mode are listed in a
programming note on page All of the
instructions of the second type are sometimes
referred to as “G-type” instructions.

If a program is not executed in the 64-bit
addressing mode and does not contain a G-type
instruction, it cannot change bits 0-31 of any
general register.

Input/Output

Additional I/O functions and facilities are provided
when z/Architecture is installed. They are pro-
vided in both the ESA/390 and the z/Architecture
architectural mode and are as follows:

¢ Indirect data addressing is enhanced by the
provision of a doubleword format-2 IDAW that
is intended to allow operations on data at or
above the 2G-byte absolute-address boundary
in z/Architecture. ~ The previously existing
IDAW, a word containing a 31-bit address, is
now called a format-1 IDAW. The format-2
IDAW contains a 64-bit address. A bit in the
operation-request block (ORB) associated with
a channel program specifies whether the
program uses format-1 or format-2 IDAWs. A
further enhancement is the ability of all
format-2 IDAWs of a channel program to
specify either 2K-byte or 4K-byte data blocks,
as determined by another bit in the ORB. The
use of 4K-byte blocks improves the efficiency
of data transfers.

e The FICON-channel facility provides the capa-
bilities of attaching FICON-I/O-interface and
FICON-converted-1/O-interface channel paths
and of fully utilizing these channel-path types.
FICON channel paths can significantly
enhance overall data throughput by providing
increased data-transfer rates in comparison to
ESCON channel paths and by allowing mul-
tiple commands and associated data to be
“streamed” to control units, thus further
improving performance. The facility supports
the following additional control mechanisms:

— The modification-control bit in the ORB
allows the program to optimize the per-

Chapter 1. Introduction 1-5

formance of FICON channel paths when
dynamically modifying channel programs.

— The synchronization-control bit in the ORB
ensures data integrity along with
maximum channel-path performance by
delaying the execution of a write
command until the completion of an imme-
diately preceding read command when
performing unlimited prefetching of CCWs
and when the data to be written may be
the data read.

— The streaming-mode-control bit in the
ORB allows the program to prevent
command streaming in cases that require
such prevention.

— The secondary-CCW-address field in the
extended-status word assists in the
recovery of channel programs that termi-
nate abnormally when command
streaming to a control unit is being
perfomed. The field identifies a CCW that
failed at the control unit.

The ORB-extension facility expands the size
of the ORB from three words to eight words.
This makes fields available for use by the
channel-subsystem-I/O-priority facility.

The channel-subsystem-I/O-priority facility
allows the program to establish a priority
relationship among subchannels that have
pending 1/O operations. The priority relation-
ship specifies the order in which I/O oper-
ations are initiated by the channel subsystem.
Additionally, for fibre-channel-attached control
units, the facility allows the program to specify
the priority in which 1/O operations pending at
the control unit are performed.

The input/output enhancements are further high-
lighted below by describing how they affect the 1/0
chapters.

1-6

In Chapter 13, “l/O Overview,” FICON and
FICON-converted 1/0O interfaces and the
frame-multiplex mode are introduced.

In Chapter 14, “I/O Instructions”:

— The CANCEL SUBCHANNEL instruction
is described.

— TEST PENDING INTERRUPTION, when
the second-operand address is zero,

z/Architecture Principles of Operation

stores a three-word |/O-interruption code
at real locations 184-195. The new third
word contains an interruption-identification
word that further identifies the source of
the 1/O interruption.

¢ In Chapter 15, “Basic I/O Functions”:

— The ORB is extended to eight words and
newly contains a streaming-mode control,
modification control, synchronization
control, format-2-IDAW control, 2K-IDAW
control, ORB-extension control, channel-
subsystem priority, and control-unit pri-
ority.

— A doubleword format-2 IDAW and 4K-byte
data blocks optionally designated by
format-2 IDAWSs are added.

¢ In Chapter 16, “I/O Interruptions”:

— A secondary-CCW-address-validity bit and
failing-storage-address-format ~ bit are
added to the extended-report word.

— A two-word failing-storage address and a
secondary-CCW address are added to the
format-0 extended-status word.

¢ |n Chapter 17, “I/O Support Functions”:

— Control-unit-defer time is added. This has
an effect on the device-connect time and
device-disconnect time in the measure-
ment block.

— References to the measurement block by
the measurement-block-update facility are
single-access references and appear to be
word concurrent as observed by CPUs.

— Device-active-only time is added to the
measurement block.

— The channel-subsystem-I/O-priority facility,
providing channel-subsystem priority and
control-unit priority, is added.

Additions to z/Architecture

z/Architecture was announced in October, 2000.
Any extension added subsequently is summarized
below and has the date of its announcement at
the end of its summary.

Extended-Translation Facility 2

The extended-translation facility 2 may be avail-
able on a model implementing z/Architecture. The
facility performs operations on double-byte, ASCII,
and decimal data. The double-byte data may be
Unicode™ data — data that uses the binary
codes of the Unicode Worldwide Character
Standard and enables the use of characters of
most of the world's written languages. The facility
provides the following instructions:

COMPARE LOGICAL LONG UNICODE
MOVE LONG UNICODE
PACK ASCII

PACK UNICODE

TEST DECIMAL
TRANSLATE ONE TO ONE
TRANSLATE ONE TO TWO
TRANSLATE TWO TO ONE
TRANSLATE TWO TO TWO
UNPACK ASCII

UNPACK UNICODE

The extended-translation facility 2 is called facility
2 since an extended-translation facility, now called
facility 1, was introduced in ESA/390. Facility 1 is
standard in z/Architecture. Facility 1 provides the
instructions:

CONVERT UNICODE TO UTF-8
CONVERT UTF-8 TO UNICODE
TRANSLATE EXTENDED

For when either or both of facility 1 and facility 2
are not installed on the machine, both facilities are
simulated by the MVS CSRUNIC macro instruc-
tion, which is provided in OS/390* Release 10 and
z/OS*.

0S/390 MVS Assembler Services Reference,
GC28-1910-10, contains programming require-
ments, register information, syntax, return codes,
and examples for the CSRUNIC macro instruction.

When CSRUNIC is used, the program exceptions
listed in this publication do not cause program
interruptions; instead, the exception conditions are

Unicode is a trademark of Unicode, Inc.

indicated by CSRUNIC by means of return codes,
as described in GC28-1910-10.

(October, 2000)

HFP Multiply-and-Add/Subtract
Facility

The HFP-multiply-add/subtract facility provides
instructions for improved processing of
hexadecimal floating-point numbers. The MUL-
TIPLY AND ADD (or SUBTRACT) instruction is
intended to be used in place of MULTIPLY fol-
lowed by ADD (or SUBTRACT) NORMALIZED.
(October, 2001)

Message-Security Assist

The message-security assist (MSA) may be avail-
able on a model implementing z/Architecture. The
MSA basic facility includes the following
instructions:

e CIPHER MESSAGE

e CIPHER MESSAGE WITH CHAINING

e COMPUTE INTERMEDIATE MESSAGE
DIGEST

¢ COMPUTE LAST MESSAGE DIGEST

¢ COMPUTE MESSAGE AUTHENTICATION
CODE

Also included are five query functions and two
functions for generating a message digest based
on the secure-hash algorithm (SHA-1). The five
query functions, one for each instruction, are used
to determine the additional installed MSA facilities,
which may include the following.

MSA Data-Encryption-Algorithm (DEA) Facility:
The MSA DEA facility consists of nine functions
for ciphering messages, with or without chaining,
and for generating a message-authentication code
(MAC) wusing a 56-bit, 112-bit, or 168-bit
cryptographic key.'" All of these functions are
based on the DEA algorithm.

(June, 2003)

0S/390 and z/OS are trademarks of the International Business Machines Corporation.

1 These key lengths reflect the cryptographic strength.
respectively, to include the DEA-key-parity bits.

In subsequent chapters, they are referred to as 64-bit, 128-bit, or 192-bit,

1-7

Chapter 1. Introduction

Long-Displacement Facility

The long-displacement facility provides a 20-bit
signed-displacement field in 69 previously existing
instructions (by using a previously unused byte in
the instructions) and 44 new instructions. A 20-bit
signed displacement allows relative addressing of
up to 524,287 bytes beyond the location desig-
nated by a base register or base-and-
index-register pair and up to 524,288 bytes before
that location. The enhanced previously existing
instructions generally are ones that handle 64-bit
binary integers. The new instructions generally
are new versions of instructions for 32-bit binary
integers. The new instructions also include (1) a
LOAD BYTE instruction that sign-extends a byte
from storage to form a 32-bit or 64-bit result in a
general register and (2) new floating-point LOAD
and STORE instructions. The long-displacement
facility provides register-constraint relief by
reducing the need for base registers, code size
reduction by allowing fewer instructions to be
used, and additional improved performance
through removal of possible address-generation
interlocks. (June, 2003)

Extended-I/O-Measurement-Block
Facility

The extended-lI/O-measurement-block facility may
be available on models implementing
z/Architecture. The facility includes the following
features:

e A new format of the channel-measurement
block. The new measurement block, termed a
format-1 channel-measurement block, is
expanded to 64 bytes and is addressed using
a separate measurement-block address for
each subchannel. The new measurement-
block format provides additional measurement
information and the flexibility to store the
measurement blocks in non-contiguous, real
storage.

e The previously existing channel-measurement
block is termed a format-0 channel-
measurement block. A device-busy-time field
is added to the format-0 channel-
measurement block.

(June, 2003)

1-8

z/Architecture Principles of Operation

Extended-l/O-Measurement-Word
Facility

The extended-1/0O-measurement-word facility may
be available on models implementing
z/Architecture. The extended-measurement-word
(EMW) is an extension to the interruption-
response block (IRB) and allows channel-
measurement data to be provided on an I/O oper-
ation basis. This reduces program overhead by
alleviating the previous requirement that the
program fetch the measurement block before and
after an operation and calculate the difference
between the respective measurement data values.
(June, 2003)

The ESA/390 Base

z/Architecture includes all of the facilities of
ESA/390 except for the asynchronous-pageout,
asynchronous-data-mover, program-call-fast, and
vector facilities. This section briefly outlines most
of the remaining facilities that were additions in
ESA/390 as compared to ESA/370.

ESA/390 is described in Enterprise Systems
Architecture/390 Principles of Operation,
SA22-7201.

The CPU-related facilities that were new in
ESA/390 are summarized below. ESA/390 was
announced in September, 1990. Any extension
added subsequently has the date of its announce-
ment in parentheses at the end of its summary.

The following extensions are described in detail in
SA22-7201 and in this publication:

e Access-list-controlled protection allows store-
type storage references to an address space
to be prohibited by means of a bit in the
access-list entry used to access the space.
Thus, different users having different access
lists can have different capabilities to store in
the same address space.

e The program-event-recording facility 2 (PER
2) is an alternative to the original PER facility,
which is now named PER 1. (Neither of the
names PER 1 and PER 2 is used in
z/Architecture; only “PER” is used.) PER 2
provides the option of having a successful-
branching event occur only when the branch
target is within the designated storage area,

and it provides the option of having a storage-
alteration event occur only when the storage
area is within designated address spaces.
The use of these options improves perform-
ance by allowing only PER events of interest
to occur. PER 2 deletes the ability to monitor
for general-register-alteration events.

PER 2 includes extensions that provide addi-
tional information about PER events. The
extensions were described in detail beginning
in the fourth edition of SA22-7201.

Concurrent sense improves performance by
allowing sense information to be presented at
the time of an interruption due to a unit-check
condition, thus avoiding the need for a sepa-
rate I/O operation to obtain the sense informa-
tion.

Broadcasted purging provides the COMPARE
AND SWAP AND PURGE instruction for con-
ditionally updating tables associated with
dynamic address translation and access-
register translation and clearing associated
buffers in multiple CPUs. This is described in
detail beginning in the eighth edition of
SA22-7201.

Storage-protection override provides a new
form of subsystem storage protection that
improves the reliability of a subsystem exe-
cuted in an address space along with possibly
erroneous application programs. When
storage-protection override is made active by
a control-register bit, fetches and stores by the
CPU are permitted to storage locations having
a storage key of 9 regardless of the access
key used by the CPU. If the subsystem is in
key-8 storage and is executed with a PSW
key of 8, for example, and the application pro-
grams are in key-9 storage and are executed
with a PSW key of 9, accesses by the sub-
system to the application-program areas are
permitted while accesses by the application
programs to the subsystem area are denied.
(September, 1991)

Move-page facility 2 extends the MOVE PAGE
instruction introduced in ESA/370 by allowing
use of a specified access key for either the
source or the destination operand, by allowing
improved performance when the destination
operand will soon be referenced, and by
allowing improved performance when an
operand is invalid in both main and expanded

storage. The ESA/370 version of MOVE
PAGE is now called move-page facility 1 and
is in Chapter 7, “General Instructions.” MOVE
PAGE of move-page facility 2 is in Chapter
10, “Control Instructions.” Some details about
the means for control-program support of
MOVE PAGE are not provided. (September,
1991) (The z/Architecture MOVE PAGE
instruction is described only in Chapter 10 of
this publication. MOVE PAGE no longer can
move data to or from expanded storage, and
all details about MOVE PAGE are provided.)

The square-root facility consists of the
SQUARE ROOT instruction and the square-
root exception. The instruction extracts the
square root of a floating-point operand in
either the long or short format. The instruction
is the same as that provided on some models
of the IBM 4341, 4361, and 4381 Processors.
(September, 1991)

The cancel-I/O facility allows the program to
withdraw a pending start function from a des-
ignated subchannel without signaling the
device, which is useful in certain error-
recovery situations. (September, 1991)

The cancel-lI/O facility provides the CANCEL
SUBCHANNEL instruction and is described in
detail beginning in the eighth edition of
SA22-7201.

The string-instruction facility (or logical string
assist) provides instructions for (1) moving a
string of bytes until a specified ending byte is
found, (2) logically comparing two strings until
an inequality or a specified ending byte is
found, and (3) searching a string of a speci-
fied length for a specified byte. The first two
instructions are particularly useful in a C
program in which strings are normally delim-
ited by an ending byte of all zeros. (June,
1992)

The suppression-on-protection facility causes
a protection exception due to page protection
to result in suppression of instruction exe-
cution instead of termination of instruction
execution, and it causes the address and an
address-space identifier of the protected page
to be stored in low storage. This is useful in
performing the AIX/ESA* copy-on-write func-
tion, in which AIX/ESA causes the same page
of different address spaces to map to a single
page frame of real storage so long as a store

Chapter 1. Introduction 1-9

in the page is not attempted and then, when a
store is attempted in a particular address
space, assigns a unique page frame to the
page in that address space and copies the
contents of the page to the new page frame.
(February, 1993)

The set-address-space-control-fast facility con-
sists of the SET ADDRESS SPACE
CONTROL FAST (SACF) instruction, which
possibly can be used instead of the previously
existing SET ADDRESS SPACE CONTROL
(SAC) instruction, depending on whether all of
the SAC functions are required. SACF, unlike
SAC, does not perform the serialization and
checkpoint-synchronization functions, nor does
it cause copies of prefetched instructions to be
discarded. SACF provides improved perform-
ance on some models. (February, 1993)

The subspace-group facility includes the
BRANCH IN SUBSPACE GROUP instruction,
which can be used to give or return control
from one address space to another in a group
of address spaces called a subspace group,
with this giving and returning of control being
done with better performance than can be
obtained by means of the PROGRAM CALL
and PROGRAM RETURN or PROGRAM
TRANSFER instructions. One address space
in the subspace group is called the base
space, and the other address spaces in the
group are called subspaces. It is intended
that each subspace contain a different subset
of the storage in the base space, that the
base space and each subspace contain a
subsystem control program, such as CICS®,
and application programs, and that each sub-
space contain the data for a single transaction
being processed under the subsystem control
program. The placement of the data for each
transaction in a different subspace prevents
the processing of a transaction from erro-
neously damaging the data of other trans-
actions. The data of the control program can
be protected from the transaction processing
by means of the storage-protection-override
facility. (April, 1994)

The virtual-address enhancement of sup-
pression on protection provides that if dynamic

1-10 z/Architecture Principles of Operation

address translation (DAT) was on when a pro-
tection exception was recognized, the
suppression-on-protection result is indicated,
and the address of the protected location is
stored, only if the address is one that was to
be translated by DAT; the suppression-
on-protection result is not indicated if the
address that would be stored is a real
address. This enhancement allows the stored
address to be translated reliably by the control
program to determine if the exception was due
to page protection as opposed to key-
controlled protection. The enhancement
extends the usefulness of suppression on pro-
tection to operating systems like MVS/ESA*
that use key-controlled protection. (Sep-
tember, 1994)

The immediate-and-relative-instruction facility
includes 13 new instructions, most of which
use a halfword-immediate value for either
signed-binary arithmetic operations or relative
branching. The facility reduces the need for
general registers, and, in particular, it elimi-
nates the need to use general registers to
address branch targets. As a result, the
general registers and access registers can be
allocated more efficiently in programs that
require many registers. (September, 1996)

The compare-and-move-extended facility pro-
vides new versions of the COMPARE
LOGICAL LONG and MOVE LONG
instructions. The new versions increase the
size of the operand-length specifications from
24 bits to 32 bits, which can be useful when
objects larger than 16M bytes are processed
through the use of 31-bit addressing. The
new versions also periodically complete to
allow software polling in a multiprocessing
system. (September, 1996)

The checksum facility consists of the
CHECKSUM instruction, which can be used to
compute a 16-bit or 32-bit checksum in order
to improve TCP/IP (transmission-control
protocol/internet protocol) performance. (Sep-
tember, 1996)

The called-space-identification facility
improves serviceability by further identifying
the called address space in a linkage-stack

AIX/ESA, CICS, and MVS/ESA are trademarks of the International Business Machines Corporation.

state entry formed by the PROGRAM CALL
instruction. (September, 1996)

The branch-and-set-authority facility consists
of the BRANCH AND SET AUTHORITY
instruction, which can be used to improve the
performance of linkages within an address
space by replacing PROGRAM CALL,
PROGRAM TRANSFER, and SET PSW KEY
FROM ADDRESS instructions. (June, 1997)

The perform-locked-operation facility consists
of the unprivleged PERFORM LOCKED
OPERATION instruction, which appears to
provide concurrent interlocked-update refer-
ences to multiple storage operands. A func-
tion code of the instruction can specify any of
six operations: compare and load, compare
and swap, double compare and swap,
compare and swap and store, compare and
swap and double store, and compare and
swap and triple store. The function code
further specifies either word or doubleword
operands. The instruction can be used to
avoid the use of programmed locks in a multi-
processing system. (June, 1997)

Four additional floating-point facilities improve
the hexadecimal-floating-point (HFP) capability
of the machine and add a binary-floating-point
(BFP) capability. The facilities are:

— Basic floating-point extensions, which pro-
vides 12 additional floating-point registers
to make a total of 16 floating-point regis-
ters. This facility also includes a floating-
point-control register and means for
saving the contents of the new registers
during a store-status operation or a
machine-check interruption.

— Floating-point-support (FPS) extensions,
which provides eight new instructions,
including four to convert data between the
HFP and BFP formats.

— Hexadecimal-floating-point (HFP) exten-
sions, which provides 26 new instructions
to operate on data in the HFP format. All
of these are counterparts to new
instructions provided by the BFP facility,
including conversion between floating-
point and fixed-point formats, and a more
complete set of operations on the
extended format.

— Binary floating-point (BFP), which defines
short, long, and extended binary-
floating-point (BFP) data formats and pro-
vides 87 new instructions to operate on
data in these formats. The BFP formats
and operations provide everything neces-
sary to conform to the IEEE standard
(ANSI/IEEE Std 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic, dated
August 12, 1985) except for conversion
between binary-floating-point numbers and
decimal strings, which must be provided in
software.

(May, 1998)

The resume-program facility consists of the
RESUME PROGRAM instruction, which
restores, from a specified save area, the
instruction address and certain other fields in
the current PSW and also the contents of an
access-and-general-register pair. RESUME
PROGRAM allows a problem-state
interruption-handling program to restore the
state of an interrupted program and return to
that program despite that a register is required
for addressing the save area from which the
state is restored. (May, 1998)

The trap facility provides the TRAP
instructions (a two-byte TRAP2 instruction and
a four-byte TRAP4 instruction) that can
overlay instructions in an application program
to give control to a program that can perform
fix-up operations on data being processed,
such as dates that may be a “Year-2000”
problem. RESUME PROGRAM can be used
to return from the fix-up program. TRAP and
RESUME PROGRAM can improve perform-
ance by avoiding program interruptions that
would otherwise be needed to give control to
and from the fix-up program. (May, 1998)

The extended-TOD-clock facility includes
(1) an extension of the TOD clock from 64
bits to 104 bits, allowing greater resolution;
(2) a TOD programmable register, which con-
tains a TOD programmable field that can be
used to identify the configuration providing a
TOD-clock value in a sysplex; (3) the SET
CLOCK PROGRAMMABLE FIELD instruction,
for setting the TOD programmable field in the
TOD programmable register; and (4) the
STORE CLOCK EXTENDED instruction,
which stores both the longer TOD-clock value
and the TOD programmable field. STORE

Chapter 1. Introduction 1-11

CLOCK EXTENDED can be used in the future
when the TOD clock is further extended to
contain time values that exceed the current
year-2042 limit (when there is a carry out of
the current bit 0 of the TOD clock). (August,
1998)

The TOD-clock-control-override facility pro-
vides a control-register bit that allows setting
the TOD clock under program control, without
use of the manual TOD-clock control of any
CPU. (August, 1998)

The store-system-information facility provides
the privilieged STORE SYSTEM INFORMA-
TION instruction, which can be used to obtain
information about a component or components
of a virtual machine, a logical partition, or the
basic machine. (January, 1999)

The extended-translation facility, now called
the extended-translation facility 1, includes the
CONVERT UNICODE TO UTF-8, CONVERT
UTF-8 TO UNICODE, and TRANSLATE
EXTENDED instructions, all of which can
improve performance. TRANSLATE
EXTENDED can be used in place of a
TRANSLATE AND TEST instruction that
locates an escape character, followed by a

Systems Architecture/390 ESCON Channel-to-
Channel Adapter, SA22-7203.

I/O-device self-description allows a device to
describe itself and its position in the 1/0 con-
figuration. See the publication IBM Enterprise
Systems Architecture/390 Common I/O-Device
Commands and Self Description, SA22-7204.

The compression facility performs a Ziv-
Lempel type of compression and expansion by
means of static (nonadaptive) dictionaries that
are to be prepared by a program before the
compression and expansion operations.
Because the dictionaries are static, the com-
pression facility can provide good com-
pression not only for long sequential data
streams (for example, archival or network
data) but also for randomly accessed short
records (for example, 80 bytes). See the pub-

lication IBM Enterprise Systems
Architecture/390 Data Compression,
SA22-7208. (February, 1993) (The

z/Architecture COMPRESSION CALL instruc-
tion is described in this publication. However,
introductory information and information about
dictionary formats still is provided only in
SA22-7208.)

TRANSLATE instruction that translates the The remaining extensions of ESA/390, for which
bytes preceding the escape character. (April, detailed descriptions are not provided, are as
1999) follows:

The following extensions are described in detail in
other publications:

e The integrated cryptographic facility provides a
number of instructions to protect data privacy,
to support message authentication and per-
sonal identification, and to facilitate key man-
agement. The high-performance cipher capa-
bility of the facility is designed for financial-
transaction and bulk-encryption environments,
and it complies with the Data Encryption
Standard (DES).

e The Enterprise Systems Connection Architec-
ture (ESCON) introduces a new type of
channel that uses an optical-fiber communi-
cation link between channels and control
units. Information is transferred serially by bit,
at 200 million bits per second, up to a
maximum distance of 60 kilometers. The
optical-fiber technology and serial trans-
mission simplify cabling and improve reliability.
See the publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202.

e The ESCON channel-to-channel adapter
(ESCON CTCA) provides the same type of
function for serial channel paths as is avail-
able for the parallel-l/O-interface channel
paths. See the publication IBM Enterprise

— Usability of the cryptographic facility is
extended to virtual-machine environments,
which allows the facility to be used by
MVS/ESA being executed under
VM/ESA*, which in turn may be executed
either under another VM/ESA or in a
logical partition. (September, 1991)

e The external-time-reference facility provides a
means to initiate and maintain the synchroni-

MVS/ESA, VM/ESA, Sysplex Timer, and DB2 are trademarks of the International Business Machines Corporation.

1-12 z/Architecture Principles of Operation

zation of TOD clocks to an external time refer-
ence (ETR). Synchronization tolerance of a
few microseconds can be achieved, and the
effect of leap seconds is taken into account.
The facility consists of an ETR sending unit
(Sysplex Timer*), which may be duplexed, two
or more ETR receiving units, and optical-fiber
cables. The cables are used to connect the
ETR sending unit, which is an external device,
to ETR receiving units of the configuration.
CPU instructions are provided for setting the
TOD clock to the value supplied by the ETR
sending unit.

— The ETR automatic-
propagation-delay-adjustment function
adjusts the time signals from the ETR to
the attached processors to compensate
for the propagation delay on the cables to
the processors, thus allowing the cables to
be of different lengths. (September, 1991)

— The ETR external-time-source function
synchronizes the ETR to a time signal
received from a remote location by means
of a telephone or radio. (September,
1991)

Extended sorting provides instructions that
improve the performance of the DB2* sorting
function.

Other PER extensions, besides those
described beginning in the fourth edition of
this publication, are an augmentation of PER
2 that provide additional PER function in the
interpretive-execution mode.

Channel-subsystem call provides various func-
tions for use in the management of the 1/O
configuration. Some of the functions acquire
information about the configuration from the
accessible elements of the configuration, while
others dynamically change the configuration.

The operational extensions are a number of
other improvements that result in increased
availability and ease of use of the system, as
follows:

— Automatic-reconfiguration permits an oper-
ating system in an LPAR partition to
declare itself willing to be terminated sud-
denly, usually to permit its storage and
CPU resources to be acquired by an adja-
cent partition that is dynamically absorbing

the work load of another system that has
failed. Other functions deactivate and
reset designated participating partitions.

— A new storage-reconfiguration command
decreases the time needed to reconfigure
storage by allowing multiple requests for
reconfiguration to be made by means of a
single communication with the service
processor.

— SCPr-initiated reset allows a system
control program (SCP) to reset its I/O con-
figuration prior to entering the disabled
wait state following certain check condi-
tions.

— Console integration simplifies configuration
requirements by reducing by one the
number of consoles required by MVS.

— The processor-availability facility enables
a CPU experiencing an unrecoverable
error that will cause a check stop to save
its state and alert the other CPUs in the
configuration. This allows, in many cases,
another CPU to continue execution of the
program that was in execution on the
failing CPU. The facility is applicable in
both the ESA/390 mode and the LPAR
mode. (April, 1991)

e FExtensions for virtual machines are a number

of improvements to the interpretive-execution
facility, as follows:

— The VM-data-space facility provides for
making the ESA/390 access-register archi-
tecture more useful in virtual-machine
applications. The facility improves the
ability to address a larger amount of data
and to share data. For information on
how VM/ESA uses the VM-data-space
facility, see the publication VM/ESA CP
Programming Services, SC24-5520.

— A new storage-key function improves per-
formance by removing the need for the
previously used RCP area.

— Interpreted SIE (available with region relo-
cation) is improved to permit preferred
guests under VM when VM itself is oper-
ating as a high-performance guest.

— Other improvements include an optional
special-purpose lookaside for some of the
guest-state information and greater

Chapter 1. Introduction 1-13

freedom in certain implementation
choices.

e The ESCON-multiple-image facility (EMIF)
allows multiple logical partitions to share
ESCON channels (and FICON channels) and
optionally to share any of the control units and
associated /O devices configured to these
shared channels. This can reduce channel
requirements, improve channel utilization, and
improve 1/O connectivity. (June, 1992)

e PR/SM LPAR mode is enhanced to allow up
to 10 logical partitions in a single-image con-
figuration and 20 in a physically-partitioned
configuration. The previous limits were seven
and 14, respectively. (June, 1992)

Coincident with z/Architecture, PR/SM LPAR
mode allows 15 logical partitions, and physical
partitioning is not supported.

e The coupling facility enables high-performance
data sharing among MVS/ESA systems that
are connected by means of the facility. The
coupling facility provides storage that can be
dynamically partitioned for caching data in
shared buffers, maintaining work queues and
status information in shared lists, and locking
data by means of shared lock controls.
MVS/ESA services provide access to and
manipulation of the coupling-facility contents.
(April, 1994)

The ESA/370 and 370-XA Base

ESA/390 includes the complete set of facilities of
ESA/370 as its base. This section briefly outlines
most of the facilities that were additions in 370-XA
as compared to System/370 and that were addi-
tions in ESA/370 as compared to 370-XA.

The CPU-related facilities that were new in
370-XA are as follows:

e Bimodal addressing provides two modes of
operation: a 24-bit addressing mode for the
execution of old programs and a 31-bit
addressing mode.

e 31-bit logical addressing extends the virtual
address space from the 16M bytes address-
able with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

1-14 z/Architecture Principles of Operation

31-bit real and absolute addressing provides
addressability for up to 2G bytes of main
storage.

The 370-XA protection facilities include key-
controlled protection on only 4K-byte blocks,
page protection, and, as in System/370, low-
address protection for addresses below 512.
Fetch-protection override eliminates fetch pro-
tection for locations 0-2047.

The tracing facility assists in the determination
of system problems by providing an ongoing
record in storage of significant events.

The COMPARE AND FORM CODEWORD
and UPDATE TREE instructions facilitate
sorting applications.

The interpretive-execution facility allows cre-
ation of virtual machines that may operate
according to several architectures and whose
performance is enhanced because many
virtual-machine functions are directly inter-
preted by the machine rather than simulated
by the program. This facility is described in
the publication IBM 370-XA Interpretive Exe-
cution, SA22-7095.

The service-call-logical-processor (SCLP)
facility provides a means of communicating
between the control program and the service
processor for the purpose of describing and
changing the configuration. This facility is not
described.

The 1/O-related differences between 370-XA and
System/370 result from the 370-XA channel sub-
system, which includes:

e Path-independent addressing of I/O devices,

which permits the initiation of 1/O operations
without regard to which CPU is executing the
I/O instruction or how the I/O device is
attached to the channel subsystem. Any 1/O
interruption can be handled by any CPU
enabled for it.

Path management, whereby the channel sub-
system determines which paths are available
for selection, chooses a path, and manages
any busy conditions encountered while
attempting to initiate I/O processing with the
associated devices.

Dynamic reconnection, which permits any 1/O
device using this capability to reconnect to
any available channel path to which it has

access in order to continue execution of a
chain of commands.

Programmable interruption subclasses, which
permit the programmed assignment of
I/O-interruption requests from individual 1/O
devices to any one of eight maskable inter-
ruption queues.

An additional CCW format for the direct use of
31-bit addresses in channel programs. The
new CCW format, called format 1, is provided
in addition to the System/370 CCW format,
now called format 0.

Address-limit checking, which provides an
additional storage-protection facility to prevent
data access to storage locations above or
below a specified absolute address.

Monitoring facilities, which can be invoked by
the program to cause the channel subsystem
to measure and accumulate key I/O-resource
usage parameters.

Status-verification facility, which reports inap-
propriate combinations of device-status bits
presented by a device.

A set of 13 /O instructions, with associated
control blocks, which are provided for the
control of the channel subsystem.

makes use also of the previously existing
PROGRAM CALL instruction, an extended
entry-table entry, and a new PROGRAM
RETURN instruction. The mechanism saves
various elements of status, including access-
register and general-register contents, during
a calling linkage, provides for changing the
current status during the calling linkage, and
restores the original status during the
returning linkage. The linkage stack can also
be used to save and restore access-register
and general-register contents during a branch-
type linkage performed by the new instruction
BRANCH AND STACK.

A translation mode named home-space mode
provides an efficient means for the control
program to obtain control in the address
space, called the home address space, in
which the principal control blocks for a
dispatchable unit (a task or process) are kept.

The semiprivileged MOVE WITH SOURCE
KEY and MOVE WITH DESTINATION KEY
instructions allow bidirectional movement of
data between storage areas having different
storage keys, without the need to change the
PSW key.

The privieged LOAD USING REAL
ADDRESS and STORE USING REAL
ADDRESS instructions allow the control

The facilities that were new in ESA/370 are as
follows: program to access data in real storage more

: , , efficiently.
e Sixteen access registers permit the program

to have immediate access to storage oper-
ands in up to 16 2G-byte address spaces,
including the address space in which the
program resides. In a dynamic-
address-translation mode named access-
register mode, the instruction B field, or for
certain instructions the R field, designates
both a general register and an access reg-
ister, and the contents of the access register,
along with the contents of protected tables,
specify the operand address space to be
accessed. By changing the contents of the
access registers, the program, under the
control of an authorization mechanism, can
have fast access to hundreds of different
operand address spaces.

A linkage stack is used in a functionally
expanded mechanism for passing control
between programs in either the same or dif-
ferent address spaces. This mechanism

The private-space facility allows an address
space not to contain any common segments
and causes low-address protection and fetch-
protection override not to apply to the address
space.

The unprivileged MOVE PAGE instruction
allows the program to move a page of data
between main and expanded storage, pro-
vided that the source and destination pages
are both valid. Some details about the means
for control-program support of MOVE PAGE
are not provided. The ESA/370 version of
MOVE PAGE is now called move-page facility
1.

*

The Processor Resource/Systems Manager
(PR/SM*) feature provides support for multiple
preferred guests under VM/XA and provides
the logically partitioned (LPAR) mode, with the
latter providing flexible partitioning of
processor resources among multiple logical

Chapter 1. Introduction 1-15

partitions. Certain aspects of the LPAR use of
PR/SM are described in the publication IBM
ES/3090 Processor Complex Processor
Resource/Systems Manager Planning Guide,
GA22-7128.

¢ The COMPARE UNTIL SUBSTRING EQUAL
instruction provides improved performance of
the compression of IMS log data sets and can
be useful in other programs also.

System Program

z/Architecture is designed to be used with a
control program that coordinates the use of
system resources and executes all |I/O
instructions, handles exceptional conditions, and
supervises scheduling and execution of multiple
programs.

Compatibility

Compatibility among
z/Architecture Systems

Although systems operating as defined by
z/Architecture may differ in implementation and
physical capabilities, logically they are upward and
downward compatible. Compatibility provides for
simplicity in education, availability of system
backup, and ease in system growth. Specifically,
any program written for z/Architecture gives iden-
tical results on any z/Architecture implementation,
provided that the program:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, 1/0 equipment, or optional
facilities) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program must
not depend on interruptions caused by the use
of operation codes or command codes that
are not installed in some models. Also, it
must not use or depend on fields associated
with uninstalled facilities. For example, data

should not be placed in an area used by
another model for fixed-logout information.
Similarly, the program must not use or depend
on unassigned fields in machine formats
(control registers, instruction formats, etc.) that
are not explicitly made available for program
use.

4. Does not depend on results or functions that
are defined to be unpredictable or model-
dependent or are identified as undefined.
This includes the requirement that the
program should not depend on the assign-
ment of device numbers and CPU addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be devi-
ations from the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting
compatibility.

Compatibility between
z/Architecture and ESA/390

Control-Program Compatibility

Control programs written for ESA/390 cannot be
directly transferred to systems operating as
defined by z/Architecture. This is because the
general-register and control-register sizes, PSW
size, assigned storage locations, and dynamic
address translation are changed.

Problem-State Compatibility

A high degree of compatibility exists at the
problem-state level in going forward from ESA/390
to z/Architecture. Because the majority of a user's
applications are written for the problem state, this
problem-state compatibility is useful in many
installations.

A problem-state program written for ESA/390
operates with z/Architecture, provided that the
program:

1. Complies with the limitations described in
[‘Compatibility among z/Architecture Systems.”

2. Is not dependent on privileged facilities which
are unavailable on the system.

Processor Resource/Systems Manager and PR/SM are trademarks of the International Business Machines Corporation.

1-16

z/Architecture Principles of Operation

Programming Note: This publication assigns
meanings to various operation codes, to bit posi-
tions in instructions, channel-command words,
registers, and table entries, and to fixed locations
in the low 512 bytes and bytes 4096-8191 of
storage. Unless specifically noted, the remaining
operation codes, bit positions, and low-storage
locations are reserved for future assignment to
new facilities and other extensions of the architec-
ture.

To ensure that existing programs operate if and
when such new facilities are installed, programs
should not depend on an indication of an excep-
tion as a result of invalid values that are currently
defined as being checked. If a value must be
placed in unassigned positions that are not
checked, the program should enter zeros. When
the machine provides a code or field, the program
should take into account that new codes and bits
may be assigned in the future. The program
should not use unassigned low-storage locations
for keeping information since these locations may
be assigned in the future in such a way that the
machine causes the contents of the locations to
be changed.

Availability

Availability is the capability of a system to accept
and successfully process an individual job.
Systems operating in accordance with
z/Architecture permit substantial availability by
(1) allowing a large number and broad range of
jobs to be processed concurrently, thus making
the system readily accessible to any particular job,
and (2) limiting the effect of an error and identi-
fying more precisely its cause, with the result that
the number of jobs affected by errors is minimized
and the correction of the errors facilitated.

Several design aspects make this possible.

e A program is checked for the correctness of
instructions and data as the program is exe-
cuted, and program errors are indicated sepa-
rate from equipment errors. Such checking
and reporting assists in locating failures and
isolating effects.

e The protection facilities, in conjunction with
dynamic address translation and the sepa-
ration of programs and data in different
address spaces, permit the protection of the
contents of storage from destruction or misuse

caused by erroneous or unauthorized storing
or fetching by a program. This provides
increased security for the user, thus permitting
applications with different security require-
ments to be processed concurrently with other
applications.

Dynamic address translation allows isolation
of one application from another, still permitting
them to share common resources. Also, it
permits the implementation of virtual
machines, which may be used in the design
and testing of new versions of operating
systems along with the concurrent processing
of application programs. Additionally, it pro-
vides for the concurrent operation of incom-
patible operating systems.

The use of access registers allows programs,
data, and different collections of data to reside
in different address spaces, and this further
reduces the likelihood that a store using an
incorrect address will produce either erro-
neous results or a system-wide failure.

Multiprocessing and the channel subsystem
permit better use of storage and processing
capabilities, more direct communication
between CPUs, and duplication of resources,
thus aiding in the continuation of system oper-
ation in the event of machine failures.

MONITOR CALL, program-event recording,
and the timing facilities permit the testing and
debugging of programs without manual inter-
vention and with little effect on the concurrent
processing of other programs.

On most models, error checking and cor-
rection (ECC) in main storage, CPU retry, and
command retry provide for circumventing inter-
mittent equipment malfunctions, thus reducing
the number of equipment failures.

An enhanced machine-check-handling mech-
anism provides model-independent fault iso-
lation, which reduces the number of programs
impacted by uncorrected errors. Additionally,
it provides model-independent recording of
machine-status information. This leads to
greater machine-check-handling compatibility
between models and improves the capability
for loading and operating a program on a dif-
ferent model when a system failure occurs.

A small number of manual controls are
required for basic system operation, permitting

Chapter 1. Introduction 1-17

most operator-system interaction to take place
via a unit operating as an I/O device and thus
reducing the possibility of operator errors.

The logical partitions made available by the
PR/SM feature allow continued reliable pro-
duction operations in one or more partitions
while new programming systems are tested in

1-18 z/Architecture Principles of Operation

other partitions. This is an advancement in
particular for non-VM installations.

The operational extensions and channel-
subsystem-call facilty of ESA/390 and
z/Architecture improve the ability to continue
execution of application programs in the pres-
ence of system incidents and the ability to
make configuration changes with less dis-
ruption to operations.

Chapter 2. Organization

Main Storage 2-2 Access Registers 2-4
Expanded Storage 2-2 Cryptographic Facility 2-6
CPU 2-2 External Time Reference 2-6
PSW . .. 2-3 /O . . . 2-6
General Registers 2-3 Channel Subsystem 2-6
Floating-Point Registers 2-3 Channel Paths 2-6
Floating-Point-Control Register 2-4 I/O Devices and Control Units 2-7
Control Registers 2-4 Operator Facilites 2-7
Logically, a system consists of main storage, one / [eTrl y

or more central processing units (CPUs), operator
facilities, a channel subsystem, and I/O devices.
I/O devices are attached to the channel sub-
system through control units. The connection
between the channel subsystem and a control unit
is called a channel path.

A channel path employs either a parallel-
transmission protocol or a serial-transmission pro-
tocol and, accordingly, is called either a parallel or
a serial channel path. A serial channel path may
connect to a control unit through a dynamic switch
that is capable of providing different internal con-
nections between the ports of the switch.

Expanded storage may also be available in the
system, a cryptographic unit may be included in a
CPU, and an external time reference (ETR) may
be connected to the system.

The physical identity of the above functions may
vary among implementations, called “models.”
Figure 2-1 depicts the logical structure of a
two-CPU multiprocessing system that includes
expanded storage and a cryptographic unit and
that is connected to an ETR.

Specific processors may differ in their internal
characteristics, the installed facilities, the number
of subchannels, channel paths, and control units
which can be attached to the channel subsystem,
the size of main and expanded storage, and the
representation of the operator facilities.

© Copyright IBM Corp. 1990-2003

CPU]

Expanded Storage l Main Storage

CPU —

Crypto

——

Channel
Subsystem

Serial Channel Paths Paralle ?h nnel Paths
/

e

Dynamic Dynamic
witch Switch

1%

] o

00
1/ T 1
000 000

0

Figure 2-1. Logical Structure of a Zz/Architecture
System with Two CPUs

A system viewed without regard to its I/O devices
is referred to as a configuration. All of the phys-
ical equipment, whether in the configuration or not,
is referred to as the installation.

Model-dependent reconfiguration controls may be
provided to change the amount of main and

2-1

expanded storage and the number of CPUs and
channel paths in the configuration. In some
instances, the reconfiguration controls may be
used to partition a single configuration into mul-
tiple configurations. Each of the configurations so
reconfigured has the same structure, that is, main
and expanded storage, one or more CPUs, and
one or more subchannels and channel paths in
the channel subsystem.

Each configuration is isolated in that the main and
expanded storage in one configuration is not
directly addressable by the CPUs and the channel
subsystem of another configuration. It is,
however, possible for one configuration to commu-
nicate with another by means of shared /O
devices or a channel-to-channel adapter. At any
one time, the storage, CPUs, subchannels, and
channel paths connected together in a system are
referred to as being in the configuration. Each
CPU, subchannel, channel path, main-storage
location, and expanded-storage location can be in
only one configuration at a time.

Main Storage

Main storage, which is directly addressable, pro-
vides for high-speed processing of data by the
CPUs and the channel subsystem. Both data and
programs must be loaded into main storage from
input devices before they can be processed. The
amount of main storage available in the system
depends on the model, and, depending on the
model, the amount in the configuration may be
under control of model-dependent configuration
controls. The storage is available in multiples of
4K-byte blocks. At any instant, the channel sub-
system and all CPUs in the configuration have
access to the same blocks of storage and refer to
a particular block of main-storage locations by
using the same absolute address.

Main storage may include a faster-access buffer
storage, sometimes called a cache. Each CPU
may have an associated cache. The effects,
except on performance, of the physical con-
struction and the use of distinct storage media are
not observable by the program.

2-2 z/Architecture Principles of Operation

Expanded Storage

Expanded storage may be available on some
models. Expanded storage, when available, can
be accessed by all CPUs in the configuration by
means of instructions that transfer 4K-byte blocks
of data from expanded storage to main storage or
from main storage to expanded storage. These
instructions are the PAGE IN and PAGE OUT
instructions, described in [Chapter 10, “Control|

Each 4K-byte block of expanded storage is
addressed by means of a 32-bit unsigned binary
integer called an expanded-storage block number.

CPU

The central processing unit (CPU) is the control-
ling center of the system. It contains the
sequencing and processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical implementation of the CPU may
differ among models, but the logical function
remains the same. The result of executing an
instruction is the same for each model, providing
that the program complies with the compatibility
rules.

The CPU, in executing instructions, can process
binary integers and floating-point numbers (binary
and hexadecimal) of fixed length, decimal integers
of variable length, and logical information of either
fixed or variable length. Processing may be in
parallel or in series; the width of the processing
elements, the multiplicity of the shifting paths, and
the degree of simultaneity in performing the dif-
ferent types of arithmetic differ from one model of
CPU to another without affecting the logical
results.

Instructions which the CPU executes fall into
seven classes: general, decimal, floating-
point-support (FPS), binary-floating-point (BFP),
hexadecimal-floating-point (HFP), control, and 1/O
instructions. The general instructions are used in
performing binary-integer-arithmetic operations
and logical, branching, and other nonarithmetic
operations. The decimal instructions operate on
data in the decimal format. The BFP and HFP

instructions operate on data in the BFP and HFP
formats, respectively, while the FPS instructions
operate on floating-point data independent of the
format or convert it from one format to the other.
The privileged control instructions and the 1/O
instructions can be executed only when the CPU
is in the supervisor state; the semiprivileged
control instructions can be executed in the
problem state, subject to the appropriate authori-
zation mechanisms.

The CPU provides registers which are available to
programs but do not have addressable represen-
tations in main storage. They include the current
program-status word (PSW), the general registers,
the floating-point registers and floating-
point-control register, the control registers, the
access regqisters, the prefix register, and the regis-
ters for the clock comparator and the CPU timer.
Each CPU in an installation provides access to a
time-of-day (TOD) clock, which is shared by all
CPUs in the installation. The instruction operation
code determines which type of register is to be
used in an operation. See |[Figure 2-2 on page|
or the format of the control, access, general,
and floating-point registers.

PSW

The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned
storage location, called the old-PSW location, for
the particular class of interruption. The CPU
fetches a new PSW from a second assigned
storage location. This new PSW determines the
next program to be executed. When it has fin-
ished processing the interruption, the program
handling the interruption may reload the old PSW,
making it again the current PSW, so that the inter-
rupted program can continue.

There are six classes of interruption: external,
I/O, machine check, program, restart, and super-

visor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in real storage.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general regis-
ters may be used as base-address registers and
index registers in address arithmetic and as accu-
mulators in general arithmetic and logical oper-
ations. [Each register contains 64 bit positions.
The general registers are identified by the
numbers 0-15 and are designated by a four-bit R
field in an instruction. Some instructions provide
for addressing multiple general registers by having
several R fields. For some instructions, the use of
a specific general register is implied rather than
explicitly designated by an R field of the instruc-
tion.

For some operations, either bits 32-63 or bits 0-63
of two adjacent general registers are coupled, pro-
viding a 64-bit or 128-bit format, respectively. In
these operations, the program must designate an
even-numbered register, which contains the left-
most (high-order) 32 or 64 bits. The next higher-
numbered register contains the rightmost (low-
order) 32 or 64 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address
and index registers in address generation. In
these cases, the registers are designated by a
four-bit B field or X field in an instruction. A value
of zero in the B or X field specifies that no base or
index is to be applied, and, thus, general register
0 cannot be designated as containing a base
address or index.

Floating-Point Registers

All floating-point instructions (FPS, BFP, and HFP)
use the same floating-point registers. The CPU
has 16 floating-point registers. The floating-point
registers are identified by the numbers 0-15 and
are designated by a four-bit R field in floating-point
instructions. Each floating-point register is 64 bits
long and can contain either a short (32-bit) or a
long (64-bit) floating-point operand. As shown in
[Figure 2-2 on page 2-5| pairs of floating-point
registers can be used for extended (128-bit) oper-

Chapter 2. Organization 2-3

ands. Each of the eight pairs is referred to by the
number of the lower-numbered register of the pair.

Floating-Point-Control Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. The
FPC register is described in the section
[Point-Control (FPC) Register” on page 19-2

Control Registers

The CPU has 16 control registers, each having 64
bit positions. The bit positions in the registers are
assigned to particular facilities in the system, such
as program-event recording, and are used either
to specify that an operation can take place or to
furnish special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE
CONTROL. Multiple control registers can be
addressed by these instructions.

Access Registers

The CPU has 16 access registers numbered 0-15.
An access register consists of 32 bit positions
containing an indirect specification (not described
here in detaill of an address-space-control
element. An address-space-control element is a
parameter used by the dynamic-

2-4 z/Architecture Principles of Operation

address-translation (DAT) mechanism to translate
references to a corresponding address space.
When the CPU is in a mode called the access-
register mode (controlled by bits in the PSW), an
instruction B field, used to specify a logical
address for a storage-operand reference, desig-
nates an access register, and the address-
space-control element specified by the access
register is used by DAT for the reference being
made. For some instructions, an R field is used
instead of a B field. Instructions are provided for
loading and storing the contents of the access
registers and for moving the contents of one
access register to another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access reg-
ister 0 always designates the current instruction
space. When one of access registers 1-15 is
used to designate an address space, the CPU
determines which address space is designated by
translating the contents of the access register.
When access register 0 is used to designate an
address space, the CPU treats the access register
as designating the current instruction space, and it
does not examine the actual contents of the
access register. Therefore, the 16 access regis-
ters can designate, at any one time, the current
instruction space and a maximum of 15 other
spaces.

B 1 aveel ool It st
o o | [|l |
oo 1 | . || \
o 2 | N | |
o 3 | R | |
ow 4 | N |l \
oo s | R l |
o ¢ | [| |
o 7 | . | \
s | N |l |
w9 | R || |
o | N | \
o | R | |
w2 | [|l |
o3 | . || \
o 1 | N | |
s | R | |

Note: The arrows indicate that the two registers may be coupled as a double-register pair,

designated by specifying the lower-numbered register in the R field. For example, the floating-point

register pair 13 and 15 is designated by 1101 binary in the R field.

Figure 2-2. Control, Access, General, and Floating-Point Registers

Chapter 2. Organization

2-5

Cryptographic Facility

Depending on the model, an integrated
cryptographic facility may be provided as an
extension of the CPU. When the cryptographic
facility is provided on a CPU, it functions as an
integral part of that CPU. A summary of the bene-
fits of the cryptographic facility is given on page
the facility is otherwise not described.

External Time Reference

Depending on the model, an external time refer-
ence (ETR) may be connected to the configura-
tion. A summary of the benefits of the ETR is
given on page [1-12 the facility is otherwise not
described.

I/0

Input/output (I/O) operations involve the transfer of
information between main storage and an I/O
device. /O devices and their control units attach
to the channel subsystem, which controls this data
transfer.

Channel Subsystem

The channel subsystem directs the flow of infor-
mation between 1/O devices and main storage. It
relieves CPUs of the task of communicating
directly with I/O devices and permits data proc-
essing to proceed concurrently with 1/O proc-
essing. The channel subsystem uses one or more
channel paths as the communication link in man-
aging the flow of information to or from I/O
devices. As part of I/O processing, the channel
subsystem also performs the path-management
function of testing for channel-path availability,
selecting an available channel path, and initiating
execution of the operation with the 1/0O device.
Within the channel subsystem are subchannels.

One subchannel is provided for and dedicated to
each 1/0O device accessible to the channel sub-
system. Each subchannel contains storage for
information concerning the associated 1/0O device
and its attachment to the channel subsystem. The
subchannel also provides storage for information
concerning /O operations and other functions
involving the associated 1/0O device. Information
contained in the subchannel can be accessed by

2-6 z/Architecture Principles of Operation

CPUs using 1/O instructions as well as by the
channel subsystem and serves as the means of
communication between any CPU and the channel
subsystem concerning the associated 1/0O device.
The actual number of subchannels provided
depends on the model and the configuration; the
maximum number of subchannels is 65,536.

Channel Paths

I/O devices are attached through control units to
the channel subsystem via channel paths. Control
units may be attached to the channel subsystem
via more than one channel path, and an 1/O
device may be attached to more than one control
unit. In all, an individual 1/0 device may be acces-
sible to a channel subsystem by as many as eight
different channel paths, depending on the model
and the configuration. The total number of
channel paths provided by a channel subsystem
depends on the model and the configuration; the
maximum number of channel paths is 256.

A channel path can use one of three types of
communication links:

e System/360 and System/370 I/O interface,
called the parallel-1/O interface; the channel
path is called a parallel channel path

e ESCON /O interface, called a serial-1/O inter-
face; the channel path is called a serial
channel path

* FICON I/O interface, also called a serial-lI/O
interface; the channel path again is called a
serial channel path

Each parallel-I/O interface consists of a number of
electrical signal lines between the channel sub-
system and one or more control units. Eight
control units can share a single parallel-I/O inter-
face. Up to 256 I/O devices can be addressed on
a single parallel-I/O interface. The parallel-1/O
interface is described in the publication /BM
System/360 and System/370 I/O Interface
Channel to Control Unit Original Equipment Man-
ufacturers' Information, GA22-6974.

Each serial-l/O interface consists of two optical-
fiber conductors between any two of a channel
subsystem, a dynamic switch, and a control unit.
A dynamic switch can be connected by means of
multiple serial-1/O interfaces to either the same or
different channel subsystems and to multiple
control units. The number of control units which

can be connected on one channel path depends
on the channel-subsystem and dynamic-switch
capabilities. Up to 256 devices can be attached to
each control unit that uses the serial-I/O interface,
depending on the control unit. The ESCON 1/0O
interface is described in the publication ESA/390
ESCON 1/O Interface, SA22-7202. The FICON
I/O interface is described in the ANSI standards
document Fibre Channel - Single-Byte Command
Code Sets-2 (FC-SB-2).

/O Devices and Control Units

I/O devices include such equipment as printers,
magnetic-tape units, direct-access-storage
devices, displays, keyboards, communications
controllers, teleprocessing devices, and sensor-
based equipment. Many I/O devices function with
an external medium, such as paper or magnetic
tape. Other I/O devices handle only electrical
signals, such as those found in displays and com-
munications networks. In all cases, 1/O-device

operation is regulated by a control unit that pro-
vides the logical and buffering capabilities neces-
sary to operate the associated I/O device. From
the programming point of view, most control-unit
functions merge with I/O-device functions. The
control-unit function may be housed with the I/O
device or in the CPU, or a separate control unit
may be used.

Operator Facilities

The operator facilities provide the functions neces-
sary for operator control of the machine. Associ-
ated with the operator facilities may be an
operator-console device, which may also be used
as an /O device for communicating with the
program.

The main functions provided by the operator facili-

ties include resetting, clearing, initial program
loading, start, stop, alter, and display.

Chapter 2. Organization 2-7

2-8 z/Architecture Principles of Operation

Chapter 3. Storage

Storage Addressing 3-2
Information Formats 3-2
Integral Boundaries 3-3

Address Types and Formats 3-3
Address Types 3-3

Absolute Address 3-3
Real Address 3-4
Virtual Address 3-4
Primary Virtual Address 3-4
Secondary Virtual Address 3-4
AR-Specified Virtual Address 3-5
Home Virtual Address 3-5
Logical Address 3-5
Instruction Address 3-5
Effective Address 3-5
Address Size and Wraparound 3-5
Address Wraparound 3-6

Storage Key 3-8

Protection 3-9
Key-Controlled Protection 3-9

Storage-Protection-Override Control . . 3-10
Fetch-Protection-Override Control . . . 3-11
Access-List-Controlled Protection 3-11
Page Protection 3-11
Low-Address Protection 3-12
Suppression on Protection 3-12

Reference Recording 3-14

Change Recording 3-14

Prefixing 3-15

Address Spaces 3-16

Changing to Different Address Spaces . 3-17
Address-Space Number 3-17

ASN Translation 3-18

ASN-Translation Controls 3-18
Control Register 14 3-18
ASN-Translation Tables 3-19
ASN-First-Table Entries 3-19
ASN-Second-Table Entries 3-19
ASN-Translation Process 3-21
ASN-First-Table Lookup 3-22
ASN-Second-Table Lookup 3-23

Recognition of Exceptions during ASN

Translation 3-23
ASN Authorization 3-23
ASN-Authorization Controls 3-23
Control Register4 3-23
ASN-Second-Table Entry 3-24
Authority-Table Entries 3-24
ASN-Authorization Process 3-24
Authority-Table Lookup 3-25
Recognition of Exceptions during ASN
Authorization 3-26
Dynamic Address Translation 3-26
Translation Control 3-28
Translation Modes 3-28
Control Register0 3-29
Control Register1 3-29
Control Register 7 3-30
Control Register 13 3-31
Translation Tables 3-31
Region-Table Entries 3-32
Segment-Table Entries 3-33
Page-Table Entries 3-33
Translation Process 3-34
Inspection of Real-Space Control 3-39

Inspection of Designation-Type Control 3-39
Lookup in a Table Designated by an

Address-Space-Control Element . . 3-39
Lookup in a Table Designated by a
Region-Table Entry 3-41
Page-Table Lookup 3-42
Formation of the Real Address 3-42
Recognition of Exceptions during
Translation 3-42
Translation-Lookaside Buffer 3-43
TLB Structure 3-43
Formation of TLB Entries 3-43
Use of TLB Entries 3-44
Modification of Translation Tables . . . 3-45
Address Summary L 3-48
Addresses Translated 3-48
Handling of Addresses 3-48
Assigned Storage Locations 3-51

This chapter discusses the representation of infor-
mation in main storage, as well as addressing,
protection, and reference and change recording.
The aspects of addressing which are covered
include the format of addresses, the concept of

© Copyright IBM Corp. 1990-2003

address spaces, the various types of addresses,
and the manner in which one type of address is
translated to another type of address. A list of
permanently assigned storage locations appears
at the end of the chapter.

3-1

Main storage provides the system with directly
addressable fast-access storage of data. Both
data and programs must be loaded into main
storage (from input devices) before they can be
processed.

Main storage may include one or more smaller
faster-access buffer storages, sometimes called
caches. A cache is usually physically associated
with a CPU or an 1/O processor. The effects,
except on performance, of the physical con-
struction and use of distinct storage media are not
observable by the program.

Fetching and storing of data by a CPU are not
affected by any concurrent channel-subsystem
activity or by a concurrent reference to the same
storage location by another CPU. When concur-
rent requests to a main-storage location occur,
access normally is granted in a sequence deter-
mined by the system. If a reference changes the
contents of the location, any subsequent storage
fetches obtain the new contents.

Main storage may be volatile or nonvolatile. If it is
volatile, the contents of main storage are not pre-
served when power is turned off. If it is nonvola-
tile, turning power off and then back on does not
affect the contents of main storage, provided all
CPUs are in the stopped state and no references
are made to main storage when power is being
turned off. In both types of main storage, the con-
tents of storage keys are not necessarily pre-
served when the power for main storage is turned
off.

Note: Because most references in this publica-
tion apply to virtual storage, the abbreviated term
“storage” is often used in place of “virtual storage.”
The term “storage” may also be used in place of
“‘main storage,” “absolute storage,” or “real
storage” when the meaning is clear. The terms
“main storage” and “absolute storage” are used to
describe storage which is addressable by means
of an absolute address. The terms describe fast-
access storage, as opposed to auxiliary storage,
such as that provided by direct-access storage
devices. “Real storage” is synonymous with
“absolute storage” except for the effects of pre-
fixing.

3-2 z/Architecture Principles of Operation

Storage Addressing

Storage is viewed as a long horizontal string of
bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of
bits is subdivided into units of eight bits. An
eight-bit unit is called a byte, which is the basic
building block of all information formats.

Each byte location in storage is identified by a
unigue nonnegative integer, which is the address
of that byte location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left and pro-
ceeding in a left-to-right sequence. Addresses are
unsigned binary integers and are 24, 31, or 64
bits. Addresses are described in
[and Wraparound” on page 3-5|

Information Formats

Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise speci-
fied, a group of bytes in storage is addressed by
the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly
specified by the operation to be performed. When
used in a CPU operation, a group of bytes is
called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit
numbers are not storage addresses, however.
Only bytes can be addressed. To operate on indi-
vidual bits of a byte in storage, it is necessary to
access the entire byte.

The bits in a byte are numbered 0 through 7, from
left to right.

The bits in an address may be numbered 8-31 or
40-63 for 24-bit addresses or 1-31 or 33-63 for
31-bit addresses; they are numbered 0-63 for
64-bit addresses. Within any other fixed-length
format of multiple bytes, the bits making up the
format are consecutively numbered starting from
0.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of

bytes. Such check bits are generated automat-
ically by the machine and cannot be directly con-
trolled by the program. References in this publica-
tion to the length of data fields and registers
exclude mention of the associated check bits. All
storage capacities are expressed in number of
bytes.

When the length of a storage-operand field is
implied by the operation code of an instruction, the
field is said to have a fixed length, which can be
one, two, four, or eight bytes. Larger fields may
be implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to
have a variable length. Variable-length operands
can vary in length by increments of one byte.

When information is placed in storage, the con-
tents of only those byte locations are replaced that
are included in the designated field, even though
the width of the physical path to storage may be
greater than the length of the field being stored.

Integral Boundaries

Certain units of information must be on an integral
boundary in storage. A boundary is called integral
for a unit of information when its storage address
is a multiple of the length of the unit in bytes.
Special names are given to fields of 2, 4, 8, and
16 bytes on an integral boundary. A halfword is a
group of two consecutive bytes on a two-byte
boundary and is the basic building block of
instructions. A word is a group of four consec-
utive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes
on an eight-byte boundary. A quadword is a
group of 16 consecutive bytes on a 16-byte
boundary. (See [Figure 3-1 on page 3-4])

When storage addresses designate halfwords,
words, doublewords, and quadwords, the binary
representation of the address contains one, two,
three, or four rightmost zero bits, respectively.

Instructions must be on two-byte integral bounda-
ries, and CCWs, IDAWSs, and the storage oper-
ands of certain instructions must be on other inte-
gral boundaries. The storage operands of most
instructions do not have boundary-alignment
requirements.

Programming Note: For fixed-field-length oper-
ations with field lengths that are a power of 2, sig-
nificant performance degradation is possible when
storage operands are not positioned at addresses
that are integral multiples of the operand length.
To improve performance, frequently used storage
operands should be aligned on integral bounda-
ries.

Address Types and Formats

Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: abso-
lute, real, and virtual. The addresses are distin-
guished on the basis of the transformations that
are applied to the address during a storage
access. Address translation converts virtual to
real, and prefixing converts real to absolute. In
addition to the three basic address types, addi-
tional types are defined which are treated as one
or another of the three basic types, depending on
the instruction and the current mode.

Absolute Address

An absolute address is the address assigned to a
main-storage location. An absolute address is
used for a storage access without any transforma-
tions performed on it.

The channel subsystem and all CPUs in the con-
figuration refer to a shared main-storage location
by using the same absolute address. Available
main storage is usually assigned contiguous abso-
lute addresses starting at 0, and the addresses
are always assigned in complete 4K-byte blocks
on integral boundaries. An exception is recog-
nized when an attempt is made to use an absolute
address in a block which has not been assigned
to physical locations. On some models, storage-
reconfiguration controls may be provided which
permit the operator to change the correspondence
between absolute addresses and physical
locations. However, at any one time, a physical
location is not associated with more than one
absolute address.

Storage consisting of byte locations sequenced

according to their absolute addresses is referred
to as absolute storage.

Chapter 3. Storage 3-3

- — Storage Addresses

Bytes o123 |4|5|6]|7]|8

Quadwords 0

T T | T | T T |
Halfwords 0 | 2 | 4 | 6 | 8 10 | 12 | 14 | 16 |
T | T | T T T | T | T |

Words 0 4 8 12 16
| | I | I | | | | | I |
T | T T | T T T | T T | T |

DoubTewords | 0 8 16
| | I | | I | | | I | | I |
T | T T | T T | T | T T | T |

16
| | I | | I | | | | I | | I |

Figure 3-1. Integral Boundaries with Storage Addresses

Real Address

A real address identifies a location in real storage.
When a real address is used for an access to
main storage, it is converted, by means of pre-
fixing, to an absolute address.

At any instant there is one real-address to
absolute-address mapping for each CPU in the
configuration. When a real address is used by a
CPU to access main storage, it is converted to an
absolute address by prefixing. The particular
transformation is defined by the value in the prefix
register for the CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as
real storage.

Virtual Address

A virtual address identifies a location in virtual
storage. When a virtual address is used for an
access to main storage, it is translated by means
of dynamic address translation to a real address,
which is then further converted by prefixing to an
absolute address.

3-4 z/Architecture Principles of Operation

Primary Virtual Address

A primary virtual address is a virtual address
which is to be translated by means of the primary
address-space-control element. Logical
addresses are treated as primary virtual
addresses when in the primary-space mode.
Instruction addresses are treated as primary
virtual addresses when in the primary-space
mode, secondary-space mode, or access-register
mode. The first-operand address of MOVE TO
PRIMARY and the second-operand address of
MOVE TO SECONDARY are always treated as
primary virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual address
which is to be translated by means of the sec-
ondary address-space-control element. Logical
addresses are treated as secondary virtual
addresses when in the secondary-space mode.
The second-operand address of MOVE TO
PRIMARY and the first-operand address of MOVE
TO SECONDARY are always treated as sec-
ondary virtual addresses.

AR-Specified Virtual Address

An AR-specified virtual address is a virtual
address which is to be translated by means of an
access-register-specified address-space-control
element. Logical addresses are treated as
AR-specified addresses when in the access-
register mode.

Home Virtual Address

A home virtual address is a virtual address which
is to be translated by means of the home address-
space-control element. Logical addresses and
instruction addresses are treated as home virtual
addresses when in the home-space mode.

Logical Address

Except where otherwise specified, the storage-
operand addresses for most instructions are
logical addresses. Logical addresses are treated
as real addresses in the real mode, as primary
virtual addresses in the primary-space mode, as
secondary virtual addresses in the secondary-
space mode, as AR-specified virtual addresses in
the access-register mode, and as home virtual
addresses in the home-space mode. Some
instructions have storage-operand addresses or
storage accesses associated with the instruction
which do not follow the rules for logical addresses.
In all such cases, the instruction definition con-
tains a definition of the type of address.

Instruction Address

Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the
real mode, as primary virtual addresses in the
primary-space mode, secondary-space mode, or
access-register mode, and as home virtual
addresses in the home-space mode. The instruc-
tion address in the current PSW and the target
address of EXECUTE are instruction addresses.

Effective Address

In some situations, it is convenient to use the term
“effective address.” An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing is per-
formed. An effective address may be specified
directly in a register or may result from address
arithmetic. Address arithmetic is the addition of
the base and displacement or of the base, index,
and displacement.

Address Size and Wraparound

An address size refers to the maximum number of
significant bits that can represent an address.
Three sizes of addresses are provided: 24-bit,
31-bit, and 64-bit. A 24-bit address can accom-
modate a maximum of 16,777,216 (16M) bytes;
with a 31-bit address, 2,147,483,648 (2G) bytes
can be addressed; and, with a 64-bit address,
18,446,744,073,709,551,616 (16E) bytes can be
addressed.

The bits of a 24-bit, 31-bit, or 64-bit address
produced by address arithmetic under the control
of the current addressing mode are numbered
40-63, 33-63, and 0-63, respectively, corre-
sponding to the numbering of base-address and
index bits in a general register:

—/
24-Bit Address
—/
0 40 63
—/
31-Bit Address

—/
0 33 63

/
[: 64-Bit Address

/
0 63

The bits of an address that is 31 bits regardless of
the addressing mode are numbered 1-31, and,
when a 24-bit or 31-bit address is contained in a
four-byte field in storage, the bits are numbered
8-31 or 1-31, respectively:

24-Bit Address

31-Bit Address

0 1 31

A 24-bit or 31-bit virtual address is expanded to
64 bits by appending 40 or 33 zeros, respectively,
on the left before it is translated by means of the
DAT process, and a 24-bit or 31-bit real address
is similarly expanded to 64 bits before it is trans-
formed by prefixing. A 24-bit or 31-bit absolute
address is expanded to 64 bits before main
storage is accessed. Thus, the 24-bit address
always designates a location in the first 16M-byte

Chapter 3. Storage 3-5

block of the 16E-byte storage addressable by a
64-bit address, and the 31-bit address always des-
ignates a location in the first 2G-byte block.

Unless specifically stated to the contrary, the fol-
lowing definition applies in this publication: when-
ever the machine generates and provides to the
program a 24-bit or 31-bit address, the address is
made available (placed in storage or loaded into a
general register) by being imbedded in a 32-bit
field, with the leftmost eight bits or one bit in the
field, respectively, set to zeros. When the address
is loaded into a general register, bits 0-31 of the
register remain unchanged.

The size of effective addresses is controlled by
bits 31 and 32 of the PSW, the extended-
addressing-mode bit and the basic-
addressing-mode bit, respectively. When bits 31
and 32 are both zero, the CPU is in the 24-bit
addressing mode, and 24-bit operand and instruc-
tion effective addresses are specified. When bit
31 is zero and bit 32 is one, the CPU is in the
31-bit addressing mode, and 31-bit operand and
instruction effective addresses are specified.
When bits 31 and 32 are both one, the CPU is in
the 64-bit addressing mode, and 64-bit operand
and instruction effective addresses are specified
(see [‘Address Generation” on page 5-7).

The sizes of the real or absolute addresses used
or yielded by the ASN-translation,
ASN-authorization, PC-number-translation, and
access-register-translation processes are always
31 bits regardless of the current addressing mode.
Similarly, the sizes of the real or absolute
addresses used or yielded by the DAT, stacking,
unstacking, and tracing processes are always 64
bits.

The size of the data address in a CCW is under
control of the CCW-format-control bit in the
operation-request block (ORB) designated by a
START SUBCHANNEL instruction. The CCWs
with 24-bit and 31-bit addresses are called
format-0 and format-1 CCWs, respectively.
Format-0 and format-1 CCWs are described in
[Chapter 15, “Basic_1/O_Functions.’] Similarly, the
size of the data address in an IDAW is under
control of the IDAW-format-control bit in the ORB.
The IDAWs with 31-bit and 64-bit addresses are
called format-1 and format-2 IDAWSs, respectively.

3-6 z/Architecture Principles of Operation

Format-1 and format-2 IDAWs are described in
Chapter 15, “Basic 1/0 Functions.”

Address Wraparound

The CPU performs address generation when it
forms an operand or instruction address or when it
generates the address of a table entry from the
appropriate table origin and index. It also per-
forms address generation when it increments an
address to access successive bytes of a field.
Similarly, the channel subsystem performs
address generation when it increments an address
(1) to fetch a CCW, (2) to fetch an IDAW, (3) to
transfer data, or (4) to compute the address of an
I/O measurement block.

When, during the generation of the address, an
address is obtained that exceeds the value
allowed for the address size (224 - 1, 231 - 1, or
264 - 1), one of the following two actions is taken:

1. The carry out of the high-order bit position of
the address is ignored. This handling of an
address of excessive size is called
wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address O appears
to follow the maximum allowable address.
Address arithmetic and wraparound occur before
transformation, if any, of the address by DAT or
prefixing.

Addresses generated by the CPU that may be
virtual addresses always wrap. Wraparound also
occurs when the linkage-stack-entry address in
control register 15 is decremented below 0 by
PROGRAM RETURN. For CPU table entries that
are addressed by real or absolute addresses, it is
unpredictable whether the address wraps or an
addressing exception is recognized.

For channel-program execution, when the gener-
ated address exceeds the value for the address
size (or, for the read-backward command is decre-
mented below 0), an 1/O program-check condition
is recognized.

[Figure 3-2 on page 3-7]identifies what limit values
apply to the generation of different addresses and
how addresses are handled when they exceed the
allowed value.

Handling when
Address| Address Would
Address Generation for Type Wrap

Instructions and operands when EAM and BAM are zero L,I,R,V W24

Successive bytes of instructions and operands when EAM and I,L,v? W24
BAM are zero

Instructions and operands when EAM is zero and BAM is one L,I,R,V W31

Successive bytes of instructions and operands when EAM is I,L,V? W31
zero and BAM is one

Instructions and operands when EAM and BAM are one L,I,R,V W64

Successive bytes of instructions and operands when EAM and I,L,V? W64
BAM are one

DAT-table entries when used for implicit translation or LRA [A or R2 X64
or STRAG

ASN-second-table, authority-table (during ASN authorization), R X31
linkage-table, and entry-table entries

Authority-table (during access-register translation) and A or R2 X31
access-1ist entries

Linkage-stack entry v W64

I/0 measurement block A P31

For a channel program with format-0 CCWs:
Successive CCWs A P24
Successive IDAWs A P24
Successive bytes of I/0 data (without IDAWs) A P24
Successive bytes of I/0 data (with format-1 IDAWs) A P31
Successive bytes of I/0 data (with format-2 IDAWSs) A P64

For a channel program with format-1 CCWs:
Successive CCWs A P31
Successive IDAWs A P31
Successive bytes of I/0 data (without IDAWs) A P31
Successive bytes of I/0 data (with format-1 IDAWSs) A P31
Successive bytes of I/0 data (with format-2 IDAWs) A P64

Figure 3-2 (Part 1 of 2). Address Wraparound

Chapter 3. Storage

3-7

Explanation:

boundary 224, 231, or 264,

A Absolute address.

BAM Basic-addressing-mode bit in the PSW.
EAM Extended-addressing-mode bit in the PSW.
I Instruction address.

L Logical address.

or is decremented below zero.
or is decremented below zero.

or is decremented below zero.

R Real address.

v Virtual address.

W24 Wrap to location O after location 224 -

W31 Wrap to location 0 after location 231! -

W64 Wrap to location 0 after Tocation 264 -

X31 When the address exceeds 23! - 1, it is
to location 0 after location 23! - 1 or
recognized.

X64 When the address exceeds 264 - 1, it is
to location 0 after location 264 - 1 or
recognized.

1 Real addresses do not apply in this case since the instructions which designate
operands by means of real addresses cannot designate operands that cross

2 It is unpredictable whether the address is absolute or real.

P24 An I/0 program-check condition is recognized when the address exceeds 224 - 1
P31 An I/0 program-check condition is recognized when the address exceeds 23! - 1

P64 An I/0 program-check condition is recognized when the address exceeds 264 - 1

1 and vice versa.

1 and vice versa.

1 and vice versa.

unpredictable whether the address wraps
whether an addressing exception is

unpredictable whether the address wraps
whether an addressing exception is

Figure 3-2 (Part 2 of 2). Address Wraparound

Storage Key

A storage key is associated with each 4K-byte
block of storage that is available in the configura-
tion. The storage key has the following format:

ACC |F(R]|C

0 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC): If a reference is
subject to key-controlled protection, the four
access-control bits, bits 0-3, are matched with the
four-bit access key when information is stored and
when information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F): If a reference is
subject to key-controlled protection, the fetch-
protection bit, bit 4, controls whether key-
controlled protection applies to fetch-type refer-
ences: a zero indicates that only store-type refer-
ences are monitored and that fetching with any

3-8 z/Architecture Principles of Operation

access key is permitted; a one indicates that key-
controlled protection applies to both fetching and
storing. No distinction is made between the
fetching of instructions and of operands.

Reference Bit (R): The reference bit, bit 5,
normally is set to one each time a location in the
corresponding storage block is referred to either
for storing or for fetching of information.

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE
KEY EXTENDED and inspected by INSERT
STORAGE KEY EXTENDED. Additionally, the
instruction RESET REFERENCE BIT EXTENDED
provides a means of inspecting the reference and
change bits and of setting the reference bit to
zero. Bits 0-4 of the storage key are inspected by
the INSERT VIRTUAL STORAGE KEY instruction.
The contents of the storage key are unpredictable
during and after the execution of the usability test
of the TEST BLOCK instruction.

Protection

Four protection facilities are provided to protect
the contents of main storage from destruction or
misuse by programs that contain errors or are
unauthorized: key-controlled protection, access-
list-controlled protection, page protection, and low-
address protection. The protection facilities are
applied independently; access to main storage is
only permitted when none of the facilities prohibits
the access.

Key-controlled protection affords protection against
improper storing or against both improper storing
and fetching, but not against improper fetching
alone.

Key-Controlled Protection

When key-controlled protection applies to a
storage access, a store is permitted only when the
storage key matches the access key associated
with the request for storage access; a fetch is per-
mitted when the keys match or when the fetch-
protection bit of the storage key is zero.

The keys are said to match when the four access-
control bits of the storage key are equal to the
access key, or when the access key is zero.

The protection action is summarized in Figure 3-3.

When the access to storage is initiated by the
CPU and key-controlled protection applies, the
PSW key is the access key, except that the
access key is specified in a general register for
the first operand of MOVE TO SECONDARY and
MOVE WITH DESTINATION KEY, for the second
operand of MOVE TO PRIMARY, MOVE WITH
KEY, and MOVE WITH SOURCE KEY, and for
either the first or the second operand of MOVE
PAGE. The PSW key occupies bit positions 8-11
of the current PSW.

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the
access key. The subchannel key for a channel
program is specified in the operation-request block
(ORB). When, for purposes of channel-subsystem
monitoring, an access to the measurement block
is made, the measurement-block key is the access

Conditions Is Access to
Storage Permitted?
Fetch-Protection
Bit of
Storage Key Key Relation| Fetch Store
0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No
Explanation:

Match The four access-control bits of the
storage key are equal to the access
key, or the access key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching,

the information is not made available
to the program; on storing, the con-
tents of the storage Tocation are not
changed.

Figure 3-3. Summary of Protection Action

key. The measurement-block key is specified by
the SET CHANNEL MONITOR instruction.

When a CPU access is prohibited because of key-
controlled protection, the execution of the instruc-
tion is terminated, and a program interruption for a
protection exception takes place. However, the
unit of operation or the execution of the instruction
may be suppressed, as described in the section

“Suppression on Protection” on page 3-12 When

a channel-program access is prohibited, the start
function is ended, and the protection-check condi-
tion is indicated in the associated interruption-
response block (IRB). When a measurement-
block access is prohibited, the 1/0 measurement-
block protection-check condition is indicated.

When a store access is prohibited because of key-
controlled protection, the contents of the protected
location remain unchanged. When a fetch access
is prohibited, the protected information is not
loaded into a register, moved to another storage
location, or provided to an I/O device. For a pro-
hibited instruction fetch, the instruction is sup-
pressed, and an arbitrary instruction-length code is
indicated.

Key-controlled protection is independent of
whether the CPU is in the problem or the super-
visor state and, except as described below, does
not depend on the type of CPU instruction or
channel-command word being executed.

Chapter 3. Storage 3-9

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by
the program and that are used by the CPU to
store or fetch information are subject to key-
controlled protection.

Key-controlled protection does not apply when the
storage-protection-override control is one and the
value of the four access-control bits of the storage
key is 9. Key-controlled protection for fetches
may or may not apply when the fetch-
protection-override control is one, depending on
the effective address and the private-space
control.

The storage-protection-override control and fetch-
protection-override control do not affect storage
references made by the channel subsystem.

Accesses to the second operand of TEST BLOCK
are not subject to key-controlled protection.

All storage accesses by the channel subsystem to
access the I/O measurement block, or by a
channel program to fetch a CCW or IDAW or to
access a data area designated during the exe-
cution of a CCW, are subject to key-controlled
protection. However, if a CCW, an IDAW, or
output data is prefetched, a protection check is not
indicated until the CCW or IDAW is due to take
control or until the data is due to be written.

Key-controlled protection is not applied to
accesses that are implicitly made for any of such
sequences as:

¢ An interruption

¢ CPU logout

e Fetching of table entries for access-register
translation, dynamic-address translation,
PC-number translation, ASN translation, or
ASN authorization

e Tracing

¢ A store-status function

e Storing in real locations 184-191 when TEST
PENDING INTERRUPTION has an operand
address of zero

e |nitial program loading

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the
program explicitly designates these locations, they
are subject to protection.

3-10 z/Architecture Principles of Operation

Storage-Protection-Override Control

Bit 39 of control register 0 is the storage-
protection-override control. When this bit is one,
storage-protection override is active. When this
bit is zero, storage-protection override is inactive.
When storage-protection override is active, key-
controlled storage protection is ignored for storage
locations having an associated storage-key value
of 9. When storage-protection override is inactive,
no special action is taken for a storage-key value
of 9.

Storage-protection override applies to instruction
fetch and to the fetch and store accesses of
instructions whose operand addresses are logical,
virtual, or real. It does not apply to accesses
made for the purpose of channel-program exe-
cution or for the purpose of channel-subsystem
monitoring.

Storage-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Notes:

1. Storage-protection override can be used to
improve reliability in the case when a possibly
erroneous application program is executed in
conjunction with a reliable subsystem, pro-
vided that the application program needs to
access only a portion of the storage accessed
by the subsystem. The technique for doing
this is as follows. The storage accessed by
the application program is given storage key
9. The storage accessed by only the sub-
system is given some other nonzero storage
key, for example, key 8. The application is
executed with PSW key 9. The subsystem is
executed with PSW key 8 (in this example).
As a result, the subsystem can access both
the key-8 and the key-9 storage, while the
application program can access only the key-9
storage.

2. Storage-protection override affects the
accesses to storage made by the CPU and
also affects the result set by TEST PRO-
TECTION. However, those instructions which,
in the problem state, test the PSW-key mask
to determine if a particular key value may be
used are not affected by whether storage-
protection override is active. These
instructions include, among others, MOVE
WITH KEY and SET PSW KEY FROM

ADDRESS. To permit these instructions to
use an access key of 9 in the problem state,
bit 9 of the PSW-key mask must be one.

Fetch-Protection-Override Control

Bit 38 of control register 0 is the fetch-
protection-override control. When the bit is one,
fetch protection is ignored for locations at effective
addresses 0-2047. An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing.
However, fetch protection is not ignored if the
effective address is subject to dynamic address
translation and the private-space control, bit 55, is
one in the address-space-control element used in
the translation.

Fetch-protection override applies to instruction
fetch and to the fetch accesses of instructions
whose operand addresses are logical, virtual, or
real. It does not apply to fetch accesses made for
the purpose of channel-program execution or for
the purpose of channel-subsystem monitoring.
When this bit is set to zero, fetch protection of
locations at effective addresses 0-2047 is deter-
mined by the state of the fetch-protection bit of the
storage key associated with those locations.

Fetch-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Note: The fetch-
protection-override control allows fetch protection
of locations at addresses 2048-4095 along with no
fetch protection of locations at addresses 0-2047.

Access-List-Controlled Protection

In the access-register mode, bit 6 of the access-
list entry, the fetch-only bit, controls which types of
operand references are permitted to the address
space specified by the access-list entry. When
the entry is used in the access-register-translation
part of a reference and bit 6 is zero, both fetch-
type and store-type references are permitted;
when bit 6 is one, only fetch-type references are
permitted, and an attempt to store causes a pro-
tection exception to be recognized and the exe-
cution of the instruction to be suppressed.

The fetch-only bit is included in the ALB access-
list entry. A change to the fetch-only bit in an
access-list entry in main storage does not neces-
sarily have an immediate, if any, effect on whether
a protection exception is recognized. However,
this change to the bit will have an effect imme-
diately after PURGE ALB or a COMPARE AND
SWAP AND PURGE instruction that purges the
ALB is executed.

TEST PROTECTION takes into consideration
access-list-controlled protection when the CPU is
in the access-register mode. A violation of
access-list-controlled protection causes condition
code 1 to be set, except that it does not prevent
condition code 2 or 3 from being set when the
conditions for those codes are satisfied.

Programming Note: A violation of access-list-
controlled protection always causes suppression.
A violation of any of the other protection types
may cause termination.

Page Protection

The page-protection facility controls access to
virtual storage by using the page-protection bit in
each page-table entry and segment-table entry. It
provides protection against improper storing.

The page-protection bit, bit 54, of the page-table
entry controls whether storing is allowed into the
corresponding 4K-byte page. When the bit is
zero, both fetching and storing are permitted;
when the bit is one, only fetching is permitted.
When an attempt is made to store into a protected
page, the contents of the page remain unchanged,
the unit of operation or the execution of the
instruction is suppressed, and a program inter-
ruption for protection takes place.

The page-protection bit, bit 54, of the segment-
table entry is treated as being ORed into the
page-protection-bit position of each entry in the
page table designated by the segment-table entry.
Thus, when the segment-table-entry page-
protection bit is one, the effect is as if the page-
protection bit were one in each entry in the desig-
nated page table.

Page protection applies to all store-type refer-
ences that use a virtual address.

Chapter 3. Storage 3-11

Low-Address Protection

The low-address-protection facility provides pro-
tection against the destruction of main-storage
information used by the CPU during interruption
processing. This is accomplished by prohibiting
instructions from storing with effective addresses
in the ranges 0 through 511 and 4096 through
4607 (the first 512 bytes of each of the first and
second 4K-byte effective-address blocks). The
range criterion is applied before address transfor-
mation, if any, of the address by dynamic address
translation or prefixing. However, the range crite-
rion is not applied, with the result that low-address
protection does not apply, if the effective address
is subject to dynamic address translation and the
private-space control, bit 55, is one in the
address-space-control element used in the trans-
lation. Low-address protection does not apply if
the address-space-control element to be used is
not available due to another type of exception.

Low-address protection is under control of bit 35
of control register 0, the Ilow-address-
protection-control bit. When the bit is zero, low-
address protection is off; when the bit is one, low-
address protection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, the execution of the instruction
is terminated, and a program interruption for a
protection exception takes place. However, the
unit of operation or the execution of the instruction
may be suppressed, as described in the section
[FSuppression on Protection.’]

Any attempt by the program to store by using
effective addresses in the range 0 through 511 or
4096 through 4607 is subject to low-address pro-
tection. Low-address protection is applied to the
store accesses of instructions whose operand
addresses are logical, virtual, or real. Low-
address protection is also applied to the trace
table.

Low-address protection is not applied to accesses
made by the CPU or the channel subsystem for
such sequences as interruptions, CPU logout, the

storing of the 1/O-interruption code in real locations
184-191 by TEST PENDING INTERRUPTION,
and the initial-program-loading and store-status
functions, nor is it applied to data stores during 1/0
data transfer. However, explicit stores by a
program at any of these locations are subject to
low-address protection.

Programming Notes:

1. Low-address protection and key-controlled
protection apply to the same store accesses,
except that:

a. Low-address protection does not apply to
storing performed by the channel sub-
system, whereas key-controlled protection
does.

b. Key-controlled protection does not apply
to tracing, the second operand of TEST
BLOCK, or instructions that operate spe-
cifically on the linkage stack, whereas low-
address protection does.

2. Because fetch-protection override and low-
address protection do not apply to an address
space for which the private-space control is
one in the address-space-control element,
locations 0-2047 and 4096-4607 in the
address space are usable the same as the
other locations in the space.

Suppression on Protection

Some instruction definitions specify that the opera-
tion is always suppressed if a protection exception
due to any type of protection is recognized. When
that specification is absent, the execution of an
instruction is always suppressed if a protection
exception due to access-list-controlled protection
or page protection is recognized, and it may be
either suppressed or terminated if a protection
exception due to low-address protection or key-
controlled protection is recognized.

The suppression-on-protection function allows the
control program to locate the segment-table entry
and page-table entry used in the translation of a
virtual address that caused a protection exception,
in order to determine if the exception was due to
page protection.! This is necessary for the imple-

1 The suppression-on-protection function originated as the ESA/390 suppression-on-protection facility. Suppression for page pro-

tection was new as part of that facility.

3-12 z/Architecture Principles of Operation

mentation of the Posix fork function (discussed in
a programming note). The function also allows
the control program to avoid locating the segment-
table and page-table entries if the address was
not virtual or the exception was due to access-
list-controlled protection.

During a program interruption due to a protection
exception, either a one or a zero is stored in bit
position 61 of real locations 168-175. The storing
of a one in bit position 61 indicates that:

e The unit of operation or instruction execution
during which the exception was recognized
was suppressed.

¢ |f dynamic address translation (DAT) was on,
as indicated by the DAT-mode bit in the
program old PSW, the effective address that
caused the exception is one that was to be
translated by DAT. (The effective address is
the address which exists before any transfor-
mation by DAT or prefixing.) Bit 61 is set to
zero if DAT was on but the effective address
was not to be translated by DAT because it is
a real address. If DAT was off, the protection
exception cannot have been due to page pro-
tection.

e Bit positions 0-51 of real locations 168-175
contain bits 0-51 of the effective address that
caused the exception. If DAT was on, indi-
cating that the effective address was to be
translated by DAT, bit positions 62 and 63 of
real locations 168-175, and real location 160,
contain the same information as is stored
during a program interruption due to a page-
translation exception — this information identi-
fies the address space containing the pro-
tected address. Also, bit 60 of real locations
168-175 is zero if the protection exception
was not due to access-list-controlled pro-
tection or is one if the exception was due to
access-list-controlled protection. A one in bit
position 60 indicates that the exception was
not due to page protection. If DAT was off,
the contents of bit positions 60, 62, and 63 of
real locations 168-175, and the contents of
real location 160, are unpredictable. The con-
tents of bit positions 52-59 of real locations
168-175 are always unpredictable.

Bit 61 being zero indicates that the operation was
either suppressed or terminated and that the con-
tents of the remainder of real locations 168-175,
and of real location 160 are unpredictable.

Bit 61 is set to one if the protection exception was
due to access-list-controlled protection or page
protection. Bit 61 may be set to one if the pro-
tection exception was due to low-address pro-
tection or key-controlled protection.

If a protection-exception condition exists due to
either access-list-controlled protection or page pro-
tection but also exists due to either low-address
protection or key-controlled protection, it is unpre-
dictable whether bit 61 is set to zero or one.

Programming Notes:

1. The suppression-on-protection function is
useful in performing the Posix fork function,
which causes a duplicate address space to be
created. When forking occurs, the control
program causes the same page of different
address spaces to map to a single page frame
of real storage so long as a store in the page
is not attempted. Then, when a store is
attempted in a particular address space, the
control program assigns a unique page frame
to the page in that address space and copies
the contents of the page to the new page
frame. This last action is sometimes called
the copy-on-write function. The control
program sets the page-protection bit to one in
the page-table entry for a page in order to
detect an attempt to store in the page. The
control program may initially set the page-
protection bit to one in a segment-table entry
to detect an attempt to store anywhere in the
the specified segment.

2. Bit 61 being one in real locations 168-175
when DAT was on indicates that the address
that caused a protection exception is virtual.
This indication allows programmed forms of
access-register translation and dynamic
address translation to be performed to deter-
mine whether the exception was due to page
protection as opposed to low-address or key-
controlled protection.

3. The results of suppression on protection are
summarized in [Figure 3-4 on page 3-14|

Chapter 3. Storage 3-13

If Bit 61 One

LA or ALC

Key- or Bits 62,
Cont. Page |Eff. |Bit|63 and |Bit
Prot. |DAT|Prot.|Addr. |61 |Loc. 160| 60
No (On | Yes |Log. 1 P 1A
Yes |On | Yes |Log. U1 P 1A

Yes [Off| No |Log. | U2 VK] VK]
Yes [Off| No |Real U2 U3 VK]
Yes [On | No |Log. | U2 P 0
Yes [On | No |Real | OR - -

Explanation:

- Immaterial or not applicable.

OR Zero because effective address
is real.

1A One if bit 61 is set to one
because of access-list-
controlled protection; zero
otherwise.

ALC Access-Tist-controlled.

LA Low-address.

Log. Logical.

P Predictable.

Ul Unpredictable because low-
address or key-controlled
protection may be recognized
instead of access-list-
controlled or page protection.

U2 Unpredictable because bit 61 is
only required to be set to one
for access-1ist-controlled or
page protection.

U3 Unpredictable because DAT is
off.

Figure 3-4. Suppression-on-Protection Results

Reference Recording

Reference recording provides information for use
in selecting pages for replacement. Reference
recording uses the reference bit, bit 5 of the
storage key. The reference bit is set to one each
time a location in the corresponding storage block
is referred to either for fetching or for storing infor-
mation, regardless of whether DAT is on or off.

Reference recording is always active and takes
place for all storage accesses, including those
made by any CPU, any operator facility, or the
channel subsystem. It takes place for implicit
accesses made by the machine, such as those
which are part of interruptions and 1/O-instruction
execution.

3-14 z/Architecture Principles of Operation

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

¢ INSERT STORAGE KEY EXTENDED

e RESET REFERENCE BIT EXTENDED (refer-
ence bit is set to zero)

e SET STORAGE KEY EXTENDED (reference
bit is set to a specified value)

The record provided by the reference bit is sub-
stantially accurate. The reference bit may be set
to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be
made without the reference bit being set to one.
Under certain unusual circumstances, a reference
bit may be set to zero by other than explicit
program action.

Change Recording

Change recording provides information as to
which pages have to be saved in auxiliary storage
when they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents of the corresponding
storage block to be changed. A store access that
does not change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

1. For the CPU, a store access is prohibited
whenever an access exception exists for that
access, or whenever an exception exists
which is of higher priority than the priority of
an access exception for that access.

2. For the channel subsystem, a store access is

prohibited whenever a key-
controlled-protection violation exists for that
access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, any operator facility, or
the channel subsystem. It takes place for implicit
references made by the machine, such as those
which are part of interruptions.

Change recording does not take place for the
operands of the following instructions since they
directly modify a storage key without modifying a
storage location:

« RESET REFERENCE BIT EXTENDED
e SET STORAGE KEY EXTENDED (change bit
is set to a specified value)

Change bits which have been changed from zeros
to ones are not necessarily restored to zeros on
CPU retry (see [‘CPU Retry” on page 11-2). See
[Exceptions to Nullification and Suppression” on|
[bage 5-23 Jor a description of the handling of the

change bit in certain unusual situations.

Prefixing

Prefixing provides the ability to assign the range of
real addresses 0-8191 to a different block in abso-
lute storage for each CPU, thus permitting more
than one CPU sharing main storage to operate
concurrently with a minimum of interference, espe-
cially in the processing of interruptions.

Prefixing causes real addresses in the range
0-8191 to correspond one-for-one to the block of
8K-byte absolute addresses (the prefix area) iden-
tified by the value in bit positions 0-50 of the prefix
register for the CPU, and the block of real
addresses identified by that value in the prefix reg-
ister to correspond one-for-one to absolute
addresses 0-8191. The remaining real addresses
are the same as the corresponding absolute
addresses. This transformation allows each CPU
to access all of main storage, including the first 8K
bytes and the locations designated by the prefix
registers of other CPUs.

The relationship between real and absolute

addresses is graphically depicted in

pag 0

The prefix is a 51-bit quantity contained in bit posi-
tions 0-50 of the prefix register. The register has
the following format:

/

Eeoo Prefix Bits 33-50 |///////1/111/
/

0 33 51 63

Bits 0-32 of the register are always all zeros. Bits
33-50 of the register can be set and inspected by
the privileged instructions SET PREFIX and
STORE PREFIX, respectively.

SET PREFIX sets bits 33-50 of the prefix register
with the value in bit positions 1-18 of a word in
storage, and it ignores the contents of bit positions
0 and 19-31 of the word. STORE PREFIX stores
the value in bit positions 33-50 of the prefix reg-
ister in bit positions 1-18 of a word in storage, and
it stores zeros in bit positions 0 and 19-31 of the
word.

When the contents of the prefix register are
changed, the change is effective for the next
sequential instruction.

When prefixing is applied, the real address is
transformed into an absolute address by using
one of the following rules, depending on bits 0-50
of the real address:

1. Bits 0-50 of the address, if all zeros, are
replaced with bits 0-50 of the prefix.

2. Bits 0-50 of the address, if equal to bits 0-50
of the prefix, are replaced with zeros.

3. Bits 0-50 of the address, if not all zeros and
not equal to bits 0-50 of the prefix, remain
unchanged.

Only the address presented to storage is trans-
lated by prefixing. The contents of the source of
the address remain unchanged.

The distinction between real and absolute
addresses is made even when the prefix register
contains all zeros, in which case a real address
and its corresponding absolute address are iden-
tical.

Chapter 3. Storage 3-15

Prefixing Prefixing

T 7] r-——----—--=- = 1 T 71 r-——----—--=- = 1 T

+ |——+No Change | 1+ | | }

/ / /

T = | Apply | — 1 | | No Change———— +

1 | Zeros | > |2 | |
/ / /
t | | b4 aely | -1
2|« Zeros—|1

I | | = L Fe

} | | } | | }

/ / /

1 |——+No Change | + | | 1

T | | 1+ | I No Change———| +

t | | t | | t
8192 + — | Apply | 8192 | + — | Apply | — + 8192

Prefix > < Prefix
o+t—-+ Lt ————————] 0 -+ - b - — - — 10

Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B

(1) Real addresses in which bits 0-50 are equal to bits 0-50 of the prefix for this CPU (A or B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real locations 0-8191.

Figure 3-5. Relationship between Real and Absolute Addresses

Address Spaces

An address space is a consecutive sequence of
integer numbers (virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro-
ceeds left to right.

When a virtual address is used by a CPU to
access main storage, it is first converted, by
means of dynamic address translation (DAT), to a
real address, and then, by means of prefixing, to
an absolute address. DAT may use from five to
two levels of tables (region first table, region
second table, region third table, segment table,
and page table) as transformation parameters.
The designation (origin and length) of the highest-
level table for a specific address space is called
an address-space-control element, and it is found
for use by DAT in a control register or as specified
by an access register. Alternatively, the address-
space-control element for an address space may
be a real-space designation, which indicates that

3-16

z/Architecture Principles of Operation

DAT is to translate the virtual address simply by
treating it as a real address and without using any
tables.

DAT uses, at different times, the address-
space-control elements in different control regis-
ters or specified by the access registers. The
choice is determined by the translation mode
specified in the current PSW. Four translation
modes are available: primary-space mode,
secondary-space mode, access-register mode,
and home-space mode. Different address spaces
are addressable depending on the translation
mode.

At any instant when the CPU is in the primary-
space mode or secondary-space mode, the CPU
can translate virtual addresses belonging to two
address spaces — the primary address space
and the secondary address space. At any instant
when the CPU is in the access-register mode, it
can translate virtual addresses of up to 16
address spaces — the primary address space
and up to 15 AR-specified address spaces. At
any instant when the CPU is in the home-space

mode, it can translate virtual addresses of the
home address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary
address-space-control element (ASCE). Similarly,
the secondary address space consists of sec-
ondary virtual addresses translated by means of
the secondary ASCE, the AR-specified address
spaces consist of AR-specified virtual addresses
translated by means of AR-specified ASCEs, and
the home address space consists of home virtual
addresses translated by means of the home
ASCE. The primary and secondary ASCEs are in
control registers 1 and 7, respectively. The
AR-specified ASCEs are in control registers 1 and
7 and in table entries called ASN-second-table
entries. The home ASCE is in control register 13.

Changing to Different Address Spaces

A program can cause different address spaces to
be addressable by using the semiprivileged SET
ADDRESS SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction to change
the translation mode to the primary-space mode,
secondary-space mode, access-register mode, or
home-space mode. However, SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST can set the home-space mode
only in the supervisor state. The program can
cause still other address spaces to be address-
able by using other semiprivileged instructions to
change the address-space-control elements in
control registers 1 and 7 and by using unprivileged
instructions to change the contents of the access
registers. Only the privileged LOAD CONTROL
instruction is available for changing the home
address-space-control element in control register
13.

Address-Space Number

An address space may be assigned an address-
space number (ASN) by the control program. The
ASN designates, within a two-level table structure
in main storage, an ASN-second-table entry con-
taining information about the address space. If
the ASN-second-table entry is marked as valid, it
contains the address-space-control element that
defines the address space.

Under certain circumstances, the semiprivileged
instructions which place a new address-

space-control element in control register 1 or 7
fetch this element from an ASN-second-table
entry. Some of these instructions use an
ASN-translation mechanism which, given an ASN,
can locate the designated ASN-second-table
entry.

The 16-bit unsigned binary format of the ASN
permits 64K unique ASNSs.

The ASNs for the primary and secondary address
spaces are assigned positions in control registers.
The ASN for the primary address space, called
the primary ASN, is assigned bits 48-63 in control
register 4, and that for the secondary address
space, called the secondary ASN, is assigned bits
48-63 in control register 3. The registers have the
following formats:

Control Register 4

PASN

48 63

Control Register 3

SASN

48 63

A semiprivileged instruction that loads the primary
or secondary address-space-control element into
the appropriate control register also loads the cor-
responding ASN into the appropriate control reg-
ister.

The ASN for the home address space is not
assigned a position in a control register.

An access register containing the value 0 or 1
specifies the primary or secondary address space,
respectively; and the address-space-control
element specified by the access register is in
control register 1 or 7, respectively. An access
register containing any other value designates an
entry in a table called an access list. The desig-
nated access-list entry contains the real address
of an ASN-second-table entry for the address
space specified by the access register. The
address-space-control element specified by the
access register is in the ASN-second-table entry.
Translating the contents of an access register to
obtain an address-space-control element for use
by DAT does not involve the use of an ASN.

Chapter 3. Storage 3-17

Note: Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as “storage.”

Programming Note: Because an
ASN-second-table entry is located from an
access-list entry by means of its address instead
of by means of its ASN, the ASN-second-table
entries designated by access-list entries can be
“pseudo” ASN-second-table entries, that is, entries
which are not in the two-level structure able to be
indexed by means of the ASN-translation process.
The number of unique pseudo ASN-second-table
entries can be greater than the number of unique
ASNs and is limited only by the amount of storage
available to be occupied by the ASN-second-table
entries. Thus, in a sense, there is no limit on the
number of possible address spaces.

ASN Translation

ASN translation is the process of translating a
16-bit ASN to locate the ASN-second-table entry
designated by the ASN. ASN translation is per-
formed as part of PROGRAM TRANSFER with
space switching (PT-ss) and SET SECONDARY
ASN with space switching (SSAR-ss), and it may
be performed as part of LOAD ADDRESS SPACE
PARAMETERS. For PT-ss, the ASN which is
translated replaces the primary ASN in control
register 4. For SSAR-ss, the ASN which is trans-
lated replaces the secondary ASN in control reg-
ister 3. These two translation processes are
called primary ASN translation and secondary
ASN translation, respectively, and both can occur
for LOAD ADDRESS SPACE PARAMETERS.
The ASN-translation process is the same for both
primary and secondary ASN translation; only the
uses of the results of the process are different.

ASN ftranslation may also be performed as part of
PROGRAM RETURN. Primary ASN translation is
performed as part of PROGRAM RETURN with
space switching (PR-ss). Secondary ASN trans-
lation is performed if the secondary ASN restored
by PROGRAM RETURN (PR-ss or PROGRAM
RETURN to current primary) does not equal the
primary ASN restored by PROGRAM RETURN.

PROGRAM CALL with space switching (PC-ss)
performs the equivalent of primary ASN translation
by obtaining a primary ASN and the address of
the corresponding ASN-second-table entry from
an entry-table entry.

3-18 z/Architecture Principles of Operation

The ASN-translation process uses two tables, the
ASN first table and the ASN second table. They
are used to locate the ASN-second-table entry
and a third table, the authority table, which is used
when ASN authorization is performed.

For the purposes of this translation, the 16-bit
ASN is considered to consist of two parts: the
ASN-first-table index (AFX) is the leftmost 10 bits
of the ASN, and the ASN-second-table index
(ASX) is the six rightmost bits. The ASN has the
following format:

ASN

AFX ASX

0 10 15

The AFX is used to select an entry from the ASN
first table. The origin of the ASN first table is des-
ignated by the ASN-first-table origin in control reg-
ister 14. The ASN-first-table entry contains the
origin of the ASN second table. The ASX is used
to select an entry from the ASN second table.

As a result of primary ASN translation and during
the operation of PROGRAM CALL with space
switching, the address of the located
ASN-second-table entry (ASTE) is placed in
control register 5 as the new primary-ASTE origin
(PASTEO).

ASN-Translation Controls
ASN translation is controlled by the

ASN-translation-control bit and the ASN-first-table
origin, both of which reside in control register 14.

Control Register 14

T AFTO

44 63

ASN-Translation Control (T): Bit 44 of control
register 14 is the ASN-translation-control bit. This
bit provides a mechanism whereby the control
program can indicate whether ASN translation can
occur while a particular program is being exe-
cuted, and also whether the execution of
PROGRAM CALL with space switching is allowed.

Bit 44 must be one to allow completion of these
instructions:

e LOAD ADDRESS SPACE PARAMETERS

¢ PROGRAM CALL with space switching

¢ PROGRAM RETURN with space switching or
when the restored SASN does not equal the
restored PASN

¢ PROGRAM TRANSFER with space switching

e SET SECONDARY ASN

Otherwise, a special-operation exception is recog-
nized. The ASN-translation-control bit is exam-
ined in both the problem and the supervisor
states.

ASN-First-Table Origin (AFTO): Bits 45-63 of
control register 14, with 12 zeros appended on the
right, form a 31-bit real address that designates
the beginning of the ASN first table.

ASN-Translation Tables

The ASN-translation process consists in a two-
level lookup using two tables: an ASN first table
and an ASN second table. These tables reside in
real storage.

ASN-First-Table Entries
An entry in the ASN first table has the following
format:

I ASTO

0 1 26 31
The fields in the entry are allocated as follows:

AFX-Invalid Bit (I): Bit 0 controls whether the
ASN second table associated with the
ASN-first-table entry is available. When bit 0 is
zero, ASN translation proceeds by using the des-
ignated ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table Origin (ASTO): Bits 1-25,
with six zeros appended on the right, are used to
form a 31-bit real address that designates the
beginning of the ASN second table.

ASN-Second-Table Entries

The ASN-second-table entry has a length of 64
bytes, with only the first 32 bytes currently in use.
Bytes 0-31 of the entry have the following format:

I ATO B
0 1 30 31
AX ATL
32 48 60 63

—ASCE (RTD, STD, or RSD) Part 1—

RTO, STO, or RSTKO

64 95

—RTD or STD Part 2———
RTO/STO (Cont.)| |GPSX|R| [DT|TL| R=0

96 115 118 122 124 127

———RSD Part 2———

RSTKO (Cont.) GPSX|R R=1
96 115 118 122 127
| ALD]
ALO ALL
128 153 159
ASTESN
160 191
| LTD
v LTO LTL
192 217 223

Ty
224 255

The fields in bytes 0-31 of the ASN-second-table
entry are allocated as follows. Only the fields that
are used in or as a result of ASN translation or
PROGRAM CALL with space switching are
described in detail.

Chapter 3. Storage 3-19

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the
ASN-second-table entry is available. When bit 0
is zero, ASN translation proceeds. When the bit is
one, the ASN translation cannot continue.

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Base-Space Bit (B): Bit 31 specifies, when one,
that the address space associated with the
ASN-second-table entry is the base space of a
subspace group. Bit 31 is further described in
“Subspace-Group ASN-Second-Table Entries” on|

Eaﬁe 5-53

Authorization Index (AX): Bits 32-47 are used
in ASN authorization as an index to locate the
authority bits in the authority table. The AX field is
used as a result of primary ASN translation by
PROGRAM RETURN and PROGRAM
TRANSFER and, possibly, LOAD ADDRESS
SPACE PARAMETERS. It is also used by
PROGRAM CALL with space switching. The AX
field is ignored after secondary ASN translation.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular AX falls within the authority table.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control
element (ASCE) that may be a region-table desig-
nation (RTD), a segment-table designation (STD),
or a real-space designation (RSD). (The term
“region-table designation” is used to mean a
region-first-table designation, region-second-table
designation, or region-third-table designation.)
The ASCE field is used as a result of ASN trans-
lation or in PROGRAM CALL with space switching
to replace the primary ASCE (PASCE) or the sec-
ondary ASCE (SASCE). For PROGRAM CALL
with space switching, the ASCE field replaces the
PASCE, bits 0-63 of control register 1. For SET
SECONDARY ASN, the ASCE field replaces the
SASCE, bits 0-63 of control register 7. Each of
these actions may occur independently for LOAD

3-20 z/Architecture Principles of Operation

ADDRESS SPACE PARAMETERS. For
PROGRAM TRANSFER, the ASCE field replaces
both the PASCE and the SASCE. For PROGRAM
RETURN, as a result of primary ASN translation,
the ASCE field replaces the PASCE, and, as a
result of secondary ASN translation, the ASCE
field replaces the SASCE. The contents of the
entire ASCE field are placed in the appropriate
control registers without being inspected for
validity.

The subspace-group-control bit (G), bit 118 of the
ASCE field, indicates, when one, that the ASCE
specifies an address space that is the base space
or a subspace of a subspace group. The bit is

further described in “Subspace-Group|
[ASN-Second-Table Entries” on page 5-58

Bit 121 (X) of the ASCE field is the space-switch-
event-control bit. When, in the space-switching
operations of PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER, this bit is
one in control register 1 either before or after the
execution of the instruction, a program interruption
for a space-switch event occurs after the exe-
cution of the instruction is completed. A space-
switch-event program interruption also occurs after
the completion of a SET ADDRESS SPACE
CONTROL, SET ADDRESS SPACE CONTROL
FAST, or RESUME PROGRAM instruction that
changes the translation mode either to or from the
home-space mode when this bit is one in either
control register 1 or control register 13. When, in
LOAD ADDRESS SPACE PARAMETERS, this bit
is one during primary ASN translation, this fact is
indicated by the condition code.

The real-space-control bit (R), bit 122 of the ASCE
field, indicates, when zero, that the ASCE is a
region-table or segment-table designation or,
when one, that the ASCE is a real-space desig-
nation.

When bit 122 is zero, the designation-type-control
bits (DT), bits 124 and 125 of the ASCE field, indi-
cate the designation type of the ASCE. A value
11, 10, 01, or 00 binary of bits 124 and 125 indi-
cates a region-first-table designation, region-
second-table designation, region-third-table desig-
nation, or segment-table designation, respectively.

The other fields in the ASCE (RTO, STO, P, S,
TL, and RSTKO) are described in

ister 1” on page 3-29|

The linkage-table-designation (LTD) field in the
ASN-second-table entry is described in
[FPC-Number Translation Contro” _on page 5-30}
The access-list-designation (ALD) field and the
ASTE-sequence-number (ASTESN) field are
described in [‘ASN-Second-Table Entries” on|
Bits 224-255 in the ASN-second-table
entry are available for use by programming.

Programming Note: All unused fields in the
ASN-second-table entry, including the unused
fields in bytes 0-31 and all of bytes 32-63, should
be set to zeros. These fields are reserved for
future extensions, and programs which place
nonzero values in these fields may not operate
compatibly on future machines.

ASN-Translation Process

This section describes the ASN-translation
process as it is performed during the execution of
the space-switching forms of PROGRAM
RETURN, PROGRAM TRANSFER, and SET
SECONDARY ASN, and also in PROGRAM
RETURN when the restored secondary ASN does
not equal the restored primary ASN. ASN trans-
lation for LOAD ADDRESS SPACE PARAME-
TERS is the same except that AFX-translation and

ASX-translation exceptions do not occur; such
conditions are instead indicated by the condition
code. Translation of an ASN is performed by
means of two tables, an ASN first table and an
ASN second table, both of which reside in main
storage.

The ASN first index is used to select an entry from
the ASN first table. This entry designates the
ASN second table to be used.

The ASN second index is used to select an entry
from the ASN second table.

If the | bit is one in either the ASN-first-table entry
or the ASN-second-table entry, the entry is invalid,
and the ASN-translation process cannot be com-
pleted. An AFX-translation exception or
ASX-translation exception is recognized.

Whenever access to main storage is made during
the ASN-translation process for the purpose of
fetching an entry from an ASN first table or ASN
second table, key-controlled protection does not

apply.

The ASN-translation process is shown in

[Figure 3-6 on page 3-22

Chapter 3. Storage 3-21

ASN

CR14 T AFTO AFX |ASX
(x4096) (x4) (x64)
ASN First Table
_,
R I ASTO
(x64)
ASN Second Table
_,
R I ATO B AX ATL ASCE *

R: Address is real
*: Last 48 bytes of ASTE are not shown

Figure 3-6. ASN Translation

ASN-First-Table Lookup
The AFX portion of the ASN, in conjunction with
the ASN-first-table origin, is used to select an
entry from the ASN first table.

The 31-bit real address of the ASN-first-table entry
is obtained by appending 12 zeros on the right to
the AFT origin contained in bit positions 45-63 of
control register 14 and adding the AFX portion
with two rightmost and 19 leftmost zeros
appended. This addition cannot cause a carry
into bit position 0. The 31-bit address is formed
and used regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

3-22 z/Architecture Principles of Operation

All four bytes of the ASN-first-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the ASN-first-table entry desig-
nates a location which is not available in the con-
figuration, an addressing exception is recognized,
and the operation is suppressed.

Bit O of the four-byte AFT entry specifies whether
the corresponding AST is available. If this bit is
one, an AFX-translation exception is recognized.
The entry fetched from the AFT is used to access
the AST.

ASN-Second-Table Lookup

The ASX portion of the ASN, in conjunction with
the ASN-second-table origin contained in the
ASN-first-table entry, is used to select an entry
from the ASN second table.

The 31-bit real address of the ASN-second-table
entry is obtained by appending six zeros on the
right to bits 1-25 of the ASN-first-table entry and
adding the ASX with six rightmost and 19 leftmost
zeros appended. When a carry into bit position O
occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 231 - 1 to
zero. The 31-bit address is formed and used
regardless of whether the current PSW specifies
the 24-bit, 31-bit, or 64-bit addressing mode.

The fetch of the 64 bytes of the ASN-second-table
entry appears to be word concurrent as observed
by other CPUs, with the leftmost word fetched
first. The order in which the remaining 15 words
are fetched is unpredictable. The fetch access is
not subject to protection. When the storage
address which is generated for fetching the
ASN-second-table entry designates a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed.

Bit 0 of the ASN-second-table entry specifies
whether the address space is accessible. If this
bit is one, an ASX-translation exception is recog-
nized.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered during
the ASN-translation process are collectively
referred to as ASN-translation exceptions. A list
of these exceptions and their priorities is given in
[Chapter 6, “Interruptions.’|

ASN Authorization

ASN authorization is the process of testing
whether the program associated with the current
authorization index is permitted to establish a par-
ticular address space. The ASN authorization is
performed as part of PROGRAM TRANSFER with
space switching (PT-ss) and SET SECONDARY

ASN with space switching (SSAR-ss) and may be
performed as part of LOAD ADDRESS SPACE
PARAMETERS. ASN authorization is performed
after the ASN-translation process for these
instructions.

ASN authorization is also performed as part of
PROGRAM RETURN when the restored sec-
ondary ASN does not equal the restored primary
ASN. ASN authorization of the restored sec-
ondary ASN is performed after ASN translation of
the restored secondary ASN.

When performed as part of PT-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the primary ASN and is called
primary-ASN authorization. When performed as
part of LOAD ADDRESS SPACE PARAMETERS,
PROGRAM RETURN, or SSAR-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the secondary ASN and is called
secondary-ASN authorization.

The ASN authorization is performed by means of
an authority table in real storage which is desig-
nated by the authority-table-origin and authority-
table-length fields in the ASN-second-table entry.

ASN-Authorization Controls

ASN authorization uses the authority-table origin
and the authority-table length from the
ASN-second-table entry, together with an authori-
zation index.

Control Register 4

For PT-ss and SSAR-ss, the current contents of
control register 4 include the authorization index.
For LOAD ADDRESS SPACE PARAMETERS and
PROGRAM RETURN, the value which will
become the new contents of control register 4 is
used. The register has the following format:

AX

32 48
Authorization Index (AX): Bits 32-47 of control

register 4 are used as an index to locate the
authority bits in the authority table.

Chapter 3. Storage 3-23

ASN-Second-Table Entry

The ASN-second-table entry which is fetched as
part of the ASN translation process contains infor-
mation which is used to designate the authority
table. An entry in the ASN second table has the
following format:

ATO B

ATL

32 48 60 64

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is equal to
one more than the ATL value. The contents of
the length field are used to establish whether the
entry designated by the authorization index falls
within the authority table.

Authority-Table Entries

The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

PS|PS|PS|PS

0 7

The fields are allocated as follows:

Primary Authority (P): The left bit of an
authority-table entry controls whether the program
with the authorization index corresponding to the
entry is permitted to establish the address space
as a primary address space. |If the P bit is one,

3-24 z/Architecture Principles of Operation

the establishment is permitted. If the P bit is zero,
the establishment is not permitted.

Secondary Authority (S): The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is per-
mitted to establish the address space as a sec-
ondary address space. If the S bit is one, the
establishment is permitted. If the S bit is zero, the
establishment is not permitted.

The authority table is also used in the extended-
authorization process, as part of access-register
translation. Extended authorization is described in
FAuthorizing the Use of the Access-List Entry” on]

page 5-53

ASN-Authorization Process

This section describes the ASN-authorization
process as it is performed during the execution of
PROGRAM TRANSFER with space switching and
SET SECONDARY ASN with space switching.
For these two instructions, the ASN-authorization
process is performed by using the authorization
index currently in control register 4. Secondary
authorization for PROGRAM RETURN, when the
restored secondary ASN does not equal the
restored primary ASN, and for LOAD ADDRESS
SPACE PARAMETERS is the same, except that
the value which will become the new contents of
control register 4 is used for the authorization
index. Also, for LOAD ADDRESS SPACE
PARAMETERS, a secondary-authority exception
does not occur. Instead, such a condition is indi-
cated by the condition code.

The ASN-authorization process is performed by
using the authorization index, in conjunction with
the authority-table origin and length from the AST
entry, to select an authority-table entry. The entry
is fetched, and either the primary- or the
secondary-authority bit is examined, depending on
whether the primary- or
secondary-ASN-authorization process is being
performed. The ASN-authorization process is
shown in|Figure 3-7 on page 3-25|

CR4 AX

(x1/4)
ASN Second Table
ASN-Second-Table Entry
I ATO B AX ATL ASCE *

(x4)

Authority Table
—>H

R |P|S For secondary ASN authorization
Secondary-authority exception

For secondary ASN authorization
Set condition code 2 if S bit
table Tength exceeded.

R: Address is real
*: Last 48 bytes of ASTE are not shown

Figure 3-7. ASN Authorization

Authority-Table Lookup

The authorization index, in conjunction with the
authority-table origin contained in the
ASN-second-table entry, is used to select an entry
from the authority table.

The authorization index is contained in bit posi-
tions 32-47 of control register 4.

Bit positions 1-29 of the AST entry contain the left-
most 29 bits of the 31-bit real address of the
authority table (ATO), and bit positions 48-59
contain the length of the authority table (ATL).

The 31-bit real address of a byte in the authority
table is obtained by appending two zeros on the
right to the authority-table origin and adding the 14
leftmost bits of the authorization index with 17

zero or table length exceeded.

For primary ASN authorization (PT-ss only):
Primary-authority exception if P bit
zero or table length exceeded.

(PR and SSAR-ss only):
if S bit

(LASP only):
zero or

zeros appended on the left. When a carry into bit
position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 231 - 1 to zero. The 31-bit address is
formed and used regardless of whether the
current PSW specifies the 24-bit, 31-bit, or 64-bit
addressing mode.

As part of the authority-table-entry-lookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the authority-table length is
exceeded, condition code 2 is set.

Chapter 3. Storage 3-25

The fetch access to the byte in the authority table
is not subject to protection. When the storage
address which is generated for fetching the byte
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

The byte contains four authority-table entries of
two bits each. The rightmost two bits of the
authorization index, bits 46 and 47 of control reg-
ister 4, are used to select one of the four entries.
The left or right bit of the entry is then tested,
depending on whether the authorization test is for
a primary ASN or a secondary ASN. The fol-
lowing table shows the bit which is selected from
the byte as a function of bits 46 and 47 of the
authorization index and the instruction PT-ss,
SSAR-ss, PROGRAM RETURN, or LOAD
ADDRESS SPACE PARAMETERS.

Bit Selected from
Authority-Table Byte
for Test
Authorization-
Index Bits S Bit
P Bit (SSAR-ss,
46 47 (PT-ss) PR, or LASP)
0 0 0 1
0 1 2 3
1 0 4 5
1 1 6 7

If the selected bit is one, the ASN is authorized,
and the appropriate fields in the AST entry are
loaded into the appropriate control registers. If the
selected bit is zero, the ASN is not authorized,
and a primary-authority exception is recognized for
PT-ss or a secondary-authority exception is recog-
nized for SSAR-ss or PROGRAM RETURN. For
LOAD ADDRESS SPACE PARAMETERS, when
the ASN is not authorized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered during
the primary- and secondary-ASN-authorization
processes and their priorities are described in the
definitions of the instructions in which ASN author-
ization is performed.

Programming Note: The primary- and
secondary-authority exceptions cause nullification

3-26 z/Architecture Principles of Operation

in order to permit dynamic modification of the
authority table. Thus, when an address space is
created or “swapped in,” the authority table can
first be set to all zeros and the appropriate
authority bits set to one only when required.

Dynamic Address Translation

Dynamic address translation (DAT) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device,
and at a later time return the program and the
data to different main-storage locations for
resumption of execution. The transfer of the
program and its data between main and auxiliary
storage may be performed piecemeal, and the
return of the information to main storage may take
place in response to an attempt by the CPU to
access it at the time it is needed for execution.
These functions may be performed without change
or inspection of the program and its data, do not
require any explicit programming convention for
the relocated program, and do not disturb the exe-
cution of the program except for the time delay
involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein
storage appears to be larger than the main
storage which is available in the configuration.
This apparent main storage is referred to as virtual
storage, and the addresses used to designate
locations in the virtual storage are referred to as
virtual addresses. The virtual storage of a user
may far exceed the size of the main storage which
is available in the configuration and normally is
maintained in auxiliary storage. The virtual
storage is considered to be composed of blocks of
addresses, called pages. Only the most recently
referred-to pages of the virtual storage are
assigned to occupy blocks of physical main
storage. As the user refers to pages of virtual
storage that do not appear in main storage, they
are brought in to replace pages in main storage
that are less likely to be needed. The swapping of
pages of storage may be performed by the oper-
ating system without the user's knowledge.

The sequence of virtual addresses associated with
a virtual storage is called an address space. With
appropriate support by an operating system, the

dynamic-address-translation facility may be used
to provide a number of address spaces. These
address spaces may be used to provide degrees
of isolation between users. Such support can
consist of a completely different address space for
each user, thus providing complete isolation, or a
shared area may be provided by mapping a
portion of each address space to a single common
storage area. Also, instructions are provided
which permit a semiprivileged program to access
more than one such address space. Dynamic
address translation provides for the translation of
virtual addresses from multiple different address
spaces without requiring that the translation
parameters in the control registers be changed.
These address spaces are called the primary
address space, secondary address space, and
AR-specified address spaces. A privileged
program can also cause the home address space
to be accessed.

In the process of replacing blocks of main storage
by new information from an external medium, it
must be determined which block to replace and
whether the block being replaced should be
recorded and preserved in auxiliary storage. To
aid in this decision process, a reference bit and a
change bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of CCWs and IDAWSs in I/O operations. The
CCW-indirect-data-addressing facility is provided
to aid 1/0O operations in a virtual-storage environ-
ment.

Address computation can be carried out in the
24-bit, 31-bit, or 64-bit addressing mode. When
address computation is performed in the 24-bit or
31-bit addressing mode, 40 or 33 zeros, respec-
tively, are appended on the left to form a 64-bit
address. Therefore, the resultant logical address
is always 64 bits in length. The real address that
is formed by dynamic address translation, and the
absolute address that is then formed by prefixing,
are always 64 bits in length.

Dynamic address translation is the process of
translating a virtual address during a storage refer-
ence into the corresponding real address. The
virtual address may be a primary virtual address,
secondary virtual address, AR-specified virtual
address, or home virtual address. These

addresses are translated by means of the primary,
the secondary, an AR-specified, or the home
address-space-control element, respectively. After
selection of the appropriate address-space-control
element, the translation process is the same for all
of the four types of virtual address. An address-
space-control element may be a segment-table
designation specifying a 2G-byte address space, a
region-table designation specifying a 4T-byte,
8P-byte, or 16E-byte space, or a real-space desig-
nation specifying a 16E-byte space. (The letters
K, M, G, T, P, and E represent kilo, 21¢, mega,
220 giga, 239, tera, 249, peta, 259, and exa, 269,
respectively.) A segment-table designation or
region-table designation causes translation to be
performed by means of tables established by the
operating system in real or absolute storage. A
real-space designation causes the virtual address
simply to be treated as a real address, without the
use of tables in storage.

In the process of translation when using a
segment-table designation or a region-table desig-
nation, three types of units of information are
recognized — regions, segments, and pages. A
region is a block of sequential virtual addresses
spanning 2G bytes and beginning at a 2G-byte
boundary. A segment is a block of sequential
virtual addresses spanning 1M bytes and begin-
ning at a 1M-byte boundary. A page is a block of
sequential virtual addresses spanning 4K bytes
and beginning at a 4K-byte boundary.

The virtual address, accordingly, is divided into
four principal fields. Bits 0-32 are called the
region index (RX), bits 33-43 are called the
segment index (SX), bits 44-51 are called the
page index (PX), and bits 52-63 are called the
byte index (BX). The virtual address has the fol-
lowing format:

/
|:RX SX PX BX

/
0 33 44 52 63

As determined by its address-space-control
element, a virtual address space may be a
2G-byte space consisting of one region, or it may
be up to a 16E-byte space consisting of up to 8G
regions. The RX part of a virtual address applying
to a 2G-byte address space must be all zeros;
otherwise, an exception is recognized.

The RX part of a virtual address is itself divided
into three fields. Bits 0-10 are called the region

Chapter 3. Storage 3-27

first index (RFX), bits 11-21 are called the region
second index (RSX), and bits 22-32 are called the
region third index (RTX). Bits 0-32 of the virtual
address have the following format:

RFX RSX RTX

0 11 22 33

A virtual address in which the RTX is the leftmost
significant part (a 42-bit address) is capable of
addressing 4T bytes (2K regions), one in which
the RSX is the leftmost significant part (a 53-bit
address) is capable of addressing 8P bytes (4M
regions), and one in which the RFX is the leftmost
significant part (a 64-bit address) is capable of
addressing 16E bytes (8G regions).

A virtual address in which the RX is always zero
can be translated into real addresses by means of
two translation tables: a segment table and a
page table. If the RX may be nonzero, from one
to three additional translation tables are required,
as follows. If the RFX may be nonzero, a region
first table, region second table, and region third
table are required. If the RFX is always zero but
the RSX may be nonzero, a region second table
and region third table are required. If the RFX
and RSX are always zero but the RTX may be
nonzero, a region third table is required. An
exception is recognized if the address-
space-control element for an address space does
not designate the highest level of table (beginning
with the region first table and continuing down-
ward to the segment table) needed to translate a
reference to the address space.

A region first table, region second table, or region
third table is sometimes referred to simply as a
region table. Similarly, a region-first-table desig-
nation, region-second-table designation, or region-
third-table designation is sometimes referred to as
a region-table designation.

The region, segment, and page tables reflect the
current assignment of real storage. The assign-
ment of real storage occurs in units of pages, the
real locations being assigned contiguously within a
page. The pages need not be adjacent in real
storage even though assigned to a set of sequen-
tial virtual addresses.

3-28 z/Architecture Principles of Operation

To improve performance, translation normally is
performed by means of table copies maintained in
a special buffer called the translation-lookaside
buffer (TLB). The TLB may also contain entries
that provide the virtual-equals-real translation
specified by a real-space designation.

Translation Control

Address translation is controlled by three bits in
the PSW and by a set of bits referred to as the
translation parameters. The translation parame-
ters are in control registers 0, 1, 7, and 13. Addi-
tional controls are located in the translation tables.

Additional controls are provided as described in
[Chapter 5. “Program_Execution.’| These controls
determine whether the contents of each access
register can be used to obtain an address-
space-control element for use by DAT.

Translation Modes

The three bits in the PSW that control dynamic
address translation are bit 5, the DAT-mode bit,
and bits 16 and 17, the address-space-control
bits. When the DAT-mode bit is zero, then DAT is
off, and the CPU is in the real mode. When the
DAT-mode bit is one, then DAT is on, and the
CPU is in the translation mode designated by the
address-space-control bits: 00 designates the
primary-space mode, 01 designates the access-
register mode, 10 designates the secondary-space
mode, and 11 designates the home-space mode.
The various modes are shown in Figure 3-8,
along with the handling of addresses in each
mode.

Handling of Addresses
PSW Bit
Instruction| Logical
5(16|17|DAT Mode Addresses |Addresses
0| 0| 0|0ff|Real mode Real Real
0| 0 1|0ff|Real mode Real Real
0| 1| 0|0ff|Real mode Real Real
0| 1| 1|0ff|Real mode Real Real
1| 0| 0|0On |Primary-space mode Primary Primary
virtual virtual
1| 0 1|0On [Access-register mode | Primary AR-speci-
virtual fied
virtual
1| 1| 0[0On |Secondary-space mode | Primary Secondary
virtual virtual
1| 1| 1{On |Home-space mode Home Home
virtual virtual

Figure 3-8. Translation Modes

Control Register 0

One bit is provided in control register 0 for use in
controlling dynamic address translation. The bit is
assigned as follows:

S
S

37

Secondary-Space Control (SS): Bit 37 of
control register 0 is the secondary-space-control
bit. When this bit is zero and execution of MOVE
TO PRIMARY, MOVE TO SECONDARY, or SET
ADDRESS SPACE CONTROL is attempted, a
special-operation exception is recognized. When
this bit is one, it indicates that the region table or
segment table designated by the secondary
address-space-control element is attached when
the CPU is in the primary-space mode.

Control Register 1

Control register 1 contains the primary address-
space-control element (PASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Primary Region-Table or Segment-Table
Designation (R=0)
/

Primary Region-Table
or Segment-Table Origin G|P|S|X[R| [DT|TL
/

0 52 54 58 60 63

Primary Real-Space Designation (R=1)

Primary Real-Space
Token Origin GIP|S|X|[R

/

0 52 54 58 63

The fields in the primary address-space-control
element are allocated as follows:

Primary Region-Table or Segment-Table
Origin: Bits 0-51 of the primary region-table or
segment-table designation in control register 1,
with 12 zeros appended on the right, form a 64-bit
address that designates the beginning of the
primary region table or segment table. It is unpre-
dictable whether the address is real or absolute.
This table is called the primary region table or
segment table since it is used to translate virtual
addresses in the primary address space.

Primary Subspace-Group Control (G): Bit 54
of control register 1, when one, indicates that the
address space specified by the PASCE is the
base space or a subspace of a subspace group.
When bit 54 is zero, the address space is not in a
subspace group.

Primary Private-Space Control (P): If bit 55 of
control register 1 is one, then (1) a one value of
the common-segment bit in a translation-
lookaside-buffer (TLB) representation of a
segment-table entry prevents the entry and the
TLB page-table copy it designates from being
used when translating references to the primary
address space, even with a match between the
table or token origin in control register 1 and the
table origin in the TLB entry, (2) low-address pro-
tection and fetch-protection override do not apply
to the primary address space; and (3) a
translation-specification exception is recognized if
a reference to the primary address space is trans-
lated by means of a segment-table entry in
storage and the common-segment bit is one in the
entry. Item 2 in the above list applies even when
the contents of control register 1 are a real-space
designation.

Programming Note: With respect to item 1 in
the above list when the contents of control register
1 are a real-space designation, a one value of the
common-segment bit in a TLB representation of a
segment-table entry prevents the entry and the
TLB page-table copy it designates from being
used regardless of the value of the private-space
control in the real-space designation.

Primary Storage-Alteration-Event Control (S):
When the storage-alteration-space control in
control register 9 is one, bit 56 of control register 1
specifies, when one, that the primary address
space is one for which storage-alteration events
can occur. Bit 56 is examined when the PASCE
is used to perform dynamic-address translation for
a storage-operand store reference. Bit 56 is
ignored when the storage-alteration-space control
is zero.

Primary Space-Switch-Event Control (X):
When bit 57 of control register 1 is one:

e A space-switch-event program interruption
occurs when execution of the space-switching
form of PROGRAM CALL (PC-ss),
PROGRAM RETURN (PR-ss), or PROGRAM
TRANSFER (PT-ss) is completed. The inter-

Chapter 3. Storage 3-29

ruption occurs if bit 57 is one either before or
after the operation.

e A space-switch-event program interruption
occurs upon completion of a RESUME
PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE
CONTROL FAST instruction that changes the
address space from which instructions are
fetched either to or from the home address
space; that is, when instructions are fetched
from the home address space either before or
after the operation but not both before and
after the operation.

¢ Condition code 3 is set by LOAD ADDRESS
SPACE PARAMETERS.

Primary Real-Space Control (R): If bit 58 of
control register 1 is zero, the register contains a
region-table or segment-table designation. If bit
58 is one, the register contains a real-space des-
ignation. When bit 58 is one, a one value of the
common-segment bit in a translation-
lookaside-buffer (TLB) representation of a
segment-table entry prevents the entry and the
TLB page-table copy it designates from being
used when translating references to the primary
address space, even with a match between the
token origin in control register 1 and the table
origin in the TLB entry.

Primary Designation-Type Control (DT): When
R is zero, the type of table designation in control
register 1 is specified by bits 60 and 61 in the reg-
ister, as follows:

Bits 60

and 61 Designation Type
11 Region-first-table
10 Region-second-table

01 Region-third-table
00 Segment-table

When R is zero, bits 60 and 61 must be 11 binary
when an attempt is made to use the PASCE to
translate a virtual address in which the leftmost
one bit is in bit positions 0-10 of the address.
Similarly, bits 60 and 61 must be 11 or 10 binary
when the leftmost one bit is in bit positions 11-21
of the address, and they must be 11, 10, or 01
binary when the leftmost one bit is in bit positions
22-32 of the address. Otherwise, an ASCE-type
exception is recognized.

3-30 z/Architecture Principles of Operation

Primary Region-Table or Segment-Table
Length (TL): Bits 62 and 63 of the primary
region-table designation or segment-table desig-
nation in control register 1 specify the length of
the primary region table or segment table in units
of 4,096 bytes, thus making the length of the
region table or segment table variable in multiples
of 512 entries. The length of the primary region
table or segment table, in units of 4,096 bytes, is
one more than the TL value. The contents of the
length field are used to establish whether the
portion of the virtual address (RFX, RSX, RTX, or
SX) to be translated by means of the table desig-
nates an entry that falls within the table.

Primary Real-Space Token Origin: Bits 0-51 of
the primary real-space designation in control reg-
ister 1, with 12 zeros appended on the right, form
a 64-bit address that may be used in forming and
using TLB entries that provide a virtual-equals-real
translation for references to the primary address
space. Although this address is used only as a
token and is not used to perform a storage refer-
ence, it still must be a valid address; otherwise, an
incorrect TLB entry may be used when the con-
tents of control register 1 are used.

The following bits of control register 1 are not
assigned and are ignored: bits 52, 53, and 59 if
the register contains a region-table designation or
segment-table designation, and bits 52, 53 and
59-63 if the register contains a real-space desig-
nation.

Control Register 7
Control register 7 contains the secondary address-
space-control element (SASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Secondary Region-Table or Segment-Table
Designation 5R=0)

Secondary Region-Table
or Segment-Table Origin G|P|S| [R| [DT|TL
/

0 52 54 58 60 63
Secondary Real-Space Designation (R=1)

Secondary Real-Space
Token Origin G|P|S| [R

/

0 52 54 58 63

The secondary region-table origin, secondary
segment-table origin, secondary subspace-group

control (G), secondary private-space control (P),
secondary storage-alteration-event control (S),
secondary real-space control (R), secondary
designation-type control (DT), secondary region-
table or segment-table length (TL), and secondary
real-space token origin in control register 7 are
defined the same as the fields in the same bit
positions in control register 1, except that control
register 7 applies to the secondary address space.

The following bits of control register 7 are not
assigned and are ignored: bits 52, 53, 57, and 59
if the register contains a region-table designation
or segment-table designation, and bits 52, 53, 57,
and 59-63 if the register contains a real-space
designation.

Control Register 13

Control register 13 contains the home address-
space-control element (HASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Home Region-Table or Segment-Table
Designation (R=0)
/

Home Region-Table or
Segment-Table Origin P[S|X|R| |DT|TL
/

0 52 54
Home Real-Space Designation (R=1)

58 60 63

Home Real-Space
Token Origin P[S[X|R

/
0 52 54 58 63

Home Space-Switch-Event Control (X): When
bit 57 of control register 13 is one, a space-
switch-event program interruption occurs upon
completion of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST instruction that changes
the address space from which instructions are
fetched either to or from the home address space;
that is, when instructions are fetched from the
home address space either before or after the
operation but not both before and after the opera-
tion.

The home region-table origin, home segment-table
origin, home private-space control (P), home
storage-alteration-event control (S), home real-

space control (R), home designation-type control
(DT), home region-table or segment-table length
(TL), and home real-space token origin in control
register 13 are defined the same as the fields in
the same bit positions in control register 1, except
that control register 13 applies to the home
address space.

The following bits of control register 13 are not
assigned and are ignored: bits 52-54 and 59 if
the register contains a region-table designation or
segment-table designation, and bits 52-54 and
59-63 if the register contains a real-space desig-
nation.

Programming Notes:

1. The validity of the information loaded into a
control register, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa-
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
INVALIDATE DAT TABLE ENTRY, INVALI-
DATE PAGE TABLE ENTRY, LOAD REAL
ADDRESS, or STORE REAL ADDRESS is
executed. The information is not considered
to be used when the PSW specifies trans-
lation but an I/O, external, restart, or machine-
check interruption occurs before an instruction
is executed, or when the PSW specifies the
wait state.

Translation Tables

When the address-space-control element (ASCE)
used in a translation is a region-first-table desig-
nation, the translation process consists in a five-
level lookup using five tables: a region first table,
a region second table, a region third table a
segment table, and a page table. These tables
reside in real or absolute storage. When the
ASCE is a region-second-table designation,
region-third-table designation, or segment-table
designation, the lookups in the levels of tables
above the designated level are omitted, and the
higher-level tables themselves are omitted.

Chapter 3. Storage 3-31

Region-Table Entries

The term “region-table entry” means a region-
first-table entry, region-second-table entry, or
region-third-table entry.

The entries fetched from the region first table,
region second table, and region third table have
the following formats. The level (first, second, or
third) of the table containing an entry is identified
by the table-type (TT) bits in the entry.

Region-First-Table Entry (TT=11)

Region-Second-
Table Origin TF{I| |TT|TL

/
0 52 56 58 60 63

Region-Second-Table Entry (TT=10)
/

Region-Third-
Table Origin TF|I| |TT|TL

/
0 52 56 58 60 63

Region-Third-Table Entry (TT=01)
/

Segment-Table
Origin TFII| [TT|TL

/

0 52

56 58 60 63

The fields in the three levels of region-table
entries are allocated as follows:

Region-Second-Table Origin, Region-Third-
Table Origin, and Segment-Table Origin: A
region-first-table entry contains a region-
second-table origin. A region-second-table entry
contains a region-third-table origin. A region-
third-table entry contains a segment-table origin.
The following description applies to each of the
three origins. Bits 0-51 of the entry, with 12 zeros
appended on the right, form a 64-bit address that
designates the beginning of the next-lower-level
table. It is unpredictable whether the address is
real or absolute.

Region-Second-Table Offset, Region-Third-
Table Offset, and Segment-Table Offset (TF):
A region-first-table entry contains a region-
second-table offset. A region-second-table entry
contains a region-third-table offset. A region-
third-table entry contains a segment-table offset.
The following description applies to each of the
three offsets. Bits 56 and 57 of the entry specify
the length of a portion of the next-lower-level table
that is missing at the beginning of the table, that
is, the bits specify the location of the first entry

3-32 z/Architecture Principles of Operation

actually existing in the next-lower-level table. The
bits specify the length of the missing portion in
units of 4,096 bytes, thus making the length of the
missing portion variable in multiples of 512 entries.
The length of the missing portion, in units of 4,096
bytes, is equal to the TF value. The contents of
the offset field, in conjunction with the length field,
bits 62 and 63, are used to establish whether the
portion of the virtual address (RSX, RTX, or SX)
to be translated by means of the next-lower-level
table designates an entry that actually exists in the
table.

Region-invalid Bit (I): Bit 58 in a region-first-
table entry or region-second-table entry controls
whether the set of regions associated with the
entry is available. Bit 58 in a region-third-table
entry controls whether the single region associ-
ated with the entry is available. When bit 58 is
zero, address translation proceeds by using the
region-table entry. When the bit is one, the entry
cannot be used for translation.

Table-Type Bits (TT): Bits 60 and 61 of the
region-first-table entry, region-second-table entry,
and region-third-table entry identify the level of the
table containing the entry, as follows:

Bits 60

and 61 Region-Table Level
11 First
10 Second
01 Third

Bits 60 and 61 must identify the correct table
level, considering the type of table designation
that is the address-space-control element being
used in the translation and the number of table
levels that have so far been used; otherwise, a
translation-specification exception is recognized.

Region-Second-Table Length, Region-Third-
Table Length, and Segment-Table Length
(TL): A region-first-table entry contains a region-
second-table length. A region-second-table entry
contains a region-third-table length. A region-
third-table entry contains a segment-table length.
The following description applies to each of the
three lengths. Bits 62 and 63 of the entry specify
the length of the next-lower-level table in units of
4,096 bytes, thus making the length of the table
variable in multiples of 512 entries. The length of
the next-lower-level table, in units of 4,096 bytes,
is one more than the TL value. The contents of

the length field, in conjunction with the offset field,
bits 56 and 57, are used to establish whether the
portion of the virtual address (RSX, RTX, or SX)
to be translated by means of the next-lower-level
table designates an entry that actually exists in the
table.

Segment-Table Entries
The entry fetched from the segment table has the
following format:

Segment-Table Entry (TT=00)
/

Page-Table
Origin P I|IC[TT
/
0 53 55 58 60 63

The fields in the segment-table entry are allocated
as follows:

Page-Table Origin: Bits 0-52, with 11 zeros
appended on the right, form a 64-bit address that
designates the beginning of a page table. It is
unpredictable whether the address is real or abso-
lute.

Page-Protection Bit (P): Bit 54 is treated as
being ORed with the page-protection bit in each
entry in the page table designated by this
segment-table entry. Thus, when the bit is one,
page protection applies to the entire segment
specified by the segment-table entry.

Segment-Invalid Bit (I): Bit 58 controls whether
the segment associated with the segment-table
entry is available. When the bit is zero, address
translation proceeds by using the segment-table
entry. When the bit is one, the segment-table
entry cannot be used for translation.

Common-Segment Bit (C): Bit 59 controls the
use of the translation-lookaside-buffer (TLB)
copies of the segment-table entry and of the page
table which it designates. A zero identifies a
private segment; in this case, the segment-table
entry and the page table it designates may be
used only in association with the segment-table
origin that designates the segment table in which
the segment-table entry resides. A one identifies
a common segment; in this case, the segment-
table entry and the page table it designates may
continue to be used for translating addresses cor-
responding to the segment index, even though a

different segment table is specified. However,
TLB copies of the segment-table entry and page
table for a common segment are not usable if the
private-space control, bit 55, is one in the
address-space-control element used in the trans-
lation or if that address-space-control element is a
real-space designation. The common-segment bit
must be zero if the segment-table entry is fetched
from storage during a translation when the private-
space control is one in the address-space-control
element being used; otherwise, a translation-
specification exception is recognized.

Table-Type Bits (TT): Bits 60 and 61 of the
segment-table entry are 00 binary to identify the
level of the table containing the entry. The
meanings of all possible values of bits 60 and 61
in a region-table entry or segment-table entry are
as follows:

Bits 60

and 61 Table Level

11 Region-First

10 Region-Second
01 Region-Third
00 Segment

Bits 60 and 61 must identify the correct table
level, considering the type of table designation
that is the address-space-control element being
used in the translation and the number of table
levels that have so far been used; otherwise, a
translation-specification exception is recognized.

Bits 53, 55-57, 62, and 63 of the segment-table
entry are reserved for possible future extensions.

Page-Table Entries
The entry fetched from the page table entry has
the following format:

/
Page-Frame Real Address |O|I|P|0O
/
0 52 56 63

The fields in the page-table entry are allocated as
follows:

Page-Frame Real Address (PFRA): Bits 0-51
provide the leftmost bits of a real storage address.
When these bits are concatenated with the 12-bit
byte-index field of the virtual address on the right,
a 64-bit real address is obtained.

Chapter 3. Storage 3-33

Page-invalid Bit (I): Bit 53 controls whether the
page associated with the page-table entry is avail-
able. When the bit is zero, address translation
proceeds by using the page-table entry. When
the bit is one, the page-table entry cannot be used
for translation.

Page-Protection Bit (P): Bit 54 controls
whether store accesses can be made in the page.
This protection mechanism is in addition to the
key-controlled-protection and low-address-
protection mechanisms. The bit has no effect on
fetch accesses. If the bit is zero, stores are per-
mitted to the page, subject to the page-protection
bit in the segment-table entry used in the trans-
lation and to the other protection mechanisms. If
the bit is one, stores are disallowed. An attempt
to store when the page-protection bit is one
causes a protection exception to be recognized.
The page-protection bit in the segment-table entry
is treated as being ORed with bit 54 when deter-
mining whether page protection applies to the

page.

Bit positions 52 and 55 of the entry must contain
zeros; otherwise, a translation-specification excep-
tion is recognized as part of the execution of an
instruction using that entry for address translation.
Bit positions 56-63 are not assigned and are
ignored.

Translation Process

This section describes the translation process as it
is performed implicitly before a virtual address is
used to access main storage. Explicit translation,
which is the process of translating the operand
address of LOAD REAL ADDRESS, STORE
REAL ADDRESS, and TEST PROTECTION, is
the same, except that, for LOAD REAL ADDRESS
and TEST PROTECTION, region-first-translation,
region-second-translation, region-third-translation,
segment-translation, and page-translation
exceptions are not recognized; such conditions
are instead indicated by the condition code.
Translation of the operand address of LOAD
REAL ADDRESS and STORE REAL ADDRESS
also differs in that the CPU may be in the real
mode.

Translation of a virtual address is controlled by the

DAT-mode bit and address-space-control bits in
the PSW and by the address-space-control ele-

3-34 z/Architecture Principles of Operation

ments (ASCEs) in control registers 1, 7, and 13
and as specified by the access registers. When
the ASCE used in a translation is a region-first-
table designation, the translation is performed by
means of a region first table, region second table,
region third table, segment table, and page table,
all of which reside in real or absolute storage.
When the ASCE is a lower-level type of table des-
ignation (region-second-table designation, region-
third-table designation, or segment-table desig-
nation) the translation is performed by means of
only the table levels beginning with the designated
level, and the virtual-address bits that would, if
nonzero, require use of a higher level or levels of
table must be all zeros; otherwise, an ASCE-type
exception is recognized. When the ASCE is a
real-space designation, the virtual address is
treated as a real address, and table entries in real
or absolute storage are not used.

The address-space-control element (ASCE) used
for a particular address translation is called the
effective ASCE. Accordingly, when a primary
virtual address is translated, the contents of
control register 1 are used as the effective ASCE.
Similarly, for a secondary virtual address, the con-
tents of control register 7 are used; for an
AR-specified virtual address, the ASCE specified
by the access register is used; and for a home
virtual address, the contents of control register 13
are used.

When the real-space control in the effective ASCE
is zero, the designation-type control in the ASCE
specifies the table-designation type of the ASCE:
region-first-table designation, region-second-table
designation, region-third-table designation, or
segment-table designation. The corresponding
portion of the virtual address (region first index,
region second index, region third index, or
segment index) is checked against the table-
length field in the designation, and it is added to
the origin in the designation to select an entry in
the designated table. If the selected entry is
outside its table, as determined by the table-length
field in the designation, or if the | bit is one in the
selected entry, a region-first-translation, region-
second-translation, region-third-translation, or
segment-translation exception is recognized,
depending on the table level specified by the des-
ignation. If the table-type bits in the selected entry
do not indicate the expected table level, a
translation-specification exception is recognized.

The table entry selected by means of the effective
ASCE designates the next-lower-level table to be
used. If the current table is a region first table,
region second table, or region third table, the next
portion of the virtual address (region second
index, region third index, or segment index,
respectively) is checked against the table-offset
and table-length fields in the current table entry,
and it is added to the origin in the entry to select
an entry in the next-lower-level table. If the
selected entry in the next table is outside its table,
as determined by the table-offset and table-length
fields in the current table entry, or if the | bit is one
in the selected entry, a region-second-translation,
region-third-translation, or segment-translation
exception is recognized, depending on the level of
the next table. If the table-type bits in the
selected entry do not indicate the expected table
level, a translation-specification exception is
recognized.

Processing of portions of the virtual address by
means of successive table levels continues until a
segment-table entry has been selected. This
entry designates the page table to be used. The
segment-table entry contains a page-protection bit
that applies to all pages in the specified segment.

The page-index portion of the virtual address is
added to the page-table origin in the segment-
table entry to select an entry in the page table. If
the | bit is one in the page-table entry, a page-

translation exception is recognized. The page-
table entry contains the leftmost bits of the real
address that represents the translation of the
virtual address, and it contains a page-protection
bit that applies only to the page specified by the
page-table entry.

The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the
real address.

In order to eliminate the delay associated with ref-
erences to translation tables in real or absolute
storage, the information fetched from the tables
normally is also placed in a special buffer, the
translation-lookaside buffer (TLB), and subsequent
translations involving the same table entries may
be performed by using the information recorded in
the TLB. The TLB may also record virtual-
equals-real translations related to a real-space
designation. The operation of the TLB is
described in [Translation-Lookaside Buffer’” on|

Whenever access to real or absolute storage is
made during the address-translation process for
the purpose of fetching an entry from a region
table, segment table, or page table, key-controlled
protection does not apply.

The translation process, including the effect of the
TLB, is shown graphically in

pag 6

Chapter 3. Storage 3-35

Control Reg. 1, 7, or 13 ASN-Second Table Entry Virtual Address

PASCE, SASCE, or HASCE AR-Specified ASCE RFX | RSX | RTX | SX PX
(x8)| (x8)| (x8)| (x8)
> |]|«
Effective
ASCE
T0 R[DT|TL| TO and
virtual address —>
(x4096)
v
Yes ASCE is RSD
R=1 ? =
lNo
If
DT=11
— + <
Region First Table
>
R/A RSTO [TF|I|TT|TLF—> A in
Part 2
If
DT=10
> + |«
Region Second Table
—
R/A RTTO |TF|I|TT|TL—> B in
Part 2
If
DT=01
> + <
Region Third Table
—
R/A STO TF{I|TT|TLF— C in
Part 2
If
DT=00
—| + <
Segment Table
—
R/A PTO P{|I|C|TT|—> D in
Part 3

R/A: Address is real or absolute.

Figure 3-9 (Part 1 of 3). Translation Process

3-36 z/Architecture Principles of Operation

Region-First-Table Entry Virtual Address

RSTO |TF|I|TT|TL RFX | RSX | RTX | SX PX BX

(x4096) L (x8)| (x8)| (x8)

Region Second Table

3
R/A RTTO [TF|I|TT|TL—> B

Region-Second-Table Entry

RTTO |TF|I|TT|TL
(x4096) L
Region Third Table

I R/A STO TF|I|TT|TL— C

A

Region-Third-Table Entry

STO
(x4096) L
Segment Table

3
R/A PTO PI[I|C|TT|— D in
Part 3

TF|T|{TT|TL

R/A: Address is real or absolute.

Figure 3-9 (Part 2 of 3). Translation Process

Chapter 3. Storage 3-37

)

(

R/A:

[=]

[«

[

Segment-Table Entry Virtual Address

PTO PI|I|C|TT RFX | RSX | RTX | SX PX BX
x2048) (x8)
Page Table
TransTation
[} v Lookaside
R/A PFRA 0|I|P|O Buffer (TLB)
PFRA

v
A\
v P
(=2}

—

Address is real or absolute.

Real Address

Control register 1 provides the primary address-space-control element (ASCE) for
translation of a primary virtual address, control register 7 provides the secondary ASCE
for translation of a secondary virtual address, and control register 13 provides the home
ASCE for translation of a home virtual address. An ASN-second-table entry provides an
AR-specified (access-register-specified) ASCE for translation of an AR-specified virtual
address.

The portion of the virtual address to the left of the index selected by DT must be zero;
otherwise, an ASCE-type exception is recognized. Bits 0 and 1 of the index must be less
than or equal to TL in the ASCE, and I in the selected table entry must be zero;
otherwise, a region-first-translation, region-second-translation, region-third-translation
or segment-translation exception is recognized, depending on the table Tevel selected by
DT. TT in the selected table entry must equal DT; otherwise, a translation-specification
exception is recognized.

Bits 0 and 1 of the next index must be equal to or greater than TF, and Tess than or equal
to TL, in the current table entry, and I in the next selected table entry must be zero;
otherwise, a region-second-translation, region-third-translation, or segment-translation
exception is recognized, depending on the table Tevel of the next selected entry. TT in
the next selected entry must be one less than TT in the current entry; otherwise, a
translation-specification exception is recognized.

I in the page-table entry must be zero; otherwise, a page-translation exception is
recognized. Bits 52 and 55 in the page-table entry must be zero; otherwise, a
translation-specification exception is recognized.

Information, which may include portions of the virtual address and the table origin or
real-space token origin in the effective ASCE, is used to search the TLB.

If a match exists, the page-frame real address from the TLB is used in forming the real
address. If no match exists and the effective ASCE is a table designation, table entries
in real or absolute storage are fetched. The resulting fetched entries are used to
translate the address and, in conjunction with the search information, may be used to form
entries in the TLB. If the effective ASCE is a real-space designation, a TLB entry that
translates the virtual address to the equal real address may be formed.

Figure 3-9 (Part 3 of 3). Translation Process

3-38

z/Architecture Principles of Operation

Inspection of Real-Space Control

When the effective address-space-control element
(ASCE) contains a real-space control, bit 58,
having the value zero, the ASCE is a region-table
or segment-table designation. When the real-
space control is one, the ASCE is a real-space
designation.

Inspection of Designation-Type Control
When the real-space control is zero, the
designation-type control, bits 60 and 61 of the
effective address-space-control element (ASCE),
specifies the table-designation type of the ASCE.
Depending on the type, some number of leftmost
bits of the virtual address being translated must be
zeros; otherwise, an ASCE-type exception is
recognized. For each possible value of bits 60
and 61, the table-designation type and the virtual-
address bits required to be zeros are as follows:

Bits

60 Virtual-Address Bits

and Required to Be

61 Designation Type Zeros

11 Region-first-table None

10 Region- 0-10
second-table

01 Region-third-table 0-21

00 Segment-table 0-32

Lookup in a Table Designated by an
Address-Space-Control Element

The designation-type control, bits 60 and 61 of the
effective address-space-control element (ASCE),
specifies both the table-designation type of the
ASCE and the portion of the virtual address that is
to be translated by means of the designated table,
as follows:

Bits

60 Virtual-Address
and Portion Translated
61 Designation Type by the Table

11 Region-first-table Region first index

(bits 0-10)
10 Region- Region second index
second-table (bits 11-21)
01 Region-third-table Region third index
(bits 22-32)
00 Segment-table Segment index (bits
33-43)

When bits 60 and 61 have the value 11 binary,
the region-first-index portion of the virtual address,
in conjunction with the region-first-table origin con-
tained in the ASCE, is used to select an entry
from the region first table.

The 64-bit address of the region-first-table entry in
real or absolute storage is obtained by appending
12 zeros to the right of bits 0-51 of the region-
first-table designation and adding the region first
index with three rightmost and 50 leftmost zeros
appended. When a carry out of bit position O
occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 264 - 1 to
zero. All 64 bits of the address are used, regard-
less of whether the current PSW specifies the
24-bit, 31-bit, or 64-bit addressing mode. When
forming the address of a region-first-, region-
second-, region-third-, or segment-table entry, it is
unpredictable whether prefixing, if any, is applied
to the respective table origin contained in the
ASCE before the addition of the table index value,
or prefixing is applied to the table-entry address
that is formed by the addition of the table origin
and table index value.

As part of the region-first-table-lookup process,
bits 0 and 1 of the virtual address (which are bits
0 and 1 of the region first index) are compared
against the table length, bits 62 and 63 of the
region-first-table designation, to establish whether
the addressed entry is within the region first table.
If the value in the table-length field is less than the
value in the corresponding bit positions of the
virtual address, a region-first-translation exception
is recognized. The comparison against the table
length may be omitted if the equivalent of a

Chapter 3. Storage 3-39

region-first-table entry in the translation-lookaside
buffer is used in the translation.

All eight bytes of the region-first-table entry appear
to be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the region-first-table entry designates a
location which is not available in the configuration,
an addressing exception is recognized, and the
unit of operation is suppressed.

Bit 58 of the entry fetched from the region first
table specifies whether the corresponding set of
regions is available. This bit is inspected, and, if it
is one, a region-first-translation exception is recog-
nized.

A translation-specification exception is recognized
if the table-type bits, bits 60 and 61, in the region-
first-table entry do not have the same value as
bits 60 and 61 of the ASCE.

When no exceptions are recognized in the
process of region-first-table lookup, the entry
fetched from the region first table designates the
beginning and specifies the offset and length of
the corresponding region second table.

When bits 60 and 61 of the ASCE have the value
10 binary, the region-second-index portion of the
virtual address, in conjunction with the region-
second-table origin contained in the ASCE, is
used to select an entry from the region second
table. Bits 11 and 12 of the virtual address (which
are bits 0 and 1 of the region second index) are
compared against the table length in the ASCE. If
the value in the table-length field is less than the
value in the corresponding bit positions of the
virtual address, a region-second-translation excep-
tion is recognized. The comparison against the
table length may be omitted if the equivalent of a
region-second-table entry in the translation-
lookaside buffer is used in the translation. The
region-second-table-lookup process is otherwise
the same as the region-first-table-lookup process,
except that a region-second-translation exception
is recognized if bit 58 is one in the region-
second-table entry. When no exceptions are
recognized, the entry fetched from the region
second table designates the beginning and speci-
fies the offset and length of the corresponding
region third table.

3-40 z/Architecture Principles of Operation

When bits 60 and 61 of the ASCE have the value
01 binary, the region-third-index portion of the
virtual address, in conjunction with the region-
third-table origin contained in the ASCE, is used to
select an entry from the region third table. Bits 22
and 23 of the virtual address (which are bits 0 and
1 of the region third index) are compared against
the table length in the ASCE. If the value in the
table-length field is less than the value in the cor-
responding bit positions of the virtual address, a
region-third-translation exception is recognized.
The comparison against the table length may be
omitted if the equivalent of a region-third-table
entry in the translation-lookaside buffer is used in
the translation. The region-third-table-lookup
process is otherwise the same as the region-first-
table-lookup process, including the checking of the
table-type bits in the region-third-table entry,
except that a region-third-translation exception is
recognized if bit 58 is one in the region-third-table
entry. When no exceptions are recognized, the
entry fetched from the region third table desig-
nates the beginning and specifies the offset and
length of the corresponding segment table.

When bits 60 and 61 of the ASCE have the value
00 binary, the segment-index portion of the virtual
address, in conjunction with the segment-table
origin contained in the ASCE, is used to select an
entry from the segment table. Bits 33 and 34 of
the virtual address (which are bits 0 and 1 of the
segment index) are compared against the table
length in the ASCE. If the value in the table-
length field is less than the value in the corre-
sponding bit positions of the virtual address, a
segment-translation exception is recognized. The
comparison against the table length may be
omitted if the equivalent of a segment-table entry
in the translation-lookaside buffer is used in the
translation. A translation-specification exception is
recognized if (1) the private-space control, bit 55,
in the ASCE is one and (2) the common-segment
bit, bit 59, in the entry fetched from the segment
table is one. The segment-table-lookup process is
otherwise the same as the region-first-table-lookup
process, including the checking of the table-type
bits in the segment-table entry, except that a
segment-translation exception is recognized if bit
58 is one in the segment-table entry. When no
exceptions are recognized, the entry fetched from
the segment table designates the beginning of the
corresponding page table.

Lookup in a Table Designated by a
Region-Table Entry

When the effective address-space-control element
(ASCE) is a region-table designation, a region-
table entry is selected as described in the pre-
ceding section. Then the contents of the selected
entry and the next index portion of the virtual
address are used to select an entry in the next-
lower-level table, which may be another region
table or a segment table.

When the table entry selected by means of the
ASCE is a region-first-table entry, the region-
second-index portion of the virtual address, in con-
junction with the region-second-table origin con-
tained in the region-first-table entry, is used to
select an entry from the region second table.

The 64-bit address of the region-second-table
entry in real or absolute storage is obtained by
appending 12 zeros to the right of bits 0-51 of the
region-first-table entry and adding the region
second index with three rightmost and 50 leftmost
zeros appended. When a carry out of bit position
0 occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 264 - 1 to
zero. All 64 bits of the address are used, regard-
less of whether the current PSW specifies the
24-bit, 31-bit, or 64-bit addressing mode. When
forming the address of a region-second-, region-
third-, or segment-table entry, it is unpredictable
whether prefixing, if any, is applied to the respec-
tive table origin contained in the higher-level table
entry before the addition of the table index value,
or prefixing is applied to the table-entry address
that is formed by the addition of the table origin
and table index value.

As part of the region-second-table-lookup process,
bits 11 and 12 of the virtual address (which are
bits 0 and 1 of the region second index) are com-
pared against the table offset, bits 56 and 57 of
the region-first-table entry, and against the table
length, bits 62 and 63 of the region-first-table
entry, to establish whether the addressed entry is
within the region second table. If the value in the
table-offset field is greater than the value in the
corresponding bit positions of the virtual address,
or if the value in the table-length field is less than
the value in the corresponding bit positions of the
virtual address, a region-second-translation excep-
tion is recognized.

All eight bytes of the region-second-table entry
appear to be fetched concurrently as observed by
other CPUs. The fetch access is not subject to
protection. When the storage address generated
for fetching the region-second-table entry desig-
nates a location which is not available in the con-
figuration, an addressing exception is recognized,
and the unit of operation is suppressed.

Bit 58 of the entry fetched from the region second
table specifies whether the corresponding set of
regions is available. This bit is inspected, and, if it
is one, a region-second-translation exception is
recognized.

A translation-specification exception is recognized
if the table-type bits, bits 60 and 61, in the region-
second-table entry do not have a value that is one
less than the value of those bits in the next-
higher-level table.

When no exceptions are recognized in the
process of region-second-table lookup, the entry
fetched from the region second table designates
the beginning and specifies the offset and length
of the corresponding region third table.

When the table entry selected by means of the
ASCE is a region-second-table entry, or if a
region-second-table entry has been selected by
means of the contents of a region-first-table entry,
the region-third-index portion of the virtual
address, in conjunction with the region-third-table
origin contained in the region-second-table entry,
is used to select an entry from the region third
table. Bits 22 and 23 of the virtual address (which
are bits 0 and 1 of the region third index) are com-
pared against the table offset and table length in
the region-second-table entry. A region-third-
translation exception is recognized if the table
offset is greater than bits 22 and 23 or if the table
length is less than bits 22 and 23. The region-
third-table-lookup process is otherwise the same
as the region-second-table-lookup process,
including the checking of the table-type bits in the
region-third-table entry, except that a region-third-
translation exception is recognized if bit 58 is one
in the region-third-table entry. When no
exceptions are recognized, the entry fetched from
the region third table designates the beginning
and specifies the offset and length of the corre-
sponding segment table.

Chapter 3. Storage 3-41

When the table entry selected by means of the
ASCE is a region-third-table entry, or if a region-
third-table entry has been selected by means of
the contents of a region-second-table entry, the
segment-index portion of the virtual address, in
conjunction with the segment-table origin con-
tained in the region-third-table entry, is used to
select an entry from the segment table. Bits 33
and 34 of the virtual address (which are bits 0 and
1 of the segment index) are compared against the
table offset and table length in the region-third-
table entry. A segment-translation exception is
recognized if the table offset is greater than bits
33 and 34 or if the table length is less than bits 33
and 34. A translation-specification exception is
recognized if (1) the private-space control, bit 55,
in the ASCE is one and (2) the common-segment
bit, bit 59, in the entry fetched from the segment
table is one. The segment-table-lookup process is
otherwise the same as the region-
second-table-lookup process, including the
checking of the table-type bits in the segment-
table entry, except that a segment-translation
exception is recognized if bit 58 is one in the
segment-table entry. When no exceptions are
recognized, the entry fetched from the segment
table designates the beginning of the corre-
sponding page table.

Page-Table Lookup

The page-index portion of the virtual address, in
conjunction with the page-table origin contained in
the segment-table entry, is used to select an entry
from the page table.

The 64-bit address of the page-table entry in real
or absolute storage is obtained by appending 11
zeros to the right of the page-table origin and
adding the page index, with three rightmost and
53 leftmost zeros appended. A carry out of bit
position 0 cannot occur. All 64 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

All eight bytes of the page-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the page-table entry designates a location
which is not available in the configuration, an
addressing exception is recognized, and the unit
of operation is suppressed.

3-42 z/Architecture Principles of Operation

The entry fetched from the page table indicates
the availability of the page and contains the left-
most bits of the page-frame real address. The
page-invalid bit, bit 53, is inspected to establish
whether the corresponding page is available. If
this bit is one, a page-translation exception is
recognized. If bit position 52 or 55 contains a
one, a translation-specification exception is recog-
nized. |If the page-protection bit, bit 54, is one
either in the segment-table entry used in the trans-
lation or in the page-table entry, and the storage
reference for which the translation is being per-
formed is a store, a protection exception is recog-
nized.

Formation of the Real Address

When the effective address-space-control element
(ASCE) is a region-table designation or a
segment-table designation and no exceptions in
the translation process are encountered, the page-
frame real address is obtained from the page-table
entry. When the ASCE is a real-space desig-
nation, bits 0-51 of the virtual address are used as
a page-frame real address. In either case, the
page-frame real address and the byte-index
portion of the virtual address are concatenated,
with the page-frame real address forming the left-
most part. The result is the real storage address
which corresponds to the virtual address. All 64
bits of the address are used, regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

Recognition of Exceptions during
Translation

Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when infor-
mation contained in table entries is used for trans-
lation and is found to be incorrect.

The information pertaining to DAT is considered to
be used when an instruction is executed with DAT
on or when INVALIDATE DAT TABLE ENTRY,
INVALIDATE PAGE TABLE ENTRY, LOAD REAL
ADDRESS, or STORE REAL ADDRESS is exe-
cuted. The information is not considered to be
used when the PSW specifies DAT on but an 1/O,
external, restart, or machine-check interruption
occurs before an instruction is executed, or when
the PSW specifies the wait state. Only that infor-
mation required in order to translate a virtual
address is considered to be in use during the

translation of that address, and, in particular,
addressing exceptions that would be caused by
the use of an address-space-control element are
not recognized when that address-space-control
element is not the one actually used in the trans-
lation.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than
one is applicable, is provided in [Recognition of]
|[Access Exceptions” on page 6-36l

Translation-Lookaside Buffer

To enhance performance, the dynamic-
address-translation mechanism normally is imple-
mented such that some of the information speci-
fied in the region tables, segment tables, and
page tables is maintained in a special buffer,
referred to as the translation-lookaside buffer
(TLB). The CPU necessarily refers to a DAT-table
entry in real or absolute storage only for the initial
access to that entry. This information may be
placed in the TLB, and subsequent translations
may be performed by using the information in the
TLB. For consistency of operation, the virtual-
equals-real translation specified by a real-space
designation also may be performed by using infor-
mation in the TLB. The presence of the TLB
affects the translation process to the extent that
(1) a modification of the contents of a table entry
in real or absolute storage does not necessarily
have an immediate effect, if any, on the trans-
lation, (2) a region-first-table origin, region-
second-table origin, region-third-table origin,
segment-table origin, or real-space token origin in
an address-space-control element (ASCE) may
select a TLB entry that was formed by means of
an ASCE containing an origin of the same value
even when the two origins are of different types,
and (3) the comparison against the table length in
an address-space-control element may be omitted
if a TLB equivalent of the designated table entry is
used. In a multiple-CPU configuration, each CPU
has its own TLB.

Entries within the TLB are not explicitly address-
able by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is
permissible. Furthermore, information in the TLB

may be cleared under conditions additional to
those for which clearing is mandatory.

TLB Structure

The description of the logical structure of the TLB
covers the implementation by all systems oper-
ating as defined by z/Architecture. The TLB
entries are considered as being of three types:
TLB combined region-and-segment-table entries,
TLB page-table entries, and TLB real-space
entries. A TLB combined region-and-
segment-table entry or TLB page-table entry is
considered as containing within it both the infor-
mation obtained from the table entry or entries in
real or absolute storage and the attributes used to
fetch this information from storage. A TLB real-
space entry is considered as containing a page-
frame real address and the real-space token origin
and region, segment, and page indexes used to
form the entry. The token origin in a TLB real-
space entry is indistinguishable from the table
origin in a TLB combined region-and-
segment-table entry.

Note: The following sections describe the condi-
tions under which information may be placed in
the TLB, the conditions under which information
from the TLB may be used for address translation,
and how changes to the translation tables affect
the translation process.

Formation of TLB Entries

The formation of TLB combined region-and-
segment-table entries and TLB page-table entries
from table entries in real or absolute storage, and
the effect of any manipulation of the contents of
table entries in storage by the program, depend
on whether the entries in storage are attached to
a particular CPU and on whether the entries are
valid.

The attached state of a table entry denotes that
the CPU to which it is attached can attempt to use
the table entry for implicit address translation,
except that a table entry for the primary or home
address space may be attached even when the
CPU does not fetch from either of those spaces.
A table entry may be attached to more than one
CPU at a time.

The valid state of a table entry denotes that the
region set, region, segment, or page associated
with the table entry is available. An entry is valid

Chapter 3. Storage 3-43

when the region-invalid, segment-invalid, or page-
invalid bit in the entry is zero.

The region-table entries, if any, and the segment-
table entry used to form a TLB combined region-
and-segment-table entry are called a translation
path. A translation path may be placed in the TLB
as a combined region-and-segment-table entry
whenever all entries in the path are attached and
valid and would not cause a translation-
specification exception if used for translation.
Similarly, a page-table entry may be placed in the
TLB whenever the entry is attached and valid and
would not cause a translation-specification excep-
tion if used for translation.

The highest-level table entry in a translation path
is attached when it is within a table designated by
an attaching address-space-control element
(ASCE). “Within a table” means as determined by
the origin and length fields in the ASCE. An
ASCE is an attaching ASCE when all of the fol-
lowing conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that
would cause an early specification exception
to be recognized.

3. The ASCE meets the requirements in a, b, c,
or d below.

a. The ASCE is the primary ASCE in control
register 1.

b. The ASCE is the secondary ASCE in
control register 7, and either of the fol-
lowing requirements is met:

e The CPU is in the secondary-space
mode or access-register mode.

e The CPU is in the primary-space
mode, and the secondary-space
control, bit 37 of control register 0, is
one.

c. The ASCE is in either an attached and
valid ASN-second-table entry (ASTE) or a
usable ALB ASTE, and the CPU is in the
access-register mode. See

|“ART-Lookaside Buffer” on page 5-54 for

the meaning of the terminology used here.

d. The ASCE is the home ASCE in control
register 13.

3-44 z/Architecture Principles of Operation

Each of the remaining table entries in a translation
path is attached when the next-higher-level entry
is attached and valid and would not cause a
translation-specification exception if used for trans-
lation and the subject entry is within the table des-
ignated by the next-higher-level entry. “Within the
table” means as determined by the origin, offset,
and length fields in the next-higher-level entry.

A page-table entry is attached when it is within the
page table designated by either an attached and
valid segment-table entry that would not cause a
translation-specification exception if used for trans-
lation or a usable TLB combined region-and-
segment-table entry. A usable TLB combined
region-and-segment-table entry is explained in the
next section.

A region-table entry or segment-table entry causes
a translation-specification exception if the table-
type bits, bits 60 and 61, in the entry are incon-
sistent with the level at which the entry would be
encountered when using the translation path in the
translation process. A segment-table entry also
causes a translation-specification exception if the
private-space-control bit is one in the address-
space-control element used to select it and the
common-segment bit is one in the entry. A page-
table entry causes a translation-specification
exception if bit 52 or 55 in the entry is one.

A TLB real-space entry may be formed whenever
an attaching real-space designation exists. The
entry is formed using the real-space token origin
in the designation and any value of bits 0-51 of a
virtual address.

Use of TLB Entries

The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. A usable TLB entry attaches
the next-lower-level table, if any, and may be
usable for a particular instance of implicit address
translation.

A TLB combined region-and-segment-table entry
is in the usable state when all of the following con-
ditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that
would cause an early specification exception
to be recognized.

3. The TLB combined region-and-segment-table
entry meets either of the following require-
ments:

a. The common-segment bit is one in the
TLB entry.

b. The table-origin (TO) field in the TLB entry
matches the table- or token-origin field in
an attaching address-space-control
element.

A TLB combined region-and-segment-table entry
may be used for a particular instance of implicit
address translation only when the entry is in the
usable state, either the common-segment bit is
one in the TLB entry or the table-origin (TO) field
in the TLB entry matches the table- or token-origin
field in the address-space-control element being
used in the translation, and the region-index and
segment-index fields in the TLB entry match those
of the virtual address being translated. However,
the TLB combined region-and-segment-table entry
is not used if the common-segment bit is one in
the entry and either the private-space-control bit is
one in the address-space-control element being
used in the translation or that address-
space-control element is a real-space designation.
In both these cases, the TLB entry is not used
even if the table-origin field in the entry and the
table- or token-origin field in the address-
space-control element match.

A TLB page-table entry may be used for a partic-
ular instance of implicit address translation only
when the page-table-origin field in the entry
matches the page-table-origin field in the
segment-table entry or TLB combined region-and-
segment-table entry being used in the translation
and the page-index field in the TLB page-table
entry matches the page index of the virtual
address being translated.

A TLB real-space entry may be used for implicit
address translation only when the token-origin
field in the TLB entry matches the table- or token-
origin field in the address-space-control element
being used in the translation and the region-index,
segment-index, and page-index fields in the TLB
entry match those of the virtual address being
translated

The operand address of LOAD REAL ADDRESS
may be translated with the use of the TLB con-
tents whether DAT is on or off, but TLB entries
still are formed only if DAT is on.

Programming Notes:

1. Although contents of a table entry may be
copied into the TLB only when the table entry
is both attached and valid, the copy may
remain in the TLB even when the table entry
itself is no longer attached or valid.

2. No contents can be copied into the TLB when
DAT is off because the table entries at this
time are not attached. In particular, trans-
lation of the operand address of LOAD REAL
ADDRESS with DAT off does not cause
entries to be placed in the TLB.

Conversely, when DAT is on, information may
be copied into the TLB from all translation-
table entries that could be used for address
translation, given the current translation
parameters, the setting of the address-
space-control bits, and the contents of the
access registers. The loading of the TLB
does not depend on whether the entry is used
for translation as part of the execution of the
current instruction, and such loading can
occur when the CPU is in the wait state.

3. More than one copy of contents of a table
entry may exist in the TLB. For example,
some implementations may cause a copy of
contents of a valid table entry to be placed in
the TLB for the table origin in each address-
space-control element by which the entry
becomes attached.

Modification of Translation Tables

When an attached and invalid table entry is made
valid and no entry usable for translation of the
associated virtual address is in the TLB, the
change takes effect no later than the end of the
current unit of operation. Similarly, when an unat-
tached and valid table entry is made attached and
no usable entry for the associated virtual address
is in the TLB, the change takes effect no later
than the end of the current unit of operation.

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries
that qualify for substitution for that entry, an
attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
unpredictable results may occur, to the following
extent. The use of the new value may begin
between instructions or during the execution of an
instruction, including the instruction that caused

Chapter 3. Storage 3-45

the change. Moreover, until the TLB is cleared of
entries that qualify for substitution for that entry,
the TLB may contain both the old and the new
values, and it is unpredictable whether the old or
new value is selected for a particular access. If
both old and new values of a translation path are
present in the TLB, a page-table entry may be
fetched by using one value and placed in the TLB
associated with the other value. If the new value
of the path is a value that would cause an excep-
tion, the exception may or may not cause an inter-
ruption to occur. If an interruption does occur, the
result fields of the instruction may be changed
even though the exception would normally cause
suppression or nullification.

Entries are cleared from the TLB in accordance
with the following rules:

1. All entries are cleared from the TLB by the
execution of PURGE TLB or SET PREFIX and
by CPU reset.

2. All entries may be cleared from all TLBs in the
configuration by the execution of COMPARE
AND SWAP AND PURGE by any of the CPUs
in the configuration, depending on a bit in a
general register used by the instruction.

3. Selected entries are cleared from all TLBs in
the configuration by the execution of INVALI-
DATE DAT TABLE ENTRY or INVALIDATE
PAGE TABLE ENTRY by any of the CPUs in
the configuration.

4. Some or all TLB entries may be cleared at
times other than those required by the pre-
ceding rules.

Programming Notes:

1. Entries in the TLB may continue to be used
for translation after the table entries from
which they have been formed have become
unattached or invalid. These TLB entries are
not necessarily removed unless explicitly
cleared from the TLB.

A change made to an attached and valid entry
or a change made to a table entry that causes
the entry to become attached and valid is
reflected in the translation process for the next
instruction, or earlier than the next instruction,
unless a TLB entry qualifies for substitution for
that table entry. However, a change made to
a table entry that causes the entry to become
unattached or invalid is not necessarily

3-46 z/Architecture Principles of Operation

reflected in the translation process until the
TLB is cleared of entries that qualify for sub-
stitution for that table entry.

. Exceptions associated with dynamic address

translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of instruction execution. Con-
sequently, a region-first-translation, region-
second-translation, region-third-translation,
segment-translation, or page-translation
exception may be indicated when a table entry
is invalid at the start of execution even if the
instruction would have validated the table
entry it uses and the table entry would have
appeared valid if the instruction was consid-
ered to process the operands one byte at a
time.

. A change made to an attached table entry,

except to set the | bit to zero or to alter the
rightmost byte of a page-table entry, may
produce unpredictable results if that entry is
used for translation before the TLB is cleared
of all copies of contents of that entry. The
use of the new value may begin between
instructions or during the execution of an
instruction, including the instruction that
caused the change. When an instruction,
such as MOVE (MVC), makes a change to an
attached table entry, including a change that
makes the entry invalid, and subsequently
uses the entry for translation, a changed entry
is being used without a prior clearing of the
entry from the TLB, and the associated unpre-
dictability of result values and of exception
recognition applies.

Manipulation of attached table entries may
cause spurious table-entry values to be
recorded in a TLB. For example, if changes
are made piecemeal, modification of a valid
attached entry may cause a partially updated
entry to be recorded, or, if an intermediate
value is introduced in the process of the
change, a supposedly invalid entry may tem-
porarily appear valid and may be recorded in
the TLB. Such an intermediate value may be
introduced if the change is made by an I/O
operation that is retried, or if an intermediate
value is introduced during the execution of a
single instruction.

As another example, if a segment-table entry
is changed to designate a different page table
and used without clearing the TLB, the new

page-table entries may be fetched and associ-
ated with the old page-table origin. In such a
case, execution of INVALIDATE PAGE TABLE
ENTRY designating the new page-table origin
will not necessarily clear the page-table
entries fetched from the new page table.

. To facilitate the manipulation of page tables,
the INVALIDATE PAGE TABLE ENTRY
instruction is provided. This instruction sets
the | bit in a page-table entry to one and
clears all TLBs in the configuration of entries
formed from that table entry.

INVALIDATE PAGE TABLE ENTRY is useful
for setting the | bit to one in a page-table entry
and causing TLB copies of the entry to be
cleared from the TLB of each CPU in the con-
figuration. The following aspects of the TLB
operation should be considered when using
INVALIDATE PAGE TABLE ENTRY. (See
also the programming notes for INVALIDATE
PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be executed before making any
change to a page-table entry other than
changing the rightmost byte; otherwise,
the selective-clearing portion of INVALI-
DATE PAGE TABLE ENTRY may not
clear the TLB copies of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INVALI-
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of any combined
region-and-segment-table entry desig-
nating the page table. When it is desired
to invalidate and clear the TLB of a com-
bined region-and-segment-table entry, the
rules in note 5 below must be followed.

c. When a large number of page-table
entries are to be invalidated at a single
time, the overhead involved in using
COMPARE AND SWAP AND PURGE
(one that purges the TLB), INVALIDATE
DAT TABLE ENTRY, or PURGE TLB and
in following the rules in note 5 below may
be less than in issuing INVALIDATE
PAGE TABLE ENTRY for each page-table
entry.

5. Manipulation of table entries should be in

accordance with the following rules. If these
rules are complied with, translation is per-
formed as if the table entries from real or

absolute storage were always used in the
translation process.

a. A valid table entry must not be changed
while it is attached to any CPU and may
be used for translation by that CPU except
to (1) invalidate the entry by using INVAL-
IDATE PAGE TABLE ENTRY or INVALI-
DATE DAT TABLE ENTRY, (2) alter bits
56-63 of a page-table entry, or (3) make a
change by means of a COMPARE AND
SWAP AND PURGE instruction that
purges the TLB.

b. When any change is made to an attached
and valid or unattached or invalid table
entry other than a change to bits 56-63 of
a page-table entry, each CPU which may
have a TLB entry formed from that entry
must be caused to purge its TLB after the
change occurs and prior to the use of that
entry for implicit translation by that CPU.
(Note that a separate purge is unneces-
sary if the change was made by using
INVALIDATE DAT TABLE ENTRY,
INVALIDATE PAGE TABLE ENTRY, or a
COMPARE AND SWAP AND PURGE
instruction that purges the TLB.) In the
case when the table entry is attached and
valid, this rule applies when it is known
that a program is not being executed that
may require the entry for translation.

c. When any change is made to an invalid
table entry in such a way as to allow inter-
mediate valid values to appear in the
entry, each CPU to which the entry is
attached must be caused to purge its TLB
after the change occurs and prior to the
use of the entry for implicit address trans-
lation by that CPU.

d. When any change is made to an offset or
length specified for a table, each CPU
which may have a TLB entry formed from
a table entry that no longer lies within its
table must be caused to purge its TLB
after the change occurs and prior to the
use of the table for implicit translation by
that CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
CPU which does not have any TLB entries
formed from that entry. Similarly, when an

Chapter 3. Storage 3-47

invalid region-table or segment-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
CPU which does not have any TLB entries
formed from that validated entry and which
does not have any TLB entries formed from
entries in a page table attached by means of
that validated entry.

The execution of PURGE TLB, COMPARE
AND SWAP AND PURGE, or SET PREFIX
may have an adverse effect on the perform-
ance of some models. Use of these
instructions should, therefore, be minimized in
conformance with the above rules.

Address Summary

Addresses Translated

Most addresses that are explicitly specified by the
program and are used by the CPU to refer to
storage are instruction or logical addresses and
are subject to implicit translation when DAT is on.
Analogously, the corresponding addresses indi-
cated to the program on an interruption or as the
result of executing an instruction are instruction or
logical addresses. The operand address of LOAD
REAL ADDRESS and STORE REAL ADDRESS is
explicitly translated, regardless of whether the
PSW specifies DAT on or off.

Translation is not applied to quantities that are
formed from the values specified in the B and D
fields of an instruction but that are not used to
address storage. This includes operand

3-48 z/Architecture Principles of Operation

addresses in LOAD ADDRESS, LOAD ADDRESS
EXTENDED, MONITOR CALL, and the shifting
instructions. This also includes the addresses in
control registers 10 and 11 designating the
starting and ending locations for PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage keys
(operand addresses in SET STORAGE KEY
EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses. Similarly, the
addresses implicitly used by the CPU for such
sequences as interruptions are real addresses.

The addresses used by channel programs to
transfer data and to refer to CCWs or IDAWSs are
absolute addresses.

The handling of storage addresses associated
with DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in
[‘Address Types” on page 3-3] Prefixing, when
provided, is applied after the address has been
translated by means of the dynamic-
address-translation facility. For a description of
prefixing, see [‘Prefixing” on page 3-15|

Handling of Addresses

The handling of addresses is summarized in
[Figure 3-10 on page 3-491 This figure lists all
addresses that are encountered by the program
and specifies the address type.

Virtual Addresses

- Address of storage operand for INSERT VIRTUAL STORAGE KEY

- Operand address in LOAD REAL ADDRESS and STORE REAL ADDRESS

- Addresses of storage operands for MOVE TO PRIMARY and MOVE TO
SECONDARY

- Address stored in the doubleword at real Tocation 168 on a program
interruption for ASCE-type, region-first-translation, region-second-
translation, region-third-translation, segment-translation, or page-
translation exception

- Linkage-stack-entry address in control register 15

- Backward stack-entry address in linkage-stack header entry

- Forward-section-header address in linkage-stack trailer entry

- Trap-control-block address in dispatchable-unit-control table

- Trap-save-area address and trap-program address in trap control
block

Instruction Addresses

- Instruction address in PSW

- Branch address

- Target of EXECUTE

- Address stored in the doubleword at real Tocation 152 on a program
interruption for PER

- Address placed in general register by BRANCH AND LINK, BRANCH AND
SAVE, BRANCH AND SAVE AND SET MODE, BRANCH AND STACK, BRANCH IN
SUBSPACE GROUP, BRANCH RELATIVE AND SAVE, BRANCH RELATIVE AND SAVE
LONG, and PROGRAM CALL

- Address used in general register by BRANCH AND STACK.

- Address placed in general register by BRANCH AND SET AUTHORITY
executed in reduced-authority state

Logical Addresses

- Addresses of storage operands for instructions not otherwise
specified

- Address placed in general register 1 by EDIT AND MARK and TRANSLATE
AND TEST

- Addresses in general registers updated by MOVE LONG, MOVE LONG
EXTENDED, COMPARE LOGICAL LONG, and COMPARE LOGICAL LONG EXTENDED

- Addresses in general registers updated by CHECKSUM, COMPARE AND FORM
CODEWORD, and UPDATE TREE

- Address for TEST PENDING INTERRUPTION when the second-operand ad-
dress is nonzero

- Address of parameter list of RESUME PROGRAM

Figure 3-10 (Part 1 of 3). Handling of Addresses

Chapter 3. Storage

3-49

Real Addresses

- Address of storage key for INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, and SET STORAGE KEY EXTENDED

- Address of storage operand for LOAD USING REAL ADDRESS, STORE USING
REAL ADDRESS, and TEST BLOCK

- The translated address generated by LOAD REAL ADDRESS and STORE REAL
ADDRESS

- Page-frame real address in page-table entry

- Trace-entry address in control register 12

- ASN-first-table origin in control register 14

- ASN-second-table origin in ASN-first-table entry

- Authority-table origin in ASN-second-table entry, except when used
by access-register translation

- Linkage-table origin in primary ASN-second-table entry

- Entry-table origin in linkage-table entry

- Dispatchable-unit-control-table origin in control register 2

- Primary-ASN-second-table-entry origin in control register 5

- Base-ASN-second-table-entry origin and subspace-ASN-second-table-
entry origin in dispatchable-unit control table

- ASN-second-table-entry address in entry-table entry and access-list
entry

Permanently Assigned Real Addresses

- Address of the doubleword into which TEST PENDING INTERRUPTION
stores when the second-operand address is zero

- Addresses of PSWs, interruption codes, and the associated informa-
tion used during interruption

- Addresses used for machine-check Togout and save areas

- Address of STORE FACILITY LIST operand

Addresses which Are Unpredictably Real or Absolute

- Region-first-table origin, region-second-table origin, region-third-
table origin, or segment-table origin in control registers 1, 7, and
13, in access-register-specified address-space-control element, and
in region-first-table entry, region-second-table entry, or region-
third-table entry

- Page-table origin in segment-table entry and in INVALIDATE PAGE
TABLE ENTRY

- Address of segment-table entry or page-table entry provided by LOAD
REAL ADDRESS

- The dispatchable-unit or primary-space access-list origin and the
authority-table origin (in the ASTE designated by the ALE used) used
by access-register translation

Figure 3-10 (Part 2 of 3). Handling of Addresses

3-50 z/Architecture Principles of Operation

Absolute Addresses

- Prefix value

- Channel-program address in ORB

- Data address in CCW

- Data address in IDAW

- Address 1imit specified by SET ADDRESS LIMIT
248

- CCW address in SCSW

Permanently Assigned Absolute Addresses

- Addresses used for the store-status function

Addresses Not Used to Reference Storage

- PER starting address in control register 10
- PER ending address in control register 11

event

to use the address to reference storage

- IDAW address in a CCW specifying indirect data addressing
- CCW address in a CCW specifying transfer in channel

- Measurement-block origin specified by SET CHANNEL MONITOR

- Addresses used by the store-status-at-address SIGNAL PROCESSOR order
- Failing-storage address stored in the doubleword at real location

- Addresses of PSW and first two CCWs used for initial program loading

- Address stored in the doubleword at real location 176 for a monitor
- Address in shift instructions and other instructions specified not

- Real-space token origin in real-space designation

Figure 3-10 (Part 3 of 3). Handling of Addresses

Assigned Storage Locations

[Figure 3-11 on page 3-57 lshows the format and
extent of the assigned locations in storage. The
locations are used as follows.

128-131 (Real Address)

External-Interruption Parameter. During
an external interruption due to service
signal or the external time reference
(ETR), the parameter associated with the
interruption is stored at locations
128-131.

132-133 (Real Address)

CPU Address: During an external inter-
ruption due to malfunction alert, emer-
gency signal, or external call, the CPU
address associated with the source of
the interruption is stored at locations
132-138. For all other external-
interruption conditions, zeros are stored
at locations 132-133.

134-135

136-139

140-143

(Real Address)

External-Interruption Code: During an
external interruption, the interruption
code is stored at locations 134-135.

(Real Address)

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at
locations 138-139. Zeros are stored at
location 136 and in the remaining bit
positions of location 137.

(Real Address)

Program-Interruption Identification:
During a program interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 141, and
the interruption code is stored at
locations 142-143. Zeros are stored at
location 140 and in the remaining bit
positions of location 141.

Chapter 3. Storage 3-51

144-147

148-149

150-151

152-159

160

3-52

(Real Address)

Data-Exception Code (DXC): During a
program interruption due to a data
exception, the data-exception code is
stored at location 147, and zeros are
stored at locations 144-146. The DXC is

described in [|‘Data-Exception Code|
[DXC)" on page 6-15

(Real Address)

Monitor-Class Number. During a
program interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at location 148.

(Real Address)

PER Code: During a program inter-
ruption due to a PER event the PER
code is stored in bit positions 0-2 and 4
of locations 150-151, and other informa-
tion is or may be stored as described in
Fldentification of Cause” on page 4-26

(Real Address)

PER Address: During a program inter-
ruption due to a PER event, the PER
address is stored at locations 152-159.

(Real Address)

Exception Access Identification: During
a program interruption due to an
ASCE-type, region-first-translation,

region-second-translation, region-third-
translation, segment-translation, or page-
translation exception, an indication of the
address space to which the exception
applies may be stored at location 160. |If
the CPU was in the access-register
mode and the access was an instruction
fetch, including a fetch of the target of an
EXECUTE instruction, zeros are stored
at location 160. If the CPU was in the
access-register mode and the access
was a storage-operand reference that
used an AR-specified address-
space-control element, the number of the
access register used is stored in bit posi-
tions 4-7 of location 160, and zeros are
stored in bit positions 0-3. (In either of
the two cases described so far, storing
at location 160 occurs regardless of the
value stored in bit positions 62 and 63 of
real locations 168-175.) If the CPU was

z/Architecture Principles of Operation

161

162

in the access-register mode but the
access was an implicit reference to the
linkage stack, or if the CPU was not in
the access-register mode, the contents
of location 160 are unpredictable.

During a program interruption due to an
ALEN-translation, ALE-sequence,
ASTE-validity, ASTE-sequence, or
extended-authority exception recognized
during access-register translation, the
number of the access register used is
stored in bit positions 4-7 of location
160, and zeros are stored in bit positions
0-3. During a program interruption due
to an ASTE-validity or ASTE-sequence
exception recognized during a subspace-
replacement operation, all zeros are
stored at location 160.

During a program interruption due to a
protection exception, information is
stored at location 160 as described in

‘Suppression on Protection” on|

page 3-12}

(Real Address)

PER Access Identification: During a
program interruption due to a PER
storage-alteration event, an indication of
the address space to which the event
applies may be stored at location 161. If
the access used an AR-specified
address-space-control element, the
number of the access register used is
stored in bit positions 4-7 of location
161, and zeros are stored in bit positions
0-3. The contents of location 161 are
unpredictable if (1) the CPU was in the
access-register mode but the access
was an implicit reference to the linkage
stack or (2) the CPU was not in the
access-register mode.

(Real Address)

Operand Access Identification: During a
program interruption due to a page-
translation exception recognized by the
MOVE PAGE instruction, the contents of
the R: field of the instruction are stored
in bit positions 0-3 of location 162, and
the contents of the Rz field are stored in
bit positions 4-7. If the page-translation
exception was recognized during the

163

163

168-175

execution of an instruction other than
MOVE PAGE, or if an ASCE-type,
region-first-translation, region-
second-translation, region-third-
translation, or segment-translation
exception was recognized, the contents
of location 162 are unpredictable.

(Absolute Address)

Store-Status Architectural-Mode Identifi-
cation. During the execution of the
store-status operation, zeros are stored
in bit positions 0-6 of location 163, and a
one is stored in bit position 7. A zero
stored in bit position 7 indicates the
ESA/390 architectural mode, and a one
indicates the z/Architecture architectural
mode.

(Real Address)

Machine-Check Architectural-Mode Iden-
tification: During a machine-check inter-
ruption, zeros are stored in bit positions
0-6 of location 163, and a one is stored
in bit position 7. A zero stored in bit
position 7 indicates the ESA/390 archi-
tectural mode, and a one indicates the
z/Architecture architectural mode.

(Real Address)

Translation-Exception Identification:
During a program interruption due to an
ASCE-type, region-first-translation,
region-second-translation, region-third-
translation, segment-translation, or page-
translation exception, bits 0-51 of the
virtual address causing the exception are
stored in bit positions 0-51 of locations
168-175. This address is sometimes
referred to as the translation-exception
address. Bits 52-60 of locations 168-175
are unpredictable. If the exception was
a page-translation exception that was
recognized during the execution of
MOVE PAGE, bit 61 of locations
168-175 is set to one. If the exception
was a page-translation exception recog-
nized during the execution of an instruc-
tion other than MOVE PAGE, bit 61 is

set to zero. If the exception was an
ASCE-type, region-first-translation,
region-second-translation, region-third-
translation, or segment-translation

exception, bit 61 of locations 168-175 is

unpredictable. See the definition of real
location 162 for related information.

Bits 62 and 63 of locations 168-175 are
set to identify the address-space-control
element (ASCE) used in the translation,
as follows:

Bit Bit
62 63 Meaning

0 O Primary ASCE was used.

0 1 CPU was in the access-
register mode, and either the
access was an instruction fetch
or it was a storage-operand
reference that used an
AR-specified ASCE (the
access was not an implicit ref-
erence to the linkage stack).
The exception access id, real
location 160, can be examined
to determine the ASCE used.
However, if the primary, sec-
ondary, or home ASCE was
used, bits 62 and 63 may be
set to 00, 10, or 11, respec-
tively, instead of to 01.

1 0 Secondary ASCE was used.

1 1 Home ASCE was used
(includes the case of an
implicit reference to the linkage
stack).

The CPU may avoid setting bits 62 and
63 to 01 by recognizing that the access
was an instruction fetch, that access-
list-entry token 00000000 or 00000001
hex was used, or that the access-list-
entry token designated, through an
access-list entry, an ASN-second-table
entry containing an ASCE equal to the
primary ASCE, secondary ASCE, or
home ASCE.

During a program interruption due to an
AFX-translation, ASX-translation,
primary-authority, or secondary-authority
exception, the ASN being translated is
stored at locations 174 and 175, zeros
are stored at locations 172 and 173, and
the contents of locations 168-171 remain
unchanged.

During a program interruption due to a
space-switch event, an identification of

Chapter 3. Storage 3-53

176-183

184-187

3-54

the old instruction space is stored at
locations 174 and 175, the old
instruction-space space-switch-
event-control bit is placed in bit position
0 and zeros are placed in bit positions
1-15 of locations 172 and 173, and the
contents of locations 168-171 remain
unchanged. The identification and bit
stored are as follows:

e If the CPU was in the primary-space,
secondary-space, or access-register
mode before the operation, the old
PASN, bits 48-63 of control register
4 before the operation, is stored at
locations 174 and 175, and the old
primary space-switch-event-control
bit, bit 57 of control register 1 before
the operation, is placed in bit posi-
tion 0 of locations 172 and 173.

e If the CPU was in the home-space
mode before the operation, zeros are
stored at locations 174 and 175, and
the home space-switch-event-control
bit, bit 57 of control register 13, is
placed in bit position 0 of locations
172 and 173.

During a program interruption due to an
LX-translation or EX-translation excep-
tion recognized by PROGRAM CALL,
the PC number is stored in bit positions
12-31 of locations 172-175, zeros are
stored in bit positions 0-11, and the con-
tents of locations 168-171 remain
unchanged.

During a program interruption due to a
protection exception, information is
stored at locations 168-175 as described
in [‘Suppression on Protection” on|

page 3-12
(Real Address)

Monitor Code: During a program inter-
ruption due to a monitor event, the

monitor code is stored at locations
176-183.

(Real Address)

Subsystem-Identification Word: During

an 1/O interruption, the subsystem-
identification word is stored at locations
184-187.

z/Architecture Principles of Operation

188-191

192-195

200-203

232-239

244-247

248-255

288-303

304-319

(Real Address)

I/O-Interruption Parameter. During an
I/O interruption, the interruption param-
eter from the associated subchannel is
stored at locations 188-191.

(Real Address)
I/O-Interruption-Identification Word:
During an 1/O interruption, the

I/O-interruption-identification word, which
further identifies the source of the 1/O

interruption, is stored at locations
192-195.

(Real Address)

STFL Facility List. The STORE

FACILITY LIST instruction stores infor-
mation at real locations 200-203. The
information describes which facilities are
provided by the CPU. See the definition
of STORE FACILITY LIST in Chapter 10,
“Control Instructions,” for a description of
the information stored.

(Real Address)

Machine-Check-Interruption Code:
During a machine-check interruption, the

machine-check-interruption code is
stored at locations 232-239.

(Real Address)

External-Damage Code: During a
machine-check interruption due to
certain external-damage conditions,

depending on the model, an external-
damage code may be stored at locations
244-247.

(Real Address)
Failing-Storage Address: During a
machine-check interruption, a 64-bit

failing-storage address may be stored at
locations 248-255.

(Real Address)

Restart Old PSW: The current PSW is
stored as the old PSW at locations
288-303 during a restart interruption.

(Real Address)

External Old PSW: The current PSW is
stored as the old PSW at locations
304-319 during an external interruption.

320-335

336-351

352-367

368-383

416-431

432-447

448-463

464-479

480-495

496-511

(Real Address)

Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at
locations 320-335 during a supetvisor-
call interruption.

(Real Address)

Program OIld PSW: The current PSW is
stored as the old PSW at locations
336-351 during a program interruption.

(Real Address)

Machine-Check Old PSW: The current
PSW is stored as the old PSW at
locations 352-367 during a machine-
check interruption.

(Real Address)

Input/Output Old PSW: The current
PSW is stored as the old PSW at
locations 368-383 during an /O inter-
ruption.

(Real Address)

Restart New PSW: The new PSW is
fetched from locations 416-431 during a
restart interruption.

(Real Address)

External New PSW: The new PSW is
fetched from locations 432-447 during an
external interruption.

(Real Address)

Supervisor-Call New PSW: The new
PSW is fetched from locations 448-463
during a supervisor-call interruption.

(Real Address)

Program New PSW: The new PSW is
fetched from locations 464-479 during a
program interruption.

(Real Address)

Machine-Check New PSW: The new
PSW is fetched from locations 480-495
during a machine-check interruption.

(Real Address)

Input/Output New PSW: The new PSW
is fetched from locations 496-511 during
an /O interruption.

4544-4607 (Real Address)

Available for Programming. Locations
4544-4607 are available for use by pro-
gramming.

4608-4735 (Absolute Address)

Store-Status Floating-Point-Register
Save Area: During the execution of the
store-status operation, the contents of
the floating-point registers are stored at
locations 4608-4735.

4608-4735 (Real Address)

Machine-Check Floating-Point-Register
Save Area: During a machine-check
interruption, the contents of the floating-
point registers are stored at locations
4608-4735.

4736-4863 (Absolute Address)

Store-Status General-Register ~ Save
Area: During the execution of the store-
status operation, the contents of the
general registers are stored at locations
4736-4863.

4736-4863 (Real Address)

Machine-Check General-Register Save
Area: During a machine-check inter-
ruption, the contents of the general reg-
isters are stored at locations 4736-4863.

4864-4879 (Absolute Address)

Store-Status PSW Save Area: During
the execution of the store-status opera-
tion, the contents of the current PSW are
stored at locations 4864-4879.

4864-4879 (Real Address)

Fixed-Logout Area: Depending on the
model, logout information may be stored
at locations 4864-4879 during a
machine-check interruption.

4888-4891 (Absolute Address)

Store-Status Prefix Save Area: During
the execution of the store-status opera-
tion, the contents of the prefix register
are stored at locations 4888-4891.

4892-4895 (Absolute Address)

Store-Status Floating-Point-Control-
Register Save Area: During the exe-
cution of the store-status operation, the

Chapter 3. Storage 3-55

contents of the floating-point control reg-
ister are stored at locations 4892-4895.

4892-4895 (Real Address)

Machine-Check Floating-Point-Control-
Register Save Area: During a machine-
check interruption, the contents of the
floating-point control register are stored
at locations 4892-4895.

4900-4903 (Absolute Address)

Store-Status
TOD-Programmable-Register Save Area:
During the execution of the store-status
operation, the contents of the TOD pro-
grammable register are stored at
locations 4900-4903.

4900-4903 (Real Address)

Machine-Check
TOD-Programmable-Register Save Area:
During a machine-check interruption, the
contents of the TOD programmable reg-
ister are stored at locations 4900-4903.

4904-4911 (Absolute Address)

Store-Status CPU-Timer Save Area:
During the execution of the store-status
operation, the contents of the CPU timer
are stored at locations 4904-4911.

4904-4911 (Real Address)

Machine-Check CPU-Timer Save Area:
During a machine-check interruption, the
contents of the CPU timer are stored at
locations 4904-4911.

4913-4919 (Absolute Address)

Store-Status Clock-Comparator Save
Area: During the execution of the store-
status operation, the contents of bit posi-
tions 0-55 of the clock comparator are
stored at locations 4913-4919. When
this store occurs, zeros are stored at
location 4912.

4913-4919 (Real Address)

Machine-Check Clock-Comparator Save
Area: During a machine-check inter-
ruption, the contents of bit positions 0-55
of the clock comparator are stored at
locations 4913-4919. When this store

3-56 z/Architecture Principles of Operation

occurs, zeros are stored at location
4912,

4928-4991 (Absolute Address)

Store-Status Access-Register Save Area:
During the execution of the store-status
operation, the contents of the access
registers are stored at locations
4928-4991.

4928-4991 (Real Address)

Machine-Check Access-Register Save
Area: During a machine-check inter-
ruption, the contents of the access regis-
ters are stored at locations 4928-4991.

4992-5119 (Absolute Address)

Store-Status Control-Register Save Area:
During the execution of the store-status
operation, the contents of the control
registers are stored at locations
4992-5119.

4992-5119 (Real Address)

Machine-Check Control-Register Save
Area: During a machine-check inter-
ruption, the contents of the control regis-
ters are stored at locations 4992-5119.

Programming Notes:

1. When the CPU is in the access-register mode,
some instructions, such as MVCL, which
address operands in more than one address
space, may cause a storage-alteration PER
event in one address space concurrently with
a region-translation, segment-translation, or
page-translation exception in another address
space. The access registers used to cause
these conditions in such a case are different.
In order to identify both access registers, two
access identifications, namely the exception
access identification and the PER access
identification, are provided.

2. The store-status and machine-check
architectural-mode identifications at absolute
and real locations 163, respectively, indicate
that the CPU is in the z/Architecture architec-
tural mode. When z/Architecture is installed
on the CPU but the CPU is in the ESA/390
mode, the store-status and machine-
check-interruption operations store zero at
location 163.

Hex Dec | Fields
0 0
4 4
8 8
c 12

10 16
14 20
18 24
1c 28
20 32
24 36
28 40
2C 44
30 48
34 52
38 56
3C 60
40 64
44 68
48 72
4C 76
50 80
54 84
58 88
5C 92
60 96
64 100
68 104
6C 108
70 112
74 116
78 120
7C 124

Figure 3-11 (Part 1 of 6). Assigned Storage Locations

Chapter 3. Storage

3-57

Hex Dec | Fields

80 128 | External-Interruption Parameter

84 132 | CPU Address External-Interruption Code
88 136 (000000000000 O|IILC|O| SVC-Interruption Code
8C 140 (00O OOO0OOOO0OOO|[ILC|O| Program-Interruption Code
90 144 | Data-Exception Code

94 148 | Monitor-Class Number ‘PER Cde'ATMID'AI'

98 152 | PER Address

9C 156

A0 160 |Exc. Access ID | PER Access ID ‘ Op. Access Id ISS/MC Ar-Md Id
A4 164

A8 168 | Translation-Exception Identification

AC 172

BO 176 | Monitor Code

B4 180

B8 184 | Subsystem-Identification Word

BC 188 | I/0-Interruption Parameter

CO0 192 | I/0-Interruption-Identification Word

C4 196

C8 200 | STFL Facility List

CC 204

DO 208

D4 212

D8 216

DC 220

EQ 224

E4 228

E8 232 | Machine-Check Interruption Code

EC 236

FO 240

F4 244 | External-Damage Code

F8 248 | Failing-Storage Address

FC 252

Figure 3-11 (Part 2 of 6). Assigned Storage Locations

3-58

z/Architecture Principles of Operation

Hex

Dec

Fields

100
104
108
10C
110
114
118
11C

256
260
264
268
272
276
280
284

120
124
128
12C

288
292
296
300

Restart 01d PSW

130
134
138
13C

304
308
312
316

External 01d PSW

140
144
148
14C

320
324
328
332

Supervisor-Call 01d PSW

150
154
158
15C

336
340
344

348

Program 01d PSW

160
164
168
16C

352
356
360
364

Machine-Check 01d PSW

170
174
178
17C

368
372
376
380

Input/Output 01d PSW

Figure 3-11 (Part 3 of 6). Assigned Storage Locations

Chapter 3. Storage

3-59

Hex

Dec

Fields

180
184
188
18C
190
194
198
19C

384
388
392
396
400
404
408

412

1A0
1A4
1A8
1AC

416
420
424

428

Restart New PSW

1BO

1B4

1B8

1BC

432
436
440
444

External New PSW

1CO
1C4
1C8
1CC

448
452
456
460

Supervisor-Call New PSW

1D0
1D4
1D8
1DC

464
468
472

476

Program New PSW

1E0

1E4

1E8

1EC

480
484
488
492

Machine-Check New PSW

1FO
1F4
1F8
1FC

496
500
504
508

Input/Output New PSW

Figure 3-11 (Part 4 of 6). Assigned Storage Locations

3-60

z/Architecture Principles of Operation

Hex Dec

Fields

1000 4096
1004 4100
1008 4104
100C 4108
1010 4112
1014 4116

11A8 4520
11AC 4524
11BO 4528
11B4 4532
11B8 4536
11BC 4540

(448 bytes)

11CO 4544

11C4 4548

11F8 4600
11FC 4604

Available for Use by Programming

(64 bytes)

Figure 3-11 (Part 5 of 6). Assigned Storage Locations

Chapter 3. Storage

3-61

Hex Dec | Fields

1200 4608 | Store-Status Floating-Point-Register Save Area; or Machine-
Check Floating-Point-Register Save Area

1204 4612
/ / (128 bytes)
1278 4728

127C 4732

1280 4736 | Store-Status General-Register Save Area; or Machine-Check
General-Register Save Area

1284 4740
/ / (128 bytes)
12F8 4856

12FC 4860

1300 4864 | Store-Status PSW Save Area; or Fixed-Logout Area
1304 4868
1308 4872
130C 4876

1310 4880
1314 4884

1318 4888 | Store-Status Prefix Save Area

131C 4892 | Store-Status FP-Ct1-Reg Save Area; or MC FP-Ct1-Reg Save Area

1320 4896

1324 4900 | Store-Status TOD Prog Reg Save Area; or MC TOD Prog Reg S A

1328 4904 | Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer

Save Area
132C 4908
1330 4912 Store-Status Clock-Comparator Bits 0-55 Save Area; or
Machine-Check Clock-Comparator Bits 0-55 Save Area
1334 4916
1338 4920
133C 4924

1340 4928 | Store-Status Access-Register Save Area; or Machine-Check
Access-Register Save Area
/ / (64 bytes)

137C 4988

1380 4992 | Store-Status Control-Register Save Area; or Machine-Check
Control-Register Save Area

1384 4996
/ / (128 bytes)
13F8 5112

13FC 5116

Figure 3-11 (Part 6 of 6). Assigned Storage Locations

3-62 z/Architecture Principles of Operation

Chapter 4. Control

Stopped, Operating, Load, and Check-Stop

States 4-1
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-3

Program-Status Word 4-3
Program-Status-Word Format 4-5
Control Registers 4-7
Tracing 4-10
Control-Register Allocation 4-13
Trace Entries 4-13
Operation 4-23
Program-Event Recording 4-24
Control-Register Allocation and
Address-Space-Control Element 4-24
Operation 4-25
Identification of Cause 4-26
Priority of Indication 4-28
Storage-Area Designation 4-30
PEREvents 4-30
Successful Branching 4-30
Instruction Fetching 4-31
Storage Alteration 4-31
Store Using Real Address 4-32
Indication of PER Events Concurrently
with Other Interruption Conditions . . . 4-32
Timing 4-36

Time-of-Day Clock 4-36
Format 4-36
States 4-36
Changes in Clock State 4-37
Setting and Inspecting the Clock 4-37
TOD Programmable Register 4-38

TOD-Clock Synchronization 4-40

Clock Comparator 4-41

CPU Timer 4-42

Externally Initiated Functions 4-43

Resets 4-43
CPUReset 4-47
Initial CPU Reset 4-48
Subsystem Reset 4-48
ClearReset 4-48
Power-On Reset 4-49

Initial Program Loading 4-50

Store Status 4-50

Multiprocessing 4-51
Shared Main Storage 4-51
CPU-Address ldentification 4-51

CPU Signaling and Response 4-52
Signal-Processor Orders 4-52
Conditions Determining Response 4-55

Conditions Precluding Interpretation of
the Order Code
StatusBits L 4-56

This chapter describes in detail the facilities for
controlling, measuring, and recording the opera-
tion of one or more CPUs.

Stopped, Operating, Load, and
Check-Stop States

The stopped, operating, load, and check-stop
states are four mutually exclusive states of the
CPU. When the CPU is in the stopped state,
instructions and interruptions, other than the
restart interruption, are not executed. In the oper-
ating state, the CPU executes instructions and
takes interruptions, subject to the control of the
program-status word (PSW) and control registers,
and in the manner specified by the setting of the
operator-facility rate control. The CPU is in the

© Copyright IBM Corp. 1990-2003

load state during the initial-program-loading opera-
tion of ESA/390. The CPU enters the check-stop
state only as the result of machine malfunctions.

A change between these four CPU states can be
effected by use of the operator facilities or by
acceptance of certain SIGNAL PROCESSOR
orders addressed to that CPU. The states are not
controlled or identified by bits in the PSW. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator, respec-
tively. These three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is in the
operating state or the load state. The TOD clock
is not affected by the state of any CPU.

4-1

Stopped State

The CPU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

¢ The stop key is activated while the CPU is in
the operating state.

e The CPU accepts a stop or stop-and-
store-status order specified by a SIGNAL
PROCESSOR instruction addressed to this
CPU while it is in the operating state.

e The CPU has finished the execution of a unit
of operation initiated by performing the start
function with the rate control set to the
instruction-step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at
the end of the current unit of operation. When the
wait-state bit of the PSW is one, the transition
takes place immediately, provided no interruptions
are pending for which the CPU is enabled. In the
case of interruptible instructions, the amount of
data processed in a unit of operation depends on
the particular instruction and may depend on the
model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions
occur while the CPU is still in the operating state.
They cause the old PSW to be stored and the
new PSW to be fetched before the stopped state
is entered. While the CPU is in the stopped state,
interruption conditions remain pending.

The CPU is also placed in the stopped state
when:

¢ CPU reset is completed. However, when the
reset operation is performed as part of initial
program loading for this CPU, then the CPU is
placed in the load state and does not neces-
sarily enter the stopped state.

¢ An address comparison indicates equality and
stopping on the match is specified.

The execution of resets is described in
lon page 4-43] and address comparison is
described in [Address-Compare _Controls”__on|

If the CPU is in the stopped state when an INVAL-
IDATE PAGE TABLE ENTRY instruction is exe-

4-2 z/Architecture Principles of Operation

cuted on another CPU in the configuration, the
clearing of TLB entries is completed before the
CPU leaves the stopped state.

Operating State

The CPU changes from the stopped state to the
operating state by means of the start function or
when a restart interruption (see
oceurs.

The start function is performed if the CPU is in the
stopped state and (1) the start key associated
with that CPU is activated or (2) that CPU accepts
the start order specified by a SIGNAL
PROCESSOR instruction addressed to that CPU.
The effect of performing the start function is
unpredictable when the stopped state has been
entered by means of a reset.

When the rate control is set to the process posi-
tion and the start function is performed, the CPU
starts operating at normal speed. When the rate
control is set to the instruction-step position and
the wait-state bit is zero, one instruction or, for
interruptible instructions, one unit of operation is
executed, and all pending allowed interruptions
occur before the CPU returns to the stopped state.
When the rate control is set to the instruction-step
position and the wait-state bit is one, the start
function does not cause an instruction to be exe-
cuted, but all pending allowed interruptions occur
before the CPU returns to the stopped state.

Load State

The CPU enters the load state when the load-
normal or load-clear key is activated. (See [Initial
[Program Loading” on page 4-50, See also [Initial
[Program Loading” on page 17-17]) This sets the
architectural mode to the ESA/390 mode. For
ease of reference, the additional elements of the
description of the ESA/390 load state are given
below.

If the initial-program-loading operation is com-
pleted successfully, the CPU changes from the
load state to the operating state, provided the rate
control is set to the process position; if the rate
control is set to the instruction-step position, the
CPU changes from the load state to the stopped
state.

Check-Stop State

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in [Chapter 11, “Machine-Check_Handling.] The
CPU leaves the check-stop state when CPU reset
is performed.

Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW-format error of the type that is recog-
nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Pending I/0O operations may be initiated, and
active /O operations continue to suspension
or completion, after the CPU enters the
stopped state. The interruption conditions due
to suspension or completion of I/O operations
remain pending when the CPU is in the
stopped state.

Program-Status Word

The current program-status word (PSW) in the
CPU contains information required for the exe-
cution of the currently active program. The PSW
is 128 bits in length and includes the instruction
address, condition code, and other control fields.
In general, the PSW is used to control instruction

sequencing and to hold and indicate much of the
status of the CPU in relation to the program cur-
rently being executed. Additional control and
status information is contained in control registers
and permanently assigned storage locations.

The status of the CPU can be changed by loading
a new PSW or part of a PSW.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to pre-
serve the status of the CPU, and then loading a
new PSW.

Execution of LOAD PSW or LOAD PSW
EXTENDED, or the successful conclusion of the
initial-program-loading sequence, introduces a
new PSW. The instruction address is updated by
sequential instruction execution and replaced by
successful branches. Other instructions are pro-
vided which operate on a portion of the PSW.
[Figure 4-1 on page 4-4 bummarizes these
instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the inter-
ruption or the execution of an instruction that
changes the PSW is completed. The interruption
for PER associated with an instruction that
changes the PSW occurs under control of the
PER mask that is effective at the beginning of the
operation.

Bits 0-7 of the PSW are collectively referred to as
the system mask.

Chapter 4. Control 4-3

Condition
Address- | Code and Basic Extended
System Problem Space Program |Addressing|Addressing
Mask PSW Key State Control Mask Mode Mode
(PSW Bits |(PSW Bits (PSW (PSW Bits |(PSW Bits (PSW (PSW
0-7) 8-11) Bit 15) 16-17) 18-23) Bit 32) Bit 31)
Instruction Saved|Set |Saved|Set |Saved|Set |Saved|Set |Saved|Set |Saved|Set |Saved|Set
BRANCH AND LINK - - - - - - - - |24AM | - |31AM | - - -
BRANCH AND SAVE - - - - - - - - - - BAM | - - -
BRANCH AND SAVE AND SET - - - - - - - - - - BAM [Yesl| Yes |Yes?
MODE
BRANCH AND SET AUTHORITY - - Yes |Yes | Yes |Yes - - - - BAM2 | BAM - -
BRANCH AND SET MODE - - - - - - - - - - BAM! [Yes1| Yes!|Yes!
BRANCH AND STACK Yes | - Yes | - Yes | - Yes | - Yes | - BAM3 | - Yes | -
BRANCH IN SUBSPACE GROUP - - - - - - - - - - BAM? [BAM - -
BRANCH RELATIVE AND SAVE - - - - - - - - - - BAM | - - -
BRANCH RELATIVE AND SAVE - - - - - - - - - - BAM | - - -
LONG
EXTRACT PSW Yes | - Yes | - Yes | - Yes | - Yes | - Yes | - Yes | -
INSERT PROGRAM MASK - - - - - - - - Yes | - - - - -
INSERT PSW KEY - - Yes | - - - - - - - - - - -
INSERT ADDRESS SPACE - - - - - - Yes | - - - - - - -
CONTROL
Basic PROGRAM CALL - - - - Yes |[Yes - - - - BAM [BAM - -
Stacking PROGRAM CALL Yes | - Yes |PKC | Yes |Yes | Yes |Yes | Yes | - Yes |Yes | Yes |Yes
PROGRAM RETURN - |Yes4| - |Yes - |Yes - |Yes - |Yes - |Yes - |Yes
PROGRAM TRANSFER - - - - - |Yes5| - - - - - |BAM - -
RESUME PROGRAM - - - - - - - |Yes - |Yes - |Yes - |Yes
SET ADDRESS SPACE CONTROL - - - - - - - |VYes - - - - - -
SET ADDRESSING MODE - - - - - - - - - - - |Yes - |Yes
SET PROGRAM MASK - - - - - - - - - |Yes - - - -
SET PSW KEY FROM ADDRESS - - - |Yes - - - - - - - - - -
SET SYSTEM MASK - |Yes - - - - - - - - - - - -
STORE THEN AND SYSTEM MASK| Yes |ANDs| - - - - - - - - - - - -
STORE THEN OR SYSTEM MASK | Yes |ORs - - - - - - - - - - - -
TRAP - - - - Yes - Yes |Yes | Yes - Yes |Yes | Yes -
Explanation:
- No.
1 The action takes place only if the associated R field in the instruction is nonzero.
2 In the reduced-authority state, the action takes place only if the Ri field in the instruction
is nonzero.
3 The action also takes place in the 64-bit addressing mode if the Ri field in the instruction is
zero.
4 PROGRAM RETURN does not change the PER mask.
5 PROGRAM TRANSFER does not change the problem-state bit from one to zero.

Figure 4-1 (Part 1 of 2). Operations on PSW Fields

4-4

z/Architecture Principles of Operation

replaces the current system mask.

replaces the current system mask.

136-139 of the entry-table entry.

BAM The basic-addressing-mode bit is saved or set in the 24-bit or 31-bit addressing mode.

ANDs The logical AND of the immediate field in the instruction and the current system mask

ORs The Togical OR of the immediate field in the instruction and the current system mask

PKC When the PSW-key-control bit, bit 131 of the entry-table entry, is zero, the PSW key remains
unchanged. When the PSW-key-control bit is one, the PSW key is set with the entry key, bits

24AM The condition code and program mask are saved in the 24-bit addressing mode.

31AM The basic-addressing-mode bit is saved in the 31-bit addressing mode.

Figure 4-1 (Part 2 of 2). Operations on PSW Fields

Programming Note: A summary of the oper-
ations which save or set the problem state,
addressing mode, and instruction address is con-
tained in FSubroutine Linkage without the Linkage]

[Stack” on page 5-11].

Program-Status-Word Format

I|E Prog E
O[R{O[O[O[T|[O[X| Key |[O[M[W[P|A S|CC| Mask (000000 OfA

0 5 8 12 16 18 20 24 31

> W

0000000000000000000000000000000

32 63

Instruction Address

64 95

Instruction Address (Continued)

96 127
Figure 4-2. PSW Format

The following is a summary of the functions of the
PSW fields. (See Figure 4-2.)

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with program-
event recording (PER). When the bit is zero, no
PER event can cause an interruption. When the
bit is one, interruptions are permitted, subject to
the PER-event-mask bits in control register 9.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of logical and instruc-
tion addresses used to access storage takes
place. When the bit is zero, DAT is off, and

logical and instruction addresses are treated as
real addresses. When the bit is one, DAT is on,
and the dynamic-address-translation mechanism is
invoked.

I/O Mask (10): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is
zero, an /O interruption cannot occur. When the
bit is one, I/O interruptions are subject to the
I/O-interruption subclass-mask bits in control reg-
ister 6. When an I/O-interruption subclass-mask
bit is zero, an 1/O interruption for that
I/O-interruption subclass cannot occur; when the
I/O-interruption subclass-mask bit is one, an I/O
interruption for that 1/O-interruption subclass can
occur.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is
zero, an external interruption cannot occur. When
the bit is one, an external interruption is subject to
the corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass
cannot cause an interruption; when the subclass-
mask bit is one, an interruption in that subclass
can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. If the reference is
subject to key-controlled protection, the PSW key
is matched with a storage key when information is
stored or when information is fetched from a
location that is protected against fetching.
However, for one of the operands of each of
MOVE TO PRIMARY, MOVE TO SECONDARY,
MOVE WITH KEY, MOVE WITH SOURCE KEY,
and MOVE WITH DESTINATION KEY, an access

Chapter 4. Control 4-5

key specified as an operand is used instead of the
PSW key.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing
damage are permitted, but interruptions due to
other machine-check-subclass conditions are
subject to the subclass-mask bits in control reg-
ister 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that provide
meaningful information to the problem program
and that cannot affect system integrity; such
instructions are called unprivileged instructions.
The instructions that are never valid in the
problem state are called privileged instructions.
When a CPU in the problem state attempts to
execute a privileged instruction, a privileged-
operation exception is recognized. Another group
of instructions, called semiprivileged instructions,
are executed by a CPU in the problem state only
if specific authority tests are met; otherwise, a
privileged-operation exception or a special-
operation exception is recognized.

Address-Space Control (AS): Bits 16 and 17, in
conjunction with PSW bit 5, control the translation
mode. See [Translation Modes” on page 3-28|

Condition Code (CC): Bits 18 and 19 are the
two bits of the condition code. The condition code
is set to 0, 1, 2, or 3, depending on the result
obtained in executing certain instructions. Most
arithmetic and logical operations, as well as some
other operations, set the condition code. The
instruction BRANCH ON CONDITION can specify

4-6 z/Architecture Principles of Operation

any selection of the condition-code values as a
criterion for branching. A table in Appendix C
summarizes the condition-code values that may
be set for all instructions which set the condition
code of the PSW.

Program Mask: Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program-

Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 HFP exponent underflow
23 HFP significance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The setting of the
HFP-exponent-underflow-mask bit or the
HFP-significance-mask bit also determines the
manner in which the operation is completed when
the corresponding exception occurs.

Extended Addressing Mode (EA): Bit 31 con-
trols the size of effective addresses and effective-
address generation in conjunction with bit 32, the
basic-addressing-mode bit. When bit 31 is zero,
the addressing mode is controlled by bit 32. When
bits 31 and 32 are both one, 64-bit addressing is
specified.

Basic Addressing Mode (BA): Bits 31 and 32
control the size of effective addresses and
effective-address generation. When bits 31 and
32 are both zero, 24-bit addressing is specified.
When bit 31 is zero and bit 32 is one, 31-bit
addressing is specified. When bits 31 and 32 are
both one, 64-bit addressing is specified. Bit 31
one and bit 32 zero is an invalid combination that
causes a specification exception to be recognized.
The addressing mode does not control the size of
PER addresses or of addresses used to access
DAT, ASN, dispatchable-unit-control, linkage,
entry, and trace tables or access lists or the
linkage stack. See [‘Address Generation” on
l[page 5-7| and [‘Address Size and Wraparound” on
The control of the addressing mode by
bits 31 and 32 of the PSW is summarized as
follows:

PSW.31 | PSW.32 | Addressing Mode
0 0 24-bit
0 1 31-bit
1 1 64-bit

Instruction Address: Bits 64-127 of the PSW
are the instruction address. This address desig-
nates the location of the leftmost byte of the next
instruction to be executed, unless the CPU is in
the wait state (bit 14 of the PSW is one).

Bit positions 0, 2-4, 24-30, and 33-63 are unas-
signed and must contain zeros. A specification
exception is recognized when these bit positions
do not contain zeros.

When bits 31 and 32 of the PSW specify the
24-bit addressing mode, bits 64-103 of the instruc-
tion address must be zeros, or, when bits 31 and
32 specify the 31-bit mode, bits 64-96 must be
zeros. Otherwise, a specification exception is
recognized. A specification exception is also
recognized when bit 31 is one and bit 32 is zero
or when bit position 12 does not contain a zero.

LOAD PSW EXTENDED has a 16-byte second
operand. The instruction loads the operand

unchanged and without examination as the current
PSW.

LOAD PSW has an eight-byte second operand.
The operand is treated as an ESA/390 PSW,
except that bit 31 (the z/Architecture extended-
addressing-mode bit) may be one.

I|E Prog
O[R[O[O[O|T|O[X| Key |[L{M[W|[P[A S|CC| Mask [0 000000

= m

0 5 8 12 16 18 20 24 31

B
A Instruction Address

32 63

Figure 4-3. ESA/390 PSW Format, Except Bit 31
Shown as EA

Depending on the model, either LOAD PSW
recognizes a specification exception if bit 12 of its
second operand is not one or this error is indi-
cated by an early specification exception after the
completion of the execution of LOAD PSW.
LOAD PSW loads bits 0-32 of its second operand,
except with bit 12 inverted, and bits 33-63 of the
operand as bits 0-32 and 97-127, respectively, of

the current PSW, and it sets bits 33-96 of the
current PSW to zeros.

Control Registers

The control registers provide for maintaining and
manipulating control information outside the PSW.
There are sixteen 64-bit control registers.

The LOAD CONTROL (LCTLG) instruction causes
all control-register bit positions within those regis-
ters designated by the instruction to be loaded
from storage. The LOAD CONTROL (LCTL)
instruction loads only bit positions 32-63 of the
control registers, and bits 0-31 of the registers
remain unchanged. The instructions BRANCH
AND SET AUTHORITY, BRANCH IN SUBSPACE
GROUP, LOAD ADDRESS SPACE PARAME-
TERS, EXTRACT AND SET EXTENDED
AUTHORITY, SET SECONDARY ASN, BRANCH
AND STACK, PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER provide
specialized functions to place information into
certain control-register bit positions.

Information loaded into the control registers
becomes active (that is, assumes control over the
system) at the completion of the instruction that
causes the information to be loaded.

At the time the registers are loaded, the informa-
tion is not checked for exceptions, such as an
address designating an unavailable or protected
location. The validity of the information is checked
and the exceptions, if any, are indicated at the
time the information is used.

The STORE CONTROL (STCTG) instruction
causes the contents of all control-register bit posi-
tions, within those registers designated by the
instruction, to be placed in storage. The STORE
CONTROL (STCTL) instruction places the con-
tents of bit positions 32-63 of the control registers
in storage, and bits 0-31 of the registers are
ignored. The instructions EXTRACT AND SET
EXTENDED AUTHORITY, EXTRACT PRIMARY
ASN, EXTRACT SECONDARY ASN, and
PROGRAM CALL provide specialized functions to
obtain information from certain control-register bit
positions.

Only the general structure of the control registers

is described here; the definition of a particular
control-register bit position appears in the

Chapter 4. Control 4-7

description of the facility with which the position is
associated. [Figure 4-4 on page 4-8 khows the
control-register bit positions which are assigned
and the initial values of the positions upon exe-
cution of initial CPU reset. All control-register bit
positions not listed in the figure are initialized to

Programming Notes:

1. The detailed definition of a particular control-
register bit position can be located by referring
to the entry “control-register assignment” in
the Index.

zero. 2. To ensure that existing programs operate cor-
rectly if and when new facilities using addi-
tional control-register bit positions are
installed, the program should load zeros in
unassigned positions.
Ctrl Initial
Reg |Bits Name of Field Associated with Value
© | 33 |SSM-suppression control SET SYSTEM MASK 0
0 | 34 |TOD-clock-sync control TOD clock 0
0 | 35 |Low-address-protection control Low-address protection 0
0 | 36 |Extraction-authority control Instruction authorization 0
0 | 37 |Secondary-space control Instruction authorization 0
0 | 38 |Fetch-protection-override control Key-controlled protection 0
0 | 39 |Storage-protection-override control|Key-controlled protection 0
0 | 45 |AFP-register control Floating point 0
0 | 48 |Malfunction-alert subclass mask External interruptions 0
0 | 49 |Emergency-signal subclass mask External interruptions 0
0 | 50 |External-call subclass mask External interruptions 0
0 | 52 |Clock-comparator subclass mask External interruptions 0
0 | 53 |CPU-timer subclass mask External interruptions 0
0 | 54 |Service-signal subclass mask External interruptions 0
0 | 56 |Unused? 1
© | 57 |Interrupt-key subclass mask External interruptions 1
0 | 58 |Unused? 1
0 | 59 |ETR subclass mask External interruptions 0
© | 61 |Crypto control Cryptography 0
1 |0-51 |Primary region-table origin2 Dynamic address translation 0
1 |0-51 |Primary segment-table origin2 Dynamic address translation 0
1 |0-51 |Primary real-space token origin2 Dynamic address translation 0
1 | 54 |Primary subspace-group control Subspace groups 0
1 | 55 |Primary private-space control Dynamic address translation 0
1 | 56 |Primary storage-alteration-event Program-event recording 0
control
1 | 57 |Primary space-switch-event control |Program interruptions 0
1 | 58 |Primary real-space control Dynamic address translation 0
1 |60-61|Primary designation-type control3 |Dynamic address translation 0
1 |62-63|Primary table Tength3 Dynamic address translation 0
2 |33-57|Dispatchable-unit-control-table Access-register translation 0
origin
3 |32-47|PSW-key mask Instruction authorization 0
3 |48-63|Secondary ASN Address spaces 0
4 |32-47|Authorization index Instruction authorization 0
4 148-63|Primary ASN Address spaces 0

Figure 4-4 (Part 1 of 3). Assignment of Control-Register Fields

4-8 z/Architecture Principles of Operation

Ctrl Initial
Reg |[Bits Name of Field Associated with Value
5 133-57|Primary-ASN-second-table-entry Access-register translation 0

origin 0
6 [32-39|I/0-interruption subclass mask I/0 interruptions 0
7 |0-51 |Secondary segment-table origin2 Dynamic address translation 0
7 |0-51 |Secondary region-table origin2 Dynamic address translation 0
7 |0-51 |Secondary real-space token origin2 |Dynamic address translation 0
7 | 54 |Secondary subspace-group control Subspace groups 0
7 | 55 |Secondary private-space control Dynamic address translation 0
7 | 56 |Secondary storage-alteration-event [Program-event recording 0

control
7 | 58 |Secondary real-space control Dynamic address translation 0
7 |60-61|Secondary designation-type control3|Dynamic address translation 0
7 |62-63|Secondary table length3 Dynamic address translation 0
8 |32-47|Extended authorization index Access-register translation 0
8 [48-63|Monitor masks MONITOR CALL 0
9 | 32 |Successful-branching-event mask Program-event recording 0
9 | 33 |Instruction-fetching-event mask Program-event recording 0
9 | 34 |Storage-alteration-event mask Program-event recording 0
9 | 36 |Store-using-real-address-event mask|Program-event recording 0
9 | 40 |Branch-address control Program-event recording 0
9 | 42 |Storage-alteration-space control Program-event recording 0
10 | 0-63|PER starting address Program-event recording 0
11 | 0-63|PER ending address Program-event recording 0
12 0 |Branch-trace control Tracing 0
12 1 |Mode-trace control Tracing 0
12 | 2-61|Trace-entry address Tracing 0
12 | 62 |ASN-trace control Tracing 0
12 | 63 |Explicit-trace control Tracing 0
13 |0-51 [Home segment-table origin2 Dynamic address translation 0
13 |0-51 [Home region-table origin2 Dynamic address translation 0
13 |0-51 [Home real-space token origin2 Dynamic address translation 0
13 | 55 |[Home private-space control Dynamic address translation 0
13 | 56 |[Home storage-alteration-event Program-event recording 0

control
13 | 57 |Home space-switch-event control Program interruptions 0
13 | 58 |Home real-space control Dynamic address translation 0
13 |60-61|Home designation-type control3 Dynamic address translation 0
13 |62-63|Home table length3 Dynamic address translation 0

Figure 4-4 (Part 2 of 3). Assignment of Control-Register Fields

Chapter 4. Control

4-9

Ctrl Initial
Reg |[Bits Name of Field Associated with Value
14 | 32 |Unused!? 1
14 | 33 |Unused!? 1
14 | 35 |Channel-report-pending subclass I/0 machine-check handling 0

mask
14 | 36 |Recovery subclass mask Machine-check handling 0
14 | 37 |Degradation subclass mask Machine-check handling 0
14 | 38 |[External-damage subclass mask Machine-check handling 1
14 | 39 [Warning subclass mask Machine-check handling 0
14 | 42 |TOD-clock-control-override control |TOD clock 0
14 | 44 |[ASN-translation control Instruction authorization 0
14 |45-63|ASN-first-table origin ASN translation 0
15 | 0-60|Linkage-stack-entry address Linkage-stack operations 0
Explanation:

The fields not listed are unassigned.
control-register bit positions is zero.

1

The initial value for all unlisted

This bit is not used but is initialized to one for consistency with the
System/370 definition.

The address-space-control element (ASCE) in the control register has one of
three formats, depending on bit 58 of the register, the real-space control,
and bits 60 and 61 of the register, the designation-type control. When bit
58 is zero, the ASCE is a region-table designation if bits 60 and 61 are 11,
10, or 01 binary, or it is a segment-table designation if bits 60 and 61 are
00 binary. When bit 58 is one, the ASCE is a real-space designation. Bits
0-51 are the region-table origin, the segment-table origin or the real-space
token origin, depending on whether the ASCE is a region-table designation, a

segment-table designation, or a real-space designation, respectively.

3 Bits 60-63 are assigned when the ASCE in the control register is a region-
table designation or a segment-table designation.

Figure 4-4 (Part 3 of 3). Assignment of Control-Register Fields

Tracing

Tracing assists in the determination of system
problems by providing an ongoing record in
storage of significant events. Tracing consists of
four separately controllable functions which cause
entries to be made in a trace table: branch
tracing, ASN tracing, mode tracing, and explicit
tracing. Branch tracing, ASN tracing, and mode
tracing together are referred to as implicit tracing.

When branch tracing is on, a branch trace entry is
made in the trace table for each execution of
certain branch instructions when they cause
branching. The branch address is placed in the
trace entry. The trace entry also indicates the fol-
lowing about the addressing mode in effect after
branching and the branch address: (1) the CPU

4-10

z/Architecture Principles of Operation

is in the 24-bit addressing mode, (2) the CPU
either is in the 31-bit addressing mode or is in the
64-bit addressing mode and bits 0-32 of the
branch address are all zeros, or (3) the CPU is in
the 64-bit addressing mode and bits 0-32 of the
branch address are not all zeros. The branch
instructions that are traced are:

e BRANCH AND LINK (BALR only) when the
R2 field is not zero

¢ BRANCH AND SAVE (BASR only) when the
Rz field is not zero

« BRANCH AND SAVE AND SET MODE when
the Rz field is not zero

* BRANCH AND SET AUTHORITY

* BRANCH AND STACK when the R: field is
not zero

« BRANCH IN SUBSPACE GROUP

* RESUME PROGRAM

e TRAP

However, a branch trace entry is made for
BRANCH IN SUBSPACE GROUP only if ASN
tracing is not on.

If both branch tracing and mode tracing are on
and BRANCH AND SAVE AND SET MODE or
RESUME PROGRAM changes the extended-
addressing-mode bit, PSW bit 31, a mode-
switching-branch trace entry is made instead of a
branch trace entry.

When ASN tracing is on, an entry named the
same as the instruction is made in the trace table
for each execution of the following instructions:

 BRANCH IN SUBSPACE GROUP
¢ PROGRAM CALL

¢ PROGRAM RETURN

* PROGRAM TRANSFER

e SET SECONDARY ASN

However, the entry for PROGRAM RETURN is
made only when PROGRAM RETURN unstacks a
linkage-stack state entry that was formed by
PROGRAM CALL, not when PROGRAM RETURN
unstacks an entry formed by BRANCH AND
STACK.

If both ASN tracing and mode tracing are on and
PROGRAM CALL changes PSW bit 31, first a
PROGRAM CALL trace entry is made, and then a
mode-switch trace entry is made.

Mode tracing records a switch from a basic (24-bit
or 31-bit) addressing mode to the extended
(64-bit) addressing mode or from the extended
mode to a basic mode.

When mode tracing is on, a mode-switch trace
entry is made in the trace table for each execution
of the following instructions if the execution
changes PSW bit 31:

» BRANCH AND SAVE AND SET MODE
BRANCH AND SET MODE
PROGRAM CALL

PROGRAM RETURN

RESUME PROGRAM

e SET ADDRESSING MODE

However, a mode-switch trace entry is not made
for PROGRAM RETURN if ASN tracing is on and
PROGRAM RETURN unstacks a state entry
formed by PROGRAM CALL; a PROGRAM
RETURN trace entry is made instead, and it con-
tains information about PSW bit 31.

BRANCH AND SAVE AND SET MODE and
RESUME PROGRAM cause trace entries to be
made as follows: a branch trace entry if only
branch ftracing is on, a mode-switching-branch
trace entry if both branch tracing and mode tracing
are on, or a mode-switch trace entry if only mode
tracing is on.

The trace entries produced by implicit tracing are
summarized in [Figure 4-5 on page 4-12|

When explicit tracing is on, execution of TRACE
(TRACE or TRACG) causes an entry to be made
in the trace table. The entry for TRACE (TRACE)
includes bits 16-63 from the TOD clock, the
second operand of the TRACE instruction, and
bits 32-63 of a range of general registers. The
entry for TRACE (TRACG) is the same except that
it includes bits 0-79 from the TOD clock and bits
0-63 of a range of general registers.

Chapter 4. Control 4-11

Implicit Tracing Enabled
Branch (Branch ASN
and and and
Branch ASN Mode ASN Mode Mode ATl
Instruc-
tion Trace Entries Made
BAKR B - - B B - B
BALR B - - B B - B
BASR B - - B B - B
BASSM B - MS B |B| MSB| MS |B | MSB
BSA B - - B B - B
BSG B BSG - BSG B BSG BSG
BSM - - MS - MS - MS
PC - PC MS PC MS PC & MS|PC & MS
PR-b - - MS - MS MS MS
PR-pc - PR MS PR MS PR PR
PT - PT - PT - PT PT
RP B - MS B |B| MSB| MS [B | MSB
SSAR - SSAR - SSAR - SSAR SSAR
SAM24/ - - MS - MS MS MS
31/64
TRAP2/4 B - - B B - B
Explanation:
- None.
-b The case when PROGRAM RETURN unstacks a branch state
entry.
-pc The case when PROGRAM RETURN unstacks a program-call state
entry.
| OR.
& AND.
Figure 4-5 (Part 1 of 2). Summary of Implicit Tracing
4-12 z/Architecture Principles of Operation

Explanation (Continued):
B Branch trace entry.
MS Mode-switch trace entry.

changed.
MSB Mode-switching-branch trace entry.

taken).

Made only if the branch is taken and
a mode-switching-branch trace entry is not made.

Made only if PSW bit 31 is

Made only if PSW bit
31 is changed (which can occur only if the branch is

Figure 4-5 (Part 2 of 2). Summary of Implicit Tracing

Control-Register Allocation

The information to control tracing is contained in
control register 12 and has the following format:

B|M Trace-Entry Address AlE

0 12 62 63

Branch-Trace-Control Bit (B): Bit 0 of control
register 12 controls whether branch tracing is
turned on or off. If the bit is zero, branch tracing
is off; if the bit is one, branch tracing is on.

Mode-Trace-Control Bit (M): Bit 1 of control
register 12 controls whether mode tracing is
turned on or off. If the bit is zero, mode tracing is
off; if the bit is one, mode tracing is on.

Trace-Entry Address: Bits 2-61 of control reg-
ister 12, with two zero bits appended on the left
and two on the right, form the real address of the
next trace entry to be made.

ASN-Trace-Control Bit (A): Bit 62 of control
register 12 controls whether ASN tracing is turned
on or off. If the bit is zero, ASN tracing is off; if
the bit is one, ASN tracing is on.

Explicit-Trace-Control Bit (E): Bit 63 of control
register 12 controls whether explicit tracing is
turned on or off. If the bit is zero, explicit tracing
is off, which causes the TRACE instruction to be
executed as a no-operation; if the bit is one, the
execution of the TRACE instruction creates an

entry in the trace table, except that no entry is
made when bit 0 of the second operand of the
TRACE instruction is one.

Trace Entries

Trace entries are of nine types, with most types
having more than one detailed format. The types
and numbers of formats are as follows:

¢ Branch (three formats)

¢« BRANCH IN SUBSPACE GROUP (two
formats)

¢ Mode switch (three formats)

¢ Mode-switching branch (three formats)
¢ PROGRAM CALL (two formats)

¢ PROGRAM RETURN (nine formats)

¢ PROGRAM TRANSFER (three formats)
e SET SECONDARY ASN (one format)

¢ TRACE (two formats)

The entries are shown in [Figure 4-6 on|
page 4-14 In that figure, each entry is labeled
with “Fn,” indicating a format number, to allow ref-
erences to each format within a trace-entry type.
Also, “Branch,” referring to the mnemonic of an
instruction that causes a branch trace entry, refers
to BAKR, BALR, BASR, BASSM, BSA, or BSG.

[Figure 4-7 on page 4-20| lists the trace entries in
ascending order of values in bit fields that identify
the entries.

Chapter 4. Control 4-13

F1 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 24-Bit)

00000000|Bits 40-63 of Branch Adr.

0 8 31

F2 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 31-Bit, or when
Resulting PSW Bit 31 Is One (See Note) and Bits 0-32 of Branch Address
Are A11 Zeros)

—_

Bits 33-63 of Branch Address

01 31

F3 Branch (Branch, RP, or TRAP2/4 when Resulting PSW Bit 31 Is One (See
Note) and Bits 0-32 of Branch Address Are Not A1l Zeros)

010100101100 ATl Zeros Bits 0-31 of Branch Address

0 8 12 32 63

Bits 32-63 of Branch Address

64 95

F1 BRANCH IN SUBSPACE GROUP (if ASN Is Tracing on, in 24-Bit or 31-Bit Mode)

01000001 |P Bits 9-31 of ALET A| Bits 33-63 of Branch Address

0 8 32 63

F2 BRANCH IN SUBSPACE GROUP (if ASN Is Tracing on, in 64-Bit Mode)

01000010|P Bits 9-31 of ALET Bits 0-31 of Branch Address

0 8 32 63

Bits 32-63 of Branch Address

64 95

F1 Mode Switch (BASSM, BSM, PC, PR, RP, or SAM64 from 24-Bit or 31-Bit
Mode when Resulting PSW Bit 31 Is One (See Note))

01010001|0011 A1l Zeros A| Updated Instruction Address

0 8 12 32 63
Figure 4-6 (Part 1 of 7). Trace Entries

4-14 z/Architecture Principles of Operation

F2 Mode Switch (BASSM, BSM, PC, PR, RP, SAM24, or SAM31 from 64-Bit Mode
to 24-Bit or 31-Bit Mode when Bits 0-31 of Updated Instruction Address
Are A1l Zeros)

01010001|0010 A1l Zeros Bits 32-63 of Updated Inst. Adr.

0 8 12 32 63

F3 Mode Switch (BASSM, BSM, PC, PR, RP, SAM24, or SAM31 from 64-Bit Mode
to 24-Bit or 31-Bit Mode when Bits 0-31 of Updated Instruction Address
Are Not A1l Zeros)

01010010|0110 A1l Zeros Bits 0-31 of Updated Inst. Adr.

0 8 12 32 63

Bits 32-63 of Updated Inst. Adr.

64 95

F1 Mode-Switching Branch (BASSM or RP from 64-Bit Mode to 24-Bit or
31-Bit Mode)

010100011010 ATl Zeros A Branch Address

0 8 12 32 63

F2 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when
Resulting PSW Bit 31 Is One (See Note) and Bits 0-31 of Branch Address
Are A1l Zeros)

01010001|1011 A1l Zeros Bits 32-63 of Branch Address

0 8 12 32 63

F3 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when
Resulting PSW Bit 31 Is One (See Note) and Bits 0-31 of Branch Address
Are Not A1l Zeros

010100101111 ATl Zeros Bits 0-31 of Branch Address

0 8 12 32 63

Bits 32-63 of Branch Address

64 95
Figure 4-6 (Part 2 of 7). Trace Entries

Chapter 4. Control

4-15

F1 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode)

PSW
00100001 | Key PC Number A|Bits 33-62 of Return Address|P
0 8 12 32 63

F2 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode)

PSW
00100010 |Key PC Number Bits 0-31 of Return Address

0 8 12 32 63

Bits 32-62 of Return Address [P

64 95

F1 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting Mode Is
24-Bit or 31-Bit)

PSW
00110010|Key |0000 New PASN A[Bits 33-62 of Return Address|P

0 8 12 16 32 63

A|Bits 33-63 of Updated Inst. Adr.

64 95

F2 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are A1l Zeros and Resulting Mode Is 24-Bit or 31-Bit)

PSW
00110010|Key (0010 New PASN A|Bits 33-62 of Return Address|P

0 8 12 16 32 63

Bits 32-63 of Updated Inst. Adr.

64 95
Figure 4-6 (Part 3 of 7). Trace Entries

4-16 z/Architecture Principles of Operation

F3 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are Not A1l Zeros and Resulting Mode Is 24-Bit or 31-Bit)

PSW
00110011|Key (0011 New PASN A|Bits 33-62 of Return Address|P

0 8 12 16 32 63

Updated Instruction Address

64 127

F4 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31
Is One (See Note) and Bits 0-31 of Return Address Are A1l Zeros)

PSW
00110010|Key |1000 New PASN Bits 32-62 of Return Address |P
0 8 12 16 32 63

A|Bits 33-63 of Updated Inst. Adr.

64 95

F5 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are A1l Zeros, Resulting PSW Bit 31 Is One (See Note), and Bits
0-31 of Return Address Are A1l Zeros)

PSW
00110010|Key (1010 New PASN Bits 32-62 of Return Address |P
0 8 12 16 32 63

Bits 32-63 of Updated Inst. Adr.

64 95

F6 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are Not A1l Zeros, Resulting PSW Bit 31 Is One (See Note), and
Bits 0-31 of Return Address Are A1l Zeros)

PSW
00110011 |Key |1011 New PASN Bits 32-62 of Return Address |P
0 8 12 16 32 63
Updated Instruction Address
64 127

Figure 4-6 (Part 4 of 7). Trace Entries

Chapter 4. Contro

417

F7 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31
Is One (See Note) and Bits 0-31 of Return Address Are Not All Zeros)

PSW
00110011 |Key [1100 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address |P|A| Updated Instruction Address

64 96 127

F8 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are A1l Zeros, Resulting PSW Bit 31 Is One (See Note), and Bits
0-31 of Return Address Are Not A1l Zeros)

PSW
00110011 |Key [1110 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address |P|Bits 32-63 of Updated Inst. Adr.

64 96 127

F9 PROGRAM RETURN (in 64-Bit Mode when Bits 0-31 of Updated Instruction
Address Are Not A1l Zeros, Resulting PSW Bit 31 Is One (See Note), and
Bits 0-31 of Return Address Are Not A1l Zeros)

PSW
00110100|Key |1111 New PASN Bits 0-31 of Return Address

0 8 12 16 32 63

Bits 32-62 of Return Address |P|Bits 0-31 of Updated Inst. Adr.

64 96 127

Bits 32-63 of Updated Inst. Adr.

128 159

F1 PROGRAM TRANSFER (in 24-Bit or 31-Bit Mode)

PSW
00110001 |Key |0000 New PASN Bits 32-63 of Rz before

0 8 12 16 32 63
Figure 4-6 (Part 5 of 7). Trace Entries

4-18 z/Architecture Principles of Operation

F2 PROGRAM TRANSFER (in 64-Bit Mode when Bits 0-31 of Rz Are A1l Zeros)

00110001

PSW
Key |1000

New PASN Bits 32-63 of Rz before

0

8 12

16

32 63

F3 PROGRAM TRANSFER (in 64-Bit Mode when Bits 0-31 of Rz Are Not All

Zeros)
PSW
00110010|Key [1100 New PASN Bits 0-31 of Rz before
0 8 12 16 32 63

Bits 32-63 of Rz before

64 95
F1 SET SECONDARY ASN
00010000|00000000 New SASN
0 8 16 31
F1 TRACE (TRACE)
0111 N |00000000 TOD-Clock Bits 16-63
0 4 8 16 63
/
TRACE Operand (R1) - (R3)
64 96 ! 95 + 32(N+1)
F2 TRACE (TRACG)
0111 N |10000000 TOD-Clock Bits 0-47
0 4 8 16 63
TOD-Clock Bits 48-79 TRACE Operand
64 96 127
/
(R1) - (Rs3)
/
128 127 + 64(N+1)

Figure 4-6 (Part 6 of 7). Trace Entries

Chapter 4. Contro

4-19

Note: The terminology “when Resulting PSW Bit 31 Is One” is used
instead of “when Resulting Mode Is 64-Bit” because, if the
resulting PSW bit 32 is zero, an early specification exception will be

recognized.

Figure 4-6 (Part 7 of 7). Trace Entries

PROGRAM RETURN can set PSW bit 31 to one and bit 32 to zero.

Trace Entry
Trace-Entry Bits
For-
0-7 8-11|12-15 Type mat

00000000 Branch 1
00010000 SET SECONDARY ASN 1
00100001 PROGRAM CALL 1
00100010 PROGRAM CALL 2
00110001 0000 |PROGRAM TRANSFER 1
00110001 1000 |[PROGRAM TRANSFER 2
00110010 0000 |PROGRAM RETURN 1
00110010 0010 |PROGRAM RETURN 2
00110010 1000 |PROGRAM RETURN 4
00110010 1010 |PROGRAM RETURN 5
00110010 1100 |[PROGRAM TRANSFER 3
00110011 0011 |PROGRAM RETURN 3
00110011 1011 |[PROGRAM RETURN 6
00110011 1100 |PROGRAM RETURN 7
00110011 1110 |PROGRAM RETURN 8
00110100 1111 |PROGRAM RETURN 9
01000001 BRANCH IN SUBSPACE GROUP| 1
01000010 BRANCH IN SUBSPACE GROUP| 2
01010001|0010 Mode Switch 2
01010001|0011 Mode Switch 1
01010001|1010 Mode-Switching Branch 1
01010001|1011 Mode-Switching Branch 2
01010010|0110 Mode Switch 3
01010010|1100 Branch 3
01010010|1111 Mode-Switching Branch 3
0111 0 TRACE 1
0111 1 TRACE 2
1 Branch 2

Figure 4-7. Trace Entries Arranged by Identifying Bits

The fields in the trace entries are defined as

follows. The fields are described in the order in
which they first appear in |Figure 4-6 on|
page 4-14

Branch Address: The branch address is the
address of the next instruction to be executed
when the branch is taken. In a branch trace entry
made when the 24-bit addressing mode is in effect
after branching (a format-1 entry), bit positions

4-20

z/Architecture Principles of Operation

8-31 contain bits 40-63 of the branch address.
When the 31-bit addressing mode is in effect after
branching or PSW bit 31 is one after branching
and bits 0-32 of the branch address are all zeros,
bit positions 1-31 of the trace entry (format 2)
contain bits 33-63 of the branch address. When
PSW bit 31 is one after branching and bits 0-32 of
the branch address are not all zeros, bit positions
32-95 of the trace entry (format 3), contain bits
0-63 of the branch address.

In a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit
addressing mode, bit positions 33-63 of the trace
entry (format 1) contain bits 33-63 of the branch
address, or, in the 64-bit addressing mode, bit
positions 32-95 of the trace entry (format 2)
contain bits 0-63 of the branch address.

In a mode-switching-branch trace entry made on a
switch from the 64-bit addressing mode to the
24-bit or 31-bit addressing mode, bit positions
33-63 of the entry (format 1) contain bits 33-63 of
the branch address; or, on a switch from PSW bit
31 being off to the bit being on, bit positions 32-63
of the entry (format 2) contain bits 32-63 of the
branch address if bits 0-31 of the branch address
are zeros, or bits 32-95 of the entry (format 3)
contain bits 0-63 of the branch address if bits 0-31
of the branch address are not all zeros.

Primary-List Bit (P) and Bits 9-31 of ALET: Bit
position 8 of a BRANCH IN SUBSPACE GROUP
trace entry contains bit 7 of the access-list-entry
token (ALET) in the access register designated by
the Rz field of the instruction. Bit positions 9-31 of
the trace entry contain bits 9-31 of the ALET.

Basic-Addressing-Mode Bit (A): Bit position 32
of a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit
addressing mode (a format-1 entry) contains the
basic-addressing-mode bit that replaces bit 32 of
the PSW.

Bit position 32 of a mode-switch trace entry that
indicates a switch from PSW bit 31 being off to
the bit being on (a format-1 entry) contains the
value of PSW bit 32 that existed before the mode-
switch operation.

Bit position 32 of a mode-switching-branch trace
entry that indicates a switch from the 64-bit
addressing mode to the 24-bit or 31-bit addressing
mode (a format-1 entry) contains the value that
replaces PSW bit 32.

Bit position 32 of a PROGRAM CALL trace entry
made on execution in the 24-bit or 31-bit
addressing mode (regardless of the resulting
addressing mode) (a format-1 entry) contains the
basic-addressing-mode bit, bit 32, from the current
PSW.

Bit position 32 of a PROGRAM RETURN trace
entry made when the resulting addressing mode is
the 24-bit or 31-bit mode (a format-1, format-2, or
format-3 entry) contains the basic-
addressing-mode bit that replaces bit 32 of the
PSW.

Bit position 64 of a PROGRAM RETURN trace
entry made in the 24-bit or 31-bit addressing
mode when the return address occupies only one
word in the entry, (a format-1 or format-4 entry),
contains the value of PSW bit 32 that existed
before the PROGRAM RETURN operation. When
the return address occupies two words (a format-7
entry), bit position 96 contains that value of PSW
bit 32.

Updated Instruction Address: Bit positions
33-63 of a mode-switch trace entry that indicates
a switch from PSW bit 31 being off to the bit being
on (a format-1 entry) contains bits 33-63 of the
updated instruction address in the PSW (bits
97-127 of the PSW) before that address is
replaced, if it is replaced, by the mode-switch
operation. Bit positions 32-63 of a mode-switch
trace entry (format 2) that indicates a switch from
the 64-bit addressing mode to the 24-bit or 31-bit
addressing mode contains bits 32-63 of the
updated instruction address in the PSW (bits
96-127 of the PSW) before that address is
replaced, if it is replaced, by the mode-switch
operation, if bits 0-31 of the updated instruction
address are zeros; or bit positions 32-95 of the
trace entry (format 3) contain bits 0-63 of that
updated instruction address (bits 64-127 of the
PSW) if bits 0-31 of the address are not all zeros.

The following description of a PROGRAM
RETURN trace entry applies when the return
address in the entry occupies only one word in the
entry. Bit positions 65-95 of the trace entry made
on execution in the 24-bit or 31-bit addressing
mode (a format-1 or format-4 entry) contain bits
33-63 of the updated instruction address in the
PSW (bits 97-127 of the PSW) before that
address is replaced from the linkage-stack state
entry; or, when the execution is in the 64-bit
addressing mode, bit positions 64-95 of the trace
entry (format 2 or 5) contain bits 32-63 of that
updated instruction address (bits 96-127 of the
PSW) if bits 0-31 of the address are zeros, or bit
positions 64-127 of the trace entry (format 3 or 6)
contain bits 0-63 of that updated instruction
address (bits 64-127 of the PSW) if bits 0-31 of

Chapter 4. Control 4-21

the address are not all zeros. If the return
address in the PROGRAM RETURN trace entry
occupies two words, the updated instruction
address in the entry is moved one word to the
right in the entry (formats 7-9).

PSW Key: Bit positions 8-11 of a PROGRAM
CALL, PROGRAM TRANSFER, or PROGRAM
RETURN trace entry contain the PSW key from
the current PSW.

PC Number: Bit positions 12-31 of a
PROGRAM CALL trace entry contain the value of
the rightmost 20 bits of the second-operand
address.

Return Address: Bit positions 33-62 of a
PROGRAM CALL trace entry made on execution
in the 24-bit or 31-bit addressing mode (a format-1
entry) contain bits 33-62 of the updated instruction
address in the PSW (bits 97-126 of the PSW)
before that address is replaced from the entry-
table entry; or, when the execution is in the 64-bit
addressing mode, bit positions 32-94 of the trace
entry (format 2) contain bits 0-62 of that updated
instruction address (bits 64-126 of the PSW).

Bit positions 33-62 of a PROGRAM RETURN
trace entry made when the resulting addressing
mode is the 24-bit or 31-bit mode (a format-1,
format-2, or format-3 entry) contain bits 33-62 of
the instruction address that replaces bits 64-127 of
the PSW; or, when the resulting PSW bit 31 is
one (which causes the addressing mode be the
64-bit mode unless the resulting PSW bit 32 is
zero), bit positions 32-62 of the trace entry
(formats 4-6) contain bits 32-62 of that instruction
address if bits 0-31 of the address are zeros, or
bit positions 32-94 of the trace entry (formats 7-9)
contain bits 0-62 of that instruction address if bits
0-31 of the address are not all zeros.

Problem-State Bit (P): Bit position 63 of a
PROGRAM CALL trace entry made on execution
in the 24-bit or 31-bit addressing mode (regardless
of the resulting mode) (a format-1 entry), or bit
position 95 of the entry (format 2) made on exe-
cution in the 64-bit addressing mode, contains the
problem-state bit from the current PSW.

Bit position 63 of a PROGRAM RETURN trace
entry made when the resulting addressing mode is
the 24-bit or 31-bit mode (a format-1, format-2, or
format-3 entry) or when the resulting PSW bit 31

4-22 z/Architecture Principles of Operation

is one and bits 0-31 of the return address are
zeros (formats 4-6) contains the problem-state bit
that replaces bit 15 of the PSW. Bit position 95 of
a PROGRAM RETURN trace entry made when
the resulting PSW bit 31 is one and bits 0-31 of
the return address are not all zeros (formats 7-9)
contains that problem-state bit.

New PASN: Bit positions 16-31 a PROGRAM
TRANSFER trace entry contain the new PASN
(which may be zero) specified in bit positions
48-63 of general register Ru.

Bit positions 16-31 of a PROGRAM RETURN
trace entry contain the new PASN that is restored
from the linkage-stack state entry.

Bits 32-63 of Rz before: Bit positions 32-63 of a
PROGRAM TRANSFER trace entry made on exe-
cution in the 24-bit or 31-bit addressing mode (a
format-1 entry) contain bits 32-63 of the general
register designated by the Rz field of the instruc-
tion. (Bits 32 and 33-62 of that register replace
bits 32 and 97-126, respectively, of the PSW. Bit
63 of the register replaces the problem-state bit in
the PSW.) When PROGRAM TRANSFER is exe-
cuted in the 64-bit addressing mode, bit positions
32-63 of the trace entry (format 2) contain bits
32-63 of the Rz general register if bits 0-31 of the
register are zeros, or bit positions 32-95 of the
trace entry (format 3) contain bits 0-63 of the reg-
ister if bits 0-31 of the register are not all zeros.

New SASN: Bit positions 16-31 of a SET SEC-
ONDARY ASN trace entry contain the ASN value
loaded into control register 3 by the instruction.

Number of Registers (N): Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have
been provided in the trace entry. The value of N
ranges from zero, meaning the contents of one
general register are provided in the trace entry, to
15, meaning the contents of all 16 general regis-
ters are provided.

TOD-Clock Bits 16-63 or 0-79: Bits 16-63 of the
trace entry for TRACE (TRACE) are obtained from
bit positions 16-63 of the TOD clock, as would be
provided by a STORE CLOCK instruction exe-
cuted at the time the TRACE instruction was exe-
cuted. Bits 16-95 of the trace entry for TRACE
(TRACG) are obtained from bit positions 0-79 of
the TOD clock, as would be provided by a STORE

CLOCK EXTENDED instruction executed at the
time the TRACE instruction was executed. See
programming note |2 on page 4-23 ffor information
about a carry from bit position 0 of the TOD clock.

TRACE Operand: Bit positions 64-95 of the
trace entry for TRACE (TRACE) contain a copy of
the 32 bits of the second operand of the TRACE
instruction for which the entry is made. Bit posi-
tions 96-127 of the trace entry for TRACE
(TRACG) contain a copy of those bits.

(R:1)-(R3): The four-byte fields starting with bit 96
of the trace entry for TRACE (TRACE) contain the
contents of bit positions 32-63 of the general reg-
isters whose range is specified by the R1 and Rs
fields of the TRACE instruction. The general reg-
isters are stored in ascending order of register
numbers, starting with general register R: and
continuing up to and including general register Rs,
with general register 0 following general register
15. The eight-byte fields starting with bit 128 of
the trace entry for TRACE (TRACG) similarly
contain the contents of bit positions 0-63 of those
registers.

Programming Notes:

1. The size of the trace entry for TRACE
(TRACE) in units of words is 3 + (N + 1).
The maximum size of an entry is 19 words, or
76 bytes. For TRACE (TRACG), the size in
units of words is 4 + 2(N + 1), and the
maximum size is 36 words, or 144 bytes.

2. At some time in the future, the TOD clock on
new models will have a leftmost extension so
that there can be a carry from bit position 0 of
the clock into the extension; see programming
note [14 on page 4-40] On these models, the
rightmost bit of the extension will be stored in
bit position 15 of the TRACE (TRACG) trace
entry. It may be desired to have programs
that process TRACE (TRACG) trace entries
take this future development into account.

Operation

When an instruction which is subject to tracing is
executed and the corresponding tracing function is
turned on, a trace entry of the appropriate type
and format is made. The real address of the trace
entry is formed by appending two zero bits on the
left and two on the right to the value in bit posi-

tions 2-61 of control register 12. The address in
control register 12 is subsequently increased by
the size of the entry created.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry
to be propagated into bit position 51 (that is, if the
trace-entry address would be in the next 4K-byte
block). If this would be the case for the entry to
be made, a trace-table exception is recognized.
When PROGRAM CALL is to form both a
PROGRAM CALL trace entry and a mode-switch
trace entry, neither entry is stored, and a trace-
table exception is recognized, if either entry would
cause a carry into bit position 51. For the purpose
of recognizing the trace-table exception in the
case of a TRACE instruction, the maximum length
of 76 (TRACE) or 144 (TRACG) bytes is used
instead of the actual length.

The storing of a trace entry is not subject to key-
controlled protection (nor, since the trace-entry
address is real, is it subject to page protection),
but it is subject to low-address protection; that is,
if the address of the trace entry due to be created
is in the range 0-511 or 4096-4607 and bit 35 of
control register 0 is one, a protection exception is
recognized, and instruction execution is sup-
pressed. If the address of a trace entry is invalid,
an addressing exception is recognized, and
instruction execution is suppressed.

The three exceptions associated with storing a
trace entry (addressing, protection, and trace
table) are collectively referred to as trace
exceptions.

If a program interruption takes place for a condi-
tion which is not a trace-exception condition and
for which execution of an instruction is not com-
pleted, it is unpredictable whether part or all of
any trace entry due to be made for such an inter-
rupted instruction is stored in the trace table.
Thus, for a condition which would ordinarily cause
nullification or suppression of instruction exe-
cution, storage locations may have been altered
beginning at the location designated by control
register 12 and extending up to the length of the
entry that would have been created.

When PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by BRANCH
AND STACK and ASN tracing is on, trace
exceptions may be recognized, even though a

Chapter 4. Control 4-23

trace entry is not made and no part of a trace
entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed
by other CPUs and by channel programs, the con-
tents of a byte of a trace entry may appear to
change more than once before completion of the
instruction for which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Program-Event Recording

The purpose of PER is to assist in debugging
programs. It permits the program to be alerted to
the following types of events:

e Execution of a successful branch instruction.
The option is provided of having an event
occur only when the branch-target location is
within the designated storage area.

¢ Fetching of an instruction from the designated
storage area.

e Alteration of the contents of the designated
storage area. The option is provided of
having an event occur only when the storage
area is within designated address spaces.

e Execution of the STORE USING REAL
ADDRESS instruction.

The program can selectively specify that one or
more of the above types of events be recognized,
except that the event for STORE USING REAL
ADDRESS can be specified only along with the
storage-alteration event. The information con-
cerning a PER event is provided to the program
by means of a program interruption, with the
cause of the interruption being identified in the
interruption code.

Control-Register Allocation and
Address-Space-Control Element

The information for controlling PER resides in
control registers 9, 10, and 11 and the address-
space-control element. The information in the
control registers has the following format:

4-24 z/Architecture Principles of Operation

Control Register 9
/

EM Bl |S

0 32 37 40 42 63

Control Register 10
/

Starting Address

Control Register 11
/

Ending Address

0 63

PER-Event Masks (EM): Bits 32-34 and 36
specify which types of events are recognized.
The bits are assigned as follows:

Bit 32: Successful-branching event

Bit 33: Instruction-fetching event

Bit 34: Storage-alteration event

Bit 36: Store-using-real-address event (bit 34

must be one also)

Bits 32-34 and bit 36, when ones, specify that the
corresponding types of events be recognized.
However, bit 36 is effective for this purpose only
when bit 34 is also one. When bit 34 is one, the
storage-alteration event is recognized. When bits
34 and 36 are ones, both the storage-alteration
event and the store-using-real-address event are
recognized. When a bit is zero, the corresponding
type of event is not recognized. When bit 34 is
zero, both the storage-alteration event and the
store-using-real-address event are not recognized.

Branch-Address Control (B): Bit 40 of control
register 9 specifies, when one, that successful-
branching events occur only for branches that are
to a location within the designated storage area.
When bit 40 is zero, successful branching events
occur regardless of the branch-target address.

Storage-Alteration-Space Control (S): Bit 42
of control register 9 specifies, when one, that
storage-alteration events occur as a result of refer-
ences to the designated storage area only within
designated address spaces. An address space is
designated as one for which storage-alteration
events occur by means of the storage-
alteration-event bit in the address-space-control

element that is used to translate references to the
address space. Bit 42 is ignored when DAT is off.
When DAT is off or bit 42 is zero, storage-
alteration events are not restricted to occurring for
only particular address spaces.

PER Starting Address: Bits 0-63 of control reg-
ister 10 are the address of the beginning of the
designated storage area.

PER Ending Address: Bits 0-63 of control reg-
ister 11 are the address of the end of the desig-
nated storage area.

The address-space-control element has one of the
following formats:

Region-Table or Segment-Table Designation (R=0)
/

Region-Table or

Segment-Table Origin G|P|S|X[R| [DT|TL

/

0 52 54 58 60 63

Real-Space Designation (R=1)
/

Real-Space
Token Origin G|P|S|X|[R

/

0 52 54 58 63

Storage-Alteration-Event Bit (S): When the
storage-alteration-space control in control register
9 is one, bit 56 of the address-space control
element specifies, when one, that the address
space defined by the address-space-control
element is one for which storage-alteration events
can occur. Bit 56 is examined when the address-
space-control element is used to perform dynamic-
address translation for a storage-operand store
reference. The address-space-control element
may be the PASCE, SASCE, or HASCE in control
register 1, 7, or 13, respectively, or it may be
obtained from an ASN-second-table entry during
access-register translation. Instead of being
obtained from an ASN-second-table entry in main
storage, bit 56 may be obtained from an
ASN-second-table entry in the ART-lookaside
buffer (ALB). Bit 56 is ignored when the storage-
alteration-space control is zero.

Programming Notes:

1. Models may operate at reduced performance
while the CPU is enabled for PER events. In
order to ensure that CPU performance is not
degraded because of the operation of the
PER facility, programs that do not use it
should disable the CPU for PER events by
setting either the PER mask in the PSW to
zero or the PER-event masks in control reg-
ister 9 to zero, or both. No degradation due
to PER occurs when either of these fields is
zero.

2. Some degradation may be experienced on
some models every time control registers 9,
10, and 11 are loaded, even when the CPU is
disabled for PER events (see the program-
ming note under [‘Storage-Area Designation”).

Operation

PER is under control of bit 1 of the PSW, the PER
mask. When the PER mask and a particular
PER-event mask bit are all ones, the CPU is
enabled for the corresponding type of event; oth-
erwise, it is disabled. However, the CPU is
enabled for the store-using-real-address event
only when the storage-alteration mask bit and the
store-using-real-address mask bit are both one.

An interruption due to a PER event normally
occurs after the execution of the instruction
responsible for the event. The occurrence of the
event does not affect the execution of the instruc-
tion, which may be completed, partially completed,
terminated, suppressed, or nullified. However,
recognition of a storage-alteration event causes no
more than 4K bytes to be stored beginning with
the byte that caused the event, and this may
result in partial completion of an interruptible
instruction.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the PER
mask in the PSW or by the masks in control reg-
ister 9, the event is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and
11 affects PER starting with the execution of the
immediately following instruction.

A change to the storage-alteration-event bit in an
address-space-control element in control register

Chapter 4. Control 4-25

1, 7, or 13 also affects PER starting with the exe-
cution of the immediately following instruction. A
change to the storage-alteration-event bit in an
address-space-control element that may be
obtained, during access-register translation, from
an ASN-second-table entry in either main storage
or the ALB does not necessarily have an imme-
diate, if any, effect on PER. However, PER is
affected immediately after PURGE ALB is exe-
cuted.

If a PER event occurs during the execution of an
instruction which changes the CPU from being
enabled to being disabled for that type of event,
that PER event is recognized.

PER events may be recognized in a trial execution
of an instruction, and subsequently the instruction,
DAT-table entries, and operands may be refetched
for the actual execution. If any refetched field was
modified by another CPU or by a channel program
between the trial execution and the actual exe-
cution, it is unpredictable whether the PER events
indicated are for the trial or the actual execution.

For special-purpose instructions that are not
described in this publication, the operation of PER
may not be exactly as described in this section.

Identification of Cause

A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in real storage locations 150-159 and
in location 161 if the PER event is a storage-
alteration event. Additional information is provided
by means of the instruction address in the
program old PSW and the ILC. The information
stored in real locations 150-159 and 161 has the
following format:

Locations 150-151:

PERC [000|ATMID |AI

0 5 8 13 15

Locations 152-159:
/

PER Address
/

4-26 z/Architecture Principles of Operation

Location 161:

0000 [PAID

0 4 7

PER Code (PERC): The occurrence of PER
events is indicated by ones in bit positions 0-2 and
4. The bit position in the PER code for a partic-
ular type of event is 32 less than the bit position
for that event in the PER-event-mask field in
control register 9, except that a one in bit position
2 and a zero in bit position 4 of location 150 indi-
cate a storage-alteration event, while ones in bit
positons 2 and 4 indicate a store-using-
real-address event. When a program interruption
occurs, more than one type of PER event can be
concurrently indicated. Additionally, if another
program-interruption condition exists, the inter-
ruption code for the program interruption may indi-
cate both the PER events and the other condition.

Addressing-and-Translation-Mode Identifica-
tion (ATMID): During a program interruption
when a PER event is indicated, bits 31, 32, 5, 16,
and 17 of the PSW at the beginning of the exe-
cution of the instruction that caused the event may
be stored in bit positions 8 and 10-13, respec-
tively, of real locations 150-151. If bits 31, 32, 5,
16, and 17 are stored, then a one bit is stored in
bit position 9 of locations 150-151. |If bits 31, 32,
5, 16, and 17 are not stored, then zero bits are
stored in bit positions 8-13 of locations 150-151.

Bits 8-13 of real locations 150-151 are named the
addressing-and-translation-mode identification
(ATMID). Bit 9 is named the ATMID-validity bit.
When bit 9 is zero, it indicates that an invalid
ATMID (all zeros) was stored.

The meanings of the bits of a valid ATMID are as
follows:

Bit Meaning

8 PSW bit 31

9 ATMID-validity bit
10 PSW bit 32

11 PSW bit 5

12 PSW bit 16

13 PSW bit 17

A valid ATMID is necessarily stored only if the
PER event was caused by one of the following
instructions:

« BRANCH AND SAVE AND SET MODE
(BASSM)

+ BRANCH AND SET AUTHORITY (BSA)

« BRANCH AND SET MODE (BSM)

« BRANCH IN SUBSPACE GROUP (BSG)

+ LOAD PSW (LPSW)

+ LOAD PSW EXTENDED (LPSWE)

+ PROGRAM CALL (PC)

« PROGRAM RETURN (PR)

« PROGRAM TRANSFER (PT)

+ RESUME PROGRAM (RP)

+ SET ADDRESS SPACE CONTROL (SAC)

« SET ADDRESS SPACE CONTROL FAST
(SACF)

+ SET ADDRESSING MODE (SAM24, SAM31,
SAM64)

+ SET SYSTEM MASK (SSM)

« STORE THEN AND SYSTEM MASK
(STNSM)

+ STORE THEN OR SYSTEM MASK (STOSM)

+ SUPERVISOR CALL (SVC)

+ TRAP (TRAP2, TRAP4)

It is unpredictable whether a valid ATMID is stored
if the PER event was caused by any other instruc-
tion.

PER ASCE Identification (Al): If a storage-
alteration event is indicated in the PER code (bit 2
is one and bit 4 is zero) and this event occurred
when DAT was on, bits 14 and 15 of locations
150-151 are set to identify the address-
space-control element (ASCE) that was used to
translate the reference that caused the event, as
follows:

Bits

14-15 Meaning

00 Primary ASCE was used.

01 An AR-specified ASCE was used. The
PER access id, real location 161, can be
examined to determine the ASCE used.
However, if the primary, secondary, or
home ASCE was used, bits 14 and 15
may be set to 00, 10, or 11, respectively,
instead of to 01.

10 Secondary ASCE was used.

11 Home ASCE was used.

The CPU may avoid setting bits 14 and 15 to 01
by recognizing that access-list-entry token (ALET)

00000000 or 00000001 hex was used or that the
ALET designated, through an access-list entry, an
ASN-second-table entry containing an ASCE
equal to the primary ASCE, secondary ASCE, or
home ASCE.

If a storage-alteration event is not indicated in the
PER code (bit 2 is zero or bit 4 is one) or DAT
was off, zeros are stored in bit positions 14 and
15.

Zeros are stored in bit positions 3 and 5-7 of
locations 150-151.

PER Address: The PER-address field at
locations 152-159 contains the instruction address
used to fetch the instruction in execution when
one or more PER events were recognized. When
the instruction is the target of EXECUTE, the
instruction address used to fetch the EXECUTE
instruction is placed in the PER-address field.

PER Access Identification (PAID): If a storage-
alteration event is indicated in the PER code, an
indication of the address space to which the event
applies may be stored at location 161. If the
access used an AR-specified address-
space-control element, the number of the access
register used is stored in bit positions 4-7 of
location 161, and zeros are stored in bit positions
0-3. The contents of location 161 are unpredict-
able if (1) the CPU was in the access-register
mode but the access was an implicit reference to
the linkage stack or (2) the CPU was not in the
access-register mode.

Instruction Address: The instruction address in
the program old PSW is the address of the
instruction which would have been executed next,
unless another program condition is also indi-
cated, in which case the instruction address is that
determined by the instruction ending due to that
condition.

ILC: The ILC indicates the length of the instruc-
tion designated by the PER address, except when
a concurrent specification exception for the PSW
introduced by LOAD PSW, LOAD PSW
EXTENDED, PROGRAM RETURN, or a
supervisor-call interruption sets an ILC of 0.

Chapter 4. Control 4-27

Programming Notes:

1. PSW bit 31 is the extended-addressing-mode
bit, and PSW bit 32 is the basic-
addressing-mode bit. When PSW bit 31 and
32 are both one, they specify the 64-bit
addressing mode. When PSW bit 31 is zero,
PSW 32 specifies the 24-bit addressing mode
if the bit is zero or the 31-bit addressing mode
if the bit is one. PSW bit 5 is the DAT-mode
bit, and PSW bits 16 and 17 are the address-
space-control bits. For the handling of instruc-
tion and logical addresses in the different
translation modes, see [Translation Modes” on]

2. A valid ATMID allows the program handling
the PER event to determine the address
space from which the instruction that caused
the event was fetched and also to determine
which translation mode applied to the storage-
operand references of the instruction, if any.
Each of the instructions for which a valid
ATMID is necessarily stored can change one
or more of PSW bits 5, 16, and 17, with the
result that the values of those bits in the
program old PSW that is stored because of
the PER event are not necessarily the values
that existed at the beginning of the execution
of the instruction that caused the event. The
instructions for which a valid ATMID is neces-
sarily stored are the only instructions that can
change any of PSW bits 5, 16, and 17.

3. If a storage-alteration PER event is indicated
and DAT was on when the event occurred, an
indication of the address-space-control
element that was used to translate the refer-
ence that caused the event is given by the
PER ASCE identification, bits 14 and 15 of
real locations 150-151. If bits 14 and 15 indi-
cate that an AR-specified address-
space-control element was used, the PER
access identification in real location 161 can
be used to determine the address space that
was referenced. To determine if DAT was on,
the program handling the PER event should
first examine the ATMID-validity bit to deter-
mine whether a valid ATMID was stored and,
if it was stored, then examine the DAT-mode
bit in the ATMID. If a valid ATMID was not
stored, the program should examine the
DAT-mode bit in the program old PSW.

4. If a valid ATMID is stored, it also allows the
program handling the PER event to determine

4-28 z/Architecture Principles of Operation

the addressing mode (24-bit, 31-bit, or 64-bit)
that existed for the instruction that caused the
PER event. This knowledge of the addressing
mode allows the program to determine,
without any chance of error, the meaning of
one bits in bit positions 0-39 of the addresses
of the instruction and of the storage operands,
if any, of the instruction and, thus, to deter-
mine accurately the locations of the instruction
and operands. Note that the address of the
instruction is not necessarily provided without
error by the PER address in real locations
152-159 because that address may be the
address of an EXECUTE instruction, with the
address of the target instruction still to be
determined from the fields that specify the
second-operand address of the EXECUTE
instruction. Also note that another possible
source of error is that, in the 24-bit or 31-bit
addressing mode, an instruction or operand
may wrap around in storage by beginning just
below the 16M-byte or 2G-byte boundary,
respectively.

5. A valid ATMID is necessarily stored for all
instructions that can change the addressing-
mode bits. However, the ATMID mechanism
does not provide complete assurance that the
instruction causing a PER event and the
instruction's operands can be located accu-
rately because LOAD CONTROL and LOAD
ADDRESS SPACE PARAMETERS can
change the address-space-control element
that was used to fetch the instruction.

Priority of Indication

When a program interruption occurs and more
than one PER event has been recognized, all
recognized PER events are concurrently indicated
in the PER code. Additionally, if another program-
interruption condition concurrently exists, the inter-
ruption code for the program interruption indicates
both the PER condition and the other condition.

In the case of an instruction-fetching event for
SUPERVISOR CALL, the program interruption
occurs immediately after the supervisor-call inter-
ruption.

If a PER event is recognized during the execution
of an instruction which also introduces a new
PSW with the type of PSW-format error which is
recognized early (see |“Exceptions Associated with|
the PSW” on page 6-9), both the specification

exception and PER are indicated concurrently in
the interruption code of the program interruption.
If the PSW-format error is of the type which is
recognized late, only PER is indicated in the inter-
ruption code. In both cases, the invalid PSW is
stored as the program old PSW.

Recognition of a PER event does not normally
affect the ending of instruction execution.
However, in the following cases, execution of an
interruptible instruction is not completed normally:

1. When the instruction is due to be interrupted
for an asynchronous condition (I/O, external,
restart, or repressible machine-check condi-
tion), a program interruption for the PER event
occurs first, and the other interruptions occur
subsequently (subject to the mask bits in the
new PSW) in the normal priority order.

2. When the stop function is performed, a
program interruption indicating the PER event
occurs before the CPU enters the stopped
state.

3. When any program exception is recognized,
PER events recognized for that instruction
execution are indicated concurrently.

4. Depending on the model, in certain situations,
recognition of a PER event may appear to
cause the instruction to be interrupted prema-
turely without concurrent indication of a
program exception, without an interruption for
any asynchronous condition, and without the
CPU entering the stopped state. In particular,
recognition of a storage-alteration event
causes no more than 4K bytes to be stored
beginning with the byte that caused the event.

In cases 1 and 2 above, if the only PER event that
has been recognized is an instruction-fetching
event and another unit of operation of the instruc-
tion remains to be executed, the event may be
discarded, with the result that a program inter-
ruption does not occur. Whether the event is dis-
carded is unpredictable.

Programming Notes:

1. In the following cases, an instruction can both
cause a program interruption for a PER event
and change the value of fields controlling an
interruption for PER events. The original field
values determine whether a program inter-
ruption takes place for the PER event.

a. The instructions LOAD PSW, LOAD PSW
EXTENDED, SET SYSTEM MASK,
STORE THEN AND SYSTEM MASK, and
SUPERVISOR CALL can cause an
instruction-fetching event and disable the
CPU for PER interruptions. Additionally,
STORE THEN AND SYSTEM MASK can
cause a storage-alteration event to be
indicated. In all these cases, the program
old PSW associated with the program
interruption for the PER event may indi-
cate that the CPU was disabled for PER
events.

b. An instruction-fetching event may be
recognized during execution of a LOAD
CONTROL instruction that changes the
value of the PER-event masks in control
register 9 or the addresses in control reg-
isters 10 and 11 controlling indication of
instruction-fetching events.

c. In the access-register mode, a storage-
alteration event that is permitted by a one
value of the storage-alteration-event bit in
an address-space-control element in an
ASN-second-table entry (designated by an
access-list entry) may be caused by any
store-type instruction that changes the
value of the bit from one to zero.

2. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER
interruption occurs as a result of LOAD PSW,
LOAD PSW EXTENDED, PROGRAM
RETURN, or SUPERVISOR CALL, the ILC
indicates the length of these instructions or
EXECUTE, as appropriate, unless a concur-
rent specification exception on LOAD PSW,
LOAD PSW EXTENDED, or PROGRAM
RETURN calls for an ILC of 0.

3. When a PER interruption is caused by
branching, the PER address identifies the
branch instruction (or EXECUTE, as appro-
priate), whereas the old PSW points to the
next instruction to be executed. When the
interruption occurs during the execution of an
interruptible instruction, the PER address and
the instruction address in the old PSW are the
same.

Chapter 4. Control 4-29

Storage-Area Designation

Two types of PER events — instruction fetching
and storage alteration — always involve the des-
ignation of an area in storage. Successful-
branching events may involve this designation.
The storage area starts at the location designated
by the starting address in control register 10 and
extends up to and including the location desig-
nated by the ending address in control register 11.
The area extends to the right of the starting
address.

An instruction-fetching event occurs whenever the
first byte of an instruction or the first byte of the
target of an EXECUTE instruction is fetched from
the designated area. A storage-alteration event
occurs when a store access is made to the desig-
nated area by using an operand address that is
defined to be a logical or a virtual address.
However, when DAT is on and the storage-
alteration-space control in control register 9 is one,
a storage-alteration event occurs only when the
storage area is within an address space for which
the storage-alteration-event bit in the address-
space-control element is one. A storage-alteration
event does not occur for a store access made with
an operand address defined to be a real address.
When the branch-address control in control reg-
ister 9 is one, a successful-branching event occurs
when the first byte of the branch-target instruction
is within the designated area.

The set of addresses designated for successful-
branching, instruction-fetching, and storage-
alteration events wraps around at address
264 - 1; that is, address 0 is considered to follow
address 264 - 1. When the starting address is
less than the ending address, the area is contig-
uous. When the starting address is greater than
the ending address, the set of locations desig-
nated includes the area from the starting address
to address 264 - 1 and the area from address 0
to, and including, the ending address. When the
starting address is equal to the ending address,
only that one location is designated.

Address comparison for successful-branching,
instruction-fetching, and storage-alteration events
is always performed using 64-bit addresses. This
is accomplished in the 24-bit or 31-bit addressing
mode by extending the virtual, logical, or instruc-
tion address on the left with 39 or 33 zeros,

4-30 z/Architecture Principles of Operation

respectively, before comparing it with the starting
and ending addresses.

Programming Note: In some models, perform-
ance of address-range checking is assisted by
means of an extension to each page-table entry in
the TLB. In such an implementation, changing the
contents of control registers 10 and 11 when the
successful-branching, instruction-fetching, or
storage-alteration-event mask is one, or setting
any of these PER-event masks to one, may cause
the TLB to be cleared of entries. This degradation
may be experienced even when the CPU is disa-
bled for PER events. Thus, when possible, the
program should avoid loading control registers 9,
10, or 11.

PER Events

Successful Branching

When the branch-address control in control reg-
ister 9 is zero, a successful-branching event
occurs independent of the branch-target address.
When the branch-address control is one, a
successful-branching event occurs only when the
first byte of the branch-target instruction is in the
storage area designated by control registers 10
and 11.

Subject to the effect of the branch-address control,
a successful-branching event occurs whenever
one of the following instructions causes branching:

« BRANCH AND LINK (BAL, BALR)

« BRANCH AND SAVE (BAS, BASR)

« BRANCH AND SAVE AND SET MODE
(BASSM)

« BRANCH AND SET AUTHORITY (BSA)

« BRANCH AND SET MODE (BSM)

« BRANCH AND STACK (BAKR)

+ BRANCH IN SUBSPACE GROUP (BSG)

« BRANCH ON CONDITION (BC, BCR)

« BRANCH ON COUNT (BCT, BCTR, BCTG,
BCTGR)

« BRANCH ON INDEX HIGH (BXH, BXHG)

« BRANCH ON INDEX LOW OR EQUAL
(BXLE, BXLEG)

« BRANCH RELATIVE AND SAVE (BRAS)

« BRANCH RELATIVE AND SAVE LONG
(BRASL)

« BRANCH RELATIVE ON CONDITION (BRC)

+ BRANCH RELATIVE ON CONDITION LONG
(BRCL)

+ BRANCH RELATIVE ON COUNT (BRCT,
BRCTG)

« BRANCH RELATIVE ON
(BRXH, BRXHG)

+ BRANCH RELATIVE ON INDEX LOW OR
EQUAL (BRXLE, BRXLG)

+ RESUME PROGRAM (RP)

+ TRAP (TRAP2, TRAP4)

Subject to the effect of the branch-address control,
a successful-branching event also occurs when-
ever one of the following instructions causes
branching:

+ PROGRAM CALL (PC)
« PROGRAM RETURN (PR)
« PROGRAM TRANSFER (PT)

For PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER, the branch-target
address is considered to be the new instruction
address that is placed in the PSW by the instruc-
tion.

INDEX HIGH

A successful-branching event causes a PER
successful-branching event to be recognized if bit
32 of the PER-event masks is one and the PER
mask in the PSW is one.

A PER successful-branching event is indicated by
setting bit 0 of the PER code to one.

Instruction Fetching

An instruction-fetching event occurs if the first byte
of the instruction is within the storage area desig-
nated by control registers 10 and 11. An
instruction-fetching event also occurs if the first
byte of the target of EXECUTE is within the desig-
nated storage area.

An instruction-fetching event causes a PER
instruction-fetching event to be recognized if bit 33
of the PER-event masks is one and the PER
mask in the PSW is one.

If an instruction-fetching event is the only PER
event recognized for an interruptible instruction
that is to be interrupted because of an asynchro-
nous condition (I/O, external, restart, or
repressible machine-check condition) or the per-
formance of the stop function, and if a unit of
operation of the instruction remains to be exe-
cuted, the instruction-fetching event may be dis-
carded, and whether it is discarded is unpredict-
able.

The PER instruction-fetching event is indicated by
setting bit 1 of the PER code to one.

Storage Alteration

A storage-alteration event occurs whenever a
CPU, by using a logical or virtual address, makes
a store access without an access exception to the
storage area designated by control registers 10
and 11. However, when DAT is on and the
storage-alteration-space control in control register
9 is one, the event occurs only if the storage-
alteration-event bit is one in the address-
space-control element that is used by DAT to
translate the reference to the storage location.

The contents of storage are considered to have
been altered whenever the CPU executes an
instruction that causes all or part of an operand to
be stored within the designated storage area.
Alteration is considered to take place whenever
storing is considered to take place for purposes of
indicating protection exceptions, except that recog-
nition does not occur for the storing of data by a
channel program. (See [‘Recognition of Access]
[Exceptions” on page 6-36l) Storing constitutes
alteration for PER purposes even if the value
stored is the same as the original value.

Implied locations that are referred to by the CPU
in the process of performing an interruption are
not monitored. Such locations include PSW and
interruption-code locations. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly, moni-
toring does not apply to the storing of data by a
channel program. Implied locations in the linkage
stack, which are stored in by instructions that
operate on the linkage stack, are monitored.

The I/O instructions are considered to alter the
second-operand location only when storing actu-
ally occurs.

Storage alteration does not apply to instructions
whose operands are specified to have real
addresses. Thus, storage alteration does not
apply to INVALIDATE PAGE TABLE ENTRY,
RESET REFERENCE BIT EXTENDED, SET
STORAGE KEY EXTENDED, STORE USING
REAL ADDRESS, TEST BLOCK, and TEST
PENDING INTERRUPTION (when the effective
address is zero).

Chapter 4. Control 4-31

A storage-alteration event causes a PER storage-
alteration event to be recognized if bit 34 of the
PER-event masks is one and the PER mask in the
PSW is one. Bit 36 of the PER-event masks is
ignored when determining whether a PER storage-
alteration event is to be recognized.

A PER storage-alteration event is indicated by
setting bit 2 of the PER code to one and bit 4 of
the PER code to zero.

Store Using Real Address

A store-using-real-address event occurs whenever
the STORE USING REAL ADDRESS instruction is
executed.

There is no relationship between the store-using-
real-address event and the designated storage
area.

A store-using-real-address event causes a PER
store-using-real-address event to be recognized if
bits 34 and 36 of the PER-event mask are ones
and the PER mask in the PSW is one.

A PER store-using-real-address event is indicated
by setting bits 2 and 4 of the PER code to one.

Indication of PER Events
Concurrently with Other
Interruption Conditions

The following rules govern the indication of PER
events caused by an instruction that also causes a
program exception, a monitor event, a space-
switch event, or a supervisor-call interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated,
suppressed, or nullified. However, special
cases of suppression and nullification are as
follows:

a. When the instruction is designated by an
odd instruction address in the PSW, the
instruction-fetching event is not indicated.

b. When an access exception applies to the
first, second, or third halfword of the
instruction, it is unpredictable whether the
instruction-fetching event is indicated.

c. When the target address of EXECUTE is
odd or an access exception applies to the

4-32

z/Architecture Principles of Operation

first, second, or third halfword of the target
instruction, it is unpredictable whether the
instruction-fetching event is indicated for
the target instruction, and it is also unpre-
dictable whether the event is indicated for
the EXECUTE instruction.

2. When the operation is completed or partially
completed, the event is indicated, regardless
of whether any program exception, space-
switch event, or monitor event is also recog-
nized.

3. Successful branching, storage alteration, and
store using real address are not indicated for
an operation or, in case the instruction is inter-
ruptible, for a unit of operation that is sup-
pressed or nullified.

4. When the execution of the instruction is termi-
nated, storage alteration is indicated whenever
the event has occurred, and a model may
indicate the event if the event would have
occurred had the execution of the instruction
been completed, even if altering the contents
of the result field is contingent on operand
values. For purposes of this definition, the
occurrence of those exceptions which permit
termination (addressing, protection, and data)
is considered to cause termination, even if no
result area is changed.

5. When LOAD PSW, LOAD PSW EXTENDED,
PROGRAM RETURN, SET SYSTEM MASK,
STORE THEN OR SYSTEM MASK, or
SUPERVISOR CALL causes a PER condition
and at the same time introduces a new PSW
with the type of PSW-format error that is
recognized immediately after the PSW
becomes active, the interruption code identi-
fies both the PER condition and the specifica-
tion exception.

6. When LOAD PSW, LOAD PSW EXTENDED,
PROGRAM RETURN, or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of
PSW-format error that is recognized as part of
the execution of the following instruction, the
introduced PSW is stored as the old PSW
without the following instruction being fetched
or executed and without the specification
exception being recognized.

The indication of PER events concurrently with
other program-interruption conditions for the same
instruction, as described in cases 1-4 above, is

| summarized in [Figure 4-8 on page 4-34, Cases
| 5 and 6 are shown in [Figure 4-9 on page 4-35|

Programming Notes:

ferred before the interruption. No special
indication is provided on premature inter-
ruptions as to whether the event will occur
again upon the resumption of the opera-
tion. When the designated storage area is

1. The execution of the interruptible instructions

MOVE LONG, TEST BLOCK, and COMPARE
LOGICAL LONG can cause events for instruc-
tion fetching. Additionally, MOVE LONG can
cause the storage-alteration event.

Interruption of such an instruction may cause
a PER event to be indicated more than once.
It may be necessary, therefore, for a program
to remove the redundant event indications
from the PER data. The following rules
govern the indication of the applicable events
during execution of these instructions:

a. The instruction-fetching event is indicated
whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption, except
that the event may be discarded (not indi-
cated) if it is the only PER event to be
indicated, the interruption is due to an
asynchronous interruption condition or the
performance of the stop function, and a
unit of operation of the instruction remains
to be executed.

b. The storage-alteration event is indicated
only when data has been stored in the
designated storage area by the portion of
the operation starting with the last initi-
ation and ending with the last byte trans-

a single byte location, a storage-alteration
event can be recognized only once in the
execution of MOVE LONG.

2. The following is an outline of the general

action a program must take to delete multiple
entries in the PER data for an interruptible
instruction so that only one entry for each
complete execution of the instruction is
obtained:

a. Check to see if the PER address is equal
to the instruction address in the old PSW
and if the last instruction executed was
interruptible.

b. If both conditions are met,
instruction-fetching events.

delete

c. If both conditions are met and the event is
storage alteration, delete the event if
some part of the remaining destination
operand is within the designated storage
area.

. An example of the indication of an instruction-

fetching PER event caused by either a LOAD
PSW (or LOAD PSW EXTENDED) instruction
or the following instruction, in connection with
an early PSW-format error or odd instruction
address introduced by the LOAD PSW instruc-
tion, is shown in [Figure 4-9 on page 4-35|

Chapter 4. Control 4-33

Concurrent Condition

PER Event

Type
of Instr |Storage
Ending|Branch|Fetch |Alter. [STURA

Specification

Instruction access
Specification
EXECUTE target address odd
EXECUTE target access
Other nullifying
Other suppressing
A1l terminating
A1l completing

0dd instruction address in the PSW| S No No No No

N or S| No U No No
S No U No -

N or S| No U No -
N No Yes No? -
S No Yes No? No
T No Yes Yes?2 -
C Yes Yes Yes -

Explanation:

tion had been completed.

C The operation or, in the
the unit of operation is

N The operation or, in the
the unit of operation is

S The operation or, in the
the unit of operation is

- The condition does not apply.

1 Although PER events of this type are not indicated for the cur-
rent unit of operation of an interruptible instruction, PER
events of this type that were recognized on completed units of
operation of the interruptible instruction are indicated.

2 This event may be indicated, depending on the model, if the
event has not occurred but would have been indicated if execu-

case of the interruptible instructions,
completed.

case of the interruptible instructions,
nullified.

case of the interruptible instructions,
suppressed.

T The execution of the instruction is terminated.

Yes The PER event is indicated with the other program interruption
condition if the event has occurred; that is, the instruction
address in the PSW was replaced and the branch-address control
and designated storage area allow the event occurrence, an
attempt was made to execute an instruction whose first byte is
located in the designated storage area, or the contents of the
designated storage area were altered.

No The PER event is not indicated.

U It is unpredictable whether the PER event is indicated.

Figure 4-8. Indication of PER Events with Other Concurrent Conditions

4-34 z/Architecture Principles of Operation

Immaterial or not applicable.

See “ILC on Instruction-Fetching Exceptions” on page [6-8.

LPSW at 4000 Loads a PSW|Designated Two-Byte Instruction Is at 6000
Storage Area
PSW Has Includes Address
Early Instruction Inter- in
PSW-Format [Address 6000- | ruption Program PER
Error in PSW 4000 |6001 Code 01d PSW [ILC [Address
N 6000 N N None - - -
N 6000 N Y P 6002 1 6000
N 6000 Y - P 6000 2 4000
N 6001 N N S 6001+J1 Kt | None
N 6001 N Y S2 6001+J1 K1 | None
N 6001 Y - pz 3 60012 3 2 4000
Y 6000 N - S 6000 04 | None
Y 6000 Y - P,S2 3 60002 3 04 | 4000
Y 6001 N - S 6001 04 | None
Y 6001 Y - p,S2 3 60012 3 04 | 4000
Explanation:

See “Indication of PER Events Concurrently with Other Interruption

Conditions” on page [4-32|.

See “Priority of Indication” on page [4-28].

See “Zero ILC” on page [6-7|.

Unpredictably 2, 4, or 6.

1, 2, or 3 depending on whether J is 2, 4, or 6, respectively.

No.
PER event (instruction-fetching).
Specification exception.

Yes.

Figure 4-9. Example of Instruction-Fetching PER Event and Early PSW-Format Error or Odd Instruction Address

Chapter 4. Control

4-35

Timing

The timing facilities include three facilities for
measuring time: the TOD clock, the clock
comparator, and the CPU timer. A TOD program-
mable register is associated with the TOD clock.

In a multiprocessing configuration, a single TOD
clock is shared by all CPUs. Each CPU has its
own clock comparator, CPU timer, and TOD pro-
grammable register.

Time-of-Day Clock

The time-of-day (TOD) clock provides a high-
resolution measure of real time suitable for the
indication of date and time of day. The cycle of
the clock is approximately 143 years. A single
TOD clock is shared by all CPUs in the configura-
tion.

Format

The TOD clock is a 104-bit register. It is a binary
counter with the format shown in the following
illustration.

1 microsecond—l

0 51 64 103

The TOD clock nominally is incremented by
adding a one in bit position 51 every microsecond.
In models having a higher or lower resolution, a
different bit position is incremented at such a fre-
quency that the rate of advancing the clock is the
same as if a one were added in bit position 51
every microsecond. The resolution of the TOD
clock is such that the incrementing rate is compa-
rable to the instruction-execution rate of the
model.

When incrementing of the clock causes a carry to
be propagated out of bit position 0, the carry is
ignored, and counting continues from zero. The
program is not alerted, and no interruption condi-
tion is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Incre-
menting of the clock does not depend on whether
the wait-state bit of the PSW is one or whether the
CPU is in the operating, load, stopped, or check-

4-36 z/Architecture Principles of Operation

stop state. Its operation is not affected by CPU,
initial-CPU, or clear resets or by initial program
loading. Operation of the clock is also not
affected by the setting of the rate control or by an
initial-machine-loading operation. Depending on
the model and the configuration, the TOD clock
may or may not be powered independent of the
CPU.

States

The following states are distinguished for the TOD
clock: set, not set, stopped, error, and not opera-
tional. The state determines the condition code
set by execution of STORE CLOCK and STORE
CLOCK EXTENDED. The clock is incremented,
and is said to be running, when it is in either the
set state or the not-set state.

Not-Set State: When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state.

When the clock is in the not-set state, execution of
STORE CLOCK or STORE CLOCK EXTENDED
causes condition code 1 to be set and the current
value of the running clock to be stored.

Stopped State: The clock enters the stopped
state when SET CLOCK is executed and the exe-
cution results in the clock being set. This occurs
when SET CLOCK is executed without encount-
ering any exceptions and either any manual
TOD-clock control in the configuration is set to the
enable-set position or the
TOD-clock-control-override control, bit 42 of
control register 14, is one. The clock can be
placed in the stopped state from the set, not-set,
and error states. The clock is not incremented
while in the stopped state.

When the clock is in the stopped state, execution
of STORE CLOCK or STORE CLOCK
EXTENDED causes condition code 3 to be set
and the value of the stopped clock to be stored.

Set State: The clock enters the set state only
from the stopped state. The change of state is
under control of the TOD-clock-sync-control bit, bit
34 of control register 0, of the CPU which most
recently caused the clock to enter the stopped
state. If the bit is zero, the clock enters the set
state at the completion of execution of SET
CLOCK. If the bit is one, the clock remains in the

stopped state until the bit is set to zero on that
CPU or until another CPU executes a SET
CLOCK instruction affecting the clock. If an
external time reference (ETR) is installed, a signal
from the ETR may be used to set the set state
from the stopped state.

Incrementing of the clock begins with the first
stepping pulse after the clock enters the set state.

When the clock is in the set state, execution of
STORE CLOCK or STORE CLOCK EXTENDED
causes condition code 0 to be set and the current
value of the running clock to be stored.

Error State: The clock enters the error state
when a malfunction is detected that is likely to
have affected the validity of the clock value. It
depends on the model whether the clock can be
placed in this state. A timing-facility-damage
machine-check-interruption condition is generated
on each CPU in the configuration whenever the
clock enters the error state.

When STORE CLOCK or STORE CLOCK
EXTENDED is executed and the clock is in the
error state, condition code 2 is set, and the value
stored is zero.

Not-Operational State: The clock is in the not-
operational state when its power is off or when it
is disabled for maintenance. It depends on the
model whether the clock can be placed in this
state. Whenever the clock enters the not-
operational state, a timing-facility-damage
machine-check-interruption condition is generated
on each CPU in the configuration.

When the clock is in the not-operational state,
execution of STORE CLOCK or STORE CLOCK
EXTENDED causes condition code 3 to be set,
and zero is stored.

Changes in Clock State

When the TOD clock changes value because of
the execution of SET CLOCK or changes state,
interruption conditions pending for the clock
comparator and CPU timer may or may not be
recognized for up to 1.048576 seconds (22°
microseconds) after the change.

The results of channel-
subsystem-monitoring-facility operations may be

unpredictable as a result of changes to the TOD
clock.

Setting and Inspecting the Clock

The clock can be set to a specified value by exe-
cution of SET CLOCK if the manual TOD-clock
control of any CPU in the configuration is in the
enable-set position or the
TOD-clock-control-override control, bit 42 of
control register 14, is one. SET CLOCK sets bits
of the clock with the contents of corresponding bit
positions of a doubleword operand in storage.

Setting the clock replaces the values in all bit
positions from bit position 0 through the rightmost
position that is incremented when the clock is
running. However, on some models, the rightmost
bits starting at or to the right of bit 52 of the speci-
fied value are ignored, and zeros are placed in the
corresponding positions of the clock. Zeros are
also placed in positions to the right of bit position
63 of the clock.

The TOD clock can be inspected by executing
STORE CLOCK, which causes bits 0-63 of the
clock to be stored in an eight-byte operand in
storage, or by executing STORE CLOCK
EXTENDED, which causes bits 0-103 of the clock
to be stored in bytes 1-13 of a 16-byte operand in
storage. STORE CLOCK EXTENDED stores
zeros in the leftmost byte, byte 0, of its storage
operand, and it obtains the TOD programmable
field from bit positions 16-31 of the TOD program-
mable register and stores it in byte positions 14
and 15 of the storage operand. The operand
stored by STORE CLOCK EXTENDED has the
following format:

Programm-

Zeros TOD Clock able Field

0 8 112 127

At some time in the future, STORE CLOCK
EXTENDED on new models will store a leftmost
extension of the TOD clock in byte position 0 of its
storage operand; see programming note

Two executions of STORE CLOCK or STORE
CLOCK EXTENDED, possibly on different CPUs
in the same configuration, always store different
values of the clock if the clock is running. If the
clock is stopped, zeros are stored in the clock
value, bits 8-111 of the storage operand, in posi-

Chapter 4. Control 4-37

tions to the right of the rightmost bit position that
is incremented when the clock is running. The
programmable field continues to be stored even
when the clock is stopped.

The values stored for a running clock by STORE
CLOCK or STORE CLOCK EXTENDED always
correctly imply the sequence of execution of these
instructions by one or more CPUs for all cases
where the sequence can be discovered by the
program. To ensure that unique values are
obtained when the value of a running clock is
stored, nonzero values may be stored in positions
to the right of the rightmost incremented bit posi-
tion. When the value of a running clock is stored
by STORE CLOCK EXTENDED, the value in bit
positions 64-103 of the clock (bit positions 72-111
of the storage operand) is always nonzero; this
ensures that values stored by STORE CLOCK
EXTENDED are always unique when compared
with values stored by STORE CLOCK and
extended on the right with zeros.

For the purpose of establishing uniqueness and
sequence of occurrence of the results of STORE
CLOCK and STORE CLOCK EXTENDED, the
64-bit value provided by STORE CLOCK may be
considered to be extended to 104 bits by
appending 40 zeros on the right, with the STORE
CLOCK value and STORE CLOCK EXTENDED
bits 8-111 then both being treated as 104-bit
unsigned binary integers.

In a configuration where more than one CPU
accesses the clock, SET CLOCK is interlocked
such that the entire contents appear to be updated
concurrently; that is, if SET CLOCK instructions
are executed simultaneously by two CPUs, the
final result is either one or the other value. If SET
CLOCK is executed by one CPU and STORE
CLOCK or STORE CLOCK EXTENDED by the
other, the result obtained by STORE CLOCK or
STORE CLOCK EXTENDED is either the entire
old value or the entire new value. When SET
CLOCK is executed by one CPU, a STORE
CLOCK or STORE CLOCK EXTENDED instruc-
tion executed by another CPU may find the clock
in the stopped state even when the
TOD-clock-sync-control bit, bit 34 of control reg-
ister 0, of each CPU is zero. Since the clock
enters the set state before incrementing, the first
STORE CLOCK or STORE CLOCK EXTENDED
instruction executed after the clock enters the set

4-38

z/Architecture Principles of Operation

state may still find the original value introduced by
SET CLOCK.

TOD Programmable Register
Each CPU has a TOD programmable register.
Bits 16-31 of the register contain the program-
mable field that is appended on the right to the
TOD-clock value by STORE CLOCK EXTENDED.
The register has the following format:

Programmable

0000000000000000 Field

0 16 31

The register is loaded by SET CLOCK PRO-
GRAMMABLE FIELD. The contents of the reg-
ister are reset to a value of all zeros by initial CPU
reset.

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; for some applica-
tions, reference to the leftmost 32 bits of the
clock may provide sufficient resolution.

2. Communication between systems is facilitated
by establishing a standard time origin that is
the calendar date and time to which a clock
value of zero corresponds. January 1, 1900,
0 a.m. Coordinated Universal Time (UTC) is
recommended as this origin, and it is said to
begin the standard epoch for the clock. This
is also the epoch used when the TOD clock is
synchronized to the external time reference
(ETR), and, for this reason, the epoch is
sometimes referred to as ETR time. The
former term, Greenwich Mean Time (GMT), is
now obsolete and has been replaced with the
more precise UTC.

3. Historically, one of the most important uses of
standard time has been for navigation. Prior
to 1972, standard time, then called GMT, was
defined to have a variable-length second and
was synchronized to within 100 milliseconds
of the rotational position of the earth. Syn-
chronization was accomplished by occasional
changes in the length of the second, typically
in parts per billion, and also by occasional
insertion and deletion of small increments of
time, typically 50 or 100 milliseconds. Begin-
ning in 1972, a new standard time scale,
called UTC, was defined to have a fixed-
length second and be kept synchronized to

within 900 milliseconds of the rotational posi-
tion of the earth by means of occasional
adjustments of exactly one second called a
leap second. The change from GMT to UTC
occurred between the last second of the day
on December 31, 1971 and the first second of
the day on January 1, 1972 and included
insertion of 107.758 milliseconds in the
standard time scale to make UTC exactly 10
seconds behind International Atomic Time
(TAl). For reasons of simplicity in this docu-
ment, the term UTC is sometimes extrapo-
lated backward before 1972 by assuming no
time adjustments in that time scale before
1972. For the same reasons, conversion
between ETR time and UTC does not take
into consideration the time adjustments prior
to 1972, and, thus, ETR time differs from TAI
by a fixed amount of 10 seconds. Because of
the occurrence of 22 leap seconds, UTC now
is behind TAI by 32 seconds.

. A program using the clock value as a time-

of-day and calendar indication must be con-
sistent with the programming support under
which the program is to be executed. If the
programming support uses the standard
epoch, bit 0 of the clock remains one through
the years 1972-2041. (Bit O turned on at
11:56:53.685248 (UTC) May 11, 1971.) Ordi-
narily, testing bit 0 for a one is sufficient to
determine if the clock value is in the standard
epoch.

. In converting to or from the current date or

time, the programming support must take into
account that “leap seconds” have been
inserted or deleted because of time-correction
standards. When the TOD clock has been set
correctly to a time within the standard epoch,
the sum of the accumulated leap seconds
must be subtracted from the clock time to
determine UTC time.

6. Because of the limited accuracy of manually

setting the clock value, the rightmost bit posi-
tions of the clock, expressing fractions of a
second, are normally not valid as indications
of the time of day. However, they permit
elapsed-time measurements of high resol-
ution.

. The following chart shows the time interval

between instants at which various bit positions
of the TOD clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

TOD- Stepping Interval
Clock
Bit |Days|Hours|Min.| Seconds
51 0.000 001
47 0.000 016
43 0.000 256
39 0.004 096
35 0.065 536
31 1.048 576
27 16.777 216
23 4 28.435 456
19 1 11 34.967 296
15 19 5 19.476 736
11 12 17 25 11.627 776
7 203 14 43 6.044 416
3 (3257 19 29 36.710 656

8. The following chart shows the TOD clock

setting for 00:00:00 (0 am), UTC time, for
several dates: January 1, 1900, January 1,
1972, and for that instant in time just after
each of the 22 leap seconds that have
occurred through November, 2000. Each of
these leap seconds was inserted in the UTC
time scale beginning at 23:59:60 UTC of the
day previous to the one listed and ending at
00:00:00 UTC of the day listed.

Chapter 4. Control 4-39

4-40

Leap

Year |Mth|Day|Sec.| Clock Setting (Hex)

1900 | 1 |1 0000 0000 0000 0000
1972 | 1 |1 8126 D6OE 4600 0000
1972 | 7 | 1 1 | 820B A981 1E24 0000
1973 | 1 |1 2 | 82F3 OOAE E248 0000
1974 |1 |1 3 | 84BD E971 146C 0000
1975 | 1 |1 4 | 8688 D233 4690 0000
1976 | 1 |1 5 | 8853 BAF5 78B4 0000
1977 | 1 |1 6 | 8A1F E595 20D8 0000
1978 | 1 | 1 7 | 8BEA CE57 52FC 0000
1979 | 1 |1 8 | 8DB5 B719 8520 0000
1980 [1 |1 9 | 8F80 9FDB B744 0000
1981 | 7 | 1 | 10 | 9230 5COF CD68 0000
1982 | 7 | 1 | 11 | 93FB 44D1 FF8C 0000
1983 | 7 | 1 | 12 | 95C6 2D94 31BO 0000
1985 | 7 | 1 | 13 | 995D 40F5 17D4 0000
1988 | 1 | 1 | 14 | 9DDA 69A5 57F8 0000
1990 | 1 | 1 | 15 | Al71 7D06 3E1C 0000
1991 | 1 | 1 | 16 | A33C 65C8 7040 0000
1992 | 7 | 1 | 17 | ASEC 21FC 8664 0000
1993 | 7 | 1 | 18 | A7B7 OABE B888 0000
1994 | 7 | 1 | 19 | A981 F380 EAAC 0000
1996 | 1 | 1 | 20 | AC34 336F ECDO 0000
1997 | 7 | 1 | 21 | AEE3 EFA4 02F4 0000
1999 | 1 | 1 | 22 | B196 2F93 0518 0000

9. The stepping value of TOD-clock bit position

63, if implemented, is 2-12 microseconds, or
approximately 244 picoseconds. This value is
called a clock unit.

The following chart shows various time inter-
vals in clock units expressed in hexadecimal
notation.

Interval Clock Units (Hex)
1 microsecond 1000
1 millisecond 3E 8000
1 second F424 0000
1 minute 39 3870 0000
1 hour D69 3A40 0000
1 day 1 41DD 7600 0000
365 days 1CA E8C1 3E00 0000
366 days 1CC 2A9E B400 0000
1,461 days* |72C E4E2 6E00 0000

* Number of days in four years,
including a Teap year. Note
that the year 1900 was not a
leap year. Thus, the four-
year span starting in 1900
has only 1,460 days.

10. The charts in notes 6-8 are useful when

examining the value stored by STORE
CLOCK. Similar charts for use when exam-

z/Architecture Principles of Operation

11.

12.

13.

14.

ining the value stored by STORE CLOCK
EXTENDED are in programming notes at the
end of the definition of that instruction.

In a multiprocessing configuration, after the
TOD clock is set and begins running, the
program should delay activity for 222 micro-
seconds (1.048576 seconds) to ensure that
the CPU-timer and clock-comparator inter-
ruption conditions are recognized by the CPU.

Due to the sequencing rules for the results of
STORE CLOCK and STORE CLOCK
EXTENDED, the execution of STORE CLOCK
may be considerably slower than that of
STORE CLOCK EXTENDED on models that
increment a bit position of the TOD clock to
the right of position 63.

Uniqueness of TOD-clock values can be
extended to apply to processors in separate
configurations by including a configuration
identification in the TOD programmable field.

At some time in the future, new models will
use a carry from bit position 0 of the TOD
clock to increment an additional eight-bit
binary counter. STORE CLOCK EXTENDED
will store the contents of this counter in byte
position 0 of its storage operand. A variation
of SET CLOCK will set the counter, as well as
the TOD clock. Variations of SET CLOCK
COMPARATOR and STORE CLOCK
COMPARATOR will manipulate a comparable
byte at the left of the clock comparator.
These actions will allow the TOD clock to con-
tinue to measure time within the standard
epoch after the current 143-year limit caused
by a carry from bit position 0 has been
exceeded, and they will allow continued use of
the clock comparator. It may be desired to
have programs that process 16-byte STORE
CLOCK EXTENDED operands take these
future developments into account.

TOD-Clock Synchronization

The following functions are provided if an external
time reference (ETR) is installed:

A clock in the stopped state, with the
TOD-clock-sync-control bit (bit 34 of control
register 0) set to one, is placed in the set
state and starts incrementing when an ETR
signal occurs.

¢ The stepping rates for the TOD clock and the
ETR are synchronized.

¢ Bits 32 through the rightmost incremented bit
of a clock in the set state are compared with
the same bits of the ETR. An unequal condi-
tion is signaled by an external-damage
machine-check-interruption condition. The
machine-check-interruption condition may not
be recognized for up to 1.048576 seconds
(22° microseconds) after the unequal condi-
tion occurs.

Programming Notes:

1. TOD-clock synchronization provides for syn-
chronizing and checking only bits 32 through
the rightmost incremented bit of the TOD
clock. Bits 0-31 of the TOD clock may be dif-
ferent from those of the ETR.

2. If an ETR is installed, SET CLOCK must place
all zeros in bit positions 32 through the right-
most incremented bit position of the TOD
clock; otherwise, an external-damage
machine-check-interruption condition will be
recognized.

Clock Comparator

The clock comparator provides a means of
causing an interruption when the TOD-clock value
exceeds a value specified by the program.

In a configuration with more than one CPU, each
CPU has a separate clock comparator.

The clock comparator has the same format as bits
0-63 of the TOD clock. The clock comparator
nominally consists of bits 0-47, which are com-
pared with the corresponding bits of the TOD
clock. In some models, higher resolution is
obtained by providing more than 48 bits. The bits
in positions provided in the clock comparator are
compared with the corresponding bits of the clock.
When the resolution of the clock is less than that
of the clock comparator, the contents of the clock
comparator are compared with the clock value as
this value would be stored by executing STORE
CLOCK.

The clock comparator causes an external inter-
ruption with the interruption code 1004 hex. A
request for a clock-comparator interruption exists
whenever either of the following conditions exists:

1. The TOD clock is running and the value of the
clock comparator is less than the value in the
compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned
binary arithmetic.

2. The TOD clock is in the error state or the not-
operational state.

A request for a clock-comparator interruption does
not remain pending when the value of the clock
comparator is made equal to or greater than that
of the TOD clock or when the value of the TOD
clock is made less than the clock-comparator
value. The latter may occur as a result of the
TOD clock either being set or wrapping to zero.

The clock comparator can be inspected by exe-
cuting the instruction STORE CLOCK
COMPARATOR and can be set to a specified
value by executing the SET CLOCK
COMPARATOR instruction.

The contents of the clock comparator are initial-
ized to zero by initial CPU reset.

Programming Notes:

1. An interruption request for the clock
comparator persists as long as the clock-
comparator value is less than that of the TOD
clock or as long as the TOD clock is in the
error state or the not-operational state. There-
fore, one of the following actions must be
taken after an external interruption for the
clock comparator has occurred and before the
CPU is again enabled for external inter-
ruptions: the value of the clock comparator
must be replaced, the TOD clock must be set,
the TOD clock must wrap to zero, or the
clock-comparator-subclass mask must be set
to zero. Otherwise, loops of external inter-
ruptions are formed.

2. The instruction STORE CLOCK or STORE
CLOCK EXTENDED may store a value which
is greater than that in the clock comparator,
even though the CPU is enabled for the clock-
comparator interruption. This is because the
TOD clock may be incremented one or more
times between when instruction execution is
begun and when the clock value is accessed.
In this situation, the interruption occurs when
the execution of STORE CLOCK or STORE
CLOCK EXTENDED is completed.

Chapter 4. Control 4-41

CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a specified amount of time has elapsed.

In a configuration with more than one CPU, each
CPU has a separate CPU timer.

The CPU timer is a binary counter with a format
which is the same as that of bits 0-63 of the TOD
clock, except that bit O is considered a sign. The
CPU timer nominally is decremented by sub-
tracting a one in bit position 51 every micro-
second. In models having a higher or lower resol-
ution, a different bit position is decremented at
such a frequency that the rate of decrementing the
CPU timer is the same as if a one were sub-
tracted in bit position 51 every microsecond. The
resolution of the CPU timer is such that the step-
ping rate is comparable to the instruction-
execution rate of the model.

The CPU timer requests an external interruption
with the interruption code 1005 hex whenever the
CPU-timer value is negative (bit 0 of the CPU
timer is one). The request does not remain
pending when the CPU-timer value is changed to
a nonnegative value.

When both the CPU timer and the TOD clock are
running, the stepping rates are synchronized such
that both are stepped at the same rate. Normally,
decrementing the CPU timer is not affected by
concurrent I/O activity. However, in some models
the CPU timer may stop during extreme /O
activity and other similar interference situations.
In these cases, the time recorded by the CPU
timer provides a more accurate measure of the
CPU time used by the program than would have
been recorded had the CPU timer continued to
step.

The CPU timer is decremented when the CPU is
in the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in
which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer may or may not be decremented when
the TOD clock is in the error, stopped, or not-
operational state.

4-42 z/Architecture Principles of Operation

Depending on the model, the CPU timer may or
may not be decremented when the CPU is in the
check-stop state.

The CPU timer can be inspected by executing the
instruction STORE CPU TIMER and can be set to
a specified value by executing the SET CPU
TIMER instruction.

The CPU timer is set to zero by initial CPU reset.

Programming Notes:

1. The CPU timer in association with a program
may be used both to measure CPU-execution
time and to signal the end of a time interval
on the CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as I/O interference, the
availability of pages, and instruction retry.
Therefore, repeated measurements of the
same sequence on the same installation may
differ.

3. The fact that a CPU-timer interruption does
not remain pending when the CPU timer is set
to a positive value eliminates the problem of
an undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled
for CPU-timer interruptions and the CPU timer
value goes from positive to negative.

4. The fact that CPU-timer interruptions are
requested whenever the CPU timer is nega-
tive (rather than just when the CPU timer goes
from positive to negative) eliminates the
requirement for testing a value to ensure that
it is positive before setting the CPU timer to
that value.

As an example, assume that a program being
timed by the CPU timer is interrupted for a
cause other than the CPU timer, external
interruptions are disallowed by the new PSW,
and the CPU-timer value is then saved by
STORE CPU TIMER. This value could be
negative if the CPU timer went from positive
to negative since the interruption. Subse-
quently, when the program being timed is to
continue, the CPU timer may be set to the
saved value by SET CPU TIMER. A
CPU-timer interruption occurs immediately
after external interruptions are again enabled
if the saved value was negative.

The persistence of the CPU-timer-interruption
request means, however, that after an
external interruption for the CPU timer has
occurred, the value of the CPU timer must be
replaced, the value in the CPU timer must
wrap to a positive value, or the
CPU-timer-subclass mask must be set to zero
before the CPU is again enabled for external
interruptions. Otherwise, loops of external
interruptions are formed.

5. The instruction STORE CPU TIMER may
store a negative value even though the CPU
is enabled for the interruption. This is
because the CPU-timer value may be decre-
mented one or more times between when
instruction execution is begun and when the
CPU timer is accessed. In this situation, the
interruption occurs when the execution of
STORE CPU TIMER is completed.

Externally Initiated Functions

Resets

Five reset functions are provided:

e CPU reset

¢ Initial CPU reset
¢ Subsystem reset
¢ Clear reset

¢ Power-on reset

CPU reset provides a means of clearing
equipment-check indications and any resultant
unpredictability in the CPU state with the least
amount of information destroyed. In particular, it
is used to clear check conditions when the CPU
state is to be preserved for analysis or resumption
of the operation. CPU reset sets the architectural
mode to the ESA/390 mode if it is caused by acti-
vation of the load-normal key. When CPU reset
sets the ESA/390 mode, it saves the current PSW
so that PSW can be restored by a SIGNAL
PROCESSOR set-architecture order that changes
the architectural mode back to z/Architecture.

Initial CPU reset provides the functions of CPU
reset together with initialization of the current
PSW, saved PSW, CPU timer, clock comparator,
prefix, and control, floating-point-control, and TOD

programmable registers. Initial CPU reset sets the
architectural mode to the ESA/390 mode if it is
caused by activation of the load-normal key.

Subsystem reset provides a means for clearing
floating interruption conditions as well as for
invoking I/O-system reset.

Clear reset causes initial CPU reset and sub-
system reset to be performed and, additionally,
clears or initializes all storage locations and regis-
ters in all CPUs in the configuration, with the
exception of the TOD clock. Such clearing is
useful in debugging programs and in ensuring
user privacy. Clear reset also releases all locks
used by the PERFORM LOCKED OPERATION
instruction. Clear reset sets the architectural
mode to the ESA/390 mode. Clearing does not
affect external storage, such as direct-access
storage devices used by the control program to
hold the contents of unaddressable pages.

CPU power-on reset causes initial CPU reset to
be performed and clears the contents of general
registers, access registers, and floating-point reg-
isters to zeros with valid checking-block code.
Locks used by PERFORM LOCKED OPERATION
and associated with the CPU are released unless
they are held by a CPU already powered on. The
power-on-reset sequences for the TOD clock,
main storage, and the channel subsystem may be
included as part of the CPU power-on sequence,
or the power-on sequence for these units may be
initiated separately. If CPU power-on reset estab-
lishes the configuration, it sets the architectural
mode to the ESA/390 mode; otherwise, it sets the
architectural mode to that of the CPUs already in
the configuration.

CPU reset, initial CPU reset, subsystem reset, and
clear reset may be initiated manually by using the
operator faciliies (see [Chapter 12, “Operator
[Facilities). Initial CPU reset is part of the initial-
program-loading function| Figure 4-10 on|
summatrizes how these four resets are
manually initiated. Power-on reset is performed
as part of turning power on. The reset actions are
tabulated in [Figure 4-11 on page 4-45 For infor-
mation concerning which resets can be performed
by the SIGNAL PROCESSOR instruction, see
[“Signal-Processor Orders” on page 4-52|

Chapter 4. Control 4-43

Function Performed on?

key

System-reset-clear
key

Load-normal key

Load-clear key

Clear reset?
Initial CPU reset,
followed by IPL

Clear reset2,
followed by IPL

Clear reset2

CPU reset

Clear reset?

CPU on Which Key | Other CPUs | Remainder of
Key Activated Was Activated in Config Configuration
System-reset-normal |CPU reset CPU reset Subsystem reset

Clear resets3

Subsystem reset

Clear resets3

Explanation:

other CPUs.

2 Only the CPU elements of this reset apply.

3 Only the non-CPU elements of this reset apply.

1 Activation of a system-reset or load key may change the config-
uration, including the connection with I/0, storage units, and

Figure 4-10. Manual Initiation of Resets

4-44

z/Architecture Principles of Operation

Reset Function
Sub- Initial Power
system| CPU CPU |Clear | -On
Area Affected Reset |Reset| Reset |Reset |Reset
CPU U S St St S
PSW U u/v# Cx1 C*1 C*1
Saved PSW for use by SIGNAL U U/sv C C C
PROCESSOR set-architecture
order
Prefix U u/v C o o
CPU timer U u/v C o C
Clock comparator u u/v C C C
TOD programmable register U u/v C C C
Control registers U u/v I I I
Floating-point-control U u/v C o C
register
Access registers U u/v u/v C C
General registers u u/v u/v C C
Floating-point registers U u/v u/v C C
Storage keys U U U C Cz
Volatile main storage U U U C (02
Nonvolatile main storage U U U C U
Expanded storage us us us us C2
TOD clock U4 u4 u4 us T2
Floating interruption C U U C C2
conditions
I/0 system R U u R RS
PERFORM LOCKED OPERATION U V) U RC RP
locks
Explanation:
If the architectural mode is changed from z/Architecture

to ESA/390 (the reset is due to activation of the load-
normal key on another CPU), the 16-byte PSW first is
saved, for use by the SIGNAL PROCESSOR set-architecture
order, and then does not remain unchanged. Instead, it
is changed to an eight-byte PSW, and the bits of the
eight-byte PSW are set as follows. Bits 0-11 and 13-32
are set equal to the same bits of the 16-byte PSW, bit 12
is set to one, and bits 33-63 are set equal to bits
97-127 of the 16-byte PSW. The PSW is invalid in the
ESA/390 mode if PSW bit 31 is one.

Clearing the contents of the PSW to zero causes the PSW
to be invalid if the architectural mode is ESA/390.

When the IPL sequence follows the reset function on that
CPU, the CPU does not necessarily enter the stopped
state, and the PSW is not necessarily cleared to zeros.

When these units are separately powered, the action is
performed only when the power for the unit is turned on.

Figure

4-11 (Part 1 of 3). Summary of Reset Actions

Chapter 4. Control

4-45

3

RC

RP

Explanation (Continued):

Access to change expanded storage at the time a reset
function is performed may cause the contents of the 4K-
byte block in expanded storage to be unpredictable.
Access to examine expanded storage does not affect the
contents of the expanded storage.

Access to the TOD clock by means of STORE CLOCK at the
time a reset function is performed does not cause the
value of the TOD clock to be affected.

When the channel subsystem is separately powered or con-
sists of multiple elements which are separately powered,
the reset action is applied only to those subchannels,
channel paths, and I/0 control units and devices on those
paths associated with the element which is being powered
on.

The condition or contents are cleared. If the area
affected is a field, the contents are set to zero with
valid checking-block code.

The state or contents are initialized. If the area af-
fected is a field, the contents are set to the initial
value with valid checking-block code.

I/0-system reset is performed in the channel subsystem.
As part of this reset, system reset is signaled to all
I/0 control units and devices attached to the channel
subsystem.

A11 locks in the configuration are released.

A11 Tlocks in the configuration are released except for
ones held by CPUs already powered on.

The CPU is reset; current operations, if any, are term-
inated; the ALB and TLB are cleared of entries; inter-
ruption conditions in the CPU are cleared; and the CPU
is placed in the stopped state. The effect of perform-
ing the start function is unpredictable when the stopped
state has been entered by means of a reset. If the reset
is initiated by the system-reset-clear, load-normal, or
load-clear key or by a CPU power-on reset that
establishes the configuration, the architectural mode is
set to the ESA/390 mode; otherwise, the architectural
mode is unchanged, except that power-on reset sets the
mode to that of the CPUs already in the configuration.

Figure

4-46

4-11 (Part 2 of 3). Summary of Reset Actions

z/Architecture Principles of Operation

Explanation (Continued):

T The TOD clock is initialized to zero and validated; it
enters the not-set state.

U The state, condition, or contents of the field remain
unchanged. However, the result is unpredictable if an
operation is in progress that changes the state, con-
dition, or contents of the field at the time of reset.

U/sv The saved PSW remains unchanged if the reset is due to
activation of the system-reset-normal key or the SIGNAL
PROCESSOR CPU-reset order, or it is set with the value of
the current 16-byte PSW if the reset is due to activation
of the load-normal key.

U/V The contents remain unchanged, provided the field is not
being changed at the time the reset function is per-
formed. However, on some models the checking-block code
of the contents may be made valid. The result is un-
predictable if an operation is in progress that changes
the contents of the field at the time of reset.

Figure 4-11 (Part 3 of 3). Summary of Reset Actions

. The ART-lookaside buffer

other processing sequence, such as an inter-
ruption, is terminated, and all program-
interruption and supervisor-call-interruption
conditions are cleared.

. Any pending external-interruption conditions

which are local to the CPU are cleared.
Floating external-interruption conditions are
not cleared.

. Any pending machine-check-interruption con-

ditions and error indications which are local to
the CPU and any check-stop states are
cleared. Floating machine-check-interruption
conditions are not cleared. Any machine-
check condition which is reported to all CPUs
in the configuration and which has been made
pending to a CPU is said to be local to the
CPU.

. All copies of prefetched instructions or oper-

ands are cleared. Additionally, any results to
be stored because of the execution of
instructions in the current checkpoint interval
are cleared.

and translation-
lookaside buffer are cleared of entries.

CPU Reset 6. If the reset is caused by activation of the load-
CPU reset causes the following actions: normal key on any CPU in the configuration,
: . . | the following actions occur:
1. The execution of the current instruction or

a. The architectural mode of the CPU (and of
all other CPUs in the configuration
because of the initial CPU reset or CPU
resets performed by them) is changed
from the z/Architecture mode to the
ESA/390 mode.

b. The current PSW is saved for subsequent
use by a SIGNAL PROCESSOR set-
architecture order that restores the
z/Architecture mode.

c. The current PSW is changed from 16
bytes to eight bytes. The bits of the eight-
byte PSW are set as follows: bits 0-11
and 13-32 are set equal to the same bits
of the 16-byte PSW, bit 12 is set to one,
and bits 33-63 are set equal to bits 97-127
of the 16-byte PSW.

A CPU reset caused by activation of the
system-reset-normal key or by the SIGNAL
PROCESSOR CPU-reset order, and any CPU
reset in the ESA/390 mode, do not affect the
saved z/Architecture PSW.

. The CPU is placed in the stopped state after

actions 1-6 have been completed. When the
IPL sequence follows the reset function on
that CPU, the CPU enters the load state at

Chapter 4. Control 4-47

the completion of the reset function and does
not necessarily enter the stopped state during
the execution of the reset operation.

Registers, storage contents, and the state of con-
ditions external to the CPU remain unchanged by
CPU reset. However, the subsequent contents of
the register, location, or state are unpredictable if
an operation is in progress that changes the con-
tents at the time of the reset. A lock held by the
CPU when executing PERFORM LOCKED OPER-
ATION is not released by CPU reset.

When the reset function in the CPU is initiated at
the time the CPU is executing an /O instruction or
is performing an 1/O interruption, the current oper-
ation between the CPU and the channel sub-
system may or may not be completed, and the
resultant state of the associated channel-
subsystem facility may be unpredictable.

Programming Notes:

1. Most operations which would change a state,
a condition, or the contents of a field cannot
occur when the CPU is in the stopped state.
However, some signal-processor functions
and some operator functions may change
these fields. To eliminate the possibility of
losing a field when CPU reset is issued, the
CPU should be stopped, and no operator
functions should be in progress.

2. If the architectural mode is changed to the
ESA/390 mode and bit 31 of the current PSW
is one, the PSW is invalid.

Initial CPU Reset

Initial CPU reset combines the CPU reset func-
tions with the following clearing and initializing
functions:

1. If the reset is caused by activation of the load-
normal key, the architectural mode of the CPU
(and of all other CPUs in the configuration) is
set to the ESA/390 mode.

2. The contents of the current PSW, saved PSW
(for use by the set-architecture order of
SIGNAL PROCESSOR), prefix, CPU timer,
clock comparator, and TOD programmable
register are set to zero. When the IPL
sequence follows the reset function on that
CPU, the contents of the PSW are not neces-
sarily set to zero.

4-48 z/Architecture Principles of Operation

3. The contents of the control registers are set to
their initial z/Architecture values. All 64 bits of
the control registers are set regardless of
whether the CPU is in the ESA/390 or the
z/Architecture architectural mode.

4. The contents of the floating-point-control reg-
ister are set to zero.

These clearing and initializing functions include
validation.

Setting the current PSW to zero when the CPU is
in the ESA/390 architectural mode at the end of
the operation causes the PSW to be invalid, since
PSW bit 12 must be one in that mode. Thus, in
this case if the CPU is placed in the operating
state after a reset without first introducing a new
PSW, a specification exception is recognized.

Subsystem Reset

Subsystem reset operates only on those elements
in the configuration which are not CPUs. It per-
forms the following actions:

1. I/O-system reset is performed by the channel
subsystem (see F[I/O-System Reset” on|

page 17-13).

2. All floating interruption conditions in the con-
figuration are cleared.

As part of [I/O-system reset, pending
I/O-interruption conditions are cleared, and system
reset is signaled to all control units and devices
attached to the channel subsystem (see
[1/0-System Reset” on page 17-13). The effect of
system reset on 1/O control units and devices and
the resultant control-unit and device state are
described in the appropriate System Library publi-
cation for the control unit or device. A system
reset, in general, resets only those functions in a
shared control unit or device that are associated
with the particular channel path signaling the
reset.

Clear Reset
Clear reset combines the initial-CPU-reset function
with an initializing function which causes the fol-
lowing actions:

1. The architectural mode of all CPUs in the con-
figuration is set to the ESA/390 mode.

2. The access, general, and floating-point regis-
ters of all CPUs in the configuration are set to
zero. All 64 bits of the general registers are

set to zero regardless of whether the CPU
was in the ESA/390 or z/Architecture architec-
tural mode when the clear-reset function was
initiated.

3. The contents of the main storage in the con-
figuration and the associated storage keys are
set to zero with valid checking-block code.

4. The locks used by any CPU in the configura-
tion when executing the PERFORM LOCKED
OPERATION instruction are released.

5. A subsystem reset is performed.

Validation is included in setting registers and in
clearing storage and storage keys.

Programming Notes:

1. The architectural mode is not changed by acti-
vation of the system-reset-normal key or by
execution of a SIGNAL PROCESSOR
CPU-reset or initial-CPU-reset order. All
CPUs in the configuration are always in the
same architectural mode.

2. For the CPU-reset operation not to affect the
contents of fields that are to be left
unchanged, the CPU must not be executing
instructions and must be disabled for all inter-
ruptions at the time of the reset. Except for
the operation of the CPU timer and for the
possibility of a machine-check interruption
occurring, all CPU activity can be stopped by
placing the CPU in the wait state and by disa-
bling it for /0O and external interruptions. To
avoid the possibility of causing a reset at the
time that the CPU timer is being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

3. CPU reset, initial CPU reset, subsystem reset,
and clear reset do not affect the value and
state of the TOD clock.

4. The conditions under which the CPU enters
the check-stop state are model-dependent and
include malfunctions that preclude the com-
pletion of the current operation. Hence, if
CPU reset or initial CPU reset is executed
while the CPU is in the check-stop state, the
contents of the PSW, registers, and storage
locations, including the storage keys and the
storage location accessed at the time of the
error, may have unpredictable values, and, in
some cases, the contents may still be in error

after the check-stop state is cleared by these
resets. In this situation, a clear reset is
required to clear the error.

Power-On Reset

The power-on-reset function for a component of
the machine is performed as part of the power-on
sequence for that component.

The power-on sequences for the TOD clock, main
storage, expanded storage, and channel sub-
system may be included as part of the CPU
power-on sequence, or the power-on sequence for
these units may be initiated separately. The fol-
lowing sections describe the power-on resets for
the CPU, TOD clock, main storage, expanded
storage, and channel subsystem. See also
[Chapter 17, “/O Support Functions.”] and the
appropriate System Library publication for the
channel subsystem, control units, and I/O devices.

CPU Power-On Reset: The power-on reset
causes initial CPU reset to be performed and may
or may not cause |/O-system reset to be per-
formed in the channel subsystem. The contents
of general registers, access registers, and floating-
point registers are cleared to zeros with valid
checking-block code. Locks used by PERFORM
LOCKED OPERATION and associated with the
CPU are released unless they are held by a CPU
already powered on. If the reset is associated
with establishing a configuration, the CPU s
placed in the ESA/390 mode; otherwise, the CPU
is placed in the architectural mode of the CPUs
already in the configuration.

TOD-Clock Power-On Reset: The power-on
reset causes the value of the TOD clock to be set
to zero with valid checking-block code and causes
the clock to enter the not-set state.

Main-Storage Power-On Reset: For volatile
main storage (one that does not preserve its con-
tents when power is off) and for storage keys,
power-on reset causes zeros with valid checking-
block code to be placed in these fields. The con-
tents of nonvolatile main storage, including the
checking-block code, remain unchanged.

Expanded-Storage Power-On Reset: The con-
tents of expanded storage are cleared to zeros
with valid checking-block code.

Chapter 4. Control 4-49

Channel-Subsystem Power-On Reset: The
channel-subsystem power-on reset causes
I/O-system reset to be performed in the channel
subsystem. (See [1/O-System Reset” on|

page 17-13})

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a
designated device and for initiating execution of
that program.

Some models may provide additional controls and
indications relating to IPL; this additional informa-
tion is specified in the System Library publication
for the model.

IPL is initiated manually by setting the load-unit-
address controls to a four-digit number to desig-
nate an input device and by subsequently acti-
vating the load-clear or load-normal key for a par-
ticular CPU. In the description which follows, the
term “this CPU” refers to the CPU in the config-
uration for which the load-clear or load-normal key
was activated.

Activating the load-clear key causes a clear reset
to be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU
reset to be propagated to all other CPUs in the
configuration, and a subsystem reset to be per-
formed on the remainder of the configuration.

Activating the load-clear key or the load-normal
key sets the architectural mode to the ESA/390
mode. For ease of reference, the additional ele-
ments of the description of ESA/390 initial
program loading are given below.

In the loading part of the operation, after the
resets have been performed, this CPU then enters
the load state. This CPU does not necessarily
enter the stopped state during the execution of the
reset operations. The load indicator is on while
the CPU is in the load state.

4-50 z/Architecture Principles of Operation

Subsequently, a channel-program read operation
is initiated from the 1/O device designated by the
load-unit-address controls. The effect of executing
the channel program is as if a format-0 CCW
beginning at absolute storage location 0 specified
a read command with the modifier bits zeros, a
data address of zero, a byte count of 24, the
chain-command and SLI flags ones, and all other
flags zeros.

The details of the channel-subsystem portion of
the IPL operation are defined in [lInitial Program|
Loading” on page 17-17

When the IPL I/O operation is completed success-
fully, the subsystem-identification word for the IPL
device is stored in absolute storage locations
184-187, zeros are stored in absolute storage
locations 188-191, and a new PSW is loaded from
absolute storage locations 0-7. If the PSW
loading is successful and no machine malfunctions
are detected, this CPU leaves the load state, and
the load indicator is turned off. If the rate control
is set to the process position, the CPU enters the
operating state, and the CPU operation proceeds
under control of the new PSW. If the rate control
is set to the instruction-step position, the CPU
enters the stopped state, with the manual indicator
on, after the new PSW is loaded.

If the IPL 1/O operation or the PSW loading is not
completed successfully, the CPU remains in the
load state, and the load indicator remains on. The
contents of absolute storage locations 0-7 are
unpredictable.

Store Status

The store-status operation places an architectural-
mode identification and the contents of the CPU
registers, except for the TOD clock, in assigned
storage locations.

[Figure 4-12 on page 4-51| lists the fields that are
stored, their length, and their location in main
storage.

Length | Absolute

Field in Bytes| Address
Architectural-mode id 1 163
F1-pt registers 0-15 128 4608
General registers 0-15 128 4736
Current PSW 16 4864
Prefix 4 4888
F1-pt control register 4 4892
TOD programmable register 4 4900
CPU timer 8 4904
Zeros 1 4912
Bits 0-55 of clock 7 4913

comparator

Access registers 0-15 64 4928
Control registers 0-15 128 4992

Figure 4-12. Assigned Storage Locations for Store
Status

During the execution of the store-status operation,
zeros are stored in bit positions 0-6, and a one is
stored in bit position 7, of absolute location 163,
the store-status architectural-mode identification.

When the CPU is in the ESA/390 architectural
mode, the store-status operation stores all zeros
at absolute location 163.

When bits 0-55 of the clock comparator are stored
beginning at absolute location 4913, zeros are
stored at absolute location 4912.

The contents of the registers are not changed. If
an error is encountered during the operation, the
CPU enters the check-stop state.

The store-status operation can be initiated manu-
ally by use of the store-status key (see
[Chapter 12, “Operator Facilities)). The store-
status operation can also be initiated at the
addressed CPU by executing SIGNAL
PROCESSOR, specifying the stop-and-
store-status order. Execution of SIGNAL
PROCESSOR specifying the store-status-
at-address order permits the same status informa-
tion, except for the store-status architectural-mode
identification, to be stored at a designated address

(see [Signal-Processor Orders” on page 4-52).

Multiprocessing

The multiprocessing facility provides for the inter-
connection of CPUs, via a common main storage,
in order to enhance system availability and to
share data and resources. The multiprocessing
facility includes the following facilities:

¢ Shared main storage
¢ CPU-to-CPU interconnection
e TOD-clock synchronization

Associated with these facilities is an external-
interruption condition (malfunction alert), which is
described in [Chapter 6, “Interruptions’} and
control-register positions for the
TOD-clock-sync-control bit and for the mask for
the external-interruption condition, which are listed
in FControl Registers” on page 4-7}

The channel subsystem, including all subchannels,
in a multiprocessing configuration can be
accessed by all CPUs in the configuration.
I/O-interruption conditions are floating and can be
accepted by any CPU in the configuration.

Shared Main Storage

The shared-main-storage facility permits more
than one CPU to have access to common main-
storage locations. All CPUs having access to a
common main-storage location have access to the
entire 4K-byte block containing that location and to
the associated storage key. The channel sub-
system and all CPUs in the configuration refer to a
shared main-storage location using the same
absolute address.

CPU-Address ldentification

Each CPU has a number assigned, called its CPU
address. A CPU address uniquely identifies one
CPU within a configuration. The CPU is desig-
nated by specifying this address in the
CPU-address field of SIGNAL PROCESSOR. The
CPU signaling a malfunction alert, emergency
signal, or external call is identified by storing this
address in the CPU-address field with the inter-
ruption. The CPU address is assigned during
system installation and is not changed as a result
of reconfiguration changes. The program can
determine the address of the CPU by using
STORE CPU ADDRESS.

Chapter 4. Control 4-51

CPU Signaling and Response

The CPU-signaling-and-response facility consists
of SIGNAL PROCESSOR and a mechanism to
interpret and act on several order codes. The
facility provides for communications among CPUs,
including transmitting, receiving, and decoding a
set of assigned order codes; initiating the specified
operation; and responding to the signaling CPU.
A CPU can address SIGNAL PROCESSOR to
itself. ~SIGNAL PROCESSOR is described in
[Chapter 10, “Control Instructions.”]

Signal-Processor Orders

The signal-processor orders are specified in bit
positions 56-63 of the second-operand address of
SIGNAL PROCESSOR and are encoded as
shown in Figure 4-13.

Code

(Hex) Order
00 Unassigned

01 Sense

02 External call

03 Emergency signal
04 Start

05 Stop

06 Restart

07 Unassigned

08 Unassigned

09 Stop and store status
0A Unassigned

0B Initial CPU reset

0C CPU reset

oD Set prefix

0OE Store status at address
OF-11 | Unassigned

12 Set architecture

13-FF | Unassigned

Figure 4-13. Encoding of Orders
The orders are defined as follows:

Sense: The addressed CPU presents its status

to the issuing CPU (see [‘Status Bits” on
for a definition of the bits). No other
action is caused at the addressed CPU. The
status, if not all zeros, is stored in the general reg-
ister designated by the R: field of the SIGNAL
PROCESSOR instruction, and condition code 1 is
set; if all status bits are zeros, condition code 0 is
set.

4-52 z/Architecture Principles of Operation

External Call: An external-call external-
interruption condition is generated at the
addressed CPU. The interruption condition

becomes pending during the execution of SIGNAL
PROCESSOR. The associated interruption occurs
when the CPU is enabled for that condition and
does not necessarily occur during the execution of
SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. Only one
external-call condition can be kept pending in a
CPU at a time. The order is effective only when
the addressed CPU is in the stopped or the oper-
ating state.

Emergency Signal: An emergency-signal
external-interruption condition is generated at the
addressed CPU. The interruption condition
becomes pending during the execution of SIGNAL
PROCESSOR. The associated interruption occurs
when the CPU is enabled for that condition and
does not necessarily occur during the execution of
SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. At any one
time the receiving CPU can keep pending one
emergency-signal condition for each CPU in the
configuration, including the receiving CPU itself.
The order is effective only when the addressed
CPU is in the stopped or the operating state.

Start: The addressed CPU performs the start
function (see |[‘Stopped, Operating, Load, and
[Check-Stop States” on page 4-1). The CPU does
not necessarily enter the operating state during
the execution of SIGNAL PROCESSOR. The
order is effective only when the addressed CPU is
in the stopped state. The effect of performing the
start function is unpredictable when the stopped
state has been entered by reset.

Stop: The addressed CPU performs the stop
function (see |‘Stopped, Operating, Load, and
[Check-Stop States” on page 4-1). The CPU does
not necessarily enter the stopped state during the
execution of SIGNAL PROCESSOR. The order is
effective only when the CPU is in the operating
state.

Restart: The addressed CPU performs the
restart operation (see [‘Restart Interruption” on|
lbage 6-47). The CPU does not necessarily
perform the operation during the execution of
SIGNAL PROCESSOR. The order is effective

only when the addressed CPU is in the stopped or
the operating state.

Stop and Store Status: The addressed CPU
performs the stop function, followed by the store-

status operation (see [‘Store Status” on|
[page 4-50). The CPU does not necessarily com-

plete the operation, or even enter the stopped
state, during the execution of SIGNAL
PROCESSOR. The order is effective only when
the addressed CPU is in the stopped or the oper-
ating state.

Initial CPU Reset: The addressed CPU performs
initial CPU reset (see [Resets” on page 4-43).
The execution of the reset does not affect the
architectural mode or other CPUs and does not
cause I/O to be reset. The reset operation is not
necessarily completed during the execution of
SIGNAL PROCESSOR.

CPU Reset: The addressed CPU performs CPU
reset (see fResets” on page 4-43). The execution
of the reset does not affect the architectural mode
or other CPUs and does not cause I/O to be reset.
The reset operation is not necessarily completed
during the execution of SIGNAL PROCESSOR.

Set Prefix: The contents of bit positions 33-50 of
the parameter register of the SIGNAL
PROCESSOR instruction are treated as a prefix
value, which replaces bits 33-50 of the prefix reg-
ister of the addressed CPU. Bits 0-32 and 51-63
of the parameter register are ignored. The order
is accepted only if the addressed CPU is in the
stopped state, the value to be placed in the prefix
register designates an 8K block which is available
in the configuration, and no other condition pre-
cludes accepting the order. Verification of the
stopped state of the addressed CPU and of the
availability of the designated storage is performed
during execution of SIGNAL PROCESSOR. If
accepted, the order is not necessarily completed
during the execution of SIGNAL PROCESSOR.

The parameter register has the following format:

/
B// 111111111
0

33 51 63
The set-prefix order is completed as follows:

Prefix Value

e |f the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit

54 (incorrect state) of the general register des-
ignated by the R: field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

¢ The value to be placed in the prefix register of
the addressed CPU is tested for the avail-
ability of the designated storage. The abso-
lute address of an 8K-byte area of storage is
formed by appending 13 zeros to the right and
33 zeros to the left of bits 33-50 of the param-
eter value. This address is treated as a 64-bit
absolute address regardless of whether the
sending and receiving CPUs are in the 24-bit,
31-bit, or 64-bit addressing mode. The two
4K-byte blocks of storage within the new
prefix area are accessed. The accesses to
the blocks are not subject to protection, and
the associated reference bits may or may not
be set to one. If either block is not available
in the configuration, the order is not accepted
by the addressed CPU, bit 55 (invalid param-
eter) of the general register designated by the
R: field of the SIGNAL PROCESSOR instruc-
tion is set to one, and condition code 1 is set.

¢ The value is placed in the prefix register of the
addressed CPU.

e The ALB and TLB of the addressed CPU are
cleared of their contents.

e A serializing and checkpoint-synchronizing
function is performed on the addressed CPU
following insertion of the new prefix value.

Store Status at Address: The contents of bit
positions 33-54 of the parameter register of the
SIGNAL PROCESSOR instruction are used as the
origin of a 512-byte area on a 512-byte boundary
in absolute storage into which the status of the
addressed CPU is stored. Bits 0-32 and 55-63 of
the parameter register are ignored.

The order is accepted only if the addressed CPU
is in the stopped state, the status-area origin des-
ignates a location which is available in the config-
uration, and no other condition precludes
accepting the order. Verification of the stopped
state of the addressed CPU and of the availability
of the designated storage is performed during exe-
cution of SIGNAL PROCESSOR. If accepted, the
order is not necessarily completed during the exe-
cution of SIGNAL PROCESSOR.

Chapter 4. Control 4-53

The parameter register has the following format:

/
B// 1111111
0

33 55 63
The store-status-at-address order is completed as
follows:

Status-Area Origin

e |f the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit
54 (incorrect state) of the general register des-
ignated by the R: field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

¢ The address of the area into which status is to
be stored is tested for availability. The abso-
lute address of a 512-byte area of storage is
formed by appending 9 zeros to the right and
33 zeros to the left of bits 33-54 of the param-
eter value. This address is treated as a 64-bit
absolute address regardless of whether the
sending and receiving CPUs are in the 24-bit,
31-bit, or 64-bit addressing mode. The
512-byte block of storage at this address is
accessed. The access is not subject to pro-
tection, and the associated reference bit may
or may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed CPU, bit 55
(invalid parameter) of the general register des-
ignated by the R: field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

¢ The status of the addressed CPU is placed in
the designated area. The information stored,
and the format of the area receiving the infor-
mation, are the same as for the stop-and-
store-status order, except that each field,
rather than being stored at an offset from the
beginning of absolute storage, is stored in the
designated area at the offsets listed in
Figure 4-14, and except that an architectural-
mode identification is not stored. Bytes
288-291 and 312-319 of the designated area
remain unchanged.

¢ A serialization and checkpoint-synchronization
function is performed on the addressed CPU
following storing of the status.

4-54

z/Architecture Principles of Operation

Length Offset

Field in Bytes| in Bytes
F1-pt registers 0-15 128 0
General registers 0-15 128 128
Current PSW 16 256
Prefix 4 280
F1-pt-control register 4 284
TOD programmable register 4 292
CPU timer 8 296
Zeros 1 304
Bits 0-55 of clock 7 305

comparator

Access registers 0-15 64 320
Control registers 0-15 128 384

Figure 4-14. Location of Status Fields in Designated
Area

Programming Note: The architectural mode of
the CPU that stored status in a designated area
normally is indicated by bit 12 of the PSW stored
at offset 256 in the area. The PSW is stored at
the same offset, 256, in both the ESA/390 mode
and the z/Architecture mode. Bit 12 is one in an
ESA/390 PSW and zero in a z/Architecture PSW.
The store-status-at-address order does not store
the architectural-mode identification that is stored
at absolute location 163 by the store-status opera-
tion and the stop-and-store-status order.

Set Architecture: The contents of bit positions
56-63 of the parameter register are used as a
code specifying an architectural mode to which all
CPUs in the configuration are to be set: code 0
specifies the ESA/390 mode, and codes 1 and 2*
specify the z/Architecture mode. Code 1 specifies
that, for each of all CPUs in the configuration, the
current ESA/390 PSW is to be transformed to a
z/Architecture PSW. Code 2 specifies that the
PSW of the CPU executing SIGNAL
PROCESSOR is to be transformed to a
z/Architecture PSW and that, for each of all other
CPUs in the configuration, the PSW is to be set
with the value of the saved PSW for that CPU.
The setting of the PSW with the value of the
saved PSW will restore the PSW that existed
when the CPU was last in the z/Architecture
mode, provided that the saved PSW has not been
set to all zeros by a reset.

Bits 0-55 of the parameter register are ignored.
The contents of the CPU-address register of the
SIGNAL PROCESSOR instruction are ignored; all
other CPUs in the configuration are considered to
be addressed.

The order is accepted only if the code is 0, 1, or
2, the CPU is not already in the mode specified by
the code, each of all other CPUs is in either the
stopped or the check-stop state, and no other con-
dition precludes accepting the order. If accepted,
the order is completed by all CPUs during the
execution of SIGNAL PROCESSOR. In no case
can different CPUs be in different architectural
modes.

The set-architecture order is completed as follows:

¢ If the code in the parameter register is not O,
1, or 2, or if the CPU is already in the archi-
tectural mode specified by the code, the order
is not accepted. Instead, bit 55 (invalid
parameter) of the general register designated
by the R: field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1
is set.

e If it is not true that all other CPUs in the con-
figuration are in the stopped or check-stop
state, the order is not accepted. Instead, bit
54 (incorrect state) of the general register des-
ignated by the R: field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

¢ The architectural mode of all CPUs in the con-
figuration is set as specified by the code.

e If the order changes the architectural mode
from ESA/390 to z/Architecture and the code
is 1, then, for each CPU in the configuration,
the eight-byte current PSW is changed to a
16-byte PSW, and the bits of the 16-byte
PSW are set as follows: bits 0-11 and 13-32
are set equal to the same bits of the eight-
byte PSW, bit 12 and bits 33-96 are set to
zeros, and bits 97-127 are set equal to bits
33-63 of the eight-byte PSW. Also, bit 19 of
the ESA/390 prefix, which becomes bit 51 of
the z/Architecture prefix, is set to zero.

If the code is 2, the PSW of the CPU exe-
cuting SIGNAL PROCESSOR and the prefix
values of all CPUs are set as in the code-1
case. For each of all other CPUs in the con-
figuration, the PSW is set with the value of a
PSW saved when the CPU last went from the
z/Architecture mode to the ESA/390 mode
because of a set-architecture order with code
0 or a CPU reset due to activation of the load-
normal key. However, the saved PSW has
been set to all zeros if the CPU performed a

reset, other than CPU reset, either at the time
of the architectural-mode transition or subse-
quently.

e |f the order changes the architectural mode
from z/Architecture to ESA/390, then, for each
CPU in the configuration, (1) the current
PSW, which is the updated PSW in the case
of the CPU executing SIGNAL PROCESSOR,
is saved, and (2) the 16-byte current PSW is
changed to an eight-byte PSW by setting the
bits of the eight-byte PSW as follows: bits
0-11 and 13-32 are set equal to the same bits
of the 16-byte PSW, bit 12 is set to one, and
bits 33-63 are set equal to bits 97-127 of the
16-byte PSW. Bit 51 of the z/Architecture
prefix, which becomes bit 19 of the ESA/390
prefix, remains unchanged.

e The ALBs and TLBs of all CPUs in the config-
uration are cleared of their contents.

¢ A serialization and checkpoint-synchronization
function is performed on all CPUs in the con-
figuration.

If the order changes the architectural mode from
z/Architecture to ESA/390 and the SIGNAL
PROCESSOR instruction causes occurrence of an
instruction-fetching PER event, only the rightmost
31 bits of the address of the instruction are stored
in the ESA/390 PER-address field.

Programming Notes:

1. If the set-architecture order changes the archi-
tectural mode from z/Architecture to ESA/390
and bit 31 of the PSW is one, the PSW s
invalid.

2. For a discussion of the relative performance of
the SIGNAL PROCESSOR orders, see the
programming note following the instruction

SIGNAL PROCESSOR in

[FControl Instructions.’]

Conditions Determining
Response

Conditions Precluding Interpretation of
the Order Code

The following situations preclude the initiation of
the order. The sequence in which the situations
are listed is the order of priority for indicating con-
currently existing situations:

1. The access path to the addressed CPU is

Chapter 4. Control 4-55

busy because a concurrently executed
SIGNAL PROCESSOR is using the
CPU-signaling-and-response facility. The
CPU which is concurrently executing the
instruction can be any CPU in the configura-
tion other than this CPU, and the CPU
address can be any address, including that of
this CPU or an invalid address. The order is
rejected. Condition code 2 is set.

2. The addressed CPU is not operational; that is,
it is not provided in the installation, it is not in
the configuration, it is in any of certain
customer-engineer test modes, or its power is
off. The order is rejected. Condition code 3
is set. This condition cannot arise as a result
of a SIGNAL PROCESSOR instruction exe-
cuted by a CPU addressing itself.

3. One of the following conditions exists at the
addressed CPU:

a. A previously issued start, stop, restar,
stop-and-store-status, set-prefix, or store-
status-at-address order has been
accepted by the addressed CPU, and exe-
cution of the function requested by the
order has not yet been completed.

b. A manual start, stop, restart, or store-
status function has been initiated at the
addressed CPU, and the function has not
yet been completed. This condition
cannot arise as a result of a SIGNAL
PROCESSOR instruction executed by a
CPU addressing itself.

If the currently specified order is sense,
external call, emergency signal, start, stop,
restart, stop and store status, set prefix, store
status at address, or set architecture, then the
order is rejected, and condition code 2 is set.
If the currently specified order is one of the
reset orders, or an unassigned or not-
implemented order, the order code is inter-

preted as described in[‘Status Bits.’

4. One of the following conditions exists at the
addressed CPU:

a. A previously issued initial-CPU-reset or
CPU-reset order has been accepted by
the addressed CPU, and execution of the

4-56 z/Architecture Principles of Operation

function requested by the order has not
yet been completed.

b. A manual-reset function has been initiated
at the addressed CPU, and the function
has not yet been completed. This condi-
tion cannot arise as a result of a SIGNAL
PROCESSOR instruction executed by a
CPU addressing itself.

If the currently specified order is sense,
external call, emergency signal, start, stop,
restart, stop and store status, set prefix, store
status at address, or set architecture, then the
order is rejected, and condition code 2 is set.
If the currently specified order is one of the
reset orders, or an unassigned or not-
implemented order, either the order is rejected
and condition code 2 is set or the order code

is interpreted as described in|‘Status Bits.’

When any of the conditions described in items 3
and 4 exists, the addressed CPU is referred to as
“busy.” Busy is not indicated if the addressed CPU
is in the check-stop state or when the operator-
intervening condition exists. A CPU-busy condi-
tion is normally of short duration; however, the
conditions described in item 3 may last indefinitely
because of a string of interruptions. In this situ-
ation, however, the CPU does not appear busy to
any of the reset orders.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and
receiver-check status conditions do not exist at the
addressed CPU, reset orders may be accepted
regardless of whether the addressed CPU has
completed a previously accepted order. This may
cause the previous order to be lost when it is only
partially completed, making unpredictable whether
the results defined for the lost order are obtained.

Status Bits

Various status conditions are defined whereby the
issuing and addressed CPUs can indicate their
responses to the specified order. The status con-
ditions and their bit positions in the general reg-
ister designated by the Ri field of the SIGNAL
PROCESSOR instruction are shown in
[Figure 4-15 on page 4-57}

Bit
Position Status Condition

32 Equipment check
33-53 Unassigned; zeros stored
54 Incorrect state

55 Invalid parameter

56 External-call pending
57 Stopped

58 Operator intervening

59 Check stop

60 Unassigned; zero stored
61 Inoperative

62 Invalid order

63 Receiver check

Figure 4-15. Status Conditions

The status condition assigned to bit position 32,
and to bit position 55 when the order is set archi-
tecture, are generated by the CPU executing
SIGNAL PROCESSOR. The remaining status
conditions are generated by the addressed CPU.

When the invalid-parameter condition exists for
the set-architecture order, bit 55 of the general
register designated by the R: field of the SIGNAL
PROCESSOR instruction is set to one, all other
bits in bit positions 32-63 are set to zeros, bits
0-31 of the register remain unchanged, and condi-
tion code 1 is set. No other action is taken.

When the equipment-check condition exists,
except when the invalid-parameter condition exists
for the set-architecture order, bit 32 of the general
register designated by the R: field of the SIGNAL
PROCESSOR instruction is set to one, unas-
signed bits in bit positions 32-63 of the status reg-
ister are set to zeros, the other status bits are
unpredictable, and bits 0-31 of the register remain
unchanged. In this case, condition code 1 is set
independent of whether the access path to the
addressed CPU is busy and independent of
whether the addressed CPU is not operational, is
busy, or has presented zero status.

When the access path to the addressed CPU is
not busy and the addressed CPU is operational
and does not indicate busy to the currently speci-
fied order, the addressed CPU presents its status
to the issuing CPU. These status bits are of two
types:

1. Status bits 54, 55 when the order is not set
architecture, 56-59, and 61 indicate the pres-
ence of the corresponding conditions in the

addressed CPU at the time the order code is
received. Except in response to the sense
order, each condition is indicated only when
the condition precludes the successful exe-
cution of the specified order, although invalid
parameter is not necessarily indicated when
any other precluding condition exists. In the
case of sense, all existing status conditions
are indicated; the operator-intervening condi-
tion is indicated if it precludes the execution of
any installed order.

2. Status bits 62 and 63 indicate that the corre-
sponding conditions were detected by the
addressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code
0 is set at the issuing CPU; if the presented status
is not all zeros, the order has been rejected, the
status is stored at the issuing CPU in the general
register designated by the R: field of the SIGNAL
PROCESSOR instruction, zeros are stored in the
unassigned positions in bit positions 32-63 of the
register, bits 0-31 of the register remain
unchanged, and condition code 1 is set.

When the order is set architecture, “the addressed
CPU” refers to each of the other CPUs in the con-
figuration. Those CPUs, in an unpredictable
order, are tested for a condition that causes
setting of condition code 1, 2, or 3. Conditions
are prioritized for a single CPU as if it were the
only CPU addressed, but there is no prioritization
across CPUs. If a condition is recognized, no
further CPUs are tested, the condition code corre-
sponding to the condition is set, and the execution
of SIGNAL PROCESSOR is completed.

The status conditions are defined as follows:

Equipment Check: This condition exists when
the CPU executing the instruction detects equip-
ment malfunctioning that has affected only the
execution of this instruction and the associated
order. The order code may or may not have been
transmitted and may or may not have been
accepted, and the status bits provided by the
addressed CPU may be in error. This condition is
not detected if the invalid-parameter condition for
the set-architecture order is detected.

Incorrect State: A set-prefix or store-status-

at-address order has been rejected because the
addressed CPU is not stopped, or a set-

Chapter 4. Control 4-57

architecture order has been rejected because not
all other CPUs are stopped or in the check-stop
state. When applicable, this status is generated
during execution of SIGNAL PROCESSOR and is
indicated concurrently with other indications of
conditions which preclude execution of the order,
except that this status is not generated if an
invalid-parameter condition exists for a set-
architecture order.

Invalid Parameter: This condition exists in two

cases:

1. The parameter value supplied with a set-prefix
or store-status-at-address order designates a
storage location which is not available in the
configuration. When applicable, this status is
generated during execution of SIGNAL
PROCESSOR, except that it is not necessarily
generated when another condition precluding
execution of the order also exists.

2. The parameter value supplied with a set-
architecture order either is not 0 or 1 or speci-
fies the current architectural mode. When
applicable, this status is generated during exe-
cution of SIGNAL PROCESSOR, and no other
status is generated.

External Call Pending: This condition exists
when an external-call interruption condition is
pending in the addressed CPU because of a pre-
viously issued SIGNAL PROCESSOR order. The
condition exists from the time an external-call
order is accepted until the resultant external inter-
ruption has been completed or a CPU reset
occurs. The condition may be due to the issuing
CPU or another CPU. The condition, when
present, is indicated only in response to sense
and to external call.

Stopped: This condition exists when the
addressed CPU is in the stopped state. The con-
dition, when present, is indicated only in response
to sense. This condition cannot be reported as a
result of a SIGNAL PROCESSOR instruction exe-
cuted by a CPU addressing itself.

Operator Intervening: This condition exists
when the addressed CPU is executing certain
operations initiated from local or remote operator
facilities. The particular manually initiated oper-
ations that cause this condition to be present
depend on the model and on the order specified.

4-58 z/Architecture Principles of Operation

The operator-intervening condition may exist when
the addressed CPU uses reloadable control
storage to perform an order and the required
licensed internal code has not been loaded by the
IML function. The operator-intervening condition,
when present, can be indicated in response to all
orders. Operator intervening is indicated in
response to sense if the condition is present and
precludes the acceptance of any of the installed
orders. The condition may also be indicated in
response to unassigned or uninstalled orders.
This condition cannot arise as a result of a
SIGNAL PROCESSOR instruction executed by a
CPU addressing itself.

Check Stop: This condition exists when the
addressed CPU is in the check-stop state. The
condition, when present, is indicated only in
response to sense, external call, emergency
signal, start, stop, restart, set prefix, store status
at address, and stop and store status. The condi-
tion may also be indicated in response to unas-
signed or uninstalled orders. This condition
cannot be reported as a result of a SIGNAL
PROCESSOR instruction executed by a CPU
addressing itself.

Inoperative: This condition indicates that the
execution of the operation specified by the order
code requires the use of a service processor
which is inoperative. The failure of the service
processor may have been previously reported by
a service-processor-damage machine-check con-
dition. The inoperative condition cannot occur for
the sense, external-call, or emergency-signal order
code.

Invalid Order: This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or
uninstalled order code is decoded.

Receiver Check: This condition exists when the
addressed CPU detects malfunctioning of equip-
ment during the communications associated with
the execution of SIGNAL PROCESSOR. When
this condition is indicated, the order has not been
initiated, and, since the malfunction may have
affected the generation of the remaining receiver
status bits, these bits are not necessarily valid. A
machine-check condition may or may not have
been generated at the addressed CPU.

The following chart summarizes which status con-
ditions are presented to the issuing CPU in
response to each order code.

Status Condition

63 Receiver check=
62 Invalid order
61 Inoperative
59 Check stop
58 Operator intervening# ———
57 Stopped
56 External call pending
55 Invalid parameter

54 Incorrect state

Order

Sense

External call
Emergency signal
Start

Stop

Restart

Stop

Initial CPU reset
CPU reset

Set prefix

Store status at addr.
Set architecture
Unassigned order

and store status

OXXXOODODOOLODOLOOOO
OXXXOOOOOOOOO
[cNoNoNoNoNoNoNoNoNoNOIP b 3
[cNoNoNoNoNoNoNoNoNoNoNOIP 8 |
XXX XXX XX X X XXX X4
MO XXOOXXXXXXXX+<4
XX XXX X XXX XOOO«
[alcloNoNoNoRoNoNoNoNoNoNol |
DX X XXX XXX XXX X4

Explanation:

#

The current state of the operator-intervening
condition may depend on the order code that
is being interpreted.

If a one is presented in the receiver-check bit
position, the values presented in the other bit
positions are not necessarily valid.

A zero is presented in this bit position regard-
less of the current state of this condition.

A one is presented in this bit position.

A zero or a one is presented in this bit posi-
tion, reflecting the current state of the corre-
sponding condition.

Either a zero or the current state of the corre-
sponding condition is indicated.

If the presented status bits are all zeros, the order

has

condition code 0.

been accepted, and the issuing CPU sets
If one or more ones are pre-

sented, the order has been rejected, and the
issuing CPU stores the status in the general reg-

ister

designated by the R: field of the SIGNAL

2. Two CPUs can

PROCESSOR instruction and sets condition code

Programming Notes:
1. All SIGNAL PROCESSOR orders except set

architecture (which in effect is addressed to all
other CPUs and affects all CPUs) can be
addressed to this same CPU. The following
are examples of functions obtained by a CPU
addressing SIGNAL PROCESSOR to itself:

a. Sense indicates whether an external-call
condition is pending.

b. External call and emergency signal cause
the corresponding interruption conditions
to be generated. External call can be
rejected because of a previously gener-
ated external-call condition.

c. Start sets condition code 0 and has no
other effect.

d. Stop causes the CPU to set condition
code 0, take pending interruptions for
which it is enabled, and enter the stopped
state.

e. Restart provides a means to store the
current PSW.

f. Stop and store status causes the machine
to stop and store all current status.

simultaneously execute
SIGNAL PROCESSOR, with each CPU
addressing the other. When this occurs, one
CPU, but not both, can find the access path
busy because of the transmission of the order
code or status bits associated with SIGNAL
PROCESSOR that is being executed by the
other CPU. Alternatively, both CPUs can find
the access path available and transmit the
order codes to each other. In particular, two
CPUs can simultaneously stop, restart, or
reset each other.

. To obtain status from another CPU which is in

the check-stop state by means of the store-
status-at-address order, a CPU reset opera-
tion should first be used to bring the CPU to
the stopped state. This reset order does not
alter the status, and, depending on the nature
of the malfunction, provides the best chance
of establishing conditions in the addressed
CPU which allow status to be obtained.

Chapter 4. Control 4-59

4-60 z/Architecture Principles of Operation

Chapter 5. Program Execution

Instructions
Operands
Instruction Formats

Register Operands
Immediate Operands
Storage Operands

Address Generation
Trimodal Addressing
Sequential Instruction-Address Generation
Operand-Address Generation

Formation of the Intermediate Value
Formation of the Operand Address . . .
Branch-Address Generation
Formation of the Intermediate Value
Formation of the Branch Address

Instruction Execution and Sequencing
Decision Making
Loop Control
Subroutine Linkage without the Linkage

Stack
Simple Branch Instructions
Other Linkage Instructions

Interruptions
Types of Instruction Ending
Completion
Suppression
Nullification
Termination
Interruptible Instructions
Point of Interruption
Unit of Operation
Execution of Interruptible Instructions
Condition-Code Alternative to
Interruptibility
Exceptions to Nullification and

Suppression

Storage Change and Restoration for
DAT-Associated Access Exceptions

Modification of DAT-Table Entries

Trial Execution for Editing Instructions
and Translate Instruction

Authorization Mechanisms

Mode Requirements
Extraction-Authority Control
PSW-Key Mask
Secondary-Space Control
Subsystem-Linkage Control
ASN-Translation Control
Authorization Index

PC-Number Translation

© Copyright IBM Corp. 1990-2003

PC-Number Translation Control
Control Register 5
PC-Number Translation Tables
Linkage-Table Entries
Entry-Table Entries
PC-Number-Translation Process
Obtaining the Linkage-Table
Designation
Linkage-Table Lookup
Entry-Table Lookup
Recognition of Exceptions during
PC-Number Translation
Home Address Space
Access-Register Introduction
Summary
Access-Register Functions
Access-Register-Specified Address
Spaces
Access-Register Instructions
Access-Reqgister Translation
Access-Register-Translation Control
Control Register 2
Control Register 5
Control Register 8
Access Registers
Access-Register-Translation Tables
Dispatchable-Unit Control Table and
Access-List Designations
Access-List Entries
ASN-Second-Table Entries
Access-Register-Translation Process
Selecting the Access-List-Entry Token .
Obtaining the Primary or Secondary
Address-Space-Control Element
Checking the First Byte of the ALET . .
Obtaining the Effective Access-List
Designation
Access-List Lookup
Locating the ASN-Second-Table Entry .
Authorizing the Use of the Access-List
Entry
Checking for Access-List-Controlled
Protection
Obtaining the Address-Space-Control
Element from the ASN-Second-Table
Entry
Recognition of Exceptions during
Access-Register Translation
ART-Lookaside Buffer
ALB Structure

Formation of ALB Entries 5-55
Use of ALB Entries 5-55
Modification of ART Tables 5-56
Subspace Groups L. 5-56
Subspace-Group Tables 5-56
Subspace-Group Dispatchable-Unit
Control Table 5-56
Subspace-Group ASN-Second-Table
Entries 5-58
Subspace-Replacement Operations 5-60
Linkage-Stack Introduction 5-61
Summary 5-61
Linkage-Stack Functions 5-61
Transferring Program Control 5-61
Branching Using the Linkage Stack 5-63
Adding and Retrieving Information 5-64
Testing Authorization 5-64
Program-Problem Analysis 5-65
Linkage-Stack Entry-Table Entries 5-65
Linkage-Stack Operations 5-66
Linkage-Stack-Operations Control 5-68
Control Register 15 5-68
Linkage Stack 5-68
Entry Descriptors 5-68
Header Entries 5-69
Trailer Entries 5-70
State Entries 5-71
Stacking Process 5-73
Locating Space for a New Entry 5-73
Forming the New Entry 5-74
Updating the Current Entry 5-75
Updating Control Register 15 5-75
Recognition of Exceptions during the
Stacking Process 5-75
Unstacking Process 5-76

Locating the Current Entry and

Processing a Header Entry 5-76
Checking for a State Entry 5-77
Restoring Information 5-77
Updating the Preceding Entry 5-78
Updating Control Register 15 5-78
Recognition of Exceptions during the

Unstacking Process 5-78

Sequence of Storage References 5-78
Conceptual Sequence 5-78
Overlapped Operation of Instruction

Execution 5-79

Divisible Instruction Execution 5-79

Interlocks for Virtual-Storage References . 5-80
Interlocks between Instructions 5-80
Interlocks within a Single Instruction 5-81
Instruction Fetching 5-82
ART-Table and DAT-Table Fetches 5-84
Storage-Key Accesses 5-84
Storage-Operand References 5-85
Storage-Operand Fetch References 5-86
Storage-Operand Store References 5-86
Storage-Operand Update References . 5-86
Storage-Operand Consistency 5-87
Single-Access References 5-88
Multiple-Access References 5-88
Block-Concurrent References 5-89
Consistency Specification 5-89
Relation between Operand Accesses 5-90
Other Storage References 5-91
Relation between Storage-Key Accesses . 5-91
Serialization 5-91
CPU Serialization 5-91
Channel-Program Serialization 5-93

Normally, operation of the CPU is controlled by
instructions in storage that are executed sequen-
tially, one at a time, left to right in an ascending
sequence of storage addresses. A change in the
sequential operation may be caused by branching,
LOAD PSW, interruptions, SIGNAL PROCESSOR
orders, or manual intervention.

Instructions
Each instruction consists of two major parts:

¢ An operation code (op code), which specifies
the operation to be performed

e The designation of the operands that partic-
ipate

5-2

z/Architecture Principles of Operation

Operands

Operands can be grouped in three classes: oper-
ands located in registers, immediate operands,
and operands in storage. Operands may be either
explicitly or implicitly designated.

Register operands can be located in general,
floating-point, access, or control registers, with the
type of register identified by the op code. The
register containing the operand is specified by
identifying the register in a four-bit field, called the
R field, in the instruction. For some instructions,
an operand is located in an implicitly designated
register, the register being implied by the op code.

Immediate operands are contained within the
instruction, and the 8-bit, 16-bit, or 32-bit field con-
taining the immediate operand is called the | field.

Operands in storage may have an implied length;
be specified by a bit mask; be specified by a
four-bit or eight-bit length specification, called the
L field, in the instruction; or have a length speci-
fied by the contents of a general register. The
addresses of operands in storage are specified by
means of a format that uses the contents of a
general register as part of the address. This
makes it possible to:

1. Specify a complete address by using an
abbreviated notation

2. Perform address manipulation using
instructions which employ general registers for
operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independent of the location of data
areas by directly using addresses received
from other programs

The address used to refer to storage either is con-
tained in a register designated by the R field in the
instruction or is calculated from a base address,
index, and displacement, specified by the B, X,
and D fields, respectively, in the instruction.

When the CPU is in the access-register mode, a B
or R field may designate an access register in
addition to being used to specify an address.

To describe the execution of instructions, oper-
ands are designated as first and second operands
and, in some cases, third operands.

In general, two operands participate in an instruc-
tion execution, and the result replaces the first
operand. However, CONVERT TO DECIMAL,
TEST BLOCK, and instructions with “store” in the
instruction name (other than STORE THEN AND
SYSTEM MASK and STORE THEN OR SYSTEM
MASK) use the second-operand address to desig-
nate a location in which to store. TEST AND
SET, COMPARE AND SWAP, and COMPARE
DOUBLE AND SWAP may perform an update on

the second operand. Except when otherwise
stated, the contents of all registers and storage
locations participating in the addressing or exe-
cution part of an operation remain unchanged.

Instruction Formats

An instruction is one, two, or three halfwords in
length and must be located in storage on a
halfword boundary. Each instruction is in one of
21 basic formats: E, I, RR, RRE, RRF, RX, RXE,
RXF, RXY, RS, RSY, RSL, RSI, RI, RIE, RIL, SI,
SlY, S, SSE, and SS, with three variations of
RRF, two of RS, RSY, and RIL, and four of SS.
See Figure 5-1.

E Format

Op Code
0 15
I Format
Op Code I
0 8 15
RR Format

Op Code | R1 | R2

0 8 12 15
RRE Format
Op Code /1111111 Ry | Rz
0 16 24 28 31
RRF Format
Op Code Ri [////| Rs | Rz
0 16 20 24 28 31
Op Code Ms |////| R1 | Rz
0 16 20 24 28 31
Op Code Rs | Ma | R1 | Rz
0 16 20 24 28 31

Figure 5-1 (Part 1 of 4). Basic Instruction Formats

5-3

Chapter 5. Program Execution

RX Format

Op Code | R1 | X2 | B2 D2

0 8 12 16 20 31

RXE Format

Op Code | R1 | Xz | B2 Dé //1/1///]|0p Code

0 8 12 16 20 ! 32 40 47

RXF Format

Op Code | Rs | X2 | B2 62 Ri |////]|0p Code

0 8 12 16 20/ 32 36 40 47

RXY Format

Op Code | R1 | Xz | B2 Diz DH2 Op Code

0 8 12 16 20 ! 32 40 47

RS Format

Op Code | R1 | Rs | B2 D2

0 8 12 16 20 31

Op Code | R1 | M3 | B2 D2

0 8 12 16 20 31

RSY Format

Op Code | R1 | Rs | B2 D(z DH2 Op Code

0 8 12 16 20 ! 32 40 47
/

Op Code | R1 | M3 | B2 | DL2 DH2 Op Code

0 8 12 16 20 ! 32 40 47

Figure 5-1 (Part 2 of 4). Basic Instruction Formats

5-4

z/Architecture Principles of Operation

RSL Format

Op Code | L1 |////| Ba D{ //11/////]|0p Code

0 8 12 16 20 ! 32 40 47

RSI Format

Op Code | R1 | Rs I2

0 8 12 16 31

RI Format

Op Code | R1 |OpCd I2

0 8 12 16 31

RIE Format

Op Code | R1 | Rs éz /11/1///]|0p Code

0 8 12 16 ! 32 40 47

RIL Format

Op Code | Ri |OpCd Ii

0 8 12 16 ! 47
/

Op Code | M1 |OpCd I2

0 8 12 16 ! 47

SI Format

Op Code I2 B1 D1

0 8 16 20 31

SIY Format

Op Code I2 B1 Di1 DH1 |Op Code

0 8 16 20 ! 32 40 47

Figure 5-1 (Part 3 of 4). Basic Instruction Formats

S Format
Op Code B2 D2
0 16 20 31
SS Format
/ /
Op Code L B1 D1 B2 D2
/ /
0 8 16 20 32 36 47
/ /
Op Code | L1 | L2 | B D1 B2 D2
/ /
0 8 12 16 20 32 36 47
/ /
Op Code | R1 | Rs | B D1 B2 D2
/ /
0 8 12 16 20 32 36 47
/ /
Op Code | R1 | Rs | Bz D2 Ba Da
/ /
0 8 12 16 20 32 36 47
SSE Format
/ /
Op Code B1 D1 B2 D2
/ /
0 16 20 32 36 47

Figure 5-1 (Part 4 of 4). Basic Instruction Formats

Instruction fields shown in [Figure 5-1 on page 5-3|
as containing slashes (/) are currently unassigned.
These fields in an instruction should contain zeros;
otherwise, the program may not operate
compatibly in the future.

Some instructions contain fields that vary slightly
from the basic format, and in some instructions
the operation performed does not follow the
general rules stated in this section. All of these
exceptions are explicitly identified in the individual
instruction descriptions.

The format names indicate, in general terms, the
classes of operands which participate in the oper-
ation and some details about fields:

e E denotes an operation using implied oper-
ands and an extended op-code field.

¢ | denotes an immediate operation.

¢ RR denotes a register-and-register operation.

¢ RRE denotes a register-and-register operation
and an extended op-code field.

* RRF denotes a register-and-register operation,
an extended op-code field, and an additional
R field, M field, or both.

¢ RX denotes a
operation.

¢ RXE denotes a register-and-indexed-storage
operation and an extended op-code field.

¢ RXF denotes a register-and-indexed-storage
operation, an extended op-code field, and an
additional R field.

¢ RXY denotes a register-and-indexed-storage
operation, an extended op-code field, and a
long displacement field.

¢ RS denotes a register-and-storage operation.

¢ RSY denotes a register-and-storage operation,
an extended op-code field, and a long dis-
placement field.

e RSL denotes a storage operation (with an
instruction format derived from the ESA/390
RSE format).

¢ RSI denotes a register-and-immediate opera-
tion.

¢ RI denotes a register-and-immediate operation
and an extended op-code field.

¢ RIE denotes a register-and-immediate opera-
tion and a longer extended op-code field.

¢ RIL denotes a register-and-immediate opera-
tion, an extended op-code field, and a longer
immediate field.

¢ Sl denotes a storage-and-immediate opera-
tion.

¢ SIY denotes a storage-and-immediate opera-
tion and a long displacement field.

e S denotes an operation using an implied
operand and storage.

¢ SS denotes a storage-and-storage operation.

e SSE denotes a storage-and-storage operation
and an extended op-code field.

In the RR, RX, RS, RSI, Sl, and SS formats, the
first byte of an instruction contains the op code.
In the E, RRE, RRF, S, and SSE formats, the first
two bytes of an instruction contain the op code,
except that for some instructions in the S format,
the op code is in only the first byte. In the Rl and
RIL formats, the op code is in the first byte and bit
positions 12-15 of an instruction. In the RXE,
RXF, RXY, RSY, RSL, RIE, and SIY formats, the
op code is in the first byte and the sixth byte of an
instruction.

register-and-indexed-storage

The first two bits of the first or only byte of the op
code specify the length and format of the instruc-
tion, as follows:

5-5

Chapter 5. Program Execution

Bit Instruction
Positions| Length (in Instruction

0-1 Halfwords) Format

00 One E/RR

01 Two RX

10 Two RRE/RRF/RX/RS/RSI/RI/
SI/S

11 Three RXE/RXF/RXY/RSY/RSL/

RIE/RIL/SS/SSE/SIY

In the format illustration for each individual instruc-
tion description, the op-code field or fields show
the op code as hexadecimal digits within single
quotes. The hexadecimal representation uses 0-9
for the binary codes 0000-1001 and A-F for the
binary codes 1010-1111.

The remaining fields in the format illustration for
each instruction are designated by code names,
consisting of one or two letters and possibly a
subscript number. The subscript number denotes
the operand to which the field applies.

Register Operands

In the RR, RRE, RRF, RX, RXE, RXF, RXY, RS,
RSY, RSI, RI, RIE, and RIL formats, the contents
of the register designated by the R: field are
called the first operand. The register containing
the first operand is sometimes referred to as the
“first-operand location,” and sometimes as ‘“reg-
ister R1.” In the RR, RRE, and RRF formats, the
Rz field designates the register containing the
second operand, and the Rz field may designate
the same register as Ri. In the RRF, RXF, RS,
RSY, RSI, and RIE formats, the use of the Rs
field depends on the instruction. In the RS and
RSY formats, the Rs field may instead be an Ms
field specifying a mask.

The R field designates a general or access reg-
ister in the general instructions, a general register
in the control instructions, and a floating-point reg-
ister in the floating-point instructions. However, in
the instructions EXTRACT STACKED REGIS-
TERS and LOAD ADDRESS EXTENDED, the R
field designates both a general register and an
access register, and, in the instructions LOAD
CONTROL and STORE CONTROL, the R field
designates a control register. (This paragraph
refers only to register operands, not to the use of
access registers in addressing storage operands.)

5-6 z/Architecture Principles of Operation

For access and floating-point registers, unless oth-
erwise indicated in the individual instruction
description, the register operand is one register in
length (32 bits for an access register and 64 bits
for a floating-point register), and the second
operand is the same length as the first. For
general and control registers, the register operand
is in bit positions 32-63 of the 64-bit register or
occupies the entire register, depending on the
instruction.

Immediate Operands

In the | format, the contents of the eight-bit
immediate-data field, the | field of the instruction,
are directly used as the operand.

In the Sl format, the contents of the eight-bit
immediate-data field, the 12 field of the instruction,
are used directly as the second operand. The B:
and D: fields specify the first operand, which is
one byte in length. In the SIY format, the opera-
tion is the same except that DH: and DL: fields
are used instead of a D1 field.

In the RI format for the instructions ADD
HALFWORD IMMEDIATE, COMPARE
HALFWORD IMMEDIATE, LOAD HALFWORD
IMMEDIATE, and MULTIPLY HALFWORD IMME-
DIATE, the contents of the 16-bit Iz field of the
instruction are used directly as a signed binary
integer, and the R: field specifies the first
operand, which is 32 or 64 bits in length,
depending on the instruction. For the instruction
TEST UNDER MASK (TMHH, TMHL, TMLH,
TMLL), the contents of the Iz field are used as a
mask, and the R field specifies the first operand,
which is 64 bits in length. For the instructions
INSERT IMMEDIATE, AND IMMEDIATE, OR
IMMEDIATE, and LOAD LOGICAL IMMEDIATE,
the contents of the Iz field are used as an
unsigned binary integer or a logical value, and the
R: field specifies the first operand, which is 64
bits in length.

For the relative-branch instructions in the Rl and
RSI formats, the contents of the 16-bit |2 field are
used as a signed binary integer designating a
number of halfwords. This number, when added
to the address of the branch instruction, specifies
the branch address. In the RIL format, the Iz field
is 32 bits and is used in the same way.

Storage Operands

The use of B and R fields to designate access
registers to refer to storage operands is described
in [‘Access-Reqister-Specified Address Spaces” on|

pag 6

In the RSL, SI, SS, and SSE formats, the contents
of the general register designated by the B: field
are added to the contents of the D1 field to form
the first-operand address. In the RS, RSY, S,
SlY, SS, and SSE formats, the contents of the
general register designated by the B: field are
added to the contents of the D2 field or DH2 and
DL2 fields to form the second-operand address.
In the RX, RXE, RXF, and RXY formats, the con-
tents of the general registers designated by the Xz
and B: fields are added to the contents of the D2
field or DH2 and DL: fields to form the second-
operand address.

When a general register contains a 24-bit or 32-bit
length of a storage operand, the length is an
unsigned binary integer, except that it is signed for
COMPARE UNTIL SUBSTRING EQUAL, with a
negative value treated as zero. Similarly, the con-
tents of an L, L1, or Lz field of an instruction are
an unsigned binary integer.

In the SS format with a single, eight-bit length
field, for the instructions AND (NC), EXCLUSIVE
OR (XC), MOVE (MVC), MOVE NUMERICS,
MOVE ZONES, and OR (OC), L specifies the
number of additional operand bytes to the right of
the byte designated by the first-operand address.
Therefore, the length in bytes of the first operand
is 1-256, corresponding to a length code in L of
0-255. Storage results replace the first operand
and are never stored outside the field specified by
the address and length. In this format, the second
operand has the same length as the first operand.
There are variations of the preceding definition
that apply to EDIT, EDIT AND MARK, PACK
ASCIl, PACK UNICODE, TRANSLATE, TRANS-
LATE AND TEST, UNPACK ASCII, and UNPACK
UNICODE.

In the SS format with two length fields, and in the
RSL format, L1 specifies the number of additional
operand bytes to the right of the byte designated
by the first-operand address. Therefore, the
length in bytes of the first operand is 1-16, corre-
sponding to a length code in L1 of 0-15. Similarly,
L2 specifies the number of additional operand
bytes to the right of the location designated by the

second-operand address. Results replace the first
operand and are never stored outside the field
specified by the address and length. If the first
operand is longer than the second, the second
operand is extended on the left with zeros up to
the length of the first operand. This extension
does not modify the second operand in storage.

In the SS format with two R fields, as used by the
MOVE TO PRIMARY, MOVE TO SECONDARY,
and MOVE WITH KEY instructions, the contents
of the general register specified by the R: field are
a 32-bit unsigned value called the true length.
The operands are both of a length called the
effective length. The effective length is equal to
the true length or 256, whichever is less. The
instructions set the condition code to facilitate pro-
gramming a loop to move the total number of
bytes specified by the true length. The SS format
with two R fields is also used to specify a range of
registers and two storage operands for the LOAD
MULTIPLE DISJOINT instruction and to specify
one or two registers and one or two storage oper-
ands for the PERFORM LOCKED OPERATION
instruction.

Address Generation

Trimodal Addressing

Bits 31 and 32 of the current PSW are the
addressing-mode bits. Bit 31 is the extended-
addressing-mode bit, and bit 32 is the basic-
addressing-mode bit. These bits control the size
of the effective address produced by address gen-
eration. When bits 31 and 32 of the current PSW
both are =zeros, the CPU is in the 24-bit
addressing mode, and 24-bit instruction and
operand effective addresses are generated.
When bit 31 of the current PSW is zero and bit 32
is one, the CPU is in the 31-bit addressing mode,
and 31-bit instruction and operand effective
addresses are generated. When bits 31 and 32 of
the current PSW are both one, the CPU is in the
64-bit addressing mode, and 64-bit instruction and
operand effective addresses are generated.

Execution of instructions by the CPU involves gen-
eration of the addresses of instructions and oper-
ands. This section describes address generation
as it applies to most instructions. In some
instructions, the operation performed does not

Chapter 5. Program Execution ~ 5-7

follow the general rules stated in this section. All
of these exceptions are explicitly identified in the
individual instruction descriptions.

Sequential Instruction-Address
Generation

When an instruction is fetched from the location
designated by the current PSW, the instruction
address is increased by the number of bytes in
the instruction, and the instruction is executed.
The same steps are then repeated by using the
new value of the instruction address to fetch the
next instruction in the sequence.

In the 24-bit addressing mode, instruction
addresses wrap around, with the halfword at
instruction address 224 - 2 being followed by the
halfword at instruction address 0. Thus, in the
24-bit addressing mode, any carry out of PSW bit
position 104, as a result of updating the instruction
address, is lost. In the 31-bit or 64-bit addressing
mode, instruction addresses similarly wrap around,
with the halfword at instruction address 231 - 2 or
264 - 2 respectively, followed by the halfword at
instruction address 0. A carry out of PSW bit
position 97 or 64, respectively, is lost.

Operand-Address Generation

Formation of the Intermediate Value

An operand address that refers to storage is
derived from an intermediate value, which either is
contained in a register designated by an R field in
the instruction or is calculated from the sum of
three binary numbers: base address, index, and
displacement.

The base address (B) is a 64-bit number con-
tained in a general register specified by the
program in a four-bit field, called the B field, in the
instruction. Base addresses can be used as a
means of independently addressing each program
and data area. In array-type calculations, it can
designate the location of an array, and, in record-
type processing, it can identify the record. The
base address provides for addressing the entire
storage. The base address may also be used for
indexing.

The index (X) is a 64-bit number contained in a
general register designated by the program in a

5-8

z/Architecture Principles of Operation

four-bit field, called the X field, in the instruction.
It is included only in the address specified by the
RX-, RXE-, RXF-, and RXY-format instructions.
The RX-, RXE-, RXF-, and RXY-format
instructions permit double indexing; that is, the
index can be used to provide the address of an
element within an array.

The displacement (D) is a 12-bit or 20-bit number
contained in a field, called the D field, in the
instruction. A 12-bit displacement is unsigned and
provides for relative addressing of up to 4,095
bytes beyond the location designated by the base
address. A 20-bit displacement is signed and pro-
vides for relative addressing of up to 524,287
bytes beyond the base-address location or of up
to 524,288 bytes before it. In array-type calcu-
lations, the displacement can be used to specify
one of many items associated with an element. In
the processing of records, the displacement can
be used to identify items within a record.

A 12-bit displacement is in bit positions 20-31 of
instructions of certain formats (see
[bage 5-3). In instructions of some formats, a
second 12-bit displacement also is in the instruc-
tion, in bit positions 36-47.

A 20-bit displacement is in instructions of only the
RSY, RXY, or SlY format. In these instructions,
the D field consists of a DL (low) field in bit posi-
tions 20-31 and of a DH (high) field in bit positions
32-39. When the long-displacement facility is
installed, the numeric value of the displacement is
formed by appending the contents of the DH field
on the left of the contents of the DL field. When
the long-displacement facility is not installed, the
numeric value of the displacement is formed by
appending eight zero bits on the left of the con-
tents of the DL field, and the contents of the DH
field are ignored.

In forming the intermediate sum, the base address
and index are treated as 64-bit binary integers. A
12-bit displacement is treated as a 12-bit unsigned
binary integer, and 52 zero bits are appended on
the left. A 20-bit displacement is treated as a
20-bit signed binary integer, and 44 bits equal to
the sign bit are appended on the left. The three
are added as 64-bit binary numbers, ignoring
overflow. The sum is always 64 bits long and is
used as an intermediate value to form the gener-
ated address. The bits of the intermediate value
are numbered 0-63.

A zero in any of the B1, Bz, or Xz fields indicates
the absence of the corresponding address compo-
nent. For the absent component, a zero is used
in forming the intermediate sum, regardless of the
contents of general register 0. A displacement of
zero has no special significance.

When an instruction description specifies that the
contents of a general register designated by an R
field are used to address an operand in storage,
the register contents are used as the 64-bit inter-
mediate value.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed before registers, if any, are changed by
the operation.

Unless otherwise indicated in an individual instruc-
tion definition, the generated operand address
designates the leftmost byte of an operand in
storage.

Formation of the Operand Address

The generated operand address is always 64 bits
long, and the bits are numbered 0-63. The
manner in which the generated address is
obtained from the intermediate value depends on
the current addressing mode. In the 24-bit
addressing mode, bits 0-39 of the intermediate
value are ignored, bits 0-39 of the generated
address are forced to be zeros, and bits 40-63 of
the intermediate value become bits 40-63 of the
generated address. In the 31-bit addressing
mode, bits 0-32 of the intermediate value are
ignored, bits 0-32 of the generated address are
forced to be zero, and bits 33-63 of the interme-
diate value become bits 33-63 of the generated
address. In the 64-bit addressing mode, bits 0-63
of the intermediate value become bits 0-63 of the
generated address.

Programming Note: Negative values may be
used in index and base-address registers. Bits
0-32 of these values are ignored in the 31-bit
addressing mode, and bits 0-39 are ignored in the
24-bit addressing mode.

Branch-Address Generation

Formation of the Intermediate Value

For branch instructions, the address of the next
instruction to be executed when the branch is
taken is called the branch address. Depending on
the branch instruction, the instruction format may
be RR, RRE, RX, RXY, RS, RSY, RSI, RI, RIE, or
RIL.

In the RS, RSY, RX, and RXY formats, the branch
address is specified by a base address, a dis-
placement, and, in the RX and RXY formats, an
index. In these formats, the generation of the
intermediate value follows the same rules as for
the generation of the operand-address interme-
diate value.

In the RR and RRE formats, the contents of the
general register designated by the Rz field are
used as the intermediate value from which the
branch address is formed. General register 0
cannot be designated as containing a branch
address. A value of zero in the Rz field causes
the instruction to be executed without branching.

The relative-branch instructions are in the RSI, Rl,
RIE, and RIL formats. In the RSI, Rl, and RIE
formats for the relative-branch instructions, the
contents of the |2 field are treated as a 16-bit
signed binary integer designating a number of
halfwords. In the RIL format, the contents of the
l2 field are treated as a 32-bit signed binary
integer designating a number of halfwords. The
branch address is the number of halfwords desig-
nated by the |2 field added to the address of the
relative-branch instruction.

The 64-bit intermediate value for a relative branch
instruction in the RSI, RI, RIE, or RIL format is the
sum of two addends, with overflow from bit posi-
tion 0 ignored. In the RSI, RI, or RIE format, the
first addend is the contents of the |2 field with one
zero bit appended on the right and 47 bits equal
to the sign bit of the contents appended on the
left. In the RIL format, the first addend is the con-
tents of the |2 field with one zero bit appended on
the right and 31 bits equal to the sign bit of the
contents appended on the left. In all formats, the
second addend is the 64-bit address of the branch
instruction. The address of the branch instruction
is the instruction address in the PSW before that
address is updated to address the next sequential
instruction, or it is the address of the target of the

Chapter 5. Program Execution 5-9

EXECUTE instruction if EXECUTE is used. If
EXECUTE is used in the 24-bit or 31-bit
addressing mode, the address of the branch
instruction is the target address with 40 or 33
zeros, respectively, appended on the left.

Formation of the Branch Address

The branch address is always 64 bits long, with
the bits numbered 0-63. The branch addresss
replaces bits 64-127 of the current PSW.

The manner in which the branch address is
obtained from the intermediate value depends on
the addressing mode. For those branch
instructions which change the addressing mode,
the new addressing mode is used. In the 24-bit
addressing mode, bits 0-39 of the intermediate
value are ignored, bits 0-39 of the branch address
are made zeros, and bits 40-63 of the interme-
diate value become bits 40-63 of the branch
address. In the 31-bit addressing mode, bits 0-32
of the intermediate value are ignored, bits 0-32 of
the branch address are made zeros, and bits
33-63 of the intermediate value become bits 33-63
of the branch address. In the 64-bit addressing
mode, bits 0-63 of the intermediate value become
bits 0-63 of the branch address.

For several branch instructions, branching
depends on satisfying a specified condition.
When the condition is not satisfied, the branch is
not taken, normal sequential instruction execution
continues, and the branch address is not used.
When a branch is taken, bits 0-63 of the branch
address replace bits 64-127 of the current PSW.
The branch address is not used to access storage
as part of the branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of
the instruction at the branch location are not
recognized as part of the branch operation but
instead are recognized as exceptions associated
with the execution of the instruction at the branch
location.

A branch instruction, such as BRANCH AND
SAVE, can designate the same general register
for branch-address computation and as the
location of an operand. Branch-address computa-

5-10 z/Architecture Principles of Operation

tion is completed before the remainder of the
operation is performed.

Instruction Execution and
Sequencing

The program-status word (PSW), described in
[Chapter_4, “Control” kontains information required
for proper program execution. The PSW is used
to control instruction sequencing and to hold and
indicate the status of the CPU in relation to the
program currently being executed. The active or
controlling PSW is called the current PSW.

Branch instructions perform the functions of deci-
sion making, loop control, and subroutine linkage.
A branch instruction affects instruction sequencing
by introducing a new instruction address into the
current PSW. The relative-branch instructions
with a 16-bit |2 field allow branching to a location
at an offset of up to plus 64K - 2 bytes or minus
64K bytes relative to the location of the branch
instruction, without the use of a base register.
The relative-branch instructions with a 32-bit |2
field allow branching to a location at an offset of
up to plus 4G - 2 bytes or minus 4G bytes rela-
tive to the location of the branch instruction,
without the use of a base register.

Decision Making

Facilities for decision making are provided by the
BRANCH ON CONDITION, BRANCH RELATIVE
ON CONDITION, and BRANCH RELATIVE ON
CONDITION LONG instructions. These
instructions inspect a condition code that reflects
the result of a majority of the arithmetic, logical,
and |/O operations. The condition code, which
consists of two bits, provides for four possible
condition-code settings: 0, 1, 2, and 3.

The specific meaning of any setting depends on
the operation that sets the condition code. For
example, the condition code reflects such condi-
tions as zero, nonzero, first operand high, equal,
overflow, and subchannel busy. Once set, the
condition code remains unchanged until modified
by an instruction that causes a different condition
code to be set. See|Appendix_C, “Condition-Code]
[Settings” on _page C-1 for a summary of the
instructions which set the condition code.

Loop Control

Loop control can be performed by the use of
BRANCH ON CONDITION, BRANCH RELATIVE
ON CONDITION, and BRANCH RELATIVE ON
CONDITION LONG to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arith-
metic and tests, BRANCH ON COUNT, BRANCH
ON INDEX HIGH, and BRANCH ON INDEX LOW
OR EQUAL are provided, and relative-branch
equivalents of these instructions are also provided.
These branches, being specialized, provide
increased performance for these tasks.

Subroutine Linkage without the
Linkage Stack

This section describes only the methods for sub-
routine linkage that do not use the linkage stack.
For the linkage extensions provided by the linkage
stack, see [‘Linkage-Stack Introduction” on|
(Those extensions include a different
method of operation of the PROGRAM CALL
instruction and also the BRANCH AND STACK
and PROGRAM RETURN instructions.)

Simple Branch Instructions

Subroutine linkage when a change of the
addressing mode is not required is provided by
the BRANCH AND LINK and BRANCH AND
SAVE instructions. (This discussion of BRANCH
AND SAVE applies also to BRANCH RELATIVE
AND SAVE and BRANCH RELATIVE AND SAVE
LONG.) Both of these instructions permit not only
the introduction of a new instruction address but
also the preservation of a return address and
associated information. The return address is the
address of the instruction following the branch
instruction in storage, except that it is the address
of the instruction following an EXECUTE instruc-
tion that has the branch instruction as its target.

Both BRANCH AND LINK and BRANCH AND
SAVE have an R: field. They form a branch
address by means of fields that depend on the
instruction. The operations of the instructions are
summarized as follows:

e In the 24-bit addressing mode, both
instructions place the return address in bit
positions 40-63 of general register R: and
leave bits 0-31 of that register unchanged.

BRANCH AND LINK places the instruction-
length code for the instruction and also the
condition code and program mask from the
current PSW in bit positions 32-39 of general

register Ri. BRANCH AND SAVE places
zeros in those bit positions.
e In the 31-bit addressing mode, both

instructions place the return address in bit
positions 33-63 and a one in bit position 32 of
general register R1, and they leave bits 0-31
of the register unchanged.

e In the 64-bit addressing mode, both
instructions place the return address in bit
positions 0-63 of general register Ru.

¢ In any addressing mode, both instructions
generate the branch address under the control
of the current addressing mode. The
instructions place bits 0-63 of the branch
address in bit positions 64-127 of the PSW.
In the RR format, both instructions do not
perform branching if the Rz field of the instruc-
tion is zero.

It can be seen that, in the 24-bit or 31-bit
addressing mode, BRANCH AND SAVE places
the basic-addressing-mode bit, bit 32 of the PSW,
in bit position 32 of general register R.. BRANCH
AND LINK does so in the 31-bit addressing mode.

The instructions BRANCH AND SAVE AND SET
MODE and BRANCH AND SET MODE are for
use when a change of the addressing mode is
required during linkage. These instructions have
R: and R:z fields. The operations of the
instructions are summarized as follows:

¢ BRANCH AND SAVE AND SET MODE sets
the contents of general register R1 the same
as BRANCH AND SAVE. In addition, the
instruction places the extended-
addressing-mode bit, bit 31 of the PSW, in bit
position 63 of the register.

* BRANCH AND SET MODE, if R1 is nonzero,
performs as follows. In the 24- or 31-bit
mode, it places bit 32 of the PSW in bit posi-
tion 32 of general register R1, and it leaves
bits 0-31 and 33-63 of the register unchanged.
Note that bit 63 of the register should be zero
if the register contains an instruction address.
In the 64-bit mode, the instruction places bit
31 of the PSW (a one) in bit position 63 of
general register Ri1, and it leaves bits 0-62 of
the register unchanged.

Chapter 5. Program Execution 5-11

* When Rz is nonzero, both instructions set the
addressing mode and perform branching as
follows. Bit 63 of general register Rz is
placed in bit position 31 of the PSW. If bit 63
is zero, bit 32 of the register is placed in bit
position 32 of the PSW. If bit 63 is one, PSW
bit 32 is set to one. Then the branch address
is generated from the contents of the register,
except with bit 63 of the register treated as a
zero, under the control of the new addressing
mode. The instructions place bits 0-63 of the
branch address in bit positions 64-127 of the
PSW. Bit 63 of general register Rz remains
unchanged and, therefore, may be one upon
entry to the called program. If Rz is the same
as Rai, the results in the designated general
register are as specified for the R1 register.

The operations of the simple branch instructions
are summarized in [Figure 5-2 on page 5-13 For
contrast, the figure also shows the BRANCH ON
COUNT instruction, which is not for use in linkage,
and the LOAD ADDRESS and LOAD ADDRESS
EXTENDED instructions.

Programming Notes:

1. A called program that is entered in the 64-bit
addressing mode can use bit 63 of the entry-
point register to determine the instruction used
to perform the call and, thus, the instruction
that must be used to perform the return
linkage. If bit 63 is zero, BRANCH AND
SAVE (BAS or BASR) (or possibly BAL,
BALR, BRAS, or BRASL) was used, the

5-12 z/Architecture Principles of Operation

addressing mode of the caller is not indicated
in the return register, and BRANCH ON CON-
DITION (BCR) must be used to return without
changing the addressing mode during the
return. If bit 63 of the entry-point register is
one, BASSM or BSM was used, the
addressing mode of the caller is indicated in
the return register (or at least can be, in the
case of BSM), and BSM must be used to
return and restore the addressing mode of the
caller.

. When BSM is executed in the 24-bit or 31-bit

addressing mode and used in a forward
linkage to set the 64-bit mode, and the R1 and
Rz of the instruction are the same value, bit
63 of the designated general register does
not, upon entry to the called program, cor-
rectly indicate the mode of the calling
program. (The bit is one, instead of zero,
because the program set bit 63 of the Rz reg-
ister to one and the instruction does not
change bit 63 of the R1 register in the 24- or
31-bit mode.) BASSM always correctly indi-
cates the addressing mode of the calling
program.

. If an entry point can be branched to in the

64-bit addressing mode either by BAS or
BASR or by BASSM or BSM, one must be
subtracted from the entry-point register in the
BASSM or BSM case if the register is to be
named in a USING statement that provides
addressability.

Address Branch or
Placed in GR Ri 2nd-0p Adr.

Rz PSW PSW

In |[Bits | Bit |Bits | Bit |Bits |Bits | Bit |Bit 31 [Bit 32

Instruction| Format [Mode [0-31 32 [33-62| 63 |0-32 |33-63| 63 |Set to [Set to
BALR*/BAL | RR/RX 24 U *xk% [xxx [TA SIA | SIA |LSExc] U
31 U BAM | IA IA SIA | SIA |LSExc U U
64 IA IA IA IA SIA | SIA |LSExc U U
BASR*=/BAS/ | RR/RX/ |24/31| U BAM | IA IA SIA | SIA |LSExc] U

BRAS/BRASL | RI/RIL
64 IA IA IA IA SIA | SIA |LSExc U U
BASSMx* RR 24/31 U BAM | IA IA SIA | SIA 0 0 R232
24/31 U BAM | IA IA SIA | SIA | 1GO 1 1
64 IA IA IA 1 SIA | SIA 0 0 R232
64 IA IA IA 1 SIA | SIA | 1GO 1 1
BSMx** RR 24/31 U BAM]] SIA | SIA 0 0 R232
24/31 U BAM]] SIA | SIA | 1GO 1 1
64 U U U 1 SIA | SIA 0 0 R232
64]]] 1 SIA | SIA | 1GO 1 1
BCTR*/BCT/ | RR/RX/ |24/31| NLA | NLA | NLA | NLA | SIA | SIA [LSExc U U
BCTGR*/BCTG| RRE/RXY

64 NLA | NLA | NLA | NLA | SIA | SIA [LSExc 1] U
LA/LAE RX/RX |24/31| U 0 |Op2Ad|Op2Ad| FZ SR1 | 0/1] U
64 |Op2Ad|Op2Ad|0Op2Ad|0p2Ad| SR1 | SR1 | 0/1 U U

Figure 5-2 (Part 1 of 2). Summary of Simple Branch Linkage Instructions and Other Instructions

Chapter 5. Program Execution 5-13

Explanation:
- The address does not exist, or the bit has no special effect.

* The action associated with the Rz field is not performed if the
field is zero.

*% The action associated with the Ri1 or Rz field is not performed
if the field is zero.

*xKk The instruction-Tength code, condition code, and program mask
are saved in bit positions 32-39 of the Tink address, and bits
40-63 of the updated instruction address are saved in bhit
positions 40-63.

0/1 Bit 63 can be zero or one.

1G0O Bit 63 is one and is left one, but the branch address is
generated as if the bit is zero.

BAM Bit 32 of the link address is set with the basic-addressing-mode
bit, bit 32 of the PSW.

FZ Bits 0-32 of the second-operand address are forced to zeros in
the 24-bit or 31-bit addressing mode.

IA Bits of the Tink address are set with the updated instruction
address as shown.

LSExc A Tate specification exception is recognized if the bit is one.

NLA The instruction does not produce a link address. (The
instruction is shown simply as an example of a non-linkage
branch instruction.)

Op2Ad Bits of the address in general register Ri are set with the
corresponding bits of the second-operand address as shown.

R232 The basic-addressing-mode bit, bit 32 of the PSW, is set with
bit 32 of general register Rz.

SIA Bits 0-63 of the branch address are used to set the instruction
address in the PSW. Bits 0-39 of the branch address are forced
to zeros in the 24-bit addressing mode. Bits 0-32 are forced to
zeros in the 31-bit addressing mode.

SR1 Bits of the second-operand address are used to set the
corresponding bits of the address in the Ri general register as
shown. Bits 0-39 of the second-operand address are forced to
zeros in the 24-bit addressing mode. Bits 0-32 are forced to
zeros in the 31-bit addressing mode.

U Unchanged.

Figure 5-2 (Part 2 of 2). Summary of Simple Branch Linkage Instructions and Other Instructions

5-14 z/Architecture Principles of Operation

Other Linkage Instructions

Linkage between a problem-state program and the
supervisor or monitoring program is provided by
means of the SUPERVISOR CALL and MONITOR
CALL instructions.

The instructions PROGRAM CALL and
PROGRAM TRANSFER provide the facility for
linkage between programs of different authority
and in different address spaces. @PROGRAM
CALL permits linkage to a number of preassigned
programs that may be in either the problem or the
supervisor state and may be in either the same
address space or an address space different from
that of the caller. It permits a change between the
24-bit and 31-bit addressing modes, and it permits
an increase of PSW-key-mask authority, which
authorizes the execution of the SET PSW KEY
FROM ADDRESS instruction and also other func-
tions. In general, PROGRAM CALL is used to
transfer control to a program of higher authority.
PROGRAM TRANSFER permits a change of the
instruction address and address space and a
change between the 24-bit and 31-bit addressing
modes. PROGRAM TRANSFER also permits a
reduction of PSW-key-mask authority and a
change from the supervisor to the problem state.
In general, it is used to transfer control from one
program to another of equal or lower authority.

When a calling linkage is to increase authority, the
calling linkage can be performed by PROGRAM
CALL and the return linkage by PROGRAM
TRANSFER. Alternatively, when the calling
linkage is to decrease authority, the calling linkage
can be performed by PROGRAM TRANSFER and
the return linkage by PROGRAM CALL.

The operation of PROGRAM CALL is controlled
by means of an entry-table entry, which is located
as part of a table-lookup process during the exe-
cution of the instruction. The entry-table entry
specifies either a basic (nonstacking) operation or
the stacking operation described in [‘Linkage-Stack]
[Introduction” on page 5-61 The instruction
causes the primary address space to be changed
only when the ASN in the entry-table entry is
nonzero. When the primary address space is
changed, the operation is called PROGRAM CALL
with space switching (PC-ss). When the primary
address space is not changed, the operation is
called PROGRAM CALL to current primary
(PC-cp).

PROGRAM TRANSFER specifies the address
space which is to become the new primary
address space. When the primary address space
is changed, the operation is called PROGRAM
TRANSFER with space switching (PT-ss). When
the primary address space is not changed, the
operation is called PROGRAM TRANSFER to
current primary (PT-cp).

Basic PROGRAM CALL, and PROGRAM
TRANSFER, can be executed successfully in
either a basic (24-bit or 31-bit) addressing mode
or the extended (64-bit) addressing mode. They
do not provide a change between a basic
addressing mode and the extended addressing
mode.

The BRANCH AND SET AUTHORITY instruction
can improve performance by replacing a PT-cp
instruction used to perform a calling linkage in
which PSW-key-mask authority is reduced, and by
replacing a PC-cp instruction used to perform the
associated return linkage in which PSW-key-mask
authority is restored. BRANCH AND SET
AUTHORITY also permits changes between the
supervisor and problem states, and it can replace
SET PSW KEY FROM ADDRESS by changing
the PSW key during the linkage. The calling-
linkage operation is called BRANCH AND SET
AUTHORITY in the base-authority state (BSA-ba),
and the return-linkage operation is called
BRANCH AND SET AUTHORITY in the reduced-
authority state (BSA-ra).

The BRANCH IN SUBSPACE GROUP instruction
allows linkage within a group of address spaces
called a subspace group, where one address
space in the group is called the base space and
the others are called subspaces. It is intended
that each subspace contain a different subset of
the storage in the base space, that the base
space and each subspace contain a subsystem
control program, such as CICS, and application
programs, and that each subspace contain the
data for a single transaction being processed
under the subsystem control program. The place-
ment of the data for each transaction in a different
subspace prevents a program that is being exe-
cuted to process one particular transaction from
erroneously damaging the data of other trans-
actions. It is intended that the primary address
space be the base space when the control
program is being executed, and that it be the sub-
space for a transaction when an application

Chapter 5. Program Executon 5-15

program is being executed to process that trans-
action. BRANCH IN SUBSPACE GROUP
changes not only the instruction address in the
PSW but also the primary address-space-control
element in control register 1. BRANCH IN SUB-
SPACE GROUP does not change the primary
ASN in control register 4 or the
primary-ASN-second-table-entry origin in control
register 5, and, therefore, the base space and the
subspaces all are associated with the same ASN,
and the programs in those address spaces all are
of equal authority.

Although a subspace is intended to be a subset of
the base space as described above, BRANCH IN
SUBSPACE GROUP does not require this, and
the instruction may be useful in ways other than
as described above.

BRANCH IN SUBSPACE GROUP uses an
access-list-entry token (ALET) in an access reg-
ister as an identifier of the address space that is
to receive control. The instruction saves the
updated instruction address to permit a return
linkage, but it does not save an identifier of the
address space from which control was transferred.
However, an ALET equal to 00000000 hex, called
ALET 0, can be used to return from a subspace to
the base space, and an ALET equal to 00000001
hex, called ALET 1, can be used to return from
the base space to the subspace that last had
control.

5-16 z/Architecture Principles of Operation

The SET ADDRESSING MODE (SAM24, SAM31,
SAM64) instruction can assist in linkage by setting
the 24-bit, 31-bit, or 64-bit addressing mode either
before or after a linkage operation.

The RESUME PROGRAM instruction is intended
for use by a problem-state interruption-handling
program to return to the interrupted program. The
interruption-handling program can use LOAD
ACCESS MULTIPLE and LOAD MULTIPLE
instructions to restore the contents of the inter-
rupted program's access and general registers
from a save area, except for the contents of one
access-and-general register pair. The interruption-
handling program then can use RESUME
PROGRAM to restore the contents of certain PSW
fields, including the instruction address, and also
the contents of the remaining access-and-general
pair from the save area, with that pair first being
used by RESUME PROGRAM to address the
save area.

The TRAP instruction (TRAP2, TRAP4) can
overlay instructions in an application program and
give control to a trap program for performing
fix-ups of data used by the application program.
The RESUME PROGRAM instruction can be used
to return control from the trap program to the
application program.

The linkage instructions provided and the func-
tions performed by each are summarized in
[Figure 5-3 on page 5-17]

Instruction Basic Extended Problem PASN
Address Adr. Mode | Adr. Mode State CR4 PSW-Key
PSW Bits 64-127|PSW Bit 32 |PSW Bit 31 [PSW Bit 15 |Bits 48-63 Mask
Changed
Instruction|Format| Save Set |[Save | Set |Save | Set [Save | Set |Save | Set | in CR3 Trace
BALR RR Yesx Rz1 [BAM31| - - - - - - - - Rz21
BAL RX Yes* Yes |BAM31| - - - - - - - - -
BASR RR Yes R21 BAM - - - - - - - - Rz21
BAS RX Yes Yes BAM - - - - - - - - -
BASSM RR Yes R21 BAM | Rz2! | Yes | R2! - - - - - -
BRAS RI Yes Yes BAM - - - - - - - - -
BRASL RIL Yes Yes BAM - - - - - - - - -
BSA-ba RRE Yes Yes BAM | BAM - - Yes | Yes4| - - "AND" Ri15| Yes
BSA-ra RRE R11 Yes Ri1 BAM - Yes - - Yes Yes
BAM
BSG RRE Yes Yes Ril | BAM - - - - - -3 - Yes
BAM
BSM RR - Rz21 Ril | R2® | R1! | R2! - - - - - -
BAM EAM64
MC#2 SI Yes Yes Yes | Yes | Yes | Yes | Yes | Yes - - - -
PC-cp S Yes Yes BAM | BAM - - Yes | Yes - - |"OR" EKM Yes
PC-ss S Yes Yes BAM | BAM - - Yes | Yes | Yes | Yes |"OR" EKM Yes
PT-cp RRE - R2 - Rz - - - Ra*x| - - |"AND" R1 Yes
BAM
PT-ss RRE - Rz - R2 - - - Ra**| - Yes |"AND" Ri Yes
BAM
RP S - Yes - Yes - Yes - - - - - Yes
SAM24 E - - - |Yes O - |Yes O - - - - - Yes
SAM31 E - - - |Yes 1| - |Yes 0| - - - - - Yes
SAM64 E - - - |Yes 1| - |Yes 1| - - - - - Yes
SvCz RR Yes Yes Yes | Yes | Yes | Yes | Yes | Yes - - - -
TRAP2 E Yes Yes Yes | Yes | Yes - Yes - - - - Yes
TRAP4 S Yes Yes Yes | Yes | Yes - Yes - - - - Yes
Explanation:
- No
* In the 24-bit addressing mode, the instruction-length code, condition code, and program mask
are saved in bit positions 32-39 of the Ri1 general register.

Figure 5-3 (Part 1 of 2). Summary of Linkage Instructions without the Linkage Stack

Chapter 5. Program Execution

5-17

Explanation (Continued):

classes of events.

*% A change from the supervisor to the problem state is allowed; a privileged-operation excep-
tion is recognized when a change from the problem to the supervisor state is specified.

Monitor-mask bits provide a means of disallowing Tinkage, or enabling Tinkage, for selected

1 The action takes place only if the associated R field in the instruction is nonzero.

2 MC and SVC, as part of the interruption, save the entire current PSW and Toad a new PSW.
3 The primary address-space-control element is set even though the PASN is not set.

4 The problem state is set.

5 The PSW key also is set from general register Ri.

BAM The basic-addressing-mode bit is saved or set only in the 24-bit or 31-bit addressing mode.
BAM31 The basic-addressing-mode bit is saved only in the 31-bit addressing mode.

EAM64 The extended-addressing-mode bit is saved only in the 64-bit addressing mode.

R1 The field or bit is saved in general register Ri.

R2 The field or bit is set from general register Rz.

Figure 5-3 (Part 2 of 2). Summary of Linkage Instructions without the Linkage Stack

Programming Note: This note describes the
simple branch-type linkage instructions that were
included in 370-XA and carried forward to
ESA/370, ESA/390, and z/Architecture. To give
the reader a better understanding of the utility and
intended usage of these linkage instructions, the
following paragraphs in this note describe various
program linkages and conventions and the use of
the linkage instructions in these situations.

The linkage instructions were originally provided to
permit System/370 programs to operate with no
modification or only slight modification on 370/XA
(and successor) systems and also to provide addi-
tional function for those programs which were
designed to take advantage of the 31-bit
addressing of 370/XA. The instructions provided
the capability for both old and new programs to
coexist in storage and to communicate with each
other. The instructions now have been enhanced
to permit usage of the 64-bit addressing of
z/Architecture.

With respect to System/370 programs, it is
assumed that old, unmodified programs operate in
the 24-bit addressing mode and call, or directly
communicate with, other programs operating in
the 24-bit addressing mode only. Modified pro-
grams normally operate in the 24-bit addressing

5-18 z/Architecture Principles of Operation

mode but may have called programs which
operate in either the 24-bit or 31-bit addressing
mode. They and also modified 370-XA, ESA/370,
and ESA/390 programs now may call programs
that operate in the 24-bit, 31-bit, or 64-bit
addressing mode. New programs may be written
to operate in any addressing mode, and, in some
cases, a program may be written such that it can
be invoked in any addressing mode.

BRANCH AND SAVE AND SET MODE (BASSM)
is intended to be the principal calling instruction to
subroutines outside of an assembler/linkage-editor
control section (CSECT), for use by all new pro-
grams and particularly by programs that must
change the addressing mode during the linkage.
The calling sequence has normally been:

L 15,ACON
BASSM 14,15

EXTRN SUB
ACON DC A(X'80000000'+SUB)
where ACON is an A-type address constant, and
the X'80000000' should be present to give control
in the 31-bit addressing mode or should be

omitted to give control in the 24-bit addressing
mode.

The return from such a routine normally is:

BSM 0,14

It is assumed that the A-type address constant will
be extended so it may be an eight-byte field con-
taining a 64-bit entry-point address, with bit 63 of
the address indicating, when one, that the entry is
in the 64-bit addressing mode. This extended
constant is shown here as “ACONE.” The calling
sequence would normally be:

LG 15,ACONE
BASSM 14,15

EXTRN SUB
ACONE DC AD(X'1'+SUB)

The return from such a routine would normally be:
BSM 0,14

When a change of the addressing mode is not
required, BRANCH AND LINK or BRANCH AND
SAVE should be used instead of BASSM.

The BRANCH AND LINK (BAL, BALR) instruction
is provided primarily for compatibility with
System/370. It is defined to operate in the 31-bit
and 64-bit addressing modes to increase the prob-
ability that an old, straightforward program can be
modified to operate in those addressing modes
with minimal or no change. It is recommended,
however, that BRANCH AND SAVE (BAS and
BASR) be used instead and that BRANCH AND
LINK be avoided since it places nonzero informa-
tion in bit positions 32-39 of the general register in
the 24-bit addressing mode, which may lead to
problems and may decrease performance.
BRANCH RELATIVE AND SAVE and BRANCH
RELATIVE AND SAVE LONG may be used
instead of BRANCH AND SAVE.

It is assumed that the normal return from a sub-
routine called in the 24-bit or 31-bit addressing
mode by BRANCH AND LINK (BAL or BALR) will
be:

BCR 15,14

However, the standard “return instruction”:
BSM 0,14

operates correctly for all cases except for a calling
BAL executed in the 24-bit addressing mode. In
the 24-bit addressing mode, BAL causes an ILC of
10 to be placed in bit positions 32 and 33 of the
link register. Thus, a BSM would return in the
31-bit addressing mode. Note that an EXECUTE
of BALR in the 24-bit addressing mode also
causes the same ILC effect.

The BRANCH AND SAVE (BAS, BASR) instruc-
tion is provided to be used for subroutine linkage
to any program either within the same CSECT or
known to be in the same addressing mode.
BASR with the Rz field 0 is also useful for
obtaining addressability to the instruction stream
by getting a 31-bit address, uncluttered by leftmost
fields, in the 24-bit addressing mode.

The instruction for returning from a routine called
in the 24-bit or 31-bit addressing mode by
BRANCH AND SAVE (BAS or BASR) may be
either:

BCR 15,14

or:
BSM 0,14

The instruction for returning from a routine called
in the 64-bit addressing mode by BAS or BASR
must be BCR; BSM would set the 24-bit or 31-bit
addressing mode, depending on bit 32 of the link
register (an address bit), because bit 63 of the link
register (the rightmost bit of an instruction
address) is zero. BSM can always be used as the
return instruction if BASSM is used as the calling
instruction.

In some cases, it may be desirable to rewrite a
program that is called by an old program which
has not been rewritten. In such a case, the old
program, which operates in the 24-bit or 31-bit
addressing mode, will be given the address of an
intermediate program that will set up the correct
entry and return modes and then call the rewritten
program. Such an intermediate program is some-
times referred to as a glue module. The instruc-
tion BRANCH AND SET MODE (BSM) with a
nonzero R1 field provides the function necessary
to perform this operation efficiently. This is shown
in [Figure 5-4 on page 5-20 |for a linkage from a
24-bit-mode program to a 31-bit-mode program.

Note that the “BSM 14,15” in the glue module
causes either an indication of the 64-bit
addressing mode to be saved in bit position 63 of
general register 14 or an indication of one of the
24-bit and 31-bit addressing modes to be saved in
bit position 32 of the register, and that the other
bits of the register are unchanged. Thus, when
“BSM 0,14” is executed in the new program,
control passes directly back to the old program
without passing through the glue module again.

Chapter 5. Program Execution 5-19

01d Program Glue Module New Program

L 15,0LDACON

BALR 14,15
EXTRN GLUE
OLDACON DC A(GLUE)
GLUE CSECT
USING =,15
L 15,NEWACON
BSM 14,15
EXTRN NEW
NEWACON DC A(NEW)
NEW CSECT
USING =,15
BSM 0,14

Figure 5-4. Glue Module for Linkage from the 24-Bit Mode to the 31-Bit Mode

The glue module could give control to a program
in the 64-bit addressing mode and possibly above
the 2G-byte boundary by loading an eight-byte
A-type address constant, with bit 63 set to one,
instead of a four-byte A-type address constant.

Interruptions

Interruptions permit the CPU to change state as a
result of conditions external to the system, in sub-
channels or input/output (I/O) devices, in other
CPUs, or in the CPU itself. Details are to be
found in[Chapter 6, “Interruptions.”]

Six classes of interruption conditions are provided:
external, 1/0, machine check, program, restart,
and supervisor call. Each class has two related
PSWs, called old and new, in permanently
assigned real storage locations. In all classes, an
interruption involves storing information identifying
the cause of the interruption, storing the current
PSW at the old-PSW location, and fetching the
PSW at the new-PSW location, which becomes
the current PSW.

The old PSW contains CPU-status information
necessary for resumption of the interrupted
program. At the conclusion of the program
invoked by the interruption, the instruction LOAD

5-20

z/Architecture Principles of Operation

PSW EXTENDED may be used to restore the
current PSW to the value of the old PSW.

Types of Instruction Ending

Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Partial completion of instruction execution occurs
only for interruptible instructions; it is described in

“Interruptible Instructions” on page 5-21|

Completion

Completion of instruction execution provides
results as called for in the definition of the instruc-
tion. When an interruption occurs after the com-
pletion of the execution of an instruction, the
instruction address in the old PSW designates the
next sequential instruction.

Suppression

Suppression of instruction execution causes the
instruction to be executed as if it specified “no
operation.” The contents of any result fields,
including the condition code, are not changed.
The instruction address in the old PSW on an
interruption after suppression designates the next
sequential instruction.

Nullification

Nullification of instruction execution has the same
effect as suppression, except that when an inter-
ruption occurs after the execution of an instruction
has been nullified, the instruction address in the
old PSW designates the instruction whose exe-
cution was nullified (or an EXECUTE instruction,
as appropriate) instead of the next sequential
instruction.

Termination

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation
may replace all, part, or none of the contents of
the designated result fields and may change the
condition code if such change is called for by the
instruction. Unless the interruption is caused by a
machine-check condition, the validity of the
instruction address in the PSW, the interruption
code, and the ILC are not affected, and the state
or the operation of the machine is not affected in
any other way. The instruction address in the old
PSW on an interruption after termination desig-
nates the next sequential instruction.

Programming Note: Although the execution of
an instruction is treated as a no-operation when
suppression or nullification occurs, stores may be
performed as the result of the implicit tracing
action associated with some instructions. See
[Tracing” on page 4-10}

Interruptible Instructions

Point of Interruption

For most instructions, the entire execution of an
instruction is one operation. An interruption is per-
mitted between operations; that is, an interruption
can occur after the performance of one operation
and before the start of a subsequent operation.

For the following instructions, referred to as inter-
ruptible instructions, an interruption is permitted
also after partial completion of the instruction:

¢ COMPARE AND FORM CODEWORD

e COMPARE LOGICAL LONG

* COMPARE UNTIL SUBSTRING EQUAL
¢ COMPRESSION CALL

¢ MOVE LONG

¢ MOVE LONG

e TEST BLOCK

» UPDATE TREE

Unit of Operation

Whenever points of interruption that include those
occurring within the execution of an interruptible
instruction are discussed, the term “unit of
operation” is used. For a noninterruptible instruc-
tion, the entire execution consists, in effect, in the
execution of one unit of operation.

The execution of an interruptible instruction is con-
sidered to consist in the execution of a number of
units of operation, and an interruption is permitted
between units of operation. The amount of data
processed in a unit of operation depends on the
particular instruction and may depend on the
model and on the particular condition that causes
the execution of the instruction to be interrupted.

When an instruction execution consists of a
number of units of operation and an interruption
occurs after some, but not all, units of operation
have been completed, the instruction is said to be
partially completed. In this case, the type of
ending (completion, nullification, or suppression) is
associated with the unit of operation. In the case
of termination, the entire instruction is terminated,
not just the unit of operation.

An exception may exist that causes the first unit of
operation of an interruptible instruction not to be
completed. In this case when the ending is
nullification or suppression, all operand parame-
ters and result locations remain unchanged,
except that the condition code is unpredictable if
the instruction is defined to set the condition code.

When a storage-alteration PER event is recog-
nized, fewer than 4K additional bytes are stored
before the event is indicated by an interruption.

Execution of Interruptible Instructions
The execution of an interruptible instruction is
completed when all units of operation associated
with that instruction are completed. When an
interruption occurs after completion, nullification,
or suppression of a unit of operation, all preceding
units of operation have been completed, and sub-
sequent units of operation and instructions have
not been started. The main difference between
these types of ending is the handling of the
current unit of operation and whether the instruc-
tion address stored in the old PSW identifies the
current instruction or the next sequential instruc-
tion.

Chapter 5. Program Execution 5-21

At the time of an interruption, changes to storage
locations or register contents which are due to be
made by instructions following the interrupted
instruction have not yet been made.

Completion: On completion of the last unit of
operation of an interruptible instruction, the
instruction address in the old PSW designates the
next sequential instruction. The result location for
the current unit of operation has been updated. It
depends on the particular instruction how the
operand parameters are adjusted. On completion
of a unit of operation other than the last one, the
instruction address in the old PSW designates the
interrupted instruction or an EXECUTE instruction,
as appropriate. The result location for the current
unit of operation has been updated. The operand
parameters are adjusted such that the execution
of the interrupted instruction is resumed from the
point of interruption when the old PSW stored
during the interruption is made the current PSW.

Nullification: When a unit of operation is nulli-
fied, the instruction address in the old PSW desig-
nates the interrupted instruction or an EXECUTE
instruction, as appropriate. The result location for
the current unit of operation remains unchanged.
The operand parameters are adjusted such that, if
the instruction is reexecuted, execution of the
interrupted instruction is resumed with the current
unit of operation.

Suppression: When a unit of operation is sup-
pressed, the instruction address in the old PSW
designates the next sequential instruction. The
operand parameters, however, are adjusted so as
to indicate the extent to which instruction exe-
cution has been completed. If the instruction is
reexecuted after the conditions causing the sup-
pression have been removed, the execution is
resumed with the current unit of operation.

Termination: When an exception which causes
termination occurs as part of a unit of operation of
an interruptible instruction, the entire operation is
terminated, and the contents, in general, of any
fields due to be changed by the instruction are
unpredictable. On such an interruption, the
instruction address in the old PSW designates the
next sequential instruction.

The differences among the four types of ending

for a unit of operation are summarized in
Figure 5-5.
5-22 z/Architecture Principles of Operation

Unit of Instruction Operand Current Result
Operation Is Address Parameters Location
Completed
Last unit Next instruc-|Depends on Changed
of oper- tion the instruc-
ation tion
Any other Current in- [Next unit of [Changed
unit of struction operation
operation
Nullified Current in- |[Current unit |Unchanged
struction of operation
Suppressed Next instruc-|Current unit [Unchanged
tion of operation
Terminated Next instruc-|Unpredictable|Unpredictable
tion

Figure 5-5. Types of Ending for a Unit of Operation

If an instruction is defined to set the condition
code, the execution of the instruction makes the
condition code unpredictable except when the last
unit of operation has been completed.

Condition-Code Alternative to
Interruptibility

The following instructions are not interruptible
instructions but instead may be completed after
performing a CPU-determined subportion of the
processing specified by the parameters of the
instructions:

¢ CHECKSUM

¢ COMPARE LOGICAL LONG EXTENDED
* COMPARE LOGICAL LONG UNICODE
¢ COMPARE LOGICAL STRING
 CONVERT UNICODE TO UTF-8

e CONVERT UTF-8 TO UNICODE

¢ MOVE LONG EXTENDED

* MOVE LONG UNICODE

¢ MOVE STRING

e SEARCH STRING

e TRANSLATE EXTENDED

* TRANSLATE ONE TO ONE

¢ TRANSLATE ONE TO TWO

¢ TRANSLATE TWO TO ONE

¢ TRANSLATE TWO TO TWO

When any of the above instructions is completed
after performing only a CPU-determined amount of
processing instead of all specified processing, the
instruction sets condition code 3. On such com-
pletion, the instruction address in the PSW desig-
nates the next sequential instruction, and the
operand parameters of the instruction have been
adjusted so that the processing of the instruction
can be resumed simply by branching back to the

instruction to execute it again. When the instruc-
tion has performed all specified processing, it sets
a condition code other than 3.

The points at which any of the above instructions
may set condition code 3 are comparable to the
points of interruption of an interruptible instruction,
and the amount of processing between adjacent
points is comparable to a unit of operation of an
interruptible instruction. However, since the
instruction is not interruptible, each execution is
considered the execution of one unit of operation.

Completion with the setting of condition code 3
permits interruptions to occur. Depending on the
model and the instruction, condition code 3 may or
may not be set when there is not a need for an
interruption.

When a storage-alteration PER event is recog-
nized, fewer than 4K additional bytes are stored
before the event is indicated by an interruption.

The COMPARE UNTIL SUBSTRING EQUAL and
COMPRESSION CALL instructions both are inter-
ruptible instructions and ones that may set condi-
tion code 3 after performing a CPU-determined
amount of processing.

Programming Notes:

1. Any interruption, other than supervisor call
and some program interruptions, can occur
after a partial execution of an interruptible
instruction. In particular, interruptions for
external, 1/0O, machine-check, restart, and
program interruptions for access exceptions
and PER events can occur between units of
operation.

2. The amount of data processed in a unit of
operation of an interruptible instruction
depends on the model and may depend on
the type of condition which causes the exe-
cution of the instruction to be interrupted or
stopped. Thus, when an interruption occurs at
the end of the current unit of operation, the
length of the unit of operation may be different
for different types of interruptions. Also, when
the stop function is requested during the exe-
cution of an interruptible instruction, the CPU
enters the stopped state at the completion of
the execution of the current unit of operation.
Similarly, in the instruction-step mode, only a
single unit of operation is performed, but the

unit of operation for the various cases of stop-
ping may be different.

Exceptions to Nullification and
Suppression

In certain unusual situations, the result fields of an
instruction having a store-type operand are
changed in spite of the occurrence of an exception
which would normally result in nullification or sup-
pression. These situations are exceptions to the
general rule that the operation is treated as a no-
operation when an exception requiring nullification
or suppression is recognized. Each of these situ-
ations may result in the turning on of the change
bit associated with the store-type operand, even
though the final result in storage may appear
unchanged. Depending on the particular situation,
additional effects may be observable. The extent
of these effects is described along with each of
the situations.

All of these situations are limited to the extent that
a store access does not occur and the change bit
is not set when the store access is prohibited. For
the CPU, a store access is prohibited whenever
an access exception exists for that access, or
whenever an exception exists which is of higher
priority than the priority of an access exception for
that access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the
instruction address in the old PSW designates the
next sequential instruction. When an interruption
for an exception requiring nullification occurs, the
instruction address in the old PSW designates the
instruction causing the exception even though
partial results may have been stored.

Storage Change and Restoration for

DAT-Associated Access Exceptions

In this section, the term “DAT-associated access
exceptions” is used to refer to those exceptions
which may occur as part of the dynamic-
address-translation process. These exceptions
are ASCE-type, region-first translation, region-
second translation, region-third translation,
segment translation, page translation, translation
specification, and addressing due to a DAT-table
entry being designated at a location that is not
available in the configuration. The first six of
these exceptions normally cause nullification, and

Chapter 5. Program Execution 5-23

the last two normally cause suppression. Pro-
tection exceptions, including those due to page
protection, are not considered to be
DAT-associated access exceptions.

For DAT-associated access exceptions, on some
models, channel programs may observe the
effects on storage as described in the following
case.

When, for an instruction having a store-type
operand, a DAT-associated access exception is
recognized for any operand of the instruction, that
portion, if any, of the store-type operand which
would not cause an exception may be changed to
an intermediate value but is then restored to the
original value.

The accesses associated with storage change and
restoration for DAT-associated access exceptions
are only observable by channel programs and are
not observable by other CPUs in a multiproc-
essing configuration. Except for instructions which
are defined to have multiple-access operands, the
intermediate value, if any, is always equal to what
would have been the final value if the
DAT-associated access exception had not
occurred.

Programming Notes:

1. Storage change and restoration for
DAT-associated access exceptions occur in
two main situations:

a. The exception is recognized for a portion
of a store-type operand which crosses a
page boundary, and the other portion has
no access exception.

b. The exception is recognized for one
operand of an instruction having two
storage operands (for example, an
SS-format instruction or MOVE LONG),
and the other operand, which is a store-
type operand, has no access exception.

2. To avoid letting a channel program observe
intermediate operand values due to storage
change and restoration for DAT-associated
access exceptions (especially when a CCW
chain is modified), the CPU program should
do one of the following:

a. Operate on one storage page at a time

5-24 z/Architecture Principles of Operation

b. Perform preliminary testing to ensure that
no exceptions occur for any of the
required pages

c. Operate with DAT off

Modification of DAT-Table Entries

When a valid and attached DAT-table entry is
changed to a value which would cause an excep-
tion, and when, before the TLB is cleared of
entries which qualify for substitution for that entry,
an attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
the contents of any fields due to be changed by
the instruction are unpredictable. Results, if any,
associated with the virtual address whose
DAT-table entry was changed may be placed in
those real locations originally associated with the
address. Furthermore, it is unpredictable whether
or not an interruption occurs for an access excep-
tion that was not initially applicable. On some
machines, this situation may be reported by
means of an instruction-processing-damage
machine check with the delayed-access-exception
bit also indicated.

Trial Execution for Editing Instructions
and Translate Instruction

For the instructions EDIT, EDIT AND MARK, and
TRANSLATE, the portions of the operands that
are actually used in the operation may be estab-
lished in a trial execution for operand accessibility
that is performed before the execution of the
instruction is started. This trial execution consists
in an execution of the instruction in which results
are not stored. |If the first operand of TRANS-
LATE or either operand of EDIT or EDIT AND
MARK is changed by another CPU or by a
channel program, after the initial trial execution but
before completion of execution, the contents of
any fields due to be changed by the instruction
are unpredictable. Furthermore, it is unpredictable
whether or not an interruption occurs for an
access exception that was not initially applicable.

Authorization Mechanisms

The authorization mechanisms that are described
in this section permit the control program to estab-
lish the degree of function provided to a particular
semiprivileged program. The authorization mech-
anisms are intended for use by programs consid-
ered to be semiprivileged, that is, programs that

are executed in the problem state but which may
be authorized to use additional capabilities. With
these authorization controls, a hierarchy of pro-
grams may be established, with programs at a
higher level having a greater degree of privilege or
authority than programs at a lower level. The
range of functions available at each level, and the
ability to transfer control from a lower to a higher
level, are specified in tables which are managed
by the control program. When the linkage stack is
used, a nonhierarchical transfer of control also can
be specified.

A semiprivileged instruction is one which can be
executed in the problem state, but which is subject
to the control of one or more of the authorization
mechanisms described in this section. There are
28 semiprivileged instructions and also the privi-
leged LOAD ADDRESS SPACE PARAMETERS
instruction that are controlled by the authorization
mechanisms. All of these semiprivileged and priv-
ileged instructions are described in

[‘Control Instructions.”]

The instructions controlled by the authorization
mechanisms are listed in [Eigure 5-6 on|
The figure also shows additional
authorization mechanisms that do not control spe-
cifically semiprivileged instructions; they control
implicit access-register translation (access-register
translation as part of an instruction making a
storage reference) and also access-register trans-
lation in the LOAD REAL ADDRESS, STORE
REAL ADDRESS, TEST ACCESS, and TEST
PROTECTION instructions and a special form of
access-register translation in the BRANCH IN
SUBSPACE GROUP instruction. These additional
mechanisms (the extended authorization index,
ALE sequence number, and ASTE sequence

number) are described in [Access-Register-|

Specified Address Spaces” on page 5-36

Mode Requirements

Most of the semiprivileged instructions can be
executed only with DAT on. Basic PROGRAM
CALL, and PROGRAM TRANSFER, are valid only
in the primary-space mode. (Basic PROGRAM
CALL is the PROGRAM CALL operation when the
linkage stack is not used. When the linkage stack
is used, the PROGRAM CALL operation is called
stacking PROGRAM CALL). MOVE TO
PRIMARY and MOVE TO SECONDARY are valid
only in the primary-space and secondary-space

modes. BRANCH AND STACK, stacking
PROGRAM CALL, and PROGRAM RETURN are
valid only in the primary-space and access-
register modes. EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, and
MODIFY STACKED STATE are valid only in the
primary-space, access-register, and home-space
modes. When a semiprivileged instruction is exe-
cuted in an invalid translation mode, a special-
operation exception is recognized.

PROGRAM TRANSFER specifies a new value for
the problem-state bit in the PSW. If a program in
the problem state attempts to execute PROGRAM
TRANSFER and set the supervisor state, a
privileged-operation exception is recognized. A
privileged-operation exception is also recognized
on an attempt to use RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST to set the home-space
mode in the problem state.

Extraction-Authority Control

The extraction-authority-control bit is located in bit
position 36 of control register 0. In the problem
state, bit 36 must be one to allow completion of
these instructions:

¢ EXTRACT PRIMARY ASN

e EXTRACT SECONDARY ASN

e INSERT ADDRESS SPACE CONTROL
¢ INSERT PSW KEY

¢ INSERT VIRTUAL STORAGE KEY

Otherwise, a privileged-operation exception is
recognized. The extraction-authority control is not
examined in the supervisor state.

PSW-Key Mask

The PSW-key mask consists of bits 32-47 in
control register 3, with the bits corresponding to
the values 0-15, respectively, of the PSW key.
These bits are used in the problem state to control
which keys and entry points are authorized for the
program. The PSW-key mask is modified by
PROGRAM TRANSFER, is modified or loaded by
BRANCH AND SET AUTHORITY and PROGRAM
CALL, and is loaded by LOAD ADDRESS SPACE
PARAMETERS and PROGRAM RETURN. The
PSW-key mask is used in the problem state to
control the following:

e The PSW-key values that can be set by
means of the instruction SET PSW KEY
FROM ADDRESS.

Chapter 5. Program Execution 5-25

¢ The PSW-key values that are valid for the six
move instructions that specify a second
access key: MOVE PAGE, MOVE TO
PRIMARY, MOVE TO SECONDARY, MOVE
WITH KEY, MOVE WITH SOURCE KEY, and
MOVE WITH DESTINATION KEY.

e The entry points which can be called by
means of PROGRAM CALL. In this case, the
PSW-key mask is ANDed with the authori-
zation key mask in the entry-table entry, and,
if the result is zero, the program is not author-
ized.

When an instruction in the problem state attempts
to use a key not authorized by the PSW-key
mask, a privileged-operation exception is recog-
nized. The same action is taken when an instruc-
tion in the problem state attempts to call an entry
not authorized by the PSW-key mask. The
PSW-key mask is not examined in the supervisor
state, all keys and entry points being valid.

Secondary-Space Control

Bit 37 of control register 0 is the secondary-
space-control bit. This bit provides a mechanism
whereby the control program can indicate whether
or not the secondary region-first table, region-
second table, region-third table or segment table
has been established. Bit 37 may be required to
be one to allow completion of SET ADDRESS
SPACE CONTROL FAST and must be one to
allow completion of these instructions:

¢ MOVE TO PRIMARY
¢ MOVE TO SECONDARY
e SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception is recog-
nized. The secondary-space control is examined
in both the problem and supervisor states.

Subsystem-Linkage Control

Bit 192 of the primary ASN-second-table entry is
the subsystem-linkage-control bit. The
subsystem-linkage control must be one to allow
completion of these instructions:

¢ PROGRAM CALL
* PROGRAM TRANSFER

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and supervisor states and
controls both the space-switching and current-
primary versions of the instructions.

5-26 z/Architecture Principles of Operation

ASN-Translation Control

Bit 44 of control register 14 is the
ASN-translation-control bit. This bit provides a
mechanism whereby the control program can indi-
cate whether ASN translation may occur while a
particular program is being executed. Bit 44 must
be one to allow completion of these instructions:

e LOAD ADDRESS SPACE PARAMETERS

¢ SET SECONDARY ASN

¢ PROGRAM CALL with space switching

¢ PROGRAM RETURN with space switching
and also when the restored secondary ASN is
not equal to the restored primary ASN

¢ PROGRAM TRANSFER with space switching

Otherwise, a special-operation exception is recog-
nized. The ASN-translation control is examined in
both the problem and supervisor states. The
ASN-translation control is examined by
PROGRAM CALL even though PROGRAM CALL
obtains the address of the ASN-second-table entry
directly from the entry-table entry instead of by
performing ASN translation.

Authorization Index

The authorization index is contained in bit posi-
tions 32-47 of control register 4. The authorization
index is associated with the primary address
space and is loaded along with the PASN when
PROGRAM CALL with space switching,
PROGRAM RETURN with space switching,
PROGRAM TRANSFER with space switching, or
LOAD ADDRESS SPACE PARAMETERS is exe-
cuted. The authorization index is used to deter-
mine whether a program is authorized to establish
a particular address space. A program may be
authorized to establish the address space as a
secondary-address space, as a primary-address
space, or both. The authorization index is exam-
ined in both the problem and supervisor states.

Associated with each address space is an
authority table. The authorization index is used to
select an entry in the authority table. Each entry
contains two bits, which indicate whether the
program with that authorization index is permitted
to establish the address space as a primary
address space, as a secondary address space, or
both.

The instruction SET SECONDARY ASN with
space switching, and the instruction PROGRAM
RETURN when the restored secondary ASN is not
equal to the restored primary ASN, use the

authorization index to test the secondary-authority
bit in the authority-table entry to determine if the
address space can be established as a secondary
address space. The tested bit must be one; oth-
erwise, a secondary-authority exception is recog-
nized.

The instruction PROGRAM TRANSFER with
space switching uses the authorization index to
test the primary-authority bit in the authority-table
entry to determine if the address space can be
established as a primary address space. The
tested bit must be one; otherwise, a primary-
authority exception is recognized.

The instruction PROGRAM CALL with space
switching causes a new authorization index to be

loaded from the ASN-second-table entry. This
permits the program which is called to be given an
authorization index which authorizes it to access
more or different address spaces than those
authorized for the calling program. The
instructions PROGRAM RETURN with space
switching and PROGRAM TRANSFER with space
switching restore the authorization index that is
associated with the returned-to address space.

The secondary-authority bit in the authority-table
entry may also be used, along with the extended
authorization index, to determine if the program is
authorized to use an access-list entry in access-
register translation. This is described in FAccess-

Register-Specified Address Spaces” on

page 5-36|

Chapter 5. Program Execution 95-27

Authorization Mechanism
Space
Mode PSW- Ext.- Sw.-
Requirement Sec.-|ASN- Extr. |Key Auth. [Auth. Event
Function Subs. [Space|Trans. [Auth.|Mask |Index |Index |ALE [ASTE|Ct1.
or Pr.|Trans. |Link.|Ct1.(]|Ct1. Ct1.(]|(3.32-{(4.32-]|(8.32-|Seq. |Seq. |(1.57,
Instruction |Op.|Mode Ct1.6{0.37)|(14.44)(0.36)|3.47) |4.47) |8.47) [No.7|No.8|13.57)
Implicit A EA ALQ [ASQ
AR transl.
BAKR SO-PA
BSA-ba Q
BSA-ra
BSG SO-PSAH ASQ
EPAR SO-PSAH Q
EREG SO-PAH
EREGG SO0-PAH
ESAR SO-PSAH Q
ESTA SO-PAH
IAC SO-PSAH Q
IPK Q
IVSK SO-PSAH Q
LASP P SO cC CC
LRA P CCA |[CCA |CCA
LRAG P CCA |[CCA |CCA
MSTA SO-PAH
MVCDK Q
MVCP SO0-PS SO Q
MVCS SO0-PS SO Q
MVCSK Q
bPC-cp SO0-P SO Q!
sPC-cp SO-PA SO Q1
bPC-ss SO0-P SO SO Q1 X1
sPC-ss SO-PA SO SO Q! X1
PR-cp S0-PA S04 SAS
PR-ss SO-PA SO PASAS X1
PT-cp Qz2|S0-P SO
PT-ss Q2 |S0-P SO SO PA X1
RP X2
SAC Q3 [SO-PSAH SO X2
SACF Q3|SO-PSAH N X2
SPKA Q
SSAR-cp SO-PSAH SO
SSAR-ss SO-PSAH SO SA
STRAG p
TAR cC CC | CC
TPROT p cC CC | CC

Figure 5-6. Summary of Authorization Mechanisms

5-28

z/Architecture Principles of Operation

Explanation for Summary of Authorization
Mechanisms:

1

ALQ
ASQ
bPC
CC

CCA

CRx.y
EA

The PSW-key mask is ANDed with the
authorization key mask in the entry-
table entry.

The exception is recognized on an
attempt to set the supervisor state
when in the problem state.

The exception is recognized on an
attempt to set the home-space mode
when in the problem state.

ASN translation is performed for the
new SASN, and the exception may be
recognized, only when the new SASN
is not equal to the new PASN.

Secondary authority is checked for the
new SASN, and the exception may be
recognized, only when the new SASN
is not equal to the new PASN.

Subsystem-linkage control is bit 192 of
the primary ASN-second-table entry.

ALE sequence number is bits 8-15 of
the access-list-entry token and bits 8-15
of the access-list entry.

ASTE sequence number is bits 96-127
of the access-list entry and bits
160-191 of the ASN-second-table entry.

Whether the exception is recognized is
unpredictable.

Access-register translation occurs only
in the access-register mode.

ALE-sequence exception.
ASTE-sequence exception.

Basic (nonstacking) PROGRAM CALL.
Test results in setting a condition code.

Test results in setting a condition code.
The test occurs only in the access-
register mode.

Control register x, bit position y.

Extended-authority exception.

PA
PASA

SA
SO
SO-P

SO-PA

SO-PAH

SO-PS

Privileged-operation exception for privi-
leged instruction.

Primary-authority exception.

Primary-authority exception or
secondary-authority exception.

Privileged-operation exception for semi-
privileged instruction. Authority
checked only in the problem state.

Secondary-authority exception.
Special-operation exception.

CPU must be in the primary-space
mode; special-operation exception if the
CPU is in the secondary-space,
access-register, home-space, or real
mode.

CPU must be in the primary-space or
access-register mode; special-operation
exception if the CPU is in the
secondary-space, home-space, or real
mode.

CPU must be in the primary-space,
access-register, or home-space mode;
special-operation exception if the CPU
is in the secondary-space or real mode.

CPU must be in the primary-space or
secondary-space mode; special-
operation exception if the CPU is in the
home-space, access-register, or real
mode.

SO-PSAH CPU must be in the primary-space,

sPC
X1

X2

secondary-space, access-register, or
home-space mode; special-operation
exception if the CPU is in the real
mode.

Stacking PROGRAM CALL.

When bit 57 of control register 1 is one,
a space-switch event is recognized.
The operation is completed.

When bit 57 of control register 1 or 13
is one and the instruction space is
changed to or from the home address
space, a space-switch event is recog-
nized. The operation is completed.

5-29

Chapter 5. Program Execution

PC-Number Translation

PC-number translation is the process of translating
the 20-bit PC number to locate an entry-table
entry as part of the execution of the PROGRAM
CALL instruction. To perform this translation, the
20-bit PC number is divided into two fields. The
leftmost 12 bits are the linkage index (LX), and the
rightmost eight bits are the entry index (EX). The
effective address, from which the PC number is
taken, has the following format:

/

/
0 44 56 63

LX EX

The translation is performed by means of two
tables: a linkage table and an entry table. Both
of these tables reside in real storage. The
linkage-table designation resides in a third area in
storage, called the primary ASN-second-table
entry (primary ASTE), whose origin is in control
register 5. The entry table is designated by
means of a linkage-table entry.

PC-Number Translation Control

PC-number translation is controlled by means of a
linkage-table designation in the primary
ASN-second-table entry designated by the con-
tents of control register 5.

Control Register 5

Control register 5 specifies the location of the
primary ASN-second-table entry. The register has
the following format:

/

/
0 33 58 63

PASTEO

Primary-ASTE Origin (PASTEQ): Bits 33-57 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates
the beginning of the primary ASTE. The linkage-
table designation is in bytes 24-27 of the primary
ASTE.

The linkage-table designation has the following
format:

V| Linkage-Table Origin LTL

5-30 z/Architecture Principles of Operation

Subsystem-Linkage Control (V): Bit 0 of the
linkage-table designation is the subsystem-
linkage-control bit. Bit 0 must be one to allow
completion of these instructions:

¢ PROGRAM CALL
* PROGRAM TRANSFER

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and the supervisor states and
controls both the space-switching and current-
primary versions of the instructions.

Linkage-Table Origin: Bits 1-24 of the linkage-
table designation, with seven zeros appended on
the right, form a 31-bit real address that desig-
nates the beginning of the linkage table.

Linkage-Table Length (LTL): Bits 25-31 of the
linkage-table designation specify the length of the
linkage table in units of 128 bytes, thus making
the length of the linkage table variable in multiples
of 32 four-byte entries. The length of the linkage
table, in units of 128 bytes, is one more than the
value in bit positions 25-31. The linkage-table
length is compared against the leftmost seven bits
of the linkage-index portion of the PC number to
determine whether the linkage index designates
an entry within the linkage table.

PC-Number Translation Tables

The PC-number translation process consists in a
two-level lookup using two tables: a linkage table
and an entry table. These tables reside in real
storage.

Linkage-Table Entries
The entry fetched from the linkage table has the
following format:

—

Entry-Table Origin ETL

01 26 31

The fields in the linkage-table entry are allocated
as follows:

LX-Invalid Bit (I): Bit 0 controls whether the
entry table associated with the linkage-table entry
is available.

When the bit is zero, PC-number translation pro-
ceeds by using the linkage-table entry. When the

bit is one, an LX-translation exception is recog-
nized.

Entry-Table Origin: Bits 1-25, with six zeros
appended on the right, form a 31-bit real address
that designates the beginning of the entry table.

Entry-Table Length (ETL): Bits 26-31 specify
the length of the entry table in units of 128 bytes,
thus making the table variable in multiples of four
32-byte entries. The length of the entry table, in
units of 128 bytes, is one more than the value in
bit positions 26-31. The entry-table length is com-
pared against the leftmost six bits of the entry
index to determine whether the entry index desig-
nates an entry within the entry table.

Entry-Table Entries

The format of bits 0-63 of the entry-table entry
depends on whether the addressing-mode in
effect after the PROGRAM CALL operation is the
extended (64-bit) addressing mode or a basic
(24-bit or 31-bit) addressing mode. This in turn
depends on bits 128 and 129 of the entry-table
entry.

Bit 128 of the entry-table entry (T) is the PC-type
bit. When bit 128 is zero, PROGRAM CALL is to
perform the basic (nonstacking) operation. When
bit 128 is one, PROGRAM CALL is to perform the
stacking operation.

Bit 129 of the entry-table entry (G) is the entry-
extended-addressing-mode bit. In the basic
PROGRAM CALL operation, bit 31 of the current
PSW, the extended-addressing-mode bit, must
equal bit 129; otherwise, a special-operation
exception is recognized. In the stacking operation
when bit 129 is zero, bit 31 of the current PSW is
set to zero, and bit 32 of the PSW, the basic-
addressing-mode bit, is set with the value of bit 32
of the entry-table entry (A), the entry-basic-
addressing-mode bit. In the stacking operation
when bit 129 is one, bits 31 and 32 of the current
PSW both are set to one. Thus, the basic
PROGRAM CALL operation does not switch
between the extended and a basic addressing
mode but can switch between the 24-bit and 31-bit
modes, and the stacking operation can set any
addressing mode.

The 32-byte entry-table entry has the following
format:

If Bit 129 is Zero

0 31
A Entry Instruction Address P
32 63

If Bit 129 is One

Entry Instruction Address (Part 1)

0 31
Entry Instruction Address (Part 2) P

32 63

Authorization Key Mask ASN

64 80 95

Entry Key Mask

96 112 127

T|G Linkage-Stack Fields

128 130 159
ASTE Origin

160 186 191

Entry Parameter (Part 1)

192 223

Entry Parameter (Part 2)

224 255

The fields in the entry-table entry are allocated as
follows:

Entry Basic Addressing Mode (A): When bit
129 is zero, bit 32 replaces the basic-
addressing-mode bit, bit 32 of the current PSW,
as part of the PROGRAM CALL operation. In this
case if bit 32 is zero, bits 33-39 must also be
zeros; otherwise, a PC-translation-specification
exception is recognized. When bit 129 is one, bit
32 is a bit of the entry instruction address, and bit
32 of the PSW remains or is set to one.

Entry Instruction Address: When bit 129 is

zero, bits 33-62, with 33 zeros appended on the
left and a zero appended on the right, form the

Chapter 5. Program Execution 5-31

instruction address which replaces the instruction
address in the PSW as part of the PROGRAM
CALL operation. When bit 129 is one, bits 0-62,
with a zero appended on the right, form the
instruction address.

Entry Problem State (P): Bit 63 replaces the
problem-state bit, bit 15 of the current PSW, as
part of the PROGRAM CALL operation.

Authorization Key Mask: Bits 64-79 are used
to verify whether the program issuing the
PROGRAM CALL instruction, when in the problem
state, is authorized to call this entry point. The
authorization key mask and the current PSW-key
mask in control register 3 are ANDed, and the
result is checked for all zeros. If the result is all
zeros, a privileged-operation exception is recog-
nized. The test is not performed in the supervisor
state.

ASN: Bits 80-95 specify whether a space-
switching (PC-ss) operation or a to-current-primary
(PC-cp) operation is to occur. When bits 80-95
are zeros, PC-cp is specified. When bits 80-95
are not all zeros, PC-ss is specified, and the bits
are the ASN that replaces the primary ASN.

Entry Key Mask: Bits 96-111 may be ORed into
or may replace the PSW-key mask in control reg-
ister 3 as part of the PROGRAM CALL operation,
as determined by a bit in bit positions 130-159.

PC-Type Bit (T): Bit 128 specifies the basic
PROGRAM CALL operation when the bit is zero
or the stackihng PROGRAM CALL operation when
the bit is one.

Entry Extended Addressing Mode (G): In the
basic PROGRAM CALL operation, bit 129 must
match the extended-addressing-mode bit, bit 31 of
the current PSW; otherwise, a special-operation
exception is recognized. In the stacking opera-
tion, bit 129 replaces bit 31 of the PSW.

ASTE Origin: When bits 80-95 are not all zeros,
bits 161-185, with six zeros appended on the right,
form the 31-bit real ASN-second-table-entry
address that should result from applying the
ASN-translation process to bits 80-95.

Entry Parameter: When bit 129 is zero, bits

224-255 are placed in bit positions 32-63 of
general register 4, and bits 0-31 of the register

5-32 z/Architecture Principles of Operation

remain unchanged, as part of the PC operation.
When bit 129 is one, bits 192-255 are placed in
general register 4 as part of the PC operation.

Bits 130-159 are used in connection with the

linkage stack and are described in |‘Linkage-Stac
[Entry-Table Entries” on page 5-65|

Bits 112-127, 160, and 186-191 are reserved for
possible future extensions and should be zeros.

Programming Note: The entry parameter is
intended to provide the called program with an
address which can be depended upon and used
as the basis of addressability in locating neces-
sary information which may be environment
dependent. The parameter may be appropriately
changed for each environment by setting up dif-
ferent entry tables. The alternative — obtaining
this information from the calling program — may
require extensive validity checking or may present
an integrity exposure.

PC-Number-Translation Process

The translation of the PC number is performed by
means of a linkage table and entry table both of
which reside in real storage. The translation also
requires the use of the primary ASN-second-table
entry, which also resides in real storage.

For the purposes of PC-number translation, the
20-bit PC number is divided into two parts: the
leftmost 12 bits are called the linkage index (LX),
and the rightmost eight bits are called the entry
index (EX). The LX is used to select an entry
from the linkage table, the starting address and
length of which are specified by the linkage-table
designation in the primary ASTE. This entry des-
ignates the entry table to be used. The EX field of
the PC number is then used to select an entry
from the entry table.

When, for the purposes of PC-number translation,
accesses are made to main storage to fetch
entries from the primary ASTE, linkage table, and
entry table, key-controlled protection does not

apply.

The PC-number-translation process is shown in
[Figure 5-7 on page 5-33|

Linkage-Table Designation
in Primary ASTE

v LTO LTL

PC Number
(x128)
LX EX
(x4) (x32)
Linkage Table
—>
R |I ETO ETL
(x64)
Entry Table
_,
R *k A EIA P| AKM ASN EKM

T|G|L.-S. Fields ASTE Origin

EP

R: Address is real

*x: First word and A of ETE are bits 0-32 of EIA if G is one.

Figure 5-7. PC-Number Translation

Obtaining the Linkage-Table
Designation

The linkage-table designation is obtained from
bytes 24-27 of the primary ASN-second-table
entry, the starting address of which is specified by
the contents of control register 5.

The 31-bit real address of the linkage-table desig-
nation is obtained by appending six zeros on the
right to the primary-ASTE origin, bits 33-57 of
control register 5, and adding 24. The addition
cannot cause a carry into bit position 0. The

31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

All four bytes of the linkage-table designation
appear to be fetched concurrently from the
primary ASTE as observed by other CPUs. The
fetch access is not subject to protection. When
the storage address which is generated for
fetching the linkage-table designation designates a
location which is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed. Besides the linkage-

5-33

Chapter 5. Program Execution

table designation, no other field in the primary
ASTE is examined.

Linkage-Table Lookup

The linkage-index (LX) portion of the PC number,
in conjunction with the linkage-table origin, is used
to select an entry from the linkage table.

The 31-bit real address of the linkage-table entry
is obtained by appending seven zeros on the right
to the contents of bit positions 1-24 of the linkage-
table designation and adding the linkage index,
with two rightmost and 17 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may
be recognized, or the carry may be ignored,
causing the table to wrap from 231 - 1 to 0. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

As part of the linkage-table-lookup process, the
leftmost seven bits of the linkage index are com-
pared against the linkage-table length, bits 25-31
of the linkage-table designation, to establish
whether the addressed entry is within the linkage
table. If the value in the linkage-table-length field
is less than the value of the seven leftmost bits of
the linkage index, an LX-translation exception is
recognized.

All four bytes of the linkage-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the linkage-table entry desig-
nates a location which is not available in the con-
figuration, an addressing exception is recognized,
and the operation is suppressed.

Bit 0 of the linkage-table entry specifies whether
the entry table corresponding to the linkage index
is available. This bit is inspected, and, if it is one,
an LX-translation exception is recognized.

When no exceptions are recognized in the
process of linkage-table lookup, the entry fetched
from the linkage table designates the origin and
length of the corresponding entry table.

5-34 z/Architecture Principles of Operation

Entry-Table Lookup

The entry-index (EX) portion of the PC number, in
conjunction with the entry-table origin contained in
the linkage-table entry, is used to select an entry
from the entry table.

The 31-bit real address of the entry-table entry is
obtained by appending six zeros on the right to
the entry-table origin and adding the entry index,
with five rightmost and 18 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may
be recognized, or the carry may be ignored,
causing the table to wrap from 23t - 1 to 0. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

As part of the entry-table-lookup process, the six
leftmost bits of the entry index are compared
against the entry-table length, bits 26-31 of the
linkage-table entry, to establish whether the
addressed entry is within the table. If the value in
the entry-table length field is less than the value of
the six leftmost bits of the entry index, an
EX-translation exception is recognized.

The 32-byte entry-table entry is fetched by using
the real address. The fetch of the entry appears
to be word concurrent, as observed by other
CPUs, with the leftmost word fetched first. The
order in which the remaining seven words are
fetched is unpredictable. The fetch access is not
subject to protection. When the storage address
which is generated for fetching the entry-table
entry designates a location which is not available
in the configuration, an addressing exception is
recognized, and the operation is suppressed.

The use that is made of the information fetched
from the entry-table entry is described in the defi-
nition of the PROGRAM CALL instruction.

Recognition of Exceptions during
PC-Number Translation

The exceptions which can be encountered during
the PC-number-translation process and their pri-
ority are described in the definition of the
PROGRAM CALL instruction.

Programming Note: The linkage-table desig-
nation is fetched successfully from the primary
ASN-second-table entry regardless of the value of
bit 0, the ASX-invalid bit, in the primary ASTE. A

one value of this bit may cause an exception to be
recognized in other circumstances.

Home Address Space

Facilities are provided which a privileged program,
such as the control program, can use to obtain
control in and access the home address space of
a dispatchable unit (for example, a task).

Each dispatchable unit normally has an address
space associated with it in which the control
program keeps the principal control blocks that
represent the dispatchable unit. This address
space is called the home address space of the
dispatchable unit. Different dispatchable units
may have the same or different home address
spaces. When the control program initiates a
dispatchable unit, it may set the primary and sec-
ondary address spaces equal to the home
address space of the dispatchable unit. There-
after, because of the dispatchable unit's possible
use of the PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, or SET SEC-
ONDARY ASN instruction, the control program
normally cannot depend on either the primary
address space or the secondary address space
being the home address space when the home
address space must be accessed, for example,
during the processing by the control program of an
interruption. Therefore, the control program
normally must take some special action to ensure
that the home address space is addressed when it
must be accessed. The home-address-space
facilities provide an efficient means to take this
action.

The home-address-space facilities include:

e The home address-space-control element
(HASCE) in control register 13. The HASCE
is used by DAT in the same way as the
primary address-space-control element
(PASCE) in control register 1 and the sec-
ondary address-space-control element
(SASCE) in control register 7.

¢ Home-space mode, which results when DAT
is on and the address-space control, PSW bits
16 and 17, has the value 11 binary. When
the CPU is in the home-space mode, instruc-
tion and logical addresses are home virtual
addresses and are translated by DAT by
means of the HASCE.

e The ability of the RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, and SET
ADDRESS SPACE CONTROL FAST
instructions to set the home-space mode in
the supervisor state, and the ability of the
INSERT ADDRESS SPACE CONTROL
instruction to return an indication of the home-
space mode.

e The home space-switch-event control, bit 57
of control register 13.

¢ Recognition of a space-switch event upon
completion of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET
ADDRESS SPACE CONTROL FAST instruc-
tion if the CPU was in the home-space mode
before or after the operation but not both
before and after the operation, if any of the
following is true: (1) the primary space-
switch-event control, bit 57 of control register
1, is one, (2) the home space-switch-event
control is one, or (3) a PER event is to be
indicated.

The space-switch event can be used to enable or
disable PER or tracing when fetching of
instructions begins or ends in particular address
spaces.

Access-Register Introduction

Many of the functions related to access registers
are described in this section and in
[Linkage without the Linkage Stack” on page 5-11]
[FAccess-Register Translation” on page 5-44] and
[FSequence of Storage References” on page 5-78
Additionally, translation modes and access-list-
controlled protection are described in
the PER means of restricting storage-
alteration events to designated address spaces
and the handling of access registers during resets
and during the store-status operation are
described in [Chapter 4, “Control’} interruptions are
described in [Chapter 6, ‘“Interruptions’
instructions are described in
[Instructions,” and [Chapter 10, “Control
[Instructions’} the handling of access registers
during a machine-check interruption and the pro-
grammed validation of the access registers are
described in [Chapter 11, “Machine-Check|
and the alter-and-display controls for
access registers are described in

FOperator Facilities.’]

Chapter 5. Program Execution 5-35

Summary

These major functions are provided:

¢ A maximum of 16 address spaces, including
the instruction space, for immediate and
simultaneous use by a semiprivileged
program; the address spaces are specified by
16 registers called access registers.

¢ Instructions for examining and changing the
contents of the access registers.

In addition, control and authority mechanisms are
incorporated to control these functions.

Access registers allow a sequence of instructions,
or even a single instruction such as MOVE (MVC)
or MOVE LONG (MVCL), to operate on storage
operands in multiple address spaces, without the
requirement of changing either the translation
mode or other control information. Thus, a
program residing in one address space can use
the complete instruction set to operate on data in
that address space and in up to 15 other address
spaces, and it can move data between any and all
pairs of these address spaces. Furthermore, the
program can change the contents of the access
registers in order to access still other address
spaces.

The instructions for examining and changing
access-register contents are unprivileged and are
described in [Chapter 7, “General Instructions.”|

* COPY ACCESS

e EXTRACT ACCESS

e LOAD ACCESS MULTIPLE

e LOAD ADDRESS EXTENDED
e SET ACCESS

e STORE ACCESS MULTIPLE

The privileged PURGE ALB instruction and
COMPARE AND SWAP AND PURGE instruction
are used in connection with access registers and
are described in [Chapter 10, “Control|

Instructions.’

Access registers specify address spaces when the
CPU is in the access-register mode. The SET
ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST instructions
allow setting of the access-register mode, and the
INSERT ADDRESS SPACE CONTROL instruction
provides an indication of the access-register

5-36 z/Architecture Principles of Operation

mode. The stackihg PROGRAM CALL,
PROGRAM RETURN, and RESUME PROGRAM
instructions also allow setting of the access-
register mode. All of these instructions are
described in [Chapter 10, “Control Instructions.”]

Access registers are used in a special way by the
BRANCH IN SUBSPACE GROUP instruction.
The use of access registers by that instruction is
described in detail only in the definition of the
instruction in Chapter 10, “Control Instructions.”
However, [‘Subspace-Group Tables” on page 5-56]
describes the use of the dispatchable-unit control
table and the extended ASN-second-table entry by
BRANCH IN SUBSPACE GROUP.

Access-Register Functions

Access-Register-Specified Address
Spaces

The CPU includes sixteen 32-bit access registers
numbered 0-15. In the access-register mode,
which results when DAT is on and PSW bits 16
and 17 are 01 binary, an instruction B or R field
that is used to specify the logical address of a
storage operand designates not only a general
register but also an access register. The desig-
nated general register is used in the ordinary way
to form the logical address of the storage operand.
The designated access register is used to specify
the address space to which the logical address is
relative. The access register specifies the
address space by specifying an address-
space-control element for the address space, and
this address-space-control element is used by
DAT to translate the logical address. An access
register specifies an address-space-control
element in an indirect way, not by containing the
address-space-control element.

An access register may specify the primary or
secondary address-space-control element in
control register 1 or 7, respectively, or it may
specify an address-space-control element con-
tained in an ASN-second-table entry. In the latter
case, the access register designates an entry in a
table called an access list, and the designated
access-list entry in turn designates the
ASN-second-table entry.

The process of using the contents of an access
register to obtain an address-space-control
element for use by DAT is called access-register

translation (ART). This is depicted in

Instruction

| Displacement
| [e] o]

General Register
In Access-Register Mode ‘

Base Address l

Access Register

| | B

l Logical Address

ART

ASCE ——— | DAT

Real Address

Figure 5-8. Use of Access Registers

An access register is said to specify an
AR-specified address space by means of an
AR-specified address-space-control element. The
virtual addresses in an AR-specified address
space are called AR-specified virtual addresses.

In the access-register mode, whereas all storage-
operand addresses are AR-specified virtual,
instruction addresses are primary virtual.

Designating Access Registers: In the access-
register mode, an instruction B or R field desig-
nates an access register, for use in access-
register translation, under the following conditions:

e The field is a B field which designates a
general register containing a base address.
The base address is used, along with a dis-
placement (D) and possibly an index (X), to
form the logical address of a storage operand.

e The field is an R field which designates a
general register containing the logical address
of a storage operand.

For example, consider the following instruction:
MVC 0(L,1),0(2)

The second operand, of length L, is to be moved
to the first-operand location. The logical address
of the second operand is in general register 2, and
that of the first-operand location in general register
1. The address space containing the second
operand is specified by access register 2, and that
containing the first-operand location by access
register 1. These two address spaces may be dif-

ferent address spaces, and each may be different
from the current instruction address space (the
primary address space).

When PSW bits 16 and 17 are 01, the B2 field of
the LOAD REAL ADDRESS and STORE REAL
ADDRESS instructions designates an access reg-
ister, for use in access-register translation, regard-
less of whether DAT is on or off.

The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions specify storage oper-
ands by means of implicitly designated general
registers and access registers.

The MOVE TO PRIMARY and MOVE TO SEC-
ONDARY instructions specify storage operands by
means of primary virtual and secondary virtual
addresses, and access registers do not apply to
these instructions. An exception is recognized
when either of these instructions is executed in
the access-register mode. The MOVE WITH KEY
instruction can be used in place of MOVE TO
PRIMARY and MOVE TO SECONDARY in the
access-register mode. The MOVE WITH
SOURCE KEY and MOVE WITH DESTINATION
KEY instructions also can be used.

An instruction R field may designate an access
register for other than the purpose of access-
register translation.

The fields which may designate access registers,
whether or not for access-register translation, are
indicated in the summary figure at the beginning
of each instruction chapter.

Obtaining the Address-Space-Control
Element: This section and the following ones
introduce the access-register-translation process
and present the concepts related to access lists.

The address-space-control element specified by
an access register is obtained by access-register
translation as follows:

¢ |f the access register contains 00000000 hex,
the specified address-space-control element is
the primary address-space-control element
(PASCE), obtained from control register 1.

e |f the access register contains 00000001 hex,
the specified address-space-control element is
the secondary address-space-control element
(SASCE), obtained from control register 7.

Chapter 5. Program Execution 95-37

o If the access register contains any other
value, the specified address-space-control
element is obtained from an
ASN-second-table entry. The contents of the
access register designate an access-list entry
that contains the real origin of the
ASN-second-table entry.

Access register 0 is treated in a special way by
access-register translation; it is treated as con-
taining 00000000 hex, and its actual contents are
not examined. Thus, a logical address specified
by means of a zero B or R field in the access-
register mode is always relative to the primary
address space, regardless of the contents of
access register 0. However, there is one excep-
tion to how access register 0 is treated: the TEST
ACCESS instruction uses the actual contents of
access register 0, instead of treating access reg-
ister 0 as containing 00000000 hex.

The treatment of an access register containing the
value 00000000 hex as designating the current
primary address space allows that address space
to be addressed, in the access-register mode,
without requiring the use of an access-list entry.
This is useful when the primary address space is
changed by a space-switching PROGRAM CALL
(PC-ss), PROGRAM RETURN (PR-ss), or
PROGRAM TRANSFER (PT-ss) instruction. Simi-
larly, the treatment of an access register con-
taining the value 00000001 hex as designating the
secondary address space allows that space to be
addressed after a space-switching operation,
again without requiring the use of an access-list
entry.

The contents of the access registers are not
changed by the PROGRAM CALL and PROGRAM
TRANSFER instructions. Therefore, an access
register containing 00000000 or 00000001 hex
may specify a different address space after the
execution of PROGRAM CALL or PROGRAM
TRANSFER than before the execution. For
example, if a space-switching PROGRAM CALL
instruction is executed, an access register con-
taining 00000000 hex specifies the old primary
address space before the execution and the new
primary address space after the execution.

When access-register translation obtains an

address-space-control element from an
ASN-second-table entry, bit 0 of the entry, the

5-38 z/Architecture Principles of Operation

ASX-invalid bit, must be zero; otherwise, an
exception is recognized.

Access Lists: The access-list entry that is desig-
nated by the contents of an access register can
be located in either one of two access lists, the
dispatchable-unit access list or the primary-space
access list. A bit in the access register specifies
which of the two access lists contains the desig-
nated entry. Both of the access lists reside in real
or absolute storage. The locations of the access
lists are specified by means of control registers 2
and 5.

Control register 2 contains the origin of a real-
storage area called the dispatchable-unit control
table. The dispatchable-unit control table contains
the designation — the real or absolute origin, and
length — of the dispatchable-unit access list.

Control register 5 contains the origin of a real-
storage area called the primary ASN-second-table
entry. The primary ASN-second-table entry con-
tains the designation of the primary-space access
list.

An access list, either the dispatchable-unit access
list or the primary-space access list, contains
some multiple of eight 16-byte entries, up to a
maximum of 1,024 entries.

Programs and Dispatchable Units: When dis-
cussing access lists, it is necessary to distinguish
between the terms “program” and “dispatchable
unit.” A program is a sequence of instructions and
may be referred to as a program module. A
program may be a sequence of calling and called
programs. A dispatchable unit, which is some-
times called a process or a task, is a unit of work
that is performed through the execution of a
program by one CPU at a time.

The dispatchable-unit access list is intended to be
associated with a dispatchable unit; that is, it is
intended that a dispatchable unit have the same
dispatchable-unit access list regardless of which
program is currently being executed to perform the
dispatchable unit. There is no mechanism, except
for the LOAD CONTROL instruction, that changes
the dispatchable-unit-control-table origin in control
register 2.

The primary-space access list is associated with
the primary address space that is specified by the

primary ASN in control register 4 and the primary
address-space-control element in control register
1. The primary-space access list that is available
for use by a dispatchable unit changes as the
primary address space of the dispatchable unit
changes, that is, whenever a program in a dif-
ferent primary address space begins to be exe-
cuted to perform the dispatchable unit. Whenever
a LOAD ADDRESS SPACE PARAMETERS,
PROGRAM CALL, PROGRAM RETURN, or
PROGRAM TRANSFER instruction replaces the
primary ASN in control register 4 and the primary
address-space-control element in control register
1, it also replaces the
primary-ASN-second-table-entry origin in control
register 5.

Thus, for a dispatchable unit, the dispatchable-unit
access list is intended to be constant (although its
entries may be changed, as will be described),
and the primary-space access list is a function of
which program is being executed, through being a
function of the primary address space of the
program. Also, all dispatchable units and pro-
grams in the same primary address space have
the same primary-space access list.

Access-List-Entry Token: The contents of an
access register are called an access-list-entry
token (ALET) since, in the general case, they des-
ignate an entry in an access list. An ALET has
the following format:

0000000 |P| ALESN ALEN

0 78 16 31

The ALET contains a primary-list bit (P) that speci-
fies which access list contains the designated
access-list entry: the dispatchable-unit access list
if the bit is zero, or the primary-space access list if
the bit is one. The specified access list is called
the effective access list.

The ALET also contains an access-list-entry
number (ALEN) which, when multiplied by 16, is
the number of bytes from the beginning of the
effective access list to the designated access-list
entry. During access-register translation, an
exception is recognized if the ALEN designates an
entry that is outside the effective access list or if
the leftmost seven bits in the ALET are not all
Zeros.

The access-list-entry sequence number (ALESN)
in the ALET is described in the next section.

The above format of the ALET does not apply
when the ALET is 00000000 or 00000001 hex.

An ALET can exist in an access register, in a
general register, or in storage, and it has no
special protection from manipulation by the
problem program. Any program can transfer
ALETs back and forth among access registers,
general registers, and storage. A called program
can save the contents of the access registers in
any storage area available to it, load and use the
access registers for its own purposes, and then
restore the original contents of the access regis-
ters before returning to its caller.

Allocating and Invalidating Access-List
Entries: |t is intended that access lists be pro-
vided by the control program and that they be pro-
tected from direct manipulation by any problem
program. This protection may be obtained by
means of key-controlled protection or by placing
the access lists in real storage not accessible by
any problem program by means of DAT.

As determined by a bit in the entry, an access-list
entry is either valid or invalid. A valid access-list
entry specifies an address space and can be used
by a suitably authorized program to access that
space. An invalid access-list entry is available for
allocation as a valid entry. It is intended that the
control program provide services that allocate
valid access-list entries and that invalidate previ-
ously allocated entries.

Allocation of an access-list entry may consist in
the following steps. A problem program passes
some kind of identification of an address space to
the control program, and it passes a specification
of either the dispatchable-unit access list or the
primary-space access list. The control program
checks, by some means, the authority of the
problem program to access the address space. |f
the problem program is authorized, the control
program selects an invalid entry in the specified
access list, changes it to a valid entry specifying
the subject address space, and returns to the
problem program an access-list-entry token
(ALET) that designates the allocated entry. The
problem program can subsequently place the
ALET in an access register in order to access the
address space. Later, through the use of the

Chapter 5. Program Execution 5-39

invalidation service of the control program, the
access-list entry that was allocated may be made
invalid. An exception is recognized during access-
register translation if an ALET is used that desig-
nates an invalid access-list entry.

It may be that a particular access-list entry is allo-
cated, then invalidated, and then allocated again,
this time specifying a different address space than
the first time. To guard against erroneous use of
an ALET that designates a conceptually wrong
address space, an access-list-entry sequence
number (ALESN) is provided in both the ALET
and the access-list entry. When the control
program allocates an access-list entry, it should
place the same ALESN in the entry and in the
designating ALET that it returns to the problem
program. When the control program reallocates
an access-list entry, it should change the value of
the ALESN. An exception is recognized during
access-register translation if the ALESN in the
ALET used is not equal to the ALESN in the des-
ignated access-list entry.

The ALESN check is a reliability mechanism, not
an authority mechanism, because the ALET is not
protected from the problem program, and the
problem program can change the ALESN in the
ALET to any value. Also, this is not a fail-proof
reliability mechanism because the ALESN is one
byte and its value wraps around after 256 reallo-
cations, assuming that the value is incremented by
one for each reallocation.

Authorizing the Use of Access-List Entries:
Although an access list is intended to be associ-
ated with either a dispatchable unit or a primary
address space, the valid entries in the list are
intended to be associated with the different pro-
grams that are executed, in some order, to
perform the work of the dispatchable unit. It is
intended that each program be able to have a par-
ticular authority that permits the use of only those
access-list entries that are associated with the
program. The authority being referred to here is
represented by a 16-bit extended authorization
index (EAX) in control register 8.

5-40 z/Architecture Principles of Operation

Other elements used in the related authorization
mechanism are: (1) a private bit in the access-list
entry, (2) an access-list-entry authorization index
(ALEAX) in the access-list entry, and (3) the
authority table.

A program is authorized to use an access-list
entry, in access-register translation, if any of the
following conditions is met:

1. The private bit in the access-list entry is zero.
This condition provides a high-performance
means to authorize any and all programs that
are executed to perform the dispatchable unit.

2. The ALEAX in the access-list entry is equal to
the EAX in control register 8. This condition
provides a high-performance means to
authorize only particular programs.

3. The EAX selects a secondary bit that is one in
the authority table associated with the address
space that is specified by the access-list entry.
The authority table is locatable in that the
access-list entry contains the real origin of the
ASN-second-table entry (ASTE) for the
address space, and the ASTE contains the
real origin of the authority table. This condi-
tion provides another means, less well-
performing than condition 2, for authorizing
only particular programs. However, providing
for condition 3 to be met instead of condition 2
can be advantageous because it permits
several programs, each executed with a dif-
ferent EAX, all to use a single access-list
entry to access a particular address space.

Access-register translation tests for the three con-
ditions in the order indicated by their numbers,
and a higher-numbered condition is not tested for
if a lower-numbered condition is met. An excep-
tion is recognized if none of the conditions is met.

[Figure 5-9 on page 5-41| shows an example of
how the authorization mechanism can be used. In
the figure, “PBZ” means that the private bit is
zero, and “PBO” means that the private bit is one.

Access List

/ / ASTE for Space 36
4 PBZ —
/ / ASTE for Space 25
7| PBO, ALEAX = 5 —>»
/ / ASTE for Space 62
9| PBO, ALEAX = 10 —
/ / ASTE for Space 17 Authority Table
12| PBO, ALEAX = 5 — —|S bit selected by
EAX 10 is one.
| |
Program A Program B Program C
EAX = 0 - EAX = 5 - EAX = 10

Figure 5-9. Example of Authorizing the Use of Access-List Entries

The figure shows an access list — assume it is a
dispatchable-unit access list — in which the
entries of interest are entries 4, 7, 9, and 12.
Each access-list entry contains a private bit, an
ALEAX, and the real origin of the ASTE for an
address space. The private bit in entry 4 is zero,
and, therefore, the value of the ALEAX in entry 4
is immaterial and is not shown. The private bits in
entries 7, 9, and 12 are ones, and the ALEAX
values in these entries are as shown. The
numbers used to identify the address spaces (36,
25, 62, and 17) are arbitrary. They may be the
ASNSs of the address spaces; however, ASNs are
in no way used in access-register translation.
Only the authority table for address space 17 is
shown. In it, the secondary bit selected by EAX
10 is one. Assume that no secondary bits are
ones in the authority tables for the other spaces.

The figure also shows a sequence of three pro-
grams, named A, B, and C, that is executed to
perform the work of the dispatchable unit associ-
ated with the access list. These programs may be
in the same or different address spaces. The
EAX in control register 8 when each of these pro-
grams is executed is 0, 5, and 10, respectively.

Each of programs A, B, and C can use access-list
entry (ALE) 4 to access address space 36 since
the private bit in ALE 4 is zero. Program B can

use ALE 7 to access space 25 because the
ALEAX in the ALE equals the EAX for the
program, and no other program can use this ALE.
Similarly, only program C can use ALE 9.
Program B can use ALE 12 because the ALEAX
and EAX are equal, and program C can use it
because C's EAX selects a secondary bit that is
one in the authority table for space 17.

The example would be the same if programs A, B,
and C were all in the same address space and the
access list were the primary-space access list for
that space.

An ALE in which the private bit is zero may be
called public because the ALE can be used by
any program, regardless of the value of the
current EAX. An ALE in which the private bit is
one may be called private because the ability of a
program to use the ALE depends on the current
EAX.

Notes on the Authorization Mechanism: An
access list is a kind of capability list, in the sense
in which the word “capability” is used in computer
science. It is up to the control program to formu-
late the policies that are used to allocate entries in
an access list, and the programmed authorization
checking required during allocation may be very
complex and lengthy. After a valid entry has been

Chapter 5. Program Execution 5-41

made in an access list, the access-
register-translation process enforces the control-
program policies in a well-performing way by
means of the authorization mechanism described
above.

Using access lists has an advantage over using
only ASNs and authority tables. For example,
assume that an access register could contain an
ASN and that access-register translation would do
ASN translation of the ASN and then use the EAX
to test the authority table. This would make the
EAX relevant to all existing address spaces, and,
therefore, it would make the management of EAXs
and their assignment to programs more difficult.
With the actual definitions of the ALET and
access-register translation, an EAX is relevant to
only the address spaces that are represented in
the current dispatchable-unit and primary-space
access lists. Also, since ASN translation is not
done as a part of access-register translation, the
number of concurrently existing address spaces,
as represented by ASN-second-table entries, can
be greater than the number of available ASNs
(64K).

The entry-table entry and linkage stack can be
used to assign EAXs to programs and to change
the EAX in control register 8 during program link-
ages. These components are introduced in
[‘Linkage-Stack Introduction” on page 5-61 The
priviieged EXTRACT AND SET EXTENDED
AUTHORITY instruction also is available for
saving and changing the EAX in control register 8.

The SET SECONDARY ASN instruction and the
authorization index (AX), bits 32-47 of control reg-
ister 4, can play a role in the use of access regis-
ters. The space-switching form of SET SEC-
ONDARY ASN (SSAR-ss) establishes a new sec-
ondary address space if the secondary bit
selected by the AX is one in the authority table
associated with the new secondary space. The
secondary space can be addressed by means of
an ALET having the value 00000001 hex.

Revoking Accessing Capability: Another mech-
anism, which is a combined authority and integrity
mechanism, is part of access-register translation,
and it is described in this section.

contains an
number

An access-list entry
ASN-second-table-entry

(ALE)
sequence

5-42 z/Architecture Principles of Operation

(ASTESN), and so does the ASTE designated by
the ALE. During access-register translation, the
ASTESN in the ALE must equal the ASTESN in
the designated ASTE; otherwise, an exception is
recognized.

When the control program allocates an ALE, it
should copy the ASTESN from the designated
ASTE into the ALE. Subsequently, the control
program can, in effect, revoke the addressing
capability represented by the ALE by changing the
ASTESN in the ASTE. Changing the ASTESN in
the ASTE makes all previously usable ALEs that
designate the ASTE unusable.

Making an ALE unusable may be required in
either of two cases:

1. Some element of the control-program policy
for determining the authority of a program to
have access to the address space specified
by the ASTE has changed. This may mean
that some or all of the programs that were
authorized to the address space, and for
which ALEs have been allocated, are no
longer authorized.

Changing the ASTESN in the ASTE ends the
usability of all ALEs that designate the ASTE.
If this revocation of capability is to be selec-
tive, then, when an exception is recognized
because of unequal ASTESNSs, the control
program can reapply its programmed proce-
dures for determining authorization, and an
ALE which should have remained usable can
be made usable again by copying the new
ASTESN into it. When the usability of an ALE
is restored, the control program normally
should cause reexecution of the instruction
that encountered the exception.

2. The ASTE has been reassigned to specify a
conceptually different address space, and
ALEs which specified the old address space
must not be allowed to specify the new one.
(Bit 0 of the ASTE, the ASX-invalid bit, can be
set to one to delete the assignment of the
ASTE to an address space, and this prevents
the use of the ASTE in access-register trans-
lation. But after reassignment, bit O normally
is set back to zero.)

The ASTESN mechanism may be regarded as an
authority mechanism in the first case above and
as an integrity mechanism in the second.

The ASTESN mechanism is especially valuable
because it avoids the need of the control program
to keep track of the access lists that contain the
ALEs that designate each ASTE. Furthermore, it
avoids the need of searching through these
access lists in order to find the ALEs and set them
invalid, to prevent the use of the ALEs in access-
register translation. The latter activity could be
particularly time-consuming, or could present a
particularly difficult management problem, because
the access lists could be in auxiliary storage, such
as a direct-access storage device, when the need
arises to invalidate the ALEs.

The ASTESN is a four-byte field. Assuming a rea-
sonable frequency of authorization-policy changes
or address-space reassignments, the approxi-
mately four billion possible values of the ASTESN
provide a fail-proof authority or integrity mech-
anism over the lifetime of the system.

Preventing Store References: The access-list
entry contains a fetch-only bit which, when one,
specifies that the access-list entry cannot be used
to perform storage-operand store references. The
principal description of the effect of the fetch-only
bit is in [‘Access-List-Controlled Protection” on|

Improving Translation Performance: Access-
register translation (ART) conceptually occurs
each time a logical address is used to reference a
storage operand in the access-register mode. To
improve performance, ART normally is imple-
mented such that some or all of the information
contained in the ART tables (access-list-
designation sources, access lists, ASN second
tables, and authority tables) is maintained in a
special buffer referred to as the ART-lookaside
buffer (ALB). The CPU necessarily refers to an
ART-table entry in real storage only for the initial
access to that entry. The information in the entry
may be placed in the ALB, and subsequent trans-
lations may be performed using the information in
the ALB.

The PURGE ALB instruction and the COMPARE
AND SWAP AND PURGE instruction can be used
to clear all information from the ALB after a
change has been made to an ART-table entry in
real storage.

Access-Register Instructions

The following instructions are provided for exam-
ining and changing the contents of access regis-
ters:

* COPY ACCESS

e EXTRACT ACCESS

e LOAD ACCESS MULTIPLE

e LOAD ADDRESS EXTENDED
e SET ACCESS

e STORE ACCESS MULTIPLE

The SET ACCESS instruction replaces the con-
tents of a specified access register with the con-
tents of a specified general register. Conversely,
the EXTRACT ACCESS instruction moves the
contents of an access register to a general reg-
ister. The COPY ACCESS instruction moves the
contents of one access register to another.

The LOAD ACCESS MULTIPLE instruction loads
a specified set of consecutively numbered access
registers from a specified storage location whose
length in words equals the number of access reg-
isters loaded. Conversely, the STORE ACCESS
MULTIPLE instruction function stores the contents
of a set of access registers at a storage location.

The LOAD ADDRESS EXTENDED instruction is
similar to the LOAD ADDRESS instruction in that
it loads a specified general register with an effec-
tive address specified by means of the B, X, and
D fields of the instruction. In addition, LOAD
ADDRESS EXTENDED operates on the access
register having the same number as the general
register loaded. When the address-space control,
PSW bits 16 and 17, is 00, 10, or 11 binary,
LOAD ADDRESS EXTENDED loads the access
register with 00000000, 00000001, or 00000002
hex, respectively. When the address space
control is 01 binaryy, LOAD ADDRESS
EXTENDED loads the target access register with
a value that depends on the B field of the instruc-
tion. If the B field is zero, LOAD ADDRESS
EXTENDED loads the target access register with
00000000 hex. If the B field is nonzero, LOAD
ADDRESS EXTENDED loads the target access
register with the contents of the access register
designated by the B field. However, in the last
case when bits 0-6 of the access register desig-
nated by the B field are not all zeros, the results in
the target general register and access register are
unpredictable.

Chapter 5. Program Execution 5-43

The address-space-control values 00, 01, 10, and
11 binary specify primary-space, access-register,
secondary-space, and home-space mode, respec-
tively, when DAT is on. LOAD ADDRESS
EXTENDED functions the same regardless of
whether DAT is on or off.

When used in access-register translation, the
access-register values 00000000 and 00000001
hex specify the primary and secondary address
spaces, respectively, and the value 00000002 hex
designates entry 2 in the dispatchable-unit access
list. Loading the target access register with
00000002 hex when the address-space control is
11 binary is intended to support assignment, by
the control program, of entry 2 in the dispatchable-
unit access list as specifying the home address
space.

Access-Register Translation

Access-register translation is introduced in
[FAccess-Reqister-Specified Address Spaces” on]

Access-Register-Translation
Control

Access-register translation is controlled by an
address-space control and by controls in control
registers 2, 5, and 8. The address-space control,
PSW bits 16 and 17, is described in
[Modes” on page 3-28, The other controls are
described below.

Additional controls are located in the access-
register-translation tables.

Control Register 2

The location of the dispatchable-unit control table
is specified in control register 2. The register has
the following format:

/

/
0 33 58 63

DUCTO

Dispatchable-Unit-Control-Table Origin
(DUCTO): Bits 33-57 of control register 2, with
six zeros appended on the right, form a 31-bit real
address that designates the beginning of the
dispatchable-unit control table. Access-register

5-44 z/Architecture Principles of Operation

translation may obtain the dispatchable-unit
access-list designation from the dispatchable-unit
control table.

Control Register 5

The location of the primary ASN-second-table
entry is specified in control register 5. The reg-
ister has the following format:

/

/
0 33 58 63

PASTEOQ

Primary-ASTE Origin (PASTEQ): Bits 33-57 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates
the beginning of the primary ASN-second-table
entry. Access-register translation may obtain the
primary-space access-list designation from the
primary ASTE. The primary-ASTE origin is set by
LOAD ADDRESS SPACE PARAMETERS when it
performs PASN translation and by the space-
switching forms of PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER. When
any of these instructions places the primary-ASTE
origin in control register 5, it also places zeros in
bit positions 32 and 58-63 of the register and
leaves bits 0-31 of the register unchanged. Bits
0-32 and 58-63 of control register 5 are subject to
possible future assignment, and they should not
be depended upon to be zeros.

Control Register 8
The extended authorization index is in control reg-
ister 8. The register has the following format:

/

/
0 32 48 63

EAX Monitor Masks

Extended Authorization Index (EAX): Bits
32-47 of control register 8 are the extended
authorization index. During access-register trans-
lation, the EAX may be compared against the
access-list-entry authorization index (ALEAX) in an
access-list entry, and it may be used as an index
to locate a secondary bit in an authority table.
The EAX may be set by a stacking PROGRAM
CALL operation, and it is restored by PROGRAM
RETURN. The EAX can also be saved and set by
the privileged instruction EXTRACT AND SET
EXTENDED AUTHORITY.

Access Registers

There are sixteen 32-bit access registers num-
bered 0-15. The contents of an access register
are called an access-list-entry token (ALET). An
ALET has the following format:

0000000 |P| ALESN ALEN

0 78 16 31

The fields in the ALET are allocated as follows:

Primary-List Bit (P): When the ALET is not
00000000 or 00000001 hex, bit 7 specifies the
access list to be used by access-register trans-
lation. When bit 7 is zero, the dispatchable-unit
access list is used; this is specified by the
dispatchable-unit access-list designation in the
dispatchable-unit control table designated by the
contents of control register 2. When bit 7 is one,
the primary-space access list is used; this is spec-
ified by the primary-space access-list designation
in the primary ASTE designated by the contents of
control register 5.

Access-List-Entry Sequence Number
(ALESN): Bits 8-15 may be used as a check on
whether the access-list entry designated by the
ALET has been invalidated and reallocated since
the ALET was obtained. During access-register
translation when the ALET is not 00000000 or
00000001 hex, bits 8-15 of the ALET are com-
pared against the access-list-entry sequence
number (ALESN) in the designated access-list
entry.

Access-List-Entry Number (ALEN): When the
ALET is not 00000000 or 00000001 hex, bits
16-31 of the ALET designate an entry in either the
dispatchable-unit access list or the primary-space
access list, as determined by bit 7. The access-
list designation that is used is called the effective
access-list designation; it consists of the effective
access-list origin and the effective access-list
length.

During access-register translation, the ALEN, with
four zeros appended on the right, is added to the
31-bit real or absolute address specified by the
effective access-list origin, and the result is the
real or absolute address of the designated access-
list entry. The ALEN is compared against the

effective access-list length to determine whether
the designated access-list entry is within the list,
and an ALEN-translation exception is recognized if
the entry is outside the list. Although the largest
possible value of the ALEN is 65,535, an access
list can contain at most 1,024 entries.

Bits 0-6 must be zeros during access-register
translation; otherwise, an ALET-specification
exception is recognized.

When the ALET is 00000000 or 00000001 hex, it
specifies the primary or secondary address space,
respectively, and the above format does not apply.

Access register 0 usually is treated in access-
register translation as containing 00000000 hex,
and its actual contents are not examined; the
access-register translation done as part of TEST
ACCESS is the only exception. Access register 0
is also treated as containing 00000000 hex when
it is designated by the B field of LOAD ADDRESS
EXTENDED when PSW bits 16 and 17 are 01
binary. When access register 0 is specified for
TEST ACCESS or as a source for COPY
ACCESS, EXTRACT ACCESS, or STORE
ACCESS MULTIPLE, the actual contents of the
access register are used. Access register 0, like
any other access register, can be loaded by
COPY ACCESS, LOAD ACCESS MULTIPLE,
LOAD ADDRESS EXTENDED, and SET
ACCESS.

Another definition of ALETs 00000000 and
00000001 hex is given in FBRANCH IN SUB-
[SPACE GROUP” on page 10-13

Access-Register-Translation
Tables

When the ALET being translated is not 00000000
or 00000001 hex, access-register translation per-
forms a two-level lookup to locate first the effec-
tive access-list designation and then an entry in
the effective access list. The effective access-list
designation resides in real storage. The effective
access list resides in real or absolute storage.

Access-register translation uses an origin in the
access-list entry to locate an ASN-second-table
entry, and it may perform a one-level lookup to
locate an entry in an authority table. The
ASN-second-table entry resides in real storage.

Chapter 5. Program Execution 5-45

The authority table resides in real or absolute
storage.

Authority-table entries are described in
[Table Entries” on page 3-24] Access-list desig-
nations, access-list entries, and ASN-second-table
entries are described in the following sections.

Dispatchable-Unit Control Table and
Access-List Designations

When the ALET being translated is not 00000000
or 00000001 hex, access-register translation
obtains the dispatchable-unit access-list desig-
nation if bit 7 of the ALET is zero, or it obtains the
primary-space access-list designation if bit 7 is
one. The obtained access-list designation is
called the effective access-list designation.

The dispatchable-unit access-list designation
(DUALD) is located in bytes 16-19 of a 64-byte
area called the dispatchable-unit control table
(DUCT). The DUCT resides in real storage, and
its location is specified by the DUCT origin in
control register 2.

The dispatchable-unit control table has the fol-
lowing format:

Hex Dec

0 0 BASTEOQ
S

4 4 (A SSASTEQ

8 8

c 12 SSASTESN

10 16 DUALD

PSW-Key| |PSW|R
14 20 Mask Key|A| |P

18 24

1C 28 |//11111111111111111

In the 24-Bit or 31-Bit
Addressing Mode

20 32

24 36 Bits 33-63 of

Return Address

= W

5-46 z/Architecture Principles of Operation

In the 64-Bit Addressing Mode

20 32 Bits 0-31 of
Return Address
24 36 Bits 32-63 of
Return Address
28 40
2C 44 |Trap-Control-
Block Address E
30 48
/ /

3C 60|

Bytes 0-7 (BASTEO, SA, and SSASTEO) and
12-15 (SSASTESN) of the DUCT are described in
[“Subspace-Group Dispatchable-Unit ___ Control|
Bytes 20-23 (PSW key
mask, PSW key, RA, and P) and 32-39 (BA and
return address) are described in FBRANCH AND|
[SET_AUTHORITY” on page 10-6| Bytes 44-47
(trap-control-block address and E) are described
in 'TRAP” on page 10-124] Bytes 8-11, 24-27,
40-43, and 48-63 are reserved for possible future
extensions and should contain all zeros. Bytes
28-31 are available for use by programming.

The primary-space access-list designation
(PSALD) is located in bytes 16-19 of a 64-byte
area called the primary ASN-second-table entry.
The primary ASTE resides in real storage, and its
location is specified by the primary-ASTE origin in
control register 5. The format of the primary
ASTE is described in [FASN-Second-Table Entries’]
on page 5-48

The dispatchable-unit and primary-space access-
list designations both have the same format, which
is as follows:

Access-List Designation

Access-List Origin ALL

0 1 25 31

The fields in the access-list designation are allo-
cated as follows:

Access-List Origin: Bits 1-24 of the access-list
designation, with seven zeros appended on the
right, form a 31-bit address that designates the
beginning of the access list. This address is
treated unpredictably as either a real address or
an absolute address.

Access-List Length (ALL): Bits 25-31 of the
access-list designation specify the length of the
access list in units of 128 bytes, thus making the
length of the access list variable in multiples of
eight 16-byte entries. The length of the access
list, in units of 128 bytes, is one more than the
value in bit positions 25-31. The access-list
length, with six zeros appended on the left, is
compared against bits 0-12 of an access-list-entry
number (bits 16-28 of an access-list-entry token)
to determine whether the access-list-entry number
designates an entry in the access list.

Bit 0 is reserved for a possible future extension
and should be zero.

Programming Note: The maximum number of
access-list entries allowed by an access-list desig-
nation is 1,024. There are two access lists avail-
able for use at any time. Therefore, a maximum
of 2,048 16E-byte address spaces can be
addressable without control-program intervention,
which is a total of 275 bytes.

Access-List Entries

The effective access list is the dispatchable-unit
access list if bit 7 of the ALET being translated is
zero, or it is the primary-space access list if bit 7
is one. The entry fetched from the effective
access list is 16 bytes in length and has the fol-
lowing format:

F
I O[P| ALESN ALEAX
061 678 16 31
32 63
ASTEO
64 90 95

ASTESN

96 127

The fields in the access-list entry are allocated as
follows:

ALEN-Invalid Bit (I): Bit 0, when zero, indicates
that the access-list entry specifies an address
space. When bit 0 is one during access-register
translation, an ALEN-translation exception is
recognized.

Fetch-Only Bit (FO): Bit 6 controls which types
of operand references are permitted to the
address space specified by the access-list entry.
When bit 6 is zero, both fetch-type and store-type
references are permitted. When bit 6 is one, only
fetch-type references are permitted, and an
attempt to store causes a protection exception for
access-list-controlled protection to be recognized
and the operation to be suppressed.

Private Bit (P): Bit 7, when zero, specifies that
any program is authorized to use the access-list
entry in access-register translation. When bit 7 is
one, authorization is determined as described for
bits 16-31.

Access-List-Entry Sequence Number
(ALESN): Bits 8-15 are compared against the
ALESN in the ALET during access-register trans-
lation. Inequality causes an ALE-sequence excep-
tion to be recognized. It is intended that the
control program change bits 8-15 each time it real-
locates the access-list entry.

Access-List-Entry Authorization Index
(ALEAX): Bits 16-31 may be used to determine
whether the program for which access-register
translation is being performed is authorized to use
the access-list entry. The program is authorized if
any of the following conditions is met:

1. Bit 7 is zero.

2. Bits 16-31 are equal to the extended authori-
zation index (EAX) in control register 8.

3. The EAX selects a secondary bit that is one in
the authority table for the specified address
space.

An extended-authority exception is recognized if
none of the conditions is met.

Chapter 5. Program Execution 95-47

ASN-Second-Table-Entry Origin (ASTEO): Bits
65-89, with six zeros appended on the right, form
the 31-bit real address of the ASTE for the speci-
fied address space. Access-register translation
obtains the address-space-control element for the
address space from the ASTE.

ASTE Sequence Number (ASTESN): Bits
96-127 may be used to revoke the addressing
capability represented by the access-list entry.
Bits 96-127 are compared against an ASTE
sequence number (ASTESN) in the designated
ASTE during access-register translation.

Bits 1-5, 32-64, and 90-95 are reserved for pos-
sible future extensions and should be zeros.

In both the dispatchable-unit access list and the
primary-space access list, access-list entries 0
and 1 are intended not to be used in access-
register translation. Bits 1-127 of access-list entry
0 and bits 1-63 of access-list entry 1 are reserved
for possible future extensions and should be
zeros. Bit 0 of access-list entries 0 and 1, and
bits 64-127 of access-list entry 1, are available for
use by programming. The control program should
set bit 0 of access-list entries 0 and 1 to one in
order to prevent the use of these entries by
means of ALETs in which the ALEN is O or 1.

ASN-Second-Table Entries
The first 32 bytes of the 64-byte
ASN-second-table entry have the following format:

I ATO B
01 30 31
AX ATL
32 48 60 63

—ASCE (RTD, STD, or RSD) Part 1—

RTO, STO, or RSTKO

64 95

——RTD or STD Part 2——
RTO/STO (Cont.)| |GPSX|R| |DT|TL| R=0

96 115 118 122 124 127

5-48 z/Architecture Principles of Operation

———RSD Part 2——————

RSTKO (Cont.) GPSX|R R=1
96 115 118 122 127
| ALD]
ALO ALL
128 153 159
ASTESN
160 191
| LTD
v LTO LTL
192 217 223

Ty
224 255

The fields in bytes 0-31 of the ASN-second-table
entry (ASTE) are defined with respect to certain
mechanisms and instructions in
FASN-Second-Table Entries” on page 3-19} The
fields in the ASTE are defined with respect to the
BRANCH IN SUBSPACE GROUP instruction in
“Subspace-Group ASN-Second-Table Entries” on|
page 5-58 With respect to access-register trans-
lation only, and only for an instruction other than
BRANCH IN SUBSPACE GROUP, the fields in
the ASTE are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is avail-
able. When bit 0 is zero, access-register trans-
lation proceeds. When the bit is one, an
ASTE-validity exception is recognized.

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, form a 31-bit
address that designates the beginning of the
authority table. This address is treated unpredict-
ably as either a real address or an absolute
address, although it is treated as a real address
for ASN authorization. The authority table is
accessed in access-register translation only if the
private bit in the access-list entry is one and the
access-list-entry authorization index (ALEAX) in

the access-list entry is not equal to the extended
authorization index (EAX) in control register 8.

Base-Space Bit (B): Bit 31 is ignored during
access-register translation. Bit 31 is further
described in [‘Subspace-Group ASN-Second-Table]
[Entries” on page 5-58,

Authorization Index (AX): Bits 32-47 are not
used in access-register translation.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular EAX is within the authority table.
An extended-authority exception is recognized if
the entry is not within the table.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control
element (ASCE) that may be a segment-table des-
ignation (STD), a region-table designation (RTD),
or a real-space designation (RSD). (The term
“region-table designation” is used to mean a
region-first-table designation, region-second-table
designation, or region-third-table designation.)
The ASCE field is obtained as the result of
access-register translation and is used by DAT to
translate the logical address for the storage-
operand reference being made. Bit 121, the
space-switch-event control, is not used in or as a
result of access-register translation. The other
fields in the ASCE (RTO, STO, RSTKO, G, P, S,
R, DT, and TL) are described in [‘Control Register|
[1” on page 3-29|

Access-List Designation (ALD): When this
ASTE is designated by the primary-ASTE origin in
control register 5, bits 128-159 are the primary-
space access-list designation (PSALD). See the
description of the access-list designation in
[Dispatchable-Unit_Control Table_and_Access-Lisf]
[Designations” on page 5-46] During access-
register translation when the primary-list bit, bit 7,
in the ALET being translated is one, the PSALD is
the effective access-list designation.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control
revocation of the accessing capability represented

by access-list entries that designate the ASTE.
During access-register translation, bits 160-191
are compared against the ASTESN in the access-
list entry, and inequality causes an
ASTE-sequence exception to be recognized. It is
intended that the control program change the
value of bits 160-191 when the authorization poli-
cies for the address space specified by the ASTE
change or when the ASTE is reassigned to specify
another address space.

Linkage-Table Designation (LTD): Bits
192-223 are not used in access-register trans-
lation.

Bits 224-255 in the ASTE are available for use by
programming.

Programming Note: All unused fields in the
ASTE, including the unused fields in bytes 0-31
and all of bytes 32-63, should be set to zeros.
These fields are reserved for future extensions,
and programs which place nonzero values in
these fields may not operate compatibly on future
machines.

Access-Register-Translation
Process

This section describes the access-
register-translation process as it is performed
during a storage-operand reference in the access-
register mode. LOAD REAL ADDRESS and
STORE REAL ADDRESS when PSW bits 16 and
17 are 01 binary, TEST ACCESS in any trans-
lation mode, and TEST PROTECTION in the
access-register mode, perform access-register
translation the same as described here, except
that, for LOAD REAL ADDRESS, TEST ACCESS,
and TEST PROTECTION, the following exceptions
cause a setting of the condition code instead of
being treated as program-interruption conditions:

e ALET specification
e ALEN translation
e ALE sequence

e ASTE validity

e ASTE sequence

¢ Extended authority

BRANCH IN SUBSPACE GROUP performs
access-register translation as described in
FBRANCH _IN___SUBSPACE __GROUP”__ on|

|gage 10-13}

Chapter 5. Program Execution 5-49

Access-register translation operates on the access
register designated in a storage-operand reference
in order to obtain an address-space-control
element for use by DAT. When one of access-
registers 1-15 is designated, the access-list-entry
token (ALET) that is in the access register is used
to obtain the address-space-control element.
When access register 0 is designated, an ALET
having the value 00000000 hex is used, except
that TEST ACCESS uses the actual contents of
access register 0.

When the ALET is 00000000 or 00000001 hex,
the primary or secondary address-space-control
element, respectively, is obtained.

When the ALET is other than 00000000 or
00000001 hex, the leftmost seven bits of the
ALET are checked for zeros, the primary-list bit in
the ALET and the contents of control register 2 or
5 are used to obtain the effective access-list des-
ignation, and the access-list entry number (ALEN)
in the ALET is used to select an entry in the effec-
tive access list.

The access-list entry is checked for validity and for
containing the correct access-list-entry sequence
number (ALESN).

The ASN-second-table entry (ASTE) addressed by
the access-list entry is checked for validity and for
containing the correct ASN-second-table-entry
sequence number (ASTESN).

Whether the program is authorized to use the
access-list entry is determined through the use of

5-50 z/Architecture Principles of Operation

one or more of: (1) the private bit and access-
list-entry authorization index (ALEAX) in the
access-list entry, (2) the extended authorization
index (EAX) in control register 8, and (3) an entry
in the authority table addressed by the
ASN-second-table entry.

If a store-type reference is to be performed, the
fetch-only bit in the access-list entry is checked for
being zero.

When no exceptions are recognized, the address-
space-control element in the ASN-second-table
entry is obtained.

In order to avoid the delay associated with refer-
ences to real or absolute storage, the information
fetched from real or absolute storage normally is
also placed in a special buffer, the ART-lookaside
buffer (ALB), and subsequent translations
involving the same information may be performed
by using the contents of the ALB. The operation
of the ALB is described in FART-Lookaside Buffer]

Whenever access to real or absolute storage is
made during access-register translation for the
purpose of fetching an entry from an access-list-
designation source, access list, ASN second table,
or authority table, key-controlled protection does

not apply.

The principal features of access-register trans-
lation, including the effect of the ALB, are shown
in [Figure 5-10 on page 5-51]

Access-List Designation ALET in Access Register Control Register 1

' l ALO ‘ALL ' l ‘P'ALESN' ALEN l l PASCE
]

l Control Register 7
I Access List l SASCE l
! |
F
T|0[P|ALESN|ALEAX ASTEO ASTESN
vy
=0 if =0?
store?

CR 8

/
[EAX
/

=<— —><_

ASN-Second-Table Entry

'Il ATO ‘ l ATL ' ASCE ‘ ' ASTESN l
(x 4) '
l v v
(x 1/4)
Authority Table
_.
S=1? Obtained ASCE

Explanation:

The appropriate ALD is obtained:
When P in the ALET is zero (and the ALET is not zero or one), the DUALD in the DUCT is obtained.

When P in the ALET is one, the PSALD in the primary ASTE is obtained.

the ALB. This information, along with information from the ALE, ASTE, and ATE, may be

Information, which may include the ALD-source origin, ALET, ALO, and EAX, is used to search
2
placed in the ALB.

When the ALET is zero, the PASCE in CR 1 is obtained.
When the ALET is one, the SASCE in CR 7 is obtained.
When the ALET is Targer than one:
If a match exists, the ASCE from the ALB is used.
If no match exists, tables from real or absolute storage are fetched. The resulting ASCE from
the ASTE is obtained, and entries may be formed in the ALB.

The appropriate ASCE is obtained:
3

Figure 5-10. Access-Register Translation

Chapter 5. Program Execution

5-51

Selecting the Access-List-Entry Token
When one of access registers 1-15 is designated,
or for the access register designated by the R:
field of TEST ACCESS, access-register translation
uses the access-list-entry token (ALET) that is in
the access register. When access register 0 is
designated, except for TEST ACCESS, an ALET
having the value 00000000 hex is used, and the
contents of access register 0 are not examined.

Obtaining the Primary or Secondary
Address-Space-Control Element

When the ALET being translated is 00000000 hex,
the primary address-space-control element in
control register 1 is obtained. When the ALET is
00000001 hex, the secondary address-
space-control element in control register 7 is
obtained. In each of these two cases, access-
register translation is completed.

Checking the First Byte of the ALET
When the ALET being translated is other than
00000000 or 00000001 hex, bits 0-6 of the ALET
are checked for being all zeros. If bits 0-6 are not
all zeros, an ALET-specification exception is
recognized, and the operation is suppressed.

Obtaining the Effective Access-List
Designation

The primary-list bit, bit 7, in the ALET is used to
perform a lookup to obtain the effective access-list
designation. When bit 7 is zero, the effective ALD
is the dispatchable-unit ALD located in bytes
16-19 of the dispatchable-unit control table
(DUCT). When bit 7 is one, the effective ALD is
the primary-space ALD located in bytes 16-19 of
the primary ASN-second-table entry (primary
ASTE).

When bit 7 is zero, the 31-bit real address of the
dispatchable-unit ALD is obtained by appending
six zeros on the right to the DUCT origin, bits
33-57 of control register 2, and adding 16. The
addition cannot cause a carry into bit position 0.

When bit 7 is one, the 31-bit real address of the
primary-space ALD is obtained by appending six
zeros on the right to the primary-ASTE origin, bits
33-57 of control register 5, and adding 16. The
addition cannot cause a carry into bit position O.

5-52 z/Architecture Principles of Operation

The obtained 31-bit real address is used to fetch
the effective ALD — either the dispatchable-unit
ALD or the primary-space ALD, depending on bit
7 of the ALET. The fetch of the effective ALD
appears to be word concurrent, as observed by
other CPUs, and is not subject to protection.
When the storage address that is generated for
fetching the effective ALD refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed. When the primary-space
ALD is fetched, bit 0, the ASX-invalid bit, in the
primary ASTE is ignored.

Access-List Lookup

A lookup in the effective access list is performed.
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET is zero, or it is the
primary-space access list if bit 7 is one. The
effective access list is treated unpredictably as
being in either real or absolute storage.

The access-list-entry-number (ALEN) portion of
the ALET is used to select an entry in the effective
access list. The 31-bit real or absolute address of
the access-list entry is obtained by appending
seven zeros on the right to bits 1-24 of the effec-
tive ALD and adding the ALEN, with four rightmost
and 11 leftmost zeros appended. When a carry
into bit position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the access list to
wrap from 23t - 1 to 0. The 31-bit address is
formed and used regardless of whether the
current PSW specifies the 24-bit, 31-bit, or 64-bit
addressing mode.

As part of the access-list-lookup process, the left-
most 13 bits of the ALEN are compared against
the effective access-list length, bits 25-31 of the
effective ALD, to establish whether the addressed
entry is within the access list. For this compar-
ison, the access-list length is extended with six
leftmost zeros. If the value formed from the
access-list length is less than the value in the 13
leftmost bits of the ALEN, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

The 16-byte access-list entry is fetched by using
the real or absolute address. The fetch of the
entry appears to be word concurrent as observed
by other CPUs, with the leftmost word fetched
first. The order in which the remaining three

words are fetched is unpredictable. The fetch
access is not subject to protection. When the
storage address that is generated for fetching the
access-list entry refers to a location which is not
available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit 0 of the access-list entry indicates whether the
access-list entry specifies an address space by
designating an ASN-second-table entry. This bit
is inspected, and, if it is one, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

When bit 0 is zero, the access-list-entry sequence
number (ALESN) in bit positions 8-15 of the
access-list entry is compared against the ALESN
in the ALET to determine whether the ALET desig-
nates the conceptually correct access-list entry.
Inequality causes an ALE-sequence exception to
be recognized and the operation to be nullified.

Locating the ASN-Second-Table Entry
The ASN-second-table-entry (ASTE) origin in the
access-list entry is used to locate the ASTE. Bits
65-89 of the access-list entry, with six zeros
appended on the right, form the 31-bit real
address of the ASTE.

The 64-byte ASTE is fetched by using the real
address. The fetch of the entry appears to be
word concurrent as observed by other CPUs, with
the leftmost word fetched first, except that the
fetch of the address-space-control element in the
entry appears to be doubleword concurrent as
observed by other CPUs. The order in which the
remaining words, after the first word, and the
address-space-control element are fetched is
unpredictable. The fetch access is not subject to
protection. When the storage address that is gen-
erated for fetching the ASTE refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed.

Bit 0 of the ASTE indicates whether the ASTE
specifies an address space. This bit is inspected,
and, if it is one, an ASTE-validity exception is
recognized, and the operation is nullified.

When bit 0 is zero, the ASTE sequence number
(ASTESN) in bit positions 160-191 of the ASTE is
compared against the ASTESN in bit positions

96-127 of the access-list entry to determine
whether the addressing capability represented by
the access-list entry has been revoked. Inequality
causes an ASTE-sequence exception to be recog-
nized and the operation to be nullified.

Authorizing the Use of the Access-List
Entry

The private bit, bit 7, in the access-list entry is
used to determine whether the program is author-
ized to use the access-list entry. The access-list-
entry authorization index (ALEAX) in bit positions
16-31 of the access-list entry, the extended
authorization index (EAX) in bit positions 32-47 of
control register 8, and the authority table desig-
nated by the ASTE may also be used.

When the private bit is zero, the program is
authorized, and the authorization step of access-
register translation is completed.

When the private bit is one but the ALEAX is
equal to the EAX, the program is authorized, and
the authorization step of access-register trans-
lation is completed.

When the private bit is one and the ALEAX is not
equal to the EAX, a process called the extended-
authorization process is performed. Extended
authorization uses the EAX to select an entry in
the authority table designated by the ASTE, and it
tests the secondary-authority bit in the selected
entry for being one. The program is authorized if
the tested bit is one.

Extended authorization is the same as the
secondary-ASN-authorization process described in
[“ASN _Authorization” on page 3-23] except as
follows:

¢ The authority-table origin is treated as a real
or absolute address instead of as a real
address.

e The EAX in control register 8 is used instead
of the authorization index (AX) in control reg-
ister 4.

e When the value in bit positions 0-11 of the
EAX is greater than the authority-table length
(ATL) in the ASTE, an extended-authority
exception is recognized instead of a
secondary-authority exception. The operation
is nullified if the extended-authority exception
is recognized.

5-53

Chapter 5. Program Execution

When the private bit is one, the ALEAX is not
equal to the EAX, and the secondary bit in the
authority-table entry selected by the EAX is not
one, an extended-authority exception is recog-
nized, and the operation is nullified.

Checking for Access-List-Controlled
Protection

If a store-type reference is to be performed and
the fetch-only bit, bit 6, in the access-list entry is
one, a protection exception is recognized, and the
operation is suppressed.

Obtaining the Address-Space-Control
Element from the ASN-Second-Table
Entry

When the ALET being translated is other than
00000000 or 00000001 hex and no exception is
recognized in the steps described above, access-
register translation obtains the address-
space-control element from bit positions 64-127 of
the ASTE.

Recognition of Exceptions during
Access-Register Translation

The exceptions which can be encountered during
the access-register-translation process and their
priority are shown in the section “Access
Exceptions” in Chapter 6, “Interruptions.”

Programming Note: When updating an access-
list entry or ASN-second-table entry, the program
should change the entry from invalid to valid (set
bit 0 of the entry to zero) as the last step of the
updating. This ensures, because the leftmost
word is fetched first, that words of a partially
updated entry will not be fetched.

ART-Lookaside Buffer

To enhance performance, the access-
register-translation (ART) mechanism normally is
implemented such that access-list designations
and information specified in access lists, ASN
second tables, and authority tables are maintained
in a special buffer, referred to as the
ART-lookaside buffer (ALB). Access-list desig-
nations, access-list entries, ASN-second-table
entries, and authority-table entries are collectively
referred to as ART-table entries. The CPU neces-
sarily refers to an ART-table entry in real or abso-

5-54 z/Architecture Principles of Operation

lute storage only for the initial access to that entry.
The information in the entry may be placed in the
ALB, and subsequent ART operations may be per-
formed using the information in the ALB. The
presence of the ALB affects the ART process to
the extent that (1) a modification of an ART-table
entry in real or absolute storage does not neces-
sarily have an immediate effect, if any, on the
translation, (2) the comparison against the
access-list length in an access-list designation that
is in storage and used in a translation may be
omitted if an ALB access-list entry is used, and
(3) the comparison against the authority-table
length in an ASN-second-table entry that is in
storage and used in a translation may be omitted
if an ALB authority-table entry is used. In a
multiple-CPU configuration, each CPU has its own
ALB.

Entries within the ALB are not explicitly address-
able by the program.

Information is not necessarily retained in the ALB
under all conditions for which such retention is
possible. Furthermore, information in the ALB
may be cleared under conditions additional to
those for which clearing is mandatory.

ALB Structure

The description of the logical structure of the ALB
covers the implementation by all systems oper-
ating as defined by z/Architecture. The ALB
entries are considered as being of four types:
ALB access-list designations (ALB ALDs), ALB
access-list entries (ALB ALEs), ALB
ASN-second-table entries (ALB ASTEs), and ALB
authority-table entries (ALB ATEs). An ALB entry
is considered as containing within it both the infor-
mation obtained from the ART-table entry in real
or absolute storage and the attributes used to
fetch the ART-table entry from real or absolute
storage. There is not an indication in an ALB ALD
of whether the ALD-source origin used to select
the ALD in real storage was the dispatchable-
unit-control-table origin or the primary-ASTE
origin.

Note: The following sections describe the condi-
tions under which information may be placed in
the ALB, the conditions under which information
from the ALB may be used for access-register
translation, and how changes to the tables affect
the ART process.

Formation of ALB Entries

The formation of ALB entries and the effect of any
manipulation of the contents of an ART-table entry
in real or absolute storage by the program depend
on whether the entry is attached to a particular
CPU and on whether the entry is valid.

The attached state of an ART-table entry denotes
that the CPU to which the entry is attached can
attempt to use the entry for access-register trans-
lation. The ART-table entry may be attached to
more than one CPU at a time.

An access-list entry or ASN-second-table entry is
valid when the invalid bit associated with the entry
is zero. Access-list designations and authority-
table entries have no invalid bit and are always
valid. The primary-space access-list designation
is valid regardless of the value of the invalid bit in
the primary ASTE.

An ART-table entry may be placed in the ALB
whenever the entry is attached and valid.

An access-list designation is attached to a CPU
when the designation is within the dispatchable-
unit control table designated by the dispatchable-
unit-control-table origin in control register 2 or is
within the primary ASTE designated by the
primary-ASTE origin in control register 5.

An access-list entry is attached to a CPU when
the entry is within the access list specified by
either an attached access-list designation (ALD) or
a usable ALB ALD. A usable ALB ALD is
explained in the next section.

An ASN-second-table entry is attached to a CPU
when it is designated by the ASTE origin in either
an attached and valid access-list entry (ALE) or a
usable ALB ALE. A usable ALB ALE is explained
in the next section.

An authority-table entry is attached to a CPU
when it is within the authority table designated by
either an attached and valid ASN-second-table
entry (ASTE) or a usable ALB ASTE. A usable
ALB ASTE is explained in the next section.

Use of ALB Entries

The usable state of an ALB entry denotes that the
CPU can attempt to use the ALB entry for access-
register translation. A usable ALB entry attaches
the next-lower-level table, if any, and may be
usable for a particular instance of access-register
translation.

An ALB ALD is in the usable state when the
ALDSO field in the ALB ALD matches the current
dispatchable-unit-control-table origin or the current
primary-ASTE origin.

An ALB ALD may be used for a particular instance
of access-register translation when either of the
following conditions is met:

1. The primary-list bit in the ALET to be trans-
lated is zero, and the ALDSO field in the ALB
ALD matches the current dispatchable-
unit-control-table origin.

2. The primary-list bit in the ALET to be trans-
lated is one, and the ALDSO field in the ALB
ALD matches the current primary-ASTE origin.

An ALB ALE is in the usable state when the ALO
field in the ALB ALE matches the ALO field in an
attached ALD or a usable ALB ALD.

An ALB ALE may be used for a particular instance
of access-register translation when all of the fol-
lowing conditions are met:

1. The ALET to be translated has a value larger
than 1. (If the ALET is O or 1, the contents of
CR 1 or CR 7 are used.)

2. The ALO field in the ALB ALE matches the
ALO field in the ALD or ALB ALD being used
in the translation.

3. The ALEN field in the ALB ALE matches the
ALEN field in the ALET to be translated.

An ALB ASTE is in the usable state when the
ASTEO field in the ALB ASTE matches the
ASTEO field in an attached and valid ALE or a
usable ALB ALE.

An ALB ASTE may be used for a particular
instance of access-register translation when the
ASTEO field in the ALB ASTE maiches the
ASTEO field in the ALE or ALB ALE being used in
the translation.

Chapter 5. Program Executon 5-55

An ALB ATE may be used for a particular instance
of access-register translation when both of the fol-
lowing conditions are met:

1. The ATO field in the ALB ATE matches the
ATO field in the ASTE or ALB ASTE being
used in the translation.

2. The EAX field in the ALB ATE matches the
current EAX.

Modification of ART Tables

When an attached but invalid ART-table entry is
made valid, or when an unattached but valid
ART-table entry is made attached, and no entry
formed from the ART-table entry is already in the
ALB, the change takes effect no later than the end
of the current instruction.

When an attached and valid ART-table entry is
changed, and when, before the ALB is cleared of
copies of that entry, an attempt is made to
perform ART requiring that entry, unpredictable
results may occur, to the following extent. The
use of the new value may begin between
instructions or during the execution of an instruc-
tion, including the instruction that caused the
change. Moreover, until the ALB is cleared of
copies of the entry, the ALB may contain both the
old and the new values, and it is unpredictable
whether the old or new value is selected for a par-
ticular ART operation. If the old and new values
are used as representations of effective space
designations, failure to recognize that the effective
space designations are the same may occur, with
the result that operand overlap may not be recog-
nized. Effective space designations and operand
overlap are discussed in [Interlocks within a Single]
[Instruction” on page 5-81|

When LOAD ACCESS MULTIPLE or LOAD
CONTROL changes the parameters associated
with ART, the values of these parameters at the
start of the operation are in effect for the duration
of the operation.

All entries are cleared from the ALB by the exe-
cution of PURGE ALB, a COMPARE AND SWAP
AND PURGE instruction that purges the ALB, and
SET PREFIX, and by CPU reset.

5-56 z/Architecture Principles of Operation

Subspace Groups

The subspace-group facility includes the BRANCH
IN SUBSPACE GROUP instruction, allocations of

fields in the address-space-control element,
dispatchable-unit control table, and
ASN-second-table entry, and subspace-

replacement operations of the PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS instructions. BRANCH IN
SUBSPACE GROUP is introduced in |“Subroutine
Linkage without the Linkage Stack” on page 5-11
and described in detail in FBRANCH IN SUB-
[SPACE GROUP” on page 10-13|

Subspace-Group Tables

This section describes the use of the
dispatchable-unit control table and
ASN-second-table entry by the subspace-group
facility.

Subspace-Group Dispatchable-Unit
Control Table

The dispatchable-unit control table has the fol-
lowing format:

Hex Dec
0 0 BASTEOQ

S
4 4 (A SSASTEOQ
8 8
c 12 SSASTESN
10 16 DUALD

PSW-Key| |PSW|R
14 20 Mask Key|A| |P

18 24

1C 28 |//11111111111111117

In the 24-Bit or 31-Bit
Addressing Mode

20 32

24 36 Bits 33-63 of

Return Address

> W

In the 64-Bit Addressing Mode

20 32 Bits 0-31 of
Return Address
24 36 Bits 32-63 of
Return Address
28 40
2C 44 |Trap-Control-
Block Address E
30 48
/ /
3C 60

The fields in the dispatchable-unit control table
that are used by the subspace-group facility are
allocated as follows:

Base-ASTE Origin (BASTEO): Bits 1-25 of
bytes 0-3, with six zeros appended on the right,
form a 31-bit real address that designates the
beginning of the ASN-second-table entry that
specifies the base space of a subspace group
associated with the dispatchable unit. A compar-
ison of bits 1-25 of bytes 0-3 to the primary-ASTE
origin (PASTEO) in bit positions 33-57 of control
register 5 is made by BRANCH IN SUBSPACE
GROUP to determine whether the current primary
address space is in the subspace group for the
current dispatchable unit. For this comparison,
either bits 1-25 may be compared to the PASTEO
or the entire contents of bytes 0-3 may be com-
pared to the contents of bit positions 33-63 of
control register 5. A comparison of bits 1-25 of
bytes 0-3 to the destination-ASTE origin
(DASTEO) obtained from an access-list entry by
access-register translation of an ALET other than
ALETs 0 and 1 is made by BRANCH IN SUB-
SPACE GROUP to determine if the destination
ASTE is the base-space ASTE. For this compar-
ison, either bits 1-25 may be compared to the
DASTEO or the entire contents of bytes 0-3 may
be compared to the DASTEO with one leftmost
and six rightmost zeros appended. A comparison
of bits 1-25 of bytes 0-3 to an ASTE origin
(ASTEO) obtained by ASN translation may be
made by PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS.
For this comparison, either bits 1-25 may be com-

pared to the ASTEO or the entire contents of
bytes 0-3 may be compared to the ASTEO with
one leftmost and six rightmost zeros appended.
When BRANCH IN SUBSPACE GROUP uses
ALET O, bits 1-25 of bytes 0-3, with six zeros
appended on the right, designate the destination
ASTE.

Subspace-Active Bit (SA): Bit 0 of bytes 4-7
indicates, when one, that the last BRANCH IN
SUBSPACE GROUP instruction executed for the
dispatchable unit transferred control to a subspace
of the subspace group associated with the
dispatchable unit. Bit 0 being zero indicates any
one of the following: the last BRANCH IN SUB-
SPACE GROUP instruction executed for the
dispatchable unit transferred control to the base
space of the subspace group, BRANCH IN SUB-
SPACE GROUP has not yet been executed for
the dispatchable unit, or the dispatchable unit is
not associated with a subspace group. BRANCH
IN SUBSPACE GROUP sets bit 0 of bytes 4-7 to
one when it transfers control to a subspace of the
subspace group associated with the dispatchable
unit, and it sets bit 0 to zero when it transfers
control to the base space of the subspace group.

Subspace-ASTE Origin (SSASTEO): Bits 1-25
of bytes 4-7, with six zeros appended on the right,
form a 31-bit real address that designates the
beginning of the ASN-second-table entry that
specifies the subspace last given control by a
BRANCH IN SUBSPACE GROUP instruction exe-
cuted for the dispatchable unit. When BRANCH
IN SUBSPACE GROUP transfers control to a sub-
space by means of an ALET other than ALET 1, it
places the ASTEO for the subspace (the destina-
tion ASTEOQO) in bit positions 1-25 of bytes 4-7,
places zeros in bit positions 26-31 of bytes 4-7,
and sets the subspace-active bit, bit 0 of bytes
4-7, to one. When BRANCH IN SUBSPACE
GROUP uses ALET 1 to transfer control to a sub-
space, bits 1-25 of bytes 4-7, with six zeros
appended on the right, designate the destination
ASTE, and BRANCH IN SUBSPACE GROUP sets
the subspace-active bit to one and either sets bits
26-31 of bytes 4-7 to zeros or leaves those bits
unchanged. However, if bits 1-25 are all zeros, a
special-operation exception is recognized. When
BRANCH IN SUBSPACE GROUP transfers
control to the base space of the subspace group,
it sets the subspace-active bit to zero, and bits
1-31 of bytes 4-7 remain unchanged. Bits 1-25 of
bytes 4-7 may be used by PROGRAM CALL,

Chapter 5. Program Execution ~5-57

PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS to set bits 0-55 and 57-63
of the primary ASCE in control register 1 or the
secondary ASCE in control register 7 from the
same bits of the ASCE in the subspace ASTE.

Subspace-ASTE Sequence Number
(SSASTESN): Bytes 12-15 may be used to
revoke the linkage capability represented by the
SSASTEO, bits 1-25 of bytes 4-7, in the DUCT.
When BRANCH IN SUBSPACE GROUP transfers
control to a subspace by means of an ALET other
than ALET 1, it obtains the ASTESN in the sub-
space ASTE and places it in bytes 12-15. When
BRANCH IN SUBSPACE GROUP uses ALET 1 to
transfer control to a subspace, it compares bytes
12-15 to the ASTESN in the subspace ASTE, and
it recognizes an ASTE-sequence exception if they
are unequal. When the SSASTEO is used by
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS to
set bits 0-55 and 57-63 of the primary ASCE in
control register 1 or the secondary ASCE in
control register 7 from the same bits of the ASCE
in the subspace ASTE, those instructions first
compare bytes 12-15 to the ASTESN in the sub-
space ASTE, and they recognize an
ASTE-sequence exception if the two fields are
unequal.

Bytes 16-19 are described in [‘Dispatchable-Unit

Control Table and Access-List Designations” on
ﬁaée 5—4@ Bytes 20-23 are described in

[‘BRANCH AND SET AUTHORITY” on page 10-6|
Bytes 32-39 and 44-47 are described in
lon page 10-124] Bytes 24-27, 40-43, and 48-63
are reserved for possible future extensions and
should contain all zeros. Bytes 28-31 are avail-
able for use by programming.

Subspace-Group ASN-Second-Table
Entries

The 64-byte ASN-second-table entries have the
following format:

I ATO B

0 1 30 31

5-58 z/Architecture Principles of Operation

AX ATL

32 48 60 63

—ASCE (RTD, STD, or RSD) Part 1—

RTO, STO, or RSTKO

64 95

——RTD or STD Part 2——
RTO/STO (Cont.)| |GPSX|R| |DT|TL| R=0

96 115 118 122 124 127

————RSD Part 2—————

RSTKO (Cont.) GPSX|R R=1
96 115 118 122 127
| ALD]
ALO ALL
128 153 159
ASTESN
160 191
| LTD
v LTO LTL
192 217 223

Ty
224 255

For BRANCH IN SUBSPACE GROUP, the fields
in bytes 0-31 of the ASTE are allocated as
follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is avail-
able. When bit 0 is zero during access-register
translation of ALET 1 or an ALET other than 0 and
1 for BRANCH IN SUBSPACE GROUP, the trans-
lation proceeds. @ When the bit is one, an
ASTE-validity exception is recognized. The bit is
ignored during access-register translation of ALET

0. When the ASTE is designated by a
subspace-ASTE origin (SSASTEO) in a
dispatchable-unit control table, bit 0 is also used
as described in the definition of bits 160-191
(ASTESN).

Authority-Table Origin (ATO): Bits 1-29 are not
used by BRANCH IN SUBSPACE GROUP.

Base-Space Bit (B): Bit 31 specifies, when one,
that the address space associated with the ASTE
is the base space of a subspace group. When
BRANCH IN SUBSPACE GROUP uses an ALET
other than ALETs 0 and 1 to locate a destination
ASTE, it recognizes a special-operation exception
if the destination-ASTE origin does not equal the
base-ASTE origin in the dispatchable-unit control
table and bit 31 is one in the destination ASTE.

Authorization Index (AX): Bits 32-47 are not
used by BRANCH IN SUBSPACE GROUP.

Authority-Table Length (ATL): Bits 48-59 are
not used by BRANCH IN SUBSPACE GROUP.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control
element (ASCE) that may be a segment-table des-
ignation (STD), a region-table designation (RTD),
or a real-space designation (RSD). (The term
“region-table designation” is used to mean a
region-first-table designation, region-second-table
designation, or region-third-table designation.)
The ASCE field is obtained as the result of
access-register translation done for BRANCH IN
SUBSPACE GROUP. When BRANCH IN SUB-
SPACE GROUP uses an ALET other than ALETs
0 and 1 to locate a destination ASTE, it recog-
nizes a special-operation exception if the
destination-ASTE origin does not equal the
base-ASTE origin in the dispatchable-unit control
table and the subspace-group-control bit, bit 118
(G), in the destination ASTE is zero. When
BRANCH IN SUBSPACE GROUP transfers
control to the base space of a subspace group
associated with the current dispatchable unit, it
places bits 64-127 in control register 1; otherwise,
when BRANCH IN SUBSPACE GROUP transfers
control to a subspace of the subspace group, it
places bits 64-119 and 121-127 in bit positions
0-55 and 57-63, respectively, of control register 1.
Bits 64-127 are used after ASN translation by
PROGRAM CALL, PROGRAM RETURN,

PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS as
described in [FASN-Second-Table Entries”_on|

Linkage-Table Designation (LTD): Bits
192-223 are not used by BRANCH IN SUBSPACE
GROUP.

Access-List Designation (ALD): When this
ASTE is designated by the primary-ASTE origin in
control register 5, bits 128-159 are the primary-
space access-list designation (PSALD). During
access-register translation when the primary-list
bit, bit 7, in the ALET being translated is one, the
PSALD is the effective access-list designation.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control
revocation of the accessing capability represented
by access-list entries that designate the ASTE.
During access-register translation, bits 160-191
are compared against the ASTESN in the access-
list entry, and inequality causes an
ASTE-sequence exception to be recognized.

Bits 224-255 in the ASTE are available for use by
programming. When the ASTE is designated by a
subspace-ASTE origin (SSASTEO) in a
dispatchable-unit control table, bits 160-191 are
also used to control revocation of the linkage
capability represented by that SSASTEO. When
BRANCH IN SUBSPACE GROUP uses ALET 1 to
transfer control to the subspace specified by the
SSASTEO, or when PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, or LOAD ADDRESS
SPACE PARAMETERS uses the SSASTEO to set
bits 0-55 and 57-63 of the primary ASCE in
control register 1 or the secondary ASCE in
control register 7 from the same bits of the ASCE
in the subspace ASTE, those instructions first test
bit 0 of the subspace ASTE for being zero and
recognize an ASTE-validity exception if it is not,
and they then compare bits 160-191 to the
subspace-ASTE sequence number (SSASTESN)
in the dispatchable-unit control table and recog-
nize an ASTE-sequence exception if there is an
inequality. However, when either of the two
named exception conditions exists for LOAD
ADDRESS SPACE PARAMETERS, the instruction
sets condition code 1 or 2 instead of recognizing
the exception.

Chapter 5. Program Execution 5-59

Programming Note: All unused fields in the
ASTE, including the unused fields in bytes 0-31
and all of bytes 32-63, should be set to zeros.
These fields are reserved for future extensions,
and programs which place nonzero values in
these fields may not operate compatibly on future
machines.

Subspace-Replacement
Operations

The subspace-group facility includes subspace-
replacement operations of PROGRAM CALL,
PROGRAM TRANSFER, PROGRAM RETURN,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS. The operations apply
when the dispatchable unit for which any of the
five named instructions is executed is in a state
called subspace active. A dispatchable unit is
subspace active if it has used BRANCH IN SUB-
SPACE GROUP to transfer control to a subspace
of its subspace group and has not subsequently
used BRANCH IN SUBSPACE GROUP to return
control to the base space of the group.

The definitions of the subspace-replacement oper-
ations are included in the definitions of the five
named instructions in Chapter 10, “Control
Instructions.” The operations are described in a
general way as follows. Whenever (1) an address
space is established as the primary or secondary
address space as a result of ASN translation or
(2) PROGRAM CALL obtains the origin of the
ASN-second-table entry specifying a new primary
address space from the entry-table entry used,
then, if that address space is in a subspace group,
as indicated by the subspace-group-control bit, bit
54 (G), being one in the address-space-control
element (ASCE) for the address space (the new
PASCE in control register 1 or SASCE in control
register 7), and if the dispatchable unit is
subspace-active, as indicated by the subspace-
active bit, bit 0 (SA) of word 1, in the
dispatchable-unit control table (DUCT) being one,
the ASN-second-table-entry (ASTE) origin
(ASTEO) for the address space, which was
obtained by ASN translation or from the entry-
table entry, is compared to the base-ASTE origin
(BASTEOQ), bits 1-25 of word 0, in the DUCT. If
that ASTEO and the BASTEO are equal, the fol-
lowing occurs. An ASTE-validity exception is
recognized if bit 0 in the ASTE for the last sub-

5-60

z/Architecture Principles of Operation

space entered by the dispatchable unit, which
ASTE is designated by the subspace-ASTE origin
(SSASTEO) in the DUCT, is one. An
ASTE-sequence exception is recognized if the
ASTE-sequence number (ASTESN) in word 5 of
the subspace ASTE does not equal the subspace
ASTESN (SSASTESN) in word 3 of the DUCT.
However, LOAD ADDRESS SPACE PARAME-
TERS sets a nonzero condition code instead of
recognizing the ASTE-validity or ASTE-sequence
exception. If no exception exists, bits 0-55 and
57-63 of the ASCE for the address space (the
PASCE in control register 1 or SASCE in control
register 7) are replaced by the same bits of the
ASCE in word 2 of the subspace ASTE.

If an addressing exception is recognized when
attempting to access the DUCT or subspace
ASTE, the instruction execution is suppressed. If
an ASTE-validity or ASTE-sequence exception is
recognized, the instruction execution is nullified.
Such nullification or suppression causes all control
register contents to remain unchanged from what
they were at the beginning of the instruction exe-
cution.

Key-controlled protection does not apply to any
accesses to the DUCT or subspace ASTE.

For comparing the ASTEO obtained by ASN trans-
lation to the BASTEO, either the ASTEO may be
compared to the BASTEO or the ASTEO, with one
leftmost and six rightmost zeros appended, may
be compared to the entire contents of word O of
the DUCT.

When the SSASTEO in the DUCT is used to
access the subspace ASTE, no check is made for
whether the SSASTEO is all zeros.

The references to the DUCT and subspace ASTE
are single-access references and appear to be
word concurrent as observed by other CPUs. The
words of the DUCT are accessed in no particular
order. The words of the subspace ASTE are
accessed in no particular order except that word O
is accessed first.

The exceptions that can be recognized during a
subspace-replacement operation are referred to
collectively as the subspace-replacement
exceptions and are listed in priority order in

“Subspace-Replacement Exceptions” on|

Eaﬁe 6-42'.

Linkage-Stack Introduction

Many of the functions related to the linkage stack
are described in this section and in [Linkage-Stack]
[Operations” on page 5-66} Additionally, tracing of
the stacking PROGRAM CALL instruction and of
the PROGRAM RETURN instruction is described
in [Chapter 5. “Program Execution’} interruptions in
|Cha§ter 6; “In1erru§tions”|; and the instructions are
described in |§ha§ter 10, “Control Instructions.”]

Summary

These major functions are provided:

1. A table-based subroutine-linkage mechanism
that provides PSW and control-register status
changing and which saves and restores this
status and the contents of general registers
and access registers through the use of an
entry in a linkage stack.

2. A branch-type linkage mechanism that uses
the linkage stack.

3. Instructions for placing an additional two
words of status in the current linkage-stack
entry and for retrieving all of the status and
the general-register and access-register con-
tents that are in the entry.

4. An instruction for determining whether a
program is authorized to use a particular
access-list-entry token.

5. Aids for program-problem analysis.

In addition, control and authority mechanisms are
incorporated to control these functions.

It is intended that a separate linkage stack be
associated with and used by each dispatchable
unit. The linkage stack for a dispatchable unit
resides in the home address space of the
dispatchable unit.

It is intended that a dispatchable unit's linkage
stack be protected from the dispatchable unit by
means of key-controlled protection. Key-controlled
protection does not apply to the linkage-stack
instructions that place information in or retrieve
information from the linkage stack.

The linkage-stack functions are for use by pro-
grams considered to be semiprivileged, that is,
programs which are executed in the problem state
but which are authorized to use additional func-

tions. With these authorization controls, a nonhi-
erarchical organization of programs may be estab-
lished, with each program in a sequence of calling
and called programs having a degree of authority
that is arbitrarily different from those of programs
before or after it in the sequence. The range of
functions available to each program, and the
ability to transfer control from one program to
another, are prescribed in tables that are
managed by the control program.

The linkage-stack instructions, which are semipriv-
ileged, are described in Chapter 10, “Control
Instructions.” They are:

« BRANCH AND STACK

e EXTRACT STACKED REGISTERS
e EXTRACT STACKED STATE

* MODIFY STACKED STATE

¢ PROGRAM RETURN

e TEST ACCESS

In addition, the PROGRAM CALL instruction
optionally forms an entry in the linkage stack. A
PROGRAM CALL instruction that operates on the
linkage stack is called stacking PROGRAM CALL.
Recognition of PROGRAM CALL as stacking
PROGRAM CALL is under the control of a bit in
the entry-table entry.

Linkage-Stack Functions

Transferring Program Control

The use of the linkage stack permits programs
operating at arbitrarily different levels of authority
to be linked directly without the intervention of the
control program. The degree of authority of each
program in a sequence of calling and called pro-
grams may be arbitrarily different, thus allowing a
nonhierarchical organization of programs to be
established. Modular authorization control can be
obtained principally by associating an extended
authorization index with each program module.
This allows program modules with different author-
ities to coexist in the same address space. On
the other hand, the extended authorization index
in effect during the execution of a called program
module can be the one that is associated with the
calling program module, thus allowing the called
module to be executed with different authorities on
behalf of different dispatchable units. Options
concerning the PSW-key mask and the secondary
ASN are other means of associating different
authorities with different programs or with the

Chapter 5. Program Execution 5-61

same called program. The authority of each
program is prescribed in tables that are managed
by the control program. By setting up the tables
so that the same program can be called by means
of different PC numbers, the program can be
assigned different authorities depending on which
PC number is used to call it. The tables also
allow control over which PC numbers can be used
by a program to call other programs.

The stacking PROGRAM CALL and PROGRAM
RETURN linkage operations can link programs
residing in different address spaces and having
different levels of authority. The execution state
and the contents of the general registers and
access registers are saved during the execution of
stacking PROGRAM CALL and are partially
restored during the execution of PROGRAM
RETURN. A linkage stack provides an efficient
means of saving and restoring both the execution
state and the contents of registers during linkage
operations.

During the execution of a PROGRAM CALL
instruction, the PC-number-translation process is
performed to locate a 32-byte entry-table entry.
When the PC-type bit in the entry-table entry is
one, the stacking PROGRAM CALL operation is
specified; otherwise, the basic PROGRAM CALL
operation is specified.

In addition to the information applying to both
basic PROGRAM CALL and stacking PROGRAM
CALL (described in FPC-Number Translation” on|
and consisting of an authorization key
mask and specifications of the new ASN,
addressing mode, instruction address, problem
state, PSW-key mask, primary-ASTE address, and
entry parameter), the entry-table entry contains
information that specifies options concerning the
address-space control and PSW key in the PSW,
and the PSW-key mask, extended authorization
index, and secondary ASN in the control registers.

During the stacking PROGRAM CALL operation
and by means of the additional information in the
entry-table entry, the address-space control in the
PSW can be set to specify either the primary-
space mode or the access-register mode. The
PSW key can be either left unchanged or replaced
from the entry-table entry. The PSW-key mask in
control register 3 can be either ORed to or
replaced from the entry-table entry. The extended

5-62 z/Architecture Principles of Operation

authorization index in control register 8 can be
either left unchanged or replaced from the entry-
table entry. The secondary ASN in control reg-
ister 3 can be set equal to the primary ASN of
either the calling program or the called program;
thus, the ability of the called program to have
access to the primary address space of the calling
program can be controlled.

The stacking PROGRAM CALL operation always
forms an entry, called a state entry, in the linkage
stack to save the execution state and the contents
of general registers 0-15 and access registers
0-15. The saved execution state includes the PC
number used, a called-space identification, the
updated PSW before any changes are made due
to the entry-table entry, the extended authorization
index, PSW-key mask, primary ASN, and sec-
ondary ASN existing before the operation, and the
extended-addressing-mode bit existing after the
operation. However, the value of the PER mask
in the saved updated PSW is unpredictable. The
linkage-stack state entry also contains an entry-
type code that identifies the entry as one that was
formed by PROGRAM CALL.

A space-switching operation occurs when the
address-space number (ASN) specified in the
entry-table entry is nonzero. When space
switching occurs, the operation is called
PROGRAM CALL with space switching (PC-ss),
and the ASN in the entry-table entry is placed in
control register 4 as a new primary ASN. When
no space switching occurs, the operation is called
PROGRAM CALL to current primary (PC-cp), and
there is no change to the primary ASN in control
register 4.

PROGRAM CALL with space switching obtains a
new primary-ASTE origin from the entry-table
entry and new primary address-space-control
element from the new primary ASTE, and it places
them in control registers 5 and 1, respectively. It
sets the secondary address-space-control element
in control register 7 equal to either the old primary
address-space-control element, or the new one,
depending on whether it set the secondary ASN
equal to the old primary ASN or the new one,
respectively. PROGRAM CALL to current primary
sets the secondary ASN equal to the primary ASN
and the secondary address-space-control element
equal to the primary address-space-control
element.

The instruction PROGRAM RETURN restores
most of the information saved in the linkage stack
by the stacking PROGRAM CALL operation. It
restores the PSW, extended authorization index,
PSW-key mask, primary ASN, secondary ASN,
and the contents of general registers 2-14 and
access-registers 2-14. However, the PER mask in
the current PSW remains unchanged. The opera-
tion of PROGRAM RETURN is referred to by
saying that PROGRAM RETURN unstacks a state
entry.

For PROGRAM RETURN, a space-switching oper-
ation occurs when the restored primary ASN is not
equal to the primary ASN existing before the oper-
ation. When space switching occurs, the opera-
tion is called PROGRAM RETURN with space
switching (PR-ss). When no space switching
occurs, the operation is called PROGRAM
RETURN to current primary (PR-cp).

PROGRAM RETURN with space switching per-
forms ASN translation of the restored primary ASN
to obtain a new primary-ASTE origin and a new
primary address-space-control element, which it
places in control registers 5 and 1, respectively.
For PROGRAM RETURN with space switching or
to current primary, (1) if the restored secondary
ASN is the same as the restored primary ASN, the
secondary address-space-control element in
control register 7 is set equal to the new primary
address-space-control element in control register
1, or (2) if the restored secondary ASN is not the
same as the restored primary ASN, ASN trans-
lation and ASN authorization of the restored sec-
ondary ASN are performed to obtain a new sec-
ondary address-space-control element, which is
placed in control register 7.

The stacking PROGRAM CALL operation and the
PROGRAM RETURN operation each can be per-
formed successfully only in the primary-space
mode or access-register mode. An exception is
recognized when the CPU is in the real mode,
secondary-space mode, or home-space mode.

A bit, named the unstack-suppression bit, can be
set to one in a linkage-stack state entry to cause
an exception if an attempt is made by PROGRAM
RETURN to unstack the entry. When the bit is
one, the entry still can be operated on by the
instructions that add information to or retrieve
information from the entry. The unstack-
suppression bit is intended to allow the control

program to gain control when an attempt is made
to unstack a state entry in which the bit is one.

Branching Using the Linkage Stack

The execution state and the contents of the
general registers and access registers can also be
saved in the linkage stack by means of the
instruction BRANCH AND STACK. BRANCH
AND STACK uses a branch address as do the
other branching instructions, instead of using a PC
number. BRANCH AND STACK, along with
PROGRAM RETURN, can link programs residing
in the same address space and having the same
level of authority; that is, BRANCH AND STACK
does not change the execution state except for
the instruction address.

BRANCH AND STACK forms a linkage-stack state
entry that is almost the same as one formed by
PROGRAM CALL. When it is necessary to distin-
guish between these two types of state entry, an
entry formed by PROGRAM CALL is called a
program-call state entry, and one formed by
BRANCH AND STACK is called a branch state
entry. A branch state entry differs from a
program-call state entry in two ways: (1) it con-
tains a different entry-type code, which identifies it
as a branch state entry, and (2) it contains the
basic-addressing-mode bit and instruction address
existing after the operation instead of a PC
number and called-space identification. These
new values of PSW bits 32 and 64-127 are in
addition to the complete PSW that is saved in the
state entry.

For BRANCH AND STACK, the basic- and
extended addressing mode bits and the instruction
address that are part of the complete PSW saved
in the state entry can be the current (at the begin-
ning of the operation) addressing-mode bits and
the updated instruction address (the address of
the next sequential instruction), or they can be
specified in a register. This register can be one
that had link information placed in it by a
BRANCH AND LINK (BALR only), BRANCH AND
SAVE, BRANCH AND SAVE AND SET MODE, or
BRANCH AND SET MODE instruction. Thus,
BRANCH AND STACK can be used either in a
calling program or at (or near) the entry point of a
called program, and, in either case, a PROGRAM
RETURN instruction located at the end of the
called program will return correctly to the calling
program. The ability to use BRANCH AND

Chapter 5. Program Execution 5-63

STACK at an entry point allows the linkage stack
to be used without changing old calling programs.

When the R: field of BRANCH AND STACK is
zero, the instruction is executed without causing
branching.

When PROGRAM RETURN unstacks a branch
state entry, it ignores the extended authorization
index, PSW-key mask, primary ASN, and sec-
ondary ASN in the entry. The PROGRAM
RETURN instruction restores the PSW and the
contents of general registers 2-14 and access reg-
isters 2-14 that were saved in the entry. However,
the PER mask in the current PSW remains
unchanged.

BRANCH AND STACK can be executed success-
fully only in the primary-space mode or access-
register mode. An exception is recognized when
the CPU is in the real mode, secondary-space
mode, or home-space mode.

The unstack-suppression bit has the same effect
in a branch state entry as it does in a program-call
state entry.

Adding and Retrieving Information

The instruction MODIFY STACKED STATE can
be used by a program to place two words of infor-
mation, contained in a designated general-register
pair, in an area, called the modifiable area, of the
current linkage-stack state entry (a branch state
entry or a program-call state entry). This is
intended to allow a called program to establish a
recovery routine that will be given control by the
control program, if necessary.

The instructions EXTRACT STACKED REGIS-
TERS and EXTRACT STACKED STATE can be
used by a program to obtain any of the informa-
tion saved in the current state entry by BRANCH
AND STACK or PROGRAM CALL or placed there
by MODIFY STACKED STATE. EXTRACT
STACKED REGISTERS (EREGG) places the con-
tents of a specified range of general registers and
access registers back in the registers from which
the contents were saved. EXTRACT STACKED
REGISTERS (EREG) does the same except that it
restores only bits 32-63 of the general registers
and leaves bits 0-31 unchanged. EXTRACT
STACKED STATE obtains pairs of words of the
nonregister information saved or placed in a state
entry and places them in bit positions 32-63 of a

5-64 z/Architecture Principles of Operation

designated general-register pair. Alternatively,
EXTRACT STACKED STATE obtains two
doublewords containing a PSW saved in the state
entry and places them in bit positions 0-63 of a
designated general-register pair. EXTRACT
STACKED STATE sets the condition code to indi-
cate whether the current state entry is a branch
state entry or a program-call state entry.

Testing Authorization

The instruction TEST ACCESS has as operands
an access-list-entry token (ALET) in a designated
access register and an extended authorization
index (EAX) in a designated general register.
TEST ACCESS applies the access-
register-translation process, which uses the speci-
fied EAX instead of the current EAX in control reg-
ister 8, to the ALET, and it sets the condition code
to indicate the result. The condition code may
indicate: (1) the ALET is 00000000 hex, (2) the
ALET designates an entry in the dispatchable-unit
access list and can be translated without
exceptions in access-register translation, (3) the
ALET designates an entry in the primary-space
access list and can be translated without
exceptions in access-register translation, or
(4) the ALET is 00000001 hex or causes
exceptions in access-register translation.

The principal purpose of TEST ACCESS is to
allow a called program to determine whether an
ALET passed to it by the calling program is
authorized for use by the calling program by
means of the calling program's EAX. This is in
support of a possible programming convention in
which a called program will not operate on an
AR-specified address space by means of its own
EAX unless the calling program is authorized to
operate on that space by means of the calling pro-
gram's EAX. The called program can obtain the
calling program's EAX, for use by TEST ACCESS,
from the current linkage-stack state entry by
means of the EXTRACT STACKED STATE
instruction.

Another purpose of TEST ACCESS is to indicate
the special cases in which the ALET is 00000000
hex, designating the primary address space, or
00000001 hex, designating the secondary address
space. Because PROGRAM CALL may change
the primary and secondary address spaces,
ALETs 00000000 hex and 00000001 hex may
designate different address spaces when used by

the called program than when used by the calling
program.

Still another purpose of TEST ACCESS is to indi-
cate whether the ALET designates an entry in the
primary-space access list since such a designation
after the primary address space was changed by
a space-switching program-linkage operation may
be an error.

Program-Problem Analysis

To aid program-problem analysis