

z/Architecture IBM

Principles of Operation

 SA22-7832-02

z/Architecture IBM

Principles of Operation

 SA22-7832-02

 Note:

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xvii.

 Softcopy Note:

The reader should be aware of the fact that this publication contains many symbols, such as superscripts, that may not display
correctly with any given hardware or software. The definitive version of this publication is the hardcopy version.

Third Edition (June, 2003)

This edition obsoletes and replaces z/Architecture Principles of Operation, SA22-7832-01.

This publication is provided for use in conjunction with other relevant IBM publications, and IBM makes no warranty, express or
implied, about its completeness or accuracy. The information in this publication is current as of its publication date but is subject to
change without notice.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department 55JA Mail Station P384
2455 South Road
Poughkeepsie, N.Y., 12601-5400
United States of America

FAX (United States and Canada): 1-845-432-9405
FAX (Other Countries): Your International Access Code + 1-845-432-9405
IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com
| World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1990-2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xvii
Trademarks xvii

Preface . xix
Size and Number Notation xx
Bytes, Characters, and Codes xxi
Other Publications xxi

| Summary of Changes in Third Edition xxii
Summary of Changes in Second Edition . . . xxiii

Chapter 1. Introduction 1-1
| Highlights of Original z/Architecture 1-1

General Instructions for 64-Bit Integers . . 1-2
Other New General Instructions 1-2
Floating-Point Instructions 1-4
Control Instructions 1-4
Trimodal Addressing 1-4

Modal Instructions 1-5
Effects on Bits 0-31 of a General

Register 1-5
Input/Output 1-5

| Additions to z/Architecture 1-6
| Extended-Translation Facility 2 1-7
| HFP Multiply-and-Add/Subtract Facility . . 1-7
| Message-Security Assist 1-7
| Long-Displacement Facility 1-8
| Extended-I/O-Measurement-Block Facility . 1-8
| Extended-I/O-Measurement-Word Facility . 1-8

The ESA/390 Base 1-8
The ESA/370 and 370-XA Base 1-14

System Program 1-16
Compatibility 1-16

Compatibility among z/Architecture
Systems 1-16

Compatibility between z/Architecture and
ESA/390 1-16

Control-Program Compatibility 1-16
Problem-State Compatibility 1-16

Availability . 1-17

Chapter 2. Organization 2-1
Main Storage 2-2
Expanded Storage 2-2
CPU . 2-2

PSW . 2-3
General Registers 2-3
Floating-Point Registers 2-3
Floating-Point-Control Register 2-4
Control Registers 2-4
Access Registers 2-4

Cryptographic Facility 2-6
External Time Reference 2-6
I/O . 2-6

Channel Subsystem 2-6
Channel Paths 2-6
I/O Devices and Control Units 2-7

Operator Facilities 2-7

Chapter 3. Storage 3-1
Storage Addressing 3-2

Information Formats 3-2
Integral Boundaries 3-3

Address Types and Formats 3-3
Address Types 3-3

Absolute Address 3-3
Real Address 3-4
Virtual Address 3-4
Primary Virtual Address 3-4
Secondary Virtual Address 3-4
AR-Specified Virtual Address 3-5
Home Virtual Address 3-5
Logical Address 3-5
Instruction Address 3-5
Effective Address 3-5

Address Size and Wraparound 3-5
Address Wraparound 3-6

Storage Key 3-8
Protection . 3-9

Key-Controlled Protection 3-9
Storage-Protection-Override Control . . 3-10
Fetch-Protection-Override Control . . . 3-11

Access-List-Controlled Protection 3-11
Page Protection 3-11
Low-Address Protection 3-12
Suppression on Protection 3-12

Reference Recording 3-14
Change Recording 3-14
Prefixing . 3-15
Address Spaces 3-16

Changing to Different Address Spaces . 3-17
Address-Space Number 3-17

ASN Translation 3-18
ASN-Translation Controls 3-18

Control Register 14 3-18
ASN-Translation Tables 3-19

ASN-First-Table Entries 3-19
ASN-Second-Table Entries 3-19

ASN-Translation Process 3-21
ASN-First-Table Lookup 3-22
ASN-Second-Table Lookup 3-23

 Copyright IBM Corp. 1990-2003 iii

Recognition of Exceptions during ASN
Translation 3-23

ASN Authorization 3-23
ASN-Authorization Controls 3-23

Control Register 4 3-23
ASN-Second-Table Entry 3-24

Authority-Table Entries 3-24
ASN-Authorization Process 3-24

Authority-Table Lookup 3-25
Recognition of Exceptions during ASN

Authorization 3-26
Dynamic Address Translation 3-26

Translation Control 3-28
Translation Modes 3-28
Control Register 0 3-29
Control Register 1 3-29
Control Register 7 3-30
Control Register 13 3-31

Translation Tables 3-31
Region-Table Entries 3-32
Segment-Table Entries 3-33
Page-Table Entries 3-33

Translation Process 3-34
Inspection of Real-Space Control 3-39
Inspection of Designation-Type Control 3-39
Lookup in a Table Designated by an

Address-Space-Control Element . . 3-39
Lookup in a Table Designated by a

Region-Table Entry 3-41
Page-Table Lookup 3-42
Formation of the Real Address 3-42
Recognition of Exceptions during

Translation 3-42
Translation-Lookaside Buffer 3-43

TLB Structure 3-43
Formation of TLB Entries 3-43
Use of TLB Entries 3-44
Modification of Translation Tables . . . 3-45

Address Summary 3-48
Addresses Translated 3-48
Handling of Addresses 3-48

Assigned Storage Locations 3-51

Chapter 4. Control 4-1
Stopped, Operating, Load, and Check-Stop

States . 4-1
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-3

Program-Status Word 4-3
Program-Status-Word Format 4-5

Control Registers 4-7
Tracing . 4-10

Control-Register Allocation 4-13
Trace Entries 4-13
Operation 4-23

Program-Event Recording 4-24
Control-Register Allocation and

Address-Space-Control Element 4-24
Operation 4-25

Identification of Cause 4-26
Priority of Indication 4-28

Storage-Area Designation 4-30
PER Events 4-30

Successful Branching 4-30
Instruction Fetching 4-31
Storage Alteration 4-31
Store Using Real Address 4-32

Indication of PER Events Concurrently
with Other Interruption Conditions . . . 4-32

Timing . 4-36
Time-of-Day Clock 4-36

Format 4-36
States . 4-36
Changes in Clock State 4-37
Setting and Inspecting the Clock 4-37
TOD Programmable Register 4-38

TOD-Clock Synchronization 4-40
Clock Comparator 4-41
CPU Timer 4-42

Externally Initiated Functions 4-43
Resets . 4-43

CPU Reset 4-47
Initial CPU Reset 4-48
Subsystem Reset 4-48
Clear Reset 4-48
Power-On Reset 4-49

Initial Program Loading 4-50
Store Status 4-50

Multiprocessing 4-51
Shared Main Storage 4-51
CPU-Address Identification 4-51

CPU Signaling and Response 4-52
Signal-Processor Orders 4-52
Conditions Determining Response 4-55

Conditions Precluding Interpretation of
the Order Code 4-55

Status Bits 4-56

Chapter 5. Program Execution 5-1
Instructions . 5-2

Operands 5-2
Instruction Formats 5-3

Register Operands 5-6
Immediate Operands 5-6
Storage Operands 5-7

Address Generation 5-7

iv z/Architecture Principles of Operation

Trimodal Addressing 5-7
Sequential Instruction-Address Generation . 5-8
Operand-Address Generation 5-8

Formation of the Intermediate Value . . 5-8
Formation of the Operand Address . . . 5-9

Branch-Address Generation 5-9
Formation of the Intermediate Value . . 5-9
Formation of the Branch Address 5-10

Instruction Execution and Sequencing 5-10
Decision Making 5-10
Loop Control 5-11
Subroutine Linkage without the Linkage

Stack 5-11
Simple Branch Instructions 5-11
Other Linkage Instructions 5-15

Interruptions 5-20
Types of Instruction Ending 5-20

Completion 5-20
Suppression 5-20
Nullification 5-21
Termination 5-21

Interruptible Instructions 5-21
Point of Interruption 5-21
Unit of Operation 5-21
Execution of Interruptible Instructions . 5-21
Condition-Code Alternative to

Interruptibility 5-22
Exceptions to Nullification and

Suppression 5-23
Storage Change and Restoration for

DAT-Associated Access Exceptions 5-23
Modification of DAT-Table Entries . . . 5-24
Trial Execution for Editing Instructions

and Translate Instruction 5-24
Authorization Mechanisms 5-24

Mode Requirements 5-25
Extraction-Authority Control 5-25
PSW-Key Mask 5-25
Secondary-Space Control 5-26
Subsystem-Linkage Control 5-26
ASN-Translation Control 5-26
Authorization Index 5-26

PC-Number Translation 5-30
PC-Number Translation Control 5-30

Control Register 5 5-30
PC-Number Translation Tables 5-30

Linkage-Table Entries 5-30
Entry-Table Entries 5-31

PC-Number-Translation Process 5-32
Obtaining the Linkage-Table

Designation 5-33
Linkage-Table Lookup 5-34
Entry-Table Lookup 5-34

Recognition of Exceptions during
PC-Number Translation 5-34

Home Address Space 5-35
Access-Register Introduction 5-35

Summary 5-36
Access-Register Functions 5-36

Access-Register-Specified Address
Spaces 5-36

Access-Register Instructions 5-43
Access-Register Translation 5-44

Access-Register-Translation Control 5-44
Control Register 2 5-44
Control Register 5 5-44
Control Register 8 5-44

Access Registers 5-45
Access-Register-Translation Tables 5-45

Dispatchable-Unit Control Table and
Access-List Designations 5-46

Access-List Entries 5-47
ASN-Second-Table Entries 5-48

Access-Register-Translation Process . . . 5-49
Selecting the Access-List-Entry Token . 5-52
Obtaining the Primary or Secondary

Address-Space-Control Element . . 5-52
Checking the First Byte of the ALET . . 5-52
Obtaining the Effective Access-List

Designation 5-52
Access-List Lookup 5-52
Locating the ASN-Second-Table Entry . 5-53
Authorizing the Use of the Access-List

Entry 5-53
Checking for Access-List-Controlled

Protection 5-54
Obtaining the Address-Space-Control

Element from the ASN-Second-Table
Entry 5-54

Recognition of Exceptions during
Access-Register Translation 5-54

ART-Lookaside Buffer 5-54
ALB Structure 5-54
Formation of ALB Entries 5-55
Use of ALB Entries 5-55
Modification of ART Tables 5-56

Subspace Groups 5-56
Subspace-Group Tables 5-56

Subspace-Group Dispatchable-Unit
Control Table 5-56

Subspace-Group ASN-Second-Table
Entries 5-58

Subspace-Replacement Operations 5-60
Linkage-Stack Introduction 5-61

Summary 5-61
Linkage-Stack Functions 5-61

Transferring Program Control 5-61

 Contents v

Branching Using the Linkage Stack . . 5-63
Adding and Retrieving Information . . . 5-64
Testing Authorization 5-64
Program-Problem Analysis 5-65

Linkage-Stack Entry-Table Entries 5-65
Linkage-Stack Operations 5-66

Linkage-Stack-Operations Control 5-68
Control Register 15 5-68

Linkage Stack 5-68
Entry Descriptors 5-68
Header Entries 5-69
Trailer Entries 5-70
State Entries 5-71

Stacking Process 5-73
Locating Space for a New Entry 5-73
Forming the New Entry 5-74
Updating the Current Entry 5-75
Updating Control Register 15 5-75
Recognition of Exceptions during the

Stacking Process 5-75
Unstacking Process 5-76

Locating the Current Entry and
Processing a Header Entry 5-76

Checking for a State Entry 5-77
Restoring Information 5-77
Updating the Preceding Entry 5-78
Updating Control Register 15 5-78
Recognition of Exceptions during the

Unstacking Process 5-78
Sequence of Storage References 5-78

Conceptual Sequence 5-78
Overlapped Operation of Instruction

Execution 5-79
Divisible Instruction Execution 5-79

Interlocks for Virtual-Storage References . 5-80
Interlocks between Instructions 5-80
Interlocks within a Single Instruction . . 5-81

Instruction Fetching 5-82
ART-Table and DAT-Table Fetches 5-84
Storage-Key Accesses 5-84
Storage-Operand References 5-85

Storage-Operand Fetch References . . 5-86
Storage-Operand Store References . . 5-86
Storage-Operand Update References . 5-86

Storage-Operand Consistency 5-87
Single-Access References 5-88
Multiple-Access References 5-88
Block-Concurrent References 5-89
Consistency Specification 5-89

Relation between Operand Accesses . . . 5-90
Other Storage References 5-91

| Relation between Storage-Key Accesses . 5-91
Serialization 5-91

CPU Serialization 5-91

Channel-Program Serialization 5-93

Chapter 6. Interruptions 6-1
Interruption Action 6-2

Interruption Code 6-5
Enabling and Disabling 6-6
Handling of Floating Interruption Conditions 6-7
Instruction-Length Code 6-7

Zero ILC 6-7
ILC on Instruction-Fetching Exceptions . 6-8

Exceptions Associated with the PSW . . . 6-9
Early Exception Recognition 6-9
Late Exception Recognition 6-10

External Interruption 6-10
Clock Comparator 6-11
CPU Timer 6-11
Emergency Signal 6-12
ETR . 6-12
External Call 6-12
Interrupt Key 6-12
Malfunction Alert 6-13
Service Signal 6-13

I/O Interruption 6-13
Machine-Check Interruption 6-14
Program Interruption 6-14

Data-Exception Code (DXC) 6-15
Priority of Program Interruptions for

Data Exceptions 6-15
Program-Interruption Conditions 6-15

Addressing Exception 6-15
AFX-Translation Exception 6-19
ALEN-Translation Exception 6-19
ALE-Sequence Exception 6-19
ALET-Specification Exception 6-19
ASCE-Type Exception 6-19
ASTE-Sequence Exception 6-20
ASTE-Validity Exception 6-20
ASX-Translation Exception 6-21
Crypto-Operation Exception 6-21
Data Exception 6-21
Decimal-Divide Exception 6-22
Decimal-Overflow Exception 6-22
Execute Exception 6-22
EX-Translation Exception 6-22
Extended-Authority Exception 6-22
Fixed-Point-Divide Exception 6-23
Fixed-Point-Overflow Exception 6-23
HFP-Divide Exception 6-23
HFP-Exponent-Overflow Exception . . . 6-23
HFP-Exponent-Underflow Exception . . 6-23
HFP-Significance Exception 6-24
HFP-Square-Root Exception 6-24
LX-Translation Exception 6-24
Monitor Event 6-24

vi z/Architecture Principles of Operation

Operand Exception 6-25
Operation Exception 6-25
Page-Translation Exception 6-26
PC-Translation-Specification Exception 6-26
PER Event 6-26
Primary-Authority Exception 6-26
Privileged-Operation Exception 6-27
Protection Exception 6-27
Region-First-Translation Exception . . . 6-28
Region-Second-Translation Exception . 6-28
Region-Third-Translation Exception . . 6-29
Secondary-Authority Exception 6-29
Segment-Translation Exception 6-30
Space-Switch Event 6-30
Special-Operation Exception 6-31
Specification Exception 6-32
Stack-Empty Exception 6-34
Stack-Full Exception 6-34
Stack-Operation Exception 6-34
Stack-Specification Exception 6-34
Stack-Type Exception 6-35
Trace-Table Exception 6-35
Translation-Specification Exception . . . 6-35

Collective Program-Interruption Names . . 6-36
Recognition of Access Exceptions 6-36
Multiple Program-Interruption Conditions . 6-39

Access Exceptions 6-43
ASN-Translation Exceptions 6-46
Subspace-Replacement Exceptions . . 6-47
Trace Exceptions 6-47

Restart Interruption 6-47
Supervisor-Call Interruption 6-47
Priority of Interruptions 6-48

Chapter 7. General Instructions 7-1
Data Format 7-2
Binary-Integer Representation 7-3
Binary Arithmetic 7-4

Signed Binary Arithmetic 7-4
Addition and Subtraction 7-4
Fixed-Point Overflow 7-4

Unsigned Binary Arithmetic 7-4
Signed and Logical Comparison 7-5
Instructions . 7-6

ADD . 7-18
ADD HALFWORD 7-18
ADD HALFWORD IMMEDIATE 7-18
ADD LOGICAL 7-19
ADD LOGICAL WITH CARRY 7-20
AND . 7-20
AND IMMEDIATE 7-21
BRANCH AND LINK 7-22
BRANCH AND SAVE 7-23
BRANCH AND SAVE AND SET MODE . 7-23

BRANCH AND SET MODE 7-24
BRANCH ON CONDITION 7-25
BRANCH ON COUNT 7-26
BRANCH ON INDEX HIGH 7-27
BRANCH ON INDEX LOW OR EQUAL . . 7-27
BRANCH RELATIVE AND SAVE 7-28
BRANCH RELATIVE AND SAVE LONG . 7-28
BRANCH RELATIVE ON CONDITION . . 7-29
BRANCH RELATIVE ON CONDITION

LONG 7-29
BRANCH RELATIVE ON COUNT 7-29
BRANCH RELATIVE ON INDEX HIGH . . 7-30
BRANCH RELATIVE ON INDEX LOW

OR EQUAL 7-30
CHECKSUM 7-31

| CIPHER MESSAGE (KM) 7-35
| CIPHER MESSAGE WITH CHAINING
| (KMC) 7-35

COMPARE 7-45
COMPARE AND FORM CODEWORD . . 7-46
COMPARE AND SWAP 7-53
COMPARE DOUBLE AND SWAP 7-53
COMPARE HALFWORD 7-55
COMPARE HALFWORD IMMEDIATE . . 7-55
COMPARE LOGICAL 7-56
COMPARE LOGICAL CHARACTERS

UNDER MASK 7-57
COMPARE LOGICAL LONG 7-58
COMPARE LOGICAL LONG EXTENDED 7-60
COMPARE LOGICAL LONG UNICODE . 7-64
COMPARE LOGICAL STRING 7-67
COMPARE UNTIL SUBSTRING EQUAL . 7-68
COMPRESSION CALL 7-72

| COMPUTE INTERMEDIATE MESSAGE
| DIGEST (KIMD) 7-84
| COMPUTE LAST MESSAGE DIGEST
| (KLMD) 7-84
| COMPUTE MESSAGE
| AUTHENTICATION CODE (KMAC) . . 7-91

CONVERT TO BINARY 7-97
CONVERT TO DECIMAL 7-98
CONVERT UNICODE TO UTF-8 7-98
CONVERT UTF-8 TO UNICODE 7-101
COPY ACCESS 7-104
DIVIDE 7-104
DIVIDE LOGICAL 7-105
DIVIDE SINGLE 7-106
EXCLUSIVE OR 7-106
EXECUTE 7-107
EXTRACT ACCESS 7-108
EXTRACT PSW 7-109
INSERT CHARACTER 7-109
INSERT CHARACTERS UNDER MASK . 7-109
INSERT IMMEDIATE 7-110

 Contents vii

INSERT PROGRAM MASK 7-111
LOAD . 7-111
LOAD ACCESS MULTIPLE 7-111
LOAD ADDRESS 7-112
LOAD ADDRESS EXTENDED 7-112
LOAD ADDRESS RELATIVE LONG . . 7-113
LOAD AND TEST 7-114

| LOAD BYTE 7-114
LOAD COMPLEMENT 7-114
LOAD HALFWORD 7-115
LOAD HALFWORD IMMEDIATE 7-115
LOAD LOGICAL 7-116
LOAD LOGICAL CHARACTER 7-116
LOAD LOGICAL HALFWORD 7-116
LOAD LOGICAL IMMEDIATE 7-116
LOAD LOGICAL THIRTY ONE BITS . . 7-117
LOAD MULTIPLE 7-117
LOAD MULTIPLE DISJOINT 7-118
LOAD MULTIPLE HIGH 7-118
LOAD NEGATIVE 7-118
LOAD PAIR FROM QUADWORD 7-119
LOAD POSITIVE 7-119
LOAD REVERSED 7-120
MONITOR CALL 7-121
MOVE . 7-121
MOVE INVERSE 7-122
MOVE LONG 7-123
MOVE LONG EXTENDED 7-127
MOVE LONG UNICODE 7-130
MOVE NUMERICS 7-134
MOVE STRING 7-134
MOVE WITH OFFSET 7-135
MOVE ZONES 7-136
MULTIPLY 7-136
MULTIPLY HALFWORD 7-137
MULTIPLY HALFWORD IMMEDIATE . . 7-137
MULTIPLY LOGICAL 7-138
MULTIPLY SINGLE 7-138
OR . 7-139
OR IMMEDIATE 7-140
PACK . 7-141
PACK ASCII 7-142
PACK UNICODE 7-143
PERFORM LOCKED OPERATION . . . 7-144
ROTATE LEFT SINGLE LOGICAL . . . 7-159
SEARCH STRING 7-160
SET ACCESS 7-161
SET ADDRESSING MODE 7-161
SET PROGRAM MASK 7-162
SHIFT LEFT DOUBLE 7-162
SHIFT LEFT DOUBLE LOGICAL 7-163
SHIFT LEFT SINGLE 7-163
SHIFT LEFT SINGLE LOGICAL 7-164
SHIFT RIGHT DOUBLE 7-165

SHIFT RIGHT DOUBLE LOGICAL . . . 7-165
SHIFT RIGHT SINGLE 7-166
SHIFT RIGHT SINGLE LOGICAL 7-166
STORE 7-167
STORE ACCESS MULTIPLE 7-167
STORE CHARACTER 7-168
STORE CHARACTERS UNDER MASK . 7-168
STORE CLOCK 7-169
STORE CLOCK EXTENDED 7-170
STORE HALFWORD 7-172
STORE MULTIPLE 7-172
STORE MULTIPLE HIGH 7-172
STORE PAIR TO QUADWORD 7-173
STORE REVERSED 7-173
SUBTRACT 7-174
SUBTRACT HALFWORD 7-174
SUBTRACT LOGICAL 7-175
SUBTRACT LOGICAL WITH BORROW . 7-176
SUPERVISOR CALL 7-177
TEST ADDRESSING MODE 7-177
TEST AND SET 7-177
TEST UNDER MASK (TEST UNDER

MASK HIGH, TEST UNDER MASK
LOW) 7-178

TRANSLATE 7-179
TRANSLATE AND TEST 7-180
TRANSLATE EXTENDED 7-181
TRANSLATE ONE TO ONE 7-183
TRANSLATE ONE TO TWO 7-183
TRANSLATE TWO TO ONE 7-183
TRANSLATE TWO TO TWO 7-183
UNPACK 7-188
UNPACK ASCII 7-189
UNPACK UNICODE 7-190
UPDATE TREE 7-191

Chapter 8. Decimal Instructions 8-1
Decimal-Number Formats 8-1

Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-2

Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands . 8-3
Decimal-Operand Data Exception 8-4

Instructions . 8-4
ADD DECIMAL 8-5
COMPARE DECIMAL 8-6
DIVIDE DECIMAL 8-6
EDIT . 8-7
EDIT AND MARK 8-9
MULTIPLY DECIMAL 8-11

viii z/Architecture Principles of Operation

SHIFT AND ROUND DECIMAL 8-11
SUBTRACT DECIMAL 8-12
TEST DECIMAL 8-13
ZERO AND ADD 8-13

Chapter 9. Floating-Point Overview and
Support Instructions 9-1

Registers And Controls 9-2
Floating-Point Registers 9-2

Additional Floating-Point (AFP)
Registers 9-2

Valid Floating-Point-Register
Designations 9-2

Floating-Point-Control (FPC) Register . . . 9-2
AFP-Register-Control Bit 9-2
Explicit Rounding Methods 9-3

Summary of Rounding Action 9-3
Comparison of BFP and HFP Number

Representations 9-4
BFP and HFP Number Ranges 9-4
Equivalent BFP and HFP Number

Representations 9-4
Instructions . 9-6

CONVERT BFP TO HFP 9-8
CONVERT HFP TO BFP 9-9
LOAD . 9-10
LOAD ZERO 9-11
STORE . 9-11

Summary of All Floating-Point Instructions . . 9-12

Chapter 10. Control Instructions 10-1
BRANCH AND SET AUTHORITY 10-6
BRANCH AND STACK 10-10
BRANCH IN SUBSPACE GROUP 10-13
COMPARE AND SWAP AND PURGE . 10-18
DIAGNOSE 10-19
EXTRACT AND SET EXTENDED

AUTHORITY 10-21
EXTRACT PRIMARY ASN 10-21
EXTRACT SECONDARY ASN 10-21
EXTRACT STACKED REGISTERS . . . 10-22
EXTRACT STACKED STATE 10-23
INSERT ADDRESS SPACE CONTROL . 10-26
INSERT PSW KEY 10-27
INSERT STORAGE KEY EXTENDED . 10-27
INSERT VIRTUAL STORAGE KEY . . . 10-28

| INVALIDATE DAT TABLE ENTRY 10-29
INVALIDATE PAGE TABLE ENTRY . . . 10-33
LOAD ADDRESS SPACE

PARAMETERS 10-35
LOAD CONTROL 10-44
LOAD PSW 10-44
LOAD PSW EXTENDED 10-45
LOAD REAL ADDRESS 10-46

LOAD USING REAL ADDRESS 10-51
MODIFY STACKED STATE 10-51
MOVE PAGE 10-53
MOVE TO PRIMARY 10-55
MOVE TO SECONDARY 10-55
MOVE WITH DESTINATION KEY 10-57
MOVE WITH KEY 10-58
MOVE WITH SOURCE KEY 10-59
PAGE IN 10-60
PAGE OUT 10-61
PROGRAM CALL 10-62
PROGRAM RETURN 10-75
PROGRAM TRANSFER 10-79
PURGE ALB 10-85
PURGE TLB 10-85
RESET REFERENCE BIT EXTENDED . 10-85
RESUME PROGRAM 10-86
SET ADDRESS SPACE CONTROL . . . 10-89
SET ADDRESS SPACE CONTROL

FAST 10-89
SET CLOCK 10-90
SET CLOCK COMPARATOR 10-91
SET CLOCK PROGRAMMABLE FIELD . 10-91
SET CPU TIMER 10-92
SET PREFIX 10-92
SET PSW KEY FROM ADDRESS 10-93
SET SECONDARY ASN 10-93
SET STORAGE KEY EXTENDED 10-97
SET SYSTEM MASK 10-97
SIGNAL PROCESSOR 10-98
STORE CLOCK COMPARATOR 10-99
STORE CONTROL 10-99
STORE CPU ADDRESS 10-100
STORE CPU ID 10-100
STORE CPU TIMER 10-101
STORE FACILITY LIST 10-102
STORE PREFIX 10-102
STORE REAL ADDRESS 10-103
STORE SYSTEM INFORMATION . . . 10-104
STORE THEN AND SYSTEM MASK . 10-115
STORE THEN OR SYSTEM MASK . . 10-115
STORE USING REAL ADDRESS . . . 10-115
TEST ACCESS 10-116
TEST BLOCK 10-118
TEST PROTECTION 10-120
TRACE 10-123
TRAP 10-124

Chapter 11. Machine-Check Handling . . . 11-1
Machine-Check Detection 11-2
Correction of Machine Malfunctions 11-2

Error Checking and Correction 11-2
CPU Retry 11-2

Effects of CPU Retry 11-3

 Contents ix

Checkpoint Synchronization 11-3
Handling of Machine Checks during

Checkpoint Synchronization 11-3
Checkpoint-Synchronization Operations 11-3
Checkpoint-Synchronization Action . . . 11-4

Channel-Subsystem Recovery 11-4
Unit Deletion 11-4

Handling of Machine Checks 11-5
Validation 11-5
Invalid CBC in Storage 11-6

Programmed Validation of Storage . . . 11-7
Invalid CBC in Storage Keys 11-7
Invalid CBC in Registers 11-10

Check-Stop State 11-11
System Check Stop 11-11

Machine-Check Interruption 11-11
Exigent Conditions 11-11
Repressible Conditions 11-12
Interruption Action 11-12
Point of Interruption 11-14

Machine-Check-Interruption Code 11-15
Subclass 11-16

System Damage 11-16
Instruction-Processing Damage 11-16
System Recovery 11-16
Timing-Facility Damage 11-16
External Damage 11-17
Degradation 11-17
Warning 11-17
Channel Report Pending 11-17
Service-Processor Damage 11-18
Channel-Subsystem Damage 11-18

Subclass Modifiers 11-18
Backed Up 11-18
Delayed Access Exception 11-18
Ancillary Report 11-18

Synchronous
Machine-Check-Interruption Conditions 11-18

Processing Backup 11-18
Processing Damage 11-19

Storage Errors 11-19
Storage Error Uncorrected 11-19
Storage Error Corrected 11-20
Storage-Key Error Uncorrected 11-20
Storage Degradation 11-20
Indirect Storage Error 11-20

Machine-Check Interruption-Code
Validity Bits 11-21

PSW-MWP Validity 11-21
PSW Mask and Key Validity 11-21
PSW Program-Mask and

Condition-Code Validity 11-21
PSW-Instruction-Address Validity . . . 11-21
Failing-Storage-Address Validity . . . 11-21

External-Damage-Code Validity 11-21
Floating-Point-Register Validity 11-21
General-Register Validity 11-21
Control-Register Validity 11-21
Storage Logical Validity 11-22
Access-Register Validity 11-22
TOD-Programmable-Register Validity . 11-22
Floating-Point-Control-Register

Validity 11-22
CPU-Timer Validity 11-22
Clock-Comparator Validity 11-22

Machine-Check Extended Interruption
Information 11-22

Register-Save Areas 11-22
External-Damage Code 11-23
Failing-Storage Address 11-23

Handling of Machine-Check Conditions . . 11-23
Floating Interruption Conditions 11-23

Floating Machine-Check-Interruption
Conditions 11-24

Floating I/O Interruptions 11-24
Machine-Check Masking 11-24

Channel-Report-Pending Subclass
Mask 11-24

Recovery Subclass Mask 11-25
Degradation Subclass Mask 11-25
External-Damage Subclass Mask . . . 11-25
Warning Subclass Mask 11-25

Machine-Check Logout 11-25
Summary of Machine-Check Masking . . . 11-25

Chapter 12. Operator Facilities 12-1
Manual Operation 12-1
Basic Operator Facilities 12-1

Address-Compare Controls 12-1
Alter-and-Display Controls 12-2
Architectural-Mode Indicator 12-2
Architectural-Mode-Selection Controls . . . 12-2
Check-Stop Indicator 12-3
IML Controls 12-3
Interrupt Key 12-3
Load Indicator 12-3
Load-Clear Key 12-3
Load-Normal Key 12-3
Load-Unit-Address Controls 12-3
Manual Indicator 12-3
Power Controls 12-4
Rate Control 12-4
Restart Key 12-4
Start Key 12-4
Stop Key 12-4
Store-Status Key 12-5
System-Reset-Clear Key 12-5
System-Reset-Normal Key 12-5

x z/Architecture Principles of Operation

Test Indicator 12-5
TOD-Clock Control 12-5
Wait Indicator 12-6

Multiprocessing Configurations 12-6

Chapter 13. I/O Overview 13-1
Input/Output (I/O) 13-1
The Channel Subsystem 13-1

Subchannels 13-2
Attachment of Input/Output Devices 13-2

Channel Paths 13-2
Control Units 13-4
I/O Devices 13-4

I/O Addressing 13-5
Channel-Path Identifier 13-5
Subchannel Number 13-5
Device Number 13-5
Device Identifier 13-5

Execution of I/O Operations 13-6
Start-Function Initiation 13-6
Path Management 13-6
Channel-Program Execution 13-7
Conclusion of I/O Operations 13-8
I/O Interruptions 13-9

Chapter 14. I/O Instructions 14-1
I/O-Instruction Formats 14-1
I/O-Instruction Execution 14-1

Serialization 14-1
Operand Access 14-1
Condition Code 14-2
Program Exceptions 14-2

Instructions . 14-2
CANCEL SUBCHANNEL 14-4
CLEAR SUBCHANNEL 14-4
HALT SUBCHANNEL 14-5
MODIFY SUBCHANNEL 14-7
RESET CHANNEL PATH 14-8
RESUME SUBCHANNEL 14-10
SET ADDRESS LIMIT 14-11
SET CHANNEL MONITOR 14-12
START SUBCHANNEL 14-14
STORE CHANNEL PATH STATUS . . . 14-16
STORE CHANNEL REPORT WORD . . 14-16
STORE SUBCHANNEL 14-17
TEST PENDING INTERRUPTION 14-18
TEST SUBCHANNEL 14-20

Chapter 15. Basic I/O Functions 15-1
Control of Basic I/O Functions 15-1

Subchannel-Information Block 15-1
Path-Management-Control Word 15-2
Subchannel-Status Word 15-8

| Model-Dependent Area/Measurement
| Block Address 15-8

Summary of Modifiable Fields 15-9
Channel-Path Allegiance 15-11

Working Allegiance 15-12
Active Allegiance 15-12
Dedicated Allegiance 15-12
Channel-Path Availability 15-13
Control-Unit Type 15-13

Clear Function 15-14
Clear-Function Path Management 15-14
Clear-Function Subchannel Modification . 15-14
Clear-Function Signaling and

Completion 15-15
Halt Function 15-15

Halt-Function Path Management 15-16
Halt-Function Signaling and Completion . 15-16

Start Function and Resume Function 15-18
Start-Function and Resume-Function

Path Management 15-19
Execution of I/O Operations 15-21

Blocking of Data 15-22
Operation-Request Block 15-22
Channel-Command Word 15-27
Command Code 15-29
Designation of Storage Area 15-29
Chaining 15-31

Data Chaining 15-33
Command Chaining 15-34

Skipping 15-35
Program-Controlled Interruption 15-35
CCW Indirect Data Addressing 15-36
Suspension of Channel-Program

Execution 15-38
Commands and Flags 15-40
Branching in Channel Programs 15-41

Transfer in Channel 15-41
Command Retry 15-42

Concluding I/O Operations before Initiation . 15-42
Concluding I/O Operations during Initiation . 15-42
Immediate Conclusion of I/O Operations . . 15-43
Concluding I/O Operations during Data

Transfer 15-43
Channel-Path-Reset Function 15-45

Channel-Path-Reset-Function Signaling . 15-45
Channel-Path-Reset-Function-

Completion Signaling 15-45

Chapter 16. I/O Interruptions 16-1
Interruption Conditions 16-2

Intermediate Interruption Condition 16-4
Primary Interruption Condition 16-4
Secondary Interruption Condition 16-4
Alert Interruption Condition 16-4

 Contents xi

Priority of Interruptions 16-4
Interruption Action 16-5
Interruption-Response Block 16-6
Subchannel-Status Word 16-6

Subchannel Key 16-8
Suspend Control (S) 16-8
Extended-Status-Word Format (L) . . . 16-8
Deferred Condition Code (CC) 16-8
Format (F) 16-10
Prefetch (P) 16-10
Initial-Status-Interruption Control (I) . . 16-11
Address-Limit-Checking Control (A) . 16-11
Suppress-Suspended Interruption (U) . 16-11

Subchannel-Control Field 16-11
Zero Condition Code (Z) 16-11
Extended Control (E) 16-11
Path Not Operational (N) 16-12
Function Control (FC) 16-12
Activity Control (AC) 16-13
Status Control (SC) 16-16

CCW-Address Field 16-18
Device-Status Field 16-23
Subchannel-Status Field 16-23

Program-Controlled Interruption 16-23
Incorrect Length 16-23
Program Check 16-24
Protection Check 16-26
Channel-Data Check 16-26
Channel-Control Check 16-27
Interface-Control Check 16-28
Chaining Check 16-29

Count Field 16-29
Extended-Status Word 16-32

Extended-Status Format 0 16-32
Subchannel Logout 16-32
Extended-Report Word 16-36
Failing-Storage Address 16-37
Secondary-CCW Address 16-38

Extended-Status Format 1 16-38
Extended-Status Format 2 16-38
Extended-Status Format 3 16-39

Extended-Control Word 16-40
| Extended-Measurement Word 16-40

Chapter 17. I/O Support Functions 17-1
Channel-Subsystem Monitoring 17-1

Channel-Subsystem Timing 17-2
Channel-Subsystem Timer 17-2

Measurement-Block Update 17-3
Measurement Block 17-3

| Measurement-Block Format 17-7
Measurement-Block Origin 17-7

| Measurement-Block Address 17-8
Measurement-Block Key 17-8

Measurement-Block Index 17-8
Measurement-Block-Update Mode . . . 17-8

| Measurement-Block-Format Control . . 17-9
Measurement-Block-Update Enable . . 17-9
Control-Unit-Queuing Measurement . . 17-9
Control-Unit-Defer Time 17-9
Device-Active-Only Measurement 17-9

| Initial-Command-Response
| Measurement 17-10

Time-Interval-Measurement Accuracy . 17-10
Device-Connect-Time Measurement . . . 17-10

Device-Connect-Time-Measurement
Mode 17-10

Device-Connect-Time-Measurement
Enable 17-11

| Extended Measurement Word 17-11
| Extended-Measurement-Word Enable 17-11

Signals and Resets 17-12
Signals . 17-12

Halt Signal 17-12
Clear Signal 17-12
Reset Signal 17-13

Resets . 17-13
Channel-Path Reset 17-13
I/O-System Reset 17-13

Externally Initiated Functions 17-17
Initial Program Loading 17-17
Reconfiguration of the I/O System 17-20

Status Verification 17-20
Address-Limit Checking 17-20
Configuration Alert 17-21
Incorrect-Length-Indication Suppression . . 17-21
Concurrent Sense 17-21
Channel-Subsystem Recovery 17-21

Channel Report 17-22
Channel-Report Word 17-23

Channel-Subsystem-I/O-Priority Facility . . 17-25
Number of

Channel-Subsystem-Priority Levels 17-26

Chapter 18. Hexadecimal-Floating-Point
Instructions 18-1

HFP Arithmetic 18-1
HFP Number Representation 18-1
Normalization 18-3
HFP Data Format 18-3

Instructions . 18-4
ADD NORMALIZED 18-8
ADD UNNORMALIZED 18-10
COMPARE 18-10
CONVERT FROM FIXED 18-11
CONVERT TO FIXED 18-11
DIVIDE 18-12
HALVE . 18-13

xii z/Architecture Principles of Operation

LOAD AND TEST 18-14
LOAD COMPLEMENT 18-14
LOAD FP INTEGER 18-15
LOAD LENGTHENED 18-15
LOAD NEGATIVE 18-16
LOAD POSITIVE 18-16
LOAD ROUNDED 18-17
MULTIPLY 18-18

| MULTIPLY AND ADD 18-19
| MULTIPLY AND SUBTRACT 18-20

SQUARE ROOT 18-21
SUBTRACT NORMALIZED 18-22
SUBTRACT UNNORMALIZED 18-22

Chapter 19. Binary-Floating-Point
Instructions 19-1

Binary-Floating-Point Facility 19-1
Floating-Point-Control (FPC) Register . . . 19-2

IEEE Masks and Flags 19-3
FPC DXC Byte 19-3
Operations on the FPC Register 19-3

BFP Arithmetic 19-4
BFP Data Formats 19-4

BFP Short Format 19-4
BFP Long Format 19-4
BFP Extended Format 19-4
Biased Exponent 19-4
Significand 19-4
Values of Nonzero Numbers 19-4

Classes of BFP Data 19-5
Zeros . 19-6
Denormalized Numbers 19-6
Normalized Numbers 19-6
Infinities 19-6
Signaling and Quiet NaNs 19-6

BFP-Format Conversion 19-7
BFP Rounding 19-7

Rounding Mode 19-7
Normalization and Denormalization 19-8
BFP Comparison 19-8
Condition Codes for BFP Instructions . . . 19-9
Remainder 19-9
IEEE Exception Conditions 19-10

IEEE Invalid Operation 19-10
IEEE Division-By-Zero 19-11
IEEE Overflow 19-11
IEEE Underflow 19-12
IEEE Inexact 19-12

Result Figures 19-13
Data-Exception Codes (DXC) and

Abbreviations 19-14
Instructions 19-14

ADD . 19-18
COMPARE 19-23

COMPARE AND SIGNAL 19-24
CONVERT FROM FIXED 19-26
CONVERT TO FIXED 19-26
DIVIDE 19-29
DIVIDE TO INTEGER 19-29
EXTRACT FPC 19-33
LOAD AND TEST 19-34
LOAD COMPLEMENT 19-34
LOAD FP INTEGER 19-35
LOAD FPC 19-36
LOAD LENGTHENED 19-37
LOAD NEGATIVE 19-37
LOAD POSITIVE 19-38
LOAD ROUNDED 19-38
MULTIPLY 19-39
MULTIPLY AND ADD 19-41
MULTIPLY AND SUBTRACT 19-41
SET FPC 19-43
SET ROUNDING MODE 19-43
SQUARE ROOT 19-44
STORE FPC 19-44
SUBTRACT 19-44
TEST DATA CLASS 19-45

Appendix A. Number Representation and
Instruction-Use Examples A-1

Number Representation A-2
Binary Integers A-2

Signed Binary Integers A-2
Unsigned Binary Integers A-3

Decimal Integers A-4
Hexadecimal-Floating-Point Numbers . . . A-5
Conversion Example A-6

Instruction-Use Examples A-6
Machine Format A-7
Assembler-Language Format A-7

Addressing Mode in Examples A-7
General Instructions A-7

ADD HALFWORD (AH) A-7
AND (N, NC, NI, NR) A-8

NI Example A-8
Linkage Instructions (BAL, BALR, BAS,

BASR, BASSM, BSM) A-8
Other BALR and BASR Examples . . . A-9

BRANCH AND STACK (BAKR) A-10
BAKR Example 1 A-10
BAKR Example 2 A-11
BAKR Example 3 A-11

BRANCH ON CONDITION (BC, BCR) . A-11
BRANCH ON COUNT (BCT, BCTR) . . A-12
BRANCH ON INDEX HIGH (BXH) A-12

BXH Example 1 A-12
BXH Example 2 A-13

 Contents xiii

BRANCH ON INDEX LOW OR EQUAL
(BXLE) A-13

BXLE Example 1 A-13
BXLE Example 2 A-14

COMPARE AND FORM CODEWORD
(CFC) A-14

COMPARE HALFWORD (CH) A-14
COMPARE LOGICAL (CL, CLC, CLI,

CLR) . A-14
CLC Example A-14
CLI Example A-15
CLR Example A-15

COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM) A-15

COMPARE LOGICAL LONG (CLCL) . . A-16
COMPARE LOGICAL STRING (CLST) . A-17
CONVERT TO BINARY (CVB) A-18
CONVERT TO DECIMAL (CVD) A-18
DIVIDE (D, DR) A-19
EXCLUSIVE OR (X, XC, XI, XR) A-19

XC Example A-19
XI Example A-20

EXECUTE (EX) A-21
INSERT CHARACTERS UNDER MASK

(ICM) A-21
LOAD (L, LR) A-22
LOAD ADDRESS (LA) A-22
LOAD HALFWORD (LH) A-23
MOVE (MVC, MVI) A-23

MVC Example A-23
MVI Example A-24

MOVE INVERSE (MVCIN) A-24
MOVE LONG (MVCL) A-25
MOVE NUMERICS (MVN) A-25
MOVE STRING (MVST) A-26
MOVE WITH OFFSET (MVO) A-26
MOVE ZONES (MVZ) A-27
MULTIPLY (M, MR) A-27
MULTIPLY HALFWORD (MH) A-27
OR (O, OC, OI, OR) A-28

OI Example A-28
PACK (PACK) A-28
SEARCH STRING (SRST) A-29

SRST Example 1 A-29
SRST Example 2 A-29

SHIFT LEFT DOUBLE (SLDA) A-29
SHIFT LEFT SINGLE (SLA) A-30
STORE CHARACTERS UNDER MASK

(STCM) A-30
STORE MULTIPLE (STM) A-30
TEST UNDER MASK (TM) A-31
TRANSLATE (TR) A-31
TRANSLATE AND TEST (TRT) A-32
UNPACK (UNPK) A-33

UPDATE TREE (UPT) A-34
Decimal Instructions A-34

ADD DECIMAL (AP) A-34
COMPARE DECIMAL (CP) A-34
DIVIDE DECIMAL (DP) A-34
EDIT (ED) A-35
EDIT AND MARK (EDMK) A-36
MULTIPLY DECIMAL (MP) A-36
SHIFT AND ROUND DECIMAL (SRP) . A-37

Decimal Left Shift A-37
Decimal Right Shift A-37
Decimal Right Shift and Round A-38
Multiplying by a Variable Power of 10 . A-38

ZERO AND ADD (ZAP) A-38
Hexadecimal-Floating-Point Instructions . . A-39

ADD NORMALIZED (AD, ADR, AE, AER,
AXR) . A-39

ADD UNNORMALIZED (AU, AUR, AW,
AWR) A-39

COMPARE (CD, CDR, CE, CER) A-40
DIVIDE (DD, DDR, DE, DER) A-40
HALVE (HDR, HER) A-41
MULTIPLY (MD, MDR, MDE, MDER,

MXD, MXDR, MXR) A-41
Hexadecimal-Floating-Point-Number

Conversion A-42
Fixed Point to Hexadecimal Floating

Point A-42
Hexadecimal Floating Point to Fixed

Point A-42
Multiprogramming and Multiprocessing

Examples A-43
Example of a Program Failure Using OR

Immediate A-43
Conditional Swapping Instructions (CS,

CDS) A-44
Setting a Single Bit A-44
Updating Counters A-45

Bypassing Post and Wait A-45
Bypass Post Routine A-45
Bypass Wait Routine A-46

Lock/Unlock A-46
Lock/Unlock with LIFO Queuing for

Contentions A-46
Lock/Unlock with FIFO Queuing for

Contentions A-47
Free-Pool Manipulation A-48
PERFORM LOCKED OPERATION (PLO) A-50

Sorting Instructions A-51
Tree Format A-51
Example of Use of Sort Instructions . . . A-53

Appendix B. Lists of Instructions B-1

xiv z/Architecture Principles of Operation

Appendix C. Condition-Code Settings . . C-1

Appendix G. Table of Powers of 2 G-1

Appendix H. Hexadecimal Tables H-1

Appendix I. EBCDIC and Other Codes . . . I-1

Index . X-1

 Contents xv

xvi z/Architecture Principles of Operation

 Notices

References in this publication to IBM* products,
programs or services do not imply that IBM
intends to make these available in all countries in
which IBM operates. Any reference to an IBM
product, program, or service is not intended to
state or imply that only IBM's product, program, or
service may be used. Any functionally equivalent
product, program, or service that does not infringe
any of IBM's intellectual property rights may be
used instead of the IBM product, program, or
service. Evaluation and verification of operation in
conjunction with other products, except those
expressly designated by IBM, is the user's respon-
sibility.

IBM may have patents or pending patent applica-
tions covering subject matter in this document.
The furnishing of this document does not give you
any license to these patents. You can send
license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive,
Armonk, NY, 10504-1785 USA.

 Trademarks

The following terms, denoted by an asterisk (*) at
the first or most prominent occurrence in this pub-
lication, are trademarks of the International Busi-
ness Machines Corporation in the United States or
other countries:

 AIX/ESA
 BookMaster
 CICS
 DB2

Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
Enterprise Systems Connection Architecture

 ESA/370
 ESA/390
 ESCON
 FICON
 IBM
 IBMLink
 MVS/ESA
 OS/390

Processor Resource/Systems Manager
 PR/SM
 Sysplex Timer
 System/370
 VM/ESA
 z/Architecture
 z/OS

 Copyright IBM Corp. 1990-2003 xvii

xviii z/Architecture Principles of Operation

 Preface

This publication provides, for reference purposes,
a detailed z/Architecture* description.

The publication applies only to systems operating
as defined by z/Architecture. For systems oper-
ating in accordance with the Enterprise Systems
Architecture/390* (ESA/390*) definition, the IBM
ESA/390 Principles of Operation, SA22-7201,
should be consulted.

The publication describes each function at the
level of detail needed to prepare an assembler-
language program that relies on that function. It
does not, however, describe the notation and con-
ventions that must be employed in preparing such
a program, for which the user must instead refer
to the appropriate assembler-language publication.

The information in this publication is provided prin-
cipally for use by assembler-language program-
mers, although anyone concerned with the func-
tional details of z/Architecture will find it useful.

This publication is written as a reference and
should not be considered an introduction or a text-
book. It assumes the user has a basic knowledge
of data-processing systems.

All facilities discussed in this publication are not
necessarily available on every model. Further-
more, in some instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain capabilities may
be described or implied that are not offered on
any model. Examples of such capabilities are the
use of a 16-bit field in the subsystem-identification
word to identify the subchannel number, the size
of the CPU address, and the number of CPUs
sharing main storage. The allowance for this type
of extendibility should not be construed as
implying any intention by IBM to provide such
capabilities. For information about the character-
istics and availability of facilities on a specific
model, see the functional characteristics publica-
tion for that model.

Largely because this publication is arranged for
reference, certain words and phrases appear, of
necessity, earlier in the publication than the prin-
cipal discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index, which indi-
cates the location of the key description.

The information presented in this publication is
grouped in 19 chapters and several appendixes:

Chapter 1, Introduction, highlights the major facili-
ties of z/Architecture.

Chapter 2, Organization, describes the major
groupings within the system — main storage,
expanded storage, the central processing unit
(CPU), the external time reference (ETR), and
input/output — with some attention given to the
composition and characteristics of those
groupings.

Chapter 3, Storage, explains the information
formats, the addressing of storage, and the facili-
ties for storage protection. It also deals with
dynamic address translation (DAT), which,
coupled with special programming support, makes
the use of a virtual storage possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally
initiated operations, for debugging, and for timing.
It deals specifically with CPU states, control
modes, the program-status word (PSW), control
registers, tracing, program-event recording, timing
facilities, resets, store status, and initial program
loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use
of the program-status word (PSW), of branching,
and of interruptions. It contains the principal
description of the advanced address-space facili-
ties that were introduced in ESA/370*. It also
details the aspects of program execution on one

z/Architecture, Enterprise Systems Architecture/390, ESA/390, and ESA/370 are trademarks of the International Business
Machines Corporation.

 Copyright IBM Corp. 1990-2003 xix

CPU as observed by other CPUs and by channel
programs.

Chapter 6, Interruptions, details the mechanism
that permits the CPU to change its state as a
result of conditions external to the system, within
the system, or within the CPU itself. Six classes
of interruptions are identified and described:
machine-check interruptions, program inter-
ruptions, supervisor-call interruptions, external
interruptions, input/output interruptions, and restart
interruptions.

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data
formats and of all unprivileged instructions except
the decimal and floating-point instructions.

Chapter 8, Decimal Instructions, describes in
detail decimal data formats and the decimal
instructions.

Chapter 9, Floating-Point Overview and Support
Instructions, includes an introduction to the
floating-point operations, detailed descriptions of
those instructions common to both hexadecimal-
floating-point and binary-floating-point operations,
and summaries of all floating-point instructions.

Chapter 10, Control Instructions, contains detailed
descriptions of all of the semiprivileged and privi-
leged instructions except for the I/O instructions.

Chapter 11, Machine-Check Handling, describes
the mechanisms for detecting, correcting, and
reporting machine malfunctions.

Chapter 12, Operator Facilities, describes the
basic manual functions and controls available for
operating and controlling the system.

Chapters 13-17 of this publication provide a
detailed definition of the functions performed by
the channel subsystem and the logical interface
between the CPU and the channel subsystem.

Chapter 13, I/O Overview, provides a brief
description of the basic components and operation
of the channel subsystem.

Chapter 14, I/O Instructions, contains the
description of the I/O instructions.

Chapter 15, Basic I/O Functions, describes the
basic I/O functions performed by the channel sub-
system, including the initiation, control, and con-
clusion of I/O operations.

Chapter 16, I/O Interruptions, covers I/O inter-
ruptions and interruption conditions.

Chapter 17, I/O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

Chapter 18, Hexadecimal-Floating-Point
Instructions, contains detailed descriptions of the
hexadecimal-floating-point (HFP) data formats and
the HFP instructions.

Chapter 19, Binary-Floating-Point Instructions,
contains detailed descriptions of the binary-
floating-point (BFP) data formats and the BFP
instructions.

The Appendixes include:

� Information about number representation
 � Instruction-use examples
� Lists of the instructions arranged in several

sequences
� A summary of the condition-code settings
� A table of the powers of 2
� Tabular information helpful in dealing with

hexadecimal numbers
� A table of EBCDIC and other codes.

Size and Number Notation

In this publication, the letters K, M, G, T, P, and E
denote the multipliers 2��, 2��, 2��, 2��, 2��, and
2��, respectively. Although the letters are bor-
rowed from the decimal system and stand for kilo
(10�), mega (10�), giga (10), tera (10��), peta
(10��), and exa (10�
), they do not have the
decimal meaning but instead represent the power
of 2 closest to the corresponding power of 10.
Their meaning in this publication is as follows:

xx z/Architecture Principles of Operation

┌──────────┬─────────────────────────────────┐
│ Symbol │ Value │
├──────────┼─────────────────────────────────┤
│ K (kilo) │ 1,�24 = 2�� │
│ │ │
│ M (mega) │ 1,�48,576 = 2�� │
│ │ │
│ G (giga) │ 1,�73,741,824 = 2�� │
│ │ │
│ T (tera) │ 1,�99,511,627,776 = 2�� │
│ │ │
│ P (peta) │ 1,125,899,9�6,842,624 = 2�� │
│ │ │
│ E (exa) │ 1,152,921,5�4,6�6,846,976 = 2�� │
└──────────┴─────────────────────────────────┘

The following are some examples of the use of K,
M, G, T, and E:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
2�� is expressed as 16M.
2�� is expressed as 2G.
2�� is expressed as 4T.
2�� is expressed as 16E.

When the words “thousand” and “million” are
used, no special power-of-2 meaning is assigned
to them.

All numbers in this publication are in decimal
unless they are explicitly noted as being in binary
or hexadecimal (hex).

Bytes, Characters, and Codes

Although the System/360 architecture was ori-
ginally designed to support the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC), the
instructions and data formats of the architecture
are for the most part independent of the external
code which is to be processed by the machine.
For most instructions, all 256 possible combina-
tions of bit patterns for a particular byte can be
processed, independent of the character which the
bit pattern is intended to represent. For
instructions which use the zoned format, and for
those few instructions which are dependent on a
particular external code, the instruction TRANS-
LATE may be used to convert data from one code
to another code. Thus, a machine operating in
accordance with z/Architecture can process

EBCDIC, ASCII, or any other code which can be
represented in eight or fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by
considering the bits of the byte to represent a
binary code. Thus, when a byte is said to contain
a zero, the value 00000000 binary, or 00 hex, is
meant, and not the value for an EBCDIC character
“0,” which would be F0 hex.

 Other Publications

The parallel-I/O interface is described in the publi-
cation IBM System/360 and System/370 I/O Inter-
face Channel to Control Unit Original Equipment
Manufacturers' Information, GA22-6974.

The parallel-I/O channel-to-channel adapter is
described in the publication IBM Enterprise
Systems Architecture/390 Channel-to-Channel
Adapter for the System/360 and System/370 I/O
Interface, SA22-7091.

The Enterprise Systems Connection Architecture*
(ESCON*) I/O interface, referred to in this publi-
cation along with the FICON I/O interface as the
serial-I/O interface, is described in the publication
IBM Enterprise Systems Architecture/390 ESCON
I/O Interface, SA22-7202.

The FICON I/O interface is described in the
| ANSI standards document Fibre Channel -

Single-Byte Command Code Sets-2 (FC-SB-2).

The channel-to-channel adapter for the serial-I/O
interface is described in the publication IBM Enter-
prise Systems Architecture/390 ESCON Channel-
to-Channel-Adapter, SA22-7203.

The commands, status, and sense data that are
common to all I/O devices that comply with
z/Architecture are described in the publication IBM
Enterprise Systems Architecture/390 Common
I/O-Device Commands and Self Description,
SA22-7204.

The compression facility is described in the publi-
cation IBM Enterprise Systems Architecture/390
Data Compression, SA22-7208. The

Enterprise Systems Connection Architecture and ESCON are trademarks of the International Business Machines Corporation.

| ANSI is a registered trademark of the American National Standards Institute.

 Preface xxi

z/Architecture form of the COMPRESSION CALL
instruction is described in this publication.

The interpretive-execution facility is described in
the publication IBM 370-XA Interpretive Execution,
SA22-7095.

| Summary of Changes in Third
| Edition
| The current, third edition of this publication differs
| from the previous edition principally by containing
| the definitions of the DAT-enhancement,
| HFP-multiply-add/subtract, and long-displacement
| facilities and the message-security assist. The
| third edition contains minor clarifications and cor-
| rections and also the following significant changes
| relative to the previous edition:

| � In Chapter 3, “Storage”:

| – Clarifications are added to the description
| of dynamic-address-translation process.

| – The primary address-space-control
| element (ASCE) in control register 1 is an
| attaching ASCE even when the CPU is in
| the home-space mode, and the home
| ASCE in control register 13 is an attaching
| ASCE even when the CPU is in the
| secondary-space mode.

| � In Chapter 4, “Control”:

| – The relationships between ETR time
| (TOD-clock time), UTC, and International
| Atomic Time are described in a program-
| ming note on page 4-38.

| – Code 0 of the SIGNAL PROCESSOR set-
| architecture order, and also a CPU reset
| due to activation of the load normal key,
| are changed to save the current
| z/Architecture PSW when switching to the
| ESA/390 architectural mode. Also, code 2
| of the order is added, and this restores,
| for CPUs other than the one executing
| SIGNAL PROCESSOR, the saved PSW
| when switching to the z/Architecture archi-
| tectural mode, provided that the saved
| PSW has not been set to all zeros by
| certain resets.

| � In Chapter 5, “Program Execution”:

| – The RSY, RXY, and SIY instruction
| formats are added, and the RSE format is

| deleted. (All instructions that were of
| format RSE are now referred to as being
| of format RSY.)

| – The formation of an operand address
| using the 20-bit signed displacement of
| instructions of formats RSY, RXY, and SIY
| is described.

| – The results when a PER instruction-
| fetching event occurs along with certain
| exceptions or exception conditions are
| clarified. See “Indication of PER Events
| Concurrently with Other Interruption
| Conditions” on page 4-32.

| – The fetch of the address-space-control
| element from the ASN-second-table entry
| during access-register translation is
| doubleword concurrent as observed by
| other CPUs.

| – The change bit is not necessarily set to
| one currently with the related storage ref-
| erence, as observed by other CPUs; it
| may be set to one before or after the ref-
| erence, within certain limits. See
| “Storage-Key Accesses” on page 5-84 for
| a detailed description of when the change
| bit is set.

| – The five instructions of the message-
| security assist are added to the list of
| instructions having multiple-access refer-
| ences.

| � In Chapter 6, “Interruptions,” the list of condi-
| tions causing a specification exception to be
| recognized is extended to include those
| caused by the message-security assist
| instructions.

| � In Chapter 7, “General Instructions”:

| – Thirty-nine instructions provided by the
| long-displacement facility are added. With
| the exception of the new LOAD BYTE
| instruction, the instructions added by the
| long-displacement facility have names and
| functions that are the same as existing
| instructions (but the mnemonics and
| opcodes are new). The new instructions
| are of formats RSY, RXY, and SIY and
| have a 20-bit signed displacement instead
| of a 12-bit unsigned displacement.

| – All previously existing format-RSE and
| format-RXE instructions are changed to be

xxii z/Architecture Principles of Operation

| of formats RSY and RXY, respectively, by
| use of a previously unused byte in the
| instructions. These changes are not
| marked by a bar in the margin.

| – Five instructions provided by the
| message-security assist are added.

| � In Chapter 9, “Floating-Point Overview and
| Support Instructions,” four instructions pro-
| vided by the long-displacement facility are
| added. These are the LOAD (long and short)
| and STORE (long and short) instructions.

| � In Chapter 10, “Control Instructions”:

| – The COMPARE AND SWAP AND PURGE
| (CSPG) and INVALIDATE DAT TABLE
| ENTRY instructions provided by the
| DAT-enhancement facility are added.
| CSPG operates on a doubleword operand
| in storage.

| – The definition of LOAD ADDRESS SPACE
| PARAMETERS is clarified.

| – The LOAD REAL ADDRESS (LRAY)
| instruction provided by the long-
| displacement facility is added.

| – All previously existing format-RSE
| instructions are changed to be of format
| RSY by use of a previously unused byte
| in the instructions. These changes are
| not marked by a bar in the margin.

| – The description of the bits set by STORE
| FACILITY LIST is clarified, and new bits
| are assigned.

| � In Chapter 14, “I/O Instructions”:

| – The definition of MODIFY SUBCHANNEL
| is modified.

| – The definition of SET CHANNEL
| MONITOR is modified.

| � In Chapter 15, “Basic I/O Functions,” the fol-
| lowing changes are made to the subchannel-
| information-block (SCHIB):

| – Bit 29 of word 6 of the path-
| management-control word (PMCW) is
| defined as the measurement-block-format
| control.

| – Bit 30 of word 6 of the PMCW is defined
| as the extended-measurement-word-mode
| enablement bit.

| – The definition of words 10-11 (words 0-1
| of the model-dependent area) are
| changed to contain a measurement-block
| address, when the
| extended-I/O-measurement-block facility is
| installed.

| � In Chapter 16, “I/O Interruptions,” the
| interruption-response block (IRB) is extended
| to include the extended-measurement word.

| � In Chapter 17, “I/O Support Functions”:

| – The requirement that the measurement
| block be updated when secondary status
| is accepted is clarified.

| – The extended-measurement-block facility
| is added.

| – The extended-measurement-word facility
| is added.

| � In Chapter 18, “Hexadecimal-Floating-Point
| Instructions,” the MULTIPLY AND ADD (four
| instructions) and MULTIPLY AND SUBTRACT
| (four instructions) instructions provided by the
| HFP-multiply-add/subtract facility are added.

| The above changes may affect other chapters
| besides the ones listed. All technical changes to
| the text or to an illustration are indicated by a ver-
| tical line to the left of the change.

Summary of Changes in Second
Edition
The second edition of this publication differs from
the previous edition mainly by containing clarifica-
tions and corrections. The significant changes are
as follows:

� In Chapter 1, “Introduction”:

– Summaries of DIVIDE LOGICAL and
MULTIPLY LOGICAL, TEST
ADDRESSING MODE, the set-architecture
order of SIGNAL PROCESSOR, and
STORE FACILITY LIST are added or
improved.

– An extensive summary of the input/output
enhancements placed in z/Architecture is
added.

� In Chapter 3, “Storage”:

 Preface xxiii

– Definitions of absolute locations 0-23 are
deleted since they pertain only to an
ESA/390 initial program load.

– The definition of real locations 200-203,
stored in by STORE FACILITY LIST, is
corrected to state that bit 16 indicates the
extended-translation facility 2.

| � In Chapter 4, “Control,” a description of unas-
signed fields in the PSW is corrected to state
that bit 4 is unassigned and bit 31 is assigned.

| � In Chapter 5, “Program Execution,” the RSL
format and an RIL format with an M� field are
added.

� In Chapter 7, “General Instructions”:

– The definition of BRANCH AND SET
MODE is corrected to state that bit 63 of
the R� general register remains
unchanged in the 24-bit or 31-bit
addressing mode; the bit is not set to
zero.

– The definitions of PACK ASCII, PACK
UNICODE, UNPACK ASCII, and UNPACK
UNICODE are clarified.

– It is clarified that the following instructions
perform multiple-access references to their
storage operands:

 - CHECKSUM
- COMPARE AND FORM CODEWORD
- CONVERT UNICODE TO UTF-8
- CONVERT UTF-8 TO UNICODE

– It is clarified that the following instructions
do not necessarily process their storage
operands left to right as observed by other
CPUs: MOVE LONG, MOVE LONG
EXTENDED, and MOVE LONG
UNICODE. Special padding characters of
MOVE LONG and MOVE LONG
EXTENDED specify whether left-to-right
processing should be performed, as
observed by other CPUs, and whether the
data being moved should or should not be
placed in the cache for availability for sub-
sequent processing.

� In Chapter 10, “Control Instructions,” it is clari-
fied that the following instructions perform
multiple-access references to their storage
operands:

– LOAD ADDRESS SPACE PARAMETERS
 – RESUME PROGRAM

– STORE SYSTEM INFORMATION

Chapters 13-17 contain many clarifying changes,
all indicated by a vertical line in the margin, in
addition to the significant changes listed below.

� In Chapter 13, “I/O Overview,” statements
about the suspend flag in a CCW are clarified
to describe the flag being specified as a one
and being valid because of a one value of the
suspend control in the associated ORB.

� In Chapter 14, “I/O Instructions,” the results of
MODIFY SUBCHANNEL when the device-
number-valid bit at the designated subchannel
is zero are corrected.

� In Chapter 15, “Basic I/O Functions”:

– It is clarified that unlimited prefetching of
data and IDAWs associated with the
current and prefetched CCWs is allowed
independent of the value of the prefetch
control in the associated ORB.

– A specified control-unit-priority number is
ignored if the
channel-subsystem-I/O-priority facility is
not operational due to an operator action.

– It is clarified that address-limit checking
applies to data locations and not to
locations containing a CCW or IDAW.

� In Chapter 16, “I/O Interruptions,” the form of
the address stored in the failing-
storage-address field is described in terms of
the format-2-IDAW control instead of an
addressing mode.

� In Chapter 17, “I/O Support Functions”:

– The introduction to the channel-subsystem
monitoring facilities is clarified.

– References to the measurement block by
the measurement-block-update facility are
single-access references and appear to be
word concurrent as observed by CPUs.
They do not appear to be block concur-
rent.

– The description of the
channel-subsystem-I/O-priority facility is
corrected by including mention of control-
unit priority for fibre-channel-attached
control units.

The above changes may affect other chapters
besides the ones listed.

xxiv z/Architecture Principles of Operation

 Chapter 1. Introduction

| Highlights of Original z/Architecture 1-1
General Instructions for 64-Bit Integers . . 1-2
Other New General Instructions 1-2
Floating-Point Instructions 1-4
Control Instructions 1-4
Trimodal Addressing 1-4

Modal Instructions 1-5
Effects on Bits 0-31 of a General

Register 1-5
Input/Output 1-5

| Additions to z/Architecture 1-6
| Extended-Translation Facility 2 1-7
| HFP Multiply-and-Add/Subtract Facility . . 1-7
| Message-Security Assist 1-7

| Long-Displacement Facility 1-8
| Extended-I/O-Measurement-Block Facility . 1-8
| Extended-I/O-Measurement-Word Facility . 1-8

The ESA/390 Base 1-8
The ESA/370 and 370-XA Base 1-14

System Program 1-16
Compatibility 1-16

Compatibility among z/Architecture
Systems 1-16

Compatibility between z/Architecture and
ESA/390 1-16

Control-Program Compatibility 1-16
Problem-State Compatibility 1-16

Availability . 1-17

This publication provides, for reference purposes,
a detailed description of z/Architecture.

The architecture of a system defines its attributes
as seen by the programmer, that is, the concep-
tual structure and functional behavior of the
machine, as distinct from the organization of the
data flow, the logical design, the physical design,
and the performance of any particular implementa-
tion. Several dissimilar machine implementations
may conform to a single architecture. When the
execution of a set of programs on different
machine implementations produces the results
that are defined by a single architecture, the
implementations are considered to be compatible
for those programs.

| Highlights of Original
| z/Architecture

z/Architecture is the next step in the evolution
from the System/360 to the System/370*,
System/370 extended architecture (370-XA),
Enterprise Systems Architecture/370* (ESA/370),
and Enterprise Systems Architecture/390
(ESA/390). z/Architecture includes all of the facili-
ties of ESA/390 except for the asynchronous-
pageout, asynchronous-data-mover, program-call-

fast, and vector facilities. z/Architecture also pro-
vides significant extensions, as follows:

� Sixty-four-bit general registers and control reg-
isters.

� A 64-bit addressing mode, in addition to the
24-bit and 31-bit addressing modes of
ESA/390, which are carried forward to
z/Architecture.

Both operand addresses and instruction
addresses can be 64-bit addresses. The
program-status word (PSW) is expanded to 16
bytes to contain the larger instruction address.
The PSW also contains a newly assigned bit
that specifies the 64-bit addressing mode.

� Up to three additional levels of dynamic-
address-translation (DAT) tables, called region
tables, for translating 64-bit virtual addresses.

A virtual address space may be specified
either by a segment-table designation as in
ESA/390 or by a region-table designation, and
either of these types of designation is called
an address-space-control element (ASCE).
An ASCE may alternatively be a real-space
designation that causes virtual addresses to
be treated simply as real addresses without
the use of DAT tables.

� An 8K-byte prefix area for containing larger
old and new PSWs and register save areas.

 System/370 and Enterprise Systems Architecture/370 are trademarks of the International Business Machines Corporation.

 Copyright IBM Corp. 1990-2003 1-1

� A SIGNAL PROCESSOR order for switching
between the ESA/390 and z/Architecture
architectural modes.

Initial program loading sets the ESA/390 archi-
tectural mode. The new SIGNAL
PROCESSOR order then can be used to set
the z/Architecture mode or to return from
z/Architecture to ESA/390. This order causes
all CPUs in the configuration always to be in
the same architectural mode.

� Many new instructions, many of which operate
on 64-bit binary integers

Some of the new instructions that do not operate
on 64-bit binary integers have also been added to
ESA/390.

All of the ESA/390 instructions, except for those of
the four facilities named above, are included in
z/Architecture.

The bit positions of the general registers and
control registers of z/Architecture are numbered
0-63. An ESA/390 instruction that operates on bit
positions 0-31 of a 32-bit register in ESA/390
operates instead on bit positions 32-63 of a 64-bit
register in z/Architecture.

| z/Architecture was announced in October, 2000.
| The remainder of this section summarizes the ori-
| ginal contents of z/Architecture. Subsequent addi-
| tions are described in “Additions to z/Architecture”
| on page 1-6.

General Instructions for 64-Bit
Integers

The 32-bit-binary-integer instructions of ESA/390
have new analogs in z/Architecture that operate
on 64-bit binary integers. There are two types of
analogs:

� Analogs that use two 64-bit binary integers to
produce a 64-bit binary integer. For example,
the ESA/390 ADD instruction (A for a storage-
to-register operation or AR for a register-to-
register operation) has the analogs AG (adds
64 bits from storage to the contents of a 64-bit
general register) and AGR (adds the contents
of a 64-bit general register to the contents of
another 64-bit general register). These
analogs are distinguished by having “G” in
their mnemonics.

� Analogs that use a 64-bit binary integer and a
32-bit binary integer to produce a 64-bit binary
integer. The 32-bit integer is either sign-
extended or extended on the left with zeros,
depending on whether the operation is signed
or unsigned, respectively. For example, the
ESA/390 ADD (A or AR) instruction has the
analogs AGF (adds 32 bits from storage to the
contents of a 64-bit general register) and
AGFR (adds the contents of bit positions
32-63 of a 64-bit general register to the con-
tents of another 64-bit general register).
These analogs are distinguished by having
“GF” in their mnemonics.

Other New General Instructions

The other additional or significantly enhanced
general instructions of z/Architecture are high-
lighted as follows:

� ADD LOGICAL WITH CARRY and SUB-
TRACT LOGICAL WITH BORROW operate
on either 32-bit or 64-bit unsigned binary inte-
gers and include a carry or borrow, as repres-
ented by the leftmost bit of the two-bit condi-
tion code in the PSW, in the computation.
This can improve the performance of oper-
ating on extended-precision integers (integers
longer than 64 bits).

� AND IMMEDIATE and OR IMMEDIATE
combine a two-byte immediate operand with
any of the two bytes on two-byte boundaries
in a 64-bit general register.

� BRANCH AND SAVE AND SET MODE and
BRANCH AND SET MODE are enhanced so
that they set bit 63 of the R� general register
to one if the current addressing mode is the
64-bit mode, and they set the 64-bit
addressing mode if bit 63 of the R� general
register is one. This allows “pointer-directed”
linkages between programs in different
addressing modes, including any of the 24-bit,
31-bit, and 64-bit modes.

� BRANCH RELATIVE AND SAVE LONG and
BRANCH RELATIVE ON CONDITION LONG
are like the BRANCH RELATIVE AND SAVE
and BRANCH RELATIVE ON CONDITION
instructions of ESA/390 except that the new
instructions use a 32-bit immediate field. This
increases the target range available through
relative branching.

1-2 z/Architecture Principles of Operation

� COMPARE AND FORM CODEWORD is
enhanced so that, in the 64-bit addressing
mode, the comparison unit is six bytes instead
of two and the resulting codeword is eight
bytes instead of four. UPDATE TREE is
enhanced so that, in the 64-bit addressing
mode, a node is 16 bytes instead of eight and
the codeword in a node is eight bytes instead
of four. This improves the performance of
sorting records having long keys.

� DIVIDE LOGICAL uses a 64-bit or 128-bit
unsigned binary dividend and a 32-bit or 64-bit
unsigned binary divisor, respectively, to
produce a 32-bit or 64-bit quotient and
remainder, respectively. MULTIPLY LOGICAL
uses a 32-bit or 64-bit unsigned binary multi-
plicand and multiplier to produce a 64-bit or
128-bit product, respectively.

� DIVIDE SINGLE divides a 64-bit dividend by a
32-bit or 64-bit divisor and produces a 64-bit
quotient and remainder. MULTIPLY SINGLE
is enhanced so it can multiply a 64-bit multipli-
cand by a 32-bit or 64-bit multiplier and
produce a 64-bit product.

� EXTRACT PSW extracts the entire current
PSW to allow determination of the current
machine state, for example, determination of
whether the CPU is in the problem state or
the supervisor state.

� INSERT IMMEDIATE inserts a two-byte imme-
diate operand into a 64-bit general register on
any of the two-byte boundaries in the register.
LOAD LOGICAL IMMEDIATE does the same
and also clears the remainder of the register.

� LOAD ADDRESS RELATIVE LONG forms an
address relative to the current (unupdated)
instruction address by means of a signed
32-bit immediate field.

� LOAD LOGICAL THIRTY ONE BITS places
the rightmost 31 bits of either a general reg-
ister or a word in storage, with 33 zeros
appended on the left, in a general register.

� LOAD MULTIPLE DISJOINT loads the left-
most 32 bits of each register in a range of
general registers from one area in storage and
the rightmost 32 bits of each of those registers
from another area in storage. This is for use
in place of a LOAD MULTIPLE HIGH instruc-
tion and a 32-bit LOAD MULTIPLE instruction

when one of the storage areas is addressed
by one of the registers loaded.

� LOAD MULTIPLE HIGH and STORE MUL-
TIPLE HIGH load or store the leftmost 32 bits
of each register in a range of general regis-
ters, allowing augmentation of existing pro-
grams that load or store the rightmost 32 bits
by means of LOAD MULTIPLE and STORE
MULTIPLE. (Sixty-four-bit forms of LOAD
MULTIPLE and STORE MULTIPLE also are
provided.)

� LOAD PAIR FROM QUADWORD and STORE
PAIR TO QUADWORD operate between an
even-odd pair of 64-bit general registers and a
quadword in storage (16 bytes aligned on a
16-byte boundary). These instructions provide
quadword consistency (all bytes appear to be
loaded or stored concurrently in a
multiple-CPU system). (Only the 64-bit form
of COMPARE DOUBLE AND SWAP also pro-
vides quadword consistency.)

� LOAD REVERSED and STORE REVERSED
load or store a two-byte, four-byte, or eight-
byte unit in storage with the left-to-right
sequence of the bytes reversed. LOAD
REVERSED also can move a four-byte or
eight-byte unit between two general registers.
These operations allow conversion between
“little-endian” and “big-endian” formats.

� PERFORM LOCKED OPERATION is
enhanced with two more sets of function
codes, with each set providing six different
operations. One of the additional sets pro-
vides operations on 64-bit operands in 64-bit
general registers, and the other provides oper-
ations on 128-bit operands in a parameter list.

� ROTATE LEFT SINGLE LOGICAL obtains 32
bits or 64 bits from a general register, rotates
them (the leftmost bit replaces the rightmost
bit), and places the result in another general
register (a nondestructive rotate).

� SET ADDRESSING MODE can set any of the
24-bit, 31-bit, and 64-bit addressing modes.

� SHIFT LEFT SINGLE, SHIFT LEFT SINGLE
LOGICAL, SHIFT RIGHT SINGLE, and SHIFT
RIGHT SINGLE LOGICAL are enhanced with
64-bit forms that obtain the source operand
from one general register and place the result
operand in another general register (a nonde-
structive shift).

 Chapter 1. Introduction 1-3

� TEST ADDRESSING MODE sets the condi-
tion code to indicate whether bits 31 and 32 of
the current PSW specify the 24-bit, 31-bit, or
64-bit addressing mode.

� TEST UNDER MASK HIGH and TEST
UNDER MASK LOW, which are ESA/390
instructions, are given the alternative name
TEST UNDER MASK, and two additional
forms are added so that a two-byte immediate
operand can be used to test the bits of two
bytes located on any of the two-byte bounda-
ries in a 64-bit general register. (The
ESA/390 instruction TEST UNDER MASK,
which uses a one-byte immediate operand to
test a byte in storage, continues to be pro-
vided.)

 Floating-Point Instructions

The z/Architecture floating-point instructions are
the same as in ESA/390 except that instructions
are added for converting between 64-bit signed
binary integers and either hexadecimal or binary
floating-point data. These new instructions have
“G” in their mnemonics.

 Control Instructions

The new or enhanced control instructions of
z/Architecture are highlighted as follows:

� EXTRACT AND SET EXTENDED
AUTHORITY is a privileged instruction for
changing the extended authorization index in
a control register. This enables real-space
designations to be used more efficiently by
means of access lists.

� EXTRACT STACKED REGISTERS is
enhanced to extract optionally all 64 bits of
the contents of one or more saved general
registers.

� EXTRACT STACKED STATE is enhanced to
extract optionally the entire contents of the
saved PSW, including a 64-bit instruction
address.

� LOAD CONTROL and STORE CONTROL are
enhanced for operating optionally on 64-bit
control registers.

� LOAD PSW uses an eight-byte storage
operand as in ESA/390 and expands this
operand to a 16-byte z/Architecture PSW.

� LOAD PSW EXTENDED directly loads a
16-byte PSW.

� LOAD REAL ADDRESS in its ESA/390 form
and in the 24-bit or 31-bit addressing mode
operates as in ESA/390 if the translation is
successful and the obtained real address has
a value less than 2G bytes. LOAD REAL
ADDRESS in its ESA/390 form and in the
64-bit addressing mode, or in its enhanced
z/Architecture form in any addressing mode,
loads a 64-bit real address.

� LOAD USING REAL ADDRESS and STORE
USING REAL ADDRESS are enhanced to
have optionally 64-bit operands.

� SIGNAL PROCESSOR has a new order that
can be used to switch all CPUs in the config-
uration either from the ESA/390 architectural
mode to the z/Architecture architectural mode
or from z/Architecture to ESA/390. (A system
that is to operate using z/Architecture must
first be IPLed in the ESA/390 mode.)

� STORE FACILITY LIST is a privileged instruc-
tion that stores at real location 200 an indi-
cation of whether z/Architecture is installed
and of whether it is active. This instruction is
added also to ESA/390 and also stores an
indication of whether the new z/Architecture
instructions that have been added to ESA/390
are available. Real location 200 has previ-
ously contained all zeros in most systems and
normally can be examined by a problem-state
program whether or not STORE FACILITY
LIST is installed. The information stored at
real location 200 also indicates whether the
extended-translation facility 2 is installed.

� STORE REAL ADDRESS is like LOAD REAL
ADDRESS except that STORE REAL
ADDRESS stores the resulting address
instead of placing it in a register.

� TRACE is enhanced to record optionally the
contents of 64-bit general registers.

 Trimodal Addressing

“Trimodal addressing” refers to the ability to switch
between the 24-bit, 31-bit, and 64-bit addressing
modes. This switching can be done by means of:

� The old instructions BRANCH AND SAVE
AND SET MODE and BRANCH AND SET
MODE. Both of these instructions set the

1-4 z/Architecture Principles of Operation

64-bit addressing mode if bit 63 of the R�
general register is one. If bit 63 is zero, the
instructions set the 24-bit or 31-bit addressing
mode if bit 32 of the register is zero or one,
respectively.

� The new instruction SET ADDRESSING
MODE (SAM24, SAM31, and SAM64). The
instruction sets the 24-bit, 31-bit, or 64-bit
addressing mode as determined by the opera-
tion code.

 Modal Instructions
Trimodal addressing affects the general
instructions only in the manner in which logical
storage addresses are handled, except as follows.

� The instructions BRANCH AND LINK,
BRANCH AND SAVE, BRANCH AND SAVE
AND SET MODE, BRANCH AND SET MODE,
and BRANCH RELATIVE AND SAVE place
information in bit positions 32-39 of general
register R� as in ESA/390 in the 24-bit or
31-bit addressing mode or place address bits
in those bit positions in the 64-bit addressing
mode. The new instruction BRANCH RELA-
TIVE AND SAVE LONG does the same.

� The instructions BRANCH AND SAVE AND
SET MODE and BRANCH AND SET MODE
place a one in bit position 63 of general reg-
ister R� in the 64-bit addressing mode. In the
24-bit or 31-bit mode, BRANCH AND SAVE
AND SET MODE sets bit 63 to zero, and
BRANCH AND SET MODE leaves it
unchanged.

� Certain instructions leave bits 0-31 of a
general register unchanged in the 24-bit or
31-bit addressing mode but place or update
address or length information in them in the
64-bit addressing mode. These are listed in a
programming note on page 7-6 and are some-
times called modal instructions.

Effects on Bits 0-31 of a General
Register
Bits 0-31 of general registers are changed by two
types of instructions. The first type is a modal
instruction (see the preceding section) when the
instruction is executed in the 64-bit addressing
mode. The second type is an instruction having,
independent of the addressing mode, either a
64-bit result operand in a single general register or
a 128-bit result operand in an even-odd general-
register pair.

Most of the instructions of the second type are
indicated by a “G,” either alone or in “GF,” in their
mnemonics. The other instructions that change or
may change bits 0-31 of a general register regard-
less of the current addressing mode are listed in a
programming note on page 7-7. All of the
instructions of the second type are sometimes
referred to as “G-type” instructions.

If a program is not executed in the 64-bit
addressing mode and does not contain a G-type
instruction, it cannot change bits 0-31 of any
general register.

 Input/Output

Additional I/O functions and facilities are provided
when z/Architecture is installed. They are pro-
vided in both the ESA/390 and the z/Architecture
architectural mode and are as follows:

� Indirect data addressing is enhanced by the
provision of a doubleword format-2 IDAW that

| is intended to allow operations on data at or
above the 2G-byte absolute-address boundary
in z/Architecture. The previously existing
IDAW, a word containing a 31-bit address, is
now called a format-1 IDAW. The format-2
IDAW contains a 64-bit address. A bit in the
operation-request block (ORB) associated with
a channel program specifies whether the
program uses format-1 or format-2 IDAWs. A
further enhancement is the ability of all
format-2 IDAWs of a channel program to
specify either 2K-byte or 4K-byte data blocks,
as determined by another bit in the ORB. The
use of 4K-byte blocks improves the efficiency
of data transfers.

� The FICON-channel facility provides the capa-
bilities of attaching FICON-I/O-interface and
FICON-converted-I/O-interface channel paths
and of fully utilizing these channel-path types.
FICON channel paths can significantly
enhance overall data throughput by providing
increased data-transfer rates in comparison to
ESCON channel paths and by allowing mul-
tiple commands and associated data to be
“streamed” to control units, thus further
improving performance. The facility supports
the following additional control mechanisms:

– The modification-control bit in the ORB
allows the program to optimize the per-

 Chapter 1. Introduction 1-5

formance of FICON channel paths when
dynamically modifying channel programs.

– The synchronization-control bit in the ORB
ensures data integrity along with
maximum channel-path performance by
delaying the execution of a write
command until the completion of an imme-
diately preceding read command when
performing unlimited prefetching of CCWs
and when the data to be written may be
the data read.

– The streaming-mode-control bit in the
ORB allows the program to prevent
command streaming in cases that require
such prevention.

– The secondary-CCW-address field in the
extended-status word assists in the
recovery of channel programs that termi-
nate abnormally when command
streaming to a control unit is being
perfomed. The field identifies a CCW that
failed at the control unit.

� The ORB-extension facility expands the size
of the ORB from three words to eight words.
This makes fields available for use by the
channel-subsystem-I/O-priority facility.

� The channel-subsystem-I/O-priority facility
allows the program to establish a priority
relationship among subchannels that have
pending I/O operations. The priority relation-
ship specifies the order in which I/O oper-
ations are initiated by the channel subsystem.
Additionally, for fibre-channel-attached control
units, the facility allows the program to specify
the priority in which I/O operations pending at
the control unit are performed.

The input/output enhancements are further high-
lighted below by describing how they affect the I/O
chapters.

� In Chapter 13, “I/O Overview,” FICON and
FICON-converted I/O interfaces and the
frame-multiplex mode are introduced.

� In Chapter 14, “I/O Instructions”:

– The CANCEL SUBCHANNEL instruction
is described.

– TEST PENDING INTERRUPTION, when
the second-operand address is zero,

stores a three-word I/O-interruption code
at real locations 184-195. The new third
word contains an interruption-identification
word that further identifies the source of
the I/O interruption.

� In Chapter 15, “Basic I/O Functions”:

– The ORB is extended to eight words and
newly contains a streaming-mode control,
modification control, synchronization
control, format-2-IDAW control, 2K-IDAW
control, ORB-extension control, channel-
subsystem priority, and control-unit pri-
ority.

– A doubleword format-2 IDAW and 4K-byte
data blocks optionally designated by
format-2 IDAWs are added.

� In Chapter 16, “I/O Interruptions”:

– A secondary-CCW-address-validity bit and
failing-storage-address-format bit are
added to the extended-report word.

– A two-word failing-storage address and a
secondary-CCW address are added to the
format-0 extended-status word.

� In Chapter 17, “I/O Support Functions”:

– Control-unit-defer time is added. This has
an effect on the device-connect time and
device-disconnect time in the measure-
ment block.

– References to the measurement block by
the measurement-block-update facility are
single-access references and appear to be
word concurrent as observed by CPUs.

– Device-active-only time is added to the
measurement block.

– The channel-subsystem-I/O-priority facility,
providing channel-subsystem priority and
control-unit priority, is added.

| Additions to z/Architecture
| z/Architecture was announced in October, 2000.
| Any extension added subsequently is summarized
| below and has the date of its announcement at
| the end of its summary.

1-6 z/Architecture Principles of Operation

| Extended-Translation Facility 2

| The extended-translation facility 2 may be avail-
| able on a model implementing z/Architecture. The
| facility performs operations on double-byte, ASCII,
| and decimal data. The double-byte data may be
| Unicode data — data that uses the binary
| codes of the Unicode Worldwide Character
| Standard and enables the use of characters of
| most of the world's written languages. The facility
| provides the following instructions:

| COMPARE LOGICAL LONG UNICODE
| MOVE LONG UNICODE
| PACK ASCII
| PACK UNICODE
| TEST DECIMAL
| TRANSLATE ONE TO ONE
| TRANSLATE ONE TO TWO
| TRANSLATE TWO TO ONE
| TRANSLATE TWO TO TWO
| UNPACK ASCII
| UNPACK UNICODE

| The extended-translation facility 2 is called facility
| 2 since an extended-translation facility, now called
| facility 1, was introduced in ESA/390. Facility 1 is
| standard in z/Architecture. Facility 1 provides the
| instructions:

| CONVERT UNICODE TO UTF-8
| CONVERT UTF-8 TO UNICODE
| TRANSLATE EXTENDED

| For when either or both of facility 1 and facility 2
| are not installed on the machine, both facilities are
| simulated by the MVS CSRUNIC macro instruc-
| tion, which is provided in OS/390* Release 10 and
| z/OS*.

| OS/390 MVS Assembler Services Reference,
| GC28-1910-10, contains programming require-
| ments, register information, syntax, return codes,
| and examples for the CSRUNIC macro instruction.

| When CSRUNIC is used, the program exceptions
| listed in this publication do not cause program
| interruptions; instead, the exception conditions are

| indicated by CSRUNIC by means of return codes,
| as described in GC28-1910-10.

| (October, 2000)

| HFP Multiply-and-Add/Subtract
| Facility

| The HFP-multiply-add/subtract facility provides
| instructions for improved processing of
| hexadecimal floating-point numbers. The MUL-
| TIPLY AND ADD (or SUBTRACT) instruction is
| intended to be used in place of MULTIPLY fol-
| lowed by ADD (or SUBTRACT) NORMALIZED.
| (October, 2001)

| Message-Security Assist

| The message-security assist (MSA) may be avail-
| able on a model implementing z/Architecture. The
| MSA basic facility includes the following
| instructions:

| � CIPHER MESSAGE
| � CIPHER MESSAGE WITH CHAINING
| � COMPUTE INTERMEDIATE MESSAGE
| DIGEST
| � COMPUTE LAST MESSAGE DIGEST
| � COMPUTE MESSAGE AUTHENTICATION
| CODE

| Also included are five query functions and two
| functions for generating a message digest based
| on the secure-hash algorithm (SHA-1). The five
| query functions, one for each instruction, are used
| to determine the additional installed MSA facilities,
| which may include the following.

| MSA Data-Encryption-Algorithm (DEA) Facility:
| The MSA DEA facility consists of nine functions
| for ciphering messages, with or without chaining,
| and for generating a message-authentication code
| (MAC) using a 56-bit, 112-bit, or 168-bit
| cryptographic key.1 All of these functions are
| based on the DEA algorithm.

| (June, 2003)

| Unicode is a trademark of Unicode, Inc.

| OS/390 and z/OS are trademarks of the International Business Machines Corporation.

| 1 These key lengths reflect the cryptographic strength. In subsequent chapters, they are referred to as 64-bit, 128-bit, or 192-bit,
| respectively, to include the DEA-key-parity bits.

 Chapter 1. Introduction 1-7

| Long-Displacement Facility

| The long-displacement facility provides a 20-bit
| signed-displacement field in 69 previously existing
| instructions (by using a previously unused byte in
| the instructions) and 44 new instructions. A 20-bit
| signed displacement allows relative addressing of
| up to 524,287 bytes beyond the location desig-
| nated by a base register or base-and-
| index-register pair and up to 524,288 bytes before
| that location. The enhanced previously existing
| instructions generally are ones that handle 64-bit
| binary integers. The new instructions generally
| are new versions of instructions for 32-bit binary
| integers. The new instructions also include (1) a
| LOAD BYTE instruction that sign-extends a byte
| from storage to form a 32-bit or 64-bit result in a
| general register and (2) new floating-point LOAD
| and STORE instructions. The long-displacement
| facility provides register-constraint relief by
| reducing the need for base registers, code size
| reduction by allowing fewer instructions to be
| used, and additional improved performance
| through removal of possible address-generation
| interlocks. (June, 2003)

| Extended-I/O-Measurement-Block
| Facility

| The extended-I/O-measurement-block facility may
| be available on models implementing
| z/Architecture. The facility includes the following
| features:

| � A new format of the channel-measurement
| block. The new measurement block, termed a
| format-1 channel-measurement block, is
| expanded to 64 bytes and is addressed using
| a separate measurement-block address for
| each subchannel. The new measurement-
| block format provides additional measurement
| information and the flexibility to store the
| measurement blocks in non-contiguous, real
| storage.

| � The previously existing channel-measurement
| block is termed a format-0 channel-
| measurement block. A device-busy-time field
| is added to the format-0 channel-
| measurement block.

| (June, 2003)

| Extended-I/O-Measurement-Word
| Facility

| The extended-I/O-measurement-word facility may
| be available on models implementing
| z/Architecture. The extended-measurement-word
| (EMW) is an extension to the interruption-
| response block (IRB) and allows channel-
| measurement data to be provided on an I/O oper-
| ation basis. This reduces program overhead by
| alleviating the previous requirement that the
| program fetch the measurement block before and
| after an operation and calculate the difference
| between the respective measurement data values.
| (June, 2003)

The ESA/390 Base
z/Architecture includes all of the facilities of
ESA/390 except for the asynchronous-pageout,
asynchronous-data-mover, program-call-fast, and
vector facilities. This section briefly outlines most
of the remaining facilities that were additions in
ESA/390 as compared to ESA/370.

ESA/390 is described in Enterprise Systems
Architecture/390 Principles of Operation,
SA22-7201.

The CPU-related facilities that were new in
ESA/390 are summarized below. ESA/390 was
announced in September, 1990. Any extension
added subsequently has the date of its announce-
ment in parentheses at the end of its summary.

The following extensions are described in detail in
SA22-7201 and in this publication:

� Access-list-controlled protection allows store-
type storage references to an address space
to be prohibited by means of a bit in the
access-list entry used to access the space.
Thus, different users having different access
lists can have different capabilities to store in
the same address space.

� The program-event-recording facility 2 (PER
2) is an alternative to the original PER facility,
which is now named PER 1. (Neither of the
names PER 1 and PER 2 is used in
z/Architecture; only “PER” is used.) PER 2
provides the option of having a successful-
branching event occur only when the branch
target is within the designated storage area,

1-8 z/Architecture Principles of Operation

and it provides the option of having a storage-
alteration event occur only when the storage
area is within designated address spaces.
The use of these options improves perform-
ance by allowing only PER events of interest
to occur. PER 2 deletes the ability to monitor
for general-register-alteration events.

PER 2 includes extensions that provide addi-
tional information about PER events. The
extensions were described in detail beginning
in the fourth edition of SA22-7201.

� Concurrent sense improves performance by
allowing sense information to be presented at
the time of an interruption due to a unit-check
condition, thus avoiding the need for a sepa-
rate I/O operation to obtain the sense informa-
tion.

� Broadcasted purging provides the COMPARE
AND SWAP AND PURGE instruction for con-
ditionally updating tables associated with
dynamic address translation and access-
register translation and clearing associated
buffers in multiple CPUs. This is described in
detail beginning in the eighth edition of
SA22-7201.

� Storage-protection override provides a new
form of subsystem storage protection that
improves the reliability of a subsystem exe-
cuted in an address space along with possibly
erroneous application programs. When
storage-protection override is made active by
a control-register bit, fetches and stores by the
CPU are permitted to storage locations having
a storage key of 9 regardless of the access
key used by the CPU. If the subsystem is in
key-8 storage and is executed with a PSW
key of 8, for example, and the application pro-
grams are in key-9 storage and are executed
with a PSW key of 9, accesses by the sub-
system to the application-program areas are
permitted while accesses by the application
programs to the subsystem area are denied.
(September, 1991)

� Move-page facility 2 extends the MOVE PAGE
instruction introduced in ESA/370 by allowing
use of a specified access key for either the
source or the destination operand, by allowing
improved performance when the destination
operand will soon be referenced, and by
allowing improved performance when an
operand is invalid in both main and expanded

storage. The ESA/370 version of MOVE
PAGE is now called move-page facility 1 and
is in Chapter 7, “General Instructions.” MOVE
PAGE of move-page facility 2 is in Chapter
10, “Control Instructions.” Some details about
the means for control-program support of
MOVE PAGE are not provided. (September,
1991) (The z/Architecture MOVE PAGE
instruction is described only in Chapter 10 of
this publication. MOVE PAGE no longer can
move data to or from expanded storage, and
all details about MOVE PAGE are provided.)

� The square-root facility consists of the
SQUARE ROOT instruction and the square-
root exception. The instruction extracts the
square root of a floating-point operand in
either the long or short format. The instruction
is the same as that provided on some models
of the IBM 4341, 4361, and 4381 Processors.
(September, 1991)

� The cancel-I/O facility allows the program to
withdraw a pending start function from a des-
ignated subchannel without signaling the
device, which is useful in certain error-
recovery situations. (September, 1991)

The cancel-I/O facility provides the CANCEL
SUBCHANNEL instruction and is described in
detail beginning in the eighth edition of
SA22-7201.

� The string-instruction facility (or logical string
assist) provides instructions for (1) moving a
string of bytes until a specified ending byte is
found, (2) logically comparing two strings until
an inequality or a specified ending byte is
found, and (3) searching a string of a speci-
fied length for a specified byte. The first two
instructions are particularly useful in a C
program in which strings are normally delim-
ited by an ending byte of all zeros. (June,
1992)

� The suppression-on-protection facility causes
a protection exception due to page protection
to result in suppression of instruction exe-
cution instead of termination of instruction
execution, and it causes the address and an
address-space identifier of the protected page
to be stored in low storage. This is useful in
performing the AIX/ESA* copy-on-write func-
tion, in which AIX/ESA causes the same page
of different address spaces to map to a single
page frame of real storage so long as a store

 Chapter 1. Introduction 1-9

in the page is not attempted and then, when a
store is attempted in a particular address
space, assigns a unique page frame to the
page in that address space and copies the
contents of the page to the new page frame.
(February, 1993)

� The set-address-space-control-fast facility con-
sists of the SET ADDRESS SPACE
CONTROL FAST (SACF) instruction, which
possibly can be used instead of the previously
existing SET ADDRESS SPACE CONTROL
(SAC) instruction, depending on whether all of
the SAC functions are required. SACF, unlike
SAC, does not perform the serialization and
checkpoint-synchronization functions, nor does
it cause copies of prefetched instructions to be
discarded. SACF provides improved perform-
ance on some models. (February, 1993)

� The subspace-group facility includes the
BRANCH IN SUBSPACE GROUP instruction,
which can be used to give or return control
from one address space to another in a group
of address spaces called a subspace group,
with this giving and returning of control being
done with better performance than can be
obtained by means of the PROGRAM CALL
and PROGRAM RETURN or PROGRAM
TRANSFER instructions. One address space
in the subspace group is called the base
space, and the other address spaces in the
group are called subspaces. It is intended
that each subspace contain a different subset
of the storage in the base space, that the
base space and each subspace contain a
subsystem control program, such as CICS*,
and application programs, and that each sub-
space contain the data for a single transaction
being processed under the subsystem control
program. The placement of the data for each
transaction in a different subspace prevents
the processing of a transaction from erro-
neously damaging the data of other trans-
actions. The data of the control program can
be protected from the transaction processing
by means of the storage-protection-override
facility. (April, 1994)

� The virtual-address enhancement of sup-
pression on protection provides that if dynamic

address translation (DAT) was on when a pro-
tection exception was recognized, the
suppression-on-protection result is indicated,
and the address of the protected location is
stored, only if the address is one that was to
be translated by DAT; the suppression-
on-protection result is not indicated if the
address that would be stored is a real
address. This enhancement allows the stored
address to be translated reliably by the control
program to determine if the exception was due
to page protection as opposed to key-
controlled protection. The enhancement
extends the usefulness of suppression on pro-
tection to operating systems like MVS/ESA*
that use key-controlled protection. (Sep-
tember, 1994)

� The immediate-and-relative-instruction facility
includes 13 new instructions, most of which
use a halfword-immediate value for either
signed-binary arithmetic operations or relative
branching. The facility reduces the need for
general registers, and, in particular, it elimi-
nates the need to use general registers to
address branch targets. As a result, the
general registers and access registers can be
allocated more efficiently in programs that
require many registers. (September, 1996)

� The compare-and-move-extended facility pro-
vides new versions of the COMPARE
LOGICAL LONG and MOVE LONG
instructions. The new versions increase the
size of the operand-length specifications from
24 bits to 32 bits, which can be useful when
objects larger than 16M bytes are processed
through the use of 31-bit addressing. The
new versions also periodically complete to
allow software polling in a multiprocessing
system. (September, 1996)

� The checksum facility consists of the
CHECKSUM instruction, which can be used to
compute a 16-bit or 32-bit checksum in order
to improve TCP/IP (transmission-control
protocol/internet protocol) performance. (Sep-
tember, 1996)

� The called-space-identification facility
improves serviceability by further identifying
the called address space in a linkage-stack

AIX/ESA, CICS, and MVS/ESA are trademarks of the International Business Machines Corporation.

1-10 z/Architecture Principles of Operation

state entry formed by the PROGRAM CALL
instruction. (September, 1996)

� The branch-and-set-authority facility consists
of the BRANCH AND SET AUTHORITY
instruction, which can be used to improve the
performance of linkages within an address
space by replacing PROGRAM CALL,
PROGRAM TRANSFER, and SET PSW KEY
FROM ADDRESS instructions. (June, 1997)

� The perform-locked-operation facility consists
of the unprivileged PERFORM LOCKED
OPERATION instruction, which appears to
provide concurrent interlocked-update refer-
ences to multiple storage operands. A func-
tion code of the instruction can specify any of
six operations: compare and load, compare
and swap, double compare and swap,
compare and swap and store, compare and
swap and double store, and compare and
swap and triple store. The function code
further specifies either word or doubleword
operands. The instruction can be used to
avoid the use of programmed locks in a multi-
processing system. (June, 1997)

� Four additional floating-point facilities improve
the hexadecimal-floating-point (HFP) capability
of the machine and add a binary-floating-point
(BFP) capability. The facilities are:

– Basic floating-point extensions, which pro-
vides 12 additional floating-point registers
to make a total of 16 floating-point regis-
ters. This facility also includes a floating-
point-control register and means for
saving the contents of the new registers
during a store-status operation or a
machine-check interruption.

– Floating-point-support (FPS) extensions,
which provides eight new instructions,
including four to convert data between the
HFP and BFP formats.

– Hexadecimal-floating-point (HFP) exten-
sions, which provides 26 new instructions
to operate on data in the HFP format. All
of these are counterparts to new
instructions provided by the BFP facility,
including conversion between floating-
point and fixed-point formats, and a more
complete set of operations on the
extended format.

– Binary floating-point (BFP), which defines
short, long, and extended binary-
floating-point (BFP) data formats and pro-
vides 87 new instructions to operate on
data in these formats. The BFP formats
and operations provide everything neces-
sary to conform to the IEEE standard
(ANSI/IEEE Std 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic, dated
August 12, 1985) except for conversion
between binary-floating-point numbers and
decimal strings, which must be provided in
software.

(May, 1998)

� The resume-program facility consists of the
RESUME PROGRAM instruction, which
restores, from a specified save area, the
instruction address and certain other fields in
the current PSW and also the contents of an
access-and-general-register pair. RESUME
PROGRAM allows a problem-state
interruption-handling program to restore the
state of an interrupted program and return to
that program despite that a register is required
for addressing the save area from which the
state is restored. (May, 1998)

� The trap facility provides the TRAP
instructions (a two-byte TRAP2 instruction and
a four-byte TRAP4 instruction) that can
overlay instructions in an application program
to give control to a program that can perform
fix-up operations on data being processed,
such as dates that may be a “Year-2000”
problem. RESUME PROGRAM can be used
to return from the fix-up program. TRAP and
RESUME PROGRAM can improve perform-
ance by avoiding program interruptions that
would otherwise be needed to give control to
and from the fix-up program. (May, 1998)

� The extended-TOD-clock facility includes
(1) an extension of the TOD clock from 64
bits to 104 bits, allowing greater resolution;
(2) a TOD programmable register, which con-
tains a TOD programmable field that can be
used to identify the configuration providing a
TOD-clock value in a sysplex; (3) the SET
CLOCK PROGRAMMABLE FIELD instruction,
for setting the TOD programmable field in the
TOD programmable register; and (4) the
STORE CLOCK EXTENDED instruction,
which stores both the longer TOD-clock value
and the TOD programmable field. STORE

 Chapter 1. Introduction 1-11

CLOCK EXTENDED can be used in the future
when the TOD clock is further extended to
contain time values that exceed the current
year-2042 limit (when there is a carry out of
the current bit 0 of the TOD clock). (August,
1998)

� The TOD-clock-control-override facility pro-
vides a control-register bit that allows setting
the TOD clock under program control, without
use of the manual TOD-clock control of any
CPU. (August, 1998)

� The store-system-information facility provides
the privileged STORE SYSTEM INFORMA-
TION instruction, which can be used to obtain
information about a component or components
of a virtual machine, a logical partition, or the
basic machine. (January, 1999)

� The extended-translation facility, now called
the extended-translation facility 1, includes the
CONVERT UNICODE TO UTF-8, CONVERT
UTF-8 TO UNICODE, and TRANSLATE
EXTENDED instructions, all of which can
improve performance. TRANSLATE
EXTENDED can be used in place of a
TRANSLATE AND TEST instruction that
locates an escape character, followed by a
TRANSLATE instruction that translates the
bytes preceding the escape character. (April,
1999)

The following extensions are described in detail in
other publications:

� The Enterprise Systems Connection Architec-
ture (ESCON) introduces a new type of
channel that uses an optical-fiber communi-
cation link between channels and control
units. Information is transferred serially by bit,
at 200 million bits per second, up to a
maximum distance of 60 kilometers. The
optical-fiber technology and serial trans-
mission simplify cabling and improve reliability.
See the publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202.

� The ESCON channel-to-channel adapter
(ESCON CTCA) provides the same type of
function for serial channel paths as is avail-
able for the parallel-I/O-interface channel
paths. See the publication IBM Enterprise

Systems Architecture/390 ESCON Channel-to-
Channel Adapter, SA22-7203.

� I/O-device self-description allows a device to
describe itself and its position in the I/O con-
figuration. See the publication IBM Enterprise
Systems Architecture/390 Common I/O-Device
Commands and Self Description, SA22-7204.

� The compression facility performs a Ziv-
Lempel type of compression and expansion by
means of static (nonadaptive) dictionaries that
are to be prepared by a program before the
compression and expansion operations.
Because the dictionaries are static, the com-
pression facility can provide good com-
pression not only for long sequential data
streams (for example, archival or network
data) but also for randomly accessed short
records (for example, 80 bytes). See the pub-
lication IBM Enterprise Systems
Architecture/390 Data Compression,
SA22-7208. (February, 1993) (The
z/Architecture COMPRESSION CALL instruc-
tion is described in this publication. However,
introductory information and information about
dictionary formats still is provided only in
SA22-7208.)

The remaining extensions of ESA/390, for which
detailed descriptions are not provided, are as
follows:

� The integrated cryptographic facility provides a
number of instructions to protect data privacy,
to support message authentication and per-
sonal identification, and to facilitate key man-
agement. The high-performance cipher capa-
bility of the facility is designed for financial-
transaction and bulk-encryption environments,
and it complies with the Data Encryption
Standard (DES).

– Usability of the cryptographic facility is
extended to virtual-machine environments,
which allows the facility to be used by
MVS/ESA being executed under
VM/ESA*, which in turn may be executed
either under another VM/ESA or in a
logical partition. (September, 1991)

� The external-time-reference facility provides a
means to initiate and maintain the synchroni-

MVS/ESA, VM/ESA, Sysplex Timer, and DB2 are trademarks of the International Business Machines Corporation.

1-12 z/Architecture Principles of Operation

zation of TOD clocks to an external time refer-
ence (ETR). Synchronization tolerance of a
few microseconds can be achieved, and the
effect of leap seconds is taken into account.
The facility consists of an ETR sending unit
(Sysplex Timer*), which may be duplexed, two
or more ETR receiving units, and optical-fiber
cables. The cables are used to connect the
ETR sending unit, which is an external device,
to ETR receiving units of the configuration.
CPU instructions are provided for setting the
TOD clock to the value supplied by the ETR
sending unit.

– The ETR automatic-
propagation-delay-adjustment function
adjusts the time signals from the ETR to
the attached processors to compensate
for the propagation delay on the cables to
the processors, thus allowing the cables to
be of different lengths. (September, 1991)

– The ETR external-time-source function
synchronizes the ETR to a time signal
received from a remote location by means
of a telephone or radio. (September,
1991)

� Extended sorting provides instructions that
improve the performance of the DB2* sorting
function.

� Other PER extensions, besides those
described beginning in the fourth edition of
this publication, are an augmentation of PER
2 that provide additional PER function in the
interpretive-execution mode.

� Channel-subsystem call provides various func-
tions for use in the management of the I/O
configuration. Some of the functions acquire
information about the configuration from the
accessible elements of the configuration, while
others dynamically change the configuration.

� The operational extensions are a number of
other improvements that result in increased
availability and ease of use of the system, as
follows:

– Automatic-reconfiguration permits an oper-
ating system in an LPAR partition to
declare itself willing to be terminated sud-
denly, usually to permit its storage and
CPU resources to be acquired by an adja-
cent partition that is dynamically absorbing

the work load of another system that has
failed. Other functions deactivate and
reset designated participating partitions.

– A new storage-reconfiguration command
decreases the time needed to reconfigure
storage by allowing multiple requests for
reconfiguration to be made by means of a
single communication with the service
processor.

– SCP-initiated reset allows a system
control program (SCP) to reset its I/O con-
figuration prior to entering the disabled
wait state following certain check condi-
tions.

– Console integration simplifies configuration
requirements by reducing by one the
number of consoles required by MVS.

– The processor-availability facility enables
a CPU experiencing an unrecoverable
error that will cause a check stop to save
its state and alert the other CPUs in the
configuration. This allows, in many cases,
another CPU to continue execution of the
program that was in execution on the
failing CPU. The facility is applicable in
both the ESA/390 mode and the LPAR
mode. (April, 1991)

� Extensions for virtual machines are a number
of improvements to the interpretive-execution
facility, as follows:

– The VM-data-space facility provides for
making the ESA/390 access-register archi-
tecture more useful in virtual-machine
applications. The facility improves the
ability to address a larger amount of data
and to share data. For information on
how VM/ESA uses the VM-data-space
facility, see the publication VM/ESA CP
Programming Services, SC24-5520.

– A new storage-key function improves per-
formance by removing the need for the
previously used RCP area.

– Interpreted SIE (available with region relo-
cation) is improved to permit preferred
guests under VM when VM itself is oper-
ating as a high-performance guest.

– Other improvements include an optional
special-purpose lookaside for some of the
guest-state information and greater

 Chapter 1. Introduction 1-13

freedom in certain implementation
choices.

� The ESCON-multiple-image facility (EMIF)
allows multiple logical partitions to share
ESCON channels (and FICON channels) and
optionally to share any of the control units and
associated I/O devices configured to these
shared channels. This can reduce channel
requirements, improve channel utilization, and
improve I/O connectivity. (June, 1992)

� PR/SM LPAR mode is enhanced to allow up
to 10 logical partitions in a single-image con-
figuration and 20 in a physically-partitioned
configuration. The previous limits were seven
and 14, respectively. (June, 1992)

Coincident with z/Architecture, PR/SM LPAR
mode allows 15 logical partitions, and physical
partitioning is not supported.

� The coupling facility enables high-performance
data sharing among MVS/ESA systems that
are connected by means of the facility. The
coupling facility provides storage that can be
dynamically partitioned for caching data in
shared buffers, maintaining work queues and
status information in shared lists, and locking
data by means of shared lock controls.
MVS/ESA services provide access to and
manipulation of the coupling-facility contents.
(April, 1994)

The ESA/370 and 370-XA Base

ESA/390 includes the complete set of facilities of
ESA/370 as its base. This section briefly outlines
most of the facilities that were additions in 370-XA
as compared to System/370 and that were addi-
tions in ESA/370 as compared to 370-XA.

The CPU-related facilities that were new in
370-XA are as follows:

� Bimodal addressing provides two modes of
operation: a 24-bit addressing mode for the
execution of old programs and a 31-bit
addressing mode.

� 31-bit logical addressing extends the virtual
address space from the 16M bytes address-
able with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

� 31-bit real and absolute addressing provides
addressability for up to 2G bytes of main
storage.

� The 370-XA protection facilities include key-
controlled protection on only 4K-byte blocks,
page protection, and, as in System/370, low-
address protection for addresses below 512.
Fetch-protection override eliminates fetch pro-
tection for locations 0-2047.

� The tracing facility assists in the determination
of system problems by providing an ongoing
record in storage of significant events.

� The COMPARE AND FORM CODEWORD
and UPDATE TREE instructions facilitate
sorting applications.

� The interpretive-execution facility allows cre-
ation of virtual machines that may operate
according to several architectures and whose
performance is enhanced because many
virtual-machine functions are directly inter-
preted by the machine rather than simulated
by the program. This facility is described in
the publication IBM 370-XA Interpretive Exe-
cution, SA22-7095.

� The service-call-logical-processor (SCLP)
facility provides a means of communicating
between the control program and the service
processor for the purpose of describing and
changing the configuration. This facility is not
described.

The I/O-related differences between 370-XA and
System/370 result from the 370-XA channel sub-
system, which includes:

� Path-independent addressing of I/O devices,
which permits the initiation of I/O operations
without regard to which CPU is executing the
I/O instruction or how the I/O device is
attached to the channel subsystem. Any I/O
interruption can be handled by any CPU
enabled for it.

� Path management, whereby the channel sub-
system determines which paths are available
for selection, chooses a path, and manages
any busy conditions encountered while
attempting to initiate I/O processing with the
associated devices.

� Dynamic reconnection, which permits any I/O
device using this capability to reconnect to
any available channel path to which it has

1-14 z/Architecture Principles of Operation

access in order to continue execution of a
chain of commands.

� Programmable interruption subclasses, which
permit the programmed assignment of
I/O-interruption requests from individual I/O
devices to any one of eight maskable inter-
ruption queues.

� An additional CCW format for the direct use of
31-bit addresses in channel programs. The
new CCW format, called format 1, is provided
in addition to the System/370 CCW format,
now called format 0.

� Address-limit checking, which provides an
additional storage-protection facility to prevent
data access to storage locations above or
below a specified absolute address.

� Monitoring facilities, which can be invoked by
the program to cause the channel subsystem
to measure and accumulate key I/O-resource
usage parameters.

� Status-verification facility, which reports inap-
propriate combinations of device-status bits
presented by a device.

� A set of 13 I/O instructions, with associated
control blocks, which are provided for the
control of the channel subsystem.

The facilities that were new in ESA/370 are as
follows:

� Sixteen access registers permit the program
to have immediate access to storage oper-
ands in up to 16 2G-byte address spaces,
including the address space in which the
program resides. In a dynamic-
address-translation mode named access-
register mode, the instruction B field, or for
certain instructions the R field, designates
both a general register and an access reg-
ister, and the contents of the access register,
along with the contents of protected tables,
specify the operand address space to be
accessed. By changing the contents of the
access registers, the program, under the
control of an authorization mechanism, can
have fast access to hundreds of different
operand address spaces.

� A linkage stack is used in a functionally
expanded mechanism for passing control
between programs in either the same or dif-
ferent address spaces. This mechanism

makes use also of the previously existing
PROGRAM CALL instruction, an extended
entry-table entry, and a new PROGRAM
RETURN instruction. The mechanism saves
various elements of status, including access-
register and general-register contents, during
a calling linkage, provides for changing the
current status during the calling linkage, and
restores the original status during the
returning linkage. The linkage stack can also
be used to save and restore access-register
and general-register contents during a branch-
type linkage performed by the new instruction
BRANCH AND STACK.

� A translation mode named home-space mode
provides an efficient means for the control
program to obtain control in the address
space, called the home address space, in
which the principal control blocks for a
dispatchable unit (a task or process) are kept.

� The semiprivileged MOVE WITH SOURCE
KEY and MOVE WITH DESTINATION KEY
instructions allow bidirectional movement of
data between storage areas having different
storage keys, without the need to change the
PSW key.

� The privileged LOAD USING REAL
ADDRESS and STORE USING REAL
ADDRESS instructions allow the control
program to access data in real storage more
efficiently.

� The private-space facility allows an address
space not to contain any common segments
and causes low-address protection and fetch-
protection override not to apply to the address
space.

� The unprivileged MOVE PAGE instruction
allows the program to move a page of data
between main and expanded storage, pro-
vided that the source and destination pages
are both valid. Some details about the means
for control-program support of MOVE PAGE
are not provided. The ESA/370 version of
MOVE PAGE is now called move-page facility
1.

� The Processor Resource/Systems Manager*
(PR/SM*) feature provides support for multiple
preferred guests under VM/XA and provides
the logically partitioned (LPAR) mode, with the
latter providing flexible partitioning of
processor resources among multiple logical

 Chapter 1. Introduction 1-15

partitions. Certain aspects of the LPAR use of
PR/SM are described in the publication IBM
ES/3090 Processor Complex Processor
Resource/Systems Manager Planning Guide,
GA22-7123.

� The COMPARE UNTIL SUBSTRING EQUAL
instruction provides improved performance of
the compression of IMS log data sets and can
be useful in other programs also.

 System Program
z/Architecture is designed to be used with a
control program that coordinates the use of
system resources and executes all I/O
instructions, handles exceptional conditions, and
supervises scheduling and execution of multiple
programs.

 Compatibility

 Compatibility among
z/Architecture Systems

Although systems operating as defined by
z/Architecture may differ in implementation and
physical capabilities, logically they are upward and
downward compatible. Compatibility provides for
simplicity in education, availability of system
backup, and ease in system growth. Specifically,
any program written for z/Architecture gives iden-
tical results on any z/Architecture implementation,
provided that the program:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, I/O equipment, or optional
facilities) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program must
not depend on interruptions caused by the use
of operation codes or command codes that
are not installed in some models. Also, it
must not use or depend on fields associated
with uninstalled facilities. For example, data

should not be placed in an area used by
another model for fixed-logout information.
Similarly, the program must not use or depend
on unassigned fields in machine formats
(control registers, instruction formats, etc.) that
are not explicitly made available for program
use.

4. Does not depend on results or functions that
are defined to be unpredictable or model-
dependent or are identified as undefined.
This includes the requirement that the
program should not depend on the assign-
ment of device numbers and CPU addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be devi-
ations from the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting
compatibility.

 Compatibility between
z/Architecture and ESA/390

 Control-Program Compatibility
Control programs written for ESA/390 cannot be
directly transferred to systems operating as
defined by z/Architecture. This is because the
general-register and control-register sizes, PSW
size, assigned storage locations, and dynamic
address translation are changed.

 Problem-State Compatibility
A high degree of compatibility exists at the
problem-state level in going forward from ESA/390
to z/Architecture. Because the majority of a user's
applications are written for the problem state, this
problem-state compatibility is useful in many
installations.

A problem-state program written for ESA/390
operates with z/Architecture, provided that the
program:

1. Complies with the limitations described in
“Compatibility among z/Architecture Systems.”

| 2. Is not dependent on privileged facilities which
are unavailable on the system.

Processor Resource/Systems Manager and PR/SM are trademarks of the International Business Machines Corporation.

1-16 z/Architecture Principles of Operation

Programming Note: This publication assigns
meanings to various operation codes, to bit posi-
tions in instructions, channel-command words,
registers, and table entries, and to fixed locations
in the low 512 bytes and bytes 4096-8191 of
storage. Unless specifically noted, the remaining
operation codes, bit positions, and low-storage
locations are reserved for future assignment to
new facilities and other extensions of the architec-
ture.

To ensure that existing programs operate if and
when such new facilities are installed, programs
should not depend on an indication of an excep-
tion as a result of invalid values that are currently
defined as being checked. If a value must be
placed in unassigned positions that are not
checked, the program should enter zeros. When
the machine provides a code or field, the program
should take into account that new codes and bits
may be assigned in the future. The program
should not use unassigned low-storage locations
for keeping information since these locations may
be assigned in the future in such a way that the
machine causes the contents of the locations to
be changed.

 Availability
Availability is the capability of a system to accept
and successfully process an individual job.
Systems operating in accordance with
z/Architecture permit substantial availability by
(1) allowing a large number and broad range of
jobs to be processed concurrently, thus making
the system readily accessible to any particular job,
and (2) limiting the effect of an error and identi-
fying more precisely its cause, with the result that
the number of jobs affected by errors is minimized
and the correction of the errors facilitated.

Several design aspects make this possible.

� A program is checked for the correctness of
instructions and data as the program is exe-
cuted, and program errors are indicated sepa-
rate from equipment errors. Such checking
and reporting assists in locating failures and
isolating effects.

� The protection facilities, in conjunction with
dynamic address translation and the sepa-
ration of programs and data in different
address spaces, permit the protection of the
contents of storage from destruction or misuse

caused by erroneous or unauthorized storing
or fetching by a program. This provides
increased security for the user, thus permitting
applications with different security require-
ments to be processed concurrently with other
applications.

� Dynamic address translation allows isolation
of one application from another, still permitting
them to share common resources. Also, it
permits the implementation of virtual
machines, which may be used in the design
and testing of new versions of operating
systems along with the concurrent processing
of application programs. Additionally, it pro-
vides for the concurrent operation of incom-
patible operating systems.

� The use of access registers allows programs,
data, and different collections of data to reside
in different address spaces, and this further
reduces the likelihood that a store using an
incorrect address will produce either erro-
neous results or a system-wide failure.

� Multiprocessing and the channel subsystem
permit better use of storage and processing
capabilities, more direct communication
between CPUs, and duplication of resources,
thus aiding in the continuation of system oper-
ation in the event of machine failures.

� MONITOR CALL, program-event recording,
and the timing facilities permit the testing and
debugging of programs without manual inter-
vention and with little effect on the concurrent
processing of other programs.

� On most models, error checking and cor-
rection (ECC) in main storage, CPU retry, and
command retry provide for circumventing inter-
mittent equipment malfunctions, thus reducing
the number of equipment failures.

� An enhanced machine-check-handling mech-
anism provides model-independent fault iso-
lation, which reduces the number of programs
impacted by uncorrected errors. Additionally,
it provides model-independent recording of
machine-status information. This leads to
greater machine-check-handling compatibility
between models and improves the capability
for loading and operating a program on a dif-
ferent model when a system failure occurs.

� A small number of manual controls are
required for basic system operation, permitting

 Chapter 1. Introduction 1-17

most operator-system interaction to take place
via a unit operating as an I/O device and thus
reducing the possibility of operator errors.

� The logical partitions made available by the
PR/SM feature allow continued reliable pro-
duction operations in one or more partitions
while new programming systems are tested in

other partitions. This is an advancement in
particular for non-VM installations.

� The operational extensions and channel-
subsystem-call facility of ESA/390 and
z/Architecture improve the ability to continue
execution of application programs in the pres-
ence of system incidents and the ability to
make configuration changes with less dis-
ruption to operations.

1-18 z/Architecture Principles of Operation

 Chapter 2. Organization

Main Storage 2-2
Expanded Storage 2-2
CPU . 2-2

PSW . 2-3
General Registers 2-3
Floating-Point Registers 2-3
Floating-Point-Control Register 2-4
Control Registers 2-4

Access Registers 2-4
Cryptographic Facility 2-6

External Time Reference 2-6
I/O . 2-6

Channel Subsystem 2-6
Channel Paths 2-6
I/O Devices and Control Units 2-7

Operator Facilities 2-7

Logically, a system consists of main storage, one
or more central processing units (CPUs), operator
facilities, a channel subsystem, and I/O devices.
I/O devices are attached to the channel sub-
system through control units. The connection
between the channel subsystem and a control unit
is called a channel path.

A channel path employs either a parallel-
transmission protocol or a serial-transmission pro-
tocol and, accordingly, is called either a parallel or
a serial channel path. A serial channel path may
connect to a control unit through a dynamic switch
that is capable of providing different internal con-
nections between the ports of the switch.

Expanded storage may also be available in the
system, a cryptographic unit may be included in a
CPU, and an external time reference (ETR) may
be connected to the system.

The physical identity of the above functions may
vary among implementations, called “models.”
Figure 2-1 depicts the logical structure of a
two-CPU multiprocessing system that includes
expanded storage and a cryptographic unit and
that is connected to an ETR.

Specific processors may differ in their internal
characteristics, the installed facilities, the number
of subchannels, channel paths, and control units
which can be attached to the channel subsystem,
the size of main and expanded storage, and the
representation of the operator facilities.

 ┌───┐
 /──────────┤ETR├──────────/
 └─┬─┘
 │
┌──────────────────┐ │
│ │ ┌─┴─────────┐ ┌──────────────┐
│ │ │ ├──────┤ │
│ ├────┤ CPU ├──┐ │ │
│ │ │ │ │ │ │
│ │ │ │ │ │ │
│ │ └─┬─────────┘ │ │ │
│ │ │ │ │ │
│ Expanded Storage │ ┌─┴─────────┐ │ │ Main Storage │
│ │ │ ├──┼───┤ │
│ ├────┤ CPU ├──┤ │ │
│ │ │ ┌──────┤ │ │ │
│ │ │ │Crypto│ │ │ │
│ │ └────┴──────┘ │ │ │
│ │ │ └───────┬──────┘
│ │ ┌───────────┘ │
└──────────────────┘ │ │
 │ ┌───────────────────┘
 │ │
 ┌─────────────────────────┴───┴────────────────────────┐
 │ │
 │ Channel │
 │ Subsystem │
 └─┬───┬───┬──────┬───┬────────┬─┬─┬─┬───┬──────────────┘

│...│...│......│...│ │ │ │ │...│
 │ │ │ │ │ │ │ │ │ │

Serial Channel Paths Parallel Channel Paths
 │ │ │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ / / └──────────┬───────/
 │ ┌─┴───┴─┐ ┌─┴───┴─┐ │ │ │
 │ │Dynamic│ │Dynamic│ │ └──┬─────────/ │

│ │Switch │ │Switch │ │ ┌─┴┐ ┌─┴┐
 │ └─┬───┬─┘ └┬─┬───┬┘ │ │CU│ │CU├─┬─┬─┬─/
 │ │...│ │ │...│ │ └─┬┘ ┌─┐ └─┬┘ O O O
 │ │ │ │ │ │ │ └──┤ │ │
 │ │ └─────┼┐│ │ │ ┌──┤ ├─┬─┬─┬─/ │
 │ │┌────────┘││ │ │ ┌─┴┐ └─┘ O O O │
 │ ││ ││ │ │ │CU│ │
 ┌┴─┐┌┴┴┐ ┌┴┴┐ │ │ └─┬┘ │
 │CU││CU│ │CU│ │ └────┴──────┬────────┴───────/
 └┬─┘└┬─┘ └┬─┘ │ ┌─┴┐
 │ │ │ ┌┴─┐ │CU├─┬─┬─┬─/
 │ └─┬─┬─┬─/ │ │CU├─┬─┬─┬─/ └──┘ O O O

│ O O O │ └──┘ O O O
 └─┬─┬─┬─/ └─┬─┬─┬─/

O O O O O O

Figure 2-1. Logical Structure of a z/Architecture
System with Two CPUs

A system viewed without regard to its I/O devices
is referred to as a configuration. All of the phys-
ical equipment, whether in the configuration or not,
is referred to as the installation.

Model-dependent reconfiguration controls may be
provided to change the amount of main and

 Copyright IBM Corp. 1990-2003 2-1

expanded storage and the number of CPUs and
channel paths in the configuration. In some
instances, the reconfiguration controls may be
used to partition a single configuration into mul-
tiple configurations. Each of the configurations so
reconfigured has the same structure, that is, main
and expanded storage, one or more CPUs, and
one or more subchannels and channel paths in
the channel subsystem.

Each configuration is isolated in that the main and
expanded storage in one configuration is not
directly addressable by the CPUs and the channel
subsystem of another configuration. It is,
however, possible for one configuration to commu-
nicate with another by means of shared I/O
devices or a channel-to-channel adapter. At any
one time, the storage, CPUs, subchannels, and
channel paths connected together in a system are
referred to as being in the configuration. Each
CPU, subchannel, channel path, main-storage
location, and expanded-storage location can be in
only one configuration at a time.

 Main Storage
Main storage, which is directly addressable, pro-
vides for high-speed processing of data by the
CPUs and the channel subsystem. Both data and
programs must be loaded into main storage from
input devices before they can be processed. The
amount of main storage available in the system
depends on the model, and, depending on the
model, the amount in the configuration may be
under control of model-dependent configuration
controls. The storage is available in multiples of
4K-byte blocks. At any instant, the channel sub-
system and all CPUs in the configuration have
access to the same blocks of storage and refer to
a particular block of main-storage locations by
using the same absolute address.

Main storage may include a faster-access buffer
storage, sometimes called a cache. Each CPU
may have an associated cache. The effects,
except on performance, of the physical con-
struction and the use of distinct storage media are
not observable by the program.

 Expanded Storage
Expanded storage may be available on some
models. Expanded storage, when available, can
be accessed by all CPUs in the configuration by
means of instructions that transfer 4K-byte blocks
of data from expanded storage to main storage or
from main storage to expanded storage. These
instructions are the PAGE IN and PAGE OUT
instructions, described in Chapter 10, “Control
Instructions.”

Each 4K-byte block of expanded storage is
addressed by means of a 32-bit unsigned binary
integer called an expanded-storage block number.

 CPU
The central processing unit (CPU) is the control-
ling center of the system. It contains the
sequencing and processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical implementation of the CPU may
differ among models, but the logical function
remains the same. The result of executing an
instruction is the same for each model, providing
that the program complies with the compatibility
rules.

The CPU, in executing instructions, can process
binary integers and floating-point numbers (binary
and hexadecimal) of fixed length, decimal integers
of variable length, and logical information of either
fixed or variable length. Processing may be in
parallel or in series; the width of the processing
elements, the multiplicity of the shifting paths, and
the degree of simultaneity in performing the dif-
ferent types of arithmetic differ from one model of
CPU to another without affecting the logical
results.

Instructions which the CPU executes fall into
seven classes: general, decimal, floating-
point-support (FPS), binary-floating-point (BFP),
hexadecimal-floating-point (HFP), control, and I/O
instructions. The general instructions are used in
performing binary-integer-arithmetic operations
and logical, branching, and other nonarithmetic
operations. The decimal instructions operate on
data in the decimal format. The BFP and HFP

2-2 z/Architecture Principles of Operation

instructions operate on data in the BFP and HFP
formats, respectively, while the FPS instructions
operate on floating-point data independent of the
format or convert it from one format to the other.
The privileged control instructions and the I/O
instructions can be executed only when the CPU
is in the supervisor state; the semiprivileged
control instructions can be executed in the
problem state, subject to the appropriate authori-
zation mechanisms.

The CPU provides registers which are available to
programs but do not have addressable represen-
tations in main storage. They include the current
program-status word (PSW), the general registers,
the floating-point registers and floating-
point-control register, the control registers, the
access registers, the prefix register, and the regis-
ters for the clock comparator and the CPU timer.
Each CPU in an installation provides access to a
time-of-day (TOD) clock, which is shared by all
CPUs in the installation. The instruction operation
code determines which type of register is to be
used in an operation. See Figure 2-2 on page
2-5 for the format of the control, access, general,
and floating-point registers.

 PSW

The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned
storage location, called the old-PSW location, for
the particular class of interruption. The CPU
fetches a new PSW from a second assigned
storage location. This new PSW determines the
next program to be executed. When it has fin-
ished processing the interruption, the program
handling the interruption may reload the old PSW,
making it again the current PSW, so that the inter-
rupted program can continue.

There are six classes of interruption: external,
I/O, machine check, program, restart, and super-

visor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in real storage.

 General Registers

Instructions may designate information in one or
more of 16 general registers. The general regis-
ters may be used as base-address registers and
index registers in address arithmetic and as accu-
mulators in general arithmetic and logical oper-
ations. Each register contains 64 bit positions.
The general registers are identified by the
numbers 0-15 and are designated by a four-bit R
field in an instruction. Some instructions provide
for addressing multiple general registers by having
several R fields. For some instructions, the use of
a specific general register is implied rather than
explicitly designated by an R field of the instruc-
tion.

For some operations, either bits 32-63 or bits 0-63
of two adjacent general registers are coupled, pro-
viding a 64-bit or 128-bit format, respectively. In
these operations, the program must designate an
even-numbered register, which contains the left-
most (high-order) 32 or 64 bits. The next higher-
numbered register contains the rightmost (low-
order) 32 or 64 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address
and index registers in address generation. In
these cases, the registers are designated by a
four-bit B field or X field in an instruction. A value
of zero in the B or X field specifies that no base or
index is to be applied, and, thus, general register
0 cannot be designated as containing a base
address or index.

 Floating-Point Registers

All floating-point instructions (FPS, BFP, and HFP)
use the same floating-point registers. The CPU
has 16 floating-point registers. The floating-point
registers are identified by the numbers 0-15 and
are designated by a four-bit R field in floating-point
instructions. Each floating-point register is 64 bits
long and can contain either a short (32-bit) or a
long (64-bit) floating-point operand. As shown in
Figure 2-2 on page 2-5, pairs of floating-point
registers can be used for extended (128-bit) oper-

 Chapter 2. Organization 2-3

ands. Each of the eight pairs is referred to by the
number of the lower-numbered register of the pair.

 Floating-Point-Control Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. The
FPC register is described in the section “Floating-
Point-Control (FPC) Register” on page 19-2.

 Control Registers

The CPU has 16 control registers, each having 64
bit positions. The bit positions in the registers are
assigned to particular facilities in the system, such
as program-event recording, and are used either
to specify that an operation can take place or to
furnish special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE
CONTROL. Multiple control registers can be
addressed by these instructions.

 Access Registers

The CPU has 16 access registers numbered 0-15.
An access register consists of 32 bit positions
containing an indirect specification (not described
here in detail) of an address-space-control
element. An address-space-control element is a
parameter used by the dynamic-

address-translation (DAT) mechanism to translate
references to a corresponding address space.
When the CPU is in a mode called the access-
register mode (controlled by bits in the PSW), an
instruction B field, used to specify a logical
address for a storage-operand reference, desig-
nates an access register, and the address-
space-control element specified by the access
register is used by DAT for the reference being
made. For some instructions, an R field is used
instead of a B field. Instructions are provided for
loading and storing the contents of the access
registers and for moving the contents of one
access register to another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access reg-
ister 0 always designates the current instruction
space. When one of access registers 1-15 is
used to designate an address space, the CPU
determines which address space is designated by
translating the contents of the access register.
When access register 0 is used to designate an
address space, the CPU treats the access register
as designating the current instruction space, and it
does not examine the actual contents of the
access register. Therefore, the 16 access regis-
ters can designate, at any one time, the current
instruction space and a maximum of 15 other
spaces.

2-4 z/Architecture Principles of Operation

R Field Control Access General Floating-Point
 and Registers Registers Registers Registers
Register
 Number │�──────64 bits──────�│ │�─32 bits─�│ │�──────64 bits──────�│ │�──────64 bits──────�│

┌─────────────────────┐ ┌───────────┐ ┌─────────────────────┐ ┌─────────────────────┐
���� � │ │ │ │ ┌�│ │ ┌�│ │

└─────────────────────┘ └───────────┘ │ └─────────────────────┘ │ └─────────────────────┘
 │ │

┌─────────────────────┐ ┌───────────┐ │ ┌─────────────────────┐ │ ┌─────────────────────┐
���1 1 │ │ │ │ └�│ │ │ │ │�┐

└─────────────────────┘ └───────────┘ └─────────────────────┘ │ └─────────────────────┘ │
 │ │

┌─────────────────────┐ ┌───────────┐ ┌─────────────────────┐ │ ┌─────────────────────┐ │
��1� 2 │ │ │ │ ┌�│ │ └�│ │ │

└─────────────────────┘ └───────────┘ │ └─────────────────────┘ └─────────────────────┘ │
 │ │

┌─────────────────────┐ ┌───────────┐ │ ┌─────────────────────┐ ┌─────────────────────┐ │
��11 3 │ │ │ │ └�│ │ │ │�┘

└─────────────────────┘ └───────────┘ └─────────────────────┘ └─────────────────────┘

┌─────────────────────┐ ┌───────────┐ ┌─────────────────────┐ ┌─────────────────────┐
�1�� 4 │ │ │ │ ┌�│ │ ┌�│ │

└─────────────────────┘ └───────────┘ │ └─────────────────────┘ │ └─────────────────────┘
 │ │

┌─────────────────────┐ ┌───────────┐ │ ┌─────────────────────┐ │ ┌─────────────────────┐
�1�1 5 │ │ │ │ └�│ │ │ │ │�┐

└─────────────────────┘ └───────────┘ └─────────────────────┘ │ └─────────────────────┘ │
 │ │

┌─────────────────────┐ ┌───────────┐ ┌─────────────────────┐ │ ┌─────────────────────┐ │
�11� 6 │ │ │ │ ┌�│ │ └�│ │ │

└─────────────────────┘ └───────────┘ │ └─────────────────────┘ └─────────────────────┘ │
 │ │

┌─────────────────────┐ ┌───────────┐ │ ┌─────────────────────┐ ┌─────────────────────┐ │
�111 7 │ │ │ │ └�│ │ │ │�┘

└─────────────────────┘ └───────────┘ └─────────────────────┘ └─────────────────────┘

┌─────────────────────┐ ┌───────────┐ ┌─────────────────────┐ ┌─────────────────────┐
1��� 8 │ │ │ │ ┌�│ │ ┌�│ │

└─────────────────────┘ └───────────┘ │ └─────────────────────┘ │ └─────────────────────┘
 │ │

┌─────────────────────┐ ┌───────────┐ │ ┌─────────────────────┐ │ ┌─────────────────────┐
1��1 9 │ │ │ │ └�│ │ │ │ │�┐

└─────────────────────┘ └───────────┘ └─────────────────────┘ │ └─────────────────────┘ │
 │ │

┌─────────────────────┐ ┌───────────┐ ┌─────────────────────┐ │ ┌─────────────────────┐ │
1�1� 1� │ │ │ │ ┌�│ │ └�│ │ │

└─────────────────────┘ └───────────┘ │ └─────────────────────┘ └─────────────────────┘ │
 │ │

┌─────────────────────┐ ┌───────────┐ │ ┌─────────────────────┐ ┌─────────────────────┐ │
1�11 11 │ │ │ │ └�│ │ │ │�┘

└─────────────────────┘ └───────────┘ └─────────────────────┘ └─────────────────────┘

┌─────────────────────┐ ┌───────────┐ ┌─────────────────────┐ ┌─────────────────────┐
11�� 12 │ │ │ │ ┌�│ │ ┌�│ │

└─────────────────────┘ └───────────┘ │ └─────────────────────┘ │ └─────────────────────┘
 │ │

┌─────────────────────┐ ┌───────────┐ │ ┌─────────────────────┐ │ ┌─────────────────────┐
11�1 13 │ │ │ │ └�│ │ │ │ │�┐

└─────────────────────┘ └───────────┘ └─────────────────────┘ │ └─────────────────────┘ │
 │ │

┌─────────────────────┐ ┌───────────┐ ┌─────────────────────┐ │ ┌─────────────────────┐ │
111� 14 │ │ │ │ ┌�│ │ └�│ │ │

└─────────────────────┘ └───────────┘ │ └─────────────────────┘ └─────────────────────┘ │
 │ │

┌─────────────────────┐ ┌───────────┐ │ ┌─────────────────────┐ ┌─────────────────────┐ │
1111 15 │ │ │ │ └�│ │ │ │�┘

└─────────────────────┘ └───────────┘ └─────────────────────┘ └─────────────────────┘

Note: The arrows indicate that the two registers may be coupled as a double-register pair,
designated by specifying the lower-numbered register in the R field. For example, the floating-point
register pair 13 and 15 is designated by 1101 binary in the R field.

Figure 2-2. Control, Access, General, and Floating-Point Registers

 Chapter 2. Organization 2-5

 Cryptographic Facility

Depending on the model, an integrated
cryptographic facility may be provided as an
extension of the CPU. When the cryptographic
facility is provided on a CPU, it functions as an
integral part of that CPU. A summary of the bene-
fits of the cryptographic facility is given on page
1-12; the facility is otherwise not described.

External Time Reference
Depending on the model, an external time refer-
ence (ETR) may be connected to the configura-
tion. A summary of the benefits of the ETR is
given on page 1-12; the facility is otherwise not
described.

 I/O
Input/output (I/O) operations involve the transfer of
information between main storage and an I/O
device. I/O devices and their control units attach
to the channel subsystem, which controls this data
transfer.

 Channel Subsystem

The channel subsystem directs the flow of infor-
mation between I/O devices and main storage. It
relieves CPUs of the task of communicating
directly with I/O devices and permits data proc-
essing to proceed concurrently with I/O proc-
essing. The channel subsystem uses one or more
channel paths as the communication link in man-
aging the flow of information to or from I/O
devices. As part of I/O processing, the channel
subsystem also performs the path-management
function of testing for channel-path availability,
selecting an available channel path, and initiating
execution of the operation with the I/O device.
Within the channel subsystem are subchannels.

One subchannel is provided for and dedicated to
each I/O device accessible to the channel sub-
system. Each subchannel contains storage for
information concerning the associated I/O device
and its attachment to the channel subsystem. The
subchannel also provides storage for information
concerning I/O operations and other functions
involving the associated I/O device. Information
contained in the subchannel can be accessed by

CPUs using I/O instructions as well as by the
channel subsystem and serves as the means of
communication between any CPU and the channel
subsystem concerning the associated I/O device.
The actual number of subchannels provided
depends on the model and the configuration; the
maximum number of subchannels is 65,536.

 Channel Paths

I/O devices are attached through control units to
the channel subsystem via channel paths. Control
units may be attached to the channel subsystem
via more than one channel path, and an I/O
device may be attached to more than one control
unit. In all, an individual I/O device may be acces-
sible to a channel subsystem by as many as eight
different channel paths, depending on the model
and the configuration. The total number of
channel paths provided by a channel subsystem
depends on the model and the configuration; the
maximum number of channel paths is 256.

A channel path can use one of three types of
communication links:

� System/360 and System/370 I/O interface,
called the parallel-I/O interface; the channel
path is called a parallel channel path

� ESCON I/O interface, called a serial-I/O inter-
face; the channel path is called a serial
channel path

� FICON I/O interface, also called a serial-I/O
interface; the channel path again is called a
serial channel path

Each parallel-I/O interface consists of a number of
electrical signal lines between the channel sub-
system and one or more control units. Eight
control units can share a single parallel-I/O inter-
face. Up to 256 I/O devices can be addressed on
a single parallel-I/O interface. The parallel-I/O
interface is described in the publication IBM
System/360 and System/370 I/O Interface
Channel to Control Unit Original Equipment Man-
ufacturers' Information, GA22-6974.

Each serial-I/O interface consists of two optical-
fiber conductors between any two of a channel
subsystem, a dynamic switch, and a control unit.
A dynamic switch can be connected by means of
multiple serial-I/O interfaces to either the same or
different channel subsystems and to multiple
control units. The number of control units which

2-6 z/Architecture Principles of Operation

can be connected on one channel path depends
on the channel-subsystem and dynamic-switch
capabilities. Up to 256 devices can be attached to
each control unit that uses the serial-I/O interface,
depending on the control unit. The ESCON I/O
interface is described in the publication ESA/390
ESCON I/O Interface, SA22-7202. The FICON
I/O interface is described in the ANSI standards
document Fibre Channel - Single-Byte Command
Code Sets-2 (FC-SB-2).

I/O Devices and Control Units

I/O devices include such equipment as printers,
magnetic-tape units, direct-access-storage
devices, displays, keyboards, communications
controllers, teleprocessing devices, and sensor-
based equipment. Many I/O devices function with
an external medium, such as paper or magnetic
tape. Other I/O devices handle only electrical
signals, such as those found in displays and com-
munications networks. In all cases, I/O-device

operation is regulated by a control unit that pro-
vides the logical and buffering capabilities neces-
sary to operate the associated I/O device. From
the programming point of view, most control-unit
functions merge with I/O-device functions. The
control-unit function may be housed with the I/O
device or in the CPU, or a separate control unit
may be used.

 Operator Facilities
The operator facilities provide the functions neces-
sary for operator control of the machine. Associ-
ated with the operator facilities may be an
operator-console device, which may also be used
as an I/O device for communicating with the
program.

The main functions provided by the operator facili-
ties include resetting, clearing, initial program
loading, start, stop, alter, and display.

 Chapter 2. Organization 2-7

2-8 z/Architecture Principles of Operation

 Chapter 3. Storage

Storage Addressing 3-2
Information Formats 3-2
Integral Boundaries 3-3

Address Types and Formats 3-3
Address Types 3-3

Absolute Address 3-3
Real Address 3-4
Virtual Address 3-4
Primary Virtual Address 3-4
Secondary Virtual Address 3-4
AR-Specified Virtual Address 3-5
Home Virtual Address 3-5
Logical Address 3-5
Instruction Address 3-5
Effective Address 3-5

Address Size and Wraparound 3-5
Address Wraparound 3-6

Storage Key 3-8
Protection . 3-9

Key-Controlled Protection 3-9
Storage-Protection-Override Control . . 3-10
Fetch-Protection-Override Control . . . 3-11

Access-List-Controlled Protection 3-11
Page Protection 3-11
Low-Address Protection 3-12
Suppression on Protection 3-12

Reference Recording 3-14
Change Recording 3-14
Prefixing . 3-15
Address Spaces 3-16

Changing to Different Address Spaces . 3-17
Address-Space Number 3-17

ASN Translation 3-18
ASN-Translation Controls 3-18

Control Register 14 3-18
ASN-Translation Tables 3-19

ASN-First-Table Entries 3-19
ASN-Second-Table Entries 3-19

ASN-Translation Process 3-21
ASN-First-Table Lookup 3-22
ASN-Second-Table Lookup 3-23

Recognition of Exceptions during ASN
Translation 3-23

ASN Authorization 3-23
ASN-Authorization Controls 3-23

Control Register 4 3-23
ASN-Second-Table Entry 3-24

Authority-Table Entries 3-24
ASN-Authorization Process 3-24

Authority-Table Lookup 3-25
Recognition of Exceptions during ASN

Authorization 3-26
Dynamic Address Translation 3-26

Translation Control 3-28
Translation Modes 3-28
Control Register 0 3-29
Control Register 1 3-29
Control Register 7 3-30
Control Register 13 3-31

Translation Tables 3-31
Region-Table Entries 3-32
Segment-Table Entries 3-33
Page-Table Entries 3-33

Translation Process 3-34
Inspection of Real-Space Control 3-39
Inspection of Designation-Type Control 3-39
Lookup in a Table Designated by an

Address-Space-Control Element . . 3-39
Lookup in a Table Designated by a

Region-Table Entry 3-41
Page-Table Lookup 3-42
Formation of the Real Address 3-42
Recognition of Exceptions during

Translation 3-42
Translation-Lookaside Buffer 3-43

TLB Structure 3-43
Formation of TLB Entries 3-43
Use of TLB Entries 3-44
Modification of Translation Tables . . . 3-45

Address Summary 3-48
Addresses Translated 3-48
Handling of Addresses 3-48

Assigned Storage Locations 3-51

This chapter discusses the representation of infor-
mation in main storage, as well as addressing,
protection, and reference and change recording.
The aspects of addressing which are covered
include the format of addresses, the concept of

address spaces, the various types of addresses,
and the manner in which one type of address is
translated to another type of address. A list of
permanently assigned storage locations appears
at the end of the chapter.

 Copyright IBM Corp. 1990-2003 3-1

Main storage provides the system with directly
addressable fast-access storage of data. Both
data and programs must be loaded into main
storage (from input devices) before they can be
processed.

Main storage may include one or more smaller
faster-access buffer storages, sometimes called
caches. A cache is usually physically associated
with a CPU or an I/O processor. The effects,
except on performance, of the physical con-
struction and use of distinct storage media are not
observable by the program.

Fetching and storing of data by a CPU are not
affected by any concurrent channel-subsystem
activity or by a concurrent reference to the same
storage location by another CPU. When concur-
rent requests to a main-storage location occur,
access normally is granted in a sequence deter-
mined by the system. If a reference changes the
contents of the location, any subsequent storage
fetches obtain the new contents.

Main storage may be volatile or nonvolatile. If it is
volatile, the contents of main storage are not pre-
served when power is turned off. If it is nonvola-
tile, turning power off and then back on does not
affect the contents of main storage, provided all
CPUs are in the stopped state and no references
are made to main storage when power is being
turned off. In both types of main storage, the con-

| tents of storage keys are not necessarily pre-
served when the power for main storage is turned
off.

Note: Because most references in this publica-
tion apply to virtual storage, the abbreviated term
“storage” is often used in place of “virtual storage.”
The term “storage” may also be used in place of
“main storage,” “absolute storage,” or “real
storage” when the meaning is clear. The terms
“main storage” and “absolute storage” are used to
describe storage which is addressable by means
of an absolute address. The terms describe fast-
access storage, as opposed to auxiliary storage,
such as that provided by direct-access storage
devices. “Real storage” is synonymous with
“absolute storage” except for the effects of pre-
fixing.

 Storage Addressing
Storage is viewed as a long horizontal string of
bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of
bits is subdivided into units of eight bits. An
eight-bit unit is called a byte, which is the basic
building block of all information formats.

Each byte location in storage is identified by a
unique nonnegative integer, which is the address
of that byte location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left and pro-
ceeding in a left-to-right sequence. Addresses are
unsigned binary integers and are 24, 31, or 64
bits. Addresses are described in “Address Size
and Wraparound” on page 3-5.

 Information Formats

Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise speci-
fied, a group of bytes in storage is addressed by
the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly
specified by the operation to be performed. When
used in a CPU operation, a group of bytes is
called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit
numbers are not storage addresses, however.
Only bytes can be addressed. To operate on indi-
vidual bits of a byte in storage, it is necessary to
access the entire byte.

The bits in a byte are numbered 0 through 7, from
left to right.

The bits in an address may be numbered 8-31 or
40-63 for 24-bit addresses or 1-31 or 33-63 for
31-bit addresses; they are numbered 0-63 for
64-bit addresses. Within any other fixed-length
format of multiple bytes, the bits making up the
format are consecutively numbered starting from
0.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of

3-2 z/Architecture Principles of Operation

bytes. Such check bits are generated automat-
ically by the machine and cannot be directly con-
trolled by the program. References in this publica-
tion to the length of data fields and registers
exclude mention of the associated check bits. All
storage capacities are expressed in number of
bytes.

When the length of a storage-operand field is
implied by the operation code of an instruction, the
field is said to have a fixed length, which can be
one, two, four, or eight bytes. Larger fields may
be implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to
have a variable length. Variable-length operands
can vary in length by increments of one byte.

When information is placed in storage, the con-
tents of only those byte locations are replaced that
are included in the designated field, even though
the width of the physical path to storage may be
greater than the length of the field being stored.

 Integral Boundaries

Certain units of information must be on an integral
boundary in storage. A boundary is called integral
for a unit of information when its storage address
is a multiple of the length of the unit in bytes.
Special names are given to fields of 2, 4, 8, and
16 bytes on an integral boundary. A halfword is a
group of two consecutive bytes on a two-byte
boundary and is the basic building block of
instructions. A word is a group of four consec-
utive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes
on an eight-byte boundary. A quadword is a
group of 16 consecutive bytes on a 16-byte
boundary. (See Figure 3-1 on page 3-4.)

When storage addresses designate halfwords,
words, doublewords, and quadwords, the binary
representation of the address contains one, two,
three, or four rightmost zero bits, respectively.

Instructions must be on two-byte integral bounda-
ries, and CCWs, IDAWs, and the storage oper-
ands of certain instructions must be on other inte-
gral boundaries. The storage operands of most
instructions do not have boundary-alignment
requirements.

Programming Note: For fixed-field-length oper-
ations with field lengths that are a power of 2, sig-
nificant performance degradation is possible when
storage operands are not positioned at addresses
that are integral multiples of the operand length.
To improve performance, frequently used storage
operands should be aligned on integral bounda-
ries.

Address Types and Formats

 Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: abso-
lute, real, and virtual. The addresses are distin-
guished on the basis of the transformations that
are applied to the address during a storage
access. Address translation converts virtual to
real, and prefixing converts real to absolute. In
addition to the three basic address types, addi-
tional types are defined which are treated as one
or another of the three basic types, depending on
the instruction and the current mode.

 Absolute Address
An absolute address is the address assigned to a
main-storage location. An absolute address is
used for a storage access without any transforma-
tions performed on it.

The channel subsystem and all CPUs in the con-
figuration refer to a shared main-storage location
by using the same absolute address. Available
main storage is usually assigned contiguous abso-
lute addresses starting at 0, and the addresses
are always assigned in complete 4K-byte blocks
on integral boundaries. An exception is recog-
nized when an attempt is made to use an absolute
address in a block which has not been assigned
to physical locations. On some models, storage-
reconfiguration controls may be provided which
permit the operator to change the correspondence
between absolute addresses and physical
locations. However, at any one time, a physical
location is not associated with more than one
absolute address.

Storage consisting of byte locations sequenced
according to their absolute addresses is referred
to as absolute storage.

 Chapter 3. Storage 3-3

 �
� ──────� Storage Addresses

 �
 �
 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬─
Bytes │ � │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │1� │11 │12 │13 │14 │15 │16 │
 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴─

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬─
Halfwords │ � │ 2 │ 4 │ 6 │ 8 │1� │12 │14 │16
 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴─

� � � � �
� � � � �
� � � � �

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬─
Words │ � │ 4 │ 8 │12 │16
 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴─

� � �
� � �
� � �

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬─
Doublewords │ � │ 8 │16
 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴─
 � �
 � �
 � �
 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬─
Quadwords │ � │16
 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴─

Figure 3-1. Integral Boundaries with Storage Addresses

 Real Address
A real address identifies a location in real storage.
When a real address is used for an access to
main storage, it is converted, by means of pre-
fixing, to an absolute address.

At any instant there is one real-address to
absolute-address mapping for each CPU in the
configuration. When a real address is used by a
CPU to access main storage, it is converted to an
absolute address by prefixing. The particular
transformation is defined by the value in the prefix
register for the CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as
real storage.

 Virtual Address
A virtual address identifies a location in virtual
storage. When a virtual address is used for an
access to main storage, it is translated by means
of dynamic address translation to a real address,
which is then further converted by prefixing to an
absolute address.

Primary Virtual Address
A primary virtual address is a virtual address
which is to be translated by means of the primary
address-space-control element. Logical
addresses are treated as primary virtual
addresses when in the primary-space mode.
Instruction addresses are treated as primary
virtual addresses when in the primary-space
mode, secondary-space mode, or access-register
mode. The first-operand address of MOVE TO
PRIMARY and the second-operand address of
MOVE TO SECONDARY are always treated as
primary virtual addresses.

Secondary Virtual Address
A secondary virtual address is a virtual address
which is to be translated by means of the sec-
ondary address-space-control element. Logical
addresses are treated as secondary virtual
addresses when in the secondary-space mode.
The second-operand address of MOVE TO
PRIMARY and the first-operand address of MOVE
TO SECONDARY are always treated as sec-
ondary virtual addresses.

3-4 z/Architecture Principles of Operation

AR-Specified Virtual Address
An AR-specified virtual address is a virtual
address which is to be translated by means of an
access-register-specified address-space-control
element. Logical addresses are treated as
AR-specified addresses when in the access-
register mode.

Home Virtual Address
A home virtual address is a virtual address which
is to be translated by means of the home address-
space-control element. Logical addresses and
instruction addresses are treated as home virtual
addresses when in the home-space mode.

 Logical Address
Except where otherwise specified, the storage-
operand addresses for most instructions are
logical addresses. Logical addresses are treated
as real addresses in the real mode, as primary
virtual addresses in the primary-space mode, as
secondary virtual addresses in the secondary-
space mode, as AR-specified virtual addresses in
the access-register mode, and as home virtual
addresses in the home-space mode. Some
instructions have storage-operand addresses or
storage accesses associated with the instruction
which do not follow the rules for logical addresses.
In all such cases, the instruction definition con-
tains a definition of the type of address.

 Instruction Address
Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the
real mode, as primary virtual addresses in the
primary-space mode, secondary-space mode, or
access-register mode, and as home virtual
addresses in the home-space mode. The instruc-
tion address in the current PSW and the target
address of EXECUTE are instruction addresses.

 Effective Address
In some situations, it is convenient to use the term
“effective address.” An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing is per-
formed. An effective address may be specified
directly in a register or may result from address
arithmetic. Address arithmetic is the addition of
the base and displacement or of the base, index,
and displacement.

Address Size and Wraparound

An address size refers to the maximum number of
significant bits that can represent an address.
Three sizes of addresses are provided: 24-bit,
31-bit, and 64-bit. A 24-bit address can accom-
modate a maximum of 16,777,216 (16M) bytes;
with a 31-bit address, 2,147,483,648 (2G) bytes
can be addressed; and, with a 64-bit address,
18,446,744,073,709,551,616 (16E) bytes can be
addressed.

The bits of a 24-bit, 31-bit, or 64-bit address
produced by address arithmetic under the control
of the current addressing mode are numbered
40-63, 33-63, and 0-63, respectively, corre-
sponding to the numbering of base-address and
index bits in a general register:

┌─/─────────┬───────────────────────┐
│ │ 24-Bit Address │
└─/─────────┴───────────────────────┘
� 4� 63

┌─/──┬──────────────────────────────┐
│ │ 31-Bit Address │
└─/──┴──────────────────────────────┘
� 33 63

┌─/─────────────────────────────────┐
│ 64-Bit Address │
└─/─────────────────────────────────┘
� 63

The bits of an address that is 31 bits regardless of
the addressing mode are numbered 1-31, and,
when a 24-bit or 31-bit address is contained in a
four-byte field in storage, the bits are numbered
8-31 or 1-31, respectively:

┌────────┬───────────────────────┐
│ │ 24-Bit Address │
└────────┴───────────────────────┘
� 8 31

┌─┬──────────────────────────────┐
│ │ 31-Bit Address │
└─┴──────────────────────────────┘
� 1 31

A 24-bit or 31-bit virtual address is expanded to
64 bits by appending 40 or 33 zeros, respectively,
on the left before it is translated by means of the
DAT process, and a 24-bit or 31-bit real address
is similarly expanded to 64 bits before it is trans-
formed by prefixing. A 24-bit or 31-bit absolute
address is expanded to 64 bits before main
storage is accessed. Thus, the 24-bit address
always designates a location in the first 16M-byte

 Chapter 3. Storage 3-5

block of the 16E-byte storage addressable by a
64-bit address, and the 31-bit address always des-
ignates a location in the first 2G-byte block.

Unless specifically stated to the contrary, the fol-
lowing definition applies in this publication: when-
ever the machine generates and provides to the
program a 24-bit or 31-bit address, the address is
made available (placed in storage or loaded into a
general register) by being imbedded in a 32-bit
field, with the leftmost eight bits or one bit in the
field, respectively, set to zeros. When the address
is loaded into a general register, bits 0-31 of the
register remain unchanged.

The size of effective addresses is controlled by
bits 31 and 32 of the PSW, the extended-
addressing-mode bit and the basic-
addressing-mode bit, respectively. When bits 31
and 32 are both zero, the CPU is in the 24-bit
addressing mode, and 24-bit operand and instruc-
tion effective addresses are specified. When bit
31 is zero and bit 32 is one, the CPU is in the
31-bit addressing mode, and 31-bit operand and
instruction effective addresses are specified.
When bits 31 and 32 are both one, the CPU is in
the 64-bit addressing mode, and 64-bit operand
and instruction effective addresses are specified
(see “Address Generation” on page 5-7).

The sizes of the real or absolute addresses used
or yielded by the ASN-translation,
ASN-authorization, PC-number-translation, and
access-register-translation processes are always
31 bits regardless of the current addressing mode.
Similarly, the sizes of the real or absolute
addresses used or yielded by the DAT, stacking,
unstacking, and tracing processes are always 64
bits.

The size of the data address in a CCW is under
control of the CCW-format-control bit in the
operation-request block (ORB) designated by a
START SUBCHANNEL instruction. The CCWs
with 24-bit and 31-bit addresses are called
format-0 and format-1 CCWs, respectively.
Format-0 and format-1 CCWs are described in
Chapter 15, “Basic I/O Functions.” Similarly, the
size of the data address in an IDAW is under
control of the IDAW-format-control bit in the ORB.
The IDAWs with 31-bit and 64-bit addresses are
called format-1 and format-2 IDAWs, respectively.

Format-1 and format-2 IDAWs are described in
Chapter 15, “Basic I/O Functions.”

 Address Wraparound
The CPU performs address generation when it
forms an operand or instruction address or when it
generates the address of a table entry from the
appropriate table origin and index. It also per-
forms address generation when it increments an
address to access successive bytes of a field.
Similarly, the channel subsystem performs
address generation when it increments an address
(1) to fetch a CCW, (2) to fetch an IDAW, (3) to
transfer data, or (4) to compute the address of an
I/O measurement block.

When, during the generation of the address, an
address is obtained that exceeds the value
allowed for the address size (2�� - 1, 2�� - 1, or
2�� - 1), one of the following two actions is taken:

1. The carry out of the high-order bit position of
the address is ignored. This handling of an
address of excessive size is called
wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address 0 appears
to follow the maximum allowable address.
Address arithmetic and wraparound occur before
transformation, if any, of the address by DAT or
prefixing.

Addresses generated by the CPU that may be
virtual addresses always wrap. Wraparound also
occurs when the linkage-stack-entry address in
control register 15 is decremented below 0 by
PROGRAM RETURN. For CPU table entries that
are addressed by real or absolute addresses, it is
unpredictable whether the address wraps or an
addressing exception is recognized.

For channel-program execution, when the gener-
ated address exceeds the value for the address
size (or, for the read-backward command is decre-
mented below 0), an I/O program-check condition
is recognized.

Figure 3-2 on page 3-7 identifies what limit values
apply to the generation of different addresses and
how addresses are handled when they exceed the
allowed value.

3-6 z/Architecture Principles of Operation

┌───┬───────┬───────────────┐
│ │ │ Handling when │
│ │Address│ Address Would │
│ Address Generation for │ Type │ Wrap │
├───┼───────┼───────────────┤
│Instructions and operands when EAM and BAM are zero │L,I,R,V│ W24 │
│ │ │ │
│Successive bytes of instructions and operands when EAM and │I,L,V� │ W24 │
│ BAM are zero │ │ │
│ │ │ │
│Instructions and operands when EAM is zero and BAM is one │L,I,R,V│ W31 │
│ │ │ │
│Successive bytes of instructions and operands when EAM is │I,L,V� │ W31 │
│ zero and BAM is one │ │ │
│ │ │ │
│Instructions and operands when EAM and BAM are one │L,I,R,V│ W64 │
│ │ │ │
│Successive bytes of instructions and operands when EAM and │I,L,V� │ W64 │
│ BAM are one │ │ │
│ │ │ │
│DAT-table entries when used for implicit translation or LRA │A or R�│ X64 │
│ or STRAG │ │ │
│ │ │ │
│ASN-second-table, authority-table (during ASN authorization),│ R │ X31 │
│ linkage-table, and entry-table entries │ │ │
│ │ │ │
│Authority-table (during access-register translation) and │A or R�│ X31 │
│ access-list entries │ │ │
│ │ │ │
│Linkage-stack entry │ V │ W64 │
│ │ │ │
│I/O measurement block │ A │ P31 │
│ │ │ │
│For a channel program with format-� CCWs: │ │ │
│ │ │ │
│ Successive CCWs │ A │ P24 │
│ │ │ │
│ Successive IDAWs │ A │ P24 │
│ │ │ │
│ Successive bytes of I/O data (without IDAWs) │ A │ P24 │
│ │ │ │
│ Successive bytes of I/O data (with format-1 IDAWs) │ A │ P31 │
│ │ │ │
│ Successive bytes of I/O data (with format-2 IDAWs) │ A │ P64 │
│ │ │ │
│For a channel program with format-1 CCWs: │ │ │
│ │ │ │
│ Successive CCWs │ A │ P31 │
│ │ │ │
│ Successive IDAWs │ A │ P31 │
│ │ │ │
│ Successive bytes of I/O data (without IDAWs) │ A │ P31 │
│ │ │ │
│ Successive bytes of I/O data (with format-1 IDAWs) │ A │ P31 │
│ │ │ │
│ Successive bytes of I/O data (with format-2 IDAWs) │ A │ P64 │
└───┴───────┴───────────────┘

Figure 3-2 (Part 1 of 2). Address Wraparound

 Chapter 3. Storage 3-7

┌───┐
│Explanation: │
│ │
│ � Real addresses do not apply in this case since the instructions which designate│
│ operands by means of real addresses cannot designate operands that cross │
│ boundary 2��, 2��, or 2��. │
│ � It is unpredictable whether the address is absolute or real. │
│ A Absolute address. │
│ BAM Basic-addressing-mode bit in the PSW. │
│ EAM Extended-addressing-mode bit in the PSW. │
│ I Instruction address. │
│ L Logical address. │
│ P24 An I/O program-check condition is recognized when the address exceeds 2�� - 1 │
│ or is decremented below zero. │
│ P31 An I/O program-check condition is recognized when the address exceeds 2�� - 1 │
│ or is decremented below zero. │
│ P64 An I/O program-check condition is recognized when the address exceeds 2�� - 1 │
│ or is decremented below zero. │
│ R Real address. │
│ V Virtual address. │
│ W24 Wrap to location � after location 2�� - 1 and vice versa. │
│ W31 Wrap to location � after location 2�� - 1 and vice versa. │
│ W64 Wrap to location � after location 2�� - 1 and vice versa. │
│ X31 When the address exceeds 2�� - 1, it is unpredictable whether the address wraps│
│ to location � after location 2�� - 1 or whether an addressing exception is │
│ recognized. │
│ X64 When the address exceeds 2�� - 1, it is unpredictable whether the address wraps│
│ to location � after location 2�� - 1 or whether an addressing exception is │
│ recognized. │
└───┘

Figure 3-2 (Part 2 of 2). Address Wraparound

 Storage Key
A storage key is associated with each 4K-byte
block of storage that is available in the configura-
tion. The storage key has the following format:

┌────┬─┬─┬─┐
│ACC │F│R│C│
└────┴─┴─┴─┘
� 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC): If a reference is
subject to key-controlled protection, the four
access-control bits, bits 0-3, are matched with the
four-bit access key when information is stored and
when information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F): If a reference is
subject to key-controlled protection, the fetch-
protection bit, bit 4, controls whether key-
controlled protection applies to fetch-type refer-
ences: a zero indicates that only store-type refer-
ences are monitored and that fetching with any

access key is permitted; a one indicates that key-
controlled protection applies to both fetching and
storing. No distinction is made between the
fetching of instructions and of operands.

Reference Bit (R): The reference bit, bit 5,
normally is set to one each time a location in the
corresponding storage block is referred to either
for storing or for fetching of information.

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE
KEY EXTENDED and inspected by INSERT
STORAGE KEY EXTENDED. Additionally, the
instruction RESET REFERENCE BIT EXTENDED
provides a means of inspecting the reference and
change bits and of setting the reference bit to
zero. Bits 0-4 of the storage key are inspected by
the INSERT VIRTUAL STORAGE KEY instruction.
The contents of the storage key are unpredictable
during and after the execution of the usability test
of the TEST BLOCK instruction.

3-8 z/Architecture Principles of Operation

 Protection
Four protection facilities are provided to protect
the contents of main storage from destruction or
misuse by programs that contain errors or are
unauthorized: key-controlled protection, access-
list-controlled protection, page protection, and low-
address protection. The protection facilities are
applied independently; access to main storage is
only permitted when none of the facilities prohibits
the access.

Key-controlled protection affords protection against
improper storing or against both improper storing
and fetching, but not against improper fetching
alone.

 Key-Controlled Protection

When key-controlled protection applies to a
storage access, a store is permitted only when the
storage key matches the access key associated
with the request for storage access; a fetch is per-
mitted when the keys match or when the fetch-
protection bit of the storage key is zero.

The keys are said to match when the four access-
control bits of the storage key are equal to the
access key, or when the access key is zero.

The protection action is summarized in Figure 3-3.

When the access to storage is initiated by the
CPU and key-controlled protection applies, the
PSW key is the access key, except that the
access key is specified in a general register for
the first operand of MOVE TO SECONDARY and
MOVE WITH DESTINATION KEY, for the second
operand of MOVE TO PRIMARY, MOVE WITH

| KEY, and MOVE WITH SOURCE KEY, and for
| either the first or the second operand of MOVE
| PAGE. The PSW key occupies bit positions 8-11

of the current PSW.

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the
access key. The subchannel key for a channel
program is specified in the operation-request block
(ORB). When, for purposes of channel-subsystem
monitoring, an access to the measurement block
is made, the measurement-block key is the access

┌─────────────────────────────┬──────────────────┐
│ Conditions │ Is Access to │
├────────────────┬────────────┤Storage Permitted?│
│Fetch-Protection│ ├─────────┬────────┤
│ Bit of │ │ │ │
│ Storage Key │Key Relation│ Fetch │ Store │
├────────────────┼────────────┼─────────┼────────┤
│ � │ Match │ Yes │ Yes │
│ � │ Mismatch │ Yes │ No │
│ 1 │ Match │ Yes │ Yes │
│ 1 │ Mismatch │ No │ No │
├────────────────┴────────────┴─────────┴────────┤
│Explanation: │
│ │
│ Match The four access-control bits of the │
│ storage key are equal to the access │
│ key, or the access key is zero. │
│ │
│ Yes Access is permitted. │
│ │
│ No Access is not permitted. On fetching, │
│ the information is not made available │
│ to the program; on storing, the con- │
│ tents of the storage location are not │
│ changed. │
└──┘

Figure 3-3. Summary of Protection Action

key. The measurement-block key is specified by
the SET CHANNEL MONITOR instruction.

When a CPU access is prohibited because of key-
controlled protection, the execution of the instruc-
tion is terminated, and a program interruption for a
protection exception takes place. However, the
unit of operation or the execution of the instruction
may be suppressed, as described in the section
“Suppression on Protection” on page 3-12. When
a channel-program access is prohibited, the start
function is ended, and the protection-check condi-
tion is indicated in the associated interruption-
response block (IRB). When a measurement-
block access is prohibited, the I/O measurement-
block protection-check condition is indicated.

When a store access is prohibited because of key-
controlled protection, the contents of the protected
location remain unchanged. When a fetch access
is prohibited, the protected information is not
loaded into a register, moved to another storage
location, or provided to an I/O device. For a pro-
hibited instruction fetch, the instruction is sup-
pressed, and an arbitrary instruction-length code is
indicated.

Key-controlled protection is independent of
whether the CPU is in the problem or the super-
visor state and, except as described below, does
not depend on the type of CPU instruction or
channel-command word being executed.

 Chapter 3. Storage 3-9

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by
the program and that are used by the CPU to
store or fetch information are subject to key-
controlled protection.

Key-controlled protection does not apply when the
storage-protection-override control is one and the
value of the four access-control bits of the storage
key is 9. Key-controlled protection for fetches
may or may not apply when the fetch-
protection-override control is one, depending on
the effective address and the private-space
control.

| The storage-protection-override control and fetch-
| protection-override control do not affect storage
| references made by the channel subsystem.

Accesses to the second operand of TEST BLOCK
are not subject to key-controlled protection.

All storage accesses by the channel subsystem to
access the I/O measurement block, or by a
channel program to fetch a CCW or IDAW or to
access a data area designated during the exe-
cution of a CCW, are subject to key-controlled
protection. However, if a CCW, an IDAW, or
output data is prefetched, a protection check is not
indicated until the CCW or IDAW is due to take
control or until the data is due to be written.

Key-controlled protection is not applied to
accesses that are implicitly made for any of such
sequences as:

 � An interruption
 � CPU logout
� Fetching of table entries for access-register

translation, dynamic-address translation,
PC-number translation, ASN translation, or
ASN authorization

 � Tracing
� A store-status function
� Storing in real locations 184-191 when TEST

PENDING INTERRUPTION has an operand
address of zero

� Initial program loading

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the
program explicitly designates these locations, they
are subject to protection.

 Storage-Protection-Override Control
Bit 39 of control register 0 is the storage-
protection-override control. When this bit is one,
storage-protection override is active. When this
bit is zero, storage-protection override is inactive.
When storage-protection override is active, key-
controlled storage protection is ignored for storage
locations having an associated storage-key value
of 9. When storage-protection override is inactive,
no special action is taken for a storage-key value
of 9.

Storage-protection override applies to instruction
fetch and to the fetch and store accesses of
instructions whose operand addresses are logical,
virtual, or real. It does not apply to accesses
made for the purpose of channel-program exe-
cution or for the purpose of channel-subsystem
monitoring.

Storage-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Notes:

1. Storage-protection override can be used to
improve reliability in the case when a possibly
erroneous application program is executed in
conjunction with a reliable subsystem, pro-
vided that the application program needs to
access only a portion of the storage accessed
by the subsystem. The technique for doing
this is as follows. The storage accessed by
the application program is given storage key
9. The storage accessed by only the sub-
system is given some other nonzero storage
key, for example, key 8. The application is
executed with PSW key 9. The subsystem is
executed with PSW key 8 (in this example).
As a result, the subsystem can access both
the key-8 and the key-9 storage, while the
application program can access only the key-9
storage.

2. Storage-protection override affects the
accesses to storage made by the CPU and
also affects the result set by TEST PRO-
TECTION. However, those instructions which,
in the problem state, test the PSW-key mask
to determine if a particular key value may be
used are not affected by whether storage-
protection override is active. These
instructions include, among others, MOVE
WITH KEY and SET PSW KEY FROM

3-10 z/Architecture Principles of Operation

ADDRESS. To permit these instructions to
use an access key of 9 in the problem state,
bit 9 of the PSW-key mask must be one.

 Fetch-Protection-Override Control
Bit 38 of control register 0 is the fetch-
protection-override control. When the bit is one,
fetch protection is ignored for locations at effective
addresses 0-2047. An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing.
However, fetch protection is not ignored if the
effective address is subject to dynamic address
translation and the private-space control, bit 55, is
one in the address-space-control element used in
the translation.

Fetch-protection override applies to instruction
fetch and to the fetch accesses of instructions
whose operand addresses are logical, virtual, or
real. It does not apply to fetch accesses made for
the purpose of channel-program execution or for
the purpose of channel-subsystem monitoring.
When this bit is set to zero, fetch protection of
locations at effective addresses 0-2047 is deter-
mined by the state of the fetch-protection bit of the
storage key associated with those locations.

Fetch-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Note: The fetch-
protection-override control allows fetch protection
of locations at addresses 2048-4095 along with no
fetch protection of locations at addresses 0-2047.

 Access-List-Controlled Protection

In the access-register mode, bit 6 of the access-
list entry, the fetch-only bit, controls which types of
operand references are permitted to the address
space specified by the access-list entry. When
the entry is used in the access-register-translation
part of a reference and bit 6 is zero, both fetch-
type and store-type references are permitted;
when bit 6 is one, only fetch-type references are
permitted, and an attempt to store causes a pro-
tection exception to be recognized and the exe-
cution of the instruction to be suppressed.

The fetch-only bit is included in the ALB access-
list entry. A change to the fetch-only bit in an
access-list entry in main storage does not neces-
sarily have an immediate, if any, effect on whether
a protection exception is recognized. However,
this change to the bit will have an effect imme-
diately after PURGE ALB or a COMPARE AND
SWAP AND PURGE instruction that purges the
ALB is executed.

TEST PROTECTION takes into consideration
access-list-controlled protection when the CPU is
in the access-register mode. A violation of
access-list-controlled protection causes condition
code 1 to be set, except that it does not prevent
condition code 2 or 3 from being set when the
conditions for those codes are satisfied.

Programming Note: A violation of access-list-
controlled protection always causes suppression.
A violation of any of the other protection types
may cause termination.

 Page Protection

The page-protection facility controls access to
virtual storage by using the page-protection bit in
each page-table entry and segment-table entry. It
provides protection against improper storing.

The page-protection bit, bit 54, of the page-table
entry controls whether storing is allowed into the
corresponding 4K-byte page. When the bit is
zero, both fetching and storing are permitted;
when the bit is one, only fetching is permitted.
When an attempt is made to store into a protected
page, the contents of the page remain unchanged,
the unit of operation or the execution of the
instruction is suppressed, and a program inter-
ruption for protection takes place.

The page-protection bit, bit 54, of the segment-
table entry is treated as being ORed into the
page-protection-bit position of each entry in the
page table designated by the segment-table entry.
Thus, when the segment-table-entry page-
protection bit is one, the effect is as if the page-
protection bit were one in each entry in the desig-
nated page table.

Page protection applies to all store-type refer-
ences that use a virtual address.

 Chapter 3. Storage 3-11

 Low-Address Protection

The low-address-protection facility provides pro-
tection against the destruction of main-storage
information used by the CPU during interruption
processing. This is accomplished by prohibiting
instructions from storing with effective addresses
in the ranges 0 through 511 and 4096 through
4607 (the first 512 bytes of each of the first and
second 4K-byte effective-address blocks). The
range criterion is applied before address transfor-
mation, if any, of the address by dynamic address
translation or prefixing. However, the range crite-
rion is not applied, with the result that low-address
protection does not apply, if the effective address
is subject to dynamic address translation and the
private-space control, bit 55, is one in the
address-space-control element used in the trans-
lation. Low-address protection does not apply if
the address-space-control element to be used is
not available due to another type of exception.

Low-address protection is under control of bit 35
of control register 0, the low-address-
protection-control bit. When the bit is zero, low-
address protection is off; when the bit is one, low-
address protection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, the execution of the instruction
is terminated, and a program interruption for a
protection exception takes place. However, the
unit of operation or the execution of the instruction
may be suppressed, as described in the section
“Suppression on Protection.”

Any attempt by the program to store by using
effective addresses in the range 0 through 511 or
4096 through 4607 is subject to low-address pro-
tection. Low-address protection is applied to the
store accesses of instructions whose operand
addresses are logical, virtual, or real. Low-
address protection is also applied to the trace
table.

Low-address protection is not applied to accesses
made by the CPU or the channel subsystem for
such sequences as interruptions, CPU logout, the

storing of the I/O-interruption code in real locations
184-191 by TEST PENDING INTERRUPTION,
and the initial-program-loading and store-status
functions, nor is it applied to data stores during I/O
data transfer. However, explicit stores by a
program at any of these locations are subject to
low-address protection.

Programming Notes:

1. Low-address protection and key-controlled
protection apply to the same store accesses,
except that:

a. Low-address protection does not apply to
storing performed by the channel sub-
system, whereas key-controlled protection
does.

b. Key-controlled protection does not apply
to tracing, the second operand of TEST
BLOCK, or instructions that operate spe-
cifically on the linkage stack, whereas low-
address protection does.

2. Because fetch-protection override and low-
address protection do not apply to an address
space for which the private-space control is
one in the address-space-control element,
locations 0-2047 and 4096-4607 in the
address space are usable the same as the
other locations in the space.

Suppression on Protection

Some instruction definitions specify that the opera-
tion is always suppressed if a protection exception
due to any type of protection is recognized. When
that specification is absent, the execution of an
instruction is always suppressed if a protection
exception due to access-list-controlled protection
or page protection is recognized, and it may be
either suppressed or terminated if a protection
exception due to low-address protection or key-
controlled protection is recognized.

The suppression-on-protection function allows the
control program to locate the segment-table entry
and page-table entry used in the translation of a
virtual address that caused a protection exception,
in order to determine if the exception was due to
page protection.1 This is necessary for the imple-

1 The suppression-on-protection function originated as the ESA/390 suppression-on-protection facility. Suppression for page pro-
tection was new as part of that facility.

3-12 z/Architecture Principles of Operation

mentation of the Posix fork function (discussed in
a programming note). The function also allows
the control program to avoid locating the segment-
table and page-table entries if the address was
not virtual or the exception was due to access-
list-controlled protection.

During a program interruption due to a protection
exception, either a one or a zero is stored in bit
position 61 of real locations 168-175. The storing
of a one in bit position 61 indicates that:

� The unit of operation or instruction execution
during which the exception was recognized
was suppressed.

� If dynamic address translation (DAT) was on,
as indicated by the DAT-mode bit in the
program old PSW, the effective address that
caused the exception is one that was to be
translated by DAT. (The effective address is
the address which exists before any transfor-
mation by DAT or prefixing.) Bit 61 is set to
zero if DAT was on but the effective address
was not to be translated by DAT because it is
a real address. If DAT was off, the protection
exception cannot have been due to page pro-
tection.

� Bit positions 0-51 of real locations 168-175
contain bits 0-51 of the effective address that
caused the exception. If DAT was on, indi-
cating that the effective address was to be
translated by DAT, bit positions 62 and 63 of
real locations 168-175, and real location 160,
contain the same information as is stored
during a program interruption due to a page-
translation exception — this information identi-
fies the address space containing the pro-
tected address. Also, bit 60 of real locations
168-175 is zero if the protection exception
was not due to access-list-controlled pro-
tection or is one if the exception was due to
access-list-controlled protection. A one in bit
position 60 indicates that the exception was
not due to page protection. If DAT was off,
the contents of bit positions 60, 62, and 63 of
real locations 168-175, and the contents of
real location 160, are unpredictable. The con-
tents of bit positions 52-59 of real locations
168-175 are always unpredictable.

Bit 61 being zero indicates that the operation was
either suppressed or terminated and that the con-
tents of the remainder of real locations 168-175,
and of real location 160 are unpredictable.

Bit 61 is set to one if the protection exception was
due to access-list-controlled protection or page
protection. Bit 61 may be set to one if the pro-
tection exception was due to low-address pro-
tection or key-controlled protection.

If a protection-exception condition exists due to
either access-list-controlled protection or page pro-
tection but also exists due to either low-address
protection or key-controlled protection, it is unpre-

| dictable whether bit 61 is set to zero or one.

Programming Notes:

1. The suppression-on-protection function is
useful in performing the Posix fork function,
which causes a duplicate address space to be
created. When forking occurs, the control
program causes the same page of different
address spaces to map to a single page frame
of real storage so long as a store in the page
is not attempted. Then, when a store is
attempted in a particular address space, the
control program assigns a unique page frame
to the page in that address space and copies
the contents of the page to the new page
frame. This last action is sometimes called
the copy-on-write function. The control
program sets the page-protection bit to one in
the page-table entry for a page in order to
detect an attempt to store in the page. The
control program may initially set the page-
protection bit to one in a segment-table entry
to detect an attempt to store anywhere in the
the specified segment.

2. Bit 61 being one in real locations 168-175
when DAT was on indicates that the address
that caused a protection exception is virtual.
This indication allows programmed forms of
access-register translation and dynamic
address translation to be performed to deter-
mine whether the exception was due to page
protection as opposed to low-address or key-
controlled protection.

3. The results of suppression on protection are
summarized in Figure 3-4 on page 3-14.

 Chapter 3. Storage 3-13

┌─────┬───┬─────┬─────┬───┬─────────────┐
│ │ │ │ │ │If Bit 61 One│
│LA or│ │ALC │ │ ├────────┬────┤
│Key- │ │or │ │ │Bits 62,│ │
│Cont.│ │Page │Eff. │Bit│63 and │Bit │
│Prot.│DAT│Prot.│Addr.│61 │Loc. 16�│ 6� │
├─────┼───┼─────┼─────┼───┼────────┼────┤
│ No │On │ Yes │Log. │ 1 │ P │ 1A │
│ Yes │On │ Yes │Log. │ U1│ P │ 1A │
│ │ │ │ │ │ │ │
│ Yes │Off│ No │Log. │ U2│ U3 │ U3 │
│ Yes │Off│ No │Real │ U2│ U3 │ U3 │
│ Yes │On │ No │Log. │ U2│ P │ � │
│ Yes │On │ No │Real │ �R│ - │ - │
├─────┴───┴─────┴─────┴───┴────────┴────┤
│Explanation: │
│ │
│ - Immaterial or not applicable. │
│ �R Zero because effective address │
│ is real. │
│ 1A One if bit 61 is set to one │
│ because of access-list- │
│ controlled protection; zero │
│ otherwise. │
│ ALC Access-list-controlled. │
│ LA Low-address. │
│ Log. Logical. │
│ P Predictable. │
│ U1 Unpredictable because low- │
│ address or key-controlled │
│ protection may be recognized │
│ instead of access-list- │
│ controlled or page protection. │
│ U2 Unpredictable because bit 61 is │
│ only required to be set to one │
│ for access-list-controlled or │
│ page protection. │
│ U3 Unpredictable because DAT is │
│ off. │
└───────────────────────────────────────┘

Figure 3-4. Suppression-on-Protection Results

 Reference Recording
Reference recording provides information for use
in selecting pages for replacement. Reference
recording uses the reference bit, bit 5 of the
storage key. The reference bit is set to one each
time a location in the corresponding storage block
is referred to either for fetching or for storing infor-
mation, regardless of whether DAT is on or off.

Reference recording is always active and takes
place for all storage accesses, including those
made by any CPU, any operator facility, or the
channel subsystem. It takes place for implicit
accesses made by the machine, such as those
which are part of interruptions and I/O-instruction
execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

� INSERT STORAGE KEY EXTENDED
� RESET REFERENCE BIT EXTENDED (refer-

ence bit is set to zero)
� SET STORAGE KEY EXTENDED (reference

bit is set to a specified value)

The record provided by the reference bit is sub-
stantially accurate. The reference bit may be set
to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be
made without the reference bit being set to one.
Under certain unusual circumstances, a reference
bit may be set to zero by other than explicit
program action.

 Change Recording
Change recording provides information as to
which pages have to be saved in auxiliary storage
when they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents of the corresponding
storage block to be changed. A store access that
does not change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

1. For the CPU, a store access is prohibited
whenever an access exception exists for that
access, or whenever an exception exists
which is of higher priority than the priority of
an access exception for that access.

2. For the channel subsystem, a store access is
prohibited whenever a key-
controlled-protection violation exists for that
access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, any operator facility, or
the channel subsystem. It takes place for implicit
references made by the machine, such as those
which are part of interruptions.

3-14 z/Architecture Principles of Operation

Change recording does not take place for the
operands of the following instructions since they
directly modify a storage key without modifying a
storage location:

� RESET REFERENCE BIT EXTENDED
� SET STORAGE KEY EXTENDED (change bit

is set to a specified value)

Change bits which have been changed from zeros
to ones are not necessarily restored to zeros on
CPU retry (see “CPU Retry” on page 11-2). See
“Exceptions to Nullification and Suppression” on
page 5-23 for a description of the handling of the
change bit in certain unusual situations.

 Prefixing
Prefixing provides the ability to assign the range of
real addresses 0-8191 to a different block in abso-
lute storage for each CPU, thus permitting more
than one CPU sharing main storage to operate
concurrently with a minimum of interference, espe-
cially in the processing of interruptions.

Prefixing causes real addresses in the range
0-8191 to correspond one-for-one to the block of
8K-byte absolute addresses (the prefix area) iden-
tified by the value in bit positions 0-50 of the prefix
register for the CPU, and the block of real
addresses identified by that value in the prefix reg-
ister to correspond one-for-one to absolute
addresses 0-8191. The remaining real addresses
are the same as the corresponding absolute
addresses. This transformation allows each CPU
to access all of main storage, including the first 8K
bytes and the locations designated by the prefix
registers of other CPUs.

The relationship between real and absolute
addresses is graphically depicted in Figure 3-5 on
page 3-16.

The prefix is a 51-bit quantity contained in bit posi-
tions 0-50 of the prefix register. The register has
the following format:

┌─/──┬──────────────────┬─────────────┐
│����│Prefix Bits 33-5� │/////////////│
└─/──┴──────────────────┴─────────────┘
� 33 51 63

Bits 0-32 of the register are always all zeros. Bits
33-50 of the register can be set and inspected by
the privileged instructions SET PREFIX and
STORE PREFIX, respectively.

SET PREFIX sets bits 33-50 of the prefix register
with the value in bit positions 1-18 of a word in
storage, and it ignores the contents of bit positions
0 and 19-31 of the word. STORE PREFIX stores
the value in bit positions 33-50 of the prefix reg-
ister in bit positions 1-18 of a word in storage, and
it stores zeros in bit positions 0 and 19-31 of the
word.

When the contents of the prefix register are
changed, the change is effective for the next
sequential instruction.

When prefixing is applied, the real address is
transformed into an absolute address by using
one of the following rules, depending on bits 0-50
of the real address:

1. Bits 0-50 of the address, if all zeros, are
replaced with bits 0-50 of the prefix.

2. Bits 0-50 of the address, if equal to bits 0-50
of the prefix, are replaced with zeros.

3. Bits 0-50 of the address, if not all zeros and
not equal to bits 0-50 of the prefix, remain
unchanged.

Only the address presented to storage is trans-
lated by prefixing. The contents of the source of
the address remain unchanged.

The distinction between real and absolute
addresses is made even when the prefix register
contains all zeros, in which case a real address
and its corresponding absolute address are iden-
tical.

 Chapter 3. Storage 3-15

 Prefixing Prefixing
┬ ─┐ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ ┌─ ┬ ─┐ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ ┌─ ┬
│ │ │ │ │ │ │
┼ │──────┼─No Change───────────┼─────�│ ┼ │ │ │ │ ┼
/ │ │ / │ │ /

 ┼ ─┤ │ Apply │ ├─ ┼ │�─────┼───────────No Change─┼──────│ ┼
 │ 1│────────Zeros─┐ ┌──────────────�│2 │ │ │ │
 ┼ ─┤ │ │ │ │ ├─ ┼ │ │ │ │ ┼

/ │ │ │ │ / │ │ /
 ┼ │ │ │ │ │ │ ┼ ─┤ │ Apply │ ├─ ┼
 │ │ │ │ │ │ 2│�──────────────┐ ┌─Zeros────────│1 │
 ┼ │ │ │ │ │ │ ┼ ─┤ │ │ │ │ ├─ ┼

│ │ └────┼────┐ │ │ │ │ │ │ │
┼ │ │ │ │ │ │ ┼ │ │ │ │ │ │ ┼
/ │ │ │ │ / │ ┌────┼────┘ │ /
┼ │──────┼─No Change──┼────┼───┼─────�│ ┼ │ │ │ │ │ │ ┼
│ │ │ │ │ │ │ │ │ │ │
┼ │ │ │ │ │ │ ┼ │�─────┼───┼────┼──No Change─┼──────│ ┼
│ │ │ │ │ │ │ │ │ │ │
┼ │ │ │ │ │ │ ┼ │ │ │ │ │ │ ┼
│ │ │ │ │ │ │ │ │ │ │

8192 ┼ ─┤ │ Apply │ │ │ 8192 ├─ ┼ ─┤ │ │ │ Apply │ ├─ ┼ 8192
│ │────────Prefix─────┘ └─────────�│ │ │�─────────┘ └─────Prefix────────│ │

� ┴ ─┘ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ � └─ ┴ ─┘ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ └─ ┴ �
Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B

(1) Real addresses in which bits 0-50 are equal to bits 0-50 of the prefix for this CPU (A or B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real locations 0-8191.

Figure 3-5. Relationship between Real and Absolute Addresses

 Address Spaces
An address space is a consecutive sequence of
integer numbers (virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro-
ceeds left to right.

When a virtual address is used by a CPU to
access main storage, it is first converted, by
means of dynamic address translation (DAT), to a
real address, and then, by means of prefixing, to
an absolute address. DAT may use from five to
two levels of tables (region first table, region
second table, region third table, segment table,
and page table) as transformation parameters.
The designation (origin and length) of the highest-
level table for a specific address space is called
an address-space-control element, and it is found
for use by DAT in a control register or as specified
by an access register. Alternatively, the address-
space-control element for an address space may
be a real-space designation, which indicates that

DAT is to translate the virtual address simply by
treating it as a real address and without using any
tables.

DAT uses, at different times, the address-
space-control elements in different control regis-
ters or specified by the access registers. The
choice is determined by the translation mode
specified in the current PSW. Four translation
modes are available: primary-space mode,
secondary-space mode, access-register mode,
and home-space mode. Different address spaces
are addressable depending on the translation
mode.

At any instant when the CPU is in the primary-
space mode or secondary-space mode, the CPU
can translate virtual addresses belonging to two
address spaces — the primary address space
and the secondary address space. At any instant
when the CPU is in the access-register mode, it
can translate virtual addresses of up to 16
address spaces — the primary address space
and up to 15 AR-specified address spaces. At
any instant when the CPU is in the home-space

3-16 z/Architecture Principles of Operation

mode, it can translate virtual addresses of the
home address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary
address-space-control element (ASCE). Similarly,
the secondary address space consists of sec-
ondary virtual addresses translated by means of
the secondary ASCE, the AR-specified address
spaces consist of AR-specified virtual addresses
translated by means of AR-specified ASCEs, and
the home address space consists of home virtual
addresses translated by means of the home
ASCE. The primary and secondary ASCEs are in
control registers 1 and 7, respectively. The
AR-specified ASCEs are in control registers 1 and
7 and in table entries called ASN-second-table
entries. The home ASCE is in control register 13.

Changing to Different Address Spaces
A program can cause different address spaces to
be addressable by using the semiprivileged SET
ADDRESS SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction to change
the translation mode to the primary-space mode,
secondary-space mode, access-register mode, or
home-space mode. However, SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST can set the home-space mode
only in the supervisor state. The program can
cause still other address spaces to be address-
able by using other semiprivileged instructions to
change the address-space-control elements in
control registers 1 and 7 and by using unprivileged
instructions to change the contents of the access
registers. Only the privileged LOAD CONTROL
instruction is available for changing the home
address-space-control element in control register
13.

 Address-Space Number
An address space may be assigned an address-
space number (ASN) by the control program. The
ASN designates, within a two-level table structure
in main storage, an ASN-second-table entry con-
taining information about the address space. If
the ASN-second-table entry is marked as valid, it
contains the address-space-control element that
defines the address space.

Under certain circumstances, the semiprivileged
instructions which place a new address-

space-control element in control register 1 or 7
fetch this element from an ASN-second-table
entry. Some of these instructions use an
ASN-translation mechanism which, given an ASN,
can locate the designated ASN-second-table
entry.

The 16-bit unsigned binary format of the ASN
permits 64K unique ASNs.

The ASNs for the primary and secondary address
spaces are assigned positions in control registers.
The ASN for the primary address space, called
the primary ASN, is assigned bits 48-63 in control
register 4, and that for the secondary address
space, called the secondary ASN, is assigned bits
48-63 in control register 3. The registers have the
following formats:

Control Register 4
──┬────────────────┐
│ PASN │

──┴────────────────┘
 48 63

Control Register 3
──┬────────────────┐
│ SASN │

──┴────────────────┘
 48 63

A semiprivileged instruction that loads the primary
or secondary address-space-control element into
the appropriate control register also loads the cor-
responding ASN into the appropriate control reg-
ister.

The ASN for the home address space is not
assigned a position in a control register.

An access register containing the value 0 or 1
specifies the primary or secondary address space,
respectively; and the address-space-control
element specified by the access register is in
control register 1 or 7, respectively. An access
register containing any other value designates an
entry in a table called an access list. The desig-
nated access-list entry contains the real address
of an ASN-second-table entry for the address
space specified by the access register. The
address-space-control element specified by the
access register is in the ASN-second-table entry.
Translating the contents of an access register to
obtain an address-space-control element for use
by DAT does not involve the use of an ASN.

 Chapter 3. Storage 3-17

Note: Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as “storage.”

Programming Note: Because an
ASN-second-table entry is located from an
access-list entry by means of its address instead
of by means of its ASN, the ASN-second-table
entries designated by access-list entries can be
“pseudo” ASN-second-table entries, that is, entries
which are not in the two-level structure able to be
indexed by means of the ASN-translation process.
The number of unique pseudo ASN-second-table
entries can be greater than the number of unique
ASNs and is limited only by the amount of storage
available to be occupied by the ASN-second-table
entries. Thus, in a sense, there is no limit on the
number of possible address spaces.

 ASN Translation
ASN translation is the process of translating a
16-bit ASN to locate the ASN-second-table entry
designated by the ASN. ASN translation is per-
formed as part of PROGRAM TRANSFER with
space switching (PT-ss) and SET SECONDARY
ASN with space switching (SSAR-ss), and it may
be performed as part of LOAD ADDRESS SPACE
PARAMETERS. For PT-ss, the ASN which is
translated replaces the primary ASN in control
register 4. For SSAR-ss, the ASN which is trans-
lated replaces the secondary ASN in control reg-
ister 3. These two translation processes are
called primary ASN translation and secondary
ASN translation, respectively, and both can occur
for LOAD ADDRESS SPACE PARAMETERS.
The ASN-translation process is the same for both
primary and secondary ASN translation; only the
uses of the results of the process are different.

ASN translation may also be performed as part of
PROGRAM RETURN. Primary ASN translation is
performed as part of PROGRAM RETURN with
space switching (PR-ss). Secondary ASN trans-
lation is performed if the secondary ASN restored
by PROGRAM RETURN (PR-ss or PROGRAM
RETURN to current primary) does not equal the
primary ASN restored by PROGRAM RETURN.

PROGRAM CALL with space switching (PC-ss)
performs the equivalent of primary ASN translation
by obtaining a primary ASN and the address of
the corresponding ASN-second-table entry from
an entry-table entry.

The ASN-translation process uses two tables, the
ASN first table and the ASN second table. They
are used to locate the ASN-second-table entry
and a third table, the authority table, which is used
when ASN authorization is performed.

For the purposes of this translation, the 16-bit
ASN is considered to consist of two parts: the
ASN-first-table index (AFX) is the leftmost 10 bits
of the ASN, and the ASN-second-table index
(ASX) is the six rightmost bits. The ASN has the
following format:

ASN
┌──────────┬──────┐
│ AFX │ ASX │
└──────────┴──────┘
� 1� 15

The AFX is used to select an entry from the ASN
first table. The origin of the ASN first table is des-
ignated by the ASN-first-table origin in control reg-
ister 14. The ASN-first-table entry contains the
origin of the ASN second table. The ASX is used
to select an entry from the ASN second table.

As a result of primary ASN translation and during
the operation of PROGRAM CALL with space
switching, the address of the located
ASN-second-table entry (ASTE) is placed in
control register 5 as the new primary-ASTE origin
(PASTEO).

 ASN-Translation Controls

ASN translation is controlled by the
ASN-translation-control bit and the ASN-first-table
origin, both of which reside in control register 14.

Control Register 14
──┬─┬────────────────────┐
│T│ AFTO │

──┴─┴────────────────────┘
 44 63

ASN-Translation Control (T): Bit 44 of control
register 14 is the ASN-translation-control bit. This
bit provides a mechanism whereby the control
program can indicate whether ASN translation can
occur while a particular program is being exe-
cuted, and also whether the execution of
PROGRAM CALL with space switching is allowed.

3-18 z/Architecture Principles of Operation

Bit 44 must be one to allow completion of these
instructions:

� LOAD ADDRESS SPACE PARAMETERS
� PROGRAM CALL with space switching
� PROGRAM RETURN with space switching or

when the restored SASN does not equal the
restored PASN

� PROGRAM TRANSFER with space switching
� SET SECONDARY ASN

Otherwise, a special-operation exception is recog-
nized. The ASN-translation-control bit is exam-
ined in both the problem and the supervisor
states.

ASN-First-Table Origin (AFTO): Bits 45-63 of
control register 14, with 12 zeros appended on the
right, form a 31-bit real address that designates
the beginning of the ASN first table.

 ASN-Translation Tables

The ASN-translation process consists in a two-
level lookup using two tables: an ASN first table
and an ASN second table. These tables reside in
real storage.

 ASN-First-Table Entries
An entry in the ASN first table has the following
format:

┌─┬─────────────────────────┬──────┐
│I│ ASTO │ │
└─┴─────────────────────────┴──────┘
� 1 26 31

The fields in the entry are allocated as follows:

AFX-Invalid Bit (I): Bit 0 controls whether the
ASN second table associated with the
ASN-first-table entry is available. When bit 0 is
zero, ASN translation proceeds by using the des-
ignated ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table Origin (ASTO): Bits 1-25,
with six zeros appended on the right, are used to
form a 31-bit real address that designates the
beginning of the ASN second table.

 ASN-Second-Table Entries
The ASN-second-table entry has a length of 64
bytes, with only the first 32 bytes currently in use.
Bytes 0-31 of the entry have the following format:

┌─┬───────────────────────────┬─┬─┐
│I│ ATO │ │B│
└─┴───────────────────────────┴─┴─┘
� 1 3� 31

┌───────────────┬────────────┬────┐
│ AX │ ATL │ │
└───────────────┴────────────┴────┘
32 48 6� 63

┌─ASCE (RTD, STD, or RSD) Part 1──┐
┌─────────────────────────────────┐
│ RTO, STO, or RSTKO │
└─────────────────────────────────┘
64 95

┌────────RTD or STD Part 2────────┐
┌───────────────┬──┬────┬─┬─┬──┬──┐
│RTO/STO (Cont.)│ │GPSX│R│ │DT│TL│ R=�
└───────────────┴──┴────┴─┴─┴──┴──┘
96 115 118 122 124 127

┌───────────RSD Part 2────────────┐
┌───────────────┬──┬────┬─┬───────┐
│ RSTKO (Cont.) │ │GPSX│R│ │ R=1
└───────────────┴──┴────┴─┴───────┘
96 115 118 122 127

┌───────────────ALD───────────────┐
┌─┬───────────────────────┬───────┐
│ │ ALO │ ALL │
└─┴───────────────────────┴───────┘
128 153 159

┌─────────────────────────────────┐
│ ASTESN │
└─────────────────────────────────┘
16� 191

┌───────────────LTD───────────────┐
┌─┬────────────────────────┬──────┐
│V│ LTO │ LTL │
└─┴────────────────────────┴──────┘
192 217 223

┌─────────────────────────────────┐
│/////////////////////////////////│
└─────────────────────────────────┘
224 255

The fields in bytes 0-31 of the ASN-second-table
entry are allocated as follows. Only the fields that
are used in or as a result of ASN translation or
PROGRAM CALL with space switching are
described in detail.

 Chapter 3. Storage 3-19

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the
ASN-second-table entry is available. When bit 0
is zero, ASN translation proceeds. When the bit is
one, the ASN translation cannot continue.

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Base-Space Bit (B): Bit 31 specifies, when one,
that the address space associated with the
ASN-second-table entry is the base space of a
subspace group. Bit 31 is further described in
“Subspace-Group ASN-Second-Table Entries” on
page 5-58.

Authorization Index (AX): Bits 32-47 are used
in ASN authorization as an index to locate the
authority bits in the authority table. The AX field is
used as a result of primary ASN translation by
PROGRAM RETURN and PROGRAM
TRANSFER and, possibly, LOAD ADDRESS
SPACE PARAMETERS. It is also used by
PROGRAM CALL with space switching. The AX
field is ignored after secondary ASN translation.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular AX falls within the authority table.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control
element (ASCE) that may be a region-table desig-
nation (RTD), a segment-table designation (STD),
or a real-space designation (RSD). (The term
“region-table designation” is used to mean a
region-first-table designation, region-second-table
designation, or region-third-table designation.)
The ASCE field is used as a result of ASN trans-
lation or in PROGRAM CALL with space switching
to replace the primary ASCE (PASCE) or the sec-
ondary ASCE (SASCE). For PROGRAM CALL
with space switching, the ASCE field replaces the
PASCE, bits 0-63 of control register 1. For SET
SECONDARY ASN, the ASCE field replaces the
SASCE, bits 0-63 of control register 7. Each of
these actions may occur independently for LOAD

ADDRESS SPACE PARAMETERS. For
PROGRAM TRANSFER, the ASCE field replaces
both the PASCE and the SASCE. For PROGRAM
RETURN, as a result of primary ASN translation,
the ASCE field replaces the PASCE, and, as a
result of secondary ASN translation, the ASCE
field replaces the SASCE. The contents of the
entire ASCE field are placed in the appropriate
control registers without being inspected for
validity.

The subspace-group-control bit (G), bit 118 of the
ASCE field, indicates, when one, that the ASCE
specifies an address space that is the base space
or a subspace of a subspace group. The bit is
further described in “Subspace-Group
ASN-Second-Table Entries” on page 5-58.

Bit 121 (X) of the ASCE field is the space-switch-
event-control bit. When, in the space-switching
operations of PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER, this bit is
one in control register 1 either before or after the
execution of the instruction, a program interruption
for a space-switch event occurs after the exe-
cution of the instruction is completed. A space-
switch-event program interruption also occurs after
the completion of a SET ADDRESS SPACE
CONTROL, SET ADDRESS SPACE CONTROL
FAST, or RESUME PROGRAM instruction that
changes the translation mode either to or from the
home-space mode when this bit is one in either
control register 1 or control register 13. When, in
LOAD ADDRESS SPACE PARAMETERS, this bit
is one during primary ASN translation, this fact is
indicated by the condition code.

The real-space-control bit (R), bit 122 of the ASCE
field, indicates, when zero, that the ASCE is a
region-table or segment-table designation or,
when one, that the ASCE is a real-space desig-
nation.

When bit 122 is zero, the designation-type-control
bits (DT), bits 124 and 125 of the ASCE field, indi-
cate the designation type of the ASCE. A value
11, 10, 01, or 00 binary of bits 124 and 125 indi-
cates a region-first-table designation, region-
second-table designation, region-third-table desig-
nation, or segment-table designation, respectively.

The other fields in the ASCE (RTO, STO, P, S,
TL, and RSTKO) are described in “Control Reg-
ister 1” on page 3-29.

3-20 z/Architecture Principles of Operation

The linkage-table-designation (LTD) field in the
ASN-second-table entry is described in
“PC-Number Translation Control” on page 5-30.
The access-list-designation (ALD) field and the
ASTE-sequence-number (ASTESN) field are
described in “ASN-Second-Table Entries” on
page 5-48. Bits 224-255 in the ASN-second-table
entry are available for use by programming.

Programming Note: All unused fields in the
ASN-second-table entry, including the unused
fields in bytes 0-31 and all of bytes 32-63, should
be set to zeros. These fields are reserved for
future extensions, and programs which place
nonzero values in these fields may not operate
compatibly on future machines.

 ASN-Translation Process

This section describes the ASN-translation
process as it is performed during the execution of
the space-switching forms of PROGRAM
RETURN, PROGRAM TRANSFER, and SET
SECONDARY ASN, and also in PROGRAM
RETURN when the restored secondary ASN does
not equal the restored primary ASN. ASN trans-
lation for LOAD ADDRESS SPACE PARAME-
TERS is the same except that AFX-translation and

ASX-translation exceptions do not occur; such
conditions are instead indicated by the condition
code. Translation of an ASN is performed by
means of two tables, an ASN first table and an
ASN second table, both of which reside in main
storage.

The ASN first index is used to select an entry from
the ASN first table. This entry designates the
ASN second table to be used.

The ASN second index is used to select an entry
from the ASN second table.

If the I bit is one in either the ASN-first-table entry
or the ASN-second-table entry, the entry is invalid,
and the ASN-translation process cannot be com-
pleted. An AFX-translation exception or
ASX-translation exception is recognized.

Whenever access to main storage is made during
the ASN-translation process for the purpose of
fetching an entry from an ASN first table or ASN
second table, key-controlled protection does not
apply.

The ASN-translation process is shown in
Figure 3-6 on page 3-22.

 Chapter 3. Storage 3-21

 ASN
 ┌────┬─┬─────────┐ ┌─────┬───┐
CR14 │ │T│ AFTO │ │ AFX │ASX│
 └────┴─┴─────┬───┘ └──┬──┴─┬─┘
 (x4�96)│ (x4)│ │(x64)
 │ │ │
┌─────────────────┘ │ │
│ │ │
│ ┌───────────────────────┘ │
│ │ │
│ � │
│ ┌─┐ ASN First Table │
└────�│+│ ┌─────────────────┐ │
 └┬┘ │ │ │
 │ │ │ │
 │ │ │ │
 └─�├─┬─────────────┬─┤ │
 R │I│ ASTO │ │ │
 ├─┴──────┬──────┴─┤ │
 │ │(x64) │ │

│ │ │ │
 └────────┼────────┘ │
 │ │
┌──────────────────┘ │
│ │
│ ┌────────────────────────────┘
│ │
│ �
│ ┌─┐ ASN Second Table
└────�│+│ ┌───┐
 └┬┘ │ │
 │ │ │
 │ │ │
 └─�├─┬────────────┬──┬────────┬──────┬─┬─────────────────────────────────┤

R │I│ ATO │ B│ AX │ ATL │ │ ASCE │�
 ├─┴────────────┴──┴────────┴──────┴─┴─────────────────────────────────┤
 │ │
 │ │
 └───┘

R: Address is real
�: Last 48 bytes of ASTE are not shown

Figure 3-6. ASN Translation

 ASN-First-Table Lookup
The AFX portion of the ASN, in conjunction with
the ASN-first-table origin, is used to select an
entry from the ASN first table.

The 31-bit real address of the ASN-first-table entry
is obtained by appending 12 zeros on the right to
the AFT origin contained in bit positions 45-63 of
control register 14 and adding the AFX portion
with two rightmost and 19 leftmost zeros
appended. This addition cannot cause a carry
into bit position 0. The 31-bit address is formed
and used regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

All four bytes of the ASN-first-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the ASN-first-table entry desig-
nates a location which is not available in the con-
figuration, an addressing exception is recognized,
and the operation is suppressed.

Bit 0 of the four-byte AFT entry specifies whether
the corresponding AST is available. If this bit is
one, an AFX-translation exception is recognized.
The entry fetched from the AFT is used to access
the AST.

3-22 z/Architecture Principles of Operation

 ASN-Second-Table Lookup
The ASX portion of the ASN, in conjunction with
the ASN-second-table origin contained in the
ASN-first-table entry, is used to select an entry
from the ASN second table.

The 31-bit real address of the ASN-second-table
entry is obtained by appending six zeros on the
right to bits 1-25 of the ASN-first-table entry and
adding the ASX with six rightmost and 19 leftmost
zeros appended. When a carry into bit position 0
occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 2�� - 1 to
zero. The 31-bit address is formed and used
regardless of whether the current PSW specifies
the 24-bit, 31-bit, or 64-bit addressing mode.

The fetch of the 64 bytes of the ASN-second-table
entry appears to be word concurrent as observed
by other CPUs, with the leftmost word fetched
first. The order in which the remaining 15 words
are fetched is unpredictable. The fetch access is
not subject to protection. When the storage
address which is generated for fetching the
ASN-second-table entry designates a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed.

Bit 0 of the ASN-second-table entry specifies
whether the address space is accessible. If this
bit is one, an ASX-translation exception is recog-
nized.

Recognition of Exceptions during ASN
Translation
The exceptions which can be encountered during
the ASN-translation process are collectively
referred to as ASN-translation exceptions. A list
of these exceptions and their priorities is given in
Chapter 6, “Interruptions.”

 ASN Authorization
ASN authorization is the process of testing
whether the program associated with the current
authorization index is permitted to establish a par-
ticular address space. The ASN authorization is
performed as part of PROGRAM TRANSFER with
space switching (PT-ss) and SET SECONDARY

ASN with space switching (SSAR-ss) and may be
performed as part of LOAD ADDRESS SPACE
PARAMETERS. ASN authorization is performed
after the ASN-translation process for these
instructions.

ASN authorization is also performed as part of
PROGRAM RETURN when the restored sec-
ondary ASN does not equal the restored primary
ASN. ASN authorization of the restored sec-
ondary ASN is performed after ASN translation of
the restored secondary ASN.

When performed as part of PT-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the primary ASN and is called
primary-ASN authorization. When performed as
part of LOAD ADDRESS SPACE PARAMETERS,
PROGRAM RETURN, or SSAR-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the secondary ASN and is called
secondary-ASN authorization.

The ASN authorization is performed by means of
an authority table in real storage which is desig-
nated by the authority-table-origin and authority-
table-length fields in the ASN-second-table entry.

 ASN-Authorization Controls

ASN authorization uses the authority-table origin
and the authority-table length from the
ASN-second-table entry, together with an authori-
zation index.

Control Register 4
For PT-ss and SSAR-ss, the current contents of
control register 4 include the authorization index.
For LOAD ADDRESS SPACE PARAMETERS and
PROGRAM RETURN, the value which will
become the new contents of control register 4 is
used. The register has the following format:

──┬────────────────┬──
│ AX │

──┴────────────────┴──
 32 48

Authorization Index (AX): Bits 32-47 of control
register 4 are used as an index to locate the
authority bits in the authority table.

 Chapter 3. Storage 3-23

 ASN-Second-Table Entry
The ASN-second-table entry which is fetched as
part of the ASN translation process contains infor-
mation which is used to designate the authority
table. An entry in the ASN second table has the
following format:

┌─┬──────────────────────────────┬──┐
│ │ ATO │ B│
└─┴──────────────────────────────┴──┘
� 1 31

┌─────────────────┬────────────┬────┬──
│ │ ATL │ │
└─────────────────┴────────────┴────┴──
32 48 6� 64

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is equal to
one more than the ATL value. The contents of
the length field are used to establish whether the
entry designated by the authorization index falls
within the authority table.

 Authority-Table Entries

The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

┌──┬──┬──┬──┐
│PS│PS│PS│PS│
└──┴──┴──┴──┘
� 7

The fields are allocated as follows:

Primary Authority (P): The left bit of an
authority-table entry controls whether the program
with the authorization index corresponding to the
entry is permitted to establish the address space
as a primary address space. If the P bit is one,

the establishment is permitted. If the P bit is zero,
the establishment is not permitted.

Secondary Authority (S): The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is per-
mitted to establish the address space as a sec-
ondary address space. If the S bit is one, the
establishment is permitted. If the S bit is zero, the
establishment is not permitted.

The authority table is also used in the extended-
authorization process, as part of access-register
translation. Extended authorization is described in
“Authorizing the Use of the Access-List Entry” on
page 5-53.

 ASN-Authorization Process

This section describes the ASN-authorization
process as it is performed during the execution of
PROGRAM TRANSFER with space switching and
SET SECONDARY ASN with space switching.
For these two instructions, the ASN-authorization
process is performed by using the authorization
index currently in control register 4. Secondary
authorization for PROGRAM RETURN, when the
restored secondary ASN does not equal the
restored primary ASN, and for LOAD ADDRESS
SPACE PARAMETERS is the same, except that
the value which will become the new contents of
control register 4 is used for the authorization
index. Also, for LOAD ADDRESS SPACE
PARAMETERS, a secondary-authority exception
does not occur. Instead, such a condition is indi-
cated by the condition code.

The ASN-authorization process is performed by
using the authorization index, in conjunction with
the authority-table origin and length from the AST
entry, to select an authority-table entry. The entry
is fetched, and either the primary- or the
secondary-authority bit is examined, depending on
whether the primary- or
secondary-ASN-authorization process is being
performed. The ASN-authorization process is
shown in Figure 3-7 on page 3-25.

3-24 z/Architecture Principles of Operation

 ┌───────────────┬───────┬───────┐
 CR4 │ │ AX │ │
 └───────────────┴───┬───┴───────┘
 │(x1/4)
 │
 ┌─────────────────────────────┘
 │
 │

│ ASN Second Table
 │ ┌───┐
 │ │ │
 │ │ │
 │ │ASN-Second-Table Entry │
 │ ├─┬────────────┬──┬────────┬──────┬─┬─────────────────────────────────┤

│ │I│ ATO │ B│ AX │ ATL │ │ ASCE │�
 │ ├─┴──────┬─────┴──┴────────┴──────┴─┴─────────────────────────────────┤
 │ │ │(x4) │
 │ │ │ │
 │ └────────┼──┘
┌─────┼────────────┘
│ │
│ │
│ │
│ �
│ ┌─┐ Authority Table
└───�│+│ ┌───┐

└┬┘ │ │ For primary ASN authorization (PT-ss only):
│ │ │ Primary-authority exception if P bit
│ │ │ zero or table length exceeded.

 └─�├─┬─┤
R │P│S│ For secondary ASN authorization (PR and SSAR-ss only):

├─┴─┤ Secondary-authority exception if S bit
│ │ zero or table length exceeded.

 │ │
└───┘ For secondary ASN authorization (LASP only):

Set condition code 2 if S bit zero or
table length exceeded.

R: Address is real
�: Last 48 bytes of ASTE are not shown

Figure 3-7. ASN Authorization

 Authority-Table Lookup
The authorization index, in conjunction with the
authority-table origin contained in the
ASN-second-table entry, is used to select an entry
from the authority table.

The authorization index is contained in bit posi-
tions 32-47 of control register 4.

Bit positions 1-29 of the AST entry contain the left-
most 29 bits of the 31-bit real address of the
authority table (ATO), and bit positions 48-59
contain the length of the authority table (ATL).

The 31-bit real address of a byte in the authority
table is obtained by appending two zeros on the
right to the authority-table origin and adding the 14
leftmost bits of the authorization index with 17

zeros appended on the left. When a carry into bit
position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 2�� - 1 to zero. The 31-bit address is
formed and used regardless of whether the
current PSW specifies the 24-bit, 31-bit, or 64-bit
addressing mode.

As part of the authority-table-entry-lookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the authority-table length is
exceeded, condition code 2 is set.

 Chapter 3. Storage 3-25

The fetch access to the byte in the authority table
is not subject to protection. When the storage
address which is generated for fetching the byte
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

The byte contains four authority-table entries of
two bits each. The rightmost two bits of the
authorization index, bits 46 and 47 of control reg-
ister 4, are used to select one of the four entries.
The left or right bit of the entry is then tested,
depending on whether the authorization test is for
a primary ASN or a secondary ASN. The fol-
lowing table shows the bit which is selected from
the byte as a function of bits 46 and 47 of the
authorization index and the instruction PT-ss,
SSAR-ss, PROGRAM RETURN, or LOAD
ADDRESS SPACE PARAMETERS.

┌────────────────┬───────────────────────────┐
│ │ Bit Selected from │
│ │ Authority-Table Byte │
│ │ for Test │
│ Authorization- ├────────────┬──────────────┤
│ Index Bits │ │ S Bit │
│ │ P Bit │ (SSAR-ss, │
│ 46 47 │ (PT-ss) │ PR, or LASP) │
├────────────────┼────────────┼──────────────┤
│ � � │ � │ 1 │
│ │ │ │
│ � 1 │ 2 │ 3 │
│ │ │ │
│ 1 � │ 4 │ 5 │
│ │ │ │
│ 1 1 │ 6 │ 7 │
└────────────────┴────────────┴──────────────┘

If the selected bit is one, the ASN is authorized,
and the appropriate fields in the AST entry are
loaded into the appropriate control registers. If the
selected bit is zero, the ASN is not authorized,
and a primary-authority exception is recognized for
PT-ss or a secondary-authority exception is recog-
nized for SSAR-ss or PROGRAM RETURN. For
LOAD ADDRESS SPACE PARAMETERS, when
the ASN is not authorized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization
The exceptions which can be encountered during
the primary- and secondary-ASN-authorization
processes and their priorities are described in the
definitions of the instructions in which ASN author-
ization is performed.

Programming Note: The primary- and
secondary-authority exceptions cause nullification

in order to permit dynamic modification of the
authority table. Thus, when an address space is
created or “swapped in,” the authority table can
first be set to all zeros and the appropriate
authority bits set to one only when required.

Dynamic Address Translation
Dynamic address translation (DAT) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device,
and at a later time return the program and the
data to different main-storage locations for
resumption of execution. The transfer of the
program and its data between main and auxiliary
storage may be performed piecemeal, and the
return of the information to main storage may take
place in response to an attempt by the CPU to
access it at the time it is needed for execution.
These functions may be performed without change
or inspection of the program and its data, do not
require any explicit programming convention for
the relocated program, and do not disturb the exe-
cution of the program except for the time delay
involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein
storage appears to be larger than the main
storage which is available in the configuration.
This apparent main storage is referred to as virtual
storage, and the addresses used to designate
locations in the virtual storage are referred to as
virtual addresses. The virtual storage of a user
may far exceed the size of the main storage which
is available in the configuration and normally is
maintained in auxiliary storage. The virtual
storage is considered to be composed of blocks of
addresses, called pages. Only the most recently
referred-to pages of the virtual storage are
assigned to occupy blocks of physical main
storage. As the user refers to pages of virtual
storage that do not appear in main storage, they
are brought in to replace pages in main storage
that are less likely to be needed. The swapping of
pages of storage may be performed by the oper-
ating system without the user's knowledge.

The sequence of virtual addresses associated with
a virtual storage is called an address space. With
appropriate support by an operating system, the

3-26 z/Architecture Principles of Operation

dynamic-address-translation facility may be used
to provide a number of address spaces. These
address spaces may be used to provide degrees
of isolation between users. Such support can
consist of a completely different address space for
each user, thus providing complete isolation, or a
shared area may be provided by mapping a
portion of each address space to a single common
storage area. Also, instructions are provided
which permit a semiprivileged program to access
more than one such address space. Dynamic
address translation provides for the translation of
virtual addresses from multiple different address
spaces without requiring that the translation
parameters in the control registers be changed.
These address spaces are called the primary
address space, secondary address space, and
AR-specified address spaces. A privileged
program can also cause the home address space
to be accessed.

In the process of replacing blocks of main storage
by new information from an external medium, it
must be determined which block to replace and
whether the block being replaced should be
recorded and preserved in auxiliary storage. To
aid in this decision process, a reference bit and a
change bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of CCWs and IDAWs in I/O operations. The
CCW-indirect-data-addressing facility is provided
to aid I/O operations in a virtual-storage environ-
ment.

Address computation can be carried out in the
24-bit, 31-bit, or 64-bit addressing mode. When
address computation is performed in the 24-bit or
31-bit addressing mode, 40 or 33 zeros, respec-
tively, are appended on the left to form a 64-bit
address. Therefore, the resultant logical address
is always 64 bits in length. The real address that
is formed by dynamic address translation, and the
absolute address that is then formed by prefixing,
are always 64 bits in length.

Dynamic address translation is the process of
translating a virtual address during a storage refer-
ence into the corresponding real address. The
virtual address may be a primary virtual address,
secondary virtual address, AR-specified virtual
address, or home virtual address. These

addresses are translated by means of the primary,
the secondary, an AR-specified, or the home
address-space-control element, respectively. After
selection of the appropriate address-space-control
element, the translation process is the same for all
of the four types of virtual address. An address-
space-control element may be a segment-table
designation specifying a 2G-byte address space, a
region-table designation specifying a 4T-byte,
8P-byte, or 16E-byte space, or a real-space desig-
nation specifying a 16E-byte space. (The letters
K, M, G, T, P, and E represent kilo, 2��, mega,
2��, giga, 2��, tera, 2��, peta, 2��, and exa, 2��,
respectively.) A segment-table designation or
region-table designation causes translation to be
performed by means of tables established by the
operating system in real or absolute storage. A
real-space designation causes the virtual address
simply to be treated as a real address, without the
use of tables in storage.

In the process of translation when using a
segment-table designation or a region-table desig-
nation, three types of units of information are
recognized — regions, segments, and pages. A
region is a block of sequential virtual addresses
spanning 2G bytes and beginning at a 2G-byte
boundary. A segment is a block of sequential
virtual addresses spanning 1M bytes and begin-
ning at a 1M-byte boundary. A page is a block of
sequential virtual addresses spanning 4K bytes
and beginning at a 4K-byte boundary.

The virtual address, accordingly, is divided into
four principal fields. Bits 0-32 are called the
region index (RX), bits 33-43 are called the
segment index (SX), bits 44-51 are called the
page index (PX), and bits 52-63 are called the
byte index (BX). The virtual address has the fol-
lowing format:

┌─/──┬───────────┬────────┬────────────┐
│ RX │ SX │ PX │ BX │
└─/──┴───────────┴────────┴────────────┘
� 33 44 52 63

As determined by its address-space-control
element, a virtual address space may be a
2G-byte space consisting of one region, or it may
be up to a 16E-byte space consisting of up to 8G
regions. The RX part of a virtual address applying
to a 2G-byte address space must be all zeros;
otherwise, an exception is recognized.

The RX part of a virtual address is itself divided
into three fields. Bits 0-10 are called the region

 Chapter 3. Storage 3-27

first index (RFX), bits 11-21 are called the region
second index (RSX), and bits 22-32 are called the
region third index (RTX). Bits 0-32 of the virtual
address have the following format:

┌───────────┬───────────┬───────────┬──
│ RFX │ RSX │ RTX │
└───────────┴───────────┴───────────┴──
� 11 22 33

A virtual address in which the RTX is the leftmost
significant part (a 42-bit address) is capable of
addressing 4T bytes (2K regions), one in which
the RSX is the leftmost significant part (a 53-bit
address) is capable of addressing 8P bytes (4M
regions), and one in which the RFX is the leftmost
significant part (a 64-bit address) is capable of
addressing 16E bytes (8G regions).

A virtual address in which the RX is always zero
can be translated into real addresses by means of
two translation tables: a segment table and a
page table. If the RX may be nonzero, from one
to three additional translation tables are required,
as follows. If the RFX may be nonzero, a region
first table, region second table, and region third
table are required. If the RFX is always zero but
the RSX may be nonzero, a region second table
and region third table are required. If the RFX
and RSX are always zero but the RTX may be
nonzero, a region third table is required. An
exception is recognized if the address-
space-control element for an address space does
not designate the highest level of table (beginning
with the region first table and continuing down-
ward to the segment table) needed to translate a
reference to the address space.

A region first table, region second table, or region
third table is sometimes referred to simply as a
region table. Similarly, a region-first-table desig-
nation, region-second-table designation, or region-
third-table designation is sometimes referred to as
a region-table designation.

The region, segment, and page tables reflect the
current assignment of real storage. The assign-
ment of real storage occurs in units of pages, the
real locations being assigned contiguously within a
page. The pages need not be adjacent in real
storage even though assigned to a set of sequen-
tial virtual addresses.

To improve performance, translation normally is
performed by means of table copies maintained in
a special buffer called the translation-lookaside
buffer (TLB). The TLB may also contain entries
that provide the virtual-equals-real translation
specified by a real-space designation.

 Translation Control

Address translation is controlled by three bits in
the PSW and by a set of bits referred to as the
translation parameters. The translation parame-
ters are in control registers 0, 1, 7, and 13. Addi-
tional controls are located in the translation tables.

Additional controls are provided as described in
Chapter 5, “Program Execution.” These controls
determine whether the contents of each access
register can be used to obtain an address-
space-control element for use by DAT.

 Translation Modes
The three bits in the PSW that control dynamic
address translation are bit 5, the DAT-mode bit,
and bits 16 and 17, the address-space-control
bits. When the DAT-mode bit is zero, then DAT is
off, and the CPU is in the real mode. When the
DAT-mode bit is one, then DAT is on, and the
CPU is in the translation mode designated by the
address-space-control bits: 00 designates the
primary-space mode, 01 designates the access-
register mode, 10 designates the secondary-space
mode, and 11 designates the home-space mode.
The various modes are shown in Figure 3-8,
along with the handling of addresses in each
mode.

┌────────┬───┬─────────────────────┬─────────────────────┐
│ │ │ │Handling of Addresses│
│PSW Bit │ │ ├───────────┬─────────┤
├──┬──┬──┤ │ │Instruction│ Logical │
│ 5│16│17│DAT│ Mode │ Addresses │Addresses│
├──┼──┼──┼───┼─────────────────────┼───────────┼─────────┤
│ �│ �│ �│Off│Real mode │ Real │Real │
│ �│ �│ 1│Off│Real mode │ Real │Real │
│ �│ 1│ �│Off│Real mode │ Real │Real │
│ �│ 1│ 1│Off│Real mode │ Real │Real │
│ 1│ �│ �│On │Primary-space mode │ Primary │Primary │
│ │ │ │ │ │ virtual │ virtual│
│ 1│ �│ 1│On │Access-register mode │ Primary │AR-speci-│
│ │ │ │ │ │ virtual │ fied │
│ │ │ │ │ │ │ virtual│
│ 1│ 1│ �│On │Secondary-space mode │ Primary │Secondary│
│ │ │ │ │ │ virtual │ virtual│
│ 1│ 1│ 1│On │Home-space mode │ Home │Home │
│ │ │ │ │ │ virtual │ virtual│
└──┴──┴──┴───┴─────────────────────┴───────────┴─────────┘

Figure 3-8. Translation Modes

3-28 z/Architecture Principles of Operation

Control Register 0
One bit is provided in control register 0 for use in
controlling dynamic address translation. The bit is
assigned as follows:

──┬─┬──
 │S│
 │S│
──┴─┴──
 37

Secondary-Space Control (SS): Bit 37 of
control register 0 is the secondary-space-control
bit. When this bit is zero and execution of MOVE
TO PRIMARY, MOVE TO SECONDARY, or SET
ADDRESS SPACE CONTROL is attempted, a
special-operation exception is recognized. When
this bit is one, it indicates that the region table or
segment table designated by the secondary
address-space-control element is attached when
the CPU is in the primary-space mode.

Control Register 1
Control register 1 contains the primary address-
space-control element (PASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Primary Region-Table or Segment-Table
Designation (R=�)
┌───────────/───────────┬──┬─┬─┬─┬─┬─┬─┬──┬──┐
│ Primary Region-Table │ │ │ │ │ │ │ │ │ │
│or Segment-Table Origin│ │G│P│S│X│R│ │DT│TL│
└───────────/───────────┴──┴─┴─┴─┴─┴─┴─┴──┴──┘
� 52 54 58 6� 63

Primary Real-Space Designation (R=1)
┌───────────/───────────┬──┬─┬─┬─┬─┬─┬─────┐
│ Primary Real-Space │ │ │ │ │ │ │ │
│ Token Origin │ │G│P│S│X│R│ │
└───────────/───────────┴──┴─┴─┴─┴─┴─┴─────┘
� 52 54 58 63

The fields in the primary address-space-control
element are allocated as follows:

Primary Region-Table or Segment-Table
Origin: Bits 0-51 of the primary region-table or
segment-table designation in control register 1,
with 12 zeros appended on the right, form a 64-bit
address that designates the beginning of the
primary region table or segment table. It is unpre-
dictable whether the address is real or absolute.
This table is called the primary region table or
segment table since it is used to translate virtual
addresses in the primary address space.

Primary Subspace-Group Control (G): Bit 54
of control register 1, when one, indicates that the
address space specified by the PASCE is the
base space or a subspace of a subspace group.
When bit 54 is zero, the address space is not in a
subspace group.

Primary Private-Space Control (P): If bit 55 of
control register 1 is one, then (1) a one value of
the common-segment bit in a translation-
lookaside-buffer (TLB) representation of a
segment-table entry prevents the entry and the
TLB page-table copy it designates from being
used when translating references to the primary
address space, even with a match between the
table or token origin in control register 1 and the
table origin in the TLB entry, (2) low-address pro-
tection and fetch-protection override do not apply
to the primary address space; and (3) a
translation-specification exception is recognized if
a reference to the primary address space is trans-
lated by means of a segment-table entry in
storage and the common-segment bit is one in the
entry. Item 2 in the above list applies even when
the contents of control register 1 are a real-space
designation.

Programming Note: With respect to item 1 in
the above list when the contents of control register
1 are a real-space designation, a one value of the
common-segment bit in a TLB representation of a
segment-table entry prevents the entry and the
TLB page-table copy it designates from being
used regardless of the value of the private-space
control in the real-space designation.

Primary Storage-Alteration-Event Control (S):
When the storage-alteration-space control in
control register 9 is one, bit 56 of control register 1
specifies, when one, that the primary address
space is one for which storage-alteration events
can occur. Bit 56 is examined when the PASCE
is used to perform dynamic-address translation for
a storage-operand store reference. Bit 56 is
ignored when the storage-alteration-space control
is zero.

Primary Space-Switch-Event Control (X):
When bit 57 of control register 1 is one:

� A space-switch-event program interruption
occurs when execution of the space-switching
form of PROGRAM CALL (PC-ss),
PROGRAM RETURN (PR-ss), or PROGRAM
TRANSFER (PT-ss) is completed. The inter-

 Chapter 3. Storage 3-29

ruption occurs if bit 57 is one either before or
after the operation.

� A space-switch-event program interruption
occurs upon completion of a RESUME
PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE
CONTROL FAST instruction that changes the
address space from which instructions are
fetched either to or from the home address
space; that is, when instructions are fetched
from the home address space either before or
after the operation but not both before and
after the operation.

� Condition code 3 is set by LOAD ADDRESS
SPACE PARAMETERS.

Primary Real-Space Control (R): If bit 58 of
control register 1 is zero, the register contains a
region-table or segment-table designation. If bit
58 is one, the register contains a real-space des-
ignation. When bit 58 is one, a one value of the
common-segment bit in a translation-
lookaside-buffer (TLB) representation of a
segment-table entry prevents the entry and the
TLB page-table copy it designates from being
used when translating references to the primary
address space, even with a match between the
token origin in control register 1 and the table
origin in the TLB entry.

Primary Designation-Type Control (DT): When
R is zero, the type of table designation in control
register 1 is specified by bits 60 and 61 in the reg-
ister, as follows:

When R is zero, bits 60 and 61 must be 11 binary
when an attempt is made to use the PASCE to
translate a virtual address in which the leftmost
one bit is in bit positions 0-10 of the address.
Similarly, bits 60 and 61 must be 11 or 10 binary
when the leftmost one bit is in bit positions 11-21
of the address, and they must be 11, 10, or 01
binary when the leftmost one bit is in bit positions
22-32 of the address. Otherwise, an ASCE-type
exception is recognized.

Primary Region-Table or Segment-Table
Length (TL): Bits 62 and 63 of the primary
region-table designation or segment-table desig-
nation in control register 1 specify the length of
the primary region table or segment table in units
of 4,096 bytes, thus making the length of the
region table or segment table variable in multiples
of 512 entries. The length of the primary region
table or segment table, in units of 4,096 bytes, is
one more than the TL value. The contents of the
length field are used to establish whether the
portion of the virtual address (RFX, RSX, RTX, or
SX) to be translated by means of the table desig-
nates an entry that falls within the table.

Primary Real-Space Token Origin: Bits 0-51 of
the primary real-space designation in control reg-
ister 1, with 12 zeros appended on the right, form
a 64-bit address that may be used in forming and
using TLB entries that provide a virtual-equals-real
translation for references to the primary address
space. Although this address is used only as a
token and is not used to perform a storage refer-
ence, it still must be a valid address; otherwise, an
incorrect TLB entry may be used when the con-
tents of control register 1 are used.

The following bits of control register 1 are not
assigned and are ignored: bits 52, 53, and 59 if
the register contains a region-table designation or
segment-table designation, and bits 52, 53 and
59-63 if the register contains a real-space desig-
nation.

Control Register 7
Control register 7 contains the secondary address-
space-control element (SASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Secondary Region-Table or Segment-Table
Designation (R=�)
┌───────────/───────────┬──┬─┬─┬─┬─┬─┬─┬──┬──┐
│Secondary Region-Table │ │ │ │ │ │ │ │ │ │
│or Segment-Table Origin│ │G│P│S│ │R│ │DT│TL│
└───────────/───────────┴──┴─┴─┴─┴─┴─┴─┴──┴──┘
� 52 54 58 6� 63

Secondary Real-Space Designation (R=1)
┌───────────/───────────┬──┬─┬─┬─┬─┬─┬─────┐
│ Secondary Real-Space │ │ │ │ │ │ │ │
│ Token Origin │ │G│P│S│ │R│ │
└───────────/───────────┴──┴─┴─┴─┴─┴─┴─────┘
� 52 54 58 63

The secondary region-table origin, secondary
segment-table origin, secondary subspace-group

Bits 60
and 61 Designation Type

11 Region-first-table
10 Region-second-table
01 Region-third-table
00 Segment-table

3-30 z/Architecture Principles of Operation

control (G), secondary private-space control (P),
secondary storage-alteration-event control (S),
secondary real-space control (R), secondary
designation-type control (DT), secondary region-
table or segment-table length (TL), and secondary
real-space token origin in control register 7 are
defined the same as the fields in the same bit
positions in control register 1, except that control
register 7 applies to the secondary address space.

The following bits of control register 7 are not
assigned and are ignored: bits 52, 53, 57, and 59
if the register contains a region-table designation
or segment-table designation, and bits 52, 53, 57,
and 59-63 if the register contains a real-space
designation.

Control Register 13
Control register 13 contains the home address-
space-control element (HASCE). The register has
one of the following two formats, depending on the
real-space-control bit (R) in the register:

Home Region-Table or Segment-Table
Designation (R=�)
┌───────────/───────────┬──┬─┬─┬─┬─┬─┬─┬──┬──┐
│ Home Region-Table or │ │ │ │ │ │ │ │ │ │
│ Segment-Table Origin │ │ │P│S│X│R│ │DT│TL│
└───────────/───────────┴──┴─┴─┴─┴─┴─┴─┴──┴──┘
� 52 54 58 6� 63

Home Real-Space Designation (R=1)
┌───────────/───────────┬──┬─┬─┬─┬─┬─┬─────┐
│ Home Real-Space │ │ │ │ │ │ │ │
│ Token Origin │ │ │P│S│X│R│ │
└───────────/───────────┴──┴─┴─┴─┴─┴─┴─────┘
� 52 54 58 63

Home Space-Switch-Event Control (X): When
bit 57 of control register 13 is one, a space-
switch-event program interruption occurs upon
completion of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST instruction that changes
the address space from which instructions are
fetched either to or from the home address space;
that is, when instructions are fetched from the
home address space either before or after the
operation but not both before and after the opera-
tion.

The home region-table origin, home segment-table
origin, home private-space control (P), home
storage-alteration-event control (S), home real-

space control (R), home designation-type control
(DT), home region-table or segment-table length
(TL), and home real-space token origin in control
register 13 are defined the same as the fields in
the same bit positions in control register 1, except
that control register 13 applies to the home
address space.

The following bits of control register 13 are not
assigned and are ignored: bits 52-54 and 59 if
the register contains a region-table designation or
segment-table designation, and bits 52-54 and
59-63 if the register contains a real-space desig-
nation.

Programming Notes:

1. The validity of the information loaded into a
control register, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa-
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when

| INVALIDATE DAT TABLE ENTRY, INVALI-
DATE PAGE TABLE ENTRY, LOAD REAL
ADDRESS, or STORE REAL ADDRESS is
executed. The information is not considered
to be used when the PSW specifies trans-
lation but an I/O, external, restart, or machine-
check interruption occurs before an instruction
is executed, or when the PSW specifies the
wait state.

 Translation Tables

When the address-space-control element (ASCE)
used in a translation is a region-first-table desig-
nation, the translation process consists in a five-
level lookup using five tables: a region first table,
a region second table, a region third table a
segment table, and a page table. These tables
reside in real or absolute storage. When the
ASCE is a region-second-table designation,
region-third-table designation, or segment-table
designation, the lookups in the levels of tables
above the designated level are omitted, and the
higher-level tables themselves are omitted.

 Chapter 3. Storage 3-31

 Region-Table Entries
The term “region-table entry” means a region-
first-table entry, region-second-table entry, or
region-third-table entry.

The entries fetched from the region first table,
region second table, and region third table have
the following formats. The level (first, second, or
third) of the table containing an entry is identified
by the table-type (TT) bits in the entry.

Region-First-Table Entry (TT=11)
┌───────────/───────────┬────┬──┬─┬─┬──┬──┐
│ Region-Second- │ │ │ │ │ │ │
│ Table Origin │ │TF│I│ │TT│TL│
└───────────/───────────┴────┴──┴─┴─┴──┴──┘
� 52 56 58 6� 63

Region-Second-Table Entry (TT=1�)
┌───────────/───────────┬────┬──┬─┬─┬──┬──┐
│ Region-Third- │ │ │ │ │ │ │
│ Table Origin │ │TF│I│ │TT│TL│
└───────────/───────────┴────┴──┴─┴─┴──┴──┘
� 52 56 58 6� 63

Region-Third-Table Entry (TT=�1)
┌───────────/───────────┬────┬──┬─┬─┬──┬──┐
│ Segment-Table │ │ │ │ │ │ │
│ Origin │ │TF│I│ │TT│TL│
└───────────/───────────┴────┴──┴─┴─┴──┴──┘
� 52 56 58 6� 63

The fields in the three levels of region-table
entries are allocated as follows:

Region-Second-Table Origin, Region-Third-
Table Origin, and Segment-Table Origin: A
region-first-table entry contains a region-
second-table origin. A region-second-table entry
contains a region-third-table origin. A region-
third-table entry contains a segment-table origin.
The following description applies to each of the
three origins. Bits 0-51 of the entry, with 12 zeros
appended on the right, form a 64-bit address that
designates the beginning of the next-lower-level
table. It is unpredictable whether the address is
real or absolute.

Region-Second-Table Offset, Region-Third-
Table Offset, and Segment-Table Offset (TF):
A region-first-table entry contains a region-
second-table offset. A region-second-table entry
contains a region-third-table offset. A region-
third-table entry contains a segment-table offset.
The following description applies to each of the
three offsets. Bits 56 and 57 of the entry specify
the length of a portion of the next-lower-level table
that is missing at the beginning of the table, that
is, the bits specify the location of the first entry

actually existing in the next-lower-level table. The
bits specify the length of the missing portion in
units of 4,096 bytes, thus making the length of the
missing portion variable in multiples of 512 entries.
The length of the missing portion, in units of 4,096
bytes, is equal to the TF value. The contents of
the offset field, in conjunction with the length field,
bits 62 and 63, are used to establish whether the
portion of the virtual address (RSX, RTX, or SX)
to be translated by means of the next-lower-level
table designates an entry that actually exists in the
table.

Region-Invalid Bit (I): Bit 58 in a region-first-
table entry or region-second-table entry controls
whether the set of regions associated with the
entry is available. Bit 58 in a region-third-table
entry controls whether the single region associ-
ated with the entry is available. When bit 58 is
zero, address translation proceeds by using the
region-table entry. When the bit is one, the entry
cannot be used for translation.

Table-Type Bits (TT): Bits 60 and 61 of the
region-first-table entry, region-second-table entry,
and region-third-table entry identify the level of the
table containing the entry, as follows:

Bits 60 and 61 must identify the correct table
level, considering the type of table designation
that is the address-space-control element being
used in the translation and the number of table
levels that have so far been used; otherwise, a
translation-specification exception is recognized.

Region-Second-Table Length, Region-Third-
Table Length, and Segment-Table Length
(TL): A region-first-table entry contains a region-
second-table length. A region-second-table entry
contains a region-third-table length. A region-
third-table entry contains a segment-table length.
The following description applies to each of the
three lengths. Bits 62 and 63 of the entry specify
the length of the next-lower-level table in units of
4,096 bytes, thus making the length of the table
variable in multiples of 512 entries. The length of
the next-lower-level table, in units of 4,096 bytes,
is one more than the TL value. The contents of

Bits 60
and 61 Region-Table Level

11 First
10 Second
01 Third

3-32 z/Architecture Principles of Operation

the length field, in conjunction with the offset field,
bits 56 and 57, are used to establish whether the
portion of the virtual address (RSX, RTX, or SX)
to be translated by means of the next-lower-level
table designates an entry that actually exists in the
table.

 Segment-Table Entries
The entry fetched from the segment table has the
following format:

Segment-Table Entry (TT=��)
┌────────────/───────────┬─┬─┬───┬─┬─┬──┬──┐
│ Page-Table │ │ │ │ │ │ │ │
│ Origin │ │P│ │I│C│TT│ │
└────────────/───────────┴─┴─┴───┴─┴─┴──┴──┘
� 53 55 58 6� 63

The fields in the segment-table entry are allocated
as follows:

Page-Table Origin: Bits 0-52, with 11 zeros
appended on the right, form a 64-bit address that
designates the beginning of a page table. It is
unpredictable whether the address is real or abso-
lute.

Page-Protection Bit (P): Bit 54 is treated as
being ORed with the page-protection bit in each
entry in the page table designated by this
segment-table entry. Thus, when the bit is one,
page protection applies to the entire segment
specified by the segment-table entry.

Segment-Invalid Bit (I): Bit 58 controls whether
the segment associated with the segment-table
entry is available. When the bit is zero, address
translation proceeds by using the segment-table
entry. When the bit is one, the segment-table
entry cannot be used for translation.

Common-Segment Bit (C): Bit 59 controls the
use of the translation-lookaside-buffer (TLB)
copies of the segment-table entry and of the page
table which it designates. A zero identifies a
private segment; in this case, the segment-table
entry and the page table it designates may be
used only in association with the segment-table
origin that designates the segment table in which
the segment-table entry resides. A one identifies
a common segment; in this case, the segment-
table entry and the page table it designates may
continue to be used for translating addresses cor-
responding to the segment index, even though a

different segment table is specified. However,
TLB copies of the segment-table entry and page
table for a common segment are not usable if the
private-space control, bit 55, is one in the
address-space-control element used in the trans-
lation or if that address-space-control element is a
real-space designation. The common-segment bit
must be zero if the segment-table entry is fetched
from storage during a translation when the private-
space control is one in the address-space-control
element being used; otherwise, a translation-
specification exception is recognized.

Table-Type Bits (TT): Bits 60 and 61 of the
segment-table entry are 00 binary to identify the
level of the table containing the entry. The
meanings of all possible values of bits 60 and 61
in a region-table entry or segment-table entry are
as follows:

Bits 60 and 61 must identify the correct table
level, considering the type of table designation
that is the address-space-control element being
used in the translation and the number of table
levels that have so far been used; otherwise, a
translation-specification exception is recognized.

Bits 53, 55-57, 62, and 63 of the segment-table
entry are reserved for possible future extensions.

 Page-Table Entries
The entry fetched from the page table entry has
the following format:

┌───────────/────────────┬─┬─┬─┬─┬────────┐
│Page-Frame Real Address │�│I│P│�│ │
└───────────/────────────┴─┴─┴─┴─┴────────┘
� 52 56 63

The fields in the page-table entry are allocated as
follows:

Page-Frame Real Address (PFRA): Bits 0-51
provide the leftmost bits of a real storage address.
When these bits are concatenated with the 12-bit
byte-index field of the virtual address on the right,
a 64-bit real address is obtained.

Bits 60
and 61 Table Level

11 Region-First
10 Region-Second
01 Region-Third
00 Segment

 Chapter 3. Storage 3-33

Page-Invalid Bit (I): Bit 53 controls whether the
page associated with the page-table entry is avail-
able. When the bit is zero, address translation
proceeds by using the page-table entry. When
the bit is one, the page-table entry cannot be used
for translation.

Page-Protection Bit (P): Bit 54 controls
whether store accesses can be made in the page.
This protection mechanism is in addition to the
key-controlled-protection and low-address-
protection mechanisms. The bit has no effect on
fetch accesses. If the bit is zero, stores are per-
mitted to the page, subject to the page-protection
bit in the segment-table entry used in the trans-
lation and to the other protection mechanisms. If
the bit is one, stores are disallowed. An attempt
to store when the page-protection bit is one
causes a protection exception to be recognized.
The page-protection bit in the segment-table entry
is treated as being ORed with bit 54 when deter-
mining whether page protection applies to the
page.

Bit positions 52 and 55 of the entry must contain
zeros; otherwise, a translation-specification excep-
tion is recognized as part of the execution of an
instruction using that entry for address translation.
Bit positions 56-63 are not assigned and are
ignored.

 Translation Process

This section describes the translation process as it
is performed implicitly before a virtual address is
used to access main storage. Explicit translation,
which is the process of translating the operand
address of LOAD REAL ADDRESS, STORE
REAL ADDRESS, and TEST PROTECTION, is
the same, except that, for LOAD REAL ADDRESS
and TEST PROTECTION, region-first-translation,
region-second-translation, region-third-translation,
segment-translation, and page-translation
exceptions are not recognized; such conditions
are instead indicated by the condition code.
Translation of the operand address of LOAD
REAL ADDRESS and STORE REAL ADDRESS
also differs in that the CPU may be in the real
mode.

Translation of a virtual address is controlled by the
DAT-mode bit and address-space-control bits in
the PSW and by the address-space-control ele-

ments (ASCEs) in control registers 1, 7, and 13
and as specified by the access registers. When
the ASCE used in a translation is a region-first-
table designation, the translation is performed by
means of a region first table, region second table,
region third table, segment table, and page table,
all of which reside in real or absolute storage.
When the ASCE is a lower-level type of table des-
ignation (region-second-table designation, region-
third-table designation, or segment-table desig-
nation) the translation is performed by means of
only the table levels beginning with the designated
level, and the virtual-address bits that would, if
nonzero, require use of a higher level or levels of
table must be all zeros; otherwise, an ASCE-type
exception is recognized. When the ASCE is a
real-space designation, the virtual address is
treated as a real address, and table entries in real
or absolute storage are not used.

The address-space-control element (ASCE) used
for a particular address translation is called the
effective ASCE. Accordingly, when a primary
virtual address is translated, the contents of
control register 1 are used as the effective ASCE.
Similarly, for a secondary virtual address, the con-
tents of control register 7 are used; for an
AR-specified virtual address, the ASCE specified
by the access register is used; and for a home
virtual address, the contents of control register 13
are used.

When the real-space control in the effective ASCE
is zero, the designation-type control in the ASCE
specifies the table-designation type of the ASCE:
region-first-table designation, region-second-table
designation, region-third-table designation, or
segment-table designation. The corresponding
portion of the virtual address (region first index,
region second index, region third index, or
segment index) is checked against the table-
length field in the designation, and it is added to
the origin in the designation to select an entry in
the designated table. If the selected entry is
outside its table, as determined by the table-length
field in the designation, or if the I bit is one in the
selected entry, a region-first-translation, region-
second-translation, region-third-translation, or
segment-translation exception is recognized,
depending on the table level specified by the des-
ignation. If the table-type bits in the selected entry
do not indicate the expected table level, a
translation-specification exception is recognized.

3-34 z/Architecture Principles of Operation

The table entry selected by means of the effective
ASCE designates the next-lower-level table to be
used. If the current table is a region first table,
region second table, or region third table, the next
portion of the virtual address (region second
index, region third index, or segment index,
respectively) is checked against the table-offset
and table-length fields in the current table entry,
and it is added to the origin in the entry to select
an entry in the next-lower-level table. If the
selected entry in the next table is outside its table,
as determined by the table-offset and table-length
fields in the current table entry, or if the I bit is one
in the selected entry, a region-second-translation,
region-third-translation, or segment-translation
exception is recognized, depending on the level of
the next table. If the table-type bits in the
selected entry do not indicate the expected table
level, a translation-specification exception is
recognized.

Processing of portions of the virtual address by
means of successive table levels continues until a
segment-table entry has been selected. This
entry designates the page table to be used. The
segment-table entry contains a page-protection bit
that applies to all pages in the specified segment.

The page-index portion of the virtual address is
added to the page-table origin in the segment-
table entry to select an entry in the page table. If
the I bit is one in the page-table entry, a page-

translation exception is recognized. The page-
table entry contains the leftmost bits of the real
address that represents the translation of the
virtual address, and it contains a page-protection
bit that applies only to the page specified by the
page-table entry.

The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the
real address.

In order to eliminate the delay associated with ref-
erences to translation tables in real or absolute
storage, the information fetched from the tables
normally is also placed in a special buffer, the
translation-lookaside buffer (TLB), and subsequent
translations involving the same table entries may
be performed by using the information recorded in
the TLB. The TLB may also record virtual-
equals-real translations related to a real-space
designation. The operation of the TLB is
described in “Translation-Lookaside Buffer” on
page 3-43.

Whenever access to real or absolute storage is
made during the address-translation process for
the purpose of fetching an entry from a region
table, segment table, or page table, key-controlled
protection does not apply.

The translation process, including the effect of the
TLB, is shown graphically in Figure 3-9 on
page 3-36.

 Chapter 3. Storage 3-35

Control Reg. 1, 7, or 13 ASN-Second Table Entry Virtual Address
┌──────────────────────┐ ┌──────────────────────┐ ┌─────┬─────┬─────┬─────┬────┬──────┐
│PASCE, SASCE, or HASCE│ │ AR-Specified ASCE │ │ RFX │ RSX │ RTX │ SX │ PX │ BX │
└──────────┬───────────┘ └──────────┬───────────┘ └──┬──┴──┬──┴──┬──┴──┬──┴────┴──────┘

│ ┌─┐ │ (x8)│ (x8)│ (x8)│ (x8)│
└────────────�│1│�───────────┘ │ │ │ │

└┬┘ │ │ │ │
│ Effective │ │ │ │
� ASCE │ │ │ │

┌────────┬─┬──┬──┐ │ │ │ │
│ TO │R│DT│TL│ TO and ┌─┐ │ │ │ │
└───┬────┴─┼──┴──┘ virtual address ──�│5│ │ │ │ │

(x4�96)│ │ └─┘ │ │ │ │
│ � │ │ │ │
│ ┌─────┐Yes ASCE is RSD ┌─┐ │ │ │ │
│ │R=1 ?├─────────────────�│5│ │ │ │ │
│ └──┬──┘ └─┘ │ │ │ │
│ │No │ │ │ │
│ � │ │ │ │
│ ┌─────┐ │ │ │ │
│ │ If │ │ │ │ │

┌─┐ │ │DT=11│ │ │ │ │
│2│ ├──�│ + │�────────────────────────────┘ │ │ │
└─┘ │ └──┬──┘ │ │ │

│ │ Region First Table │ │ │
│ │ ┌───────────────────┐ │ │ │
│ │ │ │ │ │ │
│ └─────�├────────┬──┬─┬──┬──┤ │ │ │
│ R/A │ RSTO │TF│I│TT│TL├──� A in │ │ │
│ ├────────┴──┴─┴──┴──┤ Part 2 │ │ │
│ ┌─────┐ │ │ │ │ │
│ │ If │ └───────────────────┘ │ │ │

┌─┐ │ │DT=1�│ │ │ │
│2│ ├──�│ + │�──────────────────────────────────┘ │ │

 └─┘ │ └──┬──┘ │ │
│ │ Region Second Table │ │
│ │ ┌───────────────────┐ │ │
│ │ │ │ │ │

 │ └─────�├────────┬──┬─┬──┬──┤ │ │
│ R/A │ RTTO │TF│I│TT│TL├──� B in │ │

 │ ├────────┴──┴─┴──┴──┤ Part 2 │ │
│ ┌─────┐ │ │ │ │

 │ │ If │ └───────────────────┘ │ │
 ┌─┐ │ │DT=�1│ │ │

│2│ ├──�│ + │�──┘ │
 └─┘ │ └──┬──┘ │

│ │ Region Third Table │
│ │ ┌───────────────────┐ │
│ │ │ │ │

 │ └─────�├────────┬──┬─┬──┬──┤ │
│ R/A │ STO │TF│I│TT│TL├──� C in │

 │ ├────────┴──┴─┴──┴──┤ Part 2 │
│ ┌─────┐ │ │ │

 │ │ If │ └───────────────────┘ │
 ┌─┐ │ │DT=��│ │

│2│ └──�│ + │�──┘
 └─┘ └──┬──┘
 │ Segment Table
 │ ┌───────────────────┐
 │ │ │
 └─────�├────────┬─┬┬─┬─┬──┬┤

R/A │ PTO │P││I│C│TT│├──� D in
 ├────────┴─┴┴─┴─┴──┴┤ Part 3
 │ │
R/A: Address is real or absolute. └───────────────────┘

Figure 3-9 (Part 1 of 3). Translation Process

3-36 z/Architecture Principles of Operation

 Region-First-Table Entry Virtual Address
┌─┐ ┌────────┬──┬─┬──┬──┐ ┌─────┬─────┬─────┬─────┬────┬──────┐
│A│ │ RSTO │TF│I│TT│TL│ │ RFX │ RSX │ RTX │ SX │ PX │ BX │
└─┘ └───┬────┴──┴─┴──┴──┘ └─────┴──┬──┴──┬──┴──┬──┴────┴──────┘

(x4�96)│ (x8)│ (x8)│ (x8)│
│ ┌─┐ │ │ │
└──�│+│�───┘ │ │

 └┬┘ │ │
│ Region Second Table │ │

 │ ┌───────────────────┐ │ │
 ┌─┐ │ │ │ │ │
 │3│ └──�├────────┬──┬─┬──┬──┤ │ │

└─┘ R/A │ RTTO │TF│I│TT│TL├──� B │ │
 ├────────┴──┴─┴──┴──┤ │ │
 │ │ │ │
 └───────────────────┘ │ │
 │ │
 Region-Second-Table Entry │ │
┌─┐ ┌────────┬──┬─┬──┬──┐ │ │
│B│ │ RTTO │TF│I│TT│TL│ │ │
└─┘ └───┬────┴──┴─┴──┴──┘ │ │
 (x4�96)│ │ │
 │ ┌─┐ │ │
 └──�│+│�───┘ │
 └┬┘ │

│ Region Third Table │
 │ ┌───────────────────┐ │
 ┌─┐ │ │ │ │
 │3│ └──�├────────┬──┬─┬──┬──┤ │
 └─┘ R/A │ STO │TF│I│TT│TL├──� C │
 ├────────┴──┴─┴──┴──┤ │
 │ │ │
 └───────────────────┘ │
 │
 Region-Third-Table Entry │
┌─┐ ┌────────┬──┬─┬──┬──┐ │
│C│ │ STO │TF│I│TT│TL│ │
└─┘ └───┬────┴──┴─┴──┴──┘ │
 (x4�96)│ │
 │ ┌─┐ │
 └──�│+│�───┘
 └┬┘
 │ Segment Table
 │ ┌───────────────────┐
 ┌─┐ │ │ │
 │3│ └──�├────────┬─┬┬─┬─┬──┬┤

└─┘ R/A │ PTO │P││I│C│TT│├──� D in
 ├────────┴─┴┴─┴─┴──┴┤ Part 3
 │ │
 └───────────────────┘

R/A: Address is real or absolute.

Figure 3-9 (Part 2 of 3). Translation Process

 Chapter 3. Storage 3-37

 Segment-Table Entry Virtual Address
┌─┐ ┌────────┬─┬┬─┬─┬──┬┐ ┌─────┬─────┬─────┬─────┬────┬──────┐
│D│ │ PTO │P││I│C│TT││ │ RFX │ RSX │ RTX │ SX │ PX │ BX │
└─┘ └────────┴─┴┴─┴─┴──┴┘ └─────┴─────┴─────┴─────┴──┬─┴──┬───┘
 (x2�48)│ (x8)│ │
 │ ┌─┐ │ │
 └──�│+│�───┘ │
 └┬┘ │
 │ Page Table ┌─────────────────────────┐ │
 │ ┌───────────────────┐ │ │ │
 ┌─┐ │ │ │ │ ┌───────────────┼───┐Translation │

│4│ └──�├────────┬┬─┬─┬─┬─┬─┤ │ ┌─┐ │ � │Lookaside │
└─┘ R/A │ PFRA ││�│I│P│�│ │ │ │5│ ├──────────┬────────┤Buffer (TLB) │

├────┬───┴┴─┴─┴─┴─┴─┤ │ └─┘ │ │ PFRA │ │
 │ │ │ │ ├──────────┴────┬───┤ │
 └────┼──────────────┘ │ │ │ │ │
 │ │ └───────────────┼───┘ │
 │ � � ┌─┐ │
 └──────────────────��─�──────────────────────�� │6│ ┌──────────┘
 │ └─┘ │
 � �
 ┌───────┐ ┌───────┐
 ┌────────┬────────┐
R/A: Address is real or absolute. │ │ │
 └────────┴────────┘
 Real Address
┌─┐
│1│ Control register 1 provides the primary address-space-control element (ASCE) for
└─┘ translation of a primary virtual address, control register 7 provides the secondary ASCE

for translation of a secondary virtual address, and control register 13 provides the home
ASCE for translation of a home virtual address. An ASN-second-table entry provides an
AR-specified (access-register-specified) ASCE for translation of an AR-specified virtual

 address.
┌─┐
│2│ The portion of the virtual address to the left of the index selected by DT must be zero;
└─┘ otherwise, an ASCE-type exception is recognized. Bits � and 1 of the index must be less

than or equal to TL in the ASCE, and I in the selected table entry must be zero;
otherwise, a region-first-translation, region-second-translation, region-third-translation
or segment-translation exception is recognized, depending on the table level selected by
DT. TT in the selected table entry must equal DT; otherwise, a translation-specification
exception is recognized.

┌─┐
│3│ Bits � and 1 of the next index must be equal to or greater than TF, and less than or equal
└─┘ to TL, in the current table entry, and I in the next selected table entry must be zero;

otherwise, a region-second-translation, region-third-translation, or segment-translation
exception is recognized, depending on the table level of the next selected entry. TT in
the next selected entry must be one less than TT in the current entry; otherwise, a
translation-specification exception is recognized.

┌─┐
│4│ I in the page-table entry must be zero; otherwise, a page-translation exception is
└─┘ recognized. Bits 52 and 55 in the page-table entry must be zero; otherwise, a

translation-specification exception is recognized.
┌─┐
│5│ Information, which may include portions of the virtual address and the table origin or
└─┘ real-space token origin in the effective ASCE, is used to search the TLB.

┌─┐
│6│ If a match exists, the page-frame real address from the TLB is used in forming the real
└─┘ address. If no match exists and the effective ASCE is a table designation, table entries

in real or absolute storage are fetched. The resulting fetched entries are used to
translate the address and, in conjunction with the search information, may be used to form
entries in the TLB. If the effective ASCE is a real-space designation, a TLB entry that
translates the virtual address to the equal real address may be formed.

Figure 3-9 (Part 3 of 3). Translation Process

3-38 z/Architecture Principles of Operation

Inspection of Real-Space Control
When the effective address-space-control element
(ASCE) contains a real-space control, bit 58,
having the value zero, the ASCE is a region-table
or segment-table designation. When the real-
space control is one, the ASCE is a real-space
designation.

Inspection of Designation-Type Control
When the real-space control is zero, the
designation-type control, bits 60 and 61 of the
effective address-space-control element (ASCE),
specifies the table-designation type of the ASCE.
Depending on the type, some number of leftmost
bits of the virtual address being translated must be
zeros; otherwise, an ASCE-type exception is
recognized. For each possible value of bits 60
and 61, the table-designation type and the virtual-
address bits required to be zeros are as follows:

Lookup in a Table Designated by an
Address-Space-Control Element
The designation-type control, bits 60 and 61 of the
effective address-space-control element (ASCE),
specifies both the table-designation type of the
ASCE and the portion of the virtual address that is
to be translated by means of the designated table,
as follows:

When bits 60 and 61 have the value 11 binary,
the region-first-index portion of the virtual address,
in conjunction with the region-first-table origin con-
tained in the ASCE, is used to select an entry
from the region first table.

The 64-bit address of the region-first-table entry in
real or absolute storage is obtained by appending
12 zeros to the right of bits 0-51 of the region-
first-table designation and adding the region first
index with three rightmost and 50 leftmost zeros
appended. When a carry out of bit position 0
occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 2�� - 1 to
zero. All 64 bits of the address are used, regard-
less of whether the current PSW specifies the

| 24-bit, 31-bit, or 64-bit addressing mode. When
| forming the address of a region-first-, region-
| second-, region-third-, or segment-table entry, it is
| unpredictable whether prefixing, if any, is applied
| to the respective table origin contained in the
| ASCE before the addition of the table index value,
| or prefixing is applied to the table-entry address
| that is formed by the addition of the table origin
| and table index value.

As part of the region-first-table-lookup process,
bits 0 and 1 of the virtual address (which are bits
0 and 1 of the region first index) are compared
against the table length, bits 62 and 63 of the
region-first-table designation, to establish whether
the addressed entry is within the region first table.
If the value in the table-length field is less than the
value in the corresponding bit positions of the
virtual address, a region-first-translation exception
is recognized. The comparison against the table
length may be omitted if the equivalent of a

Bits
60

and
61 Designation Type

Virtual-Address
Portion Translated

by the Table

11 Region-first-table Region first index
(bits 0-10)

10 Region-
second-table

Region second index
(bits 11-21)

01 Region-third-table Region third index
(bits 22-32)

00 Segment-table Segment index (bits
33-43)

Bits
60

and
61 Designation Type

Virtual-Address Bits
Required to Be

Zeros

11 Region-first-table None

10 Region-
second-table

0-10

01 Region-third-table 0-21

00 Segment-table 0-32

 Chapter 3. Storage 3-39

region-first-table entry in the translation-lookaside
buffer is used in the translation.

All eight bytes of the region-first-table entry appear
to be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the region-first-table entry designates a
location which is not available in the configuration,
an addressing exception is recognized, and the
unit of operation is suppressed.

Bit 58 of the entry fetched from the region first
table specifies whether the corresponding set of
regions is available. This bit is inspected, and, if it
is one, a region-first-translation exception is recog-
nized.

A translation-specification exception is recognized
if the table-type bits, bits 60 and 61, in the region-
first-table entry do not have the same value as
bits 60 and 61 of the ASCE.

When no exceptions are recognized in the
process of region-first-table lookup, the entry
fetched from the region first table designates the
beginning and specifies the offset and length of
the corresponding region second table.

When bits 60 and 61 of the ASCE have the value
10 binary, the region-second-index portion of the
virtual address, in conjunction with the region-
second-table origin contained in the ASCE, is
used to select an entry from the region second
table. Bits 11 and 12 of the virtual address (which
are bits 0 and 1 of the region second index) are
compared against the table length in the ASCE. If
the value in the table-length field is less than the
value in the corresponding bit positions of the
virtual address, a region-second-translation excep-
tion is recognized. The comparison against the
table length may be omitted if the equivalent of a
region-second-table entry in the translation-
lookaside buffer is used in the translation. The
region-second-table-lookup process is otherwise
the same as the region-first-table-lookup process,
except that a region-second-translation exception
is recognized if bit 58 is one in the region-
second-table entry. When no exceptions are
recognized, the entry fetched from the region
second table designates the beginning and speci-
fies the offset and length of the corresponding
region third table.

When bits 60 and 61 of the ASCE have the value
01 binary, the region-third-index portion of the
virtual address, in conjunction with the region-
third-table origin contained in the ASCE, is used to
select an entry from the region third table. Bits 22
and 23 of the virtual address (which are bits 0 and
1 of the region third index) are compared against
the table length in the ASCE. If the value in the
table-length field is less than the value in the cor-
responding bit positions of the virtual address, a
region-third-translation exception is recognized.
The comparison against the table length may be
omitted if the equivalent of a region-third-table
entry in the translation-lookaside buffer is used in
the translation. The region-third-table-lookup
process is otherwise the same as the region-first-
table-lookup process, including the checking of the
table-type bits in the region-third-table entry,
except that a region-third-translation exception is
recognized if bit 58 is one in the region-third-table
entry. When no exceptions are recognized, the
entry fetched from the region third table desig-
nates the beginning and specifies the offset and
length of the corresponding segment table.

When bits 60 and 61 of the ASCE have the value
00 binary, the segment-index portion of the virtual
address, in conjunction with the segment-table
origin contained in the ASCE, is used to select an
entry from the segment table. Bits 33 and 34 of
the virtual address (which are bits 0 and 1 of the
segment index) are compared against the table
length in the ASCE. If the value in the table-
length field is less than the value in the corre-
sponding bit positions of the virtual address, a
segment-translation exception is recognized. The
comparison against the table length may be
omitted if the equivalent of a segment-table entry
in the translation-lookaside buffer is used in the

| translation. A translation-specification exception is
recognized if (1) the private-space control, bit 55,
in the ASCE is one and (2) the common-segment
bit, bit 59, in the entry fetched from the segment
table is one. The segment-table-lookup process is
otherwise the same as the region-first-table-lookup
process, including the checking of the table-type

| bits in the segment-table entry, except that a
| segment-translation exception is recognized if bit
| 58 is one in the segment-table entry. When no

exceptions are recognized, the entry fetched from
the segment table designates the beginning of the
corresponding page table.

3-40 z/Architecture Principles of Operation

Lookup in a Table Designated by a
Region-Table Entry
When the effective address-space-control element
(ASCE) is a region-table designation, a region-
table entry is selected as described in the pre-
ceding section. Then the contents of the selected
entry and the next index portion of the virtual
address are used to select an entry in the next-
lower-level table, which may be another region
table or a segment table.

When the table entry selected by means of the
ASCE is a region-first-table entry, the region-
second-index portion of the virtual address, in con-
junction with the region-second-table origin con-
tained in the region-first-table entry, is used to
select an entry from the region second table.

The 64-bit address of the region-second-table
entry in real or absolute storage is obtained by
appending 12 zeros to the right of bits 0-51 of the
region-first-table entry and adding the region
second index with three rightmost and 50 leftmost
zeros appended. When a carry out of bit position
0 occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 2�� - 1 to
zero. All 64 bits of the address are used, regard-
less of whether the current PSW specifies the

| 24-bit, 31-bit, or 64-bit addressing mode. When
| forming the address of a region-second-, region-
| third-, or segment-table entry, it is unpredictable
| whether prefixing, if any, is applied to the respec-
| tive table origin contained in the higher-level table
| entry before the addition of the table index value,
| or prefixing is applied to the table-entry address
| that is formed by the addition of the table origin
| and table index value.

As part of the region-second-table-lookup process,
bits 11 and 12 of the virtual address (which are
bits 0 and 1 of the region second index) are com-
pared against the table offset, bits 56 and 57 of
the region-first-table entry, and against the table
length, bits 62 and 63 of the region-first-table
entry, to establish whether the addressed entry is
within the region second table. If the value in the
table-offset field is greater than the value in the
corresponding bit positions of the virtual address,
or if the value in the table-length field is less than
the value in the corresponding bit positions of the
virtual address, a region-second-translation excep-
tion is recognized.

All eight bytes of the region-second-table entry
appear to be fetched concurrently as observed by
other CPUs. The fetch access is not subject to
protection. When the storage address generated
for fetching the region-second-table entry desig-
nates a location which is not available in the con-
figuration, an addressing exception is recognized,
and the unit of operation is suppressed.

Bit 58 of the entry fetched from the region second
table specifies whether the corresponding set of
regions is available. This bit is inspected, and, if it
is one, a region-second-translation exception is
recognized.

A translation-specification exception is recognized
if the table-type bits, bits 60 and 61, in the region-
second-table entry do not have a value that is one
less than the value of those bits in the next-
higher-level table.

When no exceptions are recognized in the
process of region-second-table lookup, the entry
fetched from the region second table designates
the beginning and specifies the offset and length
of the corresponding region third table.

When the table entry selected by means of the
ASCE is a region-second-table entry, or if a
region-second-table entry has been selected by
means of the contents of a region-first-table entry,
the region-third-index portion of the virtual
address, in conjunction with the region-third-table
origin contained in the region-second-table entry,
is used to select an entry from the region third
table. Bits 22 and 23 of the virtual address (which
are bits 0 and 1 of the region third index) are com-
pared against the table offset and table length in
the region-second-table entry. A region-third-
translation exception is recognized if the table

| offset is greater than bits 22 and 23 or if the table
| length is less than bits 22 and 23. The region-

third-table-lookup process is otherwise the same
as the region-second-table-lookup process,
including the checking of the table-type bits in the

| region-third-table entry, except that a region-third-
| translation exception is recognized if bit 58 is one
| in the region-third-table entry. When no

exceptions are recognized, the entry fetched from
the region third table designates the beginning
and specifies the offset and length of the corre-
sponding segment table.

 Chapter 3. Storage 3-41

When the table entry selected by means of the
ASCE is a region-third-table entry, or if a region-
third-table entry has been selected by means of
the contents of a region-second-table entry, the
segment-index portion of the virtual address, in
conjunction with the segment-table origin con-
tained in the region-third-table entry, is used to
select an entry from the segment table. Bits 33
and 34 of the virtual address (which are bits 0 and
1 of the segment index) are compared against the
table offset and table length in the region-third-
table entry. A segment-translation exception is
recognized if the table offset is greater than bits

| 33 and 34 or if the table length is less than bits 33
| and 34. A translation-specification exception is

recognized if (1) the private-space control, bit 55,
in the ASCE is one and (2) the common-segment
bit, bit 59, in the entry fetched from the segment
table is one. The segment-table-lookup process is
otherwise the same as the region-
second-table-lookup process, including the
checking of the table-type bits in the segment-

| table entry, except that a segment-translation
| exception is recognized if bit 58 is one in the
| segment-table entry. When no exceptions are

recognized, the entry fetched from the segment
table designates the beginning of the corre-
sponding page table.

 Page-Table Lookup
The page-index portion of the virtual address, in
conjunction with the page-table origin contained in
the segment-table entry, is used to select an entry
from the page table.

The 64-bit address of the page-table entry in real
or absolute storage is obtained by appending 11
zeros to the right of the page-table origin and
adding the page index, with three rightmost and
53 leftmost zeros appended. A carry out of bit
position 0 cannot occur. All 64 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit, 31-bit, or 64-bit addressing
mode.

All eight bytes of the page-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the page-table entry designates a location
which is not available in the configuration, an
addressing exception is recognized, and the unit
of operation is suppressed.

The entry fetched from the page table indicates
the availability of the page and contains the left-
most bits of the page-frame real address. The
page-invalid bit, bit 53, is inspected to establish
whether the corresponding page is available. If
this bit is one, a page-translation exception is
recognized. If bit position 52 or 55 contains a
one, a translation-specification exception is recog-
nized. If the page-protection bit, bit 54, is one
either in the segment-table entry used in the trans-
lation or in the page-table entry, and the storage
reference for which the translation is being per-
formed is a store, a protection exception is recog-
nized.

Formation of the Real Address
When the effective address-space-control element
(ASCE) is a region-table designation or a
segment-table designation and no exceptions in
the translation process are encountered, the page-
frame real address is obtained from the page-table
entry. When the ASCE is a real-space desig-
nation, bits 0-51 of the virtual address are used as
a page-frame real address. In either case, the
page-frame real address and the byte-index
portion of the virtual address are concatenated,
with the page-frame real address forming the left-
most part. The result is the real storage address
which corresponds to the virtual address. All 64
bits of the address are used, regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

Recognition of Exceptions during
Translation
Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when infor-
mation contained in table entries is used for trans-
lation and is found to be incorrect.

The information pertaining to DAT is considered to
be used when an instruction is executed with DAT

| on or when INVALIDATE DAT TABLE ENTRY,
INVALIDATE PAGE TABLE ENTRY, LOAD REAL
ADDRESS, or STORE REAL ADDRESS is exe-
cuted. The information is not considered to be
used when the PSW specifies DAT on but an I/O,
external, restart, or machine-check interruption
occurs before an instruction is executed, or when
the PSW specifies the wait state. Only that infor-
mation required in order to translate a virtual
address is considered to be in use during the

3-42 z/Architecture Principles of Operation

translation of that address, and, in particular,
addressing exceptions that would be caused by
the use of an address-space-control element are
not recognized when that address-space-control
element is not the one actually used in the trans-
lation.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than
one is applicable, is provided in “Recognition of
Access Exceptions” on page 6-36.

 Translation-Lookaside Buffer

To enhance performance, the dynamic-
address-translation mechanism normally is imple-
mented such that some of the information speci-
fied in the region tables, segment tables, and
page tables is maintained in a special buffer,
referred to as the translation-lookaside buffer
(TLB). The CPU necessarily refers to a DAT-table
entry in real or absolute storage only for the initial
access to that entry. This information may be
placed in the TLB, and subsequent translations
may be performed by using the information in the
TLB. For consistency of operation, the virtual-
equals-real translation specified by a real-space
designation also may be performed by using infor-
mation in the TLB. The presence of the TLB
affects the translation process to the extent that
(1) a modification of the contents of a table entry
in real or absolute storage does not necessarily
have an immediate effect, if any, on the trans-
lation, (2) a region-first-table origin, region-
second-table origin, region-third-table origin,
segment-table origin, or real-space token origin in
an address-space-control element (ASCE) may
select a TLB entry that was formed by means of
an ASCE containing an origin of the same value
even when the two origins are of different types,
and (3) the comparison against the table length in
an address-space-control element may be omitted
if a TLB equivalent of the designated table entry is
used. In a multiple-CPU configuration, each CPU
has its own TLB.

Entries within the TLB are not explicitly address-
able by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is
permissible. Furthermore, information in the TLB

may be cleared under conditions additional to
those for which clearing is mandatory.

 TLB Structure
The description of the logical structure of the TLB
covers the implementation by all systems oper-
ating as defined by z/Architecture. The TLB
entries are considered as being of three types:
TLB combined region-and-segment-table entries,
TLB page-table entries, and TLB real-space
entries. A TLB combined region-and-
segment-table entry or TLB page-table entry is
considered as containing within it both the infor-
mation obtained from the table entry or entries in
real or absolute storage and the attributes used to
fetch this information from storage. A TLB real-
space entry is considered as containing a page-
frame real address and the real-space token origin
and region, segment, and page indexes used to
form the entry. The token origin in a TLB real-
space entry is indistinguishable from the table
origin in a TLB combined region-and-
segment-table entry.

Note: The following sections describe the condi-
tions under which information may be placed in
the TLB, the conditions under which information
from the TLB may be used for address translation,
and how changes to the translation tables affect
the translation process.

Formation of TLB Entries
The formation of TLB combined region-and-
segment-table entries and TLB page-table entries
from table entries in real or absolute storage, and
the effect of any manipulation of the contents of
table entries in storage by the program, depend
on whether the entries in storage are attached to
a particular CPU and on whether the entries are
valid.

The attached state of a table entry denotes that
the CPU to which it is attached can attempt to use

| the table entry for implicit address translation,
| except that a table entry for the primary or home
| address space may be attached even when the
| CPU does not fetch from either of those spaces.
| A table entry may be attached to more than one

CPU at a time.

The valid state of a table entry denotes that the
region set, region, segment, or page associated
with the table entry is available. An entry is valid

 Chapter 3. Storage 3-43

when the region-invalid, segment-invalid, or page-
invalid bit in the entry is zero.

The region-table entries, if any, and the segment-
table entry used to form a TLB combined region-
and-segment-table entry are called a translation
path. A translation path may be placed in the TLB
as a combined region-and-segment-table entry
whenever all entries in the path are attached and
valid and would not cause a translation-
specification exception if used for translation.
Similarly, a page-table entry may be placed in the
TLB whenever the entry is attached and valid and
would not cause a translation-specification excep-
tion if used for translation.

The highest-level table entry in a translation path
is attached when it is within a table designated by
an attaching address-space-control element
(ASCE). “Within a table” means as determined by
the origin and length fields in the ASCE. An
ASCE is an attaching ASCE when all of the fol-
lowing conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that
would cause an early specification exception
to be recognized.

3. The ASCE meets the requirements in a, b, c,
or d below.

a. The ASCE is the primary ASCE in control
| register 1.

b. The ASCE is the secondary ASCE in
control register 7, and either of the fol-
lowing requirements is met:

� The CPU is in the secondary-space
mode or access-register mode.

� The CPU is in the primary-space
mode, and the secondary-space
control, bit 37 of control register 0, is
one.

c. The ASCE is in either an attached and
valid ASN-second-table entry (ASTE) or a
usable ALB ASTE, and the CPU is in the
access-register mode. See
“ART-Lookaside Buffer” on page 5-54 for
the meaning of the terminology used here.

d. The ASCE is the home ASCE in control
| register 13.

Each of the remaining table entries in a translation
path is attached when the next-higher-level entry
is attached and valid and would not cause a
translation-specification exception if used for trans-
lation and the subject entry is within the table des-
ignated by the next-higher-level entry. “Within the
table” means as determined by the origin, offset,
and length fields in the next-higher-level entry.

A page-table entry is attached when it is within the
page table designated by either an attached and
valid segment-table entry that would not cause a
translation-specification exception if used for trans-
lation or a usable TLB combined region-and-
segment-table entry. A usable TLB combined
region-and-segment-table entry is explained in the
next section.

A region-table entry or segment-table entry causes
a translation-specification exception if the table-
type bits, bits 60 and 61, in the entry are incon-
sistent with the level at which the entry would be
encountered when using the translation path in the
translation process. A segment-table entry also
causes a translation-specification exception if the
private-space-control bit is one in the address-
space-control element used to select it and the
common-segment bit is one in the entry. A page-
table entry causes a translation-specification
exception if bit 52 or 55 in the entry is one.

A TLB real-space entry may be formed whenever
an attaching real-space designation exists. The
entry is formed using the real-space token origin
in the designation and any value of bits 0-51 of a
virtual address.

Use of TLB Entries
The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. A usable TLB entry attaches
the next-lower-level table, if any, and may be
usable for a particular instance of implicit address
translation.

A TLB combined region-and-segment-table entry
is in the usable state when all of the following con-
ditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors that
would cause an early specification exception
to be recognized.

3-44 z/Architecture Principles of Operation

3. The TLB combined region-and-segment-table
entry meets either of the following require-
ments:

a. The common-segment bit is one in the
TLB entry.

b. The table-origin (TO) field in the TLB entry
matches the table- or token-origin field in
an attaching address-space-control
element.

A TLB combined region-and-segment-table entry
may be used for a particular instance of implicit
address translation only when the entry is in the
usable state, either the common-segment bit is
one in the TLB entry or the table-origin (TO) field
in the TLB entry matches the table- or token-origin
field in the address-space-control element being
used in the translation, and the region-index and
segment-index fields in the TLB entry match those
of the virtual address being translated. However,
the TLB combined region-and-segment-table entry
is not used if the common-segment bit is one in
the entry and either the private-space-control bit is
one in the address-space-control element being
used in the translation or that address-
space-control element is a real-space designation.
In both these cases, the TLB entry is not used
even if the table-origin field in the entry and the
table- or token-origin field in the address-
space-control element match.

A TLB page-table entry may be used for a partic-
ular instance of implicit address translation only
when the page-table-origin field in the entry
matches the page-table-origin field in the
segment-table entry or TLB combined region-and-
segment-table entry being used in the translation
and the page-index field in the TLB page-table
entry matches the page index of the virtual
address being translated.

A TLB real-space entry may be used for implicit
address translation only when the token-origin
field in the TLB entry matches the table- or token-
origin field in the address-space-control element
being used in the translation and the region-index,
segment-index, and page-index fields in the TLB
entry match those of the virtual address being
translated

The operand address of LOAD REAL ADDRESS
may be translated with the use of the TLB con-
tents whether DAT is on or off, but TLB entries
still are formed only if DAT is on.

Programming Notes:

1. Although contents of a table entry may be
copied into the TLB only when the table entry
is both attached and valid, the copy may
remain in the TLB even when the table entry
itself is no longer attached or valid.

2. No contents can be copied into the TLB when
DAT is off because the table entries at this
time are not attached. In particular, trans-
lation of the operand address of LOAD REAL
ADDRESS with DAT off does not cause
entries to be placed in the TLB.

Conversely, when DAT is on, information may
be copied into the TLB from all translation-
table entries that could be used for address
translation, given the current translation
parameters, the setting of the address-
space-control bits, and the contents of the
access registers. The loading of the TLB
does not depend on whether the entry is used
for translation as part of the execution of the
current instruction, and such loading can
occur when the CPU is in the wait state.

3. More than one copy of contents of a table
entry may exist in the TLB. For example,
some implementations may cause a copy of
contents of a valid table entry to be placed in
the TLB for the table origin in each address-
space-control element by which the entry
becomes attached.

Modification of Translation Tables
When an attached and invalid table entry is made
valid and no entry usable for translation of the
associated virtual address is in the TLB, the
change takes effect no later than the end of the
current unit of operation. Similarly, when an unat-
tached and valid table entry is made attached and
no usable entry for the associated virtual address
is in the TLB, the change takes effect no later
than the end of the current unit of operation.

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries
that qualify for substitution for that entry, an
attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
unpredictable results may occur, to the following
extent. The use of the new value may begin
between instructions or during the execution of an
instruction, including the instruction that caused

 Chapter 3. Storage 3-45

the change. Moreover, until the TLB is cleared of
entries that qualify for substitution for that entry,
the TLB may contain both the old and the new
values, and it is unpredictable whether the old or
new value is selected for a particular access. If
both old and new values of a translation path are
present in the TLB, a page-table entry may be
fetched by using one value and placed in the TLB
associated with the other value. If the new value
of the path is a value that would cause an excep-
tion, the exception may or may not cause an inter-
ruption to occur. If an interruption does occur, the
result fields of the instruction may be changed
even though the exception would normally cause
suppression or nullification.

Entries are cleared from the TLB in accordance
with the following rules:

1. All entries are cleared from the TLB by the
execution of PURGE TLB or SET PREFIX and
by CPU reset.

2. All entries may be cleared from all TLBs in the
configuration by the execution of COMPARE
AND SWAP AND PURGE by any of the CPUs
in the configuration, depending on a bit in a
general register used by the instruction.

3. Selected entries are cleared from all TLBs in
| the configuration by the execution of INVALI-
| DATE DAT TABLE ENTRY or INVALIDATE

PAGE TABLE ENTRY by any of the CPUs in
the configuration.

4. Some or all TLB entries may be cleared at
times other than those required by the pre-
ceding rules.

Programming Notes:

1. Entries in the TLB may continue to be used
for translation after the table entries from
which they have been formed have become
unattached or invalid. These TLB entries are
not necessarily removed unless explicitly
cleared from the TLB.

A change made to an attached and valid entry
or a change made to a table entry that causes
the entry to become attached and valid is
reflected in the translation process for the next
instruction, or earlier than the next instruction,
unless a TLB entry qualifies for substitution for
that table entry. However, a change made to
a table entry that causes the entry to become
unattached or invalid is not necessarily

reflected in the translation process until the
TLB is cleared of entries that qualify for sub-
stitution for that table entry.

2. Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of instruction execution. Con-
sequently, a region-first-translation, region-
second-translation, region-third-translation,
segment-translation, or page-translation
exception may be indicated when a table entry
is invalid at the start of execution even if the
instruction would have validated the table
entry it uses and the table entry would have
appeared valid if the instruction was consid-
ered to process the operands one byte at a
time.

3. A change made to an attached table entry,
except to set the I bit to zero or to alter the
rightmost byte of a page-table entry, may
produce unpredictable results if that entry is
used for translation before the TLB is cleared
of all copies of contents of that entry. The
use of the new value may begin between
instructions or during the execution of an
instruction, including the instruction that
caused the change. When an instruction,
such as MOVE (MVC), makes a change to an
attached table entry, including a change that
makes the entry invalid, and subsequently
uses the entry for translation, a changed entry
is being used without a prior clearing of the
entry from the TLB, and the associated unpre-
dictability of result values and of exception
recognition applies.

Manipulation of attached table entries may
cause spurious table-entry values to be
recorded in a TLB. For example, if changes
are made piecemeal, modification of a valid
attached entry may cause a partially updated
entry to be recorded, or, if an intermediate
value is introduced in the process of the
change, a supposedly invalid entry may tem-
porarily appear valid and may be recorded in
the TLB. Such an intermediate value may be
introduced if the change is made by an I/O
operation that is retried, or if an intermediate
value is introduced during the execution of a
single instruction.

As another example, if a segment-table entry
is changed to designate a different page table
and used without clearing the TLB, the new

3-46 z/Architecture Principles of Operation

page-table entries may be fetched and associ-
ated with the old page-table origin. In such a
case, execution of INVALIDATE PAGE TABLE
ENTRY designating the new page-table origin
will not necessarily clear the page-table
entries fetched from the new page table.

4. To facilitate the manipulation of page tables,
the INVALIDATE PAGE TABLE ENTRY
instruction is provided. This instruction sets
the I bit in a page-table entry to one and
clears all TLBs in the configuration of entries
formed from that table entry.

INVALIDATE PAGE TABLE ENTRY is useful
for setting the I bit to one in a page-table entry
and causing TLB copies of the entry to be
cleared from the TLB of each CPU in the con-
figuration. The following aspects of the TLB
operation should be considered when using
INVALIDATE PAGE TABLE ENTRY. (See
also the programming notes for INVALIDATE
PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be executed before making any
change to a page-table entry other than
changing the rightmost byte; otherwise,
the selective-clearing portion of INVALI-
DATE PAGE TABLE ENTRY may not
clear the TLB copies of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INVALI-
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of any combined
region-and-segment-table entry desig-
nating the page table. When it is desired
to invalidate and clear the TLB of a com-
bined region-and-segment-table entry, the
rules in note 5 below must be followed.

c. When a large number of page-table
entries are to be invalidated at a single
time, the overhead involved in using
COMPARE AND SWAP AND PURGE

| (one that purges the TLB), INVALIDATE
| DAT TABLE ENTRY, or PURGE TLB and

in following the rules in note 5 below may
be less than in issuing INVALIDATE
PAGE TABLE ENTRY for each page-table
entry.

5. Manipulation of table entries should be in
accordance with the following rules. If these
rules are complied with, translation is per-
formed as if the table entries from real or

absolute storage were always used in the
translation process.

a. A valid table entry must not be changed
while it is attached to any CPU and may
be used for translation by that CPU except
to (1) invalidate the entry by using INVAL-

| IDATE PAGE TABLE ENTRY or INVALI-
| DATE DAT TABLE ENTRY, (2) alter bits

56-63 of a page-table entry, or (3) make a
change by means of a COMPARE AND
SWAP AND PURGE instruction that
purges the TLB.

b. When any change is made to an attached
and valid or unattached or invalid table
entry other than a change to bits 56-63 of
a page-table entry, each CPU which may
have a TLB entry formed from that entry
must be caused to purge its TLB after the
change occurs and prior to the use of that
entry for implicit translation by that CPU.
(Note that a separate purge is unneces-
sary if the change was made by using

| INVALIDATE DAT TABLE ENTRY,
INVALIDATE PAGE TABLE ENTRY, or a
COMPARE AND SWAP AND PURGE
instruction that purges the TLB.) In the
case when the table entry is attached and
valid, this rule applies when it is known
that a program is not being executed that
may require the entry for translation.

c. When any change is made to an invalid
table entry in such a way as to allow inter-
mediate valid values to appear in the
entry, each CPU to which the entry is
attached must be caused to purge its TLB
after the change occurs and prior to the
use of the entry for implicit address trans-
lation by that CPU.

d. When any change is made to an offset or
length specified for a table, each CPU
which may have a TLB entry formed from
a table entry that no longer lies within its
table must be caused to purge its TLB
after the change occurs and prior to the
use of the table for implicit translation by
that CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
CPU which does not have any TLB entries
formed from that entry. Similarly, when an

 Chapter 3. Storage 3-47

invalid region-table or segment-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
CPU which does not have any TLB entries
formed from that validated entry and which
does not have any TLB entries formed from
entries in a page table attached by means of
that validated entry.

The execution of PURGE TLB, COMPARE
AND SWAP AND PURGE, or SET PREFIX
may have an adverse effect on the perform-
ance of some models. Use of these
instructions should, therefore, be minimized in
conformance with the above rules.

 Address Summary

 Addresses Translated

Most addresses that are explicitly specified by the
program and are used by the CPU to refer to
storage are instruction or logical addresses and
are subject to implicit translation when DAT is on.
Analogously, the corresponding addresses indi-
cated to the program on an interruption or as the
result of executing an instruction are instruction or
logical addresses. The operand address of LOAD
REAL ADDRESS and STORE REAL ADDRESS is
explicitly translated, regardless of whether the
PSW specifies DAT on or off.

Translation is not applied to quantities that are
formed from the values specified in the B and D
fields of an instruction but that are not used to
address storage. This includes operand

addresses in LOAD ADDRESS, LOAD ADDRESS
EXTENDED, MONITOR CALL, and the shifting
instructions. This also includes the addresses in
control registers 10 and 11 designating the
starting and ending locations for PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage keys
(operand addresses in SET STORAGE KEY
EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses. Similarly, the
addresses implicitly used by the CPU for such
sequences as interruptions are real addresses.

The addresses used by channel programs to
transfer data and to refer to CCWs or IDAWs are
absolute addresses.

The handling of storage addresses associated
with DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in
“Address Types” on page 3-3. Prefixing, when
provided, is applied after the address has been
translated by means of the dynamic-
address-translation facility. For a description of
prefixing, see “Prefixing” on page 3-15.

Handling of Addresses

The handling of addresses is summarized in
Figure 3-10 on page 3-49. This figure lists all
addresses that are encountered by the program
and specifies the address type.

3-48 z/Architecture Principles of Operation

┌───┐
│ Virtual Addresses │
│ │
│ � Address of storage operand for INSERT VIRTUAL STORAGE KEY │
│ � Operand address in LOAD REAL ADDRESS and STORE REAL ADDRESS │
│ � Addresses of storage operands for MOVE TO PRIMARY and MOVE TO │
│ SECONDARY │
│ � Address stored in the doubleword at real location 168 on a program │
│ interruption for ASCE-type, region-first-translation, region-second-│
│ translation, region-third-translation, segment-translation, or page-│
│ translation exception │
│ � Linkage-stack-entry address in control register 15 │
│ � Backward stack-entry address in linkage-stack header entry │
│ � Forward-section-header address in linkage-stack trailer entry │
│ � Trap-control-block address in dispatchable-unit-control table │
│ � Trap-save-area address and trap-program address in trap control │
│ block │
│ │
│ Instruction Addresses │
│ │
│ � Instruction address in PSW │
│ � Branch address │
│ � Target of EXECUTE │
│ � Address stored in the doubleword at real location 152 on a program │
│ interruption for PER │
│ � Address placed in general register by BRANCH AND LINK, BRANCH AND │
│ SAVE, BRANCH AND SAVE AND SET MODE, BRANCH AND STACK, BRANCH IN │
│ SUBSPACE GROUP, BRANCH RELATIVE AND SAVE, BRANCH RELATIVE AND SAVE │
│ LONG, and PROGRAM CALL │
│ � Address used in general register by BRANCH AND STACK. │
│ � Address placed in general register by BRANCH AND SET AUTHORITY │
│ executed in reduced-authority state │
│ │
│ Logical Addresses │
│ │
│ � Addresses of storage operands for instructions not otherwise │
│ specified │
│ � Address placed in general register 1 by EDIT AND MARK and TRANSLATE │
│ AND TEST │
│ � Addresses in general registers updated by MOVE LONG, MOVE LONG │
│ EXTENDED, COMPARE LOGICAL LONG, and COMPARE LOGICAL LONG EXTENDED │
│ � Addresses in general registers updated by CHECKSUM, COMPARE AND FORM│
│ CODEWORD, and UPDATE TREE │
│ � Address for TEST PENDING INTERRUPTION when the second-operand ad- │
│ dress is nonzero │
│ � Address of parameter list of RESUME PROGRAM │
└───┘

Figure 3-10 (Part 1 of 3). Handling of Addresses

 Chapter 3. Storage 3-49

┌───┐
│ Real Addresses │
│ │
│ � Address of storage key for INSERT STORAGE KEY EXTENDED, RESET │
│ REFERENCE BIT EXTENDED, and SET STORAGE KEY EXTENDED │
│ � Address of storage operand for LOAD USING REAL ADDRESS, STORE USING │
│ REAL ADDRESS, and TEST BLOCK │
│ � The translated address generated by LOAD REAL ADDRESS and STORE REAL│
│ ADDRESS │
│ � Page-frame real address in page-table entry │
│ � Trace-entry address in control register 12 │
│ � ASN-first-table origin in control register 14 │
│ � ASN-second-table origin in ASN-first-table entry │
│ � Authority-table origin in ASN-second-table entry, except when used │
│ by access-register translation │
│ � Linkage-table origin in primary ASN-second-table entry │
│ � Entry-table origin in linkage-table entry │
│ � Dispatchable-unit-control-table origin in control register 2 │
│ � Primary-ASN-second-table-entry origin in control register 5 │
│ � Base-ASN-second-table-entry origin and subspace-ASN-second-table- │
│ entry origin in dispatchable-unit control table │
│ � ASN-second-table-entry address in entry-table entry and access-list │
│ entry │
│ │
│ Permanently Assigned Real Addresses │
│ │
│ � Address of the doubleword into which TEST PENDING INTERRUPTION │
│ stores when the second-operand address is zero │
│ � Addresses of PSWs, interruption codes, and the associated informa- │
│ tion used during interruption │
│ � Addresses used for machine-check logout and save areas │
│ � Address of STORE FACILITY LIST operand │
│ │
│ Addresses which Are Unpredictably Real or Absolute │
│ │
│ � Region-first-table origin, region-second-table origin, region-third-│
│ table origin, or segment-table origin in control registers 1, 7, and│
│ 13, in access-register-specified address-space-control element, and │
│ in region-first-table entry, region-second-table entry, or region- │
│ third-table entry │
│ � Page-table origin in segment-table entry and in INVALIDATE PAGE │
│ TABLE ENTRY │
│ � Address of segment-table entry or page-table entry provided by LOAD │
│ REAL ADDRESS │
│ � The dispatchable-unit or primary-space access-list origin and the │
│ authority-table origin (in the ASTE designated by the ALE used) used│
│ by access-register translation │
└───┘

Figure 3-10 (Part 2 of 3). Handling of Addresses

3-50 z/Architecture Principles of Operation

┌───┐
│ Absolute Addresses │
│ │
│ � Prefix value │
│ � Channel-program address in ORB │
│ � Data address in CCW │
│ � IDAW address in a CCW specifying indirect data addressing │
│ � CCW address in a CCW specifying transfer in channel │
│ � Data address in IDAW │
│ � Measurement-block origin specified by SET CHANNEL MONITOR │
│ � Address limit specified by SET ADDRESS LIMIT │
│ � Addresses used by the store-status-at-address SIGNAL PROCESSOR order│
│ � Failing-storage address stored in the doubleword at real location │
│ 248 │
│ � CCW address in SCSW │
│ │
│ Permanently Assigned Absolute Addresses │
│ │
│ � Addresses used for the store-status function │
│ � Addresses of PSW and first two CCWs used for initial program loading│
│ │
│ Addresses Not Used to Reference Storage │
│ │
│ � PER starting address in control register 1� │
│ � PER ending address in control register 11 │
│ � Address stored in the doubleword at real location 176 for a monitor │
│ event │
│ � Address in shift instructions and other instructions specified not │
│ to use the address to reference storage │
│ � Real-space token origin in real-space designation │
└───┘

Figure 3-10 (Part 3 of 3). Handling of Addresses

Assigned Storage Locations
Figure 3-11 on page 3-57 shows the format and
extent of the assigned locations in storage. The
locations are used as follows.

128-131 (Real Address)

External-Interruption Parameter: During
an external interruption due to service
signal or the external time reference
(ETR), the parameter associated with the
interruption is stored at locations
128-131.

132-133 (Real Address)

CPU Address: During an external inter-
ruption due to malfunction alert, emer-
gency signal, or external call, the CPU
address associated with the source of
the interruption is stored at locations
132-133. For all other external-
interruption conditions, zeros are stored
at locations 132-133.

134-135 (Real Address)

External-Interruption Code: During an
external interruption, the interruption
code is stored at locations 134-135.

136-139 (Real Address)

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at
locations 138-139. Zeros are stored at
location 136 and in the remaining bit
positions of location 137.

140-143 (Real Address)

Program-Interruption Identification:
During a program interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 141, and
the interruption code is stored at
locations 142-143. Zeros are stored at
location 140 and in the remaining bit
positions of location 141.

 Chapter 3. Storage 3-51

144-147 (Real Address)

Data-Exception Code (DXC): During a
program interruption due to a data
exception, the data-exception code is
stored at location 147, and zeros are
stored at locations 144-146. The DXC is
described in “Data-Exception Code
(DXC)” on page 6-15.

148-149 (Real Address)

Monitor-Class Number: During a
program interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at location 148.

150-151 (Real Address)

PER Code: During a program inter-
ruption due to a PER event the PER
code is stored in bit positions 0-2 and 4
of locations 150-151, and other informa-
tion is or may be stored as described in
“Identification of Cause” on page 4-26.

152-159 (Real Address)

PER Address: During a program inter-
ruption due to a PER event, the PER
address is stored at locations 152-159.

160 (Real Address)

Exception Access Identification: During
a program interruption due to an
ASCE-type, region-first-translation,
region-second-translation, region-third-
translation, segment-translation, or page-
translation exception, an indication of the
address space to which the exception
applies may be stored at location 160. If
the CPU was in the access-register
mode and the access was an instruction
fetch, including a fetch of the target of an
EXECUTE instruction, zeros are stored
at location 160. If the CPU was in the
access-register mode and the access
was a storage-operand reference that
used an AR-specified address-
space-control element, the number of the
access register used is stored in bit posi-
tions 4-7 of location 160, and zeros are
stored in bit positions 0-3. (In either of
the two cases described so far, storing
at location 160 occurs regardless of the
value stored in bit positions 62 and 63 of
real locations 168-175.) If the CPU was

in the access-register mode but the
access was an implicit reference to the
linkage stack, or if the CPU was not in
the access-register mode, the contents
of location 160 are unpredictable.

During a program interruption due to an
ALEN-translation, ALE-sequence,
ASTE-validity, ASTE-sequence, or
extended-authority exception recognized
during access-register translation, the
number of the access register used is
stored in bit positions 4-7 of location
160, and zeros are stored in bit positions
0-3. During a program interruption due
to an ASTE-validity or ASTE-sequence
exception recognized during a subspace-
replacement operation, all zeros are
stored at location 160.

During a program interruption due to a
protection exception, information is
stored at location 160 as described in
“Suppression on Protection” on
page 3-12.

161 (Real Address)

PER Access Identification: During a
program interruption due to a PER
storage-alteration event, an indication of
the address space to which the event
applies may be stored at location 161. If
the access used an AR-specified
address-space-control element, the
number of the access register used is
stored in bit positions 4-7 of location
161, and zeros are stored in bit positions
0-3. The contents of location 161 are
unpredictable if (1) the CPU was in the
access-register mode but the access
was an implicit reference to the linkage
stack or (2) the CPU was not in the
access-register mode.

162 (Real Address)

Operand Access Identification: During a
program interruption due to a page-
translation exception recognized by the
MOVE PAGE instruction, the contents of
the R� field of the instruction are stored
in bit positions 0-3 of location 162, and
the contents of the R� field are stored in
bit positions 4-7. If the page-translation
exception was recognized during the

3-52 z/Architecture Principles of Operation

execution of an instruction other than
MOVE PAGE, or if an ASCE-type,
region-first-translation, region-
second-translation, region-third-
translation, or segment-translation
exception was recognized, the contents
of location 162 are unpredictable.

163 (Absolute Address)

Store-Status Architectural-Mode Identifi-
cation: During the execution of the
store-status operation, zeros are stored
in bit positions 0-6 of location 163, and a

| one is stored in bit position 7. A zero
| stored in bit position 7 indicates the
| ESA/390 architectural mode, and a one
| indicates the z/Architecture architectural
| mode.

163 (Real Address)

Machine-Check Architectural-Mode Iden-
tification: During a machine-check inter-
ruption, zeros are stored in bit positions
0-6 of location 163, and a one is stored

| in bit position 7. A zero stored in bit
| position 7 indicates the ESA/390 archi-
| tectural mode, and a one indicates the
| z/Architecture architectural mode.

168-175 (Real Address)

Translation-Exception Identification:
During a program interruption due to an
ASCE-type, region-first-translation,
region-second-translation, region-third-
translation, segment-translation, or page-
translation exception, bits 0-51 of the
virtual address causing the exception are
stored in bit positions 0-51 of locations
168-175. This address is sometimes
referred to as the translation-exception
address. Bits 52-60 of locations 168-175
are unpredictable. If the exception was
a page-translation exception that was
recognized during the execution of
MOVE PAGE, bit 61 of locations
168-175 is set to one. If the exception
was a page-translation exception recog-
nized during the execution of an instruc-
tion other than MOVE PAGE, bit 61 is
set to zero. If the exception was an
ASCE-type, region-first-translation,
region-second-translation, region-third-
translation, or segment-translation
exception, bit 61 of locations 168-175 is

unpredictable. See the definition of real
location 162 for related information.

Bits 62 and 63 of locations 168-175 are
set to identify the address-space-control
element (ASCE) used in the translation,
as follows:

The CPU may avoid setting bits 62 and
63 to 01 by recognizing that the access
was an instruction fetch, that access-
list-entry token 00000000 or 00000001
hex was used, or that the access-list-
entry token designated, through an
access-list entry, an ASN-second-table
entry containing an ASCE equal to the
primary ASCE, secondary ASCE, or
home ASCE.

During a program interruption due to an
AFX-translation, ASX-translation,
primary-authority, or secondary-authority
exception, the ASN being translated is
stored at locations 174 and 175, zeros
are stored at locations 172 and 173, and
the contents of locations 168-171 remain
unchanged.

During a program interruption due to a
space-switch event, an identification of

Bit Bit
Meaning62 63

0 0 Primary ASCE was used.
0 1 CPU was in the access-

register mode, and either the
access was an instruction fetch
or it was a storage-operand
reference that used an
AR-specified ASCE (the
access was not an implicit ref-
erence to the linkage stack).
The exception access id, real
location 160, can be examined
to determine the ASCE used.
However, if the primary, sec-
ondary, or home ASCE was
used, bits 62 and 63 may be
set to 00, 10, or 11, respec-
tively, instead of to 01.

1 0 Secondary ASCE was used.
1 1 Home ASCE was used

(includes the case of an
implicit reference to the linkage
stack).

 Chapter 3. Storage 3-53

the old instruction space is stored at
locations 174 and 175, the old
instruction-space space-switch-
event-control bit is placed in bit position
0 and zeros are placed in bit positions
1-15 of locations 172 and 173, and the
contents of locations 168-171 remain
unchanged. The identification and bit
stored are as follows:

� If the CPU was in the primary-space,
secondary-space, or access-register
mode before the operation, the old
PASN, bits 48-63 of control register
4 before the operation, is stored at
locations 174 and 175, and the old
primary space-switch-event-control
bit, bit 57 of control register 1 before
the operation, is placed in bit posi-
tion 0 of locations 172 and 173.

� If the CPU was in the home-space
mode before the operation, zeros are
stored at locations 174 and 175, and
the home space-switch-event-control
bit, bit 57 of control register 13, is
placed in bit position 0 of locations
172 and 173.

During a program interruption due to an
LX-translation or EX-translation excep-
tion recognized by PROGRAM CALL,
the PC number is stored in bit positions
12-31 of locations 172-175, zeros are
stored in bit positions 0-11, and the con-
tents of locations 168-171 remain
unchanged.

During a program interruption due to a
protection exception, information is
stored at locations 168-175 as described
in “Suppression on Protection” on
page 3-12.

176-183 (Real Address)

Monitor Code: During a program inter-
ruption due to a monitor event, the
monitor code is stored at locations
176-183.

184-187 (Real Address)

Subsystem-Identification Word: During
an I/O interruption, the subsystem-
identification word is stored at locations
184-187.

188-191 (Real Address)

I/O-Interruption Parameter: During an
I/O interruption, the interruption param-
eter from the associated subchannel is
stored at locations 188-191.

192-195 (Real Address)

I/O-Interruption-Identification Word:
During an I/O interruption, the
I/O-interruption-identification word, which
further identifies the source of the I/O
interruption, is stored at locations
192-195.

200-203 (Real Address)

STFL Facility List: The STORE
FACILITY LIST instruction stores infor-

| mation at real locations 200-203. The
| information describes which facilities are
| provided by the CPU. See the definition
| of STORE FACILITY LIST in Chapter 10,
| “Control Instructions,” for a description of
| the information stored.

232-239 (Real Address)

Machine-Check-Interruption Code:
During a machine-check interruption, the
machine-check-interruption code is
stored at locations 232-239.

244-247 (Real Address)

External-Damage Code: During a
machine-check interruption due to
certain external-damage conditions,
depending on the model, an external-
damage code may be stored at locations
244-247.

248-255 (Real Address)

Failing-Storage Address: During a
machine-check interruption, a 64-bit
failing-storage address may be stored at
locations 248-255.

288-303 (Real Address)

Restart Old PSW: The current PSW is
stored as the old PSW at locations
288-303 during a restart interruption.

304-319 (Real Address)

External Old PSW: The current PSW is
stored as the old PSW at locations
304-319 during an external interruption.

3-54 z/Architecture Principles of Operation

320-335 (Real Address)

Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at
locations 320-335 during a supervisor-
call interruption.

336-351 (Real Address)

Program Old PSW: The current PSW is
stored as the old PSW at locations
336-351 during a program interruption.

352-367 (Real Address)

Machine-Check Old PSW: The current
PSW is stored as the old PSW at
locations 352-367 during a machine-
check interruption.

368-383 (Real Address)

Input/Output Old PSW: The current
PSW is stored as the old PSW at
locations 368-383 during an I/O inter-
ruption.

416-431 (Real Address)

Restart New PSW: The new PSW is
fetched from locations 416-431 during a
restart interruption.

432-447 (Real Address)

External New PSW: The new PSW is
fetched from locations 432-447 during an
external interruption.

448-463 (Real Address)

Supervisor-Call New PSW: The new
PSW is fetched from locations 448-463
during a supervisor-call interruption.

464-479 (Real Address)

Program New PSW: The new PSW is
fetched from locations 464-479 during a
program interruption.

480-495 (Real Address)

Machine-Check New PSW: The new
PSW is fetched from locations 480-495
during a machine-check interruption.

496-511 (Real Address)

Input/Output New PSW: The new PSW
is fetched from locations 496-511 during
an I/O interruption.

4544-4607 (Real Address)

Available for Programming: Locations
4544-4607 are available for use by pro-
gramming.

4608-4735 (Absolute Address)

Store-Status Floating-Point-Register
Save Area: During the execution of the
store-status operation, the contents of
the floating-point registers are stored at
locations 4608-4735.

4608-4735 (Real Address)

Machine-Check Floating-Point-Register
Save Area: During a machine-check
interruption, the contents of the floating-
point registers are stored at locations
4608-4735.

4736-4863 (Absolute Address)

Store-Status General-Register Save
Area: During the execution of the store-
status operation, the contents of the
general registers are stored at locations
4736-4863.

4736-4863 (Real Address)

Machine-Check General-Register Save
Area: During a machine-check inter-
ruption, the contents of the general reg-
isters are stored at locations 4736-4863.

4864-4879 (Absolute Address)

Store-Status PSW Save Area: During
the execution of the store-status opera-
tion, the contents of the current PSW are
stored at locations 4864-4879.

4864-4879 (Real Address)

Fixed-Logout Area: Depending on the
model, logout information may be stored
at locations 4864-4879 during a
machine-check interruption.

4888-4891 (Absolute Address)

Store-Status Prefix Save Area: During
the execution of the store-status opera-
tion, the contents of the prefix register
are stored at locations 4888-4891.

4892-4895 (Absolute Address)

Store-Status Floating-Point-Control-
Register Save Area: During the exe-
cution of the store-status operation, the

 Chapter 3. Storage 3-55

contents of the floating-point control reg-
ister are stored at locations 4892-4895.

4892-4895 (Real Address)

Machine-Check Floating-Point-Control-
Register Save Area: During a machine-
check interruption, the contents of the
floating-point control register are stored
at locations 4892-4895.

4900-4903 (Absolute Address)

Store-Status
TOD-Programmable-Register Save Area:
During the execution of the store-status
operation, the contents of the TOD pro-
grammable register are stored at
locations 4900-4903.

4900-4903 (Real Address)

Machine-Check
TOD-Programmable-Register Save Area:
During a machine-check interruption, the
contents of the TOD programmable reg-
ister are stored at locations 4900-4903.

4904-4911 (Absolute Address)

Store-Status CPU-Timer Save Area:
During the execution of the store-status
operation, the contents of the CPU timer
are stored at locations 4904-4911.

4904-4911 (Real Address)

Machine-Check CPU-Timer Save Area:
During a machine-check interruption, the
contents of the CPU timer are stored at
locations 4904-4911.

4913-4919 (Absolute Address)

Store-Status Clock-Comparator Save
Area: During the execution of the store-
status operation, the contents of bit posi-
tions 0-55 of the clock comparator are
stored at locations 4913-4919. When
this store occurs, zeros are stored at
location 4912.

4913-4919 (Real Address)

Machine-Check Clock-Comparator Save
Area: During a machine-check inter-
ruption, the contents of bit positions 0-55
of the clock comparator are stored at
locations 4913-4919. When this store

occurs, zeros are stored at location
4912.

4928-4991 (Absolute Address)

Store-Status Access-Register Save Area:
During the execution of the store-status
operation, the contents of the access
registers are stored at locations
4928-4991.

4928-4991 (Real Address)

Machine-Check Access-Register Save
Area: During a machine-check inter-
ruption, the contents of the access regis-
ters are stored at locations 4928-4991.

4992-5119 (Absolute Address)

Store-Status Control-Register Save Area:
During the execution of the store-status
operation, the contents of the control
registers are stored at locations
4992-5119.

4992-5119 (Real Address)

Machine-Check Control-Register Save
Area: During a machine-check inter-
ruption, the contents of the control regis-
ters are stored at locations 4992-5119.

Programming Notes:

1. When the CPU is in the access-register mode,
some instructions, such as MVCL, which
address operands in more than one address
space, may cause a storage-alteration PER
event in one address space concurrently with
a region-translation, segment-translation, or
page-translation exception in another address
space. The access registers used to cause
these conditions in such a case are different.
In order to identify both access registers, two
access identifications, namely the exception
access identification and the PER access
identification, are provided.

2. The store-status and machine-check
architectural-mode identifications at absolute
and real locations 163, respectively, indicate
that the CPU is in the z/Architecture architec-
tural mode. When z/Architecture is installed
on the CPU but the CPU is in the ESA/390
mode, the store-status and machine-
check-interruption operations store zero at
location 163.

3-56 z/Architecture Principles of Operation

┌──────────┬───┐
│ Hex Dec │ Fields │
├──────────┼───┤
│ � � │ │
│ │ │
│ 4 4 │ │
│ │ │
│ 8 8 │ │
│ │ │
│ C 12 │ │
│ │ │
│ 1� 16 │ │
│ │ │
│ 14 2� │ │
│ │ │
│ 18 24 │ │
│ │ │
│ 1C 28 │ │
│ │ │
│ 2� 32 │ │
│ │ │
│ 24 36 │ │
│ │ │
│ 28 4� │ │
│ │ │
│ 2C 44 │ │
│ │ │
│ 3� 48 │ │
│ │ │
│ 34 52 │ │
│ │ │
│ 38 56 │ │
│ │ │
│ 3C 6� │ │
│ │ │
│ 4� 64 │ │
│ │ │
│ 44 68 │ │
│ │ │
│ 48 72 │ │
│ │ │
│ 4C 76 │ │
│ │ │
│ 5� 8� │ │
│ │ │
│ 54 84 │ │
│ │ │
│ 58 88 │ │
│ │ │
│ 5C 92 │ │
│ │ │
│ 6� 96 │ │
│ │ │
│ 64 1�� │ │
│ │ │
│ 68 1�4 │ │
│ │ │
│ 6C 1�8 │ │
│ │ │
│ 7� 112 │ │
│ │ │
│ 74 116 │ │
│ │ │
│ 78 12� │ │
│ │ │
│ 7C 124 │ │
└──────────┴───┘

Figure 3-11 (Part 1 of 6). Assigned Storage Locations

 Chapter 3. Storage 3-57

┌──────────┬───┐
│ Hex Dec │ Fields │
├──────────┼───┤
│ 8� 128 │ External-Interruption Parameter │
├──────────┼───────────────────────────────┬───────────────────────────────┤
│ 84 132 │ CPU Address │ External-Interruption Code │
├──────────┼─────────────────────────┬───┬─┼───────────────────────────────┤
│ 88 136 │� � � � � � � � � � � � �│ILC│�│ SVC-Interruption Code │
├──────────┼─────────────────────────┼───┼─┼───────────────────────────────┤
│ 8C 14� │� � � � � � � � � � � � �│ILC│�│ Program-Interruption Code │
├──────────┼─────────────────────────┴───┴─┴───────────────────────────────┤
│ 9� 144 │ Data-Exception Code │
├──────────┼───────────────────────────────┬───────┬─────┬──┬──────────────┤
│ 94 148 │ Monitor-Class Number │PER Cde│ATMID│AI│ │
├──────────┼───────────────────────────────┴───────┴─────┴──┴──────────────┤
│ 98 152 │ PER Address │
│ │ │
│ 9C 156 │ │
├──────────┼───────────────┬───────────────┬───────────────┬───────────────┤
│ A� 16� │Exc. Access ID │ PER Access ID │ Op. Access Id │SS/MC Ar-Md Id │
├──────────┼───────────────┴───────────────┴───────────────┴───────────────┤
│ A4 164 │ │
├──────────┼───┤
│ A8 168 │ Translation-Exception Identification │
│ │ │
│ AC 172 │ │
├──────────┼───┤
│ B� 176 │ Monitor Code │
│ │ │
│ B4 18� │ │
├──────────┼───┤
│ B8 184 │ Subsystem-Identification Word │
├──────────┼───┤
│ BC 188 │ I/O-Interruption Parameter │
├──────────┼───┤
│ C� 192 │ I/O-Interruption-Identification Word │
├──────────┼───┤
│ C4 196 │ │
├──────────┼───┤
│ C8 2�� │ STFL Facility List │
├──────────┼───┤
│ CC 2�4 │ │
│ │ │
│ D� 2�8 │ │
│ │ │
│ D4 212 │ │
│ │ │
│ D8 216 │ │
│ │ │
│ DC 22� │ │
│ │ │
│ E� 224 │ │
│ │ │
│ E4 228 │ │
├──────────┼───┤
│ E8 232 │ Machine-Check Interruption Code │
│ │ │
│ EC 236 │ │
├──────────┼───┤
│ F� 24� │ │
├──────────┼───┤
│ F4 244 │ External-Damage Code │
├──────────┼───┤
│ F8 248 │ Failing-Storage Address │
│ │ │
│ FC 252 │ │
└──────────┴───┘

Figure 3-11 (Part 2 of 6). Assigned Storage Locations

3-58 z/Architecture Principles of Operation

┌──────────┬───┐
│ Hex Dec │ Fields │
├──────────┼───┤
│ 1�� 256 │ │
│ │ │
│ 1�4 26� │ │
│ │ │
│ 1�8 264 │ │
│ │ │
│ 1�C 268 │ │
│ │ │
│ 11� 272 │ │
│ │ │
│ 114 276 │ │
│ │ │
│ 118 28� │ │
│ │ │
│ 11C 284 │ │
├──────────┼───┤
│ 12� 288 │ Restart Old PSW │
│ │ │
│ 124 292 │ │
│ │ │
│ 128 296 │ │
│ │ │
│ 12C 3�� │ │
├──────────┼───┤
│ 13� 3�4 │ External Old PSW │
│ │ │
│ 134 3�8 │ │
│ │ │
│ 138 312 │ │
│ │ │
│ 13C 316 │ │
├──────────┼───┤
│ 14� 32� │ Supervisor-Call Old PSW │
│ │ │
│ 144 324 │ │
│ │ │
│ 148 328 │ │
│ │ │
│ 14C 332 │ │
├──────────┼───┤
│ 15� 336 │ Program Old PSW │
│ │ │
│ 154 34� │ │
│ │ │
│ 158 344 │ │
│ │ │
│ 15C 348 │ │
├──────────┼───┤
│ 16� 352 │ Machine-Check Old PSW │
│ │ │
│ 164 356 │ │
│ │ │
│ 168 36� │ │
│ │ │
│ 16C 364 │ │
├──────────┼───┤
│ 17� 368 │ Input/Output Old PSW │
│ │ │
│ 174 372 │ │
│ │ │
│ 178 376 │ │
│ │ │
│ 17C 38� │ │
└──────────┴───┘

Figure 3-11 (Part 3 of 6). Assigned Storage Locations

 Chapter 3. Storage 3-59

┌──────────┬───┐
│ Hex Dec │ Fields │
├──────────┼───┤
│ 18� 384 │ │
│ │ │
│ 184 388 │ │
│ │ │
│ 188 392 │ │
│ │ │
│ 18C 396 │ │
│ │ │
│ 19� 4�� │ │
│ │ │
│ 194 4�4 │ │
│ │ │
│ 198 4�8 │ │
│ │ │
│ 19C 412 │ │
├──────────┼───┤
│ 1A� 416 │ Restart New PSW │
│ │ │
│ 1A4 42� │ │
│ │ │
│ 1A8 424 │ │
│ │ │
│ 1AC 428 │ │
├──────────┼───┤
│ 1B� 432 │ External New PSW │
│ │ │
│ 1B4 436 │ │
│ │ │
│ 1B8 44� │ │
│ │ │
│ 1BC 444 │ │
├──────────┼───┤
│ 1C� 448 │ Supervisor-Call New PSW │
│ │ │
│ 1C4 452 │ │
│ │ │
│ 1C8 456 │ │
│ │ │
│ 1CC 46� │ │
├──────────┼───┤
│ 1D� 464 │ Program New PSW │
│ │ │
│ 1D4 468 │ │
│ │ │
│ 1D8 472 │ │
│ │ │
│ 1DC 476 │ │
├──────────┼───┤
│ 1E� 48� │ Machine-Check New PSW │
│ │ │
│ 1E4 484 │ │
│ │ │
│ 1E8 488 │ │
│ │ │
│ 1EC 492 │ │
├──────────┼───┤
│ 1F� 496 │ Input/Output New PSW │
│ │ │
│ 1F4 5�� │ │
│ │ │
│ 1F8 5�4 │ │
│ │ │
│ 1FC 5�8 │ │
└──────────┴───┘

Figure 3-11 (Part 4 of 6). Assigned Storage Locations

3-60 z/Architecture Principles of Operation

┌──────────┬───┐
│ Hex Dec │ Fields │
├──────────┼───┤
│1��� 4�96 │ │
│ │ │
│1��4 41�� │ │
│ │ │
│1��8 41�4 │ │
│ │ │
│1��C 41�8 │ │
│ │ │
│1�1� 4112 │ │
│ │ │
│1�14 4116 │ │
│ │ │
/ / (448 bytes) /
│ │ │
│11A8 452� │ │
│ │ │
│11AC 4524 │ │
│ │ │
│11B� 4528 │ │
│ │ │
│11B4 4532 │ │
│ │ │
│11B8 4536 │ │
│ │ │
│11BC 454� │ │
├──────────┼───┤
│11C� 4544 │ Available for Use by Programming │
│ │ │
│11C4 4548 │ │
│ │ │
/ / (64 bytes) /
│ │ │
│11F8 46�� │ │
│ │ │
│11FC 46�4 │ │
└──────────┴───┘

Figure 3-11 (Part 5 of 6). Assigned Storage Locations

 Chapter 3. Storage 3-61

┌──────────┬───┐
│ Hex Dec │ Fields │
├──────────┼───┤
│12�� 46�8 │ Store-Status Floating-Point-Register Save Area; or Machine- │
│ │ Check Floating-Point-Register Save Area │
│12�4 4612 │ │
│ │ │
/ / (128 bytes) /
│ │ │
│1278 4728 │ │
│ │ │
│127C 4732 │ │
├──────────┼───┤
│128� 4736 │ Store-Status General-Register Save Area; or Machine-Check │
│ │ General-Register Save Area │
│1284 474� │ │
│ │ │
/ / (128 bytes) /
│ │ │
│12F8 4856 │ │
│ │ │
│12FC 486� │ │
├──────────┼───┤
│13�� 4864 │ Store-Status PSW Save Area; or Fixed-Logout Area │
│ │ │
│13�4 4868 │ │
│ │ │
│13�8 4872 │ │
│ │ │
│13�C 4876 │ │
├──────────┼───┤
│131� 488� │ │
│ │ │
│1314 4884 │ │
├──────────┼───┤
│1318 4888 │ Store-Status Prefix Save Area │
├──────────┼───┤
│131C 4892 │ Store-Status FP-Ctl-Reg Save Area; or MC FP-Ctl-Reg Save Area │
├──────────┼───┤
│132� 4896 │ │
├──────────┼───┤
│1324 49�� │ Store-Status TOD Prog Reg Save Area; or MC TOD Prog Reg S A │
├──────────┼───┤
│1328 49�4 │ Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer │
│ │ Save Area │
│132C 49�8 │ │
├──────────┼────────┬──┤
│133� 4912 │ │ Store-Status Clock-Comparator Bits �-55 Save Area; or│
├──────────┼────────┘ Machine-Check Clock-Comparator Bits �-55 Save Area │
│1334 4916 │ │
├──────────┼───┤
│1338 492� │ │
│ │ │
│133C 4924 │ │
├──────────┼───┤
│134� 4928 │ Store-Status Access-Register Save Area; or Machine-Check │
│ │ Access-Register Save Area │
/ / (64 bytes) /
│ │ │
│137C 4988 │ │
├──────────┼───┤
│138� 4992 │ Store-Status Control-Register Save Area; or Machine-Check │
│ │ Control-Register Save Area │
│1384 4996 │ │
│ │ │
/ / (128 bytes) /
│ │ │
│13F8 5112 │ │
│ │ │
│13FC 5116 │ │
└──────────┴───┘

Figure 3-11 (Part 6 of 6). Assigned Storage Locations

3-62 z/Architecture Principles of Operation

 Chapter 4. Control

Stopped, Operating, Load, and Check-Stop
States . 4-1

Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-3

Program-Status Word 4-3
Program-Status-Word Format 4-5

Control Registers 4-7
Tracing . 4-10

Control-Register Allocation 4-13
Trace Entries 4-13
Operation 4-23

Program-Event Recording 4-24
Control-Register Allocation and

Address-Space-Control Element 4-24
Operation 4-25

Identification of Cause 4-26
Priority of Indication 4-28

Storage-Area Designation 4-30
PER Events 4-30

Successful Branching 4-30
Instruction Fetching 4-31
Storage Alteration 4-31
Store Using Real Address 4-32

Indication of PER Events Concurrently
with Other Interruption Conditions . . . 4-32

Timing . 4-36

Time-of-Day Clock 4-36
Format 4-36
States . 4-36
Changes in Clock State 4-37
Setting and Inspecting the Clock 4-37
TOD Programmable Register 4-38

TOD-Clock Synchronization 4-40
Clock Comparator 4-41
CPU Timer 4-42

Externally Initiated Functions 4-43
Resets . 4-43

CPU Reset 4-47
Initial CPU Reset 4-48
Subsystem Reset 4-48
Clear Reset 4-48
Power-On Reset 4-49

Initial Program Loading 4-50
Store Status 4-50

Multiprocessing 4-51
Shared Main Storage 4-51
CPU-Address Identification 4-51

CPU Signaling and Response 4-52
Signal-Processor Orders 4-52
Conditions Determining Response 4-55

Conditions Precluding Interpretation of
the Order Code 4-55

Status Bits 4-56

This chapter describes in detail the facilities for
controlling, measuring, and recording the opera-
tion of one or more CPUs.

Stopped, Operating, Load, and
Check-Stop States
The stopped, operating, load, and check-stop
states are four mutually exclusive states of the
CPU. When the CPU is in the stopped state,
instructions and interruptions, other than the
restart interruption, are not executed. In the oper-
ating state, the CPU executes instructions and
takes interruptions, subject to the control of the
program-status word (PSW) and control registers,
and in the manner specified by the setting of the
operator-facility rate control. The CPU is in the

load state during the initial-program-loading opera-
tion of ESA/390. The CPU enters the check-stop
state only as the result of machine malfunctions.

A change between these four CPU states can be
effected by use of the operator facilities or by
acceptance of certain SIGNAL PROCESSOR
orders addressed to that CPU. The states are not
controlled or identified by bits in the PSW. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator, respec-
tively. These three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is in the
operating state or the load state. The TOD clock
is not affected by the state of any CPU.

 Copyright IBM Corp. 1990-2003 4-1

 Stopped State

The CPU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

� The stop key is activated while the CPU is in
the operating state.

� The CPU accepts a stop or stop-and-
store-status order specified by a SIGNAL
PROCESSOR instruction addressed to this
CPU while it is in the operating state.

� The CPU has finished the execution of a unit
of operation initiated by performing the start
function with the rate control set to the
instruction-step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at
the end of the current unit of operation. When the
wait-state bit of the PSW is one, the transition
takes place immediately, provided no interruptions
are pending for which the CPU is enabled. In the
case of interruptible instructions, the amount of
data processed in a unit of operation depends on
the particular instruction and may depend on the
model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions
occur while the CPU is still in the operating state.
They cause the old PSW to be stored and the
new PSW to be fetched before the stopped state
is entered. While the CPU is in the stopped state,
interruption conditions remain pending.

The CPU is also placed in the stopped state
when:

� CPU reset is completed. However, when the
reset operation is performed as part of initial
program loading for this CPU, then the CPU is
placed in the load state and does not neces-
sarily enter the stopped state.

� An address comparison indicates equality and
stopping on the match is specified.

The execution of resets is described in “Resets”
on page 4-43, and address comparison is
described in “Address-Compare Controls” on
page 12-1.

If the CPU is in the stopped state when an INVAL-
IDATE PAGE TABLE ENTRY instruction is exe-

cuted on another CPU in the configuration, the
clearing of TLB entries is completed before the
CPU leaves the stopped state.

 Operating State

The CPU changes from the stopped state to the
operating state by means of the start function or
when a restart interruption (see Chapter 6,
“Interruptions”) occurs.

The start function is performed if the CPU is in the
stopped state and (1) the start key associated
with that CPU is activated or (2) that CPU accepts
the start order specified by a SIGNAL
PROCESSOR instruction addressed to that CPU.
The effect of performing the start function is
unpredictable when the stopped state has been
entered by means of a reset.

When the rate control is set to the process posi-
tion and the start function is performed, the CPU
starts operating at normal speed. When the rate
control is set to the instruction-step position and
the wait-state bit is zero, one instruction or, for
interruptible instructions, one unit of operation is
executed, and all pending allowed interruptions
occur before the CPU returns to the stopped state.
When the rate control is set to the instruction-step
position and the wait-state bit is one, the start
function does not cause an instruction to be exe-
cuted, but all pending allowed interruptions occur
before the CPU returns to the stopped state.

 Load State

The CPU enters the load state when the load-
normal or load-clear key is activated. (See “Initial
Program Loading” on page 4-50. See also “Initial
Program Loading” on page 17-17.) This sets the
architectural mode to the ESA/390 mode. For
ease of reference, the additional elements of the
description of the ESA/390 load state are given
below.

If the initial-program-loading operation is com-
pleted successfully, the CPU changes from the
load state to the operating state, provided the rate
control is set to the process position; if the rate
control is set to the instruction-step position, the
CPU changes from the load state to the stopped
state.

4-2 z/Architecture Principles of Operation

 Check-Stop State

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in Chapter 11, “Machine-Check Handling.” The
CPU leaves the check-stop state when CPU reset
is performed.

Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW-format error of the type that is recog-
nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Pending I/O operations may be initiated, and
active I/O operations continue to suspension
or completion, after the CPU enters the
stopped state. The interruption conditions due
to suspension or completion of I/O operations
remain pending when the CPU is in the
stopped state.

 Program-Status Word
The current program-status word (PSW) in the
CPU contains information required for the exe-
cution of the currently active program. The PSW
is 128 bits in length and includes the instruction
address, condition code, and other control fields.
In general, the PSW is used to control instruction

sequencing and to hold and indicate much of the
status of the CPU in relation to the program cur-
rently being executed. Additional control and
status information is contained in control registers
and permanently assigned storage locations.

The status of the CPU can be changed by loading
a new PSW or part of a PSW.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to pre-
serve the status of the CPU, and then loading a
new PSW.

Execution of LOAD PSW or LOAD PSW
EXTENDED, or the successful conclusion of the
initial-program-loading sequence, introduces a
new PSW. The instruction address is updated by
sequential instruction execution and replaced by
successful branches. Other instructions are pro-
vided which operate on a portion of the PSW.
Figure 4-1 on page 4-4 summarizes these
instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the inter-
ruption or the execution of an instruction that
changes the PSW is completed. The interruption
for PER associated with an instruction that
changes the PSW occurs under control of the
PER mask that is effective at the beginning of the
operation.

Bits 0-7 of the PSW are collectively referred to as
the system mask.

 Chapter 4. Control 4-3

┌──────────────────────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┐
│ │ │ │ │ │Condition │ │ │
│ │ │ │ │ Address- │ Code and │ Basic │ Extended │
│ │ System │ │ Problem │ Space │ Program │Addressing│Addressing│
│ │ Mask │ PSW Key │ State │ Control │ Mask │ Mode │ Mode │
│ │(PSW Bits │(PSW Bits │ (PSW │(PSW Bits │(PSW Bits │ (PSW │ (PSW │
│ │ �-7) │ 8-11) │ Bit 15) │ 16-17) │ 18-23) │ Bit 32) │ Bit 31) │
│ ├─────┬────┼─────┬────┼─────┬────┼─────┬────┼─────┬────┼─────┬────┼─────┬────┤
│ Instruction │Saved│Set │Saved│Set │Saved│Set │Saved│Set │Saved│Set │Saved│Set │Saved│Set │
├──────────────────────────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┤
│BRANCH AND LINK │ - │ - │ - │ - │ - │ - │ - │ - │24AM │ - │31AM │ - │ - │ - │
│BRANCH AND SAVE │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ BAM │ - │ - │ - │
│BRANCH AND SAVE AND SET │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ BAM │Yes�│ Yes │Yes�│
│ MODE │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│BRANCH AND SET AUTHORITY │ - │ - │ Yes │Yes │ Yes │Yes │ - │ - │ - │ - │ BAM�│BAM │ - │ - │
│BRANCH AND SET MODE │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ BAM�│Yes�│ Yes�│Yes�│
├──────────────────────────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┤
│BRANCH AND STACK │ Yes │ - │ Yes │ - │ Yes │ - │ Yes │ - │ Yes │ - │ BAM�│ - │ Yes │ - │
│BRANCH IN SUBSPACE GROUP │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ BAM�│BAM │ - │ - │
│BRANCH RELATIVE AND SAVE │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ BAM │ - │ - │ - │
│BRANCH RELATIVE AND SAVE │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ BAM │ - │ - │ - │
│ LONG │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│EXTRACT PSW │ Yes │ - │ Yes │ - │ Yes │ - │ Yes │ - │ Yes │ - │ Yes │ - │ Yes │ - │
├──────────────────────────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┤
│INSERT PROGRAM MASK │ - │ - │ - │ - │ - │ - │ - │ - │ Yes │ - │ - │ - │ - │ - │
│INSERT PSW KEY │ - │ - │ Yes │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │
│INSERT ADDRESS SPACE │ - │ - │ - │ - │ - │ - │ Yes │ - │ - │ - │ - │ - │ - │ - │
│ CONTROL │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│Basic PROGRAM CALL │ - │ - │ - │ - │ Yes │Yes │ - │ - │ - │ - │ BAM │BAM │ - │ - │
│Stacking PROGRAM CALL │ Yes │ - │ Yes │PKC │ Yes │Yes │ Yes │Yes │ Yes │ - │ Yes │Yes │ Yes │Yes │
├──────────────────────────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┤
│PROGRAM RETURN │ - │Yes�│ - │Yes │ - │Yes │ - │Yes │ - │Yes │ - │Yes │ - │Yes │
│PROGRAM TRANSFER │ - │ - │ - │ - │ - │Yes�│ - │ - │ - │ - │ - │BAM │ - │ - │
│RESUME PROGRAM │ - │ - │ - │ - │ - │ - │ - │Yes │ - │Yes │ - │Yes │ - │Yes │
│SET ADDRESS SPACE CONTROL │ - │ - │ - │ - │ - │ - │ - │Yes │ - │ - │ - │ - │ - │ - │
│SET ADDRESSING MODE │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │Yes │ - │Yes │
├──────────────────────────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┤
│SET PROGRAM MASK │ - │ - │ - │ - │ - │ - │ - │ - │ - │Yes │ - │ - │ - │ - │
│SET PSW KEY FROM ADDRESS │ - │ - │ - │Yes │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │
│SET SYSTEM MASK │ - │Yes │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │
│STORE THEN AND SYSTEM MASK│ Yes │ANDs│ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │
│STORE THEN OR SYSTEM MASK │ Yes │ORs │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │ - │
├──────────────────────────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┼─────┼────┤
│TRAP │ - │ - │ - │ - │ Yes │ - │ Yes │Yes │ Yes │ - │ Yes │Yes │ Yes │ - │
├──────────────────────────┴─────┴────┴─────┴────┴─────┴────┴─────┴────┴─────┴────┴─────┴────┴─────┴────┤
│Explanation: │
│ │
│ - No. │
│ │
│ � The action takes place only if the associated R field in the instruction is nonzero. │
│ │
│ � In the reduced-authority state, the action takes place only if the R� field in the instruction │
│ is nonzero. │
│ │
│ � The action also takes place in the 64-bit addressing mode if the R� field in the instruction is │
│ zero. │
│ │
│ � PROGRAM RETURN does not change the PER mask. │
│ │
│ � PROGRAM TRANSFER does not change the problem-state bit from one to zero. │
└───┘

Figure 4-1 (Part 1 of 2). Operations on PSW Fields

4-4 z/Architecture Principles of Operation

┌───┐
│ BAM The basic-addressing-mode bit is saved or set in the 24-bit or 31-bit addressing mode. │
│ │
│ ANDs The logical AND of the immediate field in the instruction and the current system mask │
│ replaces the current system mask. │
│ │
│ ORs The logical OR of the immediate field in the instruction and the current system mask │
│ replaces the current system mask. │
│ │
│ PKC When the PSW-key-control bit, bit 131 of the entry-table entry, is zero, the PSW key remains │
│ unchanged. When the PSW-key-control bit is one, the PSW key is set with the entry key, bits │
│ 136-139 of the entry-table entry. │
│ │
│ 24AM The condition code and program mask are saved in the 24-bit addressing mode. │
│ │
│ 31AM The basic-addressing-mode bit is saved in the 31-bit addressing mode. │
└───┘

Figure 4-1 (Part 2 of 2). Operations on PSW Fields

Programming Note: A summary of the oper-
ations which save or set the problem state,
addressing mode, and instruction address is con-
tained in “Subroutine Linkage without the Linkage
Stack” on page 5-11.

 Program-Status-Word Format
┌─┬─┬─┬─┬─┬─┬─┬─┬───────┬─┬─┬─┬─┬───┬───┬───────┬─────────────┬─┐
│ │ │ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │E│
│�│R│�│�│�│T│O│X│ Key │�│M│W│P│A S│C C│ Mask │� � � � � � �│A│
└─┴─┴─┴─┴─┴─┴─┴─┴───────┴─┴─┴─┴─┴───┴───┴───────┴─────────────┴─┘
� 5 8 12 16 18 2� 24 31

┌─┬───┐
│B│ │
│A│� �│
└─┴───┘
32 63

┌───┐
│ │
│ Instruction Address │
└───┘
64 95

┌───┐
│ │
│ Instruction Address (Continued) │
└───┘
96 127

Figure 4-2. PSW Format

The following is a summary of the functions of the
PSW fields. (See Figure 4-2.)

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with program-
event recording (PER). When the bit is zero, no
PER event can cause an interruption. When the
bit is one, interruptions are permitted, subject to
the PER-event-mask bits in control register 9.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of logical and instruc-
tion addresses used to access storage takes
place. When the bit is zero, DAT is off, and

logical and instruction addresses are treated as
real addresses. When the bit is one, DAT is on,
and the dynamic-address-translation mechanism is
invoked.

I/O Mask (IO): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is
zero, an I/O interruption cannot occur. When the
bit is one, I/O interruptions are subject to the
I/O-interruption subclass-mask bits in control reg-
ister 6. When an I/O-interruption subclass-mask
bit is zero, an I/O interruption for that
I/O-interruption subclass cannot occur; when the
I/O-interruption subclass-mask bit is one, an I/O
interruption for that I/O-interruption subclass can
occur.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is
zero, an external interruption cannot occur. When
the bit is one, an external interruption is subject to
the corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass
cannot cause an interruption; when the subclass-
mask bit is one, an interruption in that subclass
can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. If the reference is
subject to key-controlled protection, the PSW key
is matched with a storage key when information is
stored or when information is fetched from a
location that is protected against fetching.
However, for one of the operands of each of
MOVE TO PRIMARY, MOVE TO SECONDARY,
MOVE WITH KEY, MOVE WITH SOURCE KEY,
and MOVE WITH DESTINATION KEY, an access

 Chapter 4. Control 4-5

key specified as an operand is used instead of the
PSW key.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing
damage are permitted, but interruptions due to
other machine-check-subclass conditions are
subject to the subclass-mask bits in control reg-
ister 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that provide
meaningful information to the problem program
and that cannot affect system integrity; such
instructions are called unprivileged instructions.
The instructions that are never valid in the
problem state are called privileged instructions.
When a CPU in the problem state attempts to
execute a privileged instruction, a privileged-
operation exception is recognized. Another group
of instructions, called semiprivileged instructions,
are executed by a CPU in the problem state only
if specific authority tests are met; otherwise, a
privileged-operation exception or a special-
operation exception is recognized.

Address-Space Control (AS): Bits 16 and 17, in
conjunction with PSW bit 5, control the translation
mode. See “Translation Modes” on page 3-28.

Condition Code (CC): Bits 18 and 19 are the
two bits of the condition code. The condition code
is set to 0, 1, 2, or 3, depending on the result
obtained in executing certain instructions. Most
arithmetic and logical operations, as well as some
other operations, set the condition code. The
instruction BRANCH ON CONDITION can specify

any selection of the condition-code values as a
criterion for branching. A table in Appendix C
summarizes the condition-code values that may
be set for all instructions which set the condition
code of the PSW.

Program Mask: Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

┌────────────┬────────────────────────┐
│ Program- │ │
│ Mask Bit │ Program Exception │
├────────────┼────────────────────────┤
│ 2� │ Fixed-point overflow │
│ 21 │ Decimal overflow │
│ 22 │ HFP exponent underflow│
│ 23 │ HFP significance │
└────────────┴────────────────────────┘

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The setting of the
HFP-exponent-underflow-mask bit or the
HFP-significance-mask bit also determines the
manner in which the operation is completed when
the corresponding exception occurs.

Extended Addressing Mode (EA): Bit 31 con-
trols the size of effective addresses and effective-
address generation in conjunction with bit 32, the
basic-addressing-mode bit. When bit 31 is zero,
the addressing mode is controlled by bit 32. When
bits 31 and 32 are both one, 64-bit addressing is
specified.

Basic Addressing Mode (BA): Bits 31 and 32
control the size of effective addresses and
effective-address generation. When bits 31 and
32 are both zero, 24-bit addressing is specified.
When bit 31 is zero and bit 32 is one, 31-bit
addressing is specified. When bits 31 and 32 are
both one, 64-bit addressing is specified. Bit 31
one and bit 32 zero is an invalid combination that
causes a specification exception to be recognized.
The addressing mode does not control the size of
PER addresses or of addresses used to access
DAT, ASN, dispatchable-unit-control, linkage,
entry, and trace tables or access lists or the
linkage stack. See “Address Generation” on
page 5-7 and “Address Size and Wraparound” on
page 3-5. The control of the addressing mode by
bits 31 and 32 of the PSW is summarized as
follows:

4-6 z/Architecture Principles of Operation

┌────────┬────────┬─────────────────┐
│ PSW.31 │ PSW.32 │ Addressing Mode │
├────────┼────────┼─────────────────┤
│ � │ � │ 24-bit │
│ � │ 1 │ 31-bit │
│ 1 │ 1 │ 64-bit │
└────────┴────────┴─────────────────┘

Instruction Address: Bits 64-127 of the PSW
are the instruction address. This address desig-
nates the location of the leftmost byte of the next
instruction to be executed, unless the CPU is in
the wait state (bit 14 of the PSW is one).

Bit positions 0, 2-4, 24-30, and 33-63 are unas-
signed and must contain zeros. A specification
exception is recognized when these bit positions
do not contain zeros.

When bits 31 and 32 of the PSW specify the
24-bit addressing mode, bits 64-103 of the instruc-
tion address must be zeros, or, when bits 31 and
32 specify the 31-bit mode, bits 64-96 must be
zeros. Otherwise, a specification exception is
recognized. A specification exception is also
recognized when bit 31 is one and bit 32 is zero
or when bit position 12 does not contain a zero.

LOAD PSW EXTENDED has a 16-byte second
operand. The instruction loads the operand
unchanged and without examination as the current
PSW.

LOAD PSW has an eight-byte second operand.
The operand is treated as an ESA/390 PSW,
except that bit 31 (the z/Architecture extended-
addressing-mode bit) may be one.

┌─┬─┬─┬─┬─┬─┬─┬─┬───────┬─┬─┬─┬─┬───┬───┬───────┬─────────────┬─┐
│ │ │ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │E│
│�│R│�│�│�│T│O│X│ Key │1│M│W│P│A S│C C│ Mask │� � � � � � �│A│
└─┴─┴─┴─┴─┴─┴─┴─┴───────┴─┴─┴─┴─┴───┴───┴───────┴─────────────┴─┘
� 5 8 12 16 18 2� 24 31

┌─┬───┐
│B│ │
│A│ Instruction Address │
└─┴───┘
32 63

Figure 4-3. ESA/390 PSW Format, Except Bit 31
Shown as EA

Depending on the model, either LOAD PSW
recognizes a specification exception if bit 12 of its
second operand is not one or this error is indi-
cated by an early specification exception after the
completion of the execution of LOAD PSW.
LOAD PSW loads bits 0-32 of its second operand,
except with bit 12 inverted, and bits 33-63 of the
operand as bits 0-32 and 97-127, respectively, of

the current PSW, and it sets bits 33-96 of the
current PSW to zeros.

 Control Registers
The control registers provide for maintaining and
manipulating control information outside the PSW.
There are sixteen 64-bit control registers.

The LOAD CONTROL (LCTLG) instruction causes
all control-register bit positions within those regis-
ters designated by the instruction to be loaded
from storage. The LOAD CONTROL (LCTL)
instruction loads only bit positions 32-63 of the
control registers, and bits 0-31 of the registers
remain unchanged. The instructions BRANCH
AND SET AUTHORITY, BRANCH IN SUBSPACE
GROUP, LOAD ADDRESS SPACE PARAME-

| TERS, EXTRACT AND SET EXTENDED
| AUTHORITY, SET SECONDARY ASN, BRANCH

AND STACK, PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER provide
specialized functions to place information into
certain control-register bit positions.

Information loaded into the control registers
becomes active (that is, assumes control over the
system) at the completion of the instruction that
causes the information to be loaded.

At the time the registers are loaded, the informa-
tion is not checked for exceptions, such as an
address designating an unavailable or protected
location. The validity of the information is checked
and the exceptions, if any, are indicated at the
time the information is used.

The STORE CONTROL (STCTG) instruction
causes the contents of all control-register bit posi-
tions, within those registers designated by the
instruction, to be placed in storage. The STORE
CONTROL (STCTL) instruction places the con-
tents of bit positions 32-63 of the control registers
in storage, and bits 0-31 of the registers are

| ignored. The instructions EXTRACT AND SET
| EXTENDED AUTHORITY, EXTRACT PRIMARY

ASN, EXTRACT SECONDARY ASN, and
PROGRAM CALL provide specialized functions to
obtain information from certain control-register bit
positions.

Only the general structure of the control registers
is described here; the definition of a particular
control-register bit position appears in the

 Chapter 4. Control 4-7

description of the facility with which the position is
associated. Figure 4-4 on page 4-8 shows the
control-register bit positions which are assigned
and the initial values of the positions upon exe-
cution of initial CPU reset. All control-register bit
positions not listed in the figure are initialized to
zero.

Programming Notes:

1. The detailed definition of a particular control-
register bit position can be located by referring
to the entry “control-register assignment” in
the Index.

2. To ensure that existing programs operate cor-
rectly if and when new facilities using addi-
tional control-register bit positions are
installed, the program should load zeros in
unassigned positions.

┌────┬─────┬───────────────────────────────────┬───────────────────────────┬───────┐
│Ctrl│ │ │ │Initial│
│Reg │Bits │ Name of Field │ Associated with │ Value │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ � │ 33 │SSM-suppression control │SET SYSTEM MASK │ � │
│ � │ 34 │TOD-clock-sync control │TOD clock │ � │
│ � │ 35 │Low-address-protection control │Low-address protection │ � │
│ � │ 36 │Extraction-authority control │Instruction authorization │ � │
│ � │ 37 │Secondary-space control │Instruction authorization │ � │
│ � │ 38 │Fetch-protection-override control │Key-controlled protection │ � │
│ � │ 39 │Storage-protection-override control│Key-controlled protection │ � │
│ � │ 45 │AFP-register control │Floating point │ � │
│ � │ 48 │Malfunction-alert subclass mask │External interruptions │ � │
│ � │ 49 │Emergency-signal subclass mask │External interruptions │ � │
│ � │ 5� │External-call subclass mask │External interruptions │ � │
│ � │ 52 │Clock-comparator subclass mask │External interruptions │ � │
│ � │ 53 │CPU-timer subclass mask │External interruptions │ � │
│ � │ 54 │Service-signal subclass mask │External interruptions │ � │
│ � │ 56 │Unused� │ │ 1 │
│ � │ 57 │Interrupt-key subclass mask │External interruptions │ 1 │
│ � │ 58 │Unused� │ │ 1 │
│ � │ 59 │ETR subclass mask │External interruptions │ � │
│ � │ 61 │Crypto control │Cryptography │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 1 │�-51 │Primary region-table origin� │Dynamic address translation│ � │
│ 1 │�-51 │Primary segment-table origin� │Dynamic address translation│ � │
│ 1 │�-51 │Primary real-space token origin� │Dynamic address translation│ � │
│ 1 │ 54 │Primary subspace-group control │Subspace groups │ � │
│ 1 │ 55 │Primary private-space control │Dynamic address translation│ � │
│ 1 │ 56 │Primary storage-alteration-event │Program-event recording │ � │
│ │ │ control │ │ │
│ 1 │ 57 │Primary space-switch-event control │Program interruptions │ � │
│ 1 │ 58 │Primary real-space control │Dynamic address translation│ � │
│ 1 │6�-61│Primary designation-type control� │Dynamic address translation│ � │
│ 1 │62-63│Primary table length� │Dynamic address translation│ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 2 │33-57│Dispatchable-unit-control-table │Access-register translation│ � │
│ │ │ origin │ │ │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 3 │32-47│PSW-key mask │Instruction authorization │ � │
│ 3 │48-63│Secondary ASN │Address spaces │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 4 │32-47│Authorization index │Instruction authorization │ � │
│ 4 │48-63│Primary ASN │Address spaces │ � │
└────┴─────┴───────────────────────────────────┴───────────────────────────┴───────┘

Figure 4-4 (Part 1 of 3). Assignment of Control-Register Fields

4-8 z/Architecture Principles of Operation

┌────┬─────┬───────────────────────────────────┬───────────────────────────┬───────┐
│Ctrl│ │ │ │Initial│
│Reg │Bits │ Name of Field │ Associated with │ Value │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 5 │33-57│Primary-ASN-second-table-entry │Access-register translation│ � │
│ │ │ origin │ │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 6 │32-39│I/O-interruption subclass mask │I/O interruptions │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 7 │�-51 │Secondary segment-table origin� │Dynamic address translation│ � │
│ 7 │�-51 │Secondary region-table origin� │Dynamic address translation│ � │
│ 7 │�-51 │Secondary real-space token origin� │Dynamic address translation│ � │
│ 7 │ 54 │Secondary subspace-group control │Subspace groups │ � │
│ 7 │ 55 │Secondary private-space control │Dynamic address translation│ � │
│ 7 │ 56 │Secondary storage-alteration-event │Program-event recording │ � │
│ │ │ control │ │ │
│ 7 │ 58 │Secondary real-space control │Dynamic address translation│ � │
│ 7 │6�-61│Secondary designation-type control�│Dynamic address translation│ � │
│ 7 │62-63│Secondary table length� │Dynamic address translation│ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 8 │32-47│Extended authorization index │Access-register translation│ � │
│ 8 │48-63│Monitor masks │MONITOR CALL │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 9 │ 32 │Successful-branching-event mask │Program-event recording │ � │
│ 9 │ 33 │Instruction-fetching-event mask │Program-event recording │ � │
│ 9 │ 34 │Storage-alteration-event mask │Program-event recording │ � │
│ 9 │ 36 │Store-using-real-address-event mask│Program-event recording │ � │
│ 9 │ 4� │Branch-address control │Program-event recording │ � │
│ 9 │ 42 │Storage-alteration-space control │Program-event recording │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 1� │ �-63│PER starting address │Program-event recording │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 11 │ �-63│PER ending address │Program-event recording │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 12 │ � │Branch-trace control │Tracing │ � │
│ 12 │ 1 │Mode-trace control │Tracing │ � │
│ 12 │ 2-61│Trace-entry address │Tracing │ � │
│ 12 │ 62 │ASN-trace control │Tracing │ � │
│ 12 │ 63 │Explicit-trace control │Tracing │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 13 │�-51 │Home segment-table origin� │Dynamic address translation│ � │
│ 13 │�-51 │Home region-table origin� │Dynamic address translation│ � │
│ 13 │�-51 │Home real-space token origin� │Dynamic address translation│ � │
│ 13 │ 55 │Home private-space control │Dynamic address translation│ � │
│ 13 │ 56 │Home storage-alteration-event │Program-event recording │ � │
│ │ │ control │ │ │
│ 13 │ 57 │Home space-switch-event control │Program interruptions │ � │
│ 13 │ 58 │Home real-space control │Dynamic address translation│ � │
│ 13 │6�-61│Home designation-type control� │Dynamic address translation│ � │
│ 13 │62-63│Home table length� │Dynamic address translation│ � │
└────┴─────┴───────────────────────────────────┴───────────────────────────┴───────┘

Figure 4-4 (Part 2 of 3). Assignment of Control-Register Fields

 Chapter 4. Control 4-9

┌────┬─────┬───────────────────────────────────┬───────────────────────────┬───────┐
│Ctrl│ │ │ │Initial│
│Reg │Bits │ Name of Field │ Associated with │ Value │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 14 │ 32 │Unused� │ │ 1 │
│ 14 │ 33 │Unused� │ │ 1 │
│ 14 │ 35 │Channel-report-pending subclass │I/O machine-check handling │ � │
│ │ │ mask │ │ │
│ 14 │ 36 │Recovery subclass mask │Machine-check handling │ � │
│ 14 │ 37 │Degradation subclass mask │Machine-check handling │ � │
│ 14 │ 38 │External-damage subclass mask │Machine-check handling │ 1 │
│ 14 │ 39 │Warning subclass mask │Machine-check handling │ � │
│ 14 │ 42 │TOD-clock-control-override control │TOD clock │ � │
│ 14 │ 44 │ASN-translation control │Instruction authorization │ � │
│ 14 │45-63│ASN-first-table origin │ASN translation │ � │
├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤
│ 15 │ �-6�│Linkage-stack-entry address │Linkage-stack operations │ � │
├────┴─────┴───────────────────────────────────┴───────────────────────────┴───────┤
│Explanation: │
│ │
│ The fields not listed are unassigned. The initial value for all unlisted │
│ control-register bit positions is zero. │
│ │
│ � This bit is not used but is initialized to one for consistency with the │
│ System/37� definition. │
│ │
│ � The address-space-control element (ASCE) in the control register has one of │
│ three formats, depending on bit 58 of the register, the real-space control, │
│ and bits 6� and 61 of the register, the designation-type control. When bit │
│ 58 is zero, the ASCE is a region-table designation if bits 6� and 61 are 11, │
│ 1�, or �1 binary, or it is a segment-table designation if bits 6� and 61 are │
│ �� binary. When bit 58 is one, the ASCE is a real-space designation. Bits │
│ �-51 are the region-table origin, the segment-table origin or the real-space │
│ token origin, depending on whether the ASCE is a region-table designation, a │
│ segment-table designation, or a real-space designation, respectively. │
│ │
│ � Bits 6�-63 are assigned when the ASCE in the control register is a region- │
│ table designation or a segment-table designation. │
└──┘

Figure 4-4 (Part 3 of 3). Assignment of Control-Register Fields

 Tracing
Tracing assists in the determination of system
problems by providing an ongoing record in
storage of significant events. Tracing consists of
four separately controllable functions which cause
entries to be made in a trace table: branch
tracing, ASN tracing, mode tracing, and explicit
tracing. Branch tracing, ASN tracing, and mode
tracing together are referred to as implicit tracing.

When branch tracing is on, a branch trace entry is
made in the trace table for each execution of
certain branch instructions when they cause
branching. The branch address is placed in the
trace entry. The trace entry also indicates the fol-
lowing about the addressing mode in effect after
branching and the branch address: (1) the CPU

is in the 24-bit addressing mode, (2) the CPU
either is in the 31-bit addressing mode or is in the
64-bit addressing mode and bits 0-32 of the
branch address are all zeros, or (3) the CPU is in
the 64-bit addressing mode and bits 0-32 of the
branch address are not all zeros. The branch
instructions that are traced are:

� BRANCH AND LINK (BALR only) when the
R� field is not zero

� BRANCH AND SAVE (BASR only) when the
R� field is not zero

� BRANCH AND SAVE AND SET MODE when
the R� field is not zero

� BRANCH AND SET AUTHORITY
� BRANCH AND STACK when the R� field is

not zero
� BRANCH IN SUBSPACE GROUP

 � RESUME PROGRAM

4-10 z/Architecture Principles of Operation

 � TRAP

However, a branch trace entry is made for
BRANCH IN SUBSPACE GROUP only if ASN
tracing is not on.

If both branch tracing and mode tracing are on
and BRANCH AND SAVE AND SET MODE or
RESUME PROGRAM changes the extended-
addressing-mode bit, PSW bit 31, a mode-
switching-branch trace entry is made instead of a
branch trace entry.

When ASN tracing is on, an entry named the
same as the instruction is made in the trace table
for each execution of the following instructions:

� BRANCH IN SUBSPACE GROUP
 � PROGRAM CALL
 � PROGRAM RETURN
 � PROGRAM TRANSFER
� SET SECONDARY ASN

However, the entry for PROGRAM RETURN is
made only when PROGRAM RETURN unstacks a
linkage-stack state entry that was formed by
PROGRAM CALL, not when PROGRAM RETURN
unstacks an entry formed by BRANCH AND
STACK.

If both ASN tracing and mode tracing are on and
PROGRAM CALL changes PSW bit 31, first a
PROGRAM CALL trace entry is made, and then a
mode-switch trace entry is made.

Mode tracing records a switch from a basic (24-bit
or 31-bit) addressing mode to the extended
(64-bit) addressing mode or from the extended
mode to a basic mode.

When mode tracing is on, a mode-switch trace
entry is made in the trace table for each execution
of the following instructions if the execution
changes PSW bit 31:

� BRANCH AND SAVE AND SET MODE
� BRANCH AND SET MODE

 � PROGRAM CALL
 � PROGRAM RETURN
 � RESUME PROGRAM
� SET ADDRESSING MODE

However, a mode-switch trace entry is not made
for PROGRAM RETURN if ASN tracing is on and
PROGRAM RETURN unstacks a state entry
formed by PROGRAM CALL; a PROGRAM
RETURN trace entry is made instead, and it con-
tains information about PSW bit 31.

BRANCH AND SAVE AND SET MODE and
RESUME PROGRAM cause trace entries to be
made as follows: a branch trace entry if only
branch tracing is on, a mode-switching-branch
trace entry if both branch tracing and mode tracing
are on, or a mode-switch trace entry if only mode
tracing is on.

The trace entries produced by implicit tracing are
summarized in Figure 4-5 on page 4-12.

When explicit tracing is on, execution of TRACE
(TRACE or TRACG) causes an entry to be made
in the trace table. The entry for TRACE (TRACE)
includes bits 16-63 from the TOD clock, the
second operand of the TRACE instruction, and
bits 32-63 of a range of general registers. The
entry for TRACE (TRACG) is the same except that
it includes bits 0-79 from the TOD clock and bits
0-63 of a range of general registers.

 Chapter 4. Control 4-11

┌────────┬───┐
│ │ Implicit Tracing Enabled │
│ ├───────┬───────┬───────┬───────┬───────┬───────┬───────┤
│ │ │ │ │Branch │Branch │ ASN │ │
│ │ │ │ │ and │ and │ and │ │
│ │Branch │ ASN │ Mode │ ASN │ Mode │ Mode │ All │
│Instruc-├───────┴───────┴───────┴───────┴───────┴───────┴───────┤
│tion │ Trace Entries Made │
├────────┼───────┬───────┬───────┬───────┬───────┬───────┬───────┤
│ BAKR │ B │ - │ - │ B │ B │ - │ B │
│ │ │ │ │ │ │ │ │
│ BALR │ B │ - │ - │ B │ B │ - │ B │
│ │ │ │ │ │ │ │ │
│ BASR │ B │ - │ - │ B │ B │ - │ B │
│ │ │ │ │ │ │ │ │
│ BASSM │ B │ - │ MS │ B │B | MSB│ MS │B | MSB│
│ │ │ │ │ │ │ │ │
│ BSA │ B │ - │ - │ B │ B │ - │ B │
│ │ │ │ │ │ │ │ │
│ BSG │ B │ BSG │ - │ BSG │ B │ BSG │ BSG │
│ │ │ │ │ │ │ │ │
│ BSM │ - │ - │ MS │ - │ MS │ - │ MS │
│ │ │ │ │ │ │ │ │
│ PC │ - │ PC │ MS │ PC │ MS │PC & MS│PC & MS│
│ │ │ │ │ │ │ │ │
│ PR-b │ - │ - │ MS │ - │ MS │ MS │ MS │
│ │ │ │ │ │ │ │ │
│ PR-pc │ - │ PR │ MS │ PR │ MS │ PR │ PR │
│ │ │ │ │ │ │ │ │
│ PT │ - │ PT │ - │ PT │ - │ PT │ PT │
│ │ │ │ │ │ │ │ │
│ RP │ B │ - │ MS │ B │B | MSB│ MS │B | MSB│
│ │ │ │ │ │ │ │ │

| │ SSAR │ - │ SSAR │ - │ SSAR │ - │ SSAR │ SSAR │
│ │ │ │ │ │ │ │ │
│ SAM24/ │ - │ - │ MS │ - │ MS │ MS │ MS │
│ 31/64 │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ TRAP2/4│ B │ - │ - │ B │ B │ - │ B │
├────────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┤
│Explanation: │
│ │
│ - None. │
│ │
│ -b The case when PROGRAM RETURN unstacks a branch state │
│ entry. │
│ │
│ -pc The case when PROGRAM RETURN unstacks a program-call state│
│ entry. │
│ │
│ | OR. │
│ │
│ & AND. │
└──┘

Figure 4-5 (Part 1 of 2). Summary of Implicit Tracing

4-12 z/Architecture Principles of Operation

┌──┐
│Explanation (Continued): │
│ │
│ B Branch trace entry. Made only if the branch is taken and │
│ a mode-switching-branch trace entry is not made. │
│ │
│ MS Mode-switch trace entry. Made only if PSW bit 31 is │
│ changed. │
│ │
│ MSB Mode-switching-branch trace entry. Made only if PSW bit │
│ 31 is changed (which can occur only if the branch is │
│ taken). │
└──┘

Figure 4-5 (Part 2 of 2). Summary of Implicit Tracing

 Control-Register Allocation

The information to control tracing is contained in
control register 12 and has the following format:

┌─┬─┬───────────────────────────┬─┬─┐
│B│M│ Trace-Entry Address │A│E│
└─┴─┴───────────────────────────┴─┴─┘
� 1 2 62 63

Branch-Trace-Control Bit (B): Bit 0 of control
register 12 controls whether branch tracing is
turned on or off. If the bit is zero, branch tracing
is off; if the bit is one, branch tracing is on.

Mode-Trace-Control Bit (M): Bit 1 of control
register 12 controls whether mode tracing is
turned on or off. If the bit is zero, mode tracing is
off; if the bit is one, mode tracing is on.

Trace-Entry Address: Bits 2-61 of control reg-
ister 12, with two zero bits appended on the left
and two on the right, form the real address of the
next trace entry to be made.

ASN-Trace-Control Bit (A): Bit 62 of control
register 12 controls whether ASN tracing is turned
on or off. If the bit is zero, ASN tracing is off; if
the bit is one, ASN tracing is on.

Explicit-Trace-Control Bit (E): Bit 63 of control
register 12 controls whether explicit tracing is
turned on or off. If the bit is zero, explicit tracing
is off, which causes the TRACE instruction to be
executed as a no-operation; if the bit is one, the
execution of the TRACE instruction creates an

entry in the trace table, except that no entry is
made when bit 0 of the second operand of the
TRACE instruction is one.

 Trace Entries

Trace entries are of nine types, with most types
having more than one detailed format. The types
and numbers of formats are as follows:

� Branch (three formats)

� BRANCH IN SUBSPACE GROUP (two
formats)

� Mode switch (three formats)

� Mode-switching branch (three formats)

� PROGRAM CALL (two formats)

� PROGRAM RETURN (nine formats)

� PROGRAM TRANSFER (three formats)

� SET SECONDARY ASN (one format)

� TRACE (two formats)

The entries are shown in Figure 4-6 on
page 4-14. In that figure, each entry is labeled
with “Fn,” indicating a format number, to allow ref-
erences to each format within a trace-entry type.
Also, “Branch,” referring to the mnemonic of an
instruction that causes a branch trace entry, refers
to BAKR, BALR, BASR, BASSM, BSA, or BSG.

Figure 4-7 on page 4-20 lists the trace entries in
ascending order of values in bit fields that identify
the entries.

 Chapter 4. Control 4-13

F1 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 24-Bit)
┌────────┬─────────────────────────┐
│��������│Bits 4�-63 of Branch Adr.│
└────────┴─────────────────────────┘
� 8 31

F2 Branch (Branch, RP, or TRAP2/4 when Resulting Mode Is 31-Bit, or when
Resulting PSW Bit 31 Is One (See Note) and Bits �-32 of Branch Address
Are All Zeros)
┌─┬────────────────────────────────┐
│1│ Bits 33-63 of Branch Address │
└─┴────────────────────────────────┘
� 1 31

F3 Branch (Branch, RP, or TRAP2/4 when Resulting PSW Bit 31 Is One (See
Note) and Bits �-32 of Branch Address Are Not All Zeros)
┌────────┬────┬────────────────────┬────────────────────────────────┐
│�1�1��1�│11��│ All Zeros │ Bits �-31 of Branch Address │
└────────┴────┴────────────────────┴────────────────────────────────┘
� 8 12 32 63

┌──────────────────────────────────┐
│ Bits 32-63 of Branch Address │
└──────────────────────────────────┘
64 95

F1 BRANCH IN SUBSPACE GROUP (if ASN Is Tracing on, in 24-Bit or 31-Bit Mode)
┌────────┬─┬───────────────────────┬─┬──────────────────────────────┐
│�1�����1│P│ Bits 9-31 of ALET │A│ Bits 33-63 of Branch Address │
└────────┴─┴───────────────────────┴─┴──────────────────────────────┘
� 8 32 63

F2 BRANCH IN SUBSPACE GROUP (if ASN Is Tracing on, in 64-Bit Mode)
┌────────┬─┬───────────────────────┬────────────────────────────────┐
│�1����1�│P│ Bits 9-31 of ALET │ Bits �-31 of Branch Address │
└────────┴─┴───────────────────────┴────────────────────────────────┘
� 8 32 63

┌──────────────────────────────────┐
│ Bits 32-63 of Branch Address │
└──────────────────────────────────┘
64 95

F1 Mode Switch (BASSM, BSM, PC, PR, RP, or SAM64 from 24-Bit or 31-Bit
Mode when Resulting PSW Bit 31 Is One (See Note))
┌────────┬────┬────────────────────┬─┬──────────────────────────────┐
│�1�1���1│��11│ All Zeros │A│ Updated Instruction Address │
└────────┴────┴────────────────────┴─┴──────────────────────────────┘
� 8 12 32 63

Figure 4-6 (Part 1 of 7). Trace Entries

4-14 z/Architecture Principles of Operation

F2 Mode Switch (BASSM, BSM, PC, PR, RP, SAM24, or SAM31 from 64-Bit Mode
to 24-Bit or 31-Bit Mode when Bits �-31 of Updated Instruction Address
Are All Zeros)
┌────────┬────┬────────────────────┬────────────────────────────────┐
│�1�1���1│��1�│ All Zeros │Bits 32-63 of Updated Inst. Adr.│
└────────┴────┴────────────────────┴────────────────────────────────┘
� 8 12 32 63

F3 Mode Switch (BASSM, BSM, PC, PR, RP, SAM24, or SAM31 from 64-Bit Mode
to 24-Bit or 31-Bit Mode when Bits �-31 of Updated Instruction Address
Are Not All Zeros)
┌────────┬────┬────────────────────┬────────────────────────────────┐
│�1�1��1�│�11�│ All Zeros │Bits �-31 of Updated Inst. Adr. │
└────────┴────┴────────────────────┴────────────────────────────────┘
� 8 12 32 63

┌──────────────────────────────────┐
│ Bits 32-63 of Updated Inst. Adr. │
└──────────────────────────────────┘
64 95

F1 Mode-Switching Branch (BASSM or RP from 64-Bit Mode to 24-Bit or
31-Bit Mode)
┌────────┬────┬────────────────────┬─┬──────────────────────────────┐
│�1�1���1│1�1�│ All Zeros │A│ Branch Address │
└────────┴────┴────────────────────┴─┴──────────────────────────────┘
� 8 12 32 63

F2 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when
Resulting PSW Bit 31 Is One (See Note) and Bits �-31 of Branch Address
Are All Zeros)
┌────────┬────┬────────────────────┬────────────────────────────────┐
│�1�1���1│1�11│ All Zeros │ Bits 32-63 of Branch Address │
└────────┴────┴────────────────────┴────────────────────────────────┘
� 8 12 32 63

F3 Mode-Switching Branch (BASSM or RP from 24-Bit or 31-Bit Mode when
Resulting PSW Bit 31 Is One (See Note) and Bits �-31 of Branch Address
Are Not All Zeros
┌────────┬────┬────────────────────┬────────────────────────────────┐
│�1�1��1�│1111│ All Zeros │ Bits �-31 of Branch Address │
└────────┴────┴────────────────────┴────────────────────────────────┘
� 8 12 32 63

┌──────────────────────────────────┐
│ Bits 32-63 of Branch Address │
└──────────────────────────────────┘
64 95

Figure 4-6 (Part 2 of 7). Trace Entries

 Chapter 4. Control 4-15

F1 PROGRAM CALL (in 24-Bit or 31-Bit Mode, Regardless of Resulting Mode)
┌────────┬────┬────────────────────┬─┬────────────────────────────┬─┐
│ │PSW │ │ │ │ │
│��1����1│Key │ PC Number │A│Bits 33-62 of Return Address│P│
└────────┴────┴────────────────────┴─┴────────────────────────────┴─┘
� 8 12 32 63

F2 PROGRAM CALL (in 64-Bit Mode, Regardless of Resulting Mode)
┌────────┬────┬────────────────────┬────────────────────────────────┐
│ │PSW │ │ │
│��1���1�│Key │ PC Number │ Bits �-31 of Return Address │
└────────┴────┴────────────────────┴────────────────────────────────┘
� 8 12 32 63

┌────────────────────────────────┬─┐
│ Bits 32-62 of Return Address │P│
└────────────────────────────────┴─┘
64 95

F1 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting Mode Is
24-Bit or 31-Bit)
┌────────┬────┬────┬───────────────┬─┬────────────────────────────┬─┐
│ │PSW │ │ │ │ │ │
│��11��1�│Key │����│ New PASN │A│Bits 33-62 of Return Address│P│
└────────┴────┴────┴───────────────┴─┴────────────────────────────┴─┘
� 8 12 16 32 63

┌─┬────────────────────────────────┐
│A│Bits 33-63 of Updated Inst. Adr.│
└─┴────────────────────────────────┘
64 95

F2 PROGRAM RETURN (in 64-Bit Mode when Bits �-31 of Updated Instruction
Address Are All Zeros and Resulting Mode Is 24-Bit or 31-Bit)
┌────────┬────┬────┬───────────────┬─┬────────────────────────────┬─┐
│ │PSW │ │ │ │ │ │
│��11��1�│Key │��1�│ New PASN │A│Bits 33-62 of Return Address│P│
└────────┴────┴────┴───────────────┴─┴────────────────────────────┴─┘
� 8 12 16 32 63

┌──────────────────────────────────┐
│ Bits 32-63 of Updated Inst. Adr. │
└──────────────────────────────────┘
64 95

Figure 4-6 (Part 3 of 7). Trace Entries

4-16 z/Architecture Principles of Operation

F3 PROGRAM RETURN (in 64-Bit Mode when Bits �-31 of Updated Instruction
Address Are Not All Zeros and Resulting Mode Is 24-Bit or 31-Bit)
┌────────┬────┬────┬───────────────┬─┬────────────────────────────┬─┐
│ │PSW │ │ │ │ │ │
│��11��11│Key │��11│ New PASN │A│Bits 33-62 of Return Address│P│
└────────┴────┴────┴───────────────┴─┴────────────────────────────┴─┘
� 8 12 16 32 63

┌───┐
│ Updated Instruction Address │
└───┘
64 127

F4 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31
Is One (See Note) and Bits �-31 of Return Address Are All Zeros)
┌────────┬────┬────┬───────────────┬──────────────────────────────┬─┐
│ │PSW │ │ │ │ │
│��11��1�│Key │1���│ New PASN │ Bits 32-62 of Return Address │P│
└────────┴────┴────┴───────────────┴──────────────────────────────┴─┘
� 8 12 16 32 63

┌─┬────────────────────────────────┐
│A│Bits 33-63 of Updated Inst. Adr.│
└─┴────────────────────────────────┘
64 95

F5 PROGRAM RETURN (in 64-Bit Mode when Bits �-31 of Updated Instruction
Address Are All Zeros, Resulting PSW Bit 31 Is One (See Note), and Bits
�-31 of Return Address Are All Zeros)
┌────────┬────┬────┬───────────────┬──────────────────────────────┬─┐
│ │PSW │ │ │ │ │
│��11��1�│Key │1�1�│ New PASN │ Bits 32-62 of Return Address │P│
└────────┴────┴────┴───────────────┴──────────────────────────────┴─┘
� 8 12 16 32 63

┌──────────────────────────────────┐
│ Bits 32-63 of Updated Inst. Adr. │
└──────────────────────────────────┘
64 95

F6 PROGRAM RETURN (in 64-Bit Mode when Bits �-31 of Updated Instruction
Address Are Not All Zeros, Resulting PSW Bit 31 Is One (See Note), and
Bits �-31 of Return Address Are All Zeros)
┌────────┬────┬────┬───────────────┬──────────────────────────────┬─┐
│ │PSW │ │ │ │ │
│��11��11│Key │1�11│ New PASN │ Bits 32-62 of Return Address │P│
└────────┴────┴────┴───────────────┴──────────────────────────────┴─┘
� 8 12 16 32 63

┌───┐
│ Updated Instruction Address │
└───┘
64 127

Figure 4-6 (Part 4 of 7). Trace Entries

 Chapter 4. Control 4-17

F7 PROGRAM RETURN (in 24-Bit or 31-Bit Mode when Resulting PSW Bit 31
Is One (See Note) and Bits �-31 of Return Address Are Not All Zeros)
┌────────┬────┬────┬───────────────┬────────────────────────────────┐
│ │PSW │ │ │ │
│��11��11│Key │11��│ New PASN │ Bits �-31 of Return Address │
└────────┴────┴────┴───────────────┴────────────────────────────────┘
� 8 12 16 32 63

┌────────────────────────────────┬─┬─┬──────────────────────────────┐
│ Bits 32-62 of Return Address │P│A│ Updated Instruction Address │
└────────────────────────────────┴─┴─┴──────────────────────────────┘
64 96 127

F8 PROGRAM RETURN (in 64-Bit Mode when Bits �-31 of Updated Instruction
Address Are All Zeros, Resulting PSW Bit 31 Is One (See Note), and Bits
�-31 of Return Address Are Not All Zeros)
┌────────┬────┬────┬───────────────┬────────────────────────────────┐
│ │PSW │ │ │ │
│��11��11│Key │111�│ New PASN │ Bits �-31 of Return Address │
└────────┴────┴────┴───────────────┴────────────────────────────────┘
� 8 12 16 32 63

┌────────────────────────────────┬─┬────────────────────────────────┐
│ Bits 32-62 of Return Address │P│Bits 32-63 of Updated Inst. Adr.│
└────────────────────────────────┴─┴────────────────────────────────┘
64 96 127

F9 PROGRAM RETURN (in 64-Bit Mode when Bits �-31 of Updated Instruction
Address Are Not All Zeros, Resulting PSW Bit 31 Is One (See Note), and
Bits �-31 of Return Address Are Not All Zeros)
┌────────┬────┬────┬───────────────┬────────────────────────────────┐
│ │PSW │ │ │ │
│��11�1��│Key │1111│ New PASN │ Bits �-31 of Return Address │
└────────┴────┴────┴───────────────┴────────────────────────────────┘
� 8 12 16 32 63

┌────────────────────────────────┬─┬────────────────────────────────┐
│ Bits 32-62 of Return Address │P│Bits �-31 of Updated Inst. Adr. │
└────────────────────────────────┴─┴────────────────────────────────┘
64 96 127

┌──────────────────────────────────┐
│ Bits 32-63 of Updated Inst. Adr. │
└──────────────────────────────────┘
128 159

F1 PROGRAM TRANSFER (in 24-Bit or 31-Bit Mode)
┌────────┬────┬────┬───────────────┬────────────────────────────────┐
│ │PSW │ │ │ │
│��11���1│Key │����│ New PASN │ Bits 32-63 of R� before │
└────────┴────┴────┴───────────────┴────────────────────────────────┘
� 8 12 16 32 63

Figure 4-6 (Part 5 of 7). Trace Entries

4-18 z/Architecture Principles of Operation

F2 PROGRAM TRANSFER (in 64-Bit Mode when Bits �-31 of R� Are All Zeros)
┌────────┬────┬────┬───────────────┬────────────────────────────────┐
│ │PSW │ │ │ │
│��11���1│Key │1���│ New PASN │ Bits 32-63 of R� before │
└────────┴────┴────┴───────────────┴────────────────────────────────┘
� 8 12 16 32 63

F3 PROGRAM TRANSFER (in 64-Bit Mode when Bits �-31 of R� Are Not All
Zeros)
┌────────┬────┬────┬───────────────┬────────────────────────────────┐
│ │PSW │ │ │ │
│��11��1�│Key │11��│ New PASN │ Bits �-31 of R� before │
└────────┴────┴────┴───────────────┴────────────────────────────────┘
� 8 12 16 32 63

┌──────────────────────────────────┐
│ Bits 32-63 of R� before │
└──────────────────────────────────┘
64 95

F1 SET SECONDARY ASN
┌────────┬────────┬────────────────┐
│���1����│��������│ New SASN │
└────────┴────────┴────────────────┘
� 8 16 31

F1 TRACE (TRACE)
┌────┬────┬────────┬──┐
│�111│ N │��������│ TOD-Clock Bits 16-63 │
└────┴────┴────────┴──┘
� 4 8 16 63

┌─────────────────────────────────┬───────────────/─────────────────┐
│ TRACE Operand │ (R�) - (R�) │
└─────────────────────────────────┴───────────────/─────────────────┘
64 96 95 + 32(N+1)

F2 TRACE (TRACG)
┌────┬────┬────────┬──┐
│�111│ N │1�������│ TOD-Clock Bits �-47 │
└────┴────┴────────┴──┘
� 4 8 16 63

┌─────────────────────────────────┬─────────────────────────────────┐
│ TOD-Clock Bits 48-79 │ TRACE Operand │
└─────────────────────────────────┴─────────────────────────────────┘
64 96 127

┌─────────────────────────────────/─────────────────────────────────┐
│ (R�) - (R�) │
└─────────────────────────────────/─────────────────────────────────┘
128 127 + 64(N+1)

Figure 4-6 (Part 6 of 7). Trace Entries

 Chapter 4. Control 4-19

Note: The terminology “when Resulting PSW Bit 31 Is One” is used
instead of “when Resulting Mode Is 64-Bit” because, if the
resulting PSW bit 32 is zero, an early specification exception will be
recognized. PROGRAM RETURN can set PSW bit 31 to one and bit 32 to zero.

Figure 4-6 (Part 7 of 7). Trace Entries

┌───────────────────┬─────────────────────────────┐
│ │ Trace Entry │
│ Trace-Entry Bits ├────────────────────────┬────┤
├────────┬────┬─────┤ │For-│
│ �-7 │8-11│12-15│ Type │mat │
├────────┼────┼─────┼────────────────────────┼────┤
│��������│ │ │Branch │ 1 │
│���1����│ │ │SET SECONDARY ASN │ 1 │
│��1����1│ │ │PROGRAM CALL │ 1 │
│��1���1�│ │ │PROGRAM CALL │ 2 │
│��11���1│ │���� │PROGRAM TRANSFER │ 1 │
├────────┼────┼─────┼────────────────────────┼────┤
│��11���1│ │1��� │PROGRAM TRANSFER │ 2 │
│��11��1�│ │���� │PROGRAM RETURN │ 1 │
│��11��1�│ │��1� │PROGRAM RETURN │ 2 │
│��11��1�│ │1��� │PROGRAM RETURN │ 4 │
│��11��1�│ │1�1� │PROGRAM RETURN │ 5 │
├────────┼────┼─────┼────────────────────────┼────┤
│��11��1�│ │11�� │PROGRAM TRANSFER │ 3 │
│��11��11│ │��11 │PROGRAM RETURN │ 3 │
│��11��11│ │1�11 │PROGRAM RETURN │ 6 │
│��11��11│ │11�� │PROGRAM RETURN │ 7 │
│��11��11│ │111� │PROGRAM RETURN │ 8 │
├────────┼────┼─────┼────────────────────────┼────┤
│��11�1��│ │1111 │PROGRAM RETURN │ 9 │
│�1�����1│ │ │BRANCH IN SUBSPACE GROUP│ 1 │
│�1����1�│ │ │BRANCH IN SUBSPACE GROUP│ 2 │
│�1�1���1│��1�│ │Mode Switch │ 2 │
│�1�1���1│��11│ │Mode Switch │ 1 │
├────────┼────┼─────┼────────────────────────┼────┤
│�1�1���1│1�1�│ │Mode-Switching Branch │ 1 │
│�1�1���1│1�11│ │Mode-Switching Branch │ 2 │
│�1�1��1�│�11�│ │Mode Switch │ 3 │
│�1�1��1�│11��│ │Branch │ 3 │
│�1�1��1�│1111│ │Mode-Switching Branch │ 3 │
├────────┼────┼─────┼────────────────────────┼────┤
│�111 │� │ │TRACE │ 1 │
│�111 │1 │ │TRACE │ 2 │
│1 │ │ │Branch │ 2 │
└────────┴────┴─────┴────────────────────────┴────┘

Figure 4-7. Trace Entries Arranged by Identifying Bits

The fields in the trace entries are defined as
follows. The fields are described in the order in
which they first appear in Figure 4-6 on
page 4-14.

Branch Address: The branch address is the
address of the next instruction to be executed
when the branch is taken. In a branch trace entry
made when the 24-bit addressing mode is in effect
after branching (a format-1 entry), bit positions

8-31 contain bits 40-63 of the branch address.
When the 31-bit addressing mode is in effect after
branching or PSW bit 31 is one after branching
and bits 0-32 of the branch address are all zeros,
bit positions 1-31 of the trace entry (format 2)
contain bits 33-63 of the branch address. When
PSW bit 31 is one after branching and bits 0-32 of
the branch address are not all zeros, bit positions
32-95 of the trace entry (format 3), contain bits
0-63 of the branch address.

4-20 z/Architecture Principles of Operation

In a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit
addressing mode, bit positions 33-63 of the trace
entry (format 1) contain bits 33-63 of the branch
address, or, in the 64-bit addressing mode, bit
positions 32-95 of the trace entry (format 2)
contain bits 0-63 of the branch address.

In a mode-switching-branch trace entry made on a
switch from the 64-bit addressing mode to the
24-bit or 31-bit addressing mode, bit positions
33-63 of the entry (format 1) contain bits 33-63 of
the branch address; or, on a switch from PSW bit
31 being off to the bit being on, bit positions 32-63
of the entry (format 2) contain bits 32-63 of the
branch address if bits 0-31 of the branch address
are zeros, or bits 32-95 of the entry (format 3)
contain bits 0-63 of the branch address if bits 0-31
of the branch address are not all zeros.

Primary-List Bit (P) and Bits 9-31 of ALET: Bit
position 8 of a BRANCH IN SUBSPACE GROUP
trace entry contains bit 7 of the access-list-entry
token (ALET) in the access register designated by
the R� field of the instruction. Bit positions 9-31 of
the trace entry contain bits 9-31 of the ALET.

Basic-Addressing-Mode Bit (A): Bit position 32
of a BRANCH IN SUBSPACE GROUP trace entry
made on execution in the 24-bit or 31-bit
addressing mode (a format-1 entry) contains the
basic-addressing-mode bit that replaces bit 32 of
the PSW.

Bit position 32 of a mode-switch trace entry that
indicates a switch from PSW bit 31 being off to
the bit being on (a format-1 entry) contains the
value of PSW bit 32 that existed before the mode-
switch operation.

Bit position 32 of a mode-switching-branch trace
entry that indicates a switch from the 64-bit
addressing mode to the 24-bit or 31-bit addressing
mode (a format-1 entry) contains the value that
replaces PSW bit 32.

Bit position 32 of a PROGRAM CALL trace entry
made on execution in the 24-bit or 31-bit
addressing mode (regardless of the resulting
addressing mode) (a format-1 entry) contains the
basic-addressing-mode bit, bit 32, from the current
PSW.

Bit position 32 of a PROGRAM RETURN trace
entry made when the resulting addressing mode is
the 24-bit or 31-bit mode (a format-1, format-2, or
format-3 entry) contains the basic-
addressing-mode bit that replaces bit 32 of the
PSW.

Bit position 64 of a PROGRAM RETURN trace
entry made in the 24-bit or 31-bit addressing
mode when the return address occupies only one
word in the entry, (a format-1 or format-4 entry),
contains the value of PSW bit 32 that existed
before the PROGRAM RETURN operation. When
the return address occupies two words (a format-7
entry), bit position 96 contains that value of PSW
bit 32.

Updated Instruction Address: Bit positions
33-63 of a mode-switch trace entry that indicates
a switch from PSW bit 31 being off to the bit being
on (a format-1 entry) contains bits 33-63 of the
updated instruction address in the PSW (bits
97-127 of the PSW) before that address is
replaced, if it is replaced, by the mode-switch
operation. Bit positions 32-63 of a mode-switch
trace entry (format 2) that indicates a switch from
the 64-bit addressing mode to the 24-bit or 31-bit
addressing mode contains bits 32-63 of the
updated instruction address in the PSW (bits
96-127 of the PSW) before that address is
replaced, if it is replaced, by the mode-switch
operation, if bits 0-31 of the updated instruction
address are zeros; or bit positions 32-95 of the
trace entry (format 3) contain bits 0-63 of that
updated instruction address (bits 64-127 of the
PSW) if bits 0-31 of the address are not all zeros.

The following description of a PROGRAM
RETURN trace entry applies when the return
address in the entry occupies only one word in the
entry. Bit positions 65-95 of the trace entry made
on execution in the 24-bit or 31-bit addressing
mode (a format-1 or format-4 entry) contain bits
33-63 of the updated instruction address in the
PSW (bits 97-127 of the PSW) before that
address is replaced from the linkage-stack state
entry; or, when the execution is in the 64-bit
addressing mode, bit positions 64-95 of the trace
entry (format 2 or 5) contain bits 32-63 of that
updated instruction address (bits 96-127 of the
PSW) if bits 0-31 of the address are zeros, or bit
positions 64-127 of the trace entry (format 3 or 6)
contain bits 0-63 of that updated instruction
address (bits 64-127 of the PSW) if bits 0-31 of

 Chapter 4. Control 4-21

the address are not all zeros. If the return
address in the PROGRAM RETURN trace entry
occupies two words, the updated instruction
address in the entry is moved one word to the
right in the entry (formats 7-9).

PSW Key: Bit positions 8-11 of a PROGRAM
CALL, PROGRAM TRANSFER, or PROGRAM
RETURN trace entry contain the PSW key from
the current PSW.

PC Number: Bit positions 12-31 of a
PROGRAM CALL trace entry contain the value of
the rightmost 20 bits of the second-operand
address.

Return Address: Bit positions 33-62 of a
PROGRAM CALL trace entry made on execution
in the 24-bit or 31-bit addressing mode (a format-1
entry) contain bits 33-62 of the updated instruction
address in the PSW (bits 97-126 of the PSW)
before that address is replaced from the entry-
table entry; or, when the execution is in the 64-bit
addressing mode, bit positions 32-94 of the trace
entry (format 2) contain bits 0-62 of that updated
instruction address (bits 64-126 of the PSW).

Bit positions 33-62 of a PROGRAM RETURN
trace entry made when the resulting addressing
mode is the 24-bit or 31-bit mode (a format-1,
format-2, or format-3 entry) contain bits 33-62 of
the instruction address that replaces bits 64-127 of
the PSW; or, when the resulting PSW bit 31 is
one (which causes the addressing mode be the
64-bit mode unless the resulting PSW bit 32 is
zero), bit positions 32-62 of the trace entry
(formats 4-6) contain bits 32-62 of that instruction
address if bits 0-31 of the address are zeros, or
bit positions 32-94 of the trace entry (formats 7-9)
contain bits 0-62 of that instruction address if bits
0-31 of the address are not all zeros.

Problem-State Bit (P): Bit position 63 of a
PROGRAM CALL trace entry made on execution
in the 24-bit or 31-bit addressing mode (regardless
of the resulting mode) (a format-1 entry), or bit
position 95 of the entry (format 2) made on exe-
cution in the 64-bit addressing mode, contains the
problem-state bit from the current PSW.

Bit position 63 of a PROGRAM RETURN trace
entry made when the resulting addressing mode is
the 24-bit or 31-bit mode (a format-1, format-2, or
format-3 entry) or when the resulting PSW bit 31

is one and bits 0-31 of the return address are
zeros (formats 4-6) contains the problem-state bit
that replaces bit 15 of the PSW. Bit position 95 of
a PROGRAM RETURN trace entry made when
the resulting PSW bit 31 is one and bits 0-31 of
the return address are not all zeros (formats 7-9)
contains that problem-state bit.

New PASN: Bit positions 16-31 a PROGRAM
TRANSFER trace entry contain the new PASN
(which may be zero) specified in bit positions
48-63 of general register R�.

Bit positions 16-31 of a PROGRAM RETURN
trace entry contain the new PASN that is restored
from the linkage-stack state entry.

Bits 32-63 of R� before: Bit positions 32-63 of a
PROGRAM TRANSFER trace entry made on exe-
cution in the 24-bit or 31-bit addressing mode (a
format-1 entry) contain bits 32-63 of the general
register designated by the R� field of the instruc-
tion. (Bits 32 and 33-62 of that register replace
bits 32 and 97-126, respectively, of the PSW. Bit
63 of the register replaces the problem-state bit in
the PSW.) When PROGRAM TRANSFER is exe-
cuted in the 64-bit addressing mode, bit positions
32-63 of the trace entry (format 2) contain bits
32-63 of the R� general register if bits 0-31 of the
register are zeros, or bit positions 32-95 of the
trace entry (format 3) contain bits 0-63 of the reg-
ister if bits 0-31 of the register are not all zeros.

New SASN: Bit positions 16-31 of a SET SEC-
ONDARY ASN trace entry contain the ASN value
loaded into control register 3 by the instruction.

Number of Registers (N): Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have
been provided in the trace entry. The value of N
ranges from zero, meaning the contents of one
general register are provided in the trace entry, to
15, meaning the contents of all 16 general regis-
ters are provided.

TOD-Clock Bits 16-63 or 0-79: Bits 16-63 of the
trace entry for TRACE (TRACE) are obtained from
bit positions 16-63 of the TOD clock, as would be
provided by a STORE CLOCK instruction exe-
cuted at the time the TRACE instruction was exe-
cuted. Bits 16-95 of the trace entry for TRACE
(TRACG) are obtained from bit positions 0-79 of
the TOD clock, as would be provided by a STORE

4-22 z/Architecture Principles of Operation

CLOCK EXTENDED instruction executed at the
time the TRACE instruction was executed. See
programming note 2 on page 4-23 for information
about a carry from bit position 0 of the TOD clock.

TRACE Operand: Bit positions 64-95 of the
trace entry for TRACE (TRACE) contain a copy of
the 32 bits of the second operand of the TRACE
instruction for which the entry is made. Bit posi-
tions 96-127 of the trace entry for TRACE
(TRACG) contain a copy of those bits.

(R�)-(R�): The four-byte fields starting with bit 96
of the trace entry for TRACE (TRACE) contain the
contents of bit positions 32-63 of the general reg-
isters whose range is specified by the R� and R�
fields of the TRACE instruction. The general reg-
isters are stored in ascending order of register
numbers, starting with general register R� and
continuing up to and including general register R�,
with general register 0 following general register
15. The eight-byte fields starting with bit 128 of
the trace entry for TRACE (TRACG) similarly
contain the contents of bit positions 0-63 of those
registers.

Programming Notes:

1. The size of the trace entry for TRACE
(TRACE) in units of words is 3 + (N + 1).
The maximum size of an entry is 19 words, or
76 bytes. For TRACE (TRACG), the size in
units of words is 4 + 2(N + 1), and the
maximum size is 36 words, or 144 bytes.

2. At some time in the future, the TOD clock on
new models will have a leftmost extension so
that there can be a carry from bit position 0 of
the clock into the extension; see programming
note 14 on page 4-40. On these models, the
rightmost bit of the extension will be stored in
bit position 15 of the TRACE (TRACG) trace
entry. It may be desired to have programs
that process TRACE (TRACG) trace entries
take this future development into account.

 Operation

When an instruction which is subject to tracing is
executed and the corresponding tracing function is
turned on, a trace entry of the appropriate type
and format is made. The real address of the trace
entry is formed by appending two zero bits on the
left and two on the right to the value in bit posi-

tions 2-61 of control register 12. The address in
control register 12 is subsequently increased by
the size of the entry created.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry
to be propagated into bit position 51 (that is, if the
trace-entry address would be in the next 4K-byte
block). If this would be the case for the entry to
be made, a trace-table exception is recognized.
When PROGRAM CALL is to form both a
PROGRAM CALL trace entry and a mode-switch
trace entry, neither entry is stored, and a trace-
table exception is recognized, if either entry would
cause a carry into bit position 51. For the purpose
of recognizing the trace-table exception in the
case of a TRACE instruction, the maximum length
of 76 (TRACE) or 144 (TRACG) bytes is used
instead of the actual length.

The storing of a trace entry is not subject to key-
controlled protection (nor, since the trace-entry
address is real, is it subject to page protection),
but it is subject to low-address protection; that is,
if the address of the trace entry due to be created
is in the range 0-511 or 4096-4607 and bit 35 of
control register 0 is one, a protection exception is
recognized, and instruction execution is sup-
pressed. If the address of a trace entry is invalid,
an addressing exception is recognized, and
instruction execution is suppressed.

The three exceptions associated with storing a
trace entry (addressing, protection, and trace
table) are collectively referred to as trace
exceptions.

If a program interruption takes place for a condi-
tion which is not a trace-exception condition and
for which execution of an instruction is not com-
pleted, it is unpredictable whether part or all of
any trace entry due to be made for such an inter-
rupted instruction is stored in the trace table.
Thus, for a condition which would ordinarily cause
nullification or suppression of instruction exe-
cution, storage locations may have been altered
beginning at the location designated by control
register 12 and extending up to the length of the
entry that would have been created.

When PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by BRANCH
AND STACK and ASN tracing is on, trace
exceptions may be recognized, even though a

 Chapter 4. Control 4-23

trace entry is not made and no part of a trace
entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed
by other CPUs and by channel programs, the con-
tents of a byte of a trace entry may appear to
change more than once before completion of the
instruction for which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

 Program-Event Recording
The purpose of PER is to assist in debugging
programs. It permits the program to be alerted to
the following types of events:

� Execution of a successful branch instruction.
The option is provided of having an event
occur only when the branch-target location is
within the designated storage area.

� Fetching of an instruction from the designated
storage area.

� Alteration of the contents of the designated
storage area. The option is provided of
having an event occur only when the storage
area is within designated address spaces.

� Execution of the STORE USING REAL
ADDRESS instruction.

The program can selectively specify that one or
more of the above types of events be recognized,
except that the event for STORE USING REAL
ADDRESS can be specified only along with the
storage-alteration event. The information con-
cerning a PER event is provided to the program
by means of a program interruption, with the
cause of the interruption being identified in the
interruption code.

Control-Register Allocation and
Address-Space-Control Element

The information for controlling PER resides in
control registers 9, 10, and 11 and the address-
space-control element. The information in the
control registers has the following format:

Control Register 9
┌──────/──────┬─────┬────┬─┬─┬─┬──────────┐
│ │ EM │ │B│ │S│ │
└──────/──────┴─────┴────┴─┴─┴─┴──────────┘
� 32 37 4� 42 63

Control Register 10
┌──────/──────────────────────────────────┐
│ Starting Address │
└──────/──────────────────────────────────┘
� 63

Control Register 11
┌──────/──────────────────────────────────┐
│ Ending Address │
└──────/──────────────────────────────────┘
� 63

PER-Event Masks (EM): Bits 32-34 and 36
specify which types of events are recognized.
The bits are assigned as follows:

Bit 32: Successful-branching event
Bit 33: Instruction-fetching event
Bit 34: Storage-alteration event
Bit 36: Store-using-real-address event (bit 34

must be one also)

Bits 32-34 and bit 36, when ones, specify that the
corresponding types of events be recognized.
However, bit 36 is effective for this purpose only
when bit 34 is also one. When bit 34 is one, the
storage-alteration event is recognized. When bits
34 and 36 are ones, both the storage-alteration
event and the store-using-real-address event are
recognized. When a bit is zero, the corresponding
type of event is not recognized. When bit 34 is
zero, both the storage-alteration event and the
store-using-real-address event are not recognized.

Branch-Address Control (B): Bit 40 of control
register 9 specifies, when one, that successful-
branching events occur only for branches that are
to a location within the designated storage area.
When bit 40 is zero, successful branching events
occur regardless of the branch-target address.

Storage-Alteration-Space Control (S): Bit 42
of control register 9 specifies, when one, that
storage-alteration events occur as a result of refer-
ences to the designated storage area only within
designated address spaces. An address space is
designated as one for which storage-alteration
events occur by means of the storage-
alteration-event bit in the address-space-control

4-24 z/Architecture Principles of Operation

element that is used to translate references to the
address space. Bit 42 is ignored when DAT is off.
When DAT is off or bit 42 is zero, storage-
alteration events are not restricted to occurring for
only particular address spaces.

PER Starting Address: Bits 0-63 of control reg-
ister 10 are the address of the beginning of the
designated storage area.

PER Ending Address: Bits 0-63 of control reg-
ister 11 are the address of the end of the desig-
nated storage area.

The address-space-control element has one of the
following formats:

Region-Table or Segment-Table Designation (R=�)
┌───────────/───────────┬──┬─┬─┬─┬─┬─┬─┬──┬──┐
│ Region-Table or │ │ │ │ │ │ │ │ │ │
│ Segment-Table Origin │ │G│P│S│X│R│ │DT│TL│
└───────────/───────────┴──┴─┴─┴─┴─┴─┴─┴──┴──┘
� 52 54 58 6� 63
Real-Space Designation (R=1)
┌───────────/───────────┬──┬─┬─┬─┬─┬─┬─────┐
│ Real-Space │ │ │ │ │ │ │ │
│ Token Origin │ │G│P│S│X│R│ │
└───────────/───────────┴──┴─┴─┴─┴─┴─┴─────┘
� 52 54 58 63

Storage-Alteration-Event Bit (S): When the
storage-alteration-space control in control register
9 is one, bit 56 of the address-space control
element specifies, when one, that the address
space defined by the address-space-control
element is one for which storage-alteration events
can occur. Bit 56 is examined when the address-
space-control element is used to perform dynamic-
address translation for a storage-operand store
reference. The address-space-control element
may be the PASCE, SASCE, or HASCE in control
register 1, 7, or 13, respectively, or it may be
obtained from an ASN-second-table entry during
access-register translation. Instead of being
obtained from an ASN-second-table entry in main
storage, bit 56 may be obtained from an
ASN-second-table entry in the ART-lookaside
buffer (ALB). Bit 56 is ignored when the storage-
alteration-space control is zero.

Programming Notes:

1. Models may operate at reduced performance
while the CPU is enabled for PER events. In
order to ensure that CPU performance is not
degraded because of the operation of the
PER facility, programs that do not use it
should disable the CPU for PER events by
setting either the PER mask in the PSW to
zero or the PER-event masks in control reg-
ister 9 to zero, or both. No degradation due
to PER occurs when either of these fields is
zero.

2. Some degradation may be experienced on
some models every time control registers 9,
10, and 11 are loaded, even when the CPU is
disabled for PER events (see the program-
ming note under “Storage-Area Designation”).

 Operation

PER is under control of bit 1 of the PSW, the PER
mask. When the PER mask and a particular
PER-event mask bit are all ones, the CPU is
enabled for the corresponding type of event; oth-
erwise, it is disabled. However, the CPU is
enabled for the store-using-real-address event
only when the storage-alteration mask bit and the
store-using-real-address mask bit are both one.

An interruption due to a PER event normally
occurs after the execution of the instruction
responsible for the event. The occurrence of the
event does not affect the execution of the instruc-
tion, which may be completed, partially completed,
terminated, suppressed, or nullified. However,
recognition of a storage-alteration event causes no
more than 4K bytes to be stored beginning with
the byte that caused the event, and this may
result in partial completion of an interruptible
instruction.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the PER
mask in the PSW or by the masks in control reg-
ister 9, the event is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and
11 affects PER starting with the execution of the
immediately following instruction.

A change to the storage-alteration-event bit in an
address-space-control element in control register

 Chapter 4. Control 4-25

1, 7, or 13 also affects PER starting with the exe-
cution of the immediately following instruction. A
change to the storage-alteration-event bit in an
address-space-control element that may be
obtained, during access-register translation, from
an ASN-second-table entry in either main storage
or the ALB does not necessarily have an imme-
diate, if any, effect on PER. However, PER is
affected immediately after PURGE ALB is exe-
cuted.

If a PER event occurs during the execution of an
instruction which changes the CPU from being
enabled to being disabled for that type of event,
that PER event is recognized.

PER events may be recognized in a trial execution
of an instruction, and subsequently the instruction,
DAT-table entries, and operands may be refetched
for the actual execution. If any refetched field was
modified by another CPU or by a channel program
between the trial execution and the actual exe-
cution, it is unpredictable whether the PER events
indicated are for the trial or the actual execution.

For special-purpose instructions that are not
described in this publication, the operation of PER
may not be exactly as described in this section.

Identification of Cause
A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in real storage locations 150-159 and
in location 161 if the PER event is a storage-
alteration event. Additional information is provided
by means of the instruction address in the
program old PSW and the ILC. The information
stored in real locations 150-159 and 161 has the
following format:

Locations 150-151:
┌─────┬───┬──────┬──┐
│PERC │���│ATMID │AI│
└─────┴───┴──────┴──┘
� 5 8 13 15

Locations 152-159:
┌────────────────────/────────────────────┐
│ PER Address │
└────────────────────/────────────────────┘
� 63

Location 161:
┌────┬────┐
│����│PAID│
└────┴────┘
� 4 7

PER Code (PERC): The occurrence of PER
events is indicated by ones in bit positions 0-2 and
4. The bit position in the PER code for a partic-
ular type of event is 32 less than the bit position
for that event in the PER-event-mask field in
control register 9, except that a one in bit position
2 and a zero in bit position 4 of location 150 indi-
cate a storage-alteration event, while ones in bit
positions 2 and 4 indicate a store-using-
real-address event. When a program interruption
occurs, more than one type of PER event can be
concurrently indicated. Additionally, if another
program-interruption condition exists, the inter-
ruption code for the program interruption may indi-
cate both the PER events and the other condition.

 Addressing-and-Translation-Mode Identifica-
tion (ATMID): During a program interruption
when a PER event is indicated, bits 31, 32, 5, 16,
and 17 of the PSW at the beginning of the exe-
cution of the instruction that caused the event may
be stored in bit positions 8 and 10-13, respec-
tively, of real locations 150-151. If bits 31, 32, 5,
16, and 17 are stored, then a one bit is stored in
bit position 9 of locations 150-151. If bits 31, 32,
5, 16, and 17 are not stored, then zero bits are
stored in bit positions 8-13 of locations 150-151.

Bits 8-13 of real locations 150-151 are named the
addressing-and-translation-mode identification
(ATMID). Bit 9 is named the ATMID-validity bit.
When bit 9 is zero, it indicates that an invalid
ATMID (all zeros) was stored.

The meanings of the bits of a valid ATMID are as
follows:

A valid ATMID is necessarily stored only if the
PER event was caused by one of the following
instructions:

Bit Meaning

 8 PSW bit 31
 9 ATMID-validity bit
10 PSW bit 32
11 PSW bit 5
12 PSW bit 16
13 PSW bit 17

4-26 z/Architecture Principles of Operation

� BRANCH AND SAVE AND SET MODE
(BASSM)

� BRANCH AND SET AUTHORITY (BSA)
� BRANCH AND SET MODE (BSM)
� BRANCH IN SUBSPACE GROUP (BSG)
� LOAD PSW (LPSW)
� LOAD PSW EXTENDED (LPSWE)
� PROGRAM CALL (PC)
� PROGRAM RETURN (PR)
� PROGRAM TRANSFER (PT)
� RESUME PROGRAM (RP)
� SET ADDRESS SPACE CONTROL (SAC)
� SET ADDRESS SPACE CONTROL FAST

(SACF)
� SET ADDRESSING MODE (SAM24, SAM31,

SAM64)
� SET SYSTEM MASK (SSM)
� STORE THEN AND SYSTEM MASK

(STNSM)
� STORE THEN OR SYSTEM MASK (STOSM)
� SUPERVISOR CALL (SVC)
� TRAP (TRAP2, TRAP4)

It is unpredictable whether a valid ATMID is stored
if the PER event was caused by any other instruc-
tion.

PER ASCE Identification (AI): If a storage-
alteration event is indicated in the PER code (bit 2
is one and bit 4 is zero) and this event occurred
when DAT was on, bits 14 and 15 of locations
150-151 are set to identify the address-
space-control element (ASCE) that was used to
translate the reference that caused the event, as
follows:

Bits
14-15 Meaning
00 Primary ASCE was used.
01 An AR-specified ASCE was used. The

PER access id, real location 161, can be
examined to determine the ASCE used.
However, if the primary, secondary, or
home ASCE was used, bits 14 and 15
may be set to 00, 10, or 11, respectively,
instead of to 01.

10 Secondary ASCE was used.
11 Home ASCE was used.

The CPU may avoid setting bits 14 and 15 to 01
by recognizing that access-list-entry token (ALET)

00000000 or 00000001 hex was used or that the
ALET designated, through an access-list entry, an
ASN-second-table entry containing an ASCE
equal to the primary ASCE, secondary ASCE, or
home ASCE.

If a storage-alteration event is not indicated in the
PER code (bit 2 is zero or bit 4 is one) or DAT
was off, zeros are stored in bit positions 14 and
15.

Zeros are stored in bit positions 3 and 5-7 of
locations 150-151.

PER Address: The PER-address field at
locations 152-159 contains the instruction address
used to fetch the instruction in execution when
one or more PER events were recognized. When
the instruction is the target of EXECUTE, the
instruction address used to fetch the EXECUTE
instruction is placed in the PER-address field.

PER Access Identification (PAID): If a storage-
alteration event is indicated in the PER code, an
indication of the address space to which the event
applies may be stored at location 161. If the
access used an AR-specified address-
space-control element, the number of the access
register used is stored in bit positions 4-7 of
location 161, and zeros are stored in bit positions
0-3. The contents of location 161 are unpredict-
able if (1) the CPU was in the access-register
mode but the access was an implicit reference to
the linkage stack or (2) the CPU was not in the
access-register mode.

Instruction Address: The instruction address in
the program old PSW is the address of the
instruction which would have been executed next,
unless another program condition is also indi-
cated, in which case the instruction address is that
determined by the instruction ending due to that
condition.

ILC: The ILC indicates the length of the instruc-
tion designated by the PER address, except when
a concurrent specification exception for the PSW
introduced by LOAD PSW, LOAD PSW
EXTENDED, PROGRAM RETURN, or a
supervisor-call interruption sets an ILC of 0.

 Chapter 4. Control 4-27

Programming Notes:

1. PSW bit 31 is the extended-addressing-mode
bit, and PSW bit 32 is the basic-
addressing-mode bit. When PSW bit 31 and
32 are both one, they specify the 64-bit
addressing mode. When PSW bit 31 is zero,
PSW 32 specifies the 24-bit addressing mode
if the bit is zero or the 31-bit addressing mode
if the bit is one. PSW bit 5 is the DAT-mode
bit, and PSW bits 16 and 17 are the address-
space-control bits. For the handling of instruc-
tion and logical addresses in the different
translation modes, see “Translation Modes” on
page 3-28.

2. A valid ATMID allows the program handling
the PER event to determine the address
space from which the instruction that caused
the event was fetched and also to determine
which translation mode applied to the storage-
operand references of the instruction, if any.
Each of the instructions for which a valid
ATMID is necessarily stored can change one
or more of PSW bits 5, 16, and 17, with the
result that the values of those bits in the
program old PSW that is stored because of
the PER event are not necessarily the values
that existed at the beginning of the execution
of the instruction that caused the event. The
instructions for which a valid ATMID is neces-
sarily stored are the only instructions that can
change any of PSW bits 5, 16, and 17.

3. If a storage-alteration PER event is indicated
and DAT was on when the event occurred, an
indication of the address-space-control
element that was used to translate the refer-
ence that caused the event is given by the
PER ASCE identification, bits 14 and 15 of
real locations 150-151. If bits 14 and 15 indi-
cate that an AR-specified address-
space-control element was used, the PER
access identification in real location 161 can
be used to determine the address space that
was referenced. To determine if DAT was on,
the program handling the PER event should
first examine the ATMID-validity bit to deter-
mine whether a valid ATMID was stored and,
if it was stored, then examine the DAT-mode
bit in the ATMID. If a valid ATMID was not
stored, the program should examine the
DAT-mode bit in the program old PSW.

4. If a valid ATMID is stored, it also allows the
program handling the PER event to determine

the addressing mode (24-bit, 31-bit, or 64-bit)
that existed for the instruction that caused the
PER event. This knowledge of the addressing
mode allows the program to determine,
without any chance of error, the meaning of
one bits in bit positions 0-39 of the addresses
of the instruction and of the storage operands,
if any, of the instruction and, thus, to deter-
mine accurately the locations of the instruction
and operands. Note that the address of the
instruction is not necessarily provided without
error by the PER address in real locations
152-159 because that address may be the
address of an EXECUTE instruction, with the
address of the target instruction still to be
determined from the fields that specify the
second-operand address of the EXECUTE
instruction. Also note that another possible
source of error is that, in the 24-bit or 31-bit
addressing mode, an instruction or operand
may wrap around in storage by beginning just
below the 16M-byte or 2G-byte boundary,
respectively.

5. A valid ATMID is necessarily stored for all
instructions that can change the addressing-
mode bits. However, the ATMID mechanism
does not provide complete assurance that the
instruction causing a PER event and the
instruction's operands can be located accu-
rately because LOAD CONTROL and LOAD
ADDRESS SPACE PARAMETERS can
change the address-space-control element
that was used to fetch the instruction.

Priority of Indication
When a program interruption occurs and more
than one PER event has been recognized, all
recognized PER events are concurrently indicated
in the PER code. Additionally, if another program-
interruption condition concurrently exists, the inter-
ruption code for the program interruption indicates
both the PER condition and the other condition.

In the case of an instruction-fetching event for
SUPERVISOR CALL, the program interruption
occurs immediately after the supervisor-call inter-
ruption.

If a PER event is recognized during the execution
of an instruction which also introduces a new
PSW with the type of PSW-format error which is
recognized early (see “Exceptions Associated with
the PSW” on page 6-9), both the specification

4-28 z/Architecture Principles of Operation

exception and PER are indicated concurrently in
the interruption code of the program interruption.
If the PSW-format error is of the type which is
recognized late, only PER is indicated in the inter-
ruption code. In both cases, the invalid PSW is
stored as the program old PSW.

Recognition of a PER event does not normally
affect the ending of instruction execution.
However, in the following cases, execution of an
interruptible instruction is not completed normally:

1. When the instruction is due to be interrupted
for an asynchronous condition (I/O, external,
restart, or repressible machine-check condi-
tion), a program interruption for the PER event
occurs first, and the other interruptions occur
subsequently (subject to the mask bits in the
new PSW) in the normal priority order.

2. When the stop function is performed, a
program interruption indicating the PER event
occurs before the CPU enters the stopped
state.

3. When any program exception is recognized,
PER events recognized for that instruction
execution are indicated concurrently.

4. Depending on the model, in certain situations,
recognition of a PER event may appear to
cause the instruction to be interrupted prema-
turely without concurrent indication of a
program exception, without an interruption for
any asynchronous condition, and without the
CPU entering the stopped state. In particular,
recognition of a storage-alteration event
causes no more than 4K bytes to be stored
beginning with the byte that caused the event.

In cases 1 and 2 above, if the only PER event that
has been recognized is an instruction-fetching
event and another unit of operation of the instruc-
tion remains to be executed, the event may be
discarded, with the result that a program inter-
ruption does not occur. Whether the event is dis-
carded is unpredictable.

Programming Notes:

1. In the following cases, an instruction can both
cause a program interruption for a PER event
and change the value of fields controlling an
interruption for PER events. The original field
values determine whether a program inter-
ruption takes place for the PER event.

a. The instructions LOAD PSW, LOAD PSW
EXTENDED, SET SYSTEM MASK,
STORE THEN AND SYSTEM MASK, and
SUPERVISOR CALL can cause an
instruction-fetching event and disable the
CPU for PER interruptions. Additionally,
STORE THEN AND SYSTEM MASK can
cause a storage-alteration event to be
indicated. In all these cases, the program
old PSW associated with the program
interruption for the PER event may indi-
cate that the CPU was disabled for PER
events.

b. An instruction-fetching event may be
recognized during execution of a LOAD
CONTROL instruction that changes the
value of the PER-event masks in control
register 9 or the addresses in control reg-
isters 10 and 11 controlling indication of
instruction-fetching events.

c. In the access-register mode, a storage-
alteration event that is permitted by a one
value of the storage-alteration-event bit in
an address-space-control element in an
ASN-second-table entry (designated by an
access-list entry) may be caused by any
store-type instruction that changes the
value of the bit from one to zero.

2. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER
interruption occurs as a result of LOAD PSW,
LOAD PSW EXTENDED, PROGRAM
RETURN, or SUPERVISOR CALL, the ILC
indicates the length of these instructions or
EXECUTE, as appropriate, unless a concur-
rent specification exception on LOAD PSW,
LOAD PSW EXTENDED, or PROGRAM
RETURN calls for an ILC of 0.

3. When a PER interruption is caused by
branching, the PER address identifies the
branch instruction (or EXECUTE, as appro-
priate), whereas the old PSW points to the
next instruction to be executed. When the
interruption occurs during the execution of an
interruptible instruction, the PER address and
the instruction address in the old PSW are the
same.

 Chapter 4. Control 4-29

 Storage-Area Designation

Two types of PER events — instruction fetching
and storage alteration — always involve the des-
ignation of an area in storage. Successful-
branching events may involve this designation.
The storage area starts at the location designated
by the starting address in control register 10 and
extends up to and including the location desig-
nated by the ending address in control register 11.
The area extends to the right of the starting
address.

An instruction-fetching event occurs whenever the
first byte of an instruction or the first byte of the
target of an EXECUTE instruction is fetched from
the designated area. A storage-alteration event
occurs when a store access is made to the desig-
nated area by using an operand address that is
defined to be a logical or a virtual address.
However, when DAT is on and the storage-
alteration-space control in control register 9 is one,
a storage-alteration event occurs only when the
storage area is within an address space for which
the storage-alteration-event bit in the address-
space-control element is one. A storage-alteration
event does not occur for a store access made with
an operand address defined to be a real address.
When the branch-address control in control reg-
ister 9 is one, a successful-branching event occurs
when the first byte of the branch-target instruction
is within the designated area.

The set of addresses designated for successful-
branching, instruction-fetching, and storage-
alteration events wraps around at address
2�� - 1; that is, address 0 is considered to follow
address 2�� - 1. When the starting address is
less than the ending address, the area is contig-
uous. When the starting address is greater than
the ending address, the set of locations desig-
nated includes the area from the starting address
to address 2�� - 1 and the area from address 0
to, and including, the ending address. When the
starting address is equal to the ending address,
only that one location is designated.

Address comparison for successful-branching,
instruction-fetching, and storage-alteration events
is always performed using 64-bit addresses. This
is accomplished in the 24-bit or 31-bit addressing
mode by extending the virtual, logical, or instruc-
tion address on the left with 39 or 33 zeros,

respectively, before comparing it with the starting
and ending addresses.

Programming Note: In some models, perform-
ance of address-range checking is assisted by
means of an extension to each page-table entry in
the TLB. In such an implementation, changing the
contents of control registers 10 and 11 when the
successful-branching, instruction-fetching, or
storage-alteration-event mask is one, or setting
any of these PER-event masks to one, may cause
the TLB to be cleared of entries. This degradation
may be experienced even when the CPU is disa-
bled for PER events. Thus, when possible, the
program should avoid loading control registers 9,
10, or 11.

 PER Events

 Successful Branching
When the branch-address control in control reg-
ister 9 is zero, a successful-branching event
occurs independent of the branch-target address.
When the branch-address control is one, a
successful-branching event occurs only when the

| first byte of the branch-target instruction is in the
storage area designated by control registers 10
and 11.

Subject to the effect of the branch-address control,
a successful-branching event occurs whenever
one of the following instructions causes branching:

� BRANCH AND LINK (BAL, BALR)
� BRANCH AND SAVE (BAS, BASR)
� BRANCH AND SAVE AND SET MODE

(BASSM)
� BRANCH AND SET AUTHORITY (BSA)
� BRANCH AND SET MODE (BSM)
� BRANCH AND STACK (BAKR)
� BRANCH IN SUBSPACE GROUP (BSG)
� BRANCH ON CONDITION (BC, BCR)
� BRANCH ON COUNT (BCT, BCTR, BCTG,

BCTGR)
� BRANCH ON INDEX HIGH (BXH, BXHG)
� BRANCH ON INDEX LOW OR EQUAL

(BXLE, BXLEG)
� BRANCH RELATIVE AND SAVE (BRAS)
� BRANCH RELATIVE AND SAVE LONG

(BRASL)
� BRANCH RELATIVE ON CONDITION (BRC)
� BRANCH RELATIVE ON CONDITION LONG

(BRCL)

4-30 z/Architecture Principles of Operation

� BRANCH RELATIVE ON COUNT (BRCT,
BRCTG)

� BRANCH RELATIVE ON INDEX HIGH
(BRXH, BRXHG)

� BRANCH RELATIVE ON INDEX LOW OR
EQUAL (BRXLE, BRXLG)

� RESUME PROGRAM (RP)
� TRAP (TRAP2, TRAP4)

Subject to the effect of the branch-address control,
a successful-branching event also occurs when-
ever one of the following instructions causes
branching:

� PROGRAM CALL (PC)
� PROGRAM RETURN (PR)
� PROGRAM TRANSFER (PT)

For PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER, the branch-target
address is considered to be the new instruction
address that is placed in the PSW by the instruc-
tion.

A successful-branching event causes a PER
successful-branching event to be recognized if bit
32 of the PER-event masks is one and the PER
mask in the PSW is one.

A PER successful-branching event is indicated by
setting bit 0 of the PER code to one.

 Instruction Fetching
An instruction-fetching event occurs if the first byte
of the instruction is within the storage area desig-
nated by control registers 10 and 11. An
instruction-fetching event also occurs if the first
byte of the target of EXECUTE is within the desig-
nated storage area.

An instruction-fetching event causes a PER
instruction-fetching event to be recognized if bit 33
of the PER-event masks is one and the PER
mask in the PSW is one.

If an instruction-fetching event is the only PER
event recognized for an interruptible instruction
that is to be interrupted because of an asynchro-
nous condition (I/O, external, restart, or
repressible machine-check condition) or the per-
formance of the stop function, and if a unit of
operation of the instruction remains to be exe-
cuted, the instruction-fetching event may be dis-
carded, and whether it is discarded is unpredict-
able.

The PER instruction-fetching event is indicated by
setting bit 1 of the PER code to one.

 Storage Alteration
A storage-alteration event occurs whenever a
CPU, by using a logical or virtual address, makes
a store access without an access exception to the
storage area designated by control registers 10
and 11. However, when DAT is on and the
storage-alteration-space control in control register
9 is one, the event occurs only if the storage-
alteration-event bit is one in the address-
space-control element that is used by DAT to
translate the reference to the storage location.

The contents of storage are considered to have
been altered whenever the CPU executes an
instruction that causes all or part of an operand to
be stored within the designated storage area.
Alteration is considered to take place whenever
storing is considered to take place for purposes of
indicating protection exceptions, except that recog-
nition does not occur for the storing of data by a
channel program. (See “Recognition of Access
Exceptions” on page 6-36.) Storing constitutes
alteration for PER purposes even if the value
stored is the same as the original value.

Implied locations that are referred to by the CPU
in the process of performing an interruption are
not monitored. Such locations include PSW and
interruption-code locations. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly, moni-
toring does not apply to the storing of data by a
channel program. Implied locations in the linkage
stack, which are stored in by instructions that
operate on the linkage stack, are monitored.

The I/O instructions are considered to alter the
second-operand location only when storing actu-
ally occurs.

Storage alteration does not apply to instructions
| whose operands are specified to have real

addresses. Thus, storage alteration does not
apply to INVALIDATE PAGE TABLE ENTRY,
RESET REFERENCE BIT EXTENDED, SET
STORAGE KEY EXTENDED, STORE USING
REAL ADDRESS, TEST BLOCK, and TEST
PENDING INTERRUPTION (when the effective
address is zero).

 Chapter 4. Control 4-31

A storage-alteration event causes a PER storage-
alteration event to be recognized if bit 34 of the
PER-event masks is one and the PER mask in the
PSW is one. Bit 36 of the PER-event masks is
ignored when determining whether a PER storage-
alteration event is to be recognized.

A PER storage-alteration event is indicated by
setting bit 2 of the PER code to one and bit 4 of
the PER code to zero.

Store Using Real Address
A store-using-real-address event occurs whenever
the STORE USING REAL ADDRESS instruction is
executed.

There is no relationship between the store-using-
real-address event and the designated storage
area.

A store-using-real-address event causes a PER
store-using-real-address event to be recognized if
bits 34 and 36 of the PER-event mask are ones
and the PER mask in the PSW is one.

A PER store-using-real-address event is indicated
by setting bits 2 and 4 of the PER code to one.

Indication of PER Events
Concurrently with Other
Interruption Conditions

The following rules govern the indication of PER
events caused by an instruction that also causes a
program exception, a monitor event, a space-
switch event, or a supervisor-call interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated,

| suppressed, or nullified. However, special
| cases of suppression and nullification are as
| follows:

| a. When the instruction is designated by an
| odd instruction address in the PSW, the
| instruction-fetching event is not indicated.

| b. When an access exception applies to the
| first, second, or third halfword of the
| instruction, it is unpredictable whether the
| instruction-fetching event is indicated.

| c. When the target address of EXECUTE is
| odd or an access exception applies to the

| first, second, or third halfword of the target
| instruction, it is unpredictable whether the
| instruction-fetching event is indicated for
| the target instruction, and it is also unpre-
| dictable whether the event is indicated for
| the EXECUTE instruction.

2. When the operation is completed or partially
completed, the event is indicated, regardless
of whether any program exception, space-
switch event, or monitor event is also recog-
nized.

3. Successful branching, storage alteration, and
store using real address are not indicated for
an operation or, in case the instruction is inter-
ruptible, for a unit of operation that is sup-
pressed or nullified.

4. When the execution of the instruction is termi-
nated, storage alteration is indicated whenever
the event has occurred, and a model may
indicate the event if the event would have
occurred had the execution of the instruction
been completed, even if altering the contents
of the result field is contingent on operand
values. For purposes of this definition, the
occurrence of those exceptions which permit
termination (addressing, protection, and data)
is considered to cause termination, even if no
result area is changed.

5. When LOAD PSW, LOAD PSW EXTENDED,
| PROGRAM RETURN, SET SYSTEM MASK,

STORE THEN OR SYSTEM MASK, or
SUPERVISOR CALL causes a PER condition
and at the same time introduces a new PSW
with the type of PSW-format error that is
recognized immediately after the PSW
becomes active, the interruption code identi-
fies both the PER condition and the specifica-
tion exception.

| 6. When LOAD PSW, LOAD PSW EXTENDED,
| PROGRAM RETURN, or SUPERVISOR CALL
| causes a PER condition and at the same time
| introduces a new PSW with the type of
| PSW-format error that is recognized as part of
| the execution of the following instruction, the
| introduced PSW is stored as the old PSW
| without the following instruction being fetched
| or executed and without the specification
| exception being recognized.

The indication of PER events concurrently with
| other program-interruption conditions for the same
| instruction, as described in cases 1-4 above, is

4-32 z/Architecture Principles of Operation

| summarized in Figure 4-8 on page 4-34. Cases
| 5 and 6 are shown in Figure 4-9 on page 4-35.

Programming Notes:

1. The execution of the interruptible instructions
MOVE LONG, TEST BLOCK, and COMPARE
LOGICAL LONG can cause events for instruc-
tion fetching. Additionally, MOVE LONG can
cause the storage-alteration event.

Interruption of such an instruction may cause
a PER event to be indicated more than once.
It may be necessary, therefore, for a program
to remove the redundant event indications
from the PER data. The following rules
govern the indication of the applicable events
during execution of these instructions:

a. The instruction-fetching event is indicated
whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption, except
that the event may be discarded (not indi-
cated) if it is the only PER event to be
indicated, the interruption is due to an
asynchronous interruption condition or the
performance of the stop function, and a
unit of operation of the instruction remains
to be executed.

b. The storage-alteration event is indicated
only when data has been stored in the
designated storage area by the portion of
the operation starting with the last initi-
ation and ending with the last byte trans-

ferred before the interruption. No special
indication is provided on premature inter-
ruptions as to whether the event will occur
again upon the resumption of the opera-
tion. When the designated storage area is
a single byte location, a storage-alteration
event can be recognized only once in the
execution of MOVE LONG.

2. The following is an outline of the general
action a program must take to delete multiple
entries in the PER data for an interruptible
instruction so that only one entry for each
complete execution of the instruction is
obtained:

a. Check to see if the PER address is equal
to the instruction address in the old PSW
and if the last instruction executed was
interruptible.

b. If both conditions are met, delete
instruction-fetching events.

c. If both conditions are met and the event is
storage alteration, delete the event if
some part of the remaining destination
operand is within the designated storage
area.

| 3. An example of the indication of an instruction-
| fetching PER event caused by either a LOAD
| PSW (or LOAD PSW EXTENDED) instruction
| or the following instruction, in connection with
| an early PSW-format error or odd instruction
| address introduced by the LOAD PSW instruc-
| tion, is shown in Figure 4-9 on page 4-35.

 Chapter 4. Control 4-33

┌─────────────────────────────────────┬──────┬────────────────────────────┐
│ │ │ PER Event │
│ │ Type ├──────┬──────┬───────┬──────┤
│ │ of │ │Instr │Storage│ │
│ Concurrent Condition │Ending│Branch│Fetch │Alter. │STURA │
├─────────────────────────────────────┼──────┼──────┼──────┼───────┼──────┤
│Specification │ │ │ │ │ │
│ Odd instruction address in the PSW│ S │ No │ No │ No │ No │
│Instruction access │N or S│ No │ U │ No │ No │
│Specification │ │ │ │ │ │
│ EXECUTE target address odd │ S │ No │ U │ No │ - │
│EXECUTE target access │N or S│ No │ U │ No │ - │
│Other nullifying │ N │ No │ Yes │ No� │ - │
│Other suppressing │ S │ No │ Yes │ No� │ No │
│All terminating │ T │ No │ Yes │ Yes� │ - │
│All completing │ C │ Yes │ Yes │ Yes │ - │
├─────────────────────────────────────┴──────┴──────┴──────┴───────┴──────┤
│Explanation: │
│ │
│ - The condition does not apply. │
│ │
│ � Although PER events of this type are not indicated for the cur- │
│ rent unit of operation of an interruptible instruction, PER │
│ events of this type that were recognized on completed units of │
│ operation of the interruptible instruction are indicated. │
│ │
│ � This event may be indicated, depending on the model, if the │
│ event has not occurred but would have been indicated if execu- │
│ tion had been completed. │
│ │
│ C The operation or, in the case of the interruptible instructions, │
│ the unit of operation is completed. │
│ │
│ N The operation or, in the case of the interruptible instructions, │
│ the unit of operation is nullified. │
│ │
│ S The operation or, in the case of the interruptible instructions, │
│ the unit of operation is suppressed. │
│ │
│ T The execution of the instruction is terminated. │
│ │
│ Yes The PER event is indicated with the other program interruption │

| │ condition if the event has occurred; that is, the instruction │
| │ address in the PSW was replaced and the branch-address control │
| │ and designated storage area allow the event occurrence, an │
| │ attempt was made to execute an instruction whose first byte is │
| │ located in the designated storage area, or the contents of the │
| │ designated storage area were altered. │

│ │
│ No The PER event is not indicated. │
│ │
│ U It is unpredictable whether the PER event is indicated. │
└───┘

Figure 4-8. Indication of PER Events with Other Concurrent Conditions

4-34 z/Architecture Principles of Operation

| ┌────────────────────────┬────────────┬──────────────────────────────────┐
| │LPSW at 4��� Loads a PSW│Designated │ Two-Byte Instruction Is at 6��� │
| ├────────────┬───────────┤Storage Area├──────────┬──────────┬────┬───────┤
| │ PSW Has │ │Includes │ │ Address │ │ │
| │ Early │Instruction├─────┬──────┤ Inter- │ in │ │ │
| │ PSW-Format │Address │ │6���- │ ruption │ Program │ │PER │
| │ Error │in PSW │4��� │6��1 │ Code │ Old PSW │ILC │Address│
| ├────────────┼───────────┼─────┼──────┼──────────┼──────────┼────┼───────┤
| │ N │ 6��� │ N │ N │ None │ - │ - │ - │
| │ │ │ │ │ │ │ │ │
| │ N │ 6��� │ N │ Y │ P │ 6��2 │ 1 │ 6��� │
| │ │ │ │ │ │ │ │ │
| │ N │ 6��� │ Y │ - │ P │ 6��� │ 2 │ 4��� │
| ├────────────┼───────────┼─────┼──────┼──────────┼──────────┼────┼───────┤
| │ N │ 6��1 │ N │ N │ S │ 6��1+J� │ K� │ None │
| │ │ │ │ │ │ │ │ │
| │ N │ 6��1 │ N │ Y │ S� │ 6��1+J� │ K� │ None │
| │ │ │ │ │ │ │ │ │
| │ N │ 6��1 │ Y │ - │ P� � │ 6��1� � │ 2 │ 4��� │
| ├────────────┼───────────┼─────┼──────┼──────────┼──────────┼────┼───────┤
| │ Y │ 6��� │ N │ - │ S │ 6��� │ �� │ None │
| │ │ │ │ │ │ │ │ │
| │ Y │ 6��� │ Y │ - │ P,S� � │ 6���� � │ �� │ 4��� │
| ├────────────┼───────────┼─────┼──────┼──────────┼──────────┼────┼───────┤
| │ Y │ 6��1 │ N │ - │ S │ 6��1 │ �� │ None │
| │ │ │ │ │ │ │ │ │
| │ Y │ 6��1 │ Y │ - │ P,S� � │ 6��1� � │ �� │ 4��� │
| ├────────────┴───────────┴─────┴──────┴──────────┴──────────┴────┴───────┤
| │Explanation: │
| │ │
| │ - Immaterial or not applicable. │
| │ │
| │ � See “ILC on Instruction-Fetching Exceptions” on page 6-8. │
| │ │
| │ � See “Indication of PER Events Concurrently with Other Interruption│
| │ Conditions” on page 4-32. │
| │ │
| │ � See “Priority of Indication” on page 4-28. │
| │ │
| │ � See “Zero ILC” on page 6-7. │
| │ │
| │ J Unpredictably 2, 4, or 6. │
| │ │
| │ K 1, 2, or 3 depending on whether J is 2, 4, or 6, respectively. │
| │ │
| │ N No. │
| │ │
| │ P PER event (instruction-fetching). │
| │ │
| │ S Specification exception. │
| │ │
| │ Y Yes. │
| └──┘

| Figure 4-9. Example of Instruction-Fetching PER Event and Early PSW-Format Error or Odd Instruction Address

 Chapter 4. Control 4-35

 Timing
The timing facilities include three facilities for
measuring time: the TOD clock, the clock
comparator, and the CPU timer. A TOD program-
mable register is associated with the TOD clock.

In a multiprocessing configuration, a single TOD
clock is shared by all CPUs. Each CPU has its
own clock comparator, CPU timer, and TOD pro-
grammable register.

 Time-of-Day Clock

The time-of-day (TOD) clock provides a high-
resolution measure of real time suitable for the
indication of date and time of day. The cycle of
the clock is approximately 143 years. A single
TOD clock is shared by all CPUs in the configura-
tion.

 Format
The TOD clock is a 104-bit register. It is a binary
counter with the format shown in the following
illustration.

 1 microsecond───┐
 �
┌────────────────────┬─┬────┬─────────────────┐
│ │ │ │ │
│ │ │ │ │
└────────────────────┴─┴────┴─────────────────┘
� 51 64 1�3

The TOD clock nominally is incremented by
adding a one in bit position 51 every microsecond.
In models having a higher or lower resolution, a
different bit position is incremented at such a fre-
quency that the rate of advancing the clock is the
same as if a one were added in bit position 51
every microsecond. The resolution of the TOD
clock is such that the incrementing rate is compa-
rable to the instruction-execution rate of the
model.

When incrementing of the clock causes a carry to
be propagated out of bit position 0, the carry is
ignored, and counting continues from zero. The
program is not alerted, and no interruption condi-
tion is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Incre-
menting of the clock does not depend on whether
the wait-state bit of the PSW is one or whether the
CPU is in the operating, load, stopped, or check-

stop state. Its operation is not affected by CPU,
initial-CPU, or clear resets or by initial program
loading. Operation of the clock is also not
affected by the setting of the rate control or by an
initial-machine-loading operation. Depending on
the model and the configuration, the TOD clock
may or may not be powered independent of the
CPU.

 States
The following states are distinguished for the TOD
clock: set, not set, stopped, error, and not opera-
tional. The state determines the condition code
set by execution of STORE CLOCK and STORE
CLOCK EXTENDED. The clock is incremented,
and is said to be running, when it is in either the
set state or the not-set state.

Not-Set State: When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state.

When the clock is in the not-set state, execution of
STORE CLOCK or STORE CLOCK EXTENDED
causes condition code 1 to be set and the current
value of the running clock to be stored.

Stopped State: The clock enters the stopped
state when SET CLOCK is executed and the exe-
cution results in the clock being set. This occurs
when SET CLOCK is executed without encount-
ering any exceptions and either any manual
TOD-clock control in the configuration is set to the
enable-set position or the
TOD-clock-control-override control, bit 42 of
control register 14, is one. The clock can be
placed in the stopped state from the set, not-set,
and error states. The clock is not incremented
while in the stopped state.

When the clock is in the stopped state, execution
of STORE CLOCK or STORE CLOCK
EXTENDED causes condition code 3 to be set
and the value of the stopped clock to be stored.

Set State: The clock enters the set state only
from the stopped state. The change of state is
under control of the TOD-clock-sync-control bit, bit
34 of control register 0, of the CPU which most
recently caused the clock to enter the stopped
state. If the bit is zero, the clock enters the set
state at the completion of execution of SET
CLOCK. If the bit is one, the clock remains in the

4-36 z/Architecture Principles of Operation

stopped state until the bit is set to zero on that
CPU or until another CPU executes a SET
CLOCK instruction affecting the clock. If an
external time reference (ETR) is installed, a signal
from the ETR may be used to set the set state
from the stopped state.

Incrementing of the clock begins with the first
stepping pulse after the clock enters the set state.

When the clock is in the set state, execution of
STORE CLOCK or STORE CLOCK EXTENDED
causes condition code 0 to be set and the current
value of the running clock to be stored.

Error State: The clock enters the error state
when a malfunction is detected that is likely to
have affected the validity of the clock value. It
depends on the model whether the clock can be
placed in this state. A timing-facility-damage
machine-check-interruption condition is generated
on each CPU in the configuration whenever the
clock enters the error state.

When STORE CLOCK or STORE CLOCK
EXTENDED is executed and the clock is in the
error state, condition code 2 is set, and the value
stored is zero.

Not-Operational State: The clock is in the not-
operational state when its power is off or when it
is disabled for maintenance. It depends on the
model whether the clock can be placed in this
state. Whenever the clock enters the not-
operational state, a timing-facility-damage
machine-check-interruption condition is generated
on each CPU in the configuration.

When the clock is in the not-operational state,
execution of STORE CLOCK or STORE CLOCK
EXTENDED causes condition code 3 to be set,
and zero is stored.

Changes in Clock State
When the TOD clock changes value because of
the execution of SET CLOCK or changes state,
interruption conditions pending for the clock
comparator and CPU timer may or may not be
recognized for up to 1.048576 seconds (2��
microseconds) after the change.

The results of channel-
subsystem-monitoring-facility operations may be

unpredictable as a result of changes to the TOD
clock.

Setting and Inspecting the Clock
The clock can be set to a specified value by exe-
cution of SET CLOCK if the manual TOD-clock
control of any CPU in the configuration is in the
enable-set position or the
TOD-clock-control-override control, bit 42 of
control register 14, is one. SET CLOCK sets bits
of the clock with the contents of corresponding bit
positions of a doubleword operand in storage.

Setting the clock replaces the values in all bit
positions from bit position 0 through the rightmost
position that is incremented when the clock is
running. However, on some models, the rightmost
bits starting at or to the right of bit 52 of the speci-
fied value are ignored, and zeros are placed in the
corresponding positions of the clock. Zeros are
also placed in positions to the right of bit position
63 of the clock.

The TOD clock can be inspected by executing
STORE CLOCK, which causes bits 0-63 of the
clock to be stored in an eight-byte operand in
storage, or by executing STORE CLOCK
EXTENDED, which causes bits 0-103 of the clock
to be stored in bytes 1-13 of a 16-byte operand in
storage. STORE CLOCK EXTENDED stores
zeros in the leftmost byte, byte 0, of its storage
operand, and it obtains the TOD programmable
field from bit positions 16-31 of the TOD program-
mable register and stores it in byte positions 14
and 15 of the storage operand. The operand
stored by STORE CLOCK EXTENDED has the
following format:

┌─────┬─────────────────────────────┬──────────┐
│ │ │Programm- │
│Zeros│ TOD Clock │able Field│
└─────┴─────────────────────────────┴──────────┘
� 8 112 127

At some time in the future, STORE CLOCK
EXTENDED on new models will store a leftmost
extension of the TOD clock in byte position 0 of its
storage operand; see programming note 14 on
page 4-40.

Two executions of STORE CLOCK or STORE
CLOCK EXTENDED, possibly on different CPUs
in the same configuration, always store different
values of the clock if the clock is running. If the
clock is stopped, zeros are stored in the clock
value, bits 8-111 of the storage operand, in posi-

 Chapter 4. Control 4-37

tions to the right of the rightmost bit position that
is incremented when the clock is running. The
programmable field continues to be stored even
when the clock is stopped.

The values stored for a running clock by STORE
CLOCK or STORE CLOCK EXTENDED always
correctly imply the sequence of execution of these
instructions by one or more CPUs for all cases
where the sequence can be discovered by the
program. To ensure that unique values are
obtained when the value of a running clock is
stored, nonzero values may be stored in positions
to the right of the rightmost incremented bit posi-
tion. When the value of a running clock is stored
by STORE CLOCK EXTENDED, the value in bit
positions 64-103 of the clock (bit positions 72-111
of the storage operand) is always nonzero; this
ensures that values stored by STORE CLOCK
EXTENDED are always unique when compared
with values stored by STORE CLOCK and
extended on the right with zeros.

For the purpose of establishing uniqueness and
sequence of occurrence of the results of STORE
CLOCK and STORE CLOCK EXTENDED, the
64-bit value provided by STORE CLOCK may be
considered to be extended to 104 bits by
appending 40 zeros on the right, with the STORE
CLOCK value and STORE CLOCK EXTENDED
bits 8-111 then both being treated as 104-bit
unsigned binary integers.

In a configuration where more than one CPU
accesses the clock, SET CLOCK is interlocked
such that the entire contents appear to be updated
concurrently; that is, if SET CLOCK instructions
are executed simultaneously by two CPUs, the
final result is either one or the other value. If SET
CLOCK is executed by one CPU and STORE
CLOCK or STORE CLOCK EXTENDED by the
other, the result obtained by STORE CLOCK or
STORE CLOCK EXTENDED is either the entire
old value or the entire new value. When SET
CLOCK is executed by one CPU, a STORE
CLOCK or STORE CLOCK EXTENDED instruc-
tion executed by another CPU may find the clock
in the stopped state even when the
TOD-clock-sync-control bit, bit 34 of control reg-
ister 0, of each CPU is zero. Since the clock
enters the set state before incrementing, the first
STORE CLOCK or STORE CLOCK EXTENDED
instruction executed after the clock enters the set

state may still find the original value introduced by
SET CLOCK.

TOD Programmable Register
Each CPU has a TOD programmable register.
Bits 16-31 of the register contain the program-
mable field that is appended on the right to the
TOD-clock value by STORE CLOCK EXTENDED.
The register has the following format:

┌────────────────┬────────────────┐
│ │ Programmable │
│����������������│ Field │
└────────────────┴────────────────┘
� 16 31

The register is loaded by SET CLOCK PRO-
GRAMMABLE FIELD. The contents of the reg-
ister are reset to a value of all zeros by initial CPU
reset.

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; for some applica-
tions, reference to the leftmost 32 bits of the
clock may provide sufficient resolution.

2. Communication between systems is facilitated
by establishing a standard time origin that is
the calendar date and time to which a clock
value of zero corresponds. January 1, 1900,
0 a.m. Coordinated Universal Time (UTC) is
recommended as this origin, and it is said to
begin the standard epoch for the clock. This
is also the epoch used when the TOD clock is
synchronized to the external time reference

| (ETR), and, for this reason, the epoch is
| sometimes referred to as ETR time. The

former term, Greenwich Mean Time (GMT), is
now obsolete and has been replaced with the
more precise UTC.

| 3. Historically, one of the most important uses of
| standard time has been for navigation. Prior
| to 1972, standard time, then called GMT, was
| defined to have a variable-length second and
| was synchronized to within 100 milliseconds
| of the rotational position of the earth. Syn-
| chronization was accomplished by occasional
| changes in the length of the second, typically
| in parts per billion, and also by occasional
| insertion and deletion of small increments of
| time, typically 50 or 100 milliseconds. Begin-
| ning in 1972, a new standard time scale,
| called UTC, was defined to have a fixed-
| length second and be kept synchronized to

4-38 z/Architecture Principles of Operation

| within 900 milliseconds of the rotational posi-
| tion of the earth by means of occasional
| adjustments of exactly one second called a
| leap second. The change from GMT to UTC
| occurred between the last second of the day
| on December 31, 1971 and the first second of
| the day on January 1, 1972 and included
| insertion of 107.758 milliseconds in the
| standard time scale to make UTC exactly 10
| seconds behind International Atomic Time
| (TAI). For reasons of simplicity in this docu-
| ment, the term UTC is sometimes extrapo-
| lated backward before 1972 by assuming no
| time adjustments in that time scale before
| 1972. For the same reasons, conversion
| between ETR time and UTC does not take
| into consideration the time adjustments prior
| to 1972, and, thus, ETR time differs from TAI
| by a fixed amount of 10 seconds. Because of
| the occurrence of 22 leap seconds, UTC now
| is behind TAI by 32 seconds.

4. A program using the clock value as a time-
of-day and calendar indication must be con-
sistent with the programming support under
which the program is to be executed. If the
programming support uses the standard
epoch, bit 0 of the clock remains one through
the years 1972-2041. (Bit 0 turned on at
11:56:53.685248 (UTC) May 11, 1971.) Ordi-
narily, testing bit 0 for a one is sufficient to
determine if the clock value is in the standard
epoch.

5. In converting to or from the current date or
time, the programming support must take into
account that “leap seconds” have been
inserted or deleted because of time-correction
standards. When the TOD clock has been set
correctly to a time within the standard epoch,
the sum of the accumulated leap seconds
must be subtracted from the clock time to
determine UTC time.

6. Because of the limited accuracy of manually
setting the clock value, the rightmost bit posi-
tions of the clock, expressing fractions of a
second, are normally not valid as indications
of the time of day. However, they permit
elapsed-time measurements of high resol-
ution.

7. The following chart shows the time interval
between instants at which various bit positions
of the TOD clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

┌──────┬──────────────────────────┐
│ TOD- │ Stepping Interval │
│Clock ├────┬─────┬────┬──────────┤
│ Bit │Days│Hours│Min.│ Seconds │
├──────┼────┴─────┴────┴──────────┤
│ 51 │ �.��� ��1│
│ 47 │ �.��� �16│
│ 43 │ �.��� 256│
│ │ │
│ 39 │ �.��4 �96│
│ 35 │ �.�65 536│
│ 31 │ 1.�48 576│
│ │ │
│ 27 │ 16.777 216│
│ 23 │ 4 28.435 456│
│ 19 │ 1 11 34.967 296│
│ │ │
│ 15 │ 19 5 19.476 736│
│ 11 │ 12 17 25 11.627 776│
│ 7 │ 2�3 14 43 6.�44 416│
│ 3 │3257 19 29 36.71� 656│
└──────┴──────────────────────────┘

8. The following chart shows the TOD clock
setting for 00:00:00 (0 am), UTC time, for
several dates: January 1, 1900, January 1,
1972, and for that instant in time just after
each of the 22 leap seconds that have
occurred through November, 2000. Each of
these leap seconds was inserted in the UTC
time scale beginning at 23:59:60 UTC of the
day previous to the one listed and ending at
00:00:00 UTC of the day listed.

 Chapter 4. Control 4-39

┌──────┬───┬───┬────┬─────────────────────┐
│ │ │ │Leap│ │
│ Year │Mth│Day│Sec.│ Clock Setting (Hex) │
├──────┼───┼───┼────┼─────────────────────┤
│ 19�� │ 1 │ 1 │ │ ���� ���� ���� ���� │
│ 1972 │ 1 │ 1 │ │ 8126 D6�E 46�� ���� │
│ 1972 │ 7 │ 1 │ 1 │ 82�B A981 1E24 ���� │
│ 1973 │ 1 │ 1 │ 2 │ 82F3 ��AE E248 ���� │
│ 1974 │ 1 │ 1 │ 3 │ 84BD E971 146C ���� │
│ 1975 │ 1 │ 1 │ 4 │ 8688 D233 469� ���� │
│ 1976 │ 1 │ 1 │ 5 │ 8853 BAF5 78B4 ���� │
│ 1977 │ 1 │ 1 │ 6 │ 8A1F E595 2�D8 ���� │
│ 1978 │ 1 │ 1 │ 7 │ 8BEA CE57 52FC ���� │
│ 1979 │ 1 │ 1 │ 8 │ 8DB5 B719 852� ���� │
│ 198� │ 1 │ 1 │ 9 │ 8F8� 9FDB B744 ���� │
│ 1981 │ 7 │ 1 │ 1� │ 923� 5C�F CD68 ���� │
│ 1982 │ 7 │ 1 │ 11 │ 93FB 44D1 FF8C ���� │
│ 1983 │ 7 │ 1 │ 12 │ 95C6 2D94 31B� ���� │
│ 1985 │ 7 │ 1 │ 13 │ 995D 4�F5 17D4 ���� │
│ 1988 │ 1 │ 1 │ 14 │ 9DDA 69A5 57F8 ���� │
│ 199� │ 1 │ 1 │ 15 │ A171 7D�6 3E1C ���� │
│ 1991 │ 1 │ 1 │ 16 │ A33C 65C8 7�4� ���� │
│ 1992 │ 7 │ 1 │ 17 │ A5EC 21FC 8664 ���� │
│ 1993 │ 7 │ 1 │ 18 │ A7B7 �ABE B888 ���� │
│ 1994 │ 7 │ 1 │ 19 │ A981 F38� EAAC ���� │
│ 1996 │ 1 │ 1 │ 2� │ AC34 336F ECD� ���� │
│ 1997 │ 7 │ 1 │ 21 │ AEE3 EFA4 �2F4 ���� │
│ 1999 │ 1 │ 1 │ 22 │ B196 2F93 �518 ���� │
└──────┴───┴───┴────┴─────────────────────┘

9. The stepping value of TOD-clock bit position
63, if implemented, is 2-�� microseconds, or
approximately 244 picoseconds. This value is
called a clock unit.

The following chart shows various time inter-
vals in clock units expressed in hexadecimal
notation.

┌─────────────┬──────────────────┐
│ Interval │Clock Units (Hex) │
├─────────────┼──────────────────┤
│1 microsecond│ 1���│
│1 millisecond│ 3E 8���│
│1 second │ F424 ����│
│1 minute │ 39 387� ����│
│1 hour │ D69 3A4� ����│
│1 day │ 1 41DD 76�� ����│
│365 days │1CA E8C1 3E�� ����│
│366 days │1CC 2A9E B4�� ����│
│1,461 days� │72C E4E2 6E�� ����│
├─────────────┴──────────────────┤
│� Number of days in four years, │
│ including a leap year. Note │
│ that the year 19�� was not a │
│ leap year. Thus, the four- │
│ year span starting in 19�� │
│ has only 1,46� days. │
└────────────────────────────────┘

10. The charts in notes 6-8 are useful when
examining the value stored by STORE
CLOCK. Similar charts for use when exam-

ining the value stored by STORE CLOCK
EXTENDED are in programming notes at the
end of the definition of that instruction.

11. In a multiprocessing configuration, after the
TOD clock is set and begins running, the
program should delay activity for 2�� micro-
seconds (1.048576 seconds) to ensure that

| the CPU-timer and clock-comparator inter-
ruption conditions are recognized by the CPU.

12. Due to the sequencing rules for the results of
STORE CLOCK and STORE CLOCK
EXTENDED, the execution of STORE CLOCK
may be considerably slower than that of
STORE CLOCK EXTENDED on models that
increment a bit position of the TOD clock to
the right of position 63.

13. Uniqueness of TOD-clock values can be
extended to apply to processors in separate
configurations by including a configuration
identification in the TOD programmable field.

14. At some time in the future, new models will
use a carry from bit position 0 of the TOD
clock to increment an additional eight-bit
binary counter. STORE CLOCK EXTENDED
will store the contents of this counter in byte
position 0 of its storage operand. A variation
of SET CLOCK will set the counter, as well as
the TOD clock. Variations of SET CLOCK
COMPARATOR and STORE CLOCK
COMPARATOR will manipulate a comparable
byte at the left of the clock comparator.
These actions will allow the TOD clock to con-
tinue to measure time within the standard
epoch after the current 143-year limit caused
by a carry from bit position 0 has been
exceeded, and they will allow continued use of
the clock comparator. It may be desired to
have programs that process 16-byte STORE
CLOCK EXTENDED operands take these
future developments into account.

 TOD-Clock Synchronization

The following functions are provided if an external
time reference (ETR) is installed:

� A clock in the stopped state, with the
TOD-clock-sync-control bit (bit 34 of control
register 0) set to one, is placed in the set
state and starts incrementing when an ETR
signal occurs.

4-40 z/Architecture Principles of Operation

� The stepping rates for the TOD clock and the
ETR are synchronized.

� Bits 32 through the rightmost incremented bit
of a clock in the set state are compared with
the same bits of the ETR. An unequal condi-
tion is signaled by an external-damage
machine-check-interruption condition. The
machine-check-interruption condition may not
be recognized for up to 1.048576 seconds
(2�� microseconds) after the unequal condi-
tion occurs.

Programming Notes:

1. TOD-clock synchronization provides for syn-
chronizing and checking only bits 32 through
the rightmost incremented bit of the TOD
clock. Bits 0-31 of the TOD clock may be dif-
ferent from those of the ETR.

2. If an ETR is installed, SET CLOCK must place
all zeros in bit positions 32 through the right-
most incremented bit position of the TOD
clock; otherwise, an external-damage
machine-check-interruption condition will be
recognized.

 Clock Comparator

The clock comparator provides a means of
causing an interruption when the TOD-clock value
exceeds a value specified by the program.

In a configuration with more than one CPU, each
CPU has a separate clock comparator.

The clock comparator has the same format as bits
0-63 of the TOD clock. The clock comparator
nominally consists of bits 0-47, which are com-
pared with the corresponding bits of the TOD
clock. In some models, higher resolution is
obtained by providing more than 48 bits. The bits
in positions provided in the clock comparator are
compared with the corresponding bits of the clock.
When the resolution of the clock is less than that
of the clock comparator, the contents of the clock
comparator are compared with the clock value as
this value would be stored by executing STORE
CLOCK.

The clock comparator causes an external inter-
ruption with the interruption code 1004 hex. A
request for a clock-comparator interruption exists
whenever either of the following conditions exists:

1. The TOD clock is running and the value of the
clock comparator is less than the value in the
compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned
binary arithmetic.

2. The TOD clock is in the error state or the not-
operational state.

A request for a clock-comparator interruption does
not remain pending when the value of the clock
comparator is made equal to or greater than that
of the TOD clock or when the value of the TOD
clock is made less than the clock-comparator
value. The latter may occur as a result of the
TOD clock either being set or wrapping to zero.

The clock comparator can be inspected by exe-
cuting the instruction STORE CLOCK
COMPARATOR and can be set to a specified
value by executing the SET CLOCK
COMPARATOR instruction.

The contents of the clock comparator are initial-
ized to zero by initial CPU reset.

Programming Notes:

1. An interruption request for the clock
comparator persists as long as the clock-
comparator value is less than that of the TOD
clock or as long as the TOD clock is in the
error state or the not-operational state. There-
fore, one of the following actions must be
taken after an external interruption for the
clock comparator has occurred and before the
CPU is again enabled for external inter-
ruptions: the value of the clock comparator
must be replaced, the TOD clock must be set,
the TOD clock must wrap to zero, or the
clock-comparator-subclass mask must be set
to zero. Otherwise, loops of external inter-
ruptions are formed.

2. The instruction STORE CLOCK or STORE
CLOCK EXTENDED may store a value which
is greater than that in the clock comparator,
even though the CPU is enabled for the clock-
comparator interruption. This is because the
TOD clock may be incremented one or more
times between when instruction execution is
begun and when the clock value is accessed.
In this situation, the interruption occurs when
the execution of STORE CLOCK or STORE
CLOCK EXTENDED is completed.

 Chapter 4. Control 4-41

 CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a specified amount of time has elapsed.

In a configuration with more than one CPU, each
CPU has a separate CPU timer.

The CPU timer is a binary counter with a format
which is the same as that of bits 0-63 of the TOD
clock, except that bit 0 is considered a sign. The
CPU timer nominally is decremented by sub-
tracting a one in bit position 51 every micro-
second. In models having a higher or lower resol-
ution, a different bit position is decremented at
such a frequency that the rate of decrementing the
CPU timer is the same as if a one were sub-
tracted in bit position 51 every microsecond. The
resolution of the CPU timer is such that the step-
ping rate is comparable to the instruction-
execution rate of the model.

The CPU timer requests an external interruption
with the interruption code 1005 hex whenever the
CPU-timer value is negative (bit 0 of the CPU
timer is one). The request does not remain
pending when the CPU-timer value is changed to
a nonnegative value.

When both the CPU timer and the TOD clock are
running, the stepping rates are synchronized such
that both are stepped at the same rate. Normally,
decrementing the CPU timer is not affected by
concurrent I/O activity. However, in some models
the CPU timer may stop during extreme I/O
activity and other similar interference situations.
In these cases, the time recorded by the CPU
timer provides a more accurate measure of the
CPU time used by the program than would have
been recorded had the CPU timer continued to
step.

The CPU timer is decremented when the CPU is
in the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in
which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer may or may not be decremented when
the TOD clock is in the error, stopped, or not-
operational state.

Depending on the model, the CPU timer may or
may not be decremented when the CPU is in the
check-stop state.

The CPU timer can be inspected by executing the
instruction STORE CPU TIMER and can be set to
a specified value by executing the SET CPU
TIMER instruction.

The CPU timer is set to zero by initial CPU reset.

Programming Notes:

1. The CPU timer in association with a program
may be used both to measure CPU-execution
time and to signal the end of a time interval
on the CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as I/O interference, the
availability of pages, and instruction retry.
Therefore, repeated measurements of the
same sequence on the same installation may
differ.

3. The fact that a CPU-timer interruption does
not remain pending when the CPU timer is set
to a positive value eliminates the problem of
an undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled
for CPU-timer interruptions and the CPU timer
value goes from positive to negative.

4. The fact that CPU-timer interruptions are
requested whenever the CPU timer is nega-
tive (rather than just when the CPU timer goes
from positive to negative) eliminates the
requirement for testing a value to ensure that
it is positive before setting the CPU timer to
that value.

As an example, assume that a program being
timed by the CPU timer is interrupted for a
cause other than the CPU timer, external
interruptions are disallowed by the new PSW,
and the CPU-timer value is then saved by
STORE CPU TIMER. This value could be
negative if the CPU timer went from positive
to negative since the interruption. Subse-
quently, when the program being timed is to
continue, the CPU timer may be set to the
saved value by SET CPU TIMER. A
CPU-timer interruption occurs immediately
after external interruptions are again enabled
if the saved value was negative.

4-42 z/Architecture Principles of Operation

The persistence of the CPU-timer-interruption
request means, however, that after an
external interruption for the CPU timer has
occurred, the value of the CPU timer must be
replaced, the value in the CPU timer must
wrap to a positive value, or the
CPU-timer-subclass mask must be set to zero
before the CPU is again enabled for external
interruptions. Otherwise, loops of external
interruptions are formed.

5. The instruction STORE CPU TIMER may
store a negative value even though the CPU
is enabled for the interruption. This is
because the CPU-timer value may be decre-
mented one or more times between when
instruction execution is begun and when the
CPU timer is accessed. In this situation, the
interruption occurs when the execution of
STORE CPU TIMER is completed.

Externally Initiated Functions

 Resets

Five reset functions are provided:

 � CPU reset
� Initial CPU reset

 � Subsystem reset
 � Clear reset
 � Power-on reset

CPU reset provides a means of clearing
equipment-check indications and any resultant
unpredictability in the CPU state with the least
amount of information destroyed. In particular, it
is used to clear check conditions when the CPU
state is to be preserved for analysis or resumption
of the operation. CPU reset sets the architectural
mode to the ESA/390 mode if it is caused by acti-

| vation of the load-normal key. When CPU reset
| sets the ESA/390 mode, it saves the current PSW
| so that PSW can be restored by a SIGNAL
| PROCESSOR set-architecture order that changes
| the architectural mode back to z/Architecture.

Initial CPU reset provides the functions of CPU
reset together with initialization of the current

| PSW, saved PSW, CPU timer, clock comparator,
prefix, and control, floating-point-control, and TOD

programmable registers. Initial CPU reset sets the
architectural mode to the ESA/390 mode if it is
caused by activation of the load-normal key.

Subsystem reset provides a means for clearing
floating interruption conditions as well as for
invoking I/O-system reset.

Clear reset causes initial CPU reset and sub-
system reset to be performed and, additionally,
clears or initializes all storage locations and regis-
ters in all CPUs in the configuration, with the
exception of the TOD clock. Such clearing is
useful in debugging programs and in ensuring
user privacy. Clear reset also releases all locks
used by the PERFORM LOCKED OPERATION
instruction. Clear reset sets the architectural
mode to the ESA/390 mode. Clearing does not
affect external storage, such as direct-access
storage devices used by the control program to
hold the contents of unaddressable pages.

CPU power-on reset causes initial CPU reset to
be performed and clears the contents of general
registers, access registers, and floating-point reg-
isters to zeros with valid checking-block code.
Locks used by PERFORM LOCKED OPERATION
and associated with the CPU are released unless
they are held by a CPU already powered on. The
power-on-reset sequences for the TOD clock,
main storage, and the channel subsystem may be
included as part of the CPU power-on sequence,
or the power-on sequence for these units may be
initiated separately. If CPU power-on reset estab-
lishes the configuration, it sets the architectural
mode to the ESA/390 mode; otherwise, it sets the
architectural mode to that of the CPUs already in
the configuration.

CPU reset, initial CPU reset, subsystem reset, and
clear reset may be initiated manually by using the
operator facilities (see Chapter 12, “Operator
Facilities”). Initial CPU reset is part of the initial-
program-loading function. Figure 4-10 on
page 4-44 summarizes how these four resets are
manually initiated. Power-on reset is performed
as part of turning power on. The reset actions are
tabulated in Figure 4-11 on page 4-45. For infor-
mation concerning which resets can be performed
by the SIGNAL PROCESSOR instruction, see
“Signal-Processor Orders” on page 4-52.

 Chapter 4. Control 4-43

┌───────────────────┬───┐
│ │ Function Performed on� │
│ ├──────────────────┬────────────┬───────────────┤
│ │ CPU on Which Key │ Other CPUs │ Remainder of │
│ Key Activated │ Was Activated │ in Config │ Configuration │
├───────────────────┼──────────────────┼────────────┼───────────────┤
│System-reset-normal│CPU reset │CPU reset │Subsystem reset│
│key │ │ │ │
│ │ │ │ │
│System-reset-clear │Clear reset� │Clear reset�│Clear reset� │
│key │ │ │ │
│ │ │ │ │
│Load-normal key │Initial CPU reset,│CPU reset │Subsystem reset│
│ │followed by IPL │ │ │
│ │ │ │ │
│Load-clear key │Clear reset�, │Clear reset�│Clear reset� │
│ │followed by IPL │ │ │
├───────────────────┴──────────────────┴────────────┴───────────────┤
│Explanation: │
│ │
│ � Activation of a system-reset or load key may change the config- │
│ uration, including the connection with I/O, storage units, and │
│ other CPUs. │
│ │
│ � Only the CPU elements of this reset apply. │
│ │
│ � Only the non-CPU elements of this reset apply. │
└───┘

Figure 4-10. Manual Initiation of Resets

4-44 z/Architecture Principles of Operation

┌─────────────────────────────┬─────────────────────────────────┐
│ │ Reset Function │
│ ├──────┬─────┬───────┬──────┬─────┤
│ │ Sub- │ │Initial│ │Power│
│ │system│ CPU │ CPU │Clear │ -On │
│ Area Affected │Reset │Reset│ Reset │Reset │Reset│
├─────────────────────────────┼──────┼─────┼───────┼──────┼─────┤
│CPU │ U │ S │ S� │ S� │ S │
│PSW │ U │ U/V#│ C�� │ C�� │ C��│

| │Saved PSW for use by SIGNAL │ U │ U/sv│ C │ C │ C │
| │ PROCESSOR set-architecture │ │ │ │ │ │
| │ order │ │ │ │ │ │

│Prefix │ U │ U/V │ C │ C │ C │
│CPU timer │ U │ U/V │ C │ C │ C │
│Clock comparator │ U │ U/V │ C │ C │ C │
│TOD programmable register │ U │ U/V │ C │ C │ C │
│Control registers │ U │ U/V │ I │ I │ I │
│Floating-point-control │ U │ U/V │ C │ C │ C │
│ register │ │ │ │ │ │
│Access registers │ U │ U/V │ U/V │ C │ C │
│General registers │ U │ U/V │ U/V │ C │ C │
│Floating-point registers │ U │ U/V │ U/V │ C │ C │
│Storage keys │ U │ U │ U │ C │ C� │
│Volatile main storage │ U │ U │ U │ C │ C� │
│Nonvolatile main storage │ U │ U │ U │ C │ U │
│Expanded storage │ U� │ U� │ U� │ U� │ C� │
│TOD clock │ U� │ U� │ U� │ U� │ T� │
│Floating interruption │ C │ U │ U │ C │ C� │
│ conditions │ │ │ │ │ │
│I/O system │ R │ U │ U │ R │ R� │
│PERFORM LOCKED OPERATION │ U │ U │ U │ RC │ RP │
│ locks │ │ │ │ │ │
├─────────────────────────────┴──────┴─────┴───────┴──────┴─────┤
│Explanation: │
│ │

| │ # If the architectural mode is changed from z/Architecture │
| │ to ESA/39� (the reset is due to activation of the load- │
| │ normal key on another CPU), the 16-byte PSW first is │
| │ saved, for use by the SIGNAL PROCESSOR set-architecture │
| │ order, and then does not remain unchanged. Instead, it │
| │ is changed to an eight-byte PSW, and the bits of the │

│ eight-byte PSW are set as follows. Bits �-11 and 13-32 │
│ are set equal to the same bits of the 16-byte PSW, bit 12│
│ is set to one, and bits 33-63 are set equal to bits │
│ 97-127 of the 16-byte PSW. The PSW is invalid in the │
│ ESA/39� mode if PSW bit 31 is one. │
│ │
│ � Clearing the contents of the PSW to zero causes the PSW │
│ to be invalid if the architectural mode is ESA/39�. │
│ │
│ � When the IPL sequence follows the reset function on that │
│ CPU, the CPU does not necessarily enter the stopped │
│ state, and the PSW is not necessarily cleared to zeros. │
│ │
│ � When these units are separately powered, the action is │
│ performed only when the power for the unit is turned on. │
└───┘

Figure 4-11 (Part 1 of 3). Summary of Reset Actions

 Chapter 4. Control 4-45

┌───┐
│Explanation (Continued): │
│ │
│ � Access to change expanded storage at the time a reset │
│ function is performed may cause the contents of the 4K- │
│ byte block in expanded storage to be unpredictable. │
│ Access to examine expanded storage does not affect the │
│ contents of the expanded storage. │
│ │
│ � Access to the TOD clock by means of STORE CLOCK at the │
│ time a reset function is performed does not cause the │
│ value of the TOD clock to be affected. │
│ │
│ � When the channel subsystem is separately powered or con- │
│ sists of multiple elements which are separately powered, │
│ the reset action is applied only to those subchannels, │
│ channel paths, and I/O control units and devices on those│
│ paths associated with the element which is being powered │
│ on. │
│ │
│ C The condition or contents are cleared. If the area │
│ affected is a field, the contents are set to zero with │
│ valid checking-block code. │
│ │
│ I The state or contents are initialized. If the area af- │
│ fected is a field, the contents are set to the initial │
│ value with valid checking-block code. │
│ │
│ R I/O-system reset is performed in the channel subsystem. │
│ As part of this reset, system reset is signaled to all │
│ I/O control units and devices attached to the channel │
│ subsystem. │
│ │
│ RC All locks in the configuration are released. │
│ │
│ RP All locks in the configuration are released except for │
│ ones held by CPUs already powered on. │
│ │
│ S The CPU is reset; current operations, if any, are term- │
│ inated; the ALB and TLB are cleared of entries; inter- │
│ ruption conditions in the CPU are cleared; and the CPU │
│ is placed in the stopped state. The effect of perform- │
│ ing the start function is unpredictable when the stopped │
│ state has been entered by means of a reset. If the reset│
│ is initiated by the system-reset-clear, load-normal, or │
│ load-clear key or by a CPU power-on reset that │
│ establishes the configuration, the architectural mode is │
│ set to the ESA/39� mode; otherwise, the architectural │
│ mode is unchanged, except that power-on reset sets the │
│ mode to that of the CPUs already in the configuration. │
└───┘

Figure 4-11 (Part 2 of 3). Summary of Reset Actions

4-46 z/Architecture Principles of Operation

┌───┐
│Explanation (Continued): │
│ │
│ T The TOD clock is initialized to zero and validated; it │
│ enters the not-set state. │
│ │
│ U The state, condition, or contents of the field remain │
│ unchanged. However, the result is unpredictable if an │
│ operation is in progress that changes the state, con- │
│ dition, or contents of the field at the time of reset. │
│ │

| │ U/sv The saved PSW remains unchanged if the reset is due to │
| │ activation of the system-reset-normal key or the SIGNAL │
| │ PROCESSOR CPU-reset order, or it is set with the value of│
| │ the current 16-byte PSW if the reset is due to activation│
| │ of the load-normal key. │

│ │
│ U/V The contents remain unchanged, provided the field is not │
│ being changed at the time the reset function is per- │
│ formed. However, on some models the checking-block code │
│ of the contents may be made valid. The result is un- │
│ predictable if an operation is in progress that changes │
│ the contents of the field at the time of reset. │
└───┘

Figure 4-11 (Part 3 of 3). Summary of Reset Actions

 CPU Reset
CPU reset causes the following actions:

1. The execution of the current instruction or
other processing sequence, such as an inter-
ruption, is terminated, and all program-
interruption and supervisor-call-interruption
conditions are cleared.

2. Any pending external-interruption conditions
which are local to the CPU are cleared.
Floating external-interruption conditions are
not cleared.

3. Any pending machine-check-interruption con-
ditions and error indications which are local to
the CPU and any check-stop states are
cleared. Floating machine-check-interruption
conditions are not cleared. Any machine-
check condition which is reported to all CPUs
in the configuration and which has been made
pending to a CPU is said to be local to the
CPU.

4. All copies of prefetched instructions or oper-
ands are cleared. Additionally, any results to
be stored because of the execution of
instructions in the current checkpoint interval
are cleared.

5. The ART-lookaside buffer and translation-
lookaside buffer are cleared of entries.

6. If the reset is caused by activation of the load-
normal key on any CPU in the configuration,

| the following actions occur:

| a. The architectural mode of the CPU (and of
| all other CPUs in the configuration
| because of the initial CPU reset or CPU
| resets performed by them) is changed
| from the z/Architecture mode to the
| ESA/390 mode.

| b. The current PSW is saved for subsequent
| use by a SIGNAL PROCESSOR set-
| architecture order that restores the
| z/Architecture mode.

| c. The current PSW is changed from 16
| bytes to eight bytes. The bits of the eight-

byte PSW are set as follows: bits 0-11
and 13-32 are set equal to the same bits
of the 16-byte PSW, bit 12 is set to one,
and bits 33-63 are set equal to bits 97-127
of the 16-byte PSW.

| A CPU reset caused by activation of the
| system-reset-normal key or by the SIGNAL
| PROCESSOR CPU-reset order, and any CPU
| reset in the ESA/390 mode, do not affect the
| saved z/Architecture PSW.

7. The CPU is placed in the stopped state after
actions 1-6 have been completed. When the
IPL sequence follows the reset function on
that CPU, the CPU enters the load state at

 Chapter 4. Control 4-47

the completion of the reset function and does
not necessarily enter the stopped state during
the execution of the reset operation.

Registers, storage contents, and the state of con-
ditions external to the CPU remain unchanged by
CPU reset. However, the subsequent contents of
the register, location, or state are unpredictable if
an operation is in progress that changes the con-
tents at the time of the reset. A lock held by the
CPU when executing PERFORM LOCKED OPER-
ATION is not released by CPU reset.

When the reset function in the CPU is initiated at
the time the CPU is executing an I/O instruction or
is performing an I/O interruption, the current oper-
ation between the CPU and the channel sub-
system may or may not be completed, and the
resultant state of the associated channel-
subsystem facility may be unpredictable.

Programming Notes:

1. Most operations which would change a state,
a condition, or the contents of a field cannot
occur when the CPU is in the stopped state.
However, some signal-processor functions
and some operator functions may change
these fields. To eliminate the possibility of
losing a field when CPU reset is issued, the
CPU should be stopped, and no operator
functions should be in progress.

2. If the architectural mode is changed to the
ESA/390 mode and bit 31 of the current PSW
is one, the PSW is invalid.

Initial CPU Reset
Initial CPU reset combines the CPU reset func-
tions with the following clearing and initializing
functions:

1. If the reset is caused by activation of the load-
normal key, the architectural mode of the CPU
(and of all other CPUs in the configuration) is
set to the ESA/390 mode.

| 2. The contents of the current PSW, saved PSW
| (for use by the set-architecture order of
| SIGNAL PROCESSOR), prefix, CPU timer,

clock comparator, and TOD programmable
register are set to zero. When the IPL
sequence follows the reset function on that
CPU, the contents of the PSW are not neces-
sarily set to zero.

3. The contents of the control registers are set to
their initial z/Architecture values. All 64 bits of
the control registers are set regardless of
whether the CPU is in the ESA/390 or the
z/Architecture architectural mode.

4. The contents of the floating-point-control reg-
ister are set to zero.

These clearing and initializing functions include
validation.

Setting the current PSW to zero when the CPU is
in the ESA/390 architectural mode at the end of
the operation causes the PSW to be invalid, since
PSW bit 12 must be one in that mode. Thus, in
this case if the CPU is placed in the operating
state after a reset without first introducing a new
PSW, a specification exception is recognized.

 Subsystem Reset
Subsystem reset operates only on those elements
in the configuration which are not CPUs. It per-
forms the following actions:

1. I/O-system reset is performed by the channel
subsystem (see “I/O-System Reset” on
page 17-13).

2. All floating interruption conditions in the con-
figuration are cleared.

As part of I/O-system reset, pending
I/O-interruption conditions are cleared, and system
reset is signaled to all control units and devices
attached to the channel subsystem (see
“I/O-System Reset” on page 17-13). The effect of
system reset on I/O control units and devices and
the resultant control-unit and device state are
described in the appropriate System Library publi-
cation for the control unit or device. A system
reset, in general, resets only those functions in a
shared control unit or device that are associated
with the particular channel path signaling the
reset.

 Clear Reset
Clear reset combines the initial-CPU-reset function
with an initializing function which causes the fol-
lowing actions:

1. The architectural mode of all CPUs in the con-
figuration is set to the ESA/390 mode.

2. The access, general, and floating-point regis-
ters of all CPUs in the configuration are set to
zero. All 64 bits of the general registers are

4-48 z/Architecture Principles of Operation

| set to zero regardless of whether the CPU
| was in the ESA/390 or z/Architecture architec-
| tural mode when the clear-reset function was
| initiated.

3. The contents of the main storage in the con-
figuration and the associated storage keys are
set to zero with valid checking-block code.

4. The locks used by any CPU in the configura-
tion when executing the PERFORM LOCKED
OPERATION instruction are released.

5. A subsystem reset is performed.

Validation is included in setting registers and in
clearing storage and storage keys.

Programming Notes:

1. The architectural mode is not changed by acti-
vation of the system-reset-normal key or by
execution of a SIGNAL PROCESSOR
CPU-reset or initial-CPU-reset order. All
CPUs in the configuration are always in the
same architectural mode.

2. For the CPU-reset operation not to affect the
contents of fields that are to be left
unchanged, the CPU must not be executing
instructions and must be disabled for all inter-
ruptions at the time of the reset. Except for
the operation of the CPU timer and for the
possibility of a machine-check interruption
occurring, all CPU activity can be stopped by
placing the CPU in the wait state and by disa-
bling it for I/O and external interruptions. To
avoid the possibility of causing a reset at the
time that the CPU timer is being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

3. CPU reset, initial CPU reset, subsystem reset,
and clear reset do not affect the value and
state of the TOD clock.

4. The conditions under which the CPU enters
the check-stop state are model-dependent and
include malfunctions that preclude the com-
pletion of the current operation. Hence, if
CPU reset or initial CPU reset is executed
while the CPU is in the check-stop state, the
contents of the PSW, registers, and storage
locations, including the storage keys and the
storage location accessed at the time of the
error, may have unpredictable values, and, in
some cases, the contents may still be in error

after the check-stop state is cleared by these
resets. In this situation, a clear reset is
required to clear the error.

 Power-On Reset
The power-on-reset function for a component of
the machine is performed as part of the power-on
sequence for that component.

The power-on sequences for the TOD clock, main
storage, expanded storage, and channel sub-
system may be included as part of the CPU
power-on sequence, or the power-on sequence for
these units may be initiated separately. The fol-
lowing sections describe the power-on resets for
the CPU, TOD clock, main storage, expanded
storage, and channel subsystem. See also
Chapter 17, “I/O Support Functions,” and the
appropriate System Library publication for the
channel subsystem, control units, and I/O devices.

CPU Power-On Reset: The power-on reset
causes initial CPU reset to be performed and may
or may not cause I/O-system reset to be per-
formed in the channel subsystem. The contents
of general registers, access registers, and floating-
point registers are cleared to zeros with valid
checking-block code. Locks used by PERFORM
LOCKED OPERATION and associated with the
CPU are released unless they are held by a CPU
already powered on. If the reset is associated
with establishing a configuration, the CPU is
placed in the ESA/390 mode; otherwise, the CPU
is placed in the architectural mode of the CPUs
already in the configuration.

TOD-Clock Power-On Reset: The power-on
reset causes the value of the TOD clock to be set
to zero with valid checking-block code and causes
the clock to enter the not-set state.

Main-Storage Power-On Reset: For volatile
main storage (one that does not preserve its con-
tents when power is off) and for storage keys,
power-on reset causes zeros with valid checking-
block code to be placed in these fields. The con-
tents of nonvolatile main storage, including the
checking-block code, remain unchanged.

Expanded-Storage Power-On Reset: The con-
tents of expanded storage are cleared to zeros
with valid checking-block code.

 Chapter 4. Control 4-49

Channel-Subsystem Power-On Reset: The
channel-subsystem power-on reset causes
I/O-system reset to be performed in the channel
subsystem. (See “I/O-System Reset” on
page 17-13.)

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a
designated device and for initiating execution of
that program.

Some models may provide additional controls and
indications relating to IPL; this additional informa-
tion is specified in the System Library publication
for the model.

IPL is initiated manually by setting the load-unit-
address controls to a four-digit number to desig-
nate an input device and by subsequently acti-
vating the load-clear or load-normal key for a par-
ticular CPU. In the description which follows, the
term “this CPU” refers to the CPU in the config-
uration for which the load-clear or load-normal key
was activated.

Activating the load-clear key causes a clear reset
to be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU
reset to be propagated to all other CPUs in the
configuration, and a subsystem reset to be per-
formed on the remainder of the configuration.

Activating the load-clear key or the load-normal
key sets the architectural mode to the ESA/390
mode. For ease of reference, the additional ele-
ments of the description of ESA/390 initial
program loading are given below.

In the loading part of the operation, after the
resets have been performed, this CPU then enters
the load state. This CPU does not necessarily
enter the stopped state during the execution of the
reset operations. The load indicator is on while
the CPU is in the load state.

Subsequently, a channel-program read operation
is initiated from the I/O device designated by the
load-unit-address controls. The effect of executing
the channel program is as if a format-0 CCW
beginning at absolute storage location 0 specified
a read command with the modifier bits zeros, a
data address of zero, a byte count of 24, the
chain-command and SLI flags ones, and all other
flags zeros.

The details of the channel-subsystem portion of
the IPL operation are defined in “Initial Program
Loading” on page 17-17.

When the IPL I/O operation is completed success-
fully, the subsystem-identification word for the IPL
device is stored in absolute storage locations
184-187, zeros are stored in absolute storage
locations 188-191, and a new PSW is loaded from
absolute storage locations 0-7. If the PSW
loading is successful and no machine malfunctions
are detected, this CPU leaves the load state, and
the load indicator is turned off. If the rate control
is set to the process position, the CPU enters the
operating state, and the CPU operation proceeds
under control of the new PSW. If the rate control
is set to the instruction-step position, the CPU
enters the stopped state, with the manual indicator
on, after the new PSW is loaded.

If the IPL I/O operation or the PSW loading is not
completed successfully, the CPU remains in the
load state, and the load indicator remains on. The
contents of absolute storage locations 0-7 are
unpredictable.

 Store Status

The store-status operation places an architectural-
mode identification and the contents of the CPU
registers, except for the TOD clock, in assigned
storage locations.

Figure 4-12 on page 4-51 lists the fields that are
stored, their length, and their location in main
storage.

4-50 z/Architecture Principles of Operation

┌──────────────────────────┬────────┬──────────┐
│ │ Length │ Absolute │
│ Field │in Bytes│ Address │
├──────────────────────────┼────────┼──────────┤
│ Architectural-mode id │ 1 │ 163 │
│ Fl-pt registers �-15 │ 128 │ 46�8 │
│ General registers �-15 │ 128 │ 4736 │
│ Current PSW │ 16 │ 4864 │
│ Prefix │ 4 │ 4888 │
│ Fl-pt control register │ 4 │ 4892 │
│ TOD programmable register│ 4 │ 49�� │
│ CPU timer │ 8 │ 49�4 │
│ Zeros │ 1 │ 4912 │
│ Bits �-55 of clock │ 7 │ 4913 │
│ comparator │ │ │
│ Access registers �-15 │ 64 │ 4928 │
│ Control registers �-15 │ 128 │ 4992 │
└──┘

Figure 4-12. Assigned Storage Locations for Store
Status

During the execution of the store-status operation,
zeros are stored in bit positions 0-6, and a one is
stored in bit position 7, of absolute location 163,
the store-status architectural-mode identification.

When the CPU is in the ESA/390 architectural
mode, the store-status operation stores all zeros
at absolute location 163.

When bits 0-55 of the clock comparator are stored
beginning at absolute location 4913, zeros are
stored at absolute location 4912.

The contents of the registers are not changed. If
an error is encountered during the operation, the
CPU enters the check-stop state.

The store-status operation can be initiated manu-
ally by use of the store-status key (see
Chapter 12, “Operator Facilities”). The store-
status operation can also be initiated at the
addressed CPU by executing SIGNAL
PROCESSOR, specifying the stop-and-
store-status order. Execution of SIGNAL
PROCESSOR specifying the store-status-
at-address order permits the same status informa-
tion, except for the store-status architectural-mode
identification, to be stored at a designated address
(see “Signal-Processor Orders” on page 4-52).

 Multiprocessing
The multiprocessing facility provides for the inter-
connection of CPUs, via a common main storage,
in order to enhance system availability and to
share data and resources. The multiprocessing
facility includes the following facilities:

� Shared main storage
 � CPU-to-CPU interconnection
 � TOD-clock synchronization

| Associated with these facilities is an external-
| interruption condition (malfunction alert), which is

described in Chapter 6, “Interruptions”; and
control-register positions for the

| TOD-clock-sync-control bit and for the mask for
| the external-interruption condition, which are listed

in “Control Registers” on page 4-7.

The channel subsystem, including all subchannels,
in a multiprocessing configuration can be
accessed by all CPUs in the configuration.
I/O-interruption conditions are floating and can be
accepted by any CPU in the configuration.

Shared Main Storage

The shared-main-storage facility permits more
than one CPU to have access to common main-
storage locations. All CPUs having access to a
common main-storage location have access to the
entire 4K-byte block containing that location and to
the associated storage key. The channel sub-
system and all CPUs in the configuration refer to a
shared main-storage location using the same
absolute address.

 CPU-Address Identification

Each CPU has a number assigned, called its CPU
address. A CPU address uniquely identifies one
CPU within a configuration. The CPU is desig-
nated by specifying this address in the
CPU-address field of SIGNAL PROCESSOR. The
CPU signaling a malfunction alert, emergency
signal, or external call is identified by storing this
address in the CPU-address field with the inter-
ruption. The CPU address is assigned during
system installation and is not changed as a result
of reconfiguration changes. The program can
determine the address of the CPU by using
STORE CPU ADDRESS.

 Chapter 4. Control 4-51

CPU Signaling and Response
The CPU-signaling-and-response facility consists
of SIGNAL PROCESSOR and a mechanism to
interpret and act on several order codes. The
facility provides for communications among CPUs,
including transmitting, receiving, and decoding a
set of assigned order codes; initiating the specified
operation; and responding to the signaling CPU.
A CPU can address SIGNAL PROCESSOR to
itself. SIGNAL PROCESSOR is described in
Chapter 10, “Control Instructions.”

 Signal-Processor Orders

The signal-processor orders are specified in bit
positions 56-63 of the second-operand address of
SIGNAL PROCESSOR and are encoded as
shown in Figure 4-13.

┌───────┬──────────────────────────┐
│ Code │ │
│ (Hex) │ Order │
├───────┼──────────────────────────┤
│ �� │ Unassigned │
│ �1 │ Sense │
│ �2 │ External call │
│ �3 │ Emergency signal │
│ �4 │ Start │
│ �5 │ Stop │
│ �6 │ Restart │
│ �7 │ Unassigned │
│ �8 │ Unassigned │
│ �9 │ Stop and store status │
│ �A │ Unassigned │
│ �B │ Initial CPU reset │
│ �C │ CPU reset │
│ �D │ Set prefix │
│ �E │ Store status at address │
│ �F-11 │ Unassigned │
│ 12 │ Set architecture │
│ 13-FF │ Unassigned │
└───────┴──────────────────────────┘

Figure 4-13. Encoding of Orders

The orders are defined as follows:

Sense: The addressed CPU presents its status
to the issuing CPU (see “Status Bits” on
page 4-56 for a definition of the bits). No other
action is caused at the addressed CPU. The
status, if not all zeros, is stored in the general reg-
ister designated by the R� field of the SIGNAL
PROCESSOR instruction, and condition code 1 is
set; if all status bits are zeros, condition code 0 is
set.

External Call: An external-call external-
interruption condition is generated at the
addressed CPU. The interruption condition
becomes pending during the execution of SIGNAL
PROCESSOR. The associated interruption occurs
when the CPU is enabled for that condition and
does not necessarily occur during the execution of
SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. Only one
external-call condition can be kept pending in a
CPU at a time. The order is effective only when
the addressed CPU is in the stopped or the oper-
ating state.

Emergency Signal: An emergency-signal
external-interruption condition is generated at the
addressed CPU. The interruption condition
becomes pending during the execution of SIGNAL
PROCESSOR. The associated interruption occurs
when the CPU is enabled for that condition and
does not necessarily occur during the execution of
SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. At any one
time the receiving CPU can keep pending one
emergency-signal condition for each CPU in the
configuration, including the receiving CPU itself.
The order is effective only when the addressed
CPU is in the stopped or the operating state.

Start: The addressed CPU performs the start
function (see “Stopped, Operating, Load, and
Check-Stop States” on page 4-1). The CPU does
not necessarily enter the operating state during
the execution of SIGNAL PROCESSOR. The
order is effective only when the addressed CPU is
in the stopped state. The effect of performing the
start function is unpredictable when the stopped
state has been entered by reset.

Stop: The addressed CPU performs the stop
function (see “Stopped, Operating, Load, and
Check-Stop States” on page 4-1). The CPU does
not necessarily enter the stopped state during the
execution of SIGNAL PROCESSOR. The order is
effective only when the CPU is in the operating
state.

Restart: The addressed CPU performs the
restart operation (see “Restart Interruption” on
page 6-47). The CPU does not necessarily
perform the operation during the execution of
SIGNAL PROCESSOR. The order is effective

4-52 z/Architecture Principles of Operation

only when the addressed CPU is in the stopped or
the operating state.

Stop and Store Status: The addressed CPU
performs the stop function, followed by the store-
status operation (see “Store Status” on
page 4-50). The CPU does not necessarily com-
plete the operation, or even enter the stopped
state, during the execution of SIGNAL
PROCESSOR. The order is effective only when
the addressed CPU is in the stopped or the oper-
ating state.

Initial CPU Reset: The addressed CPU performs
initial CPU reset (see “Resets” on page 4-43).
The execution of the reset does not affect the
architectural mode or other CPUs and does not
cause I/O to be reset. The reset operation is not
necessarily completed during the execution of
SIGNAL PROCESSOR.

CPU Reset: The addressed CPU performs CPU
reset (see “Resets” on page 4-43). The execution
of the reset does not affect the architectural mode
or other CPUs and does not cause I/O to be reset.
The reset operation is not necessarily completed
during the execution of SIGNAL PROCESSOR.

Set Prefix: The contents of bit positions 33-50 of
the parameter register of the SIGNAL
PROCESSOR instruction are treated as a prefix
value, which replaces bits 33-50 of the prefix reg-
ister of the addressed CPU. Bits 0-32 and 51-63
of the parameter register are ignored. The order
is accepted only if the addressed CPU is in the
stopped state, the value to be placed in the prefix
register designates an 8K block which is available
in the configuration, and no other condition pre-
cludes accepting the order. Verification of the
stopped state of the addressed CPU and of the
availability of the designated storage is performed
during execution of SIGNAL PROCESSOR. If
accepted, the order is not necessarily completed
during the execution of SIGNAL PROCESSOR.

The parameter register has the following format:
| ┌─/──┬────────────────────────┬─────────┐
| │////│ Prefix Value │/////////│
| └─/──┴────────────────────────┴─────────┘
| � 33 51 63

The set-prefix order is completed as follows:

� If the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit

54 (incorrect state) of the general register des-
ignated by the R� field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

� The value to be placed in the prefix register of
the addressed CPU is tested for the avail-
ability of the designated storage. The abso-
lute address of an 8K-byte area of storage is
formed by appending 13 zeros to the right and
33 zeros to the left of bits 33-50 of the param-
eter value. This address is treated as a 64-bit
absolute address regardless of whether the
sending and receiving CPUs are in the 24-bit,
31-bit, or 64-bit addressing mode. The two
4K-byte blocks of storage within the new
prefix area are accessed. The accesses to
the blocks are not subject to protection, and
the associated reference bits may or may not
be set to one. If either block is not available
in the configuration, the order is not accepted
by the addressed CPU, bit 55 (invalid param-
eter) of the general register designated by the
R� field of the SIGNAL PROCESSOR instruc-
tion is set to one, and condition code 1 is set.

� The value is placed in the prefix register of the
addressed CPU.

� The ALB and TLB of the addressed CPU are
cleared of their contents.

� A serializing and checkpoint-synchronizing
function is performed on the addressed CPU
following insertion of the new prefix value.

Store Status at Address: The contents of bit
positions 33-54 of the parameter register of the
SIGNAL PROCESSOR instruction are used as the
origin of a 512-byte area on a 512-byte boundary
in absolute storage into which the status of the
addressed CPU is stored. Bits 0-32 and 55-63 of
the parameter register are ignored.

The order is accepted only if the addressed CPU
is in the stopped state, the status-area origin des-
ignates a location which is available in the config-
uration, and no other condition precludes
accepting the order. Verification of the stopped
state of the addressed CPU and of the availability
of the designated storage is performed during exe-
cution of SIGNAL PROCESSOR. If accepted, the
order is not necessarily completed during the exe-
cution of SIGNAL PROCESSOR.

 Chapter 4. Control 4-53

The parameter register has the following format:
┌─/──┬──────────────────────────┬───────┐
│////│ Status-Area Origin │///////│
└─/──┴──────────────────────────┴───────┘
� 33 55 63

The store-status-at-address order is completed as
follows:

� If the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit
54 (incorrect state) of the general register des-
ignated by the R� field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

� The address of the area into which status is to
be stored is tested for availability. The abso-
lute address of a 512-byte area of storage is
formed by appending 9 zeros to the right and
33 zeros to the left of bits 33-54 of the param-
eter value. This address is treated as a 64-bit
absolute address regardless of whether the
sending and receiving CPUs are in the 24-bit,
31-bit, or 64-bit addressing mode. The
512-byte block of storage at this address is
accessed. The access is not subject to pro-
tection, and the associated reference bit may
or may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed CPU, bit 55
(invalid parameter) of the general register des-
ignated by the R� field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

� The status of the addressed CPU is placed in
the designated area. The information stored,
and the format of the area receiving the infor-
mation, are the same as for the stop-and-
store-status order, except that each field,
rather than being stored at an offset from the
beginning of absolute storage, is stored in the
designated area at the offsets listed in
Figure 4-14, and except that an architectural-
mode identification is not stored. Bytes
288-291 and 312-319 of the designated area
remain unchanged.

� A serialization and checkpoint-synchronization
function is performed on the addressed CPU
following storing of the status.

┌──────────────────────────┬────────┬──────────┐
│ │ Length │ Offset │
│ Field │in Bytes│ in Bytes │
├──────────────────────────┼────────┼──────────┤
│ Fl-pt registers �-15 │ 128 │ � │
│ General registers �-15 │ 128 │ 128 │
│ Current PSW │ 16 │ 256 │
│ Prefix │ 4 │ 28� │
│ Fl-pt-control register │ 4 │ 284 │
│ TOD programmable register│ 4 │ 292 │
│ CPU timer │ 8 │ 296 │
│ Zeros │ 1 │ 3�4 │
│ Bits �-55 of clock │ 7 │ 3�5 │
│ comparator │ │ │
│ Access registers �-15 │ 64 │ 32� │
│ Control registers �-15 │ 128 │ 384 │
└──┘

Figure 4-14. Location of Status Fields in Designated
Area

Programming Note: The architectural mode of
the CPU that stored status in a designated area
normally is indicated by bit 12 of the PSW stored
at offset 256 in the area. The PSW is stored at
the same offset, 256, in both the ESA/390 mode
and the z/Architecture mode. Bit 12 is one in an
ESA/390 PSW and zero in a z/Architecture PSW.
The store-status-at-address order does not store
the architectural-mode identification that is stored
at absolute location 163 by the store-status opera-
tion and the stop-and-store-status order.

Set Architecture: The contents of bit positions
56-63 of the parameter register are used as a
code specifying an architectural mode to which all
CPUs in the configuration are to be set: code 0

| specifies the ESA/390 mode, and codes 1 and 2*
| specify the z/Architecture mode. Code 1 specifies
| that, for each of all CPUs in the configuration, the
| current ESA/390 PSW is to be transformed to a
| z/Architecture PSW. Code 2 specifies that the
| PSW of the CPU executing SIGNAL
| PROCESSOR is to be transformed to a
| z/Architecture PSW and that, for each of all other
| CPUs in the configuration, the PSW is to be set
| with the value of the saved PSW for that CPU.
| The setting of the PSW with the value of the
| saved PSW will restore the PSW that existed
| when the CPU was last in the z/Architecture
| mode, provided that the saved PSW has not been
| set to all zeros by a reset.

Bits 0-55 of the parameter register are ignored.
The contents of the CPU-address register of the
SIGNAL PROCESSOR instruction are ignored; all
other CPUs in the configuration are considered to
be addressed.

4-54 z/Architecture Principles of Operation

| The order is accepted only if the code is 0, 1, or
| 2, the CPU is not already in the mode specified by

the code, each of all other CPUs is in either the
stopped or the check-stop state, and no other con-
dition precludes accepting the order. If accepted,
the order is completed by all CPUs during the
execution of SIGNAL PROCESSOR. In no case
can different CPUs be in different architectural
modes.

The set-architecture order is completed as follows:

| � If the code in the parameter register is not 0,
| 1, or 2, or if the CPU is already in the archi-

tectural mode specified by the code, the order
is not accepted. Instead, bit 55 (invalid
parameter) of the general register designated
by the R� field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1
is set.

� If it is not true that all other CPUs in the con-
figuration are in the stopped or check-stop
state, the order is not accepted. Instead, bit
54 (incorrect state) of the general register des-
ignated by the R� field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

� The architectural mode of all CPUs in the con-
figuration is set as specified by the code.

� If the order changes the architectural mode
| from ESA/390 to z/Architecture and the code
| is 1, then, for each CPU in the configuration,

the eight-byte current PSW is changed to a
16-byte PSW, and the bits of the 16-byte
PSW are set as follows: bits 0-11 and 13-32
are set equal to the same bits of the eight-
byte PSW, bit 12 and bits 33-96 are set to
zeros, and bits 97-127 are set equal to bits
33-63 of the eight-byte PSW. Also, bit 19 of
the ESA/390 prefix, which becomes bit 51 of
the z/Architecture prefix, is set to zero.

| If the code is 2, the PSW of the CPU exe-
| cuting SIGNAL PROCESSOR and the prefix
| values of all CPUs are set as in the code-1
| case. For each of all other CPUs in the con-
| figuration, the PSW is set with the value of a
| PSW saved when the CPU last went from the
| z/Architecture mode to the ESA/390 mode
| because of a set-architecture order with code
| 0 or a CPU reset due to activation of the load-
| normal key. However, the saved PSW has
| been set to all zeros if the CPU performed a

| reset, other than CPU reset, either at the time
| of the architectural-mode transition or subse-
| quently.

� If the order changes the architectural mode
from z/Architecture to ESA/390, then, for each

| CPU in the configuration, (1) the current
| PSW, which is the updated PSW in the case
| of the CPU executing SIGNAL PROCESSOR,
| is saved, and (2) the 16-byte current PSW is
| changed to an eight-byte PSW by setting the
| bits of the eight-byte PSW as follows: bits

0-11 and 13-32 are set equal to the same bits
of the 16-byte PSW, bit 12 is set to one, and
bits 33-63 are set equal to bits 97-127 of the

| 16-byte PSW. Bit 51 of the z/Architecture
| prefix, which becomes bit 19 of the ESA/390
| prefix, remains unchanged.

� The ALBs and TLBs of all CPUs in the config-
uration are cleared of their contents.

� A serialization and checkpoint-synchronization
function is performed on all CPUs in the con-
figuration.

If the order changes the architectural mode from
z/Architecture to ESA/390 and the SIGNAL
PROCESSOR instruction causes occurrence of an
instruction-fetching PER event, only the rightmost
31 bits of the address of the instruction are stored
in the ESA/390 PER-address field.

Programming Notes:

1. If the set-architecture order changes the archi-
tectural mode from z/Architecture to ESA/390
and bit 31 of the PSW is one, the PSW is
invalid.

2. For a discussion of the relative performance of
the SIGNAL PROCESSOR orders, see the
programming note following the instruction
SIGNAL PROCESSOR in Chapter 10,
“Control Instructions.”

 Conditions Determining
Response

Conditions Precluding Interpretation of
the Order Code
The following situations preclude the initiation of
the order. The sequence in which the situations
are listed is the order of priority for indicating con-
currently existing situations:

1. The access path to the addressed CPU is

 Chapter 4. Control 4-55

busy because a concurrently executed
SIGNAL PROCESSOR is using the
CPU-signaling-and-response facility. The
CPU which is concurrently executing the
instruction can be any CPU in the configura-
tion other than this CPU, and the CPU
address can be any address, including that of
this CPU or an invalid address. The order is
rejected. Condition code 2 is set.

2. The addressed CPU is not operational; that is,
it is not provided in the installation, it is not in
the configuration, it is in any of certain
customer-engineer test modes, or its power is
off. The order is rejected. Condition code 3
is set. This condition cannot arise as a result
of a SIGNAL PROCESSOR instruction exe-
cuted by a CPU addressing itself.

3. One of the following conditions exists at the
addressed CPU:

a. A previously issued start, stop, restart,
stop-and-store-status, set-prefix, or store-
status-at-address order has been
accepted by the addressed CPU, and exe-
cution of the function requested by the
order has not yet been completed.

b. A manual start, stop, restart, or store-
status function has been initiated at the
addressed CPU, and the function has not
yet been completed. This condition
cannot arise as a result of a SIGNAL
PROCESSOR instruction executed by a
CPU addressing itself.

If the currently specified order is sense,
external call, emergency signal, start, stop,
restart, stop and store status, set prefix, store
status at address, or set architecture, then the
order is rejected, and condition code 2 is set.
If the currently specified order is one of the
reset orders, or an unassigned or not-
implemented order, the order code is inter-
preted as described in “Status Bits.”

4. One of the following conditions exists at the
addressed CPU:

a. A previously issued initial-CPU-reset or
CPU-reset order has been accepted by
the addressed CPU, and execution of the

function requested by the order has not
yet been completed.

b. A manual-reset function has been initiated
at the addressed CPU, and the function
has not yet been completed. This condi-
tion cannot arise as a result of a SIGNAL
PROCESSOR instruction executed by a
CPU addressing itself.

If the currently specified order is sense,
external call, emergency signal, start, stop,
restart, stop and store status, set prefix, store
status at address, or set architecture, then the
order is rejected, and condition code 2 is set.
If the currently specified order is one of the
reset orders, or an unassigned or not-
implemented order, either the order is rejected
and condition code 2 is set or the order code
is interpreted as described in “Status Bits.”

When any of the conditions described in items 3
and 4 exists, the addressed CPU is referred to as
“busy.” Busy is not indicated if the addressed CPU
is in the check-stop state or when the operator-
intervening condition exists. A CPU-busy condi-
tion is normally of short duration; however, the
conditions described in item 3 may last indefinitely
because of a string of interruptions. In this situ-
ation, however, the CPU does not appear busy to
any of the reset orders.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and
receiver-check status conditions do not exist at the
addressed CPU, reset orders may be accepted
regardless of whether the addressed CPU has
completed a previously accepted order. This may
cause the previous order to be lost when it is only
partially completed, making unpredictable whether
the results defined for the lost order are obtained.

 Status Bits
Various status conditions are defined whereby the
issuing and addressed CPUs can indicate their
responses to the specified order. The status con-
ditions and their bit positions in the general reg-
ister designated by the R� field of the SIGNAL
PROCESSOR instruction are shown in
Figure 4-15 on page 4-57.

4-56 z/Architecture Principles of Operation

┌──────────┬──────────────────────────┐
│ Bit │ │
│ Position │ Status Condition │
├──────────┼──────────────────────────┤
│ 32 │ Equipment check │
│ 33-53 │ Unassigned; zeros stored │
│ 54 │ Incorrect state │
│ 55 │ Invalid parameter │
│ 56 │ External-call pending │
│ 57 │ Stopped │
│ 58 │ Operator intervening │
│ 59 │ Check stop │
│ 6� │ Unassigned; zero stored │
│ 61 │ Inoperative │
│ 62 │ Invalid order │
│ 63 │ Receiver check │
└──────────┴──────────────────────────┘

Figure 4-15. Status Conditions

The status condition assigned to bit position 32,
and to bit position 55 when the order is set archi-
tecture, are generated by the CPU executing
SIGNAL PROCESSOR. The remaining status
conditions are generated by the addressed CPU.

When the invalid-parameter condition exists for
the set-architecture order, bit 55 of the general
register designated by the R� field of the SIGNAL
PROCESSOR instruction is set to one, all other
bits in bit positions 32-63 are set to zeros, bits
0-31 of the register remain unchanged, and condi-
tion code 1 is set. No other action is taken.

When the equipment-check condition exists,
except when the invalid-parameter condition exists
for the set-architecture order, bit 32 of the general
register designated by the R� field of the SIGNAL
PROCESSOR instruction is set to one, unas-
signed bits in bit positions 32-63 of the status reg-
ister are set to zeros, the other status bits are
unpredictable, and bits 0-31 of the register remain
unchanged. In this case, condition code 1 is set
independent of whether the access path to the
addressed CPU is busy and independent of
whether the addressed CPU is not operational, is
busy, or has presented zero status.

When the access path to the addressed CPU is
not busy and the addressed CPU is operational
and does not indicate busy to the currently speci-
fied order, the addressed CPU presents its status
to the issuing CPU. These status bits are of two
types:

1. Status bits 54, 55 when the order is not set
architecture, 56-59, and 61 indicate the pres-
ence of the corresponding conditions in the

addressed CPU at the time the order code is
received. Except in response to the sense
order, each condition is indicated only when
the condition precludes the successful exe-
cution of the specified order, although invalid
parameter is not necessarily indicated when
any other precluding condition exists. In the
case of sense, all existing status conditions
are indicated; the operator-intervening condi-
tion is indicated if it precludes the execution of
any installed order.

2. Status bits 62 and 63 indicate that the corre-
sponding conditions were detected by the
addressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code
0 is set at the issuing CPU; if the presented status
is not all zeros, the order has been rejected, the
status is stored at the issuing CPU in the general
register designated by the R� field of the SIGNAL
PROCESSOR instruction, zeros are stored in the
unassigned positions in bit positions 32-63 of the
register, bits 0-31 of the register remain
unchanged, and condition code 1 is set.

When the order is set architecture, “the addressed
CPU” refers to each of the other CPUs in the con-
figuration. Those CPUs, in an unpredictable
order, are tested for a condition that causes
setting of condition code 1, 2, or 3. Conditions
are prioritized for a single CPU as if it were the
only CPU addressed, but there is no prioritization
across CPUs. If a condition is recognized, no
further CPUs are tested, the condition code corre-
sponding to the condition is set, and the execution
of SIGNAL PROCESSOR is completed.

The status conditions are defined as follows:

Equipment Check: This condition exists when
the CPU executing the instruction detects equip-
ment malfunctioning that has affected only the
execution of this instruction and the associated
order. The order code may or may not have been
transmitted and may or may not have been
accepted, and the status bits provided by the
addressed CPU may be in error. This condition is
not detected if the invalid-parameter condition for
the set-architecture order is detected.

Incorrect State: A set-prefix or store-status-
at-address order has been rejected because the
addressed CPU is not stopped, or a set-

 Chapter 4. Control 4-57

architecture order has been rejected because not
all other CPUs are stopped or in the check-stop
state. When applicable, this status is generated
during execution of SIGNAL PROCESSOR and is
indicated concurrently with other indications of
conditions which preclude execution of the order,
except that this status is not generated if an
invalid-parameter condition exists for a set-
architecture order.

Invalid Parameter: This condition exists in two
cases:

1. The parameter value supplied with a set-prefix
or store-status-at-address order designates a
storage location which is not available in the
configuration. When applicable, this status is
generated during execution of SIGNAL
PROCESSOR, except that it is not necessarily
generated when another condition precluding
execution of the order also exists.

2. The parameter value supplied with a set-
architecture order either is not 0 or 1 or speci-
fies the current architectural mode. When
applicable, this status is generated during exe-
cution of SIGNAL PROCESSOR, and no other
status is generated.

External Call Pending: This condition exists
when an external-call interruption condition is
pending in the addressed CPU because of a pre-
viously issued SIGNAL PROCESSOR order. The
condition exists from the time an external-call
order is accepted until the resultant external inter-
ruption has been completed or a CPU reset
occurs. The condition may be due to the issuing
CPU or another CPU. The condition, when
present, is indicated only in response to sense
and to external call.

Stopped: This condition exists when the
addressed CPU is in the stopped state. The con-
dition, when present, is indicated only in response
to sense. This condition cannot be reported as a
result of a SIGNAL PROCESSOR instruction exe-
cuted by a CPU addressing itself.

Operator Intervening: This condition exists
when the addressed CPU is executing certain
operations initiated from local or remote operator
facilities. The particular manually initiated oper-
ations that cause this condition to be present
depend on the model and on the order specified.

The operator-intervening condition may exist when
the addressed CPU uses reloadable control
storage to perform an order and the required
licensed internal code has not been loaded by the
IML function. The operator-intervening condition,
when present, can be indicated in response to all
orders. Operator intervening is indicated in
response to sense if the condition is present and
precludes the acceptance of any of the installed
orders. The condition may also be indicated in
response to unassigned or uninstalled orders.
This condition cannot arise as a result of a
SIGNAL PROCESSOR instruction executed by a
CPU addressing itself.

Check Stop: This condition exists when the
addressed CPU is in the check-stop state. The
condition, when present, is indicated only in
response to sense, external call, emergency
signal, start, stop, restart, set prefix, store status
at address, and stop and store status. The condi-
tion may also be indicated in response to unas-
signed or uninstalled orders. This condition
cannot be reported as a result of a SIGNAL
PROCESSOR instruction executed by a CPU
addressing itself.

Inoperative: This condition indicates that the
execution of the operation specified by the order
code requires the use of a service processor
which is inoperative. The failure of the service
processor may have been previously reported by
a service-processor-damage machine-check con-
dition. The inoperative condition cannot occur for
the sense, external-call, or emergency-signal order
code.

Invalid Order: This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or
uninstalled order code is decoded.

Receiver Check: This condition exists when the
addressed CPU detects malfunctioning of equip-
ment during the communications associated with
the execution of SIGNAL PROCESSOR. When
this condition is indicated, the order has not been
initiated, and, since the malfunction may have
affected the generation of the remaining receiver
status bits, these bits are not necessarily valid. A
machine-check condition may or may not have
been generated at the addressed CPU.

4-58 z/Architecture Principles of Operation

The following chart summarizes which status con-
ditions are presented to the issuing CPU in
response to each order code.

Status Condition

63 Receiver check! ────────────────────┐
62 Invalid order ────────────────────┐ │
61 Inoperative ────────────────────┐ │ │
59 Check stop ───────────────────┐ │ │ │
58 Operator intervening# ──────┐ │ │ │ │
57 Stopped ──────────────────┐ │ │ │ │ │
56 External call pending ──┐ │ │ │ │ │ │
55 Invalid parameter ────┐ │ │ │ │ │ │ │
54 Incorrect state ────┐ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │

Order │ │ │ │ │ │ │ │ │
� � � � � � � � �

Sense � � X X X X � � X
External call � � X � X X � � X
Emergency signal � � � � X X � � X
Start � � � � X X X � X
Stop � � � � X X X � X
Restart � � � � X X X � X
Stop and store status � � � � X X X � X
Initial CPU reset � � � � X � X � X
CPU reset � � � � X � X � X
Set prefix X X � � X X X � X
Store status at addr. X X � � X X X � X
Set architecture X X � � X � X � X
Unassigned order � � � � X E X 1 X

 Explanation:

The current state of the operator-intervening
condition may depend on the order code that
is being interpreted.

≠ If a one is presented in the receiver-check bit
position, the values presented in the other bit
positions are not necessarily valid.

0 A zero is presented in this bit position regard-
less of the current state of this condition.

1 A one is presented in this bit position.

X A zero or a one is presented in this bit posi-
tion, reflecting the current state of the corre-
sponding condition.

E Either a zero or the current state of the corre-
sponding condition is indicated.

If the presented status bits are all zeros, the order
has been accepted, and the issuing CPU sets
condition code 0. If one or more ones are pre-
sented, the order has been rejected, and the
issuing CPU stores the status in the general reg-
ister designated by the R� field of the SIGNAL

PROCESSOR instruction and sets condition code
1.

Programming Notes:

1. All SIGNAL PROCESSOR orders except set
architecture (which in effect is addressed to all
other CPUs and affects all CPUs) can be
addressed to this same CPU. The following
are examples of functions obtained by a CPU
addressing SIGNAL PROCESSOR to itself:

a. Sense indicates whether an external-call
condition is pending.

b. External call and emergency signal cause
the corresponding interruption conditions
to be generated. External call can be
rejected because of a previously gener-
ated external-call condition.

c. Start sets condition code 0 and has no
other effect.

d. Stop causes the CPU to set condition
code 0, take pending interruptions for
which it is enabled, and enter the stopped
state.

e. Restart provides a means to store the
current PSW.

f. Stop and store status causes the machine
to stop and store all current status.

2. Two CPUs can simultaneously execute
SIGNAL PROCESSOR, with each CPU
addressing the other. When this occurs, one
CPU, but not both, can find the access path
busy because of the transmission of the order
code or status bits associated with SIGNAL
PROCESSOR that is being executed by the
other CPU. Alternatively, both CPUs can find
the access path available and transmit the
order codes to each other. In particular, two
CPUs can simultaneously stop, restart, or
reset each other.

3. To obtain status from another CPU which is in
the check-stop state by means of the store-
status-at-address order, a CPU reset opera-
tion should first be used to bring the CPU to
the stopped state. This reset order does not
alter the status, and, depending on the nature
of the malfunction, provides the best chance
of establishing conditions in the addressed
CPU which allow status to be obtained.

 Chapter 4. Control 4-59

4-60 z/Architecture Principles of Operation

 Chapter 5. Program Execution

Instructions . 5-2
Operands 5-2
Instruction Formats 5-3

Register Operands 5-6
Immediate Operands 5-6
Storage Operands 5-7

Address Generation 5-7
Trimodal Addressing 5-7
Sequential Instruction-Address Generation . 5-8
Operand-Address Generation 5-8

Formation of the Intermediate Value . . 5-8
Formation of the Operand Address . . . 5-9

Branch-Address Generation 5-9
Formation of the Intermediate Value . . 5-9
Formation of the Branch Address 5-10

Instruction Execution and Sequencing 5-10
Decision Making 5-10
Loop Control 5-11
Subroutine Linkage without the Linkage

Stack 5-11
Simple Branch Instructions 5-11
Other Linkage Instructions 5-15

Interruptions 5-20
Types of Instruction Ending 5-20

Completion 5-20
Suppression 5-20
Nullification 5-21
Termination 5-21

Interruptible Instructions 5-21
Point of Interruption 5-21
Unit of Operation 5-21
Execution of Interruptible Instructions . 5-21
Condition-Code Alternative to

Interruptibility 5-22
Exceptions to Nullification and

Suppression 5-23
Storage Change and Restoration for

DAT-Associated Access Exceptions 5-23
Modification of DAT-Table Entries . . . 5-24
Trial Execution for Editing Instructions

and Translate Instruction 5-24
Authorization Mechanisms 5-24

Mode Requirements 5-25
Extraction-Authority Control 5-25
PSW-Key Mask 5-25
Secondary-Space Control 5-26
Subsystem-Linkage Control 5-26
ASN-Translation Control 5-26
Authorization Index 5-26

PC-Number Translation 5-30

PC-Number Translation Control 5-30
Control Register 5 5-30

PC-Number Translation Tables 5-30
Linkage-Table Entries 5-30
Entry-Table Entries 5-31

PC-Number-Translation Process 5-32
Obtaining the Linkage-Table

Designation 5-33
Linkage-Table Lookup 5-34
Entry-Table Lookup 5-34
Recognition of Exceptions during

PC-Number Translation 5-34
Home Address Space 5-35
Access-Register Introduction 5-35

Summary 5-36
Access-Register Functions 5-36

Access-Register-Specified Address
Spaces 5-36

Access-Register Instructions 5-43
Access-Register Translation 5-44

Access-Register-Translation Control 5-44
Control Register 2 5-44
Control Register 5 5-44
Control Register 8 5-44

Access Registers 5-45
Access-Register-Translation Tables 5-45

Dispatchable-Unit Control Table and
Access-List Designations 5-46

Access-List Entries 5-47
ASN-Second-Table Entries 5-48

Access-Register-Translation Process . . . 5-49
Selecting the Access-List-Entry Token . 5-52
Obtaining the Primary or Secondary

Address-Space-Control Element . . 5-52
Checking the First Byte of the ALET . . 5-52
Obtaining the Effective Access-List

Designation 5-52
Access-List Lookup 5-52
Locating the ASN-Second-Table Entry . 5-53
Authorizing the Use of the Access-List

Entry 5-53
Checking for Access-List-Controlled

Protection 5-54
Obtaining the Address-Space-Control

Element from the ASN-Second-Table
Entry 5-54

Recognition of Exceptions during
Access-Register Translation 5-54

ART-Lookaside Buffer 5-54
ALB Structure 5-54

 Copyright IBM Corp. 1990-2003 5-1

Formation of ALB Entries 5-55
Use of ALB Entries 5-55
Modification of ART Tables 5-56

Subspace Groups 5-56
Subspace-Group Tables 5-56

Subspace-Group Dispatchable-Unit
Control Table 5-56

Subspace-Group ASN-Second-Table
Entries 5-58

Subspace-Replacement Operations 5-60
Linkage-Stack Introduction 5-61

Summary 5-61
Linkage-Stack Functions 5-61

Transferring Program Control 5-61
Branching Using the Linkage Stack . . 5-63
Adding and Retrieving Information . . . 5-64
Testing Authorization 5-64
Program-Problem Analysis 5-65

Linkage-Stack Entry-Table Entries 5-65
Linkage-Stack Operations 5-66

Linkage-Stack-Operations Control 5-68
Control Register 15 5-68

Linkage Stack 5-68
Entry Descriptors 5-68
Header Entries 5-69
Trailer Entries 5-70
State Entries 5-71

Stacking Process 5-73
Locating Space for a New Entry 5-73
Forming the New Entry 5-74
Updating the Current Entry 5-75
Updating Control Register 15 5-75
Recognition of Exceptions during the

Stacking Process 5-75
Unstacking Process 5-76

Locating the Current Entry and
Processing a Header Entry 5-76

Checking for a State Entry 5-77
Restoring Information 5-77
Updating the Preceding Entry 5-78
Updating Control Register 15 5-78
Recognition of Exceptions during the

Unstacking Process 5-78
Sequence of Storage References 5-78

Conceptual Sequence 5-78
Overlapped Operation of Instruction

Execution 5-79
Divisible Instruction Execution 5-79

Interlocks for Virtual-Storage References . 5-80
Interlocks between Instructions 5-80
Interlocks within a Single Instruction . . 5-81

Instruction Fetching 5-82
ART-Table and DAT-Table Fetches 5-84
Storage-Key Accesses 5-84
Storage-Operand References 5-85

Storage-Operand Fetch References . . 5-86
Storage-Operand Store References . . 5-86
Storage-Operand Update References . 5-86

Storage-Operand Consistency 5-87
Single-Access References 5-88
Multiple-Access References 5-88
Block-Concurrent References 5-89
Consistency Specification 5-89

Relation between Operand Accesses . . . 5-90
Other Storage References 5-91

| Relation between Storage-Key Accesses . 5-91
Serialization 5-91

CPU Serialization 5-91
Channel-Program Serialization 5-93

Normally, operation of the CPU is controlled by
instructions in storage that are executed sequen-
tially, one at a time, left to right in an ascending
sequence of storage addresses. A change in the
sequential operation may be caused by branching,
LOAD PSW, interruptions, SIGNAL PROCESSOR
orders, or manual intervention.

 Instructions
Each instruction consists of two major parts:

� An operation code (op code), which specifies
the operation to be performed

� The designation of the operands that partic-
ipate

 Operands

Operands can be grouped in three classes: oper-
ands located in registers, immediate operands,
and operands in storage. Operands may be either
explicitly or implicitly designated.

Register operands can be located in general,
floating-point, access, or control registers, with the
type of register identified by the op code. The
register containing the operand is specified by
identifying the register in a four-bit field, called the
R field, in the instruction. For some instructions,
an operand is located in an implicitly designated
register, the register being implied by the op code.

5-2 z/Architecture Principles of Operation

Immediate operands are contained within the
instruction, and the 8-bit, 16-bit, or 32-bit field con-
taining the immediate operand is called the I field.

Operands in storage may have an implied length;
be specified by a bit mask; be specified by a
four-bit or eight-bit length specification, called the
L field, in the instruction; or have a length speci-
fied by the contents of a general register. The
addresses of operands in storage are specified by
means of a format that uses the contents of a
general register as part of the address. This
makes it possible to:

1. Specify a complete address by using an
abbreviated notation

2. Perform address manipulation using
instructions which employ general registers for
operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independent of the location of data
areas by directly using addresses received
from other programs

The address used to refer to storage either is con-
tained in a register designated by the R field in the
instruction or is calculated from a base address,
index, and displacement, specified by the B, X,
and D fields, respectively, in the instruction.

When the CPU is in the access-register mode, a B
or R field may designate an access register in
addition to being used to specify an address.

To describe the execution of instructions, oper-
ands are designated as first and second operands
and, in some cases, third operands.

In general, two operands participate in an instruc-
tion execution, and the result replaces the first
operand. However, CONVERT TO DECIMAL,
TEST BLOCK, and instructions with “store” in the
instruction name (other than STORE THEN AND
SYSTEM MASK and STORE THEN OR SYSTEM
MASK) use the second-operand address to desig-
nate a location in which to store. TEST AND
SET, COMPARE AND SWAP, and COMPARE
DOUBLE AND SWAP may perform an update on

the second operand. Except when otherwise
stated, the contents of all registers and storage
locations participating in the addressing or exe-
cution part of an operation remain unchanged.

 Instruction Formats

An instruction is one, two, or three halfwords in
length and must be located in storage on a
halfword boundary. Each instruction is in one of

| 21 basic formats: E, I, RR, RRE, RRF, RX, RXE,
| RXF, RXY, RS, RSY, RSL, RSI, RI, RIE, RIL, SI,
| SIY, S, SSE, and SS, with three variations of
| RRF, two of RS, RSY, and RIL, and four of SS.

See Figure 5-1.

E Format
┌──────────────────┐
│ Op Code │
└──────────────────┘
� 15

| I Format
| ┌────────┬─────────┐
| │Op Code │ I │
| └────────┴─────────┘
| � 8 15

RR Format
┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

RRE Format
┌─────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└─────────────────┴────────┴────┴────┘
� 16 24 28 31

RRF Format
┌────────────────┬────┬────┬────┬────┐
│ Op Code │ R� │////│ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ M� │////│ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ R� │ M" │ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

Figure 5-1 (Part 1 of 4). Basic Instruction Formats

 Chapter 5. Program Execution 5-3

RX Format
┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

RXE Format
┌────────┬────┬────┬────┬──/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴──/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

RXF Format
┌────────┬────┬────┬────┬─/──┬────┬────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │ R� │////│Op Code │
└────────┴────┴────┴────┴─/──┴────┴────┴────────┘
� 8 12 16 2� 32 36 4� 47

| RXY Format
| ┌────────┬────┬────┬────┬──/──┬────────┬────────┐
| │Op Code │ R� │ X� │ B� │ DL� │ DH� │Op Code │
| └────────┴────┴────┴────┴──/──┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

RS Format
┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ M� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| RSY Format
| ┌────────┬────┬────┬────┬──/──┬────────┬────────┐
| │Op Code │ R� │ R� │ B� │ DL� │ DH� │Op Code │
| └────────┴────┴────┴────┴──/──┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

| ┌────────┬────┬────┬────┬──/──┬────────┬────────┐
| │Op Code │ R� │ M� │ B� │ DL� │ DH� │Op Code │
| └────────┴────┴────┴────┴──/──┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

Figure 5-1 (Part 2 of 4). Basic Instruction Formats

RSL Format
┌────────┬────┬────┬────┬──/──┬────────┬────────┐
│Op Code │ L� │////│ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴──/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

RSI Format
┌────────┬────┬────┬─────────────────┐
│Op Code │ R� │ R� │ I� │
└────────┴────┴────┴─────────────────┘
� 8 12 16 31

RI Format
┌────────┬────┬────┬─────────────────┐
│Op Code │ R� │OpCd│ I� │
└────────┴────┴────┴─────────────────┘
� 8 12 16 31

RIE Format
┌────────┬────┬────┬────/─────┬────────┬────────┐
│Op Code │ R� │ R� │ I� │////////│Op Code │
└────────┴────┴────┴────/─────┴────────┴────────┘
� 8 12 16 32 4� 47

RIL Format
┌────────┬────┬────┬─────────────/──────────────┐
│Op Code │ R� │OpCd│ I� │
└────────┴────┴────┴─────────────/──────────────┘
� 8 12 16 47

┌────────┬────┬────┬─────────────/──────────────┐
│Op Code │ M� │OpCd│ I� │
└────────┴────┴────┴─────────────/──────────────┘
� 8 12 16 47

SI Format
┌────────┬─────────┬────┬────────────┐
│Op Code │ I� │ B� │ D� │
└────────┴─────────┴────┴────────────┘
� 8 16 2� 31

| SIY Format
| ┌────────┬─────────┬────┬──/──┬────────┬────────┐
| │Op Code │ I� │ B� │ DL� │ DH� │Op Code │
| └────────┴─────────┴────┴──/──┴────────┴────────┘
| � 8 16 2� 32 4� 47

Figure 5-1 (Part 3 of 4). Basic Instruction Formats

5-4 z/Architecture Principles of Operation

S Format
┌──────────────────┬────┬────────────┐
│ Op Code │ B� │ D� │
└──────────────────┴────┴────────────┘
� 16 2� 31

SS Format
┌────────┬─────────┬────┬───/────┬────┬────/────┐
│Op Code │ L │ B� │ D� │ B� │ D� │
└────────┴─────────┴────┴───/────┴────┴────/────┘
� 8 16 2� 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐
│Op Code │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴───/────┴────┴────/────┘
� 8 12 16 2� 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐
│Op Code │ R� │ R� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴───/────┴────┴────/────┘
� 8 12 16 2� 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐
│Op Code │ R� │ R� │ B� │ D� │ B" │ D" │
└────────┴────┴────┴────┴───/────┴────┴────/────┘
� 8 12 16 2� 32 36 47

SSE Format
┌──────────────────┬────┬───/────┬────┬────/────┐
│ Op Code │ B� │ D� │ B� │ D� │
└──────────────────┴────┴───/────┴────┴────/────┘
� 16 2� 32 36 47

Figure 5-1 (Part 4 of 4). Basic Instruction Formats

Instruction fields shown in Figure 5-1 on page 5-3
as containing slashes (/) are currently unassigned.
These fields in an instruction should contain zeros;
otherwise, the program may not operate
compatibly in the future.

Some instructions contain fields that vary slightly
from the basic format, and in some instructions
the operation performed does not follow the
general rules stated in this section. All of these
exceptions are explicitly identified in the individual
instruction descriptions.

The format names indicate, in general terms, the
classes of operands which participate in the oper-

| ation and some details about fields:

� E denotes an operation using implied oper-
ands and an extended op-code field.

| � I denotes an immediate operation.
� RR denotes a register-and-register operation.
� RRE denotes a register-and-register operation

and an extended op-code field.
� RRF denotes a register-and-register operation,

an extended op-code field, and an additional
R field, M field, or both.

� RX denotes a register-and-indexed-storage
operation.

� RXE denotes a register-and-indexed-storage
operation and an extended op-code field.

� RXF denotes a register-and-indexed-storage
operation, an extended op-code field, and an
additional R field.

| � RXY denotes a register-and-indexed-storage
| operation, an extended op-code field, and a
| long displacement field.

� RS denotes a register-and-storage operation.
| � RSY denotes a register-and-storage operation,
| an extended op-code field, and a long dis-
| placement field.

� RSL denotes a storage operation (with an
| instruction format derived from the ESA/390

RSE format).
� RSI denotes a register-and-immediate opera-

tion.
� RI denotes a register-and-immediate operation

and an extended op-code field.
� RIE denotes a register-and-immediate opera-

tion and a longer extended op-code field.
� RIL denotes a register-and-immediate opera-

tion, an extended op-code field, and a longer
immediate field.

� SI denotes a storage-and-immediate opera-
tion.

| � SIY denotes a storage-and-immediate opera-
| tion and a long displacement field.

� S denotes an operation using an implied
operand and storage.

� SS denotes a storage-and-storage operation.
� SSE denotes a storage-and-storage operation

and an extended op-code field.

In the RR, RX, RS, RSI, SI, and SS formats, the
first byte of an instruction contains the op code.
In the E, RRE, RRF, S, and SSE formats, the first
two bytes of an instruction contain the op code,
except that for some instructions in the S format,
the op code is in only the first byte. In the RI and
RIL formats, the op code is in the first byte and bit
positions 12-15 of an instruction. In the RXE,

| RXF, RXY, RSY, RSL, RIE, and SIY formats, the
op code is in the first byte and the sixth byte of an
instruction.

The first two bits of the first or only byte of the op
code specify the length and format of the instruc-
tion, as follows:

 Chapter 5. Program Execution 5-5

┌─────────┬─────────────┬─────────────────────┐
│ Bit │ Instruction │ │
│Positions│ Length (in │ Instruction │
│ �-1 │ Halfwords) │ Format │
├─────────┼─────────────┼─────────────────────┤
│ �� │ One │ E/RR │
│ �1 │ Two │ RX │
│ 1� │ Two │RRE/RRF/RX/RS/RSI/RI/│
│ │ │ SI/S │

| │ 11 │ Three │ RXE/RXF/RXY/RSY/RSL/│
| │ │ │ RIE/RIL/SS/SSE/SIY │

└─────────┴─────────────┴─────────────────────┘

In the format illustration for each individual instruc-
tion description, the op-code field or fields show
the op code as hexadecimal digits within single
quotes. The hexadecimal representation uses 0-9
for the binary codes 0000-1001 and A-F for the
binary codes 1010-1111.

The remaining fields in the format illustration for
each instruction are designated by code names,

| consisting of one or two letters and possibly a
subscript number. The subscript number denotes
the operand to which the field applies.

 Register Operands
| In the RR, RRE, RRF, RX, RXE, RXF, RXY, RS,
| RSY, RSI, RI, RIE, and RIL formats, the contents

of the register designated by the R� field are
called the first operand. The register containing
the first operand is sometimes referred to as the
“first-operand location,” and sometimes as “reg-
ister R�.” In the RR, RRE, and RRF formats, the
R� field designates the register containing the
second operand, and the R� field may designate
the same register as R�. In the RRF, RXF, RS,

| RSY, RSI, and RIE formats, the use of the R�
| field depends on the instruction. In the RS and
| RSY formats, the R� field may instead be an M�

field specifying a mask.

The R field designates a general or access reg-
ister in the general instructions, a general register
in the control instructions, and a floating-point reg-
ister in the floating-point instructions. However, in
the instructions EXTRACT STACKED REGIS-
TERS and LOAD ADDRESS EXTENDED, the R
field designates both a general register and an
access register, and, in the instructions LOAD
CONTROL and STORE CONTROL, the R field
designates a control register. (This paragraph
refers only to register operands, not to the use of
access registers in addressing storage operands.)

For access and floating-point registers, unless oth-
erwise indicated in the individual instruction
description, the register operand is one register in
length (32 bits for an access register and 64 bits
for a floating-point register), and the second
operand is the same length as the first. For
general and control registers, the register operand
is in bit positions 32-63 of the 64-bit register or
occupies the entire register, depending on the
instruction.

 Immediate Operands
| In the I format, the contents of the eight-bit
| immediate-data field, the I field of the instruction,
| are directly used as the operand.

In the SI format, the contents of the eight-bit
immediate-data field, the I� field of the instruction,
are used directly as the second operand. The B�
and D� fields specify the first operand, which is

| one byte in length. In the SIY format, the opera-
| tion is the same except that DH� and DL� fields
| are used instead of a D� field.

In the RI format for the instructions ADD
HALFWORD IMMEDIATE, COMPARE
HALFWORD IMMEDIATE, LOAD HALFWORD
IMMEDIATE, and MULTIPLY HALFWORD IMME-
DIATE, the contents of the 16-bit I� field of the
instruction are used directly as a signed binary
integer, and the R� field specifies the first
operand, which is 32 or 64 bits in length,
depending on the instruction. For the instruction
TEST UNDER MASK (TMHH, TMHL, TMLH,
TMLL), the contents of the I� field are used as a
mask, and the R� field specifies the first operand,
which is 64 bits in length. For the instructions
INSERT IMMEDIATE, AND IMMEDIATE, OR
IMMEDIATE, and LOAD LOGICAL IMMEDIATE,
the contents of the I� field are used as an
unsigned binary integer or a logical value, and the
R� field specifies the first operand, which is 64
bits in length.

For the relative-branch instructions in the RI and
RSI formats, the contents of the 16-bit I� field are
used as a signed binary integer designating a
number of halfwords. This number, when added
to the address of the branch instruction, specifies
the branch address. In the RIL format, the I� field
is 32 bits and is used in the same way.

5-6 z/Architecture Principles of Operation

 Storage Operands
The use of B and R fields to designate access
registers to refer to storage operands is described
in “Access-Register-Specified Address Spaces” on
page 5-36.

In the RSL, SI, SS, and SSE formats, the contents
of the general register designated by the B� field
are added to the contents of the D� field to form

| the first-operand address. In the RS, RSY, S,
| SIY, SS, and SSE formats, the contents of the

general register designated by the B� field are
| added to the contents of the D� field or DH� and
| DL� fields to form the second-operand address.
| In the RX, RXE, RXF, and RXY formats, the con-

tents of the general registers designated by the X�
and B� fields are added to the contents of the D�

| field or DH� and DL� fields to form the second-
operand address.

When a general register contains a 24-bit or 32-bit
length of a storage operand, the length is an
unsigned binary integer, except that it is signed for
COMPARE UNTIL SUBSTRING EQUAL, with a
negative value treated as zero. Similarly, the con-
tents of an L, L�, or L� field of an instruction are
an unsigned binary integer.

In the SS format with a single, eight-bit length
field, for the instructions AND (NC), EXCLUSIVE
OR (XC), MOVE (MVC), MOVE NUMERICS,
MOVE ZONES, and OR (OC), L specifies the
number of additional operand bytes to the right of
the byte designated by the first-operand address.
Therefore, the length in bytes of the first operand
is 1-256, corresponding to a length code in L of
0-255. Storage results replace the first operand
and are never stored outside the field specified by
the address and length. In this format, the second
operand has the same length as the first operand.
There are variations of the preceding definition
that apply to EDIT, EDIT AND MARK, PACK
ASCII, PACK UNICODE, TRANSLATE, TRANS-
LATE AND TEST, UNPACK ASCII, and UNPACK
UNICODE.

In the SS format with two length fields, and in the
RSL format, L� specifies the number of additional
operand bytes to the right of the byte designated
by the first-operand address. Therefore, the
length in bytes of the first operand is 1-16, corre-
sponding to a length code in L� of 0-15. Similarly,
L� specifies the number of additional operand
bytes to the right of the location designated by the

second-operand address. Results replace the first
operand and are never stored outside the field
specified by the address and length. If the first
operand is longer than the second, the second
operand is extended on the left with zeros up to
the length of the first operand. This extension
does not modify the second operand in storage.

In the SS format with two R fields, as used by the
MOVE TO PRIMARY, MOVE TO SECONDARY,
and MOVE WITH KEY instructions, the contents
of the general register specified by the R� field are
a 32-bit unsigned value called the true length.
The operands are both of a length called the
effective length. The effective length is equal to
the true length or 256, whichever is less. The
instructions set the condition code to facilitate pro-
gramming a loop to move the total number of
bytes specified by the true length. The SS format
with two R fields is also used to specify a range of
registers and two storage operands for the LOAD
MULTIPLE DISJOINT instruction and to specify
one or two registers and one or two storage oper-
ands for the PERFORM LOCKED OPERATION
instruction.

 Address Generation

 Trimodal Addressing

Bits 31 and 32 of the current PSW are the
addressing-mode bits. Bit 31 is the extended-
addressing-mode bit, and bit 32 is the basic-
addressing-mode bit. These bits control the size
of the effective address produced by address gen-
eration. When bits 31 and 32 of the current PSW
both are zeros, the CPU is in the 24-bit
addressing mode, and 24-bit instruction and
operand effective addresses are generated.
When bit 31 of the current PSW is zero and bit 32
is one, the CPU is in the 31-bit addressing mode,
and 31-bit instruction and operand effective
addresses are generated. When bits 31 and 32 of
the current PSW are both one, the CPU is in the
64-bit addressing mode, and 64-bit instruction and
operand effective addresses are generated.

Execution of instructions by the CPU involves gen-
eration of the addresses of instructions and oper-
ands. This section describes address generation
as it applies to most instructions. In some
instructions, the operation performed does not

 Chapter 5. Program Execution 5-7

follow the general rules stated in this section. All
of these exceptions are explicitly identified in the
individual instruction descriptions.

 Sequential Instruction-Address
Generation

When an instruction is fetched from the location
designated by the current PSW, the instruction
address is increased by the number of bytes in
the instruction, and the instruction is executed.
The same steps are then repeated by using the
new value of the instruction address to fetch the
next instruction in the sequence.

In the 24-bit addressing mode, instruction
addresses wrap around, with the halfword at
instruction address 2�� - 2 being followed by the
halfword at instruction address 0. Thus, in the
24-bit addressing mode, any carry out of PSW bit
position 104, as a result of updating the instruction
address, is lost. In the 31-bit or 64-bit addressing
mode, instruction addresses similarly wrap around,
with the halfword at instruction address 2�� - 2 or
2�� - 2, respectively, followed by the halfword at
instruction address 0. A carry out of PSW bit
position 97 or 64, respectively, is lost.

 Operand-Address Generation

Formation of the Intermediate Value
An operand address that refers to storage is
derived from an intermediate value, which either is
contained in a register designated by an R field in
the instruction or is calculated from the sum of
three binary numbers: base address, index, and
displacement.

The base address (B) is a 64-bit number con-
tained in a general register specified by the
program in a four-bit field, called the B field, in the
instruction. Base addresses can be used as a
means of independently addressing each program
and data area. In array-type calculations, it can
designate the location of an array, and, in record-
type processing, it can identify the record. The
base address provides for addressing the entire
storage. The base address may also be used for
indexing.

The index (X) is a 64-bit number contained in a
general register designated by the program in a

four-bit field, called the X field, in the instruction.
It is included only in the address specified by the

| RX-, RXE-, RXF-, and RXY-format instructions.
| The RX-, RXE-, RXF-, and RXY-format

instructions permit double indexing; that is, the
index can be used to provide the address of an
element within an array.

| The displacement (D) is a 12-bit or 20-bit number
contained in a field, called the D field, in the

| instruction. A 12-bit displacement is unsigned and
provides for relative addressing of up to 4,095
bytes beyond the location designated by the base

| address. A 20-bit displacement is signed and pro-
| vides for relative addressing of up to 524,287
| bytes beyond the base-address location or of up
| to 524,288 bytes before it. In array-type calcu-

lations, the displacement can be used to specify
one of many items associated with an element. In
the processing of records, the displacement can
be used to identify items within a record.

| A 12-bit displacement is in bit positions 20-31 of
| instructions of certain formats (see Figure 5-1 on
| page 5-3). In instructions of some formats, a
| second 12-bit displacement also is in the instruc-
| tion, in bit positions 36-47.

| A 20-bit displacement is in instructions of only the
| RSY, RXY, or SIY format. In these instructions,
| the D field consists of a DL (low) field in bit posi-
| tions 20-31 and of a DH (high) field in bit positions
| 32-39. When the long-displacement facility is
| installed, the numeric value of the displacement is
| formed by appending the contents of the DH field
| on the left of the contents of the DL field. When
| the long-displacement facility is not installed, the
| numeric value of the displacement is formed by
| appending eight zero bits on the left of the con-
| tents of the DL field, and the contents of the DH
| field are ignored.

In forming the intermediate sum, the base address
| and index are treated as 64-bit binary integers. A
| 12-bit displacement is treated as a 12-bit unsigned
| binary integer, and 52 zero bits are appended on
| the left. A 20-bit displacement is treated as a
| 20-bit signed binary integer, and 44 bits equal to
| the sign bit are appended on the left. The three

are added as 64-bit binary numbers, ignoring
overflow. The sum is always 64 bits long and is
used as an intermediate value to form the gener-
ated address. The bits of the intermediate value
are numbered 0-63.

5-8 z/Architecture Principles of Operation

A zero in any of the B�, B�, or X� fields indicates
the absence of the corresponding address compo-
nent. For the absent component, a zero is used
in forming the intermediate sum, regardless of the
contents of general register 0. A displacement of
zero has no special significance.

When an instruction description specifies that the
contents of a general register designated by an R
field are used to address an operand in storage,
the register contents are used as the 64-bit inter-
mediate value.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed before registers, if any, are changed by
the operation.

Unless otherwise indicated in an individual instruc-
tion definition, the generated operand address
designates the leftmost byte of an operand in
storage.

Formation of the Operand Address
The generated operand address is always 64 bits
long, and the bits are numbered 0-63. The
manner in which the generated address is
obtained from the intermediate value depends on
the current addressing mode. In the 24-bit
addressing mode, bits 0-39 of the intermediate
value are ignored, bits 0-39 of the generated
address are forced to be zeros, and bits 40-63 of
the intermediate value become bits 40-63 of the
generated address. In the 31-bit addressing
mode, bits 0-32 of the intermediate value are
ignored, bits 0-32 of the generated address are
forced to be zero, and bits 33-63 of the interme-
diate value become bits 33-63 of the generated
address. In the 64-bit addressing mode, bits 0-63
of the intermediate value become bits 0-63 of the
generated address.

Programming Note: Negative values may be
used in index and base-address registers. Bits
0-32 of these values are ignored in the 31-bit
addressing mode, and bits 0-39 are ignored in the
24-bit addressing mode.

 Branch-Address Generation

Formation of the Intermediate Value
For branch instructions, the address of the next
instruction to be executed when the branch is
taken is called the branch address. Depending on
the branch instruction, the instruction format may

| be RR, RRE, RX, RXY, RS, RSY, RSI, RI, RIE, or
RIL.

| In the RS, RSY, RX, and RXY formats, the branch
address is specified by a base address, a dis-

| placement, and, in the RX and RXY formats, an
index. In these formats, the generation of the
intermediate value follows the same rules as for
the generation of the operand-address interme-
diate value.

In the RR and RRE formats, the contents of the
general register designated by the R� field are
used as the intermediate value from which the
branch address is formed. General register 0
cannot be designated as containing a branch
address. A value of zero in the R� field causes
the instruction to be executed without branching.

The relative-branch instructions are in the RSI, RI,
RIE, and RIL formats. In the RSI, RI, and RIE
formats for the relative-branch instructions, the
contents of the I� field are treated as a 16-bit
signed binary integer designating a number of
halfwords. In the RIL format, the contents of the
I� field are treated as a 32-bit signed binary
integer designating a number of halfwords. The
branch address is the number of halfwords desig-
nated by the I� field added to the address of the
relative-branch instruction.

The 64-bit intermediate value for a relative branch
instruction in the RSI, RI, RIE, or RIL format is the
sum of two addends, with overflow from bit posi-
tion 0 ignored. In the RSI, RI, or RIE format, the
first addend is the contents of the I� field with one
zero bit appended on the right and 47 bits equal
to the sign bit of the contents appended on the
left. In the RIL format, the first addend is the con-
tents of the I� field with one zero bit appended on
the right and 31 bits equal to the sign bit of the
contents appended on the left. In all formats, the
second addend is the 64-bit address of the branch
instruction. The address of the branch instruction
is the instruction address in the PSW before that
address is updated to address the next sequential
instruction, or it is the address of the target of the

 Chapter 5. Program Execution 5-9

EXECUTE instruction if EXECUTE is used. If
EXECUTE is used in the 24-bit or 31-bit
addressing mode, the address of the branch
instruction is the target address with 40 or 33
zeros, respectively, appended on the left.

Formation of the Branch Address
The branch address is always 64 bits long, with
the bits numbered 0-63. The branch addresss
replaces bits 64-127 of the current PSW.

The manner in which the branch address is
obtained from the intermediate value depends on
the addressing mode. For those branch
instructions which change the addressing mode,
the new addressing mode is used. In the 24-bit
addressing mode, bits 0-39 of the intermediate
value are ignored, bits 0-39 of the branch address
are made zeros, and bits 40-63 of the interme-
diate value become bits 40-63 of the branch
address. In the 31-bit addressing mode, bits 0-32
of the intermediate value are ignored, bits 0-32 of
the branch address are made zeros, and bits
33-63 of the intermediate value become bits 33-63
of the branch address. In the 64-bit addressing
mode, bits 0-63 of the intermediate value become
bits 0-63 of the branch address.

For several branch instructions, branching
depends on satisfying a specified condition.
When the condition is not satisfied, the branch is
not taken, normal sequential instruction execution
continues, and the branch address is not used.
When a branch is taken, bits 0-63 of the branch
address replace bits 64-127 of the current PSW.
The branch address is not used to access storage
as part of the branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of
the instruction at the branch location are not
recognized as part of the branch operation but
instead are recognized as exceptions associated
with the execution of the instruction at the branch
location.

A branch instruction, such as BRANCH AND
SAVE, can designate the same general register
for branch-address computation and as the
location of an operand. Branch-address computa-

tion is completed before the remainder of the
operation is performed.

Instruction Execution and
Sequencing
The program-status word (PSW), described in
Chapter 4, “Control” contains information required
for proper program execution. The PSW is used
to control instruction sequencing and to hold and
indicate the status of the CPU in relation to the
program currently being executed. The active or
controlling PSW is called the current PSW.

Branch instructions perform the functions of deci-
sion making, loop control, and subroutine linkage.
A branch instruction affects instruction sequencing
by introducing a new instruction address into the
current PSW. The relative-branch instructions
with a 16-bit I� field allow branching to a location
at an offset of up to plus 64K - 2 bytes or minus
64K bytes relative to the location of the branch
instruction, without the use of a base register.
The relative-branch instructions with a 32-bit I�
field allow branching to a location at an offset of
up to plus 4G - 2 bytes or minus 4G bytes rela-
tive to the location of the branch instruction,
without the use of a base register.

 Decision Making

Facilities for decision making are provided by the
BRANCH ON CONDITION, BRANCH RELATIVE
ON CONDITION, and BRANCH RELATIVE ON
CONDITION LONG instructions. These
instructions inspect a condition code that reflects
the result of a majority of the arithmetic, logical,
and I/O operations. The condition code, which
consists of two bits, provides for four possible
condition-code settings: 0, 1, 2, and 3.

The specific meaning of any setting depends on
the operation that sets the condition code. For
example, the condition code reflects such condi-
tions as zero, nonzero, first operand high, equal,
overflow, and subchannel busy. Once set, the
condition code remains unchanged until modified
by an instruction that causes a different condition
code to be set. See Appendix C, “Condition-Code
Settings” on page C-1 for a summary of the
instructions which set the condition code.

5-10 z/Architecture Principles of Operation

 Loop Control

Loop control can be performed by the use of
BRANCH ON CONDITION, BRANCH RELATIVE
ON CONDITION, and BRANCH RELATIVE ON
CONDITION LONG to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arith-
metic and tests, BRANCH ON COUNT, BRANCH
ON INDEX HIGH, and BRANCH ON INDEX LOW
OR EQUAL are provided, and relative-branch
equivalents of these instructions are also provided.
These branches, being specialized, provide
increased performance for these tasks.

Subroutine Linkage without the
Linkage Stack

This section describes only the methods for sub-
routine linkage that do not use the linkage stack.
For the linkage extensions provided by the linkage
stack, see “Linkage-Stack Introduction” on
page 5-61. (Those extensions include a different
method of operation of the PROGRAM CALL
instruction and also the BRANCH AND STACK
and PROGRAM RETURN instructions.)

Simple Branch Instructions
Subroutine linkage when a change of the
addressing mode is not required is provided by
the BRANCH AND LINK and BRANCH AND
SAVE instructions. (This discussion of BRANCH
AND SAVE applies also to BRANCH RELATIVE
AND SAVE and BRANCH RELATIVE AND SAVE
LONG.) Both of these instructions permit not only
the introduction of a new instruction address but
also the preservation of a return address and
associated information. The return address is the
address of the instruction following the branch
instruction in storage, except that it is the address
of the instruction following an EXECUTE instruc-
tion that has the branch instruction as its target.

Both BRANCH AND LINK and BRANCH AND
SAVE have an R� field. They form a branch
address by means of fields that depend on the
instruction. The operations of the instructions are
summarized as follows:

� In the 24-bit addressing mode, both
instructions place the return address in bit
positions 40-63 of general register R� and
leave bits 0-31 of that register unchanged.

BRANCH AND LINK places the instruction-
length code for the instruction and also the
condition code and program mask from the
current PSW in bit positions 32-39 of general
register R�. BRANCH AND SAVE places
zeros in those bit positions.

� In the 31-bit addressing mode, both
instructions place the return address in bit
positions 33-63 and a one in bit position 32 of
general register R�, and they leave bits 0-31
of the register unchanged.

� In the 64-bit addressing mode, both
instructions place the return address in bit
positions 0-63 of general register R�.

� In any addressing mode, both instructions
generate the branch address under the control
of the current addressing mode. The
instructions place bits 0-63 of the branch
address in bit positions 64-127 of the PSW.
In the RR format, both instructions do not
perform branching if the R� field of the instruc-
tion is zero.

It can be seen that, in the 24-bit or 31-bit
addressing mode, BRANCH AND SAVE places
the basic-addressing-mode bit, bit 32 of the PSW,
in bit position 32 of general register R�. BRANCH
AND LINK does so in the 31-bit addressing mode.

The instructions BRANCH AND SAVE AND SET
MODE and BRANCH AND SET MODE are for
use when a change of the addressing mode is
required during linkage. These instructions have
R� and R� fields. The operations of the
instructions are summarized as follows:

� BRANCH AND SAVE AND SET MODE sets
the contents of general register R� the same
as BRANCH AND SAVE. In addition, the
instruction places the extended-
addressing-mode bit, bit 31 of the PSW, in bit
position 63 of the register.

� BRANCH AND SET MODE, if R� is nonzero,
performs as follows. In the 24- or 31-bit
mode, it places bit 32 of the PSW in bit posi-
tion 32 of general register R�, and it leaves
bits 0-31 and 33-63 of the register unchanged.
Note that bit 63 of the register should be zero
if the register contains an instruction address.
In the 64-bit mode, the instruction places bit
31 of the PSW (a one) in bit position 63 of
general register R�, and it leaves bits 0-62 of
the register unchanged.

 Chapter 5. Program Execution 5-11

� When R� is nonzero, both instructions set the
addressing mode and perform branching as
follows. Bit 63 of general register R� is
placed in bit position 31 of the PSW. If bit 63
is zero, bit 32 of the register is placed in bit
position 32 of the PSW. If bit 63 is one, PSW
bit 32 is set to one. Then the branch address
is generated from the contents of the register,
except with bit 63 of the register treated as a
zero, under the control of the new addressing
mode. The instructions place bits 0-63 of the
branch address in bit positions 64-127 of the
PSW. Bit 63 of general register R� remains
unchanged and, therefore, may be one upon
entry to the called program. If R� is the same
as R�, the results in the designated general
register are as specified for the R� register.

The operations of the simple branch instructions
are summarized in Figure 5-2 on page 5-13. For
contrast, the figure also shows the BRANCH ON
COUNT instruction, which is not for use in linkage,
and the LOAD ADDRESS and LOAD ADDRESS
EXTENDED instructions.

Programming Notes:

1. A called program that is entered in the 64-bit
addressing mode can use bit 63 of the entry-
point register to determine the instruction used
to perform the call and, thus, the instruction
that must be used to perform the return
linkage. If bit 63 is zero, BRANCH AND
SAVE (BAS or BASR) (or possibly BAL,
BALR, BRAS, or BRASL) was used, the

addressing mode of the caller is not indicated
in the return register, and BRANCH ON CON-
DITION (BCR) must be used to return without
changing the addressing mode during the
return. If bit 63 of the entry-point register is
one, BASSM or BSM was used, the
addressing mode of the caller is indicated in
the return register (or at least can be, in the
case of BSM), and BSM must be used to
return and restore the addressing mode of the
caller.

2. When BSM is executed in the 24-bit or 31-bit
addressing mode and used in a forward
linkage to set the 64-bit mode, and the R� and
R� of the instruction are the same value, bit
63 of the designated general register does
not, upon entry to the called program, cor-
rectly indicate the mode of the calling
program. (The bit is one, instead of zero,
because the program set bit 63 of the R� reg-
ister to one and the instruction does not
change bit 63 of the R� register in the 24- or
31-bit mode.) BASSM always correctly indi-
cates the addressing mode of the calling
program.

3. If an entry point can be branched to in the
64-bit addressing mode either by BAS or
BASR or by BASSM or BSM, one must be
subtracted from the entry-point register in the
BASSM or BSM case if the register is to be
named in a USING statement that provides
addressability.

5-12 z/Architecture Principles of Operation

┌───────────┬────────┬─────┬───────────────────────┬───────────┬─────┬───────┬───────┐
│ │ │ │ Address │ Branch or │ │ │ │
│ │ │ │ Placed in GR R� │2nd-Op Adr.│ │ │ │
│ │ │ ├─────┬─────┬─────┬─────┼─────┬─────┤ R� │ PSW │ PSW │
│ │ │ In │Bits │ Bit │Bits │ Bit │Bits │Bits │ Bit │Bit 31 │Bit 32 │
│Instruction│ Format │Mode │�-31 │ 32 │33-62│ 63 │�-32 │33-63│ 63 │Set to │Set to │
├───────────┼────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼───────┼───────┤
│ BALR�/BAL │ RR/RX │ 24 │ U │ ��� │ ��� │ IA │ SIA │ SIA │LSExc│ U │ U │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ 31 │ U │ BAM │ IA │ IA │ SIA │ SIA │LSExc│ U │ U │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ 64 │ IA │ IA │ IA │ IA │ SIA │ SIA │LSExc│ U │ U │
│ │ │ │ │ │ │ │ │ │ │ │ │
│BASR�/BAS/ │ RR/RX/ │24/31│ U │ BAM │ IA │ IA │ SIA │ SIA │LSExc│ U │ U │
│BRAS/BRASL │ RI/RIL │ │ │ │ │ │ │ │ │ │ │
│ │ │ 64 │ IA │ IA │ IA │ IA │ SIA │ SIA │LSExc│ U │ U │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ BASSM� │ RR │24/31│ U │ BAM │ IA │ IA │ SIA │ SIA │ � │ � │ R232 │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │24/31│ U │ BAM │ IA │ IA │ SIA │ SIA │ 1G� │ 1 │ 1 │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ 64 │ IA │ IA │ IA │ 1 │ SIA │ SIA │ � │ � │ R232 │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ 64 │ IA │ IA │ IA │ 1 │ SIA │ SIA │ 1G� │ 1 │ 1 │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ BSM�� │ RR │24/31│ U │ BAM │ U │ U │ SIA │ SIA │ � │ � │ R232 │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │24/31│ U │ BAM │ U │ U │ SIA │ SIA │ 1G� │ 1 │ 1 │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ 64 │ U │ U │ U │ 1 │ SIA │ SIA │ � │ � │ R232 │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ 64 │ U │ U │ U │ 1 │ SIA │ SIA │ 1G� │ 1 │ 1 │
│ │ │ │ │ │ │ │ │ │ │ │ │
│BCTR�/BCT/ │ RR/RX/ │24/31│ NLA │ NLA │ NLA │ NLA │ SIA │ SIA │LSExc│ U │ U │

| │BCTGR�/BCTG│ RRE/RXY│ │ │ │ │ │ │ │ │ │ │
│ │ │ 64 │ NLA │ NLA │ NLA │ NLA │ SIA │ SIA │LSExc│ U │ U │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ LA/LAE │ RX/RX │24/31│ U │ � │Op2Ad│Op2Ad│ FZ │ SR1 │ �/1 │ U │ U │
│ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ 64 │Op2Ad│Op2Ad│Op2Ad│Op2Ad│ SR1 │ SR1 │ �/1 │ U │ U │
└───────────┴────────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴───────┴───────┘

Figure 5-2 (Part 1 of 2). Summary of Simple Branch Linkage Instructions and Other Instructions

 Chapter 5. Program Execution 5-13

┌──┐
│Explanation: │
│ │
│ - The address does not exist, or the bit has no special effect. │
│ │
│ � The action associated with the R� field is not performed if the │
│ field is zero. │
│ │
│ �� The action associated with the R� or R� field is not performed │
│ if the field is zero. │
│ │
│ ��� The instruction-length code, condition code, and program mask │
│ are saved in bit positions 32-39 of the link address, and bits │
│ 4�-63 of the updated instruction address are saved in bit │
│ positions 4�-63. │
│ │
│ �/1 Bit 63 can be zero or one. │
│ │
│ 1G� Bit 63 is one and is left one, but the branch address is │
│ generated as if the bit is zero. │
│ │
│ BAM Bit 32 of the link address is set with the basic-addressing-mode│
│ bit, bit 32 of the PSW. │
│ │
│ FZ Bits �-32 of the second-operand address are forced to zeros in │
│ the 24-bit or 31-bit addressing mode. │
│ │
│ IA Bits of the link address are set with the updated instruction │
│ address as shown. │
│ │
│ LSExc A late specification exception is recognized if the bit is one. │
│ │
│ NLA The instruction does not produce a link address. (The │
│ instruction is shown simply as an example of a non-linkage │
│ branch instruction.) │
│ │
│ Op2Ad Bits of the address in general register R� are set with the │
│ corresponding bits of the second-operand address as shown. │
│ │
│ R232 The basic-addressing-mode bit, bit 32 of the PSW, is set with │
│ bit 32 of general register R�. │
│ │
│ SIA Bits �-63 of the branch address are used to set the instruction │
│ address in the PSW. Bits �-39 of the branch address are forced │
│ to zeros in the 24-bit addressing mode. Bits �-32 are forced to│
│ zeros in the 31-bit addressing mode. │
│ │
│ SR1 Bits of the second-operand address are used to set the │
│ corresponding bits of the address in the R� general register as │
│ shown. Bits �-39 of the second-operand address are forced to │
│ zeros in the 24-bit addressing mode. Bits �-32 are forced to │
│ zeros in the 31-bit addressing mode. │
│ │
│ U Unchanged. │
└──┘

Figure 5-2 (Part 2 of 2). Summary of Simple Branch Linkage Instructions and Other Instructions

5-14 z/Architecture Principles of Operation

Other Linkage Instructions
Linkage between a problem-state program and the
supervisor or monitoring program is provided by
means of the SUPERVISOR CALL and MONITOR
CALL instructions.

The instructions PROGRAM CALL and
PROGRAM TRANSFER provide the facility for
linkage between programs of different authority
and in different address spaces. PROGRAM
CALL permits linkage to a number of preassigned
programs that may be in either the problem or the
supervisor state and may be in either the same
address space or an address space different from
that of the caller. It permits a change between the
24-bit and 31-bit addressing modes, and it permits
an increase of PSW-key-mask authority, which
authorizes the execution of the SET PSW KEY
FROM ADDRESS instruction and also other func-
tions. In general, PROGRAM CALL is used to
transfer control to a program of higher authority.
PROGRAM TRANSFER permits a change of the
instruction address and address space and a
change between the 24-bit and 31-bit addressing
modes. PROGRAM TRANSFER also permits a
reduction of PSW-key-mask authority and a
change from the supervisor to the problem state.
In general, it is used to transfer control from one
program to another of equal or lower authority.

When a calling linkage is to increase authority, the
calling linkage can be performed by PROGRAM
CALL and the return linkage by PROGRAM
TRANSFER. Alternatively, when the calling
linkage is to decrease authority, the calling linkage
can be performed by PROGRAM TRANSFER and
the return linkage by PROGRAM CALL.

The operation of PROGRAM CALL is controlled
by means of an entry-table entry, which is located
as part of a table-lookup process during the exe-
cution of the instruction. The entry-table entry
specifies either a basic (nonstacking) operation or
the stacking operation described in “Linkage-Stack
Introduction” on page 5-61. The instruction
causes the primary address space to be changed
only when the ASN in the entry-table entry is
nonzero. When the primary address space is
changed, the operation is called PROGRAM CALL
with space switching (PC-ss). When the primary
address space is not changed, the operation is
called PROGRAM CALL to current primary
(PC-cp).

PROGRAM TRANSFER specifies the address
space which is to become the new primary
address space. When the primary address space
is changed, the operation is called PROGRAM
TRANSFER with space switching (PT-ss). When
the primary address space is not changed, the
operation is called PROGRAM TRANSFER to
current primary (PT-cp).

Basic PROGRAM CALL, and PROGRAM
TRANSFER, can be executed successfully in
either a basic (24-bit or 31-bit) addressing mode
or the extended (64-bit) addressing mode. They
do not provide a change between a basic
addressing mode and the extended addressing
mode.

The BRANCH AND SET AUTHORITY instruction
can improve performance by replacing a PT-cp
instruction used to perform a calling linkage in
which PSW-key-mask authority is reduced, and by
replacing a PC-cp instruction used to perform the
associated return linkage in which PSW-key-mask
authority is restored. BRANCH AND SET
AUTHORITY also permits changes between the
supervisor and problem states, and it can replace
SET PSW KEY FROM ADDRESS by changing
the PSW key during the linkage. The calling-
linkage operation is called BRANCH AND SET
AUTHORITY in the base-authority state (BSA-ba),
and the return-linkage operation is called
BRANCH AND SET AUTHORITY in the reduced-
authority state (BSA-ra).

The BRANCH IN SUBSPACE GROUP instruction
allows linkage within a group of address spaces
called a subspace group, where one address
space in the group is called the base space and
the others are called subspaces. It is intended
that each subspace contain a different subset of
the storage in the base space, that the base
space and each subspace contain a subsystem
control program, such as CICS, and application
programs, and that each subspace contain the
data for a single transaction being processed
under the subsystem control program. The place-
ment of the data for each transaction in a different
subspace prevents a program that is being exe-
cuted to process one particular transaction from
erroneously damaging the data of other trans-
actions. It is intended that the primary address
space be the base space when the control
program is being executed, and that it be the sub-
space for a transaction when an application

 Chapter 5. Program Execution 5-15

program is being executed to process that trans-
action. BRANCH IN SUBSPACE GROUP
changes not only the instruction address in the
PSW but also the primary address-space-control
element in control register 1. BRANCH IN SUB-
SPACE GROUP does not change the primary
ASN in control register 4 or the
primary-ASN-second-table-entry origin in control
register 5, and, therefore, the base space and the
subspaces all are associated with the same ASN,
and the programs in those address spaces all are
of equal authority.

Although a subspace is intended to be a subset of
the base space as described above, BRANCH IN
SUBSPACE GROUP does not require this, and
the instruction may be useful in ways other than
as described above.

BRANCH IN SUBSPACE GROUP uses an
access-list-entry token (ALET) in an access reg-
ister as an identifier of the address space that is
to receive control. The instruction saves the
updated instruction address to permit a return
linkage, but it does not save an identifier of the
address space from which control was transferred.
However, an ALET equal to 00000000 hex, called
ALET 0, can be used to return from a subspace to
the base space, and an ALET equal to 00000001
hex, called ALET 1, can be used to return from
the base space to the subspace that last had
control.

The SET ADDRESSING MODE (SAM24, SAM31,
SAM64) instruction can assist in linkage by setting
the 24-bit, 31-bit, or 64-bit addressing mode either
before or after a linkage operation.

The RESUME PROGRAM instruction is intended
for use by a problem-state interruption-handling
program to return to the interrupted program. The
interruption-handling program can use LOAD
ACCESS MULTIPLE and LOAD MULTIPLE
instructions to restore the contents of the inter-
rupted program's access and general registers
from a save area, except for the contents of one
access-and-general register pair. The interruption-
handling program then can use RESUME
PROGRAM to restore the contents of certain PSW
fields, including the instruction address, and also
the contents of the remaining access-and-general
pair from the save area, with that pair first being
used by RESUME PROGRAM to address the
save area.

The TRAP instruction (TRAP2, TRAP4) can
overlay instructions in an application program and
give control to a trap program for performing
fix-ups of data used by the application program.
The RESUME PROGRAM instruction can be used
to return control from the trap program to the
application program.

The linkage instructions provided and the func-
tions performed by each are summarized in
Figure 5-3 on page 5-17.

5-16 z/Architecture Principles of Operation

┌───────────┬──────┬───────────────┬───────────┬───────────┬───────────┬───────────┬─────────┬───────┐
│ │ │ Instruction │ Basic │ Extended │ Problem │ PASN │ │ │
│ │ │ Address │ Adr. Mode │ Adr. Mode │ State │ CR4 │ PSW-Key │ │
│ │ │PSW Bits 64-127│PSW Bit 32 │PSW Bit 31 │PSW Bit 15 │Bits 48-63 │ Mask │ │
│ │ ├───────┬───────┼─────┬─────┼─────┬─────┼─────┬─────┼─────┬─────┤ Changed │ │
│Instruction│Format│ Save │ Set │Save │ Set │Save │ Set │Save │ Set │Save │ Set │ in CR3 │ Trace │
├───────────┼──────┼───────┼───────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────────┼───────┤
│ BALR │ RR │ Yes� │ R�� │BAM31│ - │ - │ - │ - │ - │ - │ - │ - │ R�� │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BAL │ RX │ Yes� │ Yes │BAM31│ - │ - │ - │ - │ - │ - │ - │ - │ - │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BASR │ RR │ Yes │ R�� │ BAM │ - │ - │ - │ - │ - │ - │ - │ - │ R�� │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BAS │ RX │ Yes │ Yes │ BAM │ - │ - │ - │ - │ - │ - │ - │ - │ - │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BASSM │ RR │ Yes │ R�� │ BAM │ R�� │ Yes │ R�� │ - │ - │ - │ - │ - │ - │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BRAS │ RI │ Yes │ Yes │ BAM │ - │ - │ - │ - │ - │ - │ - │ - │ - │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BRASL │ RIL │ Yes │ Yes │ BAM │ - │ - │ - │ - │ - │ - │ - │ - │ - │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BSA-ba │ RRE │ Yes │ Yes │ BAM │ BAM │ - │ - │ Yes │ Yes�│ - │ - │"AND" R��│ Yes │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BSA-ra │ RRE │ R�� │ Yes │ R�� │ BAM │ │ │ - │ Yes │ - │ - │ Yes │ Yes │
│ │ │ │ │ BAM │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BSG │ RRE │ Yes │ Yes │ R�� │ BAM │ - │ - │ - │ - │ - │ -� │ - │ Yes │
│ │ │ │ │ BAM │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ BSM │ RR │ - │ R�� │ R�� │ R�� │ R�� │ R�� │ - │ - │ - │ - │ - │ - │
│ │ │ │ │ BAM │ │EAM64│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ MC#� │ SI │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ - │ - │ - │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ PC-cp │ S │ Yes │ Yes │ BAM │ BAM │ - │ - │ Yes │ Yes │ - │ - │"OR" EKM │ Yes │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ PC-ss │ S │ Yes │ Yes │ BAM │ BAM │ - │ - │ Yes │ Yes │ Yes │ Yes │"OR" EKM │ Yes │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ PT-cp │ RRE │ - │ R� │ - │ R� │ - │ - │ - │ R���│ - │ - │"AND" R� │ Yes │
│ │ │ │ │ │ BAM │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ PT-ss │ RRE │ - │ R� │ - │ R� │ - │ - │ - │ R���│ - │ Yes │"AND" R� │ Yes │
│ │ │ │ │ │ BAM │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ RP │ S │ - │ Yes │ - │ Yes │ - │ Yes │ - │ - │ - │ - │ - │ Yes │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ SAM24 │ E │ - │ - │ - │Yes �│ - │Yes �│ - │ - │ - │ - │ - │ Yes │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ SAM31 │ E │ - │ - │ - │Yes 1│ - │Yes �│ - │ - │ - │ - │ - │ Yes │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ SAM64 │ E │ - │ - │ - │Yes 1│ - │Yes 1│ - │ - │ - │ - │ - │ Yes │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ SVC� │ RR │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ - │ - │ - │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ TRAP2 │ E │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ Yes │ - │ - │ - │ - │ Yes │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ TRAP4 │ S │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ Yes │ - │ - │ - │ - │ Yes │
├───────────┴──────┴───────┴───────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────────┴───────┤
│Explanation: │
│ │
│ - No │
│ │
│ � In the 24-bit addressing mode, the instruction-length code, condition code, and program mask│
│ are saved in bit positions 32-39 of the R� general register. │
└──┘

Figure 5-3 (Part 1 of 2). Summary of Linkage Instructions without the Linkage Stack

 Chapter 5. Program Execution 5-17

┌──┐
│Explanation (Continued): │
│ │
│ �� A change from the supervisor to the problem state is allowed; a privileged-operation excep- │
│ tion is recognized when a change from the problem to the supervisor state is specified. │
│ │
│ # Monitor-mask bits provide a means of disallowing linkage, or enabling linkage, for selected │
│ classes of events. │
│ │
│ � The action takes place only if the associated R field in the instruction is nonzero. │
│ │
│ � MC and SVC, as part of the interruption, save the entire current PSW and load a new PSW. │
│ │
│ � The primary address-space-control element is set even though the PASN is not set. │
│ │
│ � The problem state is set. │
│ │
│ � The PSW key also is set from general register R�. │
│ │
│ BAM The basic-addressing-mode bit is saved or set only in the 24-bit or 31-bit addressing mode. │
│ │
│ BAM31 The basic-addressing-mode bit is saved only in the 31-bit addressing mode. │
│ │
│ EAM64 The extended-addressing-mode bit is saved only in the 64-bit addressing mode. │
│ │
│ R� The field or bit is saved in general register R�. │
│ │
│ R� The field or bit is set from general register R�. │
└──┘

Figure 5-3 (Part 2 of 2). Summary of Linkage Instructions without the Linkage Stack

Programming Note: This note describes the
simple branch-type linkage instructions that were
included in 370-XA and carried forward to
ESA/370, ESA/390, and z/Architecture. To give
the reader a better understanding of the utility and
intended usage of these linkage instructions, the
following paragraphs in this note describe various
program linkages and conventions and the use of
the linkage instructions in these situations.

The linkage instructions were originally provided to
permit System/370 programs to operate with no
modification or only slight modification on 370/XA
(and successor) systems and also to provide addi-
tional function for those programs which were
designed to take advantage of the 31-bit
addressing of 370/XA. The instructions provided
the capability for both old and new programs to
coexist in storage and to communicate with each
other. The instructions now have been enhanced
to permit usage of the 64-bit addressing of
z/Architecture.

With respect to System/370 programs, it is
assumed that old, unmodified programs operate in
the 24-bit addressing mode and call, or directly
communicate with, other programs operating in
the 24-bit addressing mode only. Modified pro-
grams normally operate in the 24-bit addressing

mode but may have called programs which
operate in either the 24-bit or 31-bit addressing
mode. They and also modified 370-XA, ESA/370,
and ESA/390 programs now may call programs
that operate in the 24-bit, 31-bit, or 64-bit
addressing mode. New programs may be written
to operate in any addressing mode, and, in some
cases, a program may be written such that it can
be invoked in any addressing mode.

BRANCH AND SAVE AND SET MODE (BASSM)
is intended to be the principal calling instruction to
subroutines outside of an assembler/linkage-editor
control section (CSECT), for use by all new pro-
grams and particularly by programs that must
change the addressing mode during the linkage.
The calling sequence has normally been:

 L 15,ACON
 BASSM 14,15
 ...
 EXTRN SUB
ACON DC A(X'8�������'+SUB)

where ACON is an A-type address constant, and
the X'80000000' should be present to give control
in the 31-bit addressing mode or should be
omitted to give control in the 24-bit addressing
mode.

The return from such a routine normally is:

5-18 z/Architecture Principles of Operation

 BSM �,14

It is assumed that the A-type address constant will
be extended so it may be an eight-byte field con-
taining a 64-bit entry-point address, with bit 63 of
the address indicating, when one, that the entry is
in the 64-bit addressing mode. This extended
constant is shown here as “ACONE.” The calling
sequence would normally be:

 LG 15,ACONE
 BASSM 14,15
 ...
 EXTRN SUB
ACONE DC AD(X'1'+SUB)

The return from such a routine would normally be:

 BSM �,14

When a change of the addressing mode is not
required, BRANCH AND LINK or BRANCH AND
SAVE should be used instead of BASSM.

The BRANCH AND LINK (BAL, BALR) instruction
is provided primarily for compatibility with
System/370. It is defined to operate in the 31-bit
and 64-bit addressing modes to increase the prob-
ability that an old, straightforward program can be
modified to operate in those addressing modes
with minimal or no change. It is recommended,
however, that BRANCH AND SAVE (BAS and
BASR) be used instead and that BRANCH AND
LINK be avoided since it places nonzero informa-
tion in bit positions 32-39 of the general register in
the 24-bit addressing mode, which may lead to
problems and may decrease performance.
BRANCH RELATIVE AND SAVE and BRANCH
RELATIVE AND SAVE LONG may be used
instead of BRANCH AND SAVE.

It is assumed that the normal return from a sub-
routine called in the 24-bit or 31-bit addressing
mode by BRANCH AND LINK (BAL or BALR) will
be:

 BCR 15,14

However, the standard “return instruction”:

 BSM �,14

operates correctly for all cases except for a calling
BAL executed in the 24-bit addressing mode. In
the 24-bit addressing mode, BAL causes an ILC of
10 to be placed in bit positions 32 and 33 of the
link register. Thus, a BSM would return in the
31-bit addressing mode. Note that an EXECUTE
of BALR in the 24-bit addressing mode also
causes the same ILC effect.

The BRANCH AND SAVE (BAS, BASR) instruc-
tion is provided to be used for subroutine linkage
to any program either within the same CSECT or
known to be in the same addressing mode.
BASR with the R� field 0 is also useful for
obtaining addressability to the instruction stream
by getting a 31-bit address, uncluttered by leftmost
fields, in the 24-bit addressing mode.

The instruction for returning from a routine called
in the 24-bit or 31-bit addressing mode by
BRANCH AND SAVE (BAS or BASR) may be
either:

 BCR 15,14

or:

 BSM �,14

The instruction for returning from a routine called
in the 64-bit addressing mode by BAS or BASR
must be BCR; BSM would set the 24-bit or 31-bit
addressing mode, depending on bit 32 of the link
register (an address bit), because bit 63 of the link
register (the rightmost bit of an instruction
address) is zero. BSM can always be used as the
return instruction if BASSM is used as the calling
instruction.

In some cases, it may be desirable to rewrite a
program that is called by an old program which
has not been rewritten. In such a case, the old
program, which operates in the 24-bit or 31-bit
addressing mode, will be given the address of an
intermediate program that will set up the correct
entry and return modes and then call the rewritten
program. Such an intermediate program is some-
times referred to as a glue module. The instruc-
tion BRANCH AND SET MODE (BSM) with a
nonzero R� field provides the function necessary
to perform this operation efficiently. This is shown
in Figure 5-4 on page 5-20 for a linkage from a
24-bit-mode program to a 31-bit-mode program.

Note that the “BSM 14,15” in the glue module
causes either an indication of the 64-bit
addressing mode to be saved in bit position 63 of
general register 14 or an indication of one of the
24-bit and 31-bit addressing modes to be saved in
bit position 32 of the register, and that the other
bits of the register are unchanged. Thus, when
“BSM 0,14” is executed in the new program,
control passes directly back to the old program
without passing through the glue module again.

 Chapter 5. Program Execution 5-19

┌──┐
│ │
│ Old Program Glue Module New Program │
│ │
│ L 15,OLDACON │
│ BALR 14,15 │
│ � │
│ � │
│ � │
│ EXTRN GLUE │
│ OLDACON DC A(GLUE) │
│ GLUE CSECT │
│ USING �,15 │
│ L 15,NEWACON │
│ BSM 14,15 │
│ EXTRN NEW │
│ NEWACON DC A(NEW) │
│ NEW CSECT │
│ USING �,15 │
│ � │
│ � │
│ � │
│ BSM �,14 │
│ │
└──┘

Figure 5-4. Glue Module for Linkage from the 24-Bit Mode to the 31-Bit Mode

The glue module could give control to a program
in the 64-bit addressing mode and possibly above
the 2G-byte boundary by loading an eight-byte
A-type address constant, with bit 63 set to one,
instead of a four-byte A-type address constant.

 Interruptions

Interruptions permit the CPU to change state as a
result of conditions external to the system, in sub-
channels or input/output (I/O) devices, in other
CPUs, or in the CPU itself. Details are to be
found in Chapter 6, “Interruptions.”

Six classes of interruption conditions are provided:
external, I/O, machine check, program, restart,
and supervisor call. Each class has two related
PSWs, called old and new, in permanently
assigned real storage locations. In all classes, an
interruption involves storing information identifying
the cause of the interruption, storing the current
PSW at the old-PSW location, and fetching the
PSW at the new-PSW location, which becomes
the current PSW.

The old PSW contains CPU-status information
necessary for resumption of the interrupted
program. At the conclusion of the program
invoked by the interruption, the instruction LOAD

PSW EXTENDED may be used to restore the
current PSW to the value of the old PSW.

Types of Instruction Ending

Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Partial completion of instruction execution occurs
only for interruptible instructions; it is described in
“Interruptible Instructions” on page 5-21.

 Completion
Completion of instruction execution provides
results as called for in the definition of the instruc-
tion. When an interruption occurs after the com-
pletion of the execution of an instruction, the
instruction address in the old PSW designates the
next sequential instruction.

 Suppression
Suppression of instruction execution causes the
instruction to be executed as if it specified “no
operation.” The contents of any result fields,
including the condition code, are not changed.
The instruction address in the old PSW on an
interruption after suppression designates the next
sequential instruction.

5-20 z/Architecture Principles of Operation

 Nullification
Nullification of instruction execution has the same
effect as suppression, except that when an inter-
ruption occurs after the execution of an instruction
has been nullified, the instruction address in the
old PSW designates the instruction whose exe-
cution was nullified (or an EXECUTE instruction,
as appropriate) instead of the next sequential
instruction.

 Termination
Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation
may replace all, part, or none of the contents of
the designated result fields and may change the
condition code if such change is called for by the
instruction. Unless the interruption is caused by a
machine-check condition, the validity of the
instruction address in the PSW, the interruption
code, and the ILC are not affected, and the state
or the operation of the machine is not affected in
any other way. The instruction address in the old
PSW on an interruption after termination desig-
nates the next sequential instruction.

Programming Note: Although the execution of
an instruction is treated as a no-operation when
suppression or nullification occurs, stores may be
performed as the result of the implicit tracing
action associated with some instructions. See
“Tracing” on page 4-10.

 Interruptible Instructions

Point of Interruption
For most instructions, the entire execution of an
instruction is one operation. An interruption is per-
mitted between operations; that is, an interruption
can occur after the performance of one operation
and before the start of a subsequent operation.

For the following instructions, referred to as inter-
ruptible instructions, an interruption is permitted
also after partial completion of the instruction:

� COMPARE AND FORM CODEWORD
� COMPARE LOGICAL LONG
� COMPARE UNTIL SUBSTRING EQUAL

| � COMPRESSION CALL
 � MOVE LONG
 � MOVE LONG
 � TEST BLOCK
 � UPDATE TREE

Unit of Operation
Whenever points of interruption that include those
occurring within the execution of an interruptible
instruction are discussed, the term “unit of
operation” is used. For a noninterruptible instruc-
tion, the entire execution consists, in effect, in the
execution of one unit of operation.

The execution of an interruptible instruction is con-
sidered to consist in the execution of a number of
units of operation, and an interruption is permitted
between units of operation. The amount of data
processed in a unit of operation depends on the
particular instruction and may depend on the
model and on the particular condition that causes
the execution of the instruction to be interrupted.

When an instruction execution consists of a
number of units of operation and an interruption
occurs after some, but not all, units of operation
have been completed, the instruction is said to be
partially completed. In this case, the type of
ending (completion, nullification, or suppression) is
associated with the unit of operation. In the case
of termination, the entire instruction is terminated,
not just the unit of operation.

An exception may exist that causes the first unit of
operation of an interruptible instruction not to be
completed. In this case when the ending is
nullification or suppression, all operand parame-
ters and result locations remain unchanged,
except that the condition code is unpredictable if
the instruction is defined to set the condition code.

When a storage-alteration PER event is recog-
nized, fewer than 4K additional bytes are stored
before the event is indicated by an interruption.

Execution of Interruptible Instructions
The execution of an interruptible instruction is
completed when all units of operation associated
with that instruction are completed. When an
interruption occurs after completion, nullification,
or suppression of a unit of operation, all preceding
units of operation have been completed, and sub-
sequent units of operation and instructions have
not been started. The main difference between
these types of ending is the handling of the
current unit of operation and whether the instruc-
tion address stored in the old PSW identifies the
current instruction or the next sequential instruc-
tion.

 Chapter 5. Program Execution 5-21

At the time of an interruption, changes to storage
locations or register contents which are due to be
made by instructions following the interrupted
instruction have not yet been made.

Completion: On completion of the last unit of
operation of an interruptible instruction, the
instruction address in the old PSW designates the
next sequential instruction. The result location for
the current unit of operation has been updated. It
depends on the particular instruction how the
operand parameters are adjusted. On completion
of a unit of operation other than the last one, the
instruction address in the old PSW designates the
interrupted instruction or an EXECUTE instruction,
as appropriate. The result location for the current
unit of operation has been updated. The operand
parameters are adjusted such that the execution
of the interrupted instruction is resumed from the
point of interruption when the old PSW stored
during the interruption is made the current PSW.

Nullification: When a unit of operation is nulli-
fied, the instruction address in the old PSW desig-
nates the interrupted instruction or an EXECUTE
instruction, as appropriate. The result location for
the current unit of operation remains unchanged.
The operand parameters are adjusted such that, if
the instruction is reexecuted, execution of the
interrupted instruction is resumed with the current
unit of operation.

Suppression: When a unit of operation is sup-
pressed, the instruction address in the old PSW
designates the next sequential instruction. The
operand parameters, however, are adjusted so as
to indicate the extent to which instruction exe-
cution has been completed. If the instruction is
reexecuted after the conditions causing the sup-
pression have been removed, the execution is
resumed with the current unit of operation.

Termination: When an exception which causes
termination occurs as part of a unit of operation of
an interruptible instruction, the entire operation is
terminated, and the contents, in general, of any
fields due to be changed by the instruction are
unpredictable. On such an interruption, the
instruction address in the old PSW designates the
next sequential instruction.

The differences among the four types of ending
for a unit of operation are summarized in
Figure 5-5.

┌──────────────┬─────────────┬─────────────┬──────────────┐
│ Unit of │ Instruction │ Operand │Current Result│
│ Operation Is │ Address │ Parameters │ Location │
├──────────────┼─────────────┼─────────────┼──────────────┤
│Completed │ │ │ │
│ Last unit │Next instruc-│Depends on │Changed │
│ of oper- │ tion │ the instruc-│ │
│ ation │ │ tion │ │
│ Any other │Current in- │Next unit of │Changed │
│ unit of │ struction │ operation │ │
│ operation │ │ │ │
│ │ │ │ │
│Nullified │Current in- │Current unit │Unchanged │
│ │ struction │ of operation│ │
│ │ │ │ │
│Suppressed │Next instruc-│Current unit │Unchanged │
│ │ tion │ of operation│ │
│ │ │ │ │
│Terminated │Next instruc-│Unpredictable│Unpredictable │
│ │ tion │ │ │
└──────────────┴─────────────┴─────────────┴──────────────┘

Figure 5-5. Types of Ending for a Unit of Operation

If an instruction is defined to set the condition
code, the execution of the instruction makes the
condition code unpredictable except when the last
unit of operation has been completed.

Condition-Code Alternative to
Interruptibility
The following instructions are not interruptible
instructions but instead may be completed after
performing a CPU-determined subportion of the
processing specified by the parameters of the
instructions:

 � CHECKSUM
� COMPARE LOGICAL LONG EXTENDED
� COMPARE LOGICAL LONG UNICODE
� COMPARE LOGICAL STRING
� CONVERT UNICODE TO UTF-8
� CONVERT UTF-8 TO UNICODE
� MOVE LONG EXTENDED
� MOVE LONG UNICODE

 � MOVE STRING
 � SEARCH STRING
 � TRANSLATE EXTENDED
� TRANSLATE ONE TO ONE
� TRANSLATE ONE TO TWO
� TRANSLATE TWO TO ONE
� TRANSLATE TWO TO TWO

When any of the above instructions is completed
after performing only a CPU-determined amount of
processing instead of all specified processing, the
instruction sets condition code 3. On such com-
pletion, the instruction address in the PSW desig-
nates the next sequential instruction, and the
operand parameters of the instruction have been
adjusted so that the processing of the instruction
can be resumed simply by branching back to the

5-22 z/Architecture Principles of Operation

instruction to execute it again. When the instruc-
tion has performed all specified processing, it sets
a condition code other than 3.

The points at which any of the above instructions
may set condition code 3 are comparable to the
points of interruption of an interruptible instruction,
and the amount of processing between adjacent
points is comparable to a unit of operation of an
interruptible instruction. However, since the
instruction is not interruptible, each execution is
considered the execution of one unit of operation.

Completion with the setting of condition code 3
permits interruptions to occur. Depending on the
model and the instruction, condition code 3 may or
may not be set when there is not a need for an
interruption.

When a storage-alteration PER event is recog-
nized, fewer than 4K additional bytes are stored
before the event is indicated by an interruption.

The COMPARE UNTIL SUBSTRING EQUAL and
COMPRESSION CALL instructions both are inter-
ruptible instructions and ones that may set condi-
tion code 3 after performing a CPU-determined
amount of processing.

Programming Notes:

1. Any interruption, other than supervisor call
and some program interruptions, can occur
after a partial execution of an interruptible
instruction. In particular, interruptions for
external, I/O, machine-check, restart, and
program interruptions for access exceptions
and PER events can occur between units of
operation.

2. The amount of data processed in a unit of
operation of an interruptible instruction
depends on the model and may depend on
the type of condition which causes the exe-
cution of the instruction to be interrupted or
stopped. Thus, when an interruption occurs at
the end of the current unit of operation, the
length of the unit of operation may be different
for different types of interruptions. Also, when
the stop function is requested during the exe-
cution of an interruptible instruction, the CPU
enters the stopped state at the completion of
the execution of the current unit of operation.
Similarly, in the instruction-step mode, only a
single unit of operation is performed, but the

unit of operation for the various cases of stop-
ping may be different.

Exceptions to Nullification and
Suppression

In certain unusual situations, the result fields of an
instruction having a store-type operand are
changed in spite of the occurrence of an exception
which would normally result in nullification or sup-
pression. These situations are exceptions to the
general rule that the operation is treated as a no-
operation when an exception requiring nullification
or suppression is recognized. Each of these situ-
ations may result in the turning on of the change
bit associated with the store-type operand, even
though the final result in storage may appear
unchanged. Depending on the particular situation,
additional effects may be observable. The extent
of these effects is described along with each of
the situations.

All of these situations are limited to the extent that
a store access does not occur and the change bit
is not set when the store access is prohibited. For
the CPU, a store access is prohibited whenever
an access exception exists for that access, or
whenever an exception exists which is of higher
priority than the priority of an access exception for
that access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the
instruction address in the old PSW designates the
next sequential instruction. When an interruption
for an exception requiring nullification occurs, the
instruction address in the old PSW designates the
instruction causing the exception even though
partial results may have been stored.

Storage Change and Restoration for
DAT-Associated Access Exceptions
In this section, the term “DAT-associated access
exceptions” is used to refer to those exceptions
which may occur as part of the dynamic-
address-translation process. These exceptions
are ASCE-type, region-first translation, region-
second translation, region-third translation,
segment translation, page translation, translation
specification, and addressing due to a DAT-table
entry being designated at a location that is not
available in the configuration. The first six of
these exceptions normally cause nullification, and

 Chapter 5. Program Execution 5-23

the last two normally cause suppression. Pro-
tection exceptions, including those due to page
protection, are not considered to be
DAT-associated access exceptions.

For DAT-associated access exceptions, on some
models, channel programs may observe the
effects on storage as described in the following
case.

When, for an instruction having a store-type
operand, a DAT-associated access exception is
recognized for any operand of the instruction, that
portion, if any, of the store-type operand which
would not cause an exception may be changed to
an intermediate value but is then restored to the
original value.

The accesses associated with storage change and
restoration for DAT-associated access exceptions
are only observable by channel programs and are
not observable by other CPUs in a multiproc-
essing configuration. Except for instructions which
are defined to have multiple-access operands, the
intermediate value, if any, is always equal to what
would have been the final value if the
DAT-associated access exception had not
occurred.

Programming Notes:

1. Storage change and restoration for
DAT-associated access exceptions occur in
two main situations:

a. The exception is recognized for a portion
of a store-type operand which crosses a
page boundary, and the other portion has
no access exception.

b. The exception is recognized for one
operand of an instruction having two
storage operands (for example, an
SS-format instruction or MOVE LONG),
and the other operand, which is a store-
type operand, has no access exception.

2. To avoid letting a channel program observe
intermediate operand values due to storage
change and restoration for DAT-associated
access exceptions (especially when a CCW
chain is modified), the CPU program should
do one of the following:

a. Operate on one storage page at a time

b. Perform preliminary testing to ensure that
no exceptions occur for any of the
required pages

c. Operate with DAT off

Modification of DAT-Table Entries
When a valid and attached DAT-table entry is
changed to a value which would cause an excep-
tion, and when, before the TLB is cleared of
entries which qualify for substitution for that entry,
an attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
the contents of any fields due to be changed by
the instruction are unpredictable. Results, if any,
associated with the virtual address whose
DAT-table entry was changed may be placed in
those real locations originally associated with the
address. Furthermore, it is unpredictable whether
or not an interruption occurs for an access excep-
tion that was not initially applicable. On some
machines, this situation may be reported by
means of an instruction-processing-damage
machine check with the delayed-access-exception
bit also indicated.

Trial Execution for Editing Instructions
and Translate Instruction
For the instructions EDIT, EDIT AND MARK, and
TRANSLATE, the portions of the operands that
are actually used in the operation may be estab-
lished in a trial execution for operand accessibility
that is performed before the execution of the
instruction is started. This trial execution consists
in an execution of the instruction in which results
are not stored. If the first operand of TRANS-
LATE or either operand of EDIT or EDIT AND
MARK is changed by another CPU or by a
channel program, after the initial trial execution but
before completion of execution, the contents of
any fields due to be changed by the instruction
are unpredictable. Furthermore, it is unpredictable
whether or not an interruption occurs for an
access exception that was not initially applicable.

 Authorization Mechanisms
The authorization mechanisms that are described
in this section permit the control program to estab-
lish the degree of function provided to a particular
semiprivileged program. The authorization mech-
anisms are intended for use by programs consid-
ered to be semiprivileged, that is, programs that

5-24 z/Architecture Principles of Operation

are executed in the problem state but which may
be authorized to use additional capabilities. With
these authorization controls, a hierarchy of pro-
grams may be established, with programs at a
higher level having a greater degree of privilege or
authority than programs at a lower level. The
range of functions available at each level, and the
ability to transfer control from a lower to a higher
level, are specified in tables which are managed
by the control program. When the linkage stack is
used, a nonhierarchical transfer of control also can
be specified.

A semiprivileged instruction is one which can be
executed in the problem state, but which is subject
to the control of one or more of the authorization
mechanisms described in this section. There are
28 semiprivileged instructions and also the privi-
leged LOAD ADDRESS SPACE PARAMETERS
instruction that are controlled by the authorization
mechanisms. All of these semiprivileged and priv-
ileged instructions are described in Chapter 10,
“Control Instructions.”

The instructions controlled by the authorization
mechanisms are listed in Figure 5-6 on
page 5-28. The figure also shows additional
authorization mechanisms that do not control spe-
cifically semiprivileged instructions; they control
implicit access-register translation (access-register
translation as part of an instruction making a
storage reference) and also access-register trans-
lation in the LOAD REAL ADDRESS, STORE
REAL ADDRESS, TEST ACCESS, and TEST

| PROTECTION instructions and a special form of
| access-register translation in the BRANCH IN
| SUBSPACE GROUP instruction. These additional

mechanisms (the extended authorization index,
ALE sequence number, and ASTE sequence
number) are described in “Access-Register-
Specified Address Spaces” on page 5-36.

 Mode Requirements
Most of the semiprivileged instructions can be
executed only with DAT on. Basic PROGRAM
CALL, and PROGRAM TRANSFER, are valid only
in the primary-space mode. (Basic PROGRAM
CALL is the PROGRAM CALL operation when the
linkage stack is not used. When the linkage stack
is used, the PROGRAM CALL operation is called
stacking PROGRAM CALL). MOVE TO
PRIMARY and MOVE TO SECONDARY are valid
only in the primary-space and secondary-space

modes. BRANCH AND STACK, stacking
PROGRAM CALL, and PROGRAM RETURN are
valid only in the primary-space and access-
register modes. EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, and
MODIFY STACKED STATE are valid only in the
primary-space, access-register, and home-space
modes. When a semiprivileged instruction is exe-
cuted in an invalid translation mode, a special-
operation exception is recognized.

PROGRAM TRANSFER specifies a new value for
the problem-state bit in the PSW. If a program in
the problem state attempts to execute PROGRAM
TRANSFER and set the supervisor state, a
privileged-operation exception is recognized. A
privileged-operation exception is also recognized
on an attempt to use RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST to set the home-space
mode in the problem state.

 Extraction-Authority Control
The extraction-authority-control bit is located in bit
position 36 of control register 0. In the problem
state, bit 36 must be one to allow completion of
these instructions:

� EXTRACT PRIMARY ASN
� EXTRACT SECONDARY ASN
� INSERT ADDRESS SPACE CONTROL
� INSERT PSW KEY
� INSERT VIRTUAL STORAGE KEY

Otherwise, a privileged-operation exception is
recognized. The extraction-authority control is not
examined in the supervisor state.

 PSW-Key Mask
The PSW-key mask consists of bits 32-47 in
control register 3, with the bits corresponding to
the values 0-15, respectively, of the PSW key.
These bits are used in the problem state to control
which keys and entry points are authorized for the
program. The PSW-key mask is modified by
PROGRAM TRANSFER, is modified or loaded by
BRANCH AND SET AUTHORITY and PROGRAM
CALL, and is loaded by LOAD ADDRESS SPACE
PARAMETERS and PROGRAM RETURN. The
PSW-key mask is used in the problem state to
control the following:

� The PSW-key values that can be set by
means of the instruction SET PSW KEY
FROM ADDRESS.

 Chapter 5. Program Execution 5-25

� The PSW-key values that are valid for the six
move instructions that specify a second
access key: MOVE PAGE, MOVE TO
PRIMARY, MOVE TO SECONDARY, MOVE
WITH KEY, MOVE WITH SOURCE KEY, and
MOVE WITH DESTINATION KEY.

� The entry points which can be called by
means of PROGRAM CALL. In this case, the
PSW-key mask is ANDed with the authori-
zation key mask in the entry-table entry, and,
if the result is zero, the program is not author-
ized.

When an instruction in the problem state attempts
to use a key not authorized by the PSW-key
mask, a privileged-operation exception is recog-
nized. The same action is taken when an instruc-
tion in the problem state attempts to call an entry
not authorized by the PSW-key mask. The
PSW-key mask is not examined in the supervisor
state, all keys and entry points being valid.

 Secondary-Space Control
Bit 37 of control register 0 is the secondary-
space-control bit. This bit provides a mechanism
whereby the control program can indicate whether
or not the secondary region-first table, region-
second table, region-third table or segment table
has been established. Bit 37 may be required to
be one to allow completion of SET ADDRESS
SPACE CONTROL FAST and must be one to
allow completion of these instructions:

� MOVE TO PRIMARY
� MOVE TO SECONDARY
� SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception is recog-
nized. The secondary-space control is examined
in both the problem and supervisor states.

 Subsystem-Linkage Control
Bit 192 of the primary ASN-second-table entry is
the subsystem-linkage-control bit. The
subsystem-linkage control must be one to allow
completion of these instructions:

 � PROGRAM CALL
 � PROGRAM TRANSFER

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and supervisor states and
controls both the space-switching and current-
primary versions of the instructions.

 ASN-Translation Control
Bit 44 of control register 14 is the
ASN-translation-control bit. This bit provides a
mechanism whereby the control program can indi-
cate whether ASN translation may occur while a
particular program is being executed. Bit 44 must
be one to allow completion of these instructions:

� LOAD ADDRESS SPACE PARAMETERS
� SET SECONDARY ASN
� PROGRAM CALL with space switching
� PROGRAM RETURN with space switching

and also when the restored secondary ASN is
not equal to the restored primary ASN

� PROGRAM TRANSFER with space switching

Otherwise, a special-operation exception is recog-
nized. The ASN-translation control is examined in
both the problem and supervisor states. The
ASN-translation control is examined by
PROGRAM CALL even though PROGRAM CALL
obtains the address of the ASN-second-table entry
directly from the entry-table entry instead of by
performing ASN translation.

 Authorization Index
The authorization index is contained in bit posi-
tions 32-47 of control register 4. The authorization
index is associated with the primary address
space and is loaded along with the PASN when
PROGRAM CALL with space switching,
PROGRAM RETURN with space switching,
PROGRAM TRANSFER with space switching, or
LOAD ADDRESS SPACE PARAMETERS is exe-
cuted. The authorization index is used to deter-
mine whether a program is authorized to establish
a particular address space. A program may be
authorized to establish the address space as a
secondary-address space, as a primary-address
space, or both. The authorization index is exam-
ined in both the problem and supervisor states.

Associated with each address space is an
authority table. The authorization index is used to
select an entry in the authority table. Each entry
contains two bits, which indicate whether the
program with that authorization index is permitted
to establish the address space as a primary
address space, as a secondary address space, or
both.

The instruction SET SECONDARY ASN with
space switching, and the instruction PROGRAM
RETURN when the restored secondary ASN is not
equal to the restored primary ASN, use the

5-26 z/Architecture Principles of Operation

authorization index to test the secondary-authority
bit in the authority-table entry to determine if the
address space can be established as a secondary
address space. The tested bit must be one; oth-
erwise, a secondary-authority exception is recog-
nized.

The instruction PROGRAM TRANSFER with
space switching uses the authorization index to
test the primary-authority bit in the authority-table
entry to determine if the address space can be
established as a primary address space. The
tested bit must be one; otherwise, a primary-
authority exception is recognized.

The instruction PROGRAM CALL with space
switching causes a new authorization index to be

loaded from the ASN-second-table entry. This
permits the program which is called to be given an
authorization index which authorizes it to access
more or different address spaces than those
authorized for the calling program. The
instructions PROGRAM RETURN with space
switching and PROGRAM TRANSFER with space
switching restore the authorization index that is
associated with the returned-to address space.

The secondary-authority bit in the authority-table
entry may also be used, along with the extended
authorization index, to determine if the program is
authorized to use an access-list entry in access-
register translation. This is described in “Access-
Register-Specified Address Spaces” on
page 5-36.

 Chapter 5. Program Execution 5-27

┌────────────┬───────────┬──┬───────┐
│ │ │ Authorization Mechanism │ │
│ │ ├─────┬─────┬───────┬─────┬──────┬──────┬──────┬────┬────┤Space │
│ │ Mode │ │ │ │ │PSW- │ │Ext.- │ │ │Sw.- │
│ │Requirement│ │Sec.-│ASN- │Extr.│Key │Auth. │Auth. │ │ │Event │
│Function ├───┬───────┤Subs.│Space│Trans. │Auth.│Mask │Index │Index │ALE │ASTE│Ctl. │
│or │Pr.│Trans. │Link.│Ctl.(│Ctl. │Ctl.(│(3.32-│(4.32-│(8.32-│Seq.│Seq.│(1.57, │
│Instruction │Op.│Mode │Ctl.�│�.37)│(14.44)│�.36)│3.47) │4.47) │8.47) │No.%│No.
│13.57) │
├────────────┼───┼───────┼─────┼─────┼───────┼─────┼──────┼──────┼──────┼────┼────┼───────┤
│Implicit │ │ A │ │ │ │ │ │ │ EA │ALQ │ASQ │ │
│ AR transl. │ │ │ │ │ │ │ │ │ │ │ │ │
│BAKR │ │SO-PA │ │ │ │ │ │ │ │ │ │ │
│BSA-ba │ │ │ │ │ │ │ Q │ │ │ │ │ │
│BSA-ra │ │ │ │ │ │ │ │ │ │ │ │ │
│BSG │ │SO-PSAH│ │ │ │ │ │ │ │ │ASQ │ │
│EPAR │ │SO-PSAH│ │ │ │ Q │ │ │ │ │ │ │
├────────────┼───┼───────┼─────┼─────┼───────┼─────┼──────┼──────┼──────┼────┼────┼───────┤
│EREG │ │SO-PAH │ │ │ │ │ │ │ │ │ │ │
│EREGG │ │SO-PAH │ │ │ │ │ │ │ │ │ │ │
│ESAR │ │SO-PSAH│ │ │ │ Q │ │ │ │ │ │ │
│ESTA │ │SO-PAH │ │ │ │ │ │ │ │ │ │ │
│IAC │ │SO-PSAH│ │ │ │ Q │ │ │ │ │ │ │
│IPK │ │ │ │ │ │ Q │ │ │ │ │ │ │
├────────────┼───┼───────┼─────┼─────┼───────┼─────┼──────┼──────┼──────┼────┼────┼───────┤
│IVSK │ │SO-PSAH│ │ │ │ Q │ │ │ │ │ │ │
│LASP │ P │ │ │ │ SO │ │ │ CC │ │ │ │ CC │
│LRA │ P │ │ │ │ │ │ │ │ CCA │CCA │CCA │ │
│LRAG │ P │ │ │ │ │ │ │ │ CCA │CCA │CCA │ │
│MSTA │ │SO-PAH │ │ │ │ │ │ │ │ │ │ │
│MVCDK │ │ │ │ │ │ │ Q │ │ │ │ │ │
├────────────┼───┼───────┼─────┼─────┼───────┼─────┼──────┼──────┼──────┼────┼────┼───────┤
│MVCP │ │SO-PS │ │ SO │ │ │ Q │ │ │ │ │ │
│MVCS │ │SO-PS │ │ SO │ │ │ Q │ │ │ │ │ │
│MVCSK │ │ │ │ │ │ │ Q │ │ │ │ │ │
│bPC-cp │ │SO-P │ SO │ │ │ │ Q� │ │ │ │ │ │
│sPC-cp │ │SO-PA │ SO │ │ │ │ Q� │ │ │ │ │ │
│bPC-ss │ │SO-P │ SO │ │ SO │ │ Q� │ │ │ │ │ X1 │
├────────────┼───┼───────┼─────┼─────┼───────┼─────┼──────┼──────┼──────┼────┼────┼───────┤
│sPC-ss │ │SO-PA │ SO │ │ SO │ │ Q� │ │ │ │ │ X1 │
│PR-cp │ │SO-PA │ │ │ SO� │ │ │ SA� │ │ │ │ │
│PR-ss │ │SO-PA │ │ │ SO │ │ │PASA� │ │ │ │ X1 │
│PT-cp │ Q�│SO-P │ SO │ │ │ │ │ │ │ │ │ │
│PT-ss │ Q�│SO-P │ SO │ │ SO │ │ │ PA │ │ │ │ X1 │
│RP │ │ │ │ │ │ │ │ │ │ │ │ X2 │
├────────────┼───┼───────┼─────┼─────┼───────┼─────┼──────┼──────┼──────┼────┼────┼───────┤
│SAC │ Q�│SO-PSAH│ │ SO │ │ │ │ │ │ │ │ X2 │
│SACF │ Q�│SO-PSAH│ │ SO	 │ │ │ │ │ │ │ │ X2 │
│SPKA │ │ │ │ │ │ │ Q │ │ │ │ │ │
│SSAR-cp │ │SO-PSAH│ │ │ SO │ │ │ │ │ │ │ │
│SSAR-ss │ │SO-PSAH│ │ │ SO │ │ │ SA │ │ │ │ │

| │STRAG │ P │ │ │ │ │ │ │ │ │ │ │ │
├────────────┼───┼───────┼─────┼─────┼───────┼─────┼──────┼──────┼──────┼────┼────┼───────┤
│TAR │ │ │ │ │ │ │ │ │ CC │ CC │ CC │ │
│TPROT │ P │ │ │ │ │ │ │ │ CC │ CC │ CC │ │
└────────────┴───┴───────┴─────┴─────┴───────┴─────┴──────┴──────┴──────┴────┴────┴───────┘

Figure 5-6. Summary of Authorization Mechanisms

5-28 z/Architecture Principles of Operation

Explanation for Summary of Authorization
Mechanisms:

� The PSW-key mask is ANDed with the
authorization key mask in the entry-
table entry.

� The exception is recognized on an
attempt to set the supervisor state
when in the problem state.

� The exception is recognized on an
attempt to set the home-space mode
when in the problem state.

� ASN translation is performed for the
new SASN, and the exception may be
recognized, only when the new SASN
is not equal to the new PASN.

� Secondary authority is checked for the
new SASN, and the exception may be
recognized, only when the new SASN
is not equal to the new PASN.

� Subsystem-linkage control is bit 192 of
the primary ASN-second-table entry.

% ALE sequence number is bits 8-15 of
the access-list-entry token and bits 8-15
of the access-list entry.

 ASTE sequence number is bits 96-127
of the access-list entry and bits
160-191 of the ASN-second-table entry.

	 Whether the exception is recognized is
unpredictable.

A Access-register translation occurs only
in the access-register mode.

ALQ ALE-sequence exception.

ASQ ASTE-sequence exception.

bPC Basic (nonstacking) PROGRAM CALL.

CC Test results in setting a condition code.

CCA Test results in setting a condition code.
The test occurs only in the access-
register mode.

CRx.y Control register x, bit position y.

EA Extended-authority exception.

P Privileged-operation exception for privi-
leged instruction.

PA Primary-authority exception.

PASA Primary-authority exception or
secondary-authority exception.

Q Privileged-operation exception for semi-
privileged instruction. Authority
checked only in the problem state.

SA Secondary-authority exception.

SO Special-operation exception.

SO-P CPU must be in the primary-space
mode; special-operation exception if the
CPU is in the secondary-space,
access-register, home-space, or real
mode.

SO-PA CPU must be in the primary-space or
access-register mode; special-operation
exception if the CPU is in the
secondary-space, home-space, or real
mode.

SO-PAH CPU must be in the primary-space,
access-register, or home-space mode;
special-operation exception if the CPU
is in the secondary-space or real mode.

SO-PS CPU must be in the primary-space or
secondary-space mode; special-
operation exception if the CPU is in the
home-space, access-register, or real
mode.

SO-PSAH CPU must be in the primary-space,
secondary-space, access-register, or
home-space mode; special-operation
exception if the CPU is in the real
mode.

sPC Stacking PROGRAM CALL.

X1 When bit 57 of control register 1 is one,
a space-switch event is recognized.
The operation is completed.

X2 When bit 57 of control register 1 or 13
is one and the instruction space is
changed to or from the home address
space, a space-switch event is recog-
nized. The operation is completed.

 Chapter 5. Program Execution 5-29

 PC-Number Translation
PC-number translation is the process of translating
the 20-bit PC number to locate an entry-table
entry as part of the execution of the PROGRAM
CALL instruction. To perform this translation, the
20-bit PC number is divided into two fields. The
leftmost 12 bits are the linkage index (LX), and the
rightmost eight bits are the entry index (EX). The
effective address, from which the PC number is
taken, has the following format:

┌────────/────────┬────────────┬────────┐
│ │ LX │ EX │
└────────/────────┴────────────┴────────┘
� 44 56 63

The translation is performed by means of two
tables: a linkage table and an entry table. Both
of these tables reside in real storage. The
linkage-table designation resides in a third area in
storage, called the primary ASN-second-table
entry (primary ASTE), whose origin is in control
register 5. The entry table is designated by
means of a linkage-table entry.

PC-Number Translation Control

PC-number translation is controlled by means of a
linkage-table designation in the primary
ASN-second-table entry designated by the con-
tents of control register 5.

Control Register 5
Control register 5 specifies the location of the
primary ASN-second-table entry. The register has
the following format:

┌─────/─────┬─────────────────────────┬──────┐
│ │ PASTEO │ │
└─────/─────┴─────────────────────────┴──────┘
� 33 58 63

Primary-ASTE Origin (PASTEO): Bits 33-57 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates
the beginning of the primary ASTE. The linkage-
table designation is in bytes 24-27 of the primary
ASTE.

The linkage-table designation has the following
format:

┌─┬────────────────────────┬───────┐
│V│ Linkage-Table Origin │ LTL │
└─┴────────────────────────┴───────┘
� 1 25 31

Subsystem-Linkage Control (V): Bit 0 of the
linkage-table designation is the subsystem-
linkage-control bit. Bit 0 must be one to allow
completion of these instructions:

 � PROGRAM CALL
 � PROGRAM TRANSFER

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and the supervisor states and
controls both the space-switching and current-
primary versions of the instructions.

Linkage-Table Origin: Bits 1-24 of the linkage-
table designation, with seven zeros appended on
the right, form a 31-bit real address that desig-
nates the beginning of the linkage table.

Linkage-Table Length (LTL): Bits 25-31 of the
linkage-table designation specify the length of the
linkage table in units of 128 bytes, thus making
the length of the linkage table variable in multiples
of 32 four-byte entries. The length of the linkage
table, in units of 128 bytes, is one more than the
value in bit positions 25-31. The linkage-table
length is compared against the leftmost seven bits
of the linkage-index portion of the PC number to
determine whether the linkage index designates
an entry within the linkage table.

PC-Number Translation Tables

The PC-number translation process consists in a
two-level lookup using two tables: a linkage table
and an entry table. These tables reside in real
storage.

 Linkage-Table Entries
The entry fetched from the linkage table has the
following format:

┌─┬─────────────────────────┬──────┐
│I│ Entry-Table Origin │ ETL │
└─┴─────────────────────────┴──────┘
� 1 26 31

The fields in the linkage-table entry are allocated
as follows:

LX-Invalid Bit (I): Bit 0 controls whether the
entry table associated with the linkage-table entry
is available.

When the bit is zero, PC-number translation pro-
ceeds by using the linkage-table entry. When the

5-30 z/Architecture Principles of Operation

bit is one, an LX-translation exception is recog-
nized.

Entry-Table Origin: Bits 1-25, with six zeros
appended on the right, form a 31-bit real address
that designates the beginning of the entry table.

Entry-Table Length (ETL): Bits 26-31 specify
the length of the entry table in units of 128 bytes,
thus making the table variable in multiples of four
32-byte entries. The length of the entry table, in
units of 128 bytes, is one more than the value in
bit positions 26-31. The entry-table length is com-
pared against the leftmost six bits of the entry
index to determine whether the entry index desig-
nates an entry within the entry table.

 Entry-Table Entries
The format of bits 0-63 of the entry-table entry
depends on whether the addressing-mode in
effect after the PROGRAM CALL operation is the
extended (64-bit) addressing mode or a basic
(24-bit or 31-bit) addressing mode. This in turn
depends on bits 128 and 129 of the entry-table
entry.

Bit 128 of the entry-table entry (T) is the PC-type
bit. When bit 128 is zero, PROGRAM CALL is to
perform the basic (nonstacking) operation. When
bit 128 is one, PROGRAM CALL is to perform the
stacking operation.

Bit 129 of the entry-table entry (G) is the entry-
extended-addressing-mode bit. In the basic
PROGRAM CALL operation, bit 31 of the current
PSW, the extended-addressing-mode bit, must
equal bit 129; otherwise, a special-operation
exception is recognized. In the stacking operation
when bit 129 is zero, bit 31 of the current PSW is
set to zero, and bit 32 of the PSW, the basic-
addressing-mode bit, is set with the value of bit 32
of the entry-table entry (A), the entry-basic-
addressing-mode bit. In the stacking operation
when bit 129 is one, bits 31 and 32 of the current
PSW both are set to one. Thus, the basic
PROGRAM CALL operation does not switch
between the extended and a basic addressing
mode but can switch between the 24-bit and 31-bit
modes, and the stacking operation can set any
addressing mode.

The 32-byte entry-table entry has the following
format:

If Bit 129 is Zero
┌───┐
│ │
└───┘
� 31

┌─┬───┬─┐
│A│ Entry Instruction Address │P│
└─┴───┴─┘
32 63

If Bit 129 is One
┌───┐
│ Entry Instruction Address (Part 1) │
└───┘
� 31

┌───┬─┐
│ Entry Instruction Address (Part 2) │P│
└───┴─┘
32 63

┌───────────────────────┬───────────────────────┐
│Authorization Key Mask │ ASN │
└───────────────────────┴───────────────────────┘
64 8� 95

┌───────────────────────┬───────────────────────┐
│ Entry Key Mask │ │
└───────────────────────┴───────────────────────┘
96 112 127

┌─┬─┬───┐
│T│G│ Linkage-Stack Fields │
└─┴─┴───┘
128 13� 159

┌─┬──────────────────────────────────────┬──────┐
| │ │ ASTE Origin │ │

└─┴──────────────────────────────────────┴──────┘
16� 186 191

┌───┐
│ Entry Parameter (Part 1) │
└───┘
192 223

┌───┐
│ Entry Parameter (Part 2) │
└───┘
224 255

The fields in the entry-table entry are allocated as
follows:

Entry Basic Addressing Mode (A): When bit
129 is zero, bit 32 replaces the basic-
addressing-mode bit, bit 32 of the current PSW,
as part of the PROGRAM CALL operation. In this
case if bit 32 is zero, bits 33-39 must also be
zeros; otherwise, a PC-translation-specification
exception is recognized. When bit 129 is one, bit
32 is a bit of the entry instruction address, and bit
32 of the PSW remains or is set to one.

Entry Instruction Address: When bit 129 is
zero, bits 33-62, with 33 zeros appended on the
left and a zero appended on the right, form the

 Chapter 5. Program Execution 5-31

instruction address which replaces the instruction
address in the PSW as part of the PROGRAM
CALL operation. When bit 129 is one, bits 0-62,
with a zero appended on the right, form the
instruction address.

Entry Problem State (P): Bit 63 replaces the
problem-state bit, bit 15 of the current PSW, as
part of the PROGRAM CALL operation.

Authorization Key Mask: Bits 64-79 are used
to verify whether the program issuing the
PROGRAM CALL instruction, when in the problem
state, is authorized to call this entry point. The
authorization key mask and the current PSW-key
mask in control register 3 are ANDed, and the
result is checked for all zeros. If the result is all
zeros, a privileged-operation exception is recog-
nized. The test is not performed in the supervisor
state.

ASN: Bits 80-95 specify whether a space-
switching (PC-ss) operation or a to-current-primary
(PC-cp) operation is to occur. When bits 80-95
are zeros, PC-cp is specified. When bits 80-95
are not all zeros, PC-ss is specified, and the bits
are the ASN that replaces the primary ASN.

Entry Key Mask: Bits 96-111 may be ORed into
or may replace the PSW-key mask in control reg-
ister 3 as part of the PROGRAM CALL operation,
as determined by a bit in bit positions 130-159.

PC-Type Bit (T): Bit 128 specifies the basic
PROGRAM CALL operation when the bit is zero
or the stacking PROGRAM CALL operation when
the bit is one.

Entry Extended Addressing Mode (G): In the
basic PROGRAM CALL operation, bit 129 must
match the extended-addressing-mode bit, bit 31 of
the current PSW; otherwise, a special-operation
exception is recognized. In the stacking opera-
tion, bit 129 replaces bit 31 of the PSW.

| ASTE Origin: When bits 80-95 are not all zeros,
bits 161-185, with six zeros appended on the right,
form the 31-bit real ASN-second-table-entry
address that should result from applying the
ASN-translation process to bits 80-95.

Entry Parameter: When bit 129 is zero, bits
224-255 are placed in bit positions 32-63 of
general register 4, and bits 0-31 of the register

remain unchanged, as part of the PC operation.
When bit 129 is one, bits 192-255 are placed in
general register 4 as part of the PC operation.

Bits 130-159 are used in connection with the
linkage stack and are described in “Linkage-Stack
Entry-Table Entries” on page 5-65.

Bits 112-127, 160, and 186-191 are reserved for
possible future extensions and should be zeros.

Programming Note: The entry parameter is
intended to provide the called program with an
address which can be depended upon and used
as the basis of addressability in locating neces-
sary information which may be environment
dependent. The parameter may be appropriately
changed for each environment by setting up dif-
ferent entry tables. The alternative — obtaining
this information from the calling program — may
require extensive validity checking or may present
an integrity exposure.

 PC-Number-Translation Process

The translation of the PC number is performed by
means of a linkage table and entry table both of
which reside in real storage. The translation also
requires the use of the primary ASN-second-table
entry, which also resides in real storage.

For the purposes of PC-number translation, the
20-bit PC number is divided into two parts: the
leftmost 12 bits are called the linkage index (LX),
and the rightmost eight bits are called the entry
index (EX). The LX is used to select an entry
from the linkage table, the starting address and
length of which are specified by the linkage-table
designation in the primary ASTE. This entry des-
ignates the entry table to be used. The EX field of
the PC number is then used to select an entry
from the entry table.

When, for the purposes of PC-number translation,
accesses are made to main storage to fetch
entries from the primary ASTE, linkage table, and
entry table, key-controlled protection does not
apply.

The PC-number-translation process is shown in
Figure 5-7 on page 5-33.

5-32 z/Architecture Principles of Operation

 Linkage-Table Designation
in Primary ASTE

 ┌─┬───────────┬───┐
 │V│ LTO │LTL│
 └─┴──────┬────┴───┘ PC Number
 │(x128) ┌──────┬────┐
┌────────────┘ │ LX │ EX │
│ └───┬──┴───┬┘
│ │(x4) │(x32)
│ ┌─────────────────────────────────────┘ │
│ │ │
│ � │
│ ┌─┐ Linkage Table │
└───�│+│ ┌──────────────────┐ │
 └┬┘ │ │ │
 │ │ │ │
 │ │ │ │
 └─�├─┬────────────┬───┤ │
 R │I│ ETO │ETL│ │
 ├─┴───────┬────┴───┤ │
 │ │(x64) │ │
 │ │ │ │
 └─────────┼────────┘ │
 │ │
┌──────────────────┘ │
│ │
│ ┌──┘
│ │
│ �
│ ┌─┐ Entry Table
└───�│+│ ┌───┐
 └┬┘ │ │
 │ │ │
 └─�├─────────────────┬─┬─────────────┬─┬────────┬────────┬────────┬────────┤

R │ �� │A│ EIA │P│ AKM │ ASN │ EKM │ │
 ├─┬─┬─────────────┼─┼────────────┬┴─┼────────┴────────┴────────┴────────┤

| │T│G│L.-S. Fields │ │ASTE Origin │ │ EP │
 ├─┴─┴─────────────┴─┴────────────┴──┴───────────────────────────────────┤
 │ │
 │ │
 └───┘

R: Address is real
��: First word and A of ETE are bits �-32 of EIA if G is one.

Figure 5-7. PC-Number Translation

Obtaining the Linkage-Table
Designation
The linkage-table designation is obtained from
bytes 24-27 of the primary ASN-second-table
entry, the starting address of which is specified by
the contents of control register 5.

The 31-bit real address of the linkage-table desig-
nation is obtained by appending six zeros on the
right to the primary-ASTE origin, bits 33-57 of
control register 5, and adding 24. The addition
cannot cause a carry into bit position 0. The

31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

All four bytes of the linkage-table designation
appear to be fetched concurrently from the
primary ASTE as observed by other CPUs. The
fetch access is not subject to protection. When
the storage address which is generated for
fetching the linkage-table designation designates a
location which is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed. Besides the linkage-

 Chapter 5. Program Execution 5-33

table designation, no other field in the primary
ASTE is examined.

 Linkage-Table Lookup
The linkage-index (LX) portion of the PC number,
in conjunction with the linkage-table origin, is used
to select an entry from the linkage table.

The 31-bit real address of the linkage-table entry
is obtained by appending seven zeros on the right
to the contents of bit positions 1-24 of the linkage-
table designation and adding the linkage index,
with two rightmost and 17 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may
be recognized, or the carry may be ignored,
causing the table to wrap from 2�� - 1 to 0. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

As part of the linkage-table-lookup process, the
leftmost seven bits of the linkage index are com-
pared against the linkage-table length, bits 25-31
of the linkage-table designation, to establish
whether the addressed entry is within the linkage
table. If the value in the linkage-table-length field
is less than the value of the seven leftmost bits of
the linkage index, an LX-translation exception is
recognized.

All four bytes of the linkage-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the linkage-table entry desig-
nates a location which is not available in the con-
figuration, an addressing exception is recognized,
and the operation is suppressed.

Bit 0 of the linkage-table entry specifies whether
the entry table corresponding to the linkage index
is available. This bit is inspected, and, if it is one,
an LX-translation exception is recognized.

When no exceptions are recognized in the
process of linkage-table lookup, the entry fetched
from the linkage table designates the origin and
length of the corresponding entry table.

 Entry-Table Lookup
The entry-index (EX) portion of the PC number, in
conjunction with the entry-table origin contained in
the linkage-table entry, is used to select an entry
from the entry table.

The 31-bit real address of the entry-table entry is
obtained by appending six zeros on the right to
the entry-table origin and adding the entry index,
with five rightmost and 18 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may
be recognized, or the carry may be ignored,
causing the table to wrap from 2�� - 1 to 0. The
31-bit address is formed and used regardless of
whether the current PSW specifies the 24-bit,
31-bit, or 64-bit addressing mode.

As part of the entry-table-lookup process, the six
leftmost bits of the entry index are compared
against the entry-table length, bits 26-31 of the
linkage-table entry, to establish whether the
addressed entry is within the table. If the value in
the entry-table length field is less than the value of
the six leftmost bits of the entry index, an
EX-translation exception is recognized.

The 32-byte entry-table entry is fetched by using
the real address. The fetch of the entry appears
to be word concurrent, as observed by other
CPUs, with the leftmost word fetched first. The
order in which the remaining seven words are
fetched is unpredictable. The fetch access is not
subject to protection. When the storage address
which is generated for fetching the entry-table
entry designates a location which is not available
in the configuration, an addressing exception is
recognized, and the operation is suppressed.

The use that is made of the information fetched
from the entry-table entry is described in the defi-
nition of the PROGRAM CALL instruction.

Recognition of Exceptions during
PC-Number Translation
The exceptions which can be encountered during
the PC-number-translation process and their pri-
ority are described in the definition of the
PROGRAM CALL instruction.

Programming Note: The linkage-table desig-
nation is fetched successfully from the primary
ASN-second-table entry regardless of the value of
bit 0, the ASX-invalid bit, in the primary ASTE. A

5-34 z/Architecture Principles of Operation

one value of this bit may cause an exception to be
recognized in other circumstances.

Home Address Space
Facilities are provided which a privileged program,
such as the control program, can use to obtain
control in and access the home address space of
a dispatchable unit (for example, a task).

Each dispatchable unit normally has an address
space associated with it in which the control
program keeps the principal control blocks that
represent the dispatchable unit. This address
space is called the home address space of the
dispatchable unit. Different dispatchable units
may have the same or different home address
spaces. When the control program initiates a
dispatchable unit, it may set the primary and sec-
ondary address spaces equal to the home
address space of the dispatchable unit. There-
after, because of the dispatchable unit's possible
use of the PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, or SET SEC-
ONDARY ASN instruction, the control program
normally cannot depend on either the primary
address space or the secondary address space
being the home address space when the home
address space must be accessed, for example,
during the processing by the control program of an
interruption. Therefore, the control program
normally must take some special action to ensure
that the home address space is addressed when it
must be accessed. The home-address-space
facilities provide an efficient means to take this
action.

The home-address-space facilities include:

� The home address-space-control element
(HASCE) in control register 13. The HASCE
is used by DAT in the same way as the
primary address-space-control element
(PASCE) in control register 1 and the sec-
ondary address-space-control element
(SASCE) in control register 7.

� Home-space mode, which results when DAT
is on and the address-space control, PSW bits
16 and 17, has the value 11 binary. When
the CPU is in the home-space mode, instruc-
tion and logical addresses are home virtual
addresses and are translated by DAT by
means of the HASCE.

� The ability of the RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, and SET
ADDRESS SPACE CONTROL FAST
instructions to set the home-space mode in
the supervisor state, and the ability of the
INSERT ADDRESS SPACE CONTROL
instruction to return an indication of the home-
space mode.

� The home space-switch-event control, bit 57
of control register 13.

� Recognition of a space-switch event upon
completion of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET
ADDRESS SPACE CONTROL FAST instruc-
tion if the CPU was in the home-space mode
before or after the operation but not both
before and after the operation, if any of the
following is true: (1) the primary space-
switch-event control, bit 57 of control register
1, is one, (2) the home space-switch-event
control is one, or (3) a PER event is to be
indicated.

The space-switch event can be used to enable or
disable PER or tracing when fetching of
instructions begins or ends in particular address
spaces.

 Access-Register Introduction
Many of the functions related to access registers
are described in this section and in “Subroutine
Linkage without the Linkage Stack” on page 5-11,
“Access-Register Translation” on page 5-44, and
“Sequence of Storage References” on page 5-78.
Additionally, translation modes and access-list-
controlled protection are described in Chapter 3,
“Storage”; the PER means of restricting storage-
alteration events to designated address spaces
and the handling of access registers during resets
and during the store-status operation are
described in Chapter 4, “Control”; interruptions are
described in Chapter 6, “Interruptions”;
instructions are described in Chapter 7, “General
Instructions,” and Chapter 10, “Control
Instructions”; the handling of access registers
during a machine-check interruption and the pro-
grammed validation of the access registers are
described in Chapter 11, “Machine-Check
Handling”; and the alter-and-display controls for
access registers are described in Chapter 12,
“Operator Facilities.”

 Chapter 5. Program Execution 5-35

 Summary

These major functions are provided:

� A maximum of 16 address spaces, including
the instruction space, for immediate and
simultaneous use by a semiprivileged
program; the address spaces are specified by
16 registers called access registers.

� Instructions for examining and changing the
contents of the access registers.

In addition, control and authority mechanisms are
incorporated to control these functions.

Access registers allow a sequence of instructions,
or even a single instruction such as MOVE (MVC)
or MOVE LONG (MVCL), to operate on storage
operands in multiple address spaces, without the
requirement of changing either the translation
mode or other control information. Thus, a
program residing in one address space can use
the complete instruction set to operate on data in
that address space and in up to 15 other address
spaces, and it can move data between any and all
pairs of these address spaces. Furthermore, the
program can change the contents of the access
registers in order to access still other address
spaces.

The instructions for examining and changing
access-register contents are unprivileged and are
described in Chapter 7, “General Instructions.”
They are:

 � COPY ACCESS
 � EXTRACT ACCESS
� LOAD ACCESS MULTIPLE
� LOAD ADDRESS EXTENDED

 � SET ACCESS
� STORE ACCESS MULTIPLE

The privileged PURGE ALB instruction and
COMPARE AND SWAP AND PURGE instruction
are used in connection with access registers and
are described in Chapter 10, “Control
Instructions.”

Access registers specify address spaces when the
CPU is in the access-register mode. The SET
ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST instructions
allow setting of the access-register mode, and the
INSERT ADDRESS SPACE CONTROL instruction
provides an indication of the access-register

mode. The stacking PROGRAM CALL,
PROGRAM RETURN, and RESUME PROGRAM
instructions also allow setting of the access-
register mode. All of these instructions are
described in Chapter 10, “Control Instructions.”

Access registers are used in a special way by the
BRANCH IN SUBSPACE GROUP instruction.
The use of access registers by that instruction is
described in detail only in the definition of the
instruction in Chapter 10, “Control Instructions.”
However, “Subspace-Group Tables” on page 5-56
describes the use of the dispatchable-unit control
table and the extended ASN-second-table entry by
BRANCH IN SUBSPACE GROUP.

 Access-Register Functions

 Access-Register-Specified Address
Spaces
The CPU includes sixteen 32-bit access registers
numbered 0-15. In the access-register mode,
which results when DAT is on and PSW bits 16
and 17 are 01 binary, an instruction B or R field
that is used to specify the logical address of a
storage operand designates not only a general
register but also an access register. The desig-
nated general register is used in the ordinary way
to form the logical address of the storage operand.
The designated access register is used to specify
the address space to which the logical address is
relative. The access register specifies the
address space by specifying an address-
space-control element for the address space, and
this address-space-control element is used by
DAT to translate the logical address. An access
register specifies an address-space-control
element in an indirect way, not by containing the
address-space-control element.

An access register may specify the primary or
secondary address-space-control element in
control register 1 or 7, respectively, or it may
specify an address-space-control element con-
tained in an ASN-second-table entry. In the latter
case, the access register designates an entry in a
table called an access list, and the designated
access-list entry in turn designates the
ASN-second-table entry.

The process of using the contents of an access
register to obtain an address-space-control
element for use by DAT is called access-register

5-36 z/Architecture Principles of Operation

translation (ART). This is depicted in Figure 5-8
on page 5-37.

 Instruction
 ┌────────────┬───┬─────────┐ Displacement

│ │ B │ D ├──────────────────────┐
 └────────────┴┬─┬┴─────────┘ │
 │ │ │
 │ │ General Register │
In Access-Register Mode │ │ ┌────────────────────────┐ │
┌──────────────────────────┘ └─�│ Base Address │ │
│ └───────────┬────────────┘ │
│ │ │
│ Access Register � │
│ ┌────────────────────────┐ ┌───┐ │
└─�│ │ │ + │�───────────────┘
 └───────────┬────────────┘ └─┬─┘
 │ │

│ │ Logical Address
 � �
 ┌─────┐ ┌─────┐
 │ │ │ │

│ ART ├─────── ASCE ────────�│ DAT │
 │ │ │ │
 └─────┘ └──┬──┘
 │
 �
 Real Address

Figure 5-8. Use of Access Registers

An access register is said to specify an
AR-specified address space by means of an
AR-specified address-space-control element. The
virtual addresses in an AR-specified address
space are called AR-specified virtual addresses.

In the access-register mode, whereas all storage-
operand addresses are AR-specified virtual,
instruction addresses are primary virtual.

Designating Access Registers: In the access-
register mode, an instruction B or R field desig-
nates an access register, for use in access-
register translation, under the following conditions:

� The field is a B field which designates a
general register containing a base address.
The base address is used, along with a dis-
placement (D) and possibly an index (X), to
form the logical address of a storage operand.

� The field is an R field which designates a
general register containing the logical address
of a storage operand.

For example, consider the following instruction:

 MVC �(L,1),�(2)

The second operand, of length L, is to be moved
to the first-operand location. The logical address
of the second operand is in general register 2, and
that of the first-operand location in general register
1. The address space containing the second
operand is specified by access register 2, and that
containing the first-operand location by access
register 1. These two address spaces may be dif-

ferent address spaces, and each may be different
from the current instruction address space (the
primary address space).

When PSW bits 16 and 17 are 01, the B� field of
the LOAD REAL ADDRESS and STORE REAL
ADDRESS instructions designates an access reg-
ister, for use in access-register translation, regard-
less of whether DAT is on or off.

The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions specify storage oper-
ands by means of implicitly designated general
registers and access registers.

The MOVE TO PRIMARY and MOVE TO SEC-
ONDARY instructions specify storage operands by
means of primary virtual and secondary virtual
addresses, and access registers do not apply to
these instructions. An exception is recognized
when either of these instructions is executed in
the access-register mode. The MOVE WITH KEY
instruction can be used in place of MOVE TO
PRIMARY and MOVE TO SECONDARY in the
access-register mode. The MOVE WITH
SOURCE KEY and MOVE WITH DESTINATION
KEY instructions also can be used.

An instruction R field may designate an access
register for other than the purpose of access-
register translation.

The fields which may designate access registers,
whether or not for access-register translation, are
indicated in the summary figure at the beginning
of each instruction chapter.

Obtaining the Address-Space-Control
Element: This section and the following ones
introduce the access-register-translation process
and present the concepts related to access lists.

The address-space-control element specified by
an access register is obtained by access-register
translation as follows:

� If the access register contains 00000000 hex,
the specified address-space-control element is
the primary address-space-control element
(PASCE), obtained from control register 1.

� If the access register contains 00000001 hex,
the specified address-space-control element is
the secondary address-space-control element
(SASCE), obtained from control register 7.

 Chapter 5. Program Execution 5-37

� If the access register contains any other
value, the specified address-space-control
element is obtained from an
ASN-second-table entry. The contents of the
access register designate an access-list entry
that contains the real origin of the
ASN-second-table entry.

Access register 0 is treated in a special way by
access-register translation; it is treated as con-
taining 00000000 hex, and its actual contents are
not examined. Thus, a logical address specified
by means of a zero B or R field in the access-
register mode is always relative to the primary
address space, regardless of the contents of
access register 0. However, there is one excep-
tion to how access register 0 is treated: the TEST
ACCESS instruction uses the actual contents of
access register 0, instead of treating access reg-
ister 0 as containing 00000000 hex.

The treatment of an access register containing the
value 00000000 hex as designating the current
primary address space allows that address space
to be addressed, in the access-register mode,
without requiring the use of an access-list entry.
This is useful when the primary address space is
changed by a space-switching PROGRAM CALL
(PC-ss), PROGRAM RETURN (PR-ss), or
PROGRAM TRANSFER (PT-ss) instruction. Simi-
larly, the treatment of an access register con-
taining the value 00000001 hex as designating the
secondary address space allows that space to be
addressed after a space-switching operation,
again without requiring the use of an access-list
entry.

The contents of the access registers are not
changed by the PROGRAM CALL and PROGRAM
TRANSFER instructions. Therefore, an access
register containing 00000000 or 00000001 hex
may specify a different address space after the
execution of PROGRAM CALL or PROGRAM
TRANSFER than before the execution. For
example, if a space-switching PROGRAM CALL
instruction is executed, an access register con-
taining 00000000 hex specifies the old primary
address space before the execution and the new
primary address space after the execution.

When access-register translation obtains an
address-space-control element from an
ASN-second-table entry, bit 0 of the entry, the

ASX-invalid bit, must be zero; otherwise, an
exception is recognized.

Access Lists: The access-list entry that is desig-
nated by the contents of an access register can
be located in either one of two access lists, the
dispatchable-unit access list or the primary-space
access list. A bit in the access register specifies
which of the two access lists contains the desig-
nated entry. Both of the access lists reside in real
or absolute storage. The locations of the access
lists are specified by means of control registers 2
and 5.

Control register 2 contains the origin of a real-
storage area called the dispatchable-unit control
table. The dispatchable-unit control table contains
the designation — the real or absolute origin, and
length — of the dispatchable-unit access list.

Control register 5 contains the origin of a real-
storage area called the primary ASN-second-table
entry. The primary ASN-second-table entry con-
tains the designation of the primary-space access
list.

An access list, either the dispatchable-unit access
list or the primary-space access list, contains
some multiple of eight 16-byte entries, up to a
maximum of 1,024 entries.

Programs and Dispatchable Units: When dis-
cussing access lists, it is necessary to distinguish
between the terms “program” and “dispatchable
unit.” A program is a sequence of instructions and
may be referred to as a program module. A
program may be a sequence of calling and called
programs. A dispatchable unit, which is some-
times called a process or a task, is a unit of work
that is performed through the execution of a
program by one CPU at a time.

The dispatchable-unit access list is intended to be
associated with a dispatchable unit; that is, it is
intended that a dispatchable unit have the same
dispatchable-unit access list regardless of which
program is currently being executed to perform the
dispatchable unit. There is no mechanism, except
for the LOAD CONTROL instruction, that changes
the dispatchable-unit-control-table origin in control
register 2.

The primary-space access list is associated with
the primary address space that is specified by the

5-38 z/Architecture Principles of Operation

primary ASN in control register 4 and the primary
address-space-control element in control register
1. The primary-space access list that is available
for use by a dispatchable unit changes as the
primary address space of the dispatchable unit
changes, that is, whenever a program in a dif-
ferent primary address space begins to be exe-
cuted to perform the dispatchable unit. Whenever
a LOAD ADDRESS SPACE PARAMETERS,
PROGRAM CALL, PROGRAM RETURN, or
PROGRAM TRANSFER instruction replaces the
primary ASN in control register 4 and the primary
address-space-control element in control register
1, it also replaces the
primary-ASN-second-table-entry origin in control
register 5.

Thus, for a dispatchable unit, the dispatchable-unit
access list is intended to be constant (although its
entries may be changed, as will be described),
and the primary-space access list is a function of
which program is being executed, through being a
function of the primary address space of the
program. Also, all dispatchable units and pro-
grams in the same primary address space have
the same primary-space access list.

Access-List-Entry Token: The contents of an
access register are called an access-list-entry
token (ALET) since, in the general case, they des-
ignate an entry in an access list. An ALET has
the following format:

┌───────┬─┬────────┬────────────────┐
│�������│P│ ALESN │ ALEN │
└───────┴─┴────────┴────────────────┘
� 7 8 16 31

The ALET contains a primary-list bit (P) that speci-
fies which access list contains the designated
access-list entry: the dispatchable-unit access list
if the bit is zero, or the primary-space access list if
the bit is one. The specified access list is called
the effective access list.

The ALET also contains an access-list-entry
number (ALEN) which, when multiplied by 16, is
the number of bytes from the beginning of the
effective access list to the designated access-list
entry. During access-register translation, an
exception is recognized if the ALEN designates an
entry that is outside the effective access list or if
the leftmost seven bits in the ALET are not all
zeros.

The access-list-entry sequence number (ALESN)
in the ALET is described in the next section.

The above format of the ALET does not apply
when the ALET is 00000000 or 00000001 hex.

An ALET can exist in an access register, in a
general register, or in storage, and it has no
special protection from manipulation by the
problem program. Any program can transfer
ALETs back and forth among access registers,
general registers, and storage. A called program
can save the contents of the access registers in
any storage area available to it, load and use the
access registers for its own purposes, and then
restore the original contents of the access regis-
ters before returning to its caller.

Allocating and Invalidating Access-List
Entries: It is intended that access lists be pro-
vided by the control program and that they be pro-
tected from direct manipulation by any problem
program. This protection may be obtained by
means of key-controlled protection or by placing
the access lists in real storage not accessible by
any problem program by means of DAT.

As determined by a bit in the entry, an access-list
entry is either valid or invalid. A valid access-list
entry specifies an address space and can be used
by a suitably authorized program to access that
space. An invalid access-list entry is available for
allocation as a valid entry. It is intended that the
control program provide services that allocate
valid access-list entries and that invalidate previ-
ously allocated entries.

Allocation of an access-list entry may consist in
the following steps. A problem program passes
some kind of identification of an address space to
the control program, and it passes a specification
of either the dispatchable-unit access list or the
primary-space access list. The control program
checks, by some means, the authority of the
problem program to access the address space. If
the problem program is authorized, the control
program selects an invalid entry in the specified
access list, changes it to a valid entry specifying
the subject address space, and returns to the
problem program an access-list-entry token
(ALET) that designates the allocated entry. The
problem program can subsequently place the
ALET in an access register in order to access the
address space. Later, through the use of the

 Chapter 5. Program Execution 5-39

invalidation service of the control program, the
access-list entry that was allocated may be made
invalid. An exception is recognized during access-
register translation if an ALET is used that desig-
nates an invalid access-list entry.

It may be that a particular access-list entry is allo-
cated, then invalidated, and then allocated again,
this time specifying a different address space than
the first time. To guard against erroneous use of
an ALET that designates a conceptually wrong
address space, an access-list-entry sequence
number (ALESN) is provided in both the ALET
and the access-list entry. When the control
program allocates an access-list entry, it should
place the same ALESN in the entry and in the
designating ALET that it returns to the problem
program. When the control program reallocates
an access-list entry, it should change the value of
the ALESN. An exception is recognized during
access-register translation if the ALESN in the
ALET used is not equal to the ALESN in the des-
ignated access-list entry.

The ALESN check is a reliability mechanism, not
an authority mechanism, because the ALET is not
protected from the problem program, and the
problem program can change the ALESN in the
ALET to any value. Also, this is not a fail-proof
reliability mechanism because the ALESN is one
byte and its value wraps around after 256 reallo-
cations, assuming that the value is incremented by
one for each reallocation.

Authorizing the Use of Access-List Entries:
Although an access list is intended to be associ-
ated with either a dispatchable unit or a primary
address space, the valid entries in the list are
intended to be associated with the different pro-
grams that are executed, in some order, to
perform the work of the dispatchable unit. It is
intended that each program be able to have a par-
ticular authority that permits the use of only those
access-list entries that are associated with the
program. The authority being referred to here is
represented by a 16-bit extended authorization
index (EAX) in control register 8.

Other elements used in the related authorization
mechanism are: (1) a private bit in the access-list
entry, (2) an access-list-entry authorization index
(ALEAX) in the access-list entry, and (3) the
authority table.

A program is authorized to use an access-list
entry, in access-register translation, if any of the
following conditions is met:

1. The private bit in the access-list entry is zero.
This condition provides a high-performance
means to authorize any and all programs that
are executed to perform the dispatchable unit.

2. The ALEAX in the access-list entry is equal to
the EAX in control register 8. This condition
provides a high-performance means to
authorize only particular programs.

3. The EAX selects a secondary bit that is one in
the authority table associated with the address
space that is specified by the access-list entry.
The authority table is locatable in that the
access-list entry contains the real origin of the
ASN-second-table entry (ASTE) for the
address space, and the ASTE contains the
real origin of the authority table. This condi-
tion provides another means, less well-
performing than condition 2, for authorizing
only particular programs. However, providing
for condition 3 to be met instead of condition 2
can be advantageous because it permits
several programs, each executed with a dif-
ferent EAX, all to use a single access-list
entry to access a particular address space.

Access-register translation tests for the three con-
ditions in the order indicated by their numbers,
and a higher-numbered condition is not tested for
if a lower-numbered condition is met. An excep-
tion is recognized if none of the conditions is met.

Figure 5-9 on page 5-41 shows an example of
how the authorization mechanism can be used. In
the figure, “PBZ” means that the private bit is
zero, and “PBO” means that the private bit is one.

5-40 z/Architecture Principles of Operation

 Access List
 ┌─────────────────┐
/ / ASTE for Space 36

 ├─────────────────┤ ┌─────────────────┐
4│ PBZ ├────�│ │
 ├─────────────────┤ └─────────────────┘
/ / ASTE for Space 25

 ├─────────────────┤ ┌─────────────────┐
 7│ PBO, ALEAX = 5 ├────�│ │
 ├─────────────────┤ └─────────────────┘
/ / ASTE for Space 62

 ├─────────────────┤ ┌─────────────────┐
 9│ PBO, ALEAX = 1� ├────�│ │
 ├─────────────────┤ └─────────────────┘
/ / ASTE for Space 17 Authority Table
├─────────────────┤ ┌─────────────────┐ ┌─────────────────┐

12│ PBO, ALEAX = 5 ├────�│ ├────�│S bit selected by│
├─────────────────┤ └─────────────────┘ │EAX 1� is one. │

 / / └─────────────────┘
 └─────────────────┘

 Program A Program B Program C
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ EAX = � │�───�│ EAX = 5 │�───�│ EAX = 1� │
└─────────────────┘ └─────────────────┘ └─────────────────┘

Figure 5-9. Example of Authorizing the Use of Access-List Entries

The figure shows an access list — assume it is a
dispatchable-unit access list — in which the
entries of interest are entries 4, 7, 9, and 12.
Each access-list entry contains a private bit, an
ALEAX, and the real origin of the ASTE for an
address space. The private bit in entry 4 is zero,
and, therefore, the value of the ALEAX in entry 4
is immaterial and is not shown. The private bits in
entries 7, 9, and 12 are ones, and the ALEAX
values in these entries are as shown. The
numbers used to identify the address spaces (36,
25, 62, and 17) are arbitrary. They may be the
ASNs of the address spaces; however, ASNs are
in no way used in access-register translation.
Only the authority table for address space 17 is
shown. In it, the secondary bit selected by EAX
10 is one. Assume that no secondary bits are
ones in the authority tables for the other spaces.

The figure also shows a sequence of three pro-
grams, named A, B, and C, that is executed to
perform the work of the dispatchable unit associ-
ated with the access list. These programs may be
in the same or different address spaces. The
EAX in control register 8 when each of these pro-
grams is executed is 0, 5, and 10, respectively.

Each of programs A, B, and C can use access-list
entry (ALE) 4 to access address space 36 since
the private bit in ALE 4 is zero. Program B can

use ALE 7 to access space 25 because the
ALEAX in the ALE equals the EAX for the
program, and no other program can use this ALE.
Similarly, only program C can use ALE 9.
Program B can use ALE 12 because the ALEAX
and EAX are equal, and program C can use it
because C's EAX selects a secondary bit that is
one in the authority table for space 17.

The example would be the same if programs A, B,
and C were all in the same address space and the
access list were the primary-space access list for
that space.

An ALE in which the private bit is zero may be
called public because the ALE can be used by
any program, regardless of the value of the
current EAX. An ALE in which the private bit is
one may be called private because the ability of a
program to use the ALE depends on the current
EAX.

Notes on the Authorization Mechanism: An
access list is a kind of capability list, in the sense
in which the word “capability” is used in computer
science. It is up to the control program to formu-
late the policies that are used to allocate entries in
an access list, and the programmed authorization
checking required during allocation may be very
complex and lengthy. After a valid entry has been

 Chapter 5. Program Execution 5-41

made in an access list, the access-
register-translation process enforces the control-
program policies in a well-performing way by
means of the authorization mechanism described
above.

Using access lists has an advantage over using
only ASNs and authority tables. For example,
assume that an access register could contain an
ASN and that access-register translation would do
ASN translation of the ASN and then use the EAX
to test the authority table. This would make the
EAX relevant to all existing address spaces, and,
therefore, it would make the management of EAXs
and their assignment to programs more difficult.
With the actual definitions of the ALET and
access-register translation, an EAX is relevant to
only the address spaces that are represented in
the current dispatchable-unit and primary-space
access lists. Also, since ASN translation is not
done as a part of access-register translation, the
number of concurrently existing address spaces,
as represented by ASN-second-table entries, can
be greater than the number of available ASNs
(64K).

The entry-table entry and linkage stack can be
used to assign EAXs to programs and to change
the EAX in control register 8 during program link-
ages. These components are introduced in
“Linkage-Stack Introduction” on page 5-61. The
privileged EXTRACT AND SET EXTENDED
AUTHORITY instruction also is available for
saving and changing the EAX in control register 8.

The SET SECONDARY ASN instruction and the
authorization index (AX), bits 32-47 of control reg-
ister 4, can play a role in the use of access regis-
ters. The space-switching form of SET SEC-
ONDARY ASN (SSAR-ss) establishes a new sec-
ondary address space if the secondary bit
selected by the AX is one in the authority table
associated with the new secondary space. The
secondary space can be addressed by means of
an ALET having the value 00000001 hex.

Revoking Accessing Capability: Another mech-
anism, which is a combined authority and integrity
mechanism, is part of access-register translation,
and it is described in this section.

An access-list entry (ALE) contains an
ASN-second-table-entry sequence number

(ASTESN), and so does the ASTE designated by
the ALE. During access-register translation, the
ASTESN in the ALE must equal the ASTESN in
the designated ASTE; otherwise, an exception is
recognized.

When the control program allocates an ALE, it
should copy the ASTESN from the designated
ASTE into the ALE. Subsequently, the control
program can, in effect, revoke the addressing
capability represented by the ALE by changing the
ASTESN in the ASTE. Changing the ASTESN in
the ASTE makes all previously usable ALEs that
designate the ASTE unusable.

Making an ALE unusable may be required in
either of two cases:

1. Some element of the control-program policy
for determining the authority of a program to
have access to the address space specified
by the ASTE has changed. This may mean
that some or all of the programs that were
authorized to the address space, and for
which ALEs have been allocated, are no
longer authorized.

Changing the ASTESN in the ASTE ends the
usability of all ALEs that designate the ASTE.
If this revocation of capability is to be selec-
tive, then, when an exception is recognized
because of unequal ASTESNs, the control
program can reapply its programmed proce-
dures for determining authorization, and an
ALE which should have remained usable can
be made usable again by copying the new
ASTESN into it. When the usability of an ALE
is restored, the control program normally
should cause reexecution of the instruction
that encountered the exception.

2. The ASTE has been reassigned to specify a
conceptually different address space, and
ALEs which specified the old address space
must not be allowed to specify the new one.
(Bit 0 of the ASTE, the ASX-invalid bit, can be
set to one to delete the assignment of the
ASTE to an address space, and this prevents
the use of the ASTE in access-register trans-
lation. But after reassignment, bit 0 normally
is set back to zero.)

The ASTESN mechanism may be regarded as an
authority mechanism in the first case above and
as an integrity mechanism in the second.

5-42 z/Architecture Principles of Operation

The ASTESN mechanism is especially valuable
because it avoids the need of the control program
to keep track of the access lists that contain the
ALEs that designate each ASTE. Furthermore, it
avoids the need of searching through these
access lists in order to find the ALEs and set them
invalid, to prevent the use of the ALEs in access-
register translation. The latter activity could be
particularly time-consuming, or could present a
particularly difficult management problem, because
the access lists could be in auxiliary storage, such
as a direct-access storage device, when the need
arises to invalidate the ALEs.

The ASTESN is a four-byte field. Assuming a rea-
sonable frequency of authorization-policy changes
or address-space reassignments, the approxi-
mately four billion possible values of the ASTESN
provide a fail-proof authority or integrity mech-
anism over the lifetime of the system.

Preventing Store References: The access-list
entry contains a fetch-only bit which, when one,
specifies that the access-list entry cannot be used
to perform storage-operand store references. The
principal description of the effect of the fetch-only
bit is in “Access-List-Controlled Protection” on
page 3-11.

Improving Translation Performance: Access-
register translation (ART) conceptually occurs
each time a logical address is used to reference a
storage operand in the access-register mode. To
improve performance, ART normally is imple-
mented such that some or all of the information
contained in the ART tables (access-list-
designation sources, access lists, ASN second
tables, and authority tables) is maintained in a
special buffer referred to as the ART-lookaside
buffer (ALB). The CPU necessarily refers to an
ART-table entry in real storage only for the initial
access to that entry. The information in the entry
may be placed in the ALB, and subsequent trans-
lations may be performed using the information in
the ALB.

The PURGE ALB instruction and the COMPARE
AND SWAP AND PURGE instruction can be used
to clear all information from the ALB after a
change has been made to an ART-table entry in
real storage.

 Access-Register Instructions
The following instructions are provided for exam-
ining and changing the contents of access regis-
ters:

 � COPY ACCESS
 � EXTRACT ACCESS
� LOAD ACCESS MULTIPLE
� LOAD ADDRESS EXTENDED

 � SET ACCESS
� STORE ACCESS MULTIPLE

The SET ACCESS instruction replaces the con-
tents of a specified access register with the con-
tents of a specified general register. Conversely,
the EXTRACT ACCESS instruction moves the
contents of an access register to a general reg-
ister. The COPY ACCESS instruction moves the
contents of one access register to another.

The LOAD ACCESS MULTIPLE instruction loads
a specified set of consecutively numbered access
registers from a specified storage location whose
length in words equals the number of access reg-
isters loaded. Conversely, the STORE ACCESS
MULTIPLE instruction function stores the contents
of a set of access registers at a storage location.

The LOAD ADDRESS EXTENDED instruction is
similar to the LOAD ADDRESS instruction in that
it loads a specified general register with an effec-
tive address specified by means of the B, X, and
D fields of the instruction. In addition, LOAD
ADDRESS EXTENDED operates on the access
register having the same number as the general
register loaded. When the address-space control,
PSW bits 16 and 17, is 00, 10, or 11 binary,
LOAD ADDRESS EXTENDED loads the access
register with 00000000, 00000001, or 00000002
hex, respectively. When the address space
control is 01 binary, LOAD ADDRESS
EXTENDED loads the target access register with
a value that depends on the B field of the instruc-
tion. If the B field is zero, LOAD ADDRESS
EXTENDED loads the target access register with
00000000 hex. If the B field is nonzero, LOAD
ADDRESS EXTENDED loads the target access
register with the contents of the access register
designated by the B field. However, in the last
case when bits 0-6 of the access register desig-
nated by the B field are not all zeros, the results in
the target general register and access register are
unpredictable.

 Chapter 5. Program Execution 5-43

The address-space-control values 00, 01, 10, and
11 binary specify primary-space, access-register,
secondary-space, and home-space mode, respec-
tively, when DAT is on. LOAD ADDRESS
EXTENDED functions the same regardless of
whether DAT is on or off.

When used in access-register translation, the
access-register values 00000000 and 00000001
hex specify the primary and secondary address
spaces, respectively, and the value 00000002 hex
designates entry 2 in the dispatchable-unit access
list. Loading the target access register with
00000002 hex when the address-space control is
11 binary is intended to support assignment, by
the control program, of entry 2 in the dispatchable-
unit access list as specifying the home address
space.

 Access-Register Translation
Access-register translation is introduced in
“Access-Register-Specified Address Spaces” on
page 5-36.

 Access-Register-Translation
Control

Access-register translation is controlled by an
address-space control and by controls in control
registers 2, 5, and 8. The address-space control,
PSW bits 16 and 17, is described in “Translation
Modes” on page 3-28. The other controls are
described below.

Additional controls are located in the access-
register-translation tables.

Control Register 2
The location of the dispatchable-unit control table
is specified in control register 2. The register has
the following format:

┌─────/─────┬─────────────────────────┬──────┐
│ │ DUCTO │ │
└─────/─────┴─────────────────────────┴──────┘
� 33 58 63

 Dispatchable-Unit-Control-Table Origin
(DUCTO): Bits 33-57 of control register 2, with
six zeros appended on the right, form a 31-bit real
address that designates the beginning of the
dispatchable-unit control table. Access-register

translation may obtain the dispatchable-unit
access-list designation from the dispatchable-unit
control table.

Control Register 5
The location of the primary ASN-second-table
entry is specified in control register 5. The reg-
ister has the following format:

┌─────/─────┬─────────────────────────┬──────┐
│ │ PASTEO │ │
└─────/─────┴─────────────────────────┴──────┘
� 33 58 63

Primary-ASTE Origin (PASTEO): Bits 33-57 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates
the beginning of the primary ASN-second-table
entry. Access-register translation may obtain the
primary-space access-list designation from the
primary ASTE. The primary-ASTE origin is set by
LOAD ADDRESS SPACE PARAMETERS when it
performs PASN translation and by the space-
switching forms of PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER. When
any of these instructions places the primary-ASTE
origin in control register 5, it also places zeros in
bit positions 32 and 58-63 of the register and
leaves bits 0-31 of the register unchanged. Bits
0-32 and 58-63 of control register 5 are subject to
possible future assignment, and they should not
be depended upon to be zeros.

Control Register 8
The extended authorization index is in control reg-
ister 8. The register has the following format:

┌─────/─────┬────────────────┬───────────────┐
│ │ EAX │ Monitor Masks │
└─────/─────┴────────────────┴───────────────┘
� 32 48 63

Extended Authorization Index (EAX): Bits
32-47 of control register 8 are the extended
authorization index. During access-register trans-
lation, the EAX may be compared against the
access-list-entry authorization index (ALEAX) in an
access-list entry, and it may be used as an index
to locate a secondary bit in an authority table.
The EAX may be set by a stacking PROGRAM
CALL operation, and it is restored by PROGRAM
RETURN. The EAX can also be saved and set by
the privileged instruction EXTRACT AND SET
EXTENDED AUTHORITY.

5-44 z/Architecture Principles of Operation

 Access Registers

There are sixteen 32-bit access registers num-
bered 0-15. The contents of an access register
are called an access-list-entry token (ALET). An
ALET has the following format:

┌───────┬─┬────────┬────────────────┐
│�������│P│ ALESN │ ALEN │
└───────┴─┴────────┴────────────────┘
� 7 8 16 31

The fields in the ALET are allocated as follows:

Primary-List Bit (P): When the ALET is not
00000000 or 00000001 hex, bit 7 specifies the
access list to be used by access-register trans-
lation. When bit 7 is zero, the dispatchable-unit
access list is used; this is specified by the
dispatchable-unit access-list designation in the
dispatchable-unit control table designated by the
contents of control register 2. When bit 7 is one,
the primary-space access list is used; this is spec-
ified by the primary-space access-list designation
in the primary ASTE designated by the contents of
control register 5.

Access-List-Entry Sequence Number
(ALESN): Bits 8-15 may be used as a check on
whether the access-list entry designated by the
ALET has been invalidated and reallocated since
the ALET was obtained. During access-register
translation when the ALET is not 00000000 or
00000001 hex, bits 8-15 of the ALET are com-
pared against the access-list-entry sequence
number (ALESN) in the designated access-list
entry.

Access-List-Entry Number (ALEN): When the
ALET is not 00000000 or 00000001 hex, bits
16-31 of the ALET designate an entry in either the
dispatchable-unit access list or the primary-space
access list, as determined by bit 7. The access-
list designation that is used is called the effective
access-list designation; it consists of the effective
access-list origin and the effective access-list
length.

During access-register translation, the ALEN, with
four zeros appended on the right, is added to the
31-bit real or absolute address specified by the
effective access-list origin, and the result is the
real or absolute address of the designated access-
list entry. The ALEN is compared against the

effective access-list length to determine whether
the designated access-list entry is within the list,
and an ALEN-translation exception is recognized if
the entry is outside the list. Although the largest
possible value of the ALEN is 65,535, an access
list can contain at most 1,024 entries.

Bits 0-6 must be zeros during access-register
translation; otherwise, an ALET-specification
exception is recognized.

When the ALET is 00000000 or 00000001 hex, it
specifies the primary or secondary address space,
respectively, and the above format does not apply.

Access register 0 usually is treated in access-
register translation as containing 00000000 hex,
and its actual contents are not examined; the
access-register translation done as part of TEST
ACCESS is the only exception. Access register 0
is also treated as containing 00000000 hex when
it is designated by the B field of LOAD ADDRESS
EXTENDED when PSW bits 16 and 17 are 01
binary. When access register 0 is specified for
TEST ACCESS or as a source for COPY
ACCESS, EXTRACT ACCESS, or STORE
ACCESS MULTIPLE, the actual contents of the
access register are used. Access register 0, like
any other access register, can be loaded by
COPY ACCESS, LOAD ACCESS MULTIPLE,
LOAD ADDRESS EXTENDED, and SET
ACCESS.

Another definition of ALETs 00000000 and
00000001 hex is given in “BRANCH IN SUB-
SPACE GROUP” on page 10-13.

 Access-Register-Translation
Tables

When the ALET being translated is not 00000000
or 00000001 hex, access-register translation per-
forms a two-level lookup to locate first the effec-
tive access-list designation and then an entry in
the effective access list. The effective access-list
designation resides in real storage. The effective
access list resides in real or absolute storage.

Access-register translation uses an origin in the
access-list entry to locate an ASN-second-table
entry, and it may perform a one-level lookup to
locate an entry in an authority table. The
ASN-second-table entry resides in real storage.

 Chapter 5. Program Execution 5-45

The authority table resides in real or absolute
storage.

Authority-table entries are described in “Authority-
Table Entries” on page 3-24. Access-list desig-
nations, access-list entries, and ASN-second-table
entries are described in the following sections.

Dispatchable-Unit Control Table and
Access-List Designations
When the ALET being translated is not 00000000
or 00000001 hex, access-register translation
obtains the dispatchable-unit access-list desig-
nation if bit 7 of the ALET is zero, or it obtains the
primary-space access-list designation if bit 7 is
one. The obtained access-list designation is
called the effective access-list designation.

The dispatchable-unit access-list designation
(DUALD) is located in bytes 16-19 of a 64-byte
area called the dispatchable-unit control table
(DUCT). The DUCT resides in real storage, and
its location is specified by the DUCT origin in
control register 2.

The dispatchable-unit control table has the fol-
lowing format:

 Hex Dec
──────────┬───────────────────┐
 � � │ BASTEO │
──────────┼─┬─────────────────┤
 │S│ │
 4 4 │A│ SSASTEO │
──────────┼─┴─────────────────┤
 8 8 │ │
──────────┼───────────────────┤
 C 12 │ SSASTESN │
──────────┼───────────────────┤
1� 16 │ DUALD │
──────────┼───────┬─┬───┬─┬─┬─┤

│PSW-Key│ │PSW│R│ │ │
 14 2� │ Mask │ │Key│A│ │P│
──────────┼───────┴─┴───┴─┴─┴─┤
 18 24 │ │
──────────┼───────────────────┤
 1C 28 │///////////////////│
──────────┴───────────────────┘

In the 24-Bit or 31-Bit
Addressing Mode
──────────┬───────────────────┐
 2� 32 │ │
──────────┼─┬─────────────────┤
24 36 │B│ Bits 33-63 of │

│A│ Return Address │
──────────┴─┴─────────────────┘

In the 64-Bit Addressing Mode
──────────┬───────────────────┐
 2� 32 │ Bits �-31 of │
 │ Return Address │
──────────┼───────────────────┤

| 24 36 │ Bits 32-63 of │
 │ Return Address │
──────────┴───────────────────┘

──────────┬───────────────────┐
 28 4� │ │
──────────┼──────────────┬──┬─┤
 2C 44 │Trap-Control- │ │ │

│Block Address │ │E│
──────────┼──────────────┴──┴─┤
 3� 48 │ │
 / /
 3C 6� │ │
──────────┴───────────────────┘

Bytes 0-7 (BASTEO, SA, and SSASTEO) and
12-15 (SSASTESN) of the DUCT are described in
“Subspace-Group Dispatchable-Unit Control
Table” on page 5-56. Bytes 20-23 (PSW key
mask, PSW key, RA, and P) and 32-39 (BA and
return address) are described in “BRANCH AND
SET AUTHORITY” on page 10-6. Bytes 44-47
(trap-control-block address and E) are described
in “TRAP” on page 10-124. Bytes 8-11, 24-27,
40-43, and 48-63 are reserved for possible future
extensions and should contain all zeros. Bytes
28-31 are available for use by programming.

The primary-space access-list designation
(PSALD) is located in bytes 16-19 of a 64-byte
area called the primary ASN-second-table entry.
The primary ASTE resides in real storage, and its
location is specified by the primary-ASTE origin in
control register 5. The format of the primary
ASTE is described in “ASN-Second-Table Entries”
on page 5-48.

The dispatchable-unit and primary-space access-
list designations both have the same format, which
is as follows:

Access-List Designation
┌─┬────────────────────────┬───────┐
│ │ Access-List Origin │ ALL │
└─┴────────────────────────┴───────┘
� 1 25 31

The fields in the access-list designation are allo-
cated as follows:

5-46 z/Architecture Principles of Operation

Access-List Origin: Bits 1-24 of the access-list
designation, with seven zeros appended on the
right, form a 31-bit address that designates the
beginning of the access list. This address is
treated unpredictably as either a real address or
an absolute address.

Access-List Length (ALL): Bits 25-31 of the
access-list designation specify the length of the
access list in units of 128 bytes, thus making the
length of the access list variable in multiples of
eight 16-byte entries. The length of the access
list, in units of 128 bytes, is one more than the
value in bit positions 25-31. The access-list
length, with six zeros appended on the left, is
compared against bits 0-12 of an access-list-entry
number (bits 16-28 of an access-list-entry token)
to determine whether the access-list-entry number
designates an entry in the access list.

Bit 0 is reserved for a possible future extension
and should be zero.

Programming Note: The maximum number of
access-list entries allowed by an access-list desig-
nation is 1,024. There are two access lists avail-
able for use at any time. Therefore, a maximum
of 2,048 16E-byte address spaces can be
addressable without control-program intervention,
which is a total of 2%� bytes.

 Access-List Entries
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET being translated is
zero, or it is the primary-space access list if bit 7
is one. The entry fetched from the effective
access list is 16 bytes in length and has the fol-
lowing format:

┌─┬───┬─┬─┬────────┬────────────────┐
│ │ │F│ │ │ │
│I│ │O│P│ ALESN │ ALEAX │
└─┴───┴─┴─┴────────┴────────────────┘
� 1 6 7 8 16 31

┌───────────────────────────────────┐
│ │
└───────────────────────────────────┘
32 63

┌─┬──────────────────────────┬──────┐
│ │ ASTEO │ │
└─┴──────────────────────────┴──────┘
64 9� 95

┌───────────────────────────────────┐
│ ASTESN │
└───────────────────────────────────┘
96 127

The fields in the access-list entry are allocated as
follows:

ALEN-Invalid Bit (I): Bit 0, when zero, indicates
that the access-list entry specifies an address
space. When bit 0 is one during access-register
translation, an ALEN-translation exception is
recognized.

Fetch-Only Bit (FO): Bit 6 controls which types
of operand references are permitted to the
address space specified by the access-list entry.
When bit 6 is zero, both fetch-type and store-type
references are permitted. When bit 6 is one, only
fetch-type references are permitted, and an
attempt to store causes a protection exception for
access-list-controlled protection to be recognized
and the operation to be suppressed.

Private Bit (P): Bit 7, when zero, specifies that
any program is authorized to use the access-list
entry in access-register translation. When bit 7 is
one, authorization is determined as described for
bits 16-31.

Access-List-Entry Sequence Number
(ALESN): Bits 8-15 are compared against the
ALESN in the ALET during access-register trans-
lation. Inequality causes an ALE-sequence excep-
tion to be recognized. It is intended that the
control program change bits 8-15 each time it real-
locates the access-list entry.

Access-List-Entry Authorization Index
(ALEAX): Bits 16-31 may be used to determine
whether the program for which access-register
translation is being performed is authorized to use
the access-list entry. The program is authorized if
any of the following conditions is met:

1. Bit 7 is zero.

2. Bits 16-31 are equal to the extended authori-
zation index (EAX) in control register 8.

3. The EAX selects a secondary bit that is one in
the authority table for the specified address
space.

An extended-authority exception is recognized if
none of the conditions is met.

 Chapter 5. Program Execution 5-47

ASN-Second-Table-Entry Origin (ASTEO): Bits
65-89, with six zeros appended on the right, form
the 31-bit real address of the ASTE for the speci-
fied address space. Access-register translation
obtains the address-space-control element for the
address space from the ASTE.

ASTE Sequence Number (ASTESN): Bits
96-127 may be used to revoke the addressing
capability represented by the access-list entry.
Bits 96-127 are compared against an ASTE
sequence number (ASTESN) in the designated
ASTE during access-register translation.

Bits 1-5, 32-64, and 90-95 are reserved for pos-
sible future extensions and should be zeros.

In both the dispatchable-unit access list and the
primary-space access list, access-list entries 0
and 1 are intended not to be used in access-
register translation. Bits 1-127 of access-list entry
0 and bits 1-63 of access-list entry 1 are reserved
for possible future extensions and should be
zeros. Bit 0 of access-list entries 0 and 1, and
bits 64-127 of access-list entry 1, are available for
use by programming. The control program should
set bit 0 of access-list entries 0 and 1 to one in
order to prevent the use of these entries by
means of ALETs in which the ALEN is 0 or 1.

 ASN-Second-Table Entries
The first 32 bytes of the 64-byte
ASN-second-table entry have the following format:

┌─┬───────────────────────────┬─┬─┐
│I│ ATO │ │B│
└─┴───────────────────────────┴─┴─┘
� 1 3� 31

┌───────────────┬────────────┬────┐
│ AX │ ATL │ │
└───────────────┴────────────┴────┘
32 48 6� 63

┌─ASCE (RTD, STD, or RSD) Part 1──┐
┌─────────────────────────────────┐
│ RTO, STO, or RSTKO │
└─────────────────────────────────┘
64 95

┌────────RTD or STD Part 2────────┐
┌───────────────┬──┬────┬─┬─┬──┬──┐
│RTO/STO (Cont.)│ │GPSX│R│ │DT│TL│ R=�
└───────────────┴──┴────┴─┴─┴──┴──┘
96 115 118 122 124 127

┌───────────RSD Part 2────────────┐
┌───────────────┬──┬────┬─┬───────┐
│ RSTKO (Cont.) │ │GPSX│R│ │ R=1
└───────────────┴──┴────┴─┴───────┘
96 115 118 122 127

┌───────────────ALD───────────────┐
┌─┬───────────────────────┬───────┐
│ │ ALO │ ALL │
└─┴───────────────────────┴───────┘
128 153 159

┌─────────────────────────────────┐
│ ASTESN │
└─────────────────────────────────┘
16� 191

┌───────────────LTD───────────────┐
┌─┬───────────────────────┬───────┐
│V│ LTO │ LTL │
└─┴───────────────────────┴───────┘
192 217 223

┌─────────────────────────────────┐
│/////////////////////////////////│
└─────────────────────────────────┘
224 255

The fields in bytes 0-31 of the ASN-second-table
entry (ASTE) are defined with respect to certain
mechanisms and instructions in
“ASN-Second-Table Entries” on page 3-19. The
fields in the ASTE are defined with respect to the
BRANCH IN SUBSPACE GROUP instruction in
“Subspace-Group ASN-Second-Table Entries” on
page 5-58. With respect to access-register trans-
lation only, and only for an instruction other than
BRANCH IN SUBSPACE GROUP, the fields in
the ASTE are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is avail-
able. When bit 0 is zero, access-register trans-
lation proceeds. When the bit is one, an
ASTE-validity exception is recognized.

Authority-Table Origin (ATO): Bits 1-29, with
two zeros appended on the right, form a 31-bit
address that designates the beginning of the
authority table. This address is treated unpredict-
ably as either a real address or an absolute
address, although it is treated as a real address
for ASN authorization. The authority table is
accessed in access-register translation only if the
private bit in the access-list entry is one and the
access-list-entry authorization index (ALEAX) in

5-48 z/Architecture Principles of Operation

the access-list entry is not equal to the extended
authorization index (EAX) in control register 8.

Base-Space Bit (B): Bit 31 is ignored during
access-register translation. Bit 31 is further
described in “Subspace-Group ASN-Second-Table
Entries” on page 5-58.

Authorization Index (AX): Bits 32-47 are not
used in access-register translation.

Authority-Table Length (ATL): Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular EAX is within the authority table.
An extended-authority exception is recognized if
the entry is not within the table.

Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control
element (ASCE) that may be a segment-table des-
ignation (STD), a region-table designation (RTD),
or a real-space designation (RSD). (The term
“region-table designation” is used to mean a
region-first-table designation, region-second-table
designation, or region-third-table designation.)
The ASCE field is obtained as the result of
access-register translation and is used by DAT to
translate the logical address for the storage-
operand reference being made. Bit 121, the
space-switch-event control, is not used in or as a
result of access-register translation. The other
fields in the ASCE (RTO, STO, RSTKO, G, P, S,
R, DT, and TL) are described in “Control Register
1” on page 3-29.

Access-List Designation (ALD): When this
ASTE is designated by the primary-ASTE origin in
control register 5, bits 128-159 are the primary-
space access-list designation (PSALD). See the
description of the access-list designation in
“Dispatchable-Unit Control Table and Access-List
Designations” on page 5-46. During access-
register translation when the primary-list bit, bit 7,
in the ALET being translated is one, the PSALD is
the effective access-list designation.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control
revocation of the accessing capability represented

by access-list entries that designate the ASTE.
During access-register translation, bits 160-191
are compared against the ASTESN in the access-
list entry, and inequality causes an
ASTE-sequence exception to be recognized. It is
intended that the control program change the
value of bits 160-191 when the authorization poli-
cies for the address space specified by the ASTE
change or when the ASTE is reassigned to specify
another address space.

Linkage-Table Designation (LTD): Bits
192-223 are not used in access-register trans-
lation.

Bits 224-255 in the ASTE are available for use by
programming.

Programming Note: All unused fields in the
ASTE, including the unused fields in bytes 0-31
and all of bytes 32-63, should be set to zeros.
These fields are reserved for future extensions,
and programs which place nonzero values in
these fields may not operate compatibly on future
machines.

 Access-Register-Translation
Process

This section describes the access-
register-translation process as it is performed
during a storage-operand reference in the access-
register mode. LOAD REAL ADDRESS and
STORE REAL ADDRESS when PSW bits 16 and
17 are 01 binary, TEST ACCESS in any trans-
lation mode, and TEST PROTECTION in the
access-register mode, perform access-register
translation the same as described here, except
that, for LOAD REAL ADDRESS, TEST ACCESS,
and TEST PROTECTION, the following exceptions
cause a setting of the condition code instead of
being treated as program-interruption conditions:

 � ALET specification
 � ALEN translation
 � ALE sequence
 � ASTE validity
 � ASTE sequence
 � Extended authority

BRANCH IN SUBSPACE GROUP performs
access-register translation as described in
“BRANCH IN SUBSPACE GROUP” on
page 10-13.

 Chapter 5. Program Execution 5-49

Access-register translation operates on the access
register designated in a storage-operand reference
in order to obtain an address-space-control
element for use by DAT. When one of access-
registers 1-15 is designated, the access-list-entry
token (ALET) that is in the access register is used
to obtain the address-space-control element.
When access register 0 is designated, an ALET
having the value 00000000 hex is used, except
that TEST ACCESS uses the actual contents of
access register 0.

When the ALET is 00000000 or 00000001 hex,
the primary or secondary address-space-control
element, respectively, is obtained.

When the ALET is other than 00000000 or
00000001 hex, the leftmost seven bits of the
ALET are checked for zeros, the primary-list bit in
the ALET and the contents of control register 2 or
5 are used to obtain the effective access-list des-
ignation, and the access-list entry number (ALEN)
in the ALET is used to select an entry in the effec-
tive access list.

The access-list entry is checked for validity and for
containing the correct access-list-entry sequence
number (ALESN).

The ASN-second-table entry (ASTE) addressed by
the access-list entry is checked for validity and for
containing the correct ASN-second-table-entry
sequence number (ASTESN).

Whether the program is authorized to use the
access-list entry is determined through the use of

one or more of: (1) the private bit and access-
list-entry authorization index (ALEAX) in the
access-list entry, (2) the extended authorization
index (EAX) in control register 8, and (3) an entry
in the authority table addressed by the
ASN-second-table entry.

If a store-type reference is to be performed, the
fetch-only bit in the access-list entry is checked for
being zero.

When no exceptions are recognized, the address-
space-control element in the ASN-second-table
entry is obtained.

In order to avoid the delay associated with refer-
ences to real or absolute storage, the information
fetched from real or absolute storage normally is
also placed in a special buffer, the ART-lookaside
buffer (ALB), and subsequent translations
involving the same information may be performed
by using the contents of the ALB. The operation
of the ALB is described in “ART-Lookaside Buffer”
on page 5-54.

Whenever access to real or absolute storage is
made during access-register translation for the
purpose of fetching an entry from an access-list-
designation source, access list, ASN second table,
or authority table, key-controlled protection does
not apply.

The principal features of access-register trans-
lation, including the effect of the ALB, are shown
in Figure 5-10 on page 5-51.

5-50 z/Architecture Principles of Operation

Access-List Designation ALET in Access Register Control Register 1
┌─┬────────────────┬────┐ ┌─┐ ┌────┬─┬─────┬──────────┐ ┌─────────────────┐
│ │ ALO │ALL │�────┤1│ │ │P│ALESN│ ALEN │ │ PASCE │
└─┴────────┬───────┴────┘ └─┘ └────┴─┴──┬──┴────┬─────┘ └────────┬────────┘
 │ │ │ │
┌──────────┘ │ │ ┌────────────┘
│ ┌───┼───────┘ │
│ │ │ │ Control Register 7
│ � └─────────────────────┐ │ ┌─────────────────┐
│ ┌─┐ Access List │ │ │ SASCE │
└─�│+│ ┌──┐ │ │ └────────┬────────┘
 └┬┘ │ │ │ │ │
 │ │ │ │ │ ┌────────┘
 │ ├─┬─┬─┬─────┬─────┬──────────┬──────────┬──────────┤ │ │ │

│ │ │F│ │ │ │ │ │ │ │ │ │
└──�│I│O│P│ALESN│ALEAX│ │ ASTEO │ ASTESN │ │ │ │

 ├─┴┬┴┬┴────┬┴──┬──┴──────────┴─────┬────┴────┬─────┤ │ │ │
 │ │ │ │ │ │ │ │ │ │ │
 └──┼─┼─────┼───┼───────────────────┼─────────┼─────┘ │ │ │
 � � │ │ │ │ │ │ │
 ┌──────┐ ┌────┐│ │ │ │ ┌────┐ │ │ │

│=� if │ │ =�?│└───┼───────────────────┼─────────┼──────�│ =? │�──┘ │ │
 │store?│ └────┘ │ │ │ └────┘ │ │
 └──────┘ │ │ │ │ │
CR 8 │ │ │ │ │
┌─/─┬───────┬───────┐ │ │ │ │ │
│ │ EAX │ │ │ │ │ │ │
└─/─┴───┬───┴───────┘ │ │ │ │ │
 │ │ │ │ │ │
 │ ┌────┐ │ │ │ ┌────┐ │ │
┌───────┴──�│ =? │�────┘ │ └────�│ =? │�───┐ │ │
│ └────┘ │ └────┘ │ │ │
│ │ │ │ │
│ ┌─────────────────────────────────────┘ │ │ │
│ │ │ │ │
│ │ ASN-Second-Table Entry │ │ │
│ │ ┌─┬─────────────┬──────┬──────┬────────────┬──────────┬─────┴────┬──/ │ │
│ └─� │I│ ATO │ │ ATL │ ASCE │ │ ASTESN │ │ │
│ └─┴─────┬───────┴──────┴──────┴─────┬──────┴──────────┴──────────┴──/ │ │
└───────┐ │ │ │ │
 │ │(x 4) └────────────────────────────────┐ │ │
┌───────┼────────┘ ┌─────────┐ � � �
│ │(x 1/4) ┌─┐ │ │ ┌─────────────┐
│ � │2├────�│ ALB ├───────────────────�│ 3 │
│ ┌─┐ Authority Table └─┘ │ │ └──────┬──────┘
└─────�│+│ ┌───┐ └─────────┘ │
 └┬┘ │ │ �

│ ├─┬─┤ ┌────┐ ┌─────────────┐
 └──�│P│S├──�│S=1?│ │Obtained ASCE│
 ├─┴─┤ └────┘ └─────────────┘
 │ │
 └───┘

Explanation:

 ┌─┐ The appropriate ALD is obtained:
 │1│ When P in the ALET is zero (and the ALET is not zero or one), the DUALD in the DUCT is obtained.
 └─┘ When P in the ALET is one, the PSALD in the primary ASTE is obtained.

 ┌─┐ Information, which may include the ALD-source origin, ALET, ALO, and EAX, is used to search
 │2│ the ALB. This information, along with information from the ALE, ASTE, and ATE, may be
 └─┘ placed in the ALB.

 ┌─┐ The appropriate ASCE is obtained:
 │3│ When the ALET is zero, the PASCE in CR 1 is obtained.
 └─┘ When the ALET is one, the SASCE in CR 7 is obtained.

When the ALET is larger than one:
If a match exists, the ASCE from the ALB is used.
If no match exists, tables from real or absolute storage are fetched. The resulting ASCE from
the ASTE is obtained, and entries may be formed in the ALB.

Figure 5-10. Access-Register Translation

 Chapter 5. Program Execution 5-51

Selecting the Access-List-Entry Token
When one of access registers 1-15 is designated,
or for the access register designated by the R�
field of TEST ACCESS, access-register translation
uses the access-list-entry token (ALET) that is in
the access register. When access register 0 is
designated, except for TEST ACCESS, an ALET
having the value 00000000 hex is used, and the
contents of access register 0 are not examined.

Obtaining the Primary or Secondary
Address-Space-Control Element

When the ALET being translated is 00000000 hex,
the primary address-space-control element in
control register 1 is obtained. When the ALET is
00000001 hex, the secondary address-
space-control element in control register 7 is
obtained. In each of these two cases, access-
register translation is completed.

Checking the First Byte of the ALET
When the ALET being translated is other than
00000000 or 00000001 hex, bits 0-6 of the ALET
are checked for being all zeros. If bits 0-6 are not
all zeros, an ALET-specification exception is
recognized, and the operation is suppressed.

Obtaining the Effective Access-List
Designation
The primary-list bit, bit 7, in the ALET is used to
perform a lookup to obtain the effective access-list
designation. When bit 7 is zero, the effective ALD
is the dispatchable-unit ALD located in bytes
16-19 of the dispatchable-unit control table
(DUCT). When bit 7 is one, the effective ALD is
the primary-space ALD located in bytes 16-19 of
the primary ASN-second-table entry (primary
ASTE).

When bit 7 is zero, the 31-bit real address of the
dispatchable-unit ALD is obtained by appending
six zeros on the right to the DUCT origin, bits
33-57 of control register 2, and adding 16. The
addition cannot cause a carry into bit position 0.

When bit 7 is one, the 31-bit real address of the
primary-space ALD is obtained by appending six
zeros on the right to the primary-ASTE origin, bits
33-57 of control register 5, and adding 16. The
addition cannot cause a carry into bit position 0.

The obtained 31-bit real address is used to fetch
the effective ALD — either the dispatchable-unit
ALD or the primary-space ALD, depending on bit
7 of the ALET. The fetch of the effective ALD
appears to be word concurrent, as observed by
other CPUs, and is not subject to protection.
When the storage address that is generated for
fetching the effective ALD refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed. When the primary-space
ALD is fetched, bit 0, the ASX-invalid bit, in the
primary ASTE is ignored.

 Access-List Lookup
A lookup in the effective access list is performed.
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET is zero, or it is the
primary-space access list if bit 7 is one. The
effective access list is treated unpredictably as
being in either real or absolute storage.

The access-list-entry-number (ALEN) portion of
the ALET is used to select an entry in the effective
access list. The 31-bit real or absolute address of
the access-list entry is obtained by appending
seven zeros on the right to bits 1-24 of the effec-
tive ALD and adding the ALEN, with four rightmost
and 11 leftmost zeros appended. When a carry
into bit position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the access list to
wrap from 2�� - 1 to 0. The 31-bit address is
formed and used regardless of whether the
current PSW specifies the 24-bit, 31-bit, or 64-bit
addressing mode.

As part of the access-list-lookup process, the left-
most 13 bits of the ALEN are compared against
the effective access-list length, bits 25-31 of the
effective ALD, to establish whether the addressed
entry is within the access list. For this compar-
ison, the access-list length is extended with six
leftmost zeros. If the value formed from the
access-list length is less than the value in the 13
leftmost bits of the ALEN, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

The 16-byte access-list entry is fetched by using
the real or absolute address. The fetch of the
entry appears to be word concurrent as observed
by other CPUs, with the leftmost word fetched
first. The order in which the remaining three

5-52 z/Architecture Principles of Operation

words are fetched is unpredictable. The fetch
access is not subject to protection. When the
storage address that is generated for fetching the
access-list entry refers to a location which is not
available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit 0 of the access-list entry indicates whether the
access-list entry specifies an address space by
designating an ASN-second-table entry. This bit
is inspected, and, if it is one, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

When bit 0 is zero, the access-list-entry sequence
number (ALESN) in bit positions 8-15 of the
access-list entry is compared against the ALESN
in the ALET to determine whether the ALET desig-
nates the conceptually correct access-list entry.
Inequality causes an ALE-sequence exception to
be recognized and the operation to be nullified.

Locating the ASN-Second-Table Entry
The ASN-second-table-entry (ASTE) origin in the
access-list entry is used to locate the ASTE. Bits
65-89 of the access-list entry, with six zeros
appended on the right, form the 31-bit real
address of the ASTE.

The 64-byte ASTE is fetched by using the real
address. The fetch of the entry appears to be
word concurrent as observed by other CPUs, with

| the leftmost word fetched first, except that the
| fetch of the address-space-control element in the
| entry appears to be doubleword concurrent as
| observed by other CPUs. The order in which the
| remaining words, after the first word, and the
| address-space-control element are fetched is

unpredictable. The fetch access is not subject to
protection. When the storage address that is gen-
erated for fetching the ASTE refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed.

Bit 0 of the ASTE indicates whether the ASTE
specifies an address space. This bit is inspected,
and, if it is one, an ASTE-validity exception is
recognized, and the operation is nullified.

When bit 0 is zero, the ASTE sequence number
(ASTESN) in bit positions 160-191 of the ASTE is
compared against the ASTESN in bit positions

96-127 of the access-list entry to determine
whether the addressing capability represented by
the access-list entry has been revoked. Inequality
causes an ASTE-sequence exception to be recog-
nized and the operation to be nullified.

Authorizing the Use of the Access-List
Entry
The private bit, bit 7, in the access-list entry is
used to determine whether the program is author-
ized to use the access-list entry. The access-list-
entry authorization index (ALEAX) in bit positions
16-31 of the access-list entry, the extended
authorization index (EAX) in bit positions 32-47 of
control register 8, and the authority table desig-
nated by the ASTE may also be used.

When the private bit is zero, the program is
authorized, and the authorization step of access-
register translation is completed.

When the private bit is one but the ALEAX is
equal to the EAX, the program is authorized, and
the authorization step of access-register trans-
lation is completed.

When the private bit is one and the ALEAX is not
equal to the EAX, a process called the extended-
authorization process is performed. Extended
authorization uses the EAX to select an entry in
the authority table designated by the ASTE, and it
tests the secondary-authority bit in the selected
entry for being one. The program is authorized if
the tested bit is one.

Extended authorization is the same as the
secondary-ASN-authorization process described in
“ASN Authorization” on page 3-23, except as
follows:

� The authority-table origin is treated as a real
or absolute address instead of as a real
address.

� The EAX in control register 8 is used instead
of the authorization index (AX) in control reg-
ister 4.

� When the value in bit positions 0-11 of the
EAX is greater than the authority-table length
(ATL) in the ASTE, an extended-authority
exception is recognized instead of a
secondary-authority exception. The operation
is nullified if the extended-authority exception
is recognized.

 Chapter 5. Program Execution 5-53

When the private bit is one, the ALEAX is not
equal to the EAX, and the secondary bit in the
authority-table entry selected by the EAX is not
one, an extended-authority exception is recog-
nized, and the operation is nullified.

Checking for Access-List-Controlled
Protection
If a store-type reference is to be performed and
the fetch-only bit, bit 6, in the access-list entry is
one, a protection exception is recognized, and the
operation is suppressed.

Obtaining the Address-Space-Control
Element from the ASN-Second-Table
Entry

When the ALET being translated is other than
00000000 or 00000001 hex and no exception is
recognized in the steps described above, access-
register translation obtains the address-
space-control element from bit positions 64-127 of
the ASTE.

Recognition of Exceptions during
Access-Register Translation
The exceptions which can be encountered during
the access-register-translation process and their
priority are shown in the section “Access
Exceptions” in Chapter 6, “Interruptions.”

Programming Note: When updating an access-
list entry or ASN-second-table entry, the program
should change the entry from invalid to valid (set
bit 0 of the entry to zero) as the last step of the
updating. This ensures, because the leftmost
word is fetched first, that words of a partially
updated entry will not be fetched.

 ART-Lookaside Buffer

To enhance performance, the access-
register-translation (ART) mechanism normally is
implemented such that access-list designations
and information specified in access lists, ASN
second tables, and authority tables are maintained
in a special buffer, referred to as the
ART-lookaside buffer (ALB). Access-list desig-
nations, access-list entries, ASN-second-table
entries, and authority-table entries are collectively
referred to as ART-table entries. The CPU neces-
sarily refers to an ART-table entry in real or abso-

lute storage only for the initial access to that entry.
The information in the entry may be placed in the
ALB, and subsequent ART operations may be per-
formed using the information in the ALB. The
presence of the ALB affects the ART process to
the extent that (1) a modification of an ART-table
entry in real or absolute storage does not neces-
sarily have an immediate effect, if any, on the
translation, (2) the comparison against the
access-list length in an access-list designation that
is in storage and used in a translation may be
omitted if an ALB access-list entry is used, and
(3) the comparison against the authority-table
length in an ASN-second-table entry that is in
storage and used in a translation may be omitted
if an ALB authority-table entry is used. In a
multiple-CPU configuration, each CPU has its own
ALB.

Entries within the ALB are not explicitly address-
able by the program.

Information is not necessarily retained in the ALB
under all conditions for which such retention is
possible. Furthermore, information in the ALB
may be cleared under conditions additional to
those for which clearing is mandatory.

 ALB Structure
The description of the logical structure of the ALB
covers the implementation by all systems oper-
ating as defined by z/Architecture. The ALB
entries are considered as being of four types:
ALB access-list designations (ALB ALDs), ALB
access-list entries (ALB ALEs), ALB
ASN-second-table entries (ALB ASTEs), and ALB
authority-table entries (ALB ATEs). An ALB entry
is considered as containing within it both the infor-
mation obtained from the ART-table entry in real
or absolute storage and the attributes used to
fetch the ART-table entry from real or absolute
storage. There is not an indication in an ALB ALD
of whether the ALD-source origin used to select
the ALD in real storage was the dispatchable-
unit-control-table origin or the primary-ASTE
origin.

Note: The following sections describe the condi-
tions under which information may be placed in
the ALB, the conditions under which information
from the ALB may be used for access-register
translation, and how changes to the tables affect
the ART process.

5-54 z/Architecture Principles of Operation

Formation of ALB Entries
The formation of ALB entries and the effect of any
manipulation of the contents of an ART-table entry
in real or absolute storage by the program depend
on whether the entry is attached to a particular
CPU and on whether the entry is valid.

The attached state of an ART-table entry denotes
that the CPU to which the entry is attached can
attempt to use the entry for access-register trans-
lation. The ART-table entry may be attached to
more than one CPU at a time.

An access-list entry or ASN-second-table entry is
valid when the invalid bit associated with the entry
is zero. Access-list designations and authority-
table entries have no invalid bit and are always
valid. The primary-space access-list designation
is valid regardless of the value of the invalid bit in
the primary ASTE.

An ART-table entry may be placed in the ALB
whenever the entry is attached and valid.

An access-list designation is attached to a CPU
when the designation is within the dispatchable-
unit control table designated by the dispatchable-
unit-control-table origin in control register 2 or is
within the primary ASTE designated by the
primary-ASTE origin in control register 5.

An access-list entry is attached to a CPU when
the entry is within the access list specified by
either an attached access-list designation (ALD) or
a usable ALB ALD. A usable ALB ALD is
explained in the next section.

An ASN-second-table entry is attached to a CPU
when it is designated by the ASTE origin in either
an attached and valid access-list entry (ALE) or a
usable ALB ALE. A usable ALB ALE is explained
in the next section.

An authority-table entry is attached to a CPU
when it is within the authority table designated by
either an attached and valid ASN-second-table
entry (ASTE) or a usable ALB ASTE. A usable
ALB ASTE is explained in the next section.

Use of ALB Entries
The usable state of an ALB entry denotes that the
CPU can attempt to use the ALB entry for access-
register translation. A usable ALB entry attaches
the next-lower-level table, if any, and may be
usable for a particular instance of access-register
translation.

An ALB ALD is in the usable state when the
ALDSO field in the ALB ALD matches the current
dispatchable-unit-control-table origin or the current
primary-ASTE origin.

An ALB ALD may be used for a particular instance
of access-register translation when either of the
following conditions is met:

1. The primary-list bit in the ALET to be trans-
lated is zero, and the ALDSO field in the ALB
ALD matches the current dispatchable-
unit-control-table origin.

2. The primary-list bit in the ALET to be trans-
lated is one, and the ALDSO field in the ALB
ALD matches the current primary-ASTE origin.

An ALB ALE is in the usable state when the ALO
field in the ALB ALE matches the ALO field in an
attached ALD or a usable ALB ALD.

An ALB ALE may be used for a particular instance
of access-register translation when all of the fol-
lowing conditions are met:

1. The ALET to be translated has a value larger
than 1. (If the ALET is 0 or 1, the contents of
CR 1 or CR 7 are used.)

2. The ALO field in the ALB ALE matches the
ALO field in the ALD or ALB ALD being used
in the translation.

3. The ALEN field in the ALB ALE matches the
ALEN field in the ALET to be translated.

An ALB ASTE is in the usable state when the
ASTEO field in the ALB ASTE matches the
ASTEO field in an attached and valid ALE or a
usable ALB ALE.

An ALB ASTE may be used for a particular
instance of access-register translation when the
ASTEO field in the ALB ASTE matches the
ASTEO field in the ALE or ALB ALE being used in
the translation.

 Chapter 5. Program Execution 5-55

An ALB ATE may be used for a particular instance
of access-register translation when both of the fol-
lowing conditions are met:

1. The ATO field in the ALB ATE matches the
ATO field in the ASTE or ALB ASTE being
used in the translation.

2. The EAX field in the ALB ATE matches the
current EAX.

Modification of ART Tables
When an attached but invalid ART-table entry is
made valid, or when an unattached but valid
ART-table entry is made attached, and no entry
formed from the ART-table entry is already in the
ALB, the change takes effect no later than the end
of the current instruction.

When an attached and valid ART-table entry is
changed, and when, before the ALB is cleared of
copies of that entry, an attempt is made to
perform ART requiring that entry, unpredictable
results may occur, to the following extent. The
use of the new value may begin between
instructions or during the execution of an instruc-
tion, including the instruction that caused the
change. Moreover, until the ALB is cleared of
copies of the entry, the ALB may contain both the
old and the new values, and it is unpredictable
whether the old or new value is selected for a par-
ticular ART operation. If the old and new values
are used as representations of effective space
designations, failure to recognize that the effective
space designations are the same may occur, with
the result that operand overlap may not be recog-
nized. Effective space designations and operand
overlap are discussed in “Interlocks within a Single
Instruction” on page 5-81.

When LOAD ACCESS MULTIPLE or LOAD
CONTROL changes the parameters associated
with ART, the values of these parameters at the
start of the operation are in effect for the duration
of the operation.

All entries are cleared from the ALB by the exe-
cution of PURGE ALB, a COMPARE AND SWAP
AND PURGE instruction that purges the ALB, and
SET PREFIX, and by CPU reset.

 Subspace Groups
The subspace-group facility includes the BRANCH
IN SUBSPACE GROUP instruction, allocations of
fields in the address-space-control element,
dispatchable-unit control table, and
ASN-second-table entry, and subspace-
replacement operations of the PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS instructions. BRANCH IN
SUBSPACE GROUP is introduced in “Subroutine
Linkage without the Linkage Stack” on page 5-11
and described in detail in “BRANCH IN SUB-
SPACE GROUP” on page 10-13.

 Subspace-Group Tables

This section describes the use of the
dispatchable-unit control table and
ASN-second-table entry by the subspace-group
facility.

 Subspace-Group Dispatchable-Unit
Control Table
The dispatchable-unit control table has the fol-
lowing format:

 Hex Dec
──────────┬───────────────────┐
 � � │ BASTEO │
──────────┼─┬─────────────────┤
 │S│ │
 4 4 │A│ SSASTEO │
──────────┼─┴─────────────────┤
 8 8 │ │
──────────┼───────────────────┤
 C 12 │ SSASTESN │
──────────┼───────────────────┤
1� 16 │ DUALD │
──────────┼───────┬─┬───┬─┬─┬─┤

│PSW-Key│ │PSW│R│ │ │
 14 2� │ Mask │ │Key│A│ │P│
──────────┼───────┴─┴───┴─┴─┴─┤
 18 24 │ │
──────────┼───────────────────┤
 1C 28 │///////////////////│
──────────┴───────────────────┘

In the 24-Bit or 31-Bit
Addressing Mode
──────────┬───────────────────┐
 2� 32 │ │
──────────┼─┬─────────────────┤
24 36 │B│ Bits 33-63 of │

│A│ Return Address │
──────────┴─┴─────────────────┘

5-56 z/Architecture Principles of Operation

In the 64-Bit Addressing Mode
──────────┬───────────────────┐
 2� 32 │ Bits �-31 of │
 │ Return Address │
──────────┼───────────────────┤

| 24 36 │ Bits 32-63 of │
 │ Return Address │
──────────┴───────────────────┘

──────────┬───────────────────┐
 28 4� │ │
──────────┼──────────────┬──┬─┤
 2C 44 │Trap-Control- │ │ │

│Block Address │ │E│
──────────┼──────────────┴──┴─┤
 3� 48 │ │
 / /
 3C 6� │ │
──────────┴───────────────────┘

The fields in the dispatchable-unit control table
that are used by the subspace-group facility are
allocated as follows:

Base-ASTE Origin (BASTEO): Bits 1-25 of
bytes 0-3, with six zeros appended on the right,
form a 31-bit real address that designates the
beginning of the ASN-second-table entry that
specifies the base space of a subspace group
associated with the dispatchable unit. A compar-
ison of bits 1-25 of bytes 0-3 to the primary-ASTE
origin (PASTEO) in bit positions 33-57 of control
register 5 is made by BRANCH IN SUBSPACE
GROUP to determine whether the current primary
address space is in the subspace group for the
current dispatchable unit. For this comparison,
either bits 1-25 may be compared to the PASTEO
or the entire contents of bytes 0-3 may be com-
pared to the contents of bit positions 33-63 of
control register 5. A comparison of bits 1-25 of
bytes 0-3 to the destination-ASTE origin
(DASTEO) obtained from an access-list entry by
access-register translation of an ALET other than
ALETs 0 and 1 is made by BRANCH IN SUB-
SPACE GROUP to determine if the destination
ASTE is the base-space ASTE. For this compar-
ison, either bits 1-25 may be compared to the
DASTEO or the entire contents of bytes 0-3 may
be compared to the DASTEO with one leftmost
and six rightmost zeros appended. A comparison
of bits 1-25 of bytes 0-3 to an ASTE origin
(ASTEO) obtained by ASN translation may be
made by PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS.
For this comparison, either bits 1-25 may be com-

pared to the ASTEO or the entire contents of
bytes 0-3 may be compared to the ASTEO with
one leftmost and six rightmost zeros appended.
When BRANCH IN SUBSPACE GROUP uses
ALET 0, bits 1-25 of bytes 0-3, with six zeros
appended on the right, designate the destination
ASTE.

Subspace-Active Bit (SA): Bit 0 of bytes 4-7
indicates, when one, that the last BRANCH IN
SUBSPACE GROUP instruction executed for the
dispatchable unit transferred control to a subspace
of the subspace group associated with the
dispatchable unit. Bit 0 being zero indicates any
one of the following: the last BRANCH IN SUB-
SPACE GROUP instruction executed for the
dispatchable unit transferred control to the base
space of the subspace group, BRANCH IN SUB-
SPACE GROUP has not yet been executed for
the dispatchable unit, or the dispatchable unit is
not associated with a subspace group. BRANCH
IN SUBSPACE GROUP sets bit 0 of bytes 4-7 to
one when it transfers control to a subspace of the
subspace group associated with the dispatchable
unit, and it sets bit 0 to zero when it transfers
control to the base space of the subspace group.

Subspace-ASTE Origin (SSASTEO): Bits 1-25
of bytes 4-7, with six zeros appended on the right,
form a 31-bit real address that designates the
beginning of the ASN-second-table entry that
specifies the subspace last given control by a
BRANCH IN SUBSPACE GROUP instruction exe-
cuted for the dispatchable unit. When BRANCH
IN SUBSPACE GROUP transfers control to a sub-
space by means of an ALET other than ALET 1, it
places the ASTEO for the subspace (the destina-
tion ASTEO) in bit positions 1-25 of bytes 4-7,
places zeros in bit positions 26-31 of bytes 4-7,
and sets the subspace-active bit, bit 0 of bytes
4-7, to one. When BRANCH IN SUBSPACE
GROUP uses ALET 1 to transfer control to a sub-
space, bits 1-25 of bytes 4-7, with six zeros
appended on the right, designate the destination
ASTE, and BRANCH IN SUBSPACE GROUP sets
the subspace-active bit to one and either sets bits
26-31 of bytes 4-7 to zeros or leaves those bits
unchanged. However, if bits 1-25 are all zeros, a
special-operation exception is recognized. When
BRANCH IN SUBSPACE GROUP transfers
control to the base space of the subspace group,
it sets the subspace-active bit to zero, and bits
1-31 of bytes 4-7 remain unchanged. Bits 1-25 of
bytes 4-7 may be used by PROGRAM CALL,

 Chapter 5. Program Execution 5-57

PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS to set bits 0-55 and 57-63
of the primary ASCE in control register 1 or the
secondary ASCE in control register 7 from the
same bits of the ASCE in the subspace ASTE.

Subspace-ASTE Sequence Number
(SSASTESN): Bytes 12-15 may be used to
revoke the linkage capability represented by the
SSASTEO, bits 1-25 of bytes 4-7, in the DUCT.
When BRANCH IN SUBSPACE GROUP transfers
control to a subspace by means of an ALET other
than ALET 1, it obtains the ASTESN in the sub-
space ASTE and places it in bytes 12-15. When
BRANCH IN SUBSPACE GROUP uses ALET 1 to
transfer control to a subspace, it compares bytes
12-15 to the ASTESN in the subspace ASTE, and
it recognizes an ASTE-sequence exception if they
are unequal. When the SSASTEO is used by
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS to
set bits 0-55 and 57-63 of the primary ASCE in
control register 1 or the secondary ASCE in
control register 7 from the same bits of the ASCE
in the subspace ASTE, those instructions first
compare bytes 12-15 to the ASTESN in the sub-
space ASTE, and they recognize an
ASTE-sequence exception if the two fields are
unequal.

Bytes 16-19 are described in “Dispatchable-Unit
Control Table and Access-List Designations” on
page 5-46. Bytes 20-23 are described in
“BRANCH AND SET AUTHORITY” on page 10-6.
Bytes 32-39 and 44-47 are described in “TRAP”
on page 10-124. Bytes 24-27, 40-43, and 48-63
are reserved for possible future extensions and
should contain all zeros. Bytes 28-31 are avail-
able for use by programming.

 Subspace-Group ASN-Second-Table
Entries
The 64-byte ASN-second-table entries have the
following format:

┌─┬───────────────────────────┬─┬─┐
│I│ ATO │ │B│
└─┴───────────────────────────┴─┴─┘
� 1 3� 31

┌───────────────┬────────────┬────┐
│ AX │ ATL │ │
└───────────────┴────────────┴────┘
32 48 6� 63

┌─ASCE (RTD, STD, or RSD) Part 1──┐
┌─────────────────────────────────┐
│ RTO, STO, or RSTKO │
└─────────────────────────────────┘
64 95

┌────────RTD or STD Part 2────────┐
┌───────────────┬──┬────┬─┬─┬──┬──┐
│RTO/STO (Cont.)│ │GPSX│R│ │DT│TL│ R=�
└───────────────┴──┴────┴─┴─┴──┴──┘
96 115 118 122 124 127

┌───────────RSD Part 2────────────┐
┌───────────────┬──┬────┬─┬───────┐
│ RSTKO (Cont.) │ │GPSX│R│ │ R=1
└───────────────┴──┴────┴─┴───────┘
96 115 118 122 127

┌───────────────ALD───────────────┐
┌─┬───────────────────────┬───────┐
│ │ ALO │ ALL │
└─┴───────────────────────┴───────┘
128 153 159

┌─────────────────────────────────┐
│ ASTESN │
└─────────────────────────────────┘
16� 191

┌───────────────LTD───────────────┐
┌─┬────────────────────────┬──────┐
│V│ LTO │ LTL │
└─┴────────────────────────┴──────┘
192 217 223

┌─────────────────────────────────┐
│/////////////////////////////////│
└─────────────────────────────────┘
224 255

For BRANCH IN SUBSPACE GROUP, the fields
in bytes 0-31 of the ASTE are allocated as
follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is avail-
able. When bit 0 is zero during access-register
translation of ALET 1 or an ALET other than 0 and
1 for BRANCH IN SUBSPACE GROUP, the trans-
lation proceeds. When the bit is one, an
ASTE-validity exception is recognized. The bit is
ignored during access-register translation of ALET

5-58 z/Architecture Principles of Operation

0. When the ASTE is designated by a
subspace-ASTE origin (SSASTEO) in a
dispatchable-unit control table, bit 0 is also used
as described in the definition of bits 160-191
(ASTESN).

Authority-Table Origin (ATO): Bits 1-29 are not
used by BRANCH IN SUBSPACE GROUP.

Base-Space Bit (B): Bit 31 specifies, when one,
that the address space associated with the ASTE
is the base space of a subspace group. When
BRANCH IN SUBSPACE GROUP uses an ALET
other than ALETs 0 and 1 to locate a destination
ASTE, it recognizes a special-operation exception
if the destination-ASTE origin does not equal the
base-ASTE origin in the dispatchable-unit control
table and bit 31 is one in the destination ASTE.

Authorization Index (AX): Bits 32-47 are not
used by BRANCH IN SUBSPACE GROUP.

Authority-Table Length (ATL): Bits 48-59 are
not used by BRANCH IN SUBSPACE GROUP.

 Address-Space-Control Element (ASCE): Bits
64-127 are an eight-byte address-space-control
element (ASCE) that may be a segment-table des-
ignation (STD), a region-table designation (RTD),
or a real-space designation (RSD). (The term
“region-table designation” is used to mean a
region-first-table designation, region-second-table
designation, or region-third-table designation.)
The ASCE field is obtained as the result of
access-register translation done for BRANCH IN
SUBSPACE GROUP. When BRANCH IN SUB-
SPACE GROUP uses an ALET other than ALETs
0 and 1 to locate a destination ASTE, it recog-
nizes a special-operation exception if the
destination-ASTE origin does not equal the
base-ASTE origin in the dispatchable-unit control
table and the subspace-group-control bit, bit 118
(G), in the destination ASTE is zero. When
BRANCH IN SUBSPACE GROUP transfers
control to the base space of a subspace group
associated with the current dispatchable unit, it
places bits 64-127 in control register 1; otherwise,
when BRANCH IN SUBSPACE GROUP transfers
control to a subspace of the subspace group, it

| places bits 64-119 and 121-127 in bit positions
0-55 and 57-63, respectively, of control register 1.
Bits 64-127 are used after ASN translation by
PROGRAM CALL, PROGRAM RETURN,

PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS as
described in “ASN-Second-Table Entries” on
page 3-19.

Linkage-Table Designation (LTD): Bits
192-223 are not used by BRANCH IN SUBSPACE
GROUP.

Access-List Designation (ALD): When this
ASTE is designated by the primary-ASTE origin in
control register 5, bits 128-159 are the primary-
space access-list designation (PSALD). During
access-register translation when the primary-list
bit, bit 7, in the ALET being translated is one, the
PSALD is the effective access-list designation.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control
revocation of the accessing capability represented
by access-list entries that designate the ASTE.
During access-register translation, bits 160-191
are compared against the ASTESN in the access-
list entry, and inequality causes an
ASTE-sequence exception to be recognized.

Bits 224-255 in the ASTE are available for use by
programming. When the ASTE is designated by a
subspace-ASTE origin (SSASTEO) in a
dispatchable-unit control table, bits 160-191 are
also used to control revocation of the linkage
capability represented by that SSASTEO. When
BRANCH IN SUBSPACE GROUP uses ALET 1 to
transfer control to the subspace specified by the
SSASTEO, or when PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, or LOAD ADDRESS
SPACE PARAMETERS uses the SSASTEO to set
bits 0-55 and 57-63 of the primary ASCE in
control register 1 or the secondary ASCE in
control register 7 from the same bits of the ASCE
in the subspace ASTE, those instructions first test
bit 0 of the subspace ASTE for being zero and
recognize an ASTE-validity exception if it is not,
and they then compare bits 160-191 to the
subspace-ASTE sequence number (SSASTESN)
in the dispatchable-unit control table and recog-
nize an ASTE-sequence exception if there is an
inequality. However, when either of the two
named exception conditions exists for LOAD
ADDRESS SPACE PARAMETERS, the instruction
sets condition code 1 or 2 instead of recognizing
the exception.

 Chapter 5. Program Execution 5-59

Programming Note: All unused fields in the
ASTE, including the unused fields in bytes 0-31
and all of bytes 32-63, should be set to zeros.
These fields are reserved for future extensions,
and programs which place nonzero values in
these fields may not operate compatibly on future
machines.

 Subspace-Replacement
Operations

The subspace-group facility includes subspace-
replacement operations of PROGRAM CALL,
PROGRAM TRANSFER, PROGRAM RETURN,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS. The operations apply
when the dispatchable unit for which any of the
five named instructions is executed is in a state
called subspace active. A dispatchable unit is
subspace active if it has used BRANCH IN SUB-
SPACE GROUP to transfer control to a subspace
of its subspace group and has not subsequently
used BRANCH IN SUBSPACE GROUP to return
control to the base space of the group.

The definitions of the subspace-replacement oper-
ations are included in the definitions of the five
named instructions in Chapter 10, “Control
Instructions.” The operations are described in a

| general way as follows. Whenever (1) an address
space is established as the primary or secondary

| address space as a result of ASN translation or
| (2) PROGRAM CALL obtains the origin of the
| ASN-second-table entry specifying a new primary
| address space from the entry-table entry used,

then, if that address space is in a subspace group,
as indicated by the subspace-group-control bit, bit
54 (G), being one in the address-space-control
element (ASCE) for the address space (the new
PASCE in control register 1 or SASCE in control
register 7), and if the dispatchable unit is
subspace-active, as indicated by the subspace-
active bit, bit 0 (SA) of word 1, in the
dispatchable-unit control table (DUCT) being one,
the ASN-second-table-entry (ASTE) origin
(ASTEO) for the address space, which was

| obtained by ASN translation or from the entry-
| table entry, is compared to the base-ASTE origin

(BASTEO), bits 1-25 of word 0, in the DUCT. If
that ASTEO and the BASTEO are equal, the fol-
lowing occurs. An ASTE-validity exception is
recognized if bit 0 in the ASTE for the last sub-

space entered by the dispatchable unit, which
ASTE is designated by the subspace-ASTE origin
(SSASTEO) in the DUCT, is one. An
ASTE-sequence exception is recognized if the
ASTE-sequence number (ASTESN) in word 5 of
the subspace ASTE does not equal the subspace
ASTESN (SSASTESN) in word 3 of the DUCT.
However, LOAD ADDRESS SPACE PARAME-
TERS sets a nonzero condition code instead of
recognizing the ASTE-validity or ASTE-sequence
exception. If no exception exists, bits 0-55 and
57-63 of the ASCE for the address space (the
PASCE in control register 1 or SASCE in control
register 7) are replaced by the same bits of the
ASCE in word 2 of the subspace ASTE.

If an addressing exception is recognized when
attempting to access the DUCT or subspace
ASTE, the instruction execution is suppressed. If
an ASTE-validity or ASTE-sequence exception is
recognized, the instruction execution is nullified.
Such nullification or suppression causes all control
register contents to remain unchanged from what
they were at the beginning of the instruction exe-
cution.

Key-controlled protection does not apply to any
accesses to the DUCT or subspace ASTE.

For comparing the ASTEO obtained by ASN trans-
lation to the BASTEO, either the ASTEO may be
compared to the BASTEO or the ASTEO, with one
leftmost and six rightmost zeros appended, may
be compared to the entire contents of word 0 of
the DUCT.

When the SSASTEO in the DUCT is used to
access the subspace ASTE, no check is made for
whether the SSASTEO is all zeros.

The references to the DUCT and subspace ASTE
are single-access references and appear to be
word concurrent as observed by other CPUs. The
words of the DUCT are accessed in no particular
order. The words of the subspace ASTE are
accessed in no particular order except that word 0
is accessed first.

The exceptions that can be recognized during a
subspace-replacement operation are referred to
collectively as the subspace-replacement
exceptions and are listed in priority order in
“Subspace-Replacement Exceptions” on
page 6-47.

5-60 z/Architecture Principles of Operation

 Linkage-Stack Introduction
Many of the functions related to the linkage stack
are described in this section and in “Linkage-Stack
Operations” on page 5-66. Additionally, tracing of
the stacking PROGRAM CALL instruction and of
the PROGRAM RETURN instruction is described
in Chapter 5, “Program Execution”; interruptions in
Chapter 6, “Interruptions”; and the instructions are
described in Chapter 10, “Control Instructions.”

 Summary

These major functions are provided:

1. A table-based subroutine-linkage mechanism
that provides PSW and control-register status
changing and which saves and restores this
status and the contents of general registers
and access registers through the use of an
entry in a linkage stack.

2. A branch-type linkage mechanism that uses
the linkage stack.

3. Instructions for placing an additional two
words of status in the current linkage-stack
entry and for retrieving all of the status and
the general-register and access-register con-
tents that are in the entry.

4. An instruction for determining whether a
program is authorized to use a particular
access-list-entry token.

5. Aids for program-problem analysis.

In addition, control and authority mechanisms are
incorporated to control these functions.

It is intended that a separate linkage stack be
associated with and used by each dispatchable
unit. The linkage stack for a dispatchable unit
resides in the home address space of the
dispatchable unit.

It is intended that a dispatchable unit's linkage
stack be protected from the dispatchable unit by
means of key-controlled protection. Key-controlled
protection does not apply to the linkage-stack
instructions that place information in or retrieve
information from the linkage stack.

The linkage-stack functions are for use by pro-
grams considered to be semiprivileged, that is,
programs which are executed in the problem state
but which are authorized to use additional func-

tions. With these authorization controls, a nonhi-
erarchical organization of programs may be estab-
lished, with each program in a sequence of calling
and called programs having a degree of authority
that is arbitrarily different from those of programs
before or after it in the sequence. The range of
functions available to each program, and the
ability to transfer control from one program to
another, are prescribed in tables that are
managed by the control program.

The linkage-stack instructions, which are semipriv-
ileged, are described in Chapter 10, “Control
Instructions.” They are:

� BRANCH AND STACK
� EXTRACT STACKED REGISTERS
� EXTRACT STACKED STATE
� MODIFY STACKED STATE

 � PROGRAM RETURN
 � TEST ACCESS

In addition, the PROGRAM CALL instruction
optionally forms an entry in the linkage stack. A
PROGRAM CALL instruction that operates on the
linkage stack is called stacking PROGRAM CALL.
Recognition of PROGRAM CALL as stacking
PROGRAM CALL is under the control of a bit in
the entry-table entry.

 Linkage-Stack Functions

Transferring Program Control
The use of the linkage stack permits programs
operating at arbitrarily different levels of authority
to be linked directly without the intervention of the
control program. The degree of authority of each
program in a sequence of calling and called pro-
grams may be arbitrarily different, thus allowing a
nonhierarchical organization of programs to be
established. Modular authorization control can be
obtained principally by associating an extended
authorization index with each program module.
This allows program modules with different author-
ities to coexist in the same address space. On
the other hand, the extended authorization index
in effect during the execution of a called program
module can be the one that is associated with the
calling program module, thus allowing the called
module to be executed with different authorities on
behalf of different dispatchable units. Options
concerning the PSW-key mask and the secondary
ASN are other means of associating different
authorities with different programs or with the

 Chapter 5. Program Execution 5-61

same called program. The authority of each
program is prescribed in tables that are managed
by the control program. By setting up the tables
so that the same program can be called by means
of different PC numbers, the program can be
assigned different authorities depending on which
PC number is used to call it. The tables also
allow control over which PC numbers can be used
by a program to call other programs.

The stacking PROGRAM CALL and PROGRAM
RETURN linkage operations can link programs
residing in different address spaces and having
different levels of authority. The execution state
and the contents of the general registers and
access registers are saved during the execution of
stacking PROGRAM CALL and are partially
restored during the execution of PROGRAM
RETURN. A linkage stack provides an efficient
means of saving and restoring both the execution
state and the contents of registers during linkage
operations.

During the execution of a PROGRAM CALL
instruction, the PC-number-translation process is
performed to locate a 32-byte entry-table entry.
When the PC-type bit in the entry-table entry is
one, the stacking PROGRAM CALL operation is
specified; otherwise, the basic PROGRAM CALL
operation is specified.

In addition to the information applying to both
basic PROGRAM CALL and stacking PROGRAM
CALL (described in “PC-Number Translation” on
page 5-30 and consisting of an authorization key
mask and specifications of the new ASN,
addressing mode, instruction address, problem
state, PSW-key mask, primary-ASTE address, and
entry parameter), the entry-table entry contains
information that specifies options concerning the
address-space control and PSW key in the PSW,
and the PSW-key mask, extended authorization
index, and secondary ASN in the control registers.

During the stacking PROGRAM CALL operation
and by means of the additional information in the
entry-table entry, the address-space control in the
PSW can be set to specify either the primary-
space mode or the access-register mode. The
PSW key can be either left unchanged or replaced
from the entry-table entry. The PSW-key mask in
control register 3 can be either ORed to or
replaced from the entry-table entry. The extended

authorization index in control register 8 can be
either left unchanged or replaced from the entry-
table entry. The secondary ASN in control reg-
ister 3 can be set equal to the primary ASN of
either the calling program or the called program;
thus, the ability of the called program to have
access to the primary address space of the calling
program can be controlled.

The stacking PROGRAM CALL operation always
forms an entry, called a state entry, in the linkage
stack to save the execution state and the contents
of general registers 0-15 and access registers
0-15. The saved execution state includes the PC
number used, a called-space identification, the
updated PSW before any changes are made due
to the entry-table entry, the extended authorization
index, PSW-key mask, primary ASN, and sec-
ondary ASN existing before the operation, and the
extended-addressing-mode bit existing after the
operation. However, the value of the PER mask
in the saved updated PSW is unpredictable. The
linkage-stack state entry also contains an entry-
type code that identifies the entry as one that was
formed by PROGRAM CALL.

A space-switching operation occurs when the
address-space number (ASN) specified in the
entry-table entry is nonzero. When space
switching occurs, the operation is called
PROGRAM CALL with space switching (PC-ss),

| and the ASN in the entry-table entry is placed in
| control register 4 as a new primary ASN. When

no space switching occurs, the operation is called
| PROGRAM CALL to current primary (PC-cp), and
| there is no change to the primary ASN in control
| register 4.

PROGRAM CALL with space switching obtains a
new primary-ASTE origin from the entry-table
entry and new primary address-space-control
element from the new primary ASTE, and it places
them in control registers 5 and 1, respectively. It
sets the secondary address-space-control element
in control register 7 equal to either the old primary
address-space-control element, or the new one,
depending on whether it set the secondary ASN
equal to the old primary ASN or the new one,
respectively. PROGRAM CALL to current primary
sets the secondary ASN equal to the primary ASN
and the secondary address-space-control element
equal to the primary address-space-control
element.

5-62 z/Architecture Principles of Operation

The instruction PROGRAM RETURN restores
most of the information saved in the linkage stack
by the stacking PROGRAM CALL operation. It
restores the PSW, extended authorization index,
PSW-key mask, primary ASN, secondary ASN,
and the contents of general registers 2-14 and
access-registers 2-14. However, the PER mask in
the current PSW remains unchanged. The opera-
tion of PROGRAM RETURN is referred to by
saying that PROGRAM RETURN unstacks a state
entry.

For PROGRAM RETURN, a space-switching oper-
ation occurs when the restored primary ASN is not
equal to the primary ASN existing before the oper-
ation. When space switching occurs, the opera-
tion is called PROGRAM RETURN with space
switching (PR-ss). When no space switching
occurs, the operation is called PROGRAM
RETURN to current primary (PR-cp).

PROGRAM RETURN with space switching per-
forms ASN translation of the restored primary ASN
to obtain a new primary-ASTE origin and a new
primary address-space-control element, which it
places in control registers 5 and 1, respectively.
For PROGRAM RETURN with space switching or
to current primary, (1) if the restored secondary
ASN is the same as the restored primary ASN, the
secondary address-space-control element in
control register 7 is set equal to the new primary
address-space-control element in control register
1, or (2) if the restored secondary ASN is not the
same as the restored primary ASN, ASN trans-
lation and ASN authorization of the restored sec-
ondary ASN are performed to obtain a new sec-
ondary address-space-control element, which is
placed in control register 7.

The stacking PROGRAM CALL operation and the
PROGRAM RETURN operation each can be per-
formed successfully only in the primary-space
mode or access-register mode. An exception is
recognized when the CPU is in the real mode,
secondary-space mode, or home-space mode.

A bit, named the unstack-suppression bit, can be
set to one in a linkage-stack state entry to cause
an exception if an attempt is made by PROGRAM
RETURN to unstack the entry. When the bit is
one, the entry still can be operated on by the
instructions that add information to or retrieve
information from the entry. The unstack-
suppression bit is intended to allow the control

program to gain control when an attempt is made
to unstack a state entry in which the bit is one.

Branching Using the Linkage Stack
The execution state and the contents of the
general registers and access registers can also be
saved in the linkage stack by means of the
instruction BRANCH AND STACK. BRANCH
AND STACK uses a branch address as do the
other branching instructions, instead of using a PC
number. BRANCH AND STACK, along with
PROGRAM RETURN, can link programs residing
in the same address space and having the same
level of authority; that is, BRANCH AND STACK
does not change the execution state except for
the instruction address.

BRANCH AND STACK forms a linkage-stack state
entry that is almost the same as one formed by
PROGRAM CALL. When it is necessary to distin-
guish between these two types of state entry, an
entry formed by PROGRAM CALL is called a
program-call state entry, and one formed by
BRANCH AND STACK is called a branch state
entry. A branch state entry differs from a
program-call state entry in two ways: (1) it con-
tains a different entry-type code, which identifies it
as a branch state entry, and (2) it contains the
basic-addressing-mode bit and instruction address
existing after the operation instead of a PC
number and called-space identification. These
new values of PSW bits 32 and 64-127 are in
addition to the complete PSW that is saved in the
state entry.

For BRANCH AND STACK, the basic- and
extended addressing mode bits and the instruction
address that are part of the complete PSW saved
in the state entry can be the current (at the begin-
ning of the operation) addressing-mode bits and
the updated instruction address (the address of
the next sequential instruction), or they can be
specified in a register. This register can be one
that had link information placed in it by a
BRANCH AND LINK (BALR only), BRANCH AND
SAVE, BRANCH AND SAVE AND SET MODE, or
BRANCH AND SET MODE instruction. Thus,
BRANCH AND STACK can be used either in a
calling program or at (or near) the entry point of a
called program, and, in either case, a PROGRAM
RETURN instruction located at the end of the
called program will return correctly to the calling
program. The ability to use BRANCH AND

 Chapter 5. Program Execution 5-63

STACK at an entry point allows the linkage stack
to be used without changing old calling programs.

When the R� field of BRANCH AND STACK is
zero, the instruction is executed without causing
branching.

When PROGRAM RETURN unstacks a branch
state entry, it ignores the extended authorization
index, PSW-key mask, primary ASN, and sec-
ondary ASN in the entry. The PROGRAM
RETURN instruction restores the PSW and the
contents of general registers 2-14 and access reg-
isters 2-14 that were saved in the entry. However,
the PER mask in the current PSW remains
unchanged.

BRANCH AND STACK can be executed success-
fully only in the primary-space mode or access-
register mode. An exception is recognized when
the CPU is in the real mode, secondary-space
mode, or home-space mode.

The unstack-suppression bit has the same effect
in a branch state entry as it does in a program-call
state entry.

Adding and Retrieving Information
The instruction MODIFY STACKED STATE can
be used by a program to place two words of infor-
mation, contained in a designated general-register
pair, in an area, called the modifiable area, of the
current linkage-stack state entry (a branch state
entry or a program-call state entry). This is
intended to allow a called program to establish a
recovery routine that will be given control by the
control program, if necessary.

The instructions EXTRACT STACKED REGIS-
TERS and EXTRACT STACKED STATE can be
used by a program to obtain any of the informa-
tion saved in the current state entry by BRANCH
AND STACK or PROGRAM CALL or placed there
by MODIFY STACKED STATE. EXTRACT
STACKED REGISTERS (EREGG) places the con-
tents of a specified range of general registers and
access registers back in the registers from which
the contents were saved. EXTRACT STACKED
REGISTERS (EREG) does the same except that it
restores only bits 32-63 of the general registers
and leaves bits 0-31 unchanged. EXTRACT
STACKED STATE obtains pairs of words of the
nonregister information saved or placed in a state
entry and places them in bit positions 32-63 of a

designated general-register pair. Alternatively,
EXTRACT STACKED STATE obtains two
doublewords containing a PSW saved in the state
entry and places them in bit positions 0-63 of a
designated general-register pair. EXTRACT
STACKED STATE sets the condition code to indi-
cate whether the current state entry is a branch
state entry or a program-call state entry.

 Testing Authorization
The instruction TEST ACCESS has as operands
an access-list-entry token (ALET) in a designated
access register and an extended authorization
index (EAX) in a designated general register.
TEST ACCESS applies the access-
register-translation process, which uses the speci-
fied EAX instead of the current EAX in control reg-
ister 8, to the ALET, and it sets the condition code
to indicate the result. The condition code may
indicate: (1) the ALET is 00000000 hex, (2) the
ALET designates an entry in the dispatchable-unit
access list and can be translated without
exceptions in access-register translation, (3) the
ALET designates an entry in the primary-space
access list and can be translated without
exceptions in access-register translation, or
(4) the ALET is 00000001 hex or causes
exceptions in access-register translation.

The principal purpose of TEST ACCESS is to
allow a called program to determine whether an
ALET passed to it by the calling program is
authorized for use by the calling program by
means of the calling program's EAX. This is in
support of a possible programming convention in
which a called program will not operate on an
AR-specified address space by means of its own
EAX unless the calling program is authorized to
operate on that space by means of the calling pro-
gram's EAX. The called program can obtain the
calling program's EAX, for use by TEST ACCESS,
from the current linkage-stack state entry by
means of the EXTRACT STACKED STATE
instruction.

Another purpose of TEST ACCESS is to indicate
the special cases in which the ALET is 00000000
hex, designating the primary address space, or
00000001 hex, designating the secondary address
space. Because PROGRAM CALL may change
the primary and secondary address spaces,
ALETs 00000000 hex and 00000001 hex may
designate different address spaces when used by

5-64 z/Architecture Principles of Operation

the called program than when used by the calling
program.

Still another purpose of TEST ACCESS is to indi-
cate whether the ALET designates an entry in the
primary-space access list since such a designation
after the primary address space was changed by
a space-switching program-linkage operation may
be an error.

 Program-Problem Analysis
To aid program-problem analysis, the option is
provided of having a trace entry made implicitly for
three additional linkage operations when the
linkage stack is used. When branch tracing is on,
a trace entry is made each time a BRANCH AND
STACK instruction is executed and causes
branching. When ASN tracing is on, a trace entry
is made each time the stacking PROGRAM CALL
operation is performed and each time PROGRAM
RETURN unstacks a linkage-stack state entry
formed by PROGRAM CALL. When mode tracing
is on, a trace entry is made each time the stacking
PROGRAM CALL operation or PROGRAM
RETURN operation is performed and changes
PSW bit 31, except that, for PROGRAM RETURN,
a trace entry for mode tracing is not made if one
due to ASN tracing is made. A detailed definition
of tracing is contained in “Tracing” on page 4-10.

As a further analysis aid, BRANCH AND STACK
when it causes branching, stacking PROGRAM
CALL, and PROGRAM RETURN are also recog-
nized as PER successful-branching events. For
PROGRAM RETURN, the unstacked state entry
may have been formed by BRANCH AND STACK
or PROGRAM CALL.

The execution of a space-switching stacking
PROGRAM CALL or PROGRAM RETURN
instruction causes a space-switch event if the
primary space-switch-event control is one before
or after the operation or if a PER event is to be
indicated.

 Linkage-Stack Entry-Table
Entries
All of the fields in the entry-table entry except bits
130-159 are described in “Entry-Table Entries” on
page 5-31. This section describes only bits
130-159.

The entry-table entry has the following format:

If Bit 129 is Zero
┌───┐
│ │
└───┘
� 31

┌─┬───┬─┐
│A│ Entry Instruction Address │P│
└─┴───┴─┘
32 63

If Bit 129 is One
┌───┐
│ Entry Instruction Address (Part 1) │
└───┘
� 31

┌───┬─┐
│ Entry Instruction Address (Part 2) │P│
└───┴─┘
32 63

┌───────────────────────┬───────────────────────┐
│Authorization Key Mask │ ASN │
└───────────────────────┴───────────────────────┘
64 8� 95

┌───────────────────────┬───────────────────────┐
│ Entry Key Mask │ │
└───────────────────────┴───────────────────────┘
96 112 127

┌─┬─┬┬─┬─┬─┬─┬─┬────┬───┬───────────────────────┐
│T│G││K│M│E│C│S│ EK │ │Entry Ext. Auth. Index │
└─┴─┴┴─┴─┴─┴─┴─┴────┴───┴───────────────────────┘
128 131 136 14� 144 159

┌─┬──────────────────────────────────────┬──────┐
| │ │ ASTE Origin │ │

└─┴──────────────────────────────────────┴──────┘
16� 186 191

┌───┐
│ Entry Parameter (Part 1) │
└───┘
192 123

┌───┐
│ Entry Parameter (Part 2) │
└───┘
224 255

The fields in bit positions 130-159 are allocated as
follows:

PSW-Key Control (K): Bit 131, when one, speci-
fies that bits 136-139 are to replace the PSW key
in the PSW as part of the stacking PROGRAM
CALL operation. When this bit is zero, the PSW
key remains unchanged. Bit 131 is ignored during
the basic PROGRAM CALL operation.

PSW-Key-Mask Control (M): Bit 132, when one,
specifies that bits 96-111 are to replace the
PSW-key mask in control register 3 as part of the
stacking PROGRAM CALL operation. When this

 Chapter 5. Program Execution 5-65

bit is zero, bits 96-111 are ORed into the
PSW-key mask in control register 3 as part of the
stacking PROGRAM CALL operation. Bit 132 is
ignored during the basic PROGRAM CALL opera-
tion.

Extended-Authorization-Index Control (E): Bit
133, when one, specifies that bits 144-159 are to
replace the current extended authorization index in
control register 8 as part of the stacking
PROGRAM CALL operation. When this bit is
zero, the current extended authorization index
remains unchanged. Bit 133 is ignored during the
basic PROGRAM CALL operation.

Address-Space-Control Control (C): Bit 134,
when one, specifies that bit 17 of the current PSW
is to be set to one as part of the stacking
PROGRAM CALL operation. When this bit is
zero, bit 17 is set to zero. Because the CPU must
be in either the primary-space mode or the
access-register mode when a stacking PROGRAM
CALL instruction is issued, the result is that the
CPU is placed in the access-register mode if bit
134 is one or the primary-space mode if bit 134 is
zero. Bit 134 is ignored during the basic
PROGRAM CALL operation.

Secondary-ASN Control (S): Bit 135, when one,
specifies that bits 80-95 are to become the new
secondary ASN, and the new SASCE is to be set
equal to the new PASCE, as part of the stacking
PROGRAM CALL with-space-switching (PC-ss)
operation. When this bit is zero, the new SASN
and SASCE are set equal to the PASN and
PASCE, respectively, of the calling program. Bit
135 is ignored during the basic PROGRAM CALL
operation and the stacking PROGRAM CALL to-
current-primary (PC-cp) operation.

Entry Key (EK): Bits 136-139 replace the PSW
key in the PSW as part of the stacking
PROGRAM CALL operation if the PSW-key
control, bit 131, is one. Bits 136-139 are ignored,
and the current PSW key remains unchanged, if
bit 131 is zero. Bits 136-139 are ignored during
the basic PROGRAM CALL operation.

Entry Extended Authorization Index: Bits
144-159 replace the current extended authori-
zation index, bits 32-47 of control register 8, as
part of the stacking PROGRAM CALL operation if
the extended-authorization-index control, bit 133,
is one. Bits 144-159 are ignored, and the current

extended authorization index remains unchanged,
if bit 133 is zero. Bits 144-159 are ignored during
the basic PROGRAM CALL operation.

Bits 130 and 140-143 are reserved for possible
future extensions and should be zeros.

 Linkage-Stack Operations
A linkage stack may be formed by the control
program for each dispatchable unit. The linkage
stack is used to save the execution state and the
contents of the general registers and access regis-
ters during the BRANCH AND STACK and
stacking PROGRAM CALL operations. The
linkage stack is also used to restore a portion of
the execution state and general-register and
access-register contents during the PROGRAM
RETURN operation.

A linkage stack resides in virtual storage. The
linkage stack for a dispatchable unit is in the
home address space for that dispatchable unit.
The home address space is designated by the
home address-space-control element in control
register 13.

The linkage stack is intended to be protected from
problem-state programs so that these programs
cannot examine or modify the information saved in
the linkage stack, except by means of the
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE instructions. This protection can be
obtained by means of key-controlled protection.

A linkage stack may consist of a number of
linkage-stack sections chained together. A
linkage-stack section is variable in length. The
maximum length of each linkage-stack section is
65,560 bytes.

There are three types of entry in the linkage stack:
header entry, trailer entry, and state entry. A
header entry and a trailer entry are at the begin-
ning and end, respectively, of a linkage-stack
section, and they are used to chain linkage-stack
sections together. Header entries and trailer
entries are formed by the control program. A
state entry is used to contain the execution state
and register contents that are saved during the
BRANCH AND STACK or stacking PROGRAM
CALL operation, and it is formed during the opera-
tion. A state entry is further distinguished as

5-66 z/Architecture Principles of Operation

being a branch state entry if it was formed by
BRANCH AND STACK or as being a program-call
state entry if it was formed by PROGRAM CALL.

The actions of forming a state entry and saving
information in it during the BRANCH AND STACK
and stacking PROGRAM CALL operations are
called the stacking process. The actions of
restoring information from a state entry and log-
ically deleting the entry during the PROGRAM
RETURN operation are called the unstacking
process. The part of the unstacking process that
locates a state entry is also performed during the
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE operations.

Each type of linkage-stack entry has a length that
is a multiple of eight bytes. A header entry and
trailer entry each has a length of 16 bytes. A
state entry has a length of 296 bytes.

Each of the header entry, trailer entry, and state
entry has a common eight-byte area at its end,
called the entry descriptor. The linkage-
stack-entry address in control register 15 desig-
nates the leftmost byte of the entry descriptor of
the last linkage-stack entry, other than the trailer
entry, in a linkage-stack section. This entry is
called the current linkage-stack entry, and the
section is called the current linkage-stack section.

Each entry descriptor in a linkage-stack section,
except the one in the trailer entry of the section,
includes a field that specifies the amount of space
existing between the end of the entry descriptor
and the beginning of the trailer entry. This field is
named the remaining-free-space field. The
remaining-free-space field in a trailer entry is
unused.

When a new state entry is to be formed in the
linkage stack during the stacking process, the new
entry is placed immediately after the entry
descriptor of the current linkage-stack entry, pro-
vided that there is enough remaining free space in
the current linkage-stack section to contain the
new entry. If there is not enough remaining free
space in the current section, and if the trailer entry
in the current section indicates that another
section follows the current section, the new entry
is placed immediately after the entry descriptor of
the header entry of that following section, provided
that there is enough remaining free space in that

section. If the trailer entry indicates that there is
not a following section, an exception is recog-
nized, and a program interruption occurs. It is
then the responsibility of the control program to
allocate another section, chain it to the current
section, and cause the BRANCH AND STACK or
stacking PROGRAM CALL instruction to be reexe-
cuted. If there is a following section but there is
not enough remaining free space in it, an excep-
tion is recognized.

If the remaining-free-space value that is used to
locate a trailer entry is not a multiple of 8, an
exception is recognized. The remaining-
free-space value in the header entry of a linkage-
stack section must be set to a multiple of 8 to
ensure that the remaining-free-space value that
may be used to locate the trailer entry of the
section will be a multiple of 8.

When the stacking process is successful in
forming a new state entry, it updates the linkage-
stack-entry address in control register 15 so that
the address designates the leftmost byte of the
entry descriptor of the new entry, which thus
becomes the new current linkage-stack entry.

When, during the unstacking process in
PROGRAM RETURN, the current linkage-stack
entry is a state entry, the process operates on that
entry and then updates the linkage-stack-entry
address so that it designates the entry descriptor
of the preceding entry in the same linkage-stack
section. The preceding entry thus becomes the
current entry. The new current entry may be
another state entry, or it may be a header entry.

The header entry of a linkage-stack section indi-
cates whether there is a preceding section. If
there is a preceding section, the header entry con-
tains the address of the last linkage-stack entry,
other than the trailer entry, in the preceding
section. That last entry should be a state entry
(not another header entry), unless there is an
error in the linkage stack.

If the unstacking process is performed when the
current linkage-stack entry is a header entry, and
if the header entry indicates that a preceding
linkage-stack section exists, the unstacking
process proceeds by treating the entry designated
in the preceding section as if it were the current
entry, provided that this entry is a state entry. If
the header entry does not indicate a preceding

 Chapter 5. Program Execution 5-67

section, or if the entry designated in the preceding
section is not a state entry, an exception is recog-
nized.

When the unstacking process is performed in
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the process locates a state entry but does
not change the linkage-stack-entry address in
control register 15.

Each entry descriptor in a linkage-stack section
includes a field that specifies the length of the
next linkage-stack entry, other than the trailer
entry, in the section. When a state entry is
created during the stacking process, zeros are
placed in this field in the created entry, and the
length of the state entry is placed in this field in
the preceding entry. When a state entry is log-
ically deleted during the unstacking process in
PROGRAM RETURN, zeros are placed in this
field in the preceding entry. This field is named
the next-entry-size field.

When the stacking or unstacking process operates
on the linkage stack, key-controlled protection
does not apply, but low-address and page pro-
tection do apply.

 Linkage-Stack-Operations Control

The use of the linkage stack is controlled by the
home address-space-control element in control
register 13 and the linkage-stack-entry address in
control register 15. The home address-
space-control element is described in “Dynamic
Address Translation” on page 3-26. The linkage-
stack-entry address is described below.

Control Register 15
The location of the entry descriptor of the current
linkage-stack entry is specified in control register
15. The register has the following format:

┌───────────────────────────────┬───┐
│ Linkage-Stack-Entry Address │ │
└───────────────────────────────┴───┘
� 61 63

Linkage-Stack-Entry Address: Bits 0-60 of
control register 15, with three zeros appended on
the right, form the 64-bit home virtual address of
the entry descriptor of the current linkage-stack
entry in the current linkage-stack section. Bits
0-60 are changed during the stacking process in

BRANCH AND STACK and stacking PROGRAM
CALL and during the unstacking process in
PROGRAM RETURN. Bits 61-63 of control reg-
ister 15 are set to zeros when bits 0-60 are
changed.

 Linkage Stack

The linkage stack consists of one or more linkage-
stack sections containing linkage-stack entries.
There are three principal types of linkage-stack
entry: header entry, trailer entry, and state entry.
A state entry is further distinguished as being
either a branch state entry or a program-call state
entry.

Each type of linkage-stack entry has an entry
descriptor at its end. The leftmost byte of the
entry descriptor of the current linkage-stack entry
in the current linkage-stack section is designated
by the linkage-stack-entry address in control reg-
ister 15.

The linkage stack resides in the home address
space, designated by the home address-
space-control element in control register 13.

 Entry Descriptors
An entry descriptor is at the end of each linkage-
stack entry. The entry descriptor is eight bytes in
length and has the following format:

┌─┬──┬────┬────────┬────────┬────────┐
│U│ET│ SI │ RFS │ NES │ │
└─┴──┴────┴────────┴────────┴────────┘
� 1 8 16 32 48 63

The fields in the entry descriptor are allocated as
follows:

Unstack-Suppression Bit (U): When bit 0 is one
in the entry descriptor of a header entry or state
entry encountered during the unstacking process
in PROGRAM RETURN, a stack-operation excep-
tion is recognized. Bit 0 is ignored in a trailer
entry and during the unstacking process in
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE. The control program can temporarily set
bit 0 to one in the current linkage-stack entry (a
header entry or state entry) to prevent PROGRAM
RETURN from being executed successfully while
still allowing EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, and MODIFY
STACKED STATE to be executed successfully.

5-68 z/Architecture Principles of Operation

Bit 0 is set to zero in the entry descriptor of a
state entry when the entry is formed during the
stacking process.

Entry Type (ET): Bits 1-7 are a code that speci-
fies the type of the linkage-stack entry containing
the entry descriptor. The assigned codes are:

 Code (in
 Binary) Entry Type
 0001001 Header entry
 0001010 Trailer entry

0001100 Branch state entry
0001101 Program-call state entry

Codes 0000000-0001000, 0001011, and 0001110
through 0111111 binary are reserved for possible
future assignments. Codes 1000000 through
1111111 binary are available for use by program-
ming.

Bits 1-7 are set to 0001100 or 0001101 binary in
the entry descriptor of a state entry when the entry
is formed during the stacking process.

A stack-type exception is recognized during the
unstacking process in EXTRACT STACKED REG-
ISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN if bits
1-7 in the current linkage-stack entry do not indi-
cate that the entry is a state entry or a header
entry; or, when the current entry is a header entry,
if bits 1-7 in the entry designated by the backward
stack-entry address in the header entry do not
indicate that the designated entry is a state entry.
However, a stack-specification exception is recog-
nized, instead of a stack-type exception, if both
the current entry and the designated entry are
header entries.

Section Identification (SI): Bits 8-15 are an
identification, provided by the control program, of
the linkage-stack section containing the entry
descriptor. In the state entry formed by a stacking
process, the process sets bits 8-15 equal to the
contents of the section-identification field in the
preceding linkage-stack entry.

Remaining Free Space (RFS): Bits 16-31
specify the number of bytes between the end of
this entry descriptor and the beginning of the
trailer entry in the same linkage-stack section,
except that this field in a trailer entry has no

meaning. Thus, in the last state entry in a
section, or in the header entry if there is no state
entry, bits 16-31 specify the number of bytes avail-
able in the section for performance of the stacking
process. In the state entry formed by a stacking
process, the process sets bits 16-31 equal to the
contents of the remaining-free-space field in the
preceding linkage-stack entry minus the size, in
bytes, of the new entry. Bits 16-31 must be a
multiple of 8 (bits 29-31 must be zeros) in the
entry descriptor of the header entry in a linkage-
stack section; otherwise, a value that is not a mul-
tiple of 8 will be propagated to bits 16-31 in the
entry descriptor of each state entry in the section,
and a stack-specification exception will be recog-
nized if the stacking process attempts to locate
the trailer entry in the section in order to proceed
to the next section.

Next-Entry Size (NES): Bits 32-47 specify the
size in bytes of the next linkage-stack entry, other
than a trailer entry, in the same linkage-stack
section. This field in the current linkage-stack
entry contains all zeros. This field in a trailer entry
has no meaning. When the stacking process
forms a state entry, it places zeros in the next-
entry-size field of the new entry, and it places the
size of the new entry in the next-entry-size field of
the preceding entry. When the unstacking
process logically deletes a state entry, it places
zeros in the next-entry-size field of the preceding
entry, which entry becomes the current entry.

Bits 48-63 are set to zeros in a state entry when
the entry is formed during the stacking process.
In a header entry, trailer entry, or state entry, bits
48-63 are reserved for possible future extensions
and should always be zeros.

Programming Note: No entry-type code will be
assigned in which the leftmost bit of the code is
one. The control program can temporarily set the
leftmost bit to one in the entry-type code of the
current linkage-stack entry (a header entry or a
state entry) to prevent the successful execution of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, MODIFY STACKED STATE,
or PROGRAM RETURN.

 Header Entries
A header entry is at the beginning of each linkage-
stack section. The header entry is 16 bytes in
length and has the following format:

 Chapter 5. Program Execution 5-69

┌──────────────────────────────┬──┬─┐
│ BSEA │ │B│
└──────────────────────────────┴──┴─┘
� 61 63

┌───────────────────────────────────┐
│ Entry Descriptor │
└───────────────────────────────────┘
64 127

The fields in the first eight bytes of the header
entry are allocated as follows:

Backward Stack-Entry Validity Bit (B): Bit 63,
when one, specifies that the preceding linkage-
stack section is available and that the backward
stack-entry address, bits 0-60, is valid. Bit 63 is
set to one during the stacking process when the
process proceeds to this section from the pre-
ceding one because there is not enough space
available in the preceding section to perform the
process. During the unstacking process when this
header entry is the current linkage-stack entry, a
stack-empty exception is recognized if bit 63 is
zero.

Backward Stack-Entry Address (BSEA):
When bit 63 is one, bits 0-60 with three zeros
appended on the right, form the 64-bit home
virtual address of the entry descriptor of the last
linkage-stack entry, other than the trailer entry, in
the preceding linkage-stack section. However, if
the current linkage-stack entry is in the preceding
or an earlier linkage-stack section, bits 0-60 may
have no meaning because the entry they desig-
nate, and earlier entries, may have been logically
deleted. Bits 0-60 are set during the stacking
process when the process proceeds to this section
from the preceding one because there is not
enough space available in the preceding section
to perform the process. During the unstacking
process when this header entry is the current
linkage-stack entry and bit 63 is one, the entry is
treated as the current entry. 0-60 is treated as the
current entry.

Bits 61 and 62 are set to zeros when bits 0-60 are
set during the stacking process. Bits 61 and 62
are reserved for possible future extensions.

 Trailer Entries
A trailer entry is at the end of each linkage-stack
section. The trailer entry begins immediately after
the area specified by the remaining-free-space
field in the entry descriptors of the header entry
and each state entry in the same linkage-stack
section. The trailer entry is 16 bytes in length and
has the following format:

┌──────────────────────────────┬──┬─┐
│ FSHA │ │F│
└──────────────────────────────┴──┴─┘
� 61 63

┌───────────────────────────────────┐
│ Entry Descriptor │
└───────────────────────────────────┘
64 127

The fields in the first eight bytes of the trailer entry
are allocated as follows:

Forward-Section Validity Bit (F): Bit 63, when
one, specifies that the next linkage-stack section
is available and that the forward-section-header
address, bits 0-60, is valid. During the stacking
process when there is not enough space available
in the current linkage-stack section to perform the
process, a stack-full exception is recognized if bit
63 in the trailer entry of the current section is zero.

 Forward-Section-Header Address (FSHA):
When bit 63 is one, bits 0-60, with three zeros
appended on the right, form the 64-bit home
virtual address of the entry descriptor of the
header entry in the next linkage-stack section.
During the stacking process when there is not
enough space available in the current section to
perform the process and bit 63 is one, the header
entry designated by bits 0-60 becomes the current
linkage-stack entry.

Bits 61 and 62 are reserved for possible future
extensions.

Programming Note: All of the fields in the trailer
entry are set only by the control program.

5-70 z/Architecture Principles of Operation

 State Entries
Zero, one, or more state entries may follow the
header entry in each linkage-stack section. A
state entry may be a branch state entry, formed
by a BRANCH AND STACK instruction, or a
program-call state entry, formed by a stacking
PROGRAM CALL instruction. The state entry is
296 bytes in length and has the following format:

Hex Dec
─────────┬───────────────────┬───────────
 � � │ │ �
 8 8 │ Contents of │ │

/ General Registers / 128 Bytes
 7� 112 │ �-15 │ │
 78 12� │ │ �
─────────┼───────────────────┼───────────
 8� 128 │ │ �
 88 136 │ Other Status │ │

/ Information / 96 Bytes
 D� 2�8 │ │ │
 D8 216 │ │ �
─────────┼───────────────────┼───────────
 E� 224 │ │ �
 E8 232 │ Contents of │ │

/ Access Registers / 64 Bytes
11� 272 │ �-15 │ │
118 28� │ │ �
─────────┼───────────────────┼───────────
12� 288 │ Entry Descriptor │ 8 Bytes
─────────┴───────────────────┴───────────

Bytes 0-127 of the state entry contain the contents
of general registers 0-15 in the ascending order of
the register numbers. Bytes 224-287 contain the
contents of access registers 0-15 in the ascending
order of the register numbers. The contents of
these fields are moved from the registers to the
state entry during the BRANCH AND STACK and
stacking PROGRAM CALL operations. The con-
tents of general registers 2-14 and access regis-
ters 2-14 are restored from the state entry to the
registers during the PROGRAM RETURN opera-
tion. The contents of a specified range of general
registers and access registers can be restored
from the state entry to the registers by EXTRACT
STACKED REGISTERS.

Bytes 128-223 of the state entry contain the other
status information that is placed in the entry by
BRANCH AND STACK, stacking PROGRAM
CALL, and MODIFY STACKED STATE. A portion
of this status information is restored to the PSW
and control registers by PROGRAM RETURN,
and all of the information can be examined by
means of EXTRACT STACKED STATE. Bytes
288-295 contain the entry descriptor. EXTRACT
STACKED STATE sets the condition code to indi-

cate whether the entry-type code in the entry
descriptor specifies a branch state entry or a
program-call state entry.

Bytes 128-223 of the state entry have the fol-
lowing detailed format:

┌────────┬────────┬────────┬────────┐
│ PKM │ SASN │ EAX │ PASN │
└────────┴────────┴────────┴────────┘
128 13� 132 134 135

┌───────────────────────────────────┐
│ PSW Bits �-63 │
└───────────────────────────────────┘
136 143

In a Branch State Entry Made in 24-Bit
or 31-Bit Mode
┌────────────────┬─┬────────────────┐
│ │ │ Bits 33-63 of │
│ │A│ Branch Address │
└────────────────┴─┴────────────────┘
144 148 151

In a Branch State Entry Made in 64-Bit
Mode
┌─────────────────────────────────┬─┐
│ Bits �-62 of Branch Address │1│
└─────────────────────────────────┴─┘
144 151

In a Program-Call State Entry Made when
Resulting Mode Is 24 Bit or 31 Bit
┌────────────────┬─┬────┬───────────┐
│Called-Space Id.│�│ │ PC Number │
└────────────────┴─┴────┴───────────┘
144 148 151

In a Program-Call State Entry Made when
Resulting Mode Is 64 Bit
┌────────────────┬─┬────┬───────────┐
│Called-Space Id.│1│ │ PC Number │
└────────────────┴─┴────┴───────────┘
144 148 151

┌───────────────────────────────────┐
│ Modifiable Area │
└───────────────────────────────────┘
152 159

┌───────────────────────────────────┐
│ All Zeros │
└───────────────────────────────────┘
16� 167

┌───────────────────────────────────┐
│ PSW Bits 64-127 │
└───────────────────────────────────┘
168 175

┌───────────────────────────────────┐
│ │
/ Unpredictable /
│ │
└───────────────────────────────────┘
176 223

 Chapter 5. Program Execution 5-71

The fields in bytes 128-175 are allocated as
follows. In the following, “of the calling program”
means the value existing at the beginning of the
execution of the BRANCH AND STACK or
stacking PROGRAM CALL instruction that formed
the state entry.

PSW-Key Mask (PKM): Bytes 128-129 contain
the PSW-key mask, bits 32-47 of control register
3, of the calling program. The PSW-key mask is
saved in the state entry by BRANCH AND STACK
or stacking PROGRAM CALL, and it is restored to
the control register by a PROGRAM RETURN
instruction that unstacks an entry formed by
stacking PROGRAM CALL.

Secondary ASN (SASN): Bytes 130-131 contain
the secondary ASN, bits 48-63 of control register
3, of the calling program. The SASN is saved in
the state entry by BRANCH AND STACK or
stacking PROGRAM CALL, and it is restored to
the control register by a PROGRAM RETURN
instruction that unstacks an entry formed by
stacking PROGRAM CALL.

Extended Authorization Index (EAX): Bytes
132-133 contain the extended authorization index,
bits 32-47 of control register 8, of the calling
program. The EAX is saved in the state entry by
BRANCH AND STACK or stacking PROGRAM
CALL, and it is restored to the control register by
a PROGRAM RETURN instruction that unstacks
an entry formed by stacking PROGRAM CALL.

Primary ASN (PASN): Bytes 134-135 contain
the primary ASN, bits 48-63 of control register 4,
of the calling program. The PASN is saved in the
state entry by BRANCH AND STACK or stacking
PROGRAM CALL, and it is restored to the control
register by a PROGRAM RETURN instruction that
unstacks an entry formed by stacking PROGRAM
CALL.

Program-Status Word (PSW): In a branch state
entry formed by a BRANCH AND STACK instruc-
tion in which the R� field is zero, and in a
program-call state entry, bytes 136-143 and
168-175 contain the updated PSW of the calling
program. Bytes 136-143 contain bits 0-63 of the
PSW, and bytes 168-175 contain bits 64-127 of
the PSW. Thus, the basic and extended
addressing-mode bits in this PSW specify the
addressing mode of the calling program, and the
instruction address designates the next sequential

instruction following the BRANCH AND STACK or
stacking PROGRAM CALL instruction that formed
the state entry, or following an EXECUTE instruc-
tion that had the BRANCH AND STACK or
stacking PROGRAM CALL instruction as its target
instruction. In a branch state entry formed by a
BRANCH AND STACK instruction in which the R�
field is nonzero, bytes 136-143 and 168-175
contain the PSW of the calling program, except
that the extended-addressing-mode bit in bit posi-
tion 31 of bytes 136-139, the basic-
addressing-mode bit in bit position 0 of byte 140,
and the instruction address in bytes 168-175 are
as specified by the contents of the general register
designated by the R� field. See the definition of
BRANCH AND STACK in Chapter 10, “Control
Instructions” for how the basic- and extended-
addressing-mode bits and instruction address are
specified. The value of the PER mask in bytes
136-143 is always unpredictable. The PSW is
saved in the state entry by BRANCH AND STACK
or stacking PROGRAM CALL and is restored as
the current PSW by PROGRAM RETURN, except
that the PER mask is not restored. PROGRAM
RETURN does not change the PER mask in the
current PSW.

Basic Addressing Mode (A): In a branch state
entry made in the 24-bit or 31-bit addressing
mode, bit position 0 of bytes 148-151 contains the
basic-addressing-mode bit, bit 32 of the PSW, at
the end of the execution of the BRANCH AND
STACK instruction that formed the state entry.
The basic-addressing-mode bit is saved in bit
position 0 of bytes 148-151 by BRANCH AND
STACK. BRANCH AND STACK does not change
the basic-addressing-mode bit in the PSW.

Branch Address: In a branch state entry made
in the 24-bit or 31-bit addressing mode, bit posi-
tions 1-31 of bytes 148-151 contain bits 33-63 of
the instruction address in the PSW at the end of
the execution of the BRANCH AND STACK
instruction that formed the state entry, and the
contents of bytes 144-147 are unpredictable. In a
branch state entry made in the 64-bit addressing
mode, bytes 144-151 contain bits 0-62 of that
instruction address with a one appended on the
right. The instruction address is saved in bytes
148-151 or 144-151 (depending on the addressing
mode) by BRANCH AND STACK. When the R�
field of BRANCH AND STACK is nonzero, the
instruction causes branching, and the instruction
address in bytes 148-151 or 144-151 is the branch

5-72 z/Architecture Principles of Operation

address. When the R� field of BRANCH AND
STACK is zero, the instruction is executed without
branching, and the instruction address in bytes
148-151 or 144-151 is the address of the next
sequential instruction following the BRANCH AND
STACK instruction, or following an EXECUTE
instruction that had the BRANCH AND STACK
instruction as its target instruction.

Called-Space Identification: In a program-call
state entry, bytes 144-147 contain the called-
space identification (CSI). The CSI is saved in the
state entry by stacking PROGRAM CALL. If the
PROGRAM CALL operation was space switching,
bytes 0 and 1 of the CSI (bytes 144 and 145 of
the state entry) contain the new primary ASN that
was placed in control register 4 by the PROGRAM
CALL instruction, and bytes 2 and 3 of the CSI
(bytes 146 and 147 of the state entry) contain the
rightmost two bytes of the ASTE sequence
number (ASTESN) in the new primary ASTE
whose address was placed in control register 5 by
the PROGRAM CALL instruction. If the
PROGRAM CALL operation was the to-current-
primary operation, the CSI is all zeros.

PC Number: In a program-call state entry, bit
positions 12-31 of bytes 148-151 contain the PC
number used by the stacking PROGRAM CALL
instruction that formed the entry. Stacking
PROGRAM CALL places the PC number in bit
positions 12-31 of bytes 148-151, it places zeros
in bit positions 1-11 of the bytes, and it places a
zero in bit position 0 of the bytes if the resulting
addressing mode is the 24-bit or 31-bit mode or a
one in bit position 0 if the resulting addressing
mode is the 64-bit mode.

Modifiable Area: Bytes 152-159 are the field
that is set by MODIFY STACKED STATE.
BRANCH AND STACK and stacking PROGRAM
CALL place all zeros in bytes 152-159.

All zeros are placed in bytes 160-167 by BRANCH
AND STACK and stacking PROGRAM CALL.

The contents of bytes 176-223 are unpredictable.

 Stacking Process

The stacking process is performed as part of a
BRANCH AND STACK or stacking PROGRAM
CALL operation. The process locates space for a
new linkage-stack state entry, forms the entry,
updates the next-entry-size field in the preceding
entry, and updates the linkage-stack-entry address
in control register 15 so that the new entry
becomes the current linkage-stack entry.

For the stacking process to be performed suc-
cessfully, DAT must be on and the CPU must be
in the primary-space mode or access-register
mode; otherwise, a special-operation exception is
recognized, and the operation is suppressed.

Except as just mentioned, the stacking process is
performed independent of the current addressing
mode and translation mode, as specified by bits
31, 32, 16, and 17 of the current PSW. All
addresses used during the stacking process are
always 64-bit home virtual addresses.

During the stacking process when any address is
formed through the addition or subtraction of a
value to or from another address, a carry out of,
or a borrow into, bit position 0 of the address, if
any, is ignored.

When the stacking process fetches or stores by
using an address that designates, after translation,
a location that is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed.

Key-controlled protection does not apply to the
accesses made during the stacking process, but
page protection and low-address protection do
apply. A protection exception causes the opera-
tion to be suppressed.

Locating Space for a New Entry
The linkage-stack-entry address in control register
15 is used to locate the current linkage-stack
entry. Bits 0-60 of control register 15, with three
zeros appended on the right, form the 64-bit home
virtual address of the leftmost byte of the entry
descriptor of the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 64-bit
home virtual address. This fetch is for the
purpose of obtaining the section-identification and

 Chapter 5. Program Execution 5-73

remaining-free-space fields in the word; the
unstack-suppression bit and entry-type field in the
word are not examined.

The 16-bit unsigned binary value in the remaining-
free-space field, bits 16-31 of the entry descriptor,
is compared against the size in bytes of the
linkage-stack entry to be formed. The size of a
state entry is 296 bytes. If the value in the field is
equal to or greater than the size of the entry to be
formed, processing continues as described in
“Forming the New Entry”; otherwise, processing
continues as described below.

When the remaining-free-space field in the current
linkage-stack entry indicates that there is not
enough space available in the current linkage-
stack section to form the new entry, the first
doubleword of the trailer entry of the current
section is fetched. The address for fetching this
doubleword is determined as follows: to the
address formed from the contents of control reg-
ister 15, add 8 to address the first byte after the
entry descriptor of the current entry, and then add
the contents of the remaining-free-space field of
the current entry to address the first byte of the
trailer entry. The remaining-free-space value used
in the addition must be a multiple of 8; otherwise,
a stack-specification exception is recognized, and
the operation is nullified.

If the forward-section-validity bit, bit 63, of the
trailer entry is zero, a stack-full exception is recog-
nized, and the operation is nullified; otherwise, the
forward-section-header address in the trailer entry
is used to locate the header entry in the next
linkage-stack section. Bits 0-60, of the trailer
entry, with three zeros appended on the right,
form the 64-bit home virtual address of the left-
most byte of the entry descriptor of the header
entry in the next section.

The first word of the entry descriptor of the header
entry in the next linkage-stack section is fetched.
This fetch is for the purpose of obtaining the
section-identification and remaining-free-space
fields in the word; the unstack-suppression bit and
entry-type field in the word are not examined.

The value in the remaining-free-space field of the
header entry in the next linkage-stack section is
compared against the size in bytes of the entry to
be formed. If the value in the field is equal to or

greater than the size of the entry to be formed, the
following occurs:

� The linkage-stack-entry address, bits 0-60 of
control register 15, is placed, as the backward
stack-entry address, in bit positions 0-60 of
the header entry in the next linkage-stack
section, and zeros are placed in bit positions
61 and 62.

� The backward stack-entry validity bit, bit 63, in
the header entry in the next section is set to
one.

� Bits 0-60 of the 64-bit home virtual address of
the entry descriptor of the header entry in the
next section are placed in bit positions 0-60 of
control register 15, and zeros are placed in bit
positions 61-63. of control register 15. Thus,
the header entry in the next section becomes
the current linkage-stack entry, and the next
section becomes the current linkage-stack
section.

� Processing continues as described in
“Forming the New Entry.”

If the value in the remaining-free-space field of the
header entry in the next section (before the next
section becomes the current section) is less than
the size of the linkage-stack entry to be formed, a
stack-specification exception is recognized, and
the operation is nullified.

Forming the New Entry
When the remaining-free-space field in the current
linkage-stack entry indicates that there is enough
space available in the current linkage-stack
section to form the new entry, the new entry is
formed beginning immediately after the entry
descriptor of the current entry.

The new entry is a state entry. The contents of
general registers 0-15 are stored in bytes 0-127 of
the new entry, in the ascending order of the reg-
ister numbers. The contents of access registers
0-15 are stored in bytes 224-287 of the new entry,
in the ascending order of the register numbers.
The PSW-key mask, bits 32-47 of control register
3; secondary ASN, bits 48-63 of control register 3;
extended authorization index, bits 32-47 of control
register 8; and primary ASN, bits 48-63 of control
register 4, are stored in bytes 128-129, 130-131,
132-133, and 134-135, respectively, of the new
entry. The current PSW, in which the instruction
address has been updated, is stored in bytes

5-74 z/Architecture Principles of Operation

136-143 and 168-175 of the new entry. Bytes
136-143 contain bits 0-63 of the PSW, and bytes
168-175 contain bits 64-127 of the PSW.
However, the value of the PER mask, bit 1 in the
PSW stored, is unpredictable. Also, if the instruc-
tion being executed is a BRANCH AND STACK
instruction in which the R� field is nonzero, the
extended- and basic-addressing-mode bits stored
in bytes 136 and 140, respectively, of the new
entry, and the instruction address stored in bytes
168-175 of the new entry, are as specified by the
contents of the general register designated by the
R� field.

When the instruction is PROGRAM CALL, the
called-space identification is stored in bytes
144-147 of the new entry. When the instruction is
performing the space-switching PROGRAM CALL
operation, the called-space identification is the
two-byte ASN, bytes 10 and 11, in the entry-table
entry used by the instruction, followed by bytes 2
and 3 of the ASTE sequence number, bytes 2 and
3 being bits 176-191, in the ASN-second-table
entry specified by the ASN. When the instruction
is performing the to-current-primary PROGRAM
CALL operation, the called-space identification is
all zeros.

When the instruction is BRANCH AND STACK in
the 24-bit or 31-bit addressing mode, the basic-
addressing-mode bit from the current PSW is
stored in bit position 0 of byte 148 in the state
entry, bits 33-63 of the branch address, or of the
updated instruction address if the operation is per-
formed without branching, are stored in bit posi-
tions 1-31 of bytes 148-151, and the contents of
bytes 144-147 are unpredictable. In the 64-bit
addressing mode, bits 0-62 of the branch address
or updated instruction address, with a one
appended on the right, are stored in bytes
144-151 of the state entry.

When the instruction is PROGRAM CALL, the
20-bit PC number used is stored in bit positions
12-31 of bytes 148-151. If the resulting
addressing mode after the execution of
PROGRAM CALL is the 24-bit or 31-bit
addressing mode, a zero is stored in bit position 0
of byte 148. If the resulting addressing mode is
the 64-bit addressing mode, a one instead of a
zero is stored in bit position 0 of byte 148. In any
resulting addressing mode, zeros are stored in bit
positions 1-11 of bytes 148-151.

Zeros are stored in bytes 152-167 of the new
entry. The contents of bytes 176-223 are unpre-
dictable.

Bytes 288-295 of the new entry are its entry
descriptor. The unstack-suppression bit, bit 0, of
this entry descriptor is set to zero. The code
0001100 binary is stored in the entry-type field,
bits 1-7, of this entry descriptor if the instruction
being executed is BRANCH AND STACK. The
code 0001101 binary is stored if the instruction is
PROGRAM CALL. The value in the section-
identification field of the current linkage-stack entry
is stored in the section-identification field, bits
8-15, of this entry descriptor. The value in the
remaining-free-space field of the current entry,
minus the size in bytes of the new entry, is stored
in the remaining-free-space field of this entry
descriptor. Zeros are stored in the next-entry-size
field, bits 32-47, and in bit positions 48-63 of this
entry descriptor.

The stores into the new entry appear to be word
concurrent as observed by other CPUs. The
order in which the stores occur is unpredictable.

Updating the Current Entry
The size in bytes of the new linkage-stack entry is
stored in the next-entry-size field of the current
entry. The remainder of the current entry remains
unchanged.

The order of the stores into the current entry and
the new entry is unpredictable.

Updating Control Register 15
Bits 0-60 of the 64-bit home virtual address of the
entry descriptor of the new linkage-stack entry are
placed in bit positions 0-60 of control register 15,
the linkage-stack-entry address. Zeros are placed
in bit positions 61-63 of control register 15. Thus,
the new entry becomes the current linkage-
stack-entry.

Recognition of Exceptions during the
Stacking Process
The exceptions which can be encountered during
the stacking process and their priority are
described in the definitions of the BRANCH AND
STACK and PROGRAM CALL instructions.

Programming Note: Any exception recognized
during the execution of BRANCH AND STACK
and PROGRAM CALL causes either nullification

 Chapter 5. Program Execution 5-75

or suppression. Therefore, if an exception is
recognized, the stacking process does not store
into any linkage-stack entry or change the con-
tents of control register 15.

 Unstacking Process

The unstacking process is performed as part of
the PROGRAM RETURN operation. The process
locates the last state entry in the linkage stack,
restores a portion of the information in the entry to
the CPU registers, updates the next-entry-size
field in the preceding entry, and updates the
linkage-stack-entry address in control register 15
so that the preceding entry becomes the current
linkage-stack entry. The part of the unstacking
process that locates the last state entry is also
performed as part of the EXTRACT STACKED
REGISTERS, EXTRACT STACKED STATE, and
MODIFY STACKED STATE operations.

For the unstacking process to be performed suc-
cessfully, DAT must be on and the CPU must be
in the primary-space mode or access-register
mode; otherwise, a special-operation exception is
recognized, and the operation is suppressed.
However, when the unstacking process is per-
formed as part of EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, or MODIFY
STACKED STATE, the CPU may be in the
primary-space, access-register, or home-space
mode.

Except as just mentioned, the unstacking process
is performed independent of the current
addressing mode and translation mode, as speci-
fied by bits 31, 32, 16, and 17 of the current PSW.
All addresses used during the unstacking process
are always 64-bit home virtual addresses.

During the unstacking process when any address
is formed through the addition or subtraction of a
value to or from another address, a carry out of,
or a borrow into, bit position 0 of the address, if
any, is ignored.

When the unstacking process fetches or stores by
using an address that designates, after translation,
a location that is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed.

Key-controlled protection does not apply to the
accesses made during the unstacking process, but

page protection and low-address protection do
apply. A protection exception causes the opera-
tion to be suppressed.

Locating the Current Entry and
Processing a Header Entry
The linkage-stack-entry address in control register
15 is used to locate the current linkage-stack
entry. Bits 0-60 of control register 15, with three
zeros appended on the right, form the 64-bit home
virtual address of the leftmost byte of the entry
descriptor of the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 64-bit
home virtual address. If the entry-type code in
bits 1-7 of the entry descriptor is not 0001001
binary, indicating that the entry is not a header
entry, processing continues as described in
“Checking for a State Entry” on page 5-77; other-
wise, processing continues as described below.

When the entry-type code in the current linkage-
stack entry is 0001001 binary, indicating a header
entry, the next processing depends on which
instruction is being executed. When the
unstacking process is performed as part of the
PROGRAM RETURN operation and the unstack-
suppression bit, bit 0, in the entry descriptor of the
current entry is one, a stack-operation exception is
recognized, and the operation is nullified. When
the unstacking process is performed as part of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the unstack-suppression bit is ignored.

When there is not an exception due to the
unstack-suppression bit, the first doubleword of
the current linkage-stack entry (a header entry) is
fetched. The address of this doubleword is deter-
mined by subtracting 8 from the address of the
entry descriptor of the current entry.

If the backward stack-entry validity bit, bit 63, of
the current entry is zero, a stack-empty exception
is recognized, and the operation is nullified; other-
wise, the backward stack-entry address in the
current entry is used to locate a linkage-stack
entry referred to here as the designated entry.
Bits 0-60 of the current entry, with three zeros
appended on the right, form the 64-bit home
virtual address of the leftmost byte of the entry
descriptor of the designated entry.

5-76 z/Architecture Principles of Operation

It is assumed in this definition of the unstacking
process that the designated linkage-stack entry is
the last entry, other than the trailer entry, in the
preceding linkage-stack section. This assumption
does not imply any processing that is not explicitly
described.

The first word of the entry descriptor of the desig-
nated entry is fetched. If the entry-type code in
this entry descriptor is not 0001001 binary, indi-
cating that the entry is not a header entry, the fol-
lowing occurs:

� When the unstacking process is performed as
part of the PROGRAM RETURN operation,
bits 0-60 of the 64-bit home virtual address of
the entry descriptor of the designated entry
are placed in bit positions 0-60 of control reg-
ister 15, and zeros are placed in bit positions
61-63 of control register 15. Thus, the desig-
nated entry becomes the current linkage-stack
entry, and the preceding section (based on
the assumption) becomes the current linkage-
stack section. When the unstacking process
is performed as part of EXTRACT STACKED
REGISTERS, EXTRACT STACKED STATE,
or MODIFY STACKED STATE, the contents
of control register 15 remain unchanged, but
the designated entry is temporarily, during the
remainder of the definition of the instruction,
referred to as the current linkage-stack entry.

� Processing continues as described in
“Checking for a State Entry.”

If the entry-type code in the designated entry is
0001001 binary, indicating a header entry, a
stack-specification exception is recognized, and
the operation is nullified.

Checking for a State Entry
When the entry-type code in the current linkage-
stack entry indicates that the entry is not a header
entry, the code is checked for being 0001100 or
0001101 binary, which are the codes assigned to
a state entry.

If the current linkage-stack entry is a state entry,
the next processing depends on which instruction
is being executed. When the unstacking process
is performed as part of the PROGRAM RETURN
operation, processing continues as described in
“Restoring Information.” When the process is per-
formed as part of EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, or MODIFY

STACKED STATE, the process is completed; that
is, no additional processing occurs as a part of the
unstacking process.

If the current linkage-stack entry is not a state
entry (and necessarily not a header entry either),
a stack-type exception is recognized, and the
operation is nullified.

 Restoring Information
The remaining parts of the unstacking process
occur only in the PROGRAM RETURN operation.

The current linkage-stack entry is a state entry. If
the unstack-suppression bit in the entry is one, a
stack-operation exception is recognized, and the
operation is nullified.

When there is not an exception due to the
unstack-suppression bit, a portion of the contents
of the current linkage-stack entry are restored to
the CPU registers. The contents of general regis-
ters 2-14 and access registers 2-14 are restored
to those registers from where they were saved in
the current entry by the stacking process. When
the entry-type code in the current entry is 0001101
binary, indicating a program-call state entry, the
PSW-key mask and secondary ASN in control reg-
ister 3, extended authorization index in control
register 8, and primary ASN in control register 4
are similarly restored. During this restoration, the
authorization index in control register 4 and the
monitor masks in control register 8 remain
unchanged. (The authorization index may be
changed by the part of the PROGRAM RETURN
execution that occurs after the unstacking
process.) When the entry-type code is 0001100
binary, indicating a branch state entry, the
PSW-key mask, secondary ASN, extended author-
ization index, and primary ASN in the current entry
are ignored, and all contents of the control regis-
ters remain unchanged. When the current entry is
either a branch state entry or a program-call state
entry, bits 0-63 and 64-127 of the current PSW
are restored from bytes 136-143 and bytes
168-175, respectively, of the entry, except that the
PER mask is not restored. The PER mask in the
current PSW remains unchanged. Bytes 144-159
and bytes 160-167 of the current entry are
ignored.

The fetches from the current entry appear to be
word concurrent as observed by other CPUs. The
order in which the fetches occur is unpredictable.

 Chapter 5. Program Execution 5-77

Updating the Preceding Entry
Zeros are stored in the next-entry-size field, bits
32-47, of the entry descriptor of the preceding
linkage-stack entry. The remainder of the pre-
ceding entry remains unchanged. The address of
the entry descriptor of the preceding entry is
determined by subtracting the size in bytes of the
current entry from the address of the entry
descriptor of the current entry.

The order of the store into the preceding entry and
the fetches from the current entry is unpredictable.

Updating Control Register 15
Bits 0-60 of the 64-bit home virtual address of the
entry descriptor of the preceding linkage-stack
entry are placed in bit positions 0-60 of control
register 15, the linkage-stack-entry address.
Zeros are placed in bit positions 61-63 of control
register 15. Thus, the preceding entry becomes
the current linkage-stack entry.

Recognition of Exceptions during the
Unstacking Process
The exceptions which can be encountered during
the unstacking process and their priority are
described in the definition of the PROGRAM
RETURN instruction. The exceptions which apply
to EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE are described in the definitions of those
instructions.

Programming Notes:

1. Any exceptions recognized during the exe-
cution of EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN
cause either nullification or suppression.
Therefore, if an exception is recognized, the
unstacking process does not change the con-
tents of any CPU register (except for updating
the instruction address in the PSW in the case
of suppression) or store into any linkage-stack
entry.

2. The unstacking process in PROGRAM
RETURN does not restore the PER mask in
the PSW so that an act of turning PER on or
off after the execution of the related BRANCH
AND STACK or PROGRAM CALL instruction
but before the execution of the PROGRAM
RETURN instruction will not be counteracted.
When PROGRAM CALL or PROGRAM

RETURN is space switching, the space-switch
event can be used as a signal to turn PER on
or off, if desired.

Sequence of Storage References
The following sections describe the effects which
can be observed in storage due to overlapped
operations and piecemeal execution of a CPU
program. Most of the effects described in these
sections are observable only when two or more
CPUs or channel programs are in simultaneous
execution and access common storage locations.
Thus, most of the effects need be taken into
account by a program only if the program interacts
with another CPU or a channel program.

Some of the effects described in the following
sections are independent of interaction with
another CPU or a channel program. These
effects, which are therefore more readily observ-
able, relate to prefetched instructions and overlap-
ping operands of a single instruction. These
effects are described in “Conceptual Sequence”
and in “Interlocks for Virtual-Storage References”
on page 5-80.

 Conceptual Sequence
In the real mode, primary-space mode, or
secondary-space mode, the CPU conceptually
processes instructions one at a time, with the exe-
cution of one instruction preceding the execution
of the following instruction. The execution of the
instruction designated by a successful branch
follows the execution of the branch. Similarly, an
interruption takes place between instructions or,
for interruptible instructions, between units of oper-
ation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation of instruction execution appears to
the program itself to be performed sequentially,
with the current instruction being fetched after the
preceding operation is completed and before the
execution of the current operation is begun. This
appearance is maintained even though the
storage-implementation characteristics and overlap
of instruction execution with storage accessing
may cause actual processing to be different. The
results generated are those that would have been

5-78 z/Architecture Principles of Operation

obtained had the operations been performed in
the conceptual sequence. Thus, it is possible for
an instruction to modify the next succeeding
instruction in storage.

Operations in the access-register mode or home-
space mode are the same as in the other trans-
lation modes, with one exception: an instruction
that is a store-type operand of a preceding instruc-
tion may appear to be fetched before the store
occurs. Thus, it is not assured that an instruction
can modify the succeeding instructions. This
exception applies if either the storing instruction or
the instruction stored is executed in the access-
register or home-space mode.

Regardless of the translation mode, another case
in which the copies of prefetched instructions are
not necessarily discarded occurs when the fetch
and the store are done by means of different
effective addresses that map to the same real
address. This case is described in more detail in
“Interlocks for Virtual-Storage References” on
page 5-80.

Overlapped Operation of Instruction
Execution
In simple models in which operations are not over-
lapped, the conceptual and actual sequences are
essentially the same. However, in more complex
machines, overlapped operation, buffering of oper-
ands and results, and execution times which are
comparable to the propagation delays between
units can cause the actual sequence to differ con-
siderably from the conceptual sequence. In these
machines, special circuitry is employed to detect
dependencies between operations and ensure that
the results obtained, as observed by the CPU
which generates them, are those that would have
been obtained if the operations had been per-
formed in the conceptual sequence. However,
other CPUs and channel programs may, unless
otherwise constrained, observe a sequence that
differs from the conceptual sequence.

Divisible Instruction Execution
It can normally be assumed that the execution of
each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists in a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and
some delay may occur between fetching operands

and storing results. As a consequence, interme-
diate or partially completed results may be observ-
able by other CPUs and by channel programs.

When a program interacts with the operation on
another CPU, or with a channel program, the
program may have to take into consideration that
a single operation may consist in a series of
storage references, that a storage reference may
in turn consist in a series of accesses, and that
the conceptual and observed sequences of these
accesses may differ.

Storage references associated with instruction
execution are of the following types: instruction
fetches, ART-table and DAT-table fetches, and
storage-operand references. For the purpose of
describing the sequence of storage references,
accesses to storage in order to perform ASN
translation, PC-number translation, tracing, and
the linkage-stack stacking and unstacking proc-
esses are considered to be storage-operand refer-
ences.

Programming Note: The sequence of execution
of a CPU may differ from the simple conceptual
definition in the following ways:

� As observed by the CPU itself, instructions
may appear to be prefetched in the access-
register or home-space mode regardless of
whether the mode exists at the time of the
conceptual store or during the execution of the
prefetched instruction. They may also appear
to be prefetched when different effective
addresses are used. (See “Interlocks for
Virtual-Storage References” on page 5-80.)

� As observed by other CPUs and by channel
programs, the execution of an instruction may
appear to be performed as a sequence of
piecemeal steps. This is described for each
type of storage reference in the following
sections.

� As observed by other CPUs and by channel
programs, the storage-operand accesses
associated with one instruction are not neces-
sarily performed in the conceptual sequence.
(See “Relation between Operand Accesses”
on page 5-90.)

� As observed by channel programs, in certain
unusual situations, the contents of storage
may appear to change and then be restored
to the original value. (See “Storage Change

 Chapter 5. Program Execution 5-79

and Restoration for DAT-Associated Access
Exceptions” on page 5-23.)

Interlocks for Virtual-Storage
References

As described in the immediately preceding
sections, CPU operation appears, with certain
exceptions, to be performed sequentially as
observed by the CPU itself; the stores performed
by one instruction generally appear to be com-
pleted before the next instruction and its operands
are fetched. This appearance is maintained in
overlapped machines by means of interlock circu-
itry that detects accesses to a common storage
location.

For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
that are obtained when the operands overlap in
storage, this definition being in terms of a
sequence of stores and fetches. The interlock cir-
cuitry is used in determining whether operand
overlap exists.

The purpose of this section is to define those
cases in which the machine must appear to
operate sequentially, and in which operands of a
single instruction must or must not be treated as
overlapping.

Proper operation is provided in part by comparing
effective addresses. For the purpose of this defi-
nition, the term “effective address” means an
address before translation, if any, regardless of
whether the address is virtual, real, or absolute. If
two effective addresses have the same value, the
effective addresses are said to be the same even
though one may be real or in a different address
space.

The values of two virtual effective addresses do
not necessarily indicate whether or not the
addresses designate the same storage location.
The address-translation tables may be set up so
that different effective addresses map to the same
real address, or so that the same effective
address in different address spaces maps to dif-
ferent real addresses.

The interlocks for virtual-storage references are
considered in two situations: storage references
of one instruction as they affect storage refer-
ences of another instruction, and multiple storage
references of a single instruction.

Interlocks between Instructions
As observed by the CPU itself, the storage
accesses for operands for each instruction appear
to occur in the conceptual sequence independent
of the effective address used. That is, the
operand stores for one instruction appear to be
completed before the operand fetches for the next
instruction occur. For instruction fetches, the
operand stores for one instruction necessarily
appear to be completed before the next instruction
is fetched only when the same effective address is
used for the operand store and the instruction
fetch, and then only in the real mode, primary-
space mode, or secondary-space mode.

When an instruction changes the contents of a
main-storage location in which a conceptually sub-
sequent instruction is to be executed, either
directly or by means of EXECUTE, and when dif-
ferent effective addresses are used to designate
that location for storing the result and fetching the
instruction, the instruction may appear to be
fetched before the store occurs. When either the
storing instruction or the subsequent instruction is
executed in the access-register mode or home-
space mode, changes to the contents of storage
are not necessarily recognized even if the effec-
tive address used to store the value and the effec-
tive address used to fetch the instruction are the
same. If an intervening operation causes the pre-
fetched instructions to be discarded, then the
updated value is recognized. A definition of when
prefetched instructions must be discarded is
included in “Instruction Fetching” on page 5-82.

Any change to the storage key appears to be
completed before the conceptually following refer-
ence to the associated storage block is made,
regardless of whether the reference to the storage
location is made by means of a virtual, real, or
absolute address. Analogously, any conceptually
prior references to the storage block appear to be
completed when the key for that block is changed
or inspected.

5-80 z/Architecture Principles of Operation

Interlocks within a Single Instruction
For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
which are obtained when the operands overlap in
storage. This result is normally defined in terms
of the sequence of the storage accesses; that is, a
portion of the results of a store-type operand must
appear to be placed in storage before some
portion of the other operand is fetched. This defi-
nition applies provided that the store and fetch
accesses are specified by means of the same
effective addresses and the same effective space
designations.

When multiple address spaces are involved in the
access-register mode, the term “effective space
designation” is used to denote the value used by
the machine to determine whether two spaces are
the same. In the access-register mode, the 32-bit
access-list-entry-token (ALET) value associated
with each storage-operand address is called the
effective space designation. When a B field of
zero is specified, a value of all zeros is used for
the effective space designation. If the effective
space designations are different, the spaces are
considered to be different even if both ALETs map
to the same address-space-control-element value.

When the store and the fetch accesses are speci-
fied by means of different effective space desig-
nations or by means of different effective
addresses, the operand fetch may appear to
precede the operand store.

Figure 5-11 on page 5-82 summarizes the cases
of overlap and the specified results, including
when MOVE LONG (MVCL) sets condition code 3,
for each case.

Effective space designations may be represented
by ALB entries, and the test for whether two effec-
tive space designations are the same may be per-
formed by comparing ALB entries. If the program
changes an attached and valid ART-table entry
without subsequently causing the execution of
PURGE ALB or a COMPARE AND SWAP AND
PURGE instruction that purges the ALB, two effec-
tive space designations that are the same may
have different representations in the ALB, and
failure to recognize operand overlap may result.
The use of the ALB never causes overlap to be

recognized when the effective space designations
are different.

Programming Note: A single main-storage
location can be accessed by means of more than
one address in several ways:

1. The DAT tables may be set up such that mul-
tiple addresses in a single address space, or
addresses in different address spaces,
including the real address specified by a real-
space designation, map to a single real
address.

2. The translation of logical, instruction, and
virtual addresses may be changed by loading
the DAT parameters in the control registers,
by changing the address-space-control bits in
the PSW, or, for logical and instruction
addresses, by turning DAT on or off.

3. In the access-register mode, different address
spaces may be selected by means of each
access register. In addition, the primary
address space is selected for instruction
fetching and the target of EXECUTE.

4. STORE USING REAL ADDRESS performs a
store by means of a real address.

5. Certain other instructions also use real
addresses (even when a logical address is not
translated by means of a real-space desig-
nation, which is a situation covered in case 1),
and the instructions MOVE TO PRIMARY and
MOVE TO SECONDARY access two address
spaces.

6. Accesses to storage for the purpose of storing
and fetching information for interruptions is
performed by means of real addresses, and,
for the store-status function, by means of
absolute addresses, whereas accesses by the
program may be by means of virtual
addresses.

7. The real-to-absolute mapping may be
changed by means of the SET PREFIX
instruction or a reset.

8. A main-storage location may be accessed by
channel programs by means of an absolute
address and by the CPU by means of a real
or a virtual address.

9. A main-storage location may be accessed by
another CPU by means of one type of
address and by this CPU by means of a dif-
ferent type of address.

 Chapter 5. Program Execution 5-81

┌────────────┬──────────────┬────────────────┬──────────────────────┐
│Effective │Effective │Operands │Is Overlap Recognized?│
│Space │Addresses │Overlap ├─────────┬────────────┤
│Designations│Overlap │Destructively │MVCL Sets│ Operand │
│Equal? │Destructively?│in Real Storage?│ CC 3 │ Results │
├────────────┼──────────────┼────────────────┼─────────┼────────────┤
│ Yes │ No │ No │ No │ No │
│ Yes │ No │ Yes │ No │ Unp. │
│ Yes │ Yes │ No │ � │ � │
│ Yes │ Yes │ Yes │ Yes │ Yes │
│ No │ No │ No │ No │ No │
│ No │ No │ Yes │ No │ Unp. │
│ No │ Yes │ No │ No │ No │
│ No │ Yes │ Yes │ No │ Unp. │
├────────────┴──────────────┴────────────────┴─────────┴────────────┤
│Explanation: │
│ │
│ � This case cannot occur. │
│ Unp. It is unpredictable whether or not the overlap is recognized.│
└───┘

Figure 5-11. Virtual-Storage Interlocks within a Single Instruction

The primary purpose of this section on interlocks
is to describe the effects caused in cases 1, 3,
and 4, above.

For case 2, no effect is observable because pre-
fetched instructions are discarded when the trans-
lation parameters are changed, and the delay of
stores by a CPU is not observable by the CPU
itself.

For case 5, for those instructions which fetch by
using real addresses (for example, LOAD REAL
ADDRESS, which fetches a segment-table entry
and a page-table entry, and may fetch a region-
table entry), no effect is observable because only
operand accesses between instructions are
involved. All instructions that store by using a real
address, except STORE USING REAL ADDRESS,
or that store across address spaces, except in the
access-register mode, cause prefetched
instructions to be discarded, and no effect is
observable.

Cases 6 and 7 are situations which are defined to
cause serialization, with the result that prefetched
instructions are discarded. In these cases, no
effect is observable.

The handling of cases 8 and 9 involves accesses
as observed by other CPUs and by channel pro-
grams and is covered in the following sections in
this chapter.

 Instruction Fetching

Instruction fetching consists in fetching the one,
two, or three halfwords designated by the instruc-
tion address in the current PSW. The immediate
field of an instruction is accessed as part of an
instruction fetch. If, however, an instruction desig-
nates a storage operand at the location occupied
by the instruction itself, the location is accessed
both as an instruction and as a storage operand.
The fetch of the target instruction of EXECUTE is
considered to be an instruction fetch.

The bytes of an instruction may be fetched piece-
meal and are not necessarily accessed in a left-
to-right direction. The instruction may be fetched
multiple times for a single execution; for example,
it may be fetched for testing the addressability of
operands or for inspection of PER events, and it
may be refetched for actual execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched each time they
are executed. In particular, the fetching of an
instruction may precede the storage-operand ref-
erences for an instruction that is conceptually
earlier. The instruction fetch occurs prior to all
storage-operand references for all instructions that
are conceptually later.

An instruction may be prefetched by using a
virtual address only when the associated DAT
table entries are attached and valid or when

5-82 z/Architecture Principles of Operation

entries which qualify for substitution for the table
entries exist in the TLB. An instruction that has
been prefetched may be interpreted for execution
only for the same virtual address for which the
instruction was prefetched.

No limit is established on the number of
instructions which may be prefetched, and multiple
copies of the contents of a single storage location
may be fetched. As a result, the instruction exe-
cuted is not necessarily the most recently fetched
copy. Storing caused by other CPUs and by
channel programs does not necessarily change
the copy of prefetched instructions. However, if a
store that is conceptually earlier is made by the
same CPU using the same effective address as
that by which the instruction is subsequently
fetched, and the CPU is in any of the real,
primary-space, and secondary-space modes when
the the storing instruction is executed and is in
any of those modes when the subsequent instruc-
tion is executed, the updated information is
obtained. If the effective addresses are different
or if the CPU is in the access-register mode or
home-space mode during either the storing exe-
cution or the execution of the instruction that is the
destination of the store, the updated information is
not necessarily obtained. However, the updated
information is obtained if either execution is in the
real mode since prefetched instructions are dis-
carded if DAT is turned on or off.

All copies of prefetched instructions are discarded
when:

� A serializing function is performed.
� The CPU enters the operating state.
� DAT is turned on or off.
� A change is made to a translation parameter

in control register 1 when in the primary-
space, secondary-space, or access-register
mode, or in control register 13 when in the
home-space mode.

The SET ADDRESS SPACE CONTROL instruc-
tion can change the translation mode between any
of the primary-space, secondary-space, access-
register, and home-space modes, and it performs
serialization. The SET ADDRESS SPACE

CONTROL FAST instruction can perform the
same mode changes, but it does not serialize.

Programming Notes:

1. As observed by a CPU itself, its own instruc-
tion prefetching may be apparent when dif-
ferent effective addresses map to a single real
address or when the CPU is in the access-
register or home-space mode. This is
described in “Conceptual Sequence” on
page 5-78 and “Interlocks for Virtual-Storage
References” on page 5-80.

2. Any means of changing PSW bits 16 and 17,
except the SET ADDRESS SPACE
CONTROL FAST instruction, causes serializa-
tion to be performed and prefetched
instructions to be discarded. Turning DAT on
or off causes prefetched instructions to be dis-
carded. Therefore, any change of the trans-
lation mode, except a change made by SET
ADDRESS SPACE CONTROL FAST, always
causes prefetched instructions to be dis-
carded.

3. The following are some effects of instruction
prefetching on one CPU as observed by other
CPUs and by channel programs.

It is possible for one CPU to prefetch the con-
tents of a storage location, after which another
CPU or a channel program can change the
contents of that storage location and then set
a flag to indicate that the change has been
made. Subsequently, the first CPU can test
and find the flag set, branch to the modified
location, and execute the original prefetched
contents.

It is possible, if another CPU or a channel
program concurrently modifies the instruction,
for one CPU to recognize the changes to
some but not all bit positions of an instruction.

It is possible for one CPU to prefetch an
instruction and subsequently, before the
instruction is executed, for another CPU to
change the storage key. As a result, the first
CPU may appear to execute instructions from
a protected storage location. However, the
copy of the instructions executed is the copy
prefetched before the location was protected.

 Chapter 5. Program Execution 5-83

ART-Table and DAT-Table
Fetches

The access-register-translation (ART) table entries
are access-list designations, access-list entries,
ASN-second-table entries, and authority-table
entries. The dynamic-address-translation (DAT)
table entries are region-table entries, segment-
table entries, and page-table entries. The fetching
of these entries may occur as follows:

1. An ART-table entry may be prefetched into
the ART-lookaside buffer (ALB) and used from
the ALB without refetching from storage, until
the entry is cleared by a COMPARE AND
SWAP AND PURGE, PURGE ALB, or SET
PREFIX instruction, by CPU reset, or by a set-
architecture SIGNAL PROCESSOR order. A
DAT-table entry may be prefetched into the
translation-lookaside buffer (TLB) and used
from the TLB without refetching from storage,
until the entry is cleared by a COMPARE AND
SWAP AND PURGE, INVALIDATE PAGE
TABLE ENTRY, PURGE TLB, or SET PREFIX
instruction, by CPU reset, or by a set-
architecture SIGNAL PROCESSOR order.
ART-table and DAT-table entries are not nec-
essarily fetched in the sequence conceptually
called for; they may be fetched at any time
they are attached and valid, including during
the execution of conceptually previous
instructions.

2. The fetching of access-list designations,
access-list entries, ASN-second-table entries,
and DAT-table entries appears to be word

| concurrent as observed by other CPUs,
| except that the fetching of an address-
| space-control element from an
| ASN-second-table entry appears to be
| doubleword concurrent as observed by other
| CPUs. The reference to an entry may appear

to access a single byte at a time as observed
by channel programs.

3. The order in which the words of an access-list
entry or ASN-second-table entry are fetched is
unpredictable, except that the leftmost word of
an entry is fetched first. However, the left-
most word of an ASN-second-table entry is
not fetched when access-list-entry token
00000000 hex is translated for BRANCH IN
SUBSPACE GROUP.

4. An ART-table or DAT-table entry may be
fetched even after some operand references
for the instruction have already occurred. The
fetch may occur as late as just prior to the
actual byte access requiring the ART-table or
DAT-table entry.

5. An ART-table or DAT-table entry may be
fetched for each use of the address, including
any trial execution, and for each reference to
each byte of each operand.

6. The DAT page-table-entry fetch precedes the
reference to the page. When no copy of the
page-table entry is in the TLB, the fetch of the
associated segment-table entry precedes the
fetch of the page-table entry. When no copy
of the segment-table entry is in the TLB, the
fetch of the region-third-table entry, if one is
required, precedes the fetch of the segment-
table entry. Similarly, the fetch of a required
region-second-table entry precedes the fetch
of the region-first-table entry, and the fetch of
a required region-first-table entry precedes the
fetch of the region-second-table entry.

7. When no copy of a region-table entry or
segment-table entry designated by means of
an ART-obtained address-space-control
element is in the TLB, the ART fetch of the
ASN-second-table entry precedes the DAT
region-table-entry or segment-table-entry
fetch. When no copy of a required authority-
table entry is in the ALB, the ART fetch of the
associated ASN-second-table entry precedes
the fetch of the authority-table entry. When
no copy of a required ASN-second-table entry
is in the ALB, the fetch of the associated
access-list entry precedes the fetch of the
ASN-second-table entry. When no copy of a
required access-list entry is in the ALB, the
fetch of the associated access-list designation
precedes the fetch of the access-list entry.

 Storage-Key Accesses

References to the storage key are handled as
follows:

1. Whenever a reference to storage is made and
key-controlled protection applies to the refer-
ence, the four access-control bits and the
fetch-protection bit associated with the storage

| location are inspected concurrently and con-

5-84 z/Architecture Principles of Operation

| currently with the reference to the storage
location.

| 2. When storing is performed by a CPU, the
| change bit is set to one in the associated
| storage key concurrently with the completion
| of the store access, as observed by the CPU
| itself. When storing is performed by a CPU or
| a channel program, the change bit is set to
| one in the associated storage key either
| before or after the completion of the store
| access, as observed by other (if the store was
| performed by a CPU) or all (if the store was
| performed by a channel program) CPUs. As
| observed by other or all CPUs, the change bit
| is set no earlier than (1) after the last serial-
| ization function performed previously by the
| CPU or channel program performing the store,
| and (2) after the execution, by any CPU in the
| configuration, of the SET STORAGE KEY
| EXTENDED instruction that last set the asso-
| ciated storage key before the completion of
| the store. As observed by other or all CPUs,
| a change-bit setting necessarily occurs only
| when any of the following occurs subsequent
| to the storing operation:

| � The CPU or channel program that per-
| formed the store performs a serialization
| function.

| � The store was performed by a CPU or a
| channel program, and any CPU in the
| configuration sets the subject change bit
| by executing SET STORAGE KEY
| EXTENDED after the store access is com-
| pleted. The change-bit setting due to the
| store access occurs before the setting by
| SET STORAGE KEY EXTENDED.

| � The store was performed by a CPU and is
| or will be completed, and any CPU in the
| configuration executes a COMPARE AND
| SWAP AND PURGE, INVALIDATE DAT
| TABLE ENTRY, or INVALIDATE PAGE
| TABLE ENTRY instruction that clears from
| the ALB or TLB of the storing CPU any
| entry used to complete the store. Com-
| pletion of the clearing instruction is
| delayed until the subject store and
| change-bit setting have been completed.

| � The store was performed by a CPU, and
| that CPU examines the subject change bit
| by means of an INSERT STORAGE KEY
| EXTENDED or RESET REFERENCE BIT

| EXTENDED instruction. See “Relation
| between Storage-Key Accesses” on
| page 5-91.

3. The instruction SET STORAGE KEY
EXTENDED causes all seven bits to be set
concurrently in the storage key. The access
to the storage key for SET STORAGE KEY
EXTENDED follows the sequence rules for
storage-operand store references and is a
single-access reference.

4. The INSERT STORAGE KEY EXTENDED
instruction provides a consistent image of bits
0-6 of the storage key. Similarly, the
instructions INSERT VIRTUAL STORAGE
KEY and TEST PROTECTION provide a con-
sistent image of bits 0-4 of the storage key.
The access to the storage key for all of these
instructions follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

5. The instruction RESET REFERENCE BIT
EXTENDED modifies only the reference bit.
All other bits of the storage key remain
unchanged. The reference bit and change bit
are examined concurrently to set the condition

| code. The fetch and store accesses to the
storage key for RESET REFERENCE BIT

| EXTENDED follow the sequence rules for
| storage-operand fetch and store references,
| respectively, and are single-access refer-
| ences.

The record of references provided by the refer-
| ence bit is not necessarily accurate. However, in

the majority of situations, reference recording
| approximately coincides with the related storage

reference.

The change bit may be set in cases when no
storing has occurred. See “Exceptions to
Nullification and Suppression” on page 5-23.

 Storage-Operand References

A storage-operand reference is the fetching or
storing of the explicit operand or operands in the
storage locations designated by the instruction.

During the execution of an instruction, all or some
of the storage operands for that instruction may be
fetched, intermediate results may be maintained
for subsequent modification, and final results may
be temporarily held prior to placing them in

 Chapter 5. Program Execution 5-85

storage. Stores caused by other CPUs and by
channel programs do not necessarily affect these
intermediate results.

Storage-operand references are of three types:
fetches, stores, and updates.

Storage-Operand Fetch References
When the bytes of a storage operand participate
in the instruction execution only as a source, the
operand is called a fetch-type operand, and the
reference to the location is called a storage-
operand fetch reference. A fetch-type operand is
identified in individual instruction definitions by
indicating that the access exception is for fetch.

All bits within a single byte of a fetch-type operand
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
fetched from storage piecemeal, one byte at a
time. Unless otherwise specified, the bytes are
not necessarily fetched in any particular sequence.

The storage-operand fetch references of one
instruction occur after those of all preceding
instructions and before those of subsequent
instructions, as observed by other CPUs and by
channel programs. The operands of any one
instruction are fetched in the sequence specified
for that instruction. The CPU may fetch the oper-
ands of instructions before the instructions are
executed. There is no defined limit on the length
of time between when an operand is fetched and
when it is used. Still, as observed by the CPU
itself, its storage-operand references are per-
formed in the conceptual sequence.

Storage-Operand Store References
When the bytes of a storage operand participate
in the instruction execution only as a destination,
to the extent of being replaced by the result, the
operand is called a store-type operand, and the
reference to the location is called a storage-
operand store reference. A store-type operand is
identified in individual instruction definitions by
indicating that the access exception is for store.

All bits within a single byte of a store-type operand
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
placed in storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not nec-
essarily stored in any particular sequence.

The CPU may delay placing results in storage.
There is no defined limit on the length of time that
results may remain pending before they are
stored. This delay does not affect the sequence
in which results are placed in storage.

The results of one instruction are placed in
storage after the results of all preceding
instructions have been placed in storage and
before any results of the succeeding instructions
are stored, as observed by other CPUs and by
channel programs. The results of any one instruc-
tion are stored in the sequence specified for that
instruction.

The CPU does not fetch operands, ART-table
entries, or DAT-table entries from a storage
location until all information destined for that
location by the CPU has been stored. Prefetched
instructions may appear to be updated before the
information appears in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the
CPU enters the stopped state.

Storage-Operand Update References
In some instructions, the storage-operand location
participates both as a source and as a destination.
In these cases, the reference to the location con-
sists first in a fetch and subsequently in a store.
The operand is called an update-type operand,
and the combination of the two accesses is
referred to as an update reference. Instructions
such as MOVE ZONES, TRANSLATE, OR (OC,
OI), and ADD DECIMAL cause an update to the
first-operand location. An update-type operand is
identified in the individual instruction definition by
indicating that the access exception is for both
fetch and store.

For most instructions which have update-type
operands, the fetch and store accesses associ-
ated with an update reference do not necessarily
occur one immediately after the other, and it is
possible for other CPUs and channel programs to
make fetch and store accesses to the same
location during this time. Such an update refer-
ence is sometimes called a noninterlocked-update
storage reference.

For certain special instructions, the update refer-
ence is interlocked against certain accesses by
other CPUs. Such an update reference is called

5-86 z/Architecture Principles of Operation

an interlocked-update reference. The fetch and
store accesses associated with an interlocked-
update reference do not necessarily occur one
immediately after the other, but all store accesses

| by other CPUs and the fetch and store accesses
associated with interlocked-update references by
other CPUs are prevented from occurring at the
same location between the fetch and the store
accesses of an interlocked-update reference.
Accesses by channel programs may occur to the
location during the interlock period.

The storage-operand update reference for the fol-
lowing instructions appears to be an interlocked-
update reference as observed by other CPUs.
The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP perform an interlocked-update reference.
On models in which the STORE CHARACTERS
UNDER MASK instruction with a mask of zero
fetches and stores the byte designated by the
second-operand address, the fetch and store
accesses are an interlocked-update reference.

Within the limitations of the above requirements,
the fetch and store accesses associated with an
update reference follow the same rules as the
fetches and stores described in the previous
sections.

Programming Notes:

1. When two CPUs attempt to update information
at a common main-storage location by means
of a noninterlocked-update reference, it is pos-
sible for both CPUs to fetch the information
and subsequently make the store access.
The change made by the first CPU to store
the result in such a case is lost. Similarly, if
one CPU updates the contents of a field by
means of a noninterlocked-update reference,
but another CPU makes a store access to that
field between the fetch and store parts of the
update reference, the effect of the store is
lost. If, instead of a store access, a CPU
makes an interlocked-update reference to the
common storage field between the fetch and
store portions of a noninterlocked-update ref-
erence due to another CPU, any change in
the contents produced by the interlocked-
update reference is lost.

2. The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP facilitate updating of a common
storage field by two or more CPUs. To
ensure that no changes are lost, all CPUs
must use an instruction providing an
interlocked-update reference. In addition, the
program must ensure that channel programs
do not store into the same storage location
since such stores may occur between the
fetch and store portions of an interlocked-
update reference.

3. Only those bytes which are included in the
result field of both operations are considered
to be part of the common main-storage
location. However, all bits within a common
byte are considered to be common even if the
bits modified by the two operations do not
overlap. As an example, if (1) one CPU exe-
cutes the instruction OR (OC) with a length of
1 and the value 80 hex in the second-operand
location, (2) the other CPU executes AND
(NC) with a length of 1 and the value FE hex
in the second-operand location, and (3) the
first operand of both instructions is the same
byte, then the result of one of the updates can
be lost.

4. When the store access is part of an update
reference by the CPU, the execution of the
storing is not necessarily contingent on
whether the information to be stored is dif-
ferent from the original contents of the
location. In particular, the contents of all des-
ignated byte locations are replaced, and, for
each byte in the field, the entire contents of
the byte are replaced.

Depending on the model, an access to store
information may be performed, for example, in
the following cases:

a. Execution of the OR instruction (OI or OC)
with a second operand of all zeros.

b. Execution of OR (OC) with the first-and
second-operand fields coinciding.

c. For those locations of the first operand of
TRANSLATE where the argument and
function values are the same.

 Storage-Operand Consistency

 Chapter 5. Program Execution 5-87

 Single-Access References
A fetch reference is said to be a single-access ref-
erence if the value is fetched in a single access to
each byte of the data field. In the case of overlap-
ping operands, the location may be accessed
once for each operand. A store-type reference is
said to be a single-access reference if a single
store access occurs to each byte location within
the data field. An update reference is said to be
single access if both the fetch and store accesses
are each single access.

Except for the accesses associated with multiple-
access references and the stores associated with
storage change and restoration for
DAT-associated access exceptions, all storage-
operand references are single-access references.

 Multiple-Access References
In some cases, multiple accesses may be made to
all or some of the bytes of a storage operand.
The following cases may involve multiple-access
references:

1. The storage operands of the following
instructions:

 � CHECKSUM
| � CIPHER MESSAGE
| � CIPHER MESSAGE WITH CHAINING

� COMPARE AND FORM CODEWORD
� COMPARE UNTIL SUBSTRING EQUAL

| � COMPUTE INTERMEDIATE MESSAGE
| DIGEST
| � COMPUTE LAST MESSAGE DIGEST
| � COMPUTE MESSAGE
| AUTHENTICATION CODE

� CONVERT TO BINARY
� CONVERT TO DECIMAL
� CONVERT UNICODE TO UTF-8
� CONVERT UTF-8 TO UNICODE
� LOAD ADDRESS SPACE PARAMETERS

 � LOAD REVERSED
 � MOVE INVERSE
 � MOVE PAGE
� MOVE WITH OFFSET

 � PACK
 � PACK ASCII
 � PACK UNICODE
 � RESUME PROGRAM
 � STORE REVERSED
� STORE SYSTEM INFORMATION

 � TEST BLOCK
 � TRANSLATE
 � TRANSLATE EXTENDED

� TRANSLATE ONE TO ONE
� TRANSLATE ONE TO TWO
� TRANSLATE TWO TO ONE
� TRANSLATE TWO TO TWO

 � UNPACK
 � UNPACK ASCII
 � UNPACK UNICODE
 � UPDATE TREE

2. The stores into that portion of the first operand
of MOVE LONG, MOVE LONG EXTENDED,
or MOVE LONG UNICODE which is filled with
padding bytes.

3. The storage operands of the decimal
instructions.

4. The main-storage operands of PAGE IN and
PAGE OUT.

5. The storage operands of the I/O instructions.

6. The stores into a trace entry.

7. The stores associated with the stop-and-
store-status and store-status-at-address
SIGNAL PROCESSOR orders.

8. The trap control block and trap save area
used by TRAP.

9. The operands, dictionaries, and symbol-
translation table of COMPRESSION CALL.

When a storage-operand store reference to a
location is not a single-access reference, the value
placed at a byte location is not necessarily the
same for each store access; thus, intermediate
results in a single-byte location may be observed
by other CPUs and by channel programs.

Programming Notes:

1. When multiple fetch or store accesses are
made to a single byte that is being changed
by another CPU or by a channel program, the
result is not necessarily limited to that which
could be obtained by fetching or storing the
bits individually. For example, the execution
of MULTIPLY DECIMAL may consist in repeti-
tive additions and subtractions, each of which
causes the second operand to be fetched
from storage and the first operand to be
updated in storage.

2. When CPU instructions which make multiple-
access references are used to modify storage
locations being simultaneously accessed by
another CPU or by a channel program, mul-
tiple store accesses to a single byte by the

5-88 z/Architecture Principles of Operation

CPU may result in intermediate values being
observed by the other CPU or by the channel
program. To avoid these intermediate values
(for example, when modifying a CCW chain),
only instructions making single-access refer-
ences should be used.

3. An instruction fetch, including the fetch of the
target of EXECUTE, is a multiple-access refer-
ence.

 Block-Concurrent References
For some references, the accesses to all bytes
within a halfword, word, doubleword, or quadword
are specified to appear to be block concurrent as
observed by other CPUs. These accesses do not
necessarily appear to channel programs to include
more than a byte at a time. The halfword, word,
doubleword, or quadword is referred to in this
section as a block. When a fetch-type reference
is specified to appear to be concurrent within a
block, no store access to the block by another
CPU is permitted during the time that bytes con-
tained in the block are being fetched. Accesses to
the bytes within the block by channel programs
may occur between the fetches. When a store-
type reference is specified to appear to be concur-
rent within a block, no access to the block, either
fetch or store, is permitted by another CPU during
the time that the bytes within the block are being
stored. Accesses to the bytes in the block by
channel programs may occur between the stores.

 Consistency Specification
| For all instructions in the S, RX, RXE, or RXY

format, with the exception of CONVERT TO
DECIMAL, CONVERT TO BINARY, LOAD PSW
EXTENDED, LOAD REVERSED, RESUME
PROGRAM, STORE CLOCK EXTENDED,
STORE REVERSED, STORE SYSTEM INFOR-
MATION, TRAP, and the I/O instructions, when
the operand is addressed on a boundary which is
integral to the size of the operand, the storage-
operand references appear to be block concurrent
as observed by other CPUs. For LOAD PSW
EXTENDED, the accesses to each of the two
doublewords of the storage operand appear to be
doubleword concurrent as observed by other
CPUs.

For the instructions COMPARE AND SWAP,
COMPARE AND SWAP AND PURGE, and
COMPARE DOUBLE AND SWAP, all accesses to

the storage operand appear to be block concur-
rent as observed by other CPUs.

For the instruction PERFORM LOCKED OPERA-
TION, the accesses to the even-numbered storage
operands appear to be word concurrent, as
observed by other CPUs, for function codes that
are a multiple of 4 and appear to be doubleword
concurrent, as observed by other CPUs, for func-
tion codes that are one, 2, or 3 more than a mul-
tiple of 4. The accesses to the doublewords in the
parameter list appear to be doubleword concur-
rent, as observed by other CPUs, regardless of
the function code.

The instructions LOAD MULTIPLE, LOAD MUL-
TIPLE DISJOINT, LOAD MULTIPLE HIGH,
STORE MULTIPLE, and STORE MULTIPLE
HIGH, when the operand or operands start on a
word boundary, and the instructions COMPARE
LOGICAL (CLC), COMPARE LOGICAL CHARAC-
TERS UNDER MASK, INSERT CHARACTERS
UNDER MASK, LOAD CONTROL (LCTLG),
STORE CHARACTERS UNDER MASK, and
STORE CONTROL (STCTG) access their storage
operands in a left-to-right direction, and all bytes
accessed within each doubleword appear to be
accessed concurrently as observed by other
CPUs.

The instructions LOAD ACCESS MULTIPLE,
LOAD CONTROL (LCTL), STORE ACCESS MUL-
TIPLE, and STORE CONTROL (STCTL) access
the storage operand in a left-to-right direction, and
all bytes accessed within each word appear to be
accessed concurrently as observed by other
CPUs.

When destructive overlap does not exist, the oper-
ands of MOVE (MVC), MOVE WITH KEY, MOVE
TO PRIMARY, and MOVE TO SECONDARY are
accessed as follows:

1. The first operand is accessed in a left-to-right
direction, and all bytes accessed within a
doubleword appear to be accessed concur-
rently as observed by other CPUs.

2. The second operand is accessed in a left-to-
right direction, and all bytes within a
doubleword in the second operand that are
moved into a single doubleword in the first
operand appear to be fetched concurrently as
observed by other CPUs. Thus, if the first
and second operands begin on the same byte

 Chapter 5. Program Execution 5-89

offset within a doubleword, the fetch of the
second operand appears to be doubleword
concurrent as observed by other CPUs. If the
offsets within a doubleword differ by 4, the
fetch of the second operand appears to be
word concurrent as observed by other CPUs.

Destructive overlap is said to exist when the result
location is used as a source after the result has
been stored, assuming processing to be per-
formed one byte at a time.

The operands of MOVE WITH SOURCE KEY,
MOVE WITH DESTINATION KEY, and MOVE
STRING are accessed the same as those of
MOVE (MVC), except that destructive overlap is
assumed not to exist.

Except as noted in the individual instruction
descriptions, accesses to operands of MOVE
LONG, MOVE LONG EXTENDED, and MOVE
LONG UNICODE do not necessarily appear to
occur in a left-to-right direction as observed by
other CPUs and by channel programs. The oper-
ands of these instructions do appear to be
accessed doubleword concurrent, as observed by
other CPUs, when all of the following are true:

� Both operands start on doubleword bounda-
ries and are an integral number of
doublewords in length.

� The operands do not overlap.

� The nonpadding part of the operation is being
executed.

The operands of COMPARE LOGICAL LONG,
COMPARE LOGICAL LONG EXTENDED, and
COMPARE LOGICAL LONG UNICODE appear to
be accessed doubleword concurrent, as observed
by other CPUs, when both operands start on
doubleword boundaries and are an integral
number of doublewords in length.

The operands of COMPARE LOGICAL STRING
appear to be accessed doubleword concurrent, as
observed by other CPUs, when both operands
start on doubleword boundaries. The operand of
SEARCH STRING appears to be accessed
doubleword concurrent, as observed by other
CPUs, when it starts on a doubleword boundary.

For EXCLUSIVE OR (XC), the operands are proc-
essed in a left-to-right direction, and, when the
first and second operands coincide, all bytes

accessed within a doubleword appear to be
accessed concurrently as observed by other
CPUs.

Programming Note: In the case of EXCLUSIVE
OR (XC) designating operands which coincide
exactly, the bytes within the field may appear to
be accessed as many as three times, by two
fetches and one store: once as the fetch portion
of the first operand update, once as the second-
operand fetch, and then once as the store portion
of the first-operand update. Each of the three
accesses appears to be doubleword concurrent as
observed by other CPUs, but the three accesses
do not necessarily appear to occur one imme-
diately after the other. One or both fetch
accesses may be omitted since the instruction can
be completed without fetching the operands.

Relation between Operand
Accesses

As observed by other CPUs and by channel pro-
grams, storage-operand fetches associated with
one instruction execution appear to precede all
storage-operand references for conceptually sub-
sequent instructions. A storage-operand store
specified by one instruction appears to precede all
storage-operand stores specified by conceptually
subsequent instructions, but it does not neces-
sarily precede storage-operand fetches specified
by conceptually subsequent instructions.
However, a storage-operand store appears to
precede a conceptually subsequent storage-
operand fetch from the same main-storage
location.

When an instruction has two storage operands
both of which cause fetch references, it is unpre-
dictable which operand is fetched first, or how
much of one operand is fetched before the other
operand is fetched. When the two operands
overlap, the common locations may be fetched
independently for each operand.

When an instruction has two storage operands the
first of which causes a store and the second a
fetch reference, it is unpredictable how much of
the second operand is fetched before the results
are stored. In the case of destructively overlap-
ping operands, the portion of the second operand
which is common to the first is not necessarily
fetched from storage.

5-90 z/Architecture Principles of Operation

When an instruction has two storage operands the
first of which causes an update reference and the
second a fetch reference, it is unpredictable which
operand is fetched first, or how much of one
operand is fetched before the other operand is
fetched. Similarly, it is unpredictable how much of
the result is processed before it is returned to
storage. In the case of destructively overlapping
operands, the portion of the second operand
which is common to the first is not necessarily
fetched from storage.

The independent fetching of a single location for
each of two operands may affect the program exe-
cution in the following situation. When the same
storage location is designated by two operand
addresses of an instruction, and another CPU or a
channel program causes the contents of the
location to change during execution of the instruc-
tion, the old and new values of the location may
be used simultaneously. For example, compar-
ison of a field to itself may yield a result other than
equal, or EXCLUSIVE-ORing of a field with itself
may yield a result other than zero.

Other Storage References

The restart, program, supervisor-call, external,
input/output, and machine-check PSWs appear to
be accessed doubleword concurrent as observed
by other CPUs. These references appear to occur
after the conceptually previous unit of operation
and before the conceptually subsequent unit of
operation. The relationship between the
new-PSW fetch, the old-PSW store, and the
interruption-code store is unpredictable.

Store accesses for interruption codes are not nec-
essarily single-access stores. The store accesses
for the external and supervisor-call-interruption
codes appear to occur between the conceptually
previous and conceptually subsequent operations.
The store accesses for the program-interruption
codes may precede the storage-operand refer-
ences associated with the instruction which results
in the program interruption.

| Relation between Storage-Key
| Accesses

| As observed by other CPUs, storage-key fetches
| and stores due to instructions that explicitly manip-
| ulate a storage key (INSERT STORAGE KEY
| EXTENDED, INSERT VIRTUAL STORAGE KEY,
| RESET REFERENCE BIT EXTENDED, and SET
| STORAGE KEY EXTENDED) are ordered among
| themselves and among storage-operand refer-
| ences as if the storage-key accesses were them-
| selves storage-operand fetches and stores,
| respectively.

| Accesses of the access-control and fetch-
| protection bits due to storage-operand references
| are concurrent with the references. Accesses of
| the reference and change bits due to storage-
| operand references are in no particular order
| within the interval in which they are defined to
| occur. (See the description of when the change
| bit is set in “Storage-Key Accesses” on
| page 5-84.) However, whether due to an instruc-
| tion that explicitly manipulates a storage key or
| due to a storage-operand reference, a storage-key
| store appears to precede a conceptually subse-
| quent storage-key fetch from the same storage
| key.

 Serialization
The sequence of functions performed by a CPU is
normally independent of the functions performed
by other CPUs and by channel programs. Simi-
larly, the sequence of functions performed by a
channel program is normally independent of the
functions performed by other channel programs
and by CPUs. However, at certain points in its
execution, serialization of the CPU occurs. Serial-
ization also occurs at certain points for channel
programs.

 CPU Serialization

All interruptions and the execution of certain
instructions cause a serialization of CPU oper-
ations. A serialization operation consists in com-
pleting all conceptually previous storage accesses

| and related reference-bit and change-bit settings
by the CPU, as observed by other CPUs and by
channel programs, before the conceptually subse-

| quent storage accesses and related reference-bit

 Chapter 5. Program Execution 5-91

| and change-bit settings occur. Serialization
affects the sequence of all CPU accesses to
storage and to the storage keys, except for those
associated with ART-table-entry and
DAT-table-entry fetching.

Serialization is performed by CPU reset, all inter-
ruptions, and by the execution of the following
instructions:

� The general instructions BRANCH ON CON-
DITION (BCR) with the M� and R� field con-
taining all ones and all zeros, respectively,
and COMPARE AND SWAP, COMPARE
DOUBLE AND SWAP, STORE CLOCK,

| STORE CLOCK EXTENDED, SUPERVISOR
CALL, and TEST AND SET.

� LOAD PSW, LOAD PSW EXTENDED, and
SET STORAGE KEY EXTENDED.

� All I/O instructions.

� PURGE ALB, PURGE TLB, and SET PREFIX.
PURGE ALB and SET PREFIX also cause the
ALB to be cleared of all entries. PURGE TLB
and SET PREFIX also cause the TLB to be
cleared of all entries.

 � SIGNAL PROCESSOR. The set-architecture
SIGNAL PROCESSOR order causes serializa-
tion on all CPUs in the configuration.

� INVALIDATE PAGE TABLE ENTRY.

 � TEST BLOCK.

� MOVE TO PRIMARY, MOVE TO SEC-
ONDARY, PROGRAM CALL, PROGRAM
CALL FAST, PROGRAM TRANSFER, SET
ADDRESS SPACE CONTROL, and SET
SECONDARY ASN.

� PROGRAM RETURN when the state entry to
be unstacked is a program-call state entry.

� PERFORM LOCKED OPERATION. Serializa-
tion is performed immediately after the lock is
obtained and again immediately before it is
released. However, values fetched from the
parameter list before the lock is obtained are
not necessarily refetched.

� The four trace functions — branch tracing,
ASN tracing, mode tracing, and explicit
tracing — cause serialization to be performed
before the trace action and after completion of
the trace action.

� PAGE IN and PAGE OUT.

� COMPARE AND SWAP AND PURGE, which
can also cause the ALB and the TLB to be
cleared of all entries on all CPUs

The sequence of events associated with a serial-
izing operation is as follows:

1. All conceptually previous storage accesses by
the CPU are completed as observed by other
CPUs and by channel programs. This
includes all conceptually previous stores and
changes to the storage keys.

2. The normal function associated with the serial-
izing operation is performed. In the case of
instruction execution, operands are fetched,
and the storing of results is completed. The
exceptions are LOAD PSW, LOAD PSW
EXTENDED, and SET PREFIX, in which the
operand may be fetched before previous
stores have been completed, and inter-
ruptions, in which the interruption code and
associated fields may be stored prior to the
serialization. The fetching of the serializing
instruction occurs before the execution of the
instruction and may precede the execution of
previous instructions, but may not precede the
completion of any previous serializing opera-
tion. In the case of an interruption, the old
PSW, the interruption code, and other infor-
mation, if any, are stored, and the new PSW
is fetched, but not necessarily in that
sequence.

3. Finally, instruction fetch and operand
accesses for conceptually subsequent oper-
ations may begin.

A serializing function affects the sequence of
storage accesses that are under the control of the
CPU in which the serializing function takes place.
It does not affect the sequence of storage
accesses under the control of other CPUs and of
channel programs.

Programming Notes:

1. The following are some effects of a serializing
operation:

a. When the execution of an instruction
changes the contents of a storage location
that is used as a source of a following
instruction and when different addresses
are used to designate the same absolute
location for storing the result and fetching
the instruction, a serializing operation fol-

5-92 z/Architecture Principles of Operation

lowing the change ensures that the modi-
fied instruction is executed.

b. When a serializing operation takes place,
other CPUs and channel programs
observe instruction and operand fetching
and result storing to take place in the
sequence established by the serializing
operation.

2. Storing into a location from which a serializing
instruction is fetched does not necessarily
affect the execution of the serializing instruc-
tion unless a serializing function has been per-
formed after the storing and before the exe-
cution of the serializing instruction.

3. Following is an example showing the effects
of serialization. Location A initially contains
X'FF'.

 CPU 1 CPU 2

 MVI A,X'��' G CLI A,X'��'
 BCR 15,� BNE G

The BCR 15,0 instruction executed by CPU
1 is a serializing instruction that ensures that
the store by CPU 1 at location A is completed.
However, CPU 2 may loop indefinitely, or until
the next I/O or external interruption on CPU 2,
because CPU 2 may already have fetched
from location A for every execution of the CLI
instruction. A serializing instruction must be in

the CPU-2 loop to ensure that CPU 2 will
again fetch from location A.

 Channel-Program Serialization

Serialization of a channel program occurs as
follows:

1. All storage accesses and storage-key
accesses by the channel program follow initi-
ation of the execution of START SUB-
CHANNEL, or, if suspended, RESUME SUB-
CHANNEL, as observed by CPUs and by
other channel programs. This includes all
accesses for the CCWs, IDAWs, and data.

2. All storage accesses and storage-key
accesses by the channel program are com-
pleted, as observed by CPUs and by other
channel programs, before the subchannel
status indicating status-pending with primary
status is made available to any CPU.

3. If a CCW contains a PCI flag or a suspend
flag which is one, all storage accesses and
storage-key accesses due to CCWs preceding
it in the CCW chain are completed, as
observed by CPUs and by other channel pro-
grams, before the subchannel status indicating
status-pending with intermediate status (PCI
or suspended) is made available to any CPU.

The serialization of a channel program does not
affect the sequence of storage accesses or

| storage-key accesses performed by other channel
| programs or by a CPU.

 Chapter 5. Program Execution 5-93

5-94 z/Architecture Principles of Operation

 Chapter 6. Interruptions

Interruption Action 6-2
Interruption Code 6-5
Enabling and Disabling 6-6
Handling of Floating Interruption Conditions 6-7
Instruction-Length Code 6-7

Zero ILC 6-7
ILC on Instruction-Fetching Exceptions . 6-8

Exceptions Associated with the PSW . . . 6-9
Early Exception Recognition 6-9
Late Exception Recognition 6-10

External Interruption 6-10
Clock Comparator 6-11
CPU Timer 6-11
Emergency Signal 6-12
ETR . 6-12
External Call 6-12
Interrupt Key 6-12
Malfunction Alert 6-13
Service Signal 6-13

I/O Interruption 6-13
Machine-Check Interruption 6-14
Program Interruption 6-14

Data-Exception Code (DXC) 6-15
Priority of Program Interruptions for

Data Exceptions 6-15
Program-Interruption Conditions 6-15

Addressing Exception 6-15
AFX-Translation Exception 6-19
ALEN-Translation Exception 6-19
ALE-Sequence Exception 6-19
ALET-Specification Exception 6-19
ASCE-Type Exception 6-19
ASTE-Sequence Exception 6-20
ASTE-Validity Exception 6-20
ASX-Translation Exception 6-21
Crypto-Operation Exception 6-21
Data Exception 6-21
Decimal-Divide Exception 6-22
Decimal-Overflow Exception 6-22
Execute Exception 6-22
EX-Translation Exception 6-22
Extended-Authority Exception 6-22

Fixed-Point-Divide Exception 6-23
Fixed-Point-Overflow Exception 6-23
HFP-Divide Exception 6-23
HFP-Exponent-Overflow Exception . . . 6-23
HFP-Exponent-Underflow Exception . . 6-23
HFP-Significance Exception 6-24
HFP-Square-Root Exception 6-24
LX-Translation Exception 6-24
Monitor Event 6-24
Operand Exception 6-25
Operation Exception 6-25
Page-Translation Exception 6-26
PC-Translation-Specification Exception 6-26
PER Event 6-26
Primary-Authority Exception 6-26
Privileged-Operation Exception 6-27
Protection Exception 6-27
Region-First-Translation Exception . . . 6-28
Region-Second-Translation Exception . 6-28
Region-Third-Translation Exception . . 6-29
Secondary-Authority Exception 6-29
Segment-Translation Exception 6-30
Space-Switch Event 6-30
Special-Operation Exception 6-31
Specification Exception 6-32
Stack-Empty Exception 6-34
Stack-Full Exception 6-34
Stack-Operation Exception 6-34
Stack-Specification Exception 6-34
Stack-Type Exception 6-35
Trace-Table Exception 6-35
Translation-Specification Exception . . . 6-35

Collective Program-Interruption Names . . 6-36
Recognition of Access Exceptions 6-36
Multiple Program-Interruption Conditions . 6-39

Access Exceptions 6-43
ASN-Translation Exceptions 6-46
Subspace-Replacement Exceptions . . 6-47
Trace Exceptions 6-47

Restart Interruption 6-47
Supervisor-Call Interruption 6-47
Priority of Interruptions 6-48

The interruption mechanism permits the CPU to
change its state as a result of conditions external
to the configuration, within the configuration, or
within the CPU itself. To permit fast response to
conditions of high priority and immediate recogni-

tion of the type of condition, interruption conditions
are grouped into six classes: external,
input/output, machine check, program, restart, and
supervisor call.

 Copyright IBM Corp. 1990-2003 6-1

 Interruption Action
An interruption consists in storing the current PSW
as an old PSW, storing information identifying the
cause of the interruption, and fetching a new
PSW. Processing resumes as specified by the
new PSW.

The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the inter-
rupted program. For program and supervisor-call
interruptions, the information stored also contains
a code that identifies the length of the last-

executed instruction, thus permitting the program
to respond to the cause of the interruption. In the
case of some program conditions for which the
normal response is reexecution of the instruction
causing the interruption, the instruction address
directly identifies the instruction last executed.

Except for restart, an interruption can occur only
when the CPU is in the operating state. The
restart interruption can occur with the CPU in
either the stopped or operating state.

The details of source identification, location deter-
mination, and instruction execution are explained
in later sections and are summarized in
Figure 6-1 on page 6-3.

6-2 z/Architecture Principles of Operation

┌───────────────────┬────────────────────────┬─────┬─────────┬───────┬─────────────┐
│ │ │ │Mask Bits│ │ │
│ │ │ │in Ctrl │ │Execution of │
│ │ │PSW- │Registers│ │Instruction │
│ Source │ Interruption │Mask │ │ ILC │Identified │
│ Identification │ Code │Bits │Reg, Bit│ Set │by Old PSW │
├───────────────────┼────────────────────────┼─────┼─────────┼───────┼─────────────┤
│MACHINE CHECK │Locations 232-239� │ │ │ │ │
│ (old PSW 352, │ │ │ │ │ │
│ new PSW 48�) │ │ │ │ │ │
│ │ │ │ │ │ │
│Exigent condition │ │ 13 │ │ u │terminated or│
│ │ │ │ │ │ nullified� │
│Repressible cond │ │ 13 │14, 35-39│ u │unaffected� │
├───────────────────┼────────────────────────┼─────┼─────────┼───────┼─────────────┤
│SUPERVISOR CALL │Locations 138-139 │ │ │ │ │
│ (old PSW 32�, │ │ │ │ │ │
│ new PSW 448) │ │ │ │ │ │
│ │ │ │ │ │ │
│Instruction bits │�������� ssssssss │ │ │ 1,2 │completed │
├───────────────────┼────────────────────────┼─────┼─────────┼───────┼─────────────┤
│PROGRAM │Locations 142-143 │ │ │ │ │
│ (old PSW 336, ├──────────────────┬─────┤ │ │ │ │
│ new PSW 464) │ Binary │Hex� │ │ │ │ │
│ ├──────────────────┼─────┤ │ │ │ │
│Operation │�������� p������1 │���1 │ │ │ 1,2,3│suppressed │
│Privileged oper │�������� p�����1� │���2 │ │ │ 2,3│suppressed │
│Execute │�������� p�����11 │���3 │ │ │ 2 │suppressed │
│Protection │�������� p����1�� │���4 │ │ │ 1,2,3│suppressed or│
│ │ │ │ │ │ │ terminated │
│Addressing │�������� p����1�1 │���5 │ │ │ 1,2,3│suppressed or│
│ │ │ │ │ │ │ terminated │
│Specification │�������� p����11� │���6 │ │ │�,1,2,3│suppressed or│
│ │ │ │ │ │ │ completed │
│Data │�������� p����111 │���7 │ │ │ 1,2,3│suppressed, │
│ │ │ │ │ │ │ terminated,│
│ │ │ │ │ │ │ or │
│ │ │ │ │ │ │ completed │
│Fixed-pt overflow │�������� p���1��� │���8 │ 2� │ │ 1,2,3│completed │
│Fixed-point divide │�������� p���1��1 │���9 │ │ │ 1,2,3│suppressed or│
│ │ │ │ │ │ │ completed │
│Decimal overflow │�������� p���1�1� │���A │ 21 │ │ 2,3│completed │
│Decimal divide │�������� p���1�11 │���B │ │ │ 2,3│suppressed │
│HFP exp. overflow │�������� p���11�� │���C │ │ │ 1,2,3│completed │
│HFP exp. underflow │�������� p���11�1 │���D │ 22 │ │ 1,2,3│completed │
│HFP significance │�������� p���111� │���E │ 23 │ │ 1,2 │completed │
│HFP divide │�������� p���1111 │���F │ │ │ 1,2 │suppressed │
│Segment translation│�������� p��1���� │��1� │ │ │ 1,2,3│nullified │
│Page translation │�������� p��1���1 │��11 │ │ │ 1,2,3│nullified │
│Translation spec │�������� p��1��1� │��12 │ │ │ 1,2,3│suppressed │
│Special operation │�������� p��1��11 │��13 │ │ �, 33 │ 1,2,3│suppressed │
│Operand │�������� p��1�1�1 │��15 │ │ │ 2 │suppressed │
│Trace table │�������� p��1�11� │��16 │ │ │ 1,2 │nullified │
│Space-switch event │�������� p��111�� │��1C │ │ 1, 57 │�,1,2 │completed │
│HFP square root │�������� p��111�1 │��1D │ │ │ 2 │suppressed │
│PC-transl spec │�������� p��11111 │��1F │ │ │ 2 │suppressed │
└───────────────────┴──────────────────┴─────┴─────┴─────────┴───────┴─────────────┘

Figure 6-1 (Part 1 of 4). Interruption Action

 Chapter 6. Interruptions 6-3

┌───────────────────┬────────────────────────┬─────┬─────────┬───────┬─────────────┐
│ │ │ │Mask Bits│ │ │
│ │ │ │in Ctrl │ │Execution of │
│ │ │PSW- │Registers│ │Instruction │
│ Source │ Interruption │Mask │ │ ILC │Identified │
│ Identification │ Code │Bits │Reg, Bit│ Set │by Old PSW │
├───────────────────┼──────────────────┬─────┼─────┼─────────┼───────┼─────────────┤
│AFX translation │�������� p�1����� │��2� │ │ │ 1,2 │nullified │
│ASX translation │�������� p�1����1 │��21 │ │ │ 1,2 │nullified │
│LX translation │�������� p�1���1� │��22 │ │ │ 2 │nullified │
│EX translation │�������� p�1���11 │��23 │ │ │ 2 │nullified │
│Primary authority │�������� p�1��1�� │��24 │ │ │ 2 │nullified │
│Secondary auth │�������� p�1��1�1 │��25 │ │ │ 1,2 │nullified │
│ALET specification │�������� p�1�1��� │��28 │ │ │ 1,2,3│suppressed │
│ALEN translation │�������� p�1�1��1 │��29 │ │ │ 1,2,3│nullified │
│ALE sequence │�������� p�1�1�1� │��2A │ │ │ 1,2,3│nullified │
│ASTE validity │�������� p�1�1�11 │��2B │ │ │ 1,2,3│nullified │
│ASTE sequence │�������� p�1�11�� │��2C │ │ │ 1,2,3│nullified │
│Extended authority │�������� p�1�11�1 │��2D │ │ │ 1,2,3│nullified │
│Stack full │�������� p�11���� │��3� │ │ │ 2 │nullified │
│Stack empty │�������� p�11���1 │��31 │ │ │ 1,2 │nullified │
│Stack specification│�������� p�11��1� │��32 │ │ │ 1,2 │nullified │
│Stack type │�������� p�11��11 │��33 │ │ │ 1,2 │nullified │
│Stack operation │�������� p�11�1�� │��34 │ │ │ 1,2 │nullified │
│ASCE type │�������� p�111��� │��38 │ │ │ 1,2,3│nullified │
│Region first trans │�������� p�111��1 │��39 │ │ │ 1,2,3│nullified │
│Region second trans│�������� p�111�1� │��3A │ │ │ 1,2,3│nullified │
│Region third trans │�������� p�111�11 │��3B │ │ │ 1,2,3│nullified │
│Monitor event │�������� p1������ │��4� │ │ 8, 32-47│ 2 │completed │
│PER event │�������� 1nnnnnnn�│��8� │ 1 │ 9, 32-36│�,1,2,3│completed� │
│Crypto operation │�������1 p��11��1 │�119 │ │ │ 2 │nullified │
├───────────────────┼──────────────────┴─────┼─────┼─────────┼───────┼─────────────┤
│EXTERNAL │Locations 134-135 │ │ │ │ │
│ (old PSW 3�4, ├──────────────────┬─────┤ │ │ │ │
│ new PSW 432) │ Binary │Hex� │ │ │ │ │
│ ├──────────────────┼─────┤ │ │ │ │
│Interrupt key │�������� �1������ │��4� │ 7 │ �, 57 │ u │unaffected │
│Clock comparator │���1���� �����1�� │1��4 │ 7 │ �, 52 │ u │unaffected │
│CPU timer │���1���� �����1�1 │1��5 │ 7 │ �, 53 │ u │unaffected │
│Malfunction alert │���1��1� �������� │12�� │ 7 │ �, 48 │ u │unaffected │
│Emergency signal │���1��1� �������1 │12�1 │ 7 │ �, 49 │ u │unaffected │
│External call │���1��1� ������1� │12�2 │ 7 │ �, 5� │ u │unaffected │
│ETR │���1�1�� �����11� │14�6 │ 7 │ �, 59 │ u │unaffected │
│Service signal │��1��1�� �������1 │24�1 │ 7 │ �, 54 │ u │unaffected │
└───────────────────┴──────────────────┴─────┴─────┴─────────┴───────┴─────────────┘

Figure 6-1 (Part 2 of 4). Interruption Action

6-4 z/Architecture Principles of Operation

┌───────────────────┬────────────────────────┬─────┬─────────┬───────┬─────────────┐
│ │ │ │Mask Bits│ │ │
│ │ │ │in Ctrl │ │Execution of │
│ │ │PSW- │Registers│ │Instruction │
│ Source │ Interruption │Mask │ │ ILC │Identified │
│ Identification │ Code │Bits │Reg, Bit│ Set │by Old PSW │
│INPUT/OUTPUT │Locations 184-191 │ │ │ │ │
│ (old PSW 368, │ │ │ │ │ │
│ new PSW 496) │ │ │ │ │ │
│ │ │ │ │ │ │
│I/O-interruption │ │ 6 │ 6, 32-39│ u │unaffected │
│ subclass │ │ │ � │ │ │
├───────────────────┼────────────────────────┼─────┼─────────┼───────┼─────────────┤
│RESTART │None │ │ │ │ │
│ (old PSW 288, │ │ │ │ │ │
│ new PSW 416) │ │ │ │ │ │
│ │ │ │ │ │ │
│Restart key │ │ │ │ u │unaffected │
├───────────────────┴────────────────────────┴─────┴─────────┴───────┴─────────────┤
│Explanation: │
│ │
│ Locations for the old PSWs, new PSWs, and interruption codes are real locations.│
│ � A model-independent machine-check interruption code of 64 bits is stored at │
│ real locations 232-239. │
│ � The effect of the machine-check condition is indicated by bits in the machine-│
│ check-interruption code. The setting of these bits indicates the extent of │
│ the damage and whether the unit of operation is nullified, terminated, or │
│ unaffected. │
│ � The interruption code in the column labeled "Hex" is the hex code for the │
│ basic interruption; this code does not show the effects of concurrent inter- │
│ ruption conditions represented by n or p in the column labeled "Binary." │
│ � Bits 32-39 of control register 6 provide detailed masking of I/O-interruption │
│ subclasses �-7 respectively. │
│ � When the interruption code indicates a PER event, an ILC of � may be stored │
│ only when bits 8-15 of the interruption code are 1����11� (PER, specifi- │
│ cation). │
│ � The unit of operation is completed, unless a program exception concurrently │
│ indicated causes the unit of operation to be nullified, suppressed, or │
│ terminated. │
└──┘

Figure 6-1 (Part 3 of 4). Interruption Action

┌──┐
│Explanation (Continued): │
│ │
│ n A possible nonzero code indicating another concurrent program-interruption │
│ condition │
│ p If one, the bit indicates a concurrent PER-event interruption condition. │
│ s Bits of the I field of SUPERVISOR CALL. │
│ u Not stored. │
└──┘

Figure 6-1 (Part 4 of 4). Interruption Action

 Interruption Code

The six classes of interruptions (external, I/O,
machine check, program, restart, and supervisor
call) are distinguished by the storage locations at
which the old PSW is stored and from which the
new PSW is fetched. For most classes, the
causes are further identified by an interruption
code and, for some classes, by additional informa-
tion placed in permanently assigned real storage
locations during the interruption. (See also

“Assigned Storage Locations” on page 3-51.) For
external, program, and supervisor-call inter-
ruptions, the interruption code consists of 16 bits.

For external interruptions, the interruption code is
stored at real locations 134-135. A parameter
may be stored at real locations 128-131, or a CPU
address may be stored at real locations 132-133.

For I/O interruptions, the I/O-interruption code is
stored at real locations 184-191. The
I/O-interruption code consists of a 32-bit

 Chapter 6. Interruptions 6-5

subsystem-identification word and a 32-bit inter-
ruption parameter.

For machine-check interruptions, the interruption
code consists of 64 bits and is stored at real
locations 232-239. Additional information for iden-
tifying the cause of the interruption and for recov-
ering the state of the machine may be provided by
the contents of the machine-check failing-storage
address and the contents of the fixed-logout and
machine-check-save areas. (See Chapter 11,
“Machine-Check Handling.”)

For program interruptions, the interruption code is
stored at real locations 142-143, and the
instruction-length code is stored in bit positions 5
and 6 of real location 141. Further information
may be provided in the form of the data-exception
code (DXC), monitor-class number, PER code,
addressing-and-translation-mode identification,
PER address, exception access identification,
PER access identification, operand-access identifi-
cation, translation-exception identification, and
monitor code, which are stored at real locations
144-162 and 168-183.

Enabling and Disabling

By means of mask bits in the current PSW,
floating-point-control (FPC) register, and control
registers, the CPU may be enabled or disabled for
all external, I/O, and machine-check interruptions
and for some program interruptions. When a
mask bit is one, the CPU is enabled for the corre-
sponding class of interruptions, and those inter-
ruptions can occur.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions
that cause I/O interruptions remain pending.
External-interruption conditions either remain
pending or persist until the cause is removed.
Machine-check-interruption conditions, depending
on the type, are ignored, remain pending, or
cause the CPU to enter the check-stop state. The
disallowed program-interruption conditions are
ignored, except that some causes are indicated
also by the setting of the condition code, and
IEEE exceptions set flags in the FPC register.
The setting of the HFP-significance and
HFP-exponent-underflow program-mask bits

affects the manner in which HFP operations are
completed when the corresponding condition
occurs. Similarly, the setting of the IEEE mask
bits in the FPC register affects the manner in
which BFP operations are completed when the
corresponding condition occurs.

Programming Notes:

1. Mask bits in the PSW provide a means of dis-
allowing most maskable interruptions; thus,
subsequent interruptions can be disallowed by
the new PSW introduced by an interruption.
Furthermore, the mask bits can be used to
establish a hierarchy of interruption priorities,
where a condition in one class can interrupt
the program handling a condition in another
class but not vice versa. To prevent an
interruption-handling routine from being inter-
rupted before the necessary housekeeping
steps are performed, the new PSW must
disable the CPU for further interruptions within
the same class or within a class of lower pri-
ority.

2. Because the mask bits in control registers are
not changed as part of the interruption proce-
dure, these masks cannot be used to prevent
an interruption immediately after a previous
interruption in the same class. The mask bits
in control registers provide a means for selec-
tively enabling the CPU for some sources and
disabling it for others within the same class.

3. Controlling bits exist for several program inter-
ruptions, but with no mask bit in the PSW.
Such bits include the IEEE mask bits in the
FPC register, the monitor masks in bit posi-
tions 48-63 of control register 8, and the
primary space-switch-event-control bit, bit 57
of control register 1. A bit of this nature is
somewhat arbitrarily considered to be a
“mask” bit only if the polarity is such that inter-
ruption is enabled when the bit is one. Thus,
for example, the SSM-suppression-control bit,
bit 33 of control register 0, is considered to be
a mask bit, while the AFP-register-control bit,
bit 45 of control register 0, is not. Regardless
of the polarity of such control bits, to avoid
another program interruption, an interruption-
handling routine must avoid issuing
instructions subject to these bits until they
have been set appropriately.

6-6 z/Architecture Principles of Operation

Handling of Floating Interruption
Conditions

An interruption condition which can be presented
to any CPU in the configuration is called a floating
interruption condition. The condition is presented
to the first CPU in the configuration which is
enabled for the corresponding interruption and
which can perform the interruption, and then the
condition is cleared and not presented to any
other CPU in the configuration. A CPU cannot
perform the interruption when it is in the check-
stop state, has an invalid prefix, is in a string of
program interruptions due to a specification excep-
tion of the type which is recognized early or is in
the stopped state. However, a CPU with the rate
control set to instruction step can perform the
interruption when the start key is activated.

Service signal, I/O, and certain machine-check
conditions are floating interruption conditions.

 Instruction-Length Code

The instruction-length code (ILC) occupies two bit
positions and provides the length of the last
instruction executed. It permits identifying the
instruction causing the interruption when the
instruction address in the old PSW designates the
next sequential instruction. The ILC is provided
also by the BRANCH AND LINK instructions in the
24-bit addressing mode.

The ILC for program and supervisor-call inter-
ruptions is stored in bit positions 5 and 6 of the
bytes at real locations 141 and 137, respectively.
For external, I/O, machine-check, and restart inter-
ruptions, the ILC is not stored since it cannot be
related to the length of the last-executed instruc-
tion.

For supervisor-call and program interruptions, a
nonzero ILC identifies in halfwords the length of
the instruction that was last executed. That
instruction may be one for which a specification
exception was recognized due to an odd instruc-
tion address or for which an access exception
(addressing, ASCE-type, page-translation, pro-
tection, region-translation, segment-translation, or
translation-specification) was recognized during
the fetching of the instruction. Whenever an
instruction is executed by means of EXECUTE,

instruction-length code 2 is set to indicate the
length of EXECUTE and not that of the target
instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value does not depend on whether the opera-
tion code is assigned or on whether the instruction
is installed. The following table summarizes the
meaning of the instruction-length code:

┌──────────────┬──────┬───────────────┐
│ ILC │Instr.│ │
├───────┬──────┤ Bits │ Instruction │
│Decimal│Binary│ �-1 │ Length │
├───────┼──────┼──────┼───────────────┤
│ � │ �� │ │Not available │
│ 1 │ �1 │ �� │One halfword │
│ 2 │ 1� │ �1 │Two halfwords │
│ 2 │ 1� │ 1� │Two halfwords │
│ 3 │ 11 │ 11 │Three halfwords│
└───────┴──────┴──────┴───────────────┘

 Zero ILC
Instruction-length code 0, after a program inter-
ruption, indicates that the instruction address
stored in the old PSW does not identify the
instruction causing the interruption.

An ILC of 0 occurs when a specification exception
due to a PSW-format error is recognized as part
of early exception recognition and the PSW has
been introduced by LOAD PSW, LOAD PSW
EXTENDED, PROGRAM RETURN, or an inter-
ruption. (See “Exceptions Associated with the
PSW” on page 6-9.) In the case of LOAD PSW,
LOAD PSW EXTENDED, or PROGRAM
RETURN, the instruction address of the instruction
or of EXECUTE has been replaced by the instruc-
tion address in the new PSW. When the invalid
PSW is introduced by an interruption, the
PSW-format error cannot be attributed to an
instruction.

In the case of LOAD PSW, LOAD PSW
EXTENDED, PROGRAM RETURN, and the
supervisor-call interruption, a PER event may be
indicated concurrently with a specification excep-

| tion for which the ILC is 0.

In the case of a PROGRAM RETURN instruction
that causes both a space-switch event and a
PSW-format error, the space-switch event is
recognized, but it is unpredictable whether the ILC
is 0 or 1, or 0 or 2 if EXECUTE was used.

 Chapter 6. Interruptions 6-7

ILC on Instruction-Fetching Exceptions
When a program interruption occurs because of
an exception that prohibits access to the instruc-
tion, the instruction is considered to have been

| executed without being fetched, and the
instruction-length code cannot be set on the basis
of the first two bits of the instruction. As far as the
significance of the ILC for this case is concerned,
the following two situations are distinguished:

1. When an odd instruction address causes a
specification exception to be recognized or
when an addressing, protection, or translation-
specification exception is encountered on
fetching an instruction, the ILC is set to 1, 2,
or 3, indicating the multiple of 2 by which the
instruction address has been incremented. It
is unpredictable whether the instruction
address is incremented by 2, 4, or 6. By
reducing the instruction address in the old
PSW by the number of halfword locations indi-
cated in the ILC, the instruction address ori-
ginally appearing in the PSW may be
obtained.

2. When an ASCE-type, region-translation,
segment-translation, or page-translation
exception is recognized while fetching an
instruction, the ILC is arbitrarily set to 1, 2, or
3. In this case, the operation is nullified, and
the instruction address is not incremented.

The ILC is not necessarily related to the first two
bits of the instruction when the first halfword of an
instruction can be fetched but an access exception
is recognized on fetching the second or third
halfword. The ILC may be arbitrarily set to 1, 2,
or 3 in these cases. The instruction address is or
is not updated, as described in situations 1 and 2
above.

When any exceptions are encountered on fetching
the target instruction of EXECUTE, the ILC is 2.

Programming Notes:

1. A nonzero instruction-length code for a
program interruption indicates the number of
halfword locations by which the instruction
address in the program old PSW must be
reduced to obtain the instruction address of
the last instruction executed, unless one of the
following situations exists:

a. The interruption is caused by an exception
resulting in nullification.

b. An interruption for a PER event occurs
before the execution of an interruptible
instruction is completed, and no other
program-interruption condition is indicated
concurrently.

c. The interruption is caused by a PER event
or space-switch event due to LOAD PSW,
LOAD PSW EXTENDED, or a branch or
linkage instruction, including SUPER-
VISOR CALL (but not including MONITOR
CALL).

d. The interruption is caused by an
addressing exception or protection excep-
tion for the storage operand of a LOAD
CONTROL instruction that loads the
control register (1 or 13) containing the
address-space-control element that speci-
fies the address space from which
instructions are fetched.

For situations a and b above, the instruction
address in the PSW is not incremented, and
the instruction designated by the instruction
address is the same as the last one executed.
These situations are the only ones in which
the instruction address in the old PSW identi-
fies the instruction causing the exception. Sit-
uation b can be distinguished from a PER
event indicated after completion of an interrup-
tible or noninterruptible instruction in that, for
situation b, the instruction address in the PSW
is the same as the PER address in the
doubleword at real location 152.

For situation c, the instruction address has
been replaced as part of the operation, and
the address of the last instruction executed
cannot be calculated using the one appearing
in the program old PSW.

For situation d, the effective address of the
last instruction executed can be calculated,
but, since the address-space-control element
for the instruction address space is unpredict-
able, the corresponding real address is
unknown.

2. The instruction-length code (ILC) is redundant
when a PER event is indicated since the PER
address in the doubleword at real location 152
identifies the instruction causing the inter-
ruption (or the EXECUTE instruction, as
appropriate). Similarly, the ILC is redundant
when the operation is nullified, since in this
case the instruction address in the PSW is not

6-8 z/Architecture Principles of Operation

incremented. If the ILC value is required in
this case, it can be derived from the operation
code of the instruction identified by the old
PSW.

3. The address of the last instruction executed
before a program interruption is insufficient to
locate the program problem if one of the fol-
lowing situations exists:

a. The interruption is caused by an access
exception encountered in fetching an
instruction, and the instruction address
was introduced into the PSW by a means
other than sequential operation (by a
branch or linkage instruction, LOAD PSW,
LOAD PSW EXTENDED, an interruption,
or conclusion of an IPL sequence).

b. The interruption is caused by a specifica-
tion exception due to an odd instruction
address, which necessarily also results
from introduction of an instruction address
into the PSW.

c. The interruption is caused by an early
specification exception due to a STORE
THEN OR SYSTEM MASK or SET
SYSTEM MASK instruction that switches
to or from the real mode while introducing
invalid values in bit positions 0-7 of the
PSW.

For situations a and b, the instruction address
was replaced by the operation preceding the
last instruction execution, and the address of
the program location related to that preceding
operation is unavailable.

For situation c, the address of the last instruc-
tion executed is available, but the corre-
sponding real address is unknown.

4. The address of the last instruction executed is
not available when an interruption is caused
by an early specification exception due to a
LOAD PSW, LOAD PSW EXTENDED, or
PROGRAM RETURN instruction or an inter-
ruption.

Exceptions Associated with the
PSW

Exceptions associated with erroneous information
in the current PSW may be recognized when the
information is introduced into the PSW or may be
recognized as part of the execution of the next
instruction. Errors in the PSW which are
specification-exception conditions are called
PSW-format errors.

Early Exception Recognition
For the following error conditions, a program inter-
ruption for a specification exception occurs imme-
diately after the PSW becomes active:

� Any of the unassigned bits (0, 2-4, 24-30, or
33-63) is a one.

� Bit 12 is a one.

� Bits 31 and 32 are zero and one, respectively,
and bits 64-96 are not all zeros.

� Bits 31 and 32 are both zero, and bits 64-103
are not all zeros.

� Bits 31 and 32 are one and zero, respectively.

The interruption occurs regardless of whether the
wait state is specified. If the invalid PSW causes
the CPU to become enabled for a pending I/O,
external, or machine-check interruption, the
program interruption occurs instead, and the
pending interruption is subject to the mask bits of
the new PSW introduced by the program inter-
ruption.

When an interruption or the execution of LOAD
PSW, LOAD PSW EXTENDED, or PROGRAM
RETURN introduces a PSW with one of the above
error conditions, the instruction-length code is set
to 0, and the newly introduced PSW is stored
unmodified as the old PSW. When one of the
above error conditions is introduced by execution
of SET SYSTEM MASK or STORE THEN OR
SYSTEM MASK, the instruction-length code is set
to 2, and the instruction address is incremented by
4. The PSW containing the invalid value intro-
duced into the system-mask field is stored as the
old PSW.

 Chapter 6. Interruptions 6-9

Late Exception Recognition
For the following conditions, the exception is
recognized as part of the execution of the next
instruction:

� A specification exception is recognized due to
an odd instruction address in the PSW (PSW
bit 127 is one).

� An access exception (addressing, ASCE-type,
page-translation, protection, region-translation,
segment-translation, or translation-
specification) is associated with the location
designated by the instruction address or with
the location of the second or third halfword of
the instruction starting at the designated
instruction address.

The instruction-length code and instruction
address stored in the program old PSW under
these conditions are discussed in “ILC on

| Instruction-Fetching Exceptions” on page 6-8, and
| an example is given in Figure 4-9 on page 4-35.

If an I/O, external, or machine-check-interruption
condition is pending and the PSW causes the
CPU to be enabled for that condition, the corre-
sponding interruption occurs, and the PSW is not
inspected for exceptions which are recognized
late. Similarly, a PSW specifying the wait state is
not inspected for exceptions which are recognized
late.

Programming Notes:

1. The execution of LOAD ADDRESS SPACE
PARAMETERS, LOAD PSW, LOAD PSW
EXTENDED, PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, RESUME
PROGRAM, SET PREFIX, SET SECONDARY
ASN, SET SYSTEM MASK, STORE THEN
AND SYSTEM MASK, and STORE THEN OR
SYSTEM MASK is suppressed on an
addressing or protection exception, and hence
the program old PSW provides information
concerning the program causing the excep-
tion.

2. When the first halfword of an instruction can
be fetched but an access exception is recog-
nized on fetching the second or third halfword,
the ILC is not necessarily related to the opera-
tion code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of inter-

ruptions may occur. (See “Priority of
Interruptions” on page 6-48.)

 External Interruption
The external interruption provides a means by
which the CPU responds to various signals origi-
nating from either inside or outside the configura-
tion.

An external interruption causes the old PSW to be
stored at real locations 304-319 and a new PSW
to be fetched from real locations 432-447.

The source of the interruption is identified in the
interruption code which is stored at real locations
134-135. The instruction-length code is not
stored.

Additionally, for the malfunction-alert, emergency-
signal, and external-call conditions, a 16-bit CPU
address is associated with the source of the inter-
ruption and is stored at real locations 132-133.
When the CPU address is stored, bit 6 of the
interruption code is set to one. For all other con-
ditions, no CPU address is stored, bit 6 of the
interruption code is set to zero, and zeros are
stored at real locations 132-133.

For the ETR and service-signal interruptions, a
32-bit parameter is associated with the interruption
and is stored at real locations 128-131. Bit 5 of
the external-interruption code indicates that a
parameter has been stored. When bit 5 is zero,
the contents of real locations 128-131 remain
unchanged.

External-interruption conditions are of two types:
those for which an interruption-request condition is
held pending, and those for which the condition
directly requests the interruption. Clock
comparator and CPU timer are conditions which
directly request external interruptions. If a condi-
tion which directly requests an external inter-
ruption is removed before the request is honored,
the request does not remain pending, and no
interruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists, more than one interruption may result
from a single occurrence of the condition.

When several interruption requests for a single
source are generated before the interruption
occurs, and the interruption condition is of the type

6-10 z/Architecture Principles of Operation

which is held pending, only one request for that
source is preserved and remains pending.

An external interruption for a particular source can
occur only when the CPU is enabled for inter-
ruption by that source. The external interruption
occurs at the completion of a unit of operation.
The external mask, PSW bit 7, and external
subclass-mask bits in control register 0 control
whether the CPU is enabled for a particular
source. Each source for an external interruption
has a subclass-mask bit assigned to it, and the
source can cause an interruption only when the
external-mask bit is one and the corresponding
subclass-mask bit is one.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction exe-
cution or interruption that causes the enabling.

More than one source may present a request for
an external interruption at the same time. When
the CPU becomes enabled for more than one con-
currently pending request, the interruption occurs
for the pending condition or conditions having the
highest priority.

The priorities for external-interruption requests in
descending order are as follows:

 � Interrupt key
 � Malfunction alert
 � Emergency signal
 � External call
 � Clock comparator
 � CPU timer
 � ETR
 � Service signal

All requests are honored one at a time. When
more than one emergency-signal request exists at
a time or when more than one malfunction-alert
request exists at a time, the request associated
with the smallest CPU address is honored first.

 Clock Comparator

An interruption request for the clock comparator
exists whenever either of the following conditions
is met:

1. The TOD clock is in the set or not-set state,
and the value of the clock comparator is less
than the value in the compared portion of the

TOD clock, both compare values being con-
sidered unsigned binary integers.

2. The TOD clock is in the error or not-
operational state.

If the condition responsible for the request is
removed before the request is honored, the
request does not remain pending, and no inter-
ruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists, more than one interruption may result
from a single occurrence of the condition.

When the TOD clock is set or changes state,
interruption conditions, if any, that are due to the
clock comparator may or may not be recognized
for up to 1.048576 seconds after the change.

The subclass-mask bit is in bit position 52 of
control register 0. This bit is initialized to zero.

The clock-comparator condition is indicated by an
external-interruption code of 1004 hex.

 CPU Timer

An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit 0 of
the CPU timer is one). If the value is made posi-
tive before the request is honored, the request
does not remain pending, and no interruption
occurs. Conversely, the request is not cleared by
the interruption, and, if the condition persists,
more than one interruption may occur from a
single occurrence of the condition.

When the TOD clock is set or changes state,
interruption conditions, if any, that are due to the
CPU timer may or may not be recognized for up
to 1.048576 seconds after the change.

The subclass-mask bit is in bit position 53 of
control register 0. This bit is initialized to zero.

The CPU-timer condition is indicated by an
external-interruption code of 1005 hex.

 Chapter 6. Interruptions 6-11

 Emergency Signal

An interruption request for an emergency signal is
generated when the CPU accepts the emergency-
signal order specified by a SIGNAL PROCESSOR
instruction addressing this CPU. The instruction
may have been executed by this CPU or by
another CPU in the configuration. The request is
preserved and remains pending in the receiving
CPU until it is cleared. The pending request is
cleared when it causes an interruption and by
CPU reset.

Facilities are provided for holding a separate
emergency-signal request pending in the receiving
CPU for each CPU in the configuration, including
the receiving CPU itself.

The subclass-mask bit is in bit position 49 of
control register 0. This bit is initialized to zero.

The emergency-signal condition is indicated by an
external-interruption code of 1201 hex. The
address of the CPU that executed the SIGNAL
PROCESSOR instruction is stored at real
locations 132-133.

 ETR

An interruption request for the ETR is generated
when a port-availability change occurs at any port
in the current CPC-port group or when an ETR
alert occurs. The terms specific to the ETR are
not defined in this publication.

If the same ETR condition occurs more than once
before the interruption occurs, the request is gen-
erated only once. The request is generated for all
CPUs in the configuration.

The subclass-mask bit is in bit position 59 of
control register 0. This bit is initialized to zero.

The ETR condition is indicated by an external-
interruption code of 1406 hex.

 External Call

An interruption request for an external call is gen-
erated when the CPU accepts the external-call
order specified by a SIGNAL PROCESSOR
instruction addressing this CPU. The instruction
may have been executed by this CPU or by
another CPU in the configuration. The request is
preserved and remains pending in the receiving
CPU until it is cleared. The pending request is
cleared when it causes an interruption and by
CPU reset.

Only one external-call request, along with the
processor address, may be held pending in a CPU
at a time.

The subclass-mask bit is in bit position 50 of
control register 0. This bit is initialized to zero.

The external-call condition is indicated by an
external-interruption code of 1202 hex. The
address of the CPU that executed the SIGNAL
PROCESSOR instruction is stored at real
locations 132-133.

 Interrupt Key

An interruption request for the interrupt key is gen-
erated when the operator activates that key. The
request is preserved and remains pending in the
CPU until it is cleared. The pending request is
cleared when it causes an interruption and by
CPU reset.

When the interrupt key is activated while the CPU
is in the load state, it depends on the model
whether an interruption request is generated or
the condition is lost.

The subclass-mask bit is in bit position 57 of
control register 0. This bit is initialized to one.

The interrupt-key condition is indicated by an
external-interruption code of 0040 hex.

6-12 z/Architecture Principles of Operation

 Malfunction Alert

An interruption request for a malfunction alert is
generated when another CPU in the configuration
enters the check-stop state or loses power. The
request is preserved and remains pending in the
receiving CPU until it is cleared. The pending
request is cleared when it causes an interruption
and by CPU reset.

Facilities are provided for holding a separate
malfunction-alert request pending in the receiving
CPU for each of the other CPUs in the configura-
tion. Removal of a CPU from the configuration
does not generate a malfunction-alert condition.

The subclass-mask bit is in bit position 48 of
control register 0. This bit is initialized to zero.

The malfunction-alert condition is indicated by an
external-interruption code of 1200 hex. The
address of the CPU that generated the condition
is stored at real locations 132-133.

 Service Signal

An interruption request for a service signal is gen-
erated upon the completion of certain
configuration-control and maintenance functions,
such as those initiated by means of the model-
dependent DIAGNOSE instruction. A 32-bit
parameter is provided with the interruption to
assist the program in determining the operation for
which the interruption is reported.

Service signal is a floating interruption condition
and is presented to the first CPU in the configura-
tion which can perform the interruption. The inter-
ruption condition is cleared when it causes an
interruption in any one of the CPUs and also by
subsystem reset.

The subclass-mask bit is in bit position 54 of
control register 0. This bit is initialized to zero.

The service-signal condition is indicated by an
external-interruption code of 2401 hex. A 32-bit
parameter is stored at real locations 128-131.

 I/O Interruption
The input/output (I/O) interruption provides a
means by which the CPU responds to conditions
originating in I/O devices and the channel sub-
system.

A request for an I/O interruption may occur at any
time, and more than one request may occur at the
same time. The requests are preserved and
remain pending until accepted by a CPU, or until
cleared by some other means, such as subsystem
reset.

The I/O interruption occurs at the completion of a
unit of operation. Priority is established among
requests so that in each CPU only one interruption
request is processed at a time. Priority among
requests for interruptions of differing
I/O-interruption subclasses is according to the
numerical value of the I/O-interruption subclass
(with zero having the highest priority), in conjunc-
tion with the I/O-interruption subclass-mask set-
tings in control register 6. For more details, see
Chapter 16, “I/O Interruptions.”

When a CPU becomes enabled for I/O inter-
ruptions and the channel subsystem has estab-
lished priority for a pending I/O-interruption condi-
tion, the interruption occurs at the completion of
the instruction execution or interruption that
causes the enabling.

An I/O interruption causes the old PSW to be
stored at real locations 368-383 and a new PSW
to be fetched from real locations 496-511. Addi-
tional information, in the form of an eight-byte
I/O-interruption code, is stored at real locations
184-191. The I/O-interruption code consists of a
32-bit subsystem-identification word and a 32-bit
interruption parameter.

An I/O interruption can occur only while a CPU is
enabled for the interruption subclass presenting
the request. The I/O-mask bit, bit 6 of the PSW,
and the I/O-interruption subclass mask in control
register 6 determine whether the CPU is enabled
for a particular I/O interruption.

I/O interruptions are grouped into eight
I/O-interruption subclasses, numbered from 0-7.
Each I/O-interruption subclass has an associated
I/O-interruption subclass-mask bit in bit positions
32-39 of control register 6. Each subchannel has

 Chapter 6. Interruptions 6-13

an I/O-interruption subclass value associated with
it. The CPU is enabled for I/O interruptions of a
particular I/O-interruption subclass only when
PSW bit 6 is one and the associated
I/O-interruption subclass-mask bit in control reg-
ister 6 is also one. If the corresponding
I/O-interruption subclass-mask bit is zero, then the
CPU is disabled for I/O interruptions with that sub-
class value. I/O interruptions for all subclasses
are disallowed when PSW bit 6 is zero.

 Machine-Check Interruption
The machine-check interruption is a means for
reporting to the program the occurrence of equip-
ment malfunctions. Information is provided to
assist the program in determining the source of
the fault and extent of the damage.

A machine-check interruption causes the old PSW
to be stored at real locations 352-367 and a new
PSW to be fetched from real locations 480-495.

The cause and severity of the malfunction are
identified by a 64-bit machine-check-interruption
code stored at real locations 232-239. Further
information identifying the cause of the interruption
and the location of the fault may be stored at real
locations 244-255 and 4608-5119.

The interruption action and the storing of the asso-
ciated information are under the control of PSW
bit 13 and bits in control register 14. See
Chapter 11, “Machine-Check Handling” for more
detailed information.

 Program Interruption
Program interruptions are used to report
exceptions and events which occur during exe-
cution of the program.

A program interruption causes the old PSW to be
stored at real locations 336-351 and a new PSW
to be fetched from real locations 464-479.

The cause of the interruption is identified by the
interruption code. The interruption code is placed
at real locations 142-143, the instruction-length
code is placed in bit positions 5 and 6 of the byte
at real location 141 with the rest of the bits set to
zeros, and zeros are stored at real location 140.
For some causes, additional information identifying

the reason for the interruption is stored at real
locations 144-183.

Except for PER events and the crypto-operation
exception, the condition causing the interruption is
indicated by a coded value placed in the rightmost
seven bit positions of the interruption code. Only
one condition at a time can be indicated. Bits 0-7
of the interruption code are set to zeros.

PER events are indicated by setting bit 8 of the
interruption code to one. When this is the only
condition, bits 0-7 and 9-15 are also set to zeros.
When a PER event is indicated concurrently with
another program-interruption condition, bit 8 is
one, and bits 0-7 and 9-15 are set as for the other
condition.

The crypto-operation exception is indicated by an
interruption code of 0119 hex, or 0199 hex if a
PER event is also indicated.

The crypto-operation exception is indicated by an
interruption code of 0119 hex, or 0199 hex if a
PER event is also indicated.

When there is a corresponding mask bit, a
program interruption can occur only when that
mask bit is one. The program mask in the PSW
controls four of the exceptions, the IEEE masks in
the FPC register control the IEEE exceptions, bit
33 in control register 0 controls whether SET
SYSTEM MASK causes a special-operation
exception, bits 48-63 in control register 8 control
interruptions due to monitor events, and a hier-
archy of masks control interruptions due to PER
events. When any controlling mask bit is zero, the
condition is ignored; the condition does not remain
pending.

Programming Notes:

1. When the new PSW for a program interruption
has a PSW-format error or causes an excep-
tion to be recognized in the process of instruc-
tion fetching, a string of program interruptions
may occur. See “Priority of Interruptions” on
page 6-48 for a description of how such
strings are terminated.

2. Some of the conditions indicated as program
exceptions may be recognized also by the
channel subsystem, in which case the excep-
tion is indicated in the subchannel-status word
or extended-status word.

6-14 z/Architecture Principles of Operation

Data-Exception Code (DXC)

When a data exception causes a program inter-
ruption, a data-exception code (DXC) is stored at
location 147, and zeros are stored at locations
144-146. The DXC distinguishes between the
various types of data-exception conditions. When
the AFP-register (additional floating-point register)
control bit, bit 45 of control register 0, is one, the
DXC is also placed in the DXC field of the
floating-point-control (FPC) register. The DXC
field in the FPC register remains unchanged when
any other program exception is reported. The
DXC is an 8-bit code indicating the specific cause
of a data exception. The data exceptions and
data-exception codes are shown in Figure 6-2 and
Figure 6-3 on page 6-16.

Priority of Program Interruptions for
Data Exceptions
When more than one data exception applies and
is enabled, the exception with the smallest DXC
value is reported. Thus, for example, DXC 2 (BFP
instruction) takes precedence over any IEEE
exception condition.

When both a specification exception and an
AFP-register data exception apply, it is unpredict-
able which one is reported.

Figure 6-2. Data-exception codes (DXC)

 Program-Interruption Conditions

The following is a detailed description of each
program-interruption condition.

 Addressing Exception
An addressing exception is recognized when the
CPU attempts to reference a main-storage
location that is not available in the configuration.
A main-storage location is not available in the con-
figuration when the location is not installed, when
the storage unit is not in the configuration, or
when power is off in the storage unit. An address
designating a storage location that is not available
in the configuration is referred to as invalid.

The operation is suppressed when the address of
the instruction is invalid. Similarly, the operation is
suppressed when the address of the target
instruction of EXECUTE is invalid. Also, the unit
of operation is suppressed when an addressing
exception is encountered in accessing a table or
table entry. The tables and table entries to which
the rule applies are the dispatchable-unit-control
table, the primary ASN-second-table entry, and
entries in the access list, region first table, region
second table, region third table, segment table,
page table, linkage table, entry table, ASN first

DXC
(Hex) Data Exception

00 Decimal operand

01 AFP register

02 BFP instruction

08 IEEE inexact and truncated

0C IEEE inexact and incremented

10 IEEE underflow, exact

18 IEEE underflow, inexact and truncated

1C IEEE underflow, inexact and incremented

20 IEEE overflow, exact

28 IEEE overflow, inexact and truncated

2C IEEE overflow, inexact and incremented

40 IEEE division by zero

80 IEEE invalid operation

 Chapter 6. Interruptions 6-15

Figure 6-3. Data Exceptions

Exception

Applicable
Instruction

Types

Effect
of

CR0.45
FPC
Mask

FPC
Flag

DXC
(Binary)

Interruption
Action

DXC
Placed
in Real
Loc 147

DXC
Placed
in FPC
Byte 2

Decimal operand Decimal� 0 none none 0000
0000

Suppress or
Terminate

Yes No

1 Yes Yes

AFP register FPS &
HFP

0* none none 0000
0001

Suppress Yes No

BFP instruction BFP 0* none none 0000
0010

Suppress Yes No

IEEE invalid operation BFP 1* 0.0 1.0 1000
0000

Suppress Yes Yes

IEEE division by zero BFP 1* 0.1 1.1 0100
0000

Suppress Yes Yes

IEEE overflow BFP 1* 0.2 1.2 0010
xy00

Complete Yes Yes

IEEE underflow BFP 1* 0.3 1.3 0001
xy00

Complete Yes Yes

IEEE inexact BFP 1* 0.4 1.4 0000
1y00

Complete Yes Yes

Explanation:

� Decimal-operand data exception applies to the decimal instructions (Chapter 8) and the general
instructions COMPRESSION CALL and CONVERT TO BINARY (Chapter 7).

0* This exception is recognized only when CR0.45 is zero.
1* This exception is recognized only when CR0.45 is one.
xy For IEEE overflow and IEEE underflow, bits 4 and 5 of the DXC are set to 00, 10, or 11 binary,

indicating that the result is exact, inexact and truncated, or inexact and incremented, respectively.
y For IEEE inexact, bit 5 of the DXC is set to zero or one, indicating that the result is inexact and

truncated or inexact and incremented, respectively.
BFP Binary-floating-point instructions (Chapter 19).
FPS Floating-point-support instructions (Chapter 9).
HFP Hexadecimal-floating-point instructions (Chapter 18).

table, ASN second table, authority table, linkage
stack, and trace table. Addressing exceptions
result in suppression when they are encountered
for references to the region first table, region
second table, region third table, segment table,
and page table, in both implicit references for
dynamic address translation and references asso-
ciated with the execution of LOAD REAL
ADDRESS, STORE REAL ADDRESS, and TEST
PROTECTION. Similarly, addressing exceptions
for accesses to the dispatchable-unit-control table,

primary ASN-second-table entry, access list, ASN
second table, or authority table result in sup-
pression when they are encountered in access-
register translation done either implicitly or as part
of LOAD REAL ADDRESS, STORE REAL
ADDRESS, TEST ACCESS, or TEST PRO-
TECTION. Except for some specific instructions
whose execution is suppressed, the operation is
terminated for an operand address that can be
translated but designates an unavailable location.
See Figure 6-4 on page 6-18.

6-16 z/Architecture Principles of Operation

For termination, changes may occur only to result
fields. In this context, the term “result field”
includes the condition code, registers, and any
storage locations that are provided and that are
designated to be changed by the instruction.
Therefore, if an instruction is due to change only
the contents of a field in storage, and every byte
of the field is in a location that is not available in
the configuration, the operation is suppressed.
When part of an operand location is available in
the configuration and part is not, storing may be
performed in the part that is available in the con-
figuration.

When an addressing exception occurs during the
fetching of an instruction or during the fetching of
a DAT table entry associated with an instruction
fetch, it is unpredictable whether the ILC is 1, 2, or
3. When the exception is associated with fetching
the target of EXECUTE, the ILC is 2.

In all cases of addressing exceptions not associ-
ated with instruction fetching, the ILC is 1, 2, or 3,
indicating the length of the instruction that caused
the reference.

An addressing exception is indicated by a
program-interruption code of 0005 hex (or 0085
hex if a concurrent PER event is indicated).

 Chapter 6. Interruptions 6-17

┌───────────┬──┐
│ │ Action on │
│ ├────────────┬────────────┬───────────┬──────────────────────────┤
│ │ Table- │ Table- │Instruction│ │
│Exception │Entry Fetch�│Entry Store�│ Fetch │ Operand Reference │
├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤
│Addressing │Suppress │Suppress │Suppress │Suppress for IPTE, LASP, │
│exception │ │ │ │LPSW, LPSWE, MSCH, PLO�, │
│ │ │ │ │RP, SCKC, SPT, SPX, SSCH, │
│ │ │ │ │SSM, STCRW, STNSM, STOSM, │
│ │ │ │ │TPI, and TPROT │
│ │ │ │ │Terminate for all others.�│
├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤
│Protection │ -- │ -- │Suppress │Suppress for IPTE, LASP, │
│exception │ │ │ │LPSW, LPSWE, MSCH, PLO�, │
│for key- │ │ │ │RP, SCKC, SPT, SPX, SSCH, │
│controlled │ │ │ │SSM, STCRW, STNSM, STOSM, │
│protection │ │ │ │and TPI� │
│ │ │ │ │Terminate for all others.�│
├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤
│Protection │ -- │ -- │ -- │Suppress │
│exception │ │ │ │ │
│for access-│ │ │ │ │
│list- │ │ │ │ │
│controlled │ │ │ │ │
│protection │ │ │ │ │
├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤
│Protection │ -- │Suppress� │ -- │Suppress� │
│exception │ │ │ │ │
│for page │ │ │ │ │
│protection │ │ │ │ │
├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤
│Protection │ -- │Suppress │ -- │Suppress for IPTE, STCRW, │
│exception │ │ │ │STNSM, STOSM, and TPI�. │
│for low- │ │ │ │ │
│address │ │ │ │ │
│protection │ │ │ │Terminate for all others.�│
├───────────┴────────────┴────────────┴───────────┴──────────────────────────┤
│Explanation: │
│ │
│ -- Not applicable. │
│ │
│ � Table entries include region table, segment table, page table, linkage │
│ table, entry table, ASN first table, ASN second table, authority table,│
│ dispatchable-unit-control table, primary ASN-second-table entry, │
│ access list, and linkage stack. │
│ │
│ � Table entries include linkage stack and trace table. │
│ │
│ � Page protection applies to the linkage stack but not the trace table. │
│ │
│ � For termination, changes may occur only to result fields. In this │
│ context, "result field" includes condition code, registers, and │
│ storage locations, if any, which are designated to be changed by the │
│ instruction. However, no change is made to a storage location or a │
│ storage key when the reference causes an access exception. Therefore, │
│ if an instruction is due to change only the contents of a field in │
│ main storage, and every byte of that field would cause an access ex- │
│ ception, the result is the same as if the operation had been sup- │
│ pressed. The action may be, for key-controlled protection and low- │
│ address protection, suppression instead of termination; see │
│ "Suppression on Protection" in Chapter 3, "Storage." │
│ │
│ � When the effective address of TPI is zero, the store access is to │
│ implicit real locations 184-191, and key-controlled protection, page │
│ protection, and low-address protection do not apply. │
│ │
│ � Suppression occurs only for the compare-and-load and compare-and- │
│ swap operations. │
└──┘

Figure 6-4. Summary of Action for Addressing and Protection Exceptions

6-18 z/Architecture Principles of Operation

 AFX-Translation Exception
An AFX-translation exception is recognized when,
during ASN translation in the space-switching form
of PROGRAM RETURN, PROGRAM TRANSFER,
or SET SECONDARY ASN, or during ASN trans-
lation in PROGRAM RETURN when the restored
SASN does not equal the restored PASN, bit 0 of
the ASN-first-table entry used is not zero.

The ASN being translated is stored at real
locations 174 and 175, and real locations 172 and
173 are set with zeros.

The operation is nullified.

The instruction-length code is 1 or 2.

The AFX-translation exception is indicated by a
program-interruption code of 0020 hex (or 00A0
hex if a concurrent PER event is indicated).

 ALEN-Translation Exception
An ALEN-translation exception is recognized
during access-register translation when either:

1. The access register used contains an access-
list-entry number that designates an access-
list entry which is beyond the end of the
access list designated by the effective access-
list designation.

2. Bit 0 of the access-list entry is not zero.

The number of the access register is stored in bit
positions 4-7 of real location 160, and bits 0-3 of
the location are set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ALEN-translation exception is indicated by a
program-interruption code of 0029 hex (or 00A9
hex if a concurrent PER event is indicated).

 ALE-Sequence Exception
An ALE-sequence exception is recognized during
access-register translation when the access reg-
ister used contains an access-list-entry sequence
number (ALESN) which is not equal to the ALESN
in the access-list entry that is designated by the
access register.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ALE-sequence exception is indicated by a
program-interruption code of 002A hex (or 00AA
hex if a concurrent PER event is indicated).

 ALET-Specification Exception
An ALET-specification exception is recognized
during access-register translation when bit posi-
tions 0-6 of the access-list-entry token in the
access register used do not contain all zeros.
However, when access-register 0 is used, except
in TEST ACCESS, it is treated as containing all
zeros, and this exception is not recognized. TEST
ACCESS uses the actual contents of access reg-
ister 0.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The ALET-specification exception is indicated by a
program-interruption code of 0028 hex (or 00A8
hex if a concurrent PER event is indicated).

 ASCE-Type Exception
An ASCE-type exception is recognized when any
of the following is true during dynamic address
translation:

1. The address-space-control element being
used is a region-second-table designation,
and bits 0-10 of the virtual address being
translated are not all zeros.

2. The address-space-control element being
used is a region-third-table designation, and
bits 0-21 of the virtual address being trans-
lated are not all zeros.

3. The address-space-control element being
used is a segment-table designation, and bits
0-32 of the virtual address being translated
are not all zeros.

The exception is recognized as part of the exe-
cution of the instruction that needs the translation
of an instruction or operand address, except for
the operand address in LOAD REAL ADDRESS
and TEST PROTECTION, in which case the con-
dition is indicated by the setting of the condition
code.

 Chapter 6. Interruptions 6-19

When an interruption occurs, information about the
virtual address causing the exception is stored at
real locations 168-175 and conditionally at real
locations 160 and 162. See “Assigned Storage
Locations” on page 3-51 for a detailed description
of this information.

The unit of operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASCE-type exception is indicated by a
program-interruption code of 0038 hex (or 00B8
hex if a concurrent PER event is indicated).

 ASTE-Sequence Exception
An ASTE-sequence exception is recognized when
any of the following is true:

1. During access-register translation, except as
in 2, the access-list entry used contains an
ASN-second-table-entry sequence number
(ASTESN) which is not equal to the ASTESN
in the ASN-second-table entry that is desig-
nated by the access-list entry. The access-list
entry is the one designated by the access reg-
ister used.

2. During access-register translation of ALET 1
by BRANCH IN SUBSPACE GROUP, the
subspace ASTESN (SSASTESN) in the
dispatchable-unit control table (DUCT) is not
equal to the ASTESN in the subspace ASTE
designated by the subspace-ASTE origin
(SSASTEO) in the DUCT.

3. During a subspace-replacement operation, the
subspace ASTESN (SSASTESN) in the
dispatchable-unit control table (DUCT) is not
equal to the ASTESN in the subspace ASTE
designated by the subspace-ASTE origin
(SSASTEO) in the DUCT.

In the first and second cases, the number of the
access register is stored in bit positions 4-7 at real
location 160, and bits 0-3 are set to zeros. In the
third case, all zeros are stored at real location
160.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-sequence exception is indicated by a
program-interruption code of 002C hex (or 00AC
hex if a concurrent PER event is indicated).

Programming Note: The storing of zeros at real
location 160 in the case of an ASTE-sequence
exception recognized during a subspace-
replacement operation is a unique indication since
the use of access register 0 in access-register
translation cannot result in the exception.

 ASTE-Validity Exception
An ASTE-validity exception is recognized when
any of the following is true:

1. During access-register translation, except as
in 2, the access-list entry used designates an
ASN-second-table entry in which bit 0 is not
zero. The access-list entry is the one desig-
nated by the access register used.

2. During access-register translation of ALET 1
by BRANCH IN SUBSPACE GROUP, the
subspace-ASTE origin (SSASTEO) in the
dispatchable-unit control table designates an
ASN-second-table entry in which bit 0 is not
zero.

3. During a subspace-replacement operation, the
subspace-ASTE origin (SSASTEO) in the
dispatchable-unit control table designates an
ASN-second-table entry in which bit 0 is not
zero.

In the first and second cases, the number of the
access register is stored in bit positions 4-7 at real
location 160, and bits 0-3 are set to zeros. In the
third case, all zeros are stored at real location
160.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-validity exception is indicated by a
program-interruption code of 002B hex (or 00AB
hex if a concurrent PER event is indicated).

Programming Note: The storing of zeros at real
location 160 in the case of an ASTE-validity
exception recognized during a subspace-
replacement operation is a unique indication since
the use of access register 0 in access-register
translation cannot result in the exception.

6-20 z/Architecture Principles of Operation

 ASX-Translation Exception
An ASX-translation exception is recognized when,
during execution of the space-switching form of
PROGRAM CALL, during ASN translation in the
space-switching form of PROGRAM RETURN,
PROGRAM TRANSFER, or SET SECONDARY
ASN, or during ASN translation in PROGRAM
RETURN when the restored SASN does not equal

| the restored PASN, bit 0 of the ASN-second-table
entry used is not zero.

The ASN being translated is stored at real
locations 174 and 175, and real locations 172 and
173 are set with zeros.

The operation is nullified.

The instruction-length code is 1 or 2.

The ASX-translation exception is indicated by a
program-interruption code of 0021 hex (or 00A1
hex if a concurrent PER event is indicated).

 Crypto-Operation Exception
A crypto-operation exception is recognized when a
crypto-facility instruction is executed while bit 61 of
control register 0 is zero on a CPU which has the
crypto facility installed and available. The crypto-
operation exception is also recognized when a
crypto-facility instruction is executed and the
crypto facility is not installed or available on this
CPU, but the facility can be made available to the
program either on this CPU or another CPU in the
configuration.

When a crypto-facility instruction is executed and
the crypto facility is not installed on any CPU
which is or can be placed in the configuration, it
depends on the model whether a crypto-operation
exception or an operation exception is recognized.

The operation is nullified when the crypto-
operation exception is recognized.

The instruction-length code is 2.

The crypto-operation exception is indicated by a
program-interruption code of 0119 hex (or 0199
hex if a concurrent PER event is indicated).

 Data Exception
The data-exception conditions are shown in
Figure 6-3 on page 6-16. A mask bit may or may
not control whether an interruption occurs, as
noted for each condition.

When a non-maskable data-exception condition is
recognized, a program interruption for a data
exception always occurs.

Each of the IEEE exception conditions is con-
trolled by a mask bit in the floating-point-control
(FPC) register. The handling of these conditions
is described in the section “IEEE Exception
Conditions” on page 19-10.

A data exception is recognized for the following
cases:

� Decimal-operand data exception is recog-
nized when an instruction which operates on
decimal operands encounters invalid decimal
digit or sign codes or has its operands speci-
fied improperly. The operation is suppressed,
except that, for EDIT and EDIT AND MARK,
the operation is terminated. See the section
“Decimal-Operand Data Exception” on
page 8-4 for details. A decimal-operand data
exception is also recognized when COM-
PRESSION CALL encounters errors in its dic-
tionaries, and, in this case, the operation is
terminated. The decimal-operand data excep-
tion is reported with DXC 0.

� AFP-register data exception is recognized
when bit 45 of control register 0 is zero, and a
floating-point-support (FPS) instruction or a
hexadecimal-floating-point (HFP) instruction
specifies a floating-point register other than 0,
2, 4, or 6. The operation is suppressed and is
reported with DXC 1.

� BFP-instruction data exception is recognized
when bit 45 of control register 0 is zero and a
BFP instruction is executed. The operation is
suppressed and is reported with DXC 2.

� IEEE-exception-condition data exceptions
are recognized when a BFP instruction
encounters an exceptional condition. The
operation is suppressed or completed,
depending on the type of condition. See the
section “IEEE Exception Conditions” on
page 19-10 for details.

The instruction-length code is 1, 2, or 3.

 Chapter 6. Interruptions 6-21

The data exception is indicated by a program-
interruption code of 0007 hex (or 0087 hex if a
concurrent PER event is indicated).

 Decimal-Divide Exception
A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception is indicated only if
the sign codes of both the divisor and dividend are
valid and only if the digit or digits used in estab-
lishing the exception are valid.

The operation is suppressed.

The instruction-length code is 2 or 3.

The decimal-divide exception is indicated by a
program-interruption code of 000B hex (or 008B
hex if a concurrent PER event is indicated).

 Decimal-Overflow Exception
A decimal-overflow exception is recognized when
one or more nonzero digits are lost because the
destination field in a decimal operation is too short
to contain the result.

The interruption may be disallowed by the
decimal-overflow mask (PSW bit 21).

The operation is completed. The result is
obtained by ignoring the overflow digits, and con-
dition code 3 is set.

The instruction-length code is 2 or 3.

The decimal-overflow exception is indicated by a
program-interruption code of 000A hex (or 008A
hex if a concurrent PER event is indicated).

 Execute Exception
The execute exception is recognized when the
target instruction of EXECUTE is another
EXECUTE.

The operation is suppressed.

The instruction-length code is 2.

The execute exception is indicated by a program-
interruption code of 0003 hex (or 0083 hex if a
concurrent PER event is indicated).

 EX-Translation Exception
An EX-translation exception is recognized during
PC-number translation in PROGRAM CALL when
the entry-table entry designated by the entry-index
part of the PC number is beyond the end of the
entry table as designated by the linkage-table
entry used.

The PC number is stored in bit positions 12-31 of
the word at real location 172, and the leftmost 12
bits of the word are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The EX-translation exception is indicated by a
program-interruption code of 0023 hex (or 00A3
hex if a concurrent PER event is indicated).

 Extended-Authority Exception
An extended-authority exception is recognized
during access-register translation when all of the
following are true:

1. The private bit in the access-list entry used is
one.

2. The access-list-entry authorization index
(ALEAX) in the access-list entry is not equal
to the extended authorization index (EAX) in
control register 8.

3. Either of the following is true:

a. The authority-table entry designated by
the EAX is beyond the length of the
authority table used. The authority table
is the one designated by the
ASN-second-table entry that is designated
by the access-list entry used.

b. The secondary-authority bit designated by
the EAX is zero.

The access-list entry is the one designated by the
access register used.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

6-22 z/Architecture Principles of Operation

The extended-authority exception is indicated by a
program-interruption code of 002D hex (or 00AD
hex if a concurrent PER event is indicated).

 Fixed-Point-Divide Exception
A fixed-point-divide exception is recognized when
any of the following is true:

1. In signed or unsigned binary division when the
result is defined to be 32 bits, the divisor is
zero, or the quotient cannot be expressed as
a 32-bit signed or unsigned, respectively,
binary integer.

2. In signed or unsigned binary division when the
result is defined to be 64 bits, the divisor is
zero, or the quotient cannot be expressed as
a 64-bit signed or unsigned, respectively,
binary integer.

3. The result of CONVERT TO BINARY cannot
be expressed as a 32-bit signed binary integer
for a 32-bit result or as a 64-bit signed binary
integer for a 64-bit result.

In the case of division, the operation is sup-
pressed. The execution of CONVERT TO
BINARY (CVB) is completed by ignoring the left-
most bits that cannot be placed in the register.
The execution of CONVERT TO BINARY (CVBG)
is suppressed.

The instruction-length code is 1, 2, or 3.

The fixed-point-divide exception is indicated by a
program-interruption code of 0009 hex (or 0089
hex if a concurrent PER event is indicated).

 Fixed-Point-Overflow Exception
A fixed-point-overflow exception is recognized
when an overflow occurs during signed binary
arithmetic or signed left-shift operations.

The interruption may be disallowed by the fixed-
point-overflow mask (PSW bit 20).

The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 1, 2, or 3.

The fixed-point-overflow exception is indicated by
a program-interruption code of 0008 hex (or 0088
hex if a concurrent PER event is indicated).

 HFP-Divide Exception
An HFP-divide exception is recognized when in
HFP division the divisor has a zero fraction.

The operation is suppressed.

The instruction-length code is 1 or 2.

The HFP-divide exception is indicated by a
program-interruption code of 000F hex (or 008F
hex if a concurrent PER event is indicated).

 HFP-Exponent-Overflow Exception
An HFP-exponent-overflow exception is recog-
nized when the result characteristic of an HFP
operation exceeds 127 and the result fraction is
not zero.

The operation is completed. The fraction is nor-
malized, and the sign and fraction of the result
remain correct. The result characteristic is made
128 smaller than the correct characteristic.

The instruction-length code is 1, 2, or 3.

The HFP-exponent-overflow exception is indicated
by a program-interruption code of 000C hex (or
008C hex if a concurrent PER event is indicated).

 HFP-Exponent-Underflow Exception
An HFP-exponent-underflow exception is recog-
nized when the result characteristic of an HFP
operation is less than zero and the result fraction
is not zero. For an extended-format HFP result,
HFP-exponent underflow is indicated only when
the high-order characteristic underflows.

The interruption may be disallowed by the
HFP-exponent-underflow mask (PSW bit 22).

The operation is completed. The
HFP-exponent-underflow mask also affects the
result of the operation. When the mask bit is
zero, the sign, characteristic, and fraction are set
to zero, making the result a true zero. When the
mask bit is one, the fraction is normalized, the
characteristic is made 128 larger than the correct
characteristic, and the sign and fraction remain
correct.

The instruction-length code is 1, 2, or 3.

The HFP-exponent-underflow exception is indi-
cated by a program-interruption code of 000D hex

 Chapter 6. Interruptions 6-23

(or 008D hex if a concurrent PER event is indi-
cated).

 HFP-Significance Exception
An HFP-significance exception is recognized when
the result fraction in HFP addition or subtraction is
zero.

The interruption may be disallowed by the
HFP-significance mask (PSW bit 23).

The operation is completed. The HFP-significance
mask also affects the result of the operation.
When the mask bit is zero, the operation is com-
pleted by replacing the result with a true zero.
When the mask bit is one, the operation is com-
pleted without further change to the characteristic
of the result.

The instruction-length code is 1 or 2.

The HFP-significance exception is indicated by a
program-interruption code of 000E hex (or 008E
hex if a concurrent PER event is indicated).

 HFP-Square-Root Exception
An HFP-square-root exception is recognized when
the second operand of an HFP SQUARE ROOT
instruction is less than zero.

The operation is suppressed.

The instruction-length code is 2 or 3.

The HFP-square-root exception is indicated by a
program-interruption code of 001D hex (or 009D
hex if a concurrent PER event is indicated).

 LX-Translation Exception
An LX-translation exception is recognized during
PC-number translation in PROGRAM CALL when
either:

1. The linkage-table entry designated by the
linkage-index part of the PC number is beyond
the end of the linkage table as designated by
the linkage-table designation used.

2. Bit 0 of the linkage-table entry is not zero.

The PC number is stored in bit positions 12-31 of
the word at real location 172, and the leftmost 12
bits of the word are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The LX-translation exception is indicated by a
program-interruption code of 0022 hex (or 00A2
hex if a concurrent PER event is indicated).

 Monitor Event
A monitor event is recognized when MONITOR
CALL is executed and the monitor-mask bit in
control register 8 corresponding to the class speci-
fied by instruction bits 12-15 is one. The informa-
tion in control register 8 has the following format:

Control Register 8
──┬───────────────┐
│ Monitor Masks │

──┴───────────────┘
 48 63

The monitor-mask bits, bits 48-63 of control reg-
ister 8, correspond to monitor classes 0-15,
respectively. Any number of monitor-mask bits
may be on at a time; together they specify the
classes of monitor events that are monitored at
that time. The mask bits are initialized to zeros.

When MONITOR CALL is executed and the corre-
sponding monitor-mask bit is one, a program inter-
ruption for monitor event occurs.

Additional information is stored at real locations
148-149 and 176-183. The format of the informa-
tion stored at these locations is as follows:

Real Locations 148-149
┌────────┬───────────┐
│ │ Monitor │
│��������│ Class No. │
└────────┴───────────┘
� 8 15

Real Locations 176-183
┌───────────────────────────────────┐
│ Monitor Code │
└───────────────────────────────────┘
�

The contents of bit positions 8-15 of the
MONITOR CALL instruction are stored at real
location 149 and constitute the monitor-class
number. Zeros are stored at real location 148.
The effective address specified by the B� and D�
fields of the instruction forms the monitor code,
which is stored in the doubleword at real location
176. The value of the address is under control of

6-24 z/Architecture Principles of Operation

the addressing mode, bits 31 and 32 of the
current PSW. In the 24-bit addressing mode, bits
0-39 of the address are zeros, while in the 31-bit
addressing mode, bits 0-32 are zeros.

The operation is completed.

The instruction-length code is 2.

The monitor event is indicated by a program-
interruption code of 0040 hex (or 00C0 hex if a
concurrent PER event is indicated).

 Operand Exception
An operand exception is recognized when any of
the following is true:

1. Execution of CLEAR SUBCHANNEL, HALT
SUBCHANNEL, MODIFY SUBCHANNEL,
RESUME SUBCHANNEL, START SUB-
CHANNEL, STORE SUBCHANNEL, or TEST
SUBCHANNEL is attempted and bit positions
32-47 of general register 1 do not contain
0001 hex. However, an exception due to
ones in bit positions 32-39 of the register may
or may not be recognized.

2. Execution of MODIFY SUBCHANNEL is
attempted, and bits 1 and 6 of word 1 of the
SCHIB operand are not zeros or bits 9-10 and
25-30 of word 6 of the SCHIB operand are not
all zeros.

3. Execution of MODIFY SUBCHANNEL is
attempted, and bits 9 and 10 of word 1 of the
SCHIB operand are both one.

4. Execution of RESET CHANNEL PATH is
attempted, and bits 40-55 of general register 1
are not all zeros.

5. Execution of SET ADDRESS LIMIT is
attempted, and bits 32 and 48-63 of general
register 1 are not all zeros.

6. Execution of SET CHANNEL MONITOR is
attempted, bit 62 of general register 1 is one,
and bits 59-63 of general register 2 are not all
zeros.

7. Execution of SET CHANNEL MONITOR is
| attempted, and bits 36-61 of general register 1

are not all zeros.

8. Execution of START SUBCHANNEL is
attempted, and bits 5, 13, and 25-28 of word 1
of the ORB operand are not all zeros.

9. Execution of START SUBCHANNEL is
attempted, and bit 11 of word 1 of the ORB
operand is not zero. This exception may or
may not be recognized.

The operation is suppressed.

The instruction-length code is 2.

The operand exception is indicated by a program-
interruption code of 0015 hex (or 0095 hex if a
concurrent PER event is indicated).

 Operation Exception
An operation exception is recognized when the
CPU attempts to execute an instruction with an
invalid operation code. The operation code may
be unassigned, or the instruction with that opera-
tion code may not be installed on the CPU.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The operation exception is indicated by a
program-interruption code of 0001 hex (or 0081
hex if a concurrent PER event is indicated).

Programming Notes:

1. Some models may offer instructions not
described in this publication, such as those
provided for assists or as part of special or
custom features. Consequently, operation
codes not described in this publication do not
necessarily cause an operation exception to
be recognized. Furthermore, these
instructions may cause modes of operation to
be set up or may otherwise alter the machine
so as to affect the execution of subsequent
instructions. To avoid causing such an opera-
tion, an instruction with an operation code not
described in this publication should be exe-
cuted only when the specific function associ-
ated with the operation code is desired.

2. The operation code 00, with a two-byte
instruction format, currently is not assigned. It
is improbable that this operation code will ever
be assigned.

 Chapter 6. Interruptions 6-25

 Page-Translation Exception
A page-translation exception is recognized when
the page-invalid bit is one.

The exception is recognized as part of the exe-
cution of an instruction that needs the page-table
entry in the translation of an instruction or operand
address, except for the operand address in LOAD
REAL ADDRESS and TEST PROTECTION, in
which case the condition is indicated by the
setting of the condition code, and except for an
operand address in MOVE PAGE, in which case
the condition is indicated by the setting of the con-
dition code if the condition-code-option bit, bit 55
of general register 0, is one.

When an interruption occurs, information about the
virtual address causing the exception is stored at
real locations 168-175 and conditionally at real
locations 160 and 162. See “Assigned Storage
Locations” on page 3-51 for a detailed description
of this information.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during a ref-
erence to the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The page-translation exception is indicated by a
program-interruption code of 0011 hex (or 0091
hex if a concurrent PER event is indicated).

 PC-Translation-Specification Exception
A PC-translation-specification exception is recog-
nized during PC-number translation in PROGRAM
CALL when either of the following is true for the
entry-table entry (ETE) used:

1. The PROGRAM CALL operation is the basic
operation (bit 128 of the ETE is zero) in the
24-bit or 31-bit addressing mode (bit 31 of the
PSW is zero), bit 32 of the ETE is zero (speci-
fying the 24-bit mode), and bits 33-39 of the
ETE are not all zeros.

2. The PROGRAM CALL operation is the
stacking operation (bit 128 of the ETE is one),

bits 32 and 129 of the ETE are zeros (speci-
fying the 24-bit mode), and bits 33-39 of the
ETE are not all zeros.

The operation is suppressed.

The instruction-length code is 2.

The PC-translation-specification exception is indi-
cated by a program-interruption code of 001F hex
(or 009F hex if a concurrent PER event is indi-
cated).

 PER Event
A PER event is recognized when the CPU is
enabled for PER and one or more of these events
occur.

The PER mask, bit 1 of the PSW, controls
whether the CPU is enabled for PER. When the
PER mask is zero, PER events are not recog-
nized. When the bit is one, PER events are
recognized, subject to the PER-event-mask bits in
control register 9.

The unit of operation is completed, unless another
condition has caused the unit of operation to be
inhibited, nullified, suppressed, or terminated.

Information identifying the event is stored at real
locations 150-159 and conditionally at real location
161.

The instruction-length code is 0, 1, 2, or 3. Code
0 is set only if a specification exception is indi-
cated concurrently.

The PER event is indicated by setting bit 8 of the
program-interruption code to one.

See “Program-Event Recording” on page 4-24 for
a detailed description of the PER event and the
associated interruption information.

 Primary-Authority Exception
A primary-authority exception is recognized during
ASN authorization in PROGRAM TRANSFER with
space switching (PT-ss) when either:

1. The authority-table entry indicated by the
authorization index in control register 4 is
beyond the end of the authority table used.
The authority table is the one designated by
the ASN-second-table entry for the ASN used.

6-26 z/Architecture Principles of Operation

2. The primary-authority bit indicated by the
authorization index is zero.

The ASN used is stored at real locations 174-175,
and real locations 172-173 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The primary-authority exception is indicated by a
program-interruption code of 0024 hex (or 00A4
hex if a concurrent PER event is indicated).

 Privileged-Operation Exception
A privileged-operation exception is recognized
when any of the following is true:

1. Execution of a privileged instruction is
attempted in the problem state.

2. The value of the rightmost bit of the general
register designated by the R� field of the
PROGRAM TRANSFER instruction is zero
and would cause the PSW problem-state bit to
change from the problem state (one) to the
supervisor state (zero).

3. In the problem state, the key value specified
by the second operand of the SET PSW KEY
FROM ADDRESS instruction corresponds to a
zero PSW-key-mask bit in control register 3.

4. In the problem state, the key value specified
by the rightmost byte of the register desig-
nated by the R� field of the MOVE WITH KEY
instruction corresponds to a zero
PSW-key-mask bit in control register 3.

5. In the problem state, the key value specified
by the rightmost byte of the register desig-
nated by the R� field for the instruction MOVE
TO PRIMARY, MOVE TO SECONDARY, or
MOVE WITH KEY corresponds to a zero
PSW-key-mask bit in control register 3.

6. In the problem state, any of the instructions

� EXTRACT PRIMARY ASN
� EXTRACT SECONDARY ASN
� INSERT ADDRESS SPACE CONTROL
� INSERT PSW KEY
� INSERT VIRTUAL STORAGE KEY

is encountered, and the extraction-authority
control, bit 4 of control register 0, is zero.

7. In the problem state, the result of ANDing the
authorization key mask (AKM) with the

PSW-key mask in control register 3 during
PROGRAM CALL produces a result of zero.

8. In the problem state, bits 20-23 of the second-
operand address of the SET ADDRESS
SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction have the
value 0011 binary.

9. In the problem state, the key value specified
by the rightmost byte of general register 1 for
the instruction MOVE WITH SOURCE KEY or
MOVE WITH DESTINATION KEY corre-
sponds to a zero PSW-key-mask bit in control
register 3.

10. In the problem state, the key value specified
by the rightmost byte of the register desig-
nated by the R� field for the instruction
BRANCH AND SET AUTHORITY corresponds
to a zero PSW-key-mask bit in control register
3.

11. In the problem state, bits 16 and 17 of the
PSW field in the second operand of RESUME
PROGRAM have the value 11 binary.

The operation is suppressed.

The instruction-length code is 2 or 3.

The privileged-operation exception is indicated by
a program-interruption code of 0002 hex (or 0082
hex if a concurrent PER event is indicated).

 Protection Exception
A protection exception is recognized when any of
the following is true:

1. Key-Controlled Protection: The CPU attempts
to access a storage location that is protected
against the type of reference, and the access
key does not match the storage key.

 2. Access-List-Controlled Protection: The CPU
attempts to store, in the access-register mode,
by means of an access-list entry which has
the fetch-only bit set to one.

3. Low-Address Protection: The CPU attempts a
store that is subject to low-address protection,
the effective address is in the range 0-511 or
4096-4607, and the low-address protection
control, bit 35 of control register 0, is one.

4. Page Protection: The CPU attempts to store,
with DAT on, into a page which has the page-
protection bit set to one in either the page-

 Chapter 6. Interruptions 6-27

table entry or the segment-table entry used in
the translation.

The operation is suppressed when the location of
the instruction is protected against fetching. Simi-
larly, the operation is suppressed when the
location of the target instruction of EXECUTE is
protected against fetching.

For access-list-controlled protection and page-
protection, the operation is suppressed. For the
other two types of protection, except in the case of
some specific instructions whose execution is sup-
pressed, the operation is terminated when a pro-
tection exception is encountered during a refer-
ence to an operand location. See Figure 6-4 on
page 6-18. However, the operation may be sup-
pressed as described in “Suppression on
Protection” on page 3-12.

For termination, changes may occur only to result
fields. In this context, the term “result field”
includes condition code, registers, and storage
locations, if any, which are due to be changed by
the instruction. However, no change is made to a
storage location when a reference to that location
causes a protection exception. Therefore, if an
instruction is due to change only the contents of a
field in storage, and every byte of that field would
cause a protection exception, the operation is sup-
pressed. When termination occurs on fetching,
the protected information is not loaded into an
addressable register nor moved to another storage
location.

Information about the address causing the excep-
tion is stored at real locations 168-175 and condi-
tionally at real location 160. See “Suppression on
Protection” on page 3-12.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

For a protected operand location, the instruction-
length code (ILC) is 1, 2, or 3, indicating the
length of the instruction that caused the reference.

The protection exception is indicated by a
program-interruption code of 0004 hex (or 0084
hex if a concurrent PER event is indicated).

 Region-First-Translation Exception
A region-first-translation exception is recognized
when a region first table is in the translation path
for translation of a virtual address and either:

1. The region-first-table entry indicated by the
region-first-index portion of the virtual address
is outside the region first table.

2. The region-invalid bit is one.

The exception is sometimes called simply a
region-translation exception, which term applies
also to a region-second-translation exception and
a region-third-translation exception.

The exception is recognized as part of the exe-
cution of an instruction that needs the region-first-
table entry in the translation of an instruction or
operand address, except for the operand address
in LOAD REAL ADDRESS and TEST PRO-
TECTION, in which case the condition is indicated
by the setting of the condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at
real locations 168-175 and conditionally at real
locations 160 and 162. See “Assigned Storage
Locations” on page 3-51 for a detailed description
of this information.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The region-first-translation exception is indicated
by a program-interruption code of 0039 hex (or
00B9 hex if a concurrent PER event is indicated).

 Region-Second-Translation Exception
A region-second-translation exception is recog-
nized when a region second table is in the trans-
lation path for translation of a virtual address and
either:

1. The region-second-table entry indicated by the
region-second-index portion of the virtual
address is outside the region second table.

6-28 z/Architecture Principles of Operation

2. The region-invalid bit is one.

The exception is sometimes called simply a
region-translation exception, which term applies
also to a region-first-translation exception and a
region-third-translation exception.

The exception is recognized as part of the exe-
cution of an instruction that needs the region-
second-table entry in the translation of an instruc-
tion or operand address, except for the operand
address in LOAD REAL ADDRESS and TEST
PROTECTION, in which case the condition is indi-
cated by the setting of the condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at
real locations 168-175 and conditionally at real
locations 160 and 162. See “Assigned Storage
Locations” on page 3-51 for a detailed description
of this information.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The region-second-translation exception is indi-
cated by a program-interruption code of 003A hex
(or 00BA hex if a concurrent PER event is indi-
cated).

 Region-Third-Translation Exception
A region-third-translation exception is recognized
when a region third table is in the translation path
for translation of a virtual address and either:

1. The region-third-table entry indicated by the
region-third-index portion of the virtual address
is outside the region third table.

2. The region-invalid bit is one.

The exception is sometimes called simply a
region-translation exception, which term applies
also to a region-first-translation exception and a
region-second-translation exception.

The exception is recognized as part of the exe-
cution of an instruction that needs the region-
third-table entry in the translation of an instruction
or operand address, except for the operand
address in LOAD REAL ADDRESS and TEST
PROTECTION, in which case the condition is indi-
cated by the setting of the condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at
real locations 168-175 and conditionally at real
locations 160 and 162. See “Assigned Storage
Locations” on page 3-51 for a detailed description
of this information.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The region-third-translation exception is indicated
by a program-interruption code of 003B hex (or
00BB hex if a concurrent PER event is indicated).

 Secondary-Authority Exception
A secondary-authority exception is recognized
during ASN authorization in SET SECONDARY
ASN with space switching, or during ASN authori-
zation in PROGRAM RETURN when the restored
SASN does not equal the restored PASN, when
either:

1. The authority-table entry indicated by the
authorization index in control register 4 is
beyond the end of the authority table used.
The authority table is the one designated by
the ASN-second-table entry for the ASN used.
For PROGRAM RETURN, the ASN is the
SASN being restored from the linkage-stack
state entry used.

2. The secondary-authority bit indicated by the
authorization index is zero.

The ASN used is stored at real locations 174-175,
and real locations 172-173 are set to zeros.

The operation is nullified.

 Chapter 6. Interruptions 6-29

The instruction-length code is 1 or 2.

The secondary-authority exception is indicated by
a program-interruption code of 0025 hex (or 00A5
hex if a concurrent PER event is indicated).

 Segment-Translation Exception
A segment-translation exception is recognized
when either:

1. The segment-table entry indicated by the
segment-index portion of a virtual address is
outside the segment table.

2. The segment-invalid bit is one.

The exception is recognized as part of the exe-
cution of an instruction that needs the segment-
table entry in the translation of an instruction or
operand address, except for the operand address
in LOAD REAL ADDRESS and TEST PRO-
TECTION, in which case the condition is indicated
by the setting of the condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at
real locations 168-175 and conditionally at real
locations 160 and 162. See “Assigned Storage
Locations” on page 3-51 for a detailed description
of this information.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The segment-translation exception is indicated by
a program-interruption code of 0010 hex (or 0090
hex if a concurrent PER event is indicated).

 Space-Switch Event
A space-switch event is recognized at the com-
pletion of the operation in each of the following
cases:

1. The space-switching form of PROGRAM
CALL, PROGRAM RETURN, or PROGRAM
TRANSFER is executed and any of the fol-
lowing is true:

a. The primary space-switch-event-control
bit, bit 57 of control register 1, is one
before the operation.

b. The primary space-switch-event-control bit
is one after the operation.

c. A PER event is indicated.

2. RESUME PROGRAM, SET ADDRESS
SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST is executed, the
CPU is in the home-space mode either before
or after the operation, but not both before and
after the operation, and any of the following is
true:

a. The primary space-switch-event-control
bit, bit 57 of control register 1, is one.

b. The home space-switch-event-control bit,
bit 57 of control register 13, is one.

c. A PER event is indicated.

For PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER, and for a RESUME
PROGRAM, SET ADDRESS SPACE CONTROL,
or SET ADDRESS SPACE CONTROL FAST
instruction that changes the translation mode to
the home-space mode, the old PASN, which is in
bit positions 48-63 of control register 4 before the
operation, is stored at real locations 174-175, and
the old primary space-switch-event-control bit is
placed in bit position 0 and zeros are placed in bit
positions 1-15 at real locations 172-173.

For a RESUME PROGRAM, SET ADDRESS
SPACE CONTROL, or SET ADDRESS SPACE
CONTROL FAST instruction that changes the
translation mode away from the home-space
mode, zeros are stored at real locations 174-175,
and the home space-switch-event-control bit is
placed in bit position 0 and zeros are placed in bit
positions 1-15 at real locations 172-173.

For a PROGRAM RETURN instruction that intro-
duces a PSW-format error, it is unpredictable
whether the instruction-length code is 0 or 1, or 0
or 2 if EXECUTE was used.

The operation is completed.

The instruction-length code is 0, 1, or 2.

6-30 z/Architecture Principles of Operation

The space-switch event is indicated by a program-
interruption code of 001C hex (or 009C hex if a
concurrent PER event is indicated).

Programming Notes:

1. The space-switch event permits the control
program to gain control whenever a program
enters or leaves a particular address space.
The primary space-switch-event-control bit is
loaded into control register 1, along with the
remaining bits of the primary address-
space-control element, whenever control reg-
ister 1 is loaded.

2. The space-switch event may be useful in
obtaining programmed authorization checking,
in causing additional trace information to be
recorded, or in enabling or disabling the CPU
for PER or tracing.

3. Bit 121 of the ASN-second-table entry (ASTE)
is loaded into bit position 57 of control register
1 as part of the PC-ss, PR-ss, and PT-ss
operations. If bit 121 of the ASTE for a partic-
ular address space is set to one, then a
space-switch event is recognized when a
program enters or leaves the address space
by means of any of PC-ss, PR-ss, or PT-ss.

4. The occurrence of a space-switch event at the
completion of a PC-ss, PR-ss, or PT-ss opera-
tion when any PER event is indicated, or at
the completion of execution of a RESUME
PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE
CONTROL FAST instruction that changes to
or from the home-space mode when any PER
event is indicated, permits the control program
to determine the address space from which
the instruction causing the PER event was
fetched.

 Special-Operation Exception
A special-operation exception is recognized when
any of the following is true:

1. Execution of SET SYSTEM MASK is
attempted in the supervisor state, and the
SSM-suppression control, bit 33 of control reg-
ister 0, is one.

2. Execution of any of the following instructions
is attempted with DAT off:

� EXTRACT PRIMARY ASN
� EXTRACT SECONDARY ASN

� INSERT ADDRESS SPACE CONTROL
� INSERT VIRTUAL STORAGE KEY
� SET ADDRESS SPACE CONTROL
� SET SECONDARY ASN

3. Execution of MOVE TO PRIMARY or MOVE
TO SECONDARY is attempted, and the CPU
is not in the primary-space or secondary-
space mode.

4. Execution of basic PROGRAM CALL or
PROGRAM TRANSFER is attempted, and the
CPU is not in the primary-space mode.

5. Execution of BRANCH AND STACK, stacking
PROGRAM CALL, PROGRAM RETURN, or
TRAP is attempted, and the CPU is not in the
primary-space or access-register mode.

6. Execution of EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE or
MODIFY STACKED STATE is attempted, and
the CPU is not in the primary-space, access-
register, or home-space mode.

7. Execution of LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL with space
switching (PC-ss), PROGRAM TRANSFER
with space switching (PT-ss), or SET SEC-
ONDARY ASN (SSAR-cp or SSAR-ss) is
attempted, or execution of a PROGRAM
RETURN instruction requiring PASN or SASN
translation is attempted, and the
ASN-translation control, bit 34 of control reg-
ister 14, is zero.

8. Execution of PROGRAM CALL or PROGRAM
TRANSFER is attempted, and the subsystem-
linkage control, bit 192 of the primary
ASN-second-table entry, is zero.

9. Execution of SET ADDRESS SPACE
CONTROL, MOVE TO PRIMARY, or MOVE
TO SECONDARY is attempted, and the
secondary-space control, bit 37 of control reg-
ister 0, is zero. The exception may be recog-
nized for this reason when execution of SET
ADDRESS SPACE CONTROL FAST is
attempted.

10. Execution of BRANCH IN SUBSPACE
GROUP is attempted, and any of the following
is true:

a. The current primary address space is not
in a subspace group associated with the
current dispatchable unit, that is, the
primary-ASTE origin (PASTEO) in control

 Chapter 6. Interruptions 6-31

register 5 does not equal the base-ASTE
origin (BASTEO) in the dispatchable-unit
control table (DUCT).

b. The access-list-entry token (ALET) in
access register R� is ALET 1, but a sub-
space has not previously been entered by
the dispatchable unit by means of
BRANCH IN SUBSPACE GROUP, that is,
the subspace-ASTE origin (SSASTEO) in
the DUCT is all zeros.

c. The ALET used is other than ALET 0 and
ALET 1, and the destination ASTE
(DASTE) does not specify the base space
or a subspace of the subspace group, that
is, the DASTE origin (DASTEO) obtained
from an access-list entry does not equal
the BASTEO in the DUCT, and either the
subspace-group bit (G) in the address-
space-control element in the DASTE is
zero or the base-space bit (B) in the
DASTE is one.

11. Execution of BRANCH AND SET AUTHORITY
is attempted, and the R� field is zero in the
base-authority state or nonzero in the
reduced-authority state.

12. Execution of TRAP is attempted, and the
TRAP-enabled bit, bit 31 in bytes 44-47 of the
dispatchable-unit control table, is zero.

13. Execution of basic PROGRAM CALL is
attempted, and the extended-addressing-mode
bit, bit 31 of the current PSW, does not equal
the entry-extended-addressing-mode bit, bit
129, in the entry-table entry.

14. Execution of LOAD REAL ADDRESS (LRA) is
attempted in the 24-bit or 31-bit addressing
mode, and bits 0-32 of the resulting real or
absolute address are not all zeros.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The special-operation exception is indicated by a
program-interruption code of 0013 hex (or 0093
hex if a concurrent PER event is indicated).

 Specification Exception
A specification exception is recognized when any
of the following is true:

1. A one is introduced into an unassigned bit
position of the PSW (that is, any of bit posi-
tions 0, 2-4, 24-30, or 33-63). This is handled
as an early PSW specification exception.

2. A one is introduced into bit position 12 of the
PSW. This is handled as an early PSW spec-
ification exception.

3. The PSW is invalid in any of the following
ways:

a. Bit 31 of the PSW is one and bit 32 is
zero.

b. Bits 31 and 32 of the PSW are zero, indi-
cating the 24-bit addressing mode, and
bits 64-103 of the PSW are not all zeros.

c. Bit 31 of the PSW is zero and bit 32 is
one, indicating the 31-bit addressing
mode, and bits 64-96 of the PSW are not
all zeros.

This is handled as an early PSW specification
exception.

4. The PSW contains an odd instruction address.

5. An operand address does not designate an
integral boundary in an instruction requiring
such integral-boundary designation.

6. An odd-numbered general register is desig-
nated by an R field of an instruction that
requires an even-numbered register desig-
nation.

7. A floating-point register other than 0, 1, 4, 5,
8, 9, 12, or 13 is designated for an extended
operand.

8. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

9. The length of the first-operand field is less
than or equal to the length of the second-
operand field in decimal multiplication or divi-
sion.

10. Bit positions 8-11 of MONITOR CALL do not
contain zeros.

11. Bits 52 and 53 of the second-operand address
of SET ADDRESS SPACE CONTROL or SET
ADDRESS SPACE CONTROL FAST are not
both zeros.

6-32 z/Architecture Principles of Operation

12. When the extended-addressing-mode bit in
the PSW is zero, the basic-addressing-mode
bit, bit 32, in the general register designated
by the R� field of PROGRAM TRANSFER is
zero, but bits 33-39 of the instruction address
in the same register are not all zeros.

13. Execution of COMPARE AND FORM
CODEWORD is attempted, and general regis-
ters 1, 2, and 3 do not initially contain even
values.

14. Execution of UPDATE TREE is attempted,
and the initial contents of general registers 4
and 5 are not a multiple of 8 in the 24-bit or
31-bit addressing mode or are not a multiple
of 16 in the 64-bit addressing mode.

| 15. Execution of EXTRACT STACKED STATE is
| attempted, and the code in bit positions 56-63
| of general register R� is greater than 4.

16. Execution of MOVE PAGE is attempted, and
bit positions 48-51 of general register 0 do not
contain zeros or bits 52 and 53 of the register
are both one.

| 17. Execution of COMPRESSION CALL is
| attempted, and bits 48-51 of general register 0
| have any of the values 0000 and 0110-1111
| binary.

18. Execution of COMPARE LOGICAL STRING,
MOVE STRING, or SEARCH STRING is
attempted, and bits 32-55 of general register 0
are not all zeros.

19. Execution of EXECUTE is attempted, and the
target address is odd.

20. Execution of RESUME PROGRAM is
attempted, and bits 31, 32, and 64-127 of the
PSW field in the second operand are not valid
for placement in the current PSW. The
exception is recognized if any of the following
is true:

� Bits 31 and 32 are both zero and bits
64-103 are not all zeros.

� Bits 31 and 32 are zero and one, respec-
tively, and bits 64-96 are not all zeros.

� Bits 31 and 32 are one and zero, respec-
tively.

� Bit 127 is one.

21. Optionally if execution of LOAD PSW is
attempted and bit 12 of the doubleword at the
second-operand address is zero.

22. Execution of SET ADDRESSING MODE
(SAM24) is attempted, and bits 0-39 of the
unupdated instruction address in the PSW,
bits 64-103 of the PSW, are not all zeros.

23. Execution of SET ADDRESSING MODE
(SAM31) is attempted, and bits 0-32 of the
unupdated instruction address in the PSW,
bits 64-96 of the PSW, are not all zeros.

| 24. Execution of INVALIDATE DAT TABLE
| ENTRY is attempted, and bits 44-51 of
| general register R� are not all zeros.

| 25. Execution of CIPHER MESSAGE, CIPHER
| MESSAGE WITH CHAINING, COMPUTE
| INTERMEDIATE MESSAGE DIGEST,
| COMPUTE LAST MESSAGE DIGEST, or
| COMPUTE MESSAGE AUTHENTICATION
| CODE is attempted, and the function code in
| bits 57-63 of general register 0 contain an
| unassigned or uninstalled function code.

| 26. Execution of CIPHER MESSAGE or CIPHER
| MESSAGE WITH CHAINING is attempted,
| and the R� or R� field designates an odd-
| numbered register or general register 0.

| 27. Execution of COMPUTE INTERMEDIATE
| MESSAGE DIGEST, COMPUTE LAST
| MESSAGE DIGEST, or COMPUTE
| MESSAGE AUTHENTICATION CODE is
| attempted, and the R� field designates an
| odd-numbered register or general register 0.

| 28. Execution of CIPHER MESSAGE, CIPHER
| MESSAGE WITH CHAINING, COMPUTE
| INTERMEDIATE MESSAGE DIGEST or
| COMPUTE MESSAGE AUTHENTICATION
| CODE is attempted, and the second operand
| length is not a multiple of the data block size
| of the designated function. This specification-
| exception condition does not apply to the
| query functions.

The execution of the instruction identified by the
old PSW is suppressed. However, for early PSW
specification exceptions (causes 1-3) the operation
that introduces the new PSW is completed, but an
interruption occurs immediately thereafter.

Except as noted below, the instruction-length code
(ILC) is 1, 2, or 3, indicating the length of the
instruction causing the exception.

 Chapter 6. Interruptions 6-33

When the instruction address is odd (cause 4 on
page 6-32), it is unpredictable whether the ILC is
1, 2, or 3.

When the exception is recognized because of an
early PSW specification exception (causes 1-3)
and the exception has been introduced by LOAD
PSW, LOAD PSW EXTENDED, PROGRAM
RETURN, or an interruption, the ILC is 0. When
the exception is introduced by SET ADDRESSING
MODE (SAM24, SAM31), the ILC is 1, or it is 2 if
SET ADDRESSING MODE was the target of
EXECUTE. When the exception is introduced by
SET SYSTEM MASK or by STORE THEN OR
SYSTEM MASK, the ILC is 2.

The specification exception is indicated by a
program-interruption code of 0006 hex (or 0086
hex if a concurrent PER event is indicated).

Programming Note: See “Exceptions Associated
with the PSW” on page 6-9 for a definition of
when the exceptions associated with the PSW are
recognized.

 Stack-Empty Exception
A stack-empty exception is recognized during the
unstacking process in EXTRACT STACKED REG-
ISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN when
the current linkage-stack entry is a header entry
and the backward stack-entry validity bit in the
header entry is zero.

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-empty exception is indicated by a
program-interruption code of 0031 hex (or 00B1
hex if a concurrent PER event is indicated).

 Stack-Full Exception
A stack-full exception is recognized during the
stacking process in BRANCH AND STACK or
stacking PROGRAM CALL when there is not
enough remaining free space in the current
linkage-stack section and the forward-section
validity bit in the trailer entry of the section is zero.

The operation is nullified.

The instruction-length code is 2.

The stack-full exception is indicated by a program-
interruption code of 0030 hex (or 00B0 hex if a
concurrent PER event is indicated).

 Stack-Operation Exception
A stack-operation exception is recognized during
the unstacking process in PROGRAM RETURN
when the unstack-suppression bit is one in any
linkage-stack state entry or header entry encount-
ered during the process.

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-operation exception is indicated by a
program-interruption code of 0034 hex (or 00B4
hex if a concurrent PER event is indicated).

 Stack-Specification Exception
A stack-specification exception is recognized in
each of the following cases:

1. During the stacking process in BRANCH AND
STACK or stacking PROGRAM CALL when
there is not enough remaining free space in
the current linkage-stack section and either of
the following is true:

a. The remaining-free-space value used to
locate the trailer entry of the current
section is not a multiple of 8.

b. There is not enough remaining free space
in the next section.

2. During the unstacking process in EXTRACT
STACKED REGISTERS, EXTRACT
STACKED STATE, MODIFY STACKED
STATE, or PROGRAM RETURN when the
current linkage-stack entry is a header entry in
which the backward stack-entry address des-
ignates another header entry.

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-specification exception is indicated by a
program-interruption code of 0032 hex (or 00B2
hex if a concurrent PER event is indicated).

6-34 z/Architecture Principles of Operation

 Stack-Type Exception
A stack-type exception is recognized during the
unstacking process in EXTRACT STACKED REG-
ISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN in
each of the following cases:

1. The current linkage-stack entry is not a
header entry or a state entry.

2. When the current linkage-stack entry is a
header entry, the preceding entry, designated
by the backward stack-entry address in the
header entry, is not a header entry or a state
entry. (A stack-specification exception is
recognized if the preceding entry is a header
entry.)

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-type exception is indicated by a
program-interruption code of 0033 hex (or 00B3
hex if a concurrent PER event is indicated).

 Trace-Table Exception
A trace-table exception is recognized when the
CPU attempts to store a trace-table entry which
would reach or cross the next 4K-byte block
boundary. For the purpose of recognizing this
exception in the TRACE instruction, the explicit
trace entry is treated as being 76 bytes long for
TRACE (TRACE) and as 144 bytes long for
TRACE (TRACG). For a PROGRAM CALL
instruction that would cause storing of both a
PROGRAM CALL trace entry and a mode-switch
trace entry, the exception is recognized for the
first entry when either the first or the second entry
would reach or cross the boundary.

The operation is nullified.

The instruction-length code is 1, 2, or 3, indicating
the length of the instruction causing the exception.

The trace-table exception is indicated by a
program-interruption code of 0016 hex (or 0096
hex if a concurrent PER event is indicated).

 Translation-Specification Exception
A translation-specification exception is recognized
when translation of a virtual address is attempted
and any of the following is true:

1. In the lookup in the table designated by the
address-space-control element used for the
translation, the table-type bits in the selected
table entry do not equal the designation-type
bits in the address-space-control element.

2. In a lookup in a table designated by an entry
in a region first table, region second table, or
region third table, the value of the table-type
bits in the selected table entry is not one less
than the value of the same bits in the desig-
nating table entry.

3. The private-space control, bit 55 in the
address-space-control element used for the
translation, is one, the segment-table entry
used for the translation is valid, and the
common-segment bit, bit 59, in the segment-
table entry is one.

4. The page-table entry used for the translation
is valid, and bit positions 52 and 55 in the
entry do not contain zeros.

Any of the above reasons is referred to by saying
that the DAT-table entry has a format error.

The exception is recognized only as part of the
execution of an instruction using address trans-
lation, that is, when DAT is on and a logical
address, instruction address, or virtual address
must be translated, or when LOAD REAL
ADDRESS or STORE REAL ADDRESS is exe-
cuted.

The unit of operation is suppressed.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The translation-specification exception is indicated
by a program-interruption code of 0012 hex (or
0092 hex if a concurrent PER event is indicated).

 Chapter 6. Interruptions 6-35

Programming Note: When a translation-
specification exception is recognized in the
process of translating an instruction address, the
operation is suppressed. In this case, the
instruction-length code (ILC) is needed to derive
the address of the instruction, as the instruction
address in the old PSW has been incremented by
the amount indicated by the ILC. In the case of
region-first-translation, region-second-translation,
region-third-translation, segment-translation, and
page-translation exceptions, the operation is nulli-
fied, the instruction address in the old PSW identi-
fies the instruction, and the ILC may be arbitrarily
set to 1, 2, or 3.

 Collective Program-Interruption
Names

For the sake of convenience, certain program
exceptions are grouped together under a single
collective name. These collective names are used
when it is necessary to refer to the complete set
of exceptions, such as in instruction definitions.
Four collective names are used:

 � Access exceptions
 � ASN-translation exceptions
 � Subspace-replacement exceptions
 � Trace exceptions

The individual exceptions and their priorities are
listed in “Multiple Program-Interruption Conditions”
on page 6-39.

Recognition of Access
Exceptions

Figure 6-5 on page 6-37 summarizes the condi-
tions that can cause access exceptions and the
action taken when they are encountered.

6-36 z/Architecture Principles of Operation

┌──────────────────────────────────┬────────────────┬────────────────┬───────────────┐
│ │ │Translation for │ │
│ │ │TAR and TPROT, │ │
│ │Translation for │and Access for │Translation and│
│ │Virtual Address │Logical Address │Access for Any │
│ │of LRA or LRAG │of TPROT� │Other Address │
│ ├──────┬─────────┼───────┬────────┼──────┬────────┤
│ │Indi- │ │Indi- │ │Indi- │ │
│ Condition� │cation│ Action │cation │ Action │cation│ Action │
├──────────────────────────────────┼──────┼─────────┼───────┼────────┼──────┼────────┤
│Access register� │ │ │ │ │ │ │
│Bits �-6 not all zeros │ cc3 │ Complete│ cc3 │Complete│ AS │Suppress│
│ │ │ │ │ │ │ │
│Effective access-list designation�│ │ │ │ │ │ │
│Invalid address of designation │ A │ Suppress│ A │Suppress│ A │Suppress│
│ │ │ │ │ │ │ │
│Access-list entry� │ │ │ │ │ │ │
│Access-list-length violation │ cc3 │ Complete│ cc3 │Complete│ AT │Nullify │
│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│
│I bit on │ cc3 │ Complete│ cc3 │Complete│ AT │Nullify │
│Sequence number in access register│ cc3 │ Complete│ cc3 │Complete│ ALQ │Nullify │
│ not equal to sequence number in │ │ │ │ │ │ │
│ entry │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ASN-second-table entry� │ │ │ │ │ │ │
│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│
│I bit on │ cc3 │ Complete│ cc3 │Complete│ AV │Nullify │
│Sequence number in access-list │ cc3 │ Complete│ cc3 │Complete│ ASQ │Nullify │
│ entry not equal to sequence │ │ │ │ │ │ │
│ number in entry │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│Authority-table entry� � │ │ │ │ │ │ │
│Authority-table-length violation │ cc3 │ Complete│ cc3 │Complete│ EA │Nullify │
│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│
│Secondary-authority bit not one │ cc3 │ Complete│ cc3 │Complete│ EA │Nullify │
│ │ │ │ │ │ │ │
│Address-space-control element │ │ │ │ │ │ │
│Bits �-1�, �-21, or �-32 of │ cc3 │ Complete│ cc3 │Complete│ ATY │Nullify │
│ instruction or operand address │ │ │ │ │ │ │
│ not all zeros when address- │ │ │ │ │ │ │
│ space-control element is a │ │ │ │ │ │ │
│ region-second-table designation,│ │ │ │ │ │ │
│ region-third-table designation, │ │ │ │ │ │ │
│ or segment-table designation, │ │ │ │ │ │ │
│ respectively │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│Region-table-entry designated by │ │ │ │ │ │ │
│address-space-control element or │ │ │ │ │ │ │
│region-table-entry │ │ │ │ │ │ │
│Entry outside of table │ cc3 │ Complete│ cc3 │Complete│ RT │Nullify │
│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│
│I bit on │ cc3 │ Complete│ cc3 │Complete│ RT │Nullify │
│TT in entry not equal DT in │ TS │ Suppress│ TS │Suppress│ TS │Suppress│
│ address-space-control element or│ │ │ │ │ │ │
│ not one less than TT in next- │ │ │ │ │ │ │
│ higher-level entry │ │ │ │ │ │ │
└──────────────────────────────────┴──────┴─────────┴───────┴────────┴──────┴────────┘

Figure 6-5 (Part 1 of 3). Handling of Access Exceptions

 Chapter 6. Interruptions 6-37

┌──────────────────────────────────┬────────────────┬────────────────┬───────────────┐
│ │ │Translation for │ │
│ │ │TAR and TPROT, │ │
│ │Translation for │and Access for │Translation and│
│ │Virtual Address │Logical Address │Access for Any │
│ │of LRA or LRAG │of TPROT� │Other Address │
│ ├──────┬─────────┼───────┬────────┼──────┬────────┤
│ │Indi- │ │Indi- │ │Indi- │ │
│ Condition� │cation│ Action │cation │ Action │cation│ Action │
├──────────────────────────────────┼──────┼─────────┼───────┼────────┼──────┼────────┤
│Segment-table entry designated by │ │ │ │ │ │ │
│address-space-control element or │ │ │ │ │ │ │
│region-table-entry │ │ │ │ │ │ │
│Entry outside of table │ cc3 │ Complete│ cc3 │Complete│ ST │Nullify │
│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│
│I bit on (except as follows) │ cc1 │ Complete│ cc3 │Complete│ ST │Nullify │
│I bit on (LRA in 24-bit or 31-bit │ cc3 │ Complete│ - │ - │ - │ - │
│ mode when bits �-32 of entry │ │ │ │ │ │ │
│ address not all zeros) │ │ │ │ │ │ │
│One in a bit position which is │ TS │ Suppress│ TS │Suppress│ TS │Suppress│
│ checked for zero� │ │ │ │ │ │ │
│TT in entry not equal DT in │ TS │ Suppress│ TS │Suppress│ TS │Suppress│
│ address-space-control element or│ │ │ │ │ │ │
│ not one less than TT in next- │ │ │ │ │ │ │
│ higher-level entry (TT not zero)│ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│Page-table entry │ │ │ │ │ │ │
│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│
│I bit on (except as follows) │ cc2 │ Complete│ cc3 │Complete│ PT │Nullify │
│I bit on (LRA in 24-bit or 31-bit │ cc3 │ Complete│ cc3 │Complete│ PT │Nullify │
│ mode when bits �-32 of entry │ │ │ │ │ │ │
│ address not all zeros) │ │ │ │ │ │ │
│One in a bit position which is │ TS │ Suppress│ TS │Suppress│ TS │Suppress│
│ checked for zero� │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│Access for instruction fetch │ │ │ │ │ │ │
│Location protected (key-controlled│ - │ - │ - │ - │ P │Suppress│
│ protection) │ │ │ │ │ │ │
│Invalid address │ - │ - │ - │ - │ A │Suppress│
│ │ │ │ │ │ │ │
│Access for operands │ │ │ │ │ │ │
│Location protected (low-address, │ - │ - │cc set�│Complete│ P │ Term.� │
│ page, or key-controlled protec- │ │ │ │ │ │ │
│ tion) │ │ │ │ │ │ │
│Invalid address │ - │ - │ A │Suppress│ A │ Term.� │
├──────────────────────────────────┴──────┴─────────┴───────┴────────┴──────┴────────┤
│Explanation: │
│ │
│ - The condition does not apply. │
│ � Action is to terminate except where otherwise specified in this publication. │
│ For access-list-controlled protection and page protection, the action is │
│ always to suppress. │
│ � TAR does not have a logical address. The rows "Address-space-control │
│ element" through "Access for operands" apply only to TPROT, not to TAR. │
│ � Protection applies only to accesses for instruction fetch and for operands. │
│ It does not apply to the fetching of the effective access-list │
│ designation or any of the listed entries. │
│ � Exceptions related to an access register, effective access-list designa- │
│ tion, access-list entry, ASN-second-table entry, or authority-table entry │
│ are recognized only in the access-register mode except that, for LOAD REAL │
│ ADDRESS and STORE REAL ADDRESS, they are recognized when PSW bits 16 and 17 │
│ are �1 binary, and, for TEST ACCESS, they are recognized regardless of the │
│ translation mode. │
│ � Authority table is not accessed and secondary-authority bit is not checked │
│ if the private bit in the access-list entry is zero or the access-list- │
│ entry authorization index in the access-list entry is equal to the extended │
│ authorization index in control register 8. │
│ � A translation-specification exception for a format error in a table entry │
│ is recognized only when the execution of an instruction requires the entry │
│ for translation of an address. │
└──┘

Figure 6-5 (Part 2 of 3). Handling of Access Exceptions

6-38 z/Architecture Principles of Operation

┌──┐
│Explanation (Continued): │
│ │
│ � The condition code is set as follows: │
│ � Operand location not protected. │
│ 1 Fetches permitted, but stores not permitted. │
│ 2 Neither fetches nor stores permitted. │
│ A Addressing exception. │
│ ALQ ALE-sequence exception. │
│ AS ALET-specification exception. │
│ ASQ ASTE-sequence exception. │
│ AT ALEN-translation exception. │
│ ATY ASCE-type exception. │
│ AV ASTE-validity exception. │
│ cc1 Condition code 1 set. │
│ cc2 Condition code 2 set. │
│ cc3 Condition code 3 set. │
│ EA Extended-authority exception. │
│ P Protection exception. │
│ PT Page-translation exception. │
│ RT Region-first-translation, region-second-translation, or region-third- │
│ translation exception, depending on the level of the table. │
│ ST Segment-translation exception. │
│ TS Translation-specification exception. │
└──┘

Figure 6-5 (Part 3 of 3). Handling of Access Exceptions

Any access exception is recognized as part of the
execution of the instruction with which the excep-
tion is associated. An access exception is not
recognized when the CPU attempts to prefetch
from an unavailable location or detects some other
access-exception condition, but a branch instruc-
tion or an interruption changes the instruction
sequence such that the instruction is not exe-
cuted.

Every instruction can cause an access exception
to be recognized because of instruction fetch.
Additionally, access exceptions associated with
instruction execution may occur because of an
access to an operand in storage.

An access exception due to fetching an instruction
is indicated when the first instruction halfword
cannot be fetched without encountering the excep-
tion. When the first halfword of the instruction has
no access exceptions, access exceptions may be
indicated for additional halfwords according to the
instruction length specified by the first two bits of
the instruction; however, when the operation can
be performed without accessing the second or
third halfwords of the instruction, it is unpredict-
able whether the access exception is indicated for
the unused part. Since the indication of access
exceptions for instruction fetch is common to all
instructions, it is not covered in the individual
instruction definitions.

Except where otherwise indicated in the individual
instruction description, the following rules apply for
exceptions associated with an access to an

operand location. For a fetch-type operand,
access exceptions are necessarily indicated only
for that portion of the operand which is required
for completing the operation. It is unpredictable
whether access exceptions are indicated for those
portions of a fetch-type operand which are not
required for completing the operation. For a store-
type operand, access exceptions are recognized
for the entire operand even if the operation could
be completed without the use of the inaccessible
part of the operand. In situations where the value
of a store-type operand is defined to be unpredict-
able, it is unpredictable whether an access excep-
tion is indicated.

Whenever an access to an operand location can
cause an access exception to be recognized, the
word “access” is included in the list of program
exceptions in the description of the instruction.
This entry also indicates which operand can cause
the exception to be recognized and whether the
exception is recognized on a fetch or store access
to that operand location. Access exceptions are
recognized only for the portion of the operand as
defined for each particular instruction.

 Multiple Program-Interruption
Conditions

Except for PER events, only one program-
interruption condition is indicated with a program
interruption. The existence of one condition,
however, does not preclude the existence of other
conditions. When more than one program-

 Chapter 6. Interruptions 6-39

interruption condition exists, only the condition
having the highest priority is identified in the inter-
ruption code.

With two conditions of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the
two parts of an operand that crosses a page or
protection boundary is unpredictable and is not
necessarily related to the sequence specified for
the access of bytes within the operand.

The type of ending which occurs (nullification, sup-
pression, or termination) is that which is defined
for the type of exception that is indicated in the
interruption code. However, if a condition is indi-
cated which permits termination, and another con-
dition also exists which would cause either
nullification or suppression, then the unit of opera-
tion is suppressed.

Figure 6-6 on page 6-41 lists the priorities of all
program-interruption conditions other than PER
events and exceptions associated with some of
the more complex control instructions. All
exceptions associated with references to storage
for a particular instruction halfword or a particular
operand byte are grouped as a single entry called
“access.” Figure 6-7 on page 6-44 lists the pri-
ority of access exceptions for a single access.
Thus, the second figure specifies which of several
exceptions, encountered either in the access of a
particular portion of an instruction or in any partic-
ular access associated with an operand, has
highest priority, and the first figure specifies the
priority of this condition in relation to other condi-
tions detected in the operation. Similarly, the pri-
orities for exceptions occurring as part of ASN
translation and tracing are covered in Figure 6-8
on page 6-46 and Figure 6-10 on page 6-47,
respectively.

For some instructions, the priority is shown in the
individual instruction description.

The relative priorities of any two conditions listed
in the figure can be found by comparing the pri-
ority numbers, as found in the figure, from left to
right until a mismatch is found. If the first ine-
quality is between numeric characters, either the
two conditions are mutually exclusive or, if both
can occur, the condition with the smaller number
is indicated. If the first inequality is between
alphabetic characters, then the two conditions are
not exclusive, and it is unpredictable which is indi-
cated when both occur.

To understand the use of the table, consider an
example involving the instruction ADD DECIMAL,
which is a six-byte instruction. Assume that the
first four bytes of the instruction can be accessed
but that the instruction crosses a boundary so that
an addressing exception exists for the last two
bytes. Additionally, assume that the first operand
addressed by the instruction contains invalid
decimal digits and is in a location that can be
fetched from, but not stored into, because of key-
controlled protection. The three exceptions which
could result from attempted execution of the ADD
DECIMAL are:

┌────────┬─────────────────────────────────────┐
│Priority│ │
│Number │Exception │
├────────┼─────────────────────────────────────┤
│ 7.B │Access exceptions for third instruc- │
│ │tion halfword. │
│ 8.B │Access exceptions (operand 1). │
│ 8.D │Data exception. │
└────────┴─────────────────────────────────────┘

Since the first inequality (7≠8) is between numeric
characters, the addressing exception would be
indicated. If, however, the entire ADD DECIMAL
instruction can be fetched, and only the second
two exceptions listed above exist, then the ine-
quality (B≠D) is between alphabetic characters,
and it is unpredictable whether the protection
exception or the data exception would be indi-
cated.

6-40 z/Architecture Principles of Operation

┌──┐
│ 1. Specification exception due to any PSW error of the type that causes an │
│ immediate interruption.� │
│ │
│ 2. Specification exception due to an odd instruction address in the PSW. │
│ │
│ 3. Access exceptions for first halfword of EXECUTE.� │
│ │
│ 4. Access exceptions for second halfword of EXECUTE.� │
│ │
│ 5. Specification exception due to target instruction of EXECUTE not being │
│ specified on halfword boundary.� │
│ │
│ 6. Access exceptions for first instruction halfword. │
│ │
│ 7.A Access exceptions for second instruction halfword.� │
│ │
│ 7.B Access exceptions for third instruction halfword.� │
│ │
│ 7.C.1 Operation exception. │
│ │
│ 7.C.2 Privileged-operation exception for privileged instructions. │
│ │
│ 7.C.3 Execute exception. │
│ │
│ 7.C.4 Special-operation exception.� │
│ │
│ 8.A Specification exception due to conditions other than those included in │
│ 1, 2, and 5 above. │
│ │
│ 8.B� Access exceptions for an access to an operand in storage.� │
│ │
│ 8.C� Access exceptions for any other access to an operand in storage.� │
│ │
│ 8.D Data exception.% │
│ │
│ 8.E Decimal-divide exception.
 │
│ │
│ 8.F Trace exceptions. │
│ │
│ 9. Events other than PER events, exceptions which result in completion, │
│ and the following exceptions: fixed-point divide, floating-point │
│ divide, operand, square root, and unnormalized operand. Either these │
│ exceptions and events are mutually exclusive or their priority is │
│ specified in the corresponding definitions. │
└──┘

Figure 6-6 (Part 1 of 2). Priority of Program-Interruption Conditions

 Chapter 6. Interruptions 6-41

┌──┐
│Explanation: │
│ │
│ Numbers indicate priority, with "1" being the highest priority; letters indicate │
│ no priority. │
│ │
│ � PSW errors which cause an immediate interruption may be introduced by a new │
│ PSW loaded as a result of an interruption or by the instructions LOAD PSW, │
│ PROGRAM RETURN, SET SYSTEM MASK, and STORE THEN OR SYSTEM MASK. The priority │
│ shown in the chart is for a PSW error introduced by an interruption and may │
│ also be considered as the priority for a PSW error introduced by the previous │
│ instruction. The error is introduced only if the instruction encounters no │
│ other exceptions. The resulting interruption has a higher priority than any │
│ interruption caused by the instruction which would have been executed next; it│
│ has lower priority, however, than any interruption caused by the instruction │
│ which introduced the erroneous PSW. │
│ │
│ � Priorities 3, 4, and 5 are for the EXECUTE instruction, and priorities start- │
│ ing with 6 are for the target instruction. When no EXECUTE is encountered, │
│ priorities 3, 4, and 5 do not apply. │
│ │
│ � Separate accesses may occur for each halfword of an instruction. The second │
│ instruction halfword is accessed only if bits �-1 of the instruction are not │
│ both zeros. The third instruction halfword is accessed only if bits �-1 of │
│ of the instruction are both ones. Access exceptions for one of these half- │
│ words are not necessarily recognized if the instruction can be completed │
│ without use of the contents of the halfword or if an exception of lower pri- │
│ ority can be determined without the use of the halfword. │
│ │
│ � The special-operation exception recognized by LOAD REAL ADDRESS has priority │

| │ 9. See the definition of the TRAP instruction for other priorities of the │
| │ special-operation exception. │

│ │
│ � As in instruction fetching, separate accesses may occur for each portion of │
│ an operand. Each of these accesses, and also accesses for different operands,│
│ are of equal priority, and the two entries 8.B and 8.C are listed to represent│
│ the relative priorities of exceptions associated with any two of these │
│ accesses. Access exceptions for INSERT STORAGE KEY EXTENDED, INSERT VIRTUAL │
│ STORAGE KEY, INVALIDATE PAGE TABLE ENTRY, LOAD REAL ADDRESS, STORE REAL │
│ ADDRESS, RESET REFERENCE BIT EXTENDED, SET STORAGE KEY EXTENDED, and TEST │
│ PROTECTION are also included in 8.B. │
│ │
│ � For MOVE LONG, MOVE LONG EXTENDED, COMPARE LOGICAL LONG, and COMPARE LOGICAL │
│ LONG EXTENDED, an access exception for a particular operand can be indicated │
│ only if the R field for that operand designates an even-numbered register. │
│ │
│ % The exception can be indicated only if the sign, digit, or digits responsi- │
│ ble for the exception were fetched without encountering an access exception. │
│ │
│
 The exception can be indicated only if the digits used in establishing the │
│ exception, and also the signs, were fetched without encountering an access │
│ exception, only if the signs are valid, and only if the digits used in estab- │
│ lishing the exception are valid. │
└──┘

Figure 6-6 (Part 2 of 2). Priority of Program-Interruption Conditions

6-42 z/Architecture Principles of Operation

 Access Exceptions
The access exceptions consist of those exceptions
which can be encountered while using an abso-
lute, instruction, logical, real, or virtual address to
access storage. Thus, in the access-register
mode, the exceptions are:

 1. ALET specification
 2. ALEN translation
 3. ALE sequence
 4. ASTE validity
 5. ASTE sequence
 6. Extended authority
7. Addressing (the ART tables)

 8. ASCE type
9. Region first translation

10. Region second translation
11. Region third translation
12. Segment translation
13. Page translation
14. Translation specification
15. Addressing (the DAT tables)
16. Addressing (the operand or instruction)
17. Protection (key-controlled, access-list-

controlled, page, and low-address)

With DAT on but in other than the access-register
mode, exceptions 8-17 in the above list, except for
access-list-controlled protection, can be encount-
ered.

With DAT off, the exceptions are:

1. Addressing (the operand or instruction)
2. Protection (key-controlled and low-address)

Additionally, even with DAT off, the instruction
STORE REAL ADDRESS can encounter
exceptions 1-17, the instruction LOAD REAL
ADDRESS can encounter exceptions 7, 14, and
15, and the instruction INVALIDATE PAGE TABLE
ENTRY can encounter exception 15.

The access exceptions are listed in more detail in
Figure 6-7 on page 6-44.

Programming Note: The priorities in Figure 6-7
on page 6-44 could be renumbered, but they are
kept as they are to allow easier comparison to the
corresponding ESA/390 priorities. Specifically,
B.1.A.1-B.1.A.9 could be changed to B.1-B.9, but
ESA/390 contains “B.1.B Translation-specification
exception due to invalid encoding of bits 8-12 of
control register 0.”

 Chapter 6. Interruptions 6-43

┌──┐
│A. Protection exception (low-address protection) due to │
│ a store-type operand reference with an effective │
│ address in the range �-511 or 4�96-46�7. Not │
│ recognized if DAT is on and the address-space-control│
│ element to be used in the translation cannot be │
│ obtained because of another exception. │
│ │
│B.1.A.1 ALET-specification exception due to bits �-6 of │
│ access register not being all zeros.� │
│ │
│B.1.A.2 Addressing exception for access to effective access- │
│ list designation.� │
│ │
│B.1.A.3 ALEN-translation exception due to access-list entry │
│ being outside the list.� │
│ │
│B.1.A.4 Addressing exception for access to access-list │
│ entry.� │
│ │
│B.1.A.5 ALEN-translation exception due to I bit in access- │
│ list entry having the value one.� │
│ │
│B.1.A.6 ALE-sequence exception due to access-list-entry │
│ sequence number (ALESN) in access register not being │
│ equal to ALESN in access-list entry.� │
│ │
│B.1.A.7 Addressing exception for access to ASN-second-table │
│ entry.� │
│ │
│B.1.A.8 ASTE-validity exception due to I bit in ASN-second- │
│ table entry having the value one.� │
│ │
│B.1.A.9 ASTE-sequence exception due to ASN-second-table- │
│ entry sequence number (ASTESN) in access-list entry │
│ not being equal to ASTESN in ASN-second-table entry.�│
│ │
│ Note: Exceptions B.1.A.1� through B.1.A.12 are │
│ recognized only when the private bit in the access- │
│ list entry is one and the ALEAX in the entry is not │
│ equal to the EAX in control register 8. │
│ │
│B.1.A.1� Extended-authority exception due to authority-table │
│ entry being outside table.� │
│ │
│B.1.A.11 Addressing exception for access to authority-table │
│ entry.� │
│ │
│B.1.A.12 Extended-authority exception due to (1) private bit │
│ in access-list entry not being zero, (2) access-list-│
│ entry authorization index in access-list entry not │
│ being equal to extended authorization index in con- │
│ trol register 8, and (3) secondary-authority bit │
│ selected by extended authorization index not being │
│ one.� │
└──┘

Figure 6-7 (Part 1 of 3). Priority of Access Exceptions .

6-44 z/Architecture Principles of Operation

┌──┐
│B.2.A Protection exception (access-list-controlled protec- │
│ tion) due to store-type operand reference to a │
│ virtual address which is protected against stores.� │
│ │
│B.2.B.1 ASCE-type exception due to bits �-1�, �-21, or �-32 │
│ of instruction or operand address not being zeros │
│ when address-space-control element is a region- │
│ second-table designation, region-third-table │
│ designation, or segment-table designation, │
│ respectively.� │
│ │
│B.2.B.2 Region-first-, region-second-, region-third-, or │
│ segment-translation exception due to required entry │
│ in table designated by address-space-control element │
│ being outside of table.� │
│ │
│ Note: Exceptions B.2.B.3 through B.2.B.6 are │
│ recognized for a region-first-table, region-second- │
│ table, region-third-table, and segment-table entry in│
│ the order in which the entries are used. │
│ │
│B.2.B.3 Addressing exception for access to table entry.� │
│ │
│B.2.B.4 Region-first-, region-second-, region-third-, or │
│ segment-translation exception due to I bit in table │
│ entry having the value one.� │
│ │
│B.2.B.5 Translation-specification exception due to (1) TT in │
│ table entry not equal to DT in designating address- │
│ space-control element or not one less than TT in │
│ designating next-higher-level table entry or (2) │
│ invalid one in segment-table entry if this entry is a│
│ segment-table entry (common-segment bit if private- │
│ space bit in address-space-control element is one).� │
│ │
│B.2.B.6 Region-second-, region-third-, or segment-translation│
│ exception due to required entry in next-lower-level │
│ table entry, if any, being outside of table.� │
│ │
│B.2.B.7 Addressing exception for access to page-table entry.�│
│ │
│B.2.B.8 Page-translation exception due to I bit in page-table│
│ entry having the value one.� % │
│ │
│B.2.B.9 Translation-specification exception due to invalid │
│ ones in page-table entry (bits 52 and 55) in which I │
│ bit is zero.� │
│ │
│B.3.A Protection exception (page protection) due to a │
│ store-type operand reference to a virtual address │
│ which is protected against stores.� │
└──┘

Figure 6-7 (Part 2 of 3). Priority of Access Exceptions .

 Chapter 6. Interruptions 6-45

┌──┐
│B.3.B Addressing exception for access to instruction or │
│ operand. │
│ │
│B.4. Protection exception (key-controlled protection) due │
│ to attempt to access a protected instruction or │
│ operand location. │
├──┤
│Explanation: │
│ │
│ � Not applicable when not in the access-register mode; not │
│ applicable for execution of TEST ACCESS and for translation of│
│ operand address of LOAD REAL ADDRESS and TEST PROTECTION. │
│ │
│ � Not applicable when not in the access-register mode, except │
│ applicable for execution of TEST ACCESS and, when PSW bits 16 │
│ and 17 are �1 binary, for translation of operand address of │
│ LOAD REAL ADDRESS and second-operand address of STORE REAL │
│ ADDRESS. │
│ │
│ � Not applicable when DAT is off except for translation of │
│ second-operand address of STORE REAL ADDRESS; not applicable │
│ to operand addresses of LOAD REAL ADDRESS and TEST PROTECTION.│
│ │
│ � Not applicable when DAT is off except for translation of │
│ operand address of LOAD REAL ADDRESS and second-operand │
│ address of STORE REAL ADDRESS. │
│ │
│ � Not applicable when DAT is off, except for execution of │
│ INVALIDATE PAGE TABLE ENTRY and for translation of operand │
│ address of LOAD REAL ADDRESS and second-operand address of │
│ STORE REAL ADDRESS. │
│ │
│ � Not applicable when DAT is off. │
│ │
│ % For MOVE PAGE, if the condition is true for both operands, the│
│ exception is recognized for the second operand. Also, if the │
│ condition-code-option bit is one, the exception is not │
│ recognized. Instead, condition code 1 is set if the condition│
│ is true for only the first operand, or condition code 2 is set│
│ if the condition is true for the second operand or both │
│ operands. │
└──┘

Figure 6-7 (Part 3 of 3). Priority of Access Exceptions .

 ASN-Translation Exceptions
The ASN-translation exceptions are those
exceptions which are common to the process of
translating an ASN in the instructions PROGRAM
RETURN, PROGRAM TRANSFER, and SET
SECONDARY ASN. The exceptions and the pri-
ority in which they are detected are shown in
Figure 6-8.

┌──┐
│ 1. Addressing exception for access to ASN-│
│ first-table entry. │
│ │
│ 2. AFX-translation exception due to I bit │
│ (bit �) in ASN-first-table entry being │
│ one. │
│ │
│ 3. Addressing exception for access to ASN-│
│ second-table entry. │
│ │
│ 4. ASX-translation exception due to I bit │
│ (bit �) in ASN-second-table entry being│
│ one. │
└──┘

Figure 6-8. Priority of ASN-Translation Exceptions

6-46 z/Architecture Principles of Operation

 Subspace-Replacement Exceptions
The subspace-replacement exceptions are those
exceptions which can be recognized during a
subspace-replacement operation in PROGRAM
CALL, PROGRAM RETURN, PROGRAM
TRANSFER, or SET SECONDARY ASN. The
exceptions and their priority are shown in
Figure 6-9 on page 6-47.

┌──┐
│ 1. Addressing exception for access to │
│ dispatchable-unit control table. │
│ │
│ 2. Addressing exception for access to │
│ subspace ASN-second-table entry. │
│ │
│ 3. ASTE-validity exception due to bit � │
│ being one in subspace ASN-second-table │
│ entry. │
│ │
│ 4. ASTE-sequence exception due to subspace│
│ ASN-second-table-entry sequence number │
│ in dispatchable-unit control table not │
│ being equal to ASN-second-table-entry │
│ sequence number in subspace ASN-second-│
│ table entry. │
└──┘

Figure 6-9. Priority of Subspace-Replacement
Exceptions

 Trace Exceptions
The trace exceptions are those exceptions which
can be encountered while forming a trace-table
entry. The exceptions and their priority are shown
in Figure 6-10.

┌──┐
│ A. Protection exception (low-address pro- │
│ tection) due to entry address being in │
│ the range �-511 or 4�96-46�7. │
│ │
│ B.1 Trace-table exception due to new entry │
│ reaching or crossing next 4K-byte │
│ boundary. │
│ │
│ B.2 Addressing exception for access to │
│ trace-table entry. │
└──┘

Figure 6-10. Priority of Trace Exceptions

 Restart Interruption
The restart interruption provides a means for the
operator or another CPU to invoke the execution
of a specified program. The CPU cannot be disa-
bled for this interruption.

A restart interruption causes the old PSW to be
stored at real locations 288-303 and a new PSW,
designating the start of the program to be exe-

cuted, to be fetched from real locations 416-431.
The instruction-length code and interruption code
are not stored.

If the CPU is in the operating state, the exchange
of the PSWs occurs at the completion of the
current unit of operation and after all other
pending interruption conditions for which the CPU
is enabled have been honored. If the CPU is in
the stopped state, the CPU enters the operating
state and exchanges the PSWs without first hon-
oring any other pending interruptions.

The restart interruption is initiated by activating the
restart key. The operation can also be initiated at
the addressed CPU by executing a SIGNAL
PROCESSOR instruction which specifies the
restart order.

When the rate control is set to the instruction-step
position, it is unpredictable whether restart causes
a unit of operation or additional interruptions to be
performed after the PSWs have been exchanged.

Programming Note: To perform a restart when
the CPU is in the check-stop state, the CPU has
to be reset. Resetting with loss of the least
amount of information can be accomplished by
means of the system-reset-normal key, which
does not clear the contents of program-
addressable registers, including the control regis-
ters, but causes the channel subsystem to be
reset. The CPU-reset SIGNAL PROCESSOR
order can be used to clear the CPU without
affecting the channel subsystem.

 Supervisor-Call Interruption
The supervisor-call interruption occurs when the
instruction SUPERVISOR CALL is executed. The
CPU cannot be disabled for the interruption, and
the interruption occurs immediately upon the exe-
cution of the instruction.

The supervisor-call interruption causes the old
PSW to be stored at real locations 320-335 and a
new PSW to be fetched from real locations
448-463.

The contents of bit positions 8-15 of the SUPER-
VISOR CALL instruction are placed in the right-
most byte of the interruption code. The leftmost
byte of the interruption code is set to zero. The
instruction-length code is 1, unless the instruction

 Chapter 6. Interruptions 6-47

was executed by means of EXECUTE, in which
case the code is 2.

The interruption code is placed at real locations
138-139; the instruction-length code is placed in
bit positions 5 and 6 of the byte at real location
137, with the other bits set to zeros; and zeros are
stored at real location 136.

Priority of Interruptions
During the execution of an instruction, several
interruption-causing events may occur simultane-
ously. The instruction may give rise to a program
interruption, a request for an external interruption
may be received, equipment malfunctioning may
be detected, an I/O-interruption request may be
made, and the restart key may be activated.
Instead of the program interruption, a supervisor-
call interruption might occur; or both can occur if
PER is active. Simultaneous interruption requests
are honored in a predetermined order.

An exigent machine-check condition has the
highest priority. When it occurs, the current oper-
ation is terminated or nullified. Program and
supervisor-call interruptions that would have
occurred as a result of the current operation may
be eliminated. Any pending repressible machine-
check conditions may be indicated with the
exigent machine-check interruption. Every rea-
sonable attempt is made to limit the side effects of
an exigent machine-check condition, and requests
for external, I/O, and restart interruptions normally
remain unaffected.

In the absence of an exigent machine-check con-
dition, interruption requests existing concurrently
at the end of a unit of operation are honored, in
descending order of priority, as follows:

 � Supervisor call
 � Program
� Repressible machine check

 � External
 � Input/output
 � Restart

The processing of multiple simultaneous inter-
ruption requests consists in storing the old PSW
and fetching the new PSW belonging to the inter-
ruption first honored. This new PSW is subse-
quently stored without the execution of any
instructions, and the new PSW associated with the
next interruption is fetched. Storing and fetching

of PSWs continues until no more interruptions are
to be serviced. The priority is reevaluated after
each new PSW is loaded. Each evaluation takes
into consideration any additional interruptions
which may have become pending. Additionally,
external and I/O interruptions, as well as machine-
check interruptions due to repressible conditions,
occur only if the current PSW at the instant of
evaluation indicates that the CPU is interruptible
for the cause.

Instruction execution is resumed using the last-
fetched PSW. The order of executing interruption
subroutines is, therefore, the reverse of the order
in which the PSWs are fetched.

If the new PSW for a program interruption does
not specify the wait state and has an odd instruc-
tion address, or causes an access exception to be
recognized, another program interruption occurs.
Since this second interruption introduces the same
unacceptable PSW, a string of interruptions is
established. These program exceptions are
recognized as part of the execution of the fol-
lowing instruction, and the string may be broken
by an external, I/O, machine-check, or restart
interruption or by the stop function.

If the new PSW for a program interruption con-
tains a one in bit position 12 or in an unassigned
bit position, if the leftmost 40 bits of the instruction
address are not zeros when bit 31 and 32 indicate
24-bit addressing, or the leftmost 33 bits are not
zeros when bits 31 and 32 indicate 31-bit
addressing, or if bit 32 is zero when bit 31 is one,
another program interruption occurs. This condi-
tion is of higher priority than restart, I/O, external,
or repressible machine-check conditions, or the
stop function, and CPU reset has to be used to
break the string of interruptions.

A string of interruptions for other interruption
classes can also exist if the new PSW allows the
interruption which has just occurred. These
include machine-check interruptions, external
interruptions, and I/O interruptions due to PCI con-
ditions generated because of CCWs which form a
loop. Furthermore, a string of interruptions
involving more than one interruption class can
exist. For example, assume that the CPU timer is
negative and the CPU-timer subclass mask is one.
If the external new PSW has a one in an unas-
signed bit position, and the program new PSW is
enabled for external interruptions, then a string of

6-48 z/Architecture Principles of Operation

interruptions occurs, alternating between external
and program. Even more complex strings of inter-
ruptions are possible. As long as more inter-
ruptions must be serviced, the string of inter-
ruptions cannot be broken by employing the stop
function; CPU reset is required.

Similarly, CPU reset has to be invoked to termi-
nate the condition that exists when an interruption

is attempted with a prefix value designating a
storage location that is not available to the CPU.

Interruptions for all requests for which the CPU is
enabled occur before the CPU is placed in the
stopped state. When the CPU is in the stopped
state, restart has the highest priority.

Programming Note: The order in which concur-
rent interruption requests are honored can be
changed to some extent by masking.

 Chapter 6. Interruptions 6-49

6-50 z/Architecture Principles of Operation

 Chapter 7. General Instructions

Data Format 7-2
Binary-Integer Representation 7-3
Binary Arithmetic 7-4

Signed Binary Arithmetic 7-4
Addition and Subtraction 7-4
Fixed-Point Overflow 7-4

Unsigned Binary Arithmetic 7-4
Signed and Logical Comparison 7-5
Instructions . 7-6

ADD . 7-18
ADD HALFWORD 7-18
ADD HALFWORD IMMEDIATE 7-18
ADD LOGICAL 7-19
ADD LOGICAL WITH CARRY 7-20
AND . 7-20
AND IMMEDIATE 7-21
BRANCH AND LINK 7-22
BRANCH AND SAVE 7-23
BRANCH AND SAVE AND SET MODE . 7-23
BRANCH AND SET MODE 7-24
BRANCH ON CONDITION 7-25
BRANCH ON COUNT 7-26
BRANCH ON INDEX HIGH 7-27
BRANCH ON INDEX LOW OR EQUAL . . 7-27
BRANCH RELATIVE AND SAVE 7-28
BRANCH RELATIVE AND SAVE LONG . 7-28
BRANCH RELATIVE ON CONDITION . . 7-29
BRANCH RELATIVE ON CONDITION

LONG 7-29
BRANCH RELATIVE ON COUNT 7-29
BRANCH RELATIVE ON INDEX HIGH . . 7-30
BRANCH RELATIVE ON INDEX LOW

OR EQUAL 7-30
CHECKSUM 7-31

| CIPHER MESSAGE (KM) 7-35
| CIPHER MESSAGE WITH CHAINING
| (KMC) 7-35

COMPARE 7-45
COMPARE AND FORM CODEWORD . . 7-46
COMPARE AND SWAP 7-53
COMPARE DOUBLE AND SWAP 7-53
COMPARE HALFWORD 7-55
COMPARE HALFWORD IMMEDIATE . . 7-55
COMPARE LOGICAL 7-56
COMPARE LOGICAL CHARACTERS

UNDER MASK 7-57
COMPARE LOGICAL LONG 7-58
COMPARE LOGICAL LONG EXTENDED 7-60
COMPARE LOGICAL LONG UNICODE . 7-64
COMPARE LOGICAL STRING 7-67

COMPARE UNTIL SUBSTRING EQUAL . 7-68
COMPRESSION CALL 7-72

| COMPUTE INTERMEDIATE MESSAGE
| DIGEST (KIMD) 7-84
| COMPUTE LAST MESSAGE DIGEST
| (KLMD) 7-84
| COMPUTE MESSAGE
| AUTHENTICATION CODE (KMAC) . . 7-91

CONVERT TO BINARY 7-97
CONVERT TO DECIMAL 7-98
CONVERT UNICODE TO UTF-8 7-98
CONVERT UTF-8 TO UNICODE 7-101
COPY ACCESS 7-104
DIVIDE 7-104
DIVIDE LOGICAL 7-105
DIVIDE SINGLE 7-106
EXCLUSIVE OR 7-106
EXECUTE 7-107
EXTRACT ACCESS 7-108
EXTRACT PSW 7-109
INSERT CHARACTER 7-109
INSERT CHARACTERS UNDER MASK . 7-109
INSERT IMMEDIATE 7-110
INSERT PROGRAM MASK 7-111
LOAD . 7-111
LOAD ACCESS MULTIPLE 7-111
LOAD ADDRESS 7-112
LOAD ADDRESS EXTENDED 7-112
LOAD ADDRESS RELATIVE LONG . . 7-113
LOAD AND TEST 7-114

| LOAD BYTE 7-114
LOAD COMPLEMENT 7-114
LOAD HALFWORD 7-115
LOAD HALFWORD IMMEDIATE 7-115
LOAD LOGICAL 7-116
LOAD LOGICAL CHARACTER 7-116
LOAD LOGICAL HALFWORD 7-116
LOAD LOGICAL IMMEDIATE 7-116
LOAD LOGICAL THIRTY ONE BITS . . 7-117
LOAD MULTIPLE 7-117
LOAD MULTIPLE DISJOINT 7-118
LOAD MULTIPLE HIGH 7-118
LOAD NEGATIVE 7-118
LOAD PAIR FROM QUADWORD 7-119
LOAD POSITIVE 7-119
LOAD REVERSED 7-120
MONITOR CALL 7-121
MOVE . 7-121
MOVE INVERSE 7-122
MOVE LONG 7-123

 Copyright IBM Corp. 1990-2003 7-1

MOVE LONG EXTENDED 7-127
MOVE LONG UNICODE 7-130
MOVE NUMERICS 7-134
MOVE STRING 7-134
MOVE WITH OFFSET 7-135
MOVE ZONES 7-136
MULTIPLY 7-136
MULTIPLY HALFWORD 7-137
MULTIPLY HALFWORD IMMEDIATE . . 7-137
MULTIPLY LOGICAL 7-138
MULTIPLY SINGLE 7-138
OR . 7-139
OR IMMEDIATE 7-140
PACK . 7-141
PACK ASCII 7-142
PACK UNICODE 7-143
PERFORM LOCKED OPERATION . . . 7-144
ROTATE LEFT SINGLE LOGICAL . . . 7-159
SEARCH STRING 7-160
SET ACCESS 7-161
SET ADDRESSING MODE 7-161
SET PROGRAM MASK 7-162
SHIFT LEFT DOUBLE 7-162
SHIFT LEFT DOUBLE LOGICAL 7-163
SHIFT LEFT SINGLE 7-163
SHIFT LEFT SINGLE LOGICAL 7-164
SHIFT RIGHT DOUBLE 7-165
SHIFT RIGHT DOUBLE LOGICAL . . . 7-165
SHIFT RIGHT SINGLE 7-166
SHIFT RIGHT SINGLE LOGICAL 7-166
STORE 7-167

STORE ACCESS MULTIPLE 7-167
STORE CHARACTER 7-168
STORE CHARACTERS UNDER MASK . 7-168
STORE CLOCK 7-169
STORE CLOCK EXTENDED 7-170
STORE HALFWORD 7-172
STORE MULTIPLE 7-172
STORE MULTIPLE HIGH 7-172
STORE PAIR TO QUADWORD 7-173
STORE REVERSED 7-173
SUBTRACT 7-174
SUBTRACT HALFWORD 7-174
SUBTRACT LOGICAL 7-175
SUBTRACT LOGICAL WITH BORROW . 7-176
SUPERVISOR CALL 7-177
TEST ADDRESSING MODE 7-177
TEST AND SET 7-177
TEST UNDER MASK (TEST UNDER

MASK HIGH, TEST UNDER MASK
LOW) 7-178

TRANSLATE 7-179
TRANSLATE AND TEST 7-180
TRANSLATE EXTENDED 7-181
TRANSLATE ONE TO ONE 7-183
TRANSLATE ONE TO TWO 7-183
TRANSLATE TWO TO ONE 7-183
TRANSLATE TWO TO TWO 7-183
UNPACK 7-188
UNPACK ASCII 7-189
UNPACK UNICODE 7-190
UPDATE TREE 7-191

This chapter includes all the unprivileged
instructions described in this publication other than
the decimal and floating-point instructions.

 Data Format
The general instructions treat data as being of four
types: signed binary integers, unsigned binary
integers, unstructured logical data, and decimal
data. Data is treated as decimal by the conver-
sion, packing, and unpacking instructions.
Decimal data is described in Chapter 8, “Decimal
Instructions.”

The general instructions manipulate data which
resides in general registers or in storage or is
introduced from the instruction stream. Some
general instructions operate on data which resides
in the PSW or the TOD clock.

In a storage-and-storage operation the operand
fields may be defined in such a way that they
overlap. The effect of this overlap depends upon
the operation. When the operands remain
unchanged, as in COMPARE or TRANSLATE
AND TEST, overlapping does not affect the exe-
cution of the operation. For instructions such as
MOVE and TRANSLATE, one operand is replaced
by new data, and the execution of the operation
may be affected by the amount of overlap and the
manner in which data is fetched or stored. For
purposes of evaluating the effect of overlapped
operands, data is considered to be handled one
eight-bit byte at a time. Special rules apply to the
operands of MOVE LONG and MOVE INVERSE.
See “Interlocks within a Single Instruction” on
page 5-81 for how overlap is detected in the
access-register mode.

7-2 z/Architecture Principles of Operation

 Binary-Integer Representation
Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When
two unsigned binary integers of different lengths
are added, the shorter number is considered to be
extended on the left with zeros.

In some operations, the result is achieved by the
use of the one's complement of the number. The
one's complement of a number is obtained by
inverting each bit of the number, including the
sign.

For signed binary integers, the leftmost bit repres-
ents the sign, which is followed by the numeric
field. Positive numbers are represented in true
binary notation with the sign bit set to zero. When
the value is zero, all bits are zeros, including the
sign bit. Negative numbers are represented in
two's-complement binary notation with a one in
the sign-bit position.

Specifically, a negative number is represented by
the two's complement of the positive number of
the same absolute value. The two's complement
of a number is obtained by forming the one's com-
plement of the number, adding a value of one in
the rightmost bit position, allowing a carry into the
sign position, and ignoring any carry out of the
sign position.

This number representation can be considered the
rightmost portion of an infinitely long represen-
tation of the number. When the number is posi-
tive, all bits to the left of the most significant bit of
the number are zeros. When the number is nega-
tive, these bits are ones. Therefore, when a
signed operand must be extended with bits on the
left, the extension is achieved by setting these bits
equal to the sign bit of the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which, for a given length, the set of negative
nonzero numbers is one larger than the set of
positive nonzero numbers. The maximum positive
number consists of a sign bit of zero followed by
all ones, whereas the maximum negative number
(the negative number with the greatest absolute

value) consists of a sign bit of one followed by all
zeros.

A signed binary integer of either sign, except for
zero and the maximum negative number, can be
changed to a number of the same magnitude but
opposite sign by forming its two's complement.
Forming the two's complement of a number is
equivalent to subtracting the number from zero.
The two's complement of zero is zero.

The two's complement of the maximum negative
number cannot be represented in the same
number of bits. When an operation, such as
LOAD COMPLEMENT, attempts to produce the
two's complement of the maximum negative
number, the result is the maximum negative
number, and a fixed-point-overflow exception is
recognized. An overflow does not result, however,
when the maximum negative number is comple-
mented as an intermediate result but the final
result is within the representable range. An
example of this case is a subtraction of the
maximum negative number from -1. The product
of two maximum negative numbers of a given
length is representable as a positive number of
double that length.

In discussions of signed binary integers in this
publication, a signed binary integer includes the
sign bit. Thus, the expression “32-bit signed
binary integer” denotes an integer with 31 numeric
bits and a sign bit, and the expression “64-bit
signed binary integer” denotes an integer with 63
numeric bits and a sign bit.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer is carried
into the sign bit. However, in algebraic left-
shifting, the sign bit does not change even if sig-
nificant numeric bits are shifted out.

Programming Notes:

1. An alternate way of forming the two's comple-
ment of a signed binary integer is to invert all
bits to the left of the rightmost one bit, leaving
the rightmost one bit and all zero bits to the
right of it unchanged.

2. The numeric bits of a signed binary integer
may be considered to represent a positive
value, with the sign representing a value of
either zero or the maximum negative number.

 Chapter 7. General Instructions 7-3

 Binary Arithmetic
Many of the instructions that perform a register-
and-storage or register-and-register binary-
arithmetic operation are provided in sets of three
instructions corresponding to three different combi-
nations of operand lengths. These three
instructions have the same name but different
operation codes and mnemonics. For example,
ADD (A) operates on 32-bit operands and
produces a 32-bit result, ADD (AG) operates on
64-bit operands and produces a 64-bit result, and
ADD (AGF) operates on a 64-bit operand and a
32-bit operand and produces a 64-bit result. The
letter “G” alone in the mnemonic indicates a com-
pletely 64-bit operation, and the letters “GF” indi-
cate a 32-to-64-bit operation.

In a 32-to-64-bit operation, the intermediate result
is 64 bits. LOAD COMPLEMENT (LCGFR) forms
the two's complement of the maximum negative
32-bit number without recognizing overflow.

A 32-bit operand in a general register is in bit
positions 32-63 of the register. In an operation on
the operand, such as by ADD (A), bits 0-31 of the
register are unused and remain unchanged. A
64-bit operand in a general register is in bit posi-
tions 0-63 of the register, and all of the bits partic-
ipate in an operation on the operand, such as by
ADD (AG). However, some instructions, which do
not have “G” in their mnemonics, use a 64-bit
operand of which the leftmost 32 bits are in bit
positions 32-63 of the even register of an
even-odd general-register pair, and the rightmost
32 bits are in bit positions 32-63 of the odd reg-
ister of the pair.

The bits of a 32-bit operand in storage are num-
bered 0-31. When the operand is in bit positions
32-63 of a general register, the bits are numbered
32-63.

Signed Binary Arithmetic

Addition and Subtraction
Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is considered to be extended on
the left to the length of the longer operand by
propagating the sign-bit value.

For a 32-bit signed binary integer in a general reg-
ister, the sign bit is bit 32 of the register. For a
64-bit signed binary integer in a general register,
the sign bit is bit 0 of the register.

Subtraction is performed by adding the one's com-
plement of the second operand and a value of one
to the first operand.

 Fixed-Point Overflow
A fixed-point-overflow condition exists for signed
binary addition or subtraction when the carry out
of the sign-bit position and the carry out of the left-
most numeric bit position disagree. Detection of
an overflow does not affect the result produced by
the addition. In mathematical terms, signed addi-
tion and subtraction produce a fixed-point overflow
when the result is outside the range of represen-
tation for signed binary integers. Specifically, for
ADD (A) and SUBTRACT (S), which operate on
32-bit signed binary integers, there is an overflow
when the proper result would be greater than or
equal to +2�� or less than -2��. The actual result
placed in the general register after an overflow
differs from the proper result by 2��. A fixed-point
overflow causes a program interruption if allowed
by the program mask. Similarly, for ADD (AG)
and SUBTRACT (SG), which operate on 64-bit
signed binary integers, there is an overflow when
the proper result would be greater than or equal to
+2�� or less than -2��, and the actual result
placed in the general register after an overflow
differs from the proper result by 2��. ADD (AGF)
and SUBTRACT (SGF) have the same 64-bit
result and overflow rules as ADD (AG) and SUB-
TRACT (SG).

The instructions SHIFT LEFT SINGLE and SHIFT
LEFT DOUBLE produce an overflow when the
result is outside the range of representation for
signed binary integers. The actual result differs
from that for addition and subtraction in that the
sign of the result remains the same as the original
sign.

Unsigned Binary Arithmetic

Addition of unsigned binary integers is performed
by adding all bits of each operand. Subtraction is
performed by adding the one's complement of the
second operand (the subtractor) and a value of
one to the first operand (the subtrahend). In any
case, when one of the operands is shorter, the

7-4 z/Architecture Principles of Operation

shorter operand is considered to be extended on
the left with zeros. During subtraction, this exten-
sion applies before an operand is complemented,
and it applies to the value of one.

Unsigned binary arithmetic is used in address
arithmetic for adding the X, B, and D fields. (See
“Address Generation” on page 5-7.) It is also
used to obtain the addresses of the function bytes
in TRANSLATE and TRANSLATE AND TEST.
Furthermore, unsigned binary arithmetic is used
on 32-bit or 64-bit unsigned binary integers by
ADD LOGICAL, ADD LOGICAL WITH CARRY,
DIVIDE LOGICAL, MULTIPLY LOGICAL, SUB-
TRACT LOGICAL, and SUBTRACT LOGICAL
WITH BORROW.

Given the same length operands, ADD (A, AG,
AGF) and ADD LOGICAL (AL, ALG, ALGF)
produce the same 32-bit or 64-bit result. The
instructions differ only in the interpretation of this
result. ADD interprets the result as a signed
binary integer and inspects it for sign, magnitude,
and overflow to set the condition code accordingly.
ADD LOGICAL interprets the result as an
unsigned binary integer and sets the condition
code according to whether the result is zero and
whether there was a carry out of bit position 32,
for a 32-bit integer, or out of bit position 0 for a
64-bit integer. Such a carry is not considered an
overflow, and no program interruption for overflow
can occur for ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD LOGICAL
in that the one's complement of the second
operand and a value of one are added to the first
operand.

For ADD LOGICAL WITH CARRY, a carry from a
previous operation is represented by a one value
of bit 18 of the current PSW. Bit 18 is the leftmost
bit of the two-bit condition code in the PSW. For
SUBTRACT LOGICAL WITH BORROW, a borrow
from a previous operation is represented by a zero
value of bit 18. A borrow is equivalent to the
absence of a carry.

Programming Notes:

1. Logical addition and subtraction may be used
to perform arithmetic on multiple-precision
binary-integer operands. Thus, for multiple-
precision addition, ADD LOGICAL can be
used to add the lowest-order corresponding
parts of the operands, and ADD LOGICAL

WITH CARRY can be used to add the other
corresponding parts of the operands, moving
from right to left in the operands. If the
multiple-precision operands are signed, ADD
should be used on the highest-order parts.
The condition code then indicates any over-
flow or the proper sign and magnitude of the
entire result; an overflow is also indicated by a
program interruption for fixed-point overflow if
allowed by the program mask. When ADD is
used, a value of one must be added to the
sum of the highest-order parts if the condition
code indicated there was a carry from the
addition of the next-lower parts.

2. Another use for ADD LOGICAL is to incre-
ment values representing binary counters,
which are allowed to wrap around from all
ones to all zeros without indicating overflow.

Signed and Logical Comparison
Comparison operations determine whether two
operands are equal or not and, for most oper-
ations, which of two unequal operands is the
greater (high). Signed-binary-comparison oper-
ations are provided which treat the operands as
signed binary integers, and logical-comparison
operations are provided which treat the operands
as unsigned binary integers or as unstructured
data.

COMPARE (C, CG, CGF) and COMPARE
HALFWORD are signed-binary-comparison oper-
ations. These instructions are equivalent to SUB-
TRACT (S, SG, SGF) and SUBTRACT
HALFWORD without replacing either operand, the
resulting difference being used only to set the con-
dition code. The operations permit comparison of
numbers of opposite sign which differ by 2�� or
more. Thus, unlike SUBTRACT, COMPARE
cannot cause overflow.

Logical comparison of two operands is performed
byte by byte, in a left-to-right sequence. The
operands are equal when all their bytes are equal.
When the operands are unequal, the comparison
result is determined by a left-to-right comparison
of corresponding bit positions in the first unequal
pair of bytes: the zero bit in the first unequal pair
of bits indicates the low operand, and the one bit
the high operand. Since the remaining bit and
byte positions do not change the comparison, it is

 Chapter 7. General Instructions 7-5

not necessary to continue comparing unequal
operands beyond the first unequal bit pair.

 Instructions
The general instructions and their mnemonics,
formats, and operation codes are listed in
Figure 7-1 on page 7-9. The figure also indicates
which instructions are new in z/Architecture as
compared to ESA/390, when the condition code is
set, the instruction fields that designate access
registers, and the exceptional conditions in
operand designations, data, or results that cause
a program interruption.

The instructions that are new in z/Architecture are
indicated in Figure 7-1 by “N.” A few of the
instructions that are new in z/Architecture have
also been added to ESA/390, and these are indi-
cated by “N3.”

When the operands of an instruction are 32-bit
operands, the mnemonic for the instruction does
not include a letter indicating the operand length.
If there is an instruction with the same name but
with 64-bit operands, its mnemonic includes the
letter “G.” If there is an instruction with the same
name but with a 64-bit first operand and a 32-bit
second operand, its mnemonic includes the letters
“GF.” In Figure 7-1, when there is an instruction
with 32-bit operands and other instructions with
the same name but with “G” or “GF” added in their
mnemonics, the first instruction has “(32)” after its
name, and the other instructions have “(64)” or
“(64<32),” respectively, after their names. Some
32-bit operand-length instructions do not have
64-bit operand-length counterparts, and they do
not have “(32)” after their names. However, all
instructions for multiplication or division are
marked to show, or approximately show, operand
lengths.

A detailed definition of instruction formats,
operand designation and length, and address gen-
eration is contained in “Instructions” on page 5-2.
Exceptions to the general rules stated in that
section are explicitly identified in the individual
instruction descriptions.

Note: In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designations for the assembler lan-
guage are shown with each instruction. For LOAD
AND TEST with 32-bit operands, for example,

LTR is the mnemonic and R�,R� the operand des-
ignation.

Programming Notes:

1. Trimodal addressing affects the general
instructions only in the manner in which logical
storage addresses are handled, except as
follows.

The instructions BRANCH AND LINK (BAL,
BALR), BRANCH AND SAVE (BAS, BASR),
BRANCH AND SAVE AND SET MODE,
BRANCH AND SET MODE, BRANCH RELA-
TIVE AND SAVE, and BRANCH RELATIVE
AND SAVE LONG place information in bit
positions 32-39 of general register R� as in
ESA/390 in the 24-bit or 31-bit addressing
mode or place address bits in those bit posi-
tions in the 64-bit addressing mode.

The instruction BRANCH AND SAVE AND
SET MODE places a zero in bit position 63 of
general register R� in the 24-bit or 31-bit
addressing mode or places a one in that bit
position in the 64-bit addressing mode.

The instruction BRANCH AND SET MODE
leaves the contents of bit position 63 of
general register R� unchanged in the 24-bit or
31-bit addressing mode or places a one in
that bit position in the 64-bit addressing mode.

The following instructions leave bits 0-31 of a
general register unchanged in the 24-bit or
31-bit addressing mode but place or update
address or length information in them in the
64-bit addressing mode. Also, the leftmost
byte of the results in registers may be handled
differently depending on whether the
addressing mode is the 24-bit or the 31-bit
mode.

� BRANCH AND LINK (BAL, BALR)
� BRANCH AND SAVE (BAS, BASR)
� BRANCH AND SAVE AND SET MODE
� BRANCH RELATIVE AND SAVE
� BRANCH RELATIVE AND SAVE LONG

 � CHECKSUM
� COMPARE AND FORM CODEWORD
� COMPARE LOGICAL LONG
� COMPARE LOGICAL LONG EXTENDED
� COMPARE LOGICAL LONG UNICODE
� COMPARE LOGICAL STRING
� COMPARE UNTIL SUBSTRING EQUAL

 � COMPRESSION CALL
� CONVERT UNICODE TO UTF-8

7-6 z/Architecture Principles of Operation

� CONVERT UTF-8 TO UNICODE
 � LOAD ADDRESS
� LOAD ADDRESS EXTENDED
� LOAD ADDRESS RELATIVE LONG

 � MOVE LONG
� MOVE LONG EXTENDED
� MOVE LONG UNICODE

 � MOVE STRING
 � SEARCH STRING
 � TRANSLATE EXTENDED
� TRANSLATE AND TEST
� TRANSLATE ONE TO ONE
� TRANSLATE ONE TO TWO
� TRANSLATE TWO TO ONE
� TRANSLATE TWO TO TWO

 � UPDATE TREE

The instructions in the preceding list are
sometimes called modal instructions.

2. Bits 0-31 of general registers are changed by
two types of instructions. The first type is a
modal instruction, as listed in the preceding
note, when the instruction is executed in the
64-bit addressing mode. The second type is
an instruction having, independent of the
addressing mode, either a 64-bit result
operand in a single general register or a
128-bit result operand in an even-odd general-
register pair.

Most of the instructions of the second type are
indicated by a “G,” either alone or in “GF,” in
their mnemonics. The other instructions that
change or may change bits 0-31 of a general
register regardless of the current addressing
mode are:

� AND IMMEDIATE (NIHH, NIHL only)
� INSERT CHARACTERS UNDER MASK

(ICMH only)
� INSERT IMMEDIATE (IIHH, IIHL only)

| � LOAD LOGICAL IMMEDIATE (LLIHH,
| LLIHL only)

� LOAD MULTIPLE DISJOINT
� LOAD MULTIPLE HIGH
� LOAD PAIR FROM QUADWORD
� OR IMMEDIATE (OIHH, OIHL only)

All of the instructions of the second type are
sometimes referred to as “G-type” instructions.

If a program is not executed in the 64-bit
addressing mode and does not contain a
G-type instruction, it cannot change bits 0-31
of any general register.

3. It is not intended or expected that old pro-
grams not containing G-type instructions will
be able to be executed successfully in the
64-bit addressing mode. However, this may
be possible, particularly if, by programming
convention, bits 0-31 of the general registers
are always all zeros when an old program is
given control.

4. The following additional general instructions
are available when the extended-translation
facility 2 is installed:

� COMPARE LOGICAL LONG UNICODE
� MOVE LONG UNICODE

 � PACK ASCII
 � PACK UNICODE
� TRANSLATE ONE TO ONE
� TRANSLATE ONE TO TWO
� TRANSLATE TWO TO ONE
� TRANSLATE TWO TO TWO

 � UNPACK ASCII
 � UNPACK UNICODE

| 5. The long-displacement facilty uses new
| instruction formats, named RSY, RXY, and
| SIY, to provide 20-bit signed displacements.
| In connection with the long-displacement
| facility, all previously existing general
| instructions of the RSE or RXE format are
| changed to be of format RSY or RXY, respec-
| tively, where the new formats differ from the
| old by using a previously unused byte, now
| named DH, in the instructions. When the
| long-displacement facility is installed, the dis-
| placement for an instruction operand address
| is formed by appending DH on the left of the
| previous displacement field, now named DL,
| of the instruction. When the long-
| displacement facility is not installed, eight zero
| bits are appended on the left of DL, and DH is
| ignored.

| The following additional general instruction is
| available when the long-displacement facility
| is installed.

| � LOAD BYTE

| The following additional RSY-format versions
| of general instructions are available when the
| long-displacement facility is installed.

| � COMPARE AND SWAP
| � COMPARE DOUBLE AND SWAP
| � COMPARE LOGICAL CHARACTERS
| UNDER MASK

 Chapter 7. General Instructions 7-7

| � LOAD ACCESS MULTIPLE
| � LOAD MULTIPLE
| � STORE ACCESS MULTIPLE
| � STORE CHARACTERS UNDER MASK
| � STORE MULTIPLE

| The following additional RXY-format versions
| of general instructions are available when the
| long-displacement facility is installed.

| � ADD
| � ADD HALFWORD
| � ADD LOGICAL
| � AND
| � COMPARE
| � COMPARE HALFWORD
| � COMPARE LOGICAL
| � CONVERT TO BINARY
| � CONVERT TO DECIMAL
| � EXCLUSIVE OR
| � INSERT CHARACTER
| � INSERT CHARACTER UNDER MASK
| � LOAD
| � LOAD ADDRESS
| � LOAD HALFWORD
| � MULTIPLY SINGLE
| � OR

| � STORE
| � STORE CHARACTER
| � STORE HALFWORD
| � SUBTRACT
| � SUBTRACT HALFWORD
| � SUBTRACT LOGICAL

| The following additional SIY-format versions of
| general instructions are available when the
| long-displacement facility is installed.

| � AND
| � COMPARE LOGICAL
| � EXCLUSIVE OR
| � MOVE
| � OR
| � TEST UNDER MASK

| 6. The following additional general instructions
| are available when the message-security
| assist is installed:

| � CIPHER MESSAGE
| � CIPHER MESSAGE WITH CHAINING
| � COMPUTE INTERMEDIATE MESSAGE
| DIGEST
| � COMPUTE LAST MESSAGE DIGEST
| � COMPUTE MESSAGE
| AUTHENTICATION CODE

7-8 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│ADD (32) │AR │RR C │ │ IF │ │ │1A │
│ADD (64) │AGR │RRE C N │ │ IF │ │ │B9�8│
│ADD (64<32) │AGFR │RRE C N │ │ IF │ │ │B918│
│ADD (32) │A │RX C │ A │ IF │ │ B�│5A │

| │ADD (32) │AY │RXY C LD│ A │ IF │ │ B�│E35A│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│ADD (64) │AG │RXY C N │ A │ IF │ │ B�│E3�8│
│ADD (64<32) │AGF │RXY C N │ A │ IF │ │ B�│E318│
│ADD HALFWORD │AH │RX C │ A │ IF │ │ B�│4A │

| │ADD HALFWORD │AHY │RXY C LD│ A │ IF │ │ B�│E37A│
│ADD HALFWORD IMMEDIATE (32) │AHI │RI C │ │ IF │ │ │A7A │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│ADD HALFWORD IMMEDIATE (64) │AGHI │RI C N │ │ IF │ │ │A7B │
│ADD LOGICAL (32) │ALR │RR C │ │ │ │ │1E │
│ADD LOGICAL (64) │ALGR │RRE C N │ │ │ │ │B9�A│
│ADD LOGICAL (64<32) │ALGFR│RRE C N │ │ │ │ │B91A│
│ADD LOGICAL (32) │AL │RX C │ A │ │ │ B�│5E │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │ADD LOGICAL (32) │ALY │RXY C LD│ A │ │ │ B�│E35E│
│ADD LOGICAL (64) │ALG │RXY C N │ A │ │ │ B�│E3�A│
│ADD LOGICAL (64<32) │ALGF │RXY C N │ A │ │ │ B�│E31A│
│ADD LOGICAL WITH CARRY (32) │ALCR │RRE C N3│ │ │ │ │B998│
│ADD LOGICAL WITH CARRY (64) │ALCGR│RRE C N │ │ │ │ │B988│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│ADD LOGICAL WITH CARRY (32) │ALC │RXY C N3│ A │ │ │ B�│E398│
│ADD LOGICAL WITH CARRY (64) │ALCG │RXY C N │ A │ │ │ B�│E388│
│AND (32) │NR │RR C │ │ │ │ │14 │
│AND (64) │NGR │RRE C N │ │ │ │ │B98�│
│AND (32) │N │RX C │ A │ │ │ B�│54 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │AND (32) │NY │RXY C LD│ A │ │ │ B�│E354│
│AND (64) │NG │RXY C N │ A │ │ │ B�│E38�│
│AND (character) │NC │SS C │ A │ │ ST│B� B�│D4 │
│AND (immediate) │NI │SI C │ A │ │ ST│B� │94 │

| │AND (immediate) │NIY │SIY C LD│ A │ │ ST│B� │EB54│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│AND IMMEDIATE (high high) │NIHH │RI C N │ │ │ │ │A54 │
│AND IMMEDIATE (high low) │NIHL │RI C N │ │ │ │ │A55 │
│AND IMMEDIATE (low high) │NILH │RI C N │ │ │ │ │A56 │
│AND IMMEDIATE (low low) │NILL │RI C N │ │ │ │ │A57 │
│BRANCH AND LINK │BALR │RR │ │ T │B │ │�5 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│BRANCH AND LINK │BAL │RX │ │ │B │ │45 │
│BRANCH AND SAVE │BASR │RR │ │ T │B │ │�D │
│BRANCH AND SAVE │BAS │RX │ │ │B │ │4D │
│BRANCH AND SAVE AND SET MODE │BASSM│RR │ │ T │B │ │�C │
│BRANCH AND SET MODE │BSM │RR │ │ T │B │ │�B │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│BRANCH ON CONDITION │BCR │RR │ │ ¢� │B │ │�7 │
│BRANCH ON CONDITION │BC │RX │ │ │B │ │47 │
│BRANCH ON COUNT (32) │BCTR │RR │ │ │B │ │�6 │
│BRANCH ON COUNT (64) │BCTGR│RRE N │ │ │B │ │B946│
│BRANCH ON COUNT (32) │BCT │RX │ │ │B │ │46 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 1 of 9). Summary of General Instructions

 Chapter 7. General Instructions 7-9

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│BRANCH ON COUNT (64) │BCTG │RXY N │ │ │B │ │E346│
│BRANCH ON INDEX HIGH (32) │BXH │RS │ │ │B │ │86 │
│BRANCH ON INDEX HIGH (64) │BXHG │RSY N │ │ │B │ │EB44│
│BRANCH ON INDEX LOW OR EQUAL (32) │BXLE │RS │ │ │B │ │87 │
│BRANCH ON INDEX LOW OR EQUAL (64) │BXLEG│RSY N │ │ │B │ │EB45│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│BRANCH RELATIVE AND SAVE │BRAS │RI │ │ │B │ │A75 │
│BRANCH RELATIVE AND SAVE LONG │BRASL│RIL N3│ │ │B │ │C�5 │
│BRANCH RELATIVE ON CONDITION │BRC │RI │ │ │B │ │A74 │
│BRANCH RELATIVE ON CONDITION LONG │BRCL │RIL N3│ │ │B │ │C�4 │
│BRANCH RELATIVE ON COUNT (32) │BRCT │RI │ │ │B │ │A76 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│BRANCH RELATIVE ON COUNT (64) │BRCTG│RI N │ │ │B │ │A77 │
│BRANCH RELATIVE ON INDEX HIGH (32) │BRXH │RSI │ │ │B │ │84 │
│BRANCH RELATIVE ON INDEX HIGH (64) │BRXHG│RIE N │ │ │B │ │EC44│
│BRANCH RELATIVE ON INDEX L OR E (32)│BRXLE│RSI │ │ │B │ │85 │
│BRANCH RELATIVE ON INDEX L OR E (64)│BRXLG│RIE N │ │ │B │ │EC45│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CHECKSUM │CKSM │RRE C │ A SP│ │ │ R�│B241│

| │CIPHER MESSAGE │KM │RRE C MS│ A SP│ GM I1 │ ST│R� R�│B92E│
| │CIPHER MESSAGE WITH CHAINING │KMC │RRE C MS│ A SP│ GM I1 │ ST│R� R�│B92F│

│COMPARE (32) │CR │RR C │ │ │ │ │19 │
│COMPARE (64) │CGR │RRE C N │ │ │ │ │B92�│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│COMPARE (64<32) │CGFR │RRE C N │ │ │ │ │B93�│
│COMPARE (32) │C │RX C │ A │ │ │ B�│59 │

| │COMPARE (32) │CY │RXY C LD│ A │ │ │ B�│E359│
│COMPARE (64) │CG │RXY C N │ A │ │ │ B�│E32�│
│COMPARE (64<32) │CGF │RXY C N │ A │ │ │ B�│E33�│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│COMPARE AND FORM CODEWORD │CFC │S C │ A SP│II GM │ │I1 │B21A│
│COMPARE AND SWAP (32) │CS │RS C │ A SP│ $ │ ST│ B�│BA │

| │COMPARE AND SWAP (32) │CSY │RSY C LD│ A SP│ $ │ ST│ B�│EB14│
│COMPARE AND SWAP (64) │CSG │RSY C N │ A SP│ $ │ ST│ B�│EB3�│
│COMPARE DOUBLE AND SWAP (32) │CDS │RS C │ A SP│ $ │ ST│ B�│BB │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │COMPARE DOUBLE AND SWAP (32) │CDSY │RSY C LD│ A SP│ $ │ ST│ B�│EB31│
│COMPARE DOUBLE AND SWAP (64) │CDSG │RSY C N │ A SP│ $ │ ST│ B�│EB3E│
│COMPARE HALFWORD │CH │RX C │ A │ │ │ B�│49 │

| │COMPARE HALFWORD │CHY │RXY C LD│ A │ │ │ B�│E379│
│COMPARE HALFWORD IMMEDIATE (32) │CHI │RI C │ │ │ │ │A7E │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│COMPARE HALFWORD IMMEDIATE (64) │CGHI │RI C N │ │ │ │ │A7F │
│COMPARE LOGICAL (32) │CLR │RR C │ │ │ │ │15 │

| │COMPARE LOGICAL (32) │CLY │RXY C LD│ A │ │ │ B�│E355│
│COMPARE LOGICAL (64) │CLGR │RRE C N │ │ │ │ │B921│
│COMPARE LOGICAL (64<32) │CLGFR│RRE C N │ │ │ │ │B931│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│COMPARE LOGICAL (32) │CL │RX C │ A │ │ │ B�│55 │
│COMPARE LOGICAL (64) │CLG │RXY C N │ A │ │ │ B�│E321│
│COMPARE LOGICAL (64<32) │CLGF │RXY C N │ A │ │ │ B�│E331│
│COMPARE LOGICAL (character) │CLC │SS C │ A │ │ │B� B�│D5 │
│COMPARE LOGICAL (immediate) │CLI │SI C │ A │ │ │B� │95 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 2 of 9). Summary of General Instructions

7-10 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

| │COMPARE LOGICAL (immediate) │CLIY │SIY C LD│ A │ │ │B� │EB55│
│COMPARE LOGICAL C. UNDER MASK (high)│CLMH │RSY C N │ A │ │ │ B�│EB2�│
│COMPARE LOGICAL C. UNDER MASK (low) │CLM │RS C │ A │ │ │ B�│BD │

| │COMPARE LOGICAL C. UNDER MASK (low) │CLMY │RSY C LD│ A │ │ │ B�│EB21│
│COMPARE LOGICAL LONG │CLCL │RR C │ A SP│II │ │R� R�│�F │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│COMPARE LOGICAL LONG EXTENDED │CLCLE│RS C │ A SP│ │ │R� R�│A9 │
│COMPARE LOGICAL LONG UNICODE │CLCLU│RSY C E2│ A SP│ │ │R� R�│EB8F│
│COMPARE LOGICAL STRING │CLST │RRE C │ A SP│ G� │ │R� R�│B25D│
│COMPARE UNTIL SUBSTRING EQUAL │CUSE │RRE C │ A SP│II GM │ │R� R�│B257│
│COMPRESSION CALL │CMPSC│RRE C │ A SP│II Dd GM │ ST│R� R�│B263│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │COMPUTE INTERMEDIATE MESSAGE DIGEST │KIMD │RRE C MS│ A SP│ GM I1 │ ST│ R�│B93E│
| │COMPUTE LAST MESSAGE DIGEST │KLMD │RRE C MS│ A SP│ GM I1 │ ST│ R�│B93F│
| │COMPUTE MESSAGE AUTHENTICATION CODE │KMAC │RRE C MS│ A SP│ GM I1 │ ST│ R�│B91E│

│CONVERT TO BINARY (32) │CVB │RX │ A │Dd IK │ │ B�│4F │
| │CONVERT TO BINARY (32) │CVBY │RXY LD│ A │Dd IK │ │ B�│E3�6│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CONVERT TO BINARY (64) │CVBG │RXY N │ A │Dd IK │ │ B�│E3�E│
│CONVERT TO DECIMAL (32) │CVD │RX │ A │ │ ST│ B�│4E │

| │CONVERT TO DECIMAL (32) │CVDY │RXY LD│ A │ │ ST│ B�│E326│
│CONVERT TO DECIMAL (64) │CVDG │RXY N │ A │ │ ST│ B�│E32E│
│CONVERT UNICODE TO UTF-8 │CUUTF│RRE C │ A SP│ │ ST│R� R�│B2A6│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CONVERT UTF-8 TO UNICODE │CUTFU│RRE C │ A SP│ │ ST│R� R�│B2A7│
│COPY ACCESS │CPYA │RRE │ │ │ │U� U�│B24D│
│DIVIDE (32<64) │DR │RR │ SP│ IK │ │ │1D │
│DIVIDE (32<64) │D │RX │ A SP│ IK │ │ B�│5D │
│DIVIDE LOGICAL (32<64) │DLR │RRE N3│ SP│ IK │ │ │B997│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│DIVIDE LOGICAL (64<128) │DLGR │RRE N │ SP│ IK │ │ │B987│
│DIVIDE LOGICAL (32<64) │DL │RXY N3│ A SP│ IK │ │ B�│E397│
│DIVIDE LOGICAL (64<128) │DLG │RXY N │ A SP│ IK │ │ B�│E387│
│DIVIDE SINGLE (64) │DSGR │RRE N │ SP│ IK │ │ │B9�D│
│DIVIDE SINGLE (64<32) │DSGFR│RRE N │ SP│ IK │ │ │B91D│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│DIVIDE SINGLE (64) │DSG │RXY N │ A SP│ IK │ │ B�│E3�D│
│DIVIDE SINGLE (64<32) │DSGF │RXY N │ A SP│ IK │ │ B�│E31D│
│EXCLUSIVE OR (32) │XR │RR C │ │ │ │ │17 │
│EXCLUSIVE OR (64) │XGR │RRE C N │ │ │ │ │B982│
│EXCLUSIVE OR (32) │X │RX C │ A │ │ │ B�│57 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │EXCLUSIVE OR (32) │XY │RXY C LD│ A │ │ │ B�│E357│
│EXCLUSIVE OR (64) │XG │RXY C N │ A │ │ │ B�│E382│
│EXCLUSIVE OR (character) │XC │SS C │ A │ │ ST│B� B�│D7 │
│EXCLUSIVE OR (immediate) │XI │SI C │ A │ │ ST│B� │97 │

| │EXCLUSIVE OR (immediate) │XIY │SIY C LD│ A │ │ ST│B� │EB57│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│EXECUTE │EX │RX │ AI SP│ EX │ │ │44 │
│EXTRACT ACCESS │EAR │RRE │ │ │ │ U�│B24F│
│EXTRACT PSW │EPSW │RRE N3│ │ │ │ │B98D│
│INSERT CHARACTER │IC │RX │ A │ │ │ B�│43 │

| │INSERT CHARACTER │ICY │RXY LD│ A │ │ │ B�│E373│
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 3 of 9). Summary of General Instructions

 Chapter 7. General Instructions 7-11

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│INSERT CHARACTERS UNDER MASK (high) │ICMH │RSY C N │ A │ │ │ B�│EB8�│
│INSERT CHARACTERS UNDER MASK (low) │ICM │RS C │ A │ │ │ B�│BF │

| │INSERT CHARACTERS UNDER MASK (low) │ICMY │RSY C LD│ A │ │ │ B�│EB81│
│INSERT IMMEDIATE (high high) │IIHH │RI N │ │ │ │ │A5� │
│INSERT IMMEDIATE (high low) │IIHL │RI N │ │ │ │ │A51 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│INSERT IMMEDIATE (low high) │IILH │RI N │ │ │ │ │A52 │
│INSERT IMMEDIATE (low low) │IILL │RI N │ │ │ │ │A53 │
│INSERT PROGRAM MASK │IPM │RRE │ │ │ │ │B222│
│LOAD (32) │LR │RR │ │ │ │ │18 │
│LOAD (64) │LGR │RRE N │ │ │ │ │B9�4│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD (64<32) │LGFR │RRE N │ │ │ │ │B914│
│LOAD (32) │L │RX │ A │ │ │ B�│58 │

| │LOAD (32) │LY │RXY LD│ A │ │ │ B�│E358│
│LOAD (64) │LG │RXY N │ A │ │ │ B�│E3�4│
│LOAD (64<32) │LGF │RXY N │ A │ │ │ B�│E314│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD ACCESS MULTIPLE │LAM │RS │ A SP│ │ │ UB│9A │

| │LOAD ACCESS MULTIPLE │LAMY │RSY LD│ A SP│ │ │ UB│EB9A│
│LOAD ADDRESS │LA │RX │ │ │ │ │41 │

| │LOAD ADDRESS │LAY │RXY LD│ │ │ │ │E371│
│LOAD ADDRESS EXTENDED │LAE │RX │ │ │ │U� BP│51 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD ADDRESS RELATIVE LONG │LARL │RIL N3│ │ │ │ │C�� │
│LOAD AND TEST (32) │LTR │RR C │ │ │ │ │12 │
│LOAD AND TEST (64) │LTGR │RRE C N │ │ │ │ │B9�2│
│LOAD AND TEST (64<32) │LTGFR│RRE C N │ │ │ │ │B912│

| │LOAD BYTE (32) │LB │RXY LD│ A │ │ │ │E376│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │LOAD BYTE (64) │LGB │RXY LD│ A │ │ │ │E377│
│LOAD COMPLEMENT (32) │LCR │RR C │ │ IF │ │ │13 │
│LOAD COMPLEMENT (64) │LCGR │RRE C N │ │ IF │ │ │B9�3│
│LOAD COMPLEMENT (64<32) │LCGFR│RRE C N │ │ IF │ │ │B913│
│LOAD HALFWORD (32) │LH │RX │ A │ │ │ B�│48 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │LOAD HALFWORD (32) │LHY │RXY LD│ A │ │ │ B�│E378│
│LOAD HALFWORD (64) │LGH │RXY N │ A │ │ │ B�│E315│
│LOAD HALFWORD IMMEDIATE (32) │LHI │RI │ │ │ │ │A78 │
│LOAD HALFWORD IMMEDIATE (64) │LGHI │RI N │ │ │ │ │A79 │
│LOAD LOGICAL (64<32) │LLGFR│RRE N │ │ │ │ │B916│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD LOGICAL (64<32) │LLGF │RXY N │ A │ │ │ B�│E316│
│LOAD LOGICAL CHARACTER │LLGC │RXY N │ A │ │ │ B�│E39�│
│LOAD LOGICAL HALFWORD │LLGH │RXY N │ A │ │ │ B�│E391│
│LOAD LOGICAL IMMEDIATE (high high) │LLIHH│RI N │ │ │ │ │A5C │
│LOAD LOGICAL IMMEDIATE (high low) │LLIHL│RI N │ │ │ │ │A5D │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD LOGICAL IMMEDIATE (low high) │LLILH│RI N │ │ │ │ │A5E │
│LOAD LOGICAL IMMEDIATE (low low) │LLILL│RI N │ │ │ │ │A5F │
│LOAD LOGICAL THIRTY ONE BITS │LLGTR│RRE N │ │ │ │ │B917│
│LOAD LOGICAL THIRTY ONE BITS │LLGT │RXY N │ A │ │ │ B�│E317│
│LOAD LOGICAL IMMEDIATE (low high) │LLILH│RI N │ │ │ │ │A5E │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 4 of 9). Summary of General Instructions

7-12 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│LOAD LOGICAL IMMEDIATE (low low) │LLILL│RI N │ │ │ │ │A5F │
│LOAD LOGICAL THIRTY ONE BITS │LLGTR│RRE N │ │ │ │ │B917│
│LOAD LOGICAL THIRTY ONE BITS │LLGT │RXY N │ A │ │ │ B�│E317│
│LOAD MULTIPLE (32) │LM │RS │ A │ │ │ B�│98 │

| │LOAD MULTIPLE (32) │LMY │RSY LD│ A │ │ │ B�│EB98│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD MULTIPLE (64) │LMG │RSY N │ A │ │ │ B�│EB�4│
│LOAD MULTIPLE DISJOINT │LMD │SS N │ A │ │ │B� B"│EF │
│LOAD MULTIPLE HIGH │LMH │RSY N │ A │ │ │ B�│EB96│
│LOAD NEGATIVE (32) │LNR │RR C │ │ │ │ │11 │
│LOAD NEGATIVE (64) │LNGR │RRE C N │ │ │ │ │B9�1│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD NEGATIVE (64<32) │LNGFR│RRE C N │ │ │ │ │B911│
│LOAD PAIR FROM QUADWORD │LPQ │RXY N │ A SP│ │ │ B�│E38F│
│LOAD POSITIVE (32) │LPR │RR C │ │ IF │ │ │1� │
│LOAD POSITIVE (64) │LPGR │RRE C N │ │ IF │ │ │B9��│
│LOAD POSITIVE (64<32) │LPGFR│RRE C N │ │ IF │ │ │B91�│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD REVERSED (32) │LRVR │RRE N3│ │ │ │ │B91F│
│LOAD REVERSED (64) │LRVGR│RRE N │ │ │ │ │B9�F│
│LOAD REVERSED (16) │LRVH │RXY N3│ A │ │ │ B�│E31F│
│LOAD REVERSED (32) │LRV │RXY N3│ A │ │ │ B�│E31E│
│LOAD REVERSED (64) │LRVG │RXY N │ A │ │ │ B�│E3�F│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MONITOR CALL │MC │SI │ SP│ MO │ │ │AF │
│MOVE (character) │MVC │SS │ A │ │ ST│B� B�│D2 │
│MOVE (immediate) │MVI │SI │ A │ │ ST│B� │92 │

| │MOVE (immediate) │MVIY │SIY LD│ A │ │ ST│B� │EB52│
│MOVE INVERSE │MVCIN│SS │ A │ │ ST│B� B�│E8 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MOVE LONG │MVCL │RR C │ A SP│II │ ST│R� R�│�E │
│MOVE LONG EXTENDED │MVCLE│RS C │ A SP│ │ ST│R� R�│A8 │
│MOVE LONG UNICODE │MVCLU│RSY C E2│ A SP│ │ ST│R� R�│EB8E│
│MOVE NUMERICS │MVN │SS │ A │ │ ST│B� B�│D1 │
│MOVE STRING │MVST │RRE C │ A SP│ G� │ ST│R� R�│B255│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MOVE WITH OFFSET │MVO │SS │ A │ │ ST│B� B�│F1 │
│MOVE ZONES │MVZ │SS │ A │ │ ST│B� B�│D3 │
│MULTIPLY (64<32) │MR │RR │ SP│ │ │ │1C │
│MULTIPLY (64<32) │M │RX │ A SP│ │ │ B�│5C │
│MULTIPLY HALFWORD (32) │MH │RX │ A │ │ │ B�│4C │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY HALFWORD IMMEDIATE (32) │MHI │RI │ │ │ │ │A7C │
│MULTIPLY HALFWORD IMMEDIATE (64) │MGHI │RI N │ │ │ │ │A7D │
│MULTIPLY LOGICAL (64<32) │MLR │RRE N3│ SP│ │ │ │B996│
│MULTIPLY LOGICAL (128<64) │MLGR │RRE N │ SP│ │ │ │B986│
│MULTIPLY LOGICAL (64<32) │ML │RXY N3│ A SP│ │ │ B�│E396│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY LOGICAL (128<64) │MLG │RXY N │ A SP│ │ │ B�│E386│
│MULTIPLY SINGLE (32) │MSR │RRE │ │ │ │ │B252│
│MULTIPLY SINGLE (64) │MSGR │RRE N │ │ │ │ │B9�C│
│MULTIPLY SINGLE (64<32) │MSGFR│RRE N │ │ │ │ │B91C│
│MULTIPLY SINGLE (32) │MS │RX │ A │ │ │ B�│71 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 5 of 9). Summary of General Instructions

 Chapter 7. General Instructions 7-13

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

| │MULTIPLY SINGLE (32) │MSY │RXY LD│ A │ │ │ B�│E351│
│MULTIPLY SINGLE (64) │MSG │RXY N │ A │ │ │ B�│E3�C│
│MULTIPLY SINGLE (64<32) │MSGF │RXY N │ A │ │ │ B�│E31C│
│OR (32) │OR │RR C │ │ │ │ │16 │
│OR (64) │OGR │RRE C N │ │ │ │ │B981│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│OR (32) │O │RX C │ A │ │ │ B�│56 │

| │OR (32) │OY │RXY C LD│ A │ │ │ B�│E356│
│OR (64) │OG │RXY C N │ A │ │ │ B�│E381│
│OR (character) │OC │SS C │ A │ │ ST│B� B�│D6 │
│OR (immediate) │OI │SI C │ A │ │ ST│B� │96 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │OR (immediate) │OIY │SIY C LD│ A │ │ ST│B� │EB56│
│OR IMMEDIATE (high high) │OIHH │RI C N │ │ │ │ │A58 │
│OR IMMEDIATE (high low) │OIHL │RI C N │ │ │ │ │A59 │
│OR IMMEDIATE (low high) │OILH │RI C N │ │ │ │ │A5A │
│OR IMMEDIATE (low low) │OILL │RI C N │ │ │ │ │A5B │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│PACK │PACK │SS │ A │ │ ST│B� B�│F2 │
│PACK ASCII │PKA │SS E2│ A SP│ │ ST│B� B�│E9 │
│PACK UNICODE │PKU │SS E2│ A SP│ │ ST│B� B�│E1 │
│PERFORM LOCKED OPERATION │PLO │SS C │ A SP│ $ GM │ ST│ FC│EE │
│ROTATE LEFT SINGLE LOGICAL (32) │RLL │RSY N3│ │ │ │ │EB1D│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│ROTATE LEFT SINGLE LOGICAL (64) │RLLG │RSY N │ │ │ │ │EB1C│
│SEARCH STRING │SRST │RRE C │ A SP│ G� │ │ R�│B25E│
│SET ACCESS │SAR │RRE │ │ │ │U� │B24E│
│SET ADDRESSING MODE (24) │SAM24│E N3│ SP│ T │ │ │�1�C│
│SET ADDRESSING MODE (31) │SAM31│E N3│ SP│ T │ │ │�1�D│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SET ADDRESSING MODE (64) │SAM64│E N │ │ T │ │ │�1�E│
│SET PROGRAM MASK │SPM │RR L │ │ │ │ │�4 │
│SHIFT LEFT DOUBLE │SLDA │RS C │ SP│ IF │ │ │8F │
│SHIFT LEFT DOUBLE LOGICAL │SLDL │RS │ SP│ │ │ │8D │
│SHIFT LEFT SINGLE (32) │SLA │RS C │ │ IF │ │ │8B │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SHIFT LEFT SINGLE (64) │SLAG │RSY C N │ │ IF │ │ │EB�B│
│SHIFT LEFT SINGLE LOGICAL (32) │SLL │RS │ │ │ │ │89 │
│SHIFT LEFT SINGLE LOGICAL (64) │SLLG │RSY N │ │ │ │ │EB�D│
│SHIFT RIGHT DOUBLE │SRDA │RS C │ SP│ │ │ │8E │
│SHIFT RIGHT DOUBLE LOGICAL │SRDL │RS │ SP│ │ │ │8C │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SHIFT RIGHT SINGLE (32) │SRA │RS C │ │ │ │ │8A │
│SHIFT RIGHT SINGLE (64) │SRAG │RSY C N │ │ │ │ │EB�A│
│SHIFT RIGHT SINGLE LOGICAL (32) │SRL │RS │ │ │ │ │88 │
│SHIFT RIGHT SINGLE LOGICAL (64) │SRLG │RSY N │ │ │ │ │EB�C│
│STORE (32) │ST │RX │ A │ │ ST│ B�│5� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │STORE (32) │STY │RXY LD│ A │ │ ST│ B�│E35�│
│STORE (64) │STG │RXY N │ A │ │ ST│ B�│E324│
│STORE ACCESS MULTIPLE │STAM │RS │ A SP│ │ ST│ UB│9B │

| │STORE ACCESS MULTIPLE │STAMY│RSY LD│ A SP│ │ ST│ UB│EB9B│
│STORE CHARACTER │STC │RX │ A │ │ ST│ B�│42 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 6 of 9). Summary of General Instructions

7-14 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

| │STORE CHARACTER │STCY │RXY LD│ A │ │ ST│ B�│E372│
│STORE CHARACTERS UNDER MASK (high) │STCMH│RSY N │ A │ │ ST│ B�│EB2C│
│STORE CHARACTERS UNDER MASK (low) │STCM │RS │ A │ │ ST│ B�│BE │

| │STORE CHARACTERS UNDER MASK (low) │STCMY│RSY LD│ A │ │ ST│ B�│EB2D│
│STORE CLOCK │STCK │S C │ A │ $ │ ST│ B�│B2�5│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│STORE CLOCK EXTENDED │STCKE│S C │ A │ $ │ ST│ B�│B278│
│STORE HALFWORD │STH │RX │ A │ │ ST│ B�│4� │

| │STORE HALFWORD │STHY │RXY LD│ A │ │ ST│ B�│E37�│
│STORE MULTIPLE (32) │STM │RS │ A │ │ ST│ B�│9� │

| │STORE MULTIPLE (32) │STMY │RSY LD│ A │ │ ST│ B�│EB9�│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│STORE MULTIPLE (64) │STMG │RSY N │ A │ │ ST│ B�│EB24│
│STORE MULTIPLE HIGH │STMH │RSY N │ A │ │ ST│ B�│EB26│
│STORE PAIR TO QUADWORD │STPQ │RXY N │ A SP│ │ ST│ B�│E38E│
│STORE REVERSED (16) │STRVH│RXY N3│ A │ │ ST│ B�│E33F│
│STORE REVERSED (32) │STRV │RXY N3│ A │ │ ST│ B�│E33E│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│STORE REVERSED (64) │STRVG│RXY N │ A │ │ ST│ B�│E32F│
│SUBTRACT (32) │SR │RR C │ │ IF │ │ │1B │
│SUBTRACT (64) │SGR │RRE C N │ │ IF │ │ │B9�9│
│SUBTRACT (64<32) │SGFR │RRE C N │ │ IF │ │ │B919│
│SUBTRACT (32) │S │RX C │ A │ IF │ │ B�│5B │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │SUBTRACT (32) │SY │RXY C LD│ A │ IF │ │ B�│E35B│
│SUBTRACT (64) │SG │RXY C N │ A │ IF │ │ B�│E3�9│
│SUBTRACT (64<32) │SGF │RXY C N │ A │ IF │ │ B�│E319│
│SUBTRACT HALFWORD │SH │RX C │ A │ IF │ │ B�│4B │

| │SUBTRACT HALFWORD │SHY │RXY C LD│ A │ IF │ │ B�│E37B│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SUBTRACT LOGICAL (32) │SLR │RR C │ │ │ │ │1F │
│SUBTRACT LOGICAL (64) │SLGR │RRE C N │ │ │ │ │B9�B│
│SUBTRACT LOGICAL (64<32) │SLGFR│RRE C N │ │ │ │ │B91B│
│SUBTRACT LOGICAL (32) │SL │RX C │ A │ │ │ B�│5F │

| │SUBTRACT LOGICAL (32) │SLY │RXY C LD│ A │ │ │ B�│E35F│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SUBTRACT LOGICAL (64) │SLG │RXY C N │ A │ │ │ B�│E3�B│
│SUBTRACT LOGICAL (64<32) │SLGF │RXY C N │ A │ │ │ B�│E31B│
│SUBTRACT LOGICAL WITH BORROW (32) │SLBR │RRE C N3│ │ │ │ │B999│
│SUBTRACT LOGICAL WITH BORROW (64) │SLBGR│RRE C N │ │ │ │ │B989│
│SUBTRACT LOGICAL WITH BORROW (32) │SLB │RXY C N3│ A │ │ │ B�│E399│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SUBTRACT LOGICAL WITH BORROW (64) │SLBG │RXY C N │ A │ │ │ B�│E389│
│SUPERVISOR CALL │SVC │RR │ │ ¢ │ │ │�A │
│TEST ADDRESSING MODE │TAM │E C N3│ │ │ │ │�1�B│
│TEST AND SET │TS │S C │ A │ $ │ ST│ B�│93 │
│TEST UNDER MASK │TM │SI C │ A │ │ │B� │91 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │TEST UNDER MASK │TMY │SIY C LD│ A │ │ │B� │EB51│
│TEST UNDER MASK (high high) │TMHH │RI C N │ │ │ │ │A72 │
│TEST UNDER MASK (high low) │TMHL │RI C N │ │ │ │ │A73 │
│TEST UNDER MASK (low high) │TMLH │RI C N │ │ │ │ │A7� │
│TEST UNDER MASK (low low) │TMLL │RI C N │ │ │ │ │A71 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 7 of 9). Summary of General Instructions

 Chapter 7. General Instructions 7-15

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│TEST UNDER MASK HIGH │TMH │RI C │ │ │ │ │A7� │
│TEST UNDER MASK LOW │TML │RI C │ │ │ │ │A71 │
│TRANSLATE │TR │SS │ A │ │ ST│B� B�│DC │
│TRANSLATE AND TEST │TRT │SS C │ A │ GM │ │B� B�│DD │
│TRANSLATE EXTENDED │TRE │RRE C │ A SP│ │ ST│R� R�│B2A5│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│TRANSLATE ONE TO ONE │TROO │RRE C E2│ A SP│ GM │ ST│RM R�│B993│
│TRANSLATE ONE TO TWO │TROT │RRE C E2│ A SP│ GM │ ST│RM R�│B992│
│TRANSLATE TWO TO ONE │TRTO │RRE C E2│ A SP│ GM │ ST│RM R�│B991│
│TRANSLATE TWO TO TWO │TRTT │RRE C E2│ A SP│ GM │ ST│RM R�│B99�│
│UNPACK │UNPK │SS │ A │ │ ST│B� B�│F3 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│UNPACK ASCII │UNPKA│SS C E2│ A SP│ │ ST│B� B�│EA │
│UNPACK UNICODE │UNPKU│SS C E2│ A SP│ │ ST│B� B�│E2 │
│UPDATE TREE │UPT │E C │ A SP│II GM │ ST│I4 │�1�2│
├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤
│Explanation: │
│ │
│ ¢ Causes serialization and checkpoint synchronization. │
│ ¢� Causes serialization and checkpoint synchronization when the M� and R� fields contain all │
│ ones and all zeros, respectively. │
│ $ Causes serialization. │
│ A Access exceptions for logical addresses. │
│ A� Access exceptions; not all access exceptions may occur; see instruction description for │
│ details. │
│ AI Access exceptions for instruction address. │
│ B PER branch event. │
│ B� B� field designates an access register in the access-register mode. │
│ B� B� field designates an access register in the access-register mode. │
│ BP B� field designates an access register when PSW bits 16 and 17 have the value �1 binary. │
│ C Condition code is set. │
│ Dd Decimal-operand data exception. │
│ E E instruction format. │
│ E2 Extended-translation facility 2. │
│ EX Execute exception. │
│ FC Designation of access registers depends on the function code of the instruction. │
│ G� Instruction execution includes the implied use of general register �. │
│ GM Instruction execution includes the implied use of multiple general registers: │
│ General registers 1, 2, and 3 for COMPARE AND FORM CODEWORD. │
│ General registers � and 1 for COMPARE UNTIL SUBSTRING EQUAL and PERFORM LOCKED │
│ OPERATION. │
│ General registers � and 1 for COMPRESSION CALL, TRANSLATE ONE TO ONE, TRANSLATE ONE │
│ TO TWO, TRANSLATE TWO TO ONE, and TRANSLATE TWO TO TWO │
│ General registers 1 and 2 for TRANSLATE AND TEST. │
│ General registers �-5 for UPDATE TREE. │
└──┘

Figure 7-1 (Part 8 of 9). Summary of General Instructions

7-16 z/Architecture Principles of Operation

┌──┐
│Explanation (Continued): │
│ │
│ I1 Access register 1 is implicitly designated in the access-register mode. │
│ I2 Access register 2 is implicitly designated in the access-register mode. │
│ I4 Access register 4 is implicitly designated in the access-register mode. │
│ IF Fixed-point-overflow exception. │
│ II Interruptible instruction. │
│ IK Fixed-point-divide exception. │
│ L New condition code is loaded. │

| │ LD Long-displacement facility. │
│ MO Monitor event. │

| │ MS Message-security assist. │
│ N Instruction is new in z/Architecture as compared to ESA/39�. │

| │ N3 Instruction is new in z/Architecture and has been added to ESA/39�. Any RSY or RXY │
| │ instructions still use the RSE or RXE format and 12-bit displacements in ESA/39�. │

│ R� R� field designates an access register in the access-register mode. │
│ R� R� field designates an access register in the access-register mode. │
│ R� R� field designates an access register in the access-register mode. │
│ RI RI instruction format. │
│ RIE RIE instruction format. │
│ RIL RIL instruction format. │
│ RR RR instruction format. │
│ RRE RRE instruction format. │
│ RS RS instruction format. │
│ RSI RSI instruction format. │

| │ RXY RXY instruction format. │
| │ RSY RSY instruction format. │

│ RX RX instruction format. │
│ S S instruction format. │
│ SI SI instruction format. │

| │ SIY SIY instruction format. │
│ SP Specification exception. │
│ SS SS instruction format. │
│ ST PER storage-alteration event. │
│ T Trace exceptions (includes trace table, addressing, and low-address protection). │
│ U� R� field designates an access register unconditionally. │
│ U� R� field designates an access register unconditionally. │
│ UB R� and R� fields designate access registers unconditionally, and B� field │
│ designates an access register in the access-register mode. │
└──┘

Figure 7-1 (Part 9 of 9). Summary of General Instructions

 Chapter 7. General Instructions 7-17

 ADD

AR R�,R� [RR]

┌────────┬────┬────┐
│ '1A' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

AGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�8' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

AGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B918' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

A R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '5A' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| AY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '5A' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

AG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�8' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

AGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '18' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand is added to the first operand,
and the sum is placed at the first-operand

| location. For ADD (AR, A, and AY), the operands
and the sum are treated as 32-bit signed binary
integers. For ADD (AGR, AG), they are treated as
64-bit signed binary integers. For ADD (AGFR,
AGF), the second operand is treated as a 32-bit
signed binary integer, and the first operand and
the sum are treated as 64-bit signed binary inte-
gers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

| The displacement for A is treated as a 12-bit
| unsigned binary integer. The displacement for
| AY, AG, and AGF is treated as a 20-bit signed
| binary integer.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

| � Access (fetch, operand 2 of A, AY, AG, and
AGF only)

 � Fixed-point overflow
| � Operation (AY, if the long-displacement facility
| is not installed)

 ADD HALFWORD

AH R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '4A' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| AHY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '7A' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

ADD HALFWORD IMMEDIATE

AHI R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'A' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

AGHI R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'B' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

7-18 z/Architecture Principles of Operation

The second operand is added to the first operand,
and the sum is placed at the first-operand
location. The second operand is two bytes in
length and is treated as a 16-bit signed binary

| integer. For ADD HALFWORD (AH, AHY) and
ADD HALFWORD IMMEDIATE (AHI), the first
operand and the sum are treated as 32-bit signed
binary integers. For ADD HALFWORD IMME-
DIATE (AGHI), they are treated as 64-bit signed
binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

| The displacement for AH is treated as a 12-bit
| unsigned binary integer. The displacement for
| AHY is treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

| � Access (fetch, operand 2 of AH, AHY)
 � Fixed-point overflow

| � Operation (AHY, if the long-displacement
| facility is not installed)

Programming Note: An example of the use of
the ADD HALFWORD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 ADD LOGICAL

ALR R�,R� [RR]

┌────────┬────┬────┐
│ '1E' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

ALGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�A' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

ALGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B91A' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

AL R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '5E' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| ALY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '5E' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

ALG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�A' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

ALGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '1A' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand is added to the first operand,
and the sum is placed at the first-operand

| location. For ADD LOGICAL (ALR, AL, ALY), the
operands and the sum are treated as 32-bit
unsigned binary integers. For ADD LOGICAL
(ALGR, ALG), they are treated as 64-bit unsigned
binary integers. For ADD LOGICAL (ALGFR,
ALGF) the second operand is treated as a 32-bit
unsigned binary integer, and the first operand and
the sum are treated as 64-bit unsigned binary inte-
gers.

| The displacement for AL is treated as a 12-bit
| unsigned binary integer. The displacement for
| ALY, ALG, and ALGF is treated as a 20-bit signed
| binary integer.

Resulting Condition Code:

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

 Chapter 7. General Instructions 7-19

 Program Exceptions:

| � Access (fetch, operand 2 of AL, ALY, ALG,
and ALGF only)

| � Operation (ALY, if the long-displacement
| facility is not installed)

ADD LOGICAL WITH CARRY

ALCR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B998' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

ALCGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B988' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

ALC R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '98' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

ALCG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '88' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand and the carry are added to
the first operand, and the sum is placed at the
first-operand location. For ADD LOGICAL WITH
CARRY (ALCR, ALC), the operands, the carry,
and the sum are treated as 32-bit unsigned binary
integers. For ADD LOGICAL WITH CARRY
(ALCGR, ALCG), they are treated as 64-bit
unsigned binary integers.

Resulting Condition Code:

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

 Program Exceptions:

� Access (fetch, operand 2 of ALC and ALCG
only)

Programming Notes:

1. A carry is represented by a one value of bit 18
of the current PSW. Bit 18 is the leftmost bit
of the two-bit condition code in the PSW. Bit
18 is set to one by an execution of an ADD
LOGICAL or ADD LOGICAL WITH CARRY
instruction that produces a carry out of bit
position 0 of the result.

2. ADD and ADD LOGICAL may provide better
performance than ADD LOGICAL WITH
CARRY, depending on the model.

 AND

NR R�,R� [RR]

┌────────┬────┬────┐
│ '14' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

NGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B98�' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

N R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '54' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| NY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '54' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

NG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '8�' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

NI D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ '94' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

7-20 z/Architecture Principles of Operation

| NIY D�(B�),I� [SIY]

| ┌────────┬────────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ I� │ B� │DL� │ DH� │ '54' │
| └────────┴────────┴────┴──/─┴────────┴────────┘
| � 8 16 2� 32 4� 47

NC D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'D4' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The AND of the first and second operands is
placed at the first-operand location.

The connective AND is applied to the operands bit
by bit. The contents of a bit position in the result
are set to one if the corresponding bit positions in
both operands contain ones; otherwise, the result
bit is set to zero.

For AND (NC), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after fetching the necessary operand
bytes.

| For AND (NI, NIY), the first operand is one byte in
length, and only one byte is stored.

| For AND (NR, N, NY), the operands are 32 bits,
and for AND (NGR, NG), they are 64 bits.

| The displacements for N, NI, and both operands
| of NC are treated as 12-bit unsigned binary inte-
| gers. The displacement for NY, NIY, and NG is
| treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

 Program Exceptions:

| � Access (fetch, operand 2, N, NY, NG, and
| NC; fetch and store, operand 1, NI, NIY, and

NC)
| � Operation (NY and NIY, if the long-
| displacement facility is not installed)

Programming Notes:

1. An example of the use of the AND instruction
is given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. The AND instruction may be used to set a bit
to zero.

3. Accesses to the first operand of AND (NI) and
AND (NC) consist in fetching a first-operand
byte from storage and subsequently storing
the updated value. These fetch and store
accesses to a particular byte do not neces-
sarily occur one immediately after the other.
Thus, the instruction AND cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a
channel program may also be updating the
location. An example of this effect is shown
for OR (OI) in “Multiprogramming and Multi-
processing Examples” on page A-43.

 AND IMMEDIATE

NIHH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'4' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

NIHL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'5' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

NILH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'6' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

NILL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'7' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

The second operand is ANDed with bits of the first
operand, and the result replaces those bits of the
first operand. The remainder of the first operand
remains unchanged.

 Chapter 7. General Instructions 7-21

For each instruction, the bits of the first operand
that are ANDed with the second operand and then
replaced are as follows:

The connective AND is applied to the operands bit
by bit. The contents of a bit position in the result
are set to one if the corresponding bit positions in
both operands contain ones; otherwise, the result
bit is set to zero.

Resulting Condition Code:

0 Sixteen-bit result zero
1 Sixteen-bit result not zero
2 --
3 --

 Program Exceptions: None.

BRANCH AND LINK

BALR R�,R� [RR]

┌────────┬────┬────┐
│ '�5' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

BAL R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '45' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Information from the current PSW, including the
updated instruction address, is saved as link infor-
mation at the first-operand location. Subse-
quently, the instruction address in the PSW is
replaced by the branch address.

The link information in the 24-bit addressing mode
consists of the instruction-length code (ILC), the
condition code (CC), the program-mask bits, and
the rightmost 24 bits of the updated instruction

address, arranged in bit positions 32-63 of the
first-operand location in the following format:

┌──┬──┬─────┬─────────────────────┐
│IL│ │Prog │ │
│C │CC│Mask │ Instruction Address │
└──┴──┴─────┴─────────────────────┘
32 34 36 4� 63

The instruction-length code is 1 or 2.

The link information in the 31-bit addressing mode
consists of bit 32 of the PSW, the basic-
addressing-mode bit (always a one) and the right-
most 31 bits of the updated instruction address,
arranged in bit positions 32-63 of the first-operand
location in the following format:

┌─┬───────────────────────────────┐
│1│ Instruction Address │
└─┴───────────────────────────────┘
32 63

In the 24-bit or 31-bit addressing mode, bits 0-31
of the first-operand location remain unchanged.

The link information in the 64-bit addressing mode
consists of the updated instruction address, placed
in bit positions 0-63 of the first-operand location.

In the RX format, the second-operand address is
used as the branch address. In the RR format,
the contents of general register R� are used to
generate the branch address; however, when the
R� field is zero, the operation is performed without
branching. The branch address is computed
before general register R� is changed.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Trace (R� field nonzero, BALR only)

Programming Notes:

1. An example of the use of the BRANCH AND
LINK instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. When the R� field in the RR format is zero,
the link information is loaded without
branching.

3. The BRANCH AND LINK instruction (BAL and
BALR) is provided for compatibility purposes.
It is recommended that, where possible, the
BRANCH AND SAVE instruction (BAS and

Instruction

Bits
ANDed
and
Replaced

NIHH 0-15

NIHL 16-31

NILH 32-47

NILL 48-63

7-22 z/Architecture Principles of Operation

BASR), BRANCH RELATIVE AND SAVE, or
BRANCH RELATIVE AND SAVE LONG be
used and BRANCH AND LINK avoided, since
the latter places nonzero information in bit
positions 32-39 of the link register in the 24-bit
addressing mode, which may lead to prob-
lems. Additionally, in the 24-bit addressing
mode, BRANCH AND LINK may be slower
than the other instructions because BRANCH
AND LINK must construct the ILC, condition
code, and program mask to be placed in bit
positions 32-39 of the link register.

4. The condition-code and program-mask infor-
mation, which is provided in the leftmost byte
of the link information only in the 24-bit
addressing mode, can be obtained in any
addressing mode by means of the INSERT
PROGRAM MASK instruction.

BRANCH AND SAVE

BASR R�,R� [RR]

┌────────┬────┬────┐
│ '�D' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

BAS R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '4D' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Information from the current PSW, including the
updated instruction address, is saved as link infor-
mation at the first-operand location. Subse-
quently, the instruction address in the PSW is
replaced by the branch address.

In the 24-bit or 31-bit addressing mode, the link
information is bits 32 and 97-127 of the PSW,
consisting of the basic-addressing-mode bit and
the rightmost 31 bits of the updated instruction
address. The link information is placed in bit posi-
tions 32 and 33-63, respectively, of the first-
operand location, and bits 0-31 of the location
remain unchanged.

In the 64-bit addressing mode, the link information
consists of the updated instruction address, placed
in bit positions 0-63 of the first-operand location.

In the RX format, the second-operand address is
used as the branch address. In the RR format,
the contents of general register R� are used to
generate the branch address; however, when the
R� field is zero, the operation is performed without
branching. The branch address is computed
before general register R� is changed.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Trace (R� field nonzero, BASR only)

Programming Notes:

1. An example of the use of the BRANCH AND
SAVE instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The BRANCH AND SAVE instruction (BAS
and BASR) is intended to be used for linkage
to programs known to be in the same
addressing mode as the caller. This instruc-
tion should be used in place of the BRANCH
AND LINK instruction (BAL and BALR). See
the programming notes on pages 5-12 and
5-18 in the section “Subroutine Linkage
without the Linkage Stack” for a detailed dis-
cussion of this and other linkage instructions.
See also the programming note under
BRANCH AND LINK for a discussion of the
advantages of the BRANCH AND SAVE
instruction.

BRANCH AND SAVE AND SET
MODE

BASSM R�,R� [RR]

┌────────┬────┬────┐
│ '�C' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Information from the current PSW, including the
updated instruction address, is saved as link infor-
mation at the first-operand location. Subse-
quently, if the R� field is nonzero, the addressing-
mode bits and instruction address in the PSW are
replaced as specified by the second operand.

In the 24-bit or 31-bit addressing mode, the link
information is bits 32 and 97-127 of the PSW,
consisting of the basic-addressing-mode bit and

 Chapter 7. General Instructions 7-23

the rightmost 31 bits of the updated instruction
address. The link information is placed in bit posi-
tions 32 and 33-63, respectively, of the first-
operand location, and bits 0-31 of the location
remain unchanged. In the 64-bit addressing
mode, the link information is bits 64-126 of the
PSW with a one appended on the right, placed in
bit positions 0-63 of the first-operand location.

The contents of general register R� specify the
new addressing mode and designate the branch
address; however, when the R� field is zero, the
operation is performed without branching and
without setting either addressing-mode bit.

When the contents of general register R� are used
and bit 63 of the register is zero, bit 31 of the
current PSW, the extended-addressing-mode bit,
is set to zero, bit 32 of the register specifies the
new basic addressing mode and replaces bit 32 of
the PSW, and the branch address is generated
from the contents of the register under the control
of the new addressing mode. The branch address
replaces the instruction address in the PSW.

When the contents of general register R� are used
and bit 63 of the register is one, the following
occurs. Bits 31 and 32 of the current PSW are
set to one, the branch address is generated from
the contents of the register, except with bit 63 of
the register treated as a zero, under the control of
the new extended addressing mode, and the
branch address replaces the instruction address in
the PSW. Bit 63 of the register remains one.
However, if R� is the same as R�, the results in
the designated general register are as specified
for the R� register.

The new value for the PSW is computed before
general register R� is changed.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Trace (R� field nonzero)

Programming Notes:

1. An example of the use of the BRANCH AND
SAVE AND SET MODE instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. BRANCH AND SAVE AND SET MODE is

intended to be the principal calling instruction
to subroutines which may operate in a dif-
ferent addressing mode from that of the caller.
See the programming notes on pages 5-12
and 5-18 in the section “Subroutine Linkage
without the Linkage Stack” for a detailed dis-
cussion of this and other linkage instructions.

3. An old 24-bit or 31-bit program can use
BRANCH AND SAVE AND SET MODE to call
a new 64-bit program without any change,
provided that bits 0-31 of general register R�
are all zeros. The old program can load into
bit positions 32-63 of general register R� a
four-byte address constant, which is provided
from outside the program, in which bit 63 in
the register (bit 31 of the constant in storage)
either is or is not one. If the addressing mode
is not changed to the 64-bit mode by the exe-
cution of the BRANCH AND SAVE AND SET
MODE instruction, or even if it is, the called
program can set the 64-bit mode by issuing a
SET ADDRESSING MODE (SAM64) instruc-
tion.

4. See the programming notes on page 5-12
(under “Simple Branch Instructions”).

BRANCH AND SET MODE

BSM R�,R� [RR]

┌────────┬────┬────┐
│ '�B' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

In the 24-bit or 31-bit addressing mode, bit 32 of
the current PSW, the basic-addressing-mode bit,
is inserted into bit position 32 of the first operand,
and bits 0-31 and 33-63 of the operand remain
unchanged. In the 64-bit addressing mode, a one
is inserted into bit position 63 of the first operand,
and bits 0-62 of the operand remain unchanged.
Subsequently, the addressing-mode bits and
instruction address in the PSW are replaced as
specified by the second operand. The action
associated with an operand is not performed if the
associated R field is zero.

The contents of general register R� specify the
new addressing mode and designate the branch
address; however, when the R� field is zero, the
operation is performed without branching and
without setting either addressing-mode bit.

7-24 z/Architecture Principles of Operation

When the contents of general register R� are used
and bit 63 of the register is zero, bit 31 of the
current PSW, the extended-addressing-mode bit,
is set to zero, bit 32 of the register specifies the
new basic addressing mode and replaces bit 32 of
the PSW, and the branch address is generated
from the contents of the register under the control
of the new addressing mode. The branch address
replaces the instruction address in the PSW.

When the contents of general register R� are used
and bit 63 of the register is one, the following
occurs. Bits 31 and 32 of the current PSW are
set to one, the branch address is generated from
the contents of the register, except with bit 63 of
the register treated as a zero, under the control of
the new extended addressing mode, and the
branch address replaces the instruction address in
the PSW. Bit 63 of the register remains one.
However, if R� is the same as R�, the results in
the designated general register are as specified
for the R� register.

The new value for the PSW is computed before
general register R� is changed.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Trace

Programming Notes:

1. An example of the use of the BRANCH AND
SET MODE instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. BRANCH AND SET MODE with an R� field of
zero is intended to be the standard return
instruction in a program entered by means of
BRANCH AND SAVE AND SET MODE. It
can also be the return instruction in a program
entered in the 24-bit or 31-bit addressing
mode by means of BRANCH AND SAVE,
BRANCH RELATIVE AND SAVE, or BRANCH
RELATIVE AND SAVE LONG. BRANCH
AND SET MODE with a nonzero R� field is
intended to be used in a “glue module” to
connect either old 24-bit programs and newer
programs that are executed in the 31-bit
addressing mode or old 24-bit or 31-bit pro-
grams and new programs that are executed in
the 64-bit addressing mode. See the pro-

gramming notes on pages 5-12 and 5-18 in
the section “Subroutine Linkage without the
Linkage Stack” for a detailed discussion of this
and other linkage instructions.

BRANCH ON CONDITION

BCR M�,R� [RR]

┌────────┬────┬────┐
│ '�7' │ M� │ R� │
└────────┴────┴────┘
� 8 12 15

BC M�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '47' │ M� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The instruction address in the current PSW is
replaced by the branch address if the condition
code has one of the values specified by M�; other-
wise, normal instruction sequencing proceeds with
the updated instruction address.

In the RX format, the second-operand address is
used as the branch address. In the RR format,
the contents of general register R� are used to
generate the branch address; however, when the
R� field is zero, the operation is performed without
branching.

The M� field is used as a four-bit mask. The four
condition codes (0, 1, 2, and 3) correspond, left to
right, with the four bits of the mask, as follows:

┌───────────┬─────────────┬──────────┐
│ │ Instruction │ Mask │
│ Condition │ Bit No. of │ Position │
│ Code │ Mask │ Value │
├───────────┼─────────────┼──────────┤
│ � │ 8 │ 8 │
│ 1 │ 9 │ 4 │
│ 2 │ 1� │ 2 │
│ 3 │ 11 │ 1 │
└───────────┴─────────────┴──────────┘

The current condition code is used to select the
corresponding mask bit. If the mask bit selected
by the condition code is one, the branch is suc-
cessful. If the mask bit selected is zero, normal
instruction sequencing proceeds with the next
sequential instruction.

When the M� and R� fields of BRANCH ON CON-
DITION (BCR) are all ones and all zeros, respec-

 Chapter 7. General Instructions 7-25

tively, a serialization and checkpoint-
synchronization function is performed.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. An example of the use of the BRANCH ON
CONDITION instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. When a branch is to depend on more than
one condition, the pertinent condition codes
are specified in the mask as the sum of their
mask position values. A mask of 12, for
example, specifies that a branch is to be
made when the condition code is 0 or 1.

3. When all four mask bits are zeros or when the
R� field in the RR format contains zero, the
branch instruction is equivalent to a no-
operation. When all four mask bits are ones,
that is, the mask value is 15, the branch is
unconditional unless the R� field in the RR
format is zero.

4. Execution of BCR 15,0 (that is, an instruction
with a value of 07F0 hex) may result in signif-
icant performance degradation. To ensure
optimum performance, the program should
avoid use of BCR 15,0 except in cases when
the serialization or checkpoint-synchronization
function is actually required.

5. Note that the relation between the RR and RX
formats in branch-address specification is not
the same as in operand-address specification.
For branch instructions in the RX format, the
branch address is the address specified by
X�, B�, and D�; in the RR format, the branch
address is contained in the register desig-
nated by R�. For operands, the address
specified by X�, B�, and D� is the operand
address, but the register designated by R�
contains the operand, not the operand
address.

BRANCH ON COUNT

BCTR R�,R� [RR]

┌────────┬────┬────┐
│ '�6' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

BCTGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B946' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

BCT R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '46' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

BCTG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '46' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

A one is subtracted from the first operand, and the
result is placed at the first-operand location. For
BRANCH ON COUNT (BCT, BCTR), the first
operand and result are treated as 32-bit binary
integers, with overflow ignored. For BRANCH ON
COUNT (BCTG, BCTGR), the first operand and
result are treated as 64-bit binary integers, with
overflow ignored. When the result is zero, normal
instruction sequencing proceeds with the updated
instruction address. When the result is not zero,
the instruction address in the current PSW is
replaced by the branch address.

| In the RX or RXY format, the second-operand
address is used as the branch address. In the RR
or RRE format, the contents of general register R�
are used to generate the branch address;
however, when the R� field is zero, the operation
is performed without branching. The branch
address is generated before general register R� is
changed.

Condition Code: The code remains unchanged.

7-26 z/Architecture Principles of Operation

 Program Exceptions: None.

Programming Notes:

1. An example of the use of the BRANCH ON
COUNT instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The first operand and result can be consid-
ered as either signed or unsigned binary inte-
gers since the result of a binary subtraction is
the same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in -1 and causes branching to be per-
formed; an initial count of -1 results in -2 and
causes branching to be performed; and so on.
In a loop, branching takes place each time the
instruction is executed until the result is again
zero. Note that for BCT or BCTR, because of
the number range, an initial count of -2��
results in a positive value of 2�� - 1, or, for
BCTG or BCTGR, an initial count of -2��
results in a positive value of 2�� - 1.

4. Counting is performed without branching when
the R� field in the RR or RRE format contains
zero.

BRANCH ON INDEX HIGH

BXH R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '86' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

BXHG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '44' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

BRANCH ON INDEX LOW OR
EQUAL

BXLE R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '87' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

BXLEG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '45' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

An increment is added to the first operand, and
the sum is compared with a compare value. The
result of the comparison determines whether
branching occurs. Subsequently, the sum is
placed at the first-operand location. The second-
operand address is used as a branch address.
The R� field designates registers containing the
increment and the compare value.

For BRANCH ON INDEX HIGH, when the sum is
high, the instruction address in the current PSW is
replaced by the branch address. When the sum is
low or equal, normal instruction sequencing pro-
ceeds with the updated instruction address.

For BRANCH ON INDEX LOW OR EQUAL, when
the sum is low or equal, the instruction address in
the current PSW is replaced by the branch
address. When the sum is high, normal instruc-
tion sequencing proceeds with the updated
instruction address.

When the R� field is even, it designates a pair of
registers; the contents of the even and odd regis-
ters of the pair are used as the increment and the
compare value, respectively. When the R� field is
odd, it designates a single register, the contents of
which are used as both the increment and the
compare value.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers for BXH and BXLE or as 64-bit
signed binary integers for BXHG and BXLEG.
Overflow caused by the addition is ignored.

The original contents of the compare-value reg-
ister are used as the compare value even when
that register is also specified to be the first-
operand location. The branch address is gener-
ated before general register R� is changed.

The sum is placed at the first-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

 Chapter 7. General Instructions 7-27

 Program Exceptions: None.

Programming Notes:

1. Several examples of the use of the BRANCH
ON INDEX HIGH and BRANCH ON INDEX
LOW OR EQUAL instructions are given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. The word “index” in the names of these
instructions indicates that one of the major
purposes is the incrementing and testing of an
index value. The increment, being a signed
binary integer, may be used to increase or
decrease the value in general register R� by
an arbitrary amount, subject to the limit of the
integer size.

3. Care must be taken in the 31-bit addressing
mode when a data area in storage is at the
rightmost end of a 31-bit address space and a
BRANCH ON INDEX HIGH (BXH) or
BRANCH ON INDEX LOW OR EQUAL
(BXLE) instruction is used to step upward
through the data. Since the addition and com-
parison operations performed during the exe-
cution of these instructions treat the operands
as 32-bit signed binary integers, the value fol-
lowing 2�� - 1 is not 2��, which cannot be
represented in that format, but -2��. The
instruction does not provide an indication of
such overflow. Consequently, some common
looping techniques based on the use of these
instructions do not work when a data area
ends at address 2�� - 1. This problem is illus-
trated in a BRANCH ON INDEX LOW OR
EQUAL example in Appendix A, “Number
Representation and Instruction-Use
Examples.” A similar caution applies in the
64-bit addressing mode when data is at the
end of a 64-bit address space and BRANCH
ON INDEX HIGH (BXHG) or BRANCH ON
INDEX LOW OR EQUAL (BXLEG) is used.

BRANCH RELATIVE AND SAVE

BRAS R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'5' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

BRANCH RELATIVE AND SAVE
LONG

BRASL R�,I� [RIL]

┌────────┬────┬────┬──────────/──────────┐
│ 'C�' │ R� │'5' │ I� │
└────────┴────┴────┴──────────/──────────┘
� 8 12 16 47

Information from the current PSW, including the
updated instruction address, is saved as link infor-
mation at the first-operand location. Subse-
quently, the instruction address in the PSW is
replaced by the branch address.

In the 24-bit or 31-bit addressing mode, the link
information is bits 32 and 97-127 of the PSW,
consisting of the basic-addressing-mode bit and
the rightmost 31 bits of the updated instruction
address. The link information is placed in bit posi-
tions 32 and 33-63, respectively, of the first-
operand location, and bits 0-31 of the location
remain unchanged.

In the 64-bit addressing mode, the link information
consists of the updated instruction address, placed
in bit positions 0-63 of the first-operand location.

The contents of the I� field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the branch address.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. The operation is the same as that of the
BRANCH AND SAVE (BAS) instruction except
for the means of specifying the branch
address. An example of the use of BRANCH
AND SAVE is given in Appendix A.

2. The BRANCH RELATIVE AND SAVE and
BRANCH RELATIVE AND SAVE LONG
instructions, like the BRANCH AND SAVE
instruction, are intended to be used for linkage
to programs known to be in the same
addressing mode as the caller. These
instructions should be used in place of the
BRANCH AND LINK instruction (BAL and
BALR). See the programming notes on pages
5-12 and 5-18 in the section“Subroutine

7-28 z/Architecture Principles of Operation

Linkage without the Linkage Stack” for a
detailed discussion of these and other linkage
instructions. See also the programming note
under BRANCH AND LINK for a discussion of
the advantages of the BRANCH RELATIVE
AND SAVE, BRANCH RELATIVE AND SAVE
LONG, and BRANCH AND SAVE instructions.

3. When the instruction is the target of
EXECUTE, the branch is relative to the target
address; see “Branch-Address Generation” on
page 5-9.

BRANCH RELATIVE ON
CONDITION

BRC M�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ M� │'4' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

BRANCH RELATIVE ON
CONDITION LONG

BRCL M�,I� [RIL]

┌────────┬────┬────┬──────────/──────────┐
│ 'C�' │ M� │'4' │ I� │
└────────┴────┴────┴──────────/──────────┘
� 8 12 16 47

The instruction address in the current PSW is
replaced by the branch address if the condition
code has one of the values specified by M�; other-
wise, normal instruction sequencing proceeds with
the updated instruction address.

The contents of the I� field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the branch address.

The M� field is used as a four-bit mask. The four
condition codes (0, 1, 2, and 3) correspond, left to
right, with the four bits of the mask, as follows:

┌───────────┬─────────────┬──────────┐
│ │ Instruction │ Mask │
│ Condition │ Bit No. of │ Position │
│ Code │ Mask │ Value │
├───────────┼─────────────┼──────────┤
│ � │ 8 │ 8 │
│ 1 │ 9 │ 4 │
│ 2 │ 1� │ 2 │
│ 3 │ 11 │ 1 │
└───────────┴─────────────┴──────────┘

The current condition code is used to select the
corresponding mask bit. If the mask bit selected
by the condition code is one, the branch is suc-
cessful. If the mask bit selected is zero, normal
instruction sequencing proceeds with the next
sequential instruction.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. The operation is the same as that of the
BRANCH ON CONDITION instruction except
for the means of specifying the branch
address. An example of the use of BRANCH
ON CONDITION is given in Appendix A.

2. When a branch is to depend on more than
one condition, the pertinent condition codes
are specified in the mask as the sum of their
mask position values. A mask of 12, for
example, specifies that a branch is to be
made when the condition code is 0 or 1.

3. When all four mask bits are zeros, the branch
instruction is equivalent to a no-operation.
When all four mask bits are ones, that is, the
mask value is 15, the branch is unconditional.

4. When the instruction is the target of
EXECUTE, the branch is relative to the target
address; see “Branch-Address Generation” on
page 5-9.

BRANCH RELATIVE ON COUNT

BRCT R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'6' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

 Chapter 7. General Instructions 7-29

BRCTG R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'7' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

A one is subtracted from the first operand, and the
result is placed at the first-operand location. For
BRANCH RELATIVE ON COUNT (BRCT), the first
operand and result are treated as 32-bit binary
integers, with overflow ignored. For BRANCH
RELATIVE ON COUNT (BRCTG), the first
operand and result are treated as 64-bit binary
integers, with overflow ignored. When the result is
zero, normal instruction sequencing proceeds with
the updated instruction address. When the result
is not zero, the instruction address in the current
PSW is replaced by the branch address.

The contents of the I� field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the branch address.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. The operation is the same as that of the
BRANCH ON COUNT instruction except for
the means of specifying the branch address.
An example of the use of BRANCH ON
COUNT is given in Appendix A.

2. The first operand and result can be consid-
ered as either signed or unsigned binary inte-
gers since the result of a binary subtraction is
the same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in -1 and causes branching to be exe-
cuted; an initial count of -1 results in -2 and
causes branching to be executed; and so on.
In a loop, branching takes place each time the
instruction is executed until the result is again
zero. Note that for BRCT, because of the
number range, an initial count of -2�� results
in a positive value of 2�� - 1, or, for BRCTG,
an initial count of -2�� results in a positive
value of 2�� - 1.

4. When the instruction is the target of
EXECUTE, the branch is relative to the target

address; see “Branch-Address Generation” on
page 5-9.

BRANCH RELATIVE ON INDEX
HIGH

BRXH R�,R�,I� [RSI]

┌────────┬────┬────┬────────────────┐
│ '84' │ R� │ R� │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

BRXHG R�,R�,I� [RIE]

┌────────┬────┬────┬──/───┬────────┬────────┐
│ 'EC' │ R� │ R� │ I� │////////│ '44' │
└────────┴────┴────┴──/───┴────────┴────────┘
� 8 12 16 32 4� 47

BRANCH RELATIVE ON INDEX
LOW OR EQUAL

BRXLE R�,R�,I� [RSI]

┌────────┬────┬────┬────────────────┐
│ '85' │ R� │ R� │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

BRXLG R�,R�,I� [RIE]

┌────────┬────┬────┬──/───┬────────┬────────┐
│ 'EC' │ R� │ R� │ I� │////////│ '45' │
└────────┴────┴────┴──/───┴────────┴────────┘
� 8 12 16 32 4� 47

An increment is added to the first operand, and
the sum is compared with a compare value. The
result of the comparison determines whether
branching occurs. Subsequently, the sum is
placed at the first-operand location. The R� field
designates registers containing the increment and
the compare value.

The contents of the I� field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the branch address.

For BRANCH RELATIVE ON INDEX HIGH, when
the sum is high, the instruction address in the
current PSW is replaced by the branch address.
When the sum is low or equal, normal instruction
sequencing proceeds with the updated instruction
address.

7-30 z/Architecture Principles of Operation

For BRANCH RELATIVE ON INDEX LOW OR
EQUAL, when the sum is low or equal, the
instruction address in the current PSW is replaced
by the branch address. When the sum is high,
normal instruction sequencing proceeds with the
updated instruction address.

When the R� field is even, it designates a pair of
registers; the contents of the even and odd regis-
ters of the pair are used as the increment and the
compare value, respectively. When the R� field is
odd, it designates a single register, the contents of
which are used as both the increment and the
compare value.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers for BRXH and BRXLE or as 64-bit
signed binary integers for BRXHG and BRXLG.
Overflow caused by the addition is ignored.

The original contents of the compare-value reg-
ister are used as the compare value even when
that register is also specified to be the first-
operand location.

The sum is placed at the first-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. The operations are the same as those of the
BRANCH ON INDEX HIGH and BRANCH ON
INDEX LOW OR EQUAL instructions except
for the means of specifying the branch
address. Several examples of the use of
BRANCH ON INDEX HIGH and BRANCH ON
INDEX LOW OR EQUAL are given in
Appendix A.

2. The word “index” in the names of these
instructions indicates that one of the major
purposes is the incrementing and testing of an
index value. The increment, being a signed
binary integer, may be used to increase or
decrease the value in general register R� by
an arbitrary amount.

3. Care must be taken in the 31-bit addressing
mode when a data area in storage is at the
rightmost end of an address space and a

BRANCH RELATIVE ON INDEX HIGH
(BRXH) or BRANCH RELATIVE ON INDEX
LOW OR EQUAL (BRXLE) instruction is used
to step upward through the data. Since the
addition and comparison operations performed
during the execution of these instructions treat
the operands as 32-bit signed binary integers,
the value following 2�� - 1 is not 2��, which
cannot be represented in that format, but -2��.
The instruction does not provide an indication
of such overflow. Consequently, some
common looping techniques based on the use
of these instructions do not work when a data
area ends at address 2�� - 1. This problem is
illustrated in a BRANCH ON INDEX LOW OR
EQUAL example in Appendix A. A similar
caution applies in the 64-bit addressing mode
when data is at the end of a 64-bit address
space and BRANCH RELATIVE ON INDEX
HIGH (BRXHG) or BRANCH RELATIVE ON
INDEX LOW OR EQUAL (BRXLG) is used.

4. When the instruction is the target of
EXECUTE, the branch is relative to the target
address; see “Branch-Address Generation” on
page 5-9.

 CHECKSUM

CKSM R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B241' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Successive four-byte elements of the second
operand are added to the first operand in bit posi-
tions 32-63 of general register R� to form a 32-bit
checksum in those bit positions. The first operand
and the four-byte elements are treated as 32-bit
unsigned binary integers. After each addition of
an element, a carry out of bit position 32 of the
first operand is added to bit position 63 of the first
operand. Bits 0-31 of general register R� always
remain unchanged. If the second operand is not a
multiple of four bytes, its last one, two, or three
bytes are treated as appended on the right with
the number of all-zeros bytes needed to form a
four-byte element. The four-byte elements are
added to the first operand until either the entire
second operand or a CPU-determined amount of
the second operand has been processed. The
result is indicated in the condition code.

 Chapter 7. General Instructions 7-31

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the second
operand is specified by the contents of the R�
general register. The number of bytes in the
second-operand location is specified by the 32-bit
or 64-bit unsigned binary integer in the R� + 1
general register.

The handling of the address in general register R�
and the length in general register R� + 1 is
dependent on the addressing mode. In the 24-bit
addressing mode, the contents of bit positions
40-63 of general register R� constitute the
address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the con-
tents of bit positions 33-63 of the register consti-
tute the address, and the contents of bit positions
0-32 are ignored. In the 64-bit addressing mode,
the contents of bit positions 0-63 of the register
constitute the address. In the 24-bit or 31-bit
addressing mode, the length is a 32-bit unsigned
binary integer in bit positions 32-63 of general reg-
ister R� + 1, and the contents of bit positions
0-31 are ignored. In the 64-bit addressing mode,
the length is a 64-bit unsigned binary integer in
the register.

The addition of second-operand four-byte ele-
ments to the first operand proceeds left to right,
four-byte element by four-byte element, and ends
as soon as (1) the entire second operand has
been processed or (2) a lesser CPU-determined
amount of the second operand has been proc-
essed. In either case, the result in bit positions
32-63 of general register R� is a 32-bit checksum
for the part of the second operand that has been
processed. When the second operand is not a
multiple of four bytes, the final second-operand
bytes in excess of a multiple of four are conceptu-
ally appended on the right with an appropriate
number of all-zeros bytes to form the final four-
byte element.

If the operation ends because the entire second
operand has been processed, the condition code
is set to 0. If the operation ends because a lesser
CPU-determined amount of the second operand
has been processed, the condition code is set to
3. When the operation is to end with a setting of
condition code 3, any carry out of bit position 32

of the first operand is added to bit position 63 of
the first operand before the operation ends.

At the completion of the operation, the 32-bit or
64-bit operand-length field in the R� + 1 register
is decremented by the number of actual second-
operand bytes added to the first operand (not
including any conceptually appended all-zeros
bytes), and the address in the R� register is incre-
mented by the same number. Thus, the the 32-bit
or 64-bit operand-length field contains a zero
value if the condition code is set to 0, or it con-
tains a nonzero value if the condition code is set
to 3. In the 24-bit or 31-bit addressing mode, bits
0-31 of the R� + 1 register always remain
unchanged.

When condition code 3 is set, the general regis-
ters used by the instruction have been set so that
the remainder of the second operand can be proc-
essed by simply branching back to reexecute the
instruction.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed. The minimum amount
is four bytes or the number of bytes specified in
the R� + 1 general register, whichever is smaller.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which
are not part of the address in bit positions 32-63
of general register R� may be set to zeros or may
remain unchanged, even when the initial length in
register R� + 1 is zero. Bits 0-31 of general reg-
ister R� remain unchanged.

When the R� register is the same register as the
R� or R� + 1 register, the results are unpredict-
able.

Access exceptions for the portion of the second
operand to the right of the last byte processed
may or may not be recognized. For a second
operand longer than 4K bytes, access exceptions
are not recognized for locations more than 4K
bytes beyond the last byte processed.

Access exceptions are not recognized if the R�
field is odd. When the length of the second
operand is zero, no access exceptions are recog-
nized.

7-32 z/Architecture Principles of Operation

Resulting Condition Code:

0 Entire second operand processed
1 --
2 --
3 CPU-determined amount of second operand

processed

 Program Exceptions:

� Access (fetch, operand 2)
 � Specification

Programming Notes:

1. The initial contents of bit positions 32-63 of
the R� general register contribute to the 32-bit
checksum. The program normally should set
those contents to all zeros before issuing the
CHECKSUM instruction.

2. A 16-bit checksum is used in, for example, the
TCP/IP application. The following program
can be executed after the CHECKSUM
instruction to produce in bit positions 32-63 of
general register R� a 16-bit checksum from
the 32-bit checksum in bit positions 32-63 of
general register R�. The program is anno-
tated to show the contents of bit positions
32-63 of the R� and R� + 1 registers after the
execution of each instruction. The contents of
bit positions 32-63 of the R� register are
represented as A,B, meaning the value A in
bit positions 32-47 and the value B in bit posi-
tions 48-63. The value C is a carry from
A + B. Note that bit positions 32-63 of reg-
ister R� + 1 are known to contain all zeros
when CHECKSUM has set condition code 0.

 R2 Bits R2+1 Bits
 Program 32-63 32-63

 LR R2,R1 A,B �,�
 SRDL R2,16 �,A B,�
 ALR R2,R2+1 B,A B,�
 ALR R2,R1 A+B+C,A+B B,�

SRL R2,16 �,A+B+C B,�

| 3. The CHECKSUM instruction may be used in
| computing hash values as illustrated in the fol-
| lowing programming example. The variable
| KEY contains a string to be mapped into a
| slot in a hash table. The variable SIZE is a
| prime number designating the size of the hash
| table. The value of SIZE is determined by
| (a) the number of strings to be hashed into
| the table divided by the acceptable number of
| hash collisions, and (b) a value that is not too
| close to a power of two. Following the
| DIVIDE (D) instruction, the remainder in reg-
| ister 0 represents the resulting hash value.

| SR 1,1 Zero accumulator
| LA 2,KEY Point to string
| LA 3,L'KEY Load string length
| LOOP CKSM 1,2 Compute checksum
| BNZ LOOP Repeat if not done
| SR �,� Zero for divide
| D �,SIZE Compute hash value
| ...
| KEY DS CL64 String to be hashed
| SIZE DS F Size of hash table

4. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

5. The storage-operand references of
CHECKSUM may be multiple-access refer-
ences. (See “Storage-Operand Consistency”
on page 5-87.)

6. Figure 7-2 on page 7-34 contains a summary
of the operation.

 Chapter 7. General Instructions 7-33

 ┌───┐
│R1 bits 32-63 ──� CHECKSUM │

 │ │
│Address in R2 ──� ADR, length in R2+1 ──� LEN│

 └─────────────────┬───────────────────────────┘
 │
┌───────────────────�│ Note: All addends are unsigned binary integers
│ �
│ ┌────────┐ No ┌─────────────────────────────────┐
│ │LEN >= 4├─────────────────────�│LEN ──� INC │
│ └────┬───┘ │ │
│ │ Yes │INC bytes at ADR followed by │
│ � │4-INC all-zeros bytes ──� ELEMENT│
│ ┌──────────────────────────┐ └────────────────┬────────────────┘
│ │4 ──� INC │ │
│ │ │ │
│ │4 bytes at ADR ──� ELEMENT│ │
│ └────────────┬─────────────┘ │
│ │ │
│ │�──┘
│ �
│ ┌───────────────────────────────┐
│ │CHECKSUM + ELEMENT ──� CHECKSUM│
│ └──────────────┬────────────────┘
│ │
│ �
│ ┌───────────────────┐ Yes ┌─────────────────────────┐
│ │Carry from addition├────�│CHECKSUM + 1 ──� CHECKSUM│
│ └─────────┬─────────┘ └────────────┬────────────┘
│ │ No │
│ │�───────────────────────────┘
│ �
│ ┌─────────────────────────────────────┐
│ │ADR + INC ──� ADR, LEN - INC ──� LEN │
│ └──────────────┬──────────────────────┘
│ │
│ �
│ ┌─────────────────────────┐
│ │LEN = � or CPU-determined│
│ │reason to end operation │
│ └────┬───────┬────────────┘
│ │ No │ Yes
└────────────┘ │
 �
 ┌──────────────────────────┐

│CHECKSUM ──� R1 bits 32-63│
 │ │

│ADR ──� R2, LEN ──� R2+1 │
 └────────────┬─────────────┘
 │
 �
 ┌───────┐ No

│LEN = �├───────────────────────┐
 └───┬───┘ │
 │ Yes │
 � �
 ┌────────────────────┐ ┌────────────────────┐

│Set condition code �│ │Set condition code 3│
 └─────────┬──────────┘ └─────────┬──────────┘
 │ │
 � �
 End operation End operation

Figure 7-2. Execution of CHECKSUM

7-34 z/Architecture Principles of Operation

| CIPHER MESSAGE (KM)

| KM R�,R� [RRE]

| ┌────────────────┬────────┬────┬────┐
| │ 'B92E' │////////│ R� │ R� │
| └────────────────┴────────┴────┴────┘
| � 16 24 28 31

| CIPHER MESSAGE WITH
| CHAINING (KMC)

| KMC R�,R� [RRE]

| ┌────────────────┬────────┬────┬────┐
| │ 'B92F' │////////│ R� │ R� │
| └────────────────┴────────┴────┴────┘
| � 16 24 28 31

| A function specified by the function code in
| general register 0 is performed.

| Bits 16-23 of the instruction are ignored.

| Bit positions 57-63 of general register 0 contain
| the function code. Figures 7-3 and 7-4 show the
| assigned function codes for CIPHER MESSAGE
| and CIPHER MESSAGE WITH CHAINING,
| respectively. All other function codes are unas-
| signed. For cipher functions, bit 56 is the modifier
| bit which specifies whether an encryption or a
| decryption operation is to be performed. The
| modifier bit is ignored for all other functions. All
| other bits of general register 0 are ignored.

| General register 1 contains the logical address of
| the leftmost byte of the parameter block in
| storage. In the 24-bit addressing mode, the con-
| tents of bit positions 40-63 of general register 1
| constitute the address, and the contents of bit
| positions 0-39 are ignored. In the 31-bit
| addressing mode, the contents of bit positions
| 33-63 of general register 1 constitute the address,
| and the contents of bit positions 0-32 are ignored.
| In the 64-bit addressing mode, the contents of bit
| positions 0-63 of general register 1 constitute the
| address.

| The function codes for CIPHER MESSAGE are as
| follows.

| The function codes for CIPHER MESSAGE WITH
| CHAINING are as follows.

| All other function codes are unassigned.

| The query function provides the means of indi-
| cating the availability of the other functions. The
| contents of general registers R�, R�, and R� + 1
| are ignored for the query function.

| For all other functions, the second operand is
| ciphered as specified by the function code using a
| cryptographic key in the parameter block, and the
| result is placed in the first-operand location. For
| CIPHER MESSAGE WITH CHAINING, ciphering
| also uses an initial chaining value in the param-
| eter block, and the chaining value is updated as
| part of the operation.

| Figure 7-3. Function Codes for CIPHER MESSAGE

| Code| Function

| Parm.
| Block
| Size
| (bytes)

| Data
| Block
| Size
| (bytes)

| 0| KM-Query| 16| —

| 1| KM-DEA| 8| 8

| 2| KM-TDEA-128| 16| 8

| 3| KM-TDEA-192| 24| 8

| Explanation:

| — Not applicable

| Figure 7-4. Function Codes for CIPHER MESSAGE
| WITH CHAINING

| Code| Function

| Parm.
| Block
| Size
| (bytes)

| Data
| Block
| Size
| (bytes)

| 0| KMC-Query| 16| —

| 1| KMC-DEA| 16| 8

| 2| KMC-TDEA-128| 24| 8

| 3| KMC-TDEA-192| 32| 8

| Explanation:

| — Not applicable

 Chapter 7. General Instructions 7-35

| The R� field designates a general register and
| must designate an even-numbered register; other-
| wise, a specification exception is recognized.

| The R� field designates an even-odd pair of
| general registers and must designate an even-
| numbered register; otherwise, a specification
| exception is recognized.

| The location of the leftmost byte of the first and
| second operands is specified by the contents of
| the R� and R� general registers, respectively.
| The number of bytes in the second-operand
| location is specified in general register R� + 1.
| The first operand is the same length as the
| second operand.

| As part of the operation, the addresses in general
| registers R� and R� are incremented by the
| number of bytes processed, and the length in
| general register R� + 1 is decremented by the
| same number. The formation and updating of the
| addresses and length is dependent on the
| addressing mode.

| In the 24-bit addressing mode, the contents of bit
| positions 40-63 of general registers R� and R�
| constitute the addresses of the first and second
| operands, respectively, and the contents of bit
| positions 0-39 are ignored; bits 40-63 of the
| updated addresses replace the corresponding bits
| in general registers R� and R�, carries out of bit
| position 40 of the updated address are ignored,
| and the contents of bit positions 32-39 of general
| registers R� and R� are set to zeros. In the 31-bit
| addressing mode, the contents of bit positions

| 33-63 of general registers R� and R� constitute
| the addresses of the first and second operands,
| respectively, and the contents of bit positions 0-32
| are ignored; bits 33-63 of the updated addresses
| replace the corresponding bits in general registers
| R� and R�, carries out of bit position 33 of the
| updated address are ignored, and the content of
| bit position 32 of general registers R� and R� is
| set to zero. In the 64-bit addressing mode, the
| contents of bit positions 0-63 of general registers
| R� and R� constitute the addresses of the first
| and second operands, respectively; bits 0-63 of
| the updated addresses replace the contents of
| general registers R� and R�, and carries out of bit
| position 0 are ignored.

| In both the 24-bit and the 31-bit addressing
| modes, the contents of bit positions 32-63 of
| general register R� + 1 form a 32-bit unsigned
| binary integer which specifies the number of bytes
| in the first and second operands, and the contents
| of bit positions 0-31 are ignored; bits 32-63 of the
| updated value replace the corresponding bits in
| general register R� + 1. In the 64-bit addressing
| mode, the contents of bit positions 0-63 of general
| register R� + 1 form a 64-bit unsigned binary
| integer which specifies the number of bytes in the
| first and second operands; and the updated value
| replaces the contents of general register R� + 1.

| In the 24-bit or 31-bit addressing mode, the con-
| tents of bit positions 0-31 of general registers R�,
| R�, and R� + 1, always remain unchanged.

| Figure 7-5 on page 7-37 shows the contents of
| the general registers just described.

7-36 z/Architecture Principles of Operation

| 24-Bit Addressing Mode 31-Bit Addressing Mode

| ┌─/─┬────────────────────────┬─┬───────┐ ┌─/─┬────────────────────────┬─┬───────┐
| GR� │///│////////////////////////│M│ FC │ │///│////////////////////////│M│ FC │
| └─/─┴────────────────────────┴─┴───────┘ └─/─┴────────────────────────┴─┴───────┘
| � 32 56 63 � 32 56 63

| ┌─/─┬────────┬─────────────────────────┐ ┌─/─┬─┬────────────────────────────────┐
| GR1 │///│////////│ Parameter-Block Address │ │///│/│ Parameter-Block Address │
| └─/─┴────────┴─────────────────────────┘ └─/─┴─┴────────────────────────────────┘
| � 32 4� 63 � 33 63

| ┌─/─┬────────┬─────────────────────────┐ ┌─/─┬─┬────────────────────────────────┐
| R� │///│////////│ First-Operand Address │ │///│/│ First-Operand Address │
| └─/─┴────────┴─────────────────────────┘ └─/─┴─┴────────────────────────────────┘
| � 32 4� 63 � 33 63

| ┌─/─┬────────┬─────────────────────────┐ ┌─/─┬─┬────────────────────────────────┐
| R� │///│////////│ Second-Operand Address │ │///│/│ Second-Operand Address │
| └─/─┴────────┴─────────────────────────┘ └─/─┴─┴────────────────────────────────┘
| � 32 4� 63 � 33 63

| ┌─/─┬──────────────────────────────────┐ ┌─/─┬──────────────────────────────────┐
| R� + 1 │///│ Second-Operand Length │ │///│ Second-Operand Length │
| └─/─┴──────────────────────────────────┘ └─/─┴──────────────────────────────────┘
| � 32 63 � 32 63

| 64-Bit Addressing Mode

| ┌─/─┬────────────────────────┬─┬───────┐
| GR� │///│////////////////////////│M│ FC │
| └─/─┴────────────────────────┴─┴───────┘
| � 32 56 63

| ┌─/────────────────────────────────────┐
| GR1 │ Parameter-Block Address │
| └─/────────────────────────────────────┘
| � 63

| ┌─/────────────────────────────────────┐
| R� │ First-Operand Address │
| └─/────────────────────────────────────┘
| � 63

| ┌─/────────────────────────────────────┐
| R� │ Second-Operand Address │
| └─/────────────────────────────────────┘
| � 63

| ┌─/────────────────────────────────────┐
| R� + 1 │ Second-Operand Length │
| └─/────────────────────────────────────┘
| � 63

| Figure 7-5. General Register Assignment for KM and KMC

| In the access-register mode, access registers 1,
| R�, and R� specify the address spaces containing
| the parameter block, first, and second operands,
| respectively.

| The result is obtained as if processing starts at the
| left end of both the first and second operands and
| proceeds to the right, block by block. The opera-
| tion is ended when the number of bytes in the
| second operand as specified in general register

 Chapter 7. General Instructions 7-37

| R� + 1 have been processed and placed at the
| first-operand location (called normal completion) or
| when a CPU-determined number of blocks that is
| less than the length of the second operand have
| been processed (called partial completion). The
| CPU-determined number of blocks depends on
| the model, and may be a different number each
| time the instruction is executed. The
| CPU-determined number of blocks is usually
| nonzero. In certain unusual situations, this
| number may be zero, and condition code 3 may
| be set with no progress. However, the CPU pro-
| tects against endless reoccurrence of this no-
| progress case.

| The results in the first-operand location and the
| chaining-value field are unpredictable if any of the
| following situations occur:

| 1. The cryptographic-key field overlaps any
| portion of the first operand.

| 2. The chaining-value field overlaps any portion
| of the first operand or the second operand.

| 3. The first and second operands overlap
| destructively. Operands are said to overlap
| destructively when the first-operand location
| would be used as a source after data would
| have been moved into it, assuming processing
| to be performed from left to right and one byte
| at a time.

| When the operation ends due to normal com-
| pletion, condition code 0 is set and the resulting
| value in R� + 1 is zero. When the operation
| ends due to partial completion, condition code 3 is
| set and the resulting value in R� + 1 is nonzero.

| When a storage-alteration PER event is recog-
| nized, fewer than 4K additional bytes are stored
| into the first-operand locations before the event is
| reported.

| When the second-operand length is initially zero,
| the parameter block, first, and second operands
| are not accessed, general registers R�, R�, and
| R� + 1 are not changed, and condition code 0 is
| set.

| When the contents of the R� and R� fields are the
| same, the contents of the designated registers are
| incremented only by the number of bytes proc-
| essed, not by twice the number of bytes proc-
| essed.

| As observed by other CPUs and channel pro-
| grams, references to the parameter block and
| storage operands may be multiple-access refer-
| ences, accesses to these storage locations are
| not necessarily block-concurrent, and the
| sequence of these accesses or references is
| undefined.

| In certain unusual situations, instruction execution
| may complete by setting condition code 3 without
| updating the registers and chaining value to reflect
| the last unit of the first and second operands proc-
| essed. The size of the unit processed in this case
| depends on the situation and the model, but is
| limited such that the portion of the first and
| second operands which have been processed and
| not reported do not overlap in storage. In all
| cases, change bits are set and PER storage-
| alteration events are reported, when applicable,
| for all first-operand locations processed.

| Access exceptions may be reported for a larger
| portion of an operand than is processed in a
| single execution of the instruction; however,
| access exceptions are not recognized for locations
| beyond the length of an operand nor for locations
| more than 4K bytes beyond the current location
| being processed.

| Symbols Used in Function Descriptions

| The following symbols are used in the subsequent
| description of the CIPHER MESSAGE and
| CIPHER MESSAGE WITH CHAINING functions.
| For data-encryption-algorithm (DEA) functions, the
| DEA-key-parity bit in each byte of the DEA key is
| ignored, and the operation proceeds normally,
| regardless of the DEA-key parity of the key.
| Further description of the data-encryption algo-
| rithm may be found in Data Encryption Algorithm,
| ANSI-X3.92.1981, American National Standard for
| Information Systems.

| A
| �
| ┌───┐
| B ─�│xor│
| └─┬─┘
| �
| C

| C = A XOR B

| Figure 7-6. Symbol For Bit-Wise Exclusive Or

7-38 z/Architecture Principles of Operation

| K <8> P <8> K <8> C <8>
| │ � │ �
| │ ┌───┐ │ ┌───┐
| └─────�│DEA│ └─────�│DEA│
| │ e │ │ d │
| └─┬─┘ └─┬─┘
| � �
| C <8> P <8>

| Symbol for DEA Symbol for DEA
| Encryption Decryption

| Symbol Explanation
| <n> Length of item in bytes
| C Ciphertext
| K Key value
| P Plaintext

| Figure 7-7. Symbols for DEA Encryption and
| Decryption

| KM-Query (KM Function Code 0)

| The locations of the operands and addresses
| used by the instruction are as shown in Figure 7-5
| on page 7-37.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ │
| ├ Status Word ┤
| 8 │ │
| └────────────────────────┘
| � 63

| Figure 7-8. Parameter Block for KM-Query

| A 128-bit status word is stored in the parameter
| block. Bits 0-127 of this field correspond to func-
| tion codes 0-127, respectively, of the CIPHER
| MESSAGE instruction. When a bit is one, the cor-
| responding function is installed; otherwise, the
| function is not installed.

| Condition code 0 is set when execution of the
| KM-Query function completes; condition code 3 is
| not applicable to this function.

| KM-DEA (KM Function Code 1)

| The locations of the operands and addresses
| used by the instruction are as shown in Figure 7-5
| on page 7-37.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ Cryptographic Key (K) │
| └────────────────────────┘
| � 63

| Figure 7-9. Parameter Block for KM-DEA

| When the modifier bit in general register 0 is zero,
| an encipher operation is performed. The 8-byte
| plaintext blocks (P1, P2, ..., Pn) in operand 2 are
| enciphered using the DEA algorithm with the
| 64-bit cryptographic key in the parameter block.
| Each plaintext block is independently enciphered;
| that is, the encipher operation is performed
| without chaining. The ciphertext blocks (C1, C2,
| ..., Cn) are stored in operand 1. The operation is
| shown in the following figure:

| Parameter
| Block ┌─────────────┐
| in │ K <8> │
| Storage └──────┬──────┘
| �
| K

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K ─�│DEA│ K ─�│DEA│ K ─�│DEA│ K ─�│DEA│
| │ e │ │ e │ │ e │ │ e │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-10. KM-DEA Encipher Operation

| When the modifier bit in general register 0 is one,
| a decipher operation is performed. The 8-byte
| ciphertext blocks (C1, C2, ..., Cn) in operand 2 are
| deciphered using the DEA algorithm with the
| 64-bit cryptographic key in the parameter block.
| Each ciphertext block is independently deciphered;
| that is, the decipher operation is performed
| without chaining. The plaintext blocks (P1, P2, ...,
| Pn) are stored in operand 1. The operation is
| shown in the following figure:

 Chapter 7. General Instructions 7-39

| Parameter
| Block ┌─────────────┐
| in │ K <8> │
| Storage └──────┬──────┘
| �
| K

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K ─�│DEA│ K ─�│DEA│ K ─�│DEA│ K ─�│DEA│
| │ d │ │ d │ │ d │ │ d │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-11. KM-DEA Decipher Operation

| KM-TDEA-128 (KM Function Code 2)

| The locations of the operands and addresses
| used by the instruction are as shown in Figure 7-5
| on page 7-37.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │Cryptographic Key 1 (K1)│
| ├────────────────────────┤
| 8 │Cryptographic Key 2 (K2)│
| └────────────────────────┘
| � 63

| Figure 7-12. Parameter Block for KM-TDEA-128

| When the modifier bit in general register 0 is zero,
| an encipher operation is performed. The 8-byte
| plaintext blocks (P1, P2, ..., Pn) in operand 2 are
| enciphered using the TDEA (triple DEA) algorithm
| with the two 64-bit cryptographic keys in the
| parameter block. Each plaintext block is inde-
| pendently enciphered; that is, the encipher opera-
| tion is performed without chaining. The ciphertext
| blocks (C1, C2, ..., Cn) are stored in operand 1.
| The operation is shown in the following figure:

| Parameter
| Block ┌─────────────┬─────────────┐
| in │ K1 <8> │ K2 <8> │
| Storage └──────┬──────┴──────┬──────┘
| � �
| K1 K2

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│
| │ e │ │ e │ │ e │ │ e │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K2 ─�│DEA│ K2 ─�│DEA│ K2 ─�│DEA│ K2 ─�│DEA│
| │ d │ │ d │ │ d │ │ d │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│
| │ e │ │ e │ │ e │ │ e │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-13. KM-TDEA-128 Encipher Operation

| When the modifier bit in general register 0 is one,
| a decipher operation is performed. The 8-byte
| ciphertext blocks (C1, C2, ..., Cn) in operand 2 are
| deciphered using the TDEA algorithm with the two
| 64-bit cryptographic keys in the parameter block.
| Each ciphertext block is independently deciphered;
| that is, the decipher operation is performed
| without chaining. The plaintext blocks (P1, P2, ...,
| Pn) are stored in operand 1. The operation is
| shown in the following figure:

| Parameter
| Block ┌─────────────┬─────────────┐
| in │ K1 <8> │ K2 <8> │
| Storage └──────┬──────┴──────┬──────┘
| � �
| K1 K2

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│
| │ d │ │ d │ │ d │ │ d │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K2 ─�│DEA│ K2 ─�│DEA│ K2 ─�│DEA│ K2 ─�│DEA│
| │ e │ │ e │ │ e │ │ e │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│
| │ d │ │ d │ │ d │ │ d │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-14. KM-TDEA-128 Decipher Operation

| KM-TDEA-192 (KM Function Code 3)

| The locations of the operands and addresses
| used by the instruction are as shown in Figure 7-5
| on page 7-37.

7-40 z/Architecture Principles of Operation

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │Cryptographic Key 1 (K1)│
| ├────────────────────────┤
| 8 │Cryptographic Key 2 (K2)│
| ├────────────────────────┤
| 16 │Cryptographic Key 3 (K3)│
| └────────────────────────┘
| � 63

| Figure 7-15. Parameter Block for KM-TDEA-192

| When the modifier bit in general register 0 is zero,
| an encipher operation is performed. The 8-byte
| plaintext blocks (P1, P2, ..., Pn) in operand 2 are
| enciphered using the TDEA algorithm with the
| three 64-bit cryptographic keys in the parameter
| block. Each plaintext block is independently enci-
| phered; that is, the encipher operation is per-
| formed without chaining. The ciphertext blocks
| (C1, C2, ..., Cn) are stored in operand 1. The
| operation is shown in the following figure:

| Parameter
| Block ┌─────────────┬─────────────┬─────────────┐
| in │ K1 <8> │ K2 <8> │ K3 <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┘
| � � �
| K1 K2 K3

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│
| │ e │ │ e │ │ e │ │ e │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K2 ─�│DEA│ K2 ─�│DEA│ K2 ─�│DEA│ K2 ─�│DEA│
| │ d │ │ d │ │ d │ │ d │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K3 ─�│DEA│ K3 ─�│DEA│ K3 ─�│DEA│ K3 ─�│DEA│
| │ e │ │ e │ │ e │ │ e │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-16. KM-TDEA-192 Encipher Operation

| When the modifier bit in general register 0 is one,
| a decipher operation is performed. The 8-byte
| ciphertext blocks (C1, C2, ..., Cn) in operand 2 are
| deciphered using the TDEA algorithm with the
| three 64-bit cryptographic keys in the parameter
| block. Each ciphertext block is independently
| deciphered; that is, the decipher operation is per-
| formed without chaining. The plaintext blocks (P1,
| P2, ..., Pn) are stored in operand 1. The opera-
| tion is shown in the following figure:

| Parameter
| Block ┌─────────────┬─────────────┬─────────────┐
| in │ K1 <8> │ K2 <8> │ K3 <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┘
| � � �
| K1 K2 K3

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K3 ─�│DEA│ K3 ─�│DEA│ K3 ─�│DEA│ K3 ─�│DEA│
| │ d │ │ d │ │ d │ │ d │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K2 ─�│DEA│ K2 ─�│DEA│ K2 ─�│DEA│ K2 ─�│DEA│
| │ e │ │ e │ │ e │ │ e │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│ K1 ─�│DEA│
| │ d │ │ d │ │ d │ │ d │
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-17. KM-TDEA-192 Decipher Operation

| KMC-Query (KMC Function Code 0)

| The locations of the operands and addresses
| used by the instruction are as shown in Figure 7-5
| on page 7-37.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ │
| ├ Status Word ┤
| 8 │ │
| └────────────────────────┘
| � 63

| Figure 7-18. Parameter Block for KMC-Query

| A 128-bit status word is stored in the parameter
| block. Bits 0-127 of this field correspond to func-
| tion codes 0-127, respectively, of the CIPHER
| MESSAGE WITH CHAINING instruction. When a
| bit is one, the corresponding function is installed;
| otherwise, the function is not installed.

| Condition code 0 is set when execution of the
| KMC-Query function completes; condition code 3
| is not applicable to this function.

| KMC-DEA (KMC Function Code 1)

| The locations of the operands and addresses
| used by the instruction are as shown in Figure 7-5
| on page 7-37.

| The parameter block used for the function has the
| following format:

 Chapter 7. General Instructions 7-41

| ┌────────────────────────┐
| � │ Chaining Value (CV) │
| ├────────────────────────┤
| 8 │ Cryptographic Key (K) │
| └────────────────────────┘
| � 63

| Figure 7-19. Parameter Block for KMC-DEA

| When the modifier bit in general register 0 is zero,
| an encipher operation is performed. The 8-byte
| plaintext blocks (P1, P2, ..., Pn) in operand 2 are
| enciphered using the DEA algorithm with the
| 64-bit cryptographic key and the 64-bit chaining
| value in the parameter block.

| The chaining value, called the initial chaining
| value (ICV), for deriving the first ciphertext block is
| the chaining value in the parameter block; the
| chaining value for deriving each subsequent
| ciphertext block is the corresponding previous
| ciphertext block. The ciphertext blocks (C1, C2,
| ..., Cn) are stored in operand 1. The last
| ciphertext block is the output chaining value
| (OCV) and is stored into the chaining-value field of
| the parameter block. The operation is shown in
| the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┐
| in │ CV <8> │ K <8> │
| Storage └──────┬──────┴──────┬──────┘
| � �
| ICV K

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| ICV ─�│xor│ ┌─────�│xor│ ┌─────�│xor│ ┌──/────�│xor│
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K ─�│DEA│ │ K ─�│DEA│ │ K ─�│DEA│ │ K ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| ├────┘ ├────┘ ├────┘ ├─�OCV
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-20. KMC-DEA Encipher Operation

| When the modifier bit in general register 0 is one,
| a decipher operation is performed. The 8-byte
| ciphertext blocks (C1, C2, ..., Cn) in operand 2 are
| deciphered using the DEA algorithm with the
| 64-bit cryptographic key and the 64-bit chaining
| value in the parameter block.

| The chaining value, called the initial chaining
| value (ICV), for deriving the first plaintext block is
| in the parameter block; the chaining value for
| deriving each subsequent plaintext block is the

| corresponding previous ciphertext block. The
| plaintext blocks (P1, P2, ..., Pn) are stored in
| operand 1. The last ciphertext block is the output
| chaining value (OCV) and is stored into the
| chaining-value field in the parameter block. The
| operation is shown in the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┐
| in │ CV <8> │ K <8> │
| Storage └──────┬──────┴──────┬──────┘
| � �
| ICV K

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| ├────┐ ├────┐ ├────┐ ├─�OCV
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K ─�│DEA│ │ K ─�│DEA│ │ K ─�│DEA│ │ K ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| ICV ─�│xor│ └─────�│xor│ └─────�│xor│ └──/────�│xor│
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-21. KMC-DEA Decipher Operation

| KMC-TDEA-128 (KMC Function Code 2)

| The locations of the operands and addresses
| used by the instruction are as shown in Figure 7-5
| on page 7-37.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ Chaining Value (CV) │
| ├────────────────────────┤
| 8 │Cryptographic Key 1 (K1)│
| ├────────────────────────┤
| 16 │Cryptographic Key 2 (K2)│
| └────────────────────────┘
| � 63

| Figure 7-22. Parameter Block for KMC-TDEA-128

| When the modifier bit in general register 0 is zero,
| an encipher operation is performed. The 8-byte
| plaintext blocks (P1, P2, ..., Pn) in operand 2 are
| enciphered using the TDEA algorithm with the two
| 64-bit cryptographic keys and the 64-bit chaining
| value in the parameter block.

| The chaining value, called the initial chaining
| value (ICV), for deriving the first ciphertext block is
| the chaining value in the parameter block; the
| chaining value for deriving each subsequent
| ciphertext block is the corresponding previous

7-42 z/Architecture Principles of Operation

| ciphertext block. The ciphertext blocks (C1, C2,
| ..., Cn) are stored in operand 1. The last
| ciphertext block is the output chaining value
| (OCV) and is stored into the chaining-value field of
| the parameter block. The operation is shown in
| the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┬─────────────┐
| in │ CV <8> │ K1 <8> │ K2 <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┘
| � � �
| ICV K1 K2

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| ICV ─�│xor│ ┌─────�│xor│ ┌─────�│xor│ ┌──/────�│xor│
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| ├────┘ ├────┘ ├────┘ ├─�OCV
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-23. KMC-TDEA-128 Encipher Operation

| When the modifier bit in general register 0 is one,
| a decipher operation is performed. The 8-byte
| ciphertext blocks (C1, C2, ..., Cn) in operand 2 are
| deciphered using the TDEA algorithm with the two
| 64-bit cryptographic keys and the 64-bit chaining
| value in the parameter block.

| The chaining value, called the initial chaining
| value (ICV), for deriving the first plaintext block is
| in the parameter block; the chaining value for
| deriving each subsequent plaintext block is the
| corresponding previous ciphertext block. The
| plaintext blocks (P1, P2, ..., Pn) are stored in
| operand 1. The last ciphertext block is the output
| chaining value (OCV) and is stored into the
| chaining-value field in the parameter block. The
| operation is shown in the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┬─────────────┐
| in │ CV <8> │ K1 <8> │ K2 <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┘
| � � �
| ICV K1 K2

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| ├────┐ ├────┐ ├────┐ ├─�OCV
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| ICV ─�│xor│ └─────�│xor│ └─────�│xor│ └──/────�│xor│
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-24. KMC-TDEA-128 Decipher Operation

| KMC-TDEA-192 (KMC Function Code 3)

| The locations of the operands and addresses
| used by the instruction are as shown in Figure 7-5
| on page 7-37.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ Chaining Value (CV) │
| ├────────────────────────┤
| 8 │Cryptographic Key 1 (K1)│
| ├────────────────────────┤
| 16 │Cryptographic Key 2 (K2)│
| ├────────────────────────┤
| 24 │Cryptographic Key 3 (K3)│
| └────────────────────────┘
| � 63

| Figure 7-25. Parameter Block for KMC-TDEA-192

| When the modifier bit in general register 0 is zero,
| an encipher operation is performed. The 8-byte
| plaintext blocks (P1, P2, ..., Pn) in operand 2 are
| enciphered using the TDEA algorithm with the
| three 64-bit cryptographic keys and the 64-bit
| chaining value in the parameter block.

| The chaining value, called the initial chaining
| value (ICV), for deriving the first ciphertext block is
| the chaining value in the parameter block; the
| chaining value for deriving each subsequent
| ciphertext block is the corresponding previous

 Chapter 7. General Instructions 7-43

| ciphertext block. The ciphertext blocks (C1, C2,
| ..., Cn) are stored in operand 1. The last
| ciphertext block is the output chaining value
| (OCV) and is stored into the chaining-value field of
| the parameter block. The operation is shown in
| the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┬─────────────┬─────────────┐
| in │ CV <8> │ K1 <8> │ K2 <8> │ K3 <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴──────┬──────┘
| � � � �
| ICV K1 K2 K3

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| ICV ─�│xor│ ┌─────�│xor│ ┌─────�│xor│ ┌──/────�│xor│
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K3 ─�│DEA│ │ K3 ─�│DEA│ │ K3 ─�│DEA│ │ K3 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| ├────┘ ├────┘ ├────┘ ├─�OCV
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-26. KMC-TDEA-192 Encipher Operation

| When the modifier bit in general register 0 is one,
| a decipher operation is performed. The 8-byte
| ciphertext blocks (C1, C2, ..., Cn) in operand 2 are
| deciphered using the TDEA algorithm with the
| three 64-bit cryptographic keys and the 64-bit
| chaining value in the parameter block.

| The chaining value, called the initial chaining
| value (ICV), for deriving the first plaintext block is
| in the parameter block; the chaining value for
| deriving each subsequent plaintext block is the
| corresponding previous ciphertext block. The
| plaintext blocks (P1, P2, ..., Pn) are stored in
| operand 1. The last ciphertext block is the output
| chaining value (OCV) and is stored into the
| chaining-value field in the parameter block. The
| operation is shown in the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┬─────────────┬─────────────┐
| in │ CV <8> │ K1 <8> │ K2 <8> │ K3 <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴──────┬──────┘
| � � � �
| ICV K1 K2 K3

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ C1 <8> │ C2 <8> │ C3 <8> │ │ Cn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| ├────┐ ├────┐ ├────┐ ├─�OCV
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K3 ─�│DEA│ │ K3 ─�│DEA│ │ K3 ─�│DEA│ │ K3 ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| ICV ─�│xor│ └─────�│xor│ └─────�│xor│ └──/────�│xor│
| └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘
| � � � �
| Op 1 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ P1 <8> │ P2 <8> │ P3 <8> │ │ Pn <8> │
| Storage └─────────────┴─────────────┴─────────────┴/┴─────────────┘

| Figure 7-27. KMC-TDEA-192 Decipher Operation

| Special Conditions for KM and KMC

| A specification exception is recognized and no
| other action is taken if any of the following occurs:

| 1. Bits 57-63 of general register 0 specify an
| unassigned or uninstalled function code.

| 2. The R� or R� field designates an odd-
| numbered register or general register 0.

| 3. The second operand length is not a multiple of
| the data block size of the designated function
| (see Figure 7-3 on page 7-35 to determine
| the data block sizes for CIPHER MESSAGE
| functions; see Figure 7-4 on page 7-35 to
| determine the data block sizes for CIPHER
| MESSAGE WITH CHAINING functions). This
| specification-exception condition does not
| apply to the query functions.

| Resulting Condition Code:

| 0 Normal completion
| 1 --
| 2 --
| 3 Partial completion

| Program Exceptions:

| � Access (fetch, operand 2 and cryptographic
| key; store, operand 1; fetch and store,
| chaining value)
| � Operation (if the message-security assist is
| not installed)

7-44 z/Architecture Principles of Operation

| � Specification

| ┌───┐
| │ 1.-6. Exceptions with the same priority as the priority of program- │
| │ interruption conditions for the general case. │
| │ │
| │ 7.A Access exceptions for second instruction halfword. │
| │ │
| │ 7.B Operation exception. │
| │ │
| │ 8. Specification exception due to invalid function code │
| │ or invalid register number. │
| │ │
| │ 9. Specification exception due to invalid operand length. │
| │ │
| │ 1�. Condition code � due to second-operand length originally zero. │
| │ │
| │ 11. Access exceptions for an access to the parameter block, first, │
| │ or second operand. │
| │ │
| │ 12. Condition code � due to normal completion (second-operand │
| │ length originally nonzero, but stepped to zero). │
| │ │
| │ 13. Condition code 3 due to partial completion (second-operand │
| │ length still nonzero). │
| └───┘

| Figure 7-28. Priority of Execution: KM and KMC

| Programming Notes:

| 1. When condition code 3 is set, the general reg-
| isters containing the operand addresses and
| length, and, for CIPHER MESSAGE WITH
| CHAINING, the chaining value in the param-
| eter block, are usually updated such that the
| program can simply branch back to the
| instruction to continue the operation.

| For unusual situations, the CPU protects
| against endless reoccurrence of the no-
| progress case and also protects against
| setting condition code 3 when the portion of
| the first and second operands to be reproc-
| essed overlap in storage. Thus, the program
| can safely branch back to the instruction
| whenever condition code 3 is set with no
| exposure to an endless loop and no exposure
| to incorrectly retrying the instruction.

| 2. If the length of the second operand is nonzero
| initially and condition code 0 is set, the regis-
| ters are updated in the same manner as for
| condition code 3. For CIPHER MESSAGE
| WITH CHAINING, the chaining value in this
| case is such that additional operands can be
| processed as if they were part of the same
| chain.

| 3. To save storage, the first and second oper-
| ands may overlap exactly or the starting point
| of the first operand may be to the left of the
| starting point of the second operand. In either
| case, the overlap is not destructive.

 COMPARE

CR R�,R� [RR]

┌────────┬────┬────┐
│ '19' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

CGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B92�' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

CGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B93�' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

 Chapter 7. General Instructions 7-45

C R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '59' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| CY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '59' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

CG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '2�' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

CGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '3�' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first operand is compared with the second
operand, and the result is indicated in the condi-

| tion code. For COMPARE (CR, C, CY), the oper-
ands are treated as 32-bit signed binary integers.
For COMPARE (CGR, CG), they are treated as
64-bit signed binary integers For COMPARE
(CGFR, CGF), the second operand is treated as a
32-bit signed binary integer, and the first operand
is treated as a 64-bit signed binary integer.

| The displacement for C is treated as a 12-bit
| unsigned binary integer. The displacement for
| CY, CG, and CGF is treated as a 20-bit signed
| binary integer.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions:

| � Access (fetch, operand 2 of C, CY, CG, and
CGF only)

| � Operation (CY, if the long-displacement facility
| is not installed)

COMPARE AND FORM
CODEWORD

CFC D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B21A' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

General register 2 contains an index, which is
used along with contents of general registers 1
and 3 to designate the starting addresses of two
fields in storage, called the first and third oper-
ands. The first and third operands are logically
compared, and a codeword is formed for use in
sort/merge algorithms.

The second-operand address is not used to
address data. Bits 49-62 of the second-operand
address, with one rightmost and one leftmost zero
appended, are used as a 16-bit index limit. Bit 63
of the second-operand address is the operand-
control bit. When bit 63 is zero, the codeword is
formed from the high operand; when bit 63 is one,
the codeword is formed from the low operand.
The remainder of the second-operand address is
ignored.

General registers 1 and 3 contain the base
addresses of the first and third operands. Bits
48-63 of general register 2 are used as an index
for addressing both the first and third operands.
General registers 1, 2, and 3 must all initially
contain even values; otherwise, a specification
exception is recognized.

In the access-register mode, access register 1
specifies the address space containing the first
and third operands.

The size of the units by which the first and third
operands are compared, the size of the resulting
codeword, and the participation of bits 0-31 of
general registers 1, 2, and 3 in the operation
depend on the addressing mode. In the 24-bit or
31-bit addressing mode, the comparison unit is
two bytes, the codeword is four bytes, and bits
0-31 are ignored and remain unchanged. In the
64-bit addressing mode, the comparison unit is six
bytes, the codeword is eight bytes, and bits 0-31
are used in and may be changed by the operation.

Operation in the 24-Bit or 31-Bit Addressing
Mode

7-46 z/Architecture Principles of Operation

The operation consists in comparing the first and
third operands halfword by halfword and incre-
menting the index until an unequal pair of
halfwords is found or the index exceeds the index
limit. This proceeds in units of operation, between
which interruptions may occur.

At the start of a unit of operation, the index, bits
48-63 of general register 2, is logically compared
with the index limit. If the index is larger, the
instruction is completed by placing bits 32-63 of
general register 3, with bit 32 set to one, in bit
positions 32-63 of general register 2, and by
setting condition code 0.

If the index is less than or equal to the index limit,
the index is applied to the first-operand and third-
operand base addresses to locate the current pair
of halfwords to be compared. The index, with 48
leftmost zeros appended, and bits 32-63 of
general register 1, with 32 leftmost zeros
appended, are added to form a 64-bit intermediate
value. A carry out of bit position 32, if any, is
ignored. The address of the current first-operand
halfword is generated from the intermediate value
by following the normal rules for operand address
generation. The address of the current third-
operand halfword is formed in the same manner
by adding bits 32-63 of general register 3 and the
index.

The current first-operand and third-operand
halfwords are logically compared. If they are
equal, the contents of general register 2 are incre-
mented by 2, and a unit of operation ends.

If the compare values are unequal, the contents of
general register 2 are incremented by 2 and then
shifted left logically by 16 bit positions. The
shifting occurs only within bit positions 32-63. If
the operand-control bit is zero, (1) the one's com-
plement of the higher halfword is placed in bit
positions 48-63 of general register 2, and (2) if
operand 1 was higher, bits 32-63 of general regis-
ters 1 and 3 are interchanged. If the operand-
control bit is one, (1) the lower halfword is placed
in bit positions 48-63 of general register 2, and (2)
if operand 1 was lower, bits 32-63 of general reg-
isters 1 and 3 are interchanged.

For the purpose of recognizing access exceptions,
operand 1 and operand 3 are both considered to

have a length equal to 2 more than the value of
the index limit minus the index.

Operation in the 64-Bit Addressing Mode

The operation consists in comparing the first and
third operands in units of six bytes at a time and
incrementing the index until an unequal pair of six-
byte units is found or the index exceeds the index
limit. This proceeds in units of operation, between
which interruptions may occur.

At the start of a unit of operation, the index, bits
48-63 of general register 2, is logically compared
with the index limit. If the index is larger, the
instruction is completed by placing bits 0-63 of
general register 3, with bit 0 set to one, in bit posi-
tions 0-63 of general register 2, and by setting
condition code 0.

If the index is less than or equal to the index limit,
the index is applied to the first-operand and third-
operand base addresses to locate the current pair
of six-byte units to be compared. The index, with
48 leftmost zeros appended, and bits 0-63 of
general register 1 are added to form the 64-bit
address of the current first-operand six-byte unit.
A carry out of bit position 0, if any, is ignored.
The address of the current third-operand six-byte
unit is formed in the same manner by adding bits
0-63 of general register 3 and the index.

The current first-operand and third-operand six-
byte units are logically compared. If they are
equal, the contents of general register 2 are incre-
mented by 6, and a unit of operation ends.

If the compare values are unequal, the contents of
general register 2 are incremented by 6 and then
shifted left logically by 48 bit positions. If the
operand-control bit is zero, (1) the one's comple-
ment of the higher six-byte unit is placed in bit
positions 16-63 of general register 2, and (2) if
operand 1 was higher, bits 0-63 of general regis-
ters 1 and 3 are interchanged. If the operand-
control bit is one, (1) the lower six-byte unit is
placed in bit positions 16-63 of general register 2,
and (2) if operand 1 was lower, bits 0-63 of
general registers 1 and 3 are interchanged.

For the purpose of recognizing access exceptions,
operand 1 and operand 3 are both considered to
have a length equal to 6 more than the value of
the index limit minus the index.

 Chapter 7. General Instructions 7-47

Specifications Independent of Addressing
Mode

The condition code is unpredictable if the instruc-
tion is interrupted.

When the index is initially larger than the index
limit, access exceptions are not recognized for the
storage operands. For operands longer than 4K
bytes, access exceptions are not recognized more
than 4K bytes beyond the byte being processed.
Access exceptions are not recognized when a
specification-exception condition exists.

If the B� field designates general register 2, it is
unpredictable whether or not the index limit is
recomputed; thus, in this case the operand length
is unpredictable. However, in no case can the
operands exceed 2�� bytes in length.

Resulting Condition Code:

0 Operands equal
1 Operand-control bit zero and operand 1 low,

or operand-control bit one and operand 3 low
2 Operand-control bit zero and operand 1 high,

or operand-control bit one and operand 3 high
3 --

 Program Exceptions:

� Access (fetch, operands 1 and 3)
 � Specification

Programming Notes:

1. An example of the use of COMPARE AND
FORM CODEWORD is given in “Sorting
Instructions” in Appendix A, “Number Repre-
sentation and Instruction-Use Examples.”

2. The offset of the halfword or six-byte unit
(depending on the addressing mode) of the
first and third operands at which comparison
is to begin should be placed in bit positions
48-63 of general register 2 before executing
COMPARE AND FORM CODEWORD. The
index limit derived from the second-operand
address should be the offset of the last
halfword or six-byte unit of the first and third
operands for which comparison can be made.
When the operands do not compare equal,
the leftmost 16 bits of the codeword formed in
general register 2 (bits 32-47 of the register in
the 24-bit or 31-bit addressing mode, or bits
0-15 in the 64-bit addressing mode) by the

execution of COMPARE AND FORM
CODEWORD gives the offset of the first
halfword or six-byte unit not compared. If the
codewords compare equal in an UPDATE
TREE operation, bit positions 32-47 of general
register 2 in the 24-bit or 31-bit addressing
mode, or bit positions 0-15 in the 64-bit
addressing mode, will contain the offset at
which another COMPARE AND FORM
CODEWORD should resume comparison for
breaking codeword ties. Operand-control-bit
values of zero or one are used for sorting
operands in ascending or descending order,
respectively. Refer to “Sorting Instructions” on
page A-51 for a discussion of the use of
codewords in sorting.

3. The condition code indicates the results of
comparing operands up to 32,768 bytes long.
Equal operands result in a negative codeword
in bit positions 32-63 of general register 2 in
the 24-bit or 31-bit addressing mode, or in bit
positions 0-63 in the 64-bit addressing mode.
A negative codeword also results in the 24-bit
or 31-bit mode when the index limit is 32,766
and the operands that are compared differ in
only their last two bytes, or in the 64-bit mode
when the limit is 32,762 and the operands
differ in only their last six bytes. If this latter
codeword is used by UPDATE TREE, an
incorrect result may be indicated in general
registers 0 and 1. Therefore, the index limit
should not exceed 32,764 in the 24-bit or
31-bit mode, or 32,760 in the 64-bit mode,
when the resulting codeword is to be used by
UPDATE TREE.

4. Special precautions should be taken if
COMPARE AND FORM CODEWORD is
made the target of EXECUTE. See the pro-
gramming note concerning interruptible
instructions under EXECUTE.

5. Further programming notes concerning inter-
ruptible instructions are included in “Interrup-
tible Instructions” in Chapter 5, “Program
Execution.”

6. The storage-operand references of
COMPARE AND FORM CODEWORD may be
multiple-access references. (See “Storage-
Operand Consistency” on page 5-87.)

7. Figure 7-29 on page 7-49 and Figure 7-30 on
page 7-50 contain summaries of the opera-
tion in the 24-bit or 31-bit addressing mode,

7-48 z/Architecture Principles of Operation

and Figure 7-31 on page 7-51 and
Figure 7-32 on page 7-52 contain summaries

of the operation in the 64-bit addressing
mode.

┌────────┬─────────┬─────────┬─────────┬─────────┬─────────┐
│Operand-│ │Resulting│Result in│Result in│Result in│
│Control │ │Condition│GR2 (Bits│GR1 (Bits│GR3 (Bits│
│ Bit │Relation │ Code │ 32-63) │ 32-63) │ 32-63) │
├────────┼─────────┼─────────┼─────────┼─────────┼─────────┤
│ � │op1 = op3│ � │ OGR3b1 │ - │ - │
│ � │op1 < op3│ 1 │ X, nop3 │ - │ - │
│ � │op1 > op3│ 2 │ X, nop1 │ OGR3 │ OGR1 │
│ 1 │op1 = op3│ � │ OGR3b1 │ - │ - │
│ 1 │op1 < op3│ 2 │ X, top1 │ OGR3 │ OGR1 │
│ 1 │op1 > op3│ 1 │ X, top3 │ - │ - │
├────────┴─────────┴─────────┴─────────┴─────────┴─────────┤
│Explanation: │
│ │
│ - The bits remain unchanged. │
│ │
│ OGR1 The original value of GR1 bits 32-63. │
│ │
│ OGR3 The original value of GR3 bits 32-63. │
│ │
│ OGR3b1 The original value of GR3 bits 32-63 with bit 32 │
│ set to one. │
│ │
│ X Bits 32-47 of GR2 are 2 more than the index of the│
│ first unequal halfword. │
│ │
│ nop1 Bits 48-63 of GR2 are the one's complement of the │
│ first unequal halfword in operand 1. │
│ │
│ nop3 Bits 48-63 of GR2 are the one's complement of the │
│ first unequal halfword in operand 3. │
│ │
│ top1 Bits 48-63 of GR2 are the first unequal halfword │
│ in operand 1. │
│ │
│ top3 Bits 48-63 of GR2 are the first unequal halfword │
│ in operand 3. │
└──┘

Figure 7-29. Operation of COMPARE AND FORM CODEWORD in the 24-Bit or 31-bit Addressing Mode

 Chapter 7. General Instructions 7-49

 ┌───┐
│2 x bits 49-62 of 2nd-operand address ──� index limit│

 │ │
│Bit 63 of 2nd-operand address ──� operand-control bit│

 └──────────────────────────┬──────────────────────────┘
 │
 �
 ┌──────────────────────────────────────┐ No

│Bit 63 of GR1, GR2, and GR3 all zeros├─────────────� Specification
 └──────────────────┬───────────────────┘ exception
 │ Yes
 ┌───────────────────────�│
 │ �
 │ ┌───────────────────────────────┐ Yes

│ │Bits 48-63 of GR2 > index limit├───────────────────┐
 │ └───────────────┬───────────────┘ │
 │ │ No │
 │ � �
┌────┴────┐ ┌──────────────────────────────┐ ┌───────────────────┐
│Unit-of- │ │GR1 + bits 48-63 of GR2 │ � │GR3 ──� GR2 │ �
│operation│ │──� 1st-operand address │ │ │
│boundary │ │ │ │1 ──� bit 32 of GR2│
└─────────┘ │GR3 + bits 48-63 of GR2 │ � │ │

� │──� 3rd-operand address │ │� ──� Cond code │
 │ │ │ └────────┬──────────┘

│ │Fetch halfwords from current │ │
│ │1st- and 3rd-operand locations│ �

 │ │ │ End operation
│ │GR2 + 2 ──� GR2 │ �

 │ └──────────────┬───────────────┘
 │ │
 │ �
 │ Equal ┌─────────────────────────┐ 1st op high

└───────────┤Compare halfwords fetched├───────────────────────────┐
 └────────────┬────────────┘ │

│ 1st op low │
 � �
 Zero ┌────────────────────────┐ Zero ┌────────────────────────┐

┌─────────┤Test operand-control bit│ ┌──────┤Test operand-control bit│
 │ └───────────┬────────────┘ │ └────────────┬───────────┘
 � │ One � │ One
┌────────────────┐ � ┌────────────────┐ �
│One's complement│ ┌───────────────┐ │One's complement│ ┌──────────┐
│of 3rd-op HW │ │1st-op HW │ │of 1st-op HW │ │3rd-op HW │
│──� TEMPHW │ │──� TEMPHW │ │──� TEMPHW │ │──� TEMPHW│
└───────┬────────┘ │ │ │ │ └────┬─────┘
 │ │Exchange │ │Exchange │ │

� │GR1 and GR3 │ � │GR1 and GR3 │ � �
┌────────────────┐ │ │ │ │ ┌───────────────┐
│1 ──� Cond code │ │2 ──� Cond code│ │2 ──� Cond code │ │1 ──� Cond code│
└───────┬────────┘ └───────┬───────┘ └───────┬────────┘ └───────┬───────┘
 │ │ │ │
 │ � � │
 └────────────────────���───────────────────��──────────────────┘
 │
 �
 ┌────────────────────────────┐

│Shift GR2 left 16 positions │ �
 │ │

│TEMPHW ──� bits 48-63 of GR2│
 └─────────────┬──────────────┘

│ � Only bits 32-63 of a GR partici-
� pate when no bits are mentioned.

 End operation

Figure 7-30. Execution of COMPARE AND FORM CODEWORD in the 24-Bit or 31-bit Addressing Mode

7-50 z/Architecture Principles of Operation

┌────────┬─────────┬─────────┬─────────┬─────────┬─────────┐
│Operand-│ │Resulting│Result in│Result in│Result in│
│Control │ │Condition│GR2 (Bits│GR1 (Bits│GR3 (Bits│
│ Bit │Relation │ Code │ �-63) │ �-63) │ �-63) │
├────────┼─────────┼─────────┼─────────┼─────────┼─────────┤
│ � │op1 = op3│ � │ OGR3b1 │ - │ - │
│ � │op1 < op3│ 1 │ X, nop3 │ - │ - │
│ � │op1 > op3│ 2 │ X, nop1 │ OGR3 │ OGR1 │
│ 1 │op1 = op3│ � │ OGR3b1 │ - │ - │
│ 1 │op1 < op3│ 2 │ X, top1 │ OGR3 │ OGR1 │
│ 1 │op1 > op3│ 1 │ X, top3 │ - │ - │
├────────┴─────────┴─────────┴─────────┴─────────┴─────────┤
│Explanation: │
│ │
│ - The bits remain unchanged. │
│ │
│ OGR1 The original value of GR1 bits �-63. │
│ │
│ OGR3 The original value of GR3 bits �-63. │
│ │
│ OGR3b1 The original value of GR3 bits �-63 with bit � set│
│ to one. │
│ │
│ X Bits �-15 of GR2 are 6 more than the index of the │
│ first unequal six-byte unit. │
│ │
│ nop1 Bits 16-63 of GR2 are the one's complement of the │
│ first unequal six-byte unit in operand 1. │
│ │
│ nop3 Bits 16-63 of GR2 are the one's complement of the │
│ first unequal six-byte unit in operand 3. │
│ │
│ top1 Bits 16-63 of GR2 are the first unequal six-byte │
│ unit in operand 1. │
│ │
│ top3 Bits 16-63 of GR2 are the first unequal six-byte │
│ unit in operand 3. │
└──┘

Figure 7-31. Operation of COMPARE AND FORM CODEWORD in the 64-Bit Addressing Mode

 Chapter 7. General Instructions 7-51

 ┌───┐
│2 x bits 49-62 of 2nd-operand address ──� index limit│

 │ │
│Bit 63 of 2nd-operand address ──� operand-control bit│

 └──────────────────────────┬──────────────────────────┘
 │
 �
 ┌──────────────────────────────────────┐ No

│Bit 63 of GR1, GR2, and GR3 all zeros├─────────────� Specification
 └──────────────────┬───────────────────┘ exception
 │ Yes
 ┌───────────────────────�│
 │ �
 │ ┌───────────────────────────────┐ Yes

│ │Bits 48-63 of GR2 > index limit├───────────────────┐
 │ └───────────────┬───────────────┘ │
 │ │ No │
 │ � �
┌────┴────┐ ┌──────────────────────────────┐ ┌──────────────────┐
│Unit-of- │ │GR1 + bits 48-63 of GR2 │ � │GR3 ──� GR2 │ �
│operation│ │──� 1st-operand address │ │ │
│boundary │ │ │ │1 ──� bit � of GR2│
└─────────┘ │GR3 + bits 48-63 of GR2 │ � │ │

� │──� 3rd-operand address │ │� ──� Cond code │
 │ │ │ └────────┬─────────┘

│ │Fetch six bytes from current │ │
│ │1st- and 3rd-operand locations│ �

 │ │ │ End operation
│ │GR2 + 6 ──� GR2 │ �

 │ └──────────────┬───────────────┘
 │ │
 │ �
 │ Equal ┌─────────────────────────┐ 1st op high

└───────────┤Compare six bytes fetched├───────────────────────────┐
 └────────────┬────────────┘ │

│ 1st op low │
 � �
 Zero ┌────────────────────────┐ Zero ┌────────────────────────┐

┌─────────┤Test operand-control bit│ ┌──────┤Test operand-control bit│
 │ └───────────┬────────────┘ │ └────────────┬───────────┘
 � │ One � │ One
┌────────────────┐ � ┌────────────────┐ �
│One's complement│ ┌───────────────┐ │One's complement│ ┌───────────────┐
│of 3rd-op six │ │1st-op six │ │of 1st-op six │ │3rd-op six │
│bytes ──� TEMP6 │ │bytes ──� TEMP6│ │bytes ──� TEMP6 │ │bytes ──� TEMP6│
└───────┬────────┘ │ │ │ │ └────┬──────────┘
 │ │Exchange │ │Exchange │ │

� │GR1 and GR3 │ � │GR1 and GR3 │ � �
┌────────────────┐ │ │ │ │ ┌───────────────┐
│1 ──� Cond code │ │2 ──� Cond code│ │2 ──� Cond code │ │1 ──� Cond code│
└───────┬────────┘ └───────┬───────┘ └───────┬────────┘ └───────┬───────┘
 │ │ │ │
 │ � � │
 └────────────────────���───────────────────��──────────────────┘
 │
 �
 ┌───────────────────────────┐

│Shift GR2 left 48 positions│ �
 │ │

│TEMP6 ──> bits 16-63 of GR2│
 └─────────────┬─────────────┘

│ � Bits �-63 of a GR participate
� when no bits are mentioned.

 End operation

Figure 7-32. Execution of COMPARE AND FORM CODEWORD in the 64-Bit Addressing Mode

7-52 z/Architecture Principles of Operation

COMPARE AND SWAP

CS R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'BA' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| CSY R�,R�,D�(B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '14' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

CSG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '3�' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

COMPARE DOUBLE AND SWAP

CDS R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'BB' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| CDSY R�,R�,D�(B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '31' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

CDSG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '3E' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first and second operands are compared. If
they are equal, the third operand is stored at the
second-operand location. If they are unequal, the
second operand is loaded into the first-operand
location. The result of the comparison is indicated
in the condition code.

| For COMPARE AND SWAP (CS, CSY), the first
and third operands are 32 bits in length, with each
operand occupying bit positions 32-63 of a general
register. The second operand is a word in
storage.

For COMPARE AND SWAP (CSG), the first and
third operands are 64 bits in length, with each
operand occupying bit positions 0-63 of a general
register. The second operand is a doubleword in
storage.

| For COMPARE DOUBLE AND SWAP (CDS,
| CDSY), the first and third operands are 64 bits in

length. The first 32 bits of an operand occupy bit
positions 32-63 of the even-numbered register of
an even-odd pair of general registers, and the
second 32 bits occupy bit positions 32-63 of the
odd-numbered register of the pair. The second
operand is a doubleword in storage.

For COMPARE DOUBLE AND SWAP (CDSG),
the first and third operands are 128 bits in length.
The first 64 bits of an operand occupy bit positions
0-63 of the even-numbered register of an
even-odd pair of general registers, and the second
64 bits occupy bit positions 0-63 of the odd-
numbered register of the pair. The second
operand is a quadword in storage.

When an equal comparison occurs, the third
operand is stored at the second-operand location.
The fetch of the second operand for purposes of
comparison and the store into the second-operand
location appear to be a block-concurrent
interlocked-update reference as observed by other
CPUs.

| When the result of the comparison is unequal, the
| second operand is loaded at the first-operand
| location, and the second-operand location remains

unchanged. However, on some models, the con-
tents may be fetched and subsequently stored
back unchanged at the second-operand location.
This update appears to be a block-concurrent
interlocked-update reference as observed by other
CPUs.

A serialization function is performed before the
operand is fetched and again after the operation is
completed.

| The displacement for CS and CDS is treated as a
| 12-bit unsigned binary integer. The displacement
| for CSY, CSG, CDSY, and CDSG is treated as a
| 20-bit signed binary integer.

The second operand of COMPARE AND SWAP
| (CS, CSY) must be designated on a word

boundary. The second operand of COMPARE

 Chapter 7. General Instructions 7-53

AND SWAP (CSG) and COMPARE DOUBLE
| AND SWAP (CDS, CDSY) must be designated on

a doubleword boundary. The second operand of
COMPARE DOUBLE AND SWAP (CDSG) must
be designated on a quadword boundary. The R�
and R� fields for COMPARE DOUBLE AND
SWAP must each designate an even-numbered
register. Otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 First and second operands equal, second
operand replaced by third operand

1 First and second operands unequal, first
operand replaced by second operand

2 --
3 --

 Program Exceptions:

� Access (fetch and store, operand 2)
| � Operation (CSY and CDSY, if the long-
| displacement facility is not installed)

 � Specification

Programming Notes:

1. Several examples of the use of the
COMPARE AND SWAP and COMPARE
DOUBLE AND SWAP instructions are given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. Some of the following notes are worded, with
| respect to operand size, for CS, CSY, CDS,
| and CDSY. Similar notes, worded for a larger

operand size, would apply to CSG and CDSG.

3. COMPARE AND SWAP can be used by CPU
programs sharing common storage areas in
either a multiprogramming or multiprocessing
environment. Two examples are:

a. By performing the following procedure, a
CPU program can modify the contents of
a storage location even though the possi-
bility exists that the CPU program may be
interrupted by another CPU program that
will update the location or that another
CPU program may simultaneously update
the location. First, the entire word con-
taining the byte or bytes to be updated is
loaded into a general register. Next, the
updated value is computed and placed in
another general register. Then
COMPARE AND SWAP is executed with

the R� field designating the register that
contains the original value and the R� field
designating the register that contains the
updated value. If the update has been
successful, condition code 0 is set. If the
storage location no longer contains the
original value, the update has not been
successful, the general register desig-
nated by the R� field of the COMPARE
AND SWAP instruction contains the new
current value of the storage location, and
condition code 1 is set. When condition
code 1 is set, the CPU program can
repeat the procedure using the new
current value.

b. COMPARE AND SWAP can be used for
controlled sharing of a common storage
area, including the capability of leaving a
message (in a chained list of messages)
when the common area is in use. To
accomplish this, a word in storage can be
used as a control word, with a zero value
in the word indicating that the common
area is not in use and that no messages
exist, a negative value indicating that the
area is in use and that no messages exist,
and a nonzero positive value indicating
that the common area is in use and that
the value is the address of the most
recent message added to the list. Thus,
any number of CPU programs desiring to
seize the area can use COMPARE AND
SWAP to update the control word to indi-
cate that the area is in use or to add mes-
sages to the list. The single CPU
program which has seized the area can
also safely use COMPARE AND SWAP to
remove messages from the list.

4. COMPARE DOUBLE AND SWAP can be
used in a manner similar to that described for
COMPARE AND SWAP. In addition, it has
another use. Consider a chained list, with a
control word used to address the first
message in the list, as described in program-
ming note 2b above. If multiple CPU pro-
grams are to be permitted to delete messages
by using COMPARE AND SWAP (and not just
the single CPU program which has seized the
common area), there is a possibility the list
will be incorrectly updated. This would occur
if, for example, after one CPU program has
fetched the address of the most recent
message in order to remove the message,

7-54 z/Architecture Principles of Operation

another CPU program removes the first two
messages and then adds the first message
back into the chain. The first CPU program,
on continuing, cannot easily detect that the list
is changed. By increasing the size of the
control word to a doubleword containing both
the first message address and a word with a
change number that is incremented for each
modification of the list, and by using
COMPARE DOUBLE AND SWAP to update
both fields together, the possibility of the list
being incorrectly updated is reduced to a neg-
ligible level. That is, an incorrect update can
occur only if the first CPU program is delayed
while changes exactly equal in number to a
multiple of 2�� take place and only if the last
change places the original message address
in the control word.

5. COMPARE AND SWAP and COMPARE
DOUBLE AND SWAP do not interlock against
storage accesses by channel programs.
Therefore, the instructions should not be used
to update a location at which a channel
program may store, since the channel-
program data may be lost.

6. To ensure successful updating of a common
storage field by two or more CPUs, all
updates must be done by means of an
interlocked-update reference. COMPARE
AND SWAP, COMPARE AND SWAP AND
PURGE, COMPARE DOUBLE AND SWAP,
and TEST AND SET are the only instructions
that perform an interlocked-update reference.
For example, if one CPU executes OR IMME-
DIATE and another CPU executes COMPARE
AND SWAP to update the same byte, the
fetch by OR IMMEDIATE may occur either
before the fetch by COMPARE AND SWAP or
between the fetch and the store by
COMPARE AND SWAP, and then the store
by OR IMMEDIATE may occur after the store
by COMPARE AND SWAP, in which case the
change made by COMPARE AND SWAP is
lost.

7. For the case of a condition-code setting of 1,
COMPARE AND SWAP and COMPARE
DOUBLE AND SWAP may or may not,
depending on the model, cause any of the fol-
lowing to occur for the second-operand
location: a PER storage-alteration event may
be recognized; a protection exception for

storing may be recognized; and, provided no
access exception exists, the change bit may
be set to one. Because the contents of
storage remain unchanged, the change bit
may or may not be one when a PER storage-
alteration event is recognized.

| 8. The performance of CDSG on some models
| may be significantly slower than that of CSG.
| When quadword consistency is not required
| by the program, alternate code sequences
| should be used.

 COMPARE HALFWORD

CH R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '49' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| CHY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '79' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

 COMPARE HALFWORD
IMMEDIATE

CHI R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'E' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

CGHI R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'F' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code. The second operand is two bytes in
length and is treated as a 16-bit signed binary

| integer. For COMPARE HALFWORD (CH, CHY)
and COMPARE HALFWORD IMMEDIATE (CHI),
the first operand is treated as a 32-bit signed
binary integer. For COMPARE HALFWORD
IMMEDIATE (CGHI), the first operand is treated
as a 64-bit signed binary integer.

 Chapter 7. General Instructions 7-55

| The displacement for CH is treated as a 12-bit
| unsigned binary integer. The displacement for
| CHY is treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions:

| � Access (fetch, operand 2 of CH, CHY only)
| � Operation (CHY, if the long-displacement
| facility is not installed)

Programming Note: An example of the use of
the COMPARE HALFWORD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 COMPARE LOGICAL

CLR R�,R� [RR]

┌────────┬────┬────┐
│ '15' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

CLGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B921' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

CLGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B931' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

CL R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '55' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| CLY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '55' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

CLG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '21' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

CLGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '31' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

CLI D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ '95' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

| CLIY D�(B�),I� [SIY]

| ┌────────┬────────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ I� │ B� │DL� │ DH� │ '55' │
| └────────┴────────┴────┴──/─┴────────┴────────┘
| � 8 16 2� 32 4� 47

CLC D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'D5' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code.

| For COMPARE LOGICAL (CLR, CL, CLY), the
operands are treated as 32 bits. For COMPARE
LOGICAL (CLGR, CLG), the operands are treated
as 64 bits. For COMPARE LOGICAL (CLGFR,
CLGF), the first operand is treated as 64 bits, and
the second operand is treated as 32 bits with 32
zeros appended on the left.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found
or the end of the fields is reached. For

| COMPARE LOGICAL (CL, CLY, CLG, CLGF,
CLC), access exceptions may or may not be
recognized for the portion of a storage operand to
the right of the first unequal byte.

| The displacements for CL, CLI, and both operands
| of CLC are treated as 12-bit unsigned binary inte-
| gers. The displacement for CLY, CLG, CLGF,

7-56 z/Architecture Principles of Operation

| and CLIY is treated as a 20-bit signed binary
| integer.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions:

| � Access (fetch, operand 2, CL, CLY, CLG,
| CLGF, and CLC; fetch, operand 1, CLI, CLIY,

and CLC)
| � Operation (CLY and CLIY if the long-
| displacement facility is not installed)

Programming Notes:

1. Examples of the use of the COMPARE
LOGICAL instruction are given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. COMPARE LOGICAL treats all bits of each
operand alike as part of a field of unstructured
logical data. For COMPARE LOGICAL (CLC),
the comparison may extend to field lengths of
256 bytes.

 COMPARE LOGICAL
CHARACTERS UNDER MASK

CLM R�,M�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'BD' │ R� │ M� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| CLMY R�,M�,D�(B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ M� │ B� │DL� │ DH� │ '21' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

CLMH R�,M�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ M� │ B� │DL� │ DH� │ '2�' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first operand is compared with the second
operand under control of a mask, and the result is
indicated in the condition code.

The contents of the M� field are used as a mask.
These four bits, left to right, correspond one for
one with four bytes, left to right, of general register
R�. For COMPARE LOGICAL CHARACTERS

| UNDER MASK (CLM, CLMY), the four bytes to
which the mask bits correspond are in bit positions
32-63 of general register R�. For COMPARE
LOGICAL CHARACTERS UNDER MASK (CLMH),
the four bytes are in the high-order half, bit posi-
tions 0-31, of the register. The byte positions cor-
responding to ones in the mask are considered as
a contiguous field and are compared with the
second operand. The second operand is a contig-
uous field in storage, starting at the second-
operand address and equal in length to the
number of ones in the mask. The bytes in the
general register corresponding to zeros in the
mask do not participate in the operation.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found
or the end of the fields is reached.

When the mask is not zero, exceptions associated
with storage-operand access are recognized for
no more than the number of bytes specified by the
mask. Access exceptions may or may not be
recognized for the portion of a storage operand to
the right of the first unequal byte. When the mask
is zero, access exceptions are recognized for one
byte at the second-operand address.

| The displacement for CLM is treated as a 12-bit
| unsigned binary integer. The displacement for
| CLMY and CLMH is treated as a 20-bit signed
| binary integer.

Resulting Condition Code:

0 Operands equal, or mask bits all zeros
1 First operand low
2 First operand high
3 --

 Program Exceptions:

� Access (fetch, operand 2)
| � Operation (CLMY, if the long-displacement
| facility is not installed)

Programming Note: An example of the use of
the COMPARE LOGICAL CHARACTERS UNDER
MASK instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

 Chapter 7. General Instructions 7-57

COMPARE LOGICAL LONG

CLCL R�,R� [RR]

┌────────┬────┬────┐
│ '�F' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code. The shorter operand is considered to
be extended on the right with padding bytes.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R� and R�, respec-
tively. The number of bytes in the first-operand
and second-operand locations is specified by

unsigned binary integers in bit positions 40-63 of
general registers R� + 1 and R� + 1, respec-
tively. Bit positions 32-39 of general register
R� + 1 contain the padding byte. The contents of
bit positions 0-39 of general register R� + 1 and
of bit positions 0-31 of general register R� + 1
are ignored.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-33 on page 7-59.

7-58 z/Architecture Principles of Operation

┌───┐
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──────────┬───────────────────────┐ │
│ R� + 1 │////////////│ First-Operand Length │ │////////////│ First-Operand Length │ │
│ └─/──────────┴───────────────────────┘ └─/──────────┴───────────────────────┘ │
│ � 4� 63 � 4� 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ Second-Operand Address│ │////│ Second-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────┬───────────────────────┐ ┌─/─┬────────┬───────────────────────┐ │
│ R� + 1 │///│ Pad │ Second-Operand Length │ │///│ Pad │ Second-Operand Length │ │
│ └─/─┴────────┴───────────────────────┘ └─/─┴────────┴───────────────────────┘ │
│ � 32 4� 63 � 32 4� 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ │
│ R� + 1 │////////////│ First-Operand Length │ │
│ └─/──────────┴───────────────────────┘ │
│ � 4� 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Second-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/─┬────────┬───────────────────────┐ │
│ R� + 1 │///│ Pad │ Second-Operand Length │ │
│ └─/─┴────────┴───────────────────────┘ │
│ � 32 4� 63 │
│ │
└───┘

Figure 7-33. Register Contents for COMPARE LOGICAL LONG

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found
or the end of the longer operand is reached. If
the operands are not of the same length, the
shorter operand is considered to be extended on
the right with the appropriate number of padding
bytes.

If both operands are of zero length, the operands
are considered to be equal.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that

| follows termination, the lengths in general regis-
ters R� + 1 and R� + 1 are decremented by the
number of bytes compared, and the addresses in
general registers R� and R� are incremented by
the same number, so that the instruction, when
reexecuted, resumes at the point of interruption.
In the 24-bit or 31-bit addressing mode, the left-
most bits which are not part of the address in bit
positions 32-63 of general registers R� and R� are
set to zeros, and the contents of bit positions 0-31

 Chapter 7. General Instructions 7-59

remain unchanged. In any addressing mode, the
contents of bit positions 0-39 of general registers
R� + 1 and R� + 1 remain unchanged, and the
condition code is unpredictable. If the operation is
interrupted after the shorter operand has been
exhausted, the length field pertaining to the
shorter operand is zero, and its address is
updated accordingly.

If the operation ends because of an inequality, the
address fields in general registers R� and R� at
completion identify the first unequal byte in each
operand. The lengths in bit positions 40-63 of
general registers R� + 1 and R� + 1 are decre-
mented by the number of bytes that were equal,
unless the inequality occurred with the padding
byte, in which case the length field for the shorter
operand is set to zero. The addresses in general
registers R� and R� are incremented by the
amounts by which the corresponding length fields
were reduced.

If the two operands, including the padding byte, if
necessary, are equal, both length fields are made
zero at completion, and the addresses are incre-
mented by the corresponding operand-length
values.

At the completion of the operation, in the 24-bit or
31-bit addressing mode, the leftmost bits which
are not part of the address in bit positions 32-63
of general registers R� and R� are set to zeros,
even when one or both of the initial length values
are zero. In any addressing mode, the contents of
bit positions 0-39 of general registers R� + 1 and
R� + 1 remain unchanged.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may
or may not be recognized. For operands longer
than 2K bytes, access exceptions are not recog-
nized more than 2K bytes beyond the byte being
processed. Access exceptions are not indicated
for locations more than 2K bytes beyond the first
unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd.

Resulting Condition Code:

0 Operands equal, or both zero length

1 First operand low
2 First operand high
3 --

 Program Exceptions:

� Access (fetch, operands 1 and 2)
 � Specification

Programming Notes:

1. An example of the use of the COMPARE
LOGICAL LONG instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. When the R� and R� fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, except that the con-
tents of the designated registers are incre-
mented or decremented only by the number of
bytes compared, not by twice the number of
bytes compared. In the absence of dynamic
modification of the operand area by another
CPU or by a channel program, condition code
0 is set. However, it is unpredictable whether
access exceptions are recognized for the
operand since the operation can be completed
without storage being accessed.

3. Special precautions should be taken when
COMPARE LOGICAL LONG is made the
target of EXECUTE. See the programming
note concerning interruptible instructions
under EXECUTE.

4. Other programming notes concerning interrup-
tible instructions are included in “Interruptible
Instructions” in Chapter 5, “Program
Execution.”

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE LOGICAL LONG
EXTENDED

CLCLE R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'A9' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The first operand is compared with the third
operand until unequal bytes are compared, the

7-60 z/Architecture Principles of Operation

end of the longer operand is reached, or a
CPU-determined number of bytes have been com-
pared, whichever occurs first. The shorter
operand is considered to be extended on the right
with padding bytes. The result is indicated in the
condition code.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and third operand is designated by the
contents of general registers R� and R�, respec-
tively. In the 24-bit or 31-bit addressing mode, the
number of bytes in the first-operand and third-
operand locations is specified by the contents of
bit positions 32-63 of general registers R� + 1
and R� + 1, respectively, and those contents are
treated as 32-bit unsigned binary integers. In the
64-bit addressing mode, the number of bytes in
the first-operand and third-operand locations is
specified by the entire contents of general regis-
ters R� + 1 and R� + 1, respectively, and those

contents are treated as 64-bit unsigned binary
integers.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The second-operand address is not used to
address data; instead, the rightmost eight bits of
the second-operand address, bits 56-63, are the
padding byte. Bits 0-55 of the second-operand
address are ignored.

The contents of the registers and address just
described are shown in Figure 7-34 on
page 7-62.

 Chapter 7. General Instructions 7-61

┌──┐
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ Third-Operand Address │ │////│ Third-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Third-Operand Length │ │///│ Third-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/─────────────────────────┬────────┐ ┌─/─────────────────────────┬────────┐ │
│ 2nd Op. │///////////////////////////│ Pad │ │///////////////////////////│ Pad │ │
│ Address └─/─────────────────────────┴────────┘ └─/─────────────────────────┴────────┘ │
│ � 56 63 � 56 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Third-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Third-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/─────────────────────────┬────────┐ │
│ 2nd Op. │///////////////////////////│ Pad │ │
│ Address └─/─────────────────────────┴────────┘ │
│ � 56 63 │
│ │
└──┘

Figure 7-34. Register Contents and Second-Operand Address for COMPARE LOGICAL LONG EXTENDED

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found,
the end of the longer operand is reached, or a

CPU-determined number of bytes have been com-
pared, whichever occurs first. If the operands are
not of the same length, the shorter operand is

7-62 z/Architecture Principles of Operation

considered to be extended on the right with the
appropriate number of padding bytes.

If both operands are of zero length, the operands
are considered to be equal.

If the operation ends because of an inequality, the
address fields in general registers R� and R� at
completion identify the first unequal byte in each
operand. The lengths in bit positions 32-63, in the
24-bit or 31-bit addressing mode, or in bit posi-
tions 0-63, in the 64-bit addressing mode, of
general registers R� + 1 and R� + 1 are decre-
mented by the number of bytes that were equal,
unless the inequality occurred with the padding
byte, in which case the length field for the shorter
operand is set to zero. The addresses in general
registers R� and R� are incremented by the
amounts by which the corresponding length fields
were decremented. Condition code 1 is set if the
first operand is low, or condition code 2 is set if
the first operand is high.

If the two operands, including the padding byte, if
necessary, are equal, both length fields are made
zero at completion, and the addresses are incre-
mented by the corresponding operand-length
values. Condition code 0 is set.

If the operation is completed because a
CPU-determined number of bytes have been com-
pared without finding an inequality or reaching the
end of the longer operand, the lengths in general
registers R� + 1 and R� + 1 are decremented by
the number of bytes compared, and the addresses
in general registers R� and R� are incremented by
the same number, so that the instruction, when
reexecuted, resumes at the next bytes to be com-
pared. If the operation is completed after the
shorter operand has been exhausted, the length
field pertaining to the shorter operand is zero, and
the operand address is updated accordingly. Con-
dition code 3 is set.

In the 24-bit or 31-bit addressing mode, the con-
tents of bit positions 0-31 of general registers R�,
R� + 1, R�, and R� + 1, always remain
unchanged.

The padding byte may be formed from D�(B�)
multiple times during the execution of the instruc-
tion, and the registers designated by R� and R�
may be updated multiple times. Therefore, if B�
equals R�, R� + 1, R�, or R� + 1 and is subject

to change during the execution of the instruction,
the results are unpredictable.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed. The maximum amount
is approximately 4K bytes of either operand.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which
are not part of the address in bit positions 32-63
of general registers R� and R� may be set to
zeros or may remain unchanged from their original
values, even when one or both of the initial length
values are zero.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may
or may not be recognized. For operands longer
than 4K bytes, access exceptions are not recog-
nized more than 4K bytes beyond the byte being
processed. Access exceptions are not indicated
for locations more than 4K bytes beyond the first
unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd.

Resulting Condition Code:

0 All bytes compared; operands equal, or both
zero length

1 All bytes compared, first operand low
2 All bytes compared, first operand high
3 CPU-determined number of bytes compared

without finding an inequality

 Program Exceptions:

� Access (fetch, operands 1 and 3)
 � Specification

Programming Notes:

1. COMPARE LOGICAL LONG EXTENDED is
intended for use in place of COMPARE
LOGICAL LONG when the operand lengths
are specified as 32-bit binary integers.
COMPARE LOGICAL LONG EXTENDED sets
condition code 3 in cases in which COMPARE
LOGICAL LONG would be interrupted.

 Chapter 7. General Instructions 7-63

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the comparison. The program need
not determine the number of bytes that were
compared.

3. The function of not processing more than
approximately 4K bytes of either operand is
intended to permit software polling of a flag
that may be set by a program on another CPU
during long operations.

4. When the R� and R� fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, except that the con-
tents of the designated registers are incre-
mented or decremented only by the number of
bytes compared, not by twice the number of
bytes compared. In the absence of dynamic
modification of the operand area by another
CPU or by a channel program, the condition
code is finally set to 0 after possible settings
to 3. However, it is unpredictable whether
access exceptions are recognized for the
operand since the operation can be completed
without storage being accessed. If storage is
not accessed, condition code 3 may or may
not be set regardless of the operand length.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE LOGICAL LONG
UNICODE

CLCLU R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '8F' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first operand is compared with the third
operand until unequal two-byte Unicode charac-
ters are compared, the end of the longer operand
is reached, or a CPU-determined number of char-
acters have been compared, whichever occurs
first. The shorter operand is considered to be
extended on the right with two-byte padding char-
acters. The result is indicated in the condition
code.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an

even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost character of the first
operand and third operand is designated by the
contents of general registers R� and R�, respec-
tively. In the 24-bit or 31-bit addressing mode, the
number of bytes in the first-operand and third-
operand locations is specified by the contents of
bit positions 32-63 of general registers R� + 1
and R� + 1, respectively, and those contents are
treated as 32-bit unsigned binary integers. In the
64-bit addressing mode, the number of bytes in
the first-operand and third-operand locations is
specified by the contents of bit positions 0-63 of
general registers R� + 1 and R� + 1, respec-
tively, and those contents are treated as 64-bit
unsigned binary integers.

The contents of general registers R� + 1 and
R� + 1 must specify an even number of bytes;
otherwise, a specification exception is recognized.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 of the registers constitute the
address.

The second-operand address is not used to
address data; instead, the rightmost 16 bits of the
second-operand address, bits 48-63, are the two-
byte padding character. Bits 0-47 of the second-
operand address are ignored.

The contents of the registers and address just
described are shown in Figure 7-35 on
page 7-65.

The comparison proceeds left to right, character
by character, and ends as soon as an inequality is
found, the end of the longer operand is reached,
or a CPU-determined number of characters have
been compared, whichever occurs first. If the
operands are not of the same length, the shorter
operand is considered to be extended on the right

7-64 z/Architecture Principles of Operation

┌──┐
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ Third-Operand Address │ │////│ Third-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Third-Operand Length │ │///│ Third-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/─────────────────┬────────────────┐ ┌─/─────────────────┬────────────────┐ │
│ 2nd Op. │///////////////////│ Pad │ │///////////////////│ Pad │ │
│ Address └─/─────────────────┴────────────────┘ └─/─────────────────┴────────────────┘ │
│ � 48 63 � 48 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Third-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Third-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/─────────────────┬────────────────┐ │
│ 2nd Op. │///////////////////│ Pad │ │
│ Address └─/─────────────────┴────────────────┘ │
│ � 48 63 │
│ │
└──┘

Figure 7-35. Register Contents and Second-Operand Address for COMPARE LOGICAL LONG UNICODE

with the appropriate number of two-byte padding
characters.

If both operands are of zero length, the operands
are considered to be equal.

 Chapter 7. General Instructions 7-65

If the operation ends because of an inequality, the
address fields in general registers R� and R� at
completion identify the first unequal two-byte char-
acter in each operand. The lengths in bit posi-
tions 32-63, in the 24-bit or 31-bit addressing
mode, or in bit positions 0-63, in the 64-bit
addressing mode, of general registers R� + 1 and
R� + 1 are decremented by 2 times the number
of characters that were equal, unless the ine-
quality occurred with the two-byte padding char-
acter, in which case the length field for the shorter
operand is set to zero. The addresses in general
registers R� and R� are incremented by the
amounts by which the corresponding length fields
were decremented. Condition code 1 is set if the
first operand is low, or condition code 2 is set if
the first operand is high.

If the two operands, including the two-byte
padding character, if necessary, are equal, both
length fields are made zero at completion, and the
addresses are incremented by the corresponding
operand-length values. Condition code 0 is set.

If the operation is completed because a
CPU-determined number of characters have been
compared without finding an inequality or reaching
the end of the longer operand, the lengths in
general registers R� + 1 and R� + 1 are decre-
mented by 2 times the number of characters com-
pared, and the addresses in general registers R�
and R� are incremented by the same number, so
that the instruction, when reexecuted, resumes at
the next characters to be compared. If the opera-
tion is completed after the shorter operand has
been exhausted, the length field pertaining to the
shorter operand is zero, and the operand address
is updated accordingly. Condition code 3 is set.

In the 24-bit or 31-bit addressing mode, the con-
tents of bit positions 0-31 of general registers R�,
R� + 1, R�, and R� + 1, always remain
unchanged.

The two-byte padding character may be formed
from D�(B�) multiple times during the execution of
the instruction, and the registers designated by R�
and R� may be updated multiple times. There-
fore, if B� equals R�, R� + 1, R�, or R� + 1 and
is subject to change during the execution of the
instruction, the results are unpredictable.

The amount of processing that results in the
setting of condition code 3 is determined by the

CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which
are not part of the address in bit positions 32-63
of general registers R� and R� may be set to
zeros or may remain unchanged from their original
values, including the case when one or both of the
initial length values are zero.

Access exceptions for the portion of a storage
operand to the right of the first unequal character
may or may not be recognized. For operands
longer than 4K bytes, access exceptions are not
recognized more than 4K bytes beyond the char-
acter being processed. Access exceptions are not
indicated for locations more than 4K bytes beyond
the first unequal character.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field or length associated with
that operand is odd.

Resulting Condition Code:

0 All characters compared; operands equal, or
both zero length

1 First operand low
2 First operand high
3 CPU-determined number of characters com-

pared without finding an inequality

 Program Exceptions:

� Access (fetch, operands 1 and 3)
� Operation (if the extended-translation facility 2

is not installed)
 � Specification

Programming Notes:

1. COMPARE LOGICAL LONG UNICODE is
intended for use in place of COMPARE
LOGICAL LONG or COMPARE LOGICAL
LONG EXTENDED when two-byte characters
are to be compared. The characters may be
Unicode characters or any other double-byte
characters. COMPARE LOGICAL LONG
UNICODE sets condition code 3 in cases in
which COMPARE LOGICAL LONG would be
interrupted.

7-66 z/Architecture Principles of Operation

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the comparison. The program need
not determine the number of characters that
were compared.

3. When the R� and R� fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, except that the con-
tents of the designated registers are incre-
mented or decremented only by 2 times the
number of characters compared, not by 4
times the number of characters compared. In
the absence of dynamic modification of the
operand area by another CPU or by a channel
program, the condition code is finally set to 0
after possible settings to 3. However, it is
unpredictable whether access exceptions are
recognized for the operand since the opera-
tion can be completed without storage being
accessed. If storage is not accessed, condi-
tion code 3 may or may not be set regardless
of the operand length.

4. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

5. If padding with a Unicode space character is
required (or any character whose represen-
tation is less than or equal to FFF hex), the
character may be represented in the displace-
ment field of the instruction, for example:

 CLCLU 6,8,X'�2�'

COMPARE LOGICAL STRING

CLST R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B25D' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The first operand is compared with the second
operand until unequal bytes are compared, the
end of either operand is reached, or a
CPU-determined number of bytes have been com-
pared, whichever occurs first. The
CPU-determined number is at least 256. The
result is indicated in the condition code.

The location of the leftmost byte of the first
operand and second operand is designated by the

contents of general registers R� and R�, respec-
tively.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The first and second operands may be of the
same or different lengths. The end of an operand
is indicated by an ending character in the last byte
position of the operand. The ending character to
be used to determine the end of an operand is
specified in bit positions 56-63 of general register
0. Bit positions 32-55 of general register 0 are
reserved for possible future extensions and must
contain all zeros; otherwise, a specification excep-
tion is recognized.

The operation proceeds left to right, byte by byte,
and ends as soon as the ending character is
encountered in either or both operands, unequal
bytes which do not include an ending character
are compared, or a CPU-determined number of
bytes have been compared, whichever occurs
first. The CPU-determined number is at least 256.
When the ending character is encountered simul-
taneously in both operands, including when it is in
the first byte position of the operands, the oper-
ands are of the same length and are considered
to be equal, and condition code 0 is set. When
the ending character is encountered in only one
operand, that operand, which is the shorter
operand, is considered to be low, and condition
code 1 or 2 is set. Condition code 1 is set if the
first operand is low, or condition code 2 is set if
the second operand is low. Similarly, when
unequal bytes which do not include an ending
character are compared, condition code 1 is set if
the lower byte is in the first operand, or condition
code 2 is set if the lower byte is in the second
operand. When a CPU-determined number of
bytes have been compared, condition code 3 is
set.

When condition code 1 or 2 is set, the address of
the last byte processed in the first and second

 Chapter 7. General Instructions 7-67

operands is placed in general registers R� and
R�, respectively. That is, when condition code 1
is set, the address of the ending character or first
unequal byte in the first operand, whichever was
encountered, is placed in general register R�, and
the address of the second-operand byte corre-
sponding in position to the first-operand byte is
placed in general register R�. When condition
code 2 is set, the address of the ending character
or first unequal byte in the second operand,
whichever was encountered, is placed in general
register R�, and the address of the first-operand
byte corresponding in position to the second-
operand byte is placed in general register R�.
When condition code 3 is set, the address of the
next byte to be processed in the first and second
operands is placed in general registers R� and
R�, respectively. Whenever an address is placed
in a general register, bits 32-39 of the register, in
the 24-bit addressing mode, or bit 32, in the 31-bit
addressing mode, are set to zeros. Bits 0-31 of
the R� and R� registers always remain unchanged
in the 24-bit or 31-bit mode.

When condition code 0 is set, the contents of
general registers R� and R� remain unchanged.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

Access exceptions for the first and second oper-
ands are recognized only for that portion of the
operand which is necessarily examined in the
operation.

Resulting Condition Code:

0 Entire operands equal; general registers R�
and R� unchanged

1 First operand low; general registers R� and
R� updated with addresses of last bytes proc-
essed

2 First operand high; general registers R� and
R� updated with addresses of last bytes proc-
essed

3 CPU-determined number of bytes equal;
general registers R� and R� updated with
addresses of next bytes

 Program Exceptions:

� Access (fetch, operands 1 and 2)
 � Specification

Programming Notes:

1. Several examples of the use of the
COMPARE LOGICAL STRING instruction are
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. When condition code 0 is set, no indication is
given of the position of either ending char-
acter.

3. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the comparison. The program need
not determine the number of bytes that were
compared.

4. R� or R� may be zero, in which case general
register 0 is treated as containing an address
and also the ending character.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE UNTIL SUBSTRING
EQUAL

CUSE R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B257' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The first operand is compared with the second
operand until equal substrings (sequences of
bytes) of a specified length are found, the end of
the longer operand is reached, or a
CPU-determined number of unequal bytes have
been compared, whichever occurs first. The
shorter operand is considered to be extended on
the right with padding bytes. The
CPU-determined number is at least 256. The
result is indicated in the condition code.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is specified by the

7-68 z/Architecture Principles of Operation

contents of the R� and R� general registers,
respectively. In the 24-bit or 31-bit addressing
mode, the number of bytes in the first-operand
and second-operand locations is specified by the
32-bit signed binary integer in bit positions 32-63
of general registers R� + 1 and R� + 1, respec-
tively. In the 64-bit addressing mode, the number
of bytes is specified by the 64-bit signed binary
integer in bit positions 0-63 of those registers.
When an operand length is negative, it is treated
as zero, and it remains unchanged upon com-
pletion of the instruction.

Bits 56-63 of general register 0 specify the
unsigned substring length, a value of 0-255, in
bytes. Bits 56-63 of general register 1 are the

padding byte. Bits 0-55 of general registers 0 and
1 are ignored.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and

| the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-36 on page 7-70.

 Chapter 7. General Instructions 7-69

┌───┐
│ │
│ ┌─/─────────────────────────┬────────┐ ┌─/─────────────────────────┬────────┐ │
│ GR� │///////////////////////////│ SS Len.│ GR1 │///////////////////////////│ Pad │ │
│ └─/─────────────────────────┴────────┘ └─/─────────────────────────┴────────┘ │
│ � 56 63 � 56 63 │
│ │
├───┤
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│Second-Operand Address │ │////│ Second-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Second-Operand Length │ │///│ Second-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Second-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Second-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
└───┘

Figure 7-36. Register Contents for COMPARE UNTIL SUBSTRING EQUAL

The result is obtained as if the operands were
processed from left to right. However, multiple
accesses may be made to all or some of the bytes
of each operand.

The comparison proceeds left to right, byte by
byte, and ends as soon as (1) equal substrings of
the specified length are found, (2) the end of the
longer operand is reached without finding equal
substrings of the specified length, or (3) the last
bytes compared are unequal, and a

7-70 z/Architecture Principles of Operation

CPU-determined number of bytes have been com-
pared. The CPU-determined number is at least
256. If the operands are not of the same length,
the shorter operand is considered to be extended
on the right with the appropriate number of
padding bytes.

If the operation ends because equal substrings of
the specified length were found, the condition
code is set to 0. If the operation ends because
the end of the longer operand was reached
without finding equal substrings of the specified
length, the condition code is set to 1 if equal bytes
were the last bytes compared, or it is set to 2 if
unequal bytes were the last bytes compared. If
the operation ends because unequal bytes were
compared when a CPU-determined number of
bytes had been compared, the condition code is
set to 3.

If the specified substring length is zero, it is con-
sidered that equal substrings of the specified
length were found, and condition code 0 is set.

If both operands are of zero length but the speci-
fied substring length is not zero, it is considered
that the end of the longer operand was reached
when unequal bytes were the last bytes com-
pared, and condition code 2 is set.

If equal bytes have been compared but then
unequal bytes are compared, it is considered that
all bytes so far compared are unequal.

At the completion of the operation, the operand-
length fields in the R� + 1 and R� + 1 registers
are decremented by the number of unequal bytes
compared (including equal bytes before unequal
bytes compared), and the addresses in the R�
and R� registers are incremented by the same
number. However, in the case when a byte of the
longer operand is compared against the padding
byte, the length field for the shorter operand is not
decremented below zero, and the corresponding
address is not incremented above the address of
the first byte after the shorter operand. In the
24-bit or 31-bit addressing mode, the leftmost bits
which are not part of the addresses in bit positions
32-63 of registers R� and R� are set to zeros,
even if the substring length is zero or both
operand lengths are initially zero.

Thus, when condition code 0 or 1 is set, the
resulting addresses in the R� and R� registers

designate the first bytes of equal substrings in the
two operands, and the lengths in the R� + 1 and
R� + 1 registers have been decremented by the
number of bytes preceding the equal substrings,
except when the equal substring in the shorter
operand begins with the padding byte, in which
case the length field for the shorter operand is
zero, and the corresponding address field has
been incremented by the operand length. When
condition code 2 is set, each address field desig-
nates the first byte after the corresponding
operand, and both length fields are zero. When
condition code 3 is set, each address field desig-
nates the first byte after the last compared byte of
the corresponding operand, and both length fields
have been decremented by the number of bytes
compared, except that a length field is not decre-
mented below zero.

When the contents of the R� and R� fields are the
same, the first and second operands may be com-
pared, or the condition code may be set to 0 or 1
without comparing the operands.

In the 24-bit or 31-bit addressing mode, the con-
tents of bit positions 0-31 of general registers R�,
R� + 1, R�, and R� + 1, always remain
unchanged.

The substring length and padding byte may be
fetched from general registers 0 and 1 multiple
times during the execution of the instruction, and
the registers designated by R� and R� may be
updated multiple times. Therefore, if R� or R� is
zero, the results are unpredictable.

When condition code 3 is set, the general regis-
ters used by the instruction have been set so that
the remainder of the operands can be processed
by simply branching back and reexecuting the
instruction.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

The execution of the instruction is interruptible
when the last bytes compared are unequal; it is
not interruptible when the last bytes compared are
equal. When an interruption occurs, other than

| one that follows termination, the contents of the
registers designated by the R� and R� fields are

 Chapter 7. General Instructions 7-71

updated the same as upon normal completion of
the instruction, so that the instruction, when reexe-
cuted, resumes at the point of interruption. The
condition code is unpredictable.

Access exceptions for the portion of a storage
operand to the right of the last byte processed
may or may not be recognized. For operands
longer than 4K bytes, access exceptions are not
recognized for locations more than 4K bytes
beyond the last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd. Although the operand address and length
fields remain unchanged when a zero substring
length is specified, the recognition of access
exceptions is not necessarily prevented.

Resulting Condition Code:

0 Equal substrings of specified length found
1 End of longer operand reached when last

bytes compared are equal
2 End of longer operand reached when last

bytes compared are unequal
3 Last bytes compared are unequal, and

CPU-determined number of bytes compared

 Program Exceptions:

� Access (fetch, operands 1 and 2)
 � Specification

Programming Notes:

1. When the R� and R� fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or by a channel program, condi-
tion code 0, 1, or 2 is set (as explained in the
next note). However, it is unpredictable
whether access exceptions are recognized for
the operand since the operation can be com-
pleted without storage being accessed.

2. If the contents of the R� and R� fields are the
same and the operand length is nonzero, and
provided that another CPU or a channel
program is not changing an operand, condition
code 0 is set if the operand length is equal to
or greater than the specified substring length,

or condition code 1 is set if the operand length
is less than the specified substring length.
Whether or not R� equals R�, if both operand
lengths are zero, condition code 0 is set if the
specified substring length is zero, or condition
code 2 is set if the specified substring length
is nonzero. In all of these cases, the
addresses in the R� and R� registers and the
lengths in the R� + 1 and R� + 1 registers
remain unchanged.

3. Special precautions should be taken when
COMPARE UNTIL SUBSTRING EQUAL is
made the target of EXECUTE. See the pro-
gramming note concerning interruptible
instructions under EXECUTE.

4. Other programming notes concerning interrup-
tible instructions are included in “Interruptible
Instructions” on page 5-21.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

6. The storage-operand references of
COMPARE UNTIL SUBSTRING EQUAL may
be multiple-access references. (See “Storage-
Operand Consistency” on page 5-87.)

 COMPRESSION CALL

CMPSC R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B263' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

This definition assumes knowledge of the introduc-
tory information and information about dictionary
formats in Enterprise Systems Architecture/390
Data Compression, SA22-7208-01.

The second operand is compressed or expanded,
depending on a specification in general register 0,
and the results are placed at the first-operand
location. The compressed-data operand normally
consists of index symbols corresponding to entries
in a dictionary designated by an address in
general register 1. This dictionary is a com-
pression dictionary during a compression opera-
tion or an expansion dictionary during an expan-
sion operation. During compression when
format-1 sibling descriptors are specified in
general register 0, an expansion dictionary imme-
diately follows the compression dictionary. During

7-72 z/Architecture Principles of Operation

compression when the symbol-translation option is
specified in general register 0, the index symbols
resulting from compression are translated to inter-
change symbols by means of a symbol-translation
table designated by the address and an offset in
general register 1, and it is the interchange
symbols that are placed at the first-operand
location. The number of bits in a symbol in the
compressed-data operand is specified in general
register 0. The operation proceeds until the end
of either operand is reached or a CPU-determined
amount of data has been processed, whichever
occurs first. The results are indicated in the con-
dition code.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte containing any bit
of the first operand and second operand is desig-
nated by an address in general registers R� and
R�, respectively. The number of bytes containing
any bits of the first operand and second operand
is specified by bits 32-63 of general registers
R� + 1 and R� + 1, respectively, in the 24-bit or
31-bit addressing mode or by bits 0-63 of the reg-
isters in the 64-bit addressing mode. The con-
tents of general registers R� + 1 and R� + 1 are
treated as 32-bit unsigned binary integers in the
24-bit or 31-bit addressing mode or as 64-bit
unsigned binary integers in the 64-bit addressing
mode.

The location of the leftmost byte of the com-
pression dictionary during compression, or of the
expansion dictionary during expansion, is desig-
nated on a 4K-byte boundary by an address in
general register 1.

The handling of the addresses in general registers
R�, R�, and 1 is dependent on the addressing
mode. In the 24-bit addressing mode, the con-
tents of bit positions 40-63 of registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of registers R� and R� constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the con-
tents of bit positions 0-63 of registers R� and R�
constitute the address. In the 24-bit addressing
mode, the contents of bit positions 40-51 of reg-

ister 1, with 12 rightmost zeros appended, consti-
tute the address, and the contents of bit positions
0-39 and 52-63 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-51 of register 1, with 12 rightmost zeros
appended, constitute the address, and the con-
tents of bit positions 0-32 and 52-63 are ignored.
In the 64-bit addressing mode, the contents of bit
positions 0-51 of register 1, with 12 rightmost
zeros appended, constitute the address, and the
contents of bit positions 52-63 are ignored.

Although the contents of bit positions 52-63 of
general register 1 are ignored as just described,
those contents are used as follows. The contents
of bit positions 61-63 of the register are the
compressed-data bit number (CBN). At the begin-
ning of the operation, the CBN designates the left-
most bit within the leftmost byte of the
compressed-data operand. The compressed-data
operand is the first operand during compression,
or it is the second operand during expansion.
When the symbol-translation option is specified
during compression, the contents of bit positions
52-60 of the register, with seven rightmost zeros
appended, are the byte offset from the beginning
of the compression dictionary to the leftmost byte
of the symbol-translation table. Symbol translation
cannot be specified during expansion, and the
contents of bit positions 52-60 are ignored during
expansion.

The contents of the registers just described and
also of general register 0 are shown in
Figure 7-37 on page 7-74.

Bit 55 (E) of general register 0 specifies the com-
pression operation if zero or the expansion opera-
tion if one.

Bit 47 (ST) of general register 0 is the symbol-
translation-option bit. During compression when
bit 47 is zero, the operation produces indexes,
called index symbols, to compression-dictionary
entries that represent character strings, and the
operation then places the index symbols in the
compressed-data operand. During compression
when bit 47 is one, the operation still produces
index symbols but then translates the index
symbols to other symbols, called interchange
symbols, that it then places in the compressed-
data operand. This symbol translation is done by
using the symbol-translation table specified by the
address and offset in general register 1. Bit 47

 Chapter 7. General Instructions 7-73

┌───┐
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│Second-Operand Address │ │////│ Second-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Second-Operand Length │ │///│ Second-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ When ST Bit Is Zero during Compression, or during Expansion │
│ │
│ ┌─/──────────┬──────────┬────────┬───┐ ┌─/──┬──────────────────┬────────┬───┐ │
│ GR1 │////////////│Dict. Or.�│////////│CBN│ │////│Dictionary Origin�│////////│CBN│ │
│ └─/──────────┴──────────┴────────┴───┘ └─/──┴──────────────────┴────────┴───┘ │
│ � 4� 52 61 63 � 33 52 61 63 │
│ │
│ When ST Bit Is One during Compression │
│ │
│ ┌─/──────────┬──────────┬────────┬───┐ ┌─/──┬──────────────────┬────────┬───┐ │
│ GR1 │////////////│Dict. Or.�│STT Off.│CBN│ │////│Dictionary Origin�│STT Off.│CBN│ │
│ └─/──────────┴──────────┴────────┴───┘ └─/──┴──────────────────┴────────┴───┘ │
│ � 4� 52 61 63 � 33 52 61 63 │
├───┤
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Second-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Second-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
└───┘

Figure 7-37 (Part 1 of 2). Register Contents for COMPRESSION CALL

and the offset in general register 1 are ignored
during expansion. During expansion, the
compressed-data operand always contains index
symbols that designate entries in the expansion
dictionary.

Bits 48-51 (CDSS) of general register 0 specify
the number of bits in the index symbols or inter-
change symbols in the compressed-data operand,
as shown in the figure. Bits 48-51 must not have
any of the values 0000 or 0110-1111 binary; oth-
erwise, a specification exception is recognized.
When symbol-translation is not specified, bits

7-74 z/Architecture Principles of Operation

┌───┐
│ 64-Bit Addressing Mode (Continued) │
│ │
│ When ST Bit Is Zero during Compression, │
│ or during Expansion │
│ │
│ ┌─/─────────────────────┬────────┬───┐ │
│ GR1 │ Dictionary Origin� │////////│CBN│ │
│ └─/─────────────────────┴────────┴───┘ │
│ � 52 61 63 │
│ │
│ When ST Bit Is One during Compression │
│ │
│ ┌─/─────────────────────┬────────┬───┐ │
│ GR1 │ Dictionary Origin� │STT Off.│CBN│ │
│ └─/─────────────────────┴────────┴───┘ │
│ � 52 61 63 │
├───┤
│ │
│ ┌─/───────────┬─┬────┬──┬─┬─┬────────┐ │
│ │ │S│ │ │F│ │ │ │
│ GR� │/////////////│T│CDSS│//│1│E│////////│ │
│ └─/───────────┴─┴────┴──┴─┴─┴────────┘ │
│ � 47 52 54 56 63 │
├───┤
│Explanation: │
│ │
│ � Compression dictionary during compression, or expansion dictionary during │
│ expansion │
│ CBN Compressed-data bit number │
│ CDSS Compressed-data symbol size, and dictionary size when symbol │
│ translation not specified │
│ CDSS Symbol Dictionary │
│ (binary) Size Size │
│ ���� Causes a specification exception to be recognized │
│ ���1 9 bits 512 entries, 4K bytes │
│ ��1� 1� bits 1K entries, 8K bytes │
│ ��11 11 bits 2K entries, 16K bytes │
│ �1�� 12 bits 4K entries, 32K bytes │
│ �1�1 13 bits 8K entries, 64K bytes │
│ �11�-1111 Causes a specification exception to be recognized │
│ E Expansion operation │
│ F1 Format-1 sibling descriptors (ignored during expansion) │
│ ST Symbol-translation option (ignored during expansion) │
│ STT Off. Symbol-translation-table offset (ignored during expansion) │
└───┘

Figure 7-37 (Part 2 of 2). Register Contents for COMPRESSION CALL

48-51 also specify, as shown in the figure, the
number of eight-byte entries in each of the com-
pression and expansion dictionaries, and, thus,
they specify the size in bytes of each of the dic-
tionaries. When symbol translation is specified,
the compression dictionary is considered to extend
to the beginning of the symbol-translation table,
that is, the size in bytes of the compression dic-
tionary is the offset in bit positions 52-60 of
general register 1, with seven rightmost zeros
appended. The size in bytes of the symbol-
translation table is considered to be one fourth
that of the compression dictionary. However, the
offset in general register 1 must be at least as
large as the size of the compression dictionary
would be if symbol translation were not specified

and the CDSS were one less than it actually is,
and, when the CDSS is 0001 binary, the offset
must be at least 2K bytes; otherwise, the results
are unpredictable. For example, if the CDSS is
0101, the offset must be at least 32K bytes.

Bit 54 (F1) of general register 0 specifies that the
compression dictionary contains format-0 sibling
descriptors if the bit is zero or format-1 sibling
descriptors if the bit is one. Sibling descriptors
are used during the compression operation. A
format-0 sibling descriptor is eight bytes at an
index position in the compression dictionary. A
format-1 sibling descriptor is 16 bytes, with the
first eight bytes at an index position in the com-
pression dictionary and the second eight bytes at

 Chapter 7. General Instructions 7-75

the same index position in the expansion dic-
tionary. During compression when bit 54 is one,
an expansion dictionary is considered to imme-
diately follow the compression dictionary specified
by the address in general register 1. Bit 54 is
ignored during expansion.

Bits 47 and 54 of general register 0 must not both
be ones; otherwise, the results are unpredictable.

The unused bit positions in general register 0 are
reserved for possible future extensions and should
contain zeros; otherwise, the program may not
operate compatibly in the future.

In the access-register mode, the contents of
access register R� are used for accessing the first
operand, and the contents of access register R�
are used for accessing the second operand and
the dictionaries and the symbol-translation table.

The operation starts at the left end of both oper-
ands and proceeds to the right. The operation is
ended when the end of either operand is reached
or when a CPU-determined amount of data has
been processed, whichever occurs first.

During a compression operation, the end of the
first operand is considered to be reached when
the number of unused bit positions remaining in
the first-operand location is not sufficient to
contain additional compressed data.

During an expansion operation, the end of the
first-operand location is considered to be reached
when either of the following two conditions is met:

1. The number of unused byte positions
remaining in the first-operand location is not
sufficient to contain all the characters that
would result from expansion of the next index
symbol.

2. Immediately when the number of unused byte
positions is zero, that is, immediately when
the expansion of an index symbol completely
fills the first-operand location.

During an expansion operation, the end of the
second-operand location is considered to be
reached when the next index symbol does not
reside entirely within the second-operand location.
The second-operand location ends at the begin-
ning of the byte designated by the sum of the
address in general register R� and the length in

general register R� + 1, regardless of the
compressed-data bit number in bit positions 61-63
of general register 1.

If the operation is ended because the end of the
second operand is reached, condition code 0 is
set. If the operation is ended because the end of
the first operand is reached, condition code 1 is
set, except that condition code 0 is set if the end
of the second operand is also reached. If the
operation is ended because a CPU-determined
amount of data has been processed, condition
code 3 is set.

At the completion of the operation, the length in
general register R� + 1 is decremented by the
number of complete bytes stored at the first-
operand location, and the address in general reg-
ister R� is incremented by the same amount.
During compression, a complete byte is consid-
ered to be stored only if all of its bit positions
contain bits of compressed data. During com-
pression when the first bit of compressed data
stored is not in bit position 0 of a byte, the bits in
the byte to the left of the first bit of compressed
data remain unchanged. During compression if
the last byte stored does not completely contain
compressed data, the bits in the byte to the right
of the rightmost bit of compressed data in the byte
either are unchanged or are set to zeros.

The length in general register R� + 1 is decre-
mented by the number of complete bytes proc-
essed at the second-operand location, and the
address in general register R� is incremented by
the same amount. During expansion, a complete
byte is considered to be processed only if all of its
bits have been used to produce expanded data.

The leftmost bits which are not part of the address
in general registers R� and R� may be set to
zeros or may remain unchanged. However, in the
24-bit or 31-bit addressing mode, bits 0-31 of
these registers and also of general registers
R� + 1 and R� + 1 always remain unchanged.

The bit number of the bit following the last bit of
compressed data processed is placed in bit posi-
tions 61-63 of general register 1, and bits 52-60 of
the register and the leftmost bits which are not
part of the address in the register may be set to
zeros or may remain unchanged, except that
when one or both of the original length values are
so small that no compressed data can be proc-

7-76 z/Architecture Principles of Operation

essed, all bits in the register may remain
unchanged. However, when bit 47 of general reg-
ister 0 is one, bits 52-60 of general register 1
always remain unchanged. Also, in the 24-bit or
31-bit addressing mode, bits 0-31 of the register
always remain unchanged.

If the operands overlap one another or the first
operand overlaps the dictionaries or the symbol-
translation table in storage in any way, the results
are unpredictable.

When symbol translation is specified, the symbol-
translation table consists of two-byte entries, and
an entry contains an interchange symbol in the
rightmost bit positions of the entry. The length of
the interchange symbol is specified by bits 48-51
of general register 0. The left-hand bits that are
not part of the interchange symbol in a symbol-
translation-table entry must be zeros; otherwise,
the results are unpredictable.

To translate an index symbol to an interchange
symbol, the index symbol is multiplied by 2 and
then added to the address of the beginning of the
symbol-translation table to locate an entry in the
table, and then the interchange symbol is obtained
from the entry.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that

| follows termination, the contents of the registers
designated by the R� and R� fields and of general
register 1 are updated the same as upon normal
completion of the instruction, so that the instruc-
tion, when reexecuted, resumes at the point of
interruption. The condition code is unpredictable.

For operands longer than 4K bytes, access
exceptions are not recognized for locations more
than 4K bytes beyond the current location being
processed. Access exceptions may be recognized
for all locations in the dictionaries and symbol-
translation table if those areas are specified to be
used and even if the locations would not be used
during the operation. Access exceptions are not
recognized for an operand, the dictionaries, or the
symbol-translation table if the R field associated
with that operand is odd. Also, when the R� field
is odd, PER storage-alteration events are not
recognized, and no change bits are set.

If an access exception is due to be recognized for
either of the operands or for a dictionary or the

symbol-translation table, the result is that either
the exception is recognized or condition code 3 is
set. If condition code 3 is set, the exception will
be recognized when the instruction is executed
again to continue processing the same operands,
assuming that the exception condition still exists.

During compression, regardless of whether the
exception is recognized or condition code 3 is set,
a nullifying access-exception condition or a sup-
pressing page-protection exception condition is
handled so that an index symbol is generated only
if it is the one that would result if there were no
access-exception condition.

During compression or expansion, regardless of
whether the exception is recognized or condition
code 3 is set, a nullifying or suppressing access-
exception condition may result in data having
been stored at the first-operand location at or to
the right of the location designated by the final
address in general register R�, which result is not
true nullification or suppression. The amount of
data stored depends on the reason for the access-
exception condition. If the condition is due to a
reference to a dictionary or the symbol-translation
table, up to 4K bytes of data may have been
stored at or to the right of the location designated
by the final address. If the condition is due to a
reference to the first or second operand, part of
one index or interchange symbol, during com-
pression, or part of one character symbol, during
expansion, may have been stored at or to the right
of the location designated by the final address. In
all cases, the storing will be repeated when the
instruction is executed again to continue proc-
essing the same operands.

If the end of the first operand is reached and an
access exception is due to be recognized for the
second operand, it is unpredictable whether condi-
tion code 1 is set or the access exception is
recognized.

During expansion when the expansion dictionary
is not logically correct, unusual storing may occur
as described in the section “Expansion Process” in
Chapter 1 of Enterprise Systems Architecture/390
Data Compression, SA22-7208-01. The results of
an access exception in this case may not be true
nullification or suppression.

Special Conditions

 Chapter 7. General Instructions 7-77

During compression of each character symbol,
either the characters in the symbol or the dic-
tionary character entries (not sibling descriptors)
representing characters of the symbol are
counted, and a data exception is recognized if this
count becomes too large. The count can reach at
least 260 without the exception being recognized.

During compression, the number of child charac-
ters or sibling characters processed during the
processing of each parent entry are counted, and
a data exception is recognized if this count
becomes too large. The count can reach at least
260 without the exception being recognized. That
is, a parent must not have more than 260 children;
otherwise, a data exception may be recognized.

During expansion of each character symbol, either
the characters in the symbol or the dictionary
entries representing characters of the symbol are
counted, and a data exception is recognized if this
count becomes too large. If the characters in the
symbol are counted, the count can reach at least
260 without the exception being recognized. If the
dictionary entries representing characters of the
symbol are counted, the count can reach at least
127 without the exception being recognized.

Certain error conditions in the dictionaries cause a
data exception to be recognized and the operation
to be terminated. Some of these error conditions
are described in the sections “Expansion Process”
and “Results of Dictionary Errors” in Chapter 1 of
SA22-7208-01. The others are described in
Chapter 2 of SA22-7208-01.

Resulting Condition Code:

0 End of second operand reached
1 End of first operand reached and end of

second operand not reached
2 --
3 CPU-determined amount of data processed

 Program Exceptions:

� Access (fetch, operand 2, dictionaries, and
symbol-translation table; store, operand 1)

 � Data
 � Specification

Programming Notes:

1. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the operation. The program need
not determine the amount of data processed.

2. During compression when a nullifying access
exception is due to be recognized, an index
symbol is generated only if it is the one that
would result if there were no access-exception
condition. The result of this is that com-
pression of the same expanded data by
means of one or more executions of the
instruction and by using the same dictionary
always results in the same compressed data.
That is, (1) the best possible matches in the
the dictionary are always found for the charac-
ters in the second operand, or else the exe-
cution is ended by either setting CC3 or
recognizing the exception, and (2) the results
of compression are repeatable (although pos-
sibly by means of a different number of exe-
cutions of the instruction) and predictable.

For example, if the next characters of the
string being compressed are ABC, and dic-
tionary entry A has a child B, which has a
child C, the normal operation is to compress
ABC as a single index symbol, but if the C of
the string is in the first byte of an invalid page
(a page-translation exception is due to be
recognized), no index symbol is generated.
More specifically, an index symbol corre-
sponding to the character symbol AB is not
generated because this is not the index
symbol that would be generated if the access-
exception condition did not exist.

In the above, “best possible match” refers only
to the characters in the second operand. In
the example above, if the next two characters
of the second operand (the string) are AB,
and these are the last two characters of the
second operand, the best possible match is
on AB, even though there could be a match
on ABC if the second operand included one
more byte containing C.

Expansion is normally always repeatable. An
index symbol is always expanded to exactly
the character symbol it represents unless an
exception that causes termination is recog-
nized.

3. During expansion, if at least one unused byte
position remains in the first operand location,

7-78 z/Architecture Principles of Operation

COMPRESSION CALL may completely
process the next index symbol in the second
operand before it determines that the first-
operand location does not have sufficient
unused byte positions to contain the expanded
data that would result from the next index
symbol. If that next index symbol causes
encountering of bad dictionary entries, the
result can be either a data exception or condi-
tion code 1.

COMPRESSION CALL immediately sets con-
dition code 1 when processing of an index
symbol exactly fills the first-operand location,
except that it sets condition code 0 if the end
of the second-operand location also has been
reached. Immediately setting condition code 1
has the advantage that data can be com-
pressed using one dictionary and then fol-
lowed immediately, possibly on a bit
boundary, by a different type of data com-
pressed using another dictionary. The com-
pressed data can be successfully expanded if,
during the expansion of the data compressed
using the first dictionary, the length of the first-
operand location is specified to be exactly the
length of the expanded data that will be
produced. Condition code 1 will then be set
when the first-operand location is full, at which
time the specification of the dictionary can be
changed in order to expand the remainder of
the compressed data using the second dic-
tionary. If the definition allowed condition
code 1 not to be set, it might be attempted to
expand the next index symbol, which resulted
from use of the second dictionary, by means
of the first dictionary, and this might cause
recognition of a data exception. For example,
the next index symbol, which properly desig-
nates a character entry in the second dic-
tionary, might designate the second half of a
format-1 sibling descriptor in the first dic-
tionary, and that second half might begin with
a character, such as 0 (F0 hex), that would
appear to be an invalid partial symbol length
in a character entry.

4. A nullifying access-exception condition due to
a reference to a dictionary or the symbol-

translation table may result in the storing of
data at or to the right of the location desig-
nated by the final address in general register
R�. This storing and the processing needed
to produce the data stored will be repeated
when COMPRESSION CALL is executed
again to continue processing the same oper-
ands. The repeated processing will reduce
the performance of the instruction execution,
and it should be avoided by ensuring that the
environment in which the program is executed
is one in which page-translation-exception
conditions for the dictionaries and symbol-
translation table are infrequent.

5. Following is an example of how the
compressed-data bit number (CBN) is used
and set. In this example:

� The operation is an expansion operation.

� The CDSS in general register 0 is 0010
binary. Therefore, there are 1K entries in
the expansion dictionary, and the length of
an index symbol is 10 bits.

� The second operand (compressed-data
operand) begins at location 6000 hex and
has a length of five bytes. The initial CBN
is 7. Therefore, there are three index
symbols to be expanded, and the final
CBN will be 5.

� The compressed data beginning at
location 6000 hex is 0081FF9FF8 hex.
Therefore, the three index symbols are
103, 3FC, and 3FF hex.

� The first operand (expanded-data
operand) begins at location 5000 hex and
has a length of 64 bytes. The three index
symbols are expanded to a total of 14
bytes of expanded data.

The following figure shows the initial and final
contents of general registers R�, R� + 1, R�,
and R� + 1, the contents of locations
6000-6004 hex in binary, and the way a
cursor corresponding to the CBN is advanced
during the expansion operation.

 Chapter 7. General Instructions 7-79

 Initial Final
 Contents Contents
 Register in Hex in Hex

 R� 5��� 5��E
R�+1 4� 32

 R� 6��� 6��4
R�+1 5 1

Contents of Locations 6���-6��4 Hex in Binary

�������� 1������1 11111111 1��11111 11111���
 � � � �
 │ │ │ │
 Initial│ │ │ Final │
 CBN (7)┘ CBN (5)┘

6. The reason for allowing a parent to have no
more than 260 children is as follows. The
parent can contain five identical child charac-
ters. Then, 255 different sibling characters
are possible — all of these must be different
from the child characters and each other, or
else they may be wasted (never matched
against), depending on the implementation.
Thus, every possible child is permitted.

7. Symbol translation is for use by VTAM.
VTAM will begin by doing compression by
means of software and an adaptive dictionary.
When the adaptive dictionary has matured
such that the degree of compression becomes
sufficiently good (crosses some threshold),
VTAM will “freeze” (stop adapting) its dic-
tionary, inform the other end of the session to
freeze also, transform its adaptive dictionary
to the dictionary form used by COM-
PRESSION CALL, and then use COM-
PRESSION CALL to continue on with the
compression. The other end of the session
can continue to use its frozen adaptive dic-
tionary.

Following is clarification about the STT offset.
Assume VTAM uses a 4K-entry adaptive dic-
tionary, which is the largest size VTAM uses.
All of the entries in this dictionary correspond
to character symbols because there are no

sibling descriptors in the VTAM dictionary.
The VTAM dictionary cannot map one-to-one
to a COMPRESSION CALL dictionary
because the latter requires that some of the
entries be sibling descriptors. Therefore,
VTAM must have an 8K-entry dictionary for
use in the basic compression operation. Only
the first hundred or so entries in the second
4K of the 8K need to be used, and these
entries compensate for (take the place of) the
entries in the first 4K that must be sibling
descriptors. The STT can and should, to save
space, begin immediately after those hundred
or so entries in the second 4K. In this
example, the index symbols will be 13 bits but
will be transformed to 12-bit interchange
symbols.

8. A program may place the dictionaries in pages
that are managed by means of chaining fields
at their beginnings. In this case, either the
parts of a dictionary have to be moved to be
compacted into contiguous locations or there
have to be holes in the dictionaries. The defi-
nition of COMPRESSION CALL contains
nothing explicitly to support holes. However,
assuming there is at least one character that
never appears in the expanded data, that
character can be used as a child character in
a parent entry or as a sibling character in a
sibling descriptor to specify a child or children
that will never be referenced, thus creating a
hole.

9. The references to the operands, dictionaries,
and symbol-translation table for COM-
PRESSION CALL may be multiple-access ref-
erences. (See “Storage-Operand
Consistency” on page 5-87.)

10. Figure 7-38 on page 7-81 and Figure 7-39 on
page 7-83 show possible forms (not the only
possible forms) of the compression and
expansion processes. The figures do not
show testing for or the results of dictionary
errors.

7-80 z/Architecture Principles of Operation

Start Notes: Entry fields are in parent
 (1)───�│ or sibling descriptor.
 � SRC=source, DST=destination.
 Another SRC

char exists? No────────�Set CC� and endop.
 Yes
 (2)───�│ (8)──�Store parent index in DST.

� Advance 1 index in DST. ──�(2)
Another DST index
position exists? No────�Set CC1 and endop.

 Yes
 │
 �

Use next SRC char as
index of alphabet entry.
Call this entry parent.
Advance 1 byte in SRC.

 (3)───�│
 �

CCT=�? Yes─────�(9)──�Store parent index in DST.
No Advance 1 index in DST. ──�(1)

 (4)───�│
 �

Set flag=1. Note: Flag is 1 as long as there are equal
│ comparisons to identical leading CCs.

 �
 Another SRC

char exists? No────────�Store parent index in DST.
Yes Advance 1 index in DST.
│ Set CC� and endop.

 �
Repeat for each CC. Note: See the definition for how CCT speci-

 ┌�(5)─�│ fies number of CCs and more children.
 │ �
 │ Next SRC char=CC? Yes──�Set child index=
 │ No CPTR+CC number
 │ │ (�-origin numbering).
 │ � │
 │ Set flag=� �
 │ │ X=1 for child? No──�(See note below.)
 │ � Yes Store child index in DST.
 │ Another CC? │ Advance 1 index in DST.
 └──Yes No │ Advance 1 byte in SRC.
 │ │ │
 � � └──�(1)
CCT indicates ACT=� OR D=�
more children? in child? Yes──�Call child the parent.

Yes No──�(8) No Advance 1 byte in SRC.
 │ │ │
 � � └──�(3)

(6) Compare SRC chars after
Go to Part 2. next char to AECs in child.

 │
� Note: The preferred path for X=�

(1�) is shown, but the other
Go to Part 2. path may be taken.

Figure 7-38 (Part 1 of 2). Compression Process

 Chapter 7. General Instructions 7-81

From Part 1. From Part 1.
 (6) (1�)
 │ │
 � �

Set sibling Enough SRC chars
descriptor (SD) for comparison? No──�Flag=1? No──�(8)

 index=CPTR+ Yes Yes
number of CCs. │ │

 │ │ �
 │ │ Another CC? No──�(8)
 │ │ Yes
 │ │ │
 (7)───�│ │ └──�(5)
 � �

Repeat for Chars equal? Yes──�Call child the parent.
each SC in SD. No Advance in SRC by

│ │ 1+number of AEC bytes.
│ Note: See the � │

 │ definition Flag=1? No──�(8) └──�(3)
│ for how SCT Yes
│ specifies │

 │ number of �
 │ SCs and Another CC? No──�(8)
 │ more Yes

│ children. │ Note: The preferred path for Y=�
 ┌─────�│ └──�(5) is shown, but the other
 │ � path may be taken.
 │ Next SRC char=SC? Yes──�Set child index=
 │ No SD index+SC number
 │ │ (1-origin numbering).
 │ � │
 │ Another SC? �
 └──Yes No Y=1 for child

│ or no Y? No──�(See note above.)
│ Yes Store child index in DST.
� │ Advance 1 index in DST.

SCT indicates │ Advance 1 byte in SRC.
 more children? │ │
 Yes No──�(8) � └──�(1)

│ ACT=� OR D=�
� in child? Yes──�Call child the parent.

Set SD index No Advance 1 byte in SRC.
 =current SD │ │
 index+number � └──�(3)

of SCs+1 Compare SRC chars after
│ next char to AECs in child.

 └──�(7) │
 �
 Note: Second half Enough SRC chars
 of format-1 for comparison? No──�(8)

SD is in Yes
 expansion │
 dictionary. �

Chars equal? Yes──�Call child the parent.
No Advance in SRC by
│ 1+number of AEC bytes.

 └──�(8) │
 └──�(3)

Figure 7-38 (Part 2 of 2). Compression Process

7-82 z/Architecture Principles of Operation

Start Notes: Fields are in current entry.
 (1)───�│ SRC=source, DST=destination.
 �
 Another SRC

index exists? No───────�Set CC� and endop.
 Yes
 │
 �

>� DST byte
positions exist? No──────────�Set CC1 and endop.

 Yes
 │
 �
 Next SRC

index<256? Yes─────────�Another DST byte
No position exists? No───�Set CC1 and endop.

 │ Yes
 � │

Use next SRC index �
as index of current Store index as char in DST.
entry. Advance 1 index in SRC.

│ Advance 1 byte in DST. ───�(1)
 �

PSL=�? Yes───────────�CSL DST byte
No positions exist? No───�Set CC1 and endop.

 │ Yes
 � │
 Set SYMLEN= �

PSL+OFST Get CSL ECs from entry
│ and store in DST.
│ Advance 1 index in SRC.
� Advance CSL bytes in DST. ───�(1)

SYMLEN DST byte
positions exist? No────�Set CC1 and endop.

 Yes
 │
 �

Get PSL ECs from entry
and store in DST at OFST.
Use PPTR as index of
current entry (see note).

 ┌─────�│
 │ �
 │ PSL=�? Yes───────────�Get CSL ECs from entry
 │ No and store in DST.
 │ │ Advance 1 index in SRC.
 │ │ Advance SYMLEN bytes in DST. ───�(1)
 │ �
 │ Get PSL ECs from entry
 │ and store in DST at OFST.
 │ Use PPTR as index of
 │ current entry (see note).
 │ │
 └──────┘ Note: If PPTR<256, the action can be:

Store PPTR as char in DST.
Advance 1 index in SRC.
Advance SYMLEN bytes in DST. ───�(1)

Figure 7-39. Expansion Process

 Chapter 7. General Instructions 7-83

| COMPUTE INTERMEDIATE
| MESSAGE DIGEST (KIMD)

| KIMD R�,R� [RRE]

| ┌────────────────┬────────┬────┬────┐
| │ 'B93E' │////////│ R� │ R� │
| └────────────────┴────────┴────┴────┘
| � 16 24 28 31

| COMPUTE LAST MESSAGE
| DIGEST (KLMD)

| KLMD R�,R� [RRE]

| ┌────────────────┬────────┬────┬────┐
| │ 'B93F' │////////│ R� │ R� │
| └────────────────┴────────┴────┴────┘
| � 16 24 28 31

| A function specified by the function code in
| general register 0 is performed.

| Bits 16-23 of the instruction and the R� field are
| ignored.

| Bit positions 57-63 of general register 0 contain
| the function code. Figures 7-40 and 7-41 show
| the assigned function codes for COMPUTE
| INTERMEDIATE MESSAGE DIGEST and
| COMPUTE LAST MESSAGE DIGEST, respec-
| tively. All other function codes are unassigned.
| Bit 56 of general register 0 must be zero; other-
| wise, a specification exception is recognized. All
| other bits of general register 0 are ignored.

| General register 1 contains the logical address of
| the leftmost byte of the parameter block in
| storage. In the 24-bit addressing mode, the con-
| tents of bit positions 40-63 of general register 1
| constitute the address, and the contents of bit
| positions 0-39 are ignored. In the 31-bit
| addressing mode, the contents of bit positions
| 33-63 of general register 1 constitute the address,
| and the contents of bit positions 0-32 are ignored.
| In the 64-bit addressing mode, the contents of bit
| positions 0-63 of general register 1 constitute the
| address.

| The function codes for COMPUTE INTERME-
| DIATE MESSAGE DIGEST are as follows.

| The function codes for COMPUTE LAST
| MESSAGE DIGEST are as follows.

| All other function codes are unassigned.

| The query function provides the means of indi-
| cating the availability of the other functions. The
| contents of general registers R� and R� + 1 are
| ignored for the query function.

| For all other functions, the second operand is
| processed as specified by the function code using
| an initial chaining value in the parameter block,
| and the result replaces the chaining value. For
| COMPUTE LAST MESSAGE DIGEST, the opera-
| tion also uses a message bit length in the param-
| eter block. The operation proceeds until the end
| of the second-operand location is reached or a
| CPU-determined number of bytes have been proc-
| essed, whichever occurs first. The result is indi-
| cated in the condition code.

| The R� field designates an even-odd pair of
| general registers and must designate an even-
| numbered register; otherwise, a specification
| exception is recognized.

| Figure 7-40. Function Codes for COMPUTE INTER-
| MEDIATE MESSAGE DIGEST

| Code| Function

| Parm.
| Block
| Size
| (bytes)

| Data
| Block
| Size
| (bytes)

| 0| KIMD-Query| 16| —

| 1| KIMD-SHA-1| 20| 64

| Explanation:

| — Not applicable

| Figure 7-41. Function Codes for COMPUTE LAST
| MESSAGE DIGEST

| Code| Function

| Parm.
| Block
| Size
| (bytes)

| Data
| Block
| Size
| (bytes)

| 0| KLMD-Query| 16| —

| 1| KLMD-SHA-1| 28| 64

| Explanation:

| — Not applicable

7-84 z/Architecture Principles of Operation

| The location of the leftmost byte of the second
| operand is specified by the contents of the R�
| general register. The number of bytes in the
| second-operand location is specified in general
| register R� + 1.

| As part of the operation, the address in general
| register R� is incremented by the number of bytes
| processed from the second operand, and the
| length in general register R� + 1 is decremented
| by the same number. The formation and updating
| of the address and length is dependent on the
| addressing mode.

| In the 24-bit addressing mode, the contents of bit
| positions 40-63 of general register R� constitute
| the address of second operand, and the contents
| of bit positions 0-39 are ignored; bits 40-63 of the
| updated address replace the corresponding bits in
| general register R�, carries out of bit position 40
| of the updated address are ignored, and the con-
| tents of bit positions 32-39 of general register R�
| are set to zeros. In the 31-bit addressing mode,
| the contents of bit positions 33-63 of general reg-
| ister R� constitute the address of second operand,
| and the contents of bit positions 0-32 are ignored;
| bits 33-63 of the updated address replace the cor-
| responding bits in general register R�, carries out

| of bit position 33 of the updated address are
| ignored, and the content of bit position 32 of
| general register R� is set to zero. In the 64-bit
| addressing mode, the contents of bit positions
| 0-63 of general register R� constitute the address
| of second operand; bits 0-63 of the updated
| address replace the contents of general register
| R� and carries out of bit position 0 are ignored.

| In both the 24-bit and the 31-bit addressing
| modes, the contents of bit positions 32-63 of
| general register R� + 1 form a 32-bit unsigned
| binary integer which specifies the number of bytes
| in the second operand; and the updated value
| replaces the contents of bit positions 32-63 of
| general register R� + 1. In the 64-bit addressing
| mode, the contents of bit positions 0-63 of general
| register R� + 1 form a 64-bit unsigned binary
| integer which specifies the number of bytes in the
| second operand; and the updated value replaces
| the contents of general register R� + 1.

| In the 24-bit or 31-bit addressing mode, the con-
| tents of bit positions 0-31 of general registers R�
| and R� + 1, always remain unchanged.

| Figure 7-42 on page 7-86 shows the contents of
| the general registers just described.

 Chapter 7. General Instructions 7-85

| 24-Bit Addressing Mode 31-Bit Addressing Mode

| ┌─/─┬────────────────────────┬─┬───────┐ ┌─/─┬────────────────────────┬─┬───────┐
| GR� │///│////////////////////////│�│ FC │ │///│////////////////////////│�│ FC │
| └─/─┴────────────────────────┴─┴───────┘ └─/─┴────────────────────────┴─┴───────┘
| � 32 56 63 � 32 56 63

| ┌─/─┬────────┬─────────────────────────┐ ┌─/─┬─┬────────────────────────────────┐
| GR1 │///│////////│ Parameter-Block Address │ │///│/│ Parameter-Block Address │
| └─/─┴────────┴─────────────────────────┘ └─/─┴─┴────────────────────────────────┘
| � 32 4� 63 � 33 63

| ┌─/─┬────────┬─────────────────────────┐ ┌─/─┬─┬────────────────────────────────┐
| R� │///│////////│ Second-Operand Address │ │///│/│ Second-Operand Address │
| └─/─┴────────┴─────────────────────────┘ └─/─┴─┴────────────────────────────────┘
| � 32 4� 63 � 33 63

| ┌─/─┬──────────────────────────────────┐ ┌─/─┬──────────────────────────────────┐
| R� + 1 │///│ Second-Operand Length │ │///│ Second-Operand Length │
| └─/─┴──────────────────────────────────┘ └─/─┴──────────────────────────────────┘
| � 32 63 � 32 63

| 64-Bit Addressing Mode

| ┌─/─┬────────────────────────┬─┬───────┐
| GR� │///│////////////////////////│�│ FC │
| └─/─┴────────────────────────┴─┴───────┘
| � 32 56 63

| ┌─/────────────────────────────────────┐
| GR1 │ Parameter-Block Address │
| └─/────────────────────────────────────┘
| � 63

| ┌─/────────────────────────────────────┐
| R� │ Second-Operand Address │
| └─/────────────────────────────────────┘
| � 63

| ┌─/────────────────────────────────────┐
| R� + 1 │ Second-Operand Length │
| └─/────────────────────────────────────┘
| � 63

| Figure 7-42. General Register Assignment for KIMD and KLMD

| In the access-register mode, access registers 1
| and R� specify the address spaces containing the
| parameter block and second operand, respec-
| tively.

| The result is obtained as if processing starts at the
| left end of the second operand and proceeds to
| the right, block by block. The operation is ended
| when all source bytes in the second operand have
| been processed (called normal completion), or
| when a CPU-determined number of blocks that is
| less than the length of the second operand have
| been processed (called partial completion). The

| CPU-determined number of blocks depends on
| the model, and may be a different number each
| time the instruction is executed. The
| CPU-determined number of blocks is usually
| nonzero. In certain unusual situations, this
| number may be zero, and condition code 3 may
| be set with no progress. However, the CPU pro-
| tects against endless reoccurrence of this no-
| progress case.

| When the chaining-value field overlaps any portion
| of the second operand, the result in the chaining-
| value field is unpredictable.

7-86 z/Architecture Principles of Operation

| For COMPUTE INTERMEDIATE MESSAGE
| DIGEST, normal completion occurs when the
| number of bytes in the second operand as speci-
| fied in general register R� + 1 have been proc-
| essed. For COMPUTE LAST MESSAGE
| DIGEST, after all bytes in the second operand as
| specified in general register R� + 1 have been
| processed, the padding operation is performed,
| and then normal completion occurs.

| When the operation ends due to normal com-
| pletion, condition code 0 is set and the resulting
| value in R� + 1 is zero. When the operation
| ends due to partial completion, condition code 3 is
| set and the resulting value in R� + 1 is nonzero.

| When the second-operand length is initially zero,
| the second operand is not accessed, general reg-
| isters R� and R� + 1 are not changed, and condi-
| tion code 0 is set. For COMPUTE INTERME-
| DIATE MESSAGE DIGEST, the parameter block
| is not accessed. However, for COMPUTE LAST
| MESSAGE DIGEST, the empty block (L = 0) case
| padding operation is performed and the result is
| stored into the parameter block.

| As observed by other CPUs and channel pro-
| grams, references to the parameter block and
| storage operands may be multiple-access refer-
| ences, accesses to these storage locations are
| not necessarily block-concurrent, and the
| sequence of these accesses or references is
| undefined.

| Access exceptions may be reported for a larger
| portion of the second operand than is processed
| in a single execution of the instruction; however,
| access exceptions are not recognized for locations
| beyond the length of the second operand nor for
| locations more than 4K bytes beyond the current
| location being processed.

| Symbols Used in Function Descriptions

| The following symbols are used in the subsequent
| description of the COMPUTE INTERMEDIATE
| MESSAGE DIGEST and COMPUTE LAST
| MESSAGE DIGEST functions. Further description
| of the secure hash algorithm may be found in
| Secure Hash Standard, Federal Information Proc-
| essing Standards publication 180-1, National Insti-
| tute of Standards and Technology, Washington
| DC, April 17, 1995.

| ICV <2�> M <64>
| │ �
| │ ┌─────┐
| └────────�│SHA-1│
| │ bda │
| └──┬──┘
| �
| OCV <2�>

| Symbol Explanation
| <n> Length of item in bytes
| ICV Initial chaining value
| M Message block
| OCV Output chaining value

| Figure 7-43. Symbol for SHA-1 Block Digest Algorithm

| KIMD-Query (KIMD Function Code 0)

| The locations of the operands and addresses
| used by the instruction are as shown in
| Figure 7-42 on page 7-86.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ │
| ├ Status Word ┤
| 8 │ │
| └────────────────────────┘
| � 63

| Figure 7-44. Parameter Block for KIMD-Query

| A 128-bit status word is stored in the parameter
| block. Bits 0-127 of this field correspond to func-
| tion codes 0-127, respectively, of the COMPUTE
| INTERMEDIATE MESSAGE DIGEST instruction.
| When a bit is one, the corresponding function is
| installed; otherwise, the function is not installed.

| Condition code 0 is set when execution of the
| KIMD-Query function completes; condition code 3
| is not applicable to this function.

| KIMD-SHA-1 (KIMD Function Code 1)

| The locations of the operands and addresses
| used by the instruction are as shown in
| Figure 7-42 on page 7-86.

| The parameter block used for the function has the
| following format:

 Chapter 7. General Instructions 7-87

| ┌────────────┐
| � │ H� │
| ├────────────┤
| 4 │ H1 │
| ├────────────┤
| 8 │ H2 │
| ├────────────┤
| 12 │ H3 │
| ├────────────┤
| 16 │ H4 │
| └────────────┘
| � 31

| Figure 7-45. Parameter Block for KIMD-SHA-1

| A 20-byte intermediate message digest is gener-
| ated for the the 64-byte message blocks in
| operand 2 using the SHA-1 block digest algorithm
| with the 20-byte chaining value in the parameter
| block. The generated intermediate message
| digest, also called the output chaining value
| (OCV), is stored in the chaining-value field of the
| parameter block. The operation is shown in the
| following figure:

| OCV <2�>
| Parameter �
| Block ┌──────────────────────────────────┐
| in │ H� H1 H2 H3 H4 │
| Storage └────────────────┬─────────────────┘
| �
| ICV <2�>

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ M1 <64> │ M2 <64> │ M3 <64> │ │ Mn <64> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐
| ICV ─�│SHA-1│ ┌────�│SHA-1│ ┌────�│SHA-1│ ┌─/────�│SHA-1│
| │ bda │ │ │ bda │ │ │ bda │ │ │ bda │
| └──┬──┘ │ └──┬──┘ │ └──┬──┘ │ └──┬──┘
| │ │ │ │ │ │ �
| └────┘ └────┘ └────┘ OCV <2�>

| Figure 7-46. KIMD-SHA-1

| KLMD-Query (KLMD Function Code 0)

| The locations of the operands and addresses
| used by the instruction are as shown in
| Figure 7-42 on page 7-86.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ │
| ├ Status Word ┤
| 8 │ │
| └────────────────────────┘
| � 63

| Figure 7-47. Parameter Block for KLMD-Query

| A 128-bit status word is stored in the parameter
| block. Bits 0-127 of this field correspond to func-

| tion codes 0-127, respectively, of the COMPUTE
| LAST MESSAGE DIGEST instruction. When a bit
| is one, the corresponding function is installed; oth-
| erwise, the function is not installed.

| Condition code 0 is set when execution of the
| KLMD-Query function completes; condition code 3
| is not applicable to this function.

| KLMD-SHA-1 (KLMD Function Code 1)

| The locations of the operands and addresses
| used by the instruction are as shown in
| Figure 7-42 on page 7-86.

| The parameter block used for the function has the
| following format:

| ┌────────────┐
| � │ H� │
| ├────────────┤
| 4 │ H1 │
| ├────────────┤
| 8 │ H2 │
| ├────────────┤
| 12 │ H3 │
| ├────────────┤
| 16 │ H4 │
| ├────────────┤
| 2� │ Message │
| │ Bit Length │
| 24 │ (mbl) │
| └────────────┘
| � 31

| Figure 7-48. Parameter Block for KLMD-SHA-1

| The message digest for the message (M) in
| operand 2 is generated using the SHA-1 algorithm
| with the chaining value and message-bit-length
| information in the parameter block.

| If the length of the message in operand 2 is equal
| to or greater than 64 bytes, an intermediate
| message digest is generated for each 64-byte
| message block using the SHA-1 block digest algo-
| rithm with the 20-byte chaining value in the
| parameter block, and the generated intermediate
| message digest, also called the output chaining
| value (OCV), is stored into the chaining-value field
| of the parameter block. This operation is shown in
| Figure 7-49 on page 7-89 and repeats until the
| remaining message is less than 64 bytes.

| If the length of the message or the remaining
| message is zero bytes, then the operation in
| Figure 7-50 on page 7-89 is performed. If the

7-88 z/Architecture Principles of Operation

| length of the message or the remaining message
| is between one byte and 55 bytes inclusive, then
| the operation in Figure 7-51 on page 7-89 is per-
| formed; if the length is between 56 bytes and 63
| bytes inclusive, then the operation in Figure 7-52
| on page 7-90 is performed; The message digest,
| also called the output chaining value (OCV), is
| stored into the chaining-value field of the param-
| eter block.

| Additional Symbols Used in KLMD Functions

| The following additional symbols are used in the
| description of the COMPUTE LAST MESSAGE
| DIGEST functions.

| Symbol Explanation for KLMD Function
| Figures
| L Byte length of operand 2 in storage.
| p <n> n padding bytes; leftmost byte is 80
| hex; all other bytes are 00 hex.
| z <56> 56 padding bytes of zero.
| mbl an 8-byte value specifying the bit
| length of the total message.
| q <64> a padding block, consisting of 56 bytes
| of zero followed by an 8-byte mbl.

| OCV <2�>
| Parameter �
| Block ┌──────────────┐
| in │H� H1 H2 H3 H4│
| Storage └──────┬───────┘
| �
| ICV <2�>

| Op 2 in Storage
| ┌───┬─/
| │ M <64> │
| └───────────────────────┬───────────────────────┴─/
| �
| ┌─────┐
| ICV ─�│SHA-1│
| <2�> │ bda │
| └──┬──┘
| �
| OCV <2�>

| Figure 7-49. KLMD-SHA-1 Full Block (L ≥ 64)

| OCV <2�>
| Parameter �
| Block ┌──────────────┬─────┐
| in │H� H1 H2 H3 H4│ mbl │
| Storage └──────┬───────┴──┬──┘
| � │
| ICV <2�> └─────────────────┐
| │
| │
| p <56> │
| � � <8>
| ┌───┬─────┐
| │ │
| └───────────────────────┬───────────────────────┘
| � <64>
| ┌─────┐
| ICV ─�│SHA-1│
| <2�> │ bda │
| └──┬──┘
| �
| OCV <2�>

| Figure 7-50. KLMD-SHA-1 Empty Block (L = 0)

| OCV <2�>
| Parameter �
| Block ┌──────────────┬─────┐
| in │H� H1 H2 H3 H4│ mbl │
| Storage └──────┬───────┴──┬──┘
| � │
| ICV <2�> └─────────────────┐
| │
| │
| Op 2 in Storage │
| ┌─────────────────┐ │
| │ M <L> │ │
| └────────┬────────┘ p <56-L> │
| � � � <8>
| ┌─────────────────┬───────────────────────┬─────┐
| │ │
| └───────────────────────┬───────────────────────┘
| � <64>
| ┌─────┐
| ICV ─�│SHA-1│
| <2�> │ bda │
| └──┬──┘
| �
| OCV <2�>

| Figure 7-51. KLMD-SHA-1 Partial-Block Case 1 (1 ≤ L
| ≤ 55)

 Chapter 7. General Instructions 7-89

| OCV <2�>
| Parameter �
| Block ┌──────────────┬─────┐
| in │H� H1 H2 H3 H4│ mbl │
| Storage └──────┬───────┴──┬──┘
| � │
| ICV <2�> └─────────────────┐
| │
| z <56> │
| � � <8>
| ┌───┬─────┐
| │ │
| └───────────────────────┬───────────────────────┘
| �
| q <64>

| Op 2 in Storage
| ┌───┐
| │ M <L> │
| └────────────────────┬────────────────────┘ p <64-L>
| � �
| ┌───┬─────┐
| │ │
| └───────────────────────┬───────────────────────┘
| � <64>
| ┌─────┐
| ICV ─�│SHA-1│ q <64>
| <2�> │ bda │ �
| └──┬──┘ ┌─────┐
| └────�│SHA-1│
| │ bda │
| └──┬──┘
| �
| OCV <2�>

| Figure 7-52. KLMD-SHA-1 Partial-Block Case 2 (56 ≤
| L ≤ 63)

| Special Conditions for KIMD and KLMD

| A specification exception is recognized and no
| other action is taken if any of the following occurs:

| 1. Bit 56 of general register 0 is not zero.

| 2. Bits 57-63 of general register 0 specify an
| unassigned or uninstalled function code.

| 3. The R� field designates an odd-numbered
| register or general register 0.

| 4. For COMPUTE INTERMEDIATE MESSAGE
| DIGEST, the second-operand length is not a
| multiple of the data block size of the desig-
| nated function (see Figure 7-40 on page 7-84
| to determine the data block sizes for
| COMPUTE INTERMEDIATE MESSAGE
| DIGEST functions). This specification-
| exception condition does not apply to the the
| query function, nor does it apply to COMPUTE
| LAST MESSAGE DIGEST.

| Resulting Condition Code:

| 0 Normal completion
| 1 --
| 2 --
| 3 Partial completion

| Program Exceptions:

| � Access (fetch, operand 2 and message bit
| length; fetch and store, chaining value)
| � Operation (if the message-security assist is
| not installed)
| � Specification

| ┌───┐
| │ 1.-6. Exceptions with the same priority as the priority of program- │
| │ interruption conditions for the general case. │
| │ │
| │ 7.A Access exceptions for second instruction halfword. │
| │ │
| │ 7.B Operation exception. │
| │ │
| │ 8. Specification exception due to invalid function code or │
| │ invalid register number. │
| │ │
| │ 9. Specification exception due to invalid operand length. │
| │ │
| │ 1�. Condition code � due to second-operand length originally zero. │
| │ │
| │ 11. Access exceptions for an access to the parameter block or │
| │ second operand. │
| │ │
| │ 12. Condition code � due to normal completion (second-operand │
| │ length originally nonzero, but stepped to zero). │
| │ │
| │ 13. Condition code 3 due to partial completion (second-operand │
| │ length still nonzero). │
| └───┘

| Figure 7-53. Priority of Execution: KIMD and KLMD

7-90 z/Architecture Principles of Operation

| Programming Notes:

| 1. Bit 56 of general register 0 is reserved for
| future extension and should be set to zero.

| 2. When condition code 3 is set, the second
| operand address and length in general regis-
| ters R� and R� + 1, respectively, and the the
| chaining-value in the parameter block are
| usually updated such that the program can
| simply branch back to the instruction to con-
| tinue the operation.

| For unusual situations, the CPU protects
| against endless reoccurrence for the no-
| progress case. Thus, the program can safely
| branch back to the instruction whenever con-
| dition code 3 is set with no exposure to an
| endless loop.

| 3. If the length of the second operand is nonzero
| initially and condition code 0 is set, the regis-
| ters are updated in the same manner as for
| condition code 3; the chaining value in this
| case is such that additional operands can be
| processed as if they were part of the same
| chain.

| 4. The instructions COMPUTE INTERMEDIATE
| MESSAGE DIGEST and COMPUTE LAST
| MESSAGE DIGEST are designed to be used
| by a security service application programming
| interface (API). These APIs provide the
| program with means to compute the digest of
| messages of almost unlimited size, including
| those too large to fit in storage all at once.
| This is accomplished by permitting the
| program to pass the message to the API in
| parts. The following programming notes are
| described in terms of these APIs.

| 5. Before processing the first part of a message,
| the program must set the initial values for the
| chaining-value field. For SHA-1, the initial
| chaining values are listed as follows:

| H� = x'6745 23�1'
| H1 = x'EFCD AB89'
| H2 = x'98BA DCFE'
| H3 = x'1�32 5476'
| H4 = x'C3D2 E1F�'

| 6. When processing message parts other than
| the last, the program must process message
| parts in multiples of 512 bits (64 bytes) and
| use the COMPUTE INTERMEDIATE
| MESSAGE DIGEST instruction.

| 7. When processing the last message part, the
| program must compute the length of the ori-
| ginal message in bits and place this 64-bit
| value in the message-bit-length field of the
| parameter block, and use the COMPUTE
| LAST MESSAGE DIGEST instruction.

| 8. The COMPUTE LAST MESSAGE DIGEST
| instruction does not require the second
| operand to be a multiple of the block size. It
| first processes complete blocks, and may set
| condition code 3 before processing all blocks.
| After processing all complete blocks, it then
| performs the padding operation including the
| remaining portion of the second operand.
| This may require one or two iterations of the
| SHA-1 block digest algorithm.

| 9. The COMPUTE LAST MESSAGE DIGEST
| instruction provides the SHA-1 padding for
| messages that are a multiple of eight bits in
| length. If SHA-1 is to be applied to a bit string
| which is not a multiple of eight bits, the
| program must perform the padding and use
| the COMPUTE INTERMEDIATE MESSAGE
| DIGEST instruction.

| COMPUTE MESSAGE
| AUTHENTICATION CODE (KMAC)

| KMAC R�,R� [RRE]

| ┌────────────────┬────────┬────┬────┐
| │ 'B91E' │////////│ R� │ R� │
| └────────────────┴────────┴────┴────┘
| � 16 24 28 31

| A function specified by the function code in
| general register 0 is performed.

| Bits 16-23 of the instruction and the R� field are
| ignored.

| Bit positions 57-63 of general register 0 contain
| the function code. Figure 7-54 shows the
| assigned function codes. All other function codes
| are unassigned. Bit 56 of general register 0 must
| be zero; otherwise, a specification exception is
| recognized. All other bits of general register 0 are
| ignored.

| General register 1 contains the logical address of
| the leftmost byte of the parameter block in
| storage. In the 24-bit addressing mode, the con-
| tents of bit positions 40-63 of general register 1

 Chapter 7. General Instructions 7-91

| constitute the address, and the contents of bit
| positions 0-39 are ignored. In the 31-bit
| addressing mode, the contents of bit positions
| 33-63 of general register 1 constitute the address,
| and the contents of bit positions 0-32 are ignored.
| In the 64-bit addressing mode, the contents of bit
| positions 0-63 of general register 1 constitute the
| address.

| The function codes for COMPUTE MESSAGE
| AUTHENTICATION CODE are as follows.

| All other function codes are unassigned.

| The query function provides the means of indi-
| cating the availability of the other functions. The
| contents of general registers R� and R� + 1 are
| ignored.

| For all other functions, the second operand is
| processed as specified by the function code using
| an initial chaining value in the parameter block
| and the result replaces the chaining value. The
| operation also uses a cryptographic key in the
| parameter block. The operation proceeds until the
| end of the second-operand location is reached or
| a CPU-determined number of bytes have been
| processed, whichever occurs first. The result is
| indicated in the condition code.

| The R� field designates an even-odd pair of
| general registers and must designate an even-
| numbered register; otherwise, a specification
| exception is recognized.

| The location of the leftmost byte of the second
| operand is specified by the contents of the R�

| general register. The number of bytes in the
| second-operand location is specified in general
| register R� + 1.

| As part of the operation, the address in general
| register R� is incremented by the number of bytes
| processed from the second operand, and the
| length in general register R� + 1 is decremented
| by the same number. The formation and updating
| of the address and length is dependent on the
| addressing mode.

| In the 24-bit addressing mode, the contents of bit
| positions 40-63 of general register R� constitute
| the address of second operand, and are ignored;
| bits 40-63 of the updated address replace the cor-
| responding bits in general register R�, carries out
| of bit position 40 of the updated address are
| ignored and, the contents of bit positions 32-39 of
| general register R� are set to zeros. In the 31-bit
| addressing mode, the contents of bit positions
| 33-63 of general register R� constitute the
| address of second operand, and the contents of
| bit positions 0-32 are ignored; bits 33-63 of the
| updated address replace the corresponding bits in
| general register R�, carries out of bit position 33
| of the updated address are ignored, and the
| content of bit position 32 of general register R� is
| set to zero. In the 64-bit addressing mode, the
| contents of bit positions 0-63 of general register
| R� constitute the address of second operand; bits
| 0-63 of the updated address replace the contents
| of general register R� and carries out of bit posi-
| tion 0 are ignored.

| In both the 24-bit and the 31-bit addressing
| modes, the contents of bit positions 32-63 of
| general register R� + 1 form a 32-bit unsigned
| binary integer which specifies the number of bytes
| in the second operand; and the updated value
| replaces the contents of bit positions 32-63 of
| general register R� + 1. In the 64-bit addressing
| mode, the contents of bit positions 0-63 of general
| register R� + 1 form a 64-bit unsigned binary
| integer which specifies the number of bytes in the
| second operand; and the updated value replaces
| the contents of general register R� + 1.

| In the 24-bit or 31-bit addressing mode, the con-
| tents of bit positions 0-31 of general registers R�
| and R� + 1, always remain unchanged.

| Figure 7-55 on page 7-93 shows the contents of
| the general registers just described.

| Figure 7-54. Function Codes for COMPUTE
| MESSAGE AUTHENTICATION CODE

| Code| Function

| Parm.
| Block
| Size
| (bytes)

| Data
| Block
| Size
| (bytes)

| 0| KMAC-Query| 16| —

| 1| KMAC-DEA| 16| 8

| 2| KMAC-TDEA-128| 24| 8

| 3| KMAC-TDEA-192| 32| 8

| Explanation:

| — Not applicable

7-92 z/Architecture Principles of Operation

| 24-Bit Addressing Mode 31-Bit Addressing Mode

| ┌─/─┬────────────────────────┬─┬───────┐ ┌─/─┬────────────────────────┬─┬───────┐
| GR� │///│////////////////////////│�│ FC │ │///│////////////////////////│�│ FC │
| └─/─┴────────────────────────┴─┴───────┘ └─/─┴────────────────────────┴─┴───────┘
| � 32 56 63 � 32 56 63

| ┌─/─┬────────┬─────────────────────────┐ ┌─/─┬─┬────────────────────────────────┐
| GR1 │///│////////│ Parameter-Block Address │ │///│/│ Parameter-Block Address │
| └─/─┴────────┴─────────────────────────┘ └─/─┴─┴────────────────────────────────┘
| � 32 4� 63 � 33 63

| ┌─/─┬────────┬─────────────────────────┐ ┌─/─┬─┬────────────────────────────────┐
| R� │///│////////│ Second-Operand Address │ │///│/│ Second-Operand Address │
| └─/─┴────────┴─────────────────────────┘ └─/─┴─┴────────────────────────────────┘
| � 32 4� 63 � 33 63

| ┌─/─┬──────────────────────────────────┐ ┌─/─┬──────────────────────────────────┐
| R� + 1 │///│ Second-Operand Length │ │///│ Second-Operand Length │
| └─/─┴──────────────────────────────────┘ └─/─┴──────────────────────────────────┘
| � 32 63 � 32 63

| 64-Bit Addressing Mode

| ┌─/─┬────────────────────────┬─┬───────┐
| GR� │///│////////////////////////│�│ FC │
| └─/─┴────────────────────────┴─┴───────┘
| � 32 56 63

| ┌─/────────────────────────────────────┐
| GR1 │ Parameter-Block Address │
| └─/────────────────────────────────────┘
| � 63

| ┌─/────────────────────────────────────┐
| R� │ Second-Operand Address │
| └─/────────────────────────────────────┘
| � 63

| ┌─/────────────────────────────────────┐
| R� + 1 │ Second-Operand Length │
| └─/────────────────────────────────────┘
| � 63

| Figure 7-55. General Register Assignment for KMAC

| In the access-register mode, access registers 1
| and R� specify the address spaces containing the
| parameter block and second operand, respec-
| tively.

| The result is obtained as if processing starts at the
| left end of the second operand and proceeds to
| the right, block by block. The operation is ended
| when all source bytes in the second operand have
| been processed (called normal completion), or
| when a CPU-determined number of blocks that is
| less than the length of the second operand have
| been processed (called partial completion). The

| CPU-determined number of blocks depends on
| the model, and may be a different number each
| time the instruction is executed. The
| CPU-determined number of blocks is usually
| nonzero. In certain unusual situations, this
| number may be zero, and condition code 3 may
| be set with no progress. However, the CPU pro-
| tects against endless reoccurrence of this no-
| progress case.

| When the chaining-value field overlaps any portion
| of the second operand, the result in the chaining-
| value field is unpredictable.

 Chapter 7. General Instructions 7-93

| Normal completion occurs when the number of
| bytes in the second operand as specified in
| general register R� + 1 have been processed.

| When the operation ends due to normal com-
| pletion, condition code 0 is set and the resulting
| value in R� + 1 is zero. When the operation
| ends due to partial completion, condition code 3 is
| set and the resulting value in R� + 1 is nonzero.

| When the second-operand length is initially zero,
| the second operand and the parameter block are
| not accessed, general registers R� and R� + 1
| are not changed, and condition code 0 is set.

| As observed by other CPUs and channel pro-
| grams, references to the parameter block and
| storage operands may be multiple-access refer-
| ences, accesses to these storage locations are
| not necessarily block-concurrent, and the
| sequence of these accesses or references is
| undefined.

| Access exceptions may be reported for a larger
| portion of the second operand than is processed
| in a single execution of the instruction; however,
| access exceptions are not recognized for locations
| beyond the length of the second operand nor for
| locations more than 4K bytes beyond the current
| location being processed.

| Symbols Used in Function Descriptions

| The following symbols are used in the subsequent
| description of the COMPUTE MESSAGE
| AUTHENTICATION CODE functions. For data-
| encryption-algorithm (DEA) functions, the
| DEA-key-parity bit in each byte of the DEA key is
| ignored, and the operation proceeds normally,
| regardless of the DEA-key parity of the key.
| Further description of the data-encryption algo-
| rithm may be found in Data Encryption Algorithm,
| ANSI-X3.92.1981, American National Standard for
| Information Systems.

| A
| �
| ┌───┐
| B ─�│xor│
| └─┬─┘
| �
| C

| C = A XOR B

| Figure 7-56. Symbol For Bit-Wise Exclusive Or

| K <8> P <8> K <8> C <8>
| │ � │ �
| │ ┌───┐ │ ┌───┐
| └─────�│DEA│ └─────�│DEA│
| │ e │ │ d │
| └─┬─┘ └─┬─┘
| � �
| C <8> P <8>

| Symbol for DEA Symbol for DEA
| Encryption Decryption

| Symbol Explanation
| <n> Length of item in bytes
| C Ciphertext
| K Key value
| P Plaintext

| Figure 7-57. Symbols for DEA Encryption and
| Decryption

| KMAC-Query (Function Code 0)

| The locations of the operands and addresses
| used by the instruction are as shown in
| Figure 7-55 on page 7-93.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ │
| ├ Status Word ┤
| 8 │ │
| └────────────────────────┘
| � 63

| Figure 7-58. Parameter Block for KMAC-Query

| A 128-bit status word is stored in the parameter
| block. Bits 0-127 of this field correspond to func-
| tion codes 0-127, respectively, of the KMAC
| instruction. When a bit is one, the corresponding
| function is installed; otherwise, the function is not
| installed.

| Condition code 0 is set when execution of the
| KMAC-Query function completes; condition code 3
| is not applicable to this function.

| KMAC-DEA (Function Code 1)

| The locations of the operands and addresses
| used by the instruction are as shown in
| Figure 7-55 on page 7-93.

| The parameter block used for the function has the
| following format:

7-94 z/Architecture Principles of Operation

| ┌────────────────────────┐
| � │ Chaining Value (CV) │
| ├────────────────────────┤
| 8 │ Cryptographic Key (K) │
| └────────────────────────┘
| � 63

| Figure 7-59. Parameter Block for KMAC-DEA

| The message authentication code for the 8-byte
| message blocks (M1, M2, ..., Mn) in operand 2 is
| computed using the DEA algorithm with the 64-bit
| cryptographic key and the 64-bit chaining value in
| the parameter block.

| The message authentication code, also called the
| output chaining value (OCV), is stored in the
| chaining-value field of the parameter block. The
| operation is shown in the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┐
| in │ CV <8> │ K <8> │
| Storage └──────┬──────┴──────┬──────┘
| � �
| ICV K

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ M1 <8> │ M2 <8> │ M3 <8> │ │ Mn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| ICV ─�│xor│ ┌─────�│xor│ ┌─────�│xor│ ┌──/────�│xor│
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K ─�│DEA│ │ K ─�│DEA│ │ K ─�│DEA│ │ K ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| │ │ │ │ │ │ �
| └────┘ └────┘ └────┘ OCV

| Figure 7-60. KMAC-DEA

| KMAC-TDEA-128 (Function Code 2)

| The locations of the operands and addresses
| used by the instruction are as shown in
| Figure 7-55 on page 7-93.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ Chaining Value (CV) │
| ├────────────────────────┤
| 8 │Cryptographic Key 1 (K1)│
| ├────────────────────────┤
| 16 │Cryptographic Key 2 (K2)│
| └────────────────────────┘
| � 63

| Figure 7-61. Parameter Block for KMAC-TDEA-128

| The message authentication code for the 8-byte
| message blocks (M1, M2, ..., Mn) in operand 2 is

| computed using the TDEA algorithm with the two
| 64-bit cryptographic keys and the 64-bit chaining
| value in the parameter block.

| The message authentication code, also called the
| output chaining value (OCV), is stored in the
| chaining-value field of the parameter block. The
| operation is shown in the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┬─────────────┐
| in │ CV <8> │ K1 <8> │ K2 <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┘
| � � �
| ICV K1 K2

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ M1 <8> │ M2 <8> │ M3 <8> │ │ Mn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| ICV ─�│xor│ ┌─────�│xor│ ┌─────�│xor│ ┌──/────�│xor│
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| │ │ │ │ │ │ �
| └────┘ └────┘ └────┘ OCV

| Figure 7-62. KMAC-TDEA-128

| KMAC-TDEA-192 (Function Code 3)

| The locations of the operands and addresses
| used by the instruction are as shown in
| Figure 7-55 on page 7-93.

| The parameter block used for the function has the
| following format:

| ┌────────────────────────┐
| � │ Chaining Value (CV) │
| ├────────────────────────┤
| 8 │Cryptographic Key 1 (K1)│
| ├────────────────────────┤
| 16 │Cryptographic Key 2 (K2)│
| ├────────────────────────┤
| 24 │Cryptographic Key 3 (K3)│
| └────────────────────────┘
| � 63

| Figure 7-63. Parameter Block for KMAC-TDEA-192

| The message authentication code for the 8-byte
| message blocks (M1, M2, ..., Mn) in operand 2 is
| computed using the TDEA algorithm with the three
| 64-bit cryptographic keys and the 64-bit chaining
| value in the parameter block.

 Chapter 7. General Instructions 7-95

| The message authentication code, also called the
| output chaining value (OCV), is stored in the
| chaining-value field of the parameter block. The
| operation is shown in the following figure:

| OCV
| Parameter �
| Block ┌─────────────┬─────────────┬─────────────┬─────────────┐
| in │ CV <8> │ K1 <8> │ K2 <8> │ K3 <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴──────┬──────┘
| � � � �
| ICV K1 K2 K3

| Op 2 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐
| in │ M1 <8> │ M2 <8> │ M3 <8> │ │ Mn <8> │
| Storage └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘
| � � � �
| ┌───┐ ┌───┐ ┌───┐ ┌───┐
| ICV ─�│xor│ ┌─────�│xor│ ┌─────�│xor│ ┌──/────�│xor│
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│ │ K1 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│ │ K2 ─�│DEA│
| │ d │ │ │ d │ │ │ d │ │ │ d │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| � │ � │ � │ �
| ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐
| K3 ─�│DEA│ │ K3 ─�│DEA│ │ K3 ─�│DEA│ │ K3 ─�│DEA│
| │ e │ │ │ e │ │ │ e │ │ │ e │
| └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘
| │ │ │ │ │ │ �
| └────┘ └────┘ └────┘ OCV

| Figure 7-64. KMAC-TDEA-192

| Special Conditions for KMAC

| A specification exception is recognized and no
| other action is taken if any of the following occurs:

| 1. Bit 56 of general register 0 is not zero.

| 2. Bits 57-63 of general register 0 specify an
| unassigned or uninstalled function code.

| 3. The R� field designates an odd-numbered
| register or general register 0.

| 4. The second-operand length is not a multiple of
| the data block size of the designated function
| (see Figure 7-54 on page 7-92 to determine
| the data block size for COMPUTE MESSAGE
| AUTHENTICATION CODE functions).

| Resulting Condition Code:

| 0 Normal completion
| 1 --
| 2 --
| 3 Partial completion

| Program Exceptions:

| � Access (fetch, operand 2, cryptographic key;
| fetch and store, chaining value)
| � Operation (if the message-security assist is
| not installed)
| � Specification

| ┌───┐
| │ 1.-6. Exceptions with the same priority as the priority of program- │
| │ interruption conditions for the general case. │
| │ │
| │ 7.A Access exceptions for second instruction halfword. │
| │ │
| │ 7.B Operation exception. │
| │ │
| │ 8. Specification exception due to invalid function code or │
| │ invalid register number. │
| │ │
| │ 9. Specification exception due to invalid operand length. │
| │ │
| │ 1�. Condition code � due to second-operand length originally zero. │
| │ │
| │ 11. Access exceptions for an access to the parameter block or │
| │ second operand. │
| │ │
| │ 12. Condition code � due to normal completion (second-operand │
| │ length originally nonzero, but stepped to zero). │
| │ │
| │ 13. Condition code 3 due to partial completion (second-operand │
| │ length still nonzero). │
| └───┘

| Figure 7-65. Priority of Execution: KMAC

7-96 z/Architecture Principles of Operation

| Programming Notes:

| 1. Bit 56 of general register 0 is reserved for
| future extension and should be set to zero.

| 2. When condition code 3 is set, the second
| operand address and length in general regis-
| ters R� and R� + 1, respectively, and the
| chaining-value in the parameter block are
| usually updated such that the program can
| simply branch back to the instruction to con-
| tinue the operation. For unusual situations,
| the CPU protects against endless reoccur-
| rence for the no-progress case. Thus, the
| program can safely branch back to the instruc-
| tion whenever condition code 3 is set with no
| exposure to an endless loop.

| 3. If the length of the second operand is nonzero
| initially and condition code 0 is set, the regis-
| ters are updated in the same manner as for
| condition code 3; the chaining value in this
| case is such that additional operands can be
| processed as if they were part of the same
| chain.

| 4. Before processing the first part of a message,
| the program must set the initial values for the
| chaining-value field. To comply with ANSI
| X9.9 or X9.19, the initial chaining value shall
| be set to all binary zeros.

CONVERT TO BINARY

CVB R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '4F' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| CVBY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�6' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

CVBG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�E' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand is changed from decimal to
binary, and the result is placed at the first-operand
location.

| For CONVERT TO BINARY (CVB, CVBY), the
second operand occupies eight bytes in storage,
and, for CONVERT TO BINARY (CVBG), the
second operand occupies sixteen bytes in storage.
The second operand has the format of packed
decimal data, as described in Chapter 8, “Decimal
Instructions.” It is checked for valid sign and digit
codes, and a decimal-operand data exception is
recognized when an invalid code is detected.

| For CONVERT TO BINARY (CVB, CVBY), the
result of the conversion is a 32-bit signed binary
integer, which is placed in bit positions 32-63 of
general register R�. Bits 0-31 of the register
remain unchanged. The maximum positive
number that can be converted and still be con-
tained in 32 bit positions is 2,147,483,647; the
maximum negative number (the negative number
with the greatest absolute value) that can be con-
verted is −2,147,483,648. For any decimal
number outside this range, the operation is com-
pleted by placing the 32 rightmost bits of the
binary result in the register, and a fixed-point-
divide exception is recognized.

For CONVERT TO BINARY (CVBG), the result of
the conversion is a 64-bit signed binary integer,
which is placed in bit positions 0-63 of general
register R�. The maximum positive number that
can be converted and still be contained in a 64-bit
register is 9,223,372,036,854,775,807; the
maximum negative number (the negative number
with the greatest absolute value) that can be con-
verted is −9,223,372,036,854,775,808. For any
decimal number outside this range, a fixed-point-
divide exception is recognized, and the operation
is suppressed.

| The displacement for CVB is treated as a 12-bit
| unsigned binary integer. The displacement for
| CVBY and CVBG is treated as a 20-bit signed
| binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
 � Data
 � Fixed-point divide

| � Operation (CVBY, if the long-displacement
| facility is not installed)

 Chapter 7. General Instructions 7-97

Programming Notes:

1. An example of the use of the CONVERT TO
BINARY instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. When the second operand is negative, the
result is in two's-complement notation.

3. The storage-operand references for
CONVERT TO BINARY may be multiple-
access references. (See “Storage-Operand
Consistency” on page 5-87.)

CONVERT TO DECIMAL

CVD R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '4E' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| CVDY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '26' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

CVDG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '2E' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first operand is changed from binary to
decimal, and the result is stored at the second-
operand location.

| For CONVERT TO DECIMAL (CVD, CVDY), the
first operand is treated as a 32-bit signed binary
integer, and the result occupies eight bytes in
storage. For CONVERT TO DECIMAL (CVDG),
the first operand is treated as a 64-bit signed
binary integer, and the result occupies sixteen
bytes in storage.

The result is in the format for packed decimal
data, as described in Chapter 8, “Decimal
Instructions.” The rightmost four bits of the result
represent the sign. A positive sign is encoded as
1100; a negative sign is encoded as 1101.

| The displacement for CVD is treated as a 12-bit
| unsigned binary integer. The displacement for

| CVDY and CVDG is treated as a 20-bit signed
| binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
| � Operation (CVDY, if the long-displacement
| facility is not installed)

Programming Notes:

1. An example of the use of the CONVERT TO
DECIMAL instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

| 2. For CVD and CVDY, the number to be con-
verted is a 32-bit signed binary integer
obtained from a general register. Since 15
decimal digits are available for the result, and
the decimal equivalent of 31 bits requires at
most 10 decimal digits, an overflow cannot
occur. Similarly, for CVDG, 31 decimal digits
are available, the decimal equivalent of 63 bits
is at most 19 digits, and an overflow cannot
occur.

3. The storage-operand references for
CONVERT TO DECIMAL may be multiple-
access references. (See “Storage-Operand
Consistency” on page 5-87.)

CONVERT UNICODE TO UTF-8

CUUTF R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B2A6' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The two-byte Unicode characters of the second
operand are converted to UTF-8 characters and
placed at the first-operand location. The UTF-8
characters are one, two, three, or four bytes,
depending on the Unicode characters that are
converted. The operation proceeds until the end
of the first or second operand is reached or a
CPU-determined number of characters have been
converted, whichever occurs first. The result is
indicated in the condition code.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an

7-98 z/Architecture Principles of Operation

even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and the second operand is designated by
the contents of general registers R� and R�,
respectively. In the 24-bit or 31-bit addressing
mode, the number of bytes in the first-operand
and second-operand locations is specified by the
contents of bit positions 32-63 of general registers
R� + 1 and R� + 1, respectively, and those con-
tents are treated as 32-bit unsigned binary inte-
gers. In the 64-bit addressing mode, the number
of bytes in the first-operand and second-operand
locations is specified by the entire contents of
general registers R� + 1 and R� + 1, respec-
tively, and those contents are treated as 64-bit
unsigned binary integers.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-66 on page 7-100.

The characters of the second operand are
selected one by one for conversion, proceeding
left to right. The bytes resulting from a conversion
are placed at the first-operand location, pro-
ceeding left to right. The operation proceeds until
the first-operand or second-operand location is
exhausted or a CPU-determined number of
second-operand characters have been converted.

To show the method of converting a Unicode
character to a UTF-8 character, the bits of a
Unicode character are identified by letters as
follows:

 Unicode Character 111111
 Bit Numbers �1234567 89�12345

Identifying Bit Letters abcdefgh ijklmnop

In the case of a Unicode surrogate pair, which is a
character pair consisting of a character called a

high surrogate followed by a character called a
low surrogate, the bits are identified by letters as
follows:

Unicode High Surrogate 111111
 Bit Numbers �1234567 89�12345

Identifying Bit Letters 11�11�ab cdefghij

Unicode Low Surrogate 11112222 22222233
 Bit Numbers 6789�123 456789�1

Identifying Bit Letters 11�111kl mnopqrst

Any Unicode character in the range 0000 to 007F
hex is converted to a one-byte UTF-8 character as
follows:

 Unicode �������� �jklmnop
 Character

 UTF-8 �jklmnop
 Character

Any Unicode character in the range 0080 to 07FF
hex is converted to a two-byte UTF-8 character as
follows:

 Unicode �����fgh ijklmnop
 Character

 UTF-8 11�fghij 1�klmnop
 Character

Any Unicode character in the range 0800 to D7FF
and DC00 to FFFF hex is converted to a three-
byte UTF-8 character as follows:

 Unicode abcdefgh ijklmnop
 Character

UTF-8 111�abcd 1�efghij 1�klmnop
 Character

Any Unicode surrogate pair starting with a high
surrogate in the range D800 to DBFF hex is con-
verted to a four-byte UTF-8 character as follows:

Unicode 11�11�ab cdefghij 11�111kl mnopqrst
 Characters

UTF-8 1111�uvw 1�xyefgh 1�ijklmn 1�opqrst
 Character

where uvwxy = abcd + 1

The first six bits of the second Unicode character
are ignored.

The second-operand location is considered
exhausted when it does not contain at least two
remaining bytes or at least four remaining bytes
when the first two bytes are a Unicode high surro-

 Chapter 7. General Instructions 7-99

┌───┐
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│Second-Operand Address │ │////│ Second-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Second-Operand Length │ │///│ Second-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Second-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Second-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
└───┘

Figure 7-66. Register Contents for CONVERT UNICODE TO UTF-8

gate. The first-operand location is considered
exhausted when it does not contain at least the
one, two, three, or four remaining bytes required
to contain the UTF-8 character resulting from the
conversion of the next second-operand character
or surrogate pair.

When the second-operand location is exhausted,
condition code 0 is set. When the first-operand
location is exhausted, condition code 1 is set,
except that condition code 0 is set if the second-
operand location also is exhausted. When a

CPU-determined number of characters have been
converted, condition code 3 is set.

When the operation is completed, the contents of
general register R� + 1 are decremented by the
number of bytes converted, and the contents of
general register R� are incremented by the same
number. Also, the contents of general register
R� + 1 are decremented by the number of bytes
placed at the first-operand location, and the con-
tents of general register R� are incremented by
the same number. When general registers R�

7-100 z/Architecture Principles of Operation

and R� are updated in the 24-bit or 31-bit
addressing mode, bits 32-39 of them, in the 24-bit
mode, or bit 32, in the 31-bit mode, may be set to
zeros or may remain unchanged.

In the 24-bit or 31-bit addressing mode, the con-
tents of bit positions 0-31 of general registers R�,
R� + 1, R�, and R� + 1, always remain
unchanged.

When condition code 3 is set, the registers have
been updated so that the instruction, when reexe-
cuted, resumes at the next byte locations to be
processed.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

When the R� register is the same register as the
R� register, the results are unpredictable.

When the second operand overlaps the first
operand, the results are unpredictable.

Access exceptions for the portions of the oper-
ands to the right of the last byte processed may or
may not be recognized. For an operand longer
than 4K bytes, access exceptions are not recog-
nized for locations more than 4K bytes beyond the
last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd.

Resulting Condition Code:

0 Entire second operand processed
1 End of first operand reached
2 --
3 CPU-determined number of characters con-

verted

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
 � Specification

Programming Notes:

1. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the conversion. The program need
not determine the number of first-operand or
second-operand bytes that were processed.

2. The storage-operand references of CONVERT
UNICODE TO UTF-8 may be multiple-access
references. (See “Storage-Operand
Consistency” on page 5-87.)

CONVERT UTF-8 TO UNICODE

CUTFU R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B2A7' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The one-, two-, three-, or four-byte UTF-8 charac-
ters of the second operand are converted to two-
byte Unicode characters and placed at the first-
operand location. The operation proceeds until
the end of the first or second operand is reached,
a CPU-determined number of characters have
been converted, or an invalid UTF-8 character is
encountered, whichever occurs first. The result is
indicated in the condition code.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and the second operand is designated by
the contents of general registers R� and R�,
respectively. In the 24-bit or 31-bit addressing
mode, the number of bytes in the first-operand
and second-operand locations is specified by the
contents of bit positions 32-63 of general registers
R� + 1 and R� + 1, respectively, and those con-
tents are treated as 32-bit unsigned binary inte-
gers. In the 64-bit addressing mode, the number
of bytes in the first-operand and second-operand
locations is specified by the entire contents of
general registers R� + 1 and R� + 1, respec-
tively, and those contents are treated as 64-bit
unsigned binary integers.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

 Chapter 7. General Instructions 7-101

┌───┐
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│Second-Operand Address │ │////│ Second-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Second-Operand Length │ │///│ Second-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Second-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Second-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
└───┘

Figure 7-67. Register Contents for CONVERT UTF-8 TO UNICODE

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-67.

The characters of the second operand are
selected one by one for conversion, proceeding
left to right. The bytes resulting from a conversion
are placed at the first-operand location, pro-
ceeding left to right. The operation proceeds until
the first-operand or second-operand location is
exhausted, a CPU-determined number of second-
operand characters have been converted, or an
invalid UTF-8 character is encountered in the
second operand.

7-102 z/Architecture Principles of Operation

To show the method of converting a UTF-8 char-
acter to a Unicode character, the bits of a Unicode
character are identified by letters as follows:

 Unicode Character 111111
 Bit Numbers �1234567 89�12345

Identifying Bit Letters abcdefgh ijklmnop

In the case of a Unicode surrogate pair, which is a
character pair consisting of a character called a
high surrogate followed by a character called a
low surrogate, the bits are identified by letters as
follows:

Unicode High Surrogate 111111
 Bit Numbers �1234567 89�12345

Identifying Bit Letters 11�11�ab cdefghij

Unicode Low Surrogate 11112222 22222233
 Bit Numbers 6789�123 456789�1

Identifying Bit Letters 11�111kl mnopqrst

When the contents of the first byte of a UTF-8
character are in the range 00 to 7F hex, the char-
acter is a one-byte character, and it is converted
to a two-byte Unicode character as follows:

 UTF-8 �jklmnop
 Character

 Unicode �������� �jklmnop
 Character

When the contents of the first byte of a UTF-8
character are in the range C0 to DF hex, the char-
acter is a two-byte character, and it is converted
to a two-byte Unicode character as follows:

 UTF-8 11�fghij 1�klmnop
 Character

 Unicode �����fgh ijklmnop
 Character

The first two bits in the second byte of the UTF-8
character are ignored.

When the contents of the first byte of a UTF-8
character are in the range E0 to EF hex, the char-
acter is a three-byte character, and it is converted
to a two-byte Unicode character as follows:

UTF-8 111�abcd 1�efghij 1�klmnop
 Character

 Unicode abcdefgh ijklmnop
 Character

The first two bits in the second and third bytes of
the UTF-8 character are ignored.

When the contents of the first byte of a UTF-8
character are in the range F0 to F7 hex, the char-
acter is a four-byte character, and it is converted
to two two-byte Unicode characters (a surrogate
pair) as follows:

UTF-8 1111�uvw 1�xyefgh 1�ijklmn 1�opqrst
 Character

Unicode 11�11�ab cdefghij 11�111kl mnopqrst
 Characters

where zabcd = uvwxy -1

The first two bits in the second, third, and fourth
bytes of the UTF-8 character are ignored. The
high order bit (z) produced by the subtract opera-
tion should be zero but is ignored.

The second-operand location is considered
exhausted when it does not contain at least one
remaining byte or when it does not contain at least
the two, three, or four remaining bytes required to
contain the two-, three-, or four-byte UTF-8 char-
acter indicated by the contents of the first
remaining byte. The first-operand location is con-
sidered exhausted when it does not contain at
least two remaining bytes or at least four
remaining bytes in the case when a four byte
UTF-8 character is to be converted.

When the second-operand location is exhausted,
condition code 0 is set. When the first-operand
location is exhausted, condition code 1 is set,
except that condition code 0 is set if the second-
operand location also is exhausted. When a
CPU-determined number of characters have been
processed, condition code 3 is set.

When the contents of the first byte of the next
UTF-8 character are in the range 80 to BF hex or
F8 to FF hex, the character is invalid, and condi-
tion code 2 is set.

When the conditions for setting condition codes 1
and 2 are both met, condition code 2 is set.

When the operation is completed, the contents of
general register R� + 1 are decremented by the
number of bytes converted, and the contents of
general register R� are incremented by the same
number. Also, the contents of general register
R� + 1 are decremented by the number of bytes
placed at the first-operand location, and the con-
tents of general register R� are incremented by

 Chapter 7. General Instructions 7-103

the same number. When general registers R�
and R� are updated in the 24-bit or 31-bit
addressing mode, bits 32-39 of them, in the 24-bit
mode, or bit 32, in the 31-bit mode, may be set to
zeros or may remain unchanged.

In the 24-bit or 31-bit addressing mode, the con-
tents of bit positions 0-31 of general registers R�,
R� + 1, R�, and R� + 1, always remain
unchanged.

When condition code 3 is set, the registers have
been updated so that the instruction, when reexe-
cuted, resumes at the next byte locations to be
processed.

When condition code 2 is set, general register R�
contains the address of the invalid UTF-8 char-
acter.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

When the R� register is the same register as the
R� register, the results are unpredictable.

When the second operand overlaps the first
operand, the results are unpredictable.

Access exceptions for the portions of the oper-
ands to the right of the last byte processed may or
may not be recognized. For an operand longer
than 4K bytes, access exceptions are not recog-
nized for locations more than 4K bytes beyond the
last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd.

Resulting Condition Code:

0 Entire second operand processed
1 End of first operand reached
2 Invalid UTF-8 character
3 CPU-determined number of characters proc-

essed

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
 � Specification

Programming Notes:

1. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the conversion. The program need
not determine the number of first-operand or
second-operand bytes that were processed.

2. Bits 0 and 1 of the continuation bytes of
multiple-byte UTF-8 characters are not
checked in order to improve the performance
of the conversion. Therefore, invalid continua-
tion bytes are not detected.

3. The storage-operand references of CONVERT
UTF-8 TO UNICODE may be multiple-access
references. (See “Storage-Operand
Consistency” on page 5-87.)

 COPY ACCESS

CPYA R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B24D' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The contents of access register R� are placed in
access register R�.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

 DIVIDE

DR R�,R� [RR]

┌────────┬────┬────┐
│ '1D' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

D R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '5D' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The 64-bit first operand (the dividend) is divided
by the 32-bit second operand (the divisor), and the

7-104 z/Architecture Principles of Operation

32-bit remainder and quotient are placed at the
first-operand location.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The dividend is treated as a 64-bit signed binary
integer. The leftmost 32 bits of the dividend are in
bit positions 32-63 of general register R�, and the
rightmost 32 bits are in bit positions 32-63 of
general register R� + 1.

The divisor, remainder, and quotient are treated
as 32-bit signed binary integers. For DIVIDE
(DR), the divisor is in bit positions 32-63 of
general register R�. The remainder is placed in
bit positions 32-63 of general register R�, and the
quotient is placed in bit positions 32-63 of general
register R� + 1. Bits 0-31 of the registers remain
unchanged.

The sign of the quotient is determined by the rules
of algebra, and the remainder has the same sign
as the dividend, except that a zero quotient or a
zero remainder is always positive.

When the divisor is zero, or when the magnitudes
of the dividend and divisor are such that the quo-
tient cannot be expressed by a 32-bit signed
binary integer, a fixed-point-divide exception is
recognized. This includes the case of division of
zero by zero.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of D only)
 � Fixed-point divide
 � Specification

 DIVIDE LOGICAL

DLR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B997' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

DLGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B987' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

DL R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '97' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

DLG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '87' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 36 4� 47

The 64-bit or 128-bit first operand (the dividend) is
divided by the 32-bit or 64-bit second operand (the
divisor), and the 32-bit or 64-bit remainder and
quotient are placed at the first-operand location.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

For DIVIDE LOGICAL (DLR, DL), the dividend is
treated as a 64-bit unsigned binary integer. The
leftmost 32 bits of the dividend are in bit positions
32-63 of general register R�, and the rightmost 32
bits are in bit positions 32-63 of general register
R� + 1.

The divisor, remainder, and quotient are treated
as 32-bit unsigned binary integers. For DIVIDE
LOGICAL (DLR), the divisor is in bit positions
32-63 of general register R�. The remainder is
placed in bit positions 32-63 of general register
R�, and the quotient is placed in bit positions
32-63 of general register R� + 1. Bits 0-31 of the
registers remain unchanged.

For DIVIDE LOGICAL (DLGR, DLG), the dividend
is treated as a 128-bit unsigned binary integer.
The leftmost 64 bits of the dividend are in general
register R�, and the rightmost 64 bits are in
general register R� + 1. The divisor, remainder,
and quotient are treated as 64-bit unsigned binary
integers. The remainder is placed in general reg-
ister R�, and the quotient is placed in general reg-
ister R� + 1.

 Chapter 7. General Instructions 7-105

When the divisor is zero, or when the magnitudes
of the dividend and divisor are such that the quo-
tient cannot be expressed as a 32-bit unsigned
binary integer for DIVIDE LOGICAL (DLR, DL), or
a 64-bit unsigned binary integer for DIVIDE
LOGICAL (DLGR, DLG), a fixed-point-divide
exception is recognized. This includes the case of
division of zero by zero.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of DL or DLG only)
 � Fixed-point divide
 � Specification

 DIVIDE SINGLE

DSGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�D' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

DSGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B91D' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

DSG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�D' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

DSGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '1D' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The 64-bit contents of general register R� + 1
(the dividend) are divided by the 64-bit or 32-bit
second operand (the divisor), the 64-bit remainder
is placed in general register R�, and the 64-bit
quotient is placed in general register R� + 1.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The dividend, quotient, and remainder are treated
as 64-bit signed binary integers. For DIVIDE
SINGLE (DSGR, DSG), the divisor is treated as a
64-bit signed binary integer. For DIVIDE SINGLE
(DSGFR, DSGF), the divisor is treated as a 32-bit
signed binary integer. For DSGFR, the divisor is
in bit positions 32-63 of general register R�.

The sign of the quotient is determined by the rules
of algebra, and the remainder has the same sign
as the dividend, except that a zero quotient or a
zero remainder is always positive.

When the divisor is zero, or when the magnitudes
of the dividend and divisor are such that the quo-
tient cannot be expressed by a 64-bit signed
binary integer, a fixed-point-divide exception is
recognized. This includes the case of division of
zero by zero.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of DSG and DSGF
only)

 � Fixed-point divide
 � Specification

 EXCLUSIVE OR

XR R�,R� [RR]

┌────────┬────┬────┐
│ '17' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

XGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B982' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

X R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '57' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| XY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '57' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

7-106 z/Architecture Principles of Operation

XG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '82' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

XI D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ '97' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

| XIY D�(B�),I� [SIY]

| ┌────────┬────────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ I� │ B� │DL� │ DH� │ '57' │
| └────────┴────────┴────┴──/─┴────────┴────────┘
| � 8 16 2� 32 4� 47

XC D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'D7' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The EXCLUSIVE OR of the first and second oper-
ands is placed at the first-operand location.

The connective EXCLUSIVE OR is applied to the
operands bit by bit. The contents of a bit position
in the result are set to one if the bits in the corre-
sponding bit positions in the two operands are
unlike; otherwise, the result bit is set to zero.

For EXCLUSIVE OR (XC), each operand is proc-
essed left to right. When the operands overlap,
the result is obtained as if the operands were
processed one byte at a time and each result byte
were stored immediately after fetching the neces-
sary operand bytes.

| For EXCLUSIVE OR (XI, XIY), the first operand is
one byte in length, and only one byte is stored.

| For EXCLUSIVE OR (XR, X, XY), the operands
are 32 bits, and for EXCLUSIVE OR (XGR, XG),
they are 64 bits.

| The displacements for X, XI, and both operands of
| XC are treated as 12-bit unsigned binary integers.
| The displacement for XY, XIY, and XG is treated
| as a 20-bit signed binary integer.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

 Program Exceptions:

| � Access (fetch, operand 2, X, XY, XG, and XC;
| fetch and store, operand 1, XI, XIY, and XC)
| � Operation (XY and XIY, if the long-
| displacement facility is not installed)

Programming Notes:

1. An example of the use of the EXCLUSIVE OR
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. EXCLUSIVE OR may be used to invert a bit,
an operation particularly useful in testing and
setting programmed binary switches.

3. A field EXCLUSIVE-ORed with itself becomes
all zeros.

4. For EXCLUSIVE OR (XR or XGR), the
sequence A EXCLUSIVE-OR B, B
EXCLUSIVE-OR A, A EXCLUSIVE-OR B
results in the exchange of the contents of A
and B without the use of an additional general
register.

5. Accesses to the first operand of EXCLUSIVE
OR (XI) and EXCLUSIVE OR (XC) consist in
fetching a first-operand byte from storage and
subsequently storing the updated value.
These fetch and store accesses to a particular
byte do not necessarily occur one immediately
after the other. Thus, EXCLUSIVE OR cannot
be safely used to update a location in storage
if the possibility exists that another CPU or a
channel program may also be updating the
location. An example of this effect is shown
for OR (OI) in “Multiprogramming and Multi-
processing Examples” in Appendix A,
“Number Representation and Instruction-Use
Examples.”

 EXECUTE

EX R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '44' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

 Chapter 7. General Instructions 7-107

The single instruction at the second-operand
address is modified by the contents of general
register R�, and the resulting instruction, called
the target instruction, is executed.

When the R� field is not zero, bits 8-15 of the
instruction designated by the second-operand
address are ORed with bits 56-63 of general reg-
ister R�. The ORing does not change either the
contents of general register R� or the instruction in
storage, and it is effective only for the interpreta-
tion of the instruction to be executed. When the
R� field is zero, no ORing takes place.

The target instruction may be two, four, or six
bytes in length. The execution and exception han-
dling of the target instruction are exactly as if the
target instruction were obtained in normal sequen-
tial operation, except for the instruction address
and the instruction-length code.

The instruction address in the current PSW is
increased by the length of EXECUTE. This
updated address and the instruction-length code
of EXECUTE are used, for example, as part of the
link information when the target instruction is
BRANCH AND LINK. When the target instruction
is a successful branching instruction, the instruc-
tion address in the current PSW is replaced by the
branch address specified by the target instruction.

When the target instruction is in turn EXECUTE,
an execute exception is recognized.

The effective address of EXECUTE must be even;
otherwise, a specification exception is recognized.
When the target instruction is two or three
halfwords in length but can be executed without
fetching its second or third halfword, it is unpre-
dictable whether access exceptions are recog-
nized for the unused halfwords. Access
exceptions are not recognized for the second-
operand address when the address is odd.

The second-operand address of EXECUTE is an
instruction address rather than a logical address;
thus, the target instruction is fetched from the
primary address space when in the primary-space,
secondary-space, or access-register mode.

Condition Code: The code may be set by the
target instruction.

 Program Exceptions:

� Access (fetch, target instruction)
 � Execute
 � Specification

Programming Notes:

1. An example of the use of the EXECUTE
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. The ORing of eight bits from the general reg-
ister with the designated instruction permits
the indirect specification of the length, index,
mask, immediate-data, register, or extended-
op-code field.

3. The fetching of the target instruction is consid-
ered to be an instruction fetch for purposes of
program-event recording and for purposes of
reporting access exceptions.

4. An access or specification exception may be
caused by EXECUTE or by the target instruc-
tion.

5. When an interruptible instruction is made the
target of EXECUTE, the program normally
should not designate any register updated by
the interruptible instruction as the R�, X�, or
B� register for EXECUTE. Otherwise, on
resumption of execution after an interruption,
or if the instruction is refetched without an
interruption, the updated values of these regis-
ters will be used in the execution of
EXECUTE. Similarly, the program should
normally not let the destination field in storage
of an interruptible instruction include the
location of EXECUTE, since the new contents
of the location may be interpreted when
resuming execution.

 EXTRACT ACCESS

EAR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B24F' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The contents of access register R� are placed in
bit positions 32-63 of general register R�. Bits
0-31 of general register R� remain unchanged.

Condition Code: The code remains unchanged.

7-108 z/Architecture Principles of Operation

 Program Exceptions: None.

 EXTRACT PSW

EPSW R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B98D' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Bits 0-31 of the current PSW are placed in bit
positions 32-63 of the first operand, and bits 0-31
of the operand remain unchanged. Subsequently,
bits 32-63 of the current PSW are placed in bit
positions 32-63 of the second operand, and bits
0-31 of the operand remain unchanged. The
action associated with the second operand is not

| performed if the R� field is zero.

Bits 0-63 of the PSW have the following format:

┌─┬─┬─┬─┬─┬─┬─┬─┬───────┬─┬─┬─┬─┬───┬───┬───────┬─────────────┬─┐
│ │ │ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │E│
│�│R│�│�│�│T│O│X│ Key │�│M│W│P│A S│C C│ Mask │� � � � � � �│A│
└─┴─┴─┴─┴─┴─┴─┴─┴───────┴─┴─┴─┴─┴───┴───┴───────┴─────────────┴─┘
� 5 8 12 16 18 2� 24 31

┌─┬───┐
│B│ │
│A│� �│
└─┴───┘
32 63

Condition Code: The code remains unchanged.

 Program Exceptions: None.

 INSERT CHARACTER

IC R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '43' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| ICY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '73' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

The byte at the second-operand location is
inserted into bit positions 56-63 of general register
R�. The remaining bits in the register remain
unchanged.

| The displacement for IC is treated as a 12-bit
| unsigned binary integer. The displacement for
| ICY is treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
| � Operation (ICY, if the long-displacement
| facility is not installed)

INSERT CHARACTERS UNDER
MASK

ICM R�,M�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'BF' │ R� │ M� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| ICMY R�,M�,D�(B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ M� │ B� │DL� │ DH� │ '81' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

ICMH R�,M�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ M� │ B� │DL� │ DH� │ '8�' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Bytes from contiguous locations beginning at the
second-operand address are inserted into general
register R� under control of a mask.

The contents of the M� field are used as a mask.
These four bits, left to right, correspond one for
one with four bytes, left to right, of general register
R�. For INSERT CHARACTERS UNDER MASK

| (ICM, ICMY), the four bytes to which the mask bits
| correspond are in the low-order half, bit positions

32-63 of general register R�. For INSERT CHAR-
ACTERS UNDER MASK (ICMH), the four bytes
are in the high-order half, bit positions 0-31, of the
register. The byte positions corresponding to
ones in the mask are filled, left to right, with bytes
from successive storage locations beginning at the
second-operand address. When the mask is not
zero, the length of the second operand is equal to
the number of ones in the mask. The bytes in the
general register corresponding to zeros in the

| mask remain unchanged. For ICM and ICMY, bits

 Chapter 7. General Instructions 7-109

0-31 of the register remain unchanged, and, for
ICMH, bits 32-63 remain unchanged.

The resulting condition code is based on the mask
and on the value of the bits inserted. When the
mask is zero or when all inserted bits are zeros,
the condition code is set to 0. When the inserted
bits are not all zeros, the code is set according to
the leftmost bit of the storage operand: if this bit
is one, the code is set to 1; if this bit is zero, the
code is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only
for the number of bytes specified by the mask.
When the mask is zero, access exceptions are
recognized for one byte at the second-operand
address.

| The displacement for ICM is treated as a 12-bit
| unsigned binary integer. The displacement for
| ICMY and ICMH is treated as a 20-bit signed
| binary integer.

Resulting Condition Code:

0 All inserted bits zeros, or mask bits all zeros
1 Leftmost inserted bit one
2 Leftmost inserted bit zero, and not all inserted

bits zeros
3 --

 Program Exceptions:

� Access (fetch, operand 2)
| � Operation (ICMY, if the long-displacement
| facility is not installed)

Programming Notes:

1. Examples of the use of the INSERT CHAR-
ACTERS UNDER MASK instruction are given
in Appendix A, “Number Representation and
Instruction-Use Examples.”

2. The condition code for INSERT CHARAC-
| TERS UNDER MASK (ICM, ICMY only) is

defined such that, when the mask is 1111, the
instruction causes the same condition code to
be set as for LOAD AND TEST (LTR only)
Thus, the instruction may be used as a
storage-to-register load-and-test operation.

| 3. INSERT CHARACTERS UNDER MASK (ICM,
| ICMY) with a mask of 1111 or 0001 performs

a function similar to that of a LOAD (L) or

INSERT CHARACTER (IC) instruction,
respectively, with the exception of the
condition-code setting. However, the perform-
ance of INSERT CHARACTERS UNDER
MASK may be slower.

 INSERT IMMEDIATE

IIHH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'�' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

IIHL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'1' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

IILH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'2' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

IILL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'3' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

The second operand is placed in bit positions of
the first operand. The remainder of the first
operand remains unchanged.

For each instruction, the bit positions of the first
operand that are loaded with the second operand
are as follows:

Condition Code: The code remains unchanged.

 Program Exceptions: None.

Instruction

Bit Posi-
tions
Loaded

IIHH 0-15

IIHL 16-31

IILH 32-47

IILL 48-63

7-110 z/Architecture Principles of Operation

INSERT PROGRAM MASK

IPM R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B222' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The condition code and program mask from the
current PSW are inserted into bit positions 34 and
35 and 36-39, respectively, of general register R�.
Bits 32 and 33 of the register are set to zeros; bits
0-31 and 40-63 are left unchanged.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

 LOAD

LR R�,R� [RR]

┌────────┬────┬────┐
│ '18' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

LGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�4' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B914' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

L R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '58' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| LY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '58' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

LG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�4' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

LGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '14' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand is placed unchanged at the
first-operand location, except that, for LOAD
(LGFR, LGF), it is sign extended.

| For LOAD (LR, L, LY), the operands are 32 bits,
and, for LOAD (LGR, LG), the operands are 64
bits. For LOAD (LGFR, LGF), the second
operand is treated as a 32-bit signed binary
integer, and the first operand is treated as a 64-bit
signed binary integer.

| The displacement for L is treated as a 12-bit
| unsigned binary integer. The displacement for LY,
| LG, and LGF is treated as a 20-bit signed binary
| integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

| � Access (fetch, operand 2 of L, LY, LG, and
LGF only)

| � Operation (LY, if the long-displacement facility
| is not installed)

Programming Note: An example of the use of
the LOAD instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

LOAD ACCESS MULTIPLE

LAM R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '9A' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| LAMY R�,R�,D�(B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '9A' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

 Chapter 7. General Instructions 7-111

The set of access registers starting with access
register R� and ending with access register R� is
loaded from the locations designated by the
second-operand address.

The storage area from which the contents of the
access registers are obtained starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of access registers specified. The access
registers are loaded in ascending order of their
register numbers, starting with access register R�
and continuing up to and including access register
R�, with access register 0 following access reg-
ister 15.

| The displacement for LAM is treated as a 12-bit
| unsigned binary integer. The displacement for
| LAMY is treated as a 20-bit signed binary integer.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
| � Operation (LAMY, if the long-displacement
| facility is not installed)

 � Specification

 LOAD ADDRESS

LA R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '41' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| LAY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '71' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

The address specified by the X�, B�, and D� fields
is placed in general register R�. The address
computation follows the rules for address arith-
metic.

In the 24-bit addressing mode, the address is
placed in bit positions 40-63, bits 32-39 are set to

zeros, and bits 0-31 remain unchanged. In the
31-bit addressing mode, the address is placed in
bit positions 33-63, bit 32 is set to zero, and bits
0-31 remain unchanged. In the 64-bit addressing
mode, the address is placed in bit positions 0-63.

| The displacement for LA is treated as a 12-bit
| unsigned binary integer. The displacement for
| LAY is treated as a 20-bit signed binary integer.

No storage references for operands take place,
and the address is not inspected for access
exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

| � Operation (LAY if the long-displacement
| facility is not installed)

Programming Notes:

1. An example of the use of the LOAD
ADDRESS instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. LOAD ADDRESS may be used to increment
the rightmost bits of a general register, other
than register 0, by the contents of the D� field

| of the instruction. LOAD ADDRESS (LAY)
| may also be used to decrement the rightmost
| bits of a register, other than register 0. The

register to be incremented should be desig-
nated by R� and by either X� (with B� set to
zero) or B� (with X� set to zero). The instruc-
tion updates 24 bits in the 24-bit addressing
mode, 31 bits in the 31-bit addressing mode,
and 64 bits in the 64-bit addressing mode.

LOAD ADDRESS EXTENDED

LAE R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '51' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The address specified by the X�, B�, and D� fields
is placed in general register R�. Access register
R� is loaded with a value that depends on the
current value of the address-space-control bits,
bits 16 and 17 of the PSW. If the address-
space-control bits are 01 binary, the value placed

7-112 z/Architecture Principles of Operation

in the access register also depends on whether
the B� field is zero or nonzero.

The address computation follows the rules for
address arithmetic. In the 24-bit addressing
mode, the address is placed in bit positions 40-63
of general register R�, bits 32-39 are set to zeros,
and bits 0-31 remain unchanged. In the 31-bit
addressing mode, the address is placed in bit
positions 33-63, bit 32 is set to zero, and bits 0-31
remain unchanged. In the 64-bit addressing
mode, the address is placed in bit positions 0-63.

The value placed in access register R� is as
shown in the following table:

However, when PSW bits 16 and 17 are 01 binary
and the B� field is nonzero, bit positions 0-6 of
access register B� must contain all zeros; other-
wise, the results in general register R� and access
register R� are unpredictable.

No storage references for operands take place,
and the address is not inspected for access
exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. When DAT is on, the different values of the
address-space-control bits correspond to
translation modes as follows:

2. In the access-register mode, the value
00000000 hex in an access register desig-
nates the primary address space, and the
value 00000001 hex designates the secondary
address space. The value 00000002 hex des-
ignates the home address space if the control
program assigns entry 2 of the dispatchable-
unit access list as designating the home
address space and places a zero access-list-
entry sequence number (ALESN) in that entry.

LOAD ADDRESS RELATIVE
LONG

LARL R�,I� [RIL]

┌────────┬────┬────┬──────────/──────────┐
│ 'C�' │ R� │'�' │ I� │
└────────┴────┴────┴──────────/──────────┘
� 8 12 16 47

The address specified by the I� field is placed in
general register R�. The address computation
follows the rules for the branch address of
BRANCH RELATIVE ON CONDITION LONG and
BRANCH RELATIVE AND SAVE LONG.

In the 24-bit addressing mode, the address is
placed in bit positions 40-63, bits 32-39 are set to
zeros, and bits 0-31 remain unchanged. In the
31-bit addressing mode, the address is placed in
bit positions 33-63, bit 32 is set to zero, and bits
0-31 remain unchanged. In the 64-bit addressing
mode, the address is placed in bit positions 0-63.

The contents of the I� field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the computed address.

No storage references for operands take place,
and the address is not inspected for access
exceptions.

Condition Code: The code remains unchanged.

PSW Bits
16 and

17 Translation Mode

00 Primary-space mode
10 Secondary-space mode
01 Access-register mode
11 Home-space mode

PSW
Bits 16
and 17 Value Placed in Access Register R�

00 00000000 hex (zeros in bit positions
0-31)

10 00000001 hex (zeros in bit positions
0-30 and one in bit position 31)

01 If B� field is zero: 00000000 hex (zeros
in bit positions 0-31)

 If B� field is nonzero: Contents of
access register B�

11 00000002 hex (zeros in bit positions
0-29 and 31, and one in bit position 30)

 Chapter 7. General Instructions 7-113

 Program Exceptions: None.

Programming Notes:

1. Only even addresses (halfword addresses)
can be generated. If an odd address is
desired, LOAD ADDRESS can be used to add
one to an address formed by LOAD
ADDRESS RELATIVE LONG.

2. When LOAD ADDRESS RELATIVE LONG is
the target of EXECUTE, the address produced
is relative to the location of the LOAD
ADDRESS RELATIVE LONG instruction, not
of the EXECUTE instruction. This is con-
sistent with the operation of the relative-
branch instructions.

LOAD AND TEST

LTR R�,R� [RR]

┌────────┬────┬────┐
│ '12' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

LTGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�2' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LTGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B912' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The second operand is placed unchanged at the
first-operand location, except that, for LOAD AND
TEST (LTGFR), it is sign extended. The sign and
magnitude of the second operand, treated as a
signed binary integer, are indicated in the condi-
tion code.

For LOAD AND TEST (LTR), the operands are 32
bits, and, for LOAD AND TEST (LTGR), the oper-
ands are 64 bits. For LOAD AND TEST (LTGFR),
the second operand is 32 bits, and the first
operand is treated as a 64-bit signed binary
integer.

Resulting Condition Code:

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

 Program Exceptions: None.

Programming Note: For LOAD AND TEST
(LTR and LTGR) when the R� and R� fields des-
ignate the same register, the operation is equiv-
alent to a test without data movement.

| LOAD BYTE

| LB R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '76' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

| LGB R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '77' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

| The second operand is sign extended and placed
| at the first-operand location. The second operand
| is one byte in length and is treated as an eight-bit
| signed binary integer. For LOAD BYTE (LB), the
| first operand is treated as a 32-bit signed binary
| integer. For LOAD BYTE (LGB), the first operand
| is treated as a 64-bit signed binary integer.

| The displacement is treated as a 20-bit signed
| binary integer.

| Condition Code: The code remains unchanged.

| Program Exceptions:

| � Access (fetch, operand 2)
| � Operation (if the long-displacement facility is
| not installed)

 LOAD COMPLEMENT

LCR R�,R� [RR]

┌────────┬────┬────┐
│ '13' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

7-114 z/Architecture Principles of Operation

LCGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�3' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LCGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B913' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The two's complement of the second operand is
placed at the first-operand location. For LOAD
COMPLEMENT (LCR), the second operand and
result are treated as 32-bit signed binary integers.
For LOAD COMPLEMENT (LCGR), they are
treated as 64-bit signed binary integers. For
LOAD COMPLEMENT (LCGFR), the second
operand is treated as a 32-bit signed binary
integer, and the result is treated as a 64-bit signed
binary integer.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

 � Fixed-point overflow

Programming Note: The operation complements
all numbers. Zero remains unchanged. For LCR
or LCGR, the maximum negative 32-bit number or
64-bit number, respectively, remains unchanged,
and an overflow condition occurs when the
number is complemented. LCGFR complements
the maximum negative 32-bit number without
recognizing overflow.

 LOAD HALFWORD

LH R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '48' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| LHY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '78' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

LGH R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '15' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

LOAD HALFWORD IMMEDIATE

LHI R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'8' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

LGHI R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'9' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

The second operand is sign extended and placed
at the first-operand location. The second operand
is two bytes in length and is treated as a 16-bit
signed binary integer. For LOAD HALFWORD

| (LH, LHY) and LOAD HALFWORD IMMEDIATE
(LHI), the first operand is treated as a 32-bit
signed binary integer. For LOAD HALFWORD
(LGH) and LOAD HALFWORD IMMEDIATE
(LGHI), the first operand is treated as a 64-bit
signed binary integer.

| The displacement for LH is treated as a 12-bit
| unsigned binary integer. The displacement for
| LHY and LGH is treated as a 20-bit signed binary
| integer.

Condition Code: The code remains unchanged.

 Chapter 7. General Instructions 7-115

 Program Exceptions:

| � Access (fetch, operand 2 of LH, LHY, and
LGH)

 Program Exceptions:

| � Access (fetch, operand 2 of LH and LHY)
| � Operation (LHY, if the long-displacement
| facility is not installed)

Programming Note: An example of the use of
the LOAD HALFWORD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 LOAD LOGICAL

LLGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B916' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LLGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '16' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The four-byte second operand is placed in bit
positions 32-63 of general register R�, and zeros
are placed in bit positions 0-31 of general register
R�.

For LOAD LOGICAL (LLGFR), the second
operand is in bit positions 32-63 of general reg-
ister R�.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of LLGF only)

LOAD LOGICAL CHARACTER

LLGC R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '9�' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The one-byte second operand is placed in bit
positions 56-63 of general register R�, and zeros

are placed in bit positions 0-55 of general register
R�.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)

LOAD LOGICAL HALFWORD

LLGH R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '91' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The two-byte second operand is placed in bit posi-
tions 48-63 of general register R�, and zeros are
placed in bit positions 0-47 of general register R�.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)

LOAD LOGICAL IMMEDIATE

LLIHH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'C' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

LLIHL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'D' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

LLILH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'E' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

LLILL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'F' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

7-116 z/Architecture Principles of Operation

The second operand is placed in bit positions of
the first operand. The remainder of the first
operand is set to zeros.

For each instruction, the bit positions of the first
operand that are loaded with the second operand
are as follows:

Condition Code: The code remains unchanged.

 Program Exceptions: None.

LOAD LOGICAL THIRTY ONE
BITS

LLGTR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B917' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LLGT R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '17' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

For LLGTR, bits 33-63 of general register R�, with
33 zeros appended on the left, are placed in
general register R�. For LLGT, bits 1-31 of the
four bytes at the second-operand location, with 33
zeros appended on the left, are placed in general
register R�.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of LLGT only)

 LOAD MULTIPLE

LM R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '98' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| LMY R�,R�,D�(B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '98' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

LMG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '�4' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Bit positions of the set of general registers starting
with general register R� and ending with general
register R� are loaded from storage beginning at
the location designated by the second-operand
address and continuing through as many locations
as needed.

| For LOAD MULTIPLE (LM, LMY), bit positions
32-63 of the general registers are loaded from
successive four-byte fields beginning at the
second-operand address, and bits 0-31 of the reg-
isters remain unchanged. For LOAD MULTIPLE
(LMG), bit positions 0-63 of the general registers
are loaded from successive eight-byte fields
beginning at the second-operand address.

The general registers are loaded in the ascending
order of their register numbers, starting with
general register R� and continuing up to and
including general register R�, with general register
0 following general register 15.

| The displacement for LM is treated as a 12-bit
| unsigned binary integer. The displacement for
| LMY and LMG is treated as a 20-bit signed binary
| integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
| � Operation (LMY, if the long-displacement
| facility is not installed)

Instruction

Bit Posi-
tions
Loaded

LLIHH 0-15

LLIHL 16-31

LLILH 32-47

LLILL 48-63

 Chapter 7. General Instructions 7-117

Programming Note: All combinations of register
numbers specified by R� and R� are valid. When
the register numbers are equal, only four bytes,

| for LM or LMY or eight bytes, for LMG, are trans-
mitted. When the number specified by R� is less
than the number specified by R�, the register
numbers wrap around from 15 to 0.

LOAD MULTIPLE DISJOINT

LMD R�,R�,D�(B�),D"(B") [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'EF' │ R� │ R� │ B� │ D� │ B" │ D" │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

Bit positions 0-31 of the set of general registers
starting with general register R� and ending with
general register R� are loaded from storage begin-
ning at the location designated by the second-
operand address and continuing through as many
locations as needed. Bit positions 32-63 of the
same registers are similarly loaded from storage
beginning at the location designated by the fourth-
operand address.

The general registers are loaded in the ascending
order of their register numbers, starting with
general register R� and continuing up to and
including general register R�, with general register
0 following general register 15.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operands 2 and 4)

Programming Notes:

1. All combinations of register numbers specified
by R� and R� are valid. When the register
numbers are equal, only eight bytes are trans-
mitted. When the number specified by R� is
less than the number specified by R�, the reg-
ister numbers wrap around from 15 to 0.

2. The second-operand and fourth-operand
addresses are computed before the contents
of any register are changed.

3. The combination of a LOAD MULTIPLE
instruction and a LOAD MULTIPLE HIGH

instruction provides equal or better perform-
ance than a LOAD MULTIPLE DISJOINT
instruction for the same register range. LOAD
MULTIPLE DISJOINT is for use when the
second or fourth operand must be addressed
by means of one of the registers loaded.

LOAD MULTIPLE HIGH

LMH R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '96' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The high-order halves, bit positions 0-31, of the
set of general registers starting with general reg-
ister R� and ending with general register R� are
loaded from storage beginning at the location des-
ignated by the second-operand address and con-
tinuing through as many locations as needed, that
is, bit positions 0-31 are loaded from successive
four-byte fields beginning at the second-operand
address. Bits 32-63 of the registers remain
unchanged.

The general registers are loaded in the ascending
order of their register numbers, starting with
general register R� and continuing up to and
including general register R�, with general register
0 following general register 15.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)

Programming Note: All combinations of register
numbers specified by R� and R� are valid. When
the register numbers are equal, only four bytes
are transmitted. When the number specified by
R� is less than the number specified by R�, the
register numbers wrap around from 15 to 0.

 LOAD NEGATIVE

LNR R�,R� [RR]

┌────────┬────┬────┐
│ '11' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

7-118 z/Architecture Principles of Operation

LNGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�1' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LNGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B911' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The two's complement of the absolute value of the
second operand is placed at the first-operand
location. For LOAD NEGATIVE (LNR), the
second operand and result are treated as 32-bit
signed binary integers, and, for LOAD NEGATIVE
(LNGR), they are treated as 64-bit signed binary
integers. For LOAD NEGATIVE (LNGFR), the
second operand is treated as a 32-bit signed
binary integer, and the result is treated as a 64-bit
signed binary integer.

Resulting Condition Code:

0 Result zero
1 Result less than zero
2 --
3 --

 Program Exceptions: None.

Programming Note: The operation complements
positive numbers; negative numbers remain
unchanged. The number zero remains
unchanged.

LOAD PAIR FROM QUADWORD

LPQ R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '8F' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The quadword second operand is loaded into the
first-operand location. The second operand
appears to be fetched with quadword concurrency
as observed by other CPUs. The left doubleword
of the quadword is loaded into general register R�,
and the right doubleword is loaded into general
register R� + 1.

The R� field designates an even-odd pair of
general registers and must designate an even-

numbered register. The second operand must be
designated on a quadword boundary. Otherwise,
a specification exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
 � Specification

Programming Notes:

1. The LOAD MULTIPLE (LM or LMG) instruc-
tion does not necessarily provide quadword-
concurrent access.

| 2. The performance of LOAD PAIR FROM
| QUADWORD on some models may be signif-
| icantly slower than that of LOAD MULTIPLE
| (LMG). Unless quadword consistency is
| required, LMG should be used instead of
| LPQ.

 LOAD POSITIVE

LPR R�,R� [RR]

┌────────┬────┬────┐
│ '1�' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

LPGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9��' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LPGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B91�' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The absolute value of the second operand is
placed at the first-operand location. For LOAD
POSITIVE (LPR), the second operand and result
are treated as 32-bit signed binary integers, and,
for LOAD POSITIVE (LPGR), they are treated as
64-bit signed binary integers. For LOAD POSI-
TIVE (LPGFR), the second operand is treated as
a 32-bit signed binary integer, and the result is
treated as a 64-bit signed binary integer.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and

 Chapter 7. General Instructions 7-119

ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 --
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

 � Fixed-point overflow

Programming Note: The operation complements
negative numbers; positive numbers and zero
remain unchanged. For LPR or LPGR, an over-
flow condition occurs when the maximum negative
32-bit number or 64-bit number, respectively, is
complemented; the number remains unchanged.
LPGFR complements the maximum negative
32-bit number without recognizing overflow.

 LOAD REVERSED

LRVR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B91F' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LRVGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�F' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LRVH R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '1F' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

LRV R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '1E' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

LRVG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�F' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand is placed at the first-operand
location with the left-to-right sequence of the bytes
reversed.

For LOAD REVERSED (LRVH), the second
operand is two bytes, the result is placed in bit
positions 48-63 of general register R�, and bits
0-47 of the register remain unchanged.

For LOAD REVERSED (LRVR, LRV), the second
operand is four bytes, the result is placed in bit
positions 32-63 of general register R�, and bits
0-31 of the register remain unchanged. For LOAD
REVERSED (LRVR), the second operand is in bit
positions 32-63 of general register R�.

For LOAD REVERSED (LRVGR, LRVG), the
second operand is eight bytes.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of LRVH, LRV,
LRVG only)

Programming Notes:

1. The instruction can be used to convert two,
four, or eight bytes from a “little-endian” format
to a “big-endian” format, or vice versa. In the
big-endian format, the bytes in a left-to-right
sequence are in the order most significant to
least significant. In the little-endian format,
the bytes are in the order least significant to
most significant. For example, the bytes
ABCD in the big-endian format are DCBA in
the little-endian format.

2. LOAD REVERSED (LRVR) can be used with
a two-byte value already in a register as
shown in the following example. In the
example, the two bytes of interest are in bit
positions 48-63 of the R1 register.

 LRVR R1,R1
 SRA R1,16

The LOAD REVERSED instruction places the
two bytes of interest in bit positions 32-47 of
the register, with the order of the bytes
reversed. The SHIFT RIGHT SINGLE (SRA)
instruction shifts the two bytes to bit positions
48-63 of the register and extends them on
their left, in bit positions 32-47, with their sign
bit. The instruction SHIFT RIGHT SINGLE

7-120 z/Architecture Principles of Operation

LOGICAL (SRL) should be used, instead, if
the two bytes of interest are unsigned.

3. The storage-operand references of LOAD
REVERSED may be multiple-access refer-
ences. (See “Storage-Operand Consistency”
on page 5-87.)

 MONITOR CALL

MC D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ 'AF' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

The monitor-mask bits are in bit positions 48-63 of
control register 8, which correspond to monitor
classes 0-15, respectively.

Bit positions 12-15 in the I� field contain a binary
number specifying one of 16 monitoring classes.
When the monitor-mask bit corresponding to the
class specified by the I� field is one, a monitor-
event program interruption occurs. The contents
of the I� field are stored at location 149, with
zeros stored at location 148. Bit 9 of the program-
interruption code is set to one.

The first-operand address is not used to address
data; instead, the address specified by the B� and
D� fields forms the monitor code, which is placed
in the doubleword at location 176. Address com-
putation follows the rules of address arithmetic; in
the 24-bit addressing mode, bits 0-39 are set to
zeros; in the 31-bit addressing mode, bits 0-32 are
set to zeros.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must contain
zeros; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Monitor event
 � Specification

Programming Notes:

1. MONITOR CALL provides the capability for
passing control to a monitoring program when
selected points are reached in the monitored
program. This is accomplished by implanting
MONITOR CALL instructions at the desired
points in the monitored program. This func-
tion may be useful in performing various
measurement functions; specifically, tracing
information can be generated indicating which
programs were executed, counting information
can be generated indicating how often partic-
ular programs were used, and timing informa-
tion can be generated indicating the amount of
time a particular program required for exe-
cution.

2. The monitor masks provide a means of disal-
lowing all monitor-event program interruptions
or allowing monitor-event program inter-
ruptions for all or selected classes.

3. The monitor code provides a means of associ-
ating descriptive information, in addition to the
class number, with each MONITOR CALL.
Without the use of a base register, up to
4,096 distinct monitor codes can be associ-
ated with a monitoring interruption. With the
base register designated by a nonzero value
in the B� field, each monitoring interruption
can be identified by a 24-bit, 31-bit, or 64-bit
code, depending on the addressing mode.

 MOVE

MVI D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ '92' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

| MVIY D�(B�),I� [SIY]

| ┌────────┬────────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ I� │ B� │DL� │ DH� │ '52' │
| └────────┴────────┴────┴──/─┴────────┴────────┘
| � 8 16 2� 32 4� 47

 Chapter 7. General Instructions 7-121

MVC D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'D2' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The second operand is placed at the first-operand
location.

For MOVE (MVC), each operand is processed left
to right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after fetching the necessary operand
byte.

| For MOVE (MVI, MVIY), the first operand is one
byte in length, and only one byte is stored.

| The displacements for MVI and both operands of
| MVC are treated as 12-bit unsigned binary inte-
| gers. The displacement for MVIY is treated as a
| 20-bit signed binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of MVC; store,
| operand 1, MVI, MVIY, and MVC)
| � Operation (MVIY, if the long-displacement
| facility is not installed)

Programming Notes:

1. Examples of the use of the MOVE instruction
are given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. It is possible to propagate one byte through
an entire field by having the first operand start
one byte to the right of the second operand.

 MOVE INVERSE

MVCIN D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'E8' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The second operand is placed at the first-operand
location with the left-to-right sequence of the bytes
inverted.

The first-operand address designates the leftmost
byte of the first operand. The second-operand
address designates the rightmost byte of the
second operand. Both operands have the same
length.

The result is obtained as if the second operand
were processed from right to left and the first
operand from left to right. The second operand
may wrap around from location 0 to location
2�� - 1 in the 24-bit addressing mode, to location
2�� - 1 in the 31-bit addressing mode, or to
location 2�� - 1 in the 64-bit addressing mode.
The first operand may wrap around from location
2�� - 1 to location 0 in the 24-bit addressing
mode, from location 2�� - 1 to location 0 in the
31-bit addressing mode, or from location 2�� - 1
to location 0 in the 64-bit addressing mode.

When the operands overlap by more than one
byte, the contents of the overlapped portion of the
result field are unpredictable.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)

Programming Notes:

1. An example of the use of the MOVE
INVERSE instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The contents of each byte moved remain
unchanged.

3. MOVE INVERSE is the only SS-format
instruction for which the second-operand
address designates the rightmost, instead of
the leftmost, byte of the second operand.

4. The storage-operand references for MOVE
INVERSE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-87.)

7-122 z/Architecture Principles of Operation

 MOVE LONG

MVCL R�,R� [RR]

┌────────┬────┬────┐
│ '�E' │ R� │ R� │
└────────┴────┴────┘
 � 8 12 15

The second operand is placed at the first-operand
location, provided overlapping of operand
locations would not affect the final contents of the
first-operand location. The remaining rightmost
byte positions, if any, of the first-operand location
are filled with padding bytes.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R� and R�, respec-
tively. The number of bytes in the first-operand
and second-operand locations is specified by
unsigned binary integers in bit positions 40-63 of
general registers R� + 1 and R� + 1, respec-
tively. Bit positions 32-39 of general register
R� + 1 contain the padding byte. The contents of
bit positions 0-39 of general register R� + 1 and
of bit positions 0-31 of general register R� + 1
are ignored.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The contents of the registers just described are
shown in Figure 7-68 on page 7-124.

The result is obtained as if the movement starts at
the left end of both fields and proceeds to the
right, byte by byte. The operation is ended when
the number of bytes specified by bits 40-63 of
general register R� + 1 have been moved into the

first-operand location. If the second operand is
shorter than the first operand, the remaining right-
most bytes of the first-operand location are filled
with the padding byte.

As part of the execution of the instruction, the
values of the two length fields are compared for
the setting of the condition code, and a check is
made for destructive overlap of the operands.
Operands are said to overlap destructively when
the first-operand location is used as a source after
data has been moved into it, assuming the
inspection for overlap is performed by the use of
logical operand addresses. When the operands
overlap destructively, no movement takes place,
and condition code 3 is set.

Operands do not overlap destructively, and move-
ment is performed, if the leftmost byte of the first
operand does not coincide with any of the second-
operand bytes participating in the operation other
than the leftmost byte of the second operand.
When an operand wraps around from location
2�� - 1 (or 2�� - 1 or 2�� - 1) to location 0,
operand bytes in locations up to and including
2�� - 1 (or 2�� - 1 or 2�� - 1) are considered to
be to the left of bytes in locations from 0 up.

In the 24-bit addressing mode, wraparound is from
location 2�� - 1 to location 0; in the 31-bit
addressing mode, wraparound is from location
2�� - 1 to location 0; in the 64-bit addressing
mode, wraparound is from location 2�� - 1 to
location 0.

In the access-register mode, the contents of
access register R� and access register R� are
compared. If the R� or R� field is zero, 32 zeros
are used rather than the contents of access reg-
ister 0. If all 32 bits of the compared values are
equal, then the destructive overlap test is made.
If all 32 bits of the compared values are not equal,
destructive overlap is declared not to exist. If, for
this case, the operands actually overlap in real
storage, it is unpredictable whether the result
reflects the overlap condition.

When the length specified by bits 40-63 of general
register R� + 1 is zero, no movement takes
place, and condition code 0 or 1 is set to indicate
the relative values of the lengths.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that

 Chapter 7. General Instructions 7-123

┌───┐
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──────────┬───────────────────────┐ │
│ R� + 1 │////////////│ First-Operand Length │ │////////////│ First-Operand Length │ │
│ └─/──────────┴───────────────────────┘ └─/──────────┴───────────────────────┘ │
│ � 4� 63 � 4� 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ Second-Operand Address│ │////│ Second-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────┬───────────────────────┐ ┌─/─┬────────┬───────────────────────┐ │
│ R� + 1 │///│ Pad │ Second-Operand Length │ │///│ Pad │ Second-Operand Length │ │
│ └─/─┴────────┴───────────────────────┘ └─/─┴────────┴───────────────────────┘ │
│ � 32 4� 63 � 32 4� 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ │
│ R� + 1 │////////////│ First-Operand Length │ │
│ └─/──────────┴───────────────────────┘ │
│ � 4� 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Second-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/─┬────────┬───────────────────────┐ │
│ R� + 1 │///│ Pad │ Second-Operand Length │ │
│ └─/─┴────────┴───────────────────────┘ │
│ � 32 4� 63 │
│ │
└───┘

Figure 7-68. Register Contents for MOVE LONG

| follows termination, the lengths in general regis-
ters R� + 1 and R� + 1 are decremented by the
number of bytes moved, and the addresses in
general registers R� and R� are incremented by
the same number, so that the instruction, when
reexecuted, resumes at the point of interruption.
In the 24-bit or 31-bit addressing mode, the left-
most bits which are not part of the address in bit
positions 32-63 of general registers R� and R� are
set to zeros, and the contents of bit positions 0-31
remain unchanged. In any addressing mode, the
contents of bit positions 0-39 of general registers

R� + 1 and R� + 1 remain unchanged; and the
condition code is unpredictable. If the operation is
interrupted during padding, the length field in
general register R� + 1 is 0, the address in
general register R� is incremented by the original
length in general register R� + 1, and general
registers R� and R� + 1 reflect the extent of the
padding operation.

When the first-operand location includes the
location of the instruction or of EXECUTE, the
instruction may be refetched from storage and

7-124 z/Architecture Principles of Operation

reinterpreted even in the absence of an inter-
ruption during execution. The exact point in the
execution at which such a refetch occurs is unpre-
dictable.

Padding byte values of B0 hex and B8 hex may
be used during the nonpadding part of the opera-
tion by some models, in certain cases, as an indi-
cation of whether the movement should be per-
formed bypassing the cache or using the cache,
respectively. Thus, a padding byte of B0 hex indi-
cates no intention to reference the destination
area after the move, and a padding byte of B8 hex
indicates an intention to reference the destination
area.

For the nonpadding part of the operation,
accesses to the operands for MOVE LONG are
single-access references. These accesses do not
necessarily appear to occur in a left-to-right direc-
tion as observed by other CPUs and by channel
programs, unless the padding byte is B1 hex.
During the nonpadding part of the operation, oper-
ands appear to be accessed doubleword concur-
rent as observed by other CPUs, provided that
both operands start on doubleword boundaries,
are an integral number of doublewords in length,
and do not overlap.

As observed by other CPUs and by channel pro-
grams, that portion of the first operand which is
filled with the padding byte is not necessarily
stored into in a left-to-right direction and may
appear to be stored into more than once.

At the completion of the operation, the length in
general register R� + 1 is decremented by the
number of bytes stored at the first-operand
location, and the address in general register R� is
incremented by the same amount. The length in
general register R� + 1 is decremented by the
number of bytes moved out of the second-operand
location, and the address in general register R� is
incremented by the same amount. In the 24-bit or
31-bit addressing mode, the leftmost bits which
are not part of the address in bit positions 32-63
of general registers R� and R� are set to zeros,
even when one or both of the original length
values are zeros or when condition code 3 is set.
The contents of bit positions 0-31 of the registers
remain unchanged. In any addressing mode, the
contents of bit positions 0-39 of general registers
R� + 1 and R� + 1 remain unchanged.

When condition code 3 is set, no exceptions asso-
ciated with operand access are recognized. When
the length of an operand is zero, no access
exceptions for that operand are recognized. Simi-
larly, when the second operand is longer than the
first operand, access exceptions are not recog-
nized for the part of the second-operand field that
is in excess of the first-operand field. For oper-
ands longer than 2K bytes, access exceptions are
not recognized for locations more than 2K bytes
beyond the current location being processed.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd. Also, when the R� field is odd, PER
storage-alteration events are not recognized, and
no change bits are set.

Resulting Condition Code:

0 Operand lengths equal; no destructive overlap
1 First-operand length low; no destructive

overlap
2 First-operand length high; no destructive

overlap
3 No movement performed because of destruc-

tive overlap

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
 � Specification

Programming Notes:

1. An example of the use of the MOVE LONG
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. MOVE LONG may be used for clearing
storage by setting the padding byte to zero
and the second-operand length to zero. On
most models, this is the fastest instruction for
clearing storage areas in excess of 256 bytes.
However, the stores associated with this
clearing may be multiple-access stores and
should not be used to clear an area if the pos-
sibility exists that another CPU or a channel
program will attempt to access and use the
area as soon as it appears to be zero. For
more details, see “Storage-Operand
Consistency” on page 5-87.

3. The program should avoid specification of a
length for either operand which would result in
an addressing exception. Addressing (and
also protection) exceptions may result in ter-

 Chapter 7. General Instructions 7-125

mination of the entire operation, not just the
current unit of operation. The termination may
be such that the contents of all result fields
are unpredictable; in the case of MOVE
LONG, this includes the condition code and
the two even-odd general-register pairs, as
well as the first-operand location in main
storage. The following are situations that
have actually occurred on one or more
models:

a. When a protection exception occurs on a
4K-byte block of a first operand which is
several blocks in length, stores to the pro-
tected block are suppressed. However,
the move continues into the subsequent
blocks of the first operand, which are not
protected. Similarly, an addressing excep-
tion on a block does not necessarily sup-
press processing of subsequent blocks
which are available.

b. Some models may update the general
registers only when an external, I/O,
repressible machine-check, or restart
interruption occurs, or when a program
interruption occurs for which it is required
to nullify or suppress a unit of operation.
Thus, if, after a move into several blocks
of the first operand, an addressing or pro-
tection exception occurs, the general reg-
isters may remain unchanged.

4. When the first-operand length is zero, the
operation consists in setting the condition
code and, in the 24-bit or 31-bit addressing
mode, of setting the leftmost bits in bit posi-
tions 32-63 of general registers R� and R� to
zero.

5. When the contents of the R� and R� fields are
the same, the contents of the designated reg-
isters are incremented or decremented only by
the number of bytes moved, not by twice the
number of bytes moved. Condition code 0 is
set.

6. The following is a detailed description of those
cases in which movement takes place, that is,
where destructive overlap does not exist.

In the access-register mode, the contents of
the access registers used are called the effec-
tive space designations. When the effective
space designations are not equal, destructive
overlap is declared not to exist and movement

occurs. When the effective space desig-
nations are the same or when not in the
access-register mode, then the following
cases apply.

Depending on whether the second operand
wraps around from location 2�� - 1 (or
2�� - 1 or 2�� - 1, depending on the
addressing mode) to location 0, movement
takes place in the following cases:

a. When the second operand does not wrap
around, movement is performed if the left-
most byte of the first operand coincides
with or is to the left of the leftmost byte of
the second operand, or if the leftmost byte
of the first operand is to the right of the
rightmost second-operand byte partic-
ipating in the operation.

b. When the second operand wraps around,
movement is performed if the leftmost
byte of the first operand coincides with or
is to the left of the leftmost byte of the
second operand, and if the leftmost byte
of the first operand is to the right of the
rightmost second-operand byte partic-
ipating in the operation.

The rightmost second-operand byte is deter-
mined by using the smaller of the first-operand
and second-operand lengths.

When the second-operand length is one or
zero, destructive overlap cannot exist.

7. Special precautions should be taken if MOVE
LONG is made the target of EXECUTE. See
the programming note concerning interruptible
instructions under EXECUTE.

8. Since the execution of MOVE LONG is inter-
ruptible, the instruction cannot be used for sit-
uations where the program must rely on unin-
terrupted execution of the instruction. Simi-
larly, the program should normally not let the
first operand of MOVE LONG include the
location of the instruction or of EXECUTE
because the new contents of the location may
be interpreted for a resumption after an inter-
ruption, or the instruction may be refetched
without an interruption.

9. Further programming notes concerning inter-
ruptible instructions are included in “Interrup-
tible Instructions” in Chapter 5, “Program
Execution.”

7-126 z/Architecture Principles of Operation

10. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

MOVE LONG EXTENDED

MVCLE R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'A8' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

All or part of the third operand is placed at the
first-operand location. The remaining rightmost
byte positions, if any, of the first-operand location
are filled with padding bytes. The operation pro-
ceeds until the end of the first-operand location is
reached or a CPU-determined number of bytes
have been placed at the first-operand location,
whichever occurs first. The result is indicated in
the condition code.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and third operand is designated by the
contents of general registers R� and R�, respec-
tively. In the 24-bit or 31-bit addressing mode, the
number of bytes in the first-operand and third-
operand locations is specified by the contents of
bit positions 32-63 of general registers R� + 1
and R� + 1, respectively, and those contents are
treated as 32-bit unsigned binary integers. In the
64-bit addressing mode, the number of bytes in
the first-operand and third-operand locations is
specified by the entire contents of general regis-
ters R� + 1 and R� + 1, respectively, and those
contents are treated as 64-bit unsigned binary
integers.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and

the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The second-operand address is not used to
address data; instead, the rightmost eight bits of
the second-operand address, bits 56-63, are the
padding byte. Bits 0-55 of the second-operand
address are ignored.

The contents of the registers and address just
described are shown in Figure 7-69 on
page 7-128.

The result is obtained as if the movement starts at
the left end of both fields and proceeds to the
right, byte by byte. The operation is ended when
the number of bytes specified in general register
R� + 1 have been placed at the first-operand
location or when a CPU-determined number of
bytes have been placed, whichever occurs first. If
the third operand is shorter than the first operand,
the remaining rightmost bytes of the first-operand
location are filled with the padding byte.

When the operation is completed because the end
of the first operand has been reached, the condi-
tion code is set to 0 if the two operand lengths are
equal, it is set to 1 if the first-operand length is
less than the third-operand length, or it is set to 2
if the first-operand length is greater than the third-
operand length. When the operation is completed
because a CPU-determined number of bytes have
been moved without reaching the end of the first
operand, condition code 3 is set.

No test is made for destructive overlap, and the
results in the first-operand location are unpredict-
able when destructive overlap exists. Operands
are said to overlap destructively when the first-
operand location is used as a source after data
has been moved into it.

Operands do not overlap destructively if the left-
most byte of the first operand does not coincide
with any of the third-operand bytes participating in
the operation other than the leftmost byte of the
third operand. When an operand wraps around
from location 2�� - 1 (or 2�� - 1 or 2�� - 1) to
location 0, operand bytes in locations up to and
including 2�� - 1 (or 2�� - 1 or 2�� - 1) are con-
sidered to be to the left of bytes in locations from
0 up.

 Chapter 7. General Instructions 7-127

┌──┐
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ Third-Operand Address │ │////│ Third-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Third-Operand Length │ │///│ Third-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/─────────────────────────┬────────┐ ┌─/─────────────────────────┬────────┐ │
│ 2nd Op. │///////////////////////////│ Pad │ │///////////////////////////│ Pad │ │
│ Address └─/─────────────────────────┴────────┘ └─/─────────────────────────┴────────┘ │
│ � 56 63 � 56 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Third-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Third-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/─────────────────────────┬────────┐ │
│ 2nd Op. │///////////////////////////│ Pad │ │
│ Address └─/─────────────────────────┴────────┘ │
│ � 56 63 │
│ │
└──┘

Figure 7-69. Register Contents and Second-Operand Address for MOVE LONG EXTENDED

In the 24-bit addressing mode, wraparound is from
location 2�� - 1 to location 0; in the 31-bit
addressing mode, wraparound is from location

2�� - 1 to location 0; and, in the 64-bit addressing
mode, wraparound is from location 2�� - 1 to
location 0.

7-128 z/Architecture Principles of Operation

When the length specified in general register
R� + 1 is zero, no movement takes place, and
condition code 0 or 1 is set to indicate the relative
values of the lengths.

Padding byte values of B0 hex and B8 hex may
be used during the nonpadding part of the opera-
tion by some models, in certain cases, as an indi-
cation of whether the movement should be per-
formed bypassing the cache or using the cache,
respectively. Thus, a padding byte of B0 hex indi-
cates no intention to reference the destination
area after the move, and a padding byte of B8 hex
indicates an intention to reference the destination
area.

For the nonpadding part of the operation,
accesses to the operands for MOVE LONG are
single-access references. These accesses do not
necessarily appear to occur in a left-to-right direc-
tion as observed by other CPUs and by channel
programs, unless the padding byte is B1 hex.
During the nonpadding part of the operation, oper-
ands appear to be accessed doubleword concur-
rent as observed by other CPUs, provided that
both operands start on doubleword boundaries,
are an integral number of doublewords in length,
and do not overlap.

As observed by other CPUs and by channel pro-
grams, that portion of the first operand which is
filled with the padding byte is not necessarily
stored into in a left-to-right direction and may
appear to be stored into more than once.

At the completion of the operation, the length in
general register R� + 1 is decremented by the
number of bytes stored at the first-operand
location, and the address in general register R� is
incremented by the same amount. The length in
general register R� + 1 is decremented by the
number of bytes moved out of the third-operand
location, and the address in general register R� is
incremented by the same amount.

If the operation is completed because a
CPU-determined number of bytes have been
moved without reaching the end of the first
operand, the lengths in general registers R� + 1
and R� + 1 are decremented by the number of
bytes moved, and the addresses in general regis-
ters R� and R� are incremented by the same
number, so that the instruction, when reexecuted,
resumes at the next byte to be moved. If the

operation is completed during padding, the length
field in general register R� + 1 is zero, the
address in general register R� is incremented by
the original length in general register R� + 1, and
general registers R� and R� + 1 reflect the extent
of the padding operation.

In the 24-bit or 31-bit addressing mode, the con-
tents of bit positions 0-31 of general registers R�,
R� + 1, R�, and R� + 1, always remain
unchanged.

The padding byte may be formed from D�(B�)
multiple times during the execution of the instruc-
tion, and the registers designated by R� and R�
may be updated multiple times. Therefore, if B�
equals R�, R� + 1, R�, or R� + 1 and is subject
to change during the execution of the instruction,
the results are unpredictable.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed. The maximum amount
is approximately 4K bytes of either operand.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which
are not part of the address in bit positions 32-63
of general registers R� and R� may be set to
zeros or may remain unchanged from their original
values, even when one or both of the original
length values are zeros.

When the length of an operand is zero, no access
exceptions for that operand are recognized. Simi-
larly, when the third operand is longer than the
first operand, access exceptions are not recog-
nized for the part of the third-operand field that is
in excess of the first-operand field. For operands
longer than 4K bytes, access exceptions are not
recognized for locations more than 4K bytes
beyond the current location being processed.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd. Also, when the R� field is odd, PER
storage-alteration events are not recognized, and
no change bits are set.

Resulting Condition Code:

0 All bytes moved, operand lengths equal
1 All bytes moved, first-operand length low
2 All bytes moved, first-operand length high

 Chapter 7. General Instructions 7-129

3 CPU-determined number of bytes moved
without reaching end of first operand

 Program Exceptions:

� Access (fetch, operand 3; store, operand 1)
 � Specification

Programming Notes:

1. MOVE LONG EXTENDED is intended for use
in place of MOVE LONG when the operand
lengths are specified as 32-bit or 64-bit binary
integers and a test for destructive overlap is
not required. MOVE LONG EXTENDED sets
condition code 3 in cases in which MOVE
LONG would be interrupted.

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the movement. The program need
not determine the number of bytes that were
moved.

3. The function of not processing more than
approximately 4K bytes of either operand is
intended to permit software polling of a flag
that may be set by a program on another CPU
during long operations.

4. MOVE LONG EXTENDED may be used for
clearing storage by setting the padding byte to
zero and the third-operand length to zero.
However, the stores associated with this
clearing may be multiple-access stores and
should not be used to clear an area if the pos-
sibility exists that another CPU or a channel
program will attempt to access and use the
area as soon as it appears to be zero. For
more details, see “Storage-Operand
Consistency” on page 5-87.

5. When the contents of the R� and R� fields are
the same, the contents of the designated reg-
isters are incremented or decremented only by
the number of bytes moved, not by twice the
number of bytes moved. The condition code
is finally set to 0 after possible settings to 3.

6. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

MOVE LONG UNICODE

MVCLU R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '8E' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

All or part of the third operand is placed at the
first-operand location. The remaining rightmost
two-byte character positions, if any, of the first-
operand location are filled with two-byte padding
characters. The operation proceeds until the end
of the first-operand location is reached or a
CPU-determined number of characters have been
placed at the first-operand location, whichever
occurs first. The result is indicated in the condi-
tion code.

The R� and R� fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost character of the first
operand and third operand is designated by the
contents of general registers R� and R�, respec-
tively. In the 24-bit or 31-bit addressing mode, the
number of bytes in the first-operand and third-
operand locations is specified by the contents of
bit positions 32-63 of general registers R� + 1
and R� + 1, respectively, and those contents are
treated as 32-bit unsigned binary integers. In the
64-bit addressing mode, the number of bytes in
the first-operand and third-operand locations is
specified by the contents of bit positions 0-63 of
general registers R� + 1 and R� + 1, respec-
tively, and those contents are treated as 64-bit
unsigned binary integers.

The contents of general registers R� + 1 and
R� + 1 must specify an even number of bytes;
otherwise, a specification exception is recognized.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In

7-130 z/Architecture Principles of Operation

┌──┐
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ Third-Operand Address │ │////│ Third-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Third-Operand Length │ │///│ Third-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/─────────────────┬────────────────┐ ┌─/─────────────────┬────────────────┐ │
│ 2nd Op. │///////////////////│ Pad │ │///////////////////│ Pad │ │
│ Address └─/─────────────────┴────────────────┘ └─/─────────────────┴────────────────┘ │
│ � 48 63 � 48 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Third-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Third-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/─────────────────┬────────────────┐ │
│ 2nd Op. │///////////////////│ Pad │ │
│ Address └─/─────────────────┴────────────────┘ │
│ � 48 63 │
│ │
└──┘

Figure 7-70. Register Contents and Second-Operand Address for MOVE LONG UNICODE

the 64-bit addressing mode, the contents of bit
positions 0-63 of the registers constitute the
address.

The second-operand address is not used to
address data; instead, the rightmost 16 bits of the

 Chapter 7. General Instructions 7-131

second-operand address, bits 48-63, are the two-
byte padding character. Bits 0-47 of the second-
operand address are ignored.

The contents of the registers and address just
described are shown in Figure 7-70 on
page 7-131.

The result is obtained as if the movement starts at
the left end of both fields and proceeds to the
right, character by character. The operation is
ended when the number of characters specified by
the contents of general register R� + 1 have been
placed at the first-operand location or when a
CPU-determined number of characters have been
placed, whichever occurs first. If the third operand
is shorter than the first operand, the remaining
rightmost character positions of the first-operand
location are filled with the two-byte padding char-
acter.

When the operation is completed because the end
of the first operand has been reached, the condi-
tion code is set to 0 if the two operand lengths are
equal, it is set to 1 if the first-operand length is
less than the third-operand length, or it is set to 2
if the first-operand length is greater than the third-
operand length. When the operation is completed
because a CPU-determined number of characters
have been moved without reaching the end of the
first operand, condition code 3 is set.

No test is made for destructive overlap, and the
results in the first-operand location are unpredict-
able when destructive overlap exists. Operands
are said to overlap destructively when the first-
operand location is used as a source after data
has been moved into it.

Operands do not overlap destructively if the left-
most character of the first operand does not coin-
cide with any of the third-operand characters par-
ticipating in the operation other than the leftmost
character of the third operand. When an operand
wraps around from location 2�� - 1 (or 2�� - 1 or
2�� - 1) to location 0, operand characters in
locations up to and including 2�� - 1 (or 2�� - 1
or 2�� - 1) are considered to be to the left of
characters in locations from 0 up.

In the 24-bit addressing mode, wraparound is from
location 2�� - 1 to location 0; in the 31-bit
addressing mode, wraparound is from location
2�� - 1 to location 0; and, in the 64-bit addressing

mode, wraparound is from location 2�� - 1 to
location 0.

When the length specified in general register
R� + 1 is zero, no movement takes place, and
condition code 0 or 1 is set to indicate the relative
values of the lengths.

For the nonpadding part of the operation,
accesses to the operands for MOVE LONG
UNICODE are single-access references. These
accesses do not necessarily appear to occur in a
left-to-right direction as observed by other CPUs
and by channel programs. During the nonpadding
part of the operation, operands appear to be
accessed doubleword concurrent as observed by
other CPUs, provided that both operands start on
doubleword boundaries, are an integral number of
doublewords in length, and do not overlap.

As observed by other CPUs and by channel pro-
grams, that portion of the first operand which is
filled with the two-byte padding character is not
necessarily stored into in a left-to-right direction
and may appear to be stored into more than once.

At the completion of the operation, the length in
general register R� + 1 is decremented by 2
times the number of characters stored at the first-
operand location, and the address in general reg-
ister R� is incremented by the same amount. The
length in general register R� + 1 is decremented
by 2 times the number of characters moved out of
the third-operand location, and the address in
general register R� is incremented by the same
amount.

If the operation is completed because a
CPU-determined number of characters have been
moved without reaching the end of the first
operand, the lengths in general registers R� + 1
and R� + 1 are decremented by 2 times the
number of characters moved, and the addresses
in general registers R� and R� are incremented by
the same number, so that the instruction, when
reexecuted, resumes at the next character to be
moved. If the operation is completed during
padding, the length field in general register
R� + 1 is zero, the address in general register R�
is incremented by 2 times the number of charac-
ters moved from operand 3, and general registers
R� and R� + 1 reflect the extent of the padding
operation.

7-132 z/Architecture Principles of Operation

In the 24-bit or 31-bit addressing mode, the con-
tents of bit positions 0-31 of general registers R�,
R� + 1, R�, and R� + 1, always remain
unchanged.

The two-byte padding character may be formed
from D�(B�) multiple times during the execution of
the instruction, and the registers designated by R�
and R� may be updated multiple times. There-
fore, if B� equals R�, R� + 1, R�, or R� + 1 and
is subject to change during the execution of the
instruction, the results are unpredictable.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

At the completion of the operation in the 24-bit or
31-bit addressing mode, the leftmost bits which
are not part of the address in bit positions 32-63
of general registers R� and R� may be set to
zeros or may remain unchanged from their original
values, including the case when one or both of the
original length values are zeros.

When the length of an operand is zero, no access
exceptions for that operand are recognized. Simi-
larly, when the third operand is longer than the
first operand, access exceptions are not recog-
nized for the part of the third-operand field that is
in excess of the first-operand field. For operands
longer than 4K bytes, access exceptions are not
recognized for locations more than 4K bytes
beyond the current location being processed.
Access exceptions are not recognized for an
operand if the R field or length associated with
that operand is odd. Also, when the R� field or
length is odd, PER storage-alteration events are
not recognized, and no change bits are set.

Resulting Condition Code:

0 All characters moved, operand lengths equal
1 All characters moved, first-operand length low
2 All characters moved, first-operand length

high
3 CPU-determined number of characters moved

without reaching end of first operand

 Program Exceptions:

� Access (fetch, operand 3; store, operand 1)
� Operation (if the extended-translation facility 2

is not installed)
 � Specification

Programming Notes:

1. MOVE LONG UNICODE is intended for use in
place of MOVE LONG or MOVE LONG
EXTENDED when the padding character is
two bytes. The character may be a Unicode
character or any other double-byte character.
MOVE LONG UNICODE sets condition code 3
in cases in which MOVE LONG would be
interrupted.

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the movement. The program need
not determine the number of characters that
were moved.

3. MOVE LONG UNICODE may be used for
filling storage with padding characters by
placing the padding character in the second-
operand address and setting the third-operand
length to zero. However, the stores associ-
ated with this clearing may be multiple-access
stores and should not be used to clear an
area if the possibility exists that another CPU
or a channel program will attempt to access
and use the area as soon as it appears to be
zero. For more details, see “Storage-Operand
Consistency” on page 5-87.

4. When the contents of the R� and R� fields are
the same, the contents of the designated reg-
isters are incremented or decremented only by
2 times the number of characters moved, not
by 4 times the number of characters moved.
The condition code is finally set to 0 after pos-
sible settings to 3.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

6. If padding with a Unicode space character is
required (or any character whose represen-
tation is less than or equal to FFF hex), the
character may be represented in the displace-
ment field of the instruction, for example:

 MVCLU 6,8,X'�2�'

 Chapter 7. General Instructions 7-133

 MOVE NUMERICS

MVN D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'D1' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The rightmost four bits of each byte in the second
operand are placed in the rightmost bit positions
of the corresponding bytes in the first operand.
The leftmost four bits of each byte in the first
operand remain unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after
fetching the necessary operand bytes.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE
NUMERICS instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. MOVE NUMERICS moves the numeric portion
of a decimal-data field that is in the zoned
format. The zoned-decimal format is
described in Chapter 8, “Decimal
Instructions.” The operands are not checked
for valid sign and digit codes.

3. Accesses to the first operand of MOVE
NUMERICS consist in fetching the rightmost
four bits of each byte in the first operand and
subsequently storing the updated value of the
byte. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, this instruc-
tion cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel program may also
be updating the location. An example of this
effect is shown for OR (OI) in “Multiprogram-
ming and Multiprocessing Examples” in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 MOVE STRING

MVST R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B255' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

All or part of the second operand is placed in the
first-operand location. The operation proceeds
until the end of the second operand is reached or
a CPU-determined number of bytes have been
moved, whichever occurs first. The
CPU-determined number is at least one. The
result is indicated in the condition code.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R� and R�, respec-
tively.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The end of the second operand is indicated by an
ending character in the last byte position of the
operand. The ending character to be used to
determine the end of the second operand is speci-
fied in bit positions 56-63 of general register 0. Bit
positions 32-55 of general register 0 are reserved
for possible future extensions and must contain all
zeros; otherwise, a specification exception is
recognized.

The operation proceeds left to right and ends as
soon as the second-operand ending character has
been moved or a CPU-determined number of
second-operand bytes have been moved, which-
ever occurs first. The CPU-determined number is
at least one. When the ending character is in the
first byte position of the second operand, only the
ending character is moved. When the ending
character has been moved, condition code 1 is
set. When a CPU-determined number of second-
operand bytes not including an ending character

7-134 z/Architecture Principles of Operation

have been moved, condition code 3 is set.
Destructive overlap is not recognized. If the
second operand is used as a source after it has
been used as a destination, the results are unpre-
dictable to the extent that an ending character in
the second operand may not be recognized.

When condition code 1 is set, the address of the
ending character in the first operand is placed in
general register R�, and the contents of general
register R� remain unchanged. When condition
code 3 is set, the address of the next byte to be
processed in the first and second operands is
placed in general registers R� and R�, respec-
tively. Whenever an address is placed in a
general register, bits 32-39 of the register, in the
24-bit addressing mode, or bit 32, in the 31-bit
addressing mode, are set to zeros. Bits 0-31 of
the R� and R� registers always remain unchanged
in the 24-bit or 31-bit mode.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

Access exceptions for the first and second oper-
ands are recognized only for that portion of the
operand that is necessarily used in the operation.

The storage-operand-consistency rules are the
same as for the MOVE (MVC) instruction, except
that destructive overlap is not recognized.

Resulting Condition Code:

0 --
1 Entire second operand moved; general reg-

ister R� updated with address of ending char-
acter in first operand; general register R�
unchanged

2 --
3 CPU-determined number of bytes moved;

general registers R� and R� updated with
addresses of next bytes

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
 � Specification

Programming Notes:

1. An example of the use of the MOVE STRING
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the data movement. The program
need not determine the number of bytes that
were moved.

3. R� or R� may be zero, in which case general
register 0 is treated as containing an address
and also the ending character.

4. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

MOVE WITH OFFSET

MVO D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'F1' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The second operand is placed to the left of and
adjacent to the rightmost four bits of the first
operand.

The rightmost four bits of the first operand are
attached as the rightmost bits to the second
operand, the second-operand bits are offset by
four bit positions, and the result is placed at the
first-operand location.

The result is obtained as if the operands were
processed right to left. When necessary, the
second operand is considered to be extended on
the left with zeros. If the first operand is too short
to contain all of the second operand, the
remaining leftmost portion of the second operand
is ignored. Access exceptions for the unused
portion of the second operand may or may not be
indicated.

When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time, as if each result byte were stored imme-
diately after fetching the necessary operand bytes,
and as if the left digit of each second-operand
byte were to remain available for the next result
byte and need not be refetched.

 Chapter 7. General Instructions 7-135

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE WITH
OFFSET instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. MOVE WITH OFFSET may be used to shift
packed decimal data by an odd number of
digit positions. The packed-decimal format is
described in Chapter 8, “Decimal Instructions.”
The operands are not checked for valid sign
and digit codes. In many cases, however,
SHIFT AND ROUND DECIMAL may be more
convenient to use.

3. Access to the rightmost byte of the first
operand of MOVE WITH OFFSET consists in
fetching the rightmost four bits and subse-
quently storing the updated value of this byte.
These fetch and store accesses to the right-
most byte of the first operand do not neces-
sarily occur one immediately after the other.
Thus, this instruction cannot be safely used to
update a location in storage if the possibility
exists that another CPU or a channel program
may also be updating the location. An
example of this effect is shown for OR (OI) in
“Multiprogramming and Multiprocessing
Examples” in Appendix A, “Number Repre-
sentation and Instruction-Use Examples.”

4. The storage-operand references for MOVE
WITH OFFSET may be multiple-access refer-
ences. (See “Storage-Operand Consistency”
on page 5-87.)

 MOVE ZONES

MVZ D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'D3' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit posi-

tions of the corresponding bytes in the first
operand. The rightmost four bits of each byte in
the first operand remain unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE ZONES
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. MOVE ZONES moves the zoned portion of a
decimal field in the zoned format. The zoned
format is described in Chapter 8, “Decimal
Instructions.” The operands are not checked
for valid sign and digit codes.

3. Accesses to the first operand of MOVE
ZONES consist in fetching the leftmost four
bits of each byte in the first operand and sub-
sequently storing the updated value of the
byte. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, this instruc-
tion cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel program may also
be updating the location. An example of this
effect is shown for the OR (OI) instruction in
“Multiprogramming and Multiprocessing
Examples” in Appendix A, “Number Repre-
sentation and Instruction-Use Examples.”

 MULTIPLY

MR R�,R� [RR]

┌────────┬────┬────┐
│ '1C' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

7-136 z/Architecture Principles of Operation

M R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '5C' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The 32-bit first operand (the multiplicand) is multi-
plied by the 32-bit second-operand (the multiplier),
and the 64-bit product is placed at the first-
operand location.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

Both the multiplicand and multiplier are treated as
32-bit signed binary integers. The multiplicand is
in bit positions 32-63 of general register R� + 1.
For MULTIPLY (MR), the multiplier is in bit posi-
tions 32-63 of general register R� The contents of
general register R� and of bit positions 0-31 of
general register R� + 1 and, for MR, of general
register R� are ignored.

The product is a 64-bit signed binary integer. Bits
0-31 of the product replace bits 32-63 of general
register R�. Bits 32-63 of the product replace bits
32-63 of general register R� + 1. Bits 0-31 of
general registers R� and R� + 1 remain
unchanged. An overflow cannot occur.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand
sign, except that a zero result is always positive.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of M only)
 � Specification

Programming Notes:

1. An example of the use of the MULTIPLY
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. The significant part of the product usually
occupies 62 bit positions or fewer. Only when
two maximum 32-bit negative numbers are
multiplied are 63 significant product bits
formed.

 MULTIPLY HALFWORD

MH R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '4C' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

 MULTIPLY HALFWORD
IMMEDIATE

MHI R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'C' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

MGHI R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'D' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

The 32-bit or 64-bit first operand (the multiplicand)
is multiplied by the 16-bit second operand (the
multiplier), and the rightmost 32 or 64 bits of the
product are placed at the first-operand location.
The second operand is two bytes in length and is
treated as a 16-bit signed binary integer.

For MULTIPLY HALFWORD and MULTIPLY
HALFWORD IMMEDIATE (MHI), the multiplicand
is treated as a 32-bit signed binary integer in bit
positions 32-63 of general register R�, and it is
replaced by the rightmost 32 bits of the signed-
binary-integer product. The bits to the left of the
32 rightmost bits of the product are not tested for
significance; no overflow indication is given. Bits
0-31 of general register R� are ignored and
remain unchanged.

For MULTIPLY HALFWORD IMMEDIATE (MGHI),
The multiplicand is treated as a 64-bit signed
binary integer in bit positions 0-63 of general reg-
ister R�, and it is replaced by the rightmost 64 bits
of the signed-binary-integer product. The bits to
the left of the 64 rightmost bits of the product are
not tested for significance; no overflow indication
is given.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand
sign, except that a zero result is always positive.

 Chapter 7. General Instructions 7-137

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of MH only)

Programming Notes:

1. An example of the use of the MULTIPLY
HALFWORD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. For MH and MHI, the significant part of the
product usually occupies 46 bit positions or
fewer. Only when two maximum negative
numbers are multiplied are 47 significant
product bits formed. Since the rightmost 32
bits of the product are placed unchanged at
the first-operand location, ignoring all bits to
the left, the sign bit of the result may differ
from the true sign of the product in the case of
overflow. For a negative product, the 32 bits
placed in register R� are the rightmost part of
the product in two's-complement notation. For
MGHI, the significant part of the product
usually occupies 78 bit positions or fewer.

 MULTIPLY LOGICAL

MLR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B996' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

MLGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B986' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

ML R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '96' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

MLG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '86' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The 32-bit or 64-bit first operand (the multiplicand)
is multiplied by the 32-bit or 64-bit second
operand (the multiplier), and the 64-bit or 128-bit
product is placed at the first-operand location.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

For MULTIPLY LOGICAL (MLR, ML), both the
multiplicand and the multiplier are treated as 32-bit
unsigned binary integers. The multiplicand is in
bit positions 32-63 of general register R� + 1.
For MULTIPLY LOGICAL (MLR), the multiplier is
in bit positions 32-63 of general register R�. The
contents of general register R� and of bit positions
0-31 of general register R� + 1 and, for MLR, of
general register R� are ignored. The product is a
64-bit unsigned binary integer. Bits 0-31 of the
product replace bits 32-63 of general register R�,
and bits 32-63 of the product replace bits 32-63 of
general register R� + 1. Bits 0-31 of general reg-
isters R� and R� + 1 remain unchanged. An
overflow cannot occur.

For MULTIPLY LOGICAL (MLGR, MLG), the mul-
tiplicand and the multiplier are treated as 64-bit
unsigned binary integers. The multiplicand is in
general register R� + 1. The contents of general
register R� are ignored. The product is a 128-bit
unsigned binary integer. Bits 0-63 of the product
replace the contents of general register R�, and
bits 64-127 of the product replace the contents of
general register R� + 1. An overflow cannot
occur.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of ML and MLG
only)

 � Specification

 MULTIPLY SINGLE

MSR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B252' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

7-138 z/Architecture Principles of Operation

MSGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�C' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

MSGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B91C' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

MS R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '71' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| MSY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '51' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

MSG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�C' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

MSGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '1C' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first operand (multiplicand) is multiplied by the
second operand (multiplier), and the rightmost 32
or 64 bits of the product are placed at the first-
operand location.

| For MULTIPLY SINGLE (MSR, MS, MSY), the
multiplicand, multiplier, and product are treated as
32-bit signed binary integers. The multiplicand is
taken from bit positions 32-63 of general register
R� and is replaced by the rightmost 32 bits of the
signed-binary-integer product. Bits 0-31 of
general register R� remain unchanged. For MSR,
the multiplier is in bit positions 32-63 of general
register R�. The bits to the left of the 32 rightmost
bits of the product are not tested for significance;
no overflow indication is given.

For MULTIPLY SINGLE (MSGR, MSGFR, MSG,
MSGF), the multiplicand, multiplier, and product
are treated as 64-bit signed binary integers,
except that, for MSGFR and MSGF, the multiplier
is treated as a 32-bit signed binary integer. The
multiplicand is taken from general register R� and
is replaced by the rightmost 64 bits of the signed-
binary-integer product. For MSGFR, the multiplier
is in bit positions 32-63 of general register R�.
The bits to the left of the 64 rightmost bits of the
product are not tested for significance; no overflow
indication is given.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand
sign, except that a zero result is always positive.

| The displacement for MS is treated as a 12-bit
| unsigned binary integer. The displacement for
| MSY, MSG, and MSGF is treated as a 20-bit
| signed binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

| � Access (fetch, operand 2 of MS, MSY, MSG,
MSGF only)

| � Operation (MSY, if the long-displacement
| facility is not installed)

 OR

OR R�,R� [RR]

┌────────┬────┬────┐
│ '16' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

OGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B981' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

O R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '56' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

 Chapter 7. General Instructions 7-139

| OY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '56' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

OG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '81' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

OI D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ '96' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

| OIY D�(B�),I� [SIY]

| ┌────────┬────────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ I� │ B� │DL� │ DH� │ '56' │
| └────────┴────────┴────┴──/─┴────────┴────────┘
| � 8 16 2� 32 4� 47

OC D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'D6' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The OR of the first and second operands is placed
at the first-operand location.

The connective OR is applied to the operands bit
by bit. The contents of a bit position in the result
are set to one if the corresponding bit position in
one or both operands contains a one; otherwise,
the result bit is set to zero.

For OR (OC), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after fetching the necessary operand
bytes.

| For OR (OI, OIY), the first operand is one byte in
length, and only one byte is stored.

| For OR (OR, O, OY), the operands are 32 bits,
and for OR (OGR, OG), they are 64 bits.

| The displacements for O, OI, and both operands
| of OC are treated as 12-bit unsigned binary inte-

| gers. The displacement for OY, OIY, and OG is
| treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 Result zero
1 Result not zero
2 --
3 --

 Program Exceptions:

| � Access (fetch, operand 2, O, OY, OG, and
| OC; fetch and store, operand 1, OI, OIY, and

OC)
| � Operation (OY and OIY, if the long-
| displacement facility is not installed)

Programming Notes:

1. Examples of the use of the OR instruction are
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. OR may be used to set a bit to one.

3. Accesses to the first operand of OR (OI) and
OR (OC) consist in fetching a first-operand
byte from storage and subsequently storing
the updated value. These fetch and store
accesses to a particular byte do not neces-
sarily occur one immediately after the other.
Thus, OR cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel program may also
be updating the location. An example of this
effect is shown in “Multiprogramming and
Multiprocessing Examples” in Appendix A,
“Number Representation and Instruction-Use
Examples.”

 OR IMMEDIATE

OIHH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'8' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

OIHL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'9' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

7-140 z/Architecture Principles of Operation

OILH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'A' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

OILL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A5' │ R� │'B' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

The second operand is ORed with bits of the first
operand, and the result replaces those bits of the
first operand. The remainder of the first operand
remains unchanged.

For each instruction, the bits of the first operand
that are ORed with the second operand and then
replaced are as follows:

The connective OR is applied to the operands bit
by bit. The contents of a bit position in the result
are set to one if the corresponding bit position in
one or both operands contains a one; otherwise,
the result bit is set to zero.

Resulting Condition Code:

0 Sixteen-bit result zero
1 Sixteen-bit result not zero
2 --
3 --

 Program Exceptions: None.

 PACK

PACK D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'F2' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The format of the second operand is changed
from zoned to packed, and the result is placed at
the first-operand location. The zoned and packed
formats are described in Chapter 8, “Decimal
Instructions.”

The second operand is treated as having the
zoned format. The numeric bits of each byte are
treated as a digit. The zone bits are ignored,
except the zone bits in the rightmost byte, which
are treated as a sign.

The sign and digits are moved unchanged to the
first operand and are not checked for valid codes.
The sign is placed in the rightmost four bit posi-
tions of the rightmost byte of the result field, and
the digits are placed adjacent to the sign and to
each other in the remainder of the result field.

The result is obtained as if the operands were
processed right to left. When necessary, the
second operand is considered to be extended on
the left with zeros. If the first operand is too short
to contain all digits of the second operand, the
remaining leftmost portion of the second operand
is ignored. Access exceptions for the unused
portion of the second operand may or may not be
indicated.

When the operands overlap, the result is obtained
as if each result byte were stored immediately
after fetching the necessary operand bytes. Two
second-operand bytes are needed for each result
byte, except for the rightmost byte of the result
field, which requires only the rightmost second-
operand byte.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)

Instruction

Bits
ORed
and
Replaced

OIHH 0-15

OIHL 16-31

OILH 32-47

OILL 48-63

 Chapter 7. General Instructions 7-141

Programming Notes:

1. An example of the use of the PACK instruc-
tion is given in Appendix A, “Number Repre-
sentation and Instruction-Use Examples.”

2. PACK may be used to interchange the two
hexadecimal digits in one byte by specifying a
zero in the L� and L� fields and the same
address for both operands.

3. To remove the zone bits of all bytes of a field,
including the rightmost byte, both operands
should be extended on the right with a dummy
byte, which subsequently should be ignored in
the result field.

4. The storage-operand references for PACK
may be multiple-access references. (See
“Storage-Operand Consistency” on
page 5-87.)

 PACK ASCII

PKA D�(B�),D�(L�,B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'E9' │ L� │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The format of the second operand is changed
from ASCII to packed, and the result is placed at
the first-operand location. The packed format is
described in Chapter 8, “Decimal Instructions.”

The second-operand bytes are treated as con-
taining decimal digits, having the binary encoding
0000-1001 for 0-9, in their rightmost four bit posi-
tions. The leftmost four bit positions of a byte are
ignored. The second operand is considered to be
positive.

The implied positive sign (1100 binary) and the
source digits are placed at the first-operand
location. The source digits are moved unchanged
and are not checked for valid codes. The sign is
placed in the rightmost four bit positions of the
rightmost byte of the result field, and the digits are
placed adjacent to the sign and to each other in
the remainder of the result field.

The result is obtained as if the operands were
processed right to left. When necessary, the

second operand is considered to be extended on
the left with zeros.

The length of the first operand is 16 bytes.

The length of the second operand is designated
by the contents of the L� field. The second-
operand length must not exceed 32 bytes (L�
must be less than or equal to 31); otherwise, a
specification exception is recognized.

When the length of the second operand is 32
bytes, the leftmost byte is ignored.

The results are unpredictable if the first and
second operands overlap in any way.

As observed by other CPUs and by channel pro-
grams, the first-operand location is not necessarily
stored into in any particular order.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
� Operation (if the extended-translation facility 2

is not installed)
 � Specification

Programming Notes:

1. Although PACK ASCII is primarily intended to
change the format of ASCII decimal digits, its
use is not restricted to ASCII since the left-
most four bits of each byte are ignored.

2. The following example illustrates the use of
the instruction to pack ASCII digits:

ASDIGITS DS �CL31
 DC X'3132333435'
 DC X'363738393�'
 DC X'3132333435'
 DC X'363738393�'
 DC X'3132333435'
 DC X'363738393�'
 DC X'31'
PKDIGITS DS PL16
 ...
 PKA PKDIGITS,ASDIGITS(31)

3. The instruction can also be used to pack
EBCDIC digits, which is especially useful
when the length of the second operand is
greater than the 16-byte second-operand limit
of PACK.

7-142 z/Architecture Principles of Operation

EBDIGITS DS �CL31
 DC X'F1F2F3F4F5'
 DC X'F6F7F8F9F�'
 DC X'F1F2F3F4F5'
 DC X'F6F7F8F9F�'
 DC X'F1F2F3F4F5'
 DC X'F6F7F8F9F�'
 DC X'F1'
PKDIGITS DS PL16
 ...
 PKA PKDIGITS,EBDIGITS(31)

4. The storage-operand references for PACK
ASCII may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-87.)

 PACK UNICODE

PKU D�(B�),D�(L�,B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'E1' │ L� │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The format of the second operand is changed
from Unicode to packed, and the result is placed
at the first-operand location. The packed format is
described in Chapter 8, “Decimal Instructions.”

The two-byte second-operand characters are
treated as Unicode Basic Latin characters con-
taining decimal digits, having the binary encoding
0000-1001 for 0-9, in their rightmost four bit posi-
tions. The leftmost 12 bit positions of a character
are ignored. The second operand is considered to
be positive.

The implied positive sign (1100 binary) and the
source digits are placed at the first-operand
location. The source digits are moved unchanged
and are not checked for valid codes. The sign is
placed in the rightmost four bit positions of the
rightmost byte of the result field, and the digits are
placed adjacent to the sign and to each other in
the remainder of the result field.

The result is obtained as if the operands were
processed right to left. When necessary, the
second operand is considered to be extended on
the left with zeros.

The length of the first operand is 16 bytes.

The byte length of the second operand is desig-
nated by the contents of the L� field. The second-
operand length must not exceed 32 characters or
64 bytes, and the byte length must be even (L�
must be less than or equal to 63 and must be
odd); otherwise, a specification exception is recog-
nized.

When the length of the second operand is 32
characters (64 bytes), the leftmost character is
ignored.

The results are unpredictable if the first and
second operands overlap in any way.

As observed by other CPUs and by channel pro-
grams, the first-operand location is not necessarily
stored into in any particular order.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
� Operation (if the extended-translation facility 2

is not installed)
 � Specification

Programming Notes:

1. The following example illustrates the use of
PACK UNICODE to pack European numbers:

UNDIGITS DS �CL62
 DC X'��31��32��33��34��35'
 DC X'��36��37��38��39��3�'
 DC X'��31��32��33��34��35'
 DC X'��36��37��38��39��3�'
 DC X'��31��32��33��34��35'
 DC X'��36��37��38��39��3�'
 DC X'��31'
PKDIGITS DS PL16
 ...
 PKU PKDIGITS,UNDIGITS(62)

2. Because the leftmost 12 bits of each character
are ignored, those Unicode decimal digits
where the digit zero has four rightmost zero
bits can also be packed by the instruction.
For example, for Thai digits:

 Chapter 7. General Instructions 7-143

UNDIGITS DS �CL62
 DC X'�E51�E52�E53�E54�E55'
 DC X'�E56�E57�E58�E59�E5�'
 DC X'�E51�E52�E53�E54�E55'
 DC X'�E56�E57�E58�E59�E5�'
 DC X'�E51�E52�E53�E54�E55'
 DC X'�E56�E57�E58�E59�E5�'
 DC X'�E51'
PKDIGITS DS PL16
 ...
 PKU PKDIGITS,UNDIGITS(62)

3. The storage-operand references for PACK
UNICODE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-87.)

PERFORM LOCKED OPERATION

PLO R�,D�(B�),R�,D"(B") [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'EE' │ R� │ R� │ B� │ D� │ B" │ D" │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

After the lock specified in general register 1 has
been obtained, the operation specified by the
function code in general register 0 is performed,
and then the lock is released. However, as
observed by other CPUs: (1) storage operands,
including fields in a parameter list that may be
used, may be fetched, and may be tested for
store-type access exceptions if a store at a tested
location is possible, before the lock is obtained,
and (2) operands may be stored in the parameter
list after the lock has been released. If an
operand not in the parameter list is fetched before
the lock is obtained, it is fetched again after the
lock has been obtained.

The function code can specify any of six oper-
ations: compare and load, compare and swap,
double compare and swap, compare and swap
and store, compare and swap and double store, or
compare and swap and triple store.

A test bit in general register 0 specifies, when
one, that a lock is not to be obtained and none of
the six operations is to be performed but, instead,
the validity of the function code is to be tested.
This will be useful if additional function codes for
additional operations are assigned in the future.
This definition is written as if the test bit is zero
except when stated otherwise.

If compare and load is specified, the first-operand
comparison value and the second operand are
compared. If they are equal, the fourth operand is
placed in the third-operand location. If the com-
parison indicates inequality, the second operand is
placed in the first-operand-comparison-value
location as a new first-operand comparison value.

If compare and swap is specified, the first-operand
comparison value and the second operand are
compared. If they are equal, the first-operand
replacement value is stored at the second-
operand location. If the comparison indicates ine-
quality, the second operand is placed in the first-
operand-comparison-value location as a new first-
operand comparison value.

If double compare and swap is specified, the first-
operand comparison value and the second
operand are compared. If they are equal, the
third-operand comparison value and the fourth
operand are compared. If both comparisons indi-
cate equality, the first-operand and third-operand
replacement values are stored at the second-
operand location and fourth-operand location,
respectively. If the first comparison indicates ine-
quality, the second operand is placed in the first-
operand-comparison-value location as a new first-
operand comparison value. If the first comparison
indicates equality but the second does not, the
fourth operand is placed in the third-operand-
comparison-value location as a new third-operand
comparison value.

If compare and swap and store, double store, or
triple store is specified, the first-operand compar-
ison value and the second operand are compared.
If they are equal, the first-operand replacement
value is stored at the second-operand location,
and the third operand is stored at the fourth-
operand location. Then, if the operation is the
double-store or triple-store operation, the fifth
operand is stored at the sixth-operand location,
and, if it is the triple-store operation, the seventh
operand is stored at the eighth-operand location.
If the first-operand comparison indicates ine-
quality, the second operand is placed in the first-
operand-comparison-value location as a new first-
operand comparison value.

After any of the six operations, the result of the
comparison or comparisons is indicated in the
condition code.

7-144 z/Architecture Principles of Operation

The function code (FC) is in bit positions 56-63 of
general register 0. The function code specifies
not only the operation to be performed but also
the length of the operands and whether the first-
operand comparison and replacement values and
the third operand or third-operand comparison and
replacement values, which are referred to collec-
tively simply as the first and third operands, are in
general registers or a parameter list. The pattern
of the function codes is as follows:

� A function code that is a multiple of 4
(including 0) specifies a 32-bit length with the
first and third operands in bit positions 32-63
of general registers.

� A function code that is one more than a mul-
tiple of 4 specifies a 64-bit length with the first
and third operands in a parameter list.

� A function code that is 2 more than a multiple
of 4 specifies a 64-bit length with the first and
third operands in bit positions 0-63 of general
registers.

� A function code that is 3 more than a multiple
of 4 specifies a 128-bit length with the first
and third operands in a parameter list.

Figure 7-71 shows the function codes, operation
names, and operand lengths, and also symbols
that may be used to refer to the operations in dis-
cussions. For example, PLO.DCS may be used to
mean PERFORM LOCKED OPERATION with
function code 8. In the symbols, the letter “G”
indicates a 64-bit operand length, the letter “R”
indicates that some or all 64-bit operands are in
general registers, and the letter “X” indicates a
128-bit operand length.

The CPU can perform all of the operations speci-
fied by the function codes listed in Figure 7-71.
Function codes specifying operations that the CPU
can perform are called valid. Function codes that
have not been assigned to operations or that
specify operations that the CPU cannot perform
because the operations are not implemented
(installed) are called invalid.

Bit 55 of general register 0 is the test bit (T).
When bit 55 is zero, the function code in general
register 0 must be valid; otherwise, a specification
exception is recognized. When bit 55 is one, the
condition code is set to 0 if the function code is
valid or to 3 if the function code is invalid, and no
other operation is performed.

Figure 7-71. PERFORM LOCKED OPERATION Func-
tion Codes and Operations

Func-
tion
Code Operation

Operand
Length
(Bits)

Func-
tion
Symbol

0 Compare and load 32 CL

1 Same as 0 64 CLG

2 Same as 0 64 CLGR

3 Same as 0 128 CLX

4 Compare and swap 32 CS

5 Same as 4 64 CSG

6 Same as 4 64 CSGR

7 Same as 4 128 CSX

8 Double compare and
swap

32 DCS

9 Same as 8 64 DCSG

10 Same as 8 64 DCSGR

11 Same as 8 128 DCSX

12 Compare and swap and
store

32 CSST

13 Same as 12 64 CSSTG

14 Same as 12 64 CSSTGR

15 Same as 12 128 CSSTX

16 Compare and swap and
double store

32 CSDST

17 Same as 16 64 CSDSTG

18 Same as 16 64 CSDSTGR

19 Same as 16 128 CSDSTX

20 Compare and swap and
triple store

32 CSTST

21 Same as 20 64 CSTSTG

22 Same as 20 64 CSTSTGR

23 Same as 20 128 CSTSTX

Bits 32-54 of general register 0 must be all zeros;
otherwise, a specification exception is recognized.
When bit 55 of the register is one, this is the only
exception that can be recognized. Bits 0-31 of
general register 0 are ignored.

 Chapter 7. General Instructions 7-145

The lock to be used is represented by a program
lock token (PLT) whose logical address is speci-
fied in general register 1. In the 24-bit addressing
mode, the PLT address is bits 40-63 of general
register 1, and bits 0-39 of the register are
ignored. In the 31-bit addressing mode, the PLT
address is bits 33-63 of the register, and bits 0-32
of the register are ignored. In the 64-bit
addressing mode, the PLT address is bits 0-63 of
the register.

The contents of general registers 0 and 1
described above are as follows:

GR �
┌─/─┬───────────────────────┬─┬────────┐
│///│�����������������������│T│ FC │
└─/─┴───────────────────────┴─┴────────┘
� 32 56 63

GR 1 in 24-Bit Addressing Mode
┌─/──────────┬─────────────────────────┐
│////////////│ PLT Address │
└─/──────────┴─────────────────────────┘
� 4� 63

GR 1 in 31-Bit Addressing Mode
┌─/──┬─────────────────────────────────┐
│////│ PLT Address │
└─/──┴─────────────────────────────────┘
� 33 63

GR 1 in 64-Bit Addressing Mode
┌──────────────────────────────────────┐
│ PLT Address │
└──────────────────────────────────────┘
� 63

For the even-numbered function codes, including
0, the first-operand comparison value is in general
register R�. For the even-numbered function
codes beginning with 4, the first-operand replace-
ment value is in general register R� + 1, and R�
designates an even-odd pair of registers and must
designate an even-numbered register; otherwise,

a specification exception is recognized. For func-
tion codes 0 and 2, R� can be even or odd.

For function codes 0, 2, 12, and 14, the third
operand is in general register R�, and R� can be
even or odd.

For function codes 8 and 10, the third-operand
comparison value is in general register R�, the
third-operand replacement value is in general reg-
ister R� + 1, and R� designates an even-odd pair
of registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

For all function codes, the B� and D� fields of the
instruction specify the second-operand address.

For function codes 0, 2, 8, 10, 12, and 14, the B"
and D" fields of the instruction specify the fourth-
operand address.

For function codes 1, 3, 5, 7, 9, 11, 13, 15, and
16-23, the B" and D" fields of the instruction
specify the address of a parameter list that is used
by the instruction, and this address is not called
the fourth-operand address. The parameter list
contains odd-numbered operands, including com-
parison and replacement values, and addresses of
even-numbered operands other than the second
operand. In the access-register mode, the param-
eter list also contains access-list-entry tokens
(ALETs) associated with the even-
numbered-operand addresses.

In the access-register mode, for function codes
that cause use of a parameter list containing an
ALET, R� must not be zero; otherwise, a specifi-
cation exception is recognized.

The rules about R� and R�, and the use of the
address specified by B" and D", are summarized
in Figure 7-72 on page 7-147.

7-146 z/Architecture Principles of Operation

┌──┐
│Function │
│Codes Operation R� R� D"(B")│
│ │
│ � and 2 Compare and load EO EO Op4a │
│ 1 and 3 Compare and load - NZ PLa │
│ 4 and 6 Compare and swap E - - │
│ 5 and 7 Compare and swap - - PLa │
│ 8 and 1� Double compare E E Op4a │
│ and swap │
│ 9 and 11 Double compare - NZ PLa │
│ and swap │
│ 12 and 14 Compare and swap E EO Op4a │
│ and store │
│ 13 and 15 Compare and swap - NZ PLa │
│ and store │
│ 16 and 18 Compare and swap E NZ PLa │
│ and double store │
│ 17 and 19 Compare and swap - NZ PLa │
│ and double store │
│ 2� and 22 Compare and swap E NZ PLa │
│ and triple store │
│ 21 and 23 Compare and swap - NZ PLa │
│ and triple store │
├──┤
│Explanation: │
│ │
│ - Ignored. │
│ E Must be even. │
│ EO Can be even or odd. │
│ NZ Must be nonzero in the access-register │
│ mode. Ignored otherwise. │
│ Op4a D"(B") is operand-4 address. │
│ PLa D"(B") is parameter-list address. │
└──┘

Figure 7-72. Register Rules and D�(B�) Usage for
PERFORM LOCKED OPERATION

Figure 7-73 on page 7-148 shows the locations of
the operands (including operand comparison and
replacement values), operand addresses, and
parameter-list address used by the instruction.

Operand addresses in a parameter list, if used,
are in doublewords in the list. In the 24-bit
addressing mode, an operand address is bits
40-63 of a doubleword, and bits 0-39 of the
doubleword are ignored. In the 31-bit addressing
mode, an operand address is bits 33-63 of a
doubleword, and bits 0-32 of the doubleword are
ignored. In the 64-bit addressing mode, an
operand address is bits 0-63 of a doubleword.

In the access-register mode, access register 1
specifies the address space containing the
program lock token (PLT), access register B�
specifies the address space containing the second
operand, and access register B" specifies the
address space containing a fourth operand or a

parameter list as shown in Figure 7-73 on
page 7-148. Also, for an operand whose address
is in the parameter list, an access-list-entry token
(ALET) is in the list along with the address and is
used in the access-register mode to specify the
address space containing the operand.

In the access-register mode, if an access excep-
tion or PER storage-alteration event is recognized
for an operand whose address is in the parameter
list, the associated ALET in the parameter list is
loaded into access register R� when the exception
or event is recognized. Then, during the resulting
program interruption, if a value is due to be stored
as the exception access identification at real
location 160 or the PER access identification at
real location 161, R� is stored. If the instruction
execution is completed without the recognition of
an exception or event, the contents of access reg-
ister R� are unpredictable. When not in the
access-register mode, or when a parameter list
containing an ALET is not used, the contents of
access register R� remain unchanged.

The even-numbered (2, 4, 6, and 8) storage oper-
ands must be designated on an integral boundary,
which is a word boundary for function codes that
are a multiple of 4, a doubleword boundary for
function codes that are one or 2 more than a mul-
tiple of 4, or a quadword boundary for function
codes that are 3 more than a multiple of 4. A
parameter list, if used, must be designated on a
doubleword boundary. Otherwise, a specification
exception is recognized. The program-lock-token
(PLT) address in general register 1 does not have
a boundary-alignment requirement.

All unused fields in a parameter list should contain
all zeros; otherwise, the program may not operate
compatibly in the future.

A serialization operation is performed immediately
after the lock is obtained and again immediately
before it is released. However, values fetched
from the parameter list before the lock is obtained
are not necessarily refetched. A serialization
operation is not performed if the test bit, bit 55 of
general register 0, is one.

In the following figures showing the parameter lists
for the different function codes, the offsets shown
on the left are byte values.

 Chapter 7. General Instructions 7-147

┌────────────────────────────────┬────────────────────┬────────────┬────────┬────────────────────┐
│ │ │ Op3 │ │ Op5 Op7 │
│ Function │ │ or │ │ and and │
│ Codes� Operation │ Op1c Op1r Op2a │ Op3c Op3r │ Op4a │ Op6a Op8a PLa │
├────────────────────────────────┼────────────────────┼────────────┼────────┼────────────────────┤
│ � and 2 Compare and load │ R� - D�(B�) │ R� │ D"(B") │ - - - │
│ │ │ │ │ │
│ 1 and 3 Compare and load │ PL - D�(B�) │ PL │ PL │ - - D"(B") │
│ │ │ │ │ │
│ 4 and 6 Compare and swap │ R� R�+1 D�(B�) │ - │ - │ - - - │
│ │ │ │ │ │
│ 5 and 7 Compare and swap │ PL PL D�(B�) │ - │ - │ - - D"(B") │
│ │ │ │ │ │
│ 8 and 1� Double compare │ R� R�+1 D�(B�) │ R� R�+1 │ D"(B") │ - - - │
│ and swap │ │ │ │ │
│ │ │ │ │ │
│ 9 and 11 Double compare │ PL PL D�(B�) │ PL PL │ PL │ - - D"(B") │
│ and swap │ │ │ │ │
│ │ │ │ │ │
│ 12 and 14 Compare and swap │ R� R�+1 D�(B�) │ R� │ D"(B") │ - - - │
│ and store │ │ │ │ │
│ │ │ │ │ │
│ 13 and 15 Compare and swap │ PL PL D�(B�) │ PL │ PL │ - - D"(B") │
│ and store │ │ │ │ │
│ │ │ │ │ │
│ 16 and 18 Compare and swap │ R� R�+1 D�(B�) │ PL │ PL │ PL - D"(B") │
│ and double store │ │ │ │ │
│ │ │ │ │ │
│ 17 and 19 Compare and swap │ PL PL D�(B�) │ PL │ PL │ PL - D"(B") │
│ and double store │ │ │ │ │
│ │ │ │ │ │
│ 2� and 22 Compare and swap │ R� R�+1 D�(B�) │ PL │ PL │ PL PL D"(B") │
│ and triple store │ │ │ │ │
│ │ │ │ │ │
│ 21 and 23 Compare and swap │ PL PL D�(B�) │ PL │ PL │ PL PL D"(B") │
│ and triple store │ │ │ │ │
├────────────────────────────────┴────────────────────┴────────────┴────────┴────────────────────┤
│Explanation: │
│ │
│ � For function codes that are a multiple of 4 (including �) or one more than a multiple of │
│ 4, operands in general registers are in bit positions 32-63 of the registers, and bits │
│ �-31 of the registers are ignored and remain unchanged. For function codes that are two │
│ more than a multiple of 4, operands in general registers are in bit positions �-63 of the│
│ registers. │
│ - Operand, value, or address is not used in the operation. │
│ OpNc Operand-N comparison value. │
│ OpNr Operand-N replacement value. │
│ OpNa Operand-N address. │
│ PL Operand, value, or address is in the parameter list. │
│ PLa Parameter-list address. │
└──┘

Figure 7-73. Operand and Address Locations for PERFORM LOCKED OPERATION

Function Codes 0-3 (Compare and Load) The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-73.

7-148 z/Architecture Principles of Operation

The parameter list used for function code 1 has
the following format:

Parameter List for Function Code 1
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ Operand 3 │
 ├─────────────────────────────────┤
 48 │ │
 ├─────────────────────────────────┤
 56 │ │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 └─────────────────────────────────┘

The parameter list used for function code 3 has
the following format:

Parameter List for Function Code 3
 ┌─────────────────────────────────┐
� │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
8 │Operand-1 Comp. Value (continued)│

 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ │
 ├─────────────────────────────────┤
 32 │ Operand 3 │
 ├─────────────────────────────────┤
 4� │ Operand 3 (continued) │
 ├─────────────────────────────────┤
 48 │ │
 ├─────────────────────────────────┤
 56 │ │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 └─────────────────────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,

the third operand is replaced by the fourth
operand, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

Function Codes 4-7 (Compare and Swap)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-73 on page 7-148.

The parameter list used for function code 5 has
the following format:

Parameter List for Function Code 5
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ Operand-1 Replacement Value │
 └─────────────────────────────────┘

The parameter list used for function code 7 has
the following format:

Parameter List for Function Code 7
 ┌─────────────────────────────────┐
� │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
8 │Operand-1 Comp. Value (continued)│

 ├─────────────────────────────────┤
 16 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 24 │Operand-1 Repl. Value (continued)│
 └─────────────────────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the first-operand replacement value is stored at
the second-operand location, and condition code 0
is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

 Chapter 7. General Instructions 7-149

Function Codes 8-11 (Double Compare and
Swap)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-73 on page 7-148.

The parameter list used for function code 9 has
the following format:

Parameter List for Function Code 9
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ Operand-3 Comparison Value │
 ├─────────────────────────────────┤
 48 │ │
 ├─────────────────────────────────┤
 56 │ Operand-3 Replacement Value │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 └─────────────────────────────────┘

The parameter list used for function code 11 has
the following format:

Parameter List for Function Code 11
 ┌─────────────────────────────────┐
� │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
8 │Operand-1 Comp. Value (continued)│

 ├─────────────────────────────────┤
 16 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 24 │Operand-1 Repl. Value (continued)│
 ├─────────────────────────────────┤
 32 │ Operand-3 Comparison Value │
 ├─────────────────────────────────┤
 4� │Operand-3 Comp. Value (continued)│
 ├─────────────────────────────────┤
 48 │ Operand-3 Replacement Value │
 ├─────────────────────────────────┤
 56 │Operand-3 Repl. Value (continued)│
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 └─────────────────────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the third-operand comparison value is compared
to the fourth operand. When the third-operand
comparison value is equal to the fourth operand
(after the first-operand comparison value has been
found equal to the second operand), the first-
operand replacement value is stored at the
second-operand location, the third-operand
replacement value is stored at the fourth-operand
location, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

When the third-operand comparison value is not
equal to the fourth operand (after the first-operand
comparison value has been found equal to the
second operand), the third-operand comparison
value is replaced by the fourth operand, and con-
dition code 2 is set.

Function Codes 12-15 (Compare and Swap and
Store)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-73 on page 7-148.

The parameter list used for function code 13 has
the following format:

Parameter List for Function Code 13
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ │
 ├─────────────────────────────────┤
 56 │ Operand 3 │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 └─────────────────────────────────┘

7-150 z/Architecture Principles of Operation

The parameter list used for function code 15 has
the following format:

Parameter List for Function Code 15
 ┌─────────────────────────────────┐
� │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
8 │Operand-1 Comp. Value (continued)│

 ├─────────────────────────────────┤
 16 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 24 │Operand-1 Repl. Value (continued)│
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ Operand 3 │
 ├─────────────────────────────────┤
 56 │ Operand 3 (continued) │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 └─────────────────────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the first-operand replacement value is stored at
the second-operand location, the third operand is
stored at the fourth-operand location, and condi-
tion code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

Function Codes 16-19 (Compare and Swap and
Double Store)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-73 on page 7-148.

The parameter list used for function code 16 has
the following format:

Parameter List for Function Code 16
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
 8 │ │
 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ │
 ├────────────────┬────────────────┤
 56 │ │ Operand 3 │
 ├────────────────┼────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 ├─────────────────────────────────┤
 8� │ │
 ├────────────────┬────────────────┤
 88 │ │ Operand 5 │
 ├────────────────┼────────────────┤
 96 │ │ Operand-6 ALET │
 ├────────────────┴────────────────┤
1�4 │ Operand-6 Address │
 └─────────────────────────────────┘

 Chapter 7. General Instructions 7-151

The parameter list used for function code 17 has
the following format:

Parameter List for Function Code 17
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ │
 ├─────────────────────────────────┤
 56 │ Operand 3 │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 ├─────────────────────────────────┤
 8� │ │
 ├─────────────────────────────────┤
 88 │ Operand 5 │
 ├────────────────┬────────────────┤
 96 │ │ Operand-6 ALET │
 ├────────────────┴────────────────┤
1�4 │ Operand-6 Address │
 └─────────────────────────────────┘

The parameter list used for function code 18 has
the following format:

Parameter List for Function Code 18
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
 8 │ │
 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ │
 ├─────────────────────────────────┤
 56 │ Operand 3 │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 ├─────────────────────────────────┤
 8� │ │
 ├─────────────────────────────────┤
 88 │ Operand 5 │
 ├────────────────┬────────────────┤
 96 │ │ Operand-6 ALET │
 ├────────────────┴────────────────┤
1�4 │ Operand-6 Address │
 └─────────────────────────────────┘

7-152 z/Architecture Principles of Operation

The parameter list used for function code 19 has
the following format:

Parameter List for Function Code 19
 ┌─────────────────────────────────┐
� │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
8 │Operand-1 Comp. Value (continued)│

 ├─────────────────────────────────┤
 16 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 24 │Operand-1 Repl. Value (continued)│
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ Operand 3 │
 ├─────────────────────────────────┤
 56 │ Operand 3 (continued) │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 ├─────────────────────────────────┤
 8� │ Operand 5 │
 ├─────────────────────────────────┤
 88 │ Operand 5 (continued) │
 ├────────────────┬────────────────┤
 96 │ │ Operand-6 ALET │
 ├────────────────┴────────────────┤
1�4 │ Operand-6 Address │
 └─────────────────────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the first-operand replacement value is stored at
the second-operand location, the third operand is
stored at the fourth-operand location, the fifth
operand is stored at the sixth-operand location,
and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

Function Codes 20-23 (Compare and Swap and
Triple Store)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-73 on page 7-148.

The parameter list used for function code 20 has
the following format:

Parameter List for Function Code 2�
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
 8 │ │
 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ │
 ├────────────────┬────────────────┤
 56 │ │ Operand 3 │
 ├────────────────┼────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 ├─────────────────────────────────┤
 8� │ │
 ├────────────────┬────────────────┤
 88 │ │ Operand 5 │
 ├────────────────┼────────────────┤
 96 │ │ Operand-6 ALET │
 ├────────────────┴────────────────┤
1�4 │ Operand-6 Address │
 ├─────────────────────────────────┤
112 │ │
 ├────────────────┬────────────────┤
12� │ │ Operand 7 │
 ├────────────────┼────────────────┤
128 │ │ Operand-8 ALET │
 ├────────────────┴────────────────┤
136 │ Operand-8 Address │
 └─────────────────────────────────┘

 Chapter 7. General Instructions 7-153

The parameter list used for function code 21 has
the following format:

Parameter List for Function Code 21
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ │
 ├─────────────────────────────────┤
 56 │ Operand 3 │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 ├─────────────────────────────────┤
 8� │ │
 ├─────────────────────────────────┤
 88 │ Operand 5 │
 ├────────────────┬────────────────┤
 96 │ │ Operand-6 ALET │
 ├────────────────┴────────────────┤
1�4 │ Operand-6 Address │
 ├─────────────────────────────────┤
112 │ │
 ├─────────────────────────────────┤
12� │ Operand 7 │
 ├────────────────┬────────────────┤
128 │ │ Operand-8 ALET │
 ├────────────────┴────────────────┤
136 │ Operand-8 Address │
 └─────────────────────────────────┘

The parameter list used for function code 22 has
the following format:

Parameter List for Function Code 22
 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
 8 │ │
 ├─────────────────────────────────┤
 16 │ │
 ├─────────────────────────────────┤
 24 │ │
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ │
 ├─────────────────────────────────┤
 56 │ Operand 3 │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 ├─────────────────────────────────┤
 8� │ │
 ├─────────────────────────────────┤
 88 │ Operand 5 │
 ├────────────────┬────────────────┤
 96 │ │ Operand-6 ALET │
 ├────────────────┴────────────────┤
1�4 │ Operand-6 Address │
 ├─────────────────────────────────┤
112 │ │
 ├─────────────────────────────────┤
12� │ Operand 7 │
 ├────────────────┬────────────────┤
128 │ │ Operand-8 ALET │
 ├────────────────┴────────────────┤
136 │ Operand-8 Address │
 └─────────────────────────────────┘

7-154 z/Architecture Principles of Operation

The parameter list used for function code 23 has
the following format:

Parameter List for Function Code 23
 ┌─────────────────────────────────┐
� │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤
8 │Operand-1 Comp. Value (continued)│

 ├─────────────────────────────────┤
 16 │ Operand-1 Replacement Value │
 ├─────────────────────────────────┤
 24 │Operand-1 Repl. Value (continued)│
 ├─────────────────────────────────┤
 32 │ │
 ├─────────────────────────────────┤
 4� │ │
 ├─────────────────────────────────┤
 48 │ Operand 3 │
 ├─────────────────────────────────┤
 56 │ Operand 3 (continued) │
 ├────────────────┬────────────────┤
 64 │ │ Operand-4 ALET │
 ├────────────────┴────────────────┤
 72 │ Operand-4 Address │
 ├─────────────────────────────────┤
 8� │ Operand 5 │
 ├─────────────────────────────────┤
 88 │ Operand 5 (continued) │
 ├────────────────┬────────────────┤
 96 │ │ Operand-6 ALET │
 ├────────────────┴────────────────┤
1�4 │ Operand-6 Address │
 ├─────────────────────────────────┤
112 │ Operand 7 │
 ├─────────────────────────────────┤
12� │ Operand 7 (continued) │
 ├────────────────┬────────────────┤
128 │ │ Operand-8 ALET │
 ├────────────────┴────────────────┤
136 │ Operand-8 Address │
 └─────────────────────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the first-operand replacement value is stored at
the second-operand location, the third operand is
stored at the fourth-operand location, the fifth
operand is stored at the sixth-operand location,
the seventh operand is stored at the eighth-
operand location, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

Locking

A lock is obtained at the beginning of the opera-
tion and released at the end of the operation. The
lock obtained is represented by a program lock
token (PLT) whose logical address is specified in
general register 1 as already described.

A PLT is a value produced by a model-dependent
transformation of the PLT logical address.
Depending on the model, the PLT may be derived
directly from the PLT logical address or, when
DAT is on, from the real address that results from
transformation of the PLT logical address by DAT.
If DAT is used, access-register translation (ART)
precedes DAT in the access-register mode.

A PLT selects one of a model-dependent number
of locks within the configuration. Programs being
executed by different CPUs can be assured of
specifying the same lock only by specifying PLT
logical addresses that are the same and that can
be transformed to the same real address by the
different CPUs.

Since a model may or may not use ART and DAT
when forming a PLT, access-exception conditions
that can be encountered during ART and DAT
may or may not be recognized as exceptions.
There is no accessing of a location designated by
a PLT, but an addressing exception may be
recognized for the location. A protection excep-
tion is not recognized for any reason during proc-
essing of a PLT logical address.

The CPU can hold one lock at a time.

When PERFORM LOCKED OPERATION is exe-
cuted by this CPU and is to use a lock that is
already held by another CPU due to the execution
of a PERFORM LOCKED OPERATION instruction
by the other CPU, the execution by this CPU is
delayed until the lock is no longer held. An exces-
sive delay can be caused only by a machine mal-
function and is a machine-check condition.

The order in which multiple requests for the same
lock are satisfied is undefined.

A nonrecoverable failure of a CPU while holding a
lock may result in a machine check, entry into the
check-stop state, or system check stop. The
machine check is processing backup if all oper-
ands are undamaged or processing damage if

 Chapter 7. General Instructions 7-155

register operands are damaged. If a machine
check or the check-stop state is the result, either
no storage operands have been changed or else
all storage operands that were due to be changed
have been correctly changed, and, in either case,
the lock has been released. If the storage oper-
ands are not in either their correct original state or
their correct final state, the result is system check
stop.

Storage-Operand References

The accesses to the even-numbered storage oper-
ands appear to be word concurrent, as observed
by other CPUs, for function codes that are a mul-
tiple of 4 or doubleword concurrent for function
codes that are one, 2, or 3 more than a multiple of
4. The accesses to the doublewords in the
parameter list appear to be doubleword concur-
rent, as observed by other CPUs, regardless of
the function code.

As observed by other CPUs, all storage operands
may be tested for access exceptions before a lock
is obtained. (A channel program cannot observe
a lock.)

As observed by other CPUs, in all operations
except the compare-and-swap operation (which
does not have a fourth operand), the fourth
operand is accessed while the lock is held only if
a comparison of the first-operand comparison
value to the second operand while the lock is held
has indicated equality. In these operations, the
fourth operand is accessed before the lock is held
only if a comparison of the first-operand compar-
ison value to the second operand has indicated
equality and only if, when DAT is on, an INVALI-
DATE PAGE TABLE ENTRY instruction executed
by another CPU after the fetch of the second
operand will not be the cause of a page-
translation exception recognized for the fourth
operand, which it will if it sets to one the page-
invalid bit in the page-table entry for the fourth
operand when this CPU does not have a TLB
entry corresponding to that page-table entry. In
the compare-and-swap-and-double-store and
compare-and-swap-and-triple-store operations, the
sixth operand, and also the eighth operand in the
triple-store operation, are treated the same as the
fourth operand described above. The reason for
this specification about INVALIDATE PAGE
TABLE ENTRY is given in programming note 6 on
page 7-157.

Provided that accessing of an operand is not pro-
hibited as described in the preceding paragraph,
store-type access exceptions may be recognized
for the operand even when a store does not occur
because of the results of a comparison. A
storage-alteration PER event is recognized, and a
change bit is set, only if a store occurs.

When a comparison is made between an operand
comparison value and an operand before the lock
is obtained and indicates inequality, the lock still is
obtained. The condition code is set only as a
result of a comparison made while the lock is
held. When condition code 1 or 2 is set, the first-
operand comparison value or third-operand com-
parison value is replaced only by means of a fetch
of the second operand or fourth operand, respec-
tively, made while the lock is held, as observed by
other CPUs.

In those cases when a store is performed to the
second-operand location and one or more of the
fourth-, sixth-, and eighth-operand locations, the
store to the second-operand location is always
performed last, as observed by other CPUs and
by channel programs.

Stores into the parameter list may be performed
while the lock is held or after it has been released.

A serialization operation is performed immediately
after the lock is obtained and again immediately
before it is released. However, values fetched
from the parameter list before the lock is obtained
are not necessarily refetched. A serialization
operation is not performed if the test bit, bit 55 of
general register 0, is one.

Access exceptions may be recognized for
parameter-list locations even when the locations
are not required in the operation. The locations
are those beginning at offset 0 and extending up
through the last location defined for the function
code used.

For the compare-and-load and compare-and-swap
operations, the operation is suppressed on all
addressing and protection exceptions.

When a nonrecoverable failure of a CPU while
holding a lock results in a machine check or entry
into the check-stop state, either no storage oper-
ands have been changed or else all storage oper-

7-156 z/Architecture Principles of Operation

ands that were due to be changed have been cor-
rectly changed. The latter may be accomplished
by repeating stores that were performed success-
fully before the failure. Therefore, there may be
two single-access store references (possibly the
store part of an update reference and then a store
reference) to the store-type operands, with the first
value stored equal to the second value stored.

Resulting Condition Code:

When test bit is zero:

0 All comparisons equal; replacement value or
values stored or loaded

1 First-operand comparison not equal; first-
operand comparison value replaced

2 -- (all operations except double compare and
swap)

2 First-operand comparison equal but third-
operand comparison not equal; third-operand
comparison value replaced (double compare
and swap)

3 --

When test bit is one:

0 Function code valid
1 --
2 --
3 Function code invalid

 Program Exceptions:

� Access (for all function codes, fetch, except
addressing and protection for PLT location,
program lock token, model-dependent; for all
function codes, fetch and store, operand 2; for
odd-numbered function codes, fetch and store,
parameter list; for function codes 16, 18, 20,
and 22, fetch, parameter list; for function
codes 0-3, fetch, operand 4; for function
codes 8-11, fetch and store, operand 4; for
function codes 12-23, store, operand 4; for
function codes 16-23, store, operand 6; for
function codes 20-23, store, operand 8)

 � Specification

Programming Notes:

1. An example of the use of the PERFORM
LOCKED OPERATION instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. When the contents of storage locations are
changed by PERFORM LOCKED OPERA-

TION instructions that are executed concur-
rently by different CPUs and that use the
same lock, the changes to operands not in the
parameter list will be completed by one of the
CPUs before they are begun by the other
CPU, depending on which CPU first obtains
the lock.

3. The compare-and-swap functions of
PERFORM LOCKED OPERATION are not
performed by means of interlocked-update ref-
erences. Concurrent store references by
another CPU to the storage operands, even if
they are interlocked-update references, will
interfere unpredictably, in terms of the
resulting register and storage contents, with
the intended operation of PERFORM
LOCKED OPERATION. All changes to the
contents of the storage locations must be
made by PERFORM LOCKED OPERATION
instructions that use the same lock, if predict-
able storage results are to be obtained.

4. Because a nonrecoverable failure of a CPU
while executing PERFORM LOCKED OPERA-
TION may cause two stores of the same value
to a store-type operand, a concurrent store
made by another CPU to the same operand
but not by executing PERFORM LOCKED
OPERATION may be lost.

5. When programs in different address spaces
are using the same lock when DAT is on, the
programs must ensure that they are using
PLT logical addresses that are the same and
that will be translated to the same real
address regardless of the address space in
which a translation occurs. Otherwise, the
programs may in fact use different locks.

6. The section “Storage-Operand References” on
page 7-156 contains a specification con-
cerning the INVALIDATE PAGE TABLE
ENTRY (IPTE) instruction. The need for the
specification is shown by the following
example that is possible without the specifica-
tion.

a. CPU 1 begins to execute a PERFORM
LOCKED OPERATION instruction with
function code 8, which is referred to as
PLO.DCS. Operand 2 is a location, Qtail,
containing the address (the first-operand
comparison value) of the last element,
element X, on a queue, and operand 4 is
a location in that element containing the

 Chapter 7. General Instructions 7-157

address (0, the third-operand comparison
value) of the next (nonexisting) element
on the queue. The purpose of the PLO
instruction is to enqueue an element by
placing the address of the element (the
first-operand and third-operand replace-
ment values) in both operand 2 and
operand 4. With the lock not held, the
PLO instruction fetches operand 2 and
compares it, with an equal result, to the
first-operand comparison value.

b. CPU 2 completely executes a PLO.DCS
instruction to dequeue element X, which is
the only element on the queue, from the
queue. The PLO instruction stores 0 in
Qtail and also in Qhead, which is a
location containing the address of the first
element on the queue. The program on
CPU 2 processes the dequeued element
and then invokes the freemain service of
the control program to deallocate the
storage containing the element. The
freemain service uses IPTE to set the
page-invalid bit to one in the page-table
entry for the page containing element X.
The IPTE instruction immediately sets the
page-invalid bit to one, and then it waits
for the signal that all other CPUs have
cleared their TLBs of entries corre-
sponding to the page.

c. CPU 1 attempts to fetch operand 4. CPU
1 does not have a TLB entry for the
operand-4 page. CPU 1 signals CPU 2
that the CPU 2 IPTE instruction may
proceed.

d. CPU 2 completes its IPTE instruction.
The program on CPU 2 sets a software bit
in the page-table entry to one to indicate
that the page has been freemained and
that, therefore, a reference to the page
should result in presentation by the control
program of an addressing exception to the
program making the reference.

e. CPU 1 attempts to do DAT for operand 4
and sees that the page-invalid bit is one.
CPU 1 performs a program interruption
indicating a page-translation exception.
The exception handler sees that the soft-
ware bit indicating freemained is one, and
it presents an addressing exception to the
CPU 1 program, which causes an abend
of the program.

If CPU 1 had had a TLB entry for the page, its
PLO instruction would not have been inter-
rupted, and the comparison of the first-
operand comparison value to the second
operand while the lock was held would indi-
cate that CPU 2 had changed the second
operand. The PLO instruction would set con-
dition code 1. If CPU 1 did not have a TLB
entry but IPTE could not set the page-invalid
bit to one while CPU 1 was executing an
instruction, CPU 1 could successfully translate
the operand-4 address and, again, discover
while the lock was held that operand 2 had
changed. The case when operand 2 points to
element X but the freemained bit for the
element-X page is one is a programming
error.

7. Figure 7-74 on page 7-159 summarizes the
results of the operation.

7-158 z/Architecture Principles of Operation

┌────────┬────────┬────┬───┐
│ │ │Cond│ │
│Op1c=Op2│Op3c=Op4│Code│ Action │
├────────┴────────┴────┴───┤
│ Function Codes �-3 (Compare and Load) │
│ │
│ No │ - │ 1 │ Op2 ──� Op1c │
│ Yes │ - │ � │ Op4 ──� Op3 │
├────────┴────────┴────┴───┤
│ Function Codes 4-7 (Compare and Swap) │
│ │
│ No │ - │ 1 │ Op2 ──� Op1c │
│ Yes │ - │ � │ Op1r ──� Op2 │
├────────┴────────┴────┴───┤
│ Function Codes 8-11 (Double Compare and Swap) │
│ │
│ No │ - │ 1 │ Op2 ──� Op1c │
│ Yes │ No │ 2 │ Op4 ──� Op3c │
│ Yes │ Yes │ � │ Op1r ──� Op2 Op3r ──� Op4 │
├────────┴────────┴────┴───┤
│ Function Codes 12-15 (Compare and Swap and Store) │
│ │
│ No │ - │ 1 │ Op2 ──� Op1c │
│ Yes │ - │ � │ Op1r ──� Op2 Op3 ──� Op4 │
├────────┴────────┴────┴───┤
│ Function Codes 16-19 (Compare and Swap and Double Store) │
│ │
│ No │ - │ 1 │ Op2 ──� Op1c │
│ Yes │ - │ � │ Op1r ──� Op2 Op3 ──� Op4 │
│ │ │ │ Op5 ──� Op6 │
├────────┴────────┴────┴───┤
│ Function Codes 2�-23 (Compare and Swap and Triple Store) │
│ │
│ No │ - │ 1 │ Op2 ──� Op1c │
│ Yes │ - │ � │ Op1r ──� Op2 Op3 ──� Op4 │
│ │ │ │ Op5 ──� Op6 │
│ │ │ │ Op7 ──� Op8 │
├────────┴────────┴────┴───┤
│Explanation: │
│ │
│ - Not applicable. │
│ OpNc Operand-N comparison value. │
│ OpNr Operand-N replacement value. │
└──┘

Figure 7-74. Summary of PERFORM LOCKED OPERATION Results

ROTATE LEFT SINGLE LOGICAL

RLL R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '1D' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

RLLG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '1C' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The 32-bit or 64-bit third operand is rotated left the
number of bits specified by the second-operand
address, and the result is placed at the first-
operand location. The third operand remains
unchanged in general register R�. For ROTATE
LEFT SINGLE LOGICAL (RLL), bits 0-31 of
general registers R� and R� remain unchanged.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be rotated. The
remainder of the address is ignored.

 Chapter 7. General Instructions 7-159

For RLL, the first and third operands are in bit
positions 32-63 of general registers R� and R�,
respectively. For RLLG, the operands are in bit
positions 0-63 of the registers.

All 32 or 64 bits of the third operand participate in
a left shift. Each bit shifted out of the leftmost bit
position of the operand reenters in the rightmost
bit position of the operand.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

 SEARCH STRING

SRST R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B25E' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The second operand is searched until a specified
character is found, the end of the second operand
is reached, or a CPU-determined number of bytes
have been searched, whichever occurs first. The
CPU-determined number is at least 256. The
result is indicated in the condition code.

The location of the leftmost byte of the second
operand is designated by the contents of general
register R�. The location of the first byte after the
second operand is designated by the contents of
general register R�.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

In the access-register mode, the address space
containing the second operand is specified only by
means of access register R�. The contents of
access register R� are ignored.

The character for which the search occurs is spec-
ified in bit positions 56-63 of general register 0.
Bit positions 32-55 of general register 0 are
reserved for possible future extensions and must
contain all zeros; otherwise, a specification excep-
tion is recognized.

The operation proceeds left to right and ends as
soon as the specified character has been found in
the second operand, the address of the next
second-operand byte to be examined equals the
address in general register R�, or a
CPU-determined number of second-operand bytes
have been examined, whichever occurs first. The
CPU-determined number is at least 256. When
the specified character is found, condition code 1
is set. When the address of the next second-
operand byte to be examined equals the address
in general register R�, condition code 2 is set.
When a CPU-determined number of second-
operand bytes have been examined, condition
code 3 is set. When the CPU-determined number
of second-operand bytes have been examined
and the address of the next second-operand byte
is in general register R�, it is unpredictable
whether condition code 2 or 3 is set.

When condition code 1 is set, the address of the
specified character found in the second operand is
placed in general register R�, and the contents of
general register R� remain unchanged. When
condition code 3 is set, the address of the next
byte to be processed in the second operand is
placed in general register R�, and the contents of
general register R� remain unchanged. When
condition code 2 is set, the contents of general
registers R� and R� remain unchanged. When-
ever an address is placed in a general register,
bits 32-39 of the register, in the 24-bit addressing
mode, or bit 32, in the 31-bit addressing mode,
are set to zeros. Bits 0-31 of the R� and R� reg-
isters always remain unchanged in the 24-bit or
31-bit mode.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

Access exceptions for the second operand are
recognized only for that portion of the operand
that is necessarily examined.

7-160 z/Architecture Principles of Operation

The storage-operand-consistency rules are the
same as for the COMPARE LOGICAL LONG
instruction.

Resulting Condition Code:

0 --
1 Specified character found; general register R�

updated with address of character; general
register R� unchanged

2 Specified character not found in entire second
operand; general registers R� and R�
unchanged

3 CPU-determined number of bytes searched;
general register R� unchanged; general reg-
ister R� updated with address of next byte

 Program Exceptions:

� Access (fetch, operand 2)
 � Specification

Programming Notes:

1. Examples of the use of the SEARCH STRING
instruction are given in Appendix A, “Number
Representation and Instruction-Use Examples”

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the search. The program need not
determine the number of bytes that were
searched.

3. When the address in general register R�
equals the address in general register R�,
condition code 2 is set immediately, and
access exceptions are not recognized. When
the address in general register R� is less than
the address in general register R�, condition
code 2 can be set only if the operand wraps
around from the top of storage to location 0.

4. R� or R� may be zero, in which case general
register 0 is treated as containing an address
and also the specified character.

5. When it is desired to search a string of
unknown length for its ending character, and
assuming that (1) the string does not start
below location 256 (or below location 1 if the
ending character is 00 hex), (2) the string
does not wrap around to location 0, and (3)
the specified character in general register 0
need not be preserved, then R� can be zero
in order to have SEARCH STRING use only
two general registers instead of three.

 SET ACCESS

SAR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B24E' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The contents of bit positions 32-63 of general reg-
ister R� are placed in access register R�.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

SET ADDRESSING MODE

SAM24 [E]

┌────────────────┐
│ '�1�C' │
└────────────────┘
� 15

SAM31 [E]

┌────────────────┐
│ '�1�D' │
└────────────────┘
� 15

SAM64 [E]

┌────────────────┐
│ '�1�E' │
└────────────────┘
� 15

The addressing mode is set by setting the
extended-addressing-mode bit, bit 31 of the
current PSW, and the basic-addressing-mode bit,
bit 32 of the current PSW, as follows:

The instruction address in the PSW is updated
under the control of the new addressing mode, as
follows. The value 2 (the instruction length) is
added to the contents of bit positions 64-127 of
the PSW, or the value 4 is added if the instruction
is the target of EXECUTE. In either case, a carry
out of bit position 0 is ignored. Then bits 64-103

Instruc-
tion

PSW Bit
31

PSW Bit
32

Resulting
Addressing Mode

SAM24 0 0 24-bit

SAM31 0 1 31-bit

SAM64 1 1 64-bit

 Chapter 7. General Instructions 7-161

of the PSW are set to zeros if the new addressing
mode is the 24-bit mode, or bits 64-96 are set to
zeros if the new addressing mode is the 31-bit
mode.

The instruction is completed only if the new
addressing mode and the unupdated instruction
address in the PSW are a valid combination.
When the new addressing mode is to be the 24-bit
mode, bits 64-103 of the unupdated PSW must be
all zeros, or, when the new addressing mode is to
be the 31-bit mode, bits 64-96 of the unupdated
PSW must be all zeros; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Specification (SAM24 and SAM31 only)
 � Trace

Programming Note: Checking the unupdated
instruction address prevents completion in two
major cases: the instruction is located at address
2�� or above and the new addressing mode is to
be the 24-bit mode, or the instruction is located at
address 2�� or above and the new addressing
mode is to be the 24-bit or 31-bit mode. In these
cases, if the instruction were completed, the
updating of the instruction address under the
control of the new addressing mode would cause
one or more leftmost bits of the address to be set
to zeros, which would cause the next instruction to
be fetched from other than the next sequential
location. This action is sometimes called a “wild
branch.” A wild branch still can occur if the instruc-
tion is located at 2�� - 2 or 2�� - 2, or at 2�� - 4
or 2�� - 4 if EXECUTE is used.

SET PROGRAM MASK

SPM R� [RR]

┌────────┬────┬────┐
│ '�4' │ R� │////│
└────────┴────┴────┘
� 8 12 15

The first operand is used to set the condition code
and the program mask of the current PSW.

Bits 34 and 35 of general register R� replace the
condition code, and bits 36-39 replace the
program mask. Bits 0-33 and 40-63 of general
register R� are ignored.

Condition Code: The code is set as specified by
bits 34 and 35 of general register R�.

 Program Exceptions: None.

Programming Notes:

1. Bits 34-39 of the general register may have
been loaded from the PSW by execution of
BRANCH AND LINK in the 24-bit addressing
mode or by execution of INSERT PROGRAM
MASK in either the 24-bit or 31-bit addressing
mode.

2. SET PROGRAM MASK permits setting of the
condition code and the mask bits in either the
problem state or the supervisor state.

3. The program should take into consideration
that the setting of the program mask can have
a significant effect on subsequent execution of
the program. Not only do the four mask bits
control whether the corresponding inter-
ruptions occur, but the exponent-underflow
and significance masks also determine the
result which is obtained.

SHIFT LEFT DOUBLE

SLDA R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '8F' │ R� │////│ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The 63-bit numeric part of the signed first operand
is shifted left the number of bits specified by the
second-operand address, and the result is placed
at the first-operand location. The first operand
consists of bits 32-63 of general register R� fol-
lowed on the right by bits 32-63 of general register
R� + 1.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign bit of the first operand,

7-162 z/Architecture Principles of Operation

bit 32 of the even-numbered register, remains
unchanged. Bit position 32 of the odd-numbered
register contains a numeric bit, which participates
in the shift in the same manner as the other
numeric bits. Zeros are supplied to the vacated
bit positions on the right. Bits 0-31 of general reg-
isters R� and R� + 1 remain unchanged.

If one or more bits unlike the sign bit are shifted
out of bit position 33 of the even-numbered reg-
ister, an overflow occurs, and condition code 3 is
set. If the fixed-point-overflow mask bit is one, a
program interruption for fixed-point overflow
occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

 � Fixed-point overflow
 � Specification

Programming Notes:

1. An example of the use of the SHIFT LEFT
DOUBLE instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The eight shift instructions that are in both
ESA/390 and z/Architecture provide the fol-
lowing three pairs of alternatives for 32 bits in
one general register or, for double, in each of
two general registers: left or right, single or
double, and signed or logical. The four addi-
tional shift instructions in z/Architecture
provide left or right, signed or logical shifts of
64 bits in one general register. The signed
shifts differ from the logical shifts in that, in
the signed shifts, overflow is recognized, the
condition code is set, and the leftmost bit par-
ticipates as a sign.

3. A zero shift amount in the two signed double-
shift operations provides a double-length sign
and magnitude test.

4. The base register participating in the gener-
ation of the second-operand address permits
indirect specification of the shift amount by
means of placement of the shift amount in the

base register. A zero in the B� field indicates
the absence of indirect shift specification.

SHIFT LEFT DOUBLE LOGICAL

SLDL R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '8D' │ R� │////│ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The 64-bit first operand is shifted left the number
of bits specified by the second-operand address,
and the result is placed at the first-operand
location. The first operand consists of bits 32-63
of general register R� followed on the right by bits
32-63 of general register R� + 1.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 32 of the
even-numbered register are not inspected and are
lost. Zeros are supplied to the vacated bit posi-
tions on the right. Bits 0-31 of general registers
R� and R� + 1 remain unchanged.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Specification

SHIFT LEFT SINGLE

SLA R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '8B' │ R� │////│ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

SLAG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '�B' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

 Chapter 7. General Instructions 7-163

For SHIFT LEFT SINGLE (SLA), the 31-bit
numeric part of the signed first operand is shifted
left the number of bits specified by the second-
operand address, and the result is placed at the
first-operand location. Bits 0-31 of general reg-
ister R� remain unchanged.

For SHIFT LEFT SINGLE (SLAG), the 63-bit
numeric part of the signed third operand is shifted
left the number of bits specified by the second-
operand address, and the result, with the sign bit
of the third operand appended on its left, is placed
at the first-operand location. The third operand
remains unchanged in general register R�.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

For SLA, the first operand is treated as a 32-bit
signed binary integer in bit positions 32-63 of
general register R�. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the left shift.

For SLAG, the first and third operands are treated
as 64-bit signed binary integers in bit positions
0-63 of general registers R� and R�, respectively.
The sign of the first operand is set equal to the
sign of the third operand. All 63 numeric bits of
the third operand participate in the left shift.

For SLA or SLAG, zeros are supplied to the
vacated bit positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 33, for SLA, or 1, for SLAG, an
overflow occurs, and condition code 3 is set. If
the fixed-point-overflow mask bit is one, a program
interruption for fixed-point overflow occurs.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

 � Fixed-point overflow

Programming Notes:

1. An example of the use of the SHIFT LEFT
SINGLE instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. For SHIFT LEFT SINGLE (SLA), for numbers
with a value greater than or equal to -2�� and
less than 2��, a left shift of one bit position is
equivalent to multiplying the number by 2. For
SHIFT LEFT SINGLE (SLAG), the comparable
values are -2�� and 2��.

3. For SHIFT LEFT SINGLE (SLA), shift
amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of the maximum negative
number or zero, depending on whether or not
the initial contents were negative. For SHIFT
LEFT SINGLE (SLAG), a shift amount of 63
causes the same effect.

SHIFT LEFT SINGLE LOGICAL

SLL R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '89' │ R� │////│ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

SLLG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '�D' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

For SHIFT LEFT SINGLE LOGICAL (SLL), the
32-bit first operand is shifted left the number of
bits specified by the second-operand address, and
the result is placed at the first-operand location.
Bits 0-31 of general register R� remain
unchanged.

For SHIFT LEFT SINGLE LOGICAL (SLLG), the
64-bit third operand is shifted left the number of
bits specified by the second-operand address, and
the result is placed at the first-operand location.
The third operand remains unchanged in general
register R�.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

7-164 z/Architecture Principles of Operation

For SLL, the first operand is in bit positions 32-63
of general register R�. All 32 bits of the operand
participate in the left shift.

For SLLG, the first and third operands are in bit
positions 0-63 of general registers R� and R�,
respectively. All 64 bits of the third operand par-
ticipate in the left shift.

For SLL or SLLG, zeros are supplied to the
vacated bit positions on the right.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

SHIFT RIGHT DOUBLE

SRDA R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '8E' │ R� │////│ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The 63-bit numeric part of the signed first operand
is shifted right the number of bits specified by the
second-operand address, and the result is placed
at the first-operand location. The first operand
consists of bits 32-63 of general register R� fol-
lowed on the right by bits 32-63 of general register
R� + 1.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign bit of the first operand,
bit 32 of the even-numbered register, remains
unchanged. Bit position 32 of the odd-numbered
register contains a numeric bit, which participates
in the shift in the same manner as the other
numeric bits. Bits shifted out of bit position 63 of
the odd-numbered register are not inspected and
are lost. Bits equal to the sign are supplied to the

vacated bit positions on the left. Bits 0-31 of
general registers R� and R� + 1 remain
unchanged.

Resulting Condition Code:

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

 Program Exceptions:

 � Specification

SHIFT RIGHT DOUBLE LOGICAL

SRDL R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '8C' │ R� │////│ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

The 64-bit first operand is shifted right the number
of bits specified by the second-operand address,
and the result is placed at the first-operand
location. The first operand consists of bits 32-63
of general register R� followed on the right by bits
32-63 of general register R� + 1.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 63 of the odd-
numbered register are not inspected and are lost.
Zeros are supplied to the vacated bit positions on
the left. Bits 0-31 of general registers R� and
R� + 1 remain unchanged.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Specification

 Chapter 7. General Instructions 7-165

SHIFT RIGHT SINGLE

SRA R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '8A' │ R� │////│ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

SRAG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '�A' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

For SHIFT RIGHT SINGLE (SRA), The 31-bit
numeric part of the signed first operand is shifted
right the number of bits specified by the second-
operand address, and the result is placed at the
first-operand location. Bits 0-32 of general reg-
ister R� remain unchanged.

For SHIFT RIGHT SINGLE (SRAG), the 63-bit
numeric part of the signed third operand is shifted
right the number of bits specified by the second-
operand address, and the result, with the sign bit
of the third operand appended on its left, is placed
at the first-operand location. The third operand
remains unchanged in general register R�.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

For SRA, The first operand is treated as a 32-bit
signed binary integer in bit positions 32-63 of
general register R�. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the right shift.

For SRAG, the first and third operands are treated
as 64-bit signed binary integers in bit positions
0-63 of general registers R� and R�, respectively.
The sign of the first operand is set equal to the
sign of the third operand. All 63 numeric bits of
the third operand participate in the right shift.

For SRA or SRAG, bits shifted out of bit position
63 are not inspected and are lost. Bits equal to
the sign are supplied to the vacated bit positions
on the left.

Resulting Condition Code:

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

 Program Exceptions: None.

Programming Notes:

1. A right shift of one bit position is equivalent to
division by 2 with rounding downward. When
an even number is shifted right one position,
the result is equivalent to dividing the number
by 2. When an odd number is shifted right
one position, the result is equivalent to
dividing the next lower number by 2. For
example, +5 shifted right by one bit position
yields +2, whereas -5 yields -3.

2. For SHIFT RIGHT SINGLE (SRA), shift
amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of -1 or zero, depending on
whether or not the initial contents were nega-
tive. For SHIFT RIGHT SINGLE (SRAG), a
shift amount of 63 causes the same effect.

SHIFT RIGHT SINGLE LOGICAL

SRL R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '88' │ R� │////│ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

SRLG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '�C' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

For SHIFT RIGHT SINGLE LOGICAL (SRL), the
32-bit first operand is shifted right the number of
bits specified by the second-operand address, and
the result is placed at the first-operand location.
Bits 0-31 of general register R� remain
unchanged.

For SHIFT RIGHT SINGLE LOGICAL (SRLG), the
64-bit third operand is shifted right the number of
bits specified by the second-operand address, and
the result is placed at the first-operand location.
The third operand remains unchanged in general
register R�.

7-166 z/Architecture Principles of Operation

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

For SRL, the first operand is in bit positions 32-63
of general register R�. All 32 bits of the operand
participate in the right shift.

For SRLG, the first and third operands are in bit
positions 0-63 of general registers R� and R�,
respectively. All 64 bits of the third operand par-
ticipate in the right shift.

For SRL or SRLG, bits shifted out of bit position
63 are not inspected and are lost. Zeros are sup-
plied to the vacated bit positions on the left.

Condition Code: The code remains unchanged.

 Program Exceptions: None.

 STORE

ST R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '5�' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| STY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '5�' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

STG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '24' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first operand is placed unchanged at the
second-operand location.

| For STORE (ST, STY), the operands are 32 bits,
and, for STORE (STG), the operands are 64 bits.

| The displacement for ST is treated as a 12-bit
| unsigned binary integer. The displacement for
| STY and STG is treated as a 20-bit signed binary
| integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
| � Operation (STY, if the long-displacement
| facility is not installed)

STORE ACCESS MULTIPLE

STAM R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '9B' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| STAMY R�,D�(X�,B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '9B' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

The contents of the set of access registers starting
with access register R� and ending with access
register R� are stored at the locations designated
by the second-operand address.

The storage area where the contents of the
access registers are placed starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of access registers specified. The con-
tents of the access registers are stored in
ascending order of their register numbers, starting
with access register R� and continuing up to and
including access register R�, with access register
0 following access register 15. The contents of
the access registers remain unchanged.

| The displacement for STAM is treated as a 12-bit
| unsigned binary integer. The displacement for
| STAMY is treated as a 20-bit signed binary
| integer.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
| � Operation (STAMY, if the long-displacement
| facility is not installed)

 � Specification

 Chapter 7. General Instructions 7-167

 STORE CHARACTER

STC R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '42' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| STCY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '72' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

Bits 56-63 of general register R� are placed
unchanged at the second-operand location. The
second operand is one byte in length.

| The displacement for STC is treated as a 12-bit
| unsigned binary integer. The displacement for
| STCY is treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
| � Operation (STCY, if the long-displacement
| facility is not installed)

STORE CHARACTERS UNDER
MASK

STCM R�,M�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'BE' │ R� │ M� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| STCMY R�,M�,D�(B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ M� │ B� │DL� │ DH� │ '2D' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

STCMH R�,M�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ M� │ B� │DL� │ DH� │ '2C' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Bytes selected from general register R� under
control of a mask are placed at contiguous byte

locations beginning at the second-operand
address.

The contents of the M� field are used as a mask.
These four bits, left to right, correspond one for
one with four bytes, left to right, of general register
R�. For STORE CHARACTERS UNDER MASK

| (STCM, STCMY), the four bytes to which the
mask bits correspond are in bit positions 32-63 of
general register R�. For STORE CHARACTERS
UNDER MASK (STCMH), the four bytes are in the
high-order half, bit positions 0-31, of the register.
The bytes corresponding to ones in the mask are
placed in the same order at successive and con-
tiguous storage locations beginning at the second-
operand address. When the mask is not zero, the
length of the second operand is equal to the
number of ones in the mask. The contents of the
general register remain unchanged.

When the mask is not zero, exceptions associated
with storage-operand accesses are recognized
only for the number of bytes specified by the
mask.

When the mask is zero, the single byte designated
by the second-operand address remains
unchanged; however, on some models, the con-
tents may be fetched and subsequently stored
back unchanged at the same storage location.
This update appears to be an interlocked-update
reference as observed by other CPUs.

| The displacement for STCM is treated as a 12-bit
| unsigned binary integer. The displacement for
| STCMY and STCMH is treated as a 20-bit signed
| binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
| � Operation (STCMY, if the long-displacement
| facility is not installed)

Programming Notes:

1. An example of the use of the STORE CHAR-
ACTERS UNDER MASK instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. STORE CHARACTERS UNDER MASK
| (STCM, STCMY), with a mask of 0111 may

7-168 z/Architecture Principles of Operation

be used to store a three-byte address, for
example, in modifying the address in a CCW.

3. STORE CHARACTERS UNDER MASK
| (STCM, STCMY) with a mask of 1111, 0011,

or 0001 performs the same function as
STORE (ST), STORE HALFWORD, or
STORE CHARACTER, respectively.
However, on most models, the performance of
STORE CHARACTERS UNDER MASK is
slower.

4. Using STORE CHARACTERS UNDER MASK
with a zero mask should be avoided since this
instruction, depending on the model, may
perform a fetch and store of the single byte
designated by the second-operand address.
This reference is not interlocked against
accesses by channel programs. In addition, it
may cause any of the following to occur for
the byte designated by the second-operand
address: a PER storage-alteration event may
be recognized; access exceptions may be
recognized; and, provided no access
exceptions exist, the change bit may be set to
one. Because the contents of storage remain
unchanged, the change bit may or may not be
one when a PER storage-alteration event is
recognized.

 STORE CLOCK

STCK D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2�5' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The current value of bits 0-63 of the TOD clock is
stored in the eight-byte field designated by the
second-operand address, provided the clock is in
the set, stopped, or not-set state.

When the clock is stopped, zeros are stored in
positions to the right of the rightmost bit position
that is incremented when the clock is running.
When the value of a running clock is stored,
nonzero values may be stored in positions to the
right of the rightmost incremented bit; this is to
ensure that a unique value is stored.

Zeros are stored for the rightmost bit positions that
are not provided by the clock.

Zeros are stored at the operand location when the
clock is in the error state or the not-operational
state.

The quality of the clock value stored by the
instruction is indicated by the resultant condition-
code setting.

A serialization function is performed before the
value of the clock is fetched and again after the
value is placed in storage.

Resulting Condition Code:

0 Clock in set state
1 Clock in not-set state
2 Clock in error state
3 Clock in stopped state or not-operational state

 Program Exceptions:

� Access (store, operand 2)

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; hence, for timing
applications involving human responses, the
leftmost clock word may provide sufficient
resolution.

2. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in
elapsed-time measurements and as a valid
time-of-day and calendar indication. Condition
code 1 indicates that the clock value is the
elapsed time since the power for the clock
was turned on. In this case, the value may be
used in elapsed-time measurements but is not
a valid time-of-day indication. Condition
codes 2 and 3 mean that the value provided
by STORE CLOCK cannot be used for time
measurement or indication.

3. Condition code 3 indicates that the clock is in
either the stopped state or the not-operational
state. These two states can normally be dis-
tinguished because an all-zero value is stored
when the clock is in the not-operational state.

4. If a problem program written for z/Architecture
is to be executed also on a system in the
System/370 mode, then the program should
take into account that, in the System/370
mode, the value stored when the condition
code is 2 is not necessarily zero.

 Chapter 7. General Instructions 7-169

STORE CLOCK EXTENDED

STCKE D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B278' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The current value of bits 0-103 of the TOD clock
is stored in byte positions 1-13 of the sixteen-byte
field designated by the second-operand address,
provided the clock is in the set, stopped, or not-set
state. Zeros are stored in byte position 0. The
TOD programmable field, bits 16-31 of the TOD
programmable register, is stored in byte positions
14 and 15.

The operand just described has the following
format:

┌─────┬─────────────────────────────┬──────────┐
│ │ │Programm- │
│Zeros│ TOD Clock │able Field│
└─────┴─────────────────────────────┴──────────┘
� 8 112 127

When the clock is stopped, zeros are stored in the
clock value in positions to the right of the right-
most bit position that is incremented when the
clock is running. The programmable field still is
stored.

When the value of a running clock is stored, the
value in bit positions 64-103 of the clock (bit posi-
tions 72-111 of the storage operand) is always
nonzero; this ensures that values stored by
STORE CLOCK EXTENDED are unique when
compared with values stored by STORE CLOCK
and extended with zeros.

Zeros are stored at the operand location when the
clock is in the error state or the not-operational
state.

The quality of the clock value stored by the
instruction is indicated by the resultant condition-
code setting.

A serialization function is performed before the
value of the clock is fetched and again after the
value is placed in storage.

Resulting Condition Code:

0 Clock in set state
1 Clock in not-set state
2 Clock in error state
3 Clock in stopped state or not-operational state

 Program Exceptions:

� Access (store, operand 2)

Programming Notes:

1. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in
elapsed-time measurements and as a valid
time-of-day and calendar indication. Condition
code 1 indicates that the clock value is the
elapsed time since the power for the clock
was turned on. In this case, the value may be
used in elapsed-time measurements but is not
a valid time-of-day indication. Condition
codes 2 and 3 mean that the value provided
by STORE CLOCK EXTENDED cannot be
used for time measurement or indication.

2. Programming notes beginning on page 4-39
show hex values related to the value of the
TOD clock as it is stored by the STORE
CLOCK instruction. Notes 3-5, below, are
repetitions of those notes except with the text
and hex values adjusted so they apply to bits
0-71 of the value stored by STORE CLOCK
EXTENDED.

3. The following chart shows the time interval
between instants at which various bits of the
TOD-clock value stored by STORE CLOCK
EXTENDED are stepped. This time value
may also be considered as the weighted time
value that the bit, when one, represents. The
bit numbers are those of the STORE CLOCK
EXTENDED operand.

7-170 z/Architecture Principles of Operation

┌──────┬──────────────────────────┐
│ │ Stepping Interval │
│STCKE ├────┬─────┬────┬──────────┤
│ Bit │Days│Hours│Min.│ Seconds │
├──────┼────┴─────┴────┴──────────┤
│ 59 │ �.��� ��1│
│ 55 │ �.��� �16│
│ 51 │ �.��� 256│
│ │ │
│ 47 │ �.��4 �96│
│ 43 │ �.�65 536│
│ 39 │ 1.�48 576│
│ │ │
│ 35 │ 16.777 216│
│ 31 │ 4 28.435 456│
│ 27 │ 1 11 34.967 296│
│ │ │
│ 23 │ 19 5 19.476 736│
│ 19 │ 12 17 25 11.627 776│
│ 15 │ 2�3 14 43 6.�44 416│
│ 11 │3257 19 29 36.71� 656│
└──────┴──────────────────────────┘

4. The following chart shows the setting of bits
0-63 of the STORE CLOCK EXTENDED
operand for 00:00:00 (0 am), UTC time, for
several dates: January 1, 1900, January 1,
1972, and for that instant in time just after
each of the 22 leap seconds that have
occurred through January, 1999. Each of
these leap seconds was inserted in the UTC
time scale beginning at 23:59:60 UTC of the
day previous to the one listed and ending at
00:00:00 UTC of the day listed.

┌──────┬───┬───┬────┬─────────────────────┐
│ │ │ │Leap│ STCKE Value (Hex) │
│ Year │Mth│Day│Sec.│ Bits �-63 │
├──────┼───┼───┼────┼─────────────────────┤
│ 19�� │ 1 │ 1 │ │ ���� ���� ���� ���� │
│ 1972 │ 1 │ 1 │ │ ��81 26D6 �E46 ���� │
│ 1972 │ 7 │ 1 │ 1 │ ��82 �BA9 811E 24�� │
│ 1973 │ 1 │ 1 │ 2 │ ��82 F3�� AEE2 48�� │
│ 1974 │ 1 │ 1 │ 3 │ ��84 BDE9 7114 6C�� │
│ 1975 │ 1 │ 1 │ 4 │ ��86 88D2 3346 9��� │
│ 1976 │ 1 │ 1 │ 5 │ ��88 53BA F578 B4�� │
│ 1977 │ 1 │ 1 │ 6 │ ��8A 1FE5 952� D8�� │
│ 1978 │ 1 │ 1 │ 7 │ ��8B EACE 5752 FC�� │
│ 1979 │ 1 │ 1 │ 8 │ ��8D B5B7 1985 2��� │
│ 198� │ 1 │ 1 │ 9 │ ��8F 8�9F DBB7 44�� │
│ 1981 │ 7 │ 1 │ 1� │ ��92 3�5C �FCD 68�� │
│ 1982 │ 7 │ 1 │ 11 │ ��93 FB44 D1FF 8C�� │
│ 1983 │ 7 │ 1 │ 12 │ ��95 C62D 9431 B��� │
│ 1985 │ 7 │ 1 │ 13 │ ��99 5D4� F517 D4�� │
│ 1988 │ 1 │ 1 │ 14 │ ��9D DA69 A557 F8�� │
│ 199� │ 1 │ 1 │ 15 │ ��A1 717D �63E 1C�� │
│ 1991 │ 1 │ 1 │ 16 │ ��A3 3C65 C87� 4��� │
│ 1992 │ 7 │ 1 │ 17 │ ��A5 EC21 FC86 64�� │
│ 1993 │ 7 │ 1 │ 18 │ ��A7 B7�A BEB8 88�� │
│ 1994 │ 7 │ 1 │ 19 │ ��A9 81F3 8�EA AC�� │
│ 1996 │ 1 │ 1 │ 2� │ ��AC 3433 6FEC D��� │
│ 1997 │ 7 │ 1 │ 21 │ ��AE E3EF A4�2 F4�� │
│ 1999 │ 1 │ 1 │ 22 │ ��B1 962F 93�5 18�� │
└──────┴───┴───┴────┴─────────────────────┘

5. The stepping value of TOD-clock bit position
63, if implemented, is 2-�� microseconds, or
approximately 244 picoseconds. This value is
called a clock unit.

The following chart shows various time inter-
vals in clock units expressed in hexadecimal
notation. The chart shows the values stored
in bit positions 0-71 of the STORE CLOCK
EXTENDED operand. Bit 71 of the operand
represents a clock unit.

┌─────────────┬──────────────────────┐
│ │ Clock Units (Hex) │
│ Interval │ Bits �-71 │
├─────────────┼──────────────────────┤
│1 microsecond│ ��1� ��│
│1 millisecond│ 3E8� ��│
│1 second │ ��F4 24�� ��│
│1 minute │ 3938 7��� ��│
│1 hour │ ���D 693A 4��� ��│
│1 day │ �141 DD76 ���� ��│
│365 days │���1 CAE8 C13E ���� ��│
│366 days │���1 CC2A 9EB4 ���� ��│
│1,461 days� │���7 2CE4 E26E ���� ��│
├─────────────┴──────────────────────┤
│� Number of days in four years, │
│ including a leap year. Note that │
│ the year 19�� was not a leap year.│
│ Thus, the four-year span starting │
│ in 19�� has only 1,46� days. │
└────────────────────────────────────┘

 Chapter 7. General Instructions 7-171

 STORE HALFWORD

STH R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '4�' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| STHY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '7�' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

Bits 48-63 of general register R� are placed
unchanged at the second-operand location. The
second operand is two bytes in length.

| The displacement for STH is treated as a 12-bit
| unsigned binary integer. The displacement for
| STHY is treated as a 20-bit signed binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
| � Operation (STHY if the long-displacement
| facility is not installed)

 STORE MULTIPLE

STM R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '9�' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| STMY R�,D�(X�,B�) [RSY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '9�' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

STMG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '24' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The contents of bit positions of the set of general
registers starting with general register R� and
ending with general register R� are placed in the
storage area beginning at the location designated

by the second-operand address and continuing
through as many locations as needed.

| For STORE MULTIPLE (STM, STMY), the con-
tents of bit positions 32-63 of the general registers
are stored in successive four-byte fields beginning
at the second-operand address. For STORE
MULTIPLE (STMG), the contents of bit positions
0-63 of the general registers are stored in succes-
sive eight-byte fields beginning at the second-
operand address.

The general registers are stored in the ascending
order of their register numbers, starting with
general register R� and continuing up to and
including general register R�, with general register
0 following general register 15.

| The displacement for STM is treated as a 12-bit
| unsigned binary integer. The displacement for
| STMY and STMG is treated as a 20-bit signed
| binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
| � Operation (STMY, if the long-displacement
| facility is not installed)

Programming Note: An example of the use of
the STORE MULTIPLE instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

STORE MULTIPLE HIGH

STMH R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '26' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The contents of the high-order halves, bit positions
0-31, of the set of general registers starting with
general register R� and ending with general reg-
ister R� are placed in the storage area beginning
at the location designated by the second-operand
address and continuing through as many locations
as needed, that is, the contents of bit positions
0-31 are stored in successive four-byte fields
beginning at the second-operand address. Bits
32-63 of the registers are ignored.

7-172 z/Architecture Principles of Operation

The general registers are stored in the ascending
order of their register numbers, starting with
general register R� and continuing up to and
including general register R�, with general register
0 following general register 15.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)

Programming Note: All combinations of register
numbers specified by R� and R� are valid. When
the register numbers are equal, only four bytes
are transmitted. When the number specified by
R� is less than the number specified by R�, the
register numbers wrap around from 15 to 0.

STORE PAIR TO QUADWORD

STPQ R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '8E' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The quadword first operand is stored at the
second-operand location. The store at the
second-operand location appears to be quadword
concurrent as observed by other CPUs. The left
doubleword of the first operand is in general reg-
ister R�, and the right doubleword is in general
register R� + 1.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register. The second operand must be
designated on a quadword boundary. Otherwise,
a specification exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
 � Specification

Programming Notes:

1. The STORE MULTIPLE (STM or STMG)
instruction does not necessarily provide
quadword-concurrent access.

| 2. The performance of STORE PAIR TO
| QUADWORD on some models may be signif-

| icantly slower than that of STORE MULTIPLE
| (STMG). Unless quadword consistency is
| required, STMG should be used instead of
| STPQ.

 STORE REVERSED

STRVH R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '3F' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

STRV R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '3E' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

STRVG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '2F' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first operand is placed at the second-operand
location with the left-to-right sequence of the bytes
reversed.

For STORE REVERSED (STRVH), the first
operand is two bytes in bit positions 48-63 of
general register R�. For STORE REVERSED
(STRV), the first operand is four bytes in bit posi-
tions 32-63 of general register R�. For STORE
REVERSED (STRVG), the first operand is eight
bytes in bit positions 0-63 of general register R�.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)

Programming Notes:

1. The instruction can be used to convert two,
four, or eight bytes from a “little-endian” format
to a “big-endian” format, or vice versa. In the
big-endian format, the bytes in a left-to-right
sequence are in the order most significant to
least significant. In the little-endian format,
the bytes are in the order least significant to
most significant. For example, the bytes
ABCD in the big-endian format are DCBA in
the little-endian format.

 Chapter 7. General Instructions 7-173

2. The storage-operand references of STORE
REVERSED may be multiple-access refer-
ences. (See “Storage-Operand Consistency”
on page 5-87.)

 SUBTRACT

SR R�,R� [RR]

┌────────┬────┬────┐
│ '1B' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

SGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�9' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

SGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B919' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

S R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '5B' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| SY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '5B' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

SG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�9' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

SGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '19' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand is subtracted from the first
operand, and the difference is placed at the first-

| operand location. For SUBTRACT (SR, S, SY),
the operands and the difference are treated as

32-bit signed binary integers. For SUBTRACT
(SGR, SG), they are treated as 64-bit signed
binary integers. For SUBTRACT (SGFR, SGF),
the second operand is treated as a 32-bit signed
binary integer, and the first operand and the differ-
ence are treated as 64-bit signed binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

| The displacement for S is treated as a 12-bit
| unsigned binary integer. The displacement for
| SY, SG, and SGF is treated as a 20-bit signed
| binary integer.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

| � Access (fetch, operand 2 of S, SY, SG, and
SGF only)

 � Fixed-point overflow
| � Operation (SY, if the long-displacement facility
| is not installed)

Programming Notes:

1. For SR and SGR, when R� and R� designate
the same register, subtracting is equivalent to
clearing the register.

2. Subtracting a maximum negative number from
itself gives a zero result and no overflow.

 SUBTRACT HALFWORD

SH R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '4B' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| SHY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '7B' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

7-174 z/Architecture Principles of Operation

The second operand is subtracted from the first
operand, and the difference is placed at the first-
operand location. The second operand is two
bytes in length and is treated as a 16-bit signed
binary integer. The first operand and the differ-
ence are treated as 32-bit signed binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

| The displacement for SH is treated as a 12-bit
| unsigned binary integer. The displacement for
| SHY is treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

� Access (fetch, operand 2)
 � Fixed-point overflow

| � Operation (SHY, if the long-displacement
| facility is not installed)

Programming Note: The function of a SUB-
TRACT HALFWORD IMMEDIATE instruction,
which is an instruction not provided, can be
obtained by using an ADD HALFWORD IMME-
DIATE instruction with a negative I� field.

 SUBTRACT LOGICAL

SLR R�,R� [RR]

┌────────┬────┬────┐
│ '1F' │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

SLGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�B' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

SLGFR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B91B' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

SL R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ '5F' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| SLY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '5F' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

SLG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�B' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

SLGF R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '1B' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand is subtracted from the first
operand, and the difference is placed at the first-
operand location. For SUBTRACT LOGICAL

| (SLR, SL, SLY), the operands and the difference
are treated as 32-bit unsigned binary integers.
For SUBTRACT LOGICAL (SLGR, SLG), they are
treated as 64-bit unsigned binary integers. For
SUBTRACT LOGICAL (SLGFR, SLGF) the
second operand is treated as a 32-bit unsigned
binary integer, and the first operand and the differ-
ence are treated as 64-bit unsigned binary inte-
gers.

| The displacement for SL is treated as a 12-bit
| unsigned binary integer. The displacement for
| SLY, SLG, and SLGF is treated as a 20-bit signed
| binary integer.

Resulting Condition Code:

0 --
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

 Chapter 7. General Instructions 7-175

 Program Exceptions:

| � Access (fetch, operand 2 of SL, SLY, SLG,
and SLGF only)

| � Operation (SLY, if the long-displacement
| facility is not installed)

Programming Notes:

1. Logical subtraction is performed by adding the
one's complement of the second operand and
a value of one to the first operand. The use
of the one's complement and the value of one
instead of the two's complement of the second
operand results in a carry when the second
operand is zero.

2. SUBTRACT LOGICAL differs from SUB-
TRACT only in the meaning of the condition
code and in the absence of the interruption for
overflow.

3. A zero difference is always accompanied by a
carry out of bit position 0 for SLGR, SLGFR,

| SLG, and SLGF or bit position 32 for SLR, SL,
| and SLY, and, therefore, no borrow.

4. The condition-code setting for SUBTRACT
LOGICAL can also be interpreted as indicating
the presence or absence of a carry, as
follows:

1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

SUBTRACT LOGICAL WITH
BORROW

SLBR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B999' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

SLBGR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B989' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

SLB R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '99' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

SLBG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '89' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The second operand and the borrow are sub-
tracted from the first operand, and the difference
is placed at the first-operand location. For SUB-
TRACT LOGICAL WITH BORROW (SLBR, SLB),
the operands, the borrow, and the difference are
treated as 32-bit unsigned binary integers. For
SUBTRACT LOGICAL WITH BORROW (SLBGR,
SLBG), they are treated as 64-bit unsigned binary
integers.

Resulting Condition Code:

0 Result zero; borrow
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

 Program Exceptions:

� Access (fetch, operand 2 of SLB and SLBG
only)

Programming Notes:

1. A borrow is represented by a zero value of bit
18 of the current PSW. Bit 18 is the leftmost
bit of the two-bit condition code in the PSW.
Bit 18 is set to zero by an execution of a
SUBTRACT LOGICAL or SUBTRACT
LOGICAL WITH BORROW instruction that
produces a borrow into the leftmost bit posi-
tion of the 32-bit or 64-bit result.

2. Logical subtraction with borrow is performed
by adding the one's complement of the
second operand and bit 18 of the current
PSW to the first operand. Therefore, when bit
18 is one, indicating no borrow, the addition is
the same as for SUBTRACT LOGICAL.

3. Condition code zero is set for SUBTRACT
LOGICAL WITH BORROW (SLBR, SLB),
when the maximum 32-bit unsigned binary
integer, 2��-1, is subtracted from zero when
PSW bit 18 indicates a borrow. For SUB-
TRACT LOGICAL WITH BORROW (SLBGR,
SLBG) condition code zero is set when the
maximum 64-bit unsigned binary integer,
2��-1, is subtracted from zero when PSW bit
18 indicates a borrow.

7-176 z/Architecture Principles of Operation

4. SUBTRACT and SUBTRACT LOGICAL may
provide better performance than SUBTRACT
LOGICAL WITH BORROW, depending on the
model.

 SUPERVISOR CALL

SVC I [RR]

┌────────┬────────┐
│ '�A' │ I │
└────────┴────────┘
� 8 15

The instruction causes a supervisor-call inter-
ruption, with the I field of the instruction providing
the rightmost byte of the interruption code.

Bits 8-15 of the instruction, with eight zeros
appended on the left, are placed in the supervisor-
call interruption code that is stored in the course
of the interruption. See “Supervisor-Call
Interruption” on page 6-47.

A serialization and checkpoint-synchronization
function is performed.

Condition Code: The code remains unchanged
and is saved as part of the old PSW. A new con-
dition code is loaded as part of the supervisor-call
interruption.

 Program Exceptions: None.

TEST ADDRESSING MODE

TAM [E]

┌────────────────┐
│ '�1�B' │
└────────────────┘
� 15

The extended-addressing-mode bit and basic-
addressing-mode bit, bits 31 and 32 of the current
PSW, respectively, are tested, and the result is
indicated in the condition code.

Resulting Condition Code:

0 PSW bits 31 and 32 zeros (indicating 24-bit
addressing mode)

1 PSW bit 31 zero and bit 32 one (indicating
31-bit addressing mode)

2 --
3 PSW bits 31 and 32 ones (indicating 64-bit

addressing mode)

 Program Exceptions: None.

Programming Note: The case when PSW bit 31
is one and bit 32 is zero causes an early PSW
specification exception to be recognized.

TEST AND SET

TS D�(B�) [S]

┌────────┬────────┬────┬────────────┐
│ '93' │////////│ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

The leftmost bit (bit position 0) of the byte located
at the second-operand address is used to set the
condition code, and then the byte is set to all
ones.

Bits 8-15 of the instruction are ignored.

The byte in storage is set to all ones as it is
fetched for the testing of bit 0. This update
appears to be an interlocked-update reference as
observed by other CPUs.

A serialization function is performed before the
byte is fetched and again after the storing of all
ones.

Resulting Condition Code:

0 Leftmost bit zero
1 Leftmost bit one
2 --
3 --

 Program Exceptions:

� Access (fetch and store, operand 2)

 Chapter 7. General Instructions 7-177

Programming Notes:

1. TEST AND SET may be used for controlled
sharing of a common storage area by pro-
grams operating on different CPUs. This
instruction is provided primarily for compat-
ibility with programs written for System/360.
The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP provide
functions which are more suitable for sharing
among programs on a single CPU or for pro-
grams that may be interrupted. See the
description of these instructions and the asso-
ciated programming notes for details.

2. TEST AND SET does not interlock against
storage accesses by channel programs.
Therefore, the instruction should not be used
to update a location into which a channel
program may store, since the channel-
program data may be lost.

TEST UNDER MASK (TEST
UNDER MASK HIGH, TEST
UNDER MASK LOW)

TM D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ '91' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

| TMY D�(B�),I� [SIY]

| ┌────────┬────────┬────┬──/─┬────────┬────────┐
| │ 'EB' │ I� │ B� │DL� │ DH� │ '51' │
| └────────┴────────┴────┴──/─┴────────┴────────┘
| � 8 16 2� 32 4� 47

TMHH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'2' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

TMHL R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'3' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

TMLH or TMH R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'�' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

TMLL or TML R�,I� [RI]

┌────────┬────┬────┬────────────────┐
│ 'A7' │ R� │'1' │ I� │
└────────┴────┴────┴────────────────┘
� 8 12 16 31

A mask is used to select bits of the first operand,
and the result is indicated in the condition code.

TEST UNDER MASK is a new name of, and
TMLH and TMLL are new mnemonics for, the
ESA/390 instructions TEST UNDER MASK HIGH
(TMH) and TEST UNDER MASK LOW (TML),
respectively.

| In TEST UNDER MASK (TM, TMY), the byte of
immediate data, I�, is used as an eight-bit mask.
The bits of the mask are made to correspond one
for one with the bits of the byte in storage desig-
nated by the first-operand address.

A mask bit of one indicates that the storage bit is
to be tested. When the mask bit is zero, the
storage bit is ignored. When all storage bits thus
selected are zero, condition code 0 is set. Condi-
tion code 0 is also set when the mask is all zeros.
When the selected bits are all ones, condition
code 3 is set; otherwise, condition code 1 is set.

Access exceptions associated with the storage
operand are recognized for one byte even when
the mask is all zeros.

In TEST UNDER MASK (TMHH, TMHL, TMLH,
TMLL), The contents of the I� field are used as a
16-bit mask. For each instruction, the bits of the
mask are made to correspond one for one with 16
bits of the first operand as follows:

Instruction
Bits
Tested

TMHH 0-15

TMHL 16-31

TMLH (or TMH) 32-47

TMLL (or TML) 48-63

7-178 z/Architecture Principles of Operation

A mask bit of one indicates that the first-operand
bit is to be tested. When the mask bit is zero, the
first-operand bit is ignored. When all first-operand
bits thus selected are zero, condition code 0 is
set. Condition code 0 is also set when the mask
is all zeros. When the selected bits are mixed
zeros and ones, condition code 1 is set if the left-
most selected bit is zero, or condition code 2 is
set if the leftmost selected bit is one. When the
selected bits are all ones, condition code 3 is set.

| The displacement for TM is treated as a 12-bit
| unsigned binary integer. The displacement for
| TMY is treated as a 20-bit signed binary integer.

Resulting Condition Code:

0 Selected bits all zeros; or mask bits all zeros
| 1 Selected bits mixed zeros and ones (TM and
| TMY only)

1 Selected bits mixed zeros and ones, and left-
most is zero (TMHH, TMHL, TMLH, TMLL)

| 2 -- (TM and TMY only)
2 Selected bits mixed zeros and ones, and left-

most is one (TMHH, TMHL, TMLH, TMLL)
3 Selected bits all ones

 Program Exceptions:

| � Access (fetch, operand 1, TM and TMY only)
| � Operation (TMY, if the long-displacement
| facility is not installed)

Programming Notes:

1. An example of the use of the TEST UNDER
MASK (TM) instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. When the mask for TMHH, TMHL, TMLH, or
TMLL selects exactly two bits, the two
selected bits effectively are loaded into the
condition code.

 TRANSLATE

TR D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'DC' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The bytes of the first operand are used as
eight-bit arguments to reference a list designated
by the second-operand address. Each function

byte selected from the list replaces the corre-
sponding argument in the first operand.

The L field specifies the length of only the first
operand.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. Each
argument byte is added to the initial second-
operand address. The addition is performed fol-
lowing the rules for address arithmetic, with the
argument byte treated as an eight-bit unsigned
binary integer and extended with zeros on the left.
The sum is used as the address of the function
byte, which then replaces the original argument
byte.

The operation proceeds until the first-operand field
is exhausted. The list is not altered unless an
overlap occurs.

When the operands overlap, the result is obtained
as if each result byte were stored immediately
after fetching the corresponding function byte.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the TRANSLATE
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. TRANSLATE may be used to convert data
from one code to another code.

3. The instruction may also be used to rearrange
data. This may be accomplished by placing a
pattern in the destination area, by designating
the pattern as the first operand of TRANS-
LATE, and by designating the data that is to
be rearranged as the second operand. Each
byte of the pattern contains an eight-bit
number specifying the byte destined for this
position. Thus, when the instruction is exe-
cuted, the pattern selects the bytes of the
second operand in the desired order.

 Chapter 7. General Instructions 7-179

4. Because each eight-bit argument byte is
added to the initial second-operand address to
obtain the address of a function byte, the list
may contain 256 bytes. In cases where it is
known that not all eight-bit argument values
will occur, it is possible to reduce the size of
the list.

5. Significant performance degradation is pos-
sible when, with DAT on, the second-operand
address of TRANSLATE designates a location
that is less than 256 bytes to the left of a
4K-byte boundary. This is because the
machine may perform a trial execution of the
instruction to determine if the second operand
actually crosses the boundary.

6. The fetch and subsequent store accesses to a
particular byte in the first-operand field do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a
channel program may also be updating the
location. An example of this effect is shown
for OR (OI) in “Multiprogramming and Multi-
processing Examples” in Appendix A,
“Number Representation and Instruction-Use
Examples” on page A-1.

7. The storage-operand references of TRANS-
LATE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-87.)

TRANSLATE AND TEST

TRT D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'DD' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The bytes of the first operand are used as
eight-bit arguments to select function bytes from a
list designated by the second-operand address.
The first nonzero function byte is inserted in
general register 2, and the related argument
address in general register 1.

The L field specifies the length of only the first
operand.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. The

first operand remains unchanged in storage. Cal-
culation of the address of the function byte is per-
formed as in the TRANSLATE instruction. The
function byte retrieved from the list is inspected for
a value of zero.

When the function byte is zero, the operation pro-
ceeds with the next byte of the first operand.
When the first-operand field is exhausted before a
nonzero function byte is encountered, the opera-
tion is completed by setting condition code 0. The
contents of general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the operation
is completed by inserting the function byte in
general register 2 and the related argument
address in general register 1. This address points
to the argument byte last translated. The function
byte replaces bits 56-63 of general register 2, and
bits 0-55 of this register remain unchanged. In the
24-bit addressing mode, the address replaces bits
40-63 of general register 1, and bits 0-39 of this
register remain unchanged. In the 31-bit
addressing mode, the address replaces bits 33-63
of general register 1, bit 32 of this register is set to
zero, and bits 0-31 of the register remain
unchanged. In the 64-bit addressing mode, the
address replaces bits 0-63 of general register 1.

When the function byte is nonzero, either condi-
tion code 1 or 2 is set, depending on whether the
argument byte is the rightmost byte of the first
operand. Condition code 1 is set if one or more
argument bytes remain to be translated. Condi-
tion code 2 is set if no more argument bytes
remain.

The contents of access register 1 always remain
unchanged.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required. Access exceptions are not recognized
for those bytes in the first operand which are to
the right of the first byte for which a nonzero func-
tion byte is obtained.

Resulting Condition Code:

0 All function bytes zero
1 Nonzero function byte; first-operand field not

exhausted
2 Nonzero function byte; first-operand field

exhausted

7-180 z/Architecture Principles of Operation

3 --

 Program Exceptions:

� Access (fetch, operands 1 and 2)

Programming Notes:

1. An example of the use of the TRANSLATE
AND TEST instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. TRANSLATE AND TEST may be used to
scan the first operand for characters with
special meaning. The second operand, or list,
is set up with all-zero function bytes for those
characters to be skipped over and with
nonzero function bytes for the characters to
be detected.

 TRANSLATE EXTENDED

TRE R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B2A5' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The bytes of the first operand are compared to a
test byte in general register 0 and, unless an
equal comparison occurs, are used as eight-bit
arguments to reference a 256-byte translation
table designated by the second-operand address.
Each function byte selected from the second
operand replaces the corresponding argument in
the first operand. The operation proceeds until a
first-operand byte equal to the test byte is
encountered, the end of the first operand is
reached, or a CPU-determined number of bytes
have been processed, whichever occurs first. The
result is indicated in the condition code.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R� and R�, respec-
tively. In the 24-bit or 31-bit addressing mode, the
number of bytes in the first-operand location is
specified by the contents of bit positions 32-63 of
general register R� + 1, and those contents are

treated as a 32-bit unsigned binary integer. In the
64-bit addressing mode, the number of bytes in
the first-operand location is specified by the entire
contents of general register R� + 1, and those
contents are treated as a 64-bit unsigned binary
integer.

The handling of the addresses in general registers
R� and R� is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
constitute the address, and the contents of bit
positions 0-39 are ignored. In the 31-bit
addressing mode, the contents of bit positions
33-63 of the registers constitute the address, and
the contents of bit positions 0-32 are ignored. In
the 64-bit addressing mode, the contents of bit
positions 0-63 constitute the address.

The test byte is in bit positions 56-63 of general
register 0, and the contents of bit positions 0-55 of
this register are ignored.

The contents of the registers just described are
shown in Figure 7-75 on page 7-182.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. Each
argument byte is first compared to the test byte in
general register 0. If the result is an equal com-
parison, the operation is completed. If the argu-
ment byte is not equal to the test byte, the argu-
ment byte is added to the initial second-operand
address. The addition is performed following the
rules for address arithmetic, with the argument
byte treated as an eight-bit unsigned binary
integer and extended with zeros on the left. The
sum is used as the address of the function byte,
which then replaces the original argument byte.
The second operand is not altered unless an
overlap occurs.

The operation proceeds until a first-operand byte
equal to the test byte is encountered, the first-
operand location is exhausted, or a
CPU-determined number of first-operand bytes
have been processed.

When the first-operand location is exhausted
without finding a byte equal to the test byte, condi-
tion code 0 is set. When a first-operand byte
equal to the test byte is encountered, condition
code 1 is set. When a CPU-determined number

 Chapter 7. General Instructions 7-181

of bytes have been processed, condition code 3 is
set. Condition code 3 may be set even when the
first-operand location is exhausted or when the
next byte to be processed is equal to the test
byte. In these cases, condition code 0 or 1,
respectively, will be set when the instruction is
executed again.

If the operation is completed with condition code
0, the contents of general register R� are incre-
mented by the contents of general register
R� + 1, and then the contents of general register
R� + 1 are set to zero. If the operation is com-
pleted with condition code 1, the contents of

general register R� + 1 are decremented by the
number of bytes processed before the first-
operand byte equal to the test byte was encount-
ered, and the contents of general register R� are
incremented by the same number, so that general
register R� contains the address of the equal byte.
If the operation is completed with condition code
3, the contents of general register R� + 1 are
decremented by the number of bytes processed,
and the contents of general register R� are incre-
mented by the same number, so that the instruc-
tion, when reexecuted, resumes at the next byte
to be processed. When general register R� is
updated in the 24-bit or 31-bit addressing mode,

┌───┐
│ │
│ ┌─/─────────────────────────┬────────┐ │
│ GR� │///////////////////////////│ Test │ │
│ └─/─────────────────────────┴────────┘ │
│ � 56 63 │
│ │
├───┤
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ First-Operand Length │ │///│ First-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ Second-Operand Address│ │////│ Second-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ First-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Second-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
└───┘

Figure 7-75. Register Contents for TRANSLATE EXTENDED

7-182 z/Architecture Principles of Operation

bits 32-39 of it, in the 24-bit mode, or bit 32, in the
31-bit mode, may be set to zeros or may remain
unchanged from their original values.

In the 24-bit or 31-bit addressing mode, the con-
tents of bit positions 0-31 of general registers R�
and R� + 1 always remain unchanged.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

When the R� register is the same register as the
R� or R� + 1 register, the results are unpredict-
able.

When R� or R� is zero, the results are unpredict-
able.

When the second operand overlaps the first
operand, the results are unpredictable.

Access exceptions for the portion of the first
operand to the right of the last byte processed
may or may not be recognized. For an operand
longer than 4K bytes, access exceptions are not
recognized for locations more than 4K bytes
beyond the last byte processed.

Access exceptions for all 256 bytes of the second
operand may be recognized, even if not all bytes
are used.

Access exceptions are not recognized if the R�
field is odd. When the length of the first operand
is zero, no access exceptions for the first operand
are recognized.

Resulting Condition Code:

0 Entire first operand processed without finding
a byte equal to the test byte

1 First-operand byte is equal to the test byte
2 --
3 CPU-determined number of bytes processed

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
 � Specification

Programming Notes:

1. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the translation. The program need
not determine the number of bytes that were
translated.

2. The instruction can improve performance by
being used in place of a TRANSLATE AND
TEST instruction that locates an escape char-
acter, followed by a TRANSLATE instruction
that translates the bytes preceding the escape
character.

3. The storage-operand references of TRANS-
LATE EXTENDED may be multiple-access
references. (See “Storage-Operand
Consistency” on page 5-87.)

TRANSLATE ONE TO ONE

TROO R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B993' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

TRANSLATE ONE TO TWO

TROT R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B992' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

TRANSLATE TWO TO ONE

TRTO R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B991' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

TRANSLATE TWO TO TWO

TRTT R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B99�' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The characters of the second operand are used
as arguments to select function characters from a

 Chapter 7. General Instructions 7-183

translation table designated by the address in
general register 1. Each function character
selected from the translation table is compared to
a test character in general register 0, and, unless
an equal comparison occurs, is placed at the first-
operand location. The operation proceeds until a
selected function character equal to the test char-
acter is encountered, the end of the second
operand is reached, or a CPU-determined number
of characters have been processed, whichever
occurs first. The result is indicated in the condi-
tion code.

The lengths of the operand and test characters
are as follows:

� For TRANSLATE ONE TO ONE, the second-
operand, first-operand, and test characters are
single bytes.

� For TRANSLATE ONE TO TWO, the second-
operand characters are single bytes, and the
first-operand and test characters are double
bytes.

� For TRANSLATE TWO TO ONE, the second-
operand characters are double bytes, and the
first-operand and test characters are single
bytes.

� For TRANSLATE TWO TO TWO, the second-
operand, first-operand, and test characters are
double bytes.

For TRANSLATE ONE TO ONE and TRANSLATE
TWO TO ONE, the test character is in bit posi-
tions 56-63 of general register 0. For TRANS-
LATE ONE TO TWO and TRANSLATE TWO TO
TWO, the test character is in bit positions 48-63 of
general register 0.

The R� field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R� and R�, respec-
tively. In the 24-bit or 31-bit addressing mode, the
number of bytes in the second-operand location is
specified by the contents of bit positions 32-63 of

general register R� + 1, and those contents are
treated as a 32-bit unsigned binary integer. In the
64-bit addressing mode, the number of bytes in
the second-operand location is specified by the
contents of bit positions 0-63 of general register
R� + 1, and those contents are treated as a
64-bit unsigned binary integer. The length of the
first-operand location is considered to be the same
as that of the second operand for TRANSLATE
ONE TO ONE and TRANSLATE TWO TO TWO,
twice that for TRANSLATE ONE TO TWO, and
one half that for TRANSLATE TWO TO ONE.

For TRANSLATE TWO TO ONE and TRANS-
LATE TWO TO TWO, the length in general reg-
ister R� + 1 must be an even number of bytes;
otherwise, a specification exception is recognized.

The translation table is treated as being on a
doubleword boundary for TRANSLATE ONE TO
ONE and TRANSLATE ONE TO TWO and on a
4K-byte boundary for TRANSLATE TWO TO ONE
and TRANSLATE TWO TO TWO. The rightmost
bits of the register that are not used to form the
address, which are bits 61-63 in the doubleword
case and bits 52-63 in the 4K-byte case, are
ignored.

The handling of the addresses in general registers
R�, R�, and 1 is dependent on the addressing
mode.

In the 24-bit addressing mode, the contents of bit
positions 40-63 of general registers R� and R�
and 40-60 or 40-51 of 1 constitute the address,
and the contents of bit positions 0-39 are ignored.
In the 31-bit addressing mode, the contents of bit
positions 33-63 of registers R� and R� and 33-60
or 33-51 of 1 constitute the address, and the con-
tents of bit positions 0-32 are ignored. In the
64-bit addressing mode, the contents of bit posi-
tions 0-63 of registers R� and R� and 0-60 or 0-51
of 1 constitute the address.

The contents of the registers just described are
shown in Figure 7-76 on page 7-185.

In the access-register mode, the contents of
access registers R�, R�, and 1 are used for
accessing the first operand, second operand, and
translation table, respectively.

7-184 z/Architecture Principles of Operation

The length of the translation table designated by
the address contained in general register 1 is as
follows:

� For TRANSLATE ONE TO ONE, the
translation-table length is 256 bytes; each of
the 256 function characters is a single byte.

� For TRANSLATE ONE TO TWO, the
translation-table length is 512 bytes; each of
the 256 function characters is a double byte.

� For TRANSLATE TWO TO ONE, the
translation-table length is 65,536 (64K) bytes;
each of the 64K function characters is a single
byte.

� For TRANSLATE TWO TO TWO, the
translation-table length is 131,072 (128K)
bytes; each of the 64K function characters is a
double byte.

The characters of the second operand are
selected one by one for translation, proceeding left
to right. Each argument character is added to the
initial translation-table address. The addition is
performed following the rules for address arith-
metic, with the argument character treated as
follows:

� For TRANSLATE ONE TO ONE, the argu-
ment character is treated as an eight-bit

┌───┐
│ For TRANSLATE ONE TO ONE For TRANSLATE ONE TO TWO │
│ and TRANSLATE TWO TO ONE and TRANSLATE TWO TO TWO │
│ ┌─/─────────────────────────┬────────┐ ┌─/─────────────────┬────────────────┐ │
│ GR� │///////////////////////////│ Test │ │///////////////////│ Test │ │
│ └─/─────────────────────────┴────────┘ └─/─────────────────┴────────────────┘ │
│ � 56 63 � 48 63 │
│ │
├───┤
│ │
│ 24-Bit Addressing Mode 31-Bit Addressing Mode │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│ First-Operand Address │ │////│ First-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ ┌─/─┬────────────────────────────────┐ ┌─/─┬────────────────────────────────┐ │
│ R� + 1 │///│ Second-Operand Length │ │///│ Second-Operand Length │ │
│ └─/─┴────────────────────────────────┘ └─/─┴────────────────────────────────┘ │
│ � 32 63 � 32 63 │
│ │
│ ┌─/──────────┬───────────────────────┐ ┌─/──┬───────────────────────────────┐ │
│ R� │////////////│Second-Operand Address │ │////│ Second-Operand Address │ │
│ └─/──────────┴───────────────────────┘ └─/──┴───────────────────────────────┘ │
│ � 4� 63 � 33 63 │
│ │
│ For TRANSLATE ONE TO ONE For TRANSLATE ONE TO ONE │
│ and TRANSLATE ONE TO TWO and TRANSLATE ONE TO TWO │
│ ┌─/──────────┬───────────────────┬───┐ ┌─/──┬───────────────────────────┬───┐ │
│ GR1 │////////////│Trans.-Table Addr. │///│ │////│ Translation-Table Address │///│ │
│ └─/──────────┴───────────────────┴───┘ └─/──┴───────────────────────────┴───┘ │
│ � 4� 61 63 � 33 61 63 │
│ │
│ For TRANSLATE TWO TO ONE For TRANSLATE TWO TO ONE │
│ and TRANSLATE TWO TO TWO and TRANSLATE TWO TO TWO │
│ ┌─/──────────┬──────────┬────────────┐ ┌─/──┬──────────────────┬────────────┐ │
│ GR1 │////////////│Tr.Tab.Adr│////////////│ │////│Trans.-Table Addr.│////////////│ │
│ └─/──────────┴──────────┴────────────┘ └─/──┴──────────────────┴────────────┘ │
│ � 4� 52 63 � 33 52 63 │
│ │
└───┘

Figure 7-76 (Part 1 of 2). Register Contents for TRANSLATE ONE TO ONE, TRANSLATE ONE TO TWO, TRANS-
LATE TWO TO ONE, and TRANSLATE TWO TO TWO

 Chapter 7. General Instructions 7-185

unsigned binary integer extended on the left
with 56 zeros.

� For TRANSLATE ONE TO TWO, the argu-
ment character is treated as an eight-bit
unsigned binary integer extended on the right
with a zero and on the left with 55 zeros.

� For TRANSLATE TWO TO ONE, the argu-
ment character is treated as a 16-bit unsigned
binary integer extended on the left with 48
zeros.

� For TRANSLATE TWO TO TWO, the argu-
ment character is treated as a 16-bit unsigned
binary integer extended on the right with a
zero and on the left with 47 zeros.

The rightmost bits of the translation-table address
that are ignored (61-63 or 52-63) are treated as
zeros during this addition.

The sum is used as the address of the function
character.

Each function character selected as described
above is first compared to the test character in
general register 0. If the result is an equal com-
parison, the operation is completed. If the func-
tion character is not equal to the test character,
the function character is placed in the next avail-
able character position in the first operand, that is,
the first function character is placed at the begin-
ning of the first-operand location, and each suc-
cessive function character is placed immediately
to the right of the preceding character. The
second operand and the translation table are not
altered unless an overlap occurs.

The operation proceeds until a selected function
character equal to the test character is encount-
ered, the second-operand location is exhausted,
or a CPU-determined number of second-operand
characters have been processed.

┌───┐
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ First-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� + 1 │ Second-Operand Length │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ ┌─/──────────────────────────────────┐ │
│ R� │ Second-Operand Address │ │
│ └─/──────────────────────────────────┘ │
│ � 63 │
│ │
│ For TRANSLATE ONE TO ONE │
│ and TRANSLATE ONE TO TWO │
│ ┌─/──────────────────────────────┬───┐ │
│ GR1 │ Translation-Table Address │///│ │
│ └─/──────────────────────────────┴───┘ │
│ � 61 63 │
│ │
│ For TRANSLATE TWO TO ONE │
│ and TRANSLATE TWO TO TWO │
│ ┌─/─────────────────────┬────────────┐ │
│ GR1 │Translation-Table Addr.│////////////│ │
│ └─/─────────────────────┴────────────┘ │
│ � 52 63 │
│ │
└───┘

Figure 7-76 (Part 2 of 2). Register Contents for TRANSLATE ONE TO ONE, TRANSLATE ONE TO TWO, TRANS-
LATE TWO TO ONE, and TRANSLATE TWO TO TWO

7-186 z/Architecture Principles of Operation

When a selected function character equal to the
test character is encountered, condition code 1 is
set. When the second-operand location is
exhausted without finding a selected function char-
acter equal to the test character, condition code 0
is set. When a CPU-determined number of char-
acters have been processed, condition code 3 is
set. Condition code 3 may be set even when the
next character to be processed results in a func-
tion character equal to the test character or when
the second-operand location is exhausted. In
these cases, condition code 1 or 0, respectively,
will be set when the instruction is executed again.

If the operation is completed with condition code
0, the contents of general register R� are incre-
mented by the contents of general register
R� + 1, and the contents of general register R�
are incremented as follows:

� For TRANSLATE ONE TO ONE and TRANS-
LATE TWO TO TWO, the same as for general
register R�.

� For TRANSLATE ONE TO TWO, by twice the
amount for general register R�.

� For TRANSLATE TWO TO ONE, by one half
the amount for general register R�.

The contents of general register R� + 1 are then
set to zero.

If the operation is completed with condition code
1, the contents of general register R� + 1 are
decremented by the number of second-operand
bytes processed before the character that selected
a function character equal to the test character
was encountered, and the contents of general reg-
ister R� are incremented by the same number, so
that general register R� contains the address of
the character that selected a function character
equal to the test character. The contents of
general register R� are incremented by the same,
twice, or one half the number, as described above
for condition code 0.

If the operation is completed with condition code
3, the contents of general register R� + 1 are
decremented by the number of second-operand
bytes processed, and the contents of general reg-
ister R� are incremented by the same number, so
that the instruction, when reexecuted, contains the
address of the next character to be processed.

The contents of general register R� are incre-
mented by the same, twice, or one half the
number, as described above for condition code 0.

When general registers R� and R� are updated in
the 24-bit or 31-bit addressing mode, the bits in bit
positions 32-39 of them that are not part of the
address may be set to zeros or may remain
unchanged from their original values. In the 24-bit
or 31-bit addressing mode, the contents of bit
positions 0-31 of general registers R�, R� + 1,
and R� always remain unchanged.

The contents of general registers 0 and 1 remain
unchanged.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

During instruction execution, CPU retry may result
in condition code 3 being set with possibly incor-
rect data having been stored in the first operand
location at or to the right of the location desig-
nated by the final address in general register R�.
The amount of data stored depends on the opera-
tion and the point in time at which CPU retry
occurred. In all cases, the storing will occur
again, with correct data stored, when the instruc-
tion is executed again to continue processing the
same operands.

When the R� register is the same register as the
R� register, the R� or R� register is register 0, or
the R� register is register 1, the results are unpre-
dictable.

When any of the first and second operands and
the translation table overlaps another of them, the
results are unpredictable.

Access exceptions for the portion of the first or
second operand to the right of the last character
processed may or may not be recognized. For an
operand longer than 4K bytes, access exceptions
are not recognized for locations more than 4K
bytes beyond the last character processed.

Access exceptions for all characters of the trans-
lation table may be recognized even if not all char-
acters are used.

 Chapter 7. General Instructions 7-187

Access exceptions are not recognized if the R�
field is odd. When the length of the second
operand is zero, no access exceptions for the first
or second operand are recognized, and access
exceptions for the translation table may or may
not be recognized.

Resulting Condition Code:

0 Entire second operand processed without
finding a resulting function character equal to
the test character

1 Second-operand character found resulting in
a function character equal to the test char-
acter

2 --
3 CPU-determined number of characters proc-

essed

 Program Exceptions:

� Access (fetch, operand 2 and translation table;
store, operand 1)

� Operation (if the extended-translation facility 2
is not installed)

 � Specification

Programming Notes:

1. These instructions differ from the TRANS-
LATE EXTENDED instruction by having the
following attributes:

� Depending on the instruction used, the
sets of argument characters and function
characters each can contain single-byte or
double-byte characters.

� The test character is compared to a
resulting function character instead of to
an argument character.

� The argument (source) and function (des-
tination) operands are different operands.

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the translation. The program need
not determine the number of characters that
were translated.

3. The storage operand references of these
instructions may be multiple-access refer-
ences. (See “Storage-Operand Consistency”
on page 5-87.)

 UNPACK

UNPK D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'F3' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The format of the second operand is changed
from packed to zoned, and the result is placed at
the first-operand location. The packed and zoned
formats are described in Chapter 8, “Decimal
Instructions.”

The second operand is treated as having the
packed format. Its digits and sign are placed
unchanged in the first-operand location, using the
zoned format. Zone bits with coding of 1111 are
supplied for all bytes except the rightmost byte,
the zone of which receives the sign of the second
operand. The sign and digits are not checked for
valid codes.

The result is obtained as if the operands were
processed right to left. When necessary, the
second operand is considered to be extended on
the left with zeros. If the first-operand field is too
short to contain all digits of the second operand,
the remaining leftmost portion of the second
operand is ignored. Access exceptions for the
unused portion of the second operand may or may
not be indicated.

When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and as if the first result byte were stored
immediately after fetching the first operand byte.
The entire rightmost second-operand byte is used
in forming the first result byte. For the remainder
of the field, information for two result bytes is
obtained from a single second-operand byte, and
execution proceeds as if the leftmost four bits of
the byte were to remain available for the next
result byte and need not be refetched. Thus, the
result is as if two result bytes were to be stored
immediately after fetching a single operand byte.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)

7-188 z/Architecture Principles of Operation

Programming Notes:

1. An example of the use of the UNPACK
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. A field that is to be unpacked can be
destroyed by improper overlapping. To save
storage space for unpacking by overlapping
the operands, the rightmost byte of the first
operand must be to the right of the rightmost
byte of the second operand by the number of
bytes in the second operand minus 2. If only
one or two bytes are to be unpacked, the
rightmost bytes of the two operands may coin-
cide.

3. The storage-operand references of UNPACK
may be multiple-access references. (See
“Storage-Operand Consistency” on
page 5-87.)

 UNPACK ASCII

UNPKA D�(L�,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'EA' │ L� │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The format of the second operand is changed
from packed to ASCII, and the result is placed at
the first-operand location. The packed format is
described in Chapter 8, “Decimal Instructions.”

The second operand is treated as having the
packed format. Its digits are converted to ASCII
characters by extending them on the left with 0011
binary, and the ASCII characters are then placed
at the first operand location. The digits are not
checked for valid codes.

The sign of the second operand is not transferred
to the first operand but is checked for validity and
determines the condition code. If the sign is 1010,
1100, 1110 or 1111 binary (plus), condition code 0
is set. If the sign is 1011 or 1101 binary (minus),
condition code 1 is set. If the sign is not one of
the codes for plus or minus, condition code 3 is
set.

The converted last digit is placed in the rightmost
byte position of the result field, and the other con-
verted digits are placed adjacent to the last and to
each other in the remainder of the result field.

The result is obtained as if the operands were
processed right to left.

The length of the second operand is 16 bytes.
The second operand consists of 31 digits and a
sign.

The length of the first operand is designated by
the contents of the L� field. The first-operand
length must not exceed 32 bytes (L� must be less
than or equal to 31); otherwise, a specification
exception is recognized.

If the first operand is too short to contain all digits
of the second operand, the remaining leftmost
portion of the second operand is ignored. Access
exceptions for the unused portion of the second
operand may or may not be indicated.

When the length of the first operand is 32 bytes,
the leftmost byte is set to ASCII zero, 30 hex.

The results are unpredictable if the first and
second operands overlap in any way.

As observed by other CPUs and by channel pro-
grams, the first operand is not necessarily stored
into in any particular order.

Resulting Condition Code:

0 Sign is plus
1 Sign is minus
2 --
3 Sign is invalid

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
� Operation (if the extended-translation facility 2

is not installed)
 � Specification

Programming Note:

1. The following example illustrates the use of
the instruction to unpack to ASCII digits:

 Chapter 7. General Instructions 7-189

ASDIGITS DS CL31
PKDIGITS DS �PL16
 DC X'123456789�'
 DC X'123456789�'
 DC X'123456789�'
 DC X'1C'
 ...
 UNPKA ASDIGITS(31),PKDIGITS

2. The storage-operand references of UNPACK
ASCII may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-87.)

 UNPACK UNICODE

UNPKU D�(L�,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'E2' │ L� │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The format of the second operand is changed
from packed to Unicode Basic Latin, and the result
is placed at the first-operand location. The
packed format is described in Chapter 8, “Decimal
Instructions.”

The second operand is treated as having the
packed format. Its digits are converted to two-
byte Unicode characters by extending them on the
left with 000000000011 binary (003 hex), and the
Unicode characters are then placed at the first
operand location. The digits are not checked for
valid codes. The sign of the second operand is
not transferred to the first operand but is checked
for validity and determines the condition code. If
the sign is 1010, 1100, 1110 or 1111 binary (plus),
condition code 0 is set. If the sign is 1011 or
1101 binary (minus), condition code 1 is set. If
the sign is not one of the codes for plus or minus,
condition code 3 is set.

The converted last digit is placed in the rightmost
character position of the result field, and the other
converted digits are placed adjacent to the last
and to each other in the remainder of the result
field.

The result is obtained as if the operands were
processed right to left.

The length of the second operand is 16 bytes; the
second operand consists of 31 digits and a sign.

The length of the first operand is designated by
the contents of the L� field. The first-operand
length must not exceed 32 characters or 64 bytes
(L� must be less than or equal to 63 and must be
odd); otherwise a specification exception is recog-
nized.

If the first operand is too short to contain all digits
of the second operand, the remaining leftmost
portion of the second operand is ignored. Access
exceptions for the unused portion of the second
operand may or may not be indicated.

When the length of the first operand is 32 charac-
ters, the leftmost character is set to Unicode Basic
Latin zero, 0030 hex.

The results are unpredictable if the first and
second operands overlap in any way.

As observed by other CPUs and by channel pro-
grams, the first operand is not necessarily stored
into in any particular order.

Resulting Condition Code:

0 Sign is plus
1 Sign is minus
2 --
3 Sign is invalid

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
� Operation (if the extended-translation facility 2

is not installed)
 � Specification

Programming Notes:

1. The following example illustrates the use of
the instruction to unpack to European
numbers:

UNDIGITS DS CL62
PKDIGITS DS �PL16
 DC X'123456789�'
 DC X'123456789�'
 DC X'123456789�'
 DC X'1C'
 ...
 UNPKU UNDIGITS(62),PKDIGITS

2. The storage-operand references of UNPACK
UNICODE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-87.)

7-190 z/Architecture Principles of Operation

 UPDATE TREE

UPT [E]

┌────────────────┐
│ '�1�2' │
└────────────────┘
� 15

The nodes of a tree in storage are examined suc-
cessively on a path toward the base of the tree,
and contents of general register 0, conceptually
followed on the right by contents of general reg-
ister 1, are conditionally interchanged with the
contents of the nodes so as to give a unique
maximum logical value in general register 0. The
first half of a node and general register 0 contain
a codeword, which is for use in sort/merge algo-
rithms.

If the codeword in general register 0 equals the
codeword in a node, the contents of the node are
placed in general registers 2 and 3.

General register 4 contains the base address of
the tree, and general register 5 contains the index
of a node whose parent node will be examined
first.

In the access-register mode, access register 4
specifies the address space containing the tree.

This instruction may be interrupted between units
of operation. The condition code is unpredictable
if the instruction is interrupted.

The size of a node, the size of a codeword, and
the participation of bits 0-31 of general registers
1-5 in the operation depend on the addressing
mode. In the 24-bit or 31-bit addressing mode, a
node is eight bytes, a codeword is four bytes, and
bits 0-31 are ignored and remain unchanged. In
the 64-bit addressing mode, a node is 16 bytes, a
codeword is eight bytes, and bits 0-31 are used in
and may be changed by the operation.

Operation in the 24-Bit or 31-Bit Addressing
Mode

In the 24-bit or 31-bit addressing mode, the
doubleword nodes of a tree in storage are exam-
ined successively on a path toward the base of
the tree, and the contents of bit positions 32-63 of
general register 0, conceptually followed on the
right by the contents of bit positions 32-63 of

general register 1, are conditionally interchanged
with the contents of the nodes so as to give a
unique maximum logical value in bit positions
32-63 of general register 0.

Bit positions 32-63 of general register 4 contain
the base address of the tree, and bit positions
32-63 of general register 5 contain the index of a
node whose parent node will be examined first.
The base address is eight less than the address
of the root node of the tree. The initial contents of
bit positions 32-63 of general registers 4 and 5
must be a multiple of 8; otherwise, a specification
exception is recognized.

A unit of operation begins by shifting the contents
of bit positions 32-63 of general register 5 right
logically one position and then setting bit 61 to
zero. However, bits 32-63 of general register 5
remain unchanged if the execution of a unit of
operation is nullified or suppressed. If after
shifting and setting bit 61 to zero, bits 32-63 of
general register 5 are all zeros, the instruction is
completed, and condition code 1 is set; otherwise,
the unit of operation continues.

Bit 32 of general register 0 is tested. If bit 32 of
general register 0 is one, the instruction is com-
pleted, and condition code 3 is set.

If bit 32 of general register 0 is zero, the sum of
bits 32-63 of general registers 4 and 5 is used as
the intermediate value for normal operand address
generation. The generated address is the address
of a node in storage.

Bits 32-63 of general register 0 are logically com-
pared with the contents of the first word of the cur-
rently addressed node. If the register operand is
low, the contents of bit positions 32-63 of general
registers 0 and 1 are interchanged with those of
the node, and a unit of operation is completed. If
the register operand is high, no additional action is
taken, and the unit of operation is completed. If
the compare values are equal, bit positions 32-63
of general register 2, conceptually followed on the
right by bit positions 32-63 of general register 3,
are loaded from the currently addressed node, the
instruction is completed, and condition code 0 is
set.

In those cases when the value in the first word of
the node is less than or equal to the value in bit
positions 32-63 of the register, the contents of the

 Chapter 7. General Instructions 7-191

node remain unchanged. However, in some
models, these contents may be fetched and sub-
sequently stored back.

Operation in the 64-Bit Addressing Mode

In the 64-bit addressing mode, the quadword
nodes of a tree in storage are examined succes-
sively on a path toward the base of the tree, and
the contents of general register 0, conceptually fol-
lowed on the right by the contents of general reg-
ister 1, are conditionally interchanged with the
contents of the nodes so as to give a unique
maximum logical value in general register 0.

General register 4 contains the base address of
the tree, and general register 5 contain the index
of a node whose parent node will be examined
first. The base address is 16 less than the
address of the root node of the tree. The initial
contents of general registers 4 and 5 must be a
multiple of 16; otherwise, a specification exception
is recognized.

A unit of operation begins by shifting the contents
of general register 5 right logically one position
and then setting bit 60 to zero. However, general
register 5 remains unchanged if the execution of a
unit of operation is nullified or suppressed. If after
shifting and setting bit 60 to zero, the contents of
general register 5 are zero, the instruction is com-
pleted, and condition code 1 is set; otherwise, the
unit of operation continues.

Bit 0 of general register 0 is tested. If bit 0 of
general register 0 is one, the instruction is com-
pleted, and condition code 3 is set.

If bit 0 of general register 0 is zero, the sum of the
contents of general registers 4 and 5 is used as
the intermediate value for normal operand address
generation. The generated address is the address
of a node in storage.

The contents of general register 0 are logically
compared with the contents of the first doubleword
of the currently addressed node. If the register
operand is low, the contents of general registers 0
and 1 are interchanged with those of the node,
and a unit of operation is completed. If the reg-
ister operand is high, no additional action is taken,
and the unit of operation is completed. If the
compare values are equal, general registers 2 and
3 are loaded from the currently addressed node,

the instruction is completed, and condition code 0
is set.

In those cases when the value in the first
doubleword of the node is less than or equal to
the value in the register, the contents of the node
remain unchanged. However, in some models,
these contents may be fetched and subsequently
stored back.

Specifications Independent of Addressing
Mode

Access exceptions are recognized only for one
node at a time. Access exceptions, change-bit
action, and PER storage alteration do not occur
for subsequent nodes until the previous node has
been successfully compared and updated, and
they also do not occur if a specification-exception
condition exists.

Resulting Condition Code:

0 Equal compare values at currently addressed
node

1 No equal compare values found on path, or
no comparison made

2 --
3 In 24-bit or 31-bit mode, bits 32-63 of general

register 5 nonzero and bits 32-63 of general
register 0 negative; in 64-bit mode, general
register 5 nonzero and general register 0 neg-
ative

 Program Exceptions:

� Access (fetch and store, nodes of tree)
 � Specification

Programming Notes:

1. An example of the use of UPDATE TREE is
given in “Sorting Instructions” in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. For use in sorting in the 24-bit or 31-bit
addressing mode, when equal compare values
have been found, the contents of bit positions
32-63 of general registers 1 and 3 can be
appropriate (depending on the contents of the
tree) for the subsequent execution of
COMPARE AND FORM CODEWORD. The
contents of bit positions 32-63 of general reg-
ister 2, shifted right 16 bit positions, can be
similarly appropriate, and they can provide for

7-192 z/Architecture Principles of Operation

minimal recomparison of partially equal keys.
The same applies in the 64-bit addressing
mode except to the contents of bit positions
0-63 of the registers and with the contents of
bit positions 0-63 of general register 2 shifted
right 48 bit positions. Refer to “Sorting
Instructions” on page A-51 for a discussion of
trees and their use in sorting.

3. The program should avoid placing a nonzero
value in bit positions 32-38 of general register
5 when in the 24-bit addressing mode. If any
bit in bit positions 32-38 is a one, the nodes of
the tree will not be examined successively.

4. When bits 32-63 of general register 0 are neg-
ative in the 24-bit or 31-bit addressing mode,
or when bits 0-63 are negative in the 64-bit
mode, and provided that the tree has been
updated properly previously, the node repres-
ented by general registers 0 and 1 either is
the node or is equal to the node (equal keys)
that would be selected if the unit of operation
continued. In this case, ending the unit of
operation and setting condition code 3 is a
faster means of selecting an appropriate node
because it does not require further examina-
tion and updating of the tree.

5. Setting condition code 3 provides improved
performance when the replacement record is
equal to the old winner and, more importantly
(since the first case can be detected by
means of the condition code of CFC), when
the update path contains a negative
codeword, indicating equality with the old
winner.

6. In those cases when the codeword in the
node is less than or equal to the codeword in
general register 0, depending on the model,
the contents of the node may be fetched and
subsequently stored back. As a result, any of
the following may occur for the storage
location containing the node: a PER storage-
alteration event may be recognized; a pro-
tection exception for storing may be recog-
nized; and, provided no access exceptions
exist, the change bit may be set to one.
Because the contents of storage remain
unchanged, the change bit may or may not be
one when a PER storage-alteration event is
recognized.

7. Special precautions should be taken when
UPDATE TREE is made the target of
EXECUTE. See the programming note con-
cerning interruptible instructions under
EXECUTE.

8. Further programming notes concerning inter-
ruptible instructions are included in “Interrup-
tible Instructions” on page 5-21.

9. The storage-operand references for UPDATE
TREE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-87.)

10. Figure 7-77 on page 7-194 is a summary of
the operation of UPDATE TREE in the 24-bit
or 31-bit addressing mode, and Figure 7-78
on page 7-195 is a summary of the operation
in the 64-bit addressing mode.

 Chapter 7. General Instructions 7-193

 ┌───────────────────────────────────┐ No
│Bits 61-63 of GR4 and GR5 all zeros├──────� Specification Exception

 └─────────────────┬─────────────────┘
┌─────────┐ │ Yes
│Unit-of- │ │
│operation├─────────────────────�│
│boundary │ │
└─────────┘ �
 � ┌──┐

│ │GR5 shifted right one position ──� TEMPWORD1│ �
 │ │ │

│ │� ──� Bit 29 of TEMPWORD1 │
 │ └─────────────────────┬──────────────────────┘
 │ │
 │ �
 │ ┌─────────────┐ Yes ┌───────────────┐

│ │TEMPWORD1 = �├─────────────────�│� ──� GR5 │ �
 │ └──────┬──────┘ │ │

│ │ No │1 ──� Cond Code├─────┐
 │ │ └───────────────┘ │
 │ � │
 │ ┌─────────────────┐ Yes │

│ │Bit 32 of GR� one├────────────────────────┐ │
 │ └────────┬────────┘ │ │
 │ │ No � │
 │ │ ┌──────────────────┐ │

│ │ │TEMPWORD1 ──� GR5 │ �│
 │ │ │ │ │

│ � │3 ──� Cond Code │ │
 │ ┌───────────────────────────────┐ └───────┬──────────┘ │

│ │GR4 + TEMPWORD1 ──� TEMPADDRESS│ � │ │
 │ └───────────────┬───────────────┘ │�────────────┘
 │ │ �

│ � End operation
 │ ┌──────────────────────────────────┐

│ │Fetch doubleword from location in │
│ │storage designated by TEMPADDRESS;│

 │ │ │
 │ │Bits �-31 ──� TEMPWORD2 │
 │ │ │

│ │Bits 32-64 ──� TEMPWORD3 │
 │ └────────────────┬─────────────────┘
 │ │

│ � � Only bits 32-63 of a GR partici-
│ ┌─────────────────┐ pate when no bits are mentioned.
│ │TEMPWORD1 ──� GR5│ �

 │ └────────┬────────┘
 │ │
 │ �

│ GR� high ┌─────────────────────────┐ � GR� equal
│�──────────────┤Compare GR� and TEMPWORD2├─────────────────────┐

 � └────────────┬────────────┘ │
│ │ GR� low │

 │ │ �
 │ � ┌─────────────────┐

│ ┌────────────────────────────────────┐ │TEMPWORD2 ──� GR2│ �
│ │Store contents of GR� and GR1 in │ � │ │
│ │doubleword designated by TEMPADDRESS│ │TEMPWORD3 ──� GR3│ �

 │ └──────────────────┬─────────────────┘ │ │
│ │ │� ──� Cond Code │

 │ � └────────┬────────┘
 │ ┌─────────────────┐ │

│ │TEMPWORD2 ──� GR�│ � �
 │ │ │ End operation

│ │TEMPWORD3 ──� GR1│ �
 │ └────────┬────────┘
 │ │
 └────────────────────────────┘

Figure 7-77. Execution of UPDATE TREE in the 24-Bit or 31-Bit Addressing Mode

7-194 z/Architecture Principles of Operation

 ┌───────────────────────────────────┐ No
│Bits 6�-63 of GR4 and GR5 all zeros├──────� Specification Exception

 └─────────────────┬─────────────────┘
┌─────────┐ │ Yes
│Unit-of- │ │
│operation├─────────────────────�│
│boundary │ │
└─────────┘ �
 � ┌──┐

│ │GR5 shifted right one position ──� TEMPDWRD1│ �
 │ │ │

│ │� ──� Bit 6� of TEMPDWRD1 │
 │ └─────────────────────┬──────────────────────┘
 │ │
 │ �
 │ ┌─────────────┐ Yes ┌───────────────┐

│ │TEMPDWRD1 = �├─────────────────�│� ──� GR5 │ �
 │ └──────┬──────┘ │ │

│ │ No │1 ──� Cond Code├─────┐
 │ │ └───────────────┘ │
 │ � │
 │ ┌─────────────────┐ Yes │

│ │Bit � of GR� one ├────────────────────────┐ │
 │ └────────┬────────┘ │ │
 │ │ No � │
 │ │ ┌──────────────────┐ │

│ │ │TEMPDWRD1 ──� GR5 │ �│
 │ │ │ │ │

│ � │3 ──� Cond Code │ │
 │ ┌───────────────────────────────┐ └───────┬──────────┘ │

│ │GR4 + TEMPDWRD1 ──� TEMPADDRESS│ � │ │
 │ └───────────────┬───────────────┘ │�────────────┘
 │ │ �

│ � End operation
 │ ┌──────────────────────────────────┐

│ │Fetch quadword from location in │
│ │storage designated by TEMPADDRESS;│

 │ │ │
 │ │Bits �-63 ──� TEMPDWRD2 │
 │ │ │

│ │Bits 64-127 ──� TEMPDWRD3 │
 │ └────────────────┬─────────────────┘
 │ │

│ � � Bits �-63 of a GR participate
│ ┌─────────────────┐ when no bits are mentioned.
│ │TEMPDWRD1 ──� GR5│ �

 │ └────────┬────────┘
 │ │
 │ �

│ GR� high ┌─────────────────────────┐ � GR� equal
│�──────────────┤Compare GR� and TEMPDWRD2├─────────────────────┐

 � └────────────┬────────────┘ │
│ │ GR� low │

 │ │ �
 │ � ┌─────────────────┐

│ ┌──────────────────────────────────┐ │TEMPDWRD2 ──� GR2│ �
│ │Store contents of GR� and GR1 in │ � │ │
│ │quadword designated by TEMPADDRESS│ │TEMPDWRD3 ──� GR3│ �

 │ └────────────────┬─────────────────┘ │ │
│ │ │� ──� Cond Code │

 │ � └────────┬────────┘
 │ ┌─────────────────┐ │

│ │TEMPDWRD2 ──� GR�│ � �
 │ │ │ End operation

│ │TEMPDWRD3 ──� GR1│ �
 │ └────────┬────────┘
 │ │
 └────────────────────────────┘

Figure 7-78. Execution of UPDATE TREE in the 64-Bit Addressing Mode

 Chapter 7. General Instructions 7-195

7-196 z/Architecture Principles of Operation

 Chapter 8. Decimal Instructions

Decimal-Number Formats 8-1
Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-2

Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands . 8-3
Decimal-Operand Data Exception 8-4

Instructions . 8-4

ADD DECIMAL 8-5
COMPARE DECIMAL 8-6
DIVIDE DECIMAL 8-6
EDIT . 8-7
EDIT AND MARK 8-9
MULTIPLY DECIMAL 8-11
SHIFT AND ROUND DECIMAL 8-11
SUBTRACT DECIMAL 8-12
TEST DECIMAL 8-13
ZERO AND ADD 8-13

The decimal instructions of this chapter perform
arithmetic and editing operations on decimal data.
Additional operations on decimal data are pro-
vided by several of the instructions in Chapter 7,
“General Instructions.” Decimal operands always

| reside in storage, and most decimal instructions
use the SS instruction format. Decimal operands
occupy storage fields that can start on any byte
boundary.

 Decimal-Number Formats
Decimal numbers may be represented in either
the zoned or packed format. Both decimal-
number formats are of variable length; the
instructions used to operate on decimal data each
specify the length of their operands and results.
Each byte of either format consists of a pair of
four-bit codes; the four-bit codes include decimal-
digit codes, sign codes, and a zone code.

 Zoned Format

┌───┬───┬───┬───┬─/─┬───┬───┬───┬───┐
│ Z │ N │ Z │ N │ │ Z │ N │Z/S│ N │
└───┴───┴───┴───┴─/─┴───┴───┴───┴───┘

In the zoned format, the rightmost four bits of a
byte are called the numeric bits (N) and normally
consist of a code representing a decimal digit.
The leftmost four bits of a byte are called the zone
bits (Z), except for the rightmost byte of a decimal
operand, where these bits may be treated either
as a zone or as a sign (S).

Decimal digits in the zoned format may be part of
a larger character set, which includes also alpha-
betic and special characters. The zoned format is,
therefore, suitable for input, editing, and output of
numeric data in human-readable form. There are
no decimal-arithmetic instructions which operate
directly on decimal numbers in the zoned format;
such numbers must first be converted to the
packed format.

The editing instructions produce a result of up to
256 bytes; each byte may be a decimal digit in the
zoned format, a message byte, or a fill byte.

 Packed Format

┌───┬───┬───┬───┬─/─┬───┬───┬───┬───┐
│ D │ D │ D │ D │ │ D │ D │ D │ S │
└───┴───┴───┴───┴─/─┴───┴───┴───┴───┘

In the packed format, each byte contains two
decimal digits (D), except for the rightmost byte,
which contains a sign to the right of a decimal
digit. Decimal arithmetic is performed with oper-
ands in the packed format and generates results
in the packed format.

The packed-format operands and results of
decimal-arithmetic instructions may be up to 16
bytes (31 digits and sign), except that the
maximum length of a multiplier or divisor is eight
bytes (15 digits and sign). In division, the sum of
the lengths of the quotient and remainder may be
from two to 16 bytes. The editing instructions can
fetch as many as 256 decimal digits from one or
more decimal numbers of variable length, each in
the packed format.

 Copyright IBM Corp. 1990-2003 8-1

 Decimal Codes

The decimal digits 0-9 have the binary encoding
0000-1001.

The preferred sign codes are 1100 for plus and
1101 for minus. These are the sign codes gener-
ated for the results of the decimal-arithmetic
instructions and the CONVERT TO DECIMAL
instruction.

Alternate sign codes are also recognized as valid
in the sign position: 1010, 1110, and 1111 are
alternate codes for plus, and 1011 is an alternate
code for minus. Alternate sign codes are
accepted for any decimal source operand, but are
not generated in the completed result of a
decimal-arithmetic instruction or CONVERT TO
DECIMAL. This is true even when an operand
remains otherwise unchanged, such as when
adding zero to a number. An alternate sign code
is, however, left unchanged by MOVE
NUMERICS, MOVE WITH OFFSET, MOVE
ZONES, PACK, and UNPACK.

When an invalid sign or digit code is detected, a
data exception is recognized. For the decimal-
arithmetic instructions and CONVERT TO
BINARY, the operation is suppressed.

For the editing instructions EDIT and EDIT AND
MARK, an invalid sign code is not recognized.
The operation is terminated for a data exception
due to an invalid digit code. No validity checking
is performed by MOVE NUMERICS, MOVE WITH
OFFSET, MOVE ZONES, PACK, and UNPACK.

The zone code 1111 is generated in the left four
bit positions of each byte representing a zone and
a decimal digit in zoned-format results. Zoned-
format results are produced by EDIT, EDIT AND
MARK, and UNPACK. For EDIT and EDIT AND
MARK, each result byte representing a zoned-
format decimal digit contains the zone code 1111
in the left four bit positions and the decimal-digit
code in the right four bit positions. For UNPACK,
zone bits with a coding of 1111 are supplied for all
bytes except the rightmost byte, the zone of which
receives the sign.

The meaning of the decimal codes is summarized
in Figure 8-1.

┌────────┬─────────────────────────────┐
│ │ Recognized As │
│ Code ├─────────┬───────────────────┤
│(Binary)│ Digit │ Sign │
├────────┼─────────┼───────────────────┤
│ ���� │ � │ Invalid │
│ ���1 │ 1 │ Invalid │
│ ��1� │ 2 │ Invalid │
│ ��11 │ 3 │ Invalid │
│ �1�� │ 4 │ Invalid │
│ �1�1 │ 5 │ Invalid │
│ �11� │ 6 │ Invalid │
│ �111 │ 7 │ Invalid │
│ 1��� │ 8 │ Invalid │
│ 1��1 │ 9 │ Invalid │
│ 1�1� │ Invalid │ Plus │
│ 1�11 │ Invalid │ Minus │
│ 11�� │ Invalid │ Plus (preferred) │
│ 11�1 │ Invalid │ Minus (preferred) │
│ 111� │ Invalid │ Plus │
│ 1111 │ Invalid │ Plus (zone) │
└────────┴─────────┴───────────────────┘

Figure 8-1. Summary of Digit and Sign Codes

Programming Note: Since 1111 is both the
zone code and an alternate code for plus,
unsigned (positive) decimal numbers may be
represented in the zoned format with 1111 zone
codes in all byte positions. The result of the
PACK instruction converting such a number to the
packed format may be used directly as an
operand for decimal instructions.

 Decimal Operations
The decimal instructions in this chapter consist of
two classes, the decimal-arithmetic instructions
and the editing instructions.

 Decimal-Arithmetic Instructions

The decimal-arithmetic instructions perform addi-
tion, subtraction, multiplication, division, compar-
ison, and shifting.

Operands of the decimal-arithmetic instructions
are in the packed format and are treated as
signed decimal integers. A decimal integer is
represented in true form as an absolute value with
a separate plus or minus sign. It contains an odd
number of decimal digits, from one to 31, and the
sign; this corresponds to an operand length of one
to 16 bytes.

A decimal zero normally has a plus sign, but multi-
plication, division, and overflow may produce a

8-2 z/Architecture Principles of Operation

zero value with a minus sign. Such a negative
zero is a valid operand and is treated as equal to
a positive zero by COMPARE DECIMAL.

The lengths of the two operands specified in the
instruction need not be the same. If necessary,
the shorter operand is considered to be extended
with zeros on the left. Results, however, cannot
exceed the first-operand length as specified in the
instruction.

When a carry or leftmost nonzero digits of the
result are lost because the first-operand field is
too short, the result is obtained by ignoring the
overflow digits, condition code 3 is set, and, if the
decimal-overflow mask bit is one, a program inter-
ruption for decimal overflow occurs. The operand
lengths alone are not an indication of overflow;
nonzero digits must have been lost during the
operation.

The operands of decimal-arithmetic instructions
should not overlap at all or should have coincident
rightmost bytes. In ZERO AND ADD, the oper-
ands may also overlap in such a manner that the
rightmost byte of the first operand (which becomes
the result) is to the right of the rightmost byte of
the second operand. For these cases of proper
overlap, the result is obtained as if operands were
processed right to left. Because the codes for
digits and signs are verified during the perform-
ance of the arithmetic, improperly overlapping
operands are recognized as data exceptions.
However, in ZERO AND ADD when the rightmost
byte of the first operand is to the left of the right-
most byte of the second operand, the entire
second operand may be fetched, depending on
the model, before any storing occurs, which will
cause a data exception not to be recognized. See
“Interlocks within a Single Instruction” on
page 5-81 for how overlap is detected in the
access-register mode.

Programming Note: A packed decimal number
in storage may be designated as both the first and
second operand of ADD DECIMAL, COMPARE
DECIMAL, DIVIDE DECIMAL, MULTIPLY
DECIMAL, SUBTRACT DECIMAL, or ZERO AND
ADD. Thus, a decimal number may be added to
itself, compared with itself, and so forth; SUB-
TRACT DECIMAL may be used to set a decimal
field in storage to zero; and, for MULTIPLY
DECIMAL, a decimal number may be squared in
place. In these cases, the lengths of the two

operands are not necessarily equal and may,
depending on the instruction, be prohibited from
being equal.

 Editing Instructions

The editing instructions are EDIT and EDIT AND
MARK. For these instructions, only the first
operand (the pattern) has an explicitly specified
length. The second operand (the source) is con-
sidered to have as many digits as necessary for
the completion of the operation.

Overlapping operands for the editing instructions
yield unpredictable results.

Execution of Decimal Instructions

During the execution of a decimal instruction, all
bytes of the operands are not necessarily
accessed concurrently, and the fetch and store
accesses to a single location do not necessarily
occur one immediately after the other. Further-
more, for decimal instructions, data in source
fields may be accessed more than once, and
intermediate values may be placed in the result
field that may differ from the original operand and
final result values. (See “Storage-Operand
Consistency” on page 5-87.) Thus, in a multiproc-
essing configuration, an instruction such as ADD
DECIMAL cannot be safely used to update a
shared storage location when the possibility exists
that another CPU may also be updating that
location.

Other Instructions for Decimal
Operands

In addition to the decimal instructions in this
chapter, MOVE NUMERICS and MOVE ZONES
are provided for operating on data of lengths up to
256 bytes in the zoned format. Two instructions
are provided for converting data between the
zoned and packed formats: PACK transforms
zoned data of lengths up to 16 bytes into packed
data, and UNPACK performs the reverse transfor-
mation. MOVE WITH OFFSET can operate on
packed data of lengths up to 16 bytes. Two
instructions are provided for conversion between
the packed-decimal and signed-binary-integer
formats. CONVERT TO BINARY converts packed
decimal to binary, and CONVERT TO DECIMAL

 Chapter 8. Decimal Instructions 8-3

converts binary to packed decimal; the length of
the packed decimal operand of these instructions
is eight bytes (15 digits and sign) for CONVERT
TO BINARY (CVB) and CONVERT TO DECIMAL
(CVD), and sixteen bytes (31 digits and sign) for
CONVERT TO BINARY (CVBG) and CONVERT
TO DECIMAL (CVDG). These seven instructions
are not considered to be decimal instructions and
are described in Chapter 7, “General Instructions.”
The editing instructions in this chapter may also
be used to change data from the packed to the
zoned format.

Decimal-Operand Data Exception

A decimal-operand data exception is recognized
when any of the following is true:

1. The sign or digit codes of operands in the
decimal instructions or in CONVERT TO
BINARY (described in Chapter 7, “General
Instructions”) are invalid.

2. The operand fields in ADD DECIMAL,
COMPARE DECIMAL, DIVIDE DECIMAL,
MULTIPLY DECIMAL, and SUBTRACT
DECIMAL overlap in a way other than with
coincident rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of
the rightmost byte of the first operand. On
some models, the improper overlap of oper-
ands for ZERO AND ADD is not recognized
as a decimal-operand data exception; instead,

the operation is performed as if the entire
second operand were fetched before any byte
of the result is stored.

3. The multiplicand in MULTIPLY DECIMAL has
an insufficient number of leftmost zeros.

A decimal-operand data exception causes the
operation to be suppressed, except that, for EDIT
and EDIT AND MARK, the operation may be sup-
pressed or terminated. In the case of EDIT and
EDIT AND MARK, an invalid sign code cannot
occur.

 Instructions
The decimal instructions and their mnemonics,
formats, and operation codes are listed in
Figure 8-2 on page 8-5. The figure also indicates
when the condition code is set, the instruction
fields that designate access registers, and the
exceptional conditions in operand designations,
data, or results that cause a program interruption.

Note: In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler lan-
guage are shown with each instruction. For ADD
DECIMAL, for example, AP is the mnemonic and
D�(L�,B�),D�(L�,B�) the operand designation.

Programming Note: The decimal instruction
TEST DECIMAL is available when the extended-
translation facility 2 is installed.

8-4 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│ADD DECIMAL │AP │SS C │ A │Dd DF │ ST│B� B�│FA │
│COMPARE DECIMAL │CP │SS C │ A │Dd │ │B� B�│F9 │
│DIVIDE DECIMAL │DP │SS │ A SP│Dd DK │ ST│B� B�│FD │
│EDIT │ED │SS C │ A │Dd │ ST│B� B�│DE │
│EDIT AND MARK │EDMK │SS C │ A │Dd G1 │ ST│B� B�│DF │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY DECIMAL │MP │SS │ A SP│Dd │ ST│B� B�│FC │
│SHIFT AND ROUND DECIMAL │SRP │SS C │ A │Dd DF │ ST│B� │F� │
│SUBTRACT DECIMAL │SP │SS C │ A │Dd DF │ ST│B� B�│FB │
│TEST DECIMAL │TP │RSL C E2│ A │ │ │B� │EBC�│
│ZERO AND ADD │ZAP │SS C │ A │Dd DF │ ST│B� B�│F8 │
├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤
│Explanation: │
│ │
│ A Access exceptions for logical addresses. │
│ B� B� field designates an access register in the access-register mode. │
│ B� B� field designates an access register in the access-register mode. │
│ C Condition code is set. │
│ Dd Decimal-operand data exception. │
│ DF Decimal-overflow exception. │
│ DK Decimal-divide exception. │
│ E2 Extended-translation facility 2. │
│ G1 Instruction execution includes the implied use of general register 1. │
│ SP Specification exception. │
│ SS SS instruction format. │
│ ST PER storage-alteration event. │
└──┘

Figure 8-2. Summary of Decimal Instructions

 ADD DECIMAL

AP D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'FA' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The second operand is added to the first operand,
and the resulting sum is placed at the first-
operand location. The operands and result are in
the packed format.

Addition is algebraic, taking into account the signs
and all digits of both operands. All sign and digit
codes are checked for validity.

If the first operand is too short to contain all left-
most nonzero digits of the sum, decimal overflow
occurs. The operation is completed. The result is
obtained by ignoring the overflow digits, and con-
dition code 3 is set. If the decimal-overflow mask
is one, a program interruption for decimal overflow
occurs.

The sign of the sum is determined by the rules of
algebra. In the absence of overflow, the sign of a
zero result is made positive. If overflow occurs, a
zero result is given either a positive or negative
sign, as determined by what the sign of the
correct sum would have been.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data
 � Decimal overflow

Programming Note: An example of the use of
the ADD DECIMAL instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 Chapter 8. Decimal Instructions 8-5

 COMPARE DECIMAL

CP D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'F9' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code. The operands are in the packed
format.

Comparison is algebraic and follows the procedure
for decimal subtraction, except that both operands
remain unchanged. When the difference is zero,
the operands are equal. When a nonzero differ-
ence is positive or negative, the first operand is
high or low, respectively.

Overflow cannot occur because the difference is
discarded.

All sign and digit codes are checked for validity.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions:

� Access (fetch, operands 1 and 2)
 � Data

Programming Notes:

1. An example of the use of the COMPARE
DECIMAL instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The preferred and alternate sign codes for a
particular sign are treated as equivalent for
comparison purposes.

3. A negative zero and a positive zero compare
equal.

 DIVIDE DECIMAL

DP D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'FD' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The first operand (the dividend) is divided by the
second operand (the divisor). The resulting quo-
tient and remainder are placed at the first-operand
location. The operands and results are in the
packed format.

The quotient is placed leftmost in the first-operand
location. The number of bytes in the quotient field
is equal to the difference between the dividend
and divisor lengths (L� - L�). The remainder is
placed rightmost in the first-operand location and
has a length equal to the divisor length. Together,
the quotient and remainder fields occupy the
entire first operand; therefore, the address of the
quotient is the address of the first operand.

The divisor length cannot exceed 15 digits and
sign (L� not greater than seven) and must be less
than the dividend length (L� less than L�); other-
wise, a specification exception is recognized.

The dividend, divisor, quotient, and remainder are
each signed decimal integers in the packed format
and are right-aligned in their fields. All sign and
digit codes of the dividend and divisor are
checked for validity.

The sign of the quotient is determined by the rules
of algebra from the dividend and divisor signs.
The sign of the remainder has the same value as
the dividend sign. These rules hold even when
the quotient or remainder is zero.

Overflow cannot occur. If the divisor is zero or the
quotient is too large to be represented by the
number of digits specified, a decimal-divide excep-
tion is recognized. This includes the case of divi-
sion of zero by zero. The decimal-divide excep-
tion is indicated only if the sign codes of both the
dividend and divisor are valid, and only if the digit
or digits used in establishing the exception are
valid.

Condition Code: The code remains unchanged.

8-6 z/Architecture Principles of Operation

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data
 � Decimal divide
 � Specification

Programming Notes:

1. An example of the use of the DIVIDE
DECIMAL instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The dividend cannot exceed 31 digits and
sign. Since the remainder cannot be shorter
than one digit and sign, the quotient cannot
exceed 29 digits and sign.

3. The condition for a decimal-divide exception
can be determined by a trial comparison. The
leftmost digit of the divisor is aligned one digit
to the right of the leftmost dividend digit, with
rightmost zeros appended up to the length of
the dividend. When the divisor, so aligned, is
less than or equal to the dividend, ignoring
signs, a divide exception is indicated.

4. If a data exception does not exist, a decimal-
divide exception occurs when the leftmost divi-
dend digit is not zero.

 EDIT

ED D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'DE' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format
and modified under the control of the first operand
(the pattern). The edited result replaces the first
operand.

The length field specifies the length of the first
operand, which may contain bytes of any value.

The length of the source is determined by the
operation according to the contents of the pattern.
The source normally consists of one or more
decimal numbers, each in the packed format. The
leftmost four bits of each source byte must specify

a decimal-digit code (0000-1001); a sign code
(1010-1111) is recognized as a data exception.
The rightmost four bits may specify either a sign
code or a decimal-digit code. Access and data
exceptions are recognized only for those bytes in
the second operand which are actually required.

The result is obtained as if both operands were
processed left to right one byte at a time. Over-
lapping pattern and source fields give unpredict-
able results.

During the editing process, each byte of the
pattern is affected in one of three ways:

1. It is left unchanged.

2. It is replaced by a source digit expanded to
the zoned format.

3. It is replaced by the first byte in the pattern,
called the fill byte.

Which of the three actions takes place is deter-
mined by one or more of the following: the type of
the pattern byte, the state of the significance indi-
cator, and whether the source digit examined is
zero.

Pattern Bytes: There are four types of pattern
bytes: digit selector, significance starter, field sep-
arator, and message byte. Their coding is as
follows:

┌──────────────────────┬───────────┐
│ │ Code │
│ Name │ (Binary) │
├──────────────────────┼───────────┤
│ Digit selector │ ��1� ���� │
│ Significance starter │ ��1� ���1 │
│ Field separator │ ��1� ��1� │
│ Message byte │ Any other │
└──────────────────────┴───────────┘

The detection of either a digit selector or a signif-
icance starter in the pattern causes an examina-
tion to be made of the significance indicator and of
a source digit. As a result, either the expanded
source digit or the fill byte, as appropriate, is
selected to replace the pattern byte. Additionally,
encountering a digit selector or a significance
starter may cause the significance indicator to be
changed.

The field separator identifies individual fields in a
multiple-field editing operation. It is always
replaced in the result by the fill byte, and the sig-
nificance indicator is always off after the field sep-
arator is encountered.

 Chapter 8. Decimal Instructions 8-7

Message bytes in the pattern are either replaced
by the fill byte or remain unchanged in the result,
depending on the state of the significance indi-
cator. They may thus be used for padding, punc-
tuation, or text in the significant portion of a field
or for the insertion of sign-dependent symbols.

Fill Byte: The first byte of the pattern is used as
the fill byte. The fill byte can have any code and
may concurrently specify a control function. If this
byte is a digit selector or significance starter, the
indicated editing action is taken after the code has
been assigned to the fill byte.

Source Digits: Each time a digit selector or sig-
nificance starter is encountered in the pattern, a
new source digit is examined for placement in the
pattern field. Either the source digit is disre-
garded, or it is expanded to the zoned format, by
appending the zone code 1111 on the left, and
stored in place of the pattern byte.

Execution is as if the source digits were selected
one byte at a time and as if a source byte were
fetched for inspection only once during an editing
operation. Each source digit is examined only
once for a zero value. The leftmost four bits of
each byte are examined first, and the rightmost
four bits, when they represent a decimal-digit
code, remain available for the next pattern byte
that calls for a digit examination. When the left-
most four bits contain an invalid digit code, a data
exception is recognized, and the operation is ter-
minated.

At the time the left digit of a source byte is exam-
ined, the rightmost four bits are checked for the
existence of a sign code. When a sign code is
encountered in the rightmost four bit positions,
these bits are not treated as a decimal-digit code,
and a new source byte is fetched from storage
when the next pattern byte calls for a source-digit
examination.

When the pattern contains no digit selector or sig-
nificance starter, no source bytes are fetched and
examined.

Significance Indicator: The significance indi-
cator is turned on or off to indicate the significance
or nonsignificance, respectively, of subsequent
source digits or message bytes. Significant
source digits replace their corresponding digit
selectors or significance starters in the result. Sig-

nificant message bytes remain unchanged in the
result.

The significance indicator, by its on or off state,
indicates also the negative or positive value,
respectively, of a completed source field and is
used as one factor in the setting of the condition
code.

The significance indicator is set to off at the start
of the editing operation, after a field separator is
encountered, or after a source byte is examined
that has a plus code in the rightmost four bit posi-
tions.

The significance indicator is set to on when a sig-
nificance starter is encountered whose source digit
is a valid decimal digit, or when a digit selector is
encountered whose source digit is a nonzero
decimal digit, provided that in both instances the
source byte does not have a plus code in the
rightmost four bit positions.

In all other situations, the significance indicator is
not changed. A minus sign code has no effect on
the significance indicator.

Result Bytes: The result of an editing operation
replaces and is equal in length to the pattern. It is
composed of pattern bytes, fill bytes, and zoned
source digits.

If the pattern byte is a message byte and the sig-
nificance indicator is on, the message byte
remains unchanged in the result. If the pattern
byte is a field separator or if the significance indi-
cator is off when a message byte is encountered
in the pattern, the fill byte replaces the pattern
byte in the result.

If the digit selector or significance starter is
encountered in the pattern with the significance
indicator off and the source digit zero, the source
digit is considered nonsignificant, and the fill byte
replaces the pattern byte. If the digit selector or
significance starter is encountered with either the
significance indicator on or with a nonzero decimal
source digit, the source digit is considered signif-
icant, is changed to the zoned format, and
replaces the pattern byte in the result.

Condition Code: The sign and magnitude of the
last field edited are used to set the condition code.
The term “last field” refers to those source digits, if

8-8 z/Architecture Principles of Operation

any, in the second operand selected by digit
selectors or significance starters after the last field
separator; if the pattern contains no field sepa-
rator, there is only one field, which is considered
to be the last field. If no such source digits are
selected, the last field is considered to be of zero
length.

Condition code 0 is set when the last field edited
is zero or of zero length.

Condition code 1 is set when the last field edited
is nonzero and the significance indicator is on.
(This indicates a result less than zero if the last
source byte examined contained a sign code in
the rightmost four bits.)

Condition code 2 is set when the last field edited
is nonzero and the significance indicator is off.
(This indicates a result greater than zero if the last
source byte examined contained a sign code in
the rightmost four bits.)

Figure 8-3 on page 8-10 summarizes the func-
tions of the EDIT and EDIT AND MARK oper-
ations. The leftmost four columns list all the sig-
nificant combinations of the four conditions that
can be encountered in the execution of an editing
operation. The rightmost two columns list the
action taken for each case — the type of byte
placed in the result field and the new setting of the
significance indicator.

Resulting Condition Code:

0 Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3 --

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data

Programming Notes:

1. Examples of the use of the EDIT instruction
are given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. Editing includes sign and punctuation control,
and the suppression and protection of leading
zeros by replacing them with blanks or aster-
isks. It also facilitates programmed blanking

of all-zero fields. Several fields may be edited
in one operation, and numeric information may
be combined with text.

3. In most cases, the source is shorter than the
pattern because each four-bit source digit
produces an eight-bit byte in the result.

4. The total number of digit selectors and signif-
icance starters in the pattern always equals
the number of source digits edited.

5. If the fill byte is a blank, if no significance
starter exists in the pattern, and if the source
digit examined for each digit selector is zero,
the editing operation blanks the result field.

6. The resulting condition code indicates whether
or not the last field is all zeros and, if nonzero,
reflects the state of the significance indicator.
The significance indicator reflects the sign of
the source field only if the last source byte
examined contains a sign code in the right-
most four bits. For multiple-field editing oper-
ations, the condition code reflects the sign and
value only of the field following the last field
separator.

7. Significant performance degradation is pos-
sible when, with DAT on, the second-operand
address of an EDIT instruction designates a
location that is closer to the left of a 4K-byte
boundary than the length of the first operand
of that instruction. This is because the
machine may perform a trial execution of the
instruction to determine if the second operand
actually crosses the boundary. The second
operand of EDIT, while normally shorter than
the first operand, can in the extreme case
have the same length as the first.

EDIT AND MARK

EDMK D�(L,B�),D�(B�) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐
│ 'DF' │ L │ B� │ D� │ B� │ D� │
└────────┴────────┴────┴─/──┴────┴─/──┘
� 8 16 2� 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format
and modified under the control of the first operand
(the pattern). The address of the first significant
result byte is inserted in general register 1. The
edited result replaces the pattern.

 Chapter 8. Decimal Instructions 8-9

┌──┬──────────────────────────┐
│ │ Results │
│ Conditions ├─────────────┬────────────┤
├────────────────────┬────────────┬──────┬─────────────┤ │State of │
│ │Previous │ │ │ │Significance│
│ │State of │ │Right Four │ │Indicator at│
│ │Significance│Source│Source Bits │ │End of Digit│
│ Pattern Byte │Indicator │Digit │Are Plus Code│ Result Byte │Examination │
├────────────────────┼────────────┼──────┼─────────────┼─────────────┼────────────┤
│Digit selector │ Off │ � │ � │Fill byte │ Off │
│ │ │ 1-9 │ No │Source digit#│ On │
│ │ │ 1-9 │ Yes │Source digit#│ Off │
│ │ On │ �-9 │ No │Source digit │ On │
│ │ │ �-9 │ Yes │Source digit │ Off │
│ │ │ │ │ │ │
│Significance starter│ Off │ � │ No │Fill byte │ On │
│ │ │ � │ Yes │Fill byte │ Off │
│ │ │ 1-9 │ No │Source digit#│ On │
│ │ │ 1-9 │ Yes │Source digit#│ Off │
│ │ On │ �-9 │ No │Source digit │ On │
│ │ │ �-9 │ Yes │Source digit │ Off │
│ │ │ │ │ │ │
│Field separator │ � │ �� │ �� │Fill byte │ Off │
│ │ │ │ │ │ │
│Message byte │ Off │ �� │ �� │Fill byte │ Off │
│ │ On │ �� │ �� │Message byte │ On │
├────────────────────┴────────────┴──────┴─────────────┴─────────────┴────────────┤
│Explanation: │
│ │
│ � No effect on result byte or on new state of significance indicator. │
│ �� Not applicable because source is not examined. │
│ # For EDIT AND MARK only, the address of the rightmost such result byte is │
│ placed in general register 1. │
└───┘

Figure 8-3. Summary of Editing Functions

EDIT AND MARK is identical to EDIT, except for
the additional function of inserting the address of
the result byte in general register 1 if the result
byte is a zoned source digit and the significance
indicator was off before the examination. If no
result byte meets the criteria, general register 1
remains unchanged; if more than one result byte
meets the criteria, the address of the rightmost
such result byte is inserted.

In the 24-bit addressing mode, the address
replaces bits 40-63 of general register 1, and bits
0-39 of the register are not changed. In the 31-bit
addressing mode, the address replaces bits 33-63
of general register 1, bit 32 of the register is set to
zero, and bits 0-31 of the register remain
unchanged. In the 64-bit addressing mode, the
address replaces bits 0-63 of general register 1.

The contents of access register 1 remain
unchanged.

See Figure 8-3 for a summary of the EDIT and
EDIT AND MARK operations.

Resulting Condition Code:

0 Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3 --

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data

Programming Notes:

1. Examples of the use of the EDIT AND MARK
instruction are given Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. EDIT AND MARK facilitates the programming
of floating currency-symbol insertion. Using

8-10 z/Architecture Principles of Operation

appropriate source and pattern data, the
address inserted in general register 1 is one
greater than the address where a floating
currency-sign would be inserted. BRANCH
ON COUNT (BCTR, BCTGR), with zero in the
R� field, may be used to reduce the inserted
address by one.

3. No address is inserted in general register 1
when the significance indicator is turned on as
a result of encountering a significance starter
with the corresponding source digit zero. To
ensure that general register 1 contains a
proper address when this occurs, the address
of the pattern byte that immediately follows
the appropriate significance starter could be
placed in the register beforehand.

4. When multiple fields are edited with one exe-
cution of the EDIT AND MARK instruction, the
address, if any, inserted in general register 1
applies to the rightmost field edited for which
the criteria were met.

5. See also the programming note under EDIT
regarding performance degradation due to a
possible trial execution.

 MULTIPLY DECIMAL

MP D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'FC' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The product of the first operand (the multiplicand)
and the second operand (the multiplier) is placed
at the first-operand location. The operands and
result are in the packed format.

The multiplier length cannot exceed 15 digits and
sign (L� not greater than seven) and must be less
than the multiplicand length (L� less than L�); oth-
erwise, a specification exception is recognized.

The multiplicand must have at least as many
bytes of leftmost zeros as the number of bytes in
the multiplier; otherwise, a data exception is
recognized. This restriction ensures that no
product overflow occurs.

The multiplicand, multiplier, and product are each
signed decimal integers in the packed format and

are right-aligned in their fields. All sign and digit
codes of the multiplicand and multiplier are
checked for validity. The sign of the product is
determined by the rules of algebra from the multi-
plier and multiplicand signs, even if one or both
operands are zeros.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data
 � Specification

Programming Notes:

1. An example of the use of the MULTIPLY
DECIMAL instruction is given Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The product cannot exceed 31 digits and sign.
The leftmost digit of the product is always
zero.

SHIFT AND ROUND DECIMAL

SRP D�(L�,B�),D�(B�),I� [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'F�' │ L� │ I� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The first operand is shifted in the direction and for
the number of decimal-digit positions specified by
the second-operand address, and, when shifting to
the right is specified, the absolute value of the first
operand is rounded by the rounding digit, I�. The
first operand and the result are in the packed
format.

The first operand is considered to be in the
packed-decimal format. Only its digit portion is
shifted; the sign position does not participate in
the shifting. Zeros are supplied for the vacated
digit positions. The result replaces the first
operand. Nothing is stored outside of the speci-
fied first-operand location.

The second-operand address, specified by the B�
and D� fields, is not used to address data; bits
58-63 of that address are the shift value, and the
leftmost bits of the address are ignored.

 Chapter 8. Decimal Instructions 8-11

The shift value is a six-bit signed binary integer,
indicating the direction and the number of decimal-
digit positions to be shifted. Positive shift values
specify shifting to the left. Negative shift values,
which are represented in two's complement nota-
tion, specify shifting to the right. The following are
examples of the interpretation of shift values:

┌─────────────┬────────────────────────┐
│ Shift Value │ │
│ (Binary) │ Amount and Direction │
├─────────────┼────────────────────────┤
│ �11111 │ 31 digits to the left │
│ �����1 │ One digit to the left │
│ ������ │ No shift │
│ 111111 │ One digit to the right │
│ 1����� │ 32 digits to the right │
└─────────────┴────────────────────────┘

For a right shift, the I� field, bits 12-15 of the
instruction, is used as a decimal rounding digit.
The first operand, which is treated as positive by
ignoring the sign, is rounded by decimally adding
the rounding digit to the leftmost of the digits to be
shifted out and by propagating the carry, if any, to
the left. The result of this addition is then shifted
right. Except for validity checking and the partic-
ipation in rounding, the digits shifted out of the
rightmost decimal-digit position are ignored and
are lost.

If one or more nonzero digits are shifted out
during a left shift, decimal overflow occurs. The
operation is completed. The result is obtained by
ignoring the overflow digits, and condition code 3
is set. If the decimal-overflow mask is one, a
program interruption for decimal overflow occurs.
Overflow cannot occur for a right shift, with or
without rounding, or when no shifting is specified.

In the absence of overflow, the sign of a zero
result is made positive. If overflow occurs, the
sign of the result is the same as the original sign
but with the preferred sign code.

A data exception is recognized when the first
operand does not have valid sign and digit codes
or when the rounding digit is not a valid digit code.
The validity of the first-operand codes is checked
even when no shift is specified, and the validity of
the rounding digit is checked even when no addi-
tion for rounding takes place.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow

2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

� Access (fetch and store, operand 1)
 � Data
 � Decimal overflow

Programming Notes:

1. Examples of the use of the SHIFT AND
ROUND DECIMAL instruction are given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. SHIFT AND ROUND DECIMAL can be used
for shifting up to 31 digit positions left and up
to 32 digit positions right. This is sufficient to
clear all digits of any decimal number even
with rounding.

3. For right shifts, the rounding digit 5 provides
conventional rounding of the result. The
rounding digit 0 specifies truncation without
rounding.

4. When the B� field is zero, the six-bit shift
value is obtained directly from bits 42-47 of
the instruction.

 SUBTRACT DECIMAL

SP D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'FB' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The second operand is subtracted from the first
operand, and the resulting difference is placed at
the first-operand location. The operands and
result are in the packed format.

SUBTRACT DECIMAL is executed the same as
ADD DECIMAL, except that the second operand is
considered to have a sign opposite to the sign in
storage. The second operand in storage remains
unchanged.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

8-12 z/Architecture Principles of Operation

 Program Exceptions:

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data
 � Decimal overflow

 TEST DECIMAL

TP D�(L�,B�) [RSL]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│ 'EB' │ L� │////│ B� │ D� │////////│ 'C�' │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

The first operand is tested for valid decimal digits
and a valid sign code, and the result is indicated
in the condition code. The operand is in the
packed format.

Resulting Condition Code:

0 All digit codes and the sign valid
1 Sign invalid
2 At least one digit code invalid
3 Sign invalid and at least one digit code invalid

 Program Exceptions:

� Access (fetch, operand 1)
� Operation (if the extended-translation facility 2

is not installed)

ZERO AND ADD

ZAP D�(L�,B�),D�(L�,B�) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'F8' │ L� │ L� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The second operand is placed at the first-operand
location. The operation is equivalent to an addi-
tion to zero. The operand and result are in the
packed format.

Only the second operand is checked for valid sign
and digit codes. Extra zeros are supplied on the
left for the shorter operand if needed.

If the first operand is too short to contain all left-
most nonzero digits of the second operand,
decimal overflow occurs. The operation is com-
pleted. The result is obtained by ignoring the
overflow digits, and condition code 3 is set. If the
decimal-overflow mask is one, a program inter-
ruption for decimal overflow occurs.

In the absence of overflow, the sign of a zero
result is made positive. If overflow occurs, a zero
result is given the sign of the second operand but
with the preferred sign code.

The two operands may overlap, provided the right-
most byte of the first operand is coincident with or
to the right of the rightmost byte of the second
operand. In this case, the result is obtained as if
the operands were processed right to left. When
the operands overlap and the rightmost byte of the
first operand is to the left of the rightmost byte of
the second operand, then, depending on the
model, either a data exception is recognized or
the result is obtained as if the entire second
operand were fetched before any byte of the result
is stored.

Resulting Condition Code:

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
 � Data
 � Decimal overflow

Programming Note: An example of the use of
the ZERO AND ADD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 Chapter 8. Decimal Instructions 8-13

8-14 z/Architecture Principles of Operation

Chapter 9. Floating-Point Overview and Support Instructions

Registers And Controls 9-2
Floating-Point Registers 9-2

Additional Floating-Point (AFP)
Registers 9-2

Valid Floating-Point-Register
Designations 9-2

Floating-Point-Control (FPC) Register . . . 9-2
AFP-Register-Control Bit 9-2
Explicit Rounding Methods 9-3

Summary of Rounding Action 9-3
Comparison of BFP and HFP Number

Representations 9-4

BFP and HFP Number Ranges 9-4
Equivalent BFP and HFP Number

Representations 9-4
Instructions . 9-6

CONVERT BFP TO HFP 9-8
CONVERT HFP TO BFP 9-9
LOAD . 9-10
LOAD ZERO 9-11
STORE . 9-11

Summary of All Floating-Point Instructions . . 9-12

Floating-point instructions are used to perform cal-
culations on operands having a wide range of
magnitude and to obtain results scaled to preserve
precision.

Floating-point operands have formats based on
either the radix 16 or the radix 2. The radix
values 16 and 2 lead to the terminology
“hexadecimal” and “binary” floating point (HFP and
BFP). The formats are also based on three
operand lengths: short (32 bits), long (64 bits),
and extended (128 bits). Short operands require
less storage than long or extended operands. On
the other hand, long and extended operands
permit greater precision in computation.

A floating-point operand may be numeric or, for
BFP only, nonnumeric (a not-a-number, or NaN).
A numeric operand, called a floating-point number,
has three components: a sign bit, a signed binary
exponent, and a significand. The significand con-
sists of an implicit unit digit to the left of an implied
radix point and an explicit fraction field to the right.
The significand digits are based on the radix, 2 or
16. The magnitude (an unsigned value) of the
number is the product of the significand and the
radix raised to the power of the exponent. The
number is positive or negative depending on
whether the sign bit is zero or one, respectively.
A nonnumeric BFP operand also has a sign bit,
signed exponent, and fraction field.

Hexadecimal-floating-point (HFP) operands have
formats which provide for exponents that specify
powers of the radix 16 and significands that are
hexadecimal numbers. The exponent range is the

same for the short, long, and extended formats.
The results of most operations on HFP data are
truncated to fit into the target format, but there are
instructions available to round the result when
converting to a narrower format. For HFP oper-
ands, the implicit unit digit of the significand is
always zero. Since the value of the significand
and fraction are the same, HFP operations are
described in terms of the fraction, and the term
significand is not used.

Binary-floating-point (BFP) operands have formats
which provide for exponents that specify powers of
the radix 2 and significands that are binary
numbers. The exponent range differs for different
formats, the range being greater for the longer
formats. In the long and extended formats, the
exponent range is significantly greater for BFP
data than for HFP data. The results of operations
performed on BFP data are rounded automatically
to fit into the target format; the manner of rounding
is determined by a program-settable rounding
mode.

Either normalized or unnormalized numbers may
be used as operands for any HFP operation,
where a normalized number is one having a
nonzero leftmost fraction digit. Most HFP
instructions generate normalized results for
greatest precision. HFP add and subtract
instructions that generate unnormalized results are
also available.

There are no unnormalized operands for BFP
operations. For normalized BFP numbers, the
implicit unit digit of the significand is one. For

 Copyright IBM Corp. 1990-2003 9-1

values too small in magnitude to be represented in
normalized form, the implicit unit digit is zero.
These numbers are called “denormalized”
numbers. Unlike the HFP format, where the same
value can have multiple representations in a given
format because of the possibility of unnormalized
numbers, the BFP format does not allow such
redundancy.

Both BFP and HFP data formats appear in
storage in the same left-to-right sequence as all
other data formats. Bits of a data format that are
numbered 0-7 constitute the byte in the leftmost
(lowest-numbered) byte location in storage, bits
8-15 form the byte in the next sequential location,
and so on. (See also the section “Storage
Addressing” on page 3-2.)

Most of the floating-point instructions are defined
in detail in this publication in Chapter 18,
“Hexadecimal-Floating-Point Instructions,” and
Chapter 19, “Binary-Floating-Point Instructions.”
This chapter, Chapter 9, defines in detail
instructions called floating-point-support (FPS)
instructions. The FPS instructions either have
operands that may be in either the BFP or the
HFP format or have the function of converting
between the two formats. This chapter also pro-
vides summary information about all of the
floating-point instructions.

Registers And Controls

 Floating-Point Registers

All floating-point instructions (FPS, BFP, and HFP)
use the same 16 floating-point registers. The
floating-point registers are identified by the
numbers 0-15 and are designated by a four-bit R
field in floating-point instructions. Each floating-
point register is 64 bits long and can contain either
a short (32-bit) or a long (64-bit) floating-point
operand.

A short floating-point number requires only the
leftmost 32 bit positions of a floating-point register.
The rightmost 32 bit positions of the register are
ignored when the register is the source of an

| operand in the short format, and they remain
unchanged when a short result is placed in the
register.

A number in the extended (128-bit) format occu-
pies a register pair. Register pairs are formed by
coupling the 16 registers as follows: 0 and 2, 4
and 6, 8 and 10, 12 and 14, 1 and 3, 5 and 7,
9 and 11, and 13 and 15.

Each of the eight pairs is referred to by the
number of the lower-numbered register of the pair.

Additional Floating-Point (AFP)
Registers
Floating-point registers 0, 2, 4, and 6 are ones
that were originally available on ESA/390 models.
The remaining 12 floating-point registers (1, 3, 5,
and 7-15) were added to ESA/390 and are
referred to as the additional floating-point (AFP)
registers. The AFP registers can be used only if
bit 45 of control register 0, the
AFP-register-control bit, is one. Attempting to use
an AFP register when the AFP-register-control bit
is zero results in an AFP-register data exception
(DXC 1).

 Valid Floating-Point-Register
Designations
Any installed register may be designated by an
instruction to specify the register location of a
short or long floating-point operand.

An instruction specifying a floating-point operand
in the extended format must designate register 0,
1, 4, 5, 8, 9, 12, or 13; otherwise, a specification
exception is recognized.

 Floating-Point-Control (FPC)
Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. The
FPC register is described in the section “Floating-
Point-Control (FPC) Register” on page 19-2.

 AFP-Register-Control Bit

Bit 45 of control register 0 is the
AFP-register-control bit. The AFP registers and
the BFP instructions can be used successfully
only when the AFP-register-control bit is one.
Attempting to use one of the 12 additional floating-
point registers when the AFP-register-control bit is
zero results in an AFP-register data exception
(DXC 1). Attempting to execute any BFP instruc-

9-2 z/Architecture Principles of Operation

tion when the AFP-register-control bit is zero
results in a BFP-instruction data exception (DXC
2). If the conditions for both DXC 1 and DXC 2
exist, DXC 1 is reported. If the conditions for both
a data exception and a specification exception
exist, it is unpredictable which exception is
reported.

The initial value of the AFP-register-control bit is
zero.

Explicit Rounding Methods

The floating-point-support instruction CONVERT
HFP TO BFP includes an M� modifier field which
can specify any of five rounding methods. One
HFP instruction (CONVERT TO FIXED) and three
BFP instructions (CONVERT TO FIXED, DIVIDE
TO INTEGER, and LOAD FP INTEGER) also
include either an M� modifier field or a similar M"
modifier field. The five rounding methods are as
follows:

M�
or
M� Rounding Method

1 Biased round to nearest:

Round the intermediate result up or down to
the nearest representable value; that is, add,
ignoring the sign, a one to the bit just beyond
the last result bit to be retained, propagate
the carry, and discard the bits beyond the last
one to be retained.

4 Round to nearest:

Round the intermediate result up or down to
the nearest representable value; that is, add,
ignoring the sign, a one to the bit just beyond
the last result bit to be retained, propagate

the carry, and discard the bits beyond the last
one to be retained. If the difference was
exactly one-half ulp (a one in the bit position
just beyond the last place, with all zeros
beyond that), the nearest even number is
chosen; that is, after the rounding addition,
the last result bit retained is set to zero.

5 Round toward 0:

Discard all bits to the right of the last
intermediate-result bit to be retained.

6 Round toward +∞:

If the intermediate result is positive and there
are any ones to the right of the last result bit
to be retained, add one to that bit. Then, for
either sign, discard the bits beyond the last
one to be retained.

7 Round toward −∞:

If the intermediate result is negative and there
are any ones to the right of the last result bit
to be retained, subtract one from that bit (that
is, add one to the magnitude). Then, for
either sign, discard the bits beyond the last
one to be retained.

The handling of an M� or M" value of zero
depends on the type of instruction. For BFP
instructions, an M� or M" value of zero causes
rounding to be performed according to the current
rounding mode specified in the FPC register. The
floating-point-support and HFP instructions treat
an M� or M" of zero the same as 5, that is, round
toward zero.

Summary of Rounding Action
Figure 9-1 on page 9-4 summarizes the rounding
action for floating-point-support (FPS), BFP, and
HFP instructions.

 Chapter 9. Floating-Point Overview and Support Instructions 9-3

Figure 9-1. Comparison of Rounding Action

Comparison of BFP and HFP
Number Representations

BFP and HFP Number Ranges

Figure 9-2 shows the range of numbers, in
decimal form, that can be represented in different
floating-point formats.

Figure 9-2. Number Ranges for BFP and HFP
Formats

Equivalent BFP and HFP Number
Representations

The exponent of an HFP number is represented in
the number as an unsigned seven-bit binary
integer called the characteristic. The character-
istic is obtained by adding 64 to the exponent
value (excess-64 notation). The range of the
characteristic is 0 to 127, which corresponds to an
exponent range of −64 to +63.

The exponent of a BFP number is represented in
the number as an unsigned binary integer called
the biased exponent. The biased exponent is
obtained by adding a bias to the exponent value.
The number of bit positions containing the biased
exponent, the value of the bias, and the exponent
range depend on the number format (short, long,
or extended) and are shown for the three formats
in Figure 19-7 on page 19-5. Biased exponents

Instruction

Rounding Action
For

FPS
Inst.

HFP
Inst.

BFP
Inst.

ADD — — CRM

ADD NORMALIZED — GD —

ADD UNNORMALIZED — GD —

CONVERT BFP TO HFP E — —

CONVERT FROM FIXED — RTZ CRM Type Short Long Extended

Nmax BFP ±3.4×10+38 ±1.8×10+308 ±1.2×10+4932CONVERT HFP TO BFP M — —
HFP ±7.2×10+75 ±7.2×10+75 ±7.2×10+75

CONVERT TO FIXED — M M
Nmin BFP ±1.2×10−38 ±2.2×10−308 ±3.4×10−4932

DIVIDE — RTZ CRM
HFP ±5.5×10−79 ±5.5×10−79 ±5.5×10−79

DIVIDE TO INTEGER — — M
Dmin BFP ±1.4×10−45 ±4.9×10−324 ±6.5×10−4966

HALVE — RTZ —
HFP ±5.2×10−85 ±1.2×10−94 ±1.7×10−111

LOAD FP INTEGER — RTZ M Explanation:

Dmin Smallest (in magnitude) representable
denormalized (BFP) or nonzero unnormal-
ized (HFP) number.

Nmax Largest (in magnitude) representable
number.

Nmin Smallest (in magnitude) representable nor-
malized number.

Values are decimal approximations.

LOAD ROUNDED — BR CRM

MULTIPLY — RTZ CRM

MULTIPLY AND ADD — — CRM

MULTIPLY AND SUBTRACT — — CRM

SQUARE ROOT — BR CRM

SUBTRACT — — CRM

SUBTRACT NORMALIZED — GD —

SUBTRACT UNNORMAL-
IZED — GD —

Explanation:

BR Biased round to nearest.
CRM Rounded according to current rounding

mode.
E Result is exact, no rounding is required.
GD Round using a guard digit; see the

instruction definition. This is almost, but
not quite, round toward 0.

M Rounding is specified by a modifier field
in the instruction.

RTZ Round toward 0.

9-4 z/Architecture Principles of Operation

are similar to the characteristics of the HFP
format, except that special meanings are attached
to biased exponents of all zeros and all ones,
which are discussed in the section “Classes of
BFP Data” on page 19-5.

In each of the three BFP or HFP formats, the
binary or hexadecimal point of a number, respec-
tively, is considered to be to the left of the leftmost
fraction digit. To the left of the point there is an
implied unit digit, which is considered to be zero
for HFP numbers or, for BFP numbers, one for
normalized numbers and zero for zeros and
denormalized numbers.

Figure 9-3 and Figure 9-4 on page 9-6 give
examples of the closest representation of the
same numbers in the BFP and HFP formats, with
BFP values being rounded to nearest and HFP
values being truncated.

The figures do not necessarily show the results of
BFP/HFP conversions exactly. Rounding errors
may make a small difference. Also, Figure 9-3
shows corresponding rounded short-format
numbers, not the long HFP results of conversion
from short BFP operands.

Figure 9-3. Examples of FP and HFP Numbers in
Short Format

Value S BE or C Fraction

1.0 B 0 01111111 00000000000000000000000

H 0 1000001 000100000000000000000000

0.5 B 0 01111110 00000000000000000000000

H 0 1000000 100000000000000000000000

1/64 B 0 01111001 00000000000000000000000

H 0 0111111 010000000000000000000000

+0 B 0 00000000 00000000000000000000000

H 0 0000000 000000000000000000000000

−0 B 1 00000000 00000000000000000000000

H 1 0000000 000000000000000000000000

−15.0 B 1 10000010 11100000000000000000000

H 1 1000001 111100000000000000000000

20/7 B 0 10000000 01101101101101101101110

H 0 1000001 001011011011011011011011

2−126 B 0 00000001 00000000000000000000000

H 0 0100001 010000000000000000000000

2−149 B 0 00000000 00000000000000000000001

H 0 0011011 100000000000000000000000

2128×F
F=1−2−24

B 0 11111110 11111111111111111111111

H 0 1100000 111111111111111111111111

2−260 B Zero (number too small)

H 0 0000000 000100000000000000000000

2248×F
F=1−2−24

B Not representable

H 0 1111110 111111111111111111111111

Explanation:

 B BFP.
BE or C Biased exponent of BFP number or character-

istic of HFP number.
 H HFP.
 S Sign.

 Chapter 9. Floating-Point Overview and Support Instructions 9-5

Figure 9-4. Examples of BFP and HFP Numbers in Long Format

Value S BE or C Fraction

1.0 B 0 01111111111 00000000000000000000 00000000000000000000000000000000

H 0 1000001 000100000000000000000000 00000000000000000000000000000000

0.5 B 0 01111111110 00000000000000000000 00000000000000000000000000000000

H 0 1000000 100000000000000000000000 00000000000000000000000000000000

1/64 B 0 01111111001 00000000000000000000 00000000000000000000000000000000

H 0 0111111 010000000000000000000000 00000000000000000000000000000000

+0 B 0 00000000000 00000000000000000000 00000000000000000000000000000000

H 0 0000000 000000000000000000000000 00000000000000000000000000000000

−0 B 1 00000000000 00000000000000000000 00000000000000000000000000000000

H 1 0000000 000000000000000000000000 00000000000000000000000000000000

−15.0 B 1 10000000010 11100000000000000000 00000000000000000000000000000000

H 1 1000001 111100000000000000000000 00000000000000000000000000000000

20/7 B 0 10000000000 01101101101101101101 10110110110110110110110110110111

H 0 1000001 001011011011011011011011 01101101101101101101101101101101

2−1022 B 0 00000000001 00000000000000000000 00000000000000000000000000000000

H Zero (number too small)

2−1074 B 0 00000000000 00000000000000000000 00000000000000000000000000000001

H Zero (number too small)

21024×F
F=1−2−53

B 0 11111111110 11111111111111111111 11111111111111111111111111111111

H Not representable

2−260 B 0 01011111011 00000000000000000000 00000000000000000000000000000000

H 0 0000000 000100000000000000000000 00000000000000000000000000000000

2248×F
F=1−2−56

B 0 10011110111 00000000000000000000 00000000000000000000000000000000

H 0 1111110 111111111111111111111111 11111111111111111111111111111111

Explanation:

 B BFP.
BE or C Biased exponent of BFP number or characteristic of HFP number.

 H HFP.
 S Sign.

 Instructions
The floating-point-support instructions and their
mnemonics and operation codes are listed in
Figure 9-5 on page 9-7. The figure indicates, in
the column labeled “Characteristics,” the instruc-
tion format, when the condition code is set, the
instruction fields that designate access registers,
and the exceptional conditions in operand desig-
nations, data, or results that cause a program
interruption.

All floating-point-support instructions are subject to
the AFP-register-control bit, bit 45 of control reg-
ister 0. The AFP-register-control bit must be one
when an AFP register is specified as an operand

location; otherwise, an AFP-register data excep-
tion, DXC 1, is recognized.

Mnemonics for the floating-point instructions have
an R as the last letter when the instruction is in
the RR, RRE, or RRF format. Certain letters are
used for floating-point instructions to represent
operand-format length, as follows:

D Long
E Short
X Extended

Note: In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler lan-

9-6 z/Architecture Principles of Operation

guage are shown with each instruction. For a
register-to-register operation using LOAD (short),
for example, LER is the mnemonic and R�,R� the
operand designation.

| Programming Note: The following additional
| floating-point-support instructions are available
| when the long-displacement facility is installed:

| � LOAD (LDY, LEY)
| � STORE (STDY, STEY)

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│CONVERT BFP TO HFP (long) │THDR │RRE C │ │Da │ │ │B359│
│CONVERT BFP TO HFP (short to long) │THDER│RRE C │ │Da │ │ │B358│
│CONVERT HFP TO BFP (long) │TBDR │RRF C │ SP│Da │ │ │B351│
│CONVERT HFP TO BFP (long to short) │TBEDR│RRF C │ SP│Da │ │ │B35�│
│LOAD (extended) │LXR │RRE │ SP│Da │ │ │B365│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD (long) │LDR │RR │ │Da │ │ │28 │
│LOAD (long) │LD │RX │ A │Da │ │ B�│68 │

| │LOAD (long) │LDY │RXY LD│ A │Da │ │ B�│ED65│
│LOAD (short) │LER │RR │ │Da │ │ │38 │
│LOAD (short) │LE │RX │ A │Da │ │ B�│78 │

| │LOAD (short) │LEY │RXY LD│ A │Da │ │ B�│ED64│
│LOAD ZERO (extended) │LZXR │RRE │ SP│Da │ │ │B376│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD ZERO (long) │LZDR │RRE │ │Da │ │ │B375│
│LOAD ZERO (short) │LZER │RRE │ │Da │ │ │B374│
│STORE (long) │STD │RX │ A │Da │ ST│ B�│6� │

| │STORE (long) │STDY │RXY LD│ A │Da │ ST│ B�│ED67│
│STORE (short) │STE │RX │ A │Da │ ST│ B�│7� │

| │STORE (short) │STEY │RXY LD│ A │Da │ ST│ B�│ED66│
├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤
│Explanation: │
│ │
│ A Access exceptions for logical addresses. │
│ B� B� field designates an access register in the access-register mode. │
│ C Condition code is set. │
│ Da AFP-register data exception. │

| │ LD Long-displacement facility. │
│ RR RR instruction format. │
│ RRE RRE instruction format. │
│ RRF RRF instruction format. │
│ RX RX instruction format. │
│ SP Specification exception. │
│ ST PER storage-alteration event. │
└──┘

Figure 9-5. Summary of Floating-Point-Support Instructions

 Chapter 9. Floating-Point Overview and Support Instructions 9-7

CONVERT BFP TO HFP

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
THDER 'B358' Short BFP operand,

long HFP result
THDR 'B359' Long BFP operand,

long HFP result

The second operand (the source operand) is con-
verted from the binary-floating-point (BFP) format
to the hexadecimal-floating-point (HFP) format,
and the normalized result is placed at the first-
operand location. The sign and magnitude of the
source operand are tested to determine the setting
of the condition code.

For numeric operands, the sign of the result is the
sign of the source operand. If the source operand
has a sign bit of one and all other operand bits
are zeros, the result also is a one followed by all
zeros.

When, for THDR, the characteristic of the result
would be negative, the result is made all zeros but
with the same sign as that of the source operand,
and condition code 1 or 2 is set to indicate the
sign of the source operand.

When, for THDR, the characteristic of the
hexadecimal intermediate result is too large to fit
into the target format, the result is set to all ones
(that is, the largest-in-magnitude representable
number) but with the same sign as that of the
source operand, and condition code 3 is set.

See Figure 9-6 for a detailed description of the
results of this instruction.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

 Program Exceptions:

� Data with DXC 1, AFP register

Programming Notes:

1. The BFP-to-HFP conversion instructions are
summarized in Figure 9-7 on page 9-9.

2. CONVERT BFP TO HFP (THDER) converts
BFP operands in the short format to HFP
operands in the long format, rather than con-
verting short to short, to retain full precision.
Using this long HFP result subsequently as a
short operand requires no extra conversion
steps.

Figure 9-6. Results: CONVERT BFP TO HFP

Source Operand (a) Results

−∞ ≤ a < −Hmax T(−Hmax), cc3

−Hmax ≤ a ≤ −Hmin T(r), cc1

−Hmin < a < 0 T(−0)�, cc1

−0 T(−0), cc0

+0 T(+0), cc0

0 < a < +Hmin T(+0)�, cc2

+Hmin ≤ a ≤ +Hmax T(r), cc2

+Hmax < a ≤ +∞ T(+Hmax), cc3

NaN T(+Hmax), cc3

Explanation:

� Condition code 1 is set to indicate the
source was less than zero.

� Condition code 2 is set to indicate the
source was greater than zero.

ccn Condition code is set to n.
r The value derived when the BFP source

value a is converted to the HFP format.
This result is always exact.

Hmax Largest (in magnitude) representable
number in the target HFP format.

Hmin Smallest (in magnitude) representable
normalized number in the target HFP
format.

T(x) The value x is placed at the target
operand location.

9-8 z/Architecture Principles of Operation

Figure 9-7. Summary of BFP-to/from-HFP Conversion Instructions

Instruction
Mne-
monic

Source Target
Overflow,
Underflow
PossibleFormat

Significant
Bits Format

Significant
Bits Result

CONVERT BFP TO
HFP

THDER BFP short 24 HFP long 53-56 Exact No

THDR BFP long 53 HFP long 53-56 Exact Yes

CONVERT HFP TO
BFP

TBEDR HFP long 53-56 BFP short 24 Rounded Yes

TBDR HFP long 53-56 BFP long 53 Rounded No

CONVERT HFP TO BFP

Mnemonic R�,M�,R� [RRF]

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ M� │////│ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

Mnemonic Op Code Operands
TBEDR 'B35�' Long HFP operand,

short BFP result
TBDR 'B351' Long HFP operand,

long BFP result

The second operand (the source operand) is con-
verted from the hexadecimal-floating-point (HFP)
format to the binary-floating-point (BFP) format,
and the result rounded according to the rounding
method specified by the M� field is placed at the
first-operand location. The sign and magnitude of
the source operand are tested to determine the
setting of the condition code.

The M� field contains a modifier specifying a
rounding method, as follows:

M� Rounding Method
0 Round toward 0
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

The sign of the result is the sign of the second
operand. If the second operand has a sign bit of
one and all other operand bits are zeros, the
result also is a one followed by all zeros.

See Figure 9-8 on page 9-10 for a detailed
description of the results of this instruction.

The M� field must designate a valid modifier; oth-
erwise, a specification exception is recognized.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

 Program Exceptions:

� Data with DXC 1, AFP register
 � Specification

Programming Notes:

1. The HFP-to-BFP conversion instructions are
summarized in Figure 9-7.

2. Conversion to short BFP numbers requires
HFP operands in the long format; a short HFP
operand should be extended to long by
ensuring that the right half of the register is
cleared. Thus, the entire register should be
cleared before loading a short HFP operand
into it for conversion to BFP. This avoids
unrepeatable rounding errors in the BFP result
due to data left over from previous use.

 Chapter 9. Floating-Point Overview and Support Instructions 9-9

Figure 9-8 (Part 1 of 2). Results: CONVERT HFP to BFP

Source Operand (a) Results

a < −Nmax See Part 2 of this figure.

−Nmax ≤ a ≤ −Nmin T(r), cc1

−Nmin < a ≤ −Dmin T(d), cc1

−Dmin < a < 0 T(d)�, cc1

−0 T(−0), cc0

+0 T(+0), cc0

0 < a < +Dmin T(d)�, cc2

+Dmin ≤ a < +Nmin T(d), cc2

+Nmin ≤ a ≤ +Nmax T(r), cc2

+Nmax < a See Part 2 of this figure.

Figure 9-8 (Part 2 of 2). Results: CONVERT HFP to BFP

Source
Operand (a)

Results for Rounding Method Specified in M�

Biased Round to
Nearest

Round to
Nearest Round toward 0

Round toward
+∞

Round toward
−∞

a < −Nmax T(−∞), cc3 T(−∞), cc3 T(−Nmax), cc3 T(−Nmax), cc3 T(−∞), cc3

+Nmax < a T(+∞), cc3 T(+∞), cc3 T(+Nmax), cc3 T(+∞), cc3 T(+Nmax), cc3

Explanation:

� Condition code 1 is set for this case, even when the rounded result is zero.
� Condition code 2 is set for this case, even when the rounded result is zero.
ccn Condition code is set to n.
d The denormalized value derived when the HFP source value a is rounded to the format of the

target using the rounding method specified in the M� field.
r The value derived when the HFP source value a is rounded to the format of the target using the

rounding method specified in the M� field.
Dmin Smallest (in magnitude) representable denormalized number in the target BFP format.
Nmax Largest (in magnitude) representable finite number in the target BFP format.
Nmin Smallest (in magnitude) representable normalized number in the target BFP format.
T(x) The value x is placed at the target operand location.

 LOAD

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
LER '38' Short
LDR '28' Long

Mnemonic2 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic2 Op Code Operands
LXR 'B365' Extended

9-10 z/Architecture Principles of Operation

Mnemonic3 R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic3 Op Code Operands
LE '78' Short
LD '68' Long

| Mnemonic4 R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │Op Code │ R� │ X� │ B� │DL� │ DH� │Op Code │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

| Mnemonic4 Op Code Operands
| LEY 'ED64' Short
| LDY 'ED65' Long

The second operand is placed unchanged at the
first-operand location.

The operation is performed without inspecting the
contents of the second operand; no arithmetic
exceptions are recognized.

For LXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

| The displacement for LE and LD is treated as a
| 12-bit unsigned binary integer. The displacement
| for LEY and LDY is treated as a 20-bit signed
| binary integer.

Condition Code: The code remains unchanged.

 Program Exceptions:

| � Access (fetch, operand 2 of LE, LD, LEY, and
| LDY)

� Data with DXC 1, AFP register
| � Operation (LEY and LDY, if the long-
| displacement facility is not installed)

� Specification (LXR only)

 LOAD ZERO

Mnemonic R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
LZER 'B374' Short
LZDR 'B375' Long
LZXR 'B376' Extended

All bits of the first operand are set to zeros.

For LZXR, The R� field must designate a valid
floating-point-register pair; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Data with DXC 1, AFP register
� Specification (LZXR only)

Programming Note: LOAD ZERO sets all bits of
a register to zeros, which produces a positive zero
value in both the HFP and BFP formats.

 STORE

Mnemonic R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic Op Code Operands
STE '7�' Short
STD '6�' Long

| Mnemonic2 R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │Op Code │ R� │ X� │ B� │DL� │ DH� │Op Code │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

| Mnemonic2 Op Code Operands
| STEY 'ED66' Short
| STDY 'ED67' Long

The first operand is placed unchanged in storage
at the second-operand location.

| The displacement for STE and STD is treated as
| a 12-bit unsigned binary integer. The displace-
| ment for STEY and STDY is treated as a 20-bit
| signed binary integer.

 Chapter 9. Floating-Point Overview and Support Instructions 9-11

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
� Data with DXC 1, AFP register

| � Operation (STEY and STDY, if the long-
| displacement facility is not installed)

Summary of All Floating-Point
Instructions
Figures 9-9 through 9-13 on following pages show
all floating-point instructions arranged in various
categories of operand format and type of opera-
tion (principally, register-and-register and register-
and-storage operations). Figure 9-9 shows the
floating-point-support instructions. Figure 9-10 on

page 9-13 shows the BFP and HFP instructions
with all operands of the same length. Figure 9-11
on page 9-13 shows the BFP and HFP
instructions in which the result is longer than the
source operand. Figure 9-12 on page 9-14
shows the BFP and HFP instructions in which the
result is shorter than the source operand.
Figure 9-13 on page 9-14 shows the other BFP
instructions, including those instructions which
operate on the FPC register. The instructions
CONVERT FROM FIXED and CONVERT TO
FIXED convert between fixed-point and floating-
point formats. In the figures, entries for 32-bit
fixed-point operands are combined in the same
column with entries for 32-bit short operands, and
entries for 64-bit fixed-point operands are com-
bined in the same column with entries for 64-bit
long operands.

Figure 9-9. Floating-Point-Support Instructions

Instruction Name

Short (32) Long (64) Ext. (128) 32 to 64 64 to 32

R-R R-S R-R R-S R-R R-R R-R

CONVERT BFP TO HFP THDR THDER

CONVERT HFP TO BFP TBDR TBEDR

LOAD LER LE LDR LD LXR

LOAD ZERO LZER LZDR LZXR

STORE STE STD

Explanation:

 R-R Register-and-register operation. .
 R-S Register-and-storage operation. .

9-12 z/Architecture Principles of Operation

Figure 9-10. BFP and HFP Instructions with All Operands of Same Length

Instruction Name

HFP Instructions BFP Instructions

Short (32) Long (64)
Ext.

(128) Short (32) Long (64)
Ext.

(128)

R-R R-S R-R R-S R-R R-R R-S R-R R-S R-R

ADD AEBR AEB ADBR ADB AXBR

ADD NORMALIZED AER AE ADR AD AXR

ADD UNNORMALIZED AUR AU AWR AW

COMPARE CER CE CDR CD CXR CEBR CEB CDBR CDB CXBR

COMPARE AND SIGNAL KEBR KEB KDBR KDB KXBR

CONVERT FROM FIXED� CEFR CDGR CEFBR CDGBR

CONVERT TO FIXED� CFER CGDR CFEBR CGDBR

DIVIDE DER DE DDR DD DXR DEBR DEB DDBR DDB DXBR

DIVIDE TO INTEGER DIEBR DIDBR

HALVE HER HDR

LOAD AND TEST LTER LTDR LTXR LTEBR LTDBR LTXBR

LOAD COMPLEMENT LCER LCDR LCXR LCEBR LCDBR LCXBR

LOAD FP INTEGER FIER FIDR FIXR FIEBR FIDBR FIXBR

LOAD NEGATIVE LNER LNDR LNXR LNEBR LNDBR LNXBR

LOAD POSITIVE LPER LPDR LPXR LPEBR LPDBR LPXBR

MULTIPLY MEER MEE MDR MD MXR MEEBR MEEB MDBR MDB MXBR

MULTIPLY AND ADD MAEBR MAEB MADBR MADB

MULTIPLY AND SUBTRACT MSEBR MSEB MSDBR MSDB

SQUARE ROOT SQER SQE SQDR SQD SQXR SQEBR SQEB SQDBR SQDB SQXBR

SUBTRACT SEBR SEB SDBR SDB SXBR

SUBTRACT NORMALIZED SER SE SDR SD SXR

SUBTRACT UNNORMALIZED SUR SU SWR SW

TEST DATA CLASS TCEB TCDB TCXB

Explanation:

� This instruction also has mixed-length operands.
 R-R Register-and-register operation. .
 R-S Register-and-storage operation. .

Figure 9-11. BFP and HFP Instructions with Result Longer than Source

Instruction Name

HFP Instructions BFP Instructions

32 to 64 64 to 128 32 to 128 32 to 64 64 to 128 32 to 128

R-R R-S R-R R-S R-R R-S R-R R-S R-R R-S R-R R-S

CONVERT FROM
FIXED

CDFR CXGR CXFR CDFBR CXGBR CXFBR

CONVERT TO FIXED CGER CGEBR

LOAD LENGTHENED LDER LDE LXDR LXD LXER LXE LDEBR LDEB LXDBR LXDB LXEBR LXEB

MULTIPLY MDER MDE MXDR MXD MDEBR MDEB MXDBR MXDB

Explanation:

 R-R Register-and-register operation. .
 R-S Register-and-storage operation. .

 Chapter 9. Floating-Point Overview and Support Instructions 9-13

Figure 9-12. BFP and HFP Instructions with Result Shorter than Source

Instruction Name

HFP Instructions BFP Instructions

64 to 32 128 to 64 128 to 32 64 to 32 128 to 64 128 to 32

R-R R-R R-R R-R R-R R-R

CONVERT FROM FIXED CEGR CEGBR CGXBR CFXBR

CONVERT TO FIXED CFDR CGXR CFXR CFDBR CGXBR CFXBR

LOAD ROUNDED LEDR LDXR LEXR LEDBR LDXBR LEXBR

Explanation:

 R-R Register-and-register operation. .

Figure 9-13. Other BFP Instructions

Instruction Name Mnemonic

EXTRACT FPC EFPC

LOAD FPC LFPC

SET FPC SFPC

SET ROUNDING MODE SRNM

STORE FPC STFPC

9-14 z/Architecture Principles of Operation

 Chapter 10. Control Instructions

BRANCH AND SET AUTHORITY 10-6
BRANCH AND STACK 10-10
BRANCH IN SUBSPACE GROUP 10-13
COMPARE AND SWAP AND PURGE . 10-18
DIAGNOSE 10-19
EXTRACT AND SET EXTENDED

AUTHORITY 10-21
EXTRACT PRIMARY ASN 10-21
EXTRACT SECONDARY ASN 10-21
EXTRACT STACKED REGISTERS . . . 10-22
EXTRACT STACKED STATE 10-23
INSERT ADDRESS SPACE CONTROL . 10-26
INSERT PSW KEY 10-27
INSERT STORAGE KEY EXTENDED . 10-27
INSERT VIRTUAL STORAGE KEY . . . 10-28

| INVALIDATE DAT TABLE ENTRY 10-29
INVALIDATE PAGE TABLE ENTRY . . . 10-33
LOAD ADDRESS SPACE

PARAMETERS 10-35
LOAD CONTROL 10-44
LOAD PSW 10-44
LOAD PSW EXTENDED 10-45
LOAD REAL ADDRESS 10-46
LOAD USING REAL ADDRESS 10-51
MODIFY STACKED STATE 10-51
MOVE PAGE 10-53
MOVE TO PRIMARY 10-55
MOVE TO SECONDARY 10-55
MOVE WITH DESTINATION KEY 10-57
MOVE WITH KEY 10-58
MOVE WITH SOURCE KEY 10-59
PAGE IN 10-60
PAGE OUT 10-61
PROGRAM CALL 10-62
PROGRAM RETURN 10-75

PROGRAM TRANSFER 10-79
PURGE ALB 10-85
PURGE TLB 10-85
RESET REFERENCE BIT EXTENDED . 10-85
RESUME PROGRAM 10-86
SET ADDRESS SPACE CONTROL . . . 10-89
SET ADDRESS SPACE CONTROL

FAST 10-89
SET CLOCK 10-90
SET CLOCK COMPARATOR 10-91
SET CLOCK PROGRAMMABLE FIELD . 10-91
SET CPU TIMER 10-92
SET PREFIX 10-92
SET PSW KEY FROM ADDRESS 10-93
SET SECONDARY ASN 10-93
SET STORAGE KEY EXTENDED 10-97
SET SYSTEM MASK 10-97
SIGNAL PROCESSOR 10-98
STORE CLOCK COMPARATOR 10-99
STORE CONTROL 10-99
STORE CPU ADDRESS 10-100
STORE CPU ID 10-100
STORE CPU TIMER 10-101
STORE FACILITY LIST 10-102
STORE PREFIX 10-102
STORE REAL ADDRESS 10-103
STORE SYSTEM INFORMATION . . . 10-104
STORE THEN AND SYSTEM MASK . 10-115
STORE THEN OR SYSTEM MASK . . 10-115
STORE USING REAL ADDRESS . . . 10-115
TEST ACCESS 10-116
TEST BLOCK 10-118
TEST PROTECTION 10-120
TRACE 10-123
TRAP 10-124

This chapter includes all privileged and semiprivi-
leged instructions described in this publication,
except the input/output instructions, which are
described in Chapter 14, “I/O Instructions.”

Privileged instructions may be executed only when
the CPU is in the supervisor state. An attempt to
execute a privileged instruction in the problem
state generates a privileged-operation exception.

The semiprivileged instructions are those
instructions that can be executed in the problem
state when certain authority requirements are met.

An attempt to execute a semiprivileged instruction
in the problem state when the authority require-
ments are not met generates a privileged-
operation exception or some other program-
interruption condition depending on the particular
requirement which is violated. Those require-
ments which cause a privileged-operation excep-
tion to be generated in the problem state are not
enforced when execution is attempted in the
supervisor state.

The control instructions and their mnemonics,
formats, and operation codes are listed in

 Copyright IBM Corp. 1990-2003 10-1

Figure 10-1 on page 10-3. The figure also indi-
cates which instructions are new in z/Architecture
as compared to ESA/390, when the condition
code is set, the instruction fields that designate
access registers, and the exceptional conditions in
operand designations, data, or results that cause
a program interruption.

The instructions that are new in z/Architecture are
indicated in Figure 10-1. by “N.”

When the operands of an instruction are 32-bit
operands, the mnemonic for the instruction does
not include a letter indicating the operand length.
If there is an instruction with the same name but
with 64-bit operands, its mnemonic includes the
letter “G.” In Figure 10-1, when there is an
instruction with 32-bit operands and another
instruction with the same name but with “G” added
in its mnemonic, the first instruction has “(32)”
after its name, and the other instruction has “(64)”
after its name.

For those control instructions which have special
rules regarding the handling of exceptional situ-
ations, a section called “Special Conditions” is
included. This section indicates the type of ending
(suppression, nullification, or completion) only for
those exceptions for which the ending may vary.

Note: In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler lan-
guage are shown with each instruction. For LOAD
PSW, for example, LPSW is the mnemonic and
D�(B�) the operand designation.

| Programming Notes:

| 1. The following additional control instructions
| are available when the DAT-enhancement
| facility is installed:

| � COMPARE AND SWAP AND PURGE
| (CSPG)
| � INVALIDATE DAT TABLE ENTRY

| CSPG operates on a doubleword in storage,
| in constrast to the previously existing instruc-
| tion COMPARE AND SWAP AND PURGE
| (CSP), which operates on a word in storage.

| 2. The long-displacement facilty uses new
| instruction formats, named RSY, RXY, and
| SIY, to provide 20-bit signed displacements.
| In connection with the long-displacement
| facility, all previously existing control
| instructions of the RSE or RXE format are
| changed to be of format RSY or RXY, respec-
| tively, where the new formats differ from the
| old by using a previously unused byte, now
| named DH, in the instructions. When the
| long-displacement facility is installed, the dis-
| placement for an instruction operand address
| is formed by appending DH on the left of the
| previous displacement field, now named DL,
| of the instruction. When the long-
| displacement facility is not installed, eight zero
| bits are appended on the left of DL, and DH is
| ignored.

| The following additional control instruction is
| available when the long-displacement facility
| is installed:

| � LOAD REAL ADDRESS (LRAY)

10-2 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│BRANCH AND SET AUTHORITY │BSA │RRE │Q A� │SO T │B │ │B25A│
│BRANCH AND STACK │BAKR │RRE │ A� │Z� T │B ST│ │B24�│
│BRANCH IN SUBSPACE GROUP │BSG │RRE │ A� │SO T │B │ R�│B258│
│COMPARE AND SWAP AND PURGE │CSP │RRE C │P A� SP│ $ │ ST│ R�│B25�│

| │COMPARE AND SWAP AND PURGE │CSPG │RRE C DE│P A� SP│ $ │ ST│ R�│B98A│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│DIAGNOSE │ │ DM │P DM │ │ │ MD│83 │
│EXTRACT AND SET EXTENDED AUTHORITY │ESEA │RRE N │P │ │ │ │B99D│
│EXTRACT PRIMARY ASN │EPAR │RRE │Q │SO │ │ │B226│
│EXTRACT SECONDARY ASN │ESAR │RRE │Q │SO │ │ │B227│
│EXTRACT STACKED REGISTERS (32) │EREG │RRE │ A� │SE │ │U� U�│B249│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│EXTRACT STACKED REGISTERS (64) │EREGG│RRE N │ A� │SE │ │U� U�│B9�E│
│EXTRACT STACKED STATE │ESTA │RRE C │ A� SP│SE │ │ │B24A│
│INSERT ADDRESS SPACE CONTROL │IAC │RRE C │Q │SO │ │ │B224│
│INSERT PSW KEY │IPK │S │Q │ G2 │ │ │B2�B│
│INSERT STORAGE KEY EXTENDED │ISKE │RRE │P A� │ │ │ │B229│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│INSERT VIRTUAL STORAGE KEY │IVSK │RRE │Q A� │SO │ │ R�│B223│

| │INVALIDATE DAT TABLE ENTRY │IDTE │RRF DE│P A� │ $ │ │ │B98E│
│INVALIDATE PAGE TABLE ENTRY │IPTE │RRE │P A� │ $ │ │ │B221│
│LOAD ADDRESS SPACE PARAMETERS │LASP │SSE C │P A� SP│SO │ │B� │E5��│
│LOAD CONTROL (32) │LCTL │RS │P A SP│ │ │ B�│B7 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD CONTROL (64) │LCTLG│RSY N │P A SP│ │ │ B�│EB2F│
│LOAD PSW │LPSW │S L │P A SP│ ¢ │ │ B�│82 │
│LOAD PSW EXTENDED │LPSWE│S L N │P A SP│ ¢ │ │ B�│B2B2│
│LOAD REAL ADDRESS (32) │LRA │RX C │P A� │SO │ │ BP│B1 │

| │LOAD REAL ADDRESS (32) │LRAY │RXY C LD│P A� │SO │ │ BP│E313│
│LOAD REAL ADDRESS (64) │LRAG │RXY C N │P A� │ │ │ BP│E3�3│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD USING REAL ADDRESS (32) │LURA │RRE │P A� SP│ │ │ │B24B│
│LOAD USING REAL ADDRESS (64) │LURAG│RRE N │P A� SP│ │ │ │B9�5│
│MODIFY STACKED STATE │MSTA │RRE │ A� SP│SE │ ST│ │B247│
│MOVE PAGE │MVPG │RRE C │Q A SP│ G� │ ST│R� R�│B254│
│MOVE TO PRIMARY │MVCP │SS C │Q A │SO ¢ │ ST│ │DA │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MOVE TO SECONDARY │MVCS │SS C │Q A │SO ¢ │ ST│ │DB │
│MOVE WITH DESTINATION KEY │MVCDK│SSE │Q A │ GM │ ST│B� B�│E5�F│
│MOVE WITH KEY │MVCK │SS C │Q A │ │ ST│B� B�│D9 │
│MOVE WITH SOURCE KEY │MVCSK│SSE │Q A │ GM │ ST│B� B�│E5�E│
│PAGE IN │PGIN │RRE C ES│P A� │ ¢ │ │ │B22E│
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 10-1 (Part 1 of 4). Summary of Control Instructions

 Chapter 10. Control Instructions 10-3

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│PAGE OUT │PGOUT│RRE C ES│P A� │ ¢ │ │ │B22F│
│PROGRAM CALL │PC │S │Q A� │Z� T ¢ GM │B ST│ │B218│
│PROGRAM RETURN │PR │E L │Q A� SP│Z� T ¢� │B ST│ │�1�1│
│PROGRAM TRANSFER │PT │RRE │Q A� SP│Z� T ¢ │B │ │B228│
│PURGE ALB │PALB │RRE │P │ $ │ │ │B248│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│PURGE TLB │PTLB │S │P │ $ │ │ │B2�D│
│RESET REFERENCE BIT EXTENDED │RRBE │RRE C │P A� │ │ │ │B22A│
│RESUME PROGRAM │RP │S L │Q A SP│WE T │B │ B�│B277│
│SET ADDRESS SPACE CONTROL │SAC │S │Q SP│SW ¢ │ │ │B219│
│SET ADDRESS SPACE CONTROL FAST │SACF │S │Q SP│SW │ │ │B279│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SET CLOCK │SCK │S C │P A SP│ │ │ B�│B2�4│
│SET CLOCK COMPARATOR │SCKC │S │P A SP│ │ │ B�│B2�6│
│SET CLOCK PROGRAMMABLE FIELD │SCKPF│E │P SP│ G� │ │ │�1�7│
│SET CPU TIMER │SPT │S │P A SP│ │ │ B�│B2�8│
│SET PREFIX │SPX │S │P A SP│ $ │ │ B�│B21�│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SET PSW KEY FROM ADDRESS │SPKA │S │Q │ │ │ │B2�A│
│SET SECONDARY ASN │SSAR │RRE │ A� │Z� T ¢ │ │ │B225│
│SET STORAGE KEY EXTENDED │SSKE │RRE │P A� │ ¢ │ │ │B22B│
│SET SYSTEM MASK │SSM │S │P A SP│SO │ │ B�│8� │
│SIGNAL PROCESSOR │SIGP │RS C │P │ $ │ │ │AE │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│STORE CLOCK COMPARATOR │STCKC│S │P A SP│ │ ST│ B�│B2�7│
│STORE CONTROL (32) │STCTL│RS │P A SP│ │ ST│ B�│B6 │
│STORE CONTROL (64) │STCTG│RSY N │P A SP│ │ ST│ B�│EB25│
│STORE CPU ADDRESS │STAP │S │P A SP│ │ ST│ B�│B212│
│STORE CPU ID │STIDP│S │P A SP│ │ ST│ B�│B2�2│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│STORE CPU TIMER │STPT │S │P A SP│ │ ST│ B�│B2�9│
│STORE FACILITY LIST │STFL │S N3│P │ │ │ │B2B1│
│STORE PREFIX │STPX │S │P A SP│ │ ST│ B�│B211│
│STORE REAL ADDRESS │STRAG│SSE N │P A� │ │ ST│B� BP│E5�2│
│STORE SYSTEM INFORMATION │STSI │S C │P A SP│ GM │ ST│ B�│B27D│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│STORE THEN AND SYSTEM MASK │STNSM│SI │P A │ │ ST│B� │AC │
│STORE THEN OR SYSTEM MASK │STOSM│SI │P A SP│ │ ST│B� │AD │
│STORE USING REAL ADDRESS (32) │STURA│RRE │P A� SP│ │ SU│ │B246│
│STORE USING REAL ADDRESS (64) │STURG│RRE N │P A� SP│ │ SU│ │B925│
│TEST ACCESS │TAR │RRE C │ A� │ │ │U� │B24C│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│TEST BLOCK │TB │RRE C │P A� │II $ G� │ │ │B22C│
│TEST PROTECTION │TPROT│SSE C │P A� │ │ │B� │E5�1│
│TRACE (32) │TRACE│RS │P A SP│ T ¢ │ │ B�│99 │
│TRACE (64) │TRACG│RSY N │P A SP│ T ¢ │ │ B�│EB�F│
│TRAP │TRAP2│E │ A │SO T │B ST│ │�1FF│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│TRAP │TRAP4│S │ A │SO T │B ST│ │B2FF│
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 10-1 (Part 2 of 4). Summary of Control Instructions

10-4 z/Architecture Principles of Operation

┌──┐
│Explanation: │
│ │
│ ¢ Causes serialization and checkpoint synchronization. │
│ ¢� Causes serialization and checkpoint synchronization when the state entry to be unstacked │
│ is a program-call state entry. │
│ $ Causes serialization. │
│ A Access exceptions for logical addresses. │
│ A� Access exceptions; not all access exceptions may occur; see instruction description for │
│ details. │
│ B PER branch event. │
│ B� B� field designates an access register in the access-register mode. │
│ B� B� field designates an access register in the access-register mode. │
│ BP B� field designates an access register when PSW bits 16 and 17 have the value �1 binary. │
│ C Condition code is set. │

| │ DE DAT-enhancement facility. │
│ DM Depending on the model, DIAGNOSE may generate various program exceptions and may change │
│ the condition code. │
│ ES Expanded-storage facility. │
│ FC Designation of access registers depends on the function code of the instruction. │
│ G� Instruction execution includes the implied use of general register �. │
│ G2 Instruction execution includes the implied use of general register 2. │
│ GM Instruction execution includes the implied use of multiple general registers: │
│ General registers � and 1 for MOVE WITH DESTINATION KEY, MOVE WITH SOURCE KEY, and │
│ STORE SYSTEM INFORMATION. │
│ General registers 3, 4, and 14 for PROGRAM CALL. │
│ II Interruptible instruction. │
│ L New condition code is loaded. │

| │ LD Long-displacement facility. │
│ MD Designation of access registers in the access-register mode is model-dependent. │
│ N Instruction is new in z/Architecture as compared to ESA/39�. │

| │ N3 Instruction is new in z/Architecture and has been added to ESA/39�. │
│ P Privileged-operation exception. │
│ Q Privileged-operation exception for semiprivileged instructions. │
│ R� R� field designates an access register in the access-register mode. │
│ R� R� field designates an access register in the access-register mode. │
│ RRE RRE instruction format. │
│ RS RS instruction format. │
│ RX RX instruction format. │
│ S S instruction format. │
│ SE Special-operation, stack-empty, stack-specification, and stack-type exceptions. │
│ SF Special-operation, stack-full, and stack-specification exceptions. │
│ SI SI instruction format. │
│ SO Special-operation exception. │
│ SP Specification exception. │
│ SS SS instruction format. │
│ SSE SSE instruction format. │
│ ST PER storage-alteration event. │
│ SU PER store-using-real-address event. │
│ SW Special-operation exception and space-switch event. │
│ T Trace exceptions (which include trace table, addressing, and low-address protection). │
└──┘

Figure 10-1 (Part 3 of 4). Summary of Control Instructions

 Chapter 10. Control Instructions 10-5

┌──┐
│Explanation (Continued): │
│ │
│ U� R� field designates an access register unconditionally. │
│ U� R� field designates an access register unconditionally. │
│ WE Space-switch event. │
│ Z� Additional exceptions and events for PROGRAM CALL (which include ASX-translation, │
│ EX-translation, LX-translation, PC-translation-specification, special-operation, │

| │ stack-full, stack-specification, and subspace-replacement exceptions and space-switch │
│ event). │
│ Z� Additional exceptions and events for PROGRAM TRANSFER (which include AFX-translation, │

| │ ASX-translation, primary-authority, special-operation, and subspace-replacement │
| │ exceptions and space-switch event). │

│ Z� Additional exceptions for SET SECONDARY ASN (which include AFX translation, │
| │ ASX translation, secondary authority, special operation and subspace replacement). │

│ Z� Additional exceptions and events for PROGRAM RETURN (which include AFX-translation, │
│ ASX-translation, secondary-authority, special-operation, stack-empty, stack-operation, │

| │ stack-specification, stack-type, and subspace-replacement exceptions and space-switch │
│ event). │
│ Z� Additional exceptions for BRANCH AND STACK (which include special operation, stack full, │
│ and stack specification). │
└──┘

Figure 10-1 (Part 4 of 4). Summary of Control Instructions

BRANCH AND SET AUTHORITY

BSA R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B25A' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

If the dispatchable unit is in the base-authority
state and the 24-bit or 31-bit addressing mode:
bits 32 and 97-127 of the current PSW, the basic-
addressing-mode bit and bits 33-63 of the updated
instruction address, are saved in the dispatchable-
unit control table (DUCT); the PSW-key mask
(PKM), PSW key, and problem-state bit also are
saved in the DUCT; the PKM and PSW key are
replaced using the contents of general register R�;
the problem-state bit is set to one; bits 32 and
97-127 of the PSW are replaced using the con-
tents of general register R�; and the dispatchable
unit is placed in the reduced-authority state. In
the 64-bit addressing mode, the action is the
same except that bits 64-127 of the current PSW
are saved in the DUCT and replaced from general
register R�, and bit 32 of the PSW is neither
saved nor replaced.

If the dispatchable unit is in the reduced-authority
state and the 24-bit or 31-bit addressing mode:
bits 32 and 97-127 of the current PSW are saved
in general register R� if R� is not zero; bits 32 and
97-127 of the PSW and the PKM, PSW key, and
problem-state bit are replaced by values saved in
the DUCT; and the dispatchable unit is placed in
the base-authority state. In the 64-bit addressing

mode, the action is the same except that bits
64-127 of the current PSW are saved in general
register R� if R� is not zero, those bits in the PSW
are replaced from the DUCT, and bit 32 of the
PSW is neither saved nor replaced.

Words 5, 8, and 9 of the DUCT are used by this
instruction. The contents of those words are as
follows:

 ┌────────────────┬────────┬────┬─┬──┬─┐
 5 │ │ │PSW │R│ │ │
 │ PSW-Key Mask │ │Key │A│ │P│
 └────────────────┴────────┴────┴─┴──┴─┘
 � 16 24 28 31

In the 24-Bit or 31-Bit Addressing Mode
 ┌─────────────────────────────────────┐
 8 │ All Zeros │
 └─────────────────────────────────────┘
 � 31

 ┌─┬───────────────────────────────────┐
 9 │B│ │
 │A│ Bits 33-63 of Return Address │
 └─┴───────────────────────────────────┘
 � 1 31

In the 64-Bit Addressing Mode
 ┌─────────────────────────────────────┐
 8 │ Bits �-31 of Return Address │
 └─────────────────────────────────────┘
 � 31

 ┌─────────────────────────────────────┐
 9 │ Bits 32-63 of Return Address │
 └─────────────────────────────────────┘
 � 31

10-6 z/Architecture Principles of Operation

The fields in words 5, 8, and 9 of the DUCT are
allocated as follows:

PSW-Key Mask: Bit positions 0-15 of word 5
contain the PSW-key mask (PKM), bits 32-47 of
control register 3, saved by BRANCH AND SET
AUTHORITY executed in the base-authority state.
The PKM is restored to control register 3 by
BRANCH AND SET AUTHORITY executed in the
reduced-authority state.

PSW Key: Bit positions 24-27 of word 5 contain
the PSW key, bits 8-11 of the PSW, saved by
BRANCH AND SET AUTHORITY executed in the
base-authority state. The PSW key is restored to
the PSW by BRANCH AND SET AUTHORITY
executed in the reduced-authority state.

Reduced Authority (RA): Bit 28 of word 5 indi-
cates, when zero, that the dispatchable unit asso-
ciated with the DUCT is in the base-authority state
or, when one, that the dispatchable unit is in the
reduced-authority state. Bit 28 is set to one by
BRANCH AND SET AUTHORITY executed in the
base-authority state, and it is set to zero by
BRANCH AND SET AUTHORITY executed in the
reduced-authority state.

Problem State (P): Bit position 31 of word 5
contains the problem-state bit, bit 15 of the PSW,
saved by BRANCH AND SET AUTHORITY exe-
cuted in the base-authority state. The problem-
state bit is restored to the PSW by BRANCH AND
SET AUTHORITY executed in the reduced-
authority state.

Basic Addressing Mode (BA): In the 24-bit or
31-bit addressing mode, bit position 0 of word 9
contains the basic-addressing-mode bit, bit 32 of
the PSW, saved by BRANCH AND SET
AUTHORITY executed in the base-authority state.
The basic-addressing-mode bit is restored to the
PSW from the DUCT by BRANCH AND SET
AUTHORITY executed in the reduced-authority
state.

Return Address: In the 24-bit or 31-bit
addressing mode, bit positions 1-31 of word 9
contain bits 33-63 of the updated instruction
address, bits 97-127 of the PSW, saved by
BRANCH AND SET AUTHORITY executed in the
base-authority state. Bits 1-31 of word 9 of the
DUCT are restored to bit positions 97-127 of the
PSW by BRANCH AND SET AUTHORITY exe-

cuted in the reduced-authority state. In the 64-bit
addressing mode, words 8 and 9 contain the
updated instruction address saved by BRANCH
AND SET AUTHORITY executed in the base-
authority state. The contents of words 8 and 9
are restored to bit positions 64-127 of the PSW by
BRANCH AND SET AUTHORITY executed in the
reduced-authority state.

In the 24-bit or 31-bit addressing mode, all zeros
are stored in word 8 when saving occurs in the
base-authority state. In any addressing mode, all
zeros are stored in bit positions 16-23, 29, and 30
of word 5 when saving occurs in the base-
authority state.

All other fields in words 5, 8, and 9 remain
unchanged when bit 28 of word 5 is set to zero in
the reduced-authority state.

The fetch, store, and update references to the
DUCT are single-access references and appear to
be word concurrent as observed by other CPUs.
The words of the DUCT are accessed in no partic-
ular order.

Base-Authority Operation

When BRANCH AND SET AUTHORITY is exe-
cuted in the base-authority state, as indicated by
the reduced-authority bit (RA) in the DUCT being
zero, R� must be nonzero; otherwise, a special-
operation exception is recognized. R� may be
zero or nonzero.

The contents of bit positions 32-63 of general reg-
ister R� and of general register R� when the exe-
cution of the instruction begins in the base-
authority state are as follows:

 ┌────────────────┬────────┬────┬────┐
R� │ Key Mask │ │Key │ │
 └────────────────┴────────┴────┴────┘
 32 48 56 6� 63

In the 24-Bit or 31-Bit Addressing Mode
 ┌───────────────────────────────────┐
R� │ Ignored │
 └───────────────────────────────────┘
 � 31

 ┌─┬─────────────────────────────────┐
 │B│ │

│A│ Bits 33-63 of Branch Address │
 └─┴─────────────────────────────────┘
 32 63

 Chapter 10. Control Instructions 10-7

In the 64-Bit Addressing Mode
 ┌───────────────────────────────────┐
R� │ Bits �-31 of Branch Address │
 └───────────────────────────────────┘
 � 31

 ┌───────────────────────────────────┐
 │ Bits 32-63 of Branch Address │
 └───────────────────────────────────┘
 32 63

In any addressing mode, the contents of bit posi-
tions 0-31 of general register R� are ignored. In
the 24-bit or 31-bit addressing mode, the contents
of bit positions 0-31 of general register R� are
ignored.

In the 24-bit or 31-bit addressing mode, PSW bits
32 and 97-127 are saved in word 9 of the DUCT,
and zeros are stored in word 8. In the 64-bit
addressing mode, PSW bits 64-127 are saved in
words 8 and 9 of the DUCT. In any addressing
mode, the PKM, the PSW key, and the problem-
state bit are saved in word 5 of the DUCT, the RA
bit in word 5 is set to one, and bits 16-23, 29, and
30 of word 5 are set to zeros.

Bits 56-59 of general register R� are placed in bit
positions 8-11 of the PSW as the new PSW key.
In the problem state, the new PSW key must be
authorized by the PKM; otherwise, if the new PSW
key is not authorized, a privileged-operation
exception is recognized.

After the new PSW key has been placed in the
PSW, bits 32-47 of general register R� are ANDed
with the PKM in control register 3, and the result
replaces the PKM in control register 3.

The problem-state bit in the PSW is set to one.

In the 24-bit or 31-bit addressing mode, bit 32 of
general register R� is placed in bit position 32 of
the PSW as the new basic-addressing-mode bit.
A branch address is generated from bits 33-63 of
general register R� under the control of the new
basic addressing mode, and the result is placed in
bit positions 64-127 of the PSW as the new
instruction address.

In the 64-bit addressing mode, a branch address
is generated from bits 0-63 of general register R�
and is placed in bit positions 64-127 of the PSW
as the new instruction address. Bit 32 of the PSW
remains unchanged.

Bits 48-55 and 60-63 of general register R� may
be used for future extensions and should be
zeros; otherwise, the program may not operate
compatibly in the future.

Reduced-Authority Operation

When BRANCH AND SET AUTHORITY is exe-
cuted in the reduced-authority state, as indicated
by the reduced-authority (RA) bit in the DUCT
being one, R� must be zero; otherwise, a special-
operation exception is recognized. R� may be
zero or nonzero. The initial contents of general
registers R� and R� are ignored.

If R� is nonzero in the 24-bit or 31-bit addressing
mode, bits 32 and 97-127 of the current PSW, the
basic-addressing-mode bit and bits 33-63 of the
updated instruction address, are placed in bit posi-
tions 32 and 33-63, respectively, of general reg-
ister R�, and bits 0-31 of the register remain
unchanged. If R� is nonzero in the 64-bit
addressing mode, bits 64-127 of the current PSW
are placed in bit positions 0-63 of general register
R�. If R� is zero, general register 0 remains
unchanged.

In the 24-bit or 31-bit addressing mode, bit 0 of
word 9 of the DUCT is placed in PSW bit position
32, and bits 1-31 of word 9, with 33 leftmost zeros
appended, are placed in PSW bit positions
64-127.

In the 64-bit addressing mode, the contents of
words 8 and 9 of the DUCT are placed in PSW bit
positions 64-127, and bit 32 of the PSW remains
unchanged.

In any addressing mode, the PKM, the PSW key,
and the problem-state bit are restored from the
DUCT, and the RA bit is set to zero, as previously
described. There is no test for whether the
restored PSW key is authorized by the restored
PKM.

Special Conditions

R� must be nonzero in the base-authority state
and zero in the reduced-authority state. If either
of these rules is violated, a special-operation
exception is recognized, and the operation is sup-
pressed.

10-8 z/Architecture Principles of Operation

In the problem state, the execution of the instruc-
tion in the base-authority state is subject to control
by the PSW-key mask in control register 3. When
the bit in the PSW-key mask corresponding to the
PSW-key value to be set is one, the instruction is
executed successfully. When the selected bit in
the PSW-key mask is zero, a privileged-operation
exception is recognized. In the supervisor state,
any value for the PSW key is valid.

Key-controlled protection does not apply to any
access made during the operation. Low-address
protection does apply.

In the 24-bit or 31-bit addressing mode, the con-
tents of word 9 of the DUCT are not checked for
validity before they are loaded into the PSW.
However, after loading, a specification exception is
recognized, and a program interruption occurs,
when the newly loaded PSW contains a zero in bit
position 32 and the contents of bit positions
97-103 are not all zeros. In this case, the opera-
tion is completed, and the resulting instruction-
length code is 0. The specification exception,
which in this case is listed as a program exception
in this instruction, is described in “Early Exception
Recognition” on page 6-9. It may be considered
as occurring early in the process of preparing to
execute the following instruction.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-2 on
page 10-10.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (dispatchable-unit control table)
� Privileged operation (selected PSW-key-mask

bit is zero in the problem state, base-authority
operation only)

� Protection (low-address; dispatchable-unit
control table)

 � Special operation
 � Specification
 � Trace

Programming Notes:

1. BRANCH AND SET AUTHORITY can improve
performance by replacing to-current-primary
forms of PROGRAM TRANSFER (PT-cp) and
basic (nonstacking) PROGRAM CALL (PC-cp)
instructions. PT-cp and PC-cp are often used
(within a single address space) to reduce the
authority of the PSW-key mask (PKM) or
change from supervisor state to problem state
during a calling linkage made by PT-cp and
then to restore the PKM authority or super-
visor state during a return linkage made by
PC-cp. Also, the PSW-key-setting operations
of BRANCH AND SET AUTHORITY can be
substituted for SET PSW KEY FROM
ADDRESS instructions, and, since BRANCH
AND SET AUTHORITY combines branching
with PSW-key setting, it can be used to
change the PSW key when branching from or
to a fetch-protected program.

2. Only one base-authority state and one
reduced-authority state are available to a
dispatchable unit. Nested use of BRANCH
AND SET AUTHORITY, that is, use within dif-
ferent subroutine levels, is not possible. The
requirement that R� must be nonzero in the
base-authority state and zero in the reduced-
authority state provides detection of an
attempt to use BRANCH AND SET
AUTHORITY in the base-authority state when
the dispatchable unit is already in the
reduced-authority state because of a previous
use of the instruction in the base-authority
state.

3. BRANCH AND SET AUTHORITY in the base
authority-state does not save an indication in
the DUCT of whether the current addressing
mode is the extended (64-bit) addressing
mode or a basic (24-bit or 31-bit) addressing
mode. The instruction, in either the base-
authority state or the reduced-authority state,
does not cause a switch between the
extended addressing mode and a basic
addressing mode. In the reduced-authority
state, the contents of words 8 and 9 of the
DUCT are interpreted based only on the
current addressing mode. If saving occurs in
the 31-bit addressing mode and then restoring
occurs in the 64-bit addressing mode, bit 0 of
word 9 of the DUCT will be used as an
address bit instead of as the basic-
addressing-mode bit. If saving occurs in the

 Chapter 10. Control Instructions 10-9

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7. Access exceptions for second instruction halfword. │
│ │
│ 8.A Trace exceptions. │
│ │
│ 8.B Protection exception (low-address protection) for access to │
│ dispatchable-unit control table. │
│ │
│ 8.C.1 Addressing exception for access to dispatchable-unit control │
│ table. │
│ │
│ 8.C.2 Special-operation exception due to R� being zero in the base- │
│ authority state or R� being nonzero in the reduced-authority │
│ state. │
│ │
│ 8.C.3 Privileged-operation exception due to selected PSW-key-mask │
│ bit being zero (base-authority operation only). │
│ │
│ 9. Specification exception due to bit 32 of the newly loaded PSW │
│ zero when bits 97-1�3 are not all zeros (reduced-authority │
│ operation only). │
└──┘

Figure 10-2. Priority of Execution: BRANCH AND SET AUTHORITY

64-bit addressing mode and then restoring
occurs in the 24-bit addressing mode, an early
specification exception may be recognized,
after the instruction execution is completed,
because bits 97-103 of the PSW may be
nonzero when bit 32 is zero.

4. The instruction may be referred to as BSA-ba
or BSA-ra depending on whether it is exe-
cuted in the base-authority state or the
reduced-authority state, respectively.

BRANCH AND STACK

BAKR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B24�' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

A linkage-stack branch state entry is formed, and
the current PSW, except with an unpredictable
PER mask and with the addressing-mode bits and
instruction address replaced from the first
operand, is placed in the state entry. Subse-
quently, the updated instruction address in the
current PSW is replaced from the second
operand. Indications of the current addressing-
mode bits and the new instruction address are
placed in the state entry, and the PSW-key mask,

PASN, SASN, EAX, and contents of general regis-
ters 0-15 and access registers 0-15 also are
placed in the state entry. The action associated
with an operand is not performed if the R field
designating the operand is zero.

When the R� field is nonzero, the contents of
general register R� specify an address referred to
as the return address.

When R� is nonzero and bit 63 of general register
R� is zero, the return address is generated from
the contents of the register under the control of
the basic addressing mode specified by bit 32 of
the register: 24-bit mode if bit 32 is zero, or 31-bit
mode if bit 32 is one. Bit 32 of the register and
the return address are substituted for the basic-
addressing-mode bit, bit 32, and the updated
instruction address, respectively, in the current
PSW when the contents of that PSW are placed in
the state entry. The extended-addressing-mode
bit, bit 31, is set to zero in the PSW that is placed
in the state entry. The contents of the current
PSW are not changed.

When R� is nonzero and bit 63 of general register
R� is one, the return address is generated from
the contents of the register under the control of
the 64-bit addressing mode. Bits 0-62 of the
return address, with a zero appended on the right,

10-10 z/Architecture Principles of Operation

are substituted for the updated instruction address
in the current PSW when the contents of that
PSW are placed in the state entry. Bits 31 and 32
are set to one in the PSW that is placed in the
state entry. The contents of the current PSW are
not changed.

When the R� field is zero, the current PSW is
placed in the state entry without any change
except for an unpredictable PER mask.

Subsequently, when the R� field is nonzero, the
instruction address in the current PSW is replaced
by the branch address. The branch address is
generated from the contents of general register R�
under the control of the current addressing mode.
When the R� field is zero, the operation is per-
formed without branching.

The branch state entry is formed and information
is placed in it as described in “Stacking Process”
on page 5-73.

In the 24-bit or 31-bit addressing mode, bits 33-63
of the branch address (or of the updated instruc-
tion address if the operation is performed without
branching) are placed in bit positions 33-63 of
bytes 144-151 in the state entry, bit 32 of the
current PSW is placed in bit position 32 of those
bytes, and zeros are placed in bit positions 0-31 of
the bytes.

In the 64-bit addressing mode, bits 0-62 of the
branch address (or of the updated instruction
address if the operation is performed without
branching) are placed in bit positions 0-62 of bytes

144-151 in the state entry, and a one is placed in
bit position 63 of those bytes.

The entry-type code in the state entry is 0001100
binary.

Key-controlled protection does not apply to
accesses to the linkage stack, but low-address
and page protection do apply.

Special Conditions

The CPU must be in the primary-space mode or
access-register mode; otherwise, a special-
operation exception is recognized.

A stack-full or stack-specification exception may
be recognized during the stacking process.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-3 on
page 10-12.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch or store, except for key-
controlled protection, linkage-stack entry)

 � Special operation
 � Stack full
 � Stack specification
 � Trace

 Chapter 10. Control Instructions 10-11

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B Special-operation exception due to DAT being off or the CPU │
│ being in secondary-space mode or home-space mode. │
│ │
│ 8.A Trace exceptions (only if R� is nonzero). │
│ │
│ 8.B.1 Access exceptions (fetch) for entry descriptor of the current │
│ linkage-stack entry. │
│ │
│ Note: Exceptions 8.B.2-8.B.7 can occur only if there is not │
│ enough remaining free space in the current linkage-stack │
│ section. │
│ │
│ 8.B.2 Stack-specification exception due to remaining-free-space │
│ value in current linkage-stack entry not being a multiple of │
│ 8. │
│ │
│ 8.B.3 Access exceptions (fetch) for second word of the trailer │
│ entry of the current section. The entry is presumed to be a │
│ trailer entry; its entry-type field is not examined. │
│ │
│ 8.B.4 Stack-full exception due to forward-section validity bit in │
│ the trailer entry being zero. │
│ │
│ 8.B.5 Access exceptions (fetch) for entry descriptor of the header │
│ entry of the next section. This entry is presumed to be a │
│ header entry; its entry-type field is not examined. │
│ │
│ 8.B.6 Stack-specification exception due to not enough remaining │
│ free space in the next section. │
│ │
│ 8.B.7 Access exceptions (store) for second word of the header entry │
│ of the next section. If there is no exception, the header is │
│ now called the current entry. │
│ │
│ 8.B.8 Access exceptions (store) for entry descriptor of the current │
│ entry and for the new state entry. │
└──┘

Figure 10-3. Priority of Execution: BRANCH AND STACK

Programming Notes:

1. Examples of the use of the BRANCH AND
STACK instruction are given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. In no case does BRANCH AND STACK
change the current addressing mode.

3. The effect when the R� field is zero is that the
return address, which would otherwise be
specified by the R� general register, is the
address of the next sequential instruction. In
this case, BRANCH AND STACK provides a
program-linkage function that is comparable to
the function of BRANCH AND SAVE.

4. BRANCH AND STACK with a nonzero R�
field is intended for use at or near the entry
point of a called program. The program may
be called by means of BRANCH AND LINK
(BALR) or BRANCH AND SAVE (BAS or
BASR) from a program being executed in the
24-bit or 31-bit addressing mode, by means of
BRANCH AND SAVE AND SET MODE from a
program being executed in any addressing
mode, or by means of a BRANCH AND SET
MODE instruction located in a “glue module”
and being executed in any addressing mode.
In all of these cases when the nonzero R�
field of the calling instruction is the same as
the R� field of BRANCH AND STACK, and

10-12 z/Architecture Principles of Operation

even when the addressing mode was changed
during the calling linkage, BRANCH AND
STACK correctly saves the addressing mode
and return address of the calling program so
that the subsequent execution of PROGRAM
RETURN will return correctly to the calling
program.

BRANCH IN SUBSPACE GROUP

BSG R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B258' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Provided that the current primary address space is
in the subspace group, if any, associated with the
current dispatchable unit, the access-list-entry
token (ALET) in access register R� is translated
by means of a special form of access-register
translation (ART) to locate a destination
ASN-second-table entry (DASTE). If the DASTE
specifies the base space of the subspace group,
the primary ASCE (PASCE) in control register 1 is
replaced by the ASCE in the DASTE. If the
DASTE specifies a subspace of the group, bits
0-55 and 58-63 of the PASCE are replaced by the
same bits of the ASCE in the DASTE. In either
case, the the following actions also occur.

In the 24-bit or 31-bit addressing mode, bits 32
and 97-127 of the current PSW, the basic-
addressing-mode bit and bits 33-63 of the updated
instruction address, are saved in bit positions 32
and 33-63, respectively, of general register R�,
and bits 0-31 of the register remain unchanged.
Subsequently, the basic-addressing-mode bit and
bits 33-63 of the instruction address in the current
PSW are replaced from bit positions 32-63 of
general register R�, and bits 0-31 of the register
are ignored.

In the 64-bit addressing mode, bits 64-127 of the
current PSW, the updated instruction address, are
saved in bit positions 0-63 of general register R�.
Subsequently, the instruction address in the
current PSW is replaced from bit positions 0-63 of
general register R�. Bit 32 of the PSW remains
unchanged.

In any addressing mode, the secondary ASCE
(SASCE) in control register 7 is set equal to the
new PASCE in control register 1. Also, the sec-

ondary ASN (SASN), bits 48-63 of control register
3, is set equal to the primary ASN (PASN), bits
48-63 of control register 4. General register 0
remains unchanged if the R� field is zero.

The current primary address space is in the sub-
space group for the dispatchable unit if the current
primary-ASTE origin (PASTEO), bits 33-57 of
control register 5, designates the ASTE for the
base space of the group. The PASTEO desig-
nates the base-space ASTE if the PASTEO is
equal to the base-ASTE origin (BASTEO), bits
1-25 of word 0 of the dispatchable-unit control
table (DUCT). For determining whether the
PASTEO equals the BASTEO, either the PASTEO
may be compared to the BASTEO or the entire
contents of bit positions 32-63 of control register 5
may be compared to the entire contents of word 0
of the DUCT.

Ordinary ART is described in “Access-Register-
Translation Process” on page 5-49. The special
ART performed by this instruction is contrasted to
ordinary ART as follows:

1. The special ART is performed regardless of
whether the CPU is in the access-register
mode.

2. If the ALET being translated is 00000000 hex,
called ALET 0, the DASTE is the ASTE for the
base space. Bit 0 of the DASTE is ignored.

3. If the ALET is 00000001 hex, called ALET 1,
the DASTE is the ASTE for the last subspace
entered by the dispatchable unit by means of
BRANCH IN SUBSPACE GROUP. That
ASTE is designated by the subspace-ASTE
origin (SSASTEO), bits 1-25 of word 1 of the
DUCT. A special-operation exception is
recognized if a subspace has not previously
been entered, as indicated by that the
SSASTEO is all zeros. An ASTE-validity
exception is recognized if bit 0 of the DASTE
is one. An ASTE-sequence exception is
recognized if the ASTE sequence number
(ASTESN) in the DASTE does not equal the
subspace ASTESN (SSASTESN) in word 3 of
the DUCT. The DASTE located because of
ALET 1 is considered to specify a subspace
even if, due to an error, the DASTE is the
ASTE for the base space. That is, there is no
comparison of the SSASTEO to the BASTEO.

4. If the ALET is other than ALET 0 and ALET 1,
an ASTE is located by obtaining its origin from

 Chapter 10. Control Instructions 10-13

an access-list entry (ALE) in a way similar to
ordinary ART, and the DASTE is that located
ASTE. In this case, as in ordinary ART:

� An ALET-specification exception is recog-
nized if bits 0-6 of the ALET are not zeros.

� An ALEN-translation exception is recog-
nized if the ALE is outside the effective
access list or bit 0 of the ALE is one.

� An ASTE-validity exception is recognized
if bit 0 of the DASTE is one.

� An ASTE-sequence exception is recog-
nized if the ASTE sequence number
(ASTESN) in the DASTE does not equal
the ASTESN in the ALE.

The operation differs from ordinary ART in
that the ALE sequence number (ALESN) in
the ALE is not compared to the ALESN in the
ALET, and the private bit in the ALE is treated
as zero. Thus, ALE-sequence and extended-
authority exceptions cannot occur.

The fetch-only bit in the ALE is ignored.

When the ALET is other than ALET 0 and ALET
1, the special ART may be performed by using the
ART-lookaside buffer (ALB).

The DASTE located due to an ALET other than
ALET 0 and ALET 1 may be the ASTE for the
base space of the subspace group associated with
the dispatchable unit. The DASTE is the base-
space ASTE if the DASTE origin (DASTEO)
obtained from an ALE by ART equals the
BASTEO in the DUCT. For determining whether
the DASTEO equals the BASTEO, either the
DASTEO may be compared to the BASTEO, or
the DASTEO with one leftmost and six rightmost
zeros appended may be compared to the entire
contents of word 0 of the DUCT. If the DASTE is
not the base-space ASTE, the DASTE is treated
as the ASTE for a subspace of the dispatchable
unit's subspace group provided that (1) the
subspace-group bit, bit 54, in the ASCE in the
DASTE is one, and (2) the DASTE does not
specify the base space of another subspace
group. The DASTE specifies the base space of
another subspace group if the base-space bit, bit
31 of word 0 of the DASTE, is one. A special-
operation exception is recognized if either of those
two provisions is not met.

If the DASTE specifies the base space of the sub-
space group, the PASCE in control register 1 is
replaced by the ASCE in the DASTE. If the
DASTE specifies a subspace, bits 0-55 and 58-63
of the PASCE are replaced by the same bits of
the ASCE in the DASTE, and bits 56 and 57 of
the PASCE, the storage-alteration-event bit and
space-switch-event-control bit, remain unchanged.

If R� is nonzero in the 24-bit or 31-bit addressing
mode, bits 32 and 97-127 of the current PSW, the
basic-addressing-mode bit and bits 33-63 of the
updated instruction address, are placed in bit posi-
tions 32 and 33-63, respectively, of general reg-
ister R�, and bits 0-31 of the register remain
unchanged. If R� is nonzero in the 64-bit
addressing mode, bits 64-127 of the current PSW,
the updated instruction address, are placed in bit
positions 0-63 of general register R�. If R� is
zero, general register 0 remains unchanged.

Whether R� is nonzero or zero, in the 24-bit or
31-bit addressing mode, bits 32-63 of general reg-
ister R� specify the new basic addressing mode
and designate the branch address. Bit 32 of the
register specifies the new basic addressing mode
and replaces bit 32 of the current PSW, and the
branch address is generated from the contents of
bit positions 33-63 of the register under the control
of the new basic addressing mode.

When R� is nonzero or zero in the 64-bit
addressing mode, the contents of general register
R� designate the branch address. The branch
address is generated from the contents of the reg-
ister under the control of the 64-bit addressing
mode. Bit 32 of the PSW remains unchanged.

Regardless of the addressing mode, the new
value for the PSW is computed before general
register R� is changed.

The secondary ASCE (SASCE) in control register
7 is set equal to the new PASCE in control reg-
ister 1. The secondary ASN (SASN), bits 48-63 of
control register 3, is set equal to the primary ASN
(PASN), bits 48-63 of control register 4.

If the DASTE specifies the base space, the
subspace-active bit, bit 0 of word 1 of the DUCT,
is set to zero, and bits 1-31 of word 1 remain
unchanged. If the DASTE specifies a subspace
by means of ALET 1, then (1) the subspace-active
bit is set to one, (2) the SSASTEO in bit positions

10-14 z/Architecture Principles of Operation

1-25 of word 1 remains unchanged, and (3) bits
26-31 of word 1 either are set to zeros or remain
unchanged. If the DASTE specifies a subspace
by means of an ALET other than ALET 1, then (1)
the subspace-active bit is set to one, (2) the
DASTEO is stored in bit positions 1-25 of word 1
as the SSASTEO, (3) zeros are stored in bit posi-
tions 26-31 of word 1, and (4) the ASTESN in the
DASTE is stored in word 3 of the DUCT as the
SSASTESN.

The fetch, store, and update references to the
DUCT are single-access references and appear to
be word concurrent as observed by other CPUs.
The words of the DUCT are accessed in no partic-
ular order.

The operation, since it changes a translation
parameter in control register 1, causes all copies
of prefetched instructions to be discarded, except
when in the home-space mode.

Special Conditions

DAT must be on; otherwise, a special-operation
exception is recognized. A special-operation
exception is also recognized if the current primary
address space is not in a subspace group associ-
ated with the current dispatchable unit, if the ALET
in access register R� is ALET 1 but a subspace
has not previously been entered by the
dispatchable unit by means of BRANCH IN SUB-
SPACE GROUP, or if the ALET used is other than
ALET 0 and ALET 1 and the destination ASTE

does not specify the base space or a subspace of
the subspace group.

The primary space-switch-event-control bit, bit 57
of control register 1 either before or after the oper-
ation, does not cause a space-switch-event
program interruption to occur.

Key-controlled protection does not apply to any
access made during the operation. Low-address
protection does apply.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in the figure “Priority of
Execution: BRANCH IN SUBSPACE GROUP.”

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (dispatchable-unit control table,
effective access-list designation, access-list
entry, destination ASN-second-table entry)

 � ALET specification
 � ALEN translation
 � ASTE sequence
 � ASTE validity
� Protection (low-address; dispatchable-unit

control table)
 � Special operation
 � Trace

 Chapter 10. Control Instructions 10-15

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B Special-operation exception due to DAT being off. │
│ │
│ 8.A Trace exceptions. │
│ │
│ 8.B Protection exception (low-address protection) for access to │
│ dispatchable-unit control table. │
│ │
│ 8.C.1 Addressing exception for access to dispatchable-unit control │
│ table. │
│ │
│ 8.C.2 Special-operation exception due to current primary address │
│ space not being in a subspace group associated with the │
│ current dispatchable unit (primary-ASTE origin in control │
│ register 5 not equal to base-ASTE origin in dispatchable-unit │
│ control table). │
│ │
│ Note: Exception 8.C.3.A can occur only if the access-list- │
│ entry token (ALET) in access register R� is ALET �. │
│ │
│ 8.C.3.A Addressing exception for access to base ASTE (ASTE designated │
│ by base-ASTE origin in dispatchable-unit control table). │
│ │
│ Note: Exceptions 8.C.3.B.1-8.C.3.B.4 can occur only if the │
│ access-list-entry token (ALET) in access register R� is │
│ ALET 1. │
│ │
│ 8.C.3.B.1 Special-operation exception due to subspace-ASTE origin in │
│ dispatchable-unit control table being zero. │
│ │
│ 8.C.3.B.2 Addressing exception for access to subspace ASTE. │
│ │
│ 8.C.3.B.3 ASTE-validity exception due to bit � in subspace ASTE being │
│ one. │
│ │
│ 8.C.3.B.4 ASTE-sequence exception due to ASTE sequence number in │
│ subspace ASTE not being equal to subspace-ASTE sequence │
│ number in dispatchable-unit control table. │
│ │
│ Note: Exceptions 8.C.3.C.1-8.C.3.C.9 can occur only if the │
│ access-list-entry token (ALET) in access register R� is other │
│ than ALET � and ALET 1. │
│ │
│ 8.C.3.C.1 ALET-specification exception due to bits �-6 of ALET not being│
│ all zeros. │
│ │
│ 8.C.3.C.2 Addressing exception for access to effective access-list │
│ designation. │
│ │
│ 8.C.3.C.3 ALEN-translation exception due to access-list entry being │
│ outside the list. │
└──┘

Figure 10-4 (Part 1 of 2). Priority of Execution: BRANCH IN SUBSPACE GROUP

10-16 z/Architecture Principles of Operation

┌──┐
│ 8.C.3.C.4 Addressing exception for access to access-list entry. │
│ │
│ 8.C.3.C.5 ALEN-translation exception due to I bit in access-list entry │
│ being one. │
│ │
│ 8.C.3.C.6 Addressing exception for access to destination ASTE. │
│ │
│ 8.C.3.C.7 ASTE-validity exception due to bit � in destination ASTE being│
│ one. │
│ │
│ 8.C.3.C.8 ASTE-sequence exception due to ASTE sequence number (ASTESN) │
│ in access-list entry not being equal to ASTESN in destination │
│ ASTE. │
│ │
│ 8.C.3.C.9 Special-operation exception due to destination-ASTE origin not│
│ equal to base-ASTE origin in dispatchable-unit control table │
│ and (1) subspace-group bit, bit 54 in address-space-control │
│ element in destination ASTE being zero or (2) base-space bit │
│ bit 31, in destination ASTE being one. │
└──┘

Figure 10-4 (Part 2 of 2). Priority of Execution: BRANCH IN SUBSPACE GROUP

Programming Notes:

1. See the discussion of BRANCH IN SUB-
SPACE GROUP in “Subroutine Linkage
without the Linkage Stack” on page 5-11. It is
intended that there be a separate
ASN-second-table entry (ASTE) for each of
the base space and each subspace of a sub-
space group. The ASTEs for the subspaces
can be “pseudo” ASTEs as described in the
programming note in “Address-Space
Number” on page 3-17. A subspace can
contain a subset of the storage in the base
space by having the DAT tables for the sub-
space designate a subset of the pages that
are designated by the DAT tables for the base
space. A dispatchable unit has access to a
subspace if an access-list entry designating
the ASTE for the subspace is in the primary-
space or dispatchable-unit access list of the
dispatchable unit.

2. BRANCH IN SUBSPACE GROUP can be
used to give control from the base space to a
subspace, from a subspace to another sub-
space, and from a subspace to the base
space. The instruction can also be used to
give control from the base space to the base
space or from a subspace to the same sub-
space.

3. Since BRANCH IN SUBSPACE GROUP sets
the secondary address-space-control element
(ASCE) in control register 7 equal to the new
primary ASCE in control register 1 (along with

setting the secondary ASN in control register
3 equal to the primary ASN in control register
4), the program in an address space given
control by BRANCH IN SUBSPACE GROUP
does not have access to the calling program's
address space by means of that address
space being the secondary address space.

4. When a dispatchable unit has used BRANCH
IN SUBSPACE GROUP to enter a subspace
and has not subsequently used BRANCH IN
SUBSPACE GROUP to return to the base
space, the dispatchable unit is said to be
“subspace active.” When PROGRAM CALL,
PROGRAM TRANSFER, PROGRAM
RETURN, SET SECONDARY ASN, or LOAD
ADDRESS SPACE PARAMETERS places an
ASCE in control register 1 as the primary
ASCE or in control register 7 as the sec-
ondary ASCE, and if (1) the ASCE has the
subspace-group bit on in it, (2) the
dispatchable unit is subspace active, and
(3) the ASCE was obtained from the
ASN-second-table entry (ASTE) for the base
space of the current dispatchable unit, then
the instruction (any of the five named
instructions) replaces bits 0-55 and 58-63 of
the ASCE in the control register with the same
bits of the ASCE in the ASTE for the sub-
space in which the dispatchable unit last had
control. Further details about the effects of
the subspace-group facility on the five named
instructions are given in “Subspace-

 Chapter 10. Control Instructions 10-17

Replacement Operations” on page 5-60 and
in the definitions of the instructions.

5. The use of BRANCH IN SUBSPACE GROUP
(BSG) along with PROGRAM CALL (PC) and
either PROGRAM TRANSFER (PT) or
PROGRAM RETURN (PR) can produce
results that may be unexpected. Consider the
following sequence of operations:

a. Start in the base space

b. BSG to a subspace

c. PC (the first PC) to an address space that
is not in the subspace group.

d. PC (the second PC) to the base space.
Since the dispatchable unit is subspace
active, control is given to the subspace.

e. BSG back to the base space.

f. PT or PR (paired with the second PC)
back to the address space that is not in
the subspace group.

g. PT or PR (paired with the first PC) back to
the subspace group. Since the
dispatchable unit is no longer subspace
active, control is given to the base space
even though the first PC was issued in the
subspace.

6. BRANCH IN SUBSPACE GROUP does not
perform the serialization or checkpoint-
synchronization functions, but it does cause all
copies of prefetched instructions to be dis-
carded except when in the home-space mode.

7. When the R� field designates access register
0, the access register is treated as containing
ALET 0 regardless of the contents of the
access register.

COMPARE AND SWAP AND
PURGE

CSP R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B25�' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

| CSPG R�,R� [RRE]

| ┌────────────────┬────────┬────┬────┐
| │ 'B98A' │////////│ R� │ R� │
| └────────────────┴────────┴────┴────┘
| � 16 24 28 31

The first and second operands are compared. If
| they are equal, contents of general register

R� + 1 are stored at the second-operand location,
and a purging operation is performed. If they are
unequal, the second operand is loaded at the first-
operand location. The result of the comparison is
indicated in the condition code.

| For COMPARE AND SWAP AND PURGE (CSP),
the first operand is the contents of bit positions
32-63 of general register R�. The second
operand is a word in storage.

| For COMPARE AND SWAP AND PURGE
| (CSPG), the first operand is the contents of bit
| positions 0-63 of general register R�. The second
| operand is a doubleword in storage.

| For both CSP and CSPG, the location of the left-
most byte of the second operand is designated by
contents of general register R�.

The purging operation applies to ART-lookaside
buffers (ALBs) and translation-lookaside buffers
(TLBs) in all CPUs in the configuration. Either
ALBs or TLBs, or both ALBs and TLBs, may be
selected for purging. All entries are cleared from
the selected buffers.

The purging operation is specified by means of
bits 62 and 63 of general register R�. When bit
62 is one, entries are cleared from ALBs. When
bit 63 is one, entries are cleared from TLBs.
When bits 62 and 63 both are ones, entries are
cleared from ALBs and TLBs. When bits 62 and
63 both are zeros, no entries are cleared.

The handling of the address in general register R�
| is dependent on the addressing mode. For CSP

in the 24-bit addressing mode, the contents of bit
positions 40-61 of general register R�, with two
zeros appended on the right, constitute the
address, and the contents of bit positions 0-39 are
ignored. In the 31-bit addressing mode, the con-
tents of bit positions 33-61 of the register, with two
zeros appended on the right, constitute the
address, and the contents of bit positions 0-32 are
ignored. In the 64-bit addressing mode, the con-
tents of bit positions 0-61 of the register, with two
zeros appended on the right, constitute the
address.

| For CSPG in the 24-bit addressing mode, the con-
| tents of bit positions 40-60 of general register R�,

10-18 z/Architecture Principles of Operation

| with three zeros appended on the right, constitute
| the address, and the contents of bit positions 0-39
| and 61 are ignored. In the 31-bit addressing
| mode, the contents of bit positions 33-60 of the
| register, with three zeros appended on the right,
| constitute the address, and the contents of bit
| positions 0-32 and 61 are ignored. In the 64-bit
| addressing mode, the contents of bit positions
| 0-60 of the register, with three zeros appended on
| the right, constitute the address, and the contents
| of bit position 61 are ignored.

The contents of the registers just described are
shown in Figure 10-5 on page 10-20. When an
equal comparison occurs, the contents of bit posi-

| tions 32-63 of general register R� + 1 for CSP, or
| of bit positions 0-63 for CSPG, are stored at the

second-operand location. The fetch of the second
operand for purposes of comparison and the store
into the second-operand location appear to be a
block-concurrent interlocked-update reference as
observed by other CPUs.

When the result of the comparison is unequal, the
second-operand is loaded at the first-operand
location, bits 0-31 of general register R� remain

| unchanged for CSP only, and the second-operand
location remains unchanged. However, on some
models, the second operand may be fetched and
subsequently stored back unchanged at the
second-operand location. This update appears to
be a block-concurrent interlocked-update refer-
ence as observed by other CPUs.

A serialization function is performed before the
operand is fetched and again after the operation is
completed.

When an equal comparison occurs, this CPU
clears entries from its ALB and TLB, as specified
by bits 62 and 63 of general register R�, and
signals all CPUs in the configuration to clear the
same specified entries from their ALBs and TLBs.
The ALB entries that are cleared are all ALB
access-list designations, access-list entries,
ASN-second-table entries, and authority-table
entries. The TLB entries that are cleared are all
combined region-and-segment-table entries, page-
table entries, and real-space entries.

The execution of COMPARE AND SWAP AND
PURGE is not completed on the CPU which exe-
cutes it until (1) all specified entries have been

cleared from the ALB and TLB of this CPU and
(2) all other CPUs in the configuration have com-
pleted any storage accesses, including the
updating of the change and reference bits, by
using the specified ALB and TLB entries.

Special Conditions

The R� field must designate an even register; oth-
erwise, a specification exception is recognized.

Resulting Condition Code:

0 First and second operands equal, second
| operand replaced by contents of general reg-

ister R� + 1
1 First and second operands unequal, first

operand replaced by second operand
2 --
3 --

 Program Exceptions:

� Access (fetch and store, operand 2)
| � Operation (if DAT-enhancement facility is not
| installed, CSPG only)

 � Privileged operation
 � Specification

Programming Note: COMPARE AND SWAP
AND PURGE provides a broadcast form of the
PURGE ALB and PURGE TLB instructions, thus
making it possible to avoid uses of SIGNAL
PROCESSOR.

 DIAGNOSE

┌────────┬───────────────────────┐
│ '83' │ │
└────────┴───────────────────────┘
� 8 31

The CPU performs built-in diagnostic functions, or
other model-dependent functions. The purpose of
the diagnostic functions is to verify proper func-
tioning of equipment and to locate faulty compo-
nents. Other model-dependent functions may
include disabling of failing buffers, reconfiguration
of CPUs, storage, and channel paths, and modifi-
cation of control storage.

Bits 8-31 may be used as in the SI or RS formats,
or in some other way, to specify the particular
diagnostic function. The use depends on the
model.

 Chapter 10. Control Instructions 10-19

| ┌───┐
| │ │
| │ CSP CSPG │
| │ │
| │ ┌─/─┬────────────────────────────┐ ┌─/──────────────────────────────┐ │
| │ R� │///│ First Operand │ │ First Operand │ │
| │ └─/─┴────────────────────────────┘ └─/──────────────────────────────┘ │
| │ � 32 63 � 63 │
| │ │
| │ ┌─/─┬────────────────────────────┐ ┌─/──────────────────────────────┐ │
| │ R� + 1 │///│ Swap Value │ │ Swap Value │ │
| │ └─/─┴────────────────────────────┘ └─/──────────────────────────────┘ │
| │ � 32 63 � 63 │
| │ │
| │ 24-Bit Addressing Mode 24-Bit Addressing Mode │
| │ ┌─/─────────┬────────────────┬─┬─┐ ┌─/─────────┬──────────────┬─┬─┬─┐ │
| │ R� │///////////│ Second-Op. Adr.│A│T│ │///////////│Second-Op. Adr│/│A│T│ │
| │ └─/─────────┴────────────────┴─┴─┘ └─/─────────┴──────────────┴─┴─┴─┘ │
| │ � 4� 62 63 � 4� 61 63 │
| │ │
| │ 31-Bit Addressing Mode 31-Bit Addressing Mode │
| │ ┌─/──┬───────────────────────┬─┬─┐ ┌─/──┬─────────────────────┬─┬─┬─┐ │
| │ R� │////│Second-Operand Address │A│T│ │////│ Second-Operand Adr. │/│A│T│ │
| │ └─/──┴───────────────────────┴─┴─┘ └─/──┴─────────────────────┴─┴─┴─┘ │
| │ � 33 62 63 � 33 61 63 │
| │ │
| │ 64-Bit Addressing Mode 64-Bit Addressing Mode │
| │ ┌─/──────────────────────────┬─┬─┐ ┌─/────────────────────────┬─┬─┬─┐ │
| │ R� │ Second-Operand Address │A│T│ │ Second-Operand Address │/│A│T│ │
| │ └─/──────────────────────────┴─┴─┘ └─/────────────────────────┴─┴─┴─┘ │
| │ � 62 63 � 61 63 │
| │ │
| └───┘

Figure 10-5. Register Contents for COMPARE AND SWAP AND PURGE

The execution of the instruction may affect the
state of the CPU and the contents of a register or
storage location, as well as the progress of an I/O
operation. Some diagnostic functions may cause
the test indicator to be turned on.

Resulting Condition Code: The code is unpre-
dictable.

 Program Exceptions:

 � Privileged operation
� Depending on the model, other exceptions

may be recognized.

Programming Notes:

1. Since the instruction is not intended for
problem-state-program or control-program
use, DIAGNOSE has no mnemonic.

2. DIAGNOSE, unlike other instructions, does
not follow the rule that programming errors are

distinguished from equipment errors.
Improper use of DIAGNOSE may result in
false machine-check indications or may cause
actual machine malfunctions to be ignored. It
may also alter other aspects of system opera-
tion, including instruction execution and
channel-program operation, to an extent that
the operation does not comply with that speci-
fied in this publication. As a result of the
improper use of DIAGNOSE, the system may
be left in such a condition that the power-on
reset or initial-microprogram-loading (IML)
function must be performed. Since the func-
tion performed by DIAGNOSE may differ from
model to model and between versions of a
model, the program should avoid issuing
DIAGNOSE unless the program recognizes
both the model number and version code
stored by STORE CPU ID.

10-20 z/Architecture Principles of Operation

EXTRACT AND SET EXTENDED
AUTHORITY

ESEA R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B99D' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The extended authorization index (EAX), bits
32-47 of control register 8, is saved in bit positions
32-47 of the first operand, and then the EAX in
control register 8 is replaced by the contents of bit
positions 48-63 of the first operand. Bits 0-31 of

| the first operand are ignored, and bits 0-31 and
| 48-63 of the operand remain unchanged. remain

unchanged.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Privileged operation

EXTRACT PRIMARY ASN

EPAR R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B226' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The 16-bit PASN, bits 48-63 of control register 4,
is placed in bit positions 48-63 of general register
R�. Bits 32-47 of the general register are set to
zeros, and bits 0-31 remain unchanged.

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog-
nized.

In the problem state, the extraction-authority
control, bit 36 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-6.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Privileged operation (extraction-authority
control is zero in the problem state)

 � Special operation

┌──┐
│ 1.-6. Exceptions with the same priority as │
│ the priority of program-interruption │
│ conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruc- │
│ tion halfword. │
│ │
│ 7.B Special-operation exception due to │
│ DAT being off. │
│ │
│ 8. Privileged-operation exception due to │
│ extraction-authority control, bit 36 │
│ of control register �, being zero in │
│ problem state. │
└──┘

Figure 10-6. Priority of Execution: EXTRACT
PRIMARY ASN

EXTRACT SECONDARY ASN

ESAR R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B227' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The 16-bit SASN, bits 48-63 of control register 3,
is placed in bit positions 48-63 of general register
R�. Bits 32-47 of the general register are set to
zeros, and bits 0-31 remain unchanged.

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog-
nized.

In the problem state, the extraction-authority
control, bit 36 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-7 on
page 10-22.

Condition Code: The code remains unchanged.

 Chapter 10. Control Instructions 10-21

 Program Exceptions:

� Privileged operation (extraction-authority
control is zero in the problem state)

 � Special operation

┌──┐
│ 1.-6. Exceptions with the same priority as │
│ the priority of program-interruption │
│ conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruc- │
│ tion halfword. │
│ │
│ 7.B Special-operation exception due to │
│ DAT being off. │
│ │
│ 8. Privileged-operation exception due to │
│ extraction-authority control, bit 36 │
│ of control register �, being zero in │
│ problem state. │
└──┘

Figure 10-7. Priority of Execution: EXTRACT SEC-
ONDARY ASN

EXTRACT STACKED REGISTERS

EREG R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B249' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

EREGG R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�E' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Contents of a set of general registers and a set of
access registers that were saved in the last state
entry in the linkage stack are restored to the regis-
ters. Each set of registers begins with register R�
and ends with register R�.

For EXTRACT STACKED REGISTERS (EREG),
the contents of bit positions 32-63 of the general
registers are restored, and the contents of bit posi-
tions 0-31 of the registers remain unchanged. For
EXTRACT STACKED REGISTERS (EREGG), the
contents of bit positions 0-63 of the general regis-
ters are restored. In either case, the contents of

bit positions 0-31 of the access registers are
restored.

For each of the general registers and the access
registers, the registers are loaded in ascending
order of their register numbers, starting with reg-
ister R� and continuing up to and including reg-
ister R�, with register 0 following register 15. The
bit positions of each register are loaded from the
position in the state entry where the contents of
the bit positions were saved when the state entry
was created. The contents of the state entry
remain unchanged.

The last state entry is located as described in
“Unstacking Process” on page 5-76. The state
entry remains in the linkage stack, and the
linkage-stack-entry address in control register 15
remains unchanged.

Key-controlled protection does not apply to refer-
ences to the linkage stack.

Special Conditions

The CPU must be in the primary-space mode,
access-register mode, or home-space mode; oth-
erwise, a special-operation exception is recog-
nized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the
unstacking process.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-8 on
page 10-23.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, except for protection, linkage-
stack entry)

 � Special operation
 � Stack empty
 � Stack specification
 � Stack type

10-22 z/Architecture Principles of Operation

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B Special-operation exception due to DAT being off or the CPU │
│ being in secondary-space mode. │
│ │
│ 8. Access exceptions (fetch) for entry descriptor of the current │
│ linkage-stack entry. │
│ │
│ 9. Stack-type exception due to current entry not being a state │
│ entry or header entry. │
│ │
│ Note: Exceptions 1�-14 can occur only if the current entry │
│ is a header entry. │
│ │
│1�. Access exceptions (fetch) for second word of the header entry.│
│ │
│11. Stack-empty exception due to backward stack-entry validity │
│ bit in the header entry being zero. │
│ │
│12. Access exceptions (fetch) for entry descriptor of preceding │
│ entry, which is the entry designated by the backward │
│ stack-entry address in the current (header) entry. │
│ │
│13. Stack-specification exception due to preceding entry being a │
│ header entry. │
│ │
│14. Stack-type exception due to preceding entry not being a state │
│ entry. │
│ │
│15. Access exceptions (fetch) for the selected contents of the │
│ state entry. │
└──┘

Figure 10-8. Priority of Execution: EXTRACT STACKED REGISTERS

EXTRACT STACKED STATE

ESTA R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B24A' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Sixty-four or 128 bits of status information in the
last state entry in the linkage stack are placed in
the pair of general registers designated by the R�
field. The condition code is set to indicate
whether the state entry is a branch state entry or
a program-call state entry.

The R� field designates the even-numbered reg-
ister of an even-odd pair of general registers.

Bits 56-63 of general register R� are an unsigned
binary integer that is used as a code to select the
state-entry byte positions, or byte and bit posi-

tions, from which information is to be extracted, as
follows:

For a code of 0, 2, or 3 in bit positions 56-63 of
general register R�, the contents of the leftmost
four bytes of the eight bytes of status information
are placed in bit positions 32-63 of general reg-
ister R�, and the contents of the rightmost four
bytes of the status information are placed in bit
positions 32-63 of general register R� + 1. The

Code (Bits 56-63 of
Gen. Reg. R�)

State-Entry Byte Posi-
tions, or Byte and Bit
Positions, Selected

0 128-135
1 136-139, 140.0, and

168-175.33-63 (see text)
2 144-151
3 152-159
4 136-143 and 168-175

 Chapter 10. Control Instructions 10-23

contents of bit positions 0-31 of general registers
R� and R� + 1 remain unchanged.

For a code of 1 in bit positions 56-63 of general
register R�, the contents of bytes 136-139 of the
state entry, which are bits 0-31 of the PSW in the
state entry, are placed in bit positions 32-63 of
general register R�; the contents of bit position 0
of byte 140 of the entry, which is bit 32 of that
PSW, are placed in bit position 32 of general reg-
ister R� + 1; and the contents of bit positions
33-63 of bytes 168-175 of the entry, which are bits
97-127 of the PSW, are placed in bit positions
33-63 of general register R� + 1. However, bit 44
of general register R�, which corresponds to bit 12
of the PSW in the state entry, is set to one, indi-
cating the ESA/390 mode. Also, if bits 0-32 of
bytes 168-175 of the state entry are not all zeros,
bit 63 of general register R� + 1 is set to one;
otherwise, bit 63 remains with the value loaded
from bit position 63 of bytes 168-175 of the state
entry. The contents of bit positions 0-31 of
general registers R� and R� + 1 remain
unchanged.

For a code of 4 in bit positions 56-63 of general
register R�, the contents of bytes 136-143 of the
state entry, which are bits 0-63 of the PSW in the
state entry, are placed in bit positions 0-63 of
general register R�, and the contents of bytes
168-175 of the state entry, which are bits 64-127
of that PSW, are placed in bit positions 0-63 of
general register R� + 1.

The format of byte positions 128-175 of the state
entry is as follows:

┌────────┬────────┬────────┬────────┐
│ PKM │ SASN │ EAX │ PASN │
└────────┴────────┴────────┴────────┘
128 13� 132 134 135

┌───────────────────────────────────┐
│ PSW Bits �-63 │
└───────────────────────────────────┘
136 143

In a Branch State Entry Made in
24-Bit or 31-Bit Mode
┌────────────────┬─┬────────────────┐
│ │ │ Bits 33-63 of │
│ │A│ Branch Address │
└────────────────┴─┴────────────────┘
144 148 151

In a Branch State Entry Made in
64-Bit Mode
┌─────────────────────────────────┬─┐
│ Bits �-62 of Branch Address │1│
└─────────────────────────────────┴─┘
144 151

In a Program-Call State Entry Made
when Resulting Mode is 24-Bit or 31-Bit
┌────────────────┬─┬────┬───────────┐
│Called-Space Id.│�│ │ PC Number │
└────────────────┴─┴────┴───────────┘
144 148 151

In a Program-Call State Entry Made
when Resulting Mode is 64-Bit
┌────────────────┬─┬────┬───────────┐
│Called-Space Id.│1│ │ PC Number │
└────────────────┴─┴────┴───────────┘
144 148 151

┌───────────────────────────────────┐
│ Modifiable Area │
└───────────────────────────────────┘
152 159

┌───────────────────────────────────┐
│ All Zeros │
└───────────────────────────────────┘
16� 167

┌───────────────────────────────────┐
│ PSW Bits 64-127 │
└───────────────────────────────────┘
168 175

The contents of the state entry remain unchanged.

The last state entry is located as described in
“Unstacking Process” on page 5-76. The state
entry remains in the linkage stack, and the
linkage-stack-entry address in control register 15
remains unchanged.

When the entry-type code in the entry descriptor
of the state entry is 0001100 binary, indicating a
branch state entry, the condition code is set to 0.
When the entry-type code is 0001101 binary, indi-
cating a program-call state entry, the condition
code is set to 1.

Key-controlled protection does not apply to refer-
ences to the linkage stack.

Bits 0-55 of general register R� are ignored.

10-24 z/Architecture Principles of Operation

Special Conditions

A specification exception is recognized when R� is
odd or the code in bit positions 56-63 of general
register R� is greater than 4.

The CPU must be in the primary-space mode,
access-register mode, or home-space mode; oth-
erwise, a special-operation exception is recog-
nized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the
unstacking process.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-9 on
page 10-26.

Resulting Condition Code:

0 Branch state entry
1 Program-call state entry
2 --
3 --

 Program Exceptions:

� Access (fetch, except for protection, linkage-
stack entry)

 � Special operation
 � Specification
 � Stack empty
 � Stack specification
 � Stack type

Programming Note: The results for a code of 1
in bit positions 56-63 of general register R� are
intended to provide compatibility with ESA/390. (It
may be that only values of bits in bit positions
0-31 of the PSW are required.) Bit 63 of general
register R� + 1 is set to one if the instruction
address in the PSW in the state entry is larger
than a 31-bit address.

 Chapter 10. Control Instructions 10-25

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B Special-operation exception due to DAT being off or the CPU │
│ being in secondary-space mode. │
│ │
│ 8.A Specification exception due to R� being odd or bits 56-63 of │
│ general register R� having a value greater than 4. │
│ │
│ 8.B.1 Access exceptions (fetch) for entry descriptor of the current │
│ linkage-stack entry. │
│ │
│ 8.B.2 Stack-type exception due to current entry not being a state │
│ entry or header entry. │
│ │
│ Note: Exceptions 8.B.3-8.B.7 can occur only if the current │
│ entry is a header entry. │
│ │
│ 8.B.3 Access exceptions (fetch) for second word of the header entry.│
│ │
│ 8.B.4 Stack-empty exception due to backward stack-entry validity │
│ bit in the header entry being zero. │
│ │
│ 8.B.5 Access exceptions (fetch) for entry descriptor of preceding │
│ entry, which is the entry designated by the backward │
│ stack-entry address in the current (header) entry. │
│ │
│ 8.B.6 Stack-specification exception due to preceding entry being a │
│ header entry. │
│ │
│ 8.B.7 Stack-type exception due to preceding entry not being a state │
│ entry. │
│ │
│ 8.B.8 Access exceptions (fetch) for the selected contents of the │
│ state entry. │
└──┘

Figure 10-9. Priority of Execution: EXTRACT STACKED STATE

INSERT ADDRESS SPACE
CONTROL

IAC R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B224' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The address-space-control bits, bits 16 and 17 of
the current PSW, are placed in reversed order in
bit positions 54 and 55 of general register R�; that
is, bit 16 is placed in bit position 55, and bit 17 is
placed in bit position 54. Bits 48-53 of the register
are set to zeros, and bits 0-47 and 56-63 of the
register remain unchanged. The address-
space-control bits are also used to set the condi-
tion code.

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog-
nized.

In the problem state, the extraction-authority
control, bit 36 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-10 on
page 10-27.

Resulting Condition Code:

10-26 z/Architecture Principles of Operation

0 PSW bits 16 and 17 zeros (indicating primary-
space mode)

1 PSW bit 16 one and bit 17 zero (indicating
secondary-space mode)

2 PSW bit 16 zero and bit 17 one (indicating
access-register mode)

3 PSW bits 16 and 17 ones (indicating home-
space mode)

 Program Exceptions:

� Privileged operation (extraction-authority
control is zero in the problem state)

 � Special operation

┌──┐
│ 1.-6. Exceptions with the same priority as │
│ the priority of program-interruption │
│ conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruc- │
│ tion halfword. │
│ │
│ 7.B Special-operation exception due to │
│ DAT being off. │
│ │
│ 8. Privileged-operation exception due to │
│ extraction-authority control, bit 36 │
│ of control register �, being zero in │
│ problem state. │
└──┘

Figure 10-10. Priority of Execution: INSERT
ADDRESS SPACE CONTROL

Programming Notes:

1. Bits 48-53 of general register R� are reserved
for expansion for use with possible future facil-
ities. The program should not depend on
these bits being set to zeros.

2. INSERT ADDRESS SPACE CONTROL and
SET ADDRESS SPACE CONTROL are
defined to operate on the seventh byte of a
general register so that the address-
space-control bits can be saved in the same
general register as the PSW key, which is
placed in the eight byte of general register 2
by INSERT PSW KEY.

INSERT PSW KEY

IPK [S]

┌────────────────┬────────────────┐
│ 'B2�B' │////////////////│
└────────────────┴────────────────┘
� 16 31

The four-bit PSW-key, bits 8-11 of the current
PSW, is inserted in bit positions 56-59 of general
register 2, and bits 60-63 of that register are set to
zeros. Bits 0-55 of general register 2 remain
unchanged.

Special Conditions

In the problem state, the extraction-authority
control, bit 36 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Privileged operation (extraction-authority
control is zero in the problem state)

INSERT STORAGE KEY
EXTENDED

ISKE R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B229' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The storage key for the block that is addressed by
the contents of general register R� is inserted in
general register R�.

In the 24-bit addressing mode, bits 40-51 of
general register R� designate a 4K-byte block in
real storage, and bits 0-39 and 52-63 of the reg-
ister are ignored. In the 31-bit addressing mode,
bits 33-51 of general register R� designate a
4K-byte block in real storage, and bits 0-32 and
52-63 of the register are ignored. In the 64-bit
addressing mode, bits 0-51 of general register R�
designate a 4K-byte block in real storage, and bits
52-63 of the register are ignored.

 Chapter 10. Control Instructions 10-27

The address designating the storage block, being
a real address, is not subject to dynamic address
translation. The reference to the storage key is
not subject to a protection exception.

The seven-bit storage key is inserted in bit posi-
tions 56-62 of general register R�, and bit 63 is
set to zero. The contents of bit positions 0-55 of
the register remain unchanged.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (address specified by general reg-
ister R�)

 � Privileged operation

INSERT VIRTUAL STORAGE KEY

IVSK R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B223' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The storage key for the location designated by the
virtual address in general register R� is inserted in
general register R�.

Selected bits of general register R� are used as a
virtual address. In the 24-bit addressing mode,
the address is specified by bits 40-63 of the reg-
ister, and bits 0-39 are ignored. In the 31-bit
addressing mode, the address is specified by bits
33-63, and bits 0-32 is ignored. In the 64-bit
addressing mode, the address is specified by bits
0-63 of the register.

The address is a virtual address and is subject to
the address-space-control bits, bits 16 and 17 of
the current PSW. The address is treated as a
primary virtual address in the primary-space
mode, as a secondary virtual address in the
secondary-space mode, as an AR-specified virtual
address in the access-register mode, or as a
home virtual address in the home-space mode.
The reference to the storage key is not subject to
a protection exception.

Bits 0-4 of the storage key, which are the access-
control bits and the fetch-protection bit, are placed

in bit positions 56-60 of general register R�, with
bits 61-63 set to zeros. The contents of bit posi-
tions 0-55 of the register remain unchanged. The
change and reference bits in the storage key are
not inspected. The change bit is not affected by
the operation. The reference bit, depending on
the model, may or may not be set to one as a
result of the operation.

The following diagram shows the storage key and
the register positions just described.

 Storage Key
 for the
 Location
 ┌────┬─┬─┬─┐
 │ACC │F│R│C│
 └────┴─┴─┴─┘
 └───┬──┘
 │
 │ Zeros
 � │
 ┌──────┐ �
 ┌─/──────────────────────┬────┬─┬───┐
R� │ │ACC │F│���│
 └─/──────────────────────┴────┴─┴───┘

� 56 6� 63

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog-
nized.

In the problem state, the extraction-authority
control, bit 36 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-11 on
page 10-29.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (except for protection, address speci-
fied by general register R�)

� Privileged operation (extraction-authority
control is zero in the problem state)

 � Special operation

10-28 z/Architecture Principles of Operation

┌──┐
│ 1.-6. Exceptions with the same priority as │
│ the priority of program-interruption │
│ conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruc- │
│ tion halfword. │
│ │
│ 7.B Special-operation exception due to DAT │
│ being off. │
│ │
│ 8. Privileged-operation exception due to │
│ extraction-authority control, bit 36 of│
│ control register �, being zero. │
│ │
│ 9. Access exceptions (except for protec- │
│ tion) for address specified by general │
│ register R�. │
└──┘

Figure 10-11. Priority of Execution: INSERT VIRTUAL
STORAGE KEY

Programming Notes:

1. Since all bytes in a 4K-byte block are associ-
ated with the same page and the same
storage key, bits 52-63 of general register R�
essentially are ignored.

2. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

| INVALIDATE DAT TABLE ENTRY

| IDTE R�,R�,R� [RRF]

| ┌────────────────┬────┬────┬────┬────┐
| │ 'B98E' │ R� │////│ R� │ R� │
| └────────────────┴────┴────┴────┴────┘
| � 16 2� 24 28 31

| When the clearing-by-ASCE-option bit, bit 52 of
| general register R�, is zero, an operation called
| the invalidation-and-clearing operation is per-
| formed, as follows. The designated region-table
| entry or segment-table entry in storage, or a range
| of entries beginning with the designated entry, is
| invalidated, and the translation-lookaside buffers
| (TLBs) in all CPUs in the configuration are cleared
| of (1) all combined region-and-segment-table
| entries (CRSTEs) and page-table entries (PTEs)

| formed through use of the invalidated entry or
| entries in storage and (2) all PTEs formed through
| use of a CRSTE formed through use of the invali-
| dated entry or entries in storage. The TLB entries
| cleared may optionally be limited to entries formed
| to translate addresses in a specified address
| space.

| When the clearing-by-ASCE-option bit is one, an
| operation called the clearing-by-ASCE operation is
| performed, as follows. The operation does not
| perform any invalidation of DAT-table entries in
| storage, but it does clear, from the TLBs in all
| CPUs in the configuration, all combined region-
| and-segment-table entries and page-table entries
| formed to translate addresses in a specified
| address space.

| The two operations are described separately
| below, before the section “Common Operation.”

| Invalidation-and-Clearing Operation

| When bit 52 of general register R�, the
| clearing-by-ASCE-option bit, is zero, the
| invalidation-and-clearing operation is specified.

| The contents of general register R� have the
| format of an address-space-control element with
| only the table origin, bits 0-51, and designation-
| type control (DT), bits 60 and 61, used. The table
| origin designates the DAT table in which one or
| more entries are to be invalidated, and DT speci-
| fies the type of that table.

| Bits 52-59, 62, and 63 of general register R� are
| ignored.

| Bits 0-43 of general register R� have the format of
| the region index and segment index of a virtual
| address. The part of bits 0-43 normally used by
| DAT to select an entry in the type of table desig-
| nated by general register R� is called the effective
| invalidation index.

| Bits 60 and 61 of general register R� specify a
| table type and an effective invalidation index as
| follows:

 Chapter 10. Control Instructions 10-29

| The part of bits 0-43 of general register R� to the
| right of the effective invalidation index is ignored.

| The table origin in general register R� and the
| effective invalidation index designate a DAT-table
| entry to be invalidated. Bits 53-63 of general reg-
| ister R� are an unsigned binary integer specifying
| the number of additional table entries to be invali-
| dated. Therefore, the number of entries to be
| invalidated is 1-2,048, corresponding to a value of
| bits 53-63 of 0-2,047.

| Bits 44-51 of general register R� must be zeros;
| otherwise, a specification exception is recognized.

| If R� is nonzero, the contents of general register
| R� have the format of an address-space-control

| Bits 60
| and 61
| of Reg.
| R�| Table Type

| Effective Invali-
| dation Index in Reg.
| R�

| element with only the table origin, bits 0-51, and
| designation-type control (DT), bits 60 and 61,
| used. These contents are used to select TLB
| entries to be cleared. Bits 52-59, 62, and 63 of
| general register R� are ignored. If R� is zero, the
| entire contents of general register 0 are ignored.

| The contents of the general registers just
| described are shown in Figure 10-12.

| The table origin in general register R� and effec-
| tive invalidation index in general register R� desig-
| nate a table entry in accordance with the rules in
| “Lookup in a Table Designated by an Address-
| Space-Control Element” on page 3-39, except that
| a carry from bit position 0 of the resulting address
| is always ignored, and the index is not checked
| against a table-length field. The table origin is
| treated as a 64-bit address, and the addition is
| performed by using the rules for 64-bit address
| arithmetic, regardless of the current addressing
| mode specified by bits 31 and 32 of the current
| PSW. The address formed from these two com-
| ponents is a real or absolute address. The invalid
| bit, bit 58, of this region-table or segment-table
| entry is set to one. During this procedure, the
| entry is not checked for a format error or for
| whether the origin, in the entry, of the next-lower-
| level table would cause an addressing exception.
| The table-type field in the entry is ignored. If the
| entry is a segment-table entry, the common-
| segment bit in the entry is ignored.

| 11| Region first table| Region first index
| (bits 0-10)

| 10| Region second
| table
| Region second index
| (bits 11-21)

| 01| Region third
| table
| Region third index
| (bits 22-32)

| 00| Segment table| Segment index (bits
| 33-43)

| ┌──┐
| │ │
| │ ┌───┬────────┬──┬──┐ │
| │ R� │ Region-Table or Segment-Table Origin for Invalidation │////////│DT│//│ │
| │ └───┴────────┴──┴──┘ │
| │ � 52 6� 63 │
| │ │
| │ Note: The effective invalidation index is specified by DT in register R�. │
| │ ┌───────────┬───────────┬───────────┬───────────┬────────┬─┬───────────┐ │
| │ R� │Reg.-First │Reg.-Second│Reg.-Third │ Segment │ │ │Additional │ │
| │ │ Index │ Index │ Index │ Index │��������│�│ Entries │ │
| │ └───────────┴───────────┴───────────┴───────────┴────────┴─┴───────────┘ │
| │ � 11 22 33 44 52 63 │
| │ │
| │ Note: Used only if R� is nonzero. │
| │ ┌───┬────────┬──┬──┐ │
| │ R� │ Region-Table or Segment-Table Origin for Clearing │////////│DT│//│ │
| │ └───┴────────┴──┴──┘ │
| │ � 52 6� 63 │
| │ │
| └──┘

| Figure 10-12. Register Contents for INVALIDATE DAT TABLE ENTRY Invalidation-and-Clearing Operation (Bit 52 of
| GR R� Is Zero)

10-30 z/Architecture Principles of Operation

| The entire table entry is fetched concurrently from
| storage. Subsequently, the byte containing the
| invalid bit is stored. The fetch access to the entry
| is subject to key-controlled protection, and the
| store access is subject to key-controlled protection
| and low-address protection.

| If bits 53-63 of general register R� are not all
| zeros, the setting of the invalid bit to one in a
| region-table or segment-table entry is repeated by
| adding one to the previously used value of the
| effective invalidation index, and this is done as
| many times as are specified by bits 53-63. A
| carry out of the leftmost bit position of the effective
| invalidation index is ignored, and wraparound in
| the table occurs in this case. The contents of
| general register R� remain unchanged.

| A serialization function is performed before the
| operation begins and again after the operation is
| completed. As is the case for all serialization
| operations, this serialization applies only to this
| CPU; other CPUs are not necessarily serialized.

| After it has set an invalid bit to one, this CPU
| clears selected entries from its TLB and signals all
| other CPUs in the configuration to clear selected
| entries from their TLBs. Each TLB is cleared of at
| least those combined region-and-segment-table
| entries (CRSTEs) for which all of the following
| conditions are met:

| � The effective invalidation index and all bits to
| the left of it in general register R� match the
| same part of the region-and-segment-index
| field in the CRSTE. Note that when multiple
| table entries are invalidated due to bits 53-63
| of general register R�, then the effective inval-
| idation index is incremented, a carry out of the
| leftmost bit position of the index is lost, and
| CRSTEs are cleared for each value of the
| index so obtained.

| � Either R� is zero or the table-origin and
| designation-type fields in general register R�
| match the table-origin and designation-type
| fields in the address-space-control element
| (ASCE) used to form the CRSTE. This ASCE
| is the one that attached the translation path
| from which the CRSTE was formed. See
| “Formation of TLB Entries” on page 3-43 for
| the meaning of the terminology used here.

| � If the entry invalidated in storage is a
| segment-table entry, the page-table-origin field

| in the invalidated entry matches the page-
| table-origin field in the CRSTE.

| Each TLB is also cleared of at least those page-
| table entries (PTEs) for which all of the following
| conditions are met:

| � The TLB PTE was formed through use of an
| entry invalidated in storage or through use of
| a CRSTE formed through use of an entry
| invalidated in storage.

| � Either R� is zero or the table-origin and
| designation-type fields in general register R�
| match the table-origin and designation-type
| fields in the address-space-control element
| (ASCE) used to form the TLB PTE. This
| ASCE may be one that attached a translation
| path containing a segment-table entry that
| attached the PTE in storage from which the
| TLB PTE was formed, or it may be one that
| made usable a CRSTE that attached the PTE
| in storage from which the TLB PTE was
| formed. See “Formation of TLB Entries” on
| page 3-43 for the meaning of the terminology
| used here.

| � If the entry invalidated in storage is a
| segment-table entry, the page-table-origin field
| in the invalidated entry matches the page-
| table-origin field in the TLB PTE.

| Storing in the region- or segment-table entry and
| the clearing of TLB entries may or may not occur
| if the invalid bit is already one in the region- or
| segment-table entry.

| When multiple entries are invalidated, clearing of
| TLB entries may be delayed until all entries have
| been invalidated.

| Clearing-by-ASCE Operation

| When bit 52 of general register R�, the
| clearing-by-ASCE-option bit, is one, the
| clearing-by-ASCE operation is specified.

| The contents of general register R� have the
| format of an address-space-control element with
| only the table origin, bits 0-51, and designation-
| type control (DT), bits 60 and 61, used. These
| contents are used to select TLB entries to be
| cleared. Bits 52-59, 62, and 63 of general register
| R� are ignored. R� may be zero or nonzero, that

 Chapter 10. Control Instructions 10-31

| is, any general register, including register 0, may
| be designated.

| Bits 44-51 of general register R� must be zeros;
| otherwise, a specification exception is recognized.

| The contents of general register R� and of bit
| positions 0-43 and 53-63 of general register R�
| are ignored.

| The contents of the general registers just
| described are shown in Figure 10-13.

| The TLBs of all CPUs in the configuration are
| cleared of at least those combined region-and-
| segment-table entries (CRSTEs) for which the
| table-origin and designation-type fields in general
| register R� match the table-origin and designation-
| type fields in the address-space-control element
| (ASCE) used to form the CRSTE. This ASCE is
| the one that attached the translation path from
| which the CRSTE was formed. See “Formation of
| TLB Entries” on page 3-43 for the meaning of the
| terminology used here.

| Each TLB is also cleared of at least those page-
| table entries (PTEs) for which the table-origin and
| designation-type fields in general register R�
| match the table-origin and designation-type fields
| in the address-space-control element (ASCE)
| used to form the TLB PTE. This ASCE may be
| one that attached a translation path containing a
| segment-table entry that attached the PTE in
| storage from which the TLB PTE was formed, or it

| may be one that made usable a CRSTE that
| attached the PTE in storage from which the TLB
| PTE was formed. See “Formation of TLB Entries”
| on page 3-43 for the meaning of the terminology
| used here.

| Common Operation

| When the clearing-by-ASCE-option bit, bit 52 of
| general register R�, is either zero or one, the exe-
| cution of INVALIDATE DAT TABLE ENTRY is not
| completed on the CPU which executes it until
| (1) all entries corresponding to the specified
| parameters have been cleared from the TLB of
| this CPU and (2) all other CPUs in the configura-
| tion have completed any storage accesses,
| including the updating of the change and refer-
| ence bits, by using TLB entries corresponding to
| the specified parameters.

| The operations do not necessarily have any effect
| on TLB real-space entries.

| Special Conditions

| Bits 44-51 of general register R� must be zeros;
| otherwise, a specification exception is recognized.

| The operation is suppressed on all addressing and
| protection exceptions (invalidation-and-clearing
| operation only).

| Resulting Condition Code: The code is unpre-
| dictable.

| ┌──┐
| │ │
| │ ┌──┐ │
| │ R� │//│ │
| │ └──┘ │
| │ � 63 │
| │ │
| │ ┌───┬────────┬─┬───────────┐ │
| │ R� │///│��������│1│///////////│ │
| │ └───┴────────┴─┴───────────┘ │
| │ � 44 52 63 │
| │ │
| │ Note: Used if R� is zero or nonzero. │
| │ ┌───┬────────┬──┬──┐ │
| │ R� │ Region-Table or Segment-Table Origin for Clearing │////////│DT│//│ │
| │ └───┴────────┴──┴──┘ │
| │ � 52 6� 63 │
| │ │
| └──┘

| Figure 10-13. Register Contents for INVALIDATE DAT TABLE ENTRY Clearing-by-ASCE Operation (Bit 52 of GR R�
| Is One)

10-32 z/Architecture Principles of Operation

| Program Exceptions:

| � Addressing (invalidated region- or segment-
| table entry, invalidation-and-clearing operation
| only).
| � Privileged operation
| � Operation (if the DAT-enhancement facility is
| not installed)
| � Protection (fetch and store, region- or
| segment-table entry, key-controlled protection
| and low-address protection; invalidation-and-
| clearing operation only).
| � Specification

| Programming Notes:

| 1. The selective clearing of TLB entries may be
| implemented in different ways, depending on
| the model, and, in general, more entries may
| be cleared than the minimum number
| required. When the invalidation-and-clearing
| operation is performed, some models may
| clear all TLB entries when the effective invali-
| dation index is not a segment index or may
| clear an entry regardless of the page-table
| origin in the entry. When that operation or the
| clearing-by-ASCE operation is performed,
| some models may clear a TLB entry regard-
| less of the designation-type field in general
| register R�. When either operation is per-
| formed, other models may clear precisely the
| minimum number of entries required. There-
| fore, in order for a program to operate on all
| models, the program should not take advan-
| tage of any properties obtained by a less
| selective clearing on a particular model.

| 2. When using the clearing-by-ASCE operation
| to clear TLB entries associated with common
| segments, note that these entries may have
| been formed through use of address-
| space-control elements containing many dif-
| ferent table origins.

| The following notes apply when the invalidation-
| and-clearing operation is specified.

| 3. The clearing of TLB entries may make use of
| the page-table origin in a segment-table entry.
| Therefore, if the segment-table entry, when in
| the attached state, ever contained a page-
| table origin that is different from the current
| value, copies of entries containing the pre-
| vious values may remain in the TLB.

| 4. INVALIDATE DAT TABLE ENTRY cannot be
| safely used to update a shared location in

| main storage if the possibility exists that
| another CPU or a channel program may also
| be updating the location.

| 5. The address of the DAT-table entry for INVAL-
| IDATE DAT TABLE ENTRY is a 64-bit
| address, and the address arithmetic is per-
| formed by following the normal rules for 64-bit
| address arithmetic, with wraparound at
| 2�� - 1. Also, offset and length fields are not
| used. Contrast this with implicit translation
| and the translations for LOAD REAL
| ADDRESS and STORE REAL ADDRESS, all
| of which may result either in wraparound or in
| an addressing exception when a carry occurs
| out of bit position 0 and which indicate an
| exception condition when the designated entry
| does not lie within its table. Accordingly, the
| DAT tables should not be specified to wrap
| from maximum storage locations to location 0,
| and the first designated entry and all addi-
| tional entries specified by bits 53-63 of
| general register 3 should lie within the desig-
| nated table.

INVALIDATE PAGE TABLE
ENTRY

IPTE R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B221' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The designated page-table entry is invalidated,
and the translation-lookaside buffers (TLBs) in all
CPUs in the configuration are cleared of the asso-
ciated entries.

The contents of general register R� have the
format of a segment-table entry, with only the
page-table origin used. The contents of general
register R� have the format of a virtual address,
with only the page index used. The contents of
fields that are not part of the page-table origin or
page index are ignored.

The contents of the general registers just
described are as follows:

 ┌─/───────────────────────┬───────────┐
R� │ Page-Table Origin │///////////│
 └─/───────────────────────┴───────────┘
 � 53 63

 Chapter 10. Control Instructions 10-33

 ┌─/─────────────┬────────┬────────────┐
R� │///////////////│ PX │////////////│
 └─/─────────────┴────────┴────────────┘
 � 44 52 63

The page-table origin and the page index desig-
nate a page-table entry, following the dynamic-
address-translation rules for page-table lookup.
The page-table origin is treated as a 64-bit
address, and the addition is performed by using
the rules for 64-bit address arithmetic, regardless
of the current addressing mode, which is specified
by bits 31 and 32 of the current PSW. A carry out
of bit position 0 as a result of the addition of the
page index and page-table origin cannot occur.
The address formed from these two components
is a real or absolute address. The page-invalid bit
of this page-table entry is set to one. During this
procedure, the page-table entry is not inspected

| for whether the page-invalid bit is already one or
for format errors. Additionally, the page-frame real
address contained in the entry is not checked for
an addressing exception.

The entire page-table entry appears to be fetched
concurrently from storage as observed by other
CPUs. Subsequently, the byte containing the
page-invalid bit is stored. The fetch access to the
page-table entry is subject to key-controlled pro-
tection, and the store access is subject to key-
controlled protection and low-address protection.

A serialization function is performed before the
operation begins and again after the operation is
completed. As is the case for all serialization
operations, this serialization applies only to this
CPU; other CPUs are not necessarily serialized.

| If no exceptions are recognized, this CPU clears
selected entries from its TLB and signals all CPUs
in the configuration to clear selected entries from
their TLBs. Each TLB is cleared of at least those
entries that have been formed using all of the fol-
lowing:

� The page-table origin specified by general
register R�

� The page index specified by general register
R�

� The page-frame real address contained in the
designated page-table entry

The execution of INVALIDATE PAGE TABLE
ENTRY is not completed on the CPU which exe-

cutes it until (1) all entries corresponding to the
specified parameters have been cleared from the
TLB of this CPU and (2) all other CPUs in the
configuration have completed any storage
accesses, including the updating of the change
and reference bits, by using TLB entries corre-
sponding to the specified parameters.

Special Conditions

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (page-table entry)
 � Privileged operation
� Protection (fetch and store, page-table entry,

key-controlled protection, and low-address
protection)

Programming Notes:

1. The selective clearing of entries may be
implemented in different ways, depending on
the model, and, in general, more entries may
be cleared than the minimum number
required. Some models may clear all entries
which contain the page-frame real address
obtained from the page-table entry in storage.
Others may clear all entries which contain the
designated page index, and some implemen-
tations may clear precisely the minimum
number of entries required. Therefore, in
order for a program to operate on all models,
the program should not take advantage of any
properties obtained by a less selective
clearing on a particular model.

2. The clearing of TLB entries may make use of
the page-frame real address in the page-table
entry. Therefore, if the page-table entry, when
in the attached state, ever contained a page-
frame real address that is different from the
current value, copies of entries containing the
previous values may remain in the TLB.

3. INVALIDATE PAGE TABLE ENTRY cannot be
safely used to update a shared location in
main storage if the possibility exists that
another CPU or a channel program may also
be updating the location.

10-34 z/Architecture Principles of Operation

LOAD ADDRESS SPACE
PARAMETERS

LASP D�(B�),D�(B�) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐
│ 'E5��' │ B� │ D� │ B� │ D� │
└────────────────┴────┴─/──┴────┴─/──┘
� 16 2� 32 36 47

The doubleword at the first-operand location con-
tains values to be loaded into control registers 3
and 4, including a secondary ASN (SASN) and a
primary ASN (PASN). Execution of the instruction
consists in performing four major steps: PASN
translation, SASN translation, SASN authorization,
and control-register loading. Each of these steps
may or may not be performed, depending on the
outcome of certain tests and on the setting of bits

| 61-63 of the second-operand address. The first
| three of these steps, when performed and suc-

cessful, obtain additional values, which are loaded
| into control registers 1, 5, and 7. When the first
| three steps are not successful when performed,

no control registers are changed, and the reason
is indicated in the condition code.

The doubleword first operand contains a PSW-key
mask (PKM), a secondary ASN (SASN), an
authorization index (AX), and a primary ASN

| (PASN). The primary ASN may be translated by
means of the ASN-translation tables to obtain a
primary-ASTE (PASTE) origin (PASTEO) and,
from the PASTE, a primary ASCE (PASCE). An
AX is optionally obtained from the PASTE. The

| secondary ASN may be translated by means of
the ASN-translation tables to obtain a secondary
ASCE (SASCE), and, optionally, an authority

| check may be made to ensure that the new AX is
authorized to establish the new SASN.

The doubleword at the first-operand location has
the following format:

┌─────────┬─────────┬────────┬─────────┐
│ PKM-d │ SASN-d │ AX-d │ PASN-d │
└─────────┴─────────┴────────┴─────────┘
� 16 32 48 63

The “d” stands for designated doubleword and is
used to distinguish these fields from other fields
with similar names which are referred to in the
definition. The current contents of the corre-
sponding fields in the control registers are referred
to as PKM-old, SASN-old, etc. The updated con-

tents of the control registers are referred to as
PKM-new, SASN-new, etc.

The second-operand address is not used to
address data; instead, the rightmost three bits are
used to control portions of the operation. The
remainder of the second-operand address is
ignored. Bits 61-63 of the second-operand
address are used as follows:

┌───┬───┐
│ │ Function Specified in │
│ │ Second-Operand Address │
│ ├────────────────────┬────────────────────┤
│Bit│When Bit Is Zero │When Bit Is One │
├───┼────────────────────┼────────────────────┤
│61 │ASN translation per-│ASN translation per-│
│ │formed only when new│formed.� │
│ │ASN and old ASN are │ │
│ │different. │ │
├───┼────────────────────┼────────────────────┤
│62 │AX associated with │AX in first operand │

| │ │new PASN used. │used. │
├───┼────────────────────┼────────────────────┤
│63 │SASN authorization │SASN authorization │
│ │performed.� │not performed. │
├───┴────────────────────┴────────────────────┤
│ � SASN translation and SASN authorization │
│ are performed only when SASN-d is not │
│ equal to PASN-d. When SASN-d is equal to │
│ PASN-d, the SASCE is set equal to the │
│ PASCE, and no authorization is performed. │
└───┘

The operation of LOAD ADDRESS SPACE
PARAMETERS is depicted in Figure 10-17 on
page 10-43.

| PASN Translation and Related Processing

In the PASN-translation process, the PASN-d is
translated by means of the ASN first table and the

| ASN second table. The PASTEO resulting from
| PASN translation replaces the PASTEO in control
| register 5. The ASCE in the located ASTE
| replaces the PASCE in control register 1. When
| bit 62 of the second-operand address is zero, the
| AX in the ASTE replaces the AX in control register
| 4. When bit 62 is one, AX-d replaces the AX in
| the control register.

When bit 61 of the second-operand address is
one, PASN translation is always performed.
When bit 61 is zero, PASN translation is per-
formed only if PASN-d is not equal to PASN-old.
When bit 61 is zero and PASN-d is equal to
PASN-old, the PASCE-old and PASTEO-old, are
left unchanged in the control registers and
become the PASCE-new and PASTEO-new,

 Chapter 10. Control Instructions 10-35

respectively. In this case, if bit 62 is zero, then
the AX-old is left unchanged in the control register

| and becomes the AX-new, or, if bit 62 is one,
| AX-new is set equal to AX-d.

The PASN translation follows the normal rules for
ASN translation, except that the invalid bits, bit 0
in the ASN-first-table entry and bit 0 in the ASTE,
when ones, do not result in an ASN-translation

| exception. When either of the invalid bits is one,
| condition code 1 is set. When a reason for setting
| condition code 1 does not exist and either the

current primary space-switch-event-control bit in
control register 1 is one or the space-switch-

| event-control bit in the ASTE is one, a space-
| switch event does not occur; instead, condition

code 3 is set. When condition code 1 or 3 is set,
the control registers remain unchanged.

The contents of the AX and ASCE fields in the
ASTE which is accessed as a result of the PASN
translation are referred to as AX-p and ASCE-p,
respectively. The origin of the ASTE is referred to
as PASTEO-p.

The description in this paragraph applies to use of
the subspace-group facility. After ASCE-p has
been obtained, if (1) the subspace-group-control
bit, bit 54 in ASCE-p, is one, (2) the dispatchable
unit is subspace active, and (3) PASTEO-p desig-
nates the ASTE for the base space of the
dispatchable unit, then a copy of ASCE-p, called

| ASCE-rp, is made, and bits 0-55 and 58-63 of
ASCE-rp are replaced by the same bits of the
ASCE in the ASTE for the subspace in which the
dispatchable unit last had control. Further details
are in “Subspace-Replacement Operations” on
page 5-60. If bit 0 in the subspace ASTE is one,
or if the ASTE sequence number (ASTESN) in the
subspace ASTE does not equal the subspace
ASTESN in the dispatchable-unit control table, an
exception is not recognized; instead, condition
code 1 is set, and the control registers remain
unchanged.

| SASN Translation and Related Processing

In the SASN-translation process, the SASN-d is
translated by means of the ASN first table and the
ASN second table. The ASCE field obtained from
the ASTE subsequently replaces the secondary

| ASCE (SASCE) in control register 7.

| SASN translation is performed only when, but not
| necessarily when, SASN-d is not equal to

PASN-d. When SASN-d is equal to PASN-d,
| SASCE-new is set equal to PASCE-new. When
| SASN-d is not equal to PASN-d and is equal to

SASN-old, bit 61 (force ASN translation) is zero,
and bit 63 (skip SASN authorization) is one, SASN
translation is not performed, and SASCE-old
becomes SASCE-new.

| SASN translation is performed in each of the fol-
| lowing cases:

| � SASN-d is not equal to PASN-d or SASN-old.

| � SASN-d is not equal to PASN-d but is equal
| to SASN-old, and either bit 61 (force ASN
| translation) of the second-operand address is
| one or bit 63 (skip secondary authority test) of
| that address is zero. (The translation must be
| performed when bit 63 is zero in order to
| obtain the ATO and ATL from the SASTE.)

The SASN translation follows the normal rules for
ASN translation, except that the invalid bits, bit 0
in the ASN-first-table entry and bit 0 in the ASTE,
when ones, do not result in an ASN-translation
exception. When either of the invalid bits is one,
condition code 2 is set, and the control registers
remain unchanged.

The contents of the ASCE, ATO, and ATL fields in
the ASTE which is accessed as a result of the
SASN translation are referred to as ASCE-s,
ATO-s, and ATL-s, respectively. The origin of the
ASTE is referred to as SASTEO-s.

The description in this paragraph applies to use of
the subspace-group facility. After ASCE-s has
been obtained, if (1) the subspace-group-control
bit, bit 54 in ASCE-s, is one, (2) the dispatchable
unit is subspace active, and (3) SASTEO-s desig-
nates the ASTE for the base space of the
dispatchable unit, then a copy of ASCE-s, called

| ASCE-rs, is made, and bits 0-55 and 58-63 of
ASCE-rs are replaced by the same bits of the
ASCE in the ASTE for the subspace in which the
dispatchable unit last had control. Further details
are in “Subspace-Replacement Operations” on
page 5-60. If bit 0 in the subspace ASTE is one,
or if the ASTE sequence number (ASTESN) in the
subspace ASTE does not equal the subspace
ASTESN in the dispatchable-unit control table, an
exception is not recognized; instead, condition

10-36 z/Architecture Principles of Operation

code 2 is set, and the control registers remain
unchanged.

SASN Authorization

SASN authorization is performed when bit 63 of
the second-operand address is zero and SASN-d

| is not equal to PASN-d; it is performed in this
| case regardless of whether SASN-d is equal to
| SASN-old. When SASN-d is equal to PASN-d or

when bit 63 of the second-operand address is
one, SASN authorization is not performed.

SASN authorization is performed by using ATO-s,
ATL-s, and the intended value for AX-new. When
bit 62 of the second-operand address is zero and
PASN translation was performed, the intended
value for AX-new is AX-p. When bit 62 of that
address is zero and PASN translation was not
performed, the AX is not changed, and AX-new is
the same as AX-old. When bit 62 of that address
is one, the intended value for AX-new is AX-d.
SASN authorization follows the rules for sec-
ondary authorization as described in
“ASN-Authorization Process” on page 3-24. If the
SASN is not authorized (that is, the authority-table
length is exceeded, or the selected bit is zero),
condition code 2 is set, and none of the control
registers is updated.

Control-Register Loading

| When the PASN-translation and SASN-translation
| functions and related functions, and the

SASN-authorization functions and subspace-
replacement operations, if called for in the instruc-
tion execution, are performed without encountering
any exceptions or exception conditions, the exe-
cution is completed by replacing the contents of
control registers 1, 3, 4, 5, and 7 with the new
values, and condition code 0 is set. The control
registers are loaded as follows.

The PSW-key-mask, bits 32-47, and SASN, bits
48-63, in control register 3 are replaced by the
contents of the PKM-d and SASN-d fields of the
first operand.

The PASN, bits 48-63 of control register 4, is
replaced by the PASN-d of the first operand.

The authorization index, bits 32-47 of control reg-
ister 4, is replaced as follows:

� When bit 62 of the second-operand address is
one, by AX-d.

� When bit 62 of the second-operand address is
zero and PASN translation is performed, by
AX-p.

� When bit 62 of the second-operand address is
zero and PASN translation is not performed,
the authorization index remains unchanged.

The primary address-space-control element
(PASCE) in control register 1 and the
primary-ASN-second-table-entry origin (PASTEO)
in control register 5 are replaced as follows:

� When PASN translation is performed, the
PASCE in control register 1 is replaced by the
ASCE-p obtained as a result of PASN trans-
lation, except that it is replaced by ASCE-rp if
a subspace-replacement operation was per-
formed on ASCE-p. Also, the PASTEO in
control register 5 is replaced by PASTEO-p.

The PASTEO-p is placed in bit positions
33-57 of control register 5, and zeros are
placed in bit positions 32 and 58-63. Bits
0-31 of the register remain unchanged.

� When PASN translation is not performed, the
contents of control registers 1 and 5 remain
unchanged.

The secondary address-space-control element
(SASCE) in control register 7 is replaced as
follows:

� When SASN-d equals PASN-d, by the new
contents of control register 1, the PASCE.
The new contents may be PASCE-old,
ASCE-p, or ASCE-rp.

� When SASN translation is performed, by
ASCE-s, or by ASCE-rs if a subspace-
replacement operation was performed on
ASCE-s.

When SASN-d does not equal PASN-d and SASN
translation is not performed, the SASCE remains
unchanged.

Other Condition-Code Settings

When PASN translation is called for and cannot
be completed because bit 0 is one in either the
ASN-first-table entry or the ASTE, or if it can be
completed but a subspace-replacement-exception
condition exists due to bit 0 or the ASTE
sequence number in the subspace ASTE during a

 Chapter 10. Control Instructions 10-37

subspace-replacement operation on the ASCE-p,
condition code 1 is set, and the control registers
are not changed.

When PASN translation is called for and com-
pleted and any required subspace-replacement
operation on the ASCE-p is also completed, and
then either (1) the current primary space-switch-
event-control bit, bit 57 of control register 1, is one
or (2) the space-switch-event-control bit in the
ASTE designated by PASTEO-p is one, condition
code 3 is set, and the control registers are not
changed.

When SASN translation is called for and the trans-
lation cannot be completed because bit 0 is one in

| either the ASN-first-table entry or the ASTE, or if it
| can be completed but (1) SASN authorization is

called for and the SASN is not authorized, or (2) a
subspace-replacement-exception condition exists
due to bit 0 or the ASTE sequence number in the
subspace ASTE during a subspace-replacement
operation on the ASCE-s, condition code 2 is set,
and the control registers are not changed.

Special Conditions

The instruction can be executed only when the
ASN-translation control, bit 44 of control register
14, is one. If the ASN-translation-control bit is
zero, a special-operation exception is recognized.

The first operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized.

The operation is suppressed on all addressing and
protection exceptions.

Figure 10-15 on page 10-40 and Figure 10-14 on
page 10-39 summarize the functions of the
instruction and the priority of recognition of
exceptions and condition codes.

Resulting Condition Code:

0 Translation and authorization complete;
parameters loaded

1 Primary ASN or subspace not available;
parameters not loaded

2 Secondary ASN not available or not author-
ized, or secondary subspace not available;
parameters not loaded

3 Space-switch event specified; parameters not
loaded

 Program Exceptions:

� Access (fetch, operand 1)
� Addressing (ASN-first-table entry,

ASN-second-table entry, authority-table entry,
dispatchable-unit control table)

 � Privileged operation
 � Special operation
 � Specification

10-38 z/Architecture Principles of Operation

┌───┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second and third instruction halfwords. │
│ │
│ 7.B.1 Privileged-operation exception. │
│ │
│ 7.B.2 Special-operation exception due to the ASN-translation control, │
│ bit 34 of control register 14, being zero. │
│ │
│ 8. Specification exception. │
│ │
│ 9. Access exceptions for the first operand. │
│ │

| │ 1�. PASN translation and related processing (when performed). │
│ │
│ 1�.1 Addressing exception for access to ASN-first-table entry. │
│ │
│ 1�.2 Condition code 1 due to I bit (bit �) in ASN-first-table entry │
│ being one. │
│ │
│ 1�.3 Addressing exception for access to ASN-second-table entry. │
│ │
│ 1�.4 Condition code 1 due to I bit (bit �) in ASN-second-table entry │
│ being one. │
│ │
│ 1�.5 Addressing exception for access to dispatchable-unit control │
│ table. │
│ │
│ 1�.6 Addressing exception for access to subspace ASN-second-table │
│ entry. │
│ │
│ 1�.7 Condition code 1 due to I bit (bit �) in subspace ASN-second-table│
│ entry being one. │
│ │
│ 1�.8 Condition code 1 due to subspace ASN-second-table-entry sequence │
│ number (SSASTESN) in dispatchable-unit control table not being │
│ equal to ASTESN in subspace ASN-second-table entry. │
│ │
│ 1�.9 Condition code 3 due to either the old or new space-switch-event- │
│ control bit being one. │
│ │

| │ 11. SASN translation and related processing (when performed). │
│ │
│ 11.1 Addressing exception for access to ASN-first-table entry. │
│ │
│ 11.2 Condition code 2 due to I bit (bit �) in ASN-first-table entry │
│ being one. │
│ │
│ 11.3 Addressing exception for access to ASN-second-table entry. │
│ │
│ 11.4 Condition code 2 due to I bit (bit �) in ASN-second-table entry │
│ being one. │
└───┘

Figure 10-14 (Part 1 of 2). Priority of Execution: LOAD ADDRESS SPACE PARAMETERS

 Chapter 10. Control Instructions 10-39

┌───┐
│ 12.A Execution of secondary authorization (when performed). │
│ │
│ 12.A.1 Condition code 2 due to authority-table entry being outside table.│
│ │
│ 12.A.2 Addressing exception for access to authority-table entry. │
│ │
│ 12.A.3 Condition code 2 due to S bit in authority-table entry being zero.│
│ │
│ 12.B.1 Addressing exception for access to dispatchable-unit control │
│ table. │
│ │
│ 12.B.2 Addressing exception for access to subspace ASN-second-table │
│ entry. │
│ │
│ 12.B.3 Condition code 2 due to I bit (bit �) in subspace ASN-second-table│
│ entry being one. │
│ │
│ 12.B.4 Condition code 2 due to subspace ASN-second-table-entry sequence │
│ number (SSASTESN) in dispatchable-unit control table not being │
│ equal to ASTESN in subspace ASN-second-table entry. │
└───┘

Figure 10-14 (Part 2 of 2). Priority of Execution: LOAD ADDRESS SPACE PARAMETERS

┌────────┬───────────┬───────────┬───┐
│ │ Second- │ │ │
│ │ Operand- │ │ │
│ │ Address │ │ │
│PASN-d │ Bits� │ PASN │ Result Field │
│Equals ├─────┬─────┤Translation├─────────┬──────┬──────────┬───────┬────────┬────────┤
│PASN-old│ 61 │ 62 │ Performed │PASCE-new│AX-new│PASTEO-new│PKM-new│SASN-new│PASN-new│
├────────┼─────┼─────┼───────────┼─────────┼──────┼──────────┼───────┼────────┼────────┤
│ Yes │ � │ � │ No │PASCE-old│AX-old│PASTEO-old│PKM-d │SASN-d │PASN-d │
│ Yes │ � │ 1 │ No │PASCE-old│AX-d │PASTEO-old│PKM-d │SASN-d │PASN-d │
│ Yes │ 1 │ � │ Yes │ASCE-p� │AX-p │PASTEO-p │PKM-d │SASN-d │PASN-d │
│ Yes │ 1 │ 1 │ Yes │ASCE-p� │AX-d │PASTEO-p │PKM-d │SASN-d │PASN-d │
│ No │ - │ � │ Yes │ASCE-p� │AX-p │PASTEO-p │PKM-d │SASN-d │PASN-d │
│ No │ - │ 1 │ Yes │ASCE-p� │AX-d │PASTEO-p │PKM-d │SASN-d │PASN-d │
└────────┴─────┴─────┴───────────┴─────────┴──────┴──────────┴───────┴────────┴────────┘

Figure 10-15 (Part 1 of 2). Summary of Actions: LOAD ADDRESS SPACE PARAMETERS

10-40 z/Architecture Principles of Operation

┌───────┬────────┬───────────────┬───────────┬─────────────┬────────────┐
│ │ │Second-Operand-│ │ │ │
│SASN-d │SASN-d │ Address Bits� │ SASN │ SASN │ │
│Equals │Equals ├───────┬───────┤Translation│Authorization│Result Field│
│PASN-d │SASN-old│ 61 │ 63 │ Performed │ Performed� │ SASCE-new │
├───────┼────────┼───────┼───────┼───────────┼─────────────┼────────────┤
│ Yes │ - │ - │ - │ No │ No │ PASCE-new │
│ No │ Yes │ � │ 1 │ No │ No │ SASCE-old │
│ No │ Yes │ 1 │ 1 │ Yes │ No │ ASCE-s� │
│ No │ Yes │ - │ � │ Yes │ Yes │ ASCE-s� │
│ No │ No │ - │ 1 │ Yes │ No │ ASCE-s� │
│ No │ No │ - │ � │ Yes │ Yes │ ASCE-s� │
├───────┴────────┴───────┴───────┴───────────┴─────────────┴────────────┤
│Explanation: │
│ │
│ - Action in this case is the same regardless of the outcome of this │
│ comparison or of the setting of this bit. │
│ │
│ � Second-operand-address bits: │
│ 61 Force ASN translation. │
│ 62 Use AX from first operand. │
│ 63 Skip secondary authority test. │
│ │
│ � PASCE-new is ASCE-rp (a copy of ASCE-p except with bits �-55 and │
│ 58-63 replaced from the ASCE in the subspace ASTE), if subspace │
│ replacement is performed. │
│ │
│ � SASN authorization is performed using ATO-s, ATL-s, and AX-new. │
│ │
│ � SASCE-new is ASCE-rs (a copy of ASCE-s except with bits �-55 and │
│ 58-63 replaced from the ASCE in the subspace ASTE), if subspace │
│ replacement is performed. │
└───┘

Figure 10-15 (Part 2 of 2). Summary of Actions: LOAD ADDRESS SPACE PARAMETERS

Programming Notes:

1. Bits 61 and 63 in the second-operand address
are intended primarily to provide improved
performance for those cases where the asso-
ciated action is unnecessary.

When bit 61 is set to zero, the action of the
instruction is based on the assumption that
the current values for PASCE-old,
PASTEO-old, and AX-old are consistent with
PASN-old and that SASCE-old is consistent
with SASN-old. When this is not the case, bit
61 should be set to one.

Bit 63, when one, eliminates the
SASN-authorization test. The program may
be able to determine in certain cases that the
SASN is authorized, either because of prior

use or because the AX being loaded is
authorized to access all address spaces.

2. The SASN-translation and SASN-authorization
steps are not performed when SASN-d is
equal to PASN-d. This is consistent with the
action in SET SECONDARY ASN to current
primary (SSAR-cp), which does not perform
the translation or ASN authorization.

3. The storage-operand references for LOAD
ADDRESS SPACE PARAMETERS may be
multiple-access references. (See “Storage-
Operand Consistency” on page 5-87.)

4. See Figure 10-16 on page 10-42 for a listing
of abbreviations used in this instruction
description.

 Chapter 10. Control Instructions 10-41

┌────────────────┬─────────────────────────────┐
│ │ Abbreviation for │
│ Control- ├──────────────┬──────────────┤
│ Register │ Previous │ Subsequent │
│ Number.Bit │ Contents │ Contents │
├────────────────┼──────────────┼──────────────┤
│ 1.�-63 │ PASCE-old │ PASCE-new │
│ 3.32-47 │ PKM-old │ PKM-new │
│ 3.48-63 │ SASN-old │ SASN-new │
│ 4.32-47 │ AX-old │ AX-new │
│ 4.48-63 │ PASN-old │ PASN-new │
│ 5.33-57 │ PASTEO-old │ PASTEO-new │
│ 7.�-63 │ SASCE-old │ SASCE-new │
└────────────────┴──────────────┴──────────────┘

┌───────────────────────┬──────────────────────┐
│ First-Operand │ │
│ Bit Positions │ Abbreviation │
├───────────────────────┼──────────────────────┤
│ �-15 │ PKM-d │
│ 16-31 │ SASN-d │
│ 32-47 │ AX-d │
│ 48-63 │ PASN-d │
└───────────────────────┴──────────────────────┘

┌──────────────────┬───────────────────────────┐
│ │ Abbreviation Used for │
│ │ the Field When Accessed │
│ │ as Part of │
│ Field in ASN- ├─────────────┬─────────────┤
│ Second-Table │ PASN │ SASN │
│ Entry │ Translation │ Translation │
├──────────────────┼─────────────┼─────────────┤
│ 1-29 │ - │ ATO-s │
│ 32-47 │ AX-p │ - │
│ 48-59 │ - │ ATL-s │
│ 64-127 │ ASCE-p� │ ASCE-s� │
├──────────────────┴─────────────┴─────────────┤
│Explanation: │
│ │
│ - The field is not used in this case. │
│ │
│ � ASCE-rp is formed from ASCE-p, and ASCE-rs│
│ is formed from ASCE-s, by a subspace- │
│ replacement operation. │
└──┘

Figure 10-16. Summary of Abbreviations for LOAD
ADDRESS SPACE PARAMETERS

10-42 z/Architecture Principles of Operation

┌─────────────────────┐ ┌────────────────┐
│Fetch op-1 doubleword│ ┌──────────�│PASN translation│
└──────────┬──────────┘ │ └────────┬───────┘
 │ │ │
 │ │ �
 │ │ ┌───────────────┐ No ┌──────────────┐

│ │ │ASN available ?├───────�│1 ─� Cond Code│
 � │ └───────┬───────┘ └──────────────┘
┌─────────────────────┐ │ │ Yes
│ PASN-d = PASN-old │ │ �
│ AND │ No │ ┌───────────────────┐
│Op-2-addr bit 61 = � ├─────────────────┘ │Subspace available │ No ┌──────────────┐
│ ? │ │if required ? ├─────�│1 ─� Cond Code│
└──────────┬──────────┘ └─────────┬─────────┘ └──────────────┘
 │ Yes │ Yes
 � �
┌────────────────────────┐ ┌───────────────────┐
│PASCE-old ─� PASCE-tmp │ │Either old or new │
│PASTEO-old ─� PASTEO-tmp│ │space-switch-event-│ Yes ┌──────────────┐
│ AX-old ─� AX-tmp │ │control bit = 1 ? ├─────�│3 ─� Cond Code│
└──────────┬─────────────┘ └─────────┬─────────┘ └──────────────┘
 │ │ No
 │ �
 └─────┬──────────────────────┐ ┌──────────────────────┐

│ │ │ASCE-p ─� PASCE-tmp │ �
│ │ │PASTEO-p ─� PASTEO-tmp│
� │ │ AX-p ─� AX-tmp │

 Yes ┌─────────────────┐ │ └──────────┬───────────┘
┌───────┤SASN-d = PASN-d ?│ └────�───────────────┘
│ └────────┬────────┘
│ │ No
│ � ┌────────────────┐
│ ┌────────────────────┐ ┌─────�│SASN translation│
│ │ SASN-d = SASN-old │ │ └────────┬───────┘
│ │ AND │ │ │
│ │Op-2-addr bit 61 = �│ No │ �
│ │ AND ├────────────────┘ ┌───────────────┐ No ┌──────────────┐
│ │Op-2-addr bit 63 = 1│ │ASN available ?├───────�│2 ─� Cond Code│
│ │ ? │ └───────┬───────┘ └──────────────┘
│ └─────────┬──────────┘ │ Yes
│ │ Yes �
└─────────┐ └──────────────────┐ ┌───────────────────┐

│ │ │Subspace available │ No ┌──────────────┐
│ │ │if required ? ├─────�│2 ─� Cond Code│

 │ │ └─────────┬─────────┘ └──────────────┘
 │ │ │
 � � �
┌──────────────────────┐ ┌──────────────────────┐ ┌───────────────────┐
│PASCE-tmp ─� SASCE-tmp│ │SASCE-old ─� SASCE-tmp│ │ASCE-s ─� SASCE-tmp│ ��
└─────────┬────────────┘ └─────────┬────────────┘ └────────┬──────────┘
 │ │ │
 │ � │
 │�─────────────────────────────────┐ �

� │ No ┌──────────────────────┐
┌──────────────────────┐ No │�───┤Op-2-addr bit 63 = � ?│
│Op-2-addr bit 62 = 1 ?├──┐ │ └──────────┬───────────┘
└──────────┬───────────┘ │ │ │ Yes
 │ Yes │ │ �
 � � │ ┌──────────────────┐
┌──────────────┐ ┌────────────────┐ │ │SASN authorization│
│AX-d ─� AX-new│ │AX-tmp ─� AX-new│ │ └────────┬─────────┘
└───────┬──────┘ └────────┬───────┘ │ │
 │ │ │ �

└────────────────�│ │ Yes ┌────────────┐ No ┌──────────────┐
│ └�────────┤Authorized ?├────────�│2 ─� Cond Code│

 │ └────────────┘ └──────────────┘
 �
 ┌────────────────────────┐ ┌──────────────────┐

│PASCE-tmp ─� PASCE-new ├────�│ PKM-d ─� PKM-new│
│PASTEO-tmp ─� PASTEO-new│ │SASN-d ─� SASN-new│ ┌──────────────┐
│SASCE-tmp ─� SASCE-new │ │PASN-d ─� PASN-new├─────�│� ─� Cond Code│

 └────────────────────────┘ └──────────────────┘ └──────────────┘
�: PASCE-tmp is ASCE-rp if subspace replacement occurred.
��: SASCE-tmp is ASCE-rs if subspace replacement occurred.

Figure 10-17. Execution of LOAD ADDRESS SPACE PARAMETERS

 Chapter 10. Control Instructions 10-43

 LOAD CONTROL

LCTL R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'B7' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

LCTLG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '2F' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Bit positions of the set of control registers starting
with control register R� and ending with control
register R� are loaded from storage beginning at
the location designated by the second-operand
address and continuing through as many locations
as needed.

For LOAD CONTROL (LCTL), bit positions 32-63
of the control registers are loaded from successive
words beginning at the second-operand address,
and bits 0-31 of the registers remain unchanged.
For LOAD CONTROL (LCTLG), bit positions 0-63
of the control registers are loaded from successive
doublewords beginning at the second-operand
address. The control registers are loaded in
ascending order of their register numbers, starting
with control register R� and continuing up to and
including control register R�, with control register 0
following control register 15.

The information loaded into the control registers
becomes active when instruction execution has
ended.

| The displacement for LCTL is treated as a 12-bit
| unsigned binary integer. The displacement for
| LCTLG is treated as a 20-bit signed binary
| integer.

Special Conditions

The second operand must be designated on a
word boundary for LCTL or on a doubleword
boundary for LCTLG; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

Programming Notes:

1. To ensure that existing programs operate cor-
rectly if and when new facilities using addi-
tional control-register positions are defined,
only zeros should be loaded in unassigned
control-register positions.

2. Loading of control registers on some models
may require a significant amount of time. This
is particularly true for changes in significant
parameters.

For example, the TLB may be cleared of
entries as a result of changing or enabling the
program-event-recording parameters in control
registers 9-11. Where possible, the program
should avoid unnecessary loading of control
registers. In loading control registers 9-11,
most models attempt to optimize for the case
when the bits of control register 9 are zeros.

 LOAD PSW

LPSW D�(B�) [S]

┌────────┬────────┬────┬────────────┐
│ '82' │////////│ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

The current PSW is replaced by a 16-byte PSW
formed from the contents of the doubleword at the
location designated by the second-operand
address.

Bit 12 of the doubleword must be one; otherwise,
a specification exception may be recognized,
depending on the model.

Bits 0-32 of the doubleword, except with bit 12
inverted, are placed in bit positions 0-32 of the
current PSW. Bits 33-63 of the doubleword are
placed in bit positions 97-127 of the current PSW.
Bits 33-96 of the current PSW are set to zeros.

A serialization and checkpoint-synchronization
function is performed before or after the operand
is fetched and again after the operation is com-
pleted.

10-44 z/Architecture Principles of Operation

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized. A specification exception may be
recognized if bit 12 of the operand is zero,
depending on the model.

The PSW fields which are to be loaded by the
instruction are not checked for validity before they
are loaded, except for the optional checking of bit
12. However, immediately after loading, a specifi-
cation exception is recognized, and a program
interruption occurs, when any of the following is
true for the newly loaded PSW:

� Any of bits 0, 2-4, 12, or 24-30 is a one.

� Bits 31 and 32 are both zero, and bits 97-103
are not all zeros.

� Bits 31 and 32 are one and zero, respectively.

In these cases, the operation is completed, and
the resulting instruction-length code is 0.

The test for a specification exception after the
PSW is loaded is described in “Early Exception
Recognition” on page 6-9. It may be considered
as occurring early in the process of preparing to
execute the subsequent instruction.

The operation is suppressed on all addressing and
protection exceptions.

Resulting Condition Code: The code is set as
specified in the new PSW loaded.

 Program Exceptions:

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

Programming Note: The second operand should
have the format of an ESA/390 PSW. A specifica-
tion exception will be recognized during or after
the execution of LOAD PSW if bit 12 of the
operand is zero.

LOAD PSW EXTENDED

LPSWE D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2B2' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The current PSW is replaced by the contents of
the 16-byte second operand.

A serialization and checkpoint-synchronization
function is performed before or after the operand
is fetched and again after the operation is com-
pleted.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The value which is to be loaded by the instruction
is not checked for validity before it is loaded.
However, immediately after loading, a specification
exception is recognized, and a program inter-
ruption occurs, when any of the following is true
for the newly loaded PSW:

� Any of the unassigned bits (0, 2-4, 24-30, or
33-63) is a one.

� Bit 12 is a one.

� Bits 31 and 32 are zero and one, respectively,
and bits 64-96 are not all zeros.

� Bits 31 and 32 are both zero, and bits 64-103
are not all zeros.

� Bits 31 and 32 are one and zero, respectively.

In these cases, the operation is completed, and
the resulting instruction-length code is zero.

The test for a specification exception after the
PSW is loaded is described in “Early Exception
Recognition” on page 6-9. It may be considered
as occurring early in the process of preparing to
execute the subsequent instruction.

The operation is suppressed on all addressing and
protection exceptions.

Resulting Condition Code: The code is set as
specified in the new PSW loaded.

 Chapter 10. Control Instructions 10-45

 Program Exceptions:

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

LOAD REAL ADDRESS

LRA R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│ 'B1' │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

| LRAY R�,D�(X�,B�) [RXY]

| ┌────────┬────┬────┬────┬──/─┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '13' │
| └────────┴────┴────┴────┴──/─┴────────┴────────┘
| � 8 12 16 2� 32 4� 47

LRAG R�,D�(X�,B�) [RXY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'E3' │ R� │ X� │ B� │DL� │ DH� │ '�3' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

| For LOAD REAL ADDRESS (LRA, LRAY) in the
24-bit or 31-bit addressing mode, if bits 0-32 of
the 64-bit real address corresponding to the
second-operand virtual address are all zeros, bits
32-63 of the real address are placed in bit posi-
tions 32-63 of general register R�, and bits 0-31 of
the register remain unchanged. If bits 0-32 of the
real address are not all zeros, a special-operation
exception is recognized.

| For LRA or LRAY in the 64-bit addressing mode,
and for LOAD REAL ADDRESS (LRAG) in any
addressing mode, the 64-bit real address corre-
sponding to the second-operand virtual address is
placed in general register R�.

The virtual address specified by the X�, B�, and
D� fields is translated by means of the dynamic-
address-translation facility, regardless of whether
DAT is on or off.

| The displacement for LRA is treated as a 12-bit
| unsigned binary integer. The displacement for
| LRAY and LRAG is treated as a 20-bit signed
| binary integer.

DAT is performed by using an address-
space-control element that depends on the current
value of the address-space-control bits, bits 16

and 17 of the PSW, as shown in the following
table:

ART and DAT may be performed with the use of
the ART-lookaside buffer (ALB) and translation-
lookaside buffer (TLB), respectively.

The virtual-address computation is performed
according to the current addressing mode, speci-
fied by bits 31 and 32 of the current PSW.

The addresses of the region-table entry or entries,
if used, and of the segment-table entry and page-
table entry are treated as 64-bit addresses regard-
less of the current addressing mode. It is unpre-
dictable whether the addresses of these entries
are treated as real or absolute addresses.

Condition code 0 is set when both ART, if appli-
cable, and DAT can be completed and a special-
operation exception is not recognized, that is,
when an address-space-control element can be
obtained, the entry in each DAT table lies within

| the table and has a zero I bit, and, for LRA or
| LRAY in the 24-bit or 31-bit addressing mode, bits

0-32 of the resulting real address are zeros. The
translated address is not inspected for boundary
alignment or for addressing or protection
exceptions.

When PSW bits 16 and 17 are 01 binary and an
address-space-control element cannot be obtained
because of a condition that would normally cause
one of the exceptions shown in the following table,
(1) the interruption code assigned to the exception
is placed in bit positions 48-63 of general register
R�, bit 32 of this register is set to one, bits 33-47
are set to zeros, and bits 0-31 remain unchanged,
and (2) the instruction is completed by setting
condition code 3.

PSW
Bits 16
and 17

Address-Space-Control Element
Used by DAT

00 Contents of control register 1

10 Contents of control register 7

01 The address-space-control element
obtained by applying the access-
register-translation (ART) process to the
access register designated by the B�
field

11 Contents of control register 13

10-46 z/Architecture Principles of Operation

When ART is completed normally, the operation is
continued through the performance of DAT.

When the segment-table entry is outside the table
and bits 0-32 of the real or absolute address of
the entry are all zeros, condition code 3 is set, bits
32-63 of the entry address are placed in bit posi-
tions 32-63 of general register R�, and bits 0-31 of
the register remain unchanged. If bits 0-32 of the
address are not all zeros, the result is as shown in
the next table below.

Exception
Name Cause

Code
(Hex)

| For LRA or LRAY in the 64-bit addressing mode
or LRAG in any addressing mode, when the I bit
in the segment-table entry is one, condition code 1
is set, and the 64-bit real or absolute address of
the segment-table entry is placed in general reg-

| ister R�. In this case except that LRA or LRAY is
in the 24-bit or 31-bit addressing mode, if bits 0-32
of the address of the segment-table entry are all
zeros, the result is the same except that bits 0-31
of general register R� remain unchanged. If bits
0-32 of the address are not all zeros, the result is
as shown in the next table below.

| For LRA or LRAY in the 64-bit addressing mode
or LRAG in any addressing mode, when the I bit
in the page-table entry is one, condition code 2 is
set, and the 64-bit real or absolute address of the
page-table entry is placed in general register R�.

| In this case except that LRA or LRAY is in the
24-bit or 31-bit addressing mode, if bits 0-32 of
the address of the page-table entry are all zeros,
the result is the same except that bits 0-31 of
general register R� remain unchanged. If bits
0-32 of the address are not all zeros, the result is
as shown in the next table below.

A segment-table-entry or page-table-entry address
placed in general register R� is real or absolute in
accordance with the type of address that was
used during the attempted translation,

If a condition exists that would normally cause one
of the exceptions shown in the following table,
(1) the interruption code assigned to the exception
is placed in bit positions 48-63 of general register
R�, bit 32 of this register is set to one, bits 33-47
are set to zeros, and bits 0-31 remain unchanged,
and (2) the instruction is completed by setting
condition code 3.

ALET specifi-
cation

Access-list-entry-token
(ALET) bits 0-6 not all zeros

0028

ALEN trans-
lation

Access-list entry (ALE)
outside list or invalid (bit 0 is
one)

0029

ALE
sequence

ALE sequence number
(ALESN) in ALET not equal
to ALESN in ALE

002A

ASTE validity ASN-second-table entry
(ASTE) invalid (bit 0 is one)

002B

ASTE
sequence

ASTE sequence number
(ASTESN) in ALE not equal
to ASTESN in ASTE

002C

Extended
authority

ALE private bit not zero,
ALE authorization index
(ALEAX) not equal to
extended authorization index
(EAX), and secondary bit
selected by EAX either
outside authority table or
zero

002D

 Chapter 10. Control Instructions 10-47

Exception
Name Cause

Code
(Hex)

Special Conditions

A special-operation exception is recognized when,
| for LRA or LRAY in the 24-bit or 31-bit addressing

mode, bits 0-32 of the resultant 64-bit real address
are not all zeros.

An addressing exception is recognized when the
address used by ART to fetch the effective
access-list designation or the ALE, ASTE, or
authority-table entry designates a location which is
not available in the configuration or when the
address used to fetch the region-table entry or
entries, if any, segment-table entry, or page-table
entry designates a location which is not available
in the configuration.

A translation-specification exception is recognized
when an accessed region-table entry or the
segment-table entry or page-table entry has a
zero I bit and a format error, that is, when any of
the reasons listed in “Translation-Specification
Exception” on page 6-35 applies.

A carry out of bit position 0 as a result of the addi-
tion done to compute the address of a region-table
entry or the segment-table entry may be ignored
or may result in an addressing exception.

The operation is suppressed on all addressing
exceptions.

Resulting Condition Code:

0 Translation available
1 Segment-table entry invalid (I bit one)
2 Page-table entry invalid (I bit one)
3 Address-space-control element not available,

region-table entry outside table or invalid (I bit
one), segment-table entry outside table, or,

| for LRA and LRAY only, and only in 24-bit or
31-bit addressing mode when bits 0-32 of
entry address not all zeros, segment-table
entry or page-table entry invalid (I bit one)

 Program Exceptions:

� Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, region-table entry,
segment-table entry, or page-table entry)

| � Operation (LRAY, if the long-displacement
| facility is not installed)

 � Privileged operation
| � Special operation (LRA, LRAY only)

ASCE type Address-space-control
element (ASCE) being used
is a region-second-table
designation, and bits 0-10 of
virtual address not all zeros;
ASCE is a region-third-table
designation, and bits 0-21 of
virtual address not all zeros;
or ASCE is a segment-table
designation, and bits 0-32 of
virtual address not all zeros.

0038

Region first
translation

Region-first-table entry
selected by region-first-index
portion of virtual address
outside table or invalid.

0039

Region
second
translation

Region-second-table entry
selected by region-
second-index portion of
virtual address outside table
or invalid.

003A

Region third
translation

Region-third-table entry
selected by region-third-
index portion of virtual
address outside table or
invalid.

003B

Segment
translation

Segment-table entry
selected by segment-index
portion of virtual address
outside table (only when bits
0-32 of entry address not all
zeros); or segment-table

| entry invalid (LRA and LRAY
only, and only in 24-bit or
31-bit addressing mode
when bits 0-32 of entry
address not all zeros).

0010

Page trans-
lation

Page-table entry selected by
page-index portion of virtual

| address invalid (LRA and
| LRAY only, and only in

24-bit or 31-bit addressing
mode when bits 0-32 of
entry address not all zeros).

0011

10-48 z/Architecture Principles of Operation

 � Translation specification

Programming Notes:

1. Caution must be exercised in the use of
LOAD REAL ADDRESS in a multiprocessing
configuration. Since INVALIDATE PAGE
TABLE ENTRY may set the I bit in storage to
one before causing the corresponding entries
in TLBs of other CPUs to be cleared, the
simultaneous execution of LOAD REAL
ADDRESS on this CPU and INVALIDATE
PAGE TABLE ENTRY on another CPU may
produce inconsistent results. Because LOAD
REAL ADDRESS may access the tables in

storage, the page-table entry may appear to
be invalid (condition code 2) even though the
corresponding TLB entry has not yet been
cleared, and the TLB entry may remain in the
TLB until the completion of INVALIDATE
PAGE TABLE ENTRY on the other CPU.
There is no guaranteed limit to the number of
instructions which may be executed between
the completion of LOAD REAL ADDRESS and
the TLB being cleared of the entry.

2. Figure 10-18 on page 10-50 summarizes the
resulting contents of general register R� and
the condition code.

 Chapter 10. Control Instructions 10-49

┌─────────────────────┬───┐
│ │ General Register R� Contents and Condition Code │
│Exception/Cause/ ├────────────────────────────────┬────────────────────────────────┤
│Entry-Address Size │ LRA or LRAY in 24-Bit or │LRA or LRAY in 64-Bit Addr. Mode│
│or │ 31-Bit Addressing Mode │ or LRAG in Any Addressing Mode │
│Resultant-Real- ├────────────────────────────────┼────────────────────────────────┤
│Address Size │ �-31 32 33-47 48-63 CC │ �-31 32 33-47 48-63 CC │
├─────────────────────┼────────────────────────────────┼────────────────────────────────┤
│ALET specification │ U 1 �s ��28 3 │ U 1 �s ��28 3 │
│ │ │ │
│ALEN translation │ U 1 �s ��29 3 │ U 1 �s ��29 3 │
│ │ │ │
│ALE sequence │ U 1 �s ��2A 3 │ U 1 �s ��2A 3 │
│ │ │ │
│ASTE validity │ U 1 �s ��2B 3 │ U 1 �s ��2B 3 │
│ │ │ │
│ASTE sequence │ U 1 �s ��2C 3 │ U 1 �s ��2C 3 │
│ │ │ │
│Extended authority │ U 1 �s ��2D 3 │ U 1 �s ��2D 3 │
│ │ │ │
│ASCE type │ U 1 �s ��38 3 │ U 1 �s ��38 3 │
│ │ │ │
│Region first trans. │ U 1 �s ��39 3 │ U 1 �s ��39 3 │
│ │ │ │
│Region second trans. │ U 1 �s ��3A 3 │ U 1 �s ��3A 3 │
│ │ │ │
│Region third trans. │ U 1 �s ��3B 3 │ U 1 �s ��3B 3 │
│ │ │ │
│Segment translation/ │ U � EA3 EA4 3 │ U � EA3 EA4 3 │
│entry outside table/ │ │ │
│entry address < 2GB │ │ │
│ │ │ │
│Segment translation/ │ U 1 �s ��1� 3 │ U 1 �s ��1� 3 │
│entry outside table/ │ │ │
│entry address >= 2GB │ │ │
│ │ │ │
│Segment translation/ │ U � EA3 EA4 1 │ EA1 EA2 EA3 EA4 1 │
│I bit one/ │ │ │
│entry address < 2GB │ │ │
│ │ │ │
│Segment translation/ │ U 1 �s ��1� 3 │ EA1 EA2 EA3 EA4 1 │
│I bit one/ │ │ │
│entry address >= 2GB │ │ │
│ │ │ │
│Page translation/ │ U � EA3 EA4 2 │ EA1 EA2 EA3 EA4 2 │
│I bit one/ │ │ │
│entry address < 2GB │ │ │
│ │ │ │
│Page translation/ │ U 1 �s ��11 3 │ EA1 EA2 EA3 EA4 2 │
│I bit one/ │ │ │
│entry address >= 2GB │ │ │
│ │ │ │
│Real Address < 2GB │ U � RA3 RA4 � │ RA1 RA2 RA3 RA4 � │
│ │ │ │
│Real Address >= 2GB │ Special-Operation Exception │ RA1 RA2 RA3 RA4 � │
└─────────────────────┴────────────────────────────────┴────────────────────────────────┘

Figure 10-18 (Part 1 of 2). Summary of Results: LOAD REAL ADDRESS

10-50 z/Architecture Principles of Operation

┌───┐
│Explanation: │
│ │
│ EA1 Bits �-31 of the entry address. │
│ EA2 Bit 32 of the entry address. │
│ EA3 Bits 33-47 of the entry address. │
│ EA4 Bits 48-63 of the entry address. │
│ RA1 Bits �-31 of the resultant real address. │
│ RA2 Bit 32 of the resultant real address. │
│ RA3 Bits 33-47 of the resultant real address. │
│ RA4 Bits 48-63 of the resultant real address. │
│ U Unchanged. │
└───┘

Figure 10-18 (Part 2 of 2). Summary of Results: LOAD REAL ADDRESS

LOAD USING REAL ADDRESS

LURA R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B24B' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

LURAG R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B9�5' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

For LOAD USING REAL ADDRESS (LURA), the
word at the real-storage location addressed by the
contents of general register R� is placed in bit
positions 32-63 of general register R�, and the
contents of bit positions 0-31 remain unchanged.
For LOAD USING REAL ADDRESS (LURAG), the
doubleword at that real-storage location is placed
in bit positions 0-63 of general register R�.

In the 24-bit addressing mode, bits 40-63 of
general register R� designate the real-storage
location, and bits 0-39 of the register are ignored.
In the 31-bit addressing mode, bits 33-63 of
general register R� designate the real-storage
location, and bits 0-33 of the register are ignored.
In the 64-bit addressing mode, bits 0-63 of general
register R� designate the real-storage location.

Because it is a real address, the address desig-
nating the storage word or doubleword is not
subject to dynamic address translation.

Special Conditions

The contents of general register R� must desig-
nate a location on a word boundary for LURA or
on a doubleword boundary for LURAG; otherwise,
a specification exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (address specified by general reg-
ister R�)

 � Privileged operation
� Protection (fetch, operand 2, key-controlled

protection)
 � Specification

MODIFY STACKED STATE

MSTA R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B247' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The contents of bit positions 32-63 of the pair of
general registers designated by the R� field are
placed in the modifiable area, byte positions
152-159, of the last state entry in the linkage
stack.

The R� field designates the even-numbered reg-
ister of an even-odd pair of general registers.

The last state entry is located as described in
“Unstacking Process” on page 5-76. The state
entry remains in the linkage stack, and the
linkage-stack-entry address in control register 15
remains unchanged.

 Chapter 10. Control Instructions 10-51

Key-controlled protection does not apply to the ref-
erences to the linkage stack, but low-address and
page protection do apply.

Special Conditions

A specification exception is recognized when R� is
odd.

The CPU must be in the primary-space mode,
access-register mode, or home-space mode; oth-
erwise, a special-operation exception is recog-
nized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the
unstacking process.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-19.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch and store, except for key-
controlled protection, linkage-stack entry)

 � Special operation
 � Specification
 � Stack empty
 � Stack specification
 � Stack type

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B Special-operation exception due to DAT being off or the CPU │
│ being in secondary-space mode. │
│ │
│ 8.A Specification exception due to R� being odd. │
│ │
│ 8.B.1 Access exceptions (fetch) for entry descriptor of the current │
│ linkage-stack entry. │
│ │
│ 8.B.2 Stack-type exception due to current entry not being a state │
│ entry or header entry. │
│ │
│ Note: Exceptions 8.B.3-8.B.7 can occur only if the current │
│ entry is a header entry. │
│ │
│ 8.B.3 Access exceptions (fetch) for second word of the header entry.│
│ │
│ 8.B.4 Stack-empty exception due to backward stack-entry validity │
│ bit in the header entry being zero. │
│ │
│ 8.B.5 Access exceptions (fetch) for entry descriptor of preceding │
│ entry, which is the entry designated by the backward │
│ stack-entry address in the current (header) entry. │
│ │
│ 8.B.6 Stack-specification exception due to preceding entry being a │
│ header entry. │
│ │
│ 8.B.7 Stack-type exception due to preceding entry not being a state │
│ entry. │
│ │
│ 8.B.8 Access exceptions (store) for the modifiable area of the state│
│ entry. │
└──┘

Figure 10-19. Priority of Execution: MODIFY STACKED STATE

10-52 z/Architecture Principles of Operation

 MOVE PAGE

MVPG R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B254' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The first operand is replaced by the second
operand. The first and second operands both are
4K bytes on 4K-byte boundaries. The results are
indicated in the condition code. The accesses to
the first-operand location or the second-operand
location, but not to both locations, may be per-
formed by using the key specified in general reg-
ister 0; otherwise, the accesses to an operand
location are performed by using the PSW key.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R� and R�, respec-
tively.

The handling of the addresses in general registers
R� and R� depends on the addressing mode. In
the 24-bit addressing mode, the contents of bit
positions 40-51 of a general register, with 12 right-
most zeros appended, are the address, and bits
0-39 and 52-63 in the register are ignored. In the
31-bit addressing mode, the contents of bit posi-
tions 33-51 of a general register, with 12 rightmost
zeros appended, are the address, and bits 0-32
and 52-63 in the register are ignored. In the
64-bit addressing mode, the contents of bit posi-
tions 0-51 of a general register, with 12 rightmost
zeros appended, are the address, and bits 52-63
in the register are ignored.

Bits 56-59 of general register 0 are used as the
specified access key. Bit 52 of general register 0,
when one, specifies that the specified access key
is to be used for accessing the first operand, and
bit 53 specifies the same for the second operand.
A specification exception is recognized if bits 52
and 53 are both ones. Bit 54 of general register 0
is a destination-reference-intention bit, and bit 55
is a condition-code-option bit. Bits 48-51 of
general register 0 must be zeros; otherwise, a
specification exception is recognized. Bits 0-47
and 60-63 of general register 0 are ignored.

The contents of the registers just described are
shown in Figure 10-20 on page 10-54

When bit 52 of general register 0 is one, the fetch
accesses to the second-operand location are per-
formed by using the PSW key, and the store
accesses to the first-operand location are per-
formed by using the key specified in general reg-
ister 0. When bit 53 of general register 0 is one,
the fetch accesses to the second-operand location
are performed by using the key specified in
general register 0, and the store accesses to the
first-operand location are performed by using the
PSW key. When bits 52 and 53 are both zeros,
the PSW key is used for accessing both operands.

When 4K bytes have been moved, condition code
0 is set.

When a page-translation-exception condition
exists, the exception is not recognized if the
condition-code-option bit, bit 55 in general register
0, is one; instead, condition code 1 or 2 is set.
Condition code 1 is set if a page-
translation-exception condition exists for the first
operand and not for the second operand. Condi-
tion code 2 is set if a page-translation-exception
condition exists for the second operand, regard-
less of whether the condition exists for the first
operand.

When an access exception can be recognized for
both operands, it is unpredictable for which
operand an exception is recognized. If one of the
exceptions is a page-translation exception that
would cause condition code 1 or 2 to be set, it is
unpredictable whether the access exception for
the other operand is recognized or condition code
1 or 2 is set.

The references to main storage are not neces-
sarily single-access references and are not neces-
sarily performed in a left-to-right direction, as
observed by other CPUs and by channel pro-
grams.

Special Conditions

In the problem state, when either bit 52 or bit 53
in general register 0 is one, the operation is per-
formed only if the access key specified in general
register 0 is valid, that is, if the corresponding
PSW-key-mask bit in control register 3 is one.
Otherwise, a privileged-operation exception is
recognized. In the supervisor state, any value for
the specified access key is valid. When bits 52

 Chapter 10. Control Instructions 10-53

┌──┐
│ │
│ ┌─/───────────────┬────┬─┬─┬─┬─┬────┬────┐ │
│ │ │ │ │ │D│C│ │ │ │
│ GR� │ │ │ │ │R│C│ │ │ │
│ │/////////////////│����│F│S│I│O│Key │////│ │
│ └─/───────────────┴────┴─┴─┴─┴─┴────┴────┘ │
│ � 48 52 54 56 6� 63 │
│ │
│ 24-Bit Addressing Mode │
│ │
│ ┌─/──────────┬────────────┬────────────┐ ┌─/──────────┬────────────┬────────────┐ │
│ R� │////////////│Op1 Address │////////////│ R� │////////////│Op2 Address │////////////│ │
│ └─/──────────┴────────────┴────────────┘ └─/──────────┴────────────┴────────────┘ │
│ � 4� 52 63 � 4� 52 63 │
│ │
│ 31-Bit Addressing Mode │
│ │
│ ┌─/───┬───────────────────┬────────────┐ ┌─/───┬───────────────────┬────────────┐ │
│ R� │/////│ Op1 Address │////////////│ R� │/////│ Op2 Address │////////////│ │
│ └─/───┴───────────────────┴────────────┘ └─/───┴───────────────────┴────────────┘ │
│ � 33 52 63 � 33 52 63 │
│ │
│ │
│ 64-Bit Addressing Mode │
│ │
│ ┌─/───────────────────────┬────────────┐ ┌─/───────────────────────┬────────────┐ │
│ R� │ Op1 Address │////////////│ R� │ Op2 Address │////////////│ │
│ └─/───────────────────────┴────────────┘ └─/───────────────────────┴────────────┘ │
│ � 52 63 � 52 63 │
│ │
├──┤
│Explanation: │
│ │
│ CCO Condition-code-option bit. │
│ DRI Destination-reference-intention bit. │
│ F When one, specified access key applies to first operand. A specification exception is │
│ recognized if F and S both are one. │
│ Key Specified access key. │
│ S When one, specified access key applies to second operand. A specification exception is │
│ recognized if F and S both are one. │
└──┘

Figure 10-20. Register Contents for MOVE PAGE

and 53 are both zeros, the access key in general
register 0 is not tested for validity.

In the problem state, when bits 52 and 53 in
general register 0 are both ones and the access
key in general register 0 is not permitted by the
PSW-key mask, it is unpredictable whether a
specification exception or a privileged-operation
exception is recognized.

Resulting Condition Code:

0 Data moved

1 Condition-code-option bit one, page-table
entry for first operand invalid, and page-table
entry for second operand valid

2 Condition-code-option bit one and page-table
entry for second operand invalid

3 --

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
� Privileged operation (access key specified,

and selected PSW-key-mask bit is zero in the
problem state)

 � Specification

10-54 z/Architecture Principles of Operation

Programming Notes:

1. MOVE PAGE, or a loop of MOVE PAGE
instructions that moves multiple pages, may
provide, on most models, better performance
than a MOVE LONG instruction or a loop of
MOVE (MVC) instructions that performs the
same function. Whether MOVE PAGE pro-
vides better performance depends on control-
program specifications and the method by
which the control program handles page-
translation exceptions.

2. The destination-reference-intention bit should
be set to one when there is an intention to ref-
erence the first operand by means of an
instruction other than MOVE PAGE. The bit
may allow the control program to process a
page-translation exception more efficiently.

3. The condition-code-option bit provides com-
patibility with the MOVE PAGE instruction of
the ESA/390 move-page facility 1. The bit is
for use by the MVS/ESA HSPSERV macro
expansion.

4. The condition code set by the instruction
normally need not be examined if the
condition-code-option bit is zero.

5. See the definitions of real locations 162 and
168-175 under “Assigned Storage Locations”
in Chapter 3, “Storage,” for a description of
information stored during a program inter-
ruption due to a page-translation exception
recognized by MOVE PAGE.

MOVE TO PRIMARY

MVCP D�(R�,B�),D�(B�),R� [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'DA' │ R� │ R� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

MOVE TO SECONDARY

MVCS D�(R�,B�),D�(B�),R� [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'DB' │ R� │ R� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The first operand is replaced by the second
operand. One operand is in the primary address
space, and the other is in the secondary address
space. The accesses to the operand in the
primary space are performed by using the PSW
key; the accesses to the operand in the secondary
space are performed by using the key specified by
the third operand.

The addresses of the first and second operands
are virtual, one operand address being translated
by means of the primary address-space-control
element and the other by means of the secondary
address-space-control element. Operand-address
translation is performed in the same way when the
address-space-control bits in the current PSW
specify either the primary-space mode or the
secondary-space mode.

For MOVE TO PRIMARY, movement is to the
primary space from the secondary space. The
first-operand address is translated by using the
primary address-space-control element, and the
second-operand address is translated by using the
secondary address-space-control element.

For MOVE TO SECONDARY, movement is to the
secondary space from the primary space. The
first-operand address is translated by using the
secondary address-space-control element, and the
second-operand address is translated by using the
primary address-space-control element.

Bit positions 56-59 of general register R� are used
as the secondary-space access key. Bit positions
0-55 and 60-63 of the register are ignored.

 Chapter 10. Control Instructions 10-55

General register R� contains an unsigned binary
integer called the true length. In the 24-bit or
31-bit addressing mode, the true length is in bit
positions 32-63 of the register, and the contents of
bit positions 0-31 of the register are ignored. In
the 64-bit addressing mode, the true length is in
bit positions 0-63 of the register.

The contents of the general registers just
described are as follows:

24-Bit or 31-Bit Addressing Mode
 ┌─/─┬──────────────────────────────────┐
R� │///│ True Length │
 └─/─┴──────────────────────────────────┘
 � 32 63

64-Bit Addressing Mode
 ┌─/────────────────────────────────────┐
R� │ True Length │
 └─/────────────────────────────────────┘
 � 63

 ┌─/──────────────────────────┬────┬────┐
R� │////////////////////////////│Key │////│
 └─/──────────────────────────┴────┴────┘
 � 56 6� 63

The first and second operands are the same
length, called the effective length. The effective
length is equal to the true length or 256, which-
ever is less. Access exceptions for the first and
second operands are recognized only for that
portion of the operand within the effective length.
When the effective length is zero, no access
exceptions are recognized for the first and second
operands, and no movement takes place.

Each storage operand is processed left to right.
The storage-operand-consistency rules are the
same as for MOVE (MVC), except that when the
operands overlap in real storage, the use of the
common real-storage locations is not necessarily
recognized.

As part of the execution of the instruction, the
value of the true length is used to set the condi-
tion code. If the true length is 256 or less,
including zero, the true length and effective length
are equal, and condition code 0 is set. If the true

length is greater than 256, the effective length is
256, and condition code 3 is set.

For both MOVE TO PRIMARY and MOVE TO
SECONDARY, a serialization and checkpoint-
synchronization function is performed before the
operation begins and again after the operation is
completed.

Special Conditions

Since the secondary space is accessed, the oper-
ation is performed only when the secondary-space
control, bit 37 of control register 0, is one and
DAT is on. When either the secondary-space
control is zero or DAT is off, a special-operation
exception is recognized. A special-operation
exception is also recognized when the address-
space-control bits in the current PSW specify the
access-register or home-space mode.

In the problem state, the operation is performed
only if the secondary-space access key is valid,
that is, if the corresponding PSW-key-mask bit in
control register 3 is one. Otherwise, a privileged-
operation exception is recognized. In the super-
visor state, any value for the secondary-space
access key is valid.

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-21 on
page 10-57.

Resulting Condition Code:

0 True length less than or equal to 256
1 --
2 --
3 True length greater than 256

 Program Exceptions:

� Access (fetch, primary virtual address,
operand 2, MVCS; fetch, secondary virtual
address, operand 2, MVCP; store, secondary
virtual address, operand 1, MVCS; store,
primary virtual address, operand 1, MVCP)

� Privileged operation (selected PSW-key-mask
bit is zero in the problem state)

 � Special operation

10-56 z/Architecture Principles of Operation

┌──┐
│ 1.-6. Exceptions with the same priority as │
│ the priority of program-interruption │
│ conditions for the general case. │
│ │
│ 7.A Access exceptions for second and third │
│ instruction halfwords. │
│ │
│ 7.B Special-operation exception due to the │
│ secondary-space control, bit 37 of con-│
│ trol register �, being zero, to DAT │
│ being off, or to the CPU being in the │
│ access-register or home-space mode. │
│ │
│ 8. Privileged-operation exception due to │
│ selected PSW-key-mask bit being zero │
│ in the problem state. │
│ │
│ 9. Completion due to length zero. │
│ │
│1�. Access exceptions for operands. │
└──┘

Figure 10-21. Priority of Execution: MOVE TO
PRIMARY and MOVE TO SECONDARY

Programming Notes:

1. MOVE TO PRIMARY and MOVE TO SEC-
ONDARY can be used in a loop to move a
variable number of bytes of any length. See
the programming note under MOVE WITH
KEY.

2. MOVE TO PRIMARY and MOVE TO SEC-
ONDARY should be used only when move-
ment is between different address spaces.
The performance of these instructions on most
models may be significantly slower than that
of MOVE WITH KEY, MOVE (MVC), or MOVE
LONG. In addition, the definition of overlap-
ping operands for MOVE TO PRIMARY and
MOVE TO SECONDARY is not compatible
with the more precise definitions for MOVE
(MVC), MOVE WITH KEY, and MOVE LONG.

MOVE WITH DESTINATION KEY

MVCDK D�(B�),D�(B�) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐
│ 'E5�F' │ B� │ D� │ B� │ D� │
└────────────────┴────┴─/──┴────┴─/──┘
� 16 2� 32 36 47

The first operand is replaced by the second
operand. The accesses to the destination-
operand location are performed by using the key
specified in general register 1, and the accesses

to the source-operand location are performed by
using the PSW key.

The first and second operands are of the same
length, which is specified by bits 56-63 of general
register 0. Bits 0-55 of general register 0 are
ignored.

Bits 56-59 of general register 1 are used as the
specified access key. Bits 0-55 and 60-63 of
general register 1 are ignored.

The contents of general registers 0 and 1 are as
follows:

 ┌─/──────────────────────────┬─────────┐
GR� │////////////////////////////│ L │
 └─/──────────────────────────┴─────────┘
 � 56 63

 ┌─/──────────────────────────┬────┬────┐
GR1 │////////////////////////////│Key │////│
 └─/──────────────────────────┴────┴────┘
 � 56 6� 63

L specifies the number of bytes to the right of the
first byte of each operand. Therefore, the length
in bytes of each operand is 1-256, corresponding
to a length code in L of 0-255.

The fetch accesses to the second-operand
location are performed by using the PSW key, and
the store accesses to the first-operand location
are performed by using the key specified in
general register 1.

Each of the operands is processed left to right.
When the operands overlap destructively in real
storage, the results in the first-operand location
are unpredictable. Except for this unpredictability
in the case of destructive overlap, the storage-
operand-consistency rules are the same as for the
MOVE (MVC) instruction.

Special Conditions

In the problem state, the operation is performed
only if the access key specified in general register
1 is valid, that is, if the corresponding
PSW-key-mask bit in control register 3 is one.
Otherwise, a privileged-operation exception is
recognized. In the supervisor state, any value for
the specified access key is valid.

Condition Code: The code remains unchanged.

 Chapter 10. Control Instructions 10-57

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
� Privileged operation (selected PSW-key-mask

bit is zero in the problem state)

Programming Note: See the programming notes
for the MOVE WITH SOURCE KEY instruction.

MOVE WITH KEY

MVCK D�(R�,B�),D�(B�),R� [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐
│ 'D9' │ R� │ R� │ B� │ D� │ B� │ D� │
└────────┴────┴────┴────┴─/──┴────┴─/──┘
� 8 12 16 2� 32 36 47

The first operand is replaced by the second
operand. The fetch accesses to the second-
operand location are performed by using the key
specified in the third operand, and the store
accesses to the first-operand location are per-
formed by using the PSW key.

Bit positions 56-59 of general register R� are used
as the source access key. Bit positions 0-55 and
60-63 of the register are ignored.

General register R� contains an unsigned binary
integer called the true length. In the 24-bit or
31-bit addressing mode, the true length is in bit
positions 32-63 of the register, and the contents of
bit positions 0-31 of the register are ignored. In
the 64-bit addressing mode, the true length is in
bit positions 0-63 of the register.

The contents of the general registers just
described are as follows:

24-Bit or 31-Bit Addressing Mode
 ┌─/─┬──────────────────────────────────┐
R� │///│ True Length │
 └─/─┴──────────────────────────────────┘
 � 32 63

64-Bit Addressing Mode
 ┌─/────────────────────────────────────┐
R� │ True Length │
 └─/────────────────────────────────────┘
 � 63

 ┌─/──────────────────────────┬────┬────┐
R� │////////////////////////////│Key │////│
 └─/──────────────────────────┴────┴────┘
 � 56 6� 63

The first and second operands are of the same
length, called the effective length. The effective
length is equal to the true length or 256, which-
ever is less. Access exceptions for the first and
second operands are recognized only for that
portion of the operand within the effective length.
When the effective length is zero, no access
exceptions are recognized for the first and second
operands, and no movement takes place.

Each storage operand is processed left to right.
When the storage operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand byte was
fetched. The storage-operand-consistency rules
are the same as for the MOVE (MVC) instruction.

As part of the execution of the instruction, the
value of the true length is used to set the condi-
tion code. If the true length is 256 or less,
including zero, the true length and effective length
are equal, and condition code 0 is set. If the true
length is greater than 256, the effective length is
256, and condition code 3 is set.

Special Conditions

In the problem state, the operation is performed
only if the source access key is valid, that is, if the
corresponding PSW-key-mask bit in control reg-
ister 3 is one. Otherwise, a privileged-operation
exception is recognized. In the supervisor state,
any value for the source access key is valid.

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-22 on
page 10-59.

Resulting Condition Code:

0 True length less than or equal to 256
1 --
2 --
3 True length greater than 256

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
� Privileged operation (selected PSW-key-mask

bit is zero in the problem state)

10-58 z/Architecture Principles of Operation

┌──┐
│ 1.-6. Exceptions with the same priority as │
│ the priority of program-interruption │
│ conditions for the general case. │
│ │
│ 7.A Access exceptions for second and third │
│ instruction halfwords. │
│ │
│ 8. Privileged-operation exception due to │
│ selected PSW-key-mask bit being zero │
│ in the problem state. │
│ │
│ 9. Completion due to length zero. │
│ │
│1�. Access exceptions for operands. │
└──┘

Figure 10-22. Priority of Execution: MOVE WITH KEY

Programming Notes:

1. MOVE WITH KEY can be used in a loop to
move a variable number of bytes of any
length, as follows:

 LOOP MVCK D�(R�,B�),D�(B�),R�
 BC 8,END
 AHI B�,256
 AHI B�,256
 AHI R�,-256
 B LOOP
 END [Any instruction]

The above program is for execution in the
24-bit or 31-bit addressing mode. In the 64-bit
addressing mode, AGHI instructions should be
substituted for the AHI instructions.

2. The performance of MOVE WITH KEY on
most models may be significantly slower than
that of the MOVE (MVC) and MOVE LONG
instructions. Therefore, MOVE WITH KEY
should not be used if the keys of the source
and the target are the same.

MOVE WITH SOURCE KEY

MVCSK D�(B�),D�(B�) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐
│ 'E5�E' │ B� │ D� │ B� │ D� │
└────────────────┴────┴─/──┴────┴─/──┘
� 16 2� 32 36 47

The first operand is replaced by the second
operand. The accesses to the source-operand
location are performed by using the key specified
in general register 1, and the accesses to the

destination-operand location are performed by
using the PSW key.

The first and second operands are of the same
length, which is specified by bits 56-63 of general
register 0. Bits 0-55 of general register 0 are
ignored.

Bits 56-59 of general register 1 are used as the
specified access key. Bits 0-55 and 60-63 of
general register 1 are ignored.

The contents of general registers 0 and 1 are as
follows:

 ┌─/──────────────────────────┬─────────┐
GR� │////////////////////////////│ L │
 └─/──────────────────────────┴─────────┘
 � 56 63

 ┌─/──────────────────────────┬────┬────┐
GR1 │////////////////////////////│Key │////│
 └─/──────────────────────────┴────┴────┘
 � 56 6� 63

L specifies the number of bytes to the right of the
first byte of each operand. Therefore, the length
in bytes of each operand is 1-256, corresponding
to a length code in L of 0-255.

The fetch accesses to the second-operand
location are performed by using the key specified
in general register 1, and the store accesses to
the first-operand location are performed by using
the PSW key.

Each of the operands is processed left to right.
When the operands overlap destructively in real
storage, the results in the first-operand location
are unpredictable. Except for this unpredictability
in the case of destructive overlap, the storage-
operand-consistency rules are the same as for the
MOVE (MVC) instruction.

Special Conditions

In the problem state, the operation is performed
only if the access key specified in general register
1 is valid, that is, if the corresponding
PSW-key-mask bit in control register 3 is one.
Otherwise, a privileged-operation exception is
recognized. In the supervisor state, any value for
the specified access key is valid.

Condition Code: The code remains unchanged.

 Chapter 10. Control Instructions 10-59

 Program Exceptions:

� Access (fetch, operand 2; store, operand 1)
� Privileged operation (selected PSW-key-mask

bit is zero in the problem state)

Programming Notes:

1. When data is to be moved alternately in both
directions between two storage areas that are
fetch protected by means of different keys,
then MOVE WITH SOURCE KEY and MOVE
WITH DESTINATION KEY can be used while
leaving the PSW key unchanged; and this
may be, on most models, significantly faster
than using MOVE WITH KEY along with SET
PSW KEY FROM ADDRESS to change the
PSW key.

2. MOVE WITH SOURCE KEY and MOVE WITH
DESTINATION KEY should be used only
when movement is between storage areas
having different keys. The performance of
these instructions on most models may be sig-
nificantly slower than that of the MOVE (MVC)
instruction.

3. MOVE WITH SOURCE KEY or MOVE WITH
DESTINATION KEY can be used in a loop to
move a variable number of bytes as shown in
the following example. In the example, the
specified access key, the first-operand
address, the second-operand address, and
the length of each operand are assumed to be
in general registers 1-4, respectively, at the
beginning of the example. The length of each
operand is treated as a 32-bit signed value,
and a negative value is treated as zero.

 LTR 4,4
 BC 12,END
 AHI 4,-256
 BC 12,LAST
 LA �,255
LOOP MVCSK �(2),�(3)
 LA 2,256(2)
 LA 3,256(3)
 AHI 4,-256
 BC 2,LOOP
LAST LA �,255(4)
 MVCSK �(2),�(3)
END [Any instruction]

 PAGE IN

PGIN R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B22E' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

A page-in operation is performed which transfers a
4K-byte block to the real-storage location desig-
nated by general register R� from the expanded-
storage block designated by general register R�.

Bits 32-63 of general register R� are a 32-bit
unsigned binary integer called the expanded-
storage-block number. This number designates
the 4K-byte block of expanded storage which is to
be transferred. If the expanded-storage-block
number designates an inaccessible block in
expanded storage, condition code 3 is set.

The contents of general register R� are a real
address which designates a 4K-byte block in main
storage. In the 24-bit-addressing mode, bits 40-51
designate the block, and bits 0-39 are ignored. In
the 31-bit-addressing mode, bits 33-51 designate
the block, and bits 0-32 are ignored. In the
64-bit-addressing mode, bits 0-51 designate the
block. In all modes, bits 52-63 of the address are
ignored.

Because it is a real address, the address desig-
nating the main-storage block is not subject to
dynamic address translation. PAGE IN is not
subject to key-controlled storage protection, but
low-address protection does apply. PAGE IN is
not subject to program-event recording for storage
alteration.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

If the page-in operation is completed with no
errors, condition code 0 is set.

If the page-in operation encounters an expanded-
storage data error, condition code 1 is set. For an
expanded-storage data-error condition, the con-
tents of the entire 4K-byte block in real storage is
unpredictable, but this condition does not result in
the generation of invalid checking-block codes in
real storage.

10-60 z/Architecture Principles of Operation

If the expanded-storage block is not available, that
is, the block is not provided or is not currently in
the configuration, then condition code 3 is set, and
no other action is taken.

Operation of PAGE IN in a Multiple-CPU Con-
figuration

The accesses to main storage and to expanded
storage by PAGE IN are not necessarily single-
access references and are not necessarily per-
formed in a left-to-right direction, as observed by
other CPUs and by channel programs.

See also the description under PAGE OUT.

Resulting Condition Code:

0 Page-in operation completed
1 Expanded-storage data error
2 --
3 Expanded-storage block not available

 Program Exceptions:

� Addressing (block designated by general reg-
ister R�)

� Operation (if the expanded-storage facility is
not installed)

 � Privileged operation
� Protection (block designated by general reg-

ister R�; low-address protection)

 PAGE OUT

PGOUT R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B22F' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

A page-out operation is performed which transfers
a 4K-byte block from the real-storage location des-
ignated by general register R� to the expanded-
storage block designated by general register R�.

Bits 32-63 of general register R� are a 32-bit
unsigned binary integer called the expanded-
storage-block number. This number designates
the 4K-byte block of expanded storage which is to
be replaced. If the expanded-storage-block
number designates an inaccessible block in
expanded storage, condition code 3 is set.

The contents of general register R� are a real
address which designates a 4K-byte block in main
storage. In the 24-bit-addressing mode, bits 40-51
designate the block, and bits 0-39 are ignored. In
the 31-bit-addressing mode, bits 33-51 designate
the block, and bits 0-32 is ignored. In the
64-bit-addressing mode, bits 0-51 designate the
block. In all modes, bits 52-63 of the address are
ignored.

Because it is a real address, the address desig-
nating the main-storage block is not subject to
dynamic address translation. PAGE OUT is not
subject to key-controlled protection.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Depending on the model, after the data has been
written to the expanded-storage block, a read-
back-check operation may be performed to deter-
mine whether the data was written correctly. If the
read-back-check operation determines that the
data has been written correctly, condition code 0
is set. If the read-back-check operation
encounters an expanded-storage data error, con-
dition code 1 is set.

Most models do not perform the read-back-check
operation, and, after the page-out operation is
completed, condition code 0 is set.

Regardless of whether condition code 0 or condi-
tion code 1 is set, the entire 4K-byte block is
written. Errors, if any, in the block after the block
is written are preserved. Thus, if a subsequent
execution of PAGE IN addresses the same
expanded-storage block, the expanded-storage
data error will be detected and condition code 1
will be indicated.

If the expanded-storage block is not available, that
is, the block is not provided or is not currently in
the configuration, then condition code 3 is set, and
no other action is taken.

Operation of PAGE OUT in a Multiple-CPU
Configuration

The accesses to main storage and to expanded
storage by PAGE OUT are not necessarily single-
access references and are not necessarily per-

 Chapter 10. Control Instructions 10-61

formed in a left-to-right direction, as observed by
other CPUs and by channel programs.

If two or more CPUs issue PAGE IN or PAGE
OUT instructions at approximately the same
instant in time, depending on the model, the oper-
ations may be performed one at a time, or the
operations may be performed concurrently. Con-
current operation may occur even if the
instructions address the same expanded-storage
block.

When two or more PAGE OUT instructions
addressing the same expanded-storage block are
executed concurrently, the resulting values in the
expanded-storage block for each group of bytes
transferred may be from any of the instructions
being executed simultaneously. The number of
bytes transferred as a group depends on the
model.

Similarly, for concurrent execution of a PAGE IN
and a PAGE OUT instruction for the same
expanded-storage block, the resulting values for
each group of bytes transferred as a result of the
execution of the PAGE IN instruction may be
either the old or new values from the expanded-
storage block.

Concurrent operation of paging instructions does
not result in expanded-storage data errors.

Resulting Condition Code:

0 Page-out operation completed
1 Expanded-storage data error
2 --
3 Expanded-storage block not available

 Program Exceptions:

� Addressing (block designated by general reg-
ister R�)

� Operation (if the expanded-storage facility is
not installed)

 � Privileged operation

 PROGRAM CALL

PC D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B218' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

A program-call number specified by the second-
operand address is used in a two-level lookup to
locate an entry-table entry (ETE). The program is
authorized to use the ETE when the AND of the
PSW-key mask in control register 3 and the
authorization key mask in the ETE is nonzero or
when the CPU is in the supervisor state.

When the PC-type bit, bit 128 of the ETE, is zero,
an operation called basic PROGRAM CALL is per-
formed. When the PC-type bit is one, an opera-
tion called stacking PROGRAM CALL is per-
formed.

Basic PROGRAM CALL, in the 24-bit or 31-bit
addressing mode, loads the basic-
addressing-mode bit, bits 33-62 of the updated
instruction address, and the problem-state bit from
the PSW into bit positions 32-63 of general reg-
ister 14, and it leaves bits 0-31 of this register
unchanged. In the 64-bit addressing mode, bits
0-62 of the updated instruction address and the
problem-state bit are placed in bit positions 0-63
of general register 14. In any addressing mode,
the PSW-key mask and PASN are placed in bit
positions 32-63 of general register 3, and bits 0-31
of this register remain unchanged.

Stacking PROGRAM CALL places the entire PSW
contents, except with an unpredictable PER mask,
and also the PSW-key mask, PASN, SASN, and
EAX in a linkage-stack program-call state entry
that it forms. A called-space identification, an indi-
cation of whether the resulting addressing mode is
the 64-bit mode, the program-call number, and the
contents of general registers 0-15 and access reg-
isters 0-15 also are placed in the state entry.

For basic PROGRAM CALL, the extended-
addressing-mode bit, bit 31 of the PSW, must
have the same value as the entry-
extended-addressing-mode bit, bit 129 of the ETE;
otherwise, a special-operation exception is recog-
nized. Basic PROGRAM CALL does not change
bit 31 of the PSW and, therefore, does not switch
between a basic addressing mode (the 24-bit or

10-62 z/Architecture Principles of Operation

31-bit mode) and the extended addressing mode
(the 64-bit mode). In the 24-bit or 31-bit
addressing mode, basic PROGRAM CALL sets
the basic-addressing-mode bit, bit 32 of the PSW,
with the value of the entry-basic-addressing-mode
bit, bit 32 of the ETE, and, thus, it may switch
between the 24-bit and 31-bit addressing modes.
In the 64-bit addressing mode, bit 32 of the PSW
remains unchanged.

Stacking PROGRAM CALL, when bit 129 of the
ETE is zero, sets bit 31 of the PSW to zero and
sets bit 32 of the PSW with the value of bit 32 of
the ETE. When bit 129 of the ETE is one,
stacking PROGRAM CALL sets bits 31 and 32 of
the PSW to one. Thus, stacking PROGRAM
CALL can set the 24-bit, 31-bit, or 64-bit
addressing mode.

When the resulting addressing mode is the 24-bit
or 31-bit mode, both basic and stacking
PROGRAM CALL place bits 33-62 of the entry
instruction address in the ETE, which are bits
33-62 of the ETE, with 33 leftmost and one right-
most zeros appended, in bit positions 64-127 of
the PSW as the new instruction address, and they
place the entry-problem-state bit, bit 63 of the
ETE, in bit position 15 of the PSW as the new
problem-state bit. Bits 32-63 of the entry param-
eter in the ETE are placed in bit positions 32-63 of
general register 4, and bits 0-31 of this register
remain unchanged.

When the resulting addressing mode is the 64-bit
mode, both basic and stacking PROGRAM CALL
place bits 0-62 of the entry instruction address,
bits 0-62 of the ETE, with with one rightmost zero
appended, in bit positions 64-127 of the PSW, and
they place bit 63 of the ETE in bit position 15 of
the PSW. Bits 0-63 of the entry parameter in the
ETE are placed in general register 4.

Basic PROGRAM CALL ORs the entry key mask
from the ETE into the PSW-key mask in control
register 3. Stacking PROGRAM CALL does the
same, or it replaces the PSW-key mask with the
entry key mask, as determined by the
PSW-key-mask control in the ETE.

Stacking PROGRAM CALL optionally replaces the
PSW key in the PSW and the EAX in control reg-
ister 8 from the ETE, and it sets the address-

space-control bits in the PSW, as determined by
control bits in the ETE.

The ETE causes a space-switching operation to
occur if it contains a nonzero ASN. When the
ETE contains a zero ASN, the operation is called
PROGRAM CALL to current primary (PC-cp);
when the ETE contains a nonzero ASN, the oper-
ation is called PROGRAM CALL with space
switching (PC-ss). When space switching is spec-
ified, the new PASN is loaded into control register
4 from the ETE, and a new primary-ASTE origin
(PASTEO) is loaded into control register 5, also
from the ETE. From the PASTE, a new primary
ASCE (PASCE) and AX are loaded into control
registers 1 and 4, respectively.

In both PC-cp and PC-ss, the SASN and sec-
ondary ASCE (SASCE) are set equal to the ori-
ginal PASN and PASCE, respectively. However,
the space-switching stacking PROGRAM CALL
operation may instead set the SASN and SASCE
equal to the new PASN and PASCE, respectively,
as determined by a control bit in the ETE.

In a PC-ss to the base space of the dispatchable
unit when the dispatchable unit is subspace
active, bits 0-55 and 58-63 of the new PASCE are
replaced by the same bits of the ASCE in the
ASTE for the subspace in which the dispatchable
unit last had control. This occurs before the pos-
sible setting of the SASCE equal to the PASCE.

PROGRAM CALL PC-Number Translation

The second-operand address is not used to
address data; instead, the rightmost 20 bits of the
address are used as a PC number and have the
following format:

Second-Operand Address

 ┌──────PC Number──────┐
┌─/─────────────┬────────────┬────────┐
│///////////////│ LX │ EX │
└─/─────────────┴────────────┴────────┘
� 44 56 63

Linkage Index (LX): Bits 44-55 of the second-
operand address are the linkage index and are
used to select an entry from the linkage table des-
ignated by the linkage-table designation in the
primary ASTE.

 Chapter 10. Control Instructions 10-63

Entry Index (EX): Bits 56-63 of the second-
operand address are the entry index and are used
to select an entry from the entry table designated
by the linkage-table entry.

Bits 0-43 of the second-operand address are
ignored.

The linkage-table and entry-table lookup process
is depicted in part 1 of Figure 10-24 on
page 10-70. The detailed definition of this table-
lookup process is in “PC-Number Translation” on
page 5-30.

The 32-byte entry-table entry (ETE) has the fol-
lowing format:

When Resulting Addressing Mode Is the
24-Bit or 31-Bit Mode
┌─────────────────┬─┬─────────────┬─┐
│ │A│ EIA │P│
└─────────────────┴─┴─────────────┴─┘
� 32 63

When Resulting Addressing Mode Is the
64-Bit Mode
┌─────────────────────────────────┬─┐
│ EIA │P│
└─────────────────────────────────┴─┘
� 63

┌────────┬────────┬────────┬────────┐
│ AKM │ ASN │ EKM │ │
└────────┴────────┴────────┴────────┘
64 8� 96 112 127

┌────────┬────────┬─┬────────┬──────┐
│Cntrl/EK│ EEAX │ │ASTE Adr│ │
└────────┴────────┴─┴────────┴──────┘
128 144 16� 186 191

┌───────────────────────────────────┐
│ Entry Parameter │
└───────────────────────────────────┘
192 255

Bits 128-143 of the ETE have the following
detailed format:

┌─┬─┬─┬─┬─┬─┬─┬─┬────┬────┐
│T│G│ │K│M│E│C│S│ EK │ │
└─┴─┴─┴─┴─┴─┴─┴─┴────┴────┘
128 131 136 143

For basic PROGRAM CALL in the 24-bit or 31-bit
addressing mode when bit 32 of the ETE (A) is

zero (specifying the 24-bit mode), and for stacking
PROGRAM CALL when bits 32 (A) and 129 (G)
are zeros (specifying the 24-bit mode), bits 33-39
must be zeros; otherwise, a
PC-translation-specification exception is recog-
nized.

After the ETE has been fetched, if the current
PSW specifies the problem state, the current
PSW-key mask in control register 3 is tested
against the AKM field in the ETE to determine
whether the program is authorized to access this
entry. The AKM and PSW-key mask are ANDed,
and, if the result is zero, a privileged-operation
exception is recognized. The PSW-key mask in
control register 3 remains unchanged. When
PROGRAM CALL is executed in the supervisor
state, the AKM field is ignored.

If the result of the AND of the AKM and the
PSW-key mask is not zero, or if the CPU is in the
supervisor state, the execution of the instruction
continues.

If bit 128 of the ETE (T) is zero, the basic
PROGRAM CALL operation is specified. If bit 128
of the ETE is one, the stacking PROGRAM CALL
operation is specified.

Basic PROGRAM CALL

The following operations are performed when
basic PROGRAM CALL is specified.

Bit 31 of the current PSW (the extended-
addressing-mode bit) must equal bit 129 (G) of the
ETE; otherwise, a special-operation exception is
recognized.

In the 24-bit or 31-bit addressing mode, bits
97-126 of the PSW (bits 33-62 of the updated
instruction address) are placed in bit positions
33-62 of general register 14, bit 32 of the PSW
(the basic-addressing-mode bit) is placed in bit
position 32 of the register, and bit 15 of the PSW
(the problem-state bit) is placed in bit position 63
of the register. Bits 0-31 of the register remain
unchanged.

In the 64-bit addressing mode, bits 64-126 of the
PSW (bits 0-62 of the updated instruction address)
are placed in bit positions 0-62 of general register
14, and bit 15 of the PSW (the problem-state bit)
is placed in bit position 63 of the register.

10-64 z/Architecture Principles of Operation

In the 24-bit or 31-bit addressing mode, bits 32
and 33-62 of the ETE (A and the EIA), with a zero
appended on the right of bits 33-62, are placed in
PSW bit positions 32 and 97-127, respectively (the
basic-addressing-mode bit and bits 33-63 of the
instruction address). In the 64-bit addressing
mode, bits 0-62 of the ETE, with a zero appended
on the right, are placed in PSW bit positions
64-127 (the instruction address), and PSW bit 32
remains unchanged. In any addressing mode, bit
63 of the ETE (P) is placed in PSW bit position 15
(the problem-state bit).

The PSW-key mask, bits 32-47 of control register
3, is placed in bit positions 32-47 of general reg-
ister 3, and the current PASN, bits 48-63 of
control register 4, is placed in bit positions 48-63
of general register 3. Bits 0-31 of general register
3 remain unchanged.

Bits 96-111 of the ETE (the EKM) are ORed with
the PSW-key mask, bits 32-47 of control register
3, and the result replaces the PSW-key mask in
control register 3.

In the 24-bit or 31-bit addressing mode, bits
224-255 of the ETE (bits 32-63 of the entry
parameter) are loaded into bit positions 32-63 of
general register 4, and bits 0-31 of the register
remain unchanged. In the 64-bit addressing
mode, bits 192-255 of the ETE (the entry param-
eter), are loaded into bit positions 0-63 of general
register 4.

Stacking PROGRAM CALL

The following operations are performed when
stacking PROGRAM CALL is specified.

The stacking process is performed to form a
linkage-stack program-call state entry and place
the following information in the state entry:
current PSW (with an unpredictable PER mask),
PSW-key mask, PASN, SASN, EAX, called-space
identification, an indication of whether the resulting
addressing mode is the 64-bit mode, program-call
number, contents of general registers 0-15, and
contents of access registers 0-15. This is
described in “Stacking Process” on page 5-73.
The entry-type code in the state entry is 0001101
binary.

When bit 129 of the ETE (G) is zero, bit 31 of the
PSW (the extended-addressing-mode bit) is set to

zero, and bit 32 of the ETE (A) is placed in bit
position 32 of the PSW (the basic-
addressing-mode bit). (The addressing mode is
set to the 24-bit mode if bit 32 is zero or to the
31-bit mode if bit 32 is one.) When bit 129 of the
ETE is one, bits 31 and 32 of the PSW are set to
one. (The 64-bit addressing mode is set.)

When the resulting addressing mode is the 24-bit
or 31-bit mode, bits 33-62 of the ETE (the EIA),
with 33 leftmost and one rightmost zeros
appended, are placed in PSW bit positions 64-127
(the instruction address). When the resulting
addressing mode is the 64-bit mode, bits 0-62 of
the ETE (the EIA), with one rightmost zero
appended, are placed in PSW bit positions
64-127.

Bit 63 of the ETE (P) is placed in PSW bit position
15 (the problem-state bit).

When bit 131 of the ETE (K) is zero, bits 8-11 of
the PSW (the PSW key) remain unchanged.
When bit 131 of the ETE is one, bits 136-139 of
the ETE (the EK) replace the PSW key in the
PSW.

When bit 132 of the ETE (M) is zero, bits 96-111
of the ETE (the EKM) are ORed with the PSW-key
mask, bits 32-47 of control register 3, and the
result replaces the PSW-key mask in control reg-
ister 3. When bit 132 of the ETE is one, bits
96-111 of the ETE replace the PSW-key mask in
control register 3.

When bit 133 of the ETE (E) is zero, the EAX, bits
32-47 of control register 8, remains unchanged.
When bit 133 of the ETE is one, bits 144-159 of
the ETE (the EEAX) replace the EAX in control
register 8.

When bit 134 of the ETE (C) is zero, bits 16 and
17 of the PSW (the address-space-control bits)
are set to 00 binary (primary-space mode). When
bit 134 of the ETE is one, the address-
space-control bits in the PSW are set to 01 binary
(access-register mode).

When the resulting addressing mode is the 24-bit
or 31-bit mode, bits 224-255 of the ETE (bits
32-63 of the entry parameter) are loaded into bit
positions 32-63 of general register 4, and bits 0-31
of this register remain unchanged. When the
resulting addressing mode is the 64-bit mode, bits

 Chapter 10. Control Instructions 10-65

192-255 of the ETE (the entry parameter), are
loaded into bit positions 0-63 of general register 4.

Key-controlled protection does not apply to refer-
ences to the linkage stack, but low-address and
page protection do apply.

PROGRAM CALL to Current Primary (PC-cp)

If bits 80-95 of the ETE (the ASN), are zeros,
PROGRAM CALL to current primary (PC-cp) is
specified, and the execution of the instruction is
completed after the operations described in
“PROGRAM CALL PC-Number Translation” and
either “Basic PROGRAM CALL” or “Stacking
PROGRAM CALL” have been performed and the
following operations have been performed.

The current PASN, bits 48-63 of control register 4,
is placed in bit positions 48-63 of control register 3
to become the current SASN.

The current PASCE in control register 1 is placed
in control register 7 to become the current
SASCE.

The basic PC-cp operation is depicted in parts 1-3
of Figure 10-24 on page 10-70. The stacking
PC-cp operation is depicted in parts 1, 4, and 5 of
the figure.

PROGRAM CALL with Space Switching (PC-ss)

If the ASN in the ETE is nonzero, PROGRAM
CALL with space switching (PC-ss) is specified,
and the execution of the instruction is completed
after the operations described in “PROGRAM
CALL PC-Number Translation” and either “Basic
PROGRAM CALL” or “Stacking PROGRAM CALL”
have been performed and the following operations
have been performed.

Bits 80-95 of the ETE (the ASN) are placed in bit
positions 48-63 of control register 4 as the new
PASN.

Bits 161-185 of the ETE, with six zeros appended
on the right, are used as the real address of the
ASTE designated by the new PASN. An
ASX-translation exception is recognized if bit 0 of
the ASTE is one.

Bits 64-127 of the ASTE (the ASCE) are placed in
control register 1 as the new PASCE.

Bits 32-47 of the ASTE (the AX) are placed in bit
positions 32-47 of control register 4 as the new
authorization index.

Bits 33-57 of the ASTE address are placed in bit
positions 33-57 of control register 5 as the new
primary-ASTE origin, and zeros are placed in bit
positions 32 and 58-63. Bits 0-31 of the register
remain unchanged.

In basic PROGRAM CALL, or in stacking
PROGRAM CALL when bit 135 of the ETE (S) is
zero, the PASN existing before the PASN is
replaced from the ETE is placed in bit positions
48-63 of control register 3 to become the current
SASN, and the PASCE existing before the PASCE
is replaced from the ASTE is placed in control reg-
ister 7 to become the current SASCE. (The SASN
and SASCE are set equal to the old PASN and
PASCE, respectively.)

In stacking PROGRAM CALL when bit 135 of the
ETE (S) is one, the SASN is replaced by the
PASN after the PASN is replaced from the ETE,
and the SASCE is replaced by the PASCE after
the PASCE is replaced from the ASTE. (The
SASN and SASCE are set equal to the new PASN
and PASCE, respectively.)

The description in this paragraph applies to use of
the subspace-group facility. After the new PASCE
has been placed in control register 1 and the new
primary-ASTE origin has been placed in control
register 5, if (1) the subspace-group-control bit, bit
54, in the PASCE is one, (2) the dispatchable unit
is subspace active, and (3) the primary-ASTE
origin designates the ASTE for the base space of
the dispatchable unit, then bits 0-55 and 58-63 of
the PASCE are replaced by the same bits of the
ASCE in the ASTE for the subspace in which the
dispatchable unit last had control. This replace-
ment occurs before a replacement of the SASCE
in control register 7 by the PASCE. Further
details are in “Subspace-Replacement Operations”
on page 5-60.

The PC-ss operation is depicted in parts 1 and 4-6
of Figure 10-24 on page 10-70.

10-66 z/Architecture Principles of Operation

PROGRAM CALL Serialization

For both the PC-cp and PC-ss operations, a
serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed.

Special Conditions

The basic PROGRAM CALL operation can be per-
formed successfully only when (1) the CPU is in
the primary-space mode at the beginning of the
operation, (2) the subsystem-linkage control, bit 0
of the linkage-table designation, is one, and
(3) the extended-addressing-mode bit, bit 31 of
the current PSW, equals the entry-
extended-addressing-mode bit, bit 129 of the
entry-table entry. Stacking PROGRAM CALL can
be performed successfully only when the CPU is
in the primary-space mode or access-register
mode at the beginning of the operation and the
subsystem-linkage control is one. In addition,
PC-ss can be performed successfully only when
the ASN-translation control, bit 44 of control reg-
ister 14, is one. If any of these rules is violated, a
special-operation exception is recognized.

A stack-full or stack-specification exception may
be recognized during the stacking process.

When, for PC-ss, the primary space-switch-
event-control bit, bit 57 of control register 1, is one
either before or after the execution of the instruc-
tion, a space-switch-event program interruption

occurs after the operation is completed. A space-
switch-event program interruption also occurs after
the completion of a PC-ss operation if a PER
event is reported.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-23 on
page 10-68.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch or store, except for key-
controlled protection, linkage-stack entry)

� Addressing (linkage-table designation in
primary ASN-second-table entry; linkage-table
entry; entry-table entry; ASN-second-table
entry, PC-ss only)

� ASX translation (PC-ss only)
 � EX translation
 � LX translation
 � PC-translation specification
� Privileged operation (AND of AKM and

PSW-key mask is zero in the problem state)
� Space-switch event (PC-ss only)

 � Special operation
� Stack full (stacking PC only)
� Stack specification (stacking PC only)
� Subspace replacement (PC-ss only)

 � Trace

 Chapter 10. Control Instructions 10-67

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program-│
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B Special-operation exception due to DAT being off or the CPU │
│ being in secondary-space mode or home-space mode. │
│ │
│ 8.A Trace exceptions. │
│ │
│ 8.B.1 Addressing exception for access to linkage-table designation │
│ in primary ASN-second-table entry. │
│ │
│ 8.B.2 Special-operation exception due to subsystem-linkage control │
│ in linkage-table designation being zero. │
│ │
│ 8.B.3 LX-translation exception due to linkage-table entry being │
│ outside table. │
│ │
│ 8.B.4 Addressing exception for access to linkage-table entry. │
│ │
│ 8.B.5 LX-translation exception due to I bit (bit �) in │
│ linkage-table entry being one. │
│ │
│ 8.B.6 EX-translation exception due to entry-table entry being │
│ outside table. │
│ │
│ 8.B.7 Addressing exception for access to entry-table entry. │
│ │
│ 8.B.8 Special-operation exception due to the CPU being in access- │
│ register mode or extended-addressing-mode bit, bit 31 of PSW,│
│ not being equal to entry-extended-addressing-mode bit, bit │
│ 129 of entry-table entry (basic PC only). │
│ │
│ 8.B.9 PC-translation-specification exception due to invalid combi- │
│ nation (bits 33-39 not zeros when resulting addressing mode │
│ is 24 bit) in entry-table entry. │
│ │
│ 8.B.1� Privileged-operation exception due to zero result from ANDing│
│ PSW-key mask and AKM in the problem state. │
│ │
│ 8.B.11 Special-operation exception due to ASN-translation control, │
│ bit 44 of control register 14, being zero (PC-ss only). │
│ │
│ 8.B.12 Addressing exception for access to ASN-second-table entry │
│ (PC-ss only). │
│ │
│ 8.B.13 ASX-translation exception due to I bit (bit �) in ASN-second-│
│ table entry being one (PC-ss only). │
└──┘

Figure 10-23 (Part 1 of 2). Priority of Execution: PROGRAM CALL

10-68 z/Architecture Principles of Operation

┌──┐
│ Note: Subspace-replacement exceptions, which are not shown │
│ in detail in this figure, can occur with any priority after │
│ 8.B.13 and before 9. │
│ │
│ 8.B.14 Access exceptions (fetch) for entry descriptor of the current│
│ linkage-stack entry (stacking PC only). │
│ │
│ Note: Exceptions 8.B.15-8.B.2� can occur only if there is │
│ not enough remaining free space in the current linkage-stack │
│ section. │
│ │
│ 8.B.15 Stack-specification exception due to remaining-free-space │
│ value in current linkage-stack entry not being a multiple of │
│ 8. │
│ │
│ 8.B.16 Access exceptions (fetch) for second word of the trailer │
│ entry of the current section. The entry is presumed to be a │
│ trailer entry; its entry-type field is not examined │
│ (stacking PC only). │
│ │
│ 8.B.17 Stack-full exception due to forward-section validity bit in │
│ the trailer entry being zero (stacking PC only). │
│ │
│ 8.B.18 Access exceptions (fetch) for entry descriptor of the header │
│ entry of the next section (stacking PC only). This entry is │
│ presumed to be a header entry; its entry-type field is not │
│ examined. │
│ │
│ 8.B.19 Stack-specification exception due to not enough remaining │
│ free space in the next section (stacking PC only). │
│ │
│ 8.B.2� Access exceptions (store) for second word of the header entry│
│ of the next section. If there is no exception, the header is│
│ now called the current entry. │
│ │
│ 8.B.21 Access exceptions (store) for entry descriptor of the current│
│ entry and for the new state entry (stacking PC only). │
│ │
│ 9. Space-switch event (PC-ss only). │
└──┘

Figure 10-23 (Part 2 of 2). Priority of Execution: PROGRAM CALL

 Chapter 10. Control Instructions 10-69

PC-Number Translation

PROGRAM CALL Instruction
 ┌────────┬──┬──────┐

│ 'B218' │B�│ D� │
 └────────┴──┴──────┘
 └────┬────┘
 │

Primary ASTE Bits 192-223 │ Operand-2
 ┌─┬───────────┬───┐ � Address
 │V│ LTO │LTL│ ┌────────────────────────────────┐
 └─┴──────┬────┴───┘ ┌────────────────────┬──────┬────┐

│(x128) │////////////////////│ LX │ EX │�
┌────────────┘ └────────────────────┴───┬──┴──┬─┘
│ │(x4) │(x32)
│ ┌──┘ │
│ � │
│ ┌─┐ Linkage Table │
└───�│+│ ┌──────────────────┐ │
 └┬┘ │ │ │
 │ │ │ │
 └─�├─┬────────────┬───┤ │
 R │I│ ETO │ETL│ │
 ├─┴─────┬──────┴───┤ │
 │ │(x64) │ │
 │ │ │ │
 └───────┼──────────┘ │
 │ │
┌────────────────┘ │
│ │
│ ┌──┘
│ �
│ ┌─┐ Entry Table
└───�│+│ ┌───┐
 └┬┘ │ │
 │ │ │
 └─�├─────────────────┬─┬─────────────┬─┬────────┬────────┬────────┬────────┤

R │ �� │A│ EIA │P│ AKM │ ASN │ EKM │ │
 ├─┬─┬─┬─┬─┬─┬─┬──┬┴─┴─┬───────────┴─┼────────┴────────┴────────┴────────┤
 │T│G│K│M│E│C│S│EK│EEAX│ ASTE Adr. │ EP │
 ├─┴─┴─┴─┴─┴─┴─┴──┴────┴─────────────┴───────────────────────────────────┤
 │ │
 │ │
 └───┘

R: Address is real.
�: In stacking PC, PC number is placed in linkage stack.
��: First word and A of ETE are bits �-32 of EIA if resulting addressing

mode is the 64-bit mode.

Figure 10-24 (Part 1 of 6). Execution of PROGRAM CALL

10-70 z/Architecture Principles of Operation

Basic PC-cp and PC-ss in 24- or 31-Bit Addressing Mode

 Entry-Table Entry
┌─────────────┬─┬──────────┬─┬──────┬──────┬──────┬──────┬─┬─┬─/─┬─────────┬─────────────┬─────────────┐
│ │A│ EIA │P│ AKM │ ASN │ EKM │ │T│G│ │ASTE Adr.│ │ EP 32-63 │
└─────────────┴┬┴─────┬────┴┬┴──────┴──────┴──────┴──────┴─┴┬┴─/─┴─────────┴─────────────┴──────┬──────┘

│ │ │└─Shown again below──┘ T=� │ │
 ┌───┼──────┼─────┘ � │
 │ │ │ ┌───┐No │

│ │ └──With 33 Zeros on Left──┐ │=�?├─�Special-Op. │
 │ └────┐ │ └───┘ Exception │
 � � � �
PSW ┌────┬─┬────┬─┬─┬────────────┬─────────────────────────┬─┐ GR4 ┌─────────────┐
after│ │P│ │E│A│ │ IA �-62 │�│ 32-63│ EP 32-63 │
 └────┴─┴────┴─┴─┴────────────┴─────────────────────────┴─┘ after└─────────────┘
 E=�
 ┌─────From above─────┐
 ┌──────┬──────┬──────┐
 │ AKM │ ASN │ EKM │
 └──┬───┴──┬───┴──┬───┘

│ │ │
 ┌─────────────────────────────┘ └──────┼────────────────────────┐
 � │ │
┌───┐ Privileged-Op. │ │
│AND├──�Exception if │ │
└───┘ Zero in Problem │ │
 � State ┌─────────────────┘ │
 │ │ �
│ CR3 ┌──────┬──────┐ │ CR4 ┌──────┬──────┐ / \
│ 32-63 │ PKM │ SASN │ │ 32-63 │ AX │ PASN │ / \
│ before└──┬───┴──────┘ │ before└──────┴──┬───┘ Yes / ASN \ No

 │ │ │ │ ┌───────┤ =� ├───────┐
 ��─────────� │ │ │ \ ? / │
│ │ │ │ � \ / �
│ � │ │ PC-cp _/ PC-ss

 │ ┌──┐ │ │ Instruction Operations
│ │OR│�───────────┘ │ Complete on ASTE (See

 │ └┬─┘ │ Part 6)
 │ │ ┌─────────�──────────────────┘
 │ � � │ CR1 ┌───────────────────────────┐
 │ CR3 ┌──────┬──────┐ │ before│ PASCE │
 │ 32-63│ PKM │ SASN │ │ └─────────────┬─────────────┘
 │ after└──────┴──────┘ │ │
 │ │ │
 └──────────┐ ┌─────────┘ │
 │ │ �
 � � CR7 ┌───────────────────────────┐

GR3 ┌──────┬──────┐ after│ SASCE │
32-63│ PKM │ PASN │ └───────────────────────────┘

 after└──────┴──────┘

PSW ┌────┬─┬────┬─┬─┬────────────┬─────────────────────────┬─┐
before│ │P│ │E│A│ │ IA �-62 │�│
 └────┴┬┴────┴─┴┬┴────────────┴─────────────────────────┴─┘
 │ E=� │ └─IA 33-62──┘
 │ └───────────────────────────┐ │
 │ │ │
 └────────────────────────────────────┼─────┼─────┐

│ │ │
� � �

 GR14 ┌─┬─────────┬─┐
32-63│A│IA 33-62 │P│

 after└─┴─────────┴─┘

Figure 10-24 (Part 2 of 6). Execution of PROGRAM CALL

 Chapter 10. Control Instructions 10-71

Basic PC-cp and PC-ss in 64-Bit Addressing Mode

 Entry-Table Entry
┌──────────────────────────┬─┬──────┬──────┬──────┬──────┬─┬─┬─/─┬─────────┬───────────────────────────┐
│ EIA │P│ AKM │ ASN │ EKM │ │T│G│ │ASTE Adr.│ EP │
└─────────────┬────────────┴┬┴──────┴──────┴──────┴──────┴─┴┬┴─/─┴─────────┴─────────────┬─────────────┘

│ │└─Shown again below──┘ T=� │ │
 ┌──┼─────────────┘ � │
 │ │ ┌───┐No │
 │ └─────────────────────────────────┐ │=1?├─�Special-Op. │
 │ │ └───┘ Exception │
 � � �
PSW ┌────┬─┬────┬─┬─┬────────────┬─────────────────────────┬─┐ GR4 ┌───────────────────────────┐
after│ │P│ │E│A│ │ IA �-62 │�│ after│ EP │
 └────┴─┴────┴─┴─┴────────────┴─────────────────────────┴─┘ └───────────────────────────┘
 E=1 A=1
 ┌─────From above─────┐
 ┌──────┬──────┬──────┐
 │ AKM │ ASN │ EKM │
 └──┬───┴──┬───┴──┬───┘

│ │ │
 ┌─────────────────────────────┘ └──────┼────────────────────────┐
 │ │ │
 � │ │
┌───┐ Privileged-Op. │ │
│AND├──�Exception if │ │
└───┘ Zero in Problem │ │
 � State ┌─────────────────┘ │
 │ │ �
│ CR3 ┌──────┬──────┐ │ CR4 ┌──────┬──────┐ / \
│ 32-63 │ PKM │ SASN │ │ 32-63 │ AX │ PASN │ / \
│ before└──┬───┴──────┘ │ before└──────┴──┬───┘ Yes / ASN \ No

 │ │ │ │ ┌───────┤ =� ├───────┐
 ��─────────� │ │ │ \ ? / │
│ │ │ │ � \ / �
│ � │ │ PC-cp _/ PC-ss

 │ ┌──┐ │ │ Instruction Operations
│ │OR│�───────────┘ │ Complete on ASTE (See

 │ └┬─┘ │ Part 6)
 │ │ ┌─────────�──────────────────┘
 │ � � │
 │ CR3 ┌──────┬──────┐ │ CR1 ┌───────────────────────────┐
 │ 32-63│ PKM │ SASN │ │ before│ PASCE │
 │ after└──────┴──────┘ │ └─────────────┬─────────────┘
 │ │ │
 └──────────┐ ┌─────────┘ │
 │ │ │
 � � �
 GR3 ┌──────┬──────┐ CR7 ┌───────────────────────────┐

32-63│ PKM │ PASN │ after│ SASCE │
 after└──────┴──────┘ └───────────────────────────┘

PSW ┌────┬─┬────┬─┬─┬────────────┬─────────────────────────┬─┐
before│ │P│ │E│A│ │ IA �-62 │�│
 └────┴┬┴────┴─┴─┴────────────┴────────────┬────────────┴─┘
 │ E=1 A=1 │
 │ │
 └───────────────────────────────────┼─────────────┐
 │ │
 � �
 GR14 ┌─────────────────────────┬─┐
 after│ IA �-62 │P│
 └─────────────────────────┴─┘

Figure 10-24 (Part 3 of 6). Execution of PROGRAM CALL

10-72 z/Architecture Principles of Operation

Stacking PC-cp and PC-ss from 24- or 31-Bit Addressing Mode to 64-Bit Mode

 Entry-Table Entry
┌──────────────────────────┬─┬──────┬──────┬──────┬/┬─┬─┬─┬─┬─┬─┬─┬──┬────┬─────────┬/─────────────────┐
│ EIA │P│ AKM │ ASN │ EKM │ │T│G│K│M│E│C│S│EK│EEAX│ASTE Adr.│ EP │
└─────────────┬────────────┴┬┴──────┴──────┴──────┴/┴─┴─┴─┴─┴─┴┬┴─┴┬─┴─┬──┴─────────┴/───┬─────────────┘

│ │└─Shown again below──┘ T=1 │ │ │ │
┌─┼─────────────┘ G=1 │ │ │ GR4 after �
│ │ │ │ │ ┌──────────────────────────┐
│ └─────────────────────────────────┐ │ │ │ │ EP │
│ │ │ │ │ └──────────────────────────┘
│ ┌───────────────────────────────┼──────────────┘ │ │

 │ │ │ │ │E=1
 K=1┌──┼───┼───────────────────────────────┼──────────────────┘ └────────────────────┐

│ │ │ 1 1 │ �
� � � � � � CR8 ┌──────┬──────┐

PSW ┌/┬───┬─┬─┬─┬/┬─┬─┬──────────┬─────────────────────────┬─┐ 32-63│ EAX │ │
after│ │Key│P│�│C│ │E│A│ │ IA �-62 │�│ after└──────┴──────┘
 └/┴───┴─┴─┴─┴/┴─┴─┴──────────┴─────────────────────────┴─┘

 ┌─────From above─────┐ ┌─�LS
 ┌──────┬──────┬──────┐ CR8 ┌──┴───┬──────┐

│ AKM │ ASN │ EKM │ 32-63 │ EAX │ │
 └──┬───┴──┬───┴──┬───┘ before└──────┴──────┘

│ │ │
 ┌─────────────────────────────┘ └──────┼────────────────────────┐
 │ │ │
� Privileged-Op. │ │

┌───┐ Exception if │ │
│AND├──�Zero in Problem │ │
└───┘ State │ │
 � LS ┌─────────────────┘ │
 │ � │ �
│ CR3 ┌──────┬─────┴┐ │ CR4 ┌──────┬──────┐ / \
│ 32-63 │ PKM │ SASN │ │ 32-63 │ AX │ PASN ├─�LS / \
│ before└──┬───┴──────┘ │ before└──────┴──┬───┘ Yes / ASN \ No

 │ │ │ │ ┌───────┤ =� ├───────┐
 └�─────────�──�LS │ │ │ \ ? / │

│ │ │ � \ / �
│ │ │ PC-cp _/ PC-ss

 � │ │ Instruction Operations
 ┌──┐ │ │ Complete on ASTE (See
 │OR│�───────────� │ Part 6)
 └┬─┘ │ │
 │ ┌────────────┘ │
 M=�│ │M=1 PC-cp, or │

│ │ PC-ss and S=� � │
 │ │ ┌────────────────────────────┘
 � � �
 CR3 ┌──────┬──────┐ CR1 ┌───────────────────────────┐

32-63│ PKM │ SASN │ before│ PASCE │
 after└──────┴──────┘ └─────────────┬─────────────┘
 │PC-cp, or

│PC-ss and S=� �
 PSW ┌──────/──────┐ │

before│ PSW ├──�LS �
 └──────/──────┘ CR7 ┌───────────────────────────┐

after│ SASCE │
 └───────────────────────────┘

�: If PC-ss and S=1, SASN is replaced by new PASN, and SASCE is replaced by new PASCE.

Figure 10-24 (Part 4 of 6). Execution of PROGRAM CALL

 Chapter 10. Control Instructions 10-73

Stacking PC-cp and PC-ss from 64-Bit to 24- or 31-Bit Addressing Mode

 Entry-Table Entry
┌────────────┬─┬───────────┬─┬──────┬──────┬──────┬/┬─┬─┬─┬─┬─┬─┬─┬──┬────┬─────────┬─/──┬─────────────┐
│ │A│ EIA │P│ AKM │ ASN │ EKM │ │T│G│K│M│E│C│S│EK│EEAX│ASTE Adr.│ │ EP 32-63 │
└────────────┴┬┴─────┬─────┴┬┴──────┴──────┴──────┴/┴─┴─┴─┴─┴─┴┬┴─┴┬─┴─┬──┴─────────┴─/──┴──────┬──────┘

│ │ │└─Shown again below──┘ T=1 │ │ │ │
┌─┼──────┼──────┘ G=� │ │ │ │
│ │ │ │ │ │ �
│ │ └──With 33 Zeros on Left───┐ │ │ │ GR4 ┌─────────────┐
│ │ │ │ │ │ 32-63│ EP 32-63 │
│ └───────┐ │ │ │ │ after└─────────────┘
│ │ │ │ │ │
│ ┌─────┼─────────────────────────┼──────────────┘ │ │

 │ │ │ │ │ │E=1
 K=1┌──┼───┼─────┼─────────────────────────┼──────────────────┘ └────────────────────┐

│ │ │ � │ │ �
� � � � � � CR8 ┌──────┬──────┐

PSW ┌/┬───┬─┬─┬─┬/┬─┬─┬──────────┬─────────────────────────┬─┐ 32-63│ EAX │ │
after│ │Key│P│�│C│ │E│A│ │ IA �-62 │�│ after└──────┴──────┘
 └/┴───┴─┴─┴─┴/┴─┴─┴──────────┴─────────────────────────┴─┘

 ┌─────From above─────┐ ┌─�LS
 ┌──────┬──────┬──────┐ CR8 ┌──┴───┬──────┐

│ AKM │ ASN │ EKM │ 32-63 │ EAX │ │
 └──┬───┴──┬───┴──┬───┘ before└──────┴──────┘

│ │ │
 ┌─────────────────────────────┘ └──────┼────────────────────────┐
 │ │ │
� Privileged-Op. │ │

┌───┐ Exception if │ │
│AND├──�Zero in Problem │ │
└───┘ State │ │
 � LS ┌─────────────────┘ │
 │ � │ �
│ CR3 ┌──────┬─────┴┐ │ CR4 ┌──────┬──────┐ / \
│ 32-63 │ PKM │ SASN │ │ 32-63 │ AX │ PASN ├─�LS / \
│ before└──┬───┴──────┘ │ before└──────┴──┬───┘ Yes / ASN \ No

 │ │ │ │ ┌───────┤ =� ├───────┐
 └�─────────�──�LS │ │ │ \ ? / │

│ │ │ � \ / �
│ │ │ PC-cp _/ PC-ss

 � │ │ Instruction Operations
 ┌──┐ │ │ Complete on ASTE (See
 │OR│�───────────� │ Part 6)
 └┬─┘ │ │
 │ ┌────────────┘ │
 M=�│ │M=1 PC-cp, or │

│ │ PC-ss and S=� � │
 │ │ ┌────────────────────────────┘
 � � �
 CR3 ┌──────┬──────┐ CR1 ┌───────────────────────────┐

32-63│ PKM │ SASN │ before│ PASCE │
 after└──────┴──────┘ └─────────────┬─────────────┘
 │PC-cp, or

│PC-ss and S=� �
 PSW ┌──────/──────┐ │

before│ PSW ├──�LS �
 └──────/──────┘ CR7 ┌───────────────────────────┐

after│ SASCE │
 └───────────────────────────┘

�: If PC-ss and S=1, SASN is replaced by new PASN, and SASCE is replaced by new PASCE.

Figure 10-24 (Part 5 of 6). Execution of PROGRAM CALL

10-74 z/Architecture Principles of Operation

Operations on ASN-Second-Table Entry for PC-ss

 ┌───────────────────────────────┐
Entry-Table Entry │ │

 ┌─────────────────┬─┬─────────────┬─┬────────┬───┴────┬────────┬────────┐ │
│ � │A│ EIA │P│ AKM │ ASN │ EKM │ │ │

 ├─┬─┬─┬─┬─┬─┬─┬──┬┴─┴─┬─┬─────────┼─┼────────┴────────┴────────┴────────┤ │
│T│G│K│M│E│C│S│EK│EEAX│ │ASTE Adr.│ │ EP │ │

 └─┴─┴─┴─┴─┴─┴─┴──┴────┴─┴────┬────┴─┴───────────────────────────────────┘ │
 │ │
 ┌─────────────────────────┘ │
 │ │
 │ │
 │ ASN-Second-Table Entry │
 R�─�┌─┬────────────┬──┬────────┬──────┬─┬────────────────────────────────┐ │

│ │I│ ATO │ B│ AX │ ATL │ │ ASCE │�� │
 │ └─┴────────────┴──┴────┬───┴──────┴─┴───────────────┬────────────────┘ │
 │ │ │ │
 │ │ │ │
 │ └────────────────────────────┼──────────┐ ┌───┘
 │ │ │ │
 │ │ │ │
 │ ┌───────────────────────────┘ │ │
 │ � � �
 │ CR1 ┌────────────────────────────────┐ CR4 ┌────────┬────────┐

│ after│ PASCE │ 32-63│ AX │ PASN │
 │ ��� └────────────────────────────────┘ after└────────┴────────┘
 │
 │
 └──┐
 │
 � │ �
 � � �
 CR5 ┌─┬────────────┬──┐

32-63│ │ PASTEO │ │
 after└─┴────────────┴──┘

R: Address is real.
�: First word and A of ETE are bits �-32 of EIA if resulting addressing mode is the 64-bit mode.
��: ASTE is 64 bytes; last 48 bytes are not shown.

 ���: Bits �-55 and 58-63 of PASCE may be replaced from a subspace ASCE.

Figure 10-24 (Part 6 of 6). Execution of PROGRAM CALL

 PROGRAM RETURN

PR [E]

┌────────────────┐
│ '�1�1' │
└────────────────┘
� 15

The PSW, except for the PER-mask bit, saved in
the last linkage-stack state entry is restored as the
current PSW. The PER mask in the current PSW
remains unchanged. The contents of general reg-
isters 2-14 and access registers 2-14 also are
restored from the state entry. When the entry-
type code in the entry descriptor of the state entry
is 0001101 binary, indicating a program-call state
entry, the primary ASN (PASN), secondary ASN
(SASN), PSW-key mask (PKM), and extended
authorization index (EAX) in the control registers

also are restored from the state entry. When the
entry-type code is 0001100 binary, indicating a
branch state entry, the current PASN, SASN,
PKM, and EAX remain unchanged.

The last state entry is located, and information in it
is restored, as described in “Unstacking Process”
on page 5-76. The state entry is logically deleted
from the linkage stack, and the linkage-stack-entry
address in control register 15 is replaced by the
address of the next preceding state or header
entry. This also is described in “Unstacking
Process.”

When the state entry is a program-call state entry,
it causes a space-switching operation to occur if it
contains a PASN that is not equal to the current
PASN. When the state entry contains a PASN
that is equal to the current PASN, the operation is

 Chapter 10. Control Instructions 10-75

called PROGRAM RETURN to current primary
(PR-cp); when the state entry contains a PASN
that is not equal to the current PASN, the opera-
tion is called PROGRAM RETURN with space
switching (PR-ss). PASN translation occurs in
PR-ss. SASN translation and authorization may
occur in either PR-cp or PR-ss. The terms PR-cp
and PR-ss do not apply when the state entry is a
branch state entry.

Key-controlled protection does not apply to
accesses to the linkage stack, but low-address
and page protection do apply.

The sections “PASN Translation,” “SASN
Translation,” “SASN Authorization,” and
“PROGRAM RETURN Serialization” apply only
when the unstacked state entry is a program-call
state entry. The functions described in those
sections are not performed when the state entry is
a branch state entry.

PASN Translation

If the new PASN is equal to the old PASN in bit
positions 48-63 of control register 4, PASN trans-
lation is not performed, and the authorization
index (AX), PASN, PASCE, and
primary-ASN-second-table-entry (primary-ASTE)
origin in the control registers are not changed.

If the new PASN is not equal to the old PASN, the
| new PASN replaces the PASN in bit positions
| 48-63 of control register 4 and is translated to

locate a 64-byte ASTE. The ASN table-lookup
process is described in “ASN Translation” on
page 3-18. The exceptions associated with ASN
translation are collectively called ASN-translation
exceptions. These exceptions and their priority
are described in Chapter 6, “Interruptions.”

Bits 64-127 of the ASTE are placed in control reg-
ister 1 as the new PASCE.

Bits 32-47 of the ASTE are placed in bit positions
32-47 of control register 4 as the new AX.

Bits 33-57 of the ASTE address are placed in bit
positions 33-57 of control register 5 as the new
primary-ASTE origin, and zeros are placed in bit
positions 32 and 58-63. Bits 0-31 of this register
remain unchanged.

The description in this paragraph applies to use of
the subspace-group facility when PASN translation

has occurred. If (1) the subspace-group-control
bit, bit 54, in the new PASCE is one, (2) the
dispatchable unit is subspace active, and (3) the
new primary-ASTE origin designates the ASTE for
the base space of the dispatchable unit, then bits
0-55 and 58-63 of the new PASCE in control reg-
ister 1 are replaced by the same bits of the ASCE
in the ASTE for the subspace in which the
dispatchable unit last had control. This replace-
ment occurs, in the case when the new SASN is
equal to the new PASN, before the SASCE is set
equal to the PASCE. Further details are in
“Subspace-Replacement Operations” on
page 5-60.

SASN Translation

| The new SASN replaces the SASN in bit positions
| 48-63 of control register 3.

If the new SASN is equal to the new PASN, the
SASCE in control register 7 is set equal to the
new PASCE in control register 1. If the new
SASN is not equal to the new PASN, the new
SASN is translated to locate a 64-byte ASTE. Bits
64-127 of the ASTE are placed in control register
7 as the new SASCE.

SASN Authorization

If the new SASN is not equal to the new PASN,
the authority-table origin (ATO) from the ASTE for
the new SASN is used as the base for a third
table lookup. The new authorization index, bits
32-47 of control register 4, is used, after it has
been checked against the authority-table length,
as the index to locate the entry in the authority
table. The authority-table lookup is described in
“ASN Authorization” on page 3-23.

The description in this paragraph applies to use of
the subspace-group facility when SASN translation
and authorization have occurred. If (1) the
subspace-group-control bit, bit 54, in the new
SASCE is one, (2) the dispatchable unit is sub-
space active, and (3) the ASTE origin obtained by
SASN translation designates the ASTE for the
base space of the dispatchable unit, then bits 0-55
and 58-63 are replaced by the same bits of the
ASCE of the ASCE in the ASTE for the subspace
in which the dispatchable unit last had control.
Further details are in “Subspace-Replacement
Operations” on page 5-60.

10-76 z/Architecture Principles of Operation

PROGRAM RETURN Serialization

When the unstacked state entry is a program-call
state entry, a serialization and checkpoint-
synchronization function is performed before the
operation begins and again after the operation is
completed.

Special Conditions

The instruction can be executed successfully only
when the CPU is in the primary-space mode or
access-register mode at the beginning of the oper-
ation. In addition, the ASN-translation process
can be performed, for either the PASN or the
SASN, only when the ASN-translation control, bit
44 of control register 14, is one. If either of these
rules is violated, a special-operation exception is
recognized.

A stack-empty, stack-operation, stack-
specification, or stack-type exception may be
recognized during the unstacking process.

When, for PR-ss, the primary space-switch-event
control, bit 57 of control register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs
after the operation is completed. A space-switch-
event program interruption also occurs after the
completion of a PR-ss operation if a PER event is
reported.

The PSW which is to be loaded by the instruction
is not checked for validity before it is loaded.
However, after loading, a specification exception is
recognized, and a program interruption occurs, if
any of bits 0, 2-4, 12, 24-30, and 33-63 of the
PSW is a one, if bits 31 and 32 are zero and one,
respectively, and bits 64-96 are not all zeros, if
bits 31 and 32 are both zero and bits 64-103 are
not all zeros, or if bits 31 and 32 are one and
zero, respectively. In these cases, the operation
is completed, and the resulting instruction-length

code is 0. The specification exception, which in
this case is listed as a program exception in this
instruction, is described in “Early Exception
Recognition” on page 6-9. It may be considered
as occurring early in the process of preparing to
execute the following instruction.

If a space-switch event is indicated and the PSW
that was loaded by the instruction is invalid
because of a reason described in the preceding
paragraph, it is unpredictable whether the resulting
instruction-length code is 0 or 1, or 0 or 2 if
EXECUTE was used.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-25 on
page 10-78.

Resulting Condition Code: The code is set as
specified in the new PSW loaded.

 Program Exceptions:

� Access (fetch and store, except key-controlled
protection, linkage-stack entry)

� Addressing (authority-table entry, if SASN
translation occurs)

� ASN translation (if PASN or SASN translation
occurs)

� Secondary authority (if SASN translation
occurs)

 � Space-switch event
 � Special operation
 � Specification
 � Stack empty
 � Stack operation
 � Stack specification
 � Stack type
� Subspace replacement (if PASN or SASN

translation occurs)
 � Trace

 Chapter 10. Control Instructions 10-77

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program-│
│ interruption conditions for the general case. │
│ │
│ 7. Special-operation exception due to DAT being off or the CPU │
│ being in secondary-space mode or home-space mode. │
│ │
│ 8.A Trace exceptions. │
│ │
│ 8.B.1 Access exceptions (fetch) for entry descriptor of the current│
│ linkage-stack entry. │
│ │
│ 8.B.2 Stack-type exception due to current entry not being a state │
│ entry or header entry. │
│ │
│ Note: Exceptions 8.B.3-8.B.7 can occur only if the current │
│ entry is a header entry. │
│ │
│ 8.B.3 Stack-operation exception due to unstack-suppression bit │
│ in the header entry being one. │
│ │
│ 8.B.4 Access exceptions (fetch) for second word of the header │
│ entry. │
│ │
│ 8.B.5 Stack-empty exception due to backward stack-entry validity │
│ bit in the header entry being zero. │
│ │
│ 8.B.6 Access exceptions (fetch) for entry descriptor of preceding │
│ entry, which is the entry designated by the backward │
│ stack-entry address in the current (header) entry. │
│ │
│ 8.B.7 Stack-specification exception due to preceding entry being a │
│ header entry. │
│ │
│ 8.B.8 Stack-type exception due to preceding entry not being a │
│ state entry. │
│ │
│ 8.B.9 Stack-operation exception due to unstack-suppression bit │
│ being one in the state entry. │
│ │
│ 8.B.1� Access exceptions (fetch) for the state entry, and access │
│ exceptions (store) for entry descriptor of the entry .│
│ preceding the state entry. │
└──┘

Figure 10-25 (Part 1 of 2). Priority of Execution: PROGRAM RETURN

10-78 z/Architecture Principles of Operation

┌──┐
│ Note: Exceptions 8.B.11-8.B.15 and the event 9 can occur │
│ only if the state entry is a program-call state entry. │
│ │
│ 8.B.11 Special-operation exception due to the ASN-translation con- │

| │ trol, bit 44 of control register 14, being zero (if PASN or │
│ SASN translation occurs). │
│ │
│ 8.B.12 ASN-translation exceptions (if PASN or SASN translation │
│ occurs). │
│ │
│ Note: Subspace-replacement exceptions for replacement of │
│ bits in either the PASCE or the SASCE, which are not shown in│
│ detail in this figure, can occur with any priority after │
│ 8.B.12 and before 9. │
│ │
│ 8.B.13 Secondary-authority exception due to authority-table entry │
│ being outside table (if SASN translation occurs). │
│ │
│ 8.B.14 Addressing exception for access to authority-table entry (if │
│ SASN translation occurs). │
│ │
│ 8.B.15 Secondary-authority exception due to S bit in authority- │
│ table entry being zero (if SASN translation occurs). │
│ │
│ 9. Space-switch event (PR-ss only). │
│ │
│1�. Specification exception due to any PSW error of the type that│
│ causes an immediate interruption. │
└──┘

Figure 10-25 (Part 2 of 2). Priority of Execution: PROGRAM RETURN

Programming Note: Because PROGRAM CALL
cannot be executed successfully in the secondary-
space or home-space mode, PROGRAM
RETURN is not intended to load a PSW specifying
one of these translation modes. PROGRAM
RETURN, unlike SET ADDRESS SPACE
CONTROL and SET ADDRESS SPACE
CONTROL FAST, does not recognize a space-
switch event because of loading a PSW that spec-
ifies the home-space mode.

 PROGRAM TRANSFER

PT R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B228' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The contents of general register R� are used as
the new values for the PSW-key mask, the PASN,
and the SASN. The contents of general register
R� are used as the new values for the problem-
state bit, basic-addressing-mode bit, and instruc-
tion address in the current PSW.

General registers R� and R� have the following
format:

 ┌─/─┬────────────────┬────────────────┐
R� │///│ PSW-Key Mask │ ASN │
 └─/─┴────────────────┴────────────────┘
 � 32 48 63

In 24-Bit or 31-Bit Addressing Mode
 ┌─/─┬─┬─────────────────────────────┬─┐
R� │///│A│ Instruction Address │P│
 └─/─┴─┴─────────────────────────────┴─┘
 � 32 63

In 64-Bit Addressing Mode
 ┌─/─────────────────────────────────┬─┐
R� │ Instruction Address │P│
 └─/─────────────────────────────────┴─┘
 � 63

When the contents of bit positions 48-63 of
general register R� are equal to the current PASN,
the operation is called PROGRAM TRANSFER to
current primary (PT-cp); when the fields are not
equal, the operation is called PROGRAM
TRANSFER with space switching (PT-ss).

The contents of general register R� are used to
update the problem-state bit and the instruction
address in the current PSW and, in the 24-bit or

 Chapter 10. Control Instructions 10-79

31-bit addressing mode, also the basic-
addressing-mode bit in the current PSW. Bit 63 of
general register R� is placed in the problem-state
bit position, PSW bit position 15, unless the opera-
tion would cause PSW bit 15 to change from one
to zero (problem state to supervisor state). If such
a change would occur, a privileged-operation
exception is recognized.

In the 24-bit or 31-bit addressing mode, bit 32 of
general register R� replaces the basic-
addressing-mode bit, bit 32 of the current PSW,
and bits 33-62 of the register, with one rightmost
zero appended, replace bits 33-63 of the instruc-
tion address in the PSW, bits 97-127 of the PSW.
In the 64-bit addressing mode, bits 0-62 of general
register R�, with one rightmost zero appended,
replace the instruction address, and the basic-
addressing-mode bit remains unchanged.

Bits 32-47 of general register R� are ANDed with
the PSW-key mask, bits 32-47 of control register
3, and the result replaces the PSW-key mask.
Bits 0-31 of general register R� are ignored.

In both the PT-ss and PT-cp operations, the ASN
specified by bits 48-63 of general register R�
replaces the SASN in control register 3, and the
SASCE in control register 7 is replaced by the
final contents of control register 1.

PROGRAM TRANSFER to Current Primary
(PT-cp)

The PROGRAM TRANSFER to-current-primary
(PT-cp) operation is depicted in part 1 of
Figure 10-27 on page 10-83. The PT-cp opera-
tion is completed when the common portion of the
PROGRAM TRANSFER operation, described
above, is completed. The authorization index,
PASN, primary ASCE, and contents of control reg-
ister 5 (primary-ASN-second-table-entry origin) are
not changed by PT-cp.

PROGRAM TRANSFER with Space Switching
(PT-ss)

If the ASN in bit positions 48-63 of general reg-
ister R� is not equal to the current PASN, a
PROGRAM TRANSFER with space switching
(PT-ss) operation is specified, and the ASN is
translated by means of a two-level table lookup.

The PT-ss operation is depicted in parts 1 and 2
of Figure 10-27 on page 10-83. The PT-ss oper-
ation is completed as follows.

In PT-ss, the contents of bit positions 48-63 of
general register R� are used as an ASN, which is
translated by means of a two-level table lookup.

Bits 48-57 of general register R� are a 10-bit AFX
that is used to select an entry from the ASN first
table. Bits 58-63 are a six-bit ASX that is used to
select an entry from the ASN second table. The
ASN table-lookup process is described in “ASN
Translation” on page 3-18. The exceptions asso-
ciated with ASN translation are collectively called
“ASN-translation exceptions.” These exceptions
and their priority are described in Chapter 6,
“Interruptions.”

The authority-table origin from the
ASN-second-table entry (ASTE) is used as the
base for a third table lookup. The current authori-
zation index, bits 32-47 of control register 4, is
used, after it has been checked against the
authority-table length, as the index to locate the
entry in the authority table. The authority-table
lookup is described in “ASN Authorization” on
page 3-23.

The PT-ss operation is completed by placing bits
64-127 of the ASTE in control register 1 as the
new PASCE and in control register 7 as the new
SASCE. The contents of bit positions 32-47 of the
ASTE replace the authorization index in bit posi-
tions 32-47 of control register 4. Bits 33-57 of the
ASTE address are placed in bit positions 33-57 of
control register 5 as the new primary-ASTE origin,
and zeros are placed in bit positions 32 and
58-63. Bits 0-31 of this register remain
unchanged. The ASN, bits 48-63 of general reg-
ister R�, replaces the SASN and PASN in bit posi-
tions 48-63 of control registers 3 and 4.

The description in this paragraph applies to use of
the subspace-group facility. After the new PASCE
has been placed in control register 1 and the new
primary-ASTE origin has been placed in control
register 5, if (1) the subspace-group-control bit, bit
54, in the PASCE is one, (2) the dispatchable unit
is subspace active, and (3) the primary-ASTE
origin designates the ASTE for the base space of
the dispatchable unit, then bits 0-55 and 58-63 of
the PASCE in control register 1 are replaced by
the same bits of the ASCE in the ASTE for the

10-80 z/Architecture Principles of Operation

subspace in which the dispatchable unit last had
control. This replacement occurs before a
replacement of the SASCE in control register 7 by
the PASCE. Further details are in “Subspace-
Replacement Operations” on page 5-60.

PROGRAM TRANSFER Serialization

For both the PT-cp and PT-ss operations, a serial-
ization and checkpoint-synchronization function is
performed before the operation begins and again
after the operation is completed.

Special Conditions

The instruction can be executed only when the
CPU is in the primary-space mode and the
subsystem-linkage control, bit 0 of the linkage-
table designation, is one. If the CPU is in the real
mode, secondary-space mode, access-register
mode, or home-space mode, or if the subsystem-
linkage control is zero, a special-operation excep-
tion is recognized.

Bit 63 of general register R� is placed in the
problem-state bit position, PSW bit position 15,
unless the operation would cause PSW bit 15 to
change from one to zero (problem state to super-
visor state). If such a change would occur, a
privileged-operation exception is recognized.

In the 24-bit or 31-bit addressing mode, the
instruction is completed only if bits 32-39 of
general register R� specify a valid combination of
PSW bits 32 and 97-103. If bit 32 of general reg-
ister R� is zero and bits 33-39 are not all zeros, a
specification exception is recognized.

In addition to the above requirements, when a
PT-ss instruction is specified, the ASN-translation
control, bit 44 of control register 14, must be one;
otherwise, a special-operation exception is recog-
nized.

When, for PT-ss, the primary space-switch-
event-control bit, bit 57 of register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs
after the operation is completed. A space-switch-
event program interruption also occurs after the
completion of a PT-ss operation if a PER event is
reported.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-26 on
page 10-82.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (linkage-table designation in
primary ASN-second-table entry; authority-
table entry, PT-ss only)

� ASN translation (PT-ss only)
� Primary authority (PT-ss only)
� Privileged operation (attempt to set the super-

visor state when in the problem state)
� Space-switch event (PT-ss only)

 � Special operation
 � Specification
� Subspace replacement (PT-ss only)

 � Trace

 Chapter 10. Control Instructions 10-81

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program-│
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B Special-operation exception due to DAT being off or the CPU │
│ being in secondary-space mode, access-register mode, or home-│
│ space mode. │
│ │
│ 8.A Trace exceptions. │
│ │
│ 8.B.1 Addressing exception for access to linkage-table designation │
│ in primary ASN-second-table entry. │
│ │
│ 8.B.2 Special-operation exception due to subsystem-linkage control │
│ in linkage-table designation being zero. │
│ │
│ 8.B.3 Privileged-operation exception due to attempt to set the │
│ supervisor state when in the problem state. │
│ │
│ 8.B.4 Specification exception due to invalid combination (bit 32 is│
│ zero and bits 33-39 not zeros) in general register R� in │
│ 24-bit or 31-bit addressing mode. │
│ │
│ 8.B.5 Special-operation exception due to ASN-translation control, │
│ bit 44 of control register 14, being zero (PT-ss only). │
│ │
│ 8.B.6 ASN-translation exceptions (PT-ss only). │
│ │
│ Note: Subspace-replacement exceptions, which are not shown │
│ in detail in this figure, can occur with any priority after │
│ 8.B.6 and before 9. │
│ │
│ 8.B.7 Primary-authority exception due to authority-table entry │
│ being outside table (PT-ss only). │
│ │
│ 8.B.8 Addressing exception for access to authority-table entry │
│ (PT-ss only). │
│ │
│ 8.B.9 Primary-authority exception due to P bit in authority-table │
│ entry being zero (PT-ss only). │
│ │
│ 9. Space-switch event (PT-ss only). │
└──┘

Figure 10-26. Priority of Execution: PROGRAM TRANSFER

Programming Notes:

1. The operation of PROGRAM TRANSFER (PT)
is such that it may be used to restore the CPU
to the state saved by a previous basic
PROGRAM CALL operation. This restoration
is accomplished by issuing PT 3,14. Though
general registers 3 and 14 are not restored to
their original values, the PASN, PSW-key
mask, problem-state bit, and instruction
address are restored, and the authorization
index, PASCE, and
primary-ASN-second-table-entry origin are
made consistent with the restored PASN. In

the 24-bit or 31-bit addressing mode, the
basic-addressing-mode bit also is restored.

| The SASN is not saved by PROGRAM CALL
| or restored by PROGRAM TRANSFER;
| PROGRAM TRANSFER sets the SASN equal
| to the restored PASN.

2. With proper authority, and while being exe-
cuted in a common area, PROGRAM
TRANSFER may be used to change the
primary address space to any desired space.
The secondary address space is also changed
to be the same as the new primary address
space.

10-82 z/Architecture Principles of Operation

3. Unlike the RR-format branch instructions, a
value of zero in the R� field for PROGRAM

TRANSFER designates general register 0,
and branching occurs.

PT-cp and PT-ss

 PROGRAM TRANSFER
 Instruction
 ┌────────┬────┬──┬──┐

│ 'B228' │////│R�│R�│
 └────────┴────┴─┬┴─┬┘
 │ │
 ┌──────────────────────────────┘ └────────────────────────�──────────┐
 │ │ │
 │ �

� ┌─In 24-Bit or─┐ │
| ┌─────────────────┐ │ 31-Bit Mode │ │

R� ┌────────┬────────┐ R� ┌─┬──────────┬─┐ │
32-63│ PKM │ ASN │ 32-63│A│ IA 33-62 │P│ │

 └────┬───┴────┬───┘ └┬┴─────┬────┴┬┘ │
 │ │ │ │ │ │
 │ │ ┌────────────────────────┼──────┼─────┘ │
 ┌────────────┘ └────────┐ │ │ │ │
 │ │ │ ┌──────────────────┘ ┌───┘With 33 │
 │ │ │ │ │ Zeros on │
 │ CR3 ┌────────┬────────┐ │ � � � Left │

│ 32-63 │ PKM │ SASN │ │ PSW ┌/┬─┬/┬─┬─┬─/─┬─────────────────────────┬─┐ │
│ before└────┬───┴────────┘ │ after│ │P│ │E│A│ │ IA �-62 │�│ │

 │ │ │ └/┴─┴/┴─┴─┴─/─┴─────────────────────────┴─┘ │
 │ │ │ E=� │
 │ � │ ┌─────────────────┘
 │ ┌───┐ │ │
 └─────────�│AND│ � �

└─┬─┘ ┌────────� ┌──────In 64-Bit Mode───────┐
│ │ │ ┌─────────────────────────┬─┐
│ │ │ R� │ IA �-62 │P│
� � │ └─────────────┬───────────┴┬┘

 CR3 ┌────────┬────────┐ │ │ │
32-63│ PKM │ SASN │ │ ┌────────────────────────┼────────────┘

 after└────────┴────────┘ │ │ │
 │ � �
 │ PSW ┌/┬─┬/┬─┬─┬─/─┬─────────────────────────┬─┐

CR4 ┌────────┬────────┐ │ after│ │P│ │E│A│ │ IA �-62 │�│
32-63 │ AX │ PASN │ │ └/┴─┴/┴─┴─┴─/─┴─────────────────────────┴─┘

 before└────────┴────┬───┘ │ E=1 A=1
 │ │
 │ ┌──────┘
 � � CR1 ┌───────────────────────────┐
 Yes┌───┐No before│ PASCE │
 ┌─────┤ =?├─────┐ └─────────────┬─────────────┘

│ └───┘ │ │
� � │ (PT-cp only)

 PT-cp PT-ss �
Instruction (See Part 2) CR7 ┌───────────────────────────┐
Complete after│ SASCE │

 └───────────────────────────┘

Figure 10-27 (Part 1 of 2). Execution of PROGRAM TRANSFER

 Chapter 10. Control Instructions 10-83

PT-ss

 ┌────────────────────┐
 � │
CR14 ┌────┬─┬─────────┐ ┌─────┬───┐ │
32-63│ │T│ AFTO │ │ AFX │ASX│ │
 └────┴─┴─────┬───┘ └──┬──┴─┬─┘ │
 (x4�96)│ (x4)│ │(x64) │
 │ │ │ │
┌─────────────────┘ │ │ │
│ │ │ │ R� ┌────────┬────────┐
│ ┌───────────────────────┘ │ │ 32-63│ PKM │ ASN │
│ │ │ │ └────────┴────┬───┘
│ � │ │ │
│ ┌─┐ ASN First Table │ │ �
└────�│+│ ┌─────────────────┐ │ └───────────────────�──�──�──────┐
 └┬┘ │ │ │ │
 │ │ │ │ │
 │ │ │ │ │
 └─�├─┬─────────────┬─┤ │ │
 R │I│ ASTO │ │ │ │
 ├─┴──────┬──────┴─┤ │ │
 │ │(x16) │ │ │

│ │ │ │ │
 └────────┼────────┘ │ │
 │ │ │
┌──────────────────┘ │ │
│ │ │
│ ┌────────────────────────────┘ │
│ │ │
│ � │
│ ┌─┐ ASN Second Table │
└────�│+│ ┌───┐ │
 └┬┘ │ │ │
 │ │ │ │
 │ │ │ │
 R�─�├─┬────────────┬──┬────────┬──────┬─┬─────────────────────────────────┤ │

│ │I│ ATO │ B│ AX │ ATL │ │ ASCE │� │
 │ ├─┴──────┬─────┴──┴────┬───┴──────┴─┴────────────────┬────────────────┤ │
 │ │ │(x4) │ │ │ │
 │ │ │ │ │ │ │
 │ └────────┼─────────────┼─────────────────────────────┼────────────────┘ │
 │ │ │ │ │
 │ ┌─────────┘ │ │ ┌──────┘
 │ │ └─────────────────────────────┼─────────┐ │
 │ │ │ │ │
 │ │ CR4 ┌────────┬────────┐ │ │ │

│ │ 32-63 │ AX │ PASN │ │ │ │
 │ │ before└────┬───┴────────┘ │ │ │
 │ │ │(x1/4) │ │ │
 │ │ ┌──────────┘ │ │ │
 │ │ � │ │ │

│ │ ┌─┐ Authority Table ┌─────────────────��──┘ │ │
│ └�│+│ ┌───┐ � │ � �
│ └┬┘ │ │ CR1 ┌─────────────────────────┐ │ CR4 ┌────────┬────────┐
│ │ │ │ after│ PASCE │ │ 32-63│ AX │ PASN │
│ │ │ │ �� └─────────────────────────┘ │ after└────────┴────────┘

 │ └─�├─┬─┤ │
 │ R │P│S│ ┌─────────────────┘
 │ ├┬┴─┤ �
 │ ││ │ CR7 ┌─────────────────────────┐ ┌──────────────────┐
 │ ││ │ after│ SASCE │ │ │
 │ └┼──┘ �� └─────────────────────────┘ │ � │ �
 │ │ │ � � �

│ └─�Primary-authority exception if P bit │ CR5 ┌─┬────────────┬──┐
│ is zero or table length is exceeded │ 32-63│ │ PASTEO │ │

 │ │ after└─┴────────────┴──┘
 └──┘

R: Address is real.
�: ASTE is 64 bytes; last 48 bytes are not shown.
��: Bits �-55 and 58-63 of PASCE and SASCE may be replaced from a subspace ASCE.

Figure 10-27 (Part 2 of 2). Execution of PROGRAM TRANSFER

10-84 z/Architecture Principles of Operation

 PURGE ALB

PALB [RRE]

┌────────────────┬────────────────┐
│ 'B248' │////////////////│
└────────────────┴────────────────┘
� 16 31

The ART-lookaside buffer (ALB) of this CPU is
cleared of entries. No change is made to the con-
tents of addressable storage or registers.

The ALB appears cleared of its original contents
beginning with the execution of the next sequential
instruction. The operation is not signaled to any
other CPU.

A serialization function is performed.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Privileged operation

 PURGE TLB

PTLB [S]

┌────────────────┬────────────────┐
│ 'B2�D' │////////////////│
└────────────────┴────────────────┘
� 16 31

The translation-lookaside buffer (TLB) of this CPU
is cleared of entries. No change is made to the
contents of addressable storage or registers.

The TLB appears cleared of its original contents
beginning with the fetching of the next sequential
instruction. The operation is not signaled to any
other CPU.

A serialization function is performed.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Privileged operation

RESET REFERENCE BIT
EXTENDED

RRBE R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B22A' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The reference bit in the storage key for the
4K-byte block that is addressed by the contents of
general register R� is set to zero. The contents of
general register R� are ignored.

In the 24-bit addressing mode, bits 40-51 of
general register R� designate a 4K-byte block in
real storage, and bits 0-39 and 52-63 of the reg-
ister are ignored. In the 31-bit addressing mode,
bits 33-51 of general register R� designate a
4K-byte block in real storage, and bits 0-32 and
52-63 of the register are ignored. In the 64-bit
addressing mode, bits 0-51 of general register R�
designate a 4K-byte block in real storage, and bits
52-63 of the register are ignored.

Because it is a real address, the address desig-
nating the storage block is not subject to dynamic
address translation. The reference to the storage
key is not subject to a protection exception.

The remaining bits of the storage key, including
the change bit, are not affected.

The condition code is set to reflect the state of the
reference and change bits before the reference bit
is set to zero.

Resulting Condition Code:

0 Reference bit zero; change bit zero
1 Reference bit zero; change bit one
2 Reference bit one; change bit zero
3 Reference bit one; change bit one

 Program Exceptions:

� Addressing (address specified by general reg-
ister R�)

 � Privileged operation

 Chapter 10. Control Instructions 10-85

 RESUME PROGRAM

RP D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B277' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

Certain contents of the current PSW and of
access register and general register B� are
replaced from three or four corresponding fields in
the second operand. The size of the PSW field in
the second operand, the size or number of
general-register fields in the second operand, and
the offsets of the fields in the second operand are
specified in a parameter list that immediately
follows the instruction in the instruction address
space.

The instruction address space is the address
space from which instructions are fetched. It is
composed of real addresses if DAT is off.

The first 64 bits of the parameter list have the fol-
lowing format:

┌─────────────┬─┬─┬─┬───────────────────┐
│�������������│P│R│D│ Offset of PSW Fld │
└─────────────┴─┴─┴─┴───────────────────┘
� 13 16 31

┌───────────────────┬───────────────────┐
│ Offset of AR Fld │Offset of GR Fld 1 │
└───────────────────┴───────────────────┘
32 48 63

When bits 14 (R) and 15 (D) of the parameter list
are both one, the list is an additional 16 bits in
length, as follows:

┌───────────────────┐
│Offset of GR Fld 2 │
└───────────────────┘
64 79

Bit 13 of the parameter list (P) specifies the size
of the PSW field in the second operand. The field
is eight bytes if bit 13 is zero or 16 bytes if bit 13
is one.

Bits 14 and 15 of the parameter list (R and D)
provide specifications about one or two general-
register fields in the second operand, as follows:

� When bit 14 is zero, then bit 15 is ignored, the
general-register field 1 in the second operand
is four bytes, from which bits 32-63 of general
register B� will be replaced, there is not a
general-register field 2 in the second operand,
and bits 0-31 of general register B� will
remain unchanged.

� When bit 14 is one and bit 15 is zero, then the
general-register field 1 is eight bytes, from
which bits 0-63 of general register B� will be
replaced, and there is not a general-register
field 2.

� When bits 14 and 15 are both one, then the
general-register fields 1 and 2 are both four
bytes, bits 32-63 of general register B� will be
replaced from field 1, and bits 0-31 of the reg-
ister will be replaced from field 2. (The letter
“D” stands for disjoint.)

Bits 16-31 of the parameter list are an unsigned
binary integer that is the offset in bytes from the
beginning of the second operand to a field that
has the format of an eight-byte or 16-byte PSW,
depending on bit 13, and from which fields in the
current PSW will be replaced. Bits 32-47 similarly
are an offset to a four-byte field from which the
contents of access register B� will be replaced.
Bits 48-63 similarly are an offset to a four-byte or
eight-byte field, depending on bits 14 and 15, from
which bits 32-63 or 0-63, respectively, of general
register B� will be replaced. If bits 64-79 of the
parameter list exist, they similarly are an offset to
a four-byte field from which bits 0-31 of general
register B� will be replaced.

Bits 0-12 of the parameter list must be zeros; oth-
erwise, a specification exception is recognized.

An eight-byte second-operand PSW field has the
ESA/390 PSW format, as follows:

┌─┬─┬─────┬─┬─┬─┬───────┬─┬─┬─┬─┬───┬───┬───────┬───────────────┐
│ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │
│�│R│� � �│T│O│X│ Key │1│M│W│P│A S│C C│ Mask │� � � � � � � �│
└─┴─┴─────┴─┴─┴─┴───────┴─┴─┴─┴─┴───┴───┴───────┴───────────────┘
� 5 8 12 16 18 2� 24 31

┌─┬───┐
│ │ │
│A│ Instruction Address │
└─┴───┘
32 63

A 16-byte second-operand PSW field has the
z/Architecture PSW format, as follows:

10-86 z/Architecture Principles of Operation

┌─┬─┬─┬─┬─┬─┬─┬─┬───────┬─┬─┬─┬─┬───┬───┬───────┬─────────────┬─┐
│ │ │ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │E│
│�│R│�│�│�│T│O│X│ Key │�│M│W│P│A S│C C│ Mask │� � � � � � �│A│
└─┴─┴─┴─┴─┴─┴─┴─┴───────┴─┴─┴─┴─┴───┴───┴───────┴─────────────┴─┘
� 5 8 12 16 18 2� 24 31

┌─┬───┐
│B│ │
│A│� �│
└─┴───┘
32 63

┌───┐
│ │
│ Instruction Address │
└───┘
64 95

┌───┐
│ │
│ Instruction Address (Continued) │
└───┘
96 127

Fields in the current PSW are replaced from the
corresponding fields in the PSW field in the
second operand. The PSW fields that are
replaced are as follows:

┌───────────┬──────────────────────────────┐
│ PSW Bits │ Field Name │
├───────────┼──────────────────────────────┤
│ 16 and 17 │ Address-space control (AS) │
│ 18 and 19 │ Condition code (CC) │
│ 2�-23 │ Program mask │
│ 31 │ Extended addressing mode (EA)│
│ 32 │ Basic addressing mode (BA) │
│ 64-127 │ Instruction address │
└───────────┴──────────────────────────────┘

The remaining fields in the PSW field in the
second operand are ignored. Specifically, there is
no test for whether bit 12 is one in an eight-byte
PSW or zero in a 16-byte PSW. There is also no
test for whether bit 31 is zero in an eight-byte
PSW.

Unassigned fields in the PSW may be assigned in
the future and may then be among those restored
by RESUME PROGRAM. Therefore, these fields
in the PSW field in the second operand should
contain zeros; otherwise, the program may not
operate compatibly in the future.

When PSW bits 64-127 are replaced from an
eight-byte PSW field in the second operand, they
are replaced with bits 33-63 of the field, with 33
zeros appended on the left.

The fields in the second operand are fetched
before the contents of access register B� and
general register B� are changed.

When RESUME PROGRAM is the target of an
EXECUTE instruction, the parameter list imme-
diately follows the RESUME PROGRAM instruc-
tion, not the EXECUTE instruction.

The references to the parameter list are storage-
operand fetches, not instruction fetches.

Special Conditions

The instruction is completed only if the bits 31, 32,
and 64-127 that are to be placed in the current
PSW are valid for placement in the PSW. If bits
31 and 32 are both zero and bits 64-103 are not
all zeros, if bits 31 and 32 are zero and one,
respectively, and bits 64-96 are not all zeros, if
bits 31 and 32 are one and zero, respectively, or if
bit 127 is one, a specification exception is recog-
nized.

The CPU must be in the supervisor state when
the operation is to set the home-space mode; oth-
erwise, a privileged-operation exception is recog-
nized. When DAT is off, the values of bits 16 and
17 of the PSW field in the second operand are not
tested.

When the CPU is in the home-space mode either
before or after the operation, but not both before
and after the operation, a space-switch-event
program interruption occurs after the operation is
completed if any of the following is true: (1) the
primary space-switch-event control, bit 57 of the
primary address-space-control element (ASCE) in
control register 1, is one; (2) the home space-
switch-event control, bit 57 of the home ASCE in
control register 13, is one; or (3) a PER event is
to be indicated.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-28 on
page 10-88.

Resulting Condition Code: The code is set as
specified by the new condition code loaded.

 Program Exceptions:

� Access (fetch, parameter list and operand 2)
� Privileged operation (attempt to set the home-

space mode when in the problem state)
 � Space-switch event

 Chapter 10. Control Instructions 10-87

 � Specification
 � Trace

Programming Notes:

1. As described in “Instruction Fetching” on
page 5-82, the bytes of an instruction may be
fetched piecemeal, and the instruction may be
fetched multiple times for a single execution.
Therefore, the results are unpredictable when
instructions are fetched for execution from
storage that is being changed by another CPU
or a channel program. This warning is partic-
ularly applicable when RESUME PROGRAM

is the target of EXECUTE since the
EXECUTE instruction may be refetched in
order to generate, from its B, X, and D fields,
the address of the parameter list used by
RESUME PROGRAM. If EXECUTE is
refetched, there is not necessarily a test for
whether storage still contains either the
EXECUTE instruction or the RESUME
PROGRAM instruction.

2. The storage-operand references for RESUME
PROGRAM may be multiple-access refer-
ences. (See “Storage-Operand Consistency”
on page 5-87.)

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7. Access exceptions for second instruction halfword. │
│ │
│ 8.A Trace exceptions. │
│ │
│ 8.B.1 Access exceptions for bits �-63 of parameter list. │
│ │
│ 8.B.2 Specification exception due to bits �-12 of parameter list not│
│ being all zeros. │
│ │
│ 8.B.3 Access exceptions for bits 64-79 of parameter list, if these │
│ bits exist. │
│ │
│ 8.B.4 Access exceptions for second operand. │
│ │
│ 8.B.5 Privileged-operation exception due to attempt to set the │
│ home-space mode when in the problem state. │
│ │
│ 8.B.6 Specification exception due to invalid values in bit positions│
│ 31, 32, and 64-127 of PSW in second operand. │
│ │
│ 9. Space-switch event. │
└──┘

Figure 10-28. Priority of Execution: RESUME PROGRAM

10-88 z/Architecture Principles of Operation

SET ADDRESS SPACE CONTROL

SAC D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B219' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

SET ADDRESS SPACE CONTROL
FAST

SACF D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B279' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

Bits 52-55 of the second-operand address are
used as a code to set the address-space-control
bits in the PSW. The second-operand address is
not used to address data; instead, bits 52-55 form
the code. Bits 0-51 and 56-63 of the second-
operand address are ignored. Bits 52 and 53 of
the second-operand address must be zeros; other-
wise, a specification exception is recognized.

The following figure summarizes the operation of
SET ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST:

┌──┐
│ Second-Operand Address │
│ ┌─/─────────────────────┬────┬────────┐ │
│ │///////////////////////│Code│////////│ │
│ └─/─────────────────────┴────┴────────┘ │
│ � 52 56 63 │
│ │
│ Result in │
│ PSW Bits │
│ Code Name of Mode 16 and 17 │
│ │
│ ���� Primary space �� │
│ ���1 Secondary space 1� │
│ ��1� Access register �1 │
│ ��11 Home space 11 │
│ All others Invalid Unchanged │
└──┘

The CPU must be in the supervisor state when
the operation is to set the home-space mode; oth-

erwise, a privileged-operation exception is recog-
nized.

For SET ADDRESS SPACE CONTROL, a serial-
ization and checkpoint-synchronization function is
performed before the operation begins and again
after the operation is completed. This function is
not performed for SET ADDRESS SPACE
CONTROL FAST.

Special Conditions

For SET ADDRESS SPACE CONTROL, the oper-
ation is performed only when the secondary-space
control, bit 37 of control register 0, is one and
DAT is on. When either the secondary-space
control is zero or DAT is off, a special-operation
exception is recognized. The same rules apply
also to SET ADDRESS SPACE CONTROL FAST,
except that whether the secondary-space control
is tested is unpredictable.

When the CPU is in the home-space mode either
before or after the operation, but not both before
and after the operation, a space-switch-event
program interruption occurs after the operation is
completed if any of the following is true: (1) the
primary space-switch-event control, bit 57 of the
primary address-space-control element (ASCE) in
control register 1, is one; (2) the home space-
switch-event control, bit 57 of the home ASCE in
control register 13, is one; or (3) a PER event is
to be indicated.

The priority of recognition of program exceptions
for the instructions is shown in Figure 10-29 on
page 10-90.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Privileged operation (attempt to set the home-
space mode in the problem state)

 � Space-switch event
 � Special operation
 � Specification

 Chapter 10. Control Instructions 10-89

┌──┐
│ 1.-6. Exceptions with the same priority as │
│ the priority of program-interruption │
│ conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruc- │
│ tion halfword. │
│ │
│ 7.B Special-operation exception due to │
│ DAT being off. │
│ │
│ 7.C Special-operation exception due to │
│ the secondary-space control, bit 37 of│
│ control register �, being zero. May │
│ be omitted for SET ADDRESS SPACE │
│ CONTROL FAST. │
│ │
│ 8. Privileged-operation exception due to │
│ attempt to set home-space mode when │
│ in problem state. │
│ │
│ 9. Specification exception due to non- │
│ zero value in bit positions 52 and 53 │
│ of second-operand address. │
│ │
│1�. Space-switch event. │
└──┘

Figure 10-29. Priority of Execution: SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST

Programming Notes:

1. SET ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST are
defined in such a way that the mode to be set
can be placed directly in the displacement
field of the instruction or can be specified from
the same bit positions of a general register as
those in which the mode is saved by INSERT
ADDRESS SPACE CONTROL.

2. SET ADDRESS SPACE CONTROL FAST
may provide better performance than SET
ADDRESS SPACE CONTROL, depending on
the model.

3. Because SET ADDRESS SPACE CONTROL
FAST does not perform the serialization func-
tion, it does not cause copies of prefetched
instructions to be discarded. To ensure pre-
dictable results after SET ADDRESS SPACE
CONTROL FAST is used to switch to or from
the home-space mode, the program must
cause prefetched instructions to be discarded
before an instruction is executed in a location
that does not contain the same instruction in
both the primary and home address spaces.
The operations that cause prefetched
instructions to be discarded are described in
“Instruction Fetching” on page 5-82.

4. If a program stores into the instruction stream
at a location following a subsequent SET
ADDRESS SPACE CONTROL FAST instruc-
tion, and the SET ADDRESS SPACE
CONTROL FAST instruction changes the
translation mode either from or to either the
access-register mode or the home-space
mode, a copy of a prefetched instruction may
be executed instead of the value that was
stored. To avoid this situation, either SET
ADDRESS SPACE CONTROL must be used
instead of SET ADDRESS SPACE CONTROL
FAST or some other means must be used to
cause prefetched instructions to be discarded
after the conceptual store occurs.

 SET CLOCK

SCK D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2�4' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The current value of the TOD clock is replaced by
the contents of the doubleword designated by the
second-operand address, and the clock enters the
stopped state.

The doubleword operand replaces the contents of
the clock, as determined by the resolution of the
clock. Only those bits of the operand are set in
the clock that correspond to the bit positions which
are updated by the clock; the contents of the
remaining rightmost bit positions of the operand
are ignored and are not preserved in the clock. In
some models, starting at or to the right of bit posi-
tion 52, the rightmost bits of the second operand
are ignored, and the corresponding positions of
the clock which are implemented are set to zeros.
Zeros are also placed in positions to the right of
bit position 63 of the clock.

After the clock value is set, the clock enters the
stopped state. The clock leaves the stopped state
to enter the set state and resume incrementing
under control of the TOD-clock-sync control, bit 34
of control register 0, of the CPU which most
recently caused the clock to enter the stopped
state. When the bit is zero, the clock enters the
set state at the completion of the instruction.
When the bit is one, the clock remains in the
stopped state until the bit is set to zero or until
another CPU executes a SET CLOCK instruction

10-90 z/Architecture Principles of Operation

affecting the clock. If an external time reference
(ETR) is installed, a signal from the ETR may be
used to set the set state from the stopped state.

The value of the clock is changed and the clock is
placed in the stopped state only if the manual
TOD-clock control of any CPU in the configuration
is set to the enable-set position or the
TOD-clock-control-override control, bit 42 of
control register 14, is one. If the TOD-clock
control of all CPUs is set to the secure position
and the TOD-clock-control-override control is zero,
the value and state of the clock are not changed.
Whether the clock is set or remains unchanged is
distinguished by condition codes 0 and 1, respec-
tively.

When the clock is not operational, the value and
state of the clock are not changed, regardless of
the settings of the TOD-clock control and the
TOD-clock-control-override control, and condition
code 3 is set.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Clock value set
1 Clock value secure
2 --
3 Clock in not-operational state

 Program Exceptions:

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

SET CLOCK COMPARATOR

SCKC D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2�6' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The current value of the clock comparator is
replaced by the contents of the doubleword desig-
nated by the second-operand address.

Only those bits of the operand are set in the clock
comparator that correspond to the bit positions to
be compared with the TOD clock; the contents of
the remaining rightmost bit positions of the
operand are ignored and are not preserved in the
clock comparator.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

SET CLOCK PROGRAMMABLE
FIELD

SCKPF [E]

┌────────────────┐
│ '�1�7' │
└────────────────┘
� 15

Bits 48-63 of general register 0 are placed in bit
positions 16-31 of the TOD programmable reg-
ister. Zeros are placed in bit positions 0-15 of the
TOD programmable register.

Special Conditions

Bits 32-47 of general register 0 must be zeros;
otherwise, a specification exception is recognized.
Bits 0-31 of general register 0 are ignored.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Privileged operation
 � Specification

Programming Note: The values in the TOD
programmable registers of a configuration should
be the same and should be unique within a
multiple-configuration system.

 Chapter 10. Control Instructions 10-91

SET CPU TIMER

SPT D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2�8' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The current value of the CPU timer is replaced by
the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the CPU
timer that correspond to the bit positions to be
updated; the contents of the remaining rightmost
bit positions of the operand are ignored and are
not preserved in the CPU timer.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

 SET PREFIX

SPX D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B21�' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The contents of bit positions 33-50 of the prefix
register are replaced by the contents of bit posi-
tions 1-18 of the word at the location designated
by the second-operand address. The
ART-lookaside buffer (ALB) and translation-
lookaside buffer (TLB) of this CPU are cleared of
entries.

After the second operand is fetched, the value is
tested for validity before it is used to replace the
contents of the prefix register. Bits 1-18 of the
operand with 13 zeros appended on the right and
33 zeros appended on the left are used as an
absolute address of the 8K-byte new prefix area in
storage. This address is treated as a 64-bit
address regardless of the addressing mode speci-
fied by the current PSW. The two 4K-byte blocks
within the new prefix area are accessed; if either
is not available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed. The accesses to the blocks are not
subject to protection; however, the accesses may
cause the reference bits for the blocks to be set to
ones.

If the operation is completed, the new prefix is
used for any interruptions following the execution
of the instruction and for the execution of subse-
quent instructions. The contents of bit positions 0
and 19-31 of the second operand are ignored.

The ART-lookaside buffer (ALB) and translation-
lookaside buffer (TLB) are cleared of entries. The
ALB and TLB appear cleared of their original con-
tents, beginning with the fetching of the next
sequential instruction.

A serialization function is performed before or after
the second operand is fetched and again after the
operation is completed.

Special Conditions

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
� Addressing (new prefix area)

 � Privileged operation
 � Specification

10-92 z/Architecture Principles of Operation

SET PSW KEY FROM ADDRESS

SPKA D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2�A' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The four-bit PSW key, bits 8-11 of the current
PSW, is replaced by bits 56-59 of the second-
operand address.

The second-operand address is not used to
address data; instead, bits 56-59 of the address
form the new PSW key. Bits 0-55 and 60-63 of
the second-operand address are ignored.

Special Conditions

In the problem state, the execution of the instruc-
tion is subject to control by the PSW-key mask in
control register 3. When the bit in the PSW-key
mask corresponding to the PSW-key value to be
set is one, the instruction is executed successfully.
When the selected bit in the PSW-key mask is
zero, a privileged-operation exception is recog-
nized. In the supervisor state, any value for the
PSW key is valid.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Privileged operation (selected PSW-key-mask
bit is zero in the problem state)

Programming Notes:

1. The format of SET PSW KEY FROM
ADDRESS permits the program to set the
PSW key either from the general register des-
ignated by the B� field or from the D� field in
the instruction itself.

2. When one program requests another program
to access a location designated by the
requesting program, SET PSW KEY FROM
ADDRESS can be used by the called program
to verify that the requesting program is author-
ized to make this access, provided the storage
location of the called program is not protected
against fetching. The called program can
perform the verification by replacing the PSW
key with the requesting-program PSW key
before making the access and subsequently

restoring the called-program PSW key to its
original value. Caution must be exercised,
however, in handling any resulting protection
exceptions since such exceptions may cause
the operation to be terminated. See TEST
PROTECTION and the associated program-
ming notes for an alternative approach to the
testing of addresses passed by a calling
program.

SET SECONDARY ASN

SSAR R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B225' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The ASN specified in bit positions 48-63 of
general register R� replaces the secondary ASN
in control register 3, and the address-
space-control element corresponding to that ASN
replaces the SASCE in control register 7.

The contents of bit positions 48-63 of general reg-
ister R� are called the new ASN. The contents of
bit positions 0-47 of the register are ignored.

First the new ASN is compared with the current
PASN. If the new ASN is equal to the PASN, the
operation is called SET SECONDARY ASN to
current primary (SSAR-cp). If the new ASN is not
equal to the current PASN, the operation is called
SET SECONDARY ASN with space switching
(SSAR-ss). The SSAR-cp and SSAR-ss oper-
ations are depicted in Figure 10-31 on
page 10-96.

SET SECONDARY ASN to Current Primary
(SSAR-cp)

The new ASN replaces the SASN, bits 48-63 of
control register 3; the PASCE in control register 1
replaces the SASCE in control register 7; and the
operation is completed.

SET SECONDARY ASN with Space Switching
(SSAR-ss)

The new ASN is translated by means of the ASN
translation tables, and then the current authori-
zation index, bits 32-47 of control register 4, is
used to test whether the program is authorized to
use the specified ASN.

 Chapter 10. Control Instructions 10-93

The new ASN is translated by means of a two-
level table lookup. Bits 0-9 of the new ASN (bits
48-57 of the register) are a 10-bit AFX which is
used to select an entry from the ASN first table.
Bits 10-15 of the new ASN (bits 58-63 of the reg-
ister) are a six-bit ASX which is used to select an
entry from the ASN second table. The two-level
lookup is described in “ASN Translation” on
page 3-18. The exceptions associated with ASN
translation are collectively called “ASN-translation
exceptions.” These exceptions and their priority
are described in Chapter 6, “Interruptions.”

The ASN-second-table entry (ASTE) obtained as a
result of the second lookup contains the address-
space-control element and the authority-table
origin and length associated with the ASN.

The authority-table origin from the ASTE is used
as a base for a third table lookup. The current
authorization index, bits 32-47 of control register
4, is used, after it has been checked against the
authority-table length, as the index to locate the
entry in the authority table. The authority-table
lookup is described in “ASN Authorization” on
page 3-23.

The new ASN, bits 48-63 of general register R�,
replaces the SASN, bits 48-63 of control register
3. The address-space-control element in the
ASTE replaces the SASCE in control register 7.

The description in this paragraph applies to use of
the subspace-group facility. After the new SASCE
has been placed in control register 7, if (1) the
subspace-group-control bit, bit 54, in the SASCE
is one, (2) the dispatchable unit is subspace
active, and (3) the ASTE obtained by ASN trans-
lation is the ASTE for the base space of the
dispatchable unit, then bits 0-55 and 58-63 of the
SASCE are replaced by the same bits of the
ASCE in the ASTE for the subspace in which the
dispatchable unit last had control. Further details
are in “Subspace-Replacement Operations” on
page 5-60.

SET SECONDARY ASN Serialization

For both the SSAR-cp and SSAR-ss operations, a
serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed.

Special Conditions

The operation is performed only when the
ASN-translation control, bit 44 of control register
14, is one and DAT is on. When either the
ASN-translation-control bit is zero or DAT is off, a
special-operation exception is recognized.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-30 on
page 10-95.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (authority-table entry, SSAR-ss
only)

� ASN translation (SSAR-ss only)
� Secondary authority (SSAR-ss only)

 � Special operation
� Subspace replacement (SSAR-ss only)

 � Trace

10-94 z/Architecture Principles of Operation

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B Special-operation exception due to DAT being off, or the ASN- │
│ translation control, bit 44 of control register 14, being │
│ zero. │
│ │
│ 8.A Trace exceptions. │
│ │
│ 8.B.1 ASN-translation exceptions (SSAR-ss only). │
│ │
│ Note: Subspace-replacement exceptions, which are not shown │
│ in detail in this figure, can occur with any priority after │
│ 8.B.1. │
│ │
│ 8.B.2 Secondary-authority exception due to authority-table entry │
│ being outside table (SSAR-ss only). │
│ │
│ 8.B.3 Addressing exception for access to authority-table entry │
│ (SSAR-ss only). │
│ │
│ 8.B.4 Secondary-authority exception due to S bit in authority- │
│ table entry being zero (SSAR-ss only). │
└──┘

Figure 10-30. Priority of Execution: SET SECONDARY ASN

 Chapter 10. Control Instructions 10-95

 ┌────────────┐
 │ │
 ASN � │
CR14 ┌────┬─┬─────────┐ ┌─────┬───┐ │ SET SECONDARY ASN
32-63│ │T│ AFTO │ │ AFX │ASX│ │ Instruction

└────┴─┴─────┬───┘ └──┬──┴─┬─┘ │ ┌────────┬────┬──┬──┐
(x4�96)│ (x4)│ │(x16) │ │ 'B225' │////│R�│//│

 │ │ │ │ └────────┴────┴─┬┴──┘
┌─────────────────┘ │ │ │ │
│ │ │ │ �
│ ┌──────────────────────┘ │ │ ┌─────────────────┐
│ │ ASN First Table │ │ R� ┌────────┬────────┐
│ � (accessed for │ │ 32-63│ │ ASN │
│ ┌─┐ SSAR-ss only) │ │ └────────┴────┬───┘
└────�│+│ ┌─────────────────┐ │ │ │
 └┬┘ │ │ │ │ �
 │ │ │ │ └───────────────────────�──�──────�────────┐
 │ │ │ │ │ │
 └─�├─┬─────────────┬─┤ │ � │
 R │I│ ASTO │ │ │ │ │
 ├─┴──────┬──────┴─┤ │ CR4 ┌────────┬────────┐ │ │

│ │(x16) │ │ 32-63 │ AX │ PASN │ │ │
│ │ │ │ before└────┬───┴────┬───┘ │ │

 └────────┼────────┘ │ │(x1/4) │ │ │
│ │ │ └──────────┐ │ │

┌──────────────────┘ │ │ � � │
│ │ │ Yes┌───┐No │
│ ┌───────────────────────────┘ │ ┌───┤ =?├───┐ │
│ │ │ │ └───┘ │ │
│ ┌───┼──────────────────�────────────────────────┘ � � │
│ │ │ SSAR-cp SSAR-ss │
│ │ � ASN Second Table │
│ │ ┌─┐ (accessed for SSAR-ss only) │
└──┼─�│+│ ┌───┐ │
 │ └┬┘ │ │ │
 │ │ │ │ │
 │ │ │ │ │
 │ └─�├─┬────────────┬──┬────────┬──────┬─┬─────────────────────────────────┤ │
 � R │I│ ATO │ B│ AX │ ATL │ │ ASCE │� │
 │ ├─┴──────┬─────┴──┴────────┴──────┴─┴────────────────┬────────────────┤ │
 │ │ │(x4) │ │ │
 │ │ │ │ │ │
 │ └────────┼───┼────────────────┘ │
┌──┼───────────────┘ │ │
│ │ │ │
│ └──┐ │ │
│ │ Authority Table ┌──────┘ │
│ � (accessed for │ │
│ ┌─┐ SSAR-ss only) │ │
└───�│+│ ┌───┐ │ │

└┬┘ │ │ CR1 ┌───────────────────────────┐ │ CR3 ┌────────┬────────┐ │
│ │ │ before│ PASCE │ │ 32-63 │ PKM │ SASN │ │

 │ │ │ └────────────┬──────────────┘ │ before└────┬───┴────────┘ │
 └─�├─┬─┤ │ │ │ │
 R │P│S│ │ ┌────────────────┘ │ ┌───────┘

├─┴┬┤ (SSAR-cp only) │ │ (SSAR-ss only) │ │
 │ ││ � � � �
 │ ││ CR7 ┌───────────────────────────┐ CR3 ┌────────┬────────┐

│ ││ after│ SASCE │ 32-63│ PKM │ SASN │
 └──┼┘ �� └───────────────────────────┘ after└────────┴────────┘
 │

└───�Secondary-authority exception if S bit is
zero or if table length is exceeded

 (SSAR-ss only)

R: Address is real.
�: ASTE is 64 bytes; last 48 bytes are not shown.
��: For SSAR-ss only, bits �-55 and 58-63 of SASCE may be replaced from a

 subspace ASCE.

Figure 10-31. Execution of SET SECONDARY ASN

10-96 z/Architecture Principles of Operation

SET STORAGE KEY EXTENDED

SSKE R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B22B' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The storage key for the 4K-byte block that is
addressed by the contents of general register R�
is replaced by bits from general register R�.

In the 24-bit addressing mode, bits 40-51 of
general register R� designate a 4K-byte block in
real storage, and bits 0-39 and 52-63 of the reg-
ister are ignored. In the 31-bit addressing mode,
bits 33-51 of general register R� designate a
4K-byte block in real storage, and bits 0-32 and
52-63 of the register are ignored. In the 64-bit
addressing mode, bits 0-51 of general register R�
designate a 4K-byte block in real storage, and bits
52-63 of the register are ignored.

Because it is a real address, the address desig-
nating the storage block is not subject to dynamic
address translation. The reference to the storage
key is not subject to a protection exception.

The new seven-bit storage-key value is obtained
from bit positions 56-62 of general register R�.
The contents of bit positions 0-55 and 63 of the
register are ignored.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

| For any store access, by any CPU or channel
| program, completed to the designated 4K-byte
| block either before or after the execution of this
| instruction, the associated setting of the reference
| and change bits to one in the storage key for the
| block also is completed before or after, respec-
| tively, the execution of this instruction.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (address specified by general reg-
ister R�)

 � Privileged operation

SET SYSTEM MASK

SSM D�(B�) [S]

┌────────┬────────┬────┬────────────┐
│ '8�' │////////│ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

Bits 0-7 of the current PSW are replaced by the
byte at the location designated by the second-
operand address.

Special Conditions

When the SSM-suppression-control bit, bit 33 of
control register 0, is one and the CPU is in the
supervisor state, a special-operation exception is
recognized.

The value to be loaded into the PSW is not
checked for validity before loading. However,
immediately after loading, a specification excep-
tion is recognized, and a program interruption
occurs, if the contents of bit positions 0 and 2-4 of
the PSW are not all zeros. In this case, the
instruction is completed, and the instruction-length
code is set to 2. The specification exception,
which is listed as a program exception for this
instruction, is described in “Early Exception
Recognition” on page 6-9. This exception may be
considered as caused by execution of this instruc-
tion or as occurring early in the process of pre-
paring to execute the subsequent instruction.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
 � Privileged operation
 � Special operation
 � Specification

 Chapter 10. Control Instructions 10-97

 SIGNAL PROCESSOR

SIGP R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'AE' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

An eight-bit order code and, if called for, a 32-bit
parameter are transmitted to the CPU designated
by the CPU address contained in the third
operand. The result is indicated by the condition
code and may be detailed by status assembled in
bit positions 32-63 of the first-operand location.

The second-operand address is not used to
address data; instead, bits 56-63 of the address
contain the eight-bit order code. Bits 0-55 of the
second-operand address are ignored. The order
code specifies the function to be performed by the
addressed CPU. The assignment and definition of
order codes appear in “CPU Signaling and
Response” on page 4-52.

The 16-bit binary number contained in bit positions
48-63 of general register R� forms the CPU
address. Bits 0-47 of the register are ignored.
When the specified order is the set-architecture
order, the CPU address is ignored; all other CPUs
in the configuration are considered to be
addressed.

The general register containing the 32-bit param-
eter in bit positions 32-63 is R� or R�+1, which-
ever is the odd-numbered register. It depends on
the order code whether a parameter is provided
and for what purpose it is used.

The operands just described have the following
formats:

General register designated by R�:
┌─/─┬────────────────────────────────┐
│///│ Status │
└─/─┴────────────────────────────────┘
� 32 63

General register designated by R� or R� + 1,
whichever is the odd-numbered register:
┌─/─┬────────────────────────────────┐
│///│ Parameter │
└─/─┴────────────────────────────────┘
� 32 63

General register designated by R�:
┌─/─────────────────┬────────────────┐
│///////////////////│ CPU Address │
└─/─────────────────┴────────────────┘
� 48 63

Second-operand address:
┌─/─────────────────────────┬────────┐
│ │ Order │
│///////////////////////////│ Code │
└─/─────────────────────────┴────────┘
� 56 63

A serialization function is performed before the
operation begins and again after the operation is
completed.

When the order code is accepted and no nonzero
status is returned, condition code 0 is set. When
status information is generated by this CPU or
returned by the addressed CPU, the status is
placed in bit positions 32-63 of general register
R�, bits 0-31 of the register remain unchanged,
and condition code 1 is set.

When the access path to the addressed CPU is
busy, or the addressed CPU is operational but in
a state where it cannot respond to the order code,
condition code 2 is set.

When the addressed CPU is not operational (that
is, it is not provided in the installation, it is not in
the configuration, it is in any of certain customer-
engineer test modes, or its power is off), condition
code 3 is set.

Resulting Condition Code:

0 Order code accepted
1 Status stored
2 Busy
3 Not operational

 Program Exceptions:

 � Privileged operation

Programming Notes:

1. A more detailed discussion of the condition-
code settings for SIGNAL PROCESSOR is
contained in “CPU Signaling and Response”
on page 4-52.

2. To ensure that presently written programs will
be executed properly when new facilities using
additional bits are installed, only zeros should

10-98 z/Architecture Principles of Operation

appear in the unused bit positions of the
second-operand address and in bit positions
32-47 of general register R�.

3. Certain SIGNAL PROCESSOR orders are
provided with the expectation that they will be
used primarily in special circumstances. Such
orders may be implemented with the aid of an
auxiliary maintenance or service processor,
and, thus, the execution time may take
several seconds. Unless all of the functions
provided by the order are required, combina-
tions of other orders, in conjunction with
appropriate programming support, can be
expected to provide a specific function more
rapidly. The emergency-signal, external-call,
and sense orders are the only orders which
are intended for frequent use. The following
orders are intended for infrequent use, and
performance therefore may be much slower
than for frequently used orders: restart, set
prefix, store status at address, start, stop, stop
and store status, set architecture, and all the
reset orders. An alternative to the set-prefix
order, for faster performance when the
receiving CPU is not already stopped, is the
use of the emergency-signal or external-call
order, followed by the execution of a SET
PREFIX instruction on the addressed CPU.
Clearing the TLB of entries is ordinarily
accomplished more rapidly through the use of
the emergency-signal or external-call order,
followed by execution of the PURGE TLB
instruction on the addressed CPU, than by
use of the set-prefix order.

STORE CLOCK COMPARATOR

STCKC D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2�7' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The current value of the clock comparator is
stored at the doubleword location designated by
the second-operand address.

Zeros are provided for the rightmost bit positions
of the clock comparator that are not compared
with the TOD clock.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
 � Privileged operation
 � Specification

 STORE CONTROL

STCTL R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ 'B6' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

STCTG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '25' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Bits of the set of control registers starting with
control register R� and ending with control register
R� are stored at the locations designated by the
second-operand address.

For STORE CONTROL (STCTL), bits 32-63 of the
control registers are stored in successive words
beginning at the second-operand address, and
bits 0-31 of the registers are ignored. For STORE
CONTROL (STCTG), bits 0-63 of the control reg-
isters are stored in successive doublewords begin-
ning at the second-operand address.

The storage area where the contents of the
control registers are placed starts at the location
designated by the second-operand address and
continues through as many storage words, for
STCTL, or doublewords, for STCTG, as the
number of control registers specified. The con-
tents of the control registers are stored in
ascending order of their register numbers, starting
with control register R� and continuing up to and
including control register R�, with control register 0
following control register 15. The contents of the
control registers remain unchanged.

 Chapter 10. Control Instructions 10-99

| The displacement for STCTL is treated as a 12-bit
| unsigned binary integer. The displacement for
| STCTG is treated as a 20-bit signed binary
| integer.

Special Conditions

The second operand must be designated on a
word boundary for STCTL or on a doubleword
boundary for STCTG; otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
 � Privileged operation
 � Specification

STORE CPU ADDRESS

STAP D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B212' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The CPU address by which this CPU is identified
in a multiprocessing configuration is stored at the
halfword location designated by the second-
operand address.

Special Conditions

The operand must be designated on a halfword
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
 � Privileged operation
 � Specification

STORE CPU ID

STIDP D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2�2' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

| Information identifying either (1) the CPU or (2)
| the configuration and the logical partition in which
| the program is being executed is stored at the

doubleword location designated by the second-
operand address.

The information stored has the following format:

┌────────┬──────────────────────────┐
│ │ CPU Identification │
│��������│ Number │
└────────┴──────────────────────────┘
� 8 31

┌─────────────────┬─┬───────────────┐
│ Machine-Type │ │ │

| │ Number │F│���������������│
└─────────────────┴─┴───────────────┘
32 48 63

Bit positions 8-31 contain the CPU identification
number, consisting of six four-bit digits. Some or
all of these digits are selected from the physical
serial number stamped on the CPU.

| The format bit (F) in bit position 48 specifies the
| format of the first two digits of the CPU identifica-
| tion number.

| When the format bit is zero, the contents of the
CPU-identification-number field, in conjunction with
the machine-type number, permit unique identifica-

| tion of the CPU. When the format bit is one, the
| CPU-identification number identifies the system
| configuration as opposed to an individual CPU
| within the configuration, and it identifies the logical
| partition in which the program is being executed.

Bit positions 32-47 contain the machine-type
| number of the CPU. Bit positions 0-7 and 49-63

contain zeros.

10-100 z/Architecture Principles of Operation

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
 � Privileged operation
 � Specification

Programming Notes:

1. The program should allow for the possibility
that the CPU identification number may
contain the digits A-F as well as the digits 0-9.

| 2. When the format bit in bit position 48 of the
| second operand is zero, the CPU identification

number, in conjunction with the machine-type
number, provides a unique CPU identification
that can be used in associating results with an
individual machine.

| When the format bit is one, the
| CPU-identification number identifies the
| system configuration as opposed to an indi-
| vidual CPU within the configuration, and it
| identifies the requesting logical partition. The
| CPU identity can be obtained using the
| STORE CPU ADDRESS or the STORE
| SYSTEM INFORMATION instruction.

3. In versions of Enterprise Systems
Architecture/390 Principles of Operation prior
to SA22-7201-03, the machine-type-number
field was called the model-number field.

4. In ESA/390, bit positions 0-7 of the informa-
tion stored contain a version code. When the
version code is nonzero, it is usually indicative
of the model number of the model and the
number of CPUs contained in the model. In
both ESA/390 and z/Architecture, the STORE
SYSTEM INFORMATION instruction can be
used to determine the model number and the
number of CPUs in the model.

| 5. The CPU identification number has the hex
format:

� “Annnnn” in the basic mode, or

� “LPnnnn” in the LPAR (logically-
| partitioned) mode, when the format bit is
| zero, or
| � “PPnnnn” in the LPAR mode, when the
| format bit is one.

Where:

� A is the CPU address of the CPU.
� L is a logical CPU address.
� P is a logical-partition identifier.

| � PP is the user partition identifier (UPID).
| The UPID is an eight-bit unsigned binary
| integer bound to a logical partition.

� n is a digit derived from the serial number
of the CPU.

The terminology above that is not defined in
this publication is defined in the machine
manuals.

| 6. The format bit is always stored as a zero in
| the basic mode.

| 7. Model z800 and z900 machines always store
| the format bit as a zero.

STORE CPU TIMER

STPT D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2�9' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The current value of the CPU timer is stored at
the doubleword location designated by the
second-operand address.

Zeros are provided for the rightmost bit positions
that are not updated by the CPU timer.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
 � Privileged operation
 � Specification

 Chapter 10. Control Instructions 10-101

STORE FACILITY LIST

STFL D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B2B1' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

A list of bits providing information about facilities is
stored in the word at real address 200. The bits
have meanings as follows.

Bit Meaning When Bit Is One

| 0 The instructions marked “N3” in the
instruction-summary figures in Chapters 7 and
10 are installed.

1 The z/Architecture architectural mode is
installed.

2 The z/Architecture architectural mode is
| active. When this bit is zero, the ESA/390
| architectural mode is active.

| 3 INVALIDATE DAT TABLE ENTRY (IDTE) is
| installed in the z/Architecture architectural
| mode. Unless bit 4 is one, IDTE simply
| purges all TLBs.

| 4 INVALIDATE DAT TABLE ENTRY (IDTE) per-
| forms the invalidation-and-clearing operation
| by selectively clearing combined region-and-
| segment-table entries when a segment-table
| entry or entries are invalidated. IDTE also
| performs the clearing-by-ASCE operation. Bit
| 3 is one if bit 4 is one.

| 5 INVALIDATE DAT TABLE ENTRY (IDTE) per-
| forms the invalidation-and-clearing operation
| by selectively clearing combined region-and-
| segment-table entries when a region-table
| entry or entries are invalidated. Bits 3 and 4
| are ones if bit 5 is one.

16 The extended-translation facility 2 is installed.

| 17 The message-security assist is installed.

| 18 The long-displacement facility is installed in
| the z/Architecture architectural mode.

| 19 The long-displacement facility has high per-
| formance. Bit 18 is one if bit 19 is one.

| 20 The HFP-multiply-add/subtract facility is
| installed.

| A bit is set to one regardless of the current archi-
| tectural mode if its meaning is true. A meaning
| applies to the current architectural mode unless it
| is said to apply to a specific architectural mode.

| Bits 6-15 and 21-31 are reserved for indication of
| new facilities. The bits are currently stored as
| zeros but may be stored as ones in the future.

The second-operand address is ignored but
should be zero to permit possible future exten-
sions.

Key-controlled and low-address protection do not
apply.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Privileged operation

 STORE PREFIX

STPX D�(B�) [S]

┌────────────────┬────┬────────────┐
│ 'B211' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The contents of bit positions 33-50 of the prefix
register are stored in bit positions 1-18 of the word
location designated by the second-operand
address, and zeros are stored in bit positions 0
and 19-31 of the word.

Special Conditions

The operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
 � Privileged operation
 � Specification

10-102 z/Architecture Principles of Operation

STORE REAL ADDRESS

STRAG D�(B�),D�(B�) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐
│ 'E5�2' │ B� │ D� │ B� │ D� │
└────────────────┴────┴─/──┴────┴─/──┘
� 16 2� 32 36 47

The 64-bit real address corresponding to the
second-operand virtual address is stored in the
doubleword at the location designated by the first-
operand address.

The virtual address specified by the B� and D�
fields is translated by means of the dynamic-
address-translation facility, regardless of whether
DAT is on or off.

DAT is performed by using an address-
space-control element that depends on the current
value of the address-space-control bits, bits 16
and 17 of the PSW, as shown in the following
table:

ART and DAT may be performed with the use of
the ART-lookaside buffer (ALB) and translation-
lookaside buffer (TLB), respectively.

The resultant 64-bit real address is stored at the
first-operand location.

The translated address is not inspected for
boundary alignment or for addressing or protection
exceptions.

The address computations for the operands are
performed according to the current addressing
mode, specified by bits 31 and 32 of the current
PSW.

The addresses of the region-table entry or entries,
if used, and of the segment-table entry and page-
table entry are treated as 64-bit addresses regard-
less of the current addressing mode. It is unpre-
dictable whether the addresses of these entries
are treated as real or absolute addresses.

Special Conditions

The first operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized.

The operation is suppressed on all addressing
exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2, except for an
addressing or protection exception for the des-
ignated location; store, operand 1)

 � Privileged operation
 � Specification

Programming Note: STORE REAL ADDRESS
is contrasted to LOAD REAL ADDRESS as
follows:

� In the 24-bit or 31-bit addressing mode, LOAD
REAL ADDRESS (LRA) loads bits 33-63 of
the real address if bits 0-32 of the address are
all zeros or recognizes a special-operation
exception if bits 0-32 are not all zeros. LRA in
the 64-bit addressing mode, and LOAD REAL
ADDRESS (LRAG) in any addressing mode,
loads bits 0-63 of the real address. STORE
REAL ADDRESS stores bits 0-63 of the real
address in any addressing mode.

� LOAD REAL ADDRESS, for most access-
exception conditions, does not recognize the
conditions as exceptions but instead sets the
condition code to indicate the occurrence of
the conditions. STORE REAL ADDRESS
recognizes all access-exception conditions as
exceptions, resulting in a program interruption.

PSW
Bits 16
and 17

Address-Space-Control Element
Used by DAT

00 Contents of control register 1

10 Contents of control register 7

01 The address-space-control element
obtained by applying the access-
register-translation (ART) process to the
access register designated by the B�
field

11 Contents of control register 13

 Chapter 10. Control Instructions 10-103

STORE SYSTEM INFORMATION

STSI D�(B�) [S]
┌────────────────┬────┬────────────┐
│ 'B27D' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

Depending on a function code in general register
0, either an identification of the level of the config-
uration executing the program is placed in general
register 0 or information about a component or
components of a configuration is stored in a
system-information block (SYSIB). When informa-
tion about a component or components is
requested, the information is specified by further
contents of general register 0 and by contents of
general register 1. The SYSIB, if any, is desig-
nated by the second-operand address.

The machine is considered to provide one, two, or
three levels of configuration. The levels are:

1. The basic machine, which is the machine as if
it were operating in the basic mode.

2. A logical partition, which is provided if the
machine is operating in the LPAR, or logically-
partitioned, mode. A logical partition is pro-
vided by the LPAR hypervisor, which is a part
of the machine. A basic machine exists even
when the machine is operating in the LPAR
mode.

3. A virtual machine, which is provided by a
virtual-machine (VM) control program that is
executed either by the basic machine or in a
logical partition. A virtual machine may itself
execute a VM control program that provides a
higher-level (more removed from the basic
machine) virtual machine, which also is con-
sidered a level-3 configuration.

The terms basic mode, LPAR mode, logical parti-
tion, hypervisor, and virtual machine, and any
other terms related specifically to those terms, are
not defined in this publication; they are defined in
the machine manuals.

A program being executed by a level-1 configura-
tion (the basic machine) can request information
about that configuration. A program being exe-
cuted by a level-2 configuration (in a logical parti-
tion) can request information about the logical par-
tition and about the underlying basic machine. A
program being executed by a level-3 configuration

(a virtual machine) can request information about
the virtual machine and about the one or two
underlying levels; a basic machine is always
underlying, and a logical partition may or may not
be between the basic machine and the virtual
machine. When information about a virtual
machine is requested, information is provided
about the configuration executing the program and
about any underlying level or levels of virtual
machine. In any of these cases, information is
provided about a level only if the level implements
the instruction.

The function code determining the operation is an
unsigned binary integer in bit positions 32-35 of
general register 0 and is as follows:

Invalid Function Code

The level of the configuration executing the
program is called the current level. The configura-
tion level specified by a nonzero function code is
called the specified level. When the specified
level is numbered higher than the current level,
then the function code is called invalid, the condi-
tion code is set to 3, and no other action
(including checking) is performed.

Valid Function Code

When the function code is equal to or less than
the number of the current level, it is called valid.
In this case, bits 36-55 of general register 0 and
bits 32-47 of general register 1 must be zero; oth-
erwise, a specification exception is recognized.
Bits 0-31 of general registers 0 and 1 always are
ignored.

When the function code is 0, an unsigned binary
integer identifying the current configuration level (1
for basic machine, 2 for logical partition, or 3 for
virtual machine) is placed in bit positions 32-35 of

Func-
tion
Code Information Requested

0 Current-configuration-level number
1 Information about level 1 (the basic

machine)
2 Information about level 2 (a logical parti-

tion)
3 Information about level 3 (a virtual

machine)
4-15 None; codes are reserved

10-104 z/Architecture Principles of Operation

general register 0, the condition code is set to 0,
and no further action is performed.

When the function code is valid and nonzero,
general registers 0 and 1 contain additional spec-
ifications about the information requested, as
follows:

� Bit positions 56-63 of general register 0
contain an unsigned binary integer, called
selector 1, that specifies a component or com-
ponents of the specified configuration.

� Bit positions 48-63 of general register 1
contain an unsigned binary integer, called
selector 2, that specifies the type of informa-
tion requested.

The contents of general registers 0 and 1 are as
follows:

GR �
┌─/─┬────┬───────────────────┬─────────┐
│///│ FC │�������������������│Selector1│
└─/─┴────┴───────────────────┴─────────┘
� 32 36 56 63

GR 1
┌─/─┬────────────────┬─────────────────┐
│///│����������������│ Selector 2 │
└─/─┴────────────────┴─────────────────┘
� 32 48 63

When the function code is valid and nonzero,
information may be stored in a system-information
block (SYSIB) beginning at the second-operand
location. The SYSIB is 4K bytes and must begin
at a 4K-byte boundary; otherwise, a specification
exception may be recognized, depending on
selector 1 and selector 2 and on whether access
exceptions are recognized due to references to
the SYSIB (see “Special Conditions”).

Selector 1 can have values as follows:

When selector 1 is 1, selector 2 can have values
as follows:

When selector 1 is 2, selector 2 can have values
as follows:

Only certain combinations of the function code,
selector 1, and selector 2 are valid, as shown in
Figure 10-32.

┌─────┬──────┬──────┬────────────────────────┐
│Func-│ │ │ │
│tion │Selec-│Selec-│Information │
│Code │tor 1 │tor 2 │Requested about │
├─────┼──────┼──────┼────────────────────────┤
│ � │ - │ - │Current-configuration- │
│ │ │ │ level number │
│ │ │ │ │
│ 1 │ 1 │ 1 │Basic-machine configura-│
│ │ │ │ tion │
│ 1 │ 2 │ 1 │Basic-machine CPU │
│ 1 │ 2 │ 2 │Basic-machine CPUs │
│ │ │ │ │
│ 2 │ 2 │ 1 │Logical-partition CPU │
│ 2 │ 2 │ 2 │Logical-partition CPUs │
│ │ │ │ │
│ 3 │ 2 │ 2 │Virtual-machine CPUs │
├─────┴──────┴──────┴────────────────────────┤
│Explanation: │
│ │
│ - Ignored. │
└──┘

Figure 10-32. Valid Function-Code, Selector-1, and
Selector-2 Combinations for STORE SYSTEM INFOR-
MATION

When the specified function-code, selector-1, and
selector-2 combination is invalid (is other than as
shown in Figure 10-32), or if it is valid but the

Selector
2 when
Selector
1 Is 1 Information Requested

0 None; selector is reserved
1 Information about the specified config-

uration level
2-65,535 None; selectors are reserved

Selector
2 when
Selector
1 Is 2 Information Requested

0 None; selector is reserved
1 Information about the CPU executing

the program in the specified configura-
tion level

2 Information about all CPUs in the spec-
ified configuration level

3-65,535 None; selectors are reserved

Selec-
tor 1 Information Requested

0 None; selector is reserved
1 Information about the specified configura-

tion level
2 Information about one or more CPUs in

the specified configuration level
3-255 None; selectors are reserved

 Chapter 10. Control Instructions 10-105

requested information is not available because the
specified level does not implement or does not
fully implement the instruction or because a nec-
essary part of the level is uninstalled or not initial-
ized, and provided that an exception is not recog-
nized (see “Special Conditions”), the condition
code is set to 3. When the function code is
nonzero, the combination is valid, the requested
information is available, and there is no exception,
the requested information is stored in a system-
information block (SYSIB) at the second-operand
address.

Some or all of the SYSIB may be fetched before it
is stored.

A SYSIB may be identified in references by
means of “SYSIB fc.s1.s2,” where “fc,” “s1,” and
“s2” are the values of a function code, selector 1,
and selector 2, respectively.

Following sections describe the defined SYSIBs
by means of figures and related text. In the
figures, the offsets shown on the left are word
values. “The configuration” refers to the config-
uration level specified by the function code (the
configuration level about which information is
requested).

SYSIB 1.1.1 (Basic-Machine Configuration)

SYSIB 1.1.1 has the following format:

 SYSIB 1.1.1
 ┌───────────────────────────────────┐
 � │ │
 / Reserved /
 7 │ │
 ├───────────────────────────────────┤
 8 │ │
 / Manufacturer /
 11 │ │
 ├───────────────────────────────────┤
 12 │ Type │
 ├───────────────────────────────────┤
 13 │ │
 / Reserved /
 15 │ │
 ├───────────────────────────────────┤
 16 │ │

/ Model /
 19 │ │
 ├───────────────────────────────────┤
 2� │ │
 / Sequence Code /
 23 │ │
 ├───────────────────────────────────┤
24 │ Plant of Manufacture │

 ├───────────────────────────────────┤
 25 │ │
 / Reserved /
1�23 │ │
 └───────────────────────────────────┘
 � 31

Reserved: The contents of words 0-7, 13-15,
and 25-63 are reserved and are stored as zeros.
The contents of words 64-1023 are reserved and
may be stored as zeros or may remain
unchanged.

Manufacturer: Words 8-11 contain the
16-character (0-9 or uppercase A-Z) EBCDIC
name of the manufacturer of the configuration.
The name is left justified with trailing blanks if nec-
essary.

Type: Word 12 contains the four-character (0-9)
EBCDIC type number of the configuration. (This
is called the machine-type number in the definition
of STORE CPU ID.)

Model: Words 16-19 contain the 16-character
(0-9 or uppercase A-Z) EBCDIC model identifica-
tion of the configuration. The model identification
is left justified with trailing blanks if necessary.
(This is called the model number in programming
note 4 on page 10-101 of STORE CPU ID.)

10-106 z/Architecture Principles of Operation

Sequence Code: Words 20-23 contain the
16-character (0-9 or uppercase A-Z) EBCDIC
sequence code of the configuration. The
sequence code is right justified with leading
EBCDIC zeros if necessary.

Plant of Manufacture: Word 24 contains the
four-character (0-9 or uppercase A-Z) EBCDIC
code that identifies the plant of manufacture for
the configuration. The code is left justified with
trailing blanks if necessary.

Programming Note: The fields of the SYSIB
1.1.1 are similar to those of the node descriptor
described in the publication Common I/O-Device
Commands and Self Description, SA22-7204.
However, the contents of the SYSIB fields may
not be identical to the contents of the corre-
sponding node-descriptor fields because the
SYSIB fields:

� Allow more characters.

� Are more flexible regarding the type of charac-
ters allowed.

� Provide information that is justified differently
within the field.

� May not use the same method to determine
the contents of fields such as the sequence-
code field.

SYSIB 1.2.1 (Basic-Machine CPU)

SYSIB 1.2.1 has the following format:

 SYSIB 1.2.1
 ┌───────────────────────────────────┐
 � │ │
 / Reserved /
 19 │ │
 ├───────────────────────────────────┤
 2� │ │
 / Sequence Code /
 23 │ │
 ├───────────────────────────────────┤
24 │ Plant of Manufacture │

 ├─────────────────┬─────────────────┤
 25 │ Reserved │ CPU Address │
 ├─────────────────┴─────────────────┤
 26 │ │
 / Reserved /
1�23 │ │
 └───────────────────────────────────┘
 � 16 31

Reserved: The contents of words 0-19, bytes 0
and 1 of word 25, and words 26-63 are reserved
and are stored as zeros. The contents of words
64-1023 are reserved and may be stored as zeros
or may remain unchanged.

Sequence Code: Words 20-23 contain the
16-character (0-9 or uppercase A-Z) EBCDIC

| sequence code of the configuration. The code is
right justified with leading EBCDIC zeros if neces-
sary.

Plant of Manufacture: Word 24 contains the
four-character (0-9 or uppercase A-Z) EBCDIC
code that identifies the plant of manufacture for

| the configuration. The code is left justified with
trailing blanks if necessary.

CPU Address: Bytes 2 and 3 of word 25 contain
the CPU address by which this CPU is identified
in a multiprocessing configuration. The CPU
address is a 16-bit unsigned binary integer.

The CPU address is the same as is stored by
STORE CPU ADDRESS when the program is
executed by a machine operating in the basic
mode.

Programming Note: Multiple CPUs in the same
| configuration have the same sequence code, and
| it is necessary to use other information, such as

the CPU address, to establish a unique CPU iden-
| tity. The sequence code returned for a basic-
| machine CPU and a logical-partition CPU are
| identical and have the same value as the
| sequence code returned for the basic-machine
| configuration.

SYSIB 1.2.2 (Basic-Machine CPUs)

| The format field in byte 0 of word 0 determines
| the format of the SYSIB.

| When the format field has a value of zero, SYSIB
| 1.2.2 has a format-0 layout as follows:

 Chapter 10. Control Instructions 10-107

| Format-� SYSIB 1.2.2
| ┌────────┬──────────────────────────┐
| � │ Format │ Reserved │
| ├────────┴──────────────────────────┤
| 1 │ │

 / Reserved /
 7 │ │
 ├───────────────────────────────────┤
 8 │ CPU Capability │
 ├─────────────────┬─────────────────┤

9 │ Total CPU Count │ Conf. CPU Count │
 ├─────────────────┼─────────────────┤
1� │ SB CPU Count │ Resv. CPU Count │

 ├─────────────────┴─────────────────┤
 11 │ │

│ Multiprocessing │
 / CPU-Capability /
 │ Adjustment Factors │
1�23 │ │
 └───────────────────────────────────┘

| � 8 16 31

| When the format field has a value of one, SYSIB
| 1.2.2 has a format-1 layout as follows:

| Format-1 SYSIB 1.2.2
| ┌────────┬────────┬─────────────────┐
| � │ Format │Reserved│ ACC Offset │
| ├────────┴────────┴─────────────────┤
| 1 │ │
| / Reserved /
| 7 │ │
| ├───────────────────────────────────┤
| 8 │ CPU Capability │
| ├─────────────────┬─────────────────┤
| 9 │ Total CPU Count │ Conf. CPU Count │
| ├─────────────────┼─────────────────┤
| 1� │ SB CPU Count │ Resv. CPU Count │
| ├─────────────────┴─────────────────┤
| 11 │ │
| │ Multiprocessing │
| / CPU-Capability /
| │ Adjustment Factors │
| N-1 │ │
| ├───────────────────────────────────┤
| N │ Alternate CPU Capability │
| ├───────────────────────────────────┤
| N+1 │ │
| │ Alternate │
| / Multiprocessing /
| │ CPU-Capability │
| │ Adjustment Factors │
| 1�23 │ │
| └───────────────────────────────────┘
| � 8 16 31

| N = ACC Offset/4

| Reserved: When the format field contains a
| value of zero, the contents of bytes 1-3 of word 0
| and words 1-7 are reserved and stored as zeros.

| When the format field contains a value of one, the
| contents of byte 1 of word 0 and words 1-7 are
| reserved and stored as zeros.

| When less than 64 words are needed to contain
| the information for all the CPUs, the portion of the
| SYSIB following the adjustment-factor list in a
| format-0 SYSIB or the alternate-adjustment-factor
| list in a format-1 SYSIB, up to word 63 are

reserved and are stored as zeros. The contents
of words 64-1023 are reserved and may be stored
as zeros or may remain unchanged.

| When 64 or more words are needed to contain the
| information for all the CPUs, the portion of the
| SYSIB following the adjustment-factor list in a
| format-0 SYSIB or the alternate-adjustment-factor
| list in a format-1 SYSIB, up to word 1023 are
| reserved and may be stored as zeros or may
| remain unchanged.

| Format: Byte 0 of word 0 contains an 8-bit
| unsigned binary integer that specifies the format of
| SYSIB 1.2.2.

| Alternate-CPU-Capability Offset: When the
| format field has a value of one, bytes 2-3 of word
| 0 contain a 16-bit unsigned binary integer that
| specifies the offset in bytes of the
| alternate-CPU-capability field in the SYSIB.

CPU Capability: Word 8 contains a 32-bit
unsigned binary integer that specifies the capa-
bility of one of the CPUs in the configuration.
There is no formal description of the algorithm
used to generate this integer. The integer is used
as an indication of the capability of the CPU rela-
tive to the capability of other CPU models.

The capability value applies to each of the CPUs
in the configuration. That is, all CPUs in the con-
figuration have the same capability.

Total CPU Count: Bytes 0 and 1 of word 9
contain a 16-bit unsigned binary integer that speci-
fies the total number of CPUs in the configuration.
This number includes all CPUs in the configured
state, the standby state, or the reserved state.

Configured CPU Count: Bytes 2 and 3 of word
9 contain a 16-bit unsigned binary integer that
specifies the number of CPUs that are in the con-
figured state. A CPU is in the configured state

10-108 z/Architecture Principles of Operation

when it is in the configuration and available to be
used to execute programs.

Standby CPU Count: Bytes 0 and 1 of word 10
contain a 16-bit unsigned binary integer that speci-
fies the number of CPUs that are in the standby
state. A CPU is in the standby state when it is in
the configuration, is not available to be used to
execute programs, and can be made available by
issuing instructions to place it in the configured
state.

Reserved CPU Count: Bytes 2 and 3 of word 10
contain a 16-bit unsigned binary integer that speci-
fies the number of CPUs that are in the reserved
state. A CPU is in the reserved state when it is in
the configuration, is not available to be used to
execute programs, and cannot be made available
by issuing instructions to place it in the configured
state. (It may be possible to place a reserved
CPU in the standby or configured state by means
of manual actions.)

Multiprocessing CPU-Capability Adjustment
Factors: Beginning with bytes 0 and 1 of word
11, the SYSIB contains a series of contiguous
two-byte fields, each containing a 16-bit unsigned
binary integer that is an adjustment factor (per-
centage) for the value contained in the
CPU-capability field.

The number of adjustment-factor fields is one less
than the number of CPUs specified in the
total-CPU-count field. The adjustment-factor fields
correspond to configurations with increasing
numbers of CPUs in the configured state. The
first adjustment-factor field corresponds to a con-
figuration with two CPUs in the configured state.
Each successive adjustment-factor field corre-
sponds to a configuration with a number of CPUs
in the configured state that is one more than that
for the preceding field.

| Alternate CPU Capability: When the format field
| has a value of one, word N contains a 32-bit
| unsigned binary integer that specifies the
| announced capability of one of the CPUs in the
| configuration. There is no formal description of
| the algorithm used to generate this integer. The
| integer is used as an indication of the announced
| capability of the CPU relative to the announced
| capability of other CPU models.

| The alternate-capability value applies to each of
| the CPUs in the configuration. That is, all CPUs
| in the configuration have the same alternate capa-
| bility.

| Alternate Multiprocessing CPU-Capability
| Adjustment Factors: Beginning with bytes 0 and
| 1 of word N+1, the SYSIB contains a series of
| contiguous two-byte fields, each containing a
| 16-bit unsigned binary integer that is an adjust-
| ment factor (percentage) for the value contained in
| the alternate-CPU-capability field.

| The number of alternate-adjustment-factor fields is
| one less than the number of CPUs specified in the
| total-CPU-count field. The alternate-
| adjustment-factor fields correspond to configura-
| tions with increasing numbers of CPUs in the con-
| figured state. The first alternate-adjustment-factor
| field corresponds to a configuration with two CPUs
| in the configured state. Each successive
| alternate-adjustment-factor field corresponds to a
| configuration with a number of CPUs in the config-
| ured state that is one more than that for the pre-
| ceding field.

SYSIB 2.2.1 (Logical-Partition CPU)

SYSIB 2.2.1 has the following format:

 SYSIB 2.2.1
 ┌───────────────────────────────────┐
 � │ │
 / Reserved /
 19 │ │
 ├───────────────────────────────────┤
 2� │ │

| / Sequence Code /
 23 │ │
 ├───────────────────────────────────┤

| 24 │ Plant of Manufacture │
 ├─────────────────┬─────────────────┤
 25 │ LCPU ID │ LCPU Address │
 ├─────────────────┴─────────────────┤
 26 │ │
 / Reserved /
1�23 │ │
 └───────────────────────────────────┘
 � 16 31

Reserved: The contents of words 0-19 and
26-63 are reserved and are stored as zeros. The
contents of words 64-1023 are reserved and may
be stored as zeros or may remain unchanged.

 Chapter 10. Control Instructions 10-109

| Sequence Code: Words 20-23 contain the
16-character (0-9 or uppercase A-Z) EBCDIC

| sequence code of the configuration. The code is
right justified with leading EBCDIC zeros if neces-
sary.

| Plant of Manufacture: Word 24 contains the
four-character (0-9 or uppercase A-Z) EBCDIC
code that identifies the plant of manufacture for

| the configuration. The code is left justified with
trailing blanks if necessary.

Logical-CPU ID: Bytes 0 and 1 of word 25
contain a 16-bit unsigned binary integer that can
be used in conjunction with the logical-CPU
address to distinguish the logical CPU from the
other logical CPUs provided by the same LPAR
hypervisor.

Logical-CPU Address: Bytes 2 and 3 of word
25 contain the logical-CPU address by which this
logical CPU is identified within the level-2 config-
uration. The logical-CPU address is a 16-bit
unsigned binary integer.

The logical-CPU-address field contains the same
information as is stored by STORE CPU
ADDRESS when the machine is operating in the
LPAR mode.

Programming Note: Multiple logical CPUs in the
| same level-2 configuration have the same
| logical-CPU sequence code, and it is necessary to

use other information, such as the logical-CPU
address, to establish a unique logical-CPU iden-

| tity. The sequence code returned for a basic-
| machine CPU and a logical-partition CPU are
| identical and have the same value as the
| sequence code returned for the basic-machine
| configuration.

SYSIB 2.2.2 (Logical-Partition CPUs)

SYSIB 2.2.2 has the following format:

 SYSIB 2.2.2
 ┌───────────────────────────────────┐
 � │ │
 / Reserved /
 7 │ │
 ├─────────────────┬────────┬────────┤

8 │ LPAR Number │ Resv. │ LCPUC │
 ├─────────────────┼────────┴────────┤

9 │ Total LCPU Count│ Conf. LCPU Count│
 ├─────────────────┼─────────────────┤
1� │ SB LCPU Count │ Resv. LCPU Count│

 ├─────────────────┴─────────────────┤
 11 │ │
 │ Logical-Partition Name │
 12 │ │
 ├───────────────────────────────────┤
 13 │ Logical-Partition CAF │
 ├───────────────────────────────────┤
 14 │ │
 / Reserved /
 17 │ │
 ├─────────────────┬─────────────────┤
18 │ Ded. LCPU Count │ Shr. LCPU Count │

 ├─────────────────┴─────────────────┤
 19 │ │
 / Reserved /
1�23 │ │
 └───────────────────────────────────┘
 � 16 31

Reserved: The contents of words 0-7, byte 2 of
word 8, words 14-17, and words 19-63 are
reserved and are stored as zeros. The contents
of words 64-1023 are reserved and may be stored
as zeros or may remain unchanged.

Logical-Partition Number: Bytes 0 and 1 of
word 8 contain a 16-bit unsigned binary integer
which is the number of the level-2 configuration.
This number distinguishes the configuration from
all other level-2 configurations provided by the
same LPAR hypervisor.

Logical-CPU Characteristics (LCPUC): The
contents of byte 3 of word 8 describe the charac-
teristics of the logical CPUs that are provided for
the level-2 configuration. The bits and their
meanings are as follows:

Bit Meaning

0 Dedicated: When one, bit 0 indicates that
one or more of the logical CPUs for this
level-2 configuration are provided using
level-1 CPUs that are dedicated to this
level-2 configuration and are not used to
provide logical CPUs for any other level-2
configuration. The number of logical CPUs
that are provided using dedicated level-1

10-110 z/Architecture Principles of Operation

CPUs is specified by the
dedicated-LCPU-count value in bytes 0 and 1
of word 18.

When zero, bit 0 indicates that none of the
logical CPUs for this level-2 configuration are
provided using level-1 CPUs that are dedi-
cated to this level-2 configuration.

1 Shared: When one, bit 1 indicates that one or
more of the logical CPUs for this level-2 con-
figuration are provided using level-1 CPUs
that can be used to provide logical CPUs for
other level-2 configurations. The number of
logical CPUs that are provided using shared
level-1 CPUs is specified by the
shared-LCPU-count value in bytes 2 and 3 of
word 18.

When zero, bit 1 indicates that none of the
logical CPUs for this level-2 configuration are
provided using shared level-1 CPUs.

2 Utilization Limit: When one, bit 2 indicates
that the amount of use of the level-1 CPUs
that are used to provide the logical CPUs for
this level-2 configuration is limited.

When zero, bit 2 indicates that the amount of
use of the level-1 CPUs that are used to
provide the logical CPUs for this level-2 con-
figuration is unlimited.

3-7 Reserved.

Total Logical-CPU Count: Bytes 0 and 1 of
word 9 contain a 16-bit unsigned binary integer
that specifies the total number of logical CPUs
that are provided for this level-2 configuration.
This number includes all of the logical CPUs that
are in the configured state, the standby state, or
the reserved state.

Configured Logical-CPU Count: Bytes 2 and 3
of word 9 contain a 16-bit unsigned binary integer
that specifies the number of logical CPUs for this
level-2 configuration that are in the configured
state.

A logical CPU is in the configured state when it is
in the level-2 configuration and is available to be
used to execute programs.

Standby Logical-CPU Count: Bytes 0 and 1 of
word 10 contain a 16-bit unsigned binary integer
that specifies the number of logical CPUs for this
level-2 configuration that are in the standby state.

A logical CPU is in the standby state when it is in
the level-2 configuration, is not available to be
used to execute programs, and can be made
available by issuing instructions to place it in the
configured state.

Reserved Logical-CPU Count: Bytes 2 and 3 of
word 10 contain a 16-bit unsigned binary integer
that specifies the number of CPUs for this level-2
configuration that are in the reserved state.

A logical CPU is in the reserved state when it is in
the level-2 configuration, is not available to be
used to execute programs, and cannot be made
available by issuing instructions to place it in the
configured state. (It may be possible to place the
reserved CPU in the standby or configured state
through manual actions.)

Logical-Partition Name: Words 11-12 contain
the 8-character EBCDIC name of this level-2 con-
figuration. The name is left justified with trailing
blanks if necessary.

Logical-Partition Capability Adjustment Factor
(CAF): Word 13 contains a 32-bit unsigned
binary integer, called an adjustment factor, with a
value of 1000 or less. The adjustment factor
specifies the amount of the underlying
level-1-configuration capability that is allowed to
be used for this level-2 configuration by the LPAR
hypervisor. The fraction of level-1-configuration
capability is determined by dividing the CAF value
by 1000.

Dedicated Logical-CPU Count: Bytes 0 and 1
of word 18 contain a 16-bit unsigned binary
integer that specifies the number of configured-
state logical CPUs for this level-2 configuration
that are provided using dedicated level-1 CPUs.
(See the description of bit 0 of the
logical-CPU-characteristics field.)

Shared Logical-CPU Count: Bytes 2 and 3 of
word 18 contain a 16-bit unsigned binary integer
that specifies the number of configured-state
logical CPUs for this level-2 configuration that are
provided using shared level-1 CPUs. (See the
description of bit 1 of the
logical-CPU-characteristics field.)

 Chapter 10. Control Instructions 10-111

SYSIB 3.2.2 (Virtual-Machine CPUs)

SYSIB 3.2.2 has the following format:

 SYSIB 3.2.2
 ┌───────────────────────────────────┐
 � │ │
 / Reserved /
 6 │ │
 ├──────────────────────────────┬────┤

7 │ Reserved │DBCT│
 ├──────────────────────────────┴────┤
 8 │ │

/ Virtual-Machine Description Block /
 23 │ │
 ├───────────────────────────────────┤
24 │ . │

/ . /
 135 │ . │
 ├───────────────────────────────────┤
 136 │ │
 / Reserved /
1�23 │ │
 └───────────────────────────────────┘
 � 28 31

Reserved: The contents of words 0-6, bits 0-27
of word 7, and words 136-1023 are reserved and
are stored as zeros.

Description-Block Count (DBCT): Bits 28-31 of
word 7 contain a four-bit unsigned binary integer
that specifies the number (up to eight) of virtual-
machine description blocks that are stored in the
SYSIB beginning at word 8.

Virtual-Machine Description Blocks: Words
8-135 contain from one to eight 64-byte virtual-
machine description blocks, depending on the
number of nested level-3 configurations, if any,
and their processing characteristics.

When a level-3 configuration is provided by a
virtual-machine control program and the control
program is being executed by a level-3 configura-
tion provided by another virtual-machine control
program, the level-3 configurations are said to be

“nested.” Level-3 configurations can be nested in
this way for several levels.

The collection of nested level-3 configurations that
is in the path between a program being executed
by a level-3 configuration and the basic machine
is called a “level-3-configuration stack.” The
level-3 configurations in a stack are consecutively
numbered. The level-3 configuration provided by
a virtual-machine control program being executed
by either a level-2 configuration or a level-1 con-
figuration is the lowest-numbered (0) level-3 con-
figuration in the stack. The level-3 configuration
that is executing the program containing this
instruction is the highest numbered (N) level-3
configuration in the stack.

If more than one virtual-machine description block
is stored in words 8-135 of the SYSIB, the blocks
are stored according to the following rules:

� The collection of level-3 configurations
described is a contiguous subset of the total
collection of level-3 configurations in the
level-3-configuration stack. The subset
always includes the highest-numbered level-3
configuration in the stack. One or more
level-3 configurations at the bottom of the
stack may not be described because STORE
SYSTEM INFORMATION is not implemented
by the highest of those configurations or the
limit of eight description blocks would be
exceeded.

� The highest-numbered level-3 configuration in
the level-3-configuration stack is always
described by the first description block in the
SYSIB. The lowest-numbered level-3 config-
uration in the stack, of those that are included
in the subset that is described, is described by
the last description block in the SYSIB.

The contents of the SYSIB subsequent to the
virtual-machine description blocks and prior to
word 136 are reserved and are stored as zeros.

The virtual-machine description block has the fol-
lowing format:

10-112 z/Architecture Principles of Operation

Virtual-Machine Description Block
 ┌───────────────────────────────────┐
 � │ Reserved │
 ├─────────────────┬─────────────────┤

1 │Total LCPU Count │Conf. LCPU Count │
 ├─────────────────┼─────────────────┤

2 │ SB LCPU Count │Resv. LCPU Count │
 ├─────────────────┴─────────────────┤
 3 │ │
 │ Virtual-Machine Name │
 4 │ │
 ├───────────────────────────────────┤
 5 │ Virtual-Machine CAF │
 ├───────────────────────────────────┤
 6 │ │
 / Control-Program Identifier /
 9 │ │
 ┤───────────────────────────────────┤
 1� │ │
 / Reserved /
 15 │ │
 └───────────────────────────────────┘
 � 31

Reserved: The contents of words 0 and 10-15
are reserved and are stored as zeros.

Total Logical-CPU Count: Bytes 0 and 1 of
word 1 contain a 16-bit unsigned binary integer
that specifies the total number of logical CPUs
that are provided for this level-3 configuration.
This number includes all of the logical CPUs that
are in the configured state, the standby state, and
the reserved state.

Configured Logical-CPU Count: Bytes 2 and 3
of word 1 contain a 16-bit unsigned binary integer
that specifies the number of logical CPUs for this
level-3 configuration that are in the configured
state.

A logical CPU is in the configured state when it is
in the level-3 configuration and is available to be
used to execute programs.

Standby Logical-CPU Count: Bytes 0 and 1 of
word 2 contain a 16-bit unsigned binary integer
that specifies the number of logical CPUs for this
level-3 configuration that are in the standby state.

A logical CPU is in the standby state when it is in
the level-3 configuration, is not available to be
used to execute programs, and can be made
available by issuing instructions to place it in the
configured state.

Reserved Logical-CPU Count: Bytes 2 and 3 of
word 2 contain a 16-bit unsigned binary integer
that specifies the number of CPUs for this level-3
configuration that are in the reserved state.

A logical CPU is in the reserved state when it is in
the level-3 configuration, is not available to be
used to execute programs, and cannot be made
available by issuing instructions to place it in the
configured state. (It may be possible to place the
logical CPU in the standby or configured state
through manual actions.)

Virtual-Machine Name: Words 3-4 contain the
eight-character EBCDIC name of this level-3 con-
figuration. The name is left justified with trailing
blanks if necessary.

Virtual-Machine Capability Adjustment Factor
(CAF): Word 5 contains a 32-bit unsigned binary
integer, called an adjustment factor, with a value
of 1000 or less. The adjustment factor specifies
the amount of the underlying level-1-, level-2-, or
level-3-configuration capability that is allowed to
be used for this level-3 configuration by the virtual-
machine control program. The fraction of the
underlying capability is determined by dividing the
CAF value by 1000.

Control-Program Identifier: Words 6-9 contain
the 16-character EBCDIC identifier of the virtual-
machine control program that provides this level-3
configuration. This identifier may include qualifiers
such as version number and release level. The
identifier is left justified with trailing blanks if nec-
essary.

 Chapter 10. Control Instructions 10-113

Special Conditions

The condition code is set to 3 if the function code
in bit positions 32-35 of general register 0 is
greater than the current-level number.

Bits 36-55 of general register 0 and 32-47 of
general register 1 must be zero; otherwise, a
specification exception is recognized.

When the function code is valid and nonzero, the
following special conditions apply in an unpredict-
able order:

� The second operand must be designated on a
4K-byte boundary; otherwise, a specification
exception is recognized.

� If the function-code, selector-1, and selector-2
combination is invalid, or if it is valid but the

requested information is not available, the
condition code is set to 3.

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-33.

Resulting Condition Code:

0 Requested configuration-level number placed
in general register 0 or requested SYSIB
information stored

1 --
2 --
3 Requested SYSIB information not available

 Program Exceptions:

� Access (store, operand 2, only if function code
nonzero)

 � Privileged operation
 � Specification

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program-│
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword. │
│ │
│ 7.B.1 Operation exception if the store-system-information facility │
│ is not installed. │
│ │
│ 7.B.2 Privileged-operation exception for privileged instruction. │
│ │
│ 8. Condition code 3 due to function code greater than current- │
│ level number. │
│ │
│ 9. Specification exception due to bits 36-55 of general register│
│ � or bits 32-47 of general register 1 not zero. │
│ │
│ 1�. Condition code � due to function code �. │
│ │
│ 11.A Specification exception due to second-operand address not │
│ designating a 4K-byte boundary. │
│ │
│ 11.B Condition code 3 due to invalid function-code, selector-1, │
│ and selector-2 combination or requested information not │
│ available. │
│ │
│ 12. Access exceptions (store) for system-information block. │
│ │
│ 13. Condition code � due to information stored in system- │
│ information block. │
└──┘

Figure 10-33. Priority of Execution: STORE SYSTEM INFORMATION

Programming Note: The storage-operand refer-
ences for STORE SYSTEM INFORMATION may

be multiple-access references. (See “Storage-
Operand Consistency” on page 5-87.)

10-114 z/Architecture Principles of Operation

STORE THEN AND SYSTEM
MASK

STNSM D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ 'AC' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

Bits 0-7 of the current PSW are stored at the first-
operand location. Then the contents of bit posi-
tions 0-7 of the current PSW are replaced by the
logical AND of their original contents and the
second operand.

Special Conditions

The operation is suppressed on addressing and
protection exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 1)
 � Privileged operation

Programming Note: STORE THEN AND
SYSTEM MASK permits the program to set
selected bits in the system mask to zeros while
retaining the original contents for later restoration.
For example, it may be necessary that a program,
which has no record of the present status, disable
program-event recording for a few instructions.

STORE THEN OR SYSTEM MASK

STOSM D�(B�),I� [SI]

┌────────┬────────┬────┬────────────┐
│ 'AD' │ I� │ B� │ D� │
└────────┴────────┴────┴────────────┘
� 8 16 2� 31

Bits 0-7 of the current PSW are stored at the first-
operand location. Then the contents of bit posi-
tions 0-7 of the current PSW are replaced by the
logical OR of their original contents and the
second operand.

Special Conditions

The value to be loaded into the PSW is not
checked for validity before loading. However,
immediately after loading, a specification excep-
tion is recognized, and a program interruption

occurs, if the contents of bit positions 0 and 2-4 of
the PSW are not all zeros. In this case, the
instruction is completed, and the instruction-length
code is set to 2. The specification exception,
which is listed as a program exception for this
instruction, is described in “Early Exception
Recognition” on page 6-9. It may be considered
as occurring early in the process of preparing to
execute the following instruction.

The operation is suppressed on addressing and
protection exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 1)
 � Privileged operation
 � Specification

Programming Note: STORE THEN OR
SYSTEM MASK permits the program to set
selected bits in the system mask to ones while
retaining the original contents for later restoration.
For example, the program may enable the CPU
for I/O interruptions without having available the
current status of the external-mask bit.

STORE USING REAL ADDRESS

STURA R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B246' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

STURG R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B925' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

For STORE USING REAL ADDRESS (STURA),
bits 32-63 of general register R� are stored in the
word at the real-storage location addressed by the
contents of general register R�. For STORE
USING REAL ADDRESS (STURG), bits 0-63 of
general register R� are stored in the doubleword
at that real-storage location.

In the 24-bit addressing mode, bits 40-63 of
general register R� designate the real-storage
location, and bits 0-39 of the register are ignored.
In the 31-bit addressing mode, bits 33-63 of

 Chapter 10. Control Instructions 10-115

general register R� designate the real-storage
location, and bits 0-33 of the register are ignored.
In the 64-bit addressing mode, bits 0-63 of general
register R� designate the real-storage location.

Because it is a real address, the address desig-
nating the storage word or doubleword is not
subject to dynamic address translation.

Special Conditions

The contents of general register R� must desig-
nate a location on a word boundary for STURA or
on a doubleword boundary for STURG; otherwise,
a specification exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Addressing (address specified by general reg-
ister R�)

 � Privileged operation
� Protection (store, operand 2, key-controlled

protection and low-address protection)
 � Specification

 TEST ACCESS

TAR R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B24C' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The access-list-entry token (ALET) in access reg-
ister R� is tested for exceptions recognized during
access-register translation (ART). The extended
authorization index (EAX) used is bits 32-47 of
general register R�. The ALET is also tested for
whether it designates the dispatchable-unit access
list or the primary-space access list and for
whether it is 00000000 or 00000001 hex.

When R� is 0, the actual contents of access reg-
ister 0 are used in ART, instead of the 00000000
hex that is usually used.

Bits 0-31 and 48-63 of general register R� are
ignored.

The operation does not depend on the translation
mode — bits 5, 16, and 17 of the PSW are
ignored.

When the ALET specified by means of the R� field
is other than 00000000 or 00000001 hex, the ART
process is applied to the ALET. The EAX speci-
fied by means of the R� field is called the effective
EAX, and it is the EAX which is used by ART.
When a condition exists that would normally cause
one of the exceptions shown in the following table,
the instruction is completed by setting condition
code 3.

When ART is completed without one of the above
conditions being present, the instruction is com-
pleted by setting condition code 1 or 2, depending
on whether the effective access list is the
dispatchable-unit access list or the primary-space
access list, respectively. The effective access list
is the dispatchable-unit access list if bit 7 of the
ALET is zero, or it is the primary-space access list
if bit 7 is one. ART, including the obtaining of the
effective access-list designation, is described in
“Access-Register-Translation Process” on
page 5-49.

When the ALET is 00000000 hex, the instruction
is completed by setting condition code 0. When

Exception Name Cause

ALET specification ALET bits 0-6 not all
zeros

ALEN translation Access-list entry (ALE)
outside list or invalid (bit 0
is one)

ALE sequence ALE sequence number
(ALESN) in ALET not
equal to ALESN in ALE

ASTE validity ASN-second-table entry
(ASTE) invalid (bit 0 is
one)

ASTE sequence ASTE sequence number
(ASTESN) in ALE not
equal to ASTESN in
ASTE

Extended authority ALE private bit not zero,
ALE authorization index
(ALEAX) not equal to
effective EAX, and sec-
ondary bit selected by
effective EAX either
outside authority table or
zero

10-116 z/Architecture Principles of Operation

the ALET is 00000001 hex, the instruction is com-
pleted by setting condition code 3.

Special Conditions

An addressing exception is recognized when the
address used by ART to fetch the effective
access-list designation or the ALE, ASTE, or
authority-table entry designates a location which is
not available in the configuration.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-34 on
page 10-118.

Resulting Condition Code:

0 Access-list-entry token (ALET) is 00000000
hex

1 ALET designates the dispatchable-unit access
list and does not cause exceptions in access-
register translation (ART)

2 ALET designates the primary-space access
list and does not cause exceptions in ART

3 ALET is 00000001 hex or causes exceptions
in ART

 Program Exceptions:

� Addressing (effective access-list designation,
access-list entry, ASN-second-table entry, or
authority-table entry)

Programming Notes:

1. TEST ACCESS permits a called program to
check whether an ALET passed from the
calling program is authorized for use by
means of the calling program's EAX. The
calling program's EAX can be obtained from
the last linkage-stack state entry by means of
EXTRACT STACKED STATE. The called
program can thus avoid performing an opera-
tion for the calling program, through the use of
the called program's EAX, which the calling
program is not authorized to perform by
means of its own EAX.

2. When an ALET equal to 00000000 hex is
passed during a program linkage performed
by PROGRAM CALL with space switching

(PC-ss), and the ALET conceptually desig-
nates the calling program's primary address
space and the called program's secondary
address space, the ALET must be changed to
00000001 hex before it is used by the called
program. Condition code 0 of TEST ACCESS
indicates a 00000000 hex ALET so that the
ALET can be changed to 00000001 hex by
the called program.

3. PROGRAM CALL to current primary (PC-cp)
sets the secondary address space equal to
the primary address space. PC-ss sets the
secondary address space equal to the calling
program's primary address space, except that
stacking PC-ss sets it equal to the called pro-
gram's primary address space when the
secondary-ASN control in the entry-table entry
used is one. In all these cases, a passed
00000001 hex ALET that conceptually desig-
nates the calling program's secondary address
space is not usable by the called program,
even after any transformation (unless the
operation was PC-cp and the calling pro-
gram's PASN and SASN are equal). This is
why TEST ACCESS sets condition code 3
when the tested ALET is 00000001 hex.

4. After a PC-ss, a passed ALET that conceptu-
ally designates an entry in the primary-space
access list of the calling program is not usable
by the called program. This is why TEST
ACCESS sets condition code 2, instead of
condition code 1, when the tested ALET des-
ignates the primary-space access list.

5. The control program may manage the
ASN-second-table entry in a way that causes
a correctable ASTE-validity or
ASTE-sequence exception situation to exist;
that is, a situation which, if it were to cause a
program interruption during access-register
translation, would be corrected by the control
program so that access-register translation
could be completed successfully. In this case,
the program should not use TEST ACCESS
directly but should instead use a control-
program service that uses TEST ACCESS
and that corrects the situation, if possible,
when condition code 3 is set. MVS/ESA pro-
vides the TESTART macro instruction for use
instead of the direct use of TEST ACCESS.

 Chapter 10. Control Instructions 10-117

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7. Access exceptions for second instruction halfword. │
│ │
│ 8. Condition code � due to access-list-entry-token (ALET) being │
│ �������� hex. │
│ │
│ 9. Condition code 3 due to ALET being �������1 hex or ALET bits │
│ �-6 not being all zeros. │
│ │
│1�. Addressing exception for access to effective access-list des- │
│ ignation. │
│ │
│11. Condition code 3 due to access-list entry (ALE) being outside │
│ the list. │
│ │
│12. Addressing exception for access to ALE. │
│ │
│13. Condition code 3 due to ALE being invalid (bit � is 1) or │
│ access-list-entry sequence number (ALESN) in the ALET not │
│ being equal to the ALESN in the ALE. │
│ │
│14. Addressing exception for access to ASN-second-table entry │
│ (ASTE). │
│ │
│15. Condition code 3 due to ASTE being invalid (bit � is one) or │
│ ASTE sequence number (ASTESN) in the ALE not being equal to │
│ the ASTESN in the ASTE. │
│ │
│16. Condition code 3 due to authority-table entry being outside │
│ table. │
│ │
│17. Addressing exception for access to authority-table entry. │
│ │
│18. Condition code 3 due to ALE private bit not being zero, ALE │
│ authorization index (ALEAX) not being equal to effective ex- │
│ tended authorization index (EAX), and secondary bit selected │
│ by effective EAX being zero. │
│ │
│19. Condition code 1 if ALET bit 7 is zero; otherwise, condition │
│ code 2. │
└──┘

Figure 10-34. Priority of Execution: TEST ACCESS

 TEST BLOCK

TB R�,R� [RRE]

| ┌────────────────┬────────┬────┬────┐
| │ 'B22C' │////////│ R� │ R� │
| └────────────────┴────────┴────┴────┘
| � 16 24 28 31

The storage locations and storage key of a
4K-byte block are tested for usability, and the
result of the test is indicated in the condition code.
The test for usability is based on the susceptibility
of the block to the occurrence of invalid checking-
block code.

The block tested is addressed by the contents of
| general register R�. The contents of general reg-
| ister R� are ignored.

A complete testing operation is necessarily per-
formed only when the initial contents of bit posi-
tions 32-63 of general register 0 are zero in the
24-bit or 31-bit addressing mode, or the initial con-
tents of bit positions 0-63 of that register are zero
in the 64-bit addressing mode. In the 24-bit or
31-bit addressing mode, the contents of bit posi-
tions 32-63 of general register 0 are set to zero at
the completion of the operation, and bits 0-31 of

10-118 z/Architecture Principles of Operation

the register always are ignored and remain
unchanged. In the 64-bit addressing mode, the
contents of bit positions 0-63 of the register are
set to zero at the completion of the operation.

If the block is found to be usable, the 4K bytes of
the block are cleared to zeros, the contents of the
storage key are unpredictable, and condition code
0 is set. If the block is found to be unusable, the
data and the storage key are set, as far as is pos-
sible by the model, to a value such that subse-
quent fetches to the area do not cause a machine-
check condition, and condition code 1 is set.

In the 24-bit addressing mode, bits 40-51 of
general register R� designate a 4K-byte block in
real storage, and bits 0-39 and 52-63 of the reg-
ister are ignored. In the 31-bit addressing mode,
bits 33-51 of the register designate the block, and
bits 0-32 and 52-63 are ignored. In the 64-bit
addressing mode, bits 0-51 of the register desig-
nate the block, and bits 52-63 are ignored.

The address of the block is a real address, and
the accesses to the block designated by the
second-operand address are not subject to key-
controlled, access-list-controlled, and page pro-
tection. Low-address protection does apply. The
operation is terminated on addressing and pro-
tection exceptions. If termination occurs, the con-
dition code and the contents of bit positions 32-63
of general register 0 are unpredictable in the
24-bit or 31-bit addressing mode, or the condition
code and bits 0-63 of the register are unpredict-
able in the 64-bit addressing mode. The contents
of the storage block and its associated storage
key are not changed when these exceptions
occur.

Depending on the model, the test for usability may
be performed (1) by alternately storing and
reading out test patterns to the data and storage
key in the block or (2) by reference to an internal
record of the usability of the blocks which are
available in the configuration, or (3) by using a
combination of both mechanisms.

In models in which an internal record is used, the
block is indicated as unusable if a solid failure has
been previously detected, or if intermittent failures
in the block have exceeded the threshold imple-
mented by the model. In such models, depending
on the criteria, attempts to store may or may not

occur. Thus, if block 0 is not usable, and no store
occurs, low-address protection may or may not be
indicated.

In models in which test patterns are used, TEST
BLOCK may be interruptible. When an inter-
ruption occurs after a unit of operation, other than
the last one, the condition code is unpredictable,
and the contents of bit positions 32-63 of general
register 0 may contain a record of the state of
intermediate steps in the 24-bit or 31-bit
addressing mode, or the contents of bit positions
0-63 may contain that record in the 64-bit
addressing mode. When execution is resumed
after an interruption, the condition code is ignored,
but the record in general register 0 may be used
to determine the resumption point.

If (1) TEST BLOCK is executed with an initial
value other than zero in bit positions 32-63 of
general register 0 in the 24-bit or 31-bit
addressing mode or bit positions 0-63 in the 64-bit
addressing mode, or (2) the interrupted instruction
is resumed after an interruption with a value in bit
positions 32-63 or 0-63 (depending on the
addressing mode) of general register 0 or a value
in the storage block or its associated storage key
other than the corresponding value which was
present at the time of the interruption, or (3) the
block or its associated storage key is accessed by
another CPU or by the channel subsystem during
the execution of the instruction, then the contents
of the storage block, its associated storage key,
and bit positions 32-63 or 0-63 of general register
0 are unpredictable, along with the resultant
condition-code setting.

Invalid checking-block-code errors initially found in
the block or encountered during the test do not
normally result in machine-check conditions. The
test-block function is implemented in such a way
that the frequency of machine-check interruptions
due to the instruction execution is not significant.
However, if, during the execution of TEST BLOCK
for an unusable block, that block is accessed by
another CPU (or by the channel subsystem), error
conditions may be reported both to this CPU and
to the other CPU (or to the channel subsystem).

A serialization function is performed before the
block is accessed and again after the operation is
completed (or partially completed).

 Chapter 10. Control Instructions 10-119

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-35 on
page 10-120.

Resulting Condition Code:

0 Block usable
1 Block not usable
2 --
3 --

 Program Exceptions:

� Addressing (fetch and store, operand 2)
 � Privileged operation
� Protection (store, operand 2, low-address pro-

tection only)

┌──┐
│1.-6. Exceptions with the same priority as │
│ the priority of program-interruption │
│ conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruc- │
│ tion halfword. │
│ │
│ 7.B Privileged-operation exception. │
│ │
│ 8. Addressing exception due to block not │
│ being available in the configuration.� │
│ │
│ 9.A Condition code 1, block not usable. │
│ │
│ 9.B Protection exception due to low-address │
│ protection.� │
│ │
│1�. Condition code �, block usable and set │
│ to zeros. │
├──┤
│Explanation: │
│ │
│ � The operation is terminated on addressing │
│ and protection exceptions, and the condi- │
│ tion code may be unpredictable. │
└──┘

Figure 10-35. Priority of Execution: TEST BLOCK

Programming Notes:

1. The execution of TEST BLOCK on most
models is significantly slower than that of the
MOVE LONG instruction with padding; there-
fore, the instruction should not be used for the
normal case of clearing storage.

2. The program should use TEST BLOCK at
initial program loading and as part of the vary-
storage-online procedure to determine if
blocks of storage exist which should not be
used.

3. The program should use TEST BLOCK when
an uncorrected error is reported in either the

data or storage key of a block. This is
because in the execution of TEST BLOCK the
attempt is made, as far as is possible on the
model, to leave the contents of a block in a
state such that subsequent prefetches or unin-
tended references to the block do not cause
machine-check conditions. The program may
use the resulting condition code in this case to
determine if the block can be reused. (The
block could be indicated as usable if, for
example, the error were an externally gener-
ated error or an indirect storage error.) This
procedure should be followed regardless of
whether the indirect-storage-error indication is
reported.

4. The model may or may not be successful in
removing the errors from a block when TEST
BLOCK is executed. The program therefore
should take every reasonable precaution to
avoid referencing an unusable block. For
example, the program should not place the
page-frame real address of an unusable block
in an attached and valid page-table entry.

5. On some models, machine checks may be
reported for a block even though the block is
not referenced by the program. When a
machine check is reported for a storage-key
error in a block which has been marked as
unusable by the program, it is possible that
SET STORAGE KEY EXTENDED may be
more effective than TEST BLOCK in validating
the storage key.

6. The storage-operand references for TEST
BLOCK may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-87.)

 TEST PROTECTION

TPROT D�(B�),D�(B�) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐
│ 'E5�1' │ B� │ D� │ B� │ D� │
└────────────────┴────┴─/──┴────┴─/──┘
� 16 2� 32 36 47

The location designated by the first-operand
address is tested for protection exceptions by
using the access key specified by bits 56-59 of the
second-operand address.

The second-operand address is not used to
address data; instead, bits 56-59 of the address

10-120 z/Architecture Principles of Operation

form the access key to be used in testing. Bits
0-55 and 60-63 of the second-operand address
are ignored.

The first-operand address is a logical address.
When the CPU is in the access-register mode
(when DAT is on and PSW bits 16 and 17 are 01
binary), the first-operand address is subject to
translation by means of both the access-
register-translation (ART) and the dynamic-
address-translation (DAT) processes. ART
applies to the access register designated by the
B� field, and it obtains the address-space-control
element to be used by DAT. When DAT is on but
the CPU is not in the access-register mode, the
first-operand address is subject to translation by
DAT. In this case, DAT uses the address-
space-control element contained in control register
1, 7, or 13 when the CPU is in the primary-space,
secondary-space, or home-space mode, respec-
tively. When DAT is off, the first-operand address
is a real address not subject to translation by
either ART or DAT.

When the CPU is in the access-register mode and
an address-space-control element cannot be
obtained by ART because of a condition that
would normally cause one of the exceptions
shown in the following table, the instruction is
completed by setting condition code 3. When the access register contains 00000000 hex

or 00000001 hex, ART obtains the address-
space-control element from control register 1 or 7,
respectively, without accessing the access list.
When the B� field designates access register 0,
ART treats the access register as containing
00000000 hex and does not examine the actual
contents of the access register.

When ART is completed successfully, the opera-
tion is continued through the performance of DAT.

When DAT is on and the first-operand address
cannot be translated because of a condition that
would normally cause one of the exceptions
shown in the following table, the instruction is
completed by setting condition code 3.

Exception Name Cause

ALET specification Access-list-entry-token
(ALET) bits 0-6 not all
zeros

ALEN translation Access-list entry (ALE)
outside list or invalid (bit 0
is one)

ALE sequence ALE sequence number
(ALESN) in ALET not
equal to ALESN in ALE

ASTE validity ASN-second-table entry
(ASTE) invalid (bit 0 is
one)

ASTE sequence ASTE sequence number
(ASTESN) in ALE not
equal to ASTESN in
ASTE

Extended authority ALE private bit not zero,
ALE authorization index
(ALEAX) not equal to
extended authorization
index (EAX), and sec-
ondary bit selected by
EAX either outside
authority table or zero

 Chapter 10. Control Instructions 10-121

When translation of the first-operand address can
be completed, or when DAT is off, the storage key
for the block designated by the first-operand
address is tested against the access key specified
in bit positions 56-59 of the second-operand
address, and the condition code is set to indicate
whether store and fetch accesses are permitted,
taking into consideration all applicable protection
mechanisms. Thus, for example, if low-address
protection is active and the first-operand effective
address is in the range 0-511 or 4096-4607, then
a store access is not permitted. Access-list-
controlled protection, page protection, storage-
protection override, and fetch-protection override
also are taken into account.

The contents of storage, including the change bit,
are not affected. Depending on the model, the
reference bit for the first-operand address may be
set to one, even for the case in which the location
is protected against fetching.

Exception Name Cause Special Conditions

When the CPU is in the access-register mode, an
addressing exception is recognized when the
address used by ART to fetch the effective
access-list designation or the ALE, ASTE, or
authority-table entry designates a location which is
not available in the configuration.

When DAT is on, an addressing exception is
recognized when the address of the region-table
entry or entries, segment-table entry, or page-
table entry or the operand real address after trans-
lation designates a location which is not available
in the configuration. Also, a translation-
specification exception is recognized when a
region-table entry or the segment-table entry or
page-table entry has a format error, that is, when
any of the reasons listed in “Translation-
Specification Exception” on page 6-35 applies.
When DAT is off, only the addressing exception
due to the operand real address applies.

For all of the above cases, the operation is sup-
pressed.

Resulting Condition Code:

0 Fetching permitted; storing permitted
1 Fetching permitted; storing not permitted
2 Fetching not permitted; storing not permitted
3 Translation not available

 Program Exceptions:

� Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, region-table entry,
segment-table entry, page-table entry, or
operand 1)

 � Privileged operation
 � Translation specification

Programming Notes:

1. TEST PROTECTION permits a program to
check the validity of an address passed from
a calling program without incurring program
exceptions. The instruction sets a condition
code to indicate whether fetching or storing is
permitted at the location designated by the
first-operand address of the instruction. The
instruction takes into consideration all of the
protection mechanisms in the machine:
access-list controlled, page, key-controlled,
and low-address protection, storage-protection

ASCE type Address-space-control
element (ASCE) being
used is a region-
second-table designation,
and bits 0-10 of first-
operand address not all
zeros; ASCE is a region-
third-table designation,
and bits 0-21 of first-
operand address not all
zeros; or ASCE is a
segment-table desig-
nation, and bits 0-32 of
first-operand address not
all zeros.

Region first translation Region-first-table entry
outside table or invalid.

Region second trans-
lation

Region-second-table entry
outside table or invalid.

Region third trans-
lation

Region-third-table entry
outside table or invalid.

Segment translation Segment-table entry
outside table or invalid

Page translation Page-table entry invalid

10-122 z/Architecture Principles of Operation

override, and fetch-protection override. Addi-
tionally, since ASCE-type, region-translation,
segment-translation, and page-
translation-exception conditions may be a
program substitute for a protection violation,
these conditions are used to set the condition
code rather than cause a program exception.

When the CPU is in the access-register mode,
TEST PROTECTION additionally permits the
program to check the usability of an access-
list-entry token (ALET) in an access register
without incurring program exceptions. The
ALET is checked for validity (absence of an
ALET-specification, ALEN-translation, and
ALE-sequence-exception condition) and for
being authorized for use by the program
(absence of an ASTE-validity,
ASTE-sequence, and extended-
authority-exception condition).

An ASCE-type-exception condition also
causes setting of the condition code.

2. See the programming notes under SET PSW
KEY FROM ADDRESS for more details and
for an alternative approach to testing validity
of addresses passed by a calling program.
The approach using TEST PROTECTION has
the advantage of a test which does not result
in interruptions; however, the test and use are
separated in time and may not be accurate if
the possibility exists that the storage key of
the location in question can change between
the time it is tested and the time it is used.

3. In the handling of dynamic address trans-
lation, TEST PROTECTION is similar to LOAD
REAL ADDRESS in that the instructions do
not cause ASCE-type, region-translation,
segment-translation, and page-translation
exceptions. Instead, these exception condi-
tions are indicated by means of a condition-
code setting. Similarly, access-register trans-
lation sets a condition code for certain excep-
tion conditions when performed during either
of the two instructions. Conditions which
result in condition codes 1, 2, and 3 for LOAD
REAL ADDRESS result in condition code 3 for
TEST PROTECTION. The instructions also
differ in several other respects. The first-
operand address of TEST PROTECTION is a
logical address and thus is not subject to
dynamic address translation when DAT is off.
The second-operand address of LOAD REAL

ADDRESS is a virtual address which is
always translated.

Access-register translation applies to TEST
PROTECTION only when the CPU is in the
access-register mode (DAT is on), whereas it
applies to LOAD REAL ADDRESS when PSW
bits 16 and 17 are 01 binary regardless of
whether DAT is on or off. When condition
code 3 is set because of an exception condi-
tion in access-register translation, LOAD
REAL ADDRESS, but not TEST PRO-
TECTION, returns in a general register the
program-interruption code assigned to the
exception.

 TRACE

TRACE R�,R�,D�(B�) [RS]

┌────────┬────┬────┬────┬────────────┐
│ '99' │ R� │ R� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

TRACG R�,R�,D�(B�) [RSY]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
| │ 'EB' │ R� │ R� │ B� │DL� │ DH� │ '�F' │

└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

When explicit tracing is on (bit 63 of control reg-
ister 12 is one), the second operand, which is a
32-bit word in storage, is fetched, and bit 0 of the
word is examined. If bit 0 of the second operand
is zero, a trace entry is formed at the real-storage
location designated by control register 12.

If explicit tracing is off (bit 63 of control register 12
is zero), or if bit 0 of the second operand is one,
no trace entry is formed, and no trace exceptions
are recognized.

| The displacement for TRACE is treated as a 12-bit
| unsigned binary integer. The displacement for
| TRACG is treated as a 20-bit signed binary
| integer.

The trace entry is composed of an entry-type iden-
tifier, a count of the number of general registers
whose partial or entire contents are placed in the
entry, a field whose contents indicate whether the
entry was formed by TRACE (TRACE) or TRACE
(TRACG), selected bits of the TOD clock, the
second operand, and the partial or entire contents

 Chapter 10. Control Instructions 10-123

of a range of general registers. For TRACE
(TRACE), bits 16-63 of the TOD clock and bits
32-63 of the general registers are placed in the
trace entry. For TRACE (TRACG), bits 0-79 of
the clock and bits 0-63 of the registers are placed
in the entry.

The general registers are stored in ascending
order of their register numbers, starting with
general register R� and continuing up to and
including general register R�, with general register
0 following general register 15. The trace table
and the trace-entry formats are described in
“Tracing” on page 4-10.

When a trace entry is made, a serialization and
checkpoint-synchronization function is performed
before the operation begins and again after the
operation is completed.

Special Conditions

A privileged-operation exception is recognized in
the problem state, even when explicit tracing is off
or bit 0 of the second operand is one.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized. It is unpredictable whether the
specification exception is recognized when explicit
tracing is off.

It is unpredictable whether access exceptions are
recognized for the second operand when explicit
tracing is off.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2)
 � Privileged operation
 � Specification
 � Trace

Programming Note: Bits 1-15 of the second
operand are reserved for model-dependent func-
tions and should therefore be set to zeros.

 TRAP

TRAP2 [E]

┌────────────────┐
│ '�1FF' │
└────────────────┘
� 15

TRAP4 D�(B�) [S]

┌──────────────────┬────┬────────────┐
│ 'B2FF' │ B� │ D� │
└──────────────────┴────┴────────────┘
� 16 2� 31

A trap operation is performed if the CPU is in the
primary-space or access-register mode and the
TRAP-enabled bit in byte 47 of the dispatchable-
unit control table (DUCT) is one. Otherwise, a
special-operation exception is recognized.

The trap operation obtains a trap-control-block
address from the DUCT and then a trap-save-area
address and a trap-program address from the trap
control block. State information is stored in the
trap save area. Then the trap-control-block
address is loaded into general register 15. Finally,
the current PSW is updated by setting the basic-
addressing-mode bit to one (which will leave the
addressing mode as either the 31-bit mode or the
64-bit mode or will change the addressing mode
from the 24-bit mode to the 31-bit mode) and the
address-space-control bits to zeros (primary-space
mode) and by replacing the instruction address
with the trap-program address. Compatibility with
the ESA/390 operation of TRAP optionally is pro-
vided.

For TRAP4, the second-operand address is not
used to address data; instead, bits 33-63 of the
address are stored in the trap save area.

Dispatchable-Unit Control Table

Bytes 44-47 (word 10) of the dispatchable-
unit-control table (DUCT) are used by this instruc-
tion. The contents of those bytes are as follows:

DUCT Bytes 44-47
┌─┬──────────────────────────────┬──┬─┐
│ │ Trap-Control-Block Address │ │E│
└─┴──────────────────────────────┴──┴─┘
� 1 29 31

The fields in bytes 44-47 of the DUCT are allo-
cated as follows:

10-124 z/Architecture Principles of Operation

Trap-Control-Block Address: Bits 1-28, with
three zeros appended on the right, form the 31-bit
home virtual address of the trap control block.
This address is treated as a 31-bit home virtual
address regardless of the current addressing
mode and regardless of the current value of the
address-space-control bits. This address, with a
zero appended on the left, is placed in bit posi-
tions 32-63 of general register 15 after the con-
tents of that register have been saved in the trap
save area. If the current addressing mode is the
64-bit mode, bits 0-31 of general register 15 are
set to zeros.

TRAP-Enabled Bit (E): Bit 31 specifies, when
one, that the trap operation is to be performed.
TRAP recognizes a special-operation exception if
bit 31 is zero.

Bits 0, 29, and 30 of bytes 44-47 are ignored, but
they should be zeros to permit possible future
extensions.

Trap Control Block

The trap control block is 64 bytes aligned on a
doubleword boundary. The format of the trap
control block is:

 Hex Dec
──────────┬────────┬─┬─┬──────────────┐
� � │ │P│R│ │ (P is

──────────┼────────┴─┴─┴──────────────┤ bit 13)
 4 4 │ │
 8 8 │ │
──────────┼───────────────────────────┤
 C 12 │ Trap-Save-Area Address │
──────────┼───────────────────────────┤
 1� 16 │ │
──────────┼───────────────────────────┤
 14 2� │ Trap-Program Address │
──────────┼───────────────────────────┤
 18 24 │///////////////////////////│
 1C 28 │///////////////////////////│
──────────┼───────────────────────────┤
 2� 32 │ │
 / /
 3C 6� │ │
──────────┴───────────────────────────┘

The fields in the trap control block are allocated as
follows:

PSW Control (P): Bit 13 of bytes 0 and 1 con-
trols the allowed value of bit 31 of the current
PSW and how bits 12 and 33-127 of the current
PSW are stored in the PSW-values field in the
trap save area. When bit 13 is zero:

� Bit 31 of the current PSW, the extended-
addressing-mode bit, must be zero; otherwise,
a special-operation exception is recognized.

� A one is stored in bit position 12 of the
PSW-values field even though bit 12 of the
current PSW is zero.

� Bits 97-127 of the current PSW are stored in
bit positions 33-63 of the PSW-values field,
bits 33-96 of the current PSW are not stored,
and zeros are stored in bit positions 64-127 of
the PSW-values field.

When bit 13 is one:

� Bit 31 of the current PSW may be zero or
one.

� Bit 12 of the current PSW is stored in bit posi-
tion 12 of the PSW-values field.

� Bits 64-127 of the current PSW are stored in
bit positions 64-127 of the PSW-values field.

General-Registers Control (R): Bit 14 of bytes 0
and 1 controls how the contents of the general
registers are stored in the general-registers 0-15
field in the trap save area. When R is zero, bits
32-63 of the general registers are stored in con-
secutive four-byte locations beginning at the
beginning of the general-registers 0-15 field, bits
0-31 of the registers are not stored, and the last
64 bytes of the general-registers 0-15 field remain
unchanged. When R is one, bits 0-63 of the
general registers are stored in consecutive eight-
byte locations in the general-registers 0-15 field.

Trap-Save-Area Address: Bits 1-28 of bytes
12-15, with three zeros appended on the right,
form the 31-bit home virtual address of the trap
save area. This address is treated as a 31-bit
home virtual address regardless of the current
addressing mode and regardless of the current
value of the address-space-control bits. Bits 0
and 29-31 of bytes 12-15 are ignored.

Trap-Program Address: Bits 1-31 of bytes
20-23 form the 31-bit primary virtual address of
the trap program. This address is treated as a
31-bit primary virtual address regardless of the
current addressing mode.

Bit positions 0-12 and 15-31 of bytes 0-3 and
bytes 4-11, 16-19, and 32-63 of the trap control
block are reserved and should contain zeros.
Bytes 24-31 are available for use by programming.

 Chapter 10. Control Instructions 10-125

Trap Save Area

The trap save area is 256 bytes aligned on a
doubleword boundary.

The trap operation stores information into the trap
save area as follows:

 Hex Dec
──────────┬───────────────────────────┐
 � � │ Trap Flags │
──────────┼───────────────────────────┤
 4 4 │ Reserved (Zeros Stored) │
──────────┼───────────────────────────┤
 8 8 │ Bits 33-63 of Second-Op │

│ Address of TRAP4 │
──────────┼───────────────────────────┤
C 12 │ Access Register 15 │

──────────┼───────────────────────────┤
 1� 16 │ │
 14 2� │ PSW Values │
 18 24 │ │
 1C 28 │ │
──────────┼───────────────────────────┤
 2� 32 │ │
 24 36 │ │

/ General Registers �-15 /
98 152 │ │
9C 156 │ │
──────────┼───────────────────────────┤
A� 16� │///////////////////////////│
A4 164 │///////////////////////////│
──────────┼───────────────────────────┤
A8 168 │ │
AC 172 │ │
 / Reserved (Unchanged) /
F8 248 │ │
FC 252 │ │
──────────┴───────────────────────────┤

The fields in the trap save area are allocated as
follows:

Trap Flags: Information identifying the
instruction(s) causing the trap operation is stored
in byte positions 0-3. The detailed format of bytes
0-3 is as follows:

Flag Bits Meaning
0 TRAP was target of EXECUTE
1 TRAP is TRAP4 (not TRAP2)
2-12 Reserved, zeros stored
13-14 Instruction-length code (ILC)
15-31 Reserved, zeros stored

Bit 0 of bytes 0-3 is set to one if TRAP was the
target of an EXECUTE instruction.

Bit 1 of bytes 0-3 is set to one if TRAP is TRAP4
(not TRAP2).

Bits 13 and 14 are the instruction-length code
(ILC) that specifies the length of the TRAP instruc-
tion, or the length of the EXECUTE instruction if
TRAP was the target of EXECUTE.

Bits 2-12 and 15-31 are reserved and are stored
as zeros.

Bits 33-63 of Second-Operand Address of
TRAP4: For TRAP4, bits 33-63 of the second-
operand address, generated under the control of
the current addressing mode and with a zero
appended on the left, are stored in byte positions
8-11. Only bits 33-63 of the second-operand
address are stored even when the current
addressing mode is the 64-bit mode. For TRAP2,
all zeros are stored in byte positions 8-11.

Access Register 15: The contents of access
register 15 are stored in byte positions 12-15.

PSW Values: The following description applies
when the PSW control, bit 13 of bytes 0 and 1 of
the trap control block, is one.

Certain information from the current PSW is stored
in byte positions 16-31. The PSW has the fol-
lowing format:

┌─┬─┬─┬─┬─┬─┬─┬─┬───────┬─┬─┬─┬─┬───┬───┬───────┬─────────────┬─┐
│ │ │ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │E│
│�│R│�│�│�│T│O│X│ Key │�│M│W│P│A S│C C│ Mask │� � � � � � �│A│
└─┴─┴─┴─┴─┴─┴─┴─┴───────┴─┴─┴─┴─┴───┴───┴───────┴─────────────┴─┘
� 5 8 12 16 18 2� 24 31

┌─┬───┐
│B│ │
│A│� �│
└─┴───┘
32 63

┌───┐
│ │
│ Instruction Address │
└───┘
64 95

┌───┐
│ │
│ Instruction Address (Continued) │
└───┘
96 127

Bits 0-127 of bytes 16-31 correspond one-to-one
with bits 0-127 of the PSW. For some bit posi-
tions of bytes 16-31, the corresponding PSW bits
are stored. For the other bit positions of bytes
16-31, unpredictable values are stored. Informa-
tion is stored in bytes 16-31 as follows:

Bits Value
 0 Zero
 1 Unpredictable

10-126 z/Architecture Principles of Operation

In summary, bits 0, 2-4, 12, 24-30, and 33-63 are
zero, bits 1, 5-11, and 13 are unpredictable, and
the other bits are set with variable information
from the PSW.

The wait-state, problem-state, address-
space-control, condition-code, program-mask,
extended-addressing-mode, and basic-
addressing-mode values specify the state of the
CPU before the TRAP instruction was executed.
The instruction-address value is the updated
instruction address, which is the address of the
instruction following TRAP, or the address of the
instruction following EXECUTE if TRAP was the
target of EXECUTE.

When the PSW control in the trap control block is
zero, the operation is as described above except
as follows:

� Bit 31 of the current PSW must be zero; oth-
erwise, a special-operation exception is recog-
nized.

� A one is stored in bit position 12 of bytes
16-31.

� Bits 97-127 of the current PSW are stored in
bit positions 33-63 of bytes 16-31, bits 33-96
of the current PSW are not stored, and zeros
are stored in bit positions 64-127 of bytes
16-31 (bytes 24-31).

In this case, bytes 16-23 have the format of an
ESA/390 PSW, which is as follows:

Bits Value ┌─┬─┬─────┬─┬─┬─┬───────┬─┬─┬─┬─┬───┬───┬───────┬───────────────┐
│ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │
│�│R│� � �│T│O│X│ Key │1│M│W│P│A S│C C│ Mask │� � � � � � � �│
└─┴─┴─────┴─┴─┴─┴───────┴─┴─┴─┴─┴───┴───┴───────┴───────────────┘
� 5 8 12 16 18 2� 24 31

┌─┬───┐
│ │ │
│A│ Instruction Address │
└─┴───┘
32 63

General Registers 0-15: Contents of general
registers 0-15 are stored in byte positions 32-159
as described in “General-Registers Control (R)” on
page 10-125. When bits 32-63 or 0-63 of the
general registers are stored, they are stored in
ascending order of register numbers, starting with
register 0 and continuing up to and including reg-
ister 15.

Bytes 160-255 always remain unchanged. Bytes
168-255 are reserved. Bytes 160-167 are avail-
able for use by programming.

Special Conditions

The CPU must be in the primary-space mode or
access-register mode, and bit 31 in bytes 44-47 of
the dispatchable-unit control table must be one;
otherwise, a special-operation exception is recog-
nized. A special-operation exception is also
recognized if the PSW control, bit 6 of byte 1 of
the trap control block is zero and bit 31 of the
current PSW, the extended-addressing-mode bit,
is one.

All protection mechanisms apply in the usual way
to the accesses to the trap control block and trap

| save area. Access exceptions may or may not be
| recognized for sections of the trap control block
| and trap save area that are not referenced by the
| TRAP instruction.

The trap-program address in the trap control block
is not tested before it replaces the instruction
address in the PSW. An odd address will cause a
specification exception to be recognized as part of
the execution of the next instruction.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-36 on
page 10-128.

Condition Code: The code remains unchanged.

 2-4 Zero
 5-11 Unpredictable
12 Zero
13 Unpredictable
14 Wait state (W)
15 Problem state (P)
16-17 Address-space control (AS)
18-19 Condition code (CC)
20-23 Program mask
24-30 Zero
31 Extended addressing mode (EA)
32 Basic addressing mode (BA)
33-63 Zero
64-127 Instruction address

 Chapter 10. Control Instructions 10-127

 Program Exceptions:

� Access (fetch, trap control block; store, trap
save area)

� Addressing (dispatchable-unit control table)
 � Special operation
 � Trace

Programming Notes:

1. It is intended that TRAP instructions will
overlay instructions in an application program
in order to give control to a trap program,
which might be a program for performing
fix-ups of data used by the application
program, such as dates that may be a
“Year-2000” problem. TRAP2 can overlay a
two-byte instruction, and TRAP4 can overlay a
four-byte instructions or the first four bytes of
a six-byte instruction. The trap program is to
simulate the overlaid instruction and perform
fix-ups as appropriate, and it is then to return
control to the application program.

2. The trap program can use the RESUME
PROGRAM instruction to return control to the
application program. For example, the trap
program can restore the contents of all regis-
ters except access and general registers 15,

and then, using those registers (or at least the
general register) to address the trap save
area, can restore the contents of those regis-
ters and also PSW fields from the trap save
area. RESUME PROGRAM has control bits
in its parameter list that allow it to restore
PSW fields from a field having either the
ESA/390 PSW format or the z/Architecture
PSW format and to restore either bits 32-63 or
0-63 of a general register.

3. The trap control block and trap save area are
in the home address space, and the trap
program is in the primary address space. The
trap-control-block address placed in general
register 15 by TRAP can be useful to the trap
program if (1) the primary address space and
home address space are the same address
space, (2) the trap control block and trap save
area are at the same locations in the primary
address space as in the home address space,
or (3) the trap program can use access regis-
ters to access the home address space.

4. The storage-operand references for TRAP
may be multiple-access references. (See
“Storage-Operand Consistency” on
page 5-87.)

┌──┐
│ 1.-6. Exceptions with the same priority as the priority of program- │
│ interruption conditions for the general case. │
│ │
│ 7.A Access exceptions for second instruction halfword (TRAP4 │
│ only). │
│ │
│ 7.B Special-operation exception due to the CPU not being in the │
│ primary-space mode or access-register mode. │
│ │
│ 7.C.1 Addressing exception for access to dispatchable-unit control │
│ table. │
│ │
│ 7.C.2 Special-operation exception due to bit 31 in bytes 44-47 of │
│ dispatchable-unit control table being zero. │
│ │
│ 8.A Trace exceptions. │
│ │
│ 8.B.1 Access exceptions (fetch) for trap control block. │
│ │
│ 8.B.2 Special-operation exception due to PSW control in trap control│
│ block being zero and PSW bit 31 being one. │
│ │
│ 8.B.3 Access exceptions (store) for trap save area. │
└──┘

Figure 10-36. Priority of Execution: TRAP

10-128 z/Architecture Principles of Operation

 Chapter 11. Machine-Check Handling

Machine-Check Detection 11-2
Correction of Machine Malfunctions 11-2

Error Checking and Correction 11-2
CPU Retry 11-2

Effects of CPU Retry 11-3
Checkpoint Synchronization 11-3
Handling of Machine Checks during

Checkpoint Synchronization 11-3
Checkpoint-Synchronization Operations 11-3
Checkpoint-Synchronization Action . . . 11-4

Channel-Subsystem Recovery 11-4
Unit Deletion 11-4

Handling of Machine Checks 11-5
Validation 11-5
Invalid CBC in Storage 11-6

Programmed Validation of Storage . . . 11-7
Invalid CBC in Storage Keys 11-7
Invalid CBC in Registers 11-10

Check-Stop State 11-11
System Check Stop 11-11

Machine-Check Interruption 11-11
Exigent Conditions 11-11
Repressible Conditions 11-12
Interruption Action 11-12
Point of Interruption 11-14

Machine-Check-Interruption Code 11-15
Subclass 11-16

System Damage 11-16
Instruction-Processing Damage 11-16
System Recovery 11-16
Timing-Facility Damage 11-16
External Damage 11-17
Degradation 11-17
Warning 11-17
Channel Report Pending 11-17
Service-Processor Damage 11-18
Channel-Subsystem Damage 11-18

Subclass Modifiers 11-18
Backed Up 11-18
Delayed Access Exception 11-18
Ancillary Report 11-18

Synchronous
Machine-Check-Interruption Conditions 11-18

Processing Backup 11-18
Processing Damage 11-19

Storage Errors 11-19
Storage Error Uncorrected 11-19
Storage Error Corrected 11-20
Storage-Key Error Uncorrected 11-20
Storage Degradation 11-20
Indirect Storage Error 11-20

Machine-Check Interruption-Code
Validity Bits 11-21

PSW-MWP Validity 11-21
PSW Mask and Key Validity 11-21
PSW Program-Mask and

Condition-Code Validity 11-21
PSW-Instruction-Address Validity . . . 11-21
Failing-Storage-Address Validity . . . 11-21
External-Damage-Code Validity 11-21
Floating-Point-Register Validity 11-21
General-Register Validity 11-21
Control-Register Validity 11-21
Storage Logical Validity 11-22
Access-Register Validity 11-22
TOD-Programmable-Register Validity . 11-22
Floating-Point-Control-Register

Validity 11-22
CPU-Timer Validity 11-22
Clock-Comparator Validity 11-22

Machine-Check Extended Interruption
Information 11-22

Register-Save Areas 11-22
External-Damage Code 11-23
Failing-Storage Address 11-23

Handling of Machine-Check Conditions . . 11-23
Floating Interruption Conditions 11-23

Floating Machine-Check-Interruption
Conditions 11-24

Floating I/O Interruptions 11-24
Machine-Check Masking 11-24

Channel-Report-Pending Subclass
Mask 11-24

Recovery Subclass Mask 11-25
Degradation Subclass Mask 11-25
External-Damage Subclass Mask . . . 11-25
Warning Subclass Mask 11-25

Machine-Check Logout 11-25
Summary of Machine-Check Masking . . . 11-25

The machine-check-handling mechanism provides
extensive equipment-malfunction detection to
ensure the integrity of system operation and to

permit automatic recovery from some malfunc-
tions. Equipment malfunctions and certain
external disturbances are reported by means of a

 Copyright IBM Corp. 1990-2003 11-1

machine-check interruption to assist in program-
damage assessment and recovery. The inter-
ruption supplies the program with information
about the extent of the damage and the location
and nature of the cause. Equipment malfunctions,
errors, and other situations which can cause
machine-check interruptions are referred to as
machine checks.

 Machine-Check Detection
Machine-check-detection mechanisms may take
many forms, especially in control functions for
arithmetic and logical processing, addressing,
sequencing, and execution. For program-
addressable information, detection is normally
accomplished by encoding redundancy into the
information in such a manner that most failures in
the retention or transmission of the information
result in an invalid code. The encoding normally
takes the form of one or more redundant bits,
called check bits, appended to a group of data
bits. Such a group of data bits and the associated
check bits are called a checking block. The size
of the checking block depends on the model.

The inclusion of a single check bit in the checking
block allows the detection of any single-bit failure
within the checking block. In this arrangement,
the check bit is sometimes referred to as a “parity
bit.” In other arrangements, a group of check bits
is included to permit detection of multiple errors, to
permit error correction, or both.

For checking purposes, the contents of the entire
checking block, including the redundancy, are
called the checking-block code (CBC). When a
CBC completely meets the checking requirements
(that is, no failure is detected), it is said to be
valid. When both detection and correction are
provided and a CBC is not valid but satisfies the
checking requirements for correction (the failure is
correctable), it is said to be near-valid. When a
CBC does not satisfy the checking requirements
(the failure is uncorrectable), it is said to be
invalid.

Correction of Machine
Malfunctions
Four mechanisms may be used to provide
recovery from machine-detected malfunctions:
error checking and correction, CPU retry, channel-
subsystem recovery, and unit deletion.

Machine failures which are corrected successfully
may or may not be reported as machine-check
interruptions. If reported, they are system-
recovery conditions, which permit the program to
note the cause of CPU delay and to keep a log of
such incidents.

Error Checking and Correction

When sufficient redundancy is included in circuitry
or in a checking block, failures can be corrected.
For example, circuitry can be triplicated, with a
voting circuit to determine the correct value by
selecting two matching results out of three, thus
correcting a single failure. An arrangement for
correction of failures of one order and for
detection of failures of a higher order is called
error checking and correction (ECC). Commonly,
ECC allows correction of single-bit failures and
detection of double-bit failures.

Depending on the model and the portion of the
machine in which ECC is applied, correction may
be reported as system recovery, or no report may
be given.

Uncorrected errors in storage and in the storage
key may be reported, along with a failing-storage
address, to indicate where the error occurred.
Depending on the situation, these errors may be
reported along with system recovery or with the
damage or backup condition resulting from the
error.

 CPU Retry

In some models, information about some portion
of the state of the machine is saved periodically.
The point in the processing at which this informa-
tion is saved is called a checkpoint. The informa-
tion saved is referred to as the checkpoint infor-
mation. The action of saving the information is
referred to as establishing a checkpoint. The
action of discarding previously saved information
is called invalidation of the checkpoint information.

11-2 z/Architecture Principles of Operation

The length of the interval between establishing
checkpoints is model-dependent. Checkpoints
may be established at the beginning of each
instruction or several times within a single instruc-
tion, or checkpoints may be established less fre-
quently.

Subsequently, this saved information may be used
to restore the machine to the state that existed at
the time when the checkpoint was established.
After restoring the appropriate portion of the
machine state, processing continues from the
checkpoint. The process of restoring to a check-
point and then continuing is called CPU retry.

CPU retry may be used for machine-check
recovery, to effect nullification and suppression of
instruction execution when certain program inter-
ruptions occur, and in other model-dependent situ-
ations.

Effects of CPU Retry
CPU retry is, in general, performed so that there is
no effect on the program. However, change bits
which have been changed from zeros to ones are
not necessarily set back to zeros. As a result,
change bits may appear to be set to ones for
blocks which would have been accessed if
restoring to the checkpoint had not occurred. If
the path taken by the program is dependent on
information that may be changed by another CPU
or by a channel program or if an interruption
occurs, then the final path taken by the program
may be different from the earlier path; therefore,
change bits may be ones because of stores along
a path apparently never taken.

 Checkpoint Synchronization
Checkpoint synchronization consists in the fol-
lowing steps.

1. The CPU operation is delayed until all concep-
tually previous accesses by this CPU to
storage have been completed, both for pur-
poses of machine-check detection and as
observed by other CPUs and by channel pro-
grams.

2. All previous checkpoints, if any, are canceled.

3. Optionally, a new checkpoint is established.

The CPU operation is delayed until all of these
actions appear to be completed, as observed by
other CPUs and by channel programs.

Handling of Machine Checks during
Checkpoint Synchronization
When, in the process of completing all previous
stores as part of the checkpoint-synchronization
action, the machine is unable to complete all
stores successfully but can successfully restore
the machine to a previous checkpoint, processing
backup is reported.

When, in the process of completing all stores as
part of the checkpoint-synchronization action, the
machine is unable to complete all stores success-
fully and cannot successfully restore the machine
to a previous checkpoint, the type of machine-
check-interruption condition reported depends on
the origin of the store. Failure to successfully
complete stores associated with instruction exe-
cution may be reported as instruction-processing
damage, or some less critical machine-
check-interruption condition may be reported with
the storage-logical-validity bit set to zero. A failure
to successfully complete stores associated with
the execution of an interruption, other than
program or supervisor call, is reported as system
damage.

When the machine check occurs as part of a
checkpoint-synchronization action before the exe-
cution of an instruction, the execution of the
instruction is nullified. When it occurs before the
execution of an interruption, the interruption condi-
tion, if the interruption is external, I/O, or restart, is
held pending. If the checkpoint-synchronization
operation was a machine-check interruption, then
along with the originating condition, either the
storage-logical-validity bit is set to zero or
instruction-processing damage is also reported.
Program interruptions, if any, are lost.

 Checkpoint-Synchronization
Operations
All interruptions and the execution of certain
instructions cause a checkpoint-synchronization
action to be performed. The operations which
cause a checkpoint-synchronization action are
called checkpoint-synchronization operations and
include:

 � CPU reset
� All interruptions: external, I/O, machine

check, program, restart, and supervisor call
� The BRANCH ON CONDITION (BCR) instruc-

tion with the M� and R� fields containing all
ones and all zeros, respectively

 Chapter 11. Machine-Check Handling 11-3

� The instructions LOAD PSW, LOAD PSW
EXTENDED, SET STORAGE KEY
EXTENDED, and SUPERVISOR CALL

� All I/O instructions
� The instructions MOVE TO PRIMARY, MOVE

TO SECONDARY, PROGRAM CALL,
PROGRAM TRANSFER, SET ADDRESS
SPACE CONTROL, and SET SECONDARY
ASN, and PROGRAM RETURN when the
state entry to be unstacked is a program-call
state entry

� The four trace functions: branch tracing, ASN
tracing, mode tracing, and explicit tracing

� PAGE IN and PAGE OUT

Programming Note: The instructions which are
defined to cause the checkpoint-synchronization
action invalidate checkpoint information but do not
necessarily establish a new checkpoint. Addi-
tionally, the CPU may establish a checkpoint
between any two instructions or units of operation,
or within a single unit of operation. Thus, the
point of interruption for the machine check is not
necessarily at an instruction defined to cause a
checkpoint-synchronization action.

 Checkpoint-Synchronization Action
For all interruptions except I/O interruptions, a
checkpoint-synchronization action is performed at
the completion of the interruption. For I/O inter-
ruptions, a checkpoint-synchronization action may
or may not be performed at the completion of the
interruption. For all interruptions except program,
supervisor-call, and exigent machine-check inter-
ruptions, a checkpoint-synchronization action is
also performed before the interruption. The fetch
access to the new PSW may be performed either
before or after the first checkpoint-synchronization
action. The store accesses and the changing of
the current PSW associated with the interruption
are performed after the first checkpoint-
synchronization action and before the second.

For all checkpoint-synchronization instructions
except BRANCH ON CONDITION (BCR), I/O
instructions, and SUPERVISOR CALL, checkpoint-
synchronization actions are performed before and
after the execution of the instruction. For BCR,
only one checkpoint-synchronization action is nec-
essarily performed, and it may be performed either
before or after the instruction address is updated.

For SUPERVISOR CALL, a checkpoint-
synchronization action is performed before the
instruction is executed, including the updating of
the instruction address in the PSW. The
checkpoint-synchronization action taken after the
supervisor-call interruption is considered to be part
of the interruption action and not part of the
instruction execution. For I/O instructions, a
checkpoint-synchronization action is always per-
formed before the instruction is executed and may
or may not be performed after the instruction is
executed.

The four trace functions — branch tracing, ASN
tracing, mode tracing, and explicit tracing —
cause checkpoint-synchronization actions to be
performed before the trace action and after com-
pletion of the trace action.

 Channel-Subsystem Recovery

When errors are detected in the channel sub-
system, the channel subsystem attempts to
analyze and recover the internal state associated
with the various channel-subsystem functions and
the state of the channel subsystem and various
subchannels. This process, which is called
channel-subsystem recovery, may result in a com-
plete recovery or may result in the termination of
one or more I/O operations and the clearing of the
affected subchannels. Special channel-
report-pending machine-check-interruption condi-
tions may be generated to indicate to the program
the status of the channel-subsystem recovery.

Malfunctions associated with the I/O operations,
depending on the severity of the malfunction, may
be reported by means of the I/O-interruption
mechanism or by means of the channel-
report-pending and channel-subsystem-damage
machine-check-interruption conditions.

 Unit Deletion

In some models, malfunctions in certain units of
the system can be circumvented by discontinuing
the use of the unit. Examples of cases where unit
deletion may occur include the disabling of all or a
portion of a cache or of a translation-lookaside
buffer (TLB). Unit deletion may be reported as a
degradation machine-check-interruption condition.

11-4 z/Architecture Principles of Operation

Handling of Machine Checks
A machine check is caused by a machine mal-
function and not by data or instructions. This is
ensured during the power-on sequence by initial-
izing the machine controls to a valid state and by
placing valid CBC in the CPU registers, in the
storage keys, and in main storage.

Designation of an unavailable component, such as
a storage location, subchannel, or I/O device,
does not cause a machine-check indication.
Instead, such a condition is indicated by the
appropriate program or I/O interruption or
condition-code setting. In particular, an attempt to
access a storage location which is not in the con-
figuration, or which has power off at the storage
unit, results in an addressing exception when
detected by the CPU and does not generate a
machine-check condition, even though the storage
location or its associated storage key has invalid
CBC. Similarly, if the channel subsystem attempts
to access such a location, an I/O-interruption con-
dition indicating program check is generated rather
than a machine-check condition.

A machine check is indicated whenever the result
of an operation could be affected by information
with invalid CBC or when any other malfunction
makes it impossible to establish reliably that an
operation can be, or has been, performed cor-
rectly. When information with invalid CBC is
fetched but not used, the condition may or may
not be indicated, and the invalid CBC is pre-
served.

When a machine malfunction is detected, the
action taken depends on the model, the nature of
the malfunction, and the situation in which the
malfunction occurs. Malfunctions affecting
operator-facility actions may result in machine
checks or may be indicated to the operator. Mal-
functions affecting certain other operations such
as SIGNAL PROCESSOR may be indicated by
means of a condition code or may result in a
machine-check-interruption condition.

A malfunction detected as part of an I/O operation
may cause a machine-check-interruption condition,
an I/O-error condition, or both. I/O-error condi-
tions are indicated by an I/O interruption or by the
appropriate condition-code setting during the exe-
cution of an I/O instruction. When the machine

reports a failing-storage location detected during
an I/O operation, both I/O-error and machine-
check conditions may be indicated. The I/O-error
condition is the primary indication to the program.
The machine-check condition is a secondary indi-
cation, which is presented as system recovery
together with a failing-storage address.

Certain malfunctions detected as part of I/O
instructions and I/O operations are reported by
means of special machine-check conditions called
I/O machine-check conditions. Thus, malfunctions
detected as part of an operation which is I/O
related may be reported, depending on the error,
in any of three ways: I/O-error condition, I/O
machine-check condition, or non-I/O machine-
check condition. In some cases, the definition
requires the error to be reported by only one of
these mechanisms; in other cases, any one, or in
some cases, more than one, may be indicated.

Programming Note: Although the definition for
machine-check conditions is that they are caused
by machine malfunctions and not by data and
instructions, there are certain unusual situations in
which machine-check conditions are caused by
events which are not machine malfunctions. Two
examples follow:

1. In some cases, the channel-report-pending
machine-check-interruption condition indicates
a non-error situation. For example, this condi-
tion is generated at the completion of the
function specified by RESET CHANNEL
PATH.

2. Improper use of DIAGNOSE may result in
machine-check conditions.

 Validation

Machine errors can be generally classified as solid
or intermittent, according to the persistence of the
malfunction. A persistent machine error is said to
be solid, and one that is not persistent is said to
be intermittent. In the case of a register or
storage location, a third type of error must be con-
sidered, called externally generated. An externally
generated error is one where no failure exists in
the register or storage location but invalid CBC
has been introduced into the location by actions
external to the location. For example, the value
could be affected by a power transient, or an
incorrect value may have been introduced when
the information was placed at the location.

 Chapter 11. Machine-Check Handling 11-5

Invalid CBC is preserved as invalid when informa-
tion with invalid CBC is fetched or when an
attempt is made to update only a portion of the
checking block. When an attempt is made to
replace the contents of the entire checking block
and the block contains invalid CBC, it depends on
the operation and the model whether the block
remains with invalid CBC or is replaced. An oper-
ation which replaces the contents of a checking
block with valid CBC, while ignoring the current
contents, is called a validation operation. Vali-
dation is used to place a valid CBC in a register or
at a location which has an intermittent or
externally generated error.

Validating a checking block does not ensure that a
valid CBC will be observed the next time the
checking block is accessed. If the failure is solid,
validation is effective only if the information placed
in the checking block is such that the failing bits
are set to the value to which they fail. If an
attempt is made to set the bits to the state oppo-
site to that in which they fail, then the validation
will not be effective. Thus, for a solid failure, vali-
dation is only useful to eliminate the error condi-
tion, even though the underlying failure remains,
thereby reducing the exposure to additional
reports. The locations, however, cannot be used,
since invalid CBC will result from attempts to store
other values at the location. For an intermittent
failure, however, validation is useful to restore a
valid CBC such that a subsequent partial store
into the checking block will be permitted. (A
partial store is a store into a checking block
without replacing the entire checking block.)

When a checking block consists of multiple bytes
in storage, or multiple bits in CPU registers, the
invalid CBC can be made valid only when all of
the bytes or bits are replaced simultaneously.

For each type of field in the system, certain
instructions are defined to validate the field.
Depending on the model, additional instructions
may also perform validation; or, in some models, a
register is automatically validated as part of the
machine-check-interruption sequence after the ori-
ginal contents of the register are placed in the
appropriate save area.

When an error occurs in a checking block, the ori-
ginal information contained in the checking block
should be considered lost even after validation.
Automatic register validation leaves the contents

unpredictable. Programmed and manual vali-
dation of checking blocks causes the contents to
be changed explicitly.

Programming Note: The machine-
check-interruption handler must assume that the
registers require validation. Thus, each register
should be loaded, using an instruction defined to
validate, before the register is used or stored.

Invalid CBC in Storage

The size of the checking block in storage depends
on the model but is never more than 4K bytes.

When invalid CBC is detected in storage, a
machine-check condition may occur; depending on
the circumstances, the machine-check condition
may be system damage, instruction-processing
damage, or system recovery. If the invalid CBC is
detected as part of the execution of a channel
program, the error is reported as an I/O-error con-
dition. When a CCW, indirect-data-address word,
or data is prefetched from storage, is found to
have invalid CBC, but is not used in the channel
program, the condition is normally not reported as
an I/O-error condition. The condition may or may
not be reported as a machine-check-interruption
condition. Invalid CBC detected during accesses
to storage for other than CPU-related accesses
may be reported as system recovery with storage
error uncorrected indicated, since the primary
error indication is reported by some other means.

When the storage checking block consists of mul-
tiple bytes and contains invalid CBC, special
storage-validation procedures are generally neces-
sary to restore or place new information in the
checking block. Validation of storage is provided
with the manual load-clear and system-reset-clear
operations and is also provided as a program
function. Programmed storage validation is done
a block at a time, by executing the privileged
instruction TEST BLOCK. Manual storage vali-
dation by clear reset validates all blocks which are
available in the configuration.

A checking block with invalid CBC is never vali-
dated unless the entire contents of the checking
block are replaced. An attempt to store into a
checking block having invalid CBC, without
replacing the entire checking block, leaves the
data in the checking block (including the check
bits) unchanged. Even when an instruction or a

11-6 z/Architecture Principles of Operation

channel-program-input operation specifies that the
entire contents of a checking block are to be
replaced, validation may or may not occur,
depending on the operation and the model.

Programming Note: Machine-check conditions
may be reported for prefetched and unused data.
Depending on the model, such situations may or
may not be successfully retried. For example, a
BRANCH AND LINK (BALR) instruction which
specifies an R� field of zero will never branch, but
on some models a prefetch of the location desig-
nated by register 0 may occur. Access exceptions
associated with this prefetch will not be reported.
However, if an invalid checking-block code is
detected, CPU retry may be attempted.
Depending on the model, the prefetch may recur
as part of the retry, and thus the retry will not be
successful. Even when the CPU retry is suc-
cessful, the performance degradation of such a
retry is significant, and system recovery may be
presented, normally with a failing-storage address.
To avoid continued degradation, the program
should initiate proceedings to eliminate use of the
location and to validate the location.

Programmed Validation of Storage
Provided that an invalid CBC does not exist in the
storage key associated with a 4K-byte block, the
instruction TEST BLOCK causes the entire
4K-byte block to be set to zeros with a valid CBC,
regardless of the current contents of the storage.
TEST BLOCK thus removes an invalid CBC from

a location in storage which has an intermittent, or
one-time, failure. However, if a permanent failure
exists in a portion of the storage, a subsequent
fetch may find an invalid CBC.

Invalid CBC in Storage Keys

Depending on the model, each storage key may
be contained in a single checking block, or the
access-control and fetch-protection bits and the
reference and change bits may be in separate
checking blocks.

Figure 11-1 on page 11-8 describes the action
taken when the storage key has invalid CBC. The
figure indicates the action taken for the case when
the access-control and fetch-protection bits are in
one checking block and the reference and change
bits are in a separate checking block. In
machines where both fields are included in a
single checking block, the action taken is the com-
bination of the actions for each field in error,
except that completion is permitted only if an error
in all affected fields permits completion. Refer-
ences to main storage to which key-controlled pro-
tection does not apply are treated as if an access
key of zero is used for the reference. This
includes such references as channel-program ref-
erences during initial program loading and implicit
references, such as interruption action and
DAT-table accesses.

 Chapter 11. Machine-Check Handling 11-7

┌──────────────────────┬───┐
│ │ Action Taken on Invalid CBC │
│ ├──────────────────────┬──────────────────────┤
│ │For Access-Control and│ For Reference and │
│ Type of Reference │Fetch-Protection Bits │ Change Bits │
├──────────────────────┼──────────────────────┼──────────────────────┤
│SET STORAGE KEY │Complete; validate. │Complete; validate. │
│ EXTENDED │ │ │
│ │ │ │
│INSERT STORAGE KEY │PD; preserve. │PD; preserve. │
│ EXTENDED │ │ │
│ │ │ │
│RESET REFERENCE BIT │PD or complete; │PD; preserve. │
│ EXTENDED │preserve. │ │
│ │ │ │
│INSERT VIRTUAL STORAGE│PD; preserve. │CPF; preserve. │
│ KEY or TEST PROTEC- │ │ │
│ TION │ │ │
│ │ │ │
│CPU prefetch (informa-│CPF; preserve. │CPF; preserve. │
│ tion not used) │ │ │
│ │ │ │
│Channel-program pre- │IPF; preserve. │IPF; preserve. │
│ fetch (information │ │ │
│ not used) │ │ │
│ │ │ │
│Fetch, nonzero access │MC; preserve. │MC or complete; │
│ key │ │preserve. │
│ │ │ │
│Store�, nonzero access│MC�; preserve. │MC and preserve; or │
│ key │ │complete� and correct.│
│ │ │ │
│Fetch, zero access │MC or complete; │MC or complete; │
│ key� │preserve. │preserve. │
│ │ │ │
│Store�, zero access │MC or complete; │MC and preserve; or │
│ key� │preserve. │complete� and correct.│
├──────────────────────┴──────────────────────┴──────────────────────┤
│Explanation: │
│ │
│� CPU virtual- and logical-address store accesses are sub- │
│ ject to page protection. When the page-protection bit │
│ is one, the location will not be changed; however, the │
│ machine may indicate a machine-check condition if the │
│ storage key or the data itself has invalid CBC. │
│ │
│� The contents of the main-storage location are not changed.│
│ │
│� The contents of the reference and change bits are set │
│ to ones if the "complete" action is taken. │
│ │
│� The action shown for an access key of zero is also appli- │
│ cable to references to which key-controlled protection │
│ does not apply. │
└──┘

Figure 11-1 (Part 1 of 2). Invalid CBC in Storage Keys

11-8 z/Architecture Principles of Operation

┌──┐
│Explanation (Continued): │
│ │
│Complete The condition does not cause termination of the execution │
│ of the instruction, and, unless an unrelated condition │
│ prohibits it, the execution of the instruction is │
│ completed, ignoring the error condition. No machine- │
│ check-damage conditions are reported, but system recovery │
│ may be reported. │
│ │
│Correct The reference and change bits are set to ones with valid │
│ CBC. │
│ │
│Preserve The contents of the entire checking block having invalid │
│ CBC are left unchanged. │
│ │
│Validate The entire key is set to the new value with valid CBC. │
│ │
│CPF Invalid CBC in the storage key for a CPU prefetch which │
│ is unused, or for instructions which do not examine the │
│ reference and change bits, may result in any of the fol- │
│ lowing situations: │
│ � The operation is completed; no machine-check condi- │
│ tion is reported. │
│ � The operation is completed; system recovery, with │
│ storage-key error uncorrected, is reported. │
│ � Instruction-processing damage, with or without backup │
│ and with storage-key error uncorrected, is reported. │
│ │
│IPF Invalid CBC in the storage key for a channel-program pre- │
│ fetch which is unused may result in any of the following: │
│ � The I/O operation is completed; no machine-check con- │
│ dition is reported. │
│ � The I/O operation is completed; system recovery, with │
│ storage-key error uncorrected, is reported. │
│ │
│MC Same as PD for CPU references, but a channel-subsystem │
│ reference may result in the following combinations of │
│ I/O-error conditions and machine-check conditions: │
│ � An I/O-error condition is reported; no machine-check │
│ condition is reported. │
│ � An I/O-error condition is reported; system recovery, │
│ with or without storage-key error uncorrected, is │
│ reported. │
│ │
│PD Instruction-processing damage, with or without backup │
│ and with or without storage-key error uncorrected, is │
│ reported. │
│ │
│Note: When storage-key error uncorrected is reported, a failing- │
│ storage address may or may not also be reported. │
└──┘

Figure 11-1 (Part 2 of 2). Invalid CBC in Storage Keys

 Chapter 11. Machine-Check Handling 11-9

Invalid CBC in Registers

When invalid CBC is detected in a CPU register, a
machine-check condition may be recognized.
CPU registers include the general, floating-point,
floating-point-control, access, control, and TOD
programmable registers, the current PSW, the
prefix register, the TOD clock, the CPU timer, and
the clock comparator.

When a machine-check interruption occurs,
whether or not it is due to invalid CBC in a CPU
register, the following actions affecting the CPU
registers, other than the prefix register and the
TOD clock, are taken as part of the interruption.

1. The contents of the registers are saved in
assigned storage locations. Any register
which is in error is identified by a corre-
sponding validity bit of zero in the machine-
check-interruption code. Malfunctions
detected during register saving do not result in
additional machine-check-interruption condi-
tions; instead, the correctness of all the infor-
mation stored is indicated by the appropriate
setting of the validity bits.

2. On some models, registers with invalid CBC
are then validated, their actual contents being
unpredictable. On other models, programmed
validation is required.

The prefix register and the TOD clock are not
stored during a machine-check interruption, have
no corresponding validity bit, and are not vali-
dated.

On those models in which registers are not auto-
matically validated as part of the machine-check
interruption, a register with invalid CBC will not
cause a machine-check-interruption condition
unless the contents of the register are actually
used. In these models, each register may consist
of one or more checking blocks, but multiple regis-
ters are not included in a single checking block.
When only a portion of a register is accessed,
invalid CBC in the unused portion of the same
register may cause a machine-check-interruption
condition. For example, invalid CBC in the right
half of a floating-point register may cause a
machine-check-interruption condition if a LOAD
(LE) operation attempts to replace the left half, or
short form, of the register.

Invalid CBC associated with the prefix register
cannot safely be reported by the machine-check
interruption, since the interruption itself requires
that the prefix value be applied to convert real
addresses to the corresponding absolute
addresses. Invalid CBC in the prefix register
causes the CPU to enter the check-stop state
immediately.

On those models which do not validate registers
during a machine-check interruption, the following
instructions will cause validation of a register, pro-
vided the information in the register is not used
before the register is validated. Other instructions,
although they replace the entire contents of a reg-
ister, do not necessarily cause validation.

General registers are validated by BRANCH AND
SAVE and LOAD ADDRESS executed in the
64-bit addressing mode, by LOAD (LGR), and by
LOAD (LG) and LOAD MULTIPLE (LMG) if the
operand is on a doubleword boundary.

Floating-point registers are validated by LOAD
(LDR) and, if the operand is on a doubleword
boundary, by LOAD (LD).

The floating-point-control register is validated by
LOAD FLOATING POINT CONTROL REGISTER.

Access registers are validated by LOAD ACCESS
MULTIPLE. Only the even-odd access-register
pairs that are included in the set of access regis-
ters specified for LOAD ACCESS MULTIPLE are
validated. Thus, when a single access register is
specified, or when a pair of access registers
starting with an odd-numbered register is speci-
fied, no register is validated.

Control registers may be validated either singly or
in groups by using the instruction LOAD
CONTROL (LCTLG).

The TOD programmable register, CPU timer, clock
comparator, and prefix register are validated by
SET CLOCK PROGRAMMABLE REGISTER, SET
CPU TIMER, SET CLOCK COMPARATOR, and
SET PREFIX, respectively.

The TOD clock is validated by a SET CLOCK
instruction that sets the clock.

Programming Note: Depending on the register
and the model, the contents of a register may be
validated by the machine-check interruption, or the

11-10 z/Architecture Principles of Operation

model may require that a program execute a vali-
dating instruction after the machine-check inter-
ruption has occurred. In the case of the CPU
timer, depending on the model, both the machine-
check interruption and validating instructions may
be required to restore the CPU timer to full
working order.

 Check-Stop State
In certain situations, it is impossible or undesirable
to continue operation when a machine error
occurs. In these cases, the CPU may enter the
check-stop state, which is indicated by the check-
stop indicator.

In general, the CPU may enter the check-stop
state whenever an uncorrectable error or other
malfunction occurs and the machine is unable to
recognize a specific machine-check-interruption
condition.

The CPU always enters the check-stop state if
any of the following conditions exists:

� PSW bit 13 is zero, and an exigent machine-
check condition is generated.

� During the execution of an interruption due to
one exigent machine-check condition, another
exigent machine-check condition is detected.

� During a machine-check interruption, the
machine-check-interruption code cannot be
stored successfully, or the new PSW cannot
be fetched successfully.

� Invalid CBC is detected in the prefix register.

� A malfunction in the receiving CPU, which is
detected after accepting the order, prevents
the successful completion of a SIGNAL
PROCESSOR order and the order was a
reset, or the receiving CPU cannot determine
what the order was. The receiving CPU
enters the check-stop state.

There may be many other conditions for particular
models when an error may cause check stop.

When the CPU is in the check-stop state,
instructions and interruptions are not executed.
The TOD clock is normally not affected by the
check-stop state. The CPU timer may or may not
run in the check-stop state, depending on the
error and the model. The start key and stop key
are not effective in this state.

The CPU may be removed from the check-stop
state by CPU reset.

In a multiprocessing configuration, a CPU entering
the check-stop state generates a request for a
malfunction-alert external interruption to all CPUs
in the configuration. Except for the reception of a
malfunction alert, other CPUs and the I/O system
are normally unaffected by the check-stop state in
a CPU. However, depending on the nature of the
condition causing the check stop, other CPUs may
also be delayed or stopped, and channel sub-
system and I/O activity may be affected.

System Check Stop
In a multiprocessing configuration, some errors,
malfunctions, and damage conditions are of such
severity that the condition causes all CPUs in the
configuration to enter the check-stop state. This
condition is called a system check stop. The state
of the channel subsystem and I/O activity is
unpredictable.

 Machine-Check Interruption
A request for a machine-check interruption, which
is made pending as the result of a machine check,
is called a machine-check-interruption condition.
There are two types of machine-check-interruption
conditions: exigent conditions and repressible
conditions.

 Exigent Conditions

Exigent machine-check-interruption conditions are
those in which damage has or would have
occurred such that execution of the current
instruction or interruption sequence cannot safely
continue. Exigent conditions include two sub-
classes: instruction-processing damage and
system damage. In addition to indicating specific
exigent conditions, system damage is used to
report any malfunction or error which cannot be
isolated to a less severe report.

Exigent conditions for instruction sequences can
be either nullifying exigent conditions or termi-
nating exigent conditions, according to whether
the instructions affected are nullified or terminated.
Exigent conditions for interruption sequences are
terminating exigent conditions. The terms
“nullification” and “termination” have the same

 Chapter 11. Machine-Check Handling 11-11

meanings as those used in Chapter 5, “Program
Execution,” except that more than one instruction
may be involved. Thus, a nullifying exigent condi-
tion indicates that the CPU has returned to the
beginning of a unit of operation prior to the error.
A terminating exigent condition means that the
results of one or more instructions may have
unpredictable values.

 Repressible Conditions

Repressible machine-check-interruption conditions
are those in which the results of the instruction-
processing sequence have not been affected.
Repressible conditions can be delayed, until the
completion of the current instruction or even
longer, without affecting the integrity of CPU oper-
ation. Repressible conditions are of three groups:
recovery, alert, and repressible damage. Each
group includes one or more subclasses.

A malfunction in the CPU, storage, or operator
facilities which has been successfully corrected or
circumvented internally without logical damage is
called a recovery condition. Depending on the
model and the type of malfunction, some or all
recovery conditions may be discarded and not
reported. Recovery conditions that are reported
are grouped in one subclass, system recovery.

A machine-check-interruption condition not directly
related to a machine malfunction is called an alert
condition. The alert conditions are grouped in two
subclasses: degradation and warning.

A malfunction resulting in an incorrect state of a
portion of the system not directly affecting sequen-
tial CPU operation is called a repressible-damage
condition. Repressible-damage conditions are
grouped in five subclasses, according to the func-
tion affected: timing-facility damage, external
damage, channel report pending, channel-
subsystem damage, and service-processor
damage.

Programming Notes:

1. Even though repressible conditions are usually
reported only at normal points of interruption,
they may also be reported with exigent
machine-check conditions. Thus, if an exigent
machine-check condition causes an instruction
to be abnormally terminated and a machine-
check interruption occurs to report the exigent

condition, any pending repressible conditions
may also be reported. The meaningfulness of
the validity bits depends on what exigent con-
dition is reported.

2. Classification of damage as either exigent or
repressible does not imply the severity of the
damage. The distinction is whether action
must be taken as soon as the damage is
detected (exigent) or whether the CPU can
continue processing (repressible). For a
repressible condition, the current instruction
can be completed before taking the machine-
check interruption if the CPU is enabled for
machine checks; if the CPU is disabled for
machine checks, the condition can safely be
kept pending until the CPU is again enabled
for machine checks.

For example, the CPU may be disabled for
machine-check interruptions because it is han-
dling an earlier instruction-processing-damage
interruption. If, during that time, an I/O opera-
tion encounters a storage error, that condition
can be kept pending because it is not
expected to interfere with the current machine-
check processing. If, however, the CPU also
makes a reference to the area of storage con-
taining the error before re-enabling machine-
check interruptions, another instruction-
processing-damage condition is created,
which is treated as an exigent condition and
causes the CPU to enter the check-stop state.

3. A repressible condition may be a floating con-
dition. A floating repressible condition is eli-
gible to cause an interruption on any CPU in
the configuration. At the point when a CPU
performs an interruption for a floating
repressible condition, the condition is no
longer eligible to cause an interruption on the
remaining CPUs in the configuration.

 Interruption Action

A machine-check interruption causes the following
actions to be taken. An architectural-mode iden-
tification with the value 01 hex is stored at real
location 163. The PSW reflecting the point of
interruption is stored as the machine-check old
PSW in the quadword at real location 352. The
contents of other registers are stored in register-
save areas at real locations 4608-4863,
4892-4895, 4900-4911, 4913-4919, and
4928-5119. After the contents of the registers are

11-12 z/Architecture Principles of Operation

stored in register-save areas, depending on the
model, the registers may be validated with the
contents being unpredictable. A machine-
check-interruption code (MCIC) of eight bytes is
stored at real locations 232-239. An external-
damage code may be stored at real locations
244-247, and a failing-storage address may be
stored at real locations 248-255. The new PSW is
fetched from real locations 480-495. In addition, a
machine-check logout may have occurred.

The machine-generated addresses used to access
the old and new PSW, the MCIC, extended inter-
ruption information, and the fixed-logout area are
all real addresses.

The fields in assigned storage locations that are
accessed during the machine-check interruption
are summarized in Figure 11-2.

┌──────────────────────────────────────┬─────────┬────────┐
│ │Starting │ Length │
│ Information Stored (Fetched) │Location�│in Bytes│
├──────────────────────────────────────┼─────────┼────────┤
│Architectural-mode identification │ 163 │ 1 │
│Old PSW │ 352 │ 16 │
│New PSW (fetched) │ 48� │ 16 │
│Machine-check-interruption code │ 232 │ 8 │
│Register-save areas │ │ │
│ Floating-point registers �-15 │ 46�8 │ 128 │
│ General registers �-15 │ 4736 │ 128 │
│ Floating-point control register │ 4892 │ 4 │
│ TOD programmable register │ 49�� │ 4 │
│ CPU timer │ 49�4 │ 8 │
│ Clock comparator │ 4913 │ 7 │
│ Access registers �-15 │ 4928 │ 64 │
│ Control registers �-15 │ 4992 │ 128 │
│Extended interruption information │ │ │
│ External-damage code │ 244 │ 4 │
│ Failing-storage address │ 248 │ 8 │
│Fixed-logout area │ 4864 │ 16 │
├──────────────────────────────────────┴─────────┴────────┤
│Explanation: │
│ │
│ � All locations are in real storage. │
└───┘

Figure 11-2. Machine-Check-Interruption Locations

If the machine-check-interruption code cannot be
stored successfully or the new PSW cannot be
fetched successfully, the CPU enters the check-
stop state.

A repressible machine-check condition can initiate
a machine-check interruption only if both PSW bit
13 is one and the associated subclass mask bit, if
any, in control register 14 is also one. When it
occurs, the interruption does not terminate the
execution of the current instruction; the inter-
ruption is taken at a normal point of interruption,
and no program or supervisor-call interruptions are
eliminated. If the machine check occurs during
the execution of a machine function, such as a

CPU-timer update, the machine-check interruption
takes place after the machine function has been
completed.

When the CPU is disabled for a particular
repressible machine-check condition, the condition
remains pending. Depending on the model and
the condition, multiple repressible conditions may
be held pending for a particular subclass, or only
one condition may be held pending for a particular
subclass, regardless of the number of conditions
that may have been detected for that subclass.

When a repressible machine-check interruption
occurs because the interruption condition is in a
subclass for which the CPU is enabled, pending
conditions in other subclasses may also be indi-
cated by the same interruption code, even though
the CPU is disabled for those subclasses. All indi-
cated conditions are then cleared.

If a machine check which is to be reported as a
system-recovery condition is detected during the
execution of the interruption procedure due to a
previous machine-check condition, the system-
recovery condition may be combined with the
other conditions, discarded, or held pending.

An exigent machine-check condition can cause a
machine-check interruption only when PSW bit 13
is one. When a nullifying exigent condition causes
a machine-check interruption, the interruption is
taken at a normal point of interruption. When a
terminating exigent condition causes a machine-
check interruption, the interruption terminates the
execution of the current instruction and may elimi-
nate the program and supervisor-call interruptions,
if any, that would have occurred if execution had
continued. Proper execution of the interruption
sequence, including the storing of the old PSW
and other information, depends on the nature of
the malfunction. When an exigent machine-check
condition occurs during the execution of a
machine function, such as a CPU-timer update,
the sequence is not necessarily completed.

If, during the execution of an interruption due to
one exigent machine-check condition, another
exigent machine check is detected, the CPU
enters the check-stop state. If an exigent machine
check is detected during an interruption due to a
repressible machine-check condition, system
damage is reported.

 Chapter 11. Machine-Check Handling 11-13

When PSW bit 13 is zero, an exigent machine-
check condition causes the CPU to enter the
check-stop state.

Machine-check-interruption conditions are handled
in the same manner regardless of whether the
wait-state bit in the PSW is one or zero: a
machine-check condition causes an interruption if
the CPU is enabled for that condition.

Machine checks which occur while the rate control
is set to the instruction-step position are handled
in the same manner as when the control is set to
the process position; that is, recovery mechanisms
are active, and machine-check interruptions occur
when allowed. Machine checks occurring during a
manual operation may be indicated to the oper-
ator, may generate a system-recovery condition,
may result in system damage, or may cause a
check stop, depending on the model.

Every reasonable attempt is made to limit the side
effects of any machine check and the associated
interruption. Normally, interruptions, as well as
the progress of I/O operations, remain unaffected.
The malfunction, however, may affect these activ-
ities, and, if the currently active PSW has bit 13
set to one, the machine-check interruption will
indicate the total extent of the damage caused,
and not just the damage which originated the con-
dition.

Point of Interruption

The point in the processing which is indicated by
the interruption and used as a reference point by
the machine to determine and indicate the validity
of the status stored is referred to as the point of
interruption.

Because of the checkpoint capability in models
with CPU retry, the interruption resulting from an
exigent machine-check-interruption condition may
indicate a point in the CPU processing sequence
which is logically prior to the error. Additionally,
the model may have some choice as to which
point in the CPU processing sequence the inter-
ruption is indicated, and, in some cases, the
status which can be indicated as valid depends on
the point chosen.

Only certain points in the processing may be used
as a point of interruption. For repressible

machine-check interruptions, the point of inter-
ruption must be after one unit of operation is com-
pleted and any associated program or supervisor-
call interruption is taken, and before the next unit
of operation is begun.

Exigent machine-check conditions for instruction
sequences are those in which damage has or
would have occurred to the instruction stream.
Thus, the damage can normally be associated
with a point part way through an instruction, and
this point is called the point of damage. In some
cases, there may be one or more instructions sep-
arating the point of damage and the point of inter-
ruption, and the processing associated with one or
more instructions may be damaged. When the
point of interruption is a point prior to the point of
damage due to a nullifiable exigent machine-check
condition, the point of interruption can be only at
the same points as for repressible machine-check
conditions.

In addition to the point of interruption permitted for
repressible machine-check conditions, the point of
interruption for a terminating exigent machine-
check condition may also be after the unit of oper-
ation is completed but before any associated
program or supervisor-call interruption occurs. In
this case, a valid PSW instruction address is
defined as that which would have been stored in
the old PSW for the program or supervisor-call
interruption. Since the operation has been termi-
nated, the values in the result fields, other than
the instruction address, are unpredictable. Thus,
the validity bits associated with fields which are
due to be changed by the instruction stream are
meaningless when a terminating exigent machine-
check condition is reported.

When the point of interruption and the point of
damage due to an exigent machine-check condi-
tion are separated by a checkpoint-
synchronization function, the damage has not
been isolated to a particular program, and system
damage is indicated.

When an exigent machine-check-interruption con-
dition occurs, the point of interruption which is
chosen affects the amount of damage which must
be indicated. An attempt is made, when possible,
to choose a point of interruption which permits the
minimum indication of damage. In general, the
preference is the interruption point immediately
preceding the error.

11-14 z/Architecture Principles of Operation

When all the status information stored as a result
of an exigent machine-check-interruption condition
does not reflect the same point, an attempt is
made, when possible, to choose the point of inter-
ruption so that the instruction address which is
stored in the machine-check old PSW is valid.

 Machine-Check-Interruption Code
On all machine-check interruptions, a machine-
check-interruption code (MCIC) is stored in the
doubleword starting at real location 232. The
code has the format shown in Figure 11-3.

Bits in the MCIC which are not assigned or not
implemented by a particular model are stored as
zeros.

┌─────┬─┬───┬─┬─┬───────┬───┬─┬─┬───────────────┬─┬─┬───────┬─┬─┐
│S P S│ │C E│ │D│ C S C│ │ │ │S S K D W M P I│F│ │E F G C│ │S│
│D D R│�│D D│�│G│W P P K│� �│B│�│E C E S P S M A│A│�│C P R R│�│T│
└─────┴─┴───┴─┴─┴───────┴───┴─┴─┴───────────────┴─┴─┴───────┴─┴─┘
� 4 8 12 16 24 26 31

┌─────┬─────────┬───┬─────┬─┬───┬───────────────┬───────────────┐
│I A D│ │ │P F A│ │C C│ │ │
│E R A│� � � � �│� �│R C P│�│T C│� � � � � � � �│� � � � � � � �│
└─────┴─────────┴───┴─────┴─┴───┴───────────────┴───────────────┘
32 4� 42 46 48 56 63

Bits Name

� System damage (SD)
1 Instruction-processing damage (PD)
2 System recovery (SR)
4 Timing-facility damage (CD)
5 External damage (ED)

 7 Degradation (DG)
 8 Warning (W)
9 Channel report pending (CP)

 1� Service-processor damage (SP)
 11 Channel-subsystem damage (CK)
 14 Backed up (B)
 16 Storage error uncorrected (SE)
 17 Storage error corrected (SC)
 18 Storage-key error uncorrected (KE)
 19 Storage degradation (DS)
 2� PSW-MWP validity (WP)
 21 PSW mask and key validity (MS)
 22 PSW program-mask and condition-code validity (PM)
 23 PSW-instruction-address validity (IA)
 24 Failing-storage-address validity (FA)
 26 External-damage-code validity (EC)
 27 Floating-point-register validity (FP)
 28 General-register validity (GR)
 29 Control-register validity (CR)
 31 Storage logical validity (ST)
 32 Indirect storage error (IE)
 33 Access-register validity (AR)
 34 Delayed-access exception (DA)
 42 TOD-programmable-register validity (PR)
 43 Floating-point-control-register validity (FC)
 44 Ancillary report (AP)
 46 CPU-timer validity (CT)
 47 Clock-comparator validity (CC)

Note: All other bits of the MCIC are unassigned and stored as zeros.

Figure 11-3. Machine-Check Interruption-Code Format

 Chapter 11. Machine-Check Handling 11-15

 Subclass

Bits 0-2 and 4-11 are the subclass bits which
identify the type of machine-check condition
causing the interruption. At least one of the sub-
class bits is stored as a one. When multiple
errors have occurred, several subclass bits may
be set to ones.

 System Damage
Bit 0 (SD), when one, indicates that damage has
occurred which cannot be isolated to one or more
of the less severe machine-check subclasses.
When system damage is indicated, the ancillary-
report bit, bit 44, is meaningful, the remaining bits
in the machine-check-interruption code are not
meaningful, and information stored in the register-
save areas and machine-check extended-
interruption fields is not meaningful.

System damage is a terminating exigent condition
and has no subclass-mask bit.

 Instruction-Processing Damage
Bit 1 (PD), when one, indicates that damage has
occurred to the instruction processing of the CPU.

The exact meaning of bit 1 depends on the setting
of the backed-up bit, bit 14. When the backed-up
bit is one, the condition is called processing
backup. When the backed-up bit is zero, the con-
dition is called processing damage. These two
conditions are described in “Synchronous
Machine-Check-Interruption Conditions” on
page 11-18.

Instruction-processing damage can be a nullifying
or a terminating exigent condition and has no
subclass-mask bit.

 System Recovery
Bit 2 (SR), when one, indicates that malfunctions
were detected but did not result in damage or
have been successfully corrected. Some malfunc-
tions detected as part of an I/O operation may
result in a system-recovery condition in addition to
an I/O-error condition. The presence and extent
of the system-recovery capability depend on the
model.

System recovery is a repressible condition. It is
masked by the recovery subclass-mask bit, which
is in bit position 36 of control register 14.

Programming Notes:

1. System recovery may be used to report a
failing-storage address detected by a CPU
prefetch or by an I/O operation.

2. Unless the corresponding validity bits are
ones, the indication of system recovery does
not imply storage logical validity or that the
fields stored as a result of the machine-check
interruption are valid.

 Timing-Facility Damage
Bit 4 (CD), when one, indicates that damage has
occurred to the TOD clock, CPU timer, clock
comparator, or TOD programmable register, or to
the CPU-timer or clock-comparator external-
interruption conditions. The timing-facility-damage
machine-check condition is set whenever any of
the following occurs:

1. The TOD clock enters the error or not-
operational state.

2. The CPU timer is damaged, and the CPU is
enabled for CPU-timer external interruptions.
On some models, this condition may be
recognized even when the CPU is not enabled
for CPU-timer interruptions. Depending on the
model, the machine-check condition may be
generated only as the CPU timer enters an
error state. Or, the machine-check condition
may be continuously generated whenever the
CPU is enabled for CPU-timer interruptions,
until the CPU timer is validated.

3. The clock comparator is damaged, and the
CPU is enabled for clock-comparator external
interruptions. On some models, this condition
may be recognized even when the CPU is not
enabled for clock-comparator interruptions.

Timing-facility damage may also be set along with
instruction-processing damage when an instruction
which accesses the TOD clock, CPU timer, or
clock comparator produces incorrect results.
Depending on the model, the TOD programmable
register, CPU timer, or clock comparator may be
validated by the interruption which reports the
TOD clock, CPU timer, or clock comparator as
invalid.

Timing-facility damage is a repressible condition.
It is masked by the external-damage subclass-
mask bit, which is in bit position 38 of control reg-
ister 14.

11-16 z/Architecture Principles of Operation

Timing-facility-damage conditions for the CPU
timer and the clock comparator are not recognized
on most models when these facilities are not in
use. The facilities are considered not in use when
the CPU is disabled for the corresponding external
interruptions (PSW bit 7, or the subclass-mask
bits, bits 52 and 53 of control register 0, are
zeros), and when the corresponding set and store
instructions are not executed. Timing-
facility-damage conditions that are already
pending remain pending, however, when the CPU
is disabled for the corresponding external inter-
ruption.

Timing-facility-damage conditions due to damage
to the TOD clock are always recognized.

 External Damage
Bit 5 (ED), when one, indicates that damage has
occurred during operations not directly associated
with processing the current instruction.

When bit 5, external damage, is one and bit 26,
external-damage-code validity, is also one, the
external-damage code has been stored to indi-
cate, in more detail, the cause of the external-
damage machine-check interruption. When the
external damage cannot be isolated to one or
more of the conditions as defined in the external-
damage code, or when the detailed indication for
the condition is not implemented by the model,
external damage is indicated with bit 26 set to
zero. The presence and extent of reporting
external damage depend on the model.

External damage is a repressible condition. It is
masked by the external-damage subclass-mask
bit, which is in bit position 38 of control register
14.

 Degradation
Bit 7 (DG), when one, indicates that continuous
degradation of system performance, more serious
than that indicated by system recovery, has
occurred. Degradation may be reported when
system-recovery conditions exceed a machine-
preestablished threshold or when unit deletion has
occurred. The presence and extent of the
degradation-report capability depend on the
model.

Degradation is a repressible condition. It is
masked by the degradation subclass-mask bit,
which is in bit position 37 of control register 14.

 Warning
Bit 8 (W), when one, indicates that damage is
imminent in some part of the system (for example,
that power is about to fail, or that a loss of cooling
is occurring). Whether warning conditions are
recognized depends on the model.

If the condition responsible for the imminent
damage is removed before the interruption request
is honored (for example, if power is restored), the
request does not remain pending, and no inter-
ruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists, more than one interruption may result
from the same condition.

Warning is a repressible condition. It is masked
by the warning subclass-mask bit, which is in bit
position 39 of control register 14.

Channel Report Pending
Bit 9 (CP), when one, indicates that a channel
report, consisting of one or more channel-report
words, has been made pending, and the contents
of the channel-report words describe, in further
detail, the effect of the malfunction and the results
of analysis or the action performed. A channel
report becomes pending when one of the following
conditions has occurred:

1. Channel-subsystem recovery has been com-
pleted. The channel-subsystem recovery may
have been initiated with no prior notice to the
program or may have been a result of a con-
dition previously reported to the program.

2. The function specified by RESET CHANNEL
PATH has been completed.

A channel report may also become pending under
other conditions.

The channel-report words which make up the
channel report may be cleared, one at a time, by
execution of the instruction STORE CHANNEL
REPORT WORD, which is described in
Chapter 14, “I/O Instructions.”

Bit 9 is meaningless when channel-subsystem
damage is reported.

Channel report pending is a floating repressible
condition. It is masked by the channel-

 Chapter 11. Machine-Check Handling 11-17

report-pending subclass-mask bit, which is in bit
position 35 of control register 14.

 Service-Processor Damage
Bit 10 (SP), when one, indicates that damage has
occurred to the service processor. Service-
processor damage may be made pending at all
CPUs in the configuration, or it may be detected
independently by each CPU. The presence and
extent of reporting service-processor damage
depend on the model.

Service-processor damage is a repressible condi-
tion and has no subclass-mask bit.

 Channel-Subsystem Damage
Bit 11 (CK), when one, indicates that an error or
malfunction has occurred in the channel sub-
system, or that the channel subsystem is in the
check-stop state. The channel subsystem enters
the check-stop state when a malfunction occurs
which is so severe that the channel subsystem
cannot continue, or if power is lost in the channel
subsystem.

Channel-subsystem damage is a floating
repressible condition and has no subclass-mask
bit.

 Subclass Modifiers

Bits 14 (B), 34 (DA), and 44 (AP) of the machine-
check-interruption code act as modifiers to the
subclass bits.

 Backed Up
Bit 14 (B), when one, indicates that the point of
interruption is at a checkpoint before the point of
error. This bit is meaningful only when the
instruction-processing-damage bit, bit 1, is also set
to one. The presence and extent of the capability
to indicate a backed-up condition depend on the
model.

Delayed Access Exception
Bit 34 (DA), when one, indicates that an access
exception was detected during a storage access
using DAT when no such exception was detected
by an earlier test for access exceptions.

Bit 34 is a modifier to instruction-processing
damage (bit 1) and is meaningful only when bit 1
of the machine-check-interruption code is one.

When bit 1 is zero, bit 34 has no meaning. The
presence and extent of reporting delayed access
exception depend on the model.

Programming Note: The occurrence of a
delayed access exception normally indicates that
the program is using an improper procedure to
update the DAT tables.

 Ancillary Report
Bit 44 (AP), when one, indicates that a malfunc-
tion of a system component has occurred which
has been recognized previously or which has
affected the activities of multiple system elements
such as CPUs and subchannels. When the mal-
function affects the activities of multiple elements,
an ancillary-report condition is recognized for all of
the affected elements except one. This bit, when
zero, indicates that this malfunction of a system
component has not been recognized previously.
This bit is meaningful for all conditions indicated
by either the machine-check-interruption code or
the external-damage code.

Depending on the model, recognition of an
ancillary-report condition may not be provided, or
it may not be provided for all system malfunctions.
When ancillary-report recognition is not provided,
bit 44 is set to zero.

 Synchronous
Machine-Check-Interruption
Conditions

The instruction-processing damage and backed-up
bits, bits 1 and 14 of the machine-
check-interruption code, identify, in combination,
two conditions.

 Processing Backup
The processing-backup condition indicates that the
point of interruption is prior to the point, or points,
of error. This is a nullifying exigent condition.
When all of the other CPU-related-damage sub-
classes and modifiers of the machine-
check-interruption code are zero, and certain
validity bits associated with CPU status are indi-
cated as valid, then the machine has successfully

Bit 1 Bit 14 Name of Condition

1 0 Processing damage
1 1 Processing backup

11-18 z/Architecture Principles of Operation

returned to a checkpoint prior to the malfunction,
and no damage has yet occurred to the CPU.

The subclass bits which must be zero for no
damage to have occurred are as follows:

MCIC
 Bit Name
 0 System damage
 4 Timing-facility damage

The delayed-access-exception subclass-modifier
bit, MCIC bit 34, must be zero for no damage to
have occurred.

The validity bits in the machine-check-interruption
code which must be one for no damage to have
occurred are as follows:

MCIC
 Bit Name
20 PSW MWP bits
21 PSW mask and key
22 PSW program mask and condition code
23 PSW instruction address

 27 Floating-point registers
 28 General registers
 29 Control registers
31 Storage logical validity (result fields within

current checkpoint interval)
 33 Access registers
42 TOD programmable register

 43 Floating-point-control register
 46 CPU timer
 47 Clock comparator

Programming Note: The processing-backup
condition is reported rather than system recovery
to indicate that a malfunction or failure stands in
the way of continued operation of the CPU. The
malfunction has not been circumvented, and
damage would have occurred if instruction proc-
essing had continued.

 Processing Damage
The processing-damage condition indicates that
damage has occurred to the instruction processing
of the CPU. The point of interruption is a point
beyond some or all of the points of damage.
Processing damage is a terminating exigent condi-
tion; therefore, the contents of result fields may be
unpredictable and still indicated as valid.

Processing damage may include malfunctions in
program-event recording, monitor call, tracing,
access-register translation, and dynamic address
translation. Processing damage causes any
supervisor-call-interruption condition and program-
interruption condition to be discarded. However,
the contents of the old PSW and interruption-code
locations for these interruptions may be set to
unpredictable values.

 Storage Errors

Bits 16-18 of the machine-check-interruption code
are used to indicate an invalid CBC or a near-valid
CBC detected in main storage or an invalid CBC
in a storage key. Bit 19, storage degradation,
may be indicated concurrently with bit 17. The
failing-storage-address field, when indicated as
valid, identifies a location within the storage
checking block containing the error, or, for
storage-key error uncorrected, within the block
associated with the storage key. Bit 32, indirect
storage error, may be set to one to indicate that
the location designated by the failing-storage
address is not the original source of the error.

The storage-error-uncorrected and storage-key-
error-uncorrected bits do not in themselves indi-
cate the occurrence of damage because the error
detected may not have affected a result. The
portion of the configuration affected by an invalid
CBC is indicated in the subclass field of the
machine-check-interruption code.

Storage errors detected for a channel program,
when indicated as I/O-error conditions, may also
be reported as system recovery. CBC errors that
occur in storage or in the storage key and that are
detected on prefetched or unused data for a CPU
program may or may not be reported, depending
on the model.

Storage Error Uncorrected
Bit 16 (SE), when one, indicates that a checking
block in main storage contained invalid CBC and
that the information could not be corrected. The
contents of the checking block in main storage
have not been changed. The location reported
may have been accessed or prefetched for this
CPU or another CPU or a channel program, or it
may have been accessed as the result of a
model-dependent storage access.

 Chapter 11. Machine-Check Handling 11-19

Storage Error Corrected
Bit 17 (SC), when one, indicates that a checking
block in main storage contained near-valid CBC
and that the information has been corrected
before being used. Depending on the model, the
contents of the checking block in main storage
may or may not have been restored to valid CBC.
The location reported may have been accessed or
prefetched for this CPU or for another CPU or for
a channel program, or it may have been accessed
as the result of a model-dependent storage
access. The presence and extent of the storage-
error-correction capability depend on the model.
This indication may or may not be accompanied
by an indication of storage degradation, bit 19
(DS).

Storage-Key Error Uncorrected
Bit 18 (KE), when one, indicates that a storage
key contained invalid CBC and that the informa-
tion could not be corrected. The contents of the
checking block in the storage key have not been
changed. The storage key may have been
accessed or prefetched for this CPU or for another
CPU or for a channel program, or it may have
been accessed as the result of a model-
dependent storage access.

 Storage Degradation

Bit 19 (DS), when one, indicates that degradation
of the recovery characteristics has occurred for
the 4K-byte block reported by the failing-storage
address.

Storage degradation indicates that although the
associated storage error has been corrected, there
are solid failures associated with the storage block
(or with its associated key) that cause the cor-
rection process to take a substantial amount of
time, and that if an additional error occurs in the
block, the error may not be correctable or may go
undetected. Thus, this bit indicates that use of the
indicated block of storage should be avoided, if
possible.

The indication of storage degradation has
meaning only when failing-storage-address
validity, MCIC bit 24, is also one. The presence
and extent of reporting storage degradation
depend on the model.

Programming Note: Because storage degrada-
tion is normally reported with system recovery, the
recovery subclass mask, bit 36 of control register
14, should be set to one in order for storage
degradation to be indicated.

Indirect Storage Error
Bit 32 (IE), when one, indicates that the physical
main-storage location identified by the failing-
storage address is not the original source of the
error. Instead, the error originated in another level
of the storage hierarchy and has been propagated
to the current physical-storage portion of the
storage hierarchy. Bit 32 is meaningful only when
bit 16 or 18 (storage error uncorrected or
storage-key error uncorrected) of the machine-
check-interruption code is one. When bits 16 and
18 are both zeros, bit 32 has no meaning.

For errors originating outside the storage hier-
archy, the attempt to store is rejected, and the
appropriate error indication is presented. When
an error is detected during implicit movement of
information inside the storage hierarchy, the action
is not rejected and reported in this manner
because the movement may be asynchronous and
may be initiated as the result of an attempt to
access completely unrelated information. Instead,
errors in the contents of the source during implicit
moving of information from one portion of the
storage hierarchy to another may be preserved in
the target area by placing a special invalid CBC in
the checking block associated with the target
location. These propagated errors, when detected
later, are reported as indirect storage errors. The
original source of such an error may have been in
a cache associated with an I/O processor or a
CPU, or the error may have been the result of a
data-path failure in transmitting data from one
portion of the storage hierarchy to another. Addi-
tionally, a propagated error may be generated
during the movement of data from one physical
portion of storage to another as the result of a
storage-reconfiguration action.

The presence and extent of reporting indirect
storage error depend on the model.

Programming Note: See the programming notes
under TEST BLOCK in Chapter 10, “Control
Instructions” for the action which should be taken
after storage errors are reported.

11-20 z/Architecture Principles of Operation

 Machine-Check Interruption-Code
Validity Bits

Bits 20-24, 26-29, 31, 33, 42, 43, 46, and 47 of
the machine-check-interruption code are validity
bits. Each bit indicates the validity of a particular
field in storage. With the exception of the storage-
logical-validity bit (bit 31), each bit is associated
with a field stored during the machine-check inter-
ruption. When a validity bit is one, it indicates that
the saved value placed in the corresponding
storage field is valid with respect to the indicated
point of interruption and that no error was
detected when the data was stored.

When a validity bit is zero, one or more of the fol-
lowing conditions may have occurred: the original
information was incorrect, the original information
had invalid CBC, additional malfunctions were
detected while storing the information, or none or
only part of the information was stored. Even
though the information is unpredictable, the
machine attempts, when possible, to place valid
CBC in the storage field and thus reduce the pos-
sibility of additional machine checks being caused.

The validity bits for the floating-point registers,
general registers, control registers, access regis-
ters, TOD programmable register, floating-point
control register, CPU timer, and clock comparator
indicate the validity of the saved value placed in
the corresponding save area. The information in
these registers after the machine-check inter-
ruption is not necessarily correct even when the
correct value has been placed in the save area
and the validity bit set to one. The use of the reg-
isters and the operation of the facility associated
with the control registers, floating-point control reg-
ister, TOD programmable register, CPU timer, and
clock comparator are unpredictable until these
registers are validated. (See “Invalid CBC in
Registers” on page 11-10.)

 PSW-MWP Validity
Bit 20 (WP), when one, indicates that bits 12-15 of
the machine-check old PSW are correct.

PSW Mask and Key Validity
Bit 21 (MS), when one, indicates that the system
mask, PSW key, and miscellaneous bits of the
machine-check old PSW are correct. specifically,
this bit covers bits 0-11, 16, 17, 24-30, and 33-63
of the PSW.

PSW Program-Mask and
Condition-Code Validity
Bit 22 (PM), when one, indicates that the program
mask and condition code of the machine-check
old PSW are correct.

 PSW-Instruction-Address Validity
Bit 23 (IA), when one, indicates that the
addressing-mode and instruction-address bits, bits
31, 32, and 64-127, of the machine-check old
PSW are correct.

 Failing-Storage-Address Validity
Bit 24 (FA), when one, indicates that a correct
failing-storage address has been stored at real
location 248-255 after a storage-error-uncorrected,
storage-key-error-uncorrected, or storage-error-
corrected condition has occurred. The presence
and extent of the capability to identify the failing-
storage location depend on the model. When no
such errors are reported, that is, bits 16-18 of the
machine-check-interruption code are zeros, the
failing-storage address is meaningless, even
though it may be indicated as valid.

 External-Damage-Code Validity
Bit 26 (EC), when one, and provided that bit 5,
external damage, is also one, indicates that a
valid external-damage code has been stored in
the word at real location 244. When bit 5 is zero,
bit 26 has no meaning.

 Floating-Point-Register Validity
Bit 27 (FP), when one, indicates that the contents
of the floating-point-register save area at real
locations 4608-4735 reflect the correct state of the
floating-point registers at the point of interruption.

 General-Register Validity
Bit 28 (GR), when one, indicates that the contents
of the general-register save area at real locations
4736-4863 reflect the correct state of the general
registers at the point of interruption.

 Control-Register Validity
Bit 29 (CR), when one, indicates that the contents
of the control-register save area at real locations
4992-5119 reflect the correct state of the control
registers at the point of interruption.

 Chapter 11. Machine-Check Handling 11-21

Storage Logical Validity
Bit 31 (ST), when one, indicates that the storage
locations, the contents of which are modified by
the instructions being executed, contain the
correct information relative to the point of inter-
ruption. That is, all stores before the point of
interruption are completed, and all stores, if any,
after the point of interruption are suppressed.
When a store before the point of interruption is
suppressed because of an invalid CBC, the
storage-logical-validity bit may be indicated as
one, provided that the invalid CBC has been pre-
served as invalid.

When instruction-processing damage is indicated
but processing backup is not indicated, the
storage-logical-validity bit has no meaning.

Storage logical validity reflects only the instruction-
processing activity and does not reflect errors in
the state of storage as the result of either I/O
operations or the storing of the old PSW and other
interruption information.

 Access-Register Validity
Bit 33 (AR), when one, indicates that the contents
of the access-register save area at real locations
4928-4991 reflect the correct state of the access
registers at the point of interruption.

 TOD-Programmable-Register Validity
Bit 42 (PR), when one, indicates that the contents
of the TOD-programmable-register save area at
real locations 4900-4903 reflect the correct state
of the TOD programmable register at the point of
interruption.

 Floating-Point-Control-Register Validity
Bit 43 (FC), when one, indicates that the contents
of the floating-point-control-register save area at
real locations 4892-4895 reflect the correct state
of the floating-point-control register at the point of
interruption.

 CPU-Timer Validity
Bit 46 (CT), when one, indicates that the CPU
timer is not in error and that the contents of the
CPU-timer save area at real locations 4904-4911
reflect the correct state of the CPU timer at the
time the interruption occurred.

 Clock-Comparator Validity
Bit 47 (CC), when one, indicates that the clock
comparator is not in error, that the contents of the
clock-comparator save area at real locations
4913-4919 reflect the correct state of the clock
comparator at the time the interruption occurred,
and that zeros have been stored at real location
4912.

Programming Note: The validity bits must be
used in conjunction with the subclass bits and the
backed-up bit in order to determine the extent of
the damage caused by a machine-check condi-
tion. No damage has occurred to the system
when all of the following are true:

� The four PSW-validity bits, the six register-
validity bits, the two timing-facility-validity bits,
and the storage-logical-validity bit are all ones.

� Subclass bits 0, 4, 5, 10, and 11 are zeros.

� The instruction-processing-damage bit is zero
or, if one, the backed-up bit is also one.

� The delayed-access-exception bit is zero.

 Machine-Check Extended
Interruption Information
As part of the machine-check interruption, in some
cases, extended interruption information is placed
in fixed areas assigned in storage. The contents
of registers associated with the CPU are placed in
register-save areas. For external damage, addi-
tional information is provided for some models by
storing an external-damage code. When storage
error uncorrected, storage error corrected, or
storage-key error uncorrected is indicated, the
failing-storage address is saved.

Each of these fields has associated with it a
validity bit in the machine-check-interruption code.
If, for any reason, the machine cannot store the
proper information in the field, the associated
validity bit is set to zero.

 Register-Save Areas

As part of the machine-check interruption, the
current contents of the CPU registers, except for
the prefix register and the TOD clock, are stored
in eight register-save areas assigned in storage.
Each of these areas has associated with it a
validity bit in the machine-check-interruption code.

11-22 z/Architecture Principles of Operation

If, for any reason, the machine cannot store the
proper information in the field, the associated
validity bit is set to zero.

The following are the eight sets of registers and
the real locations in storage where their contents
are saved during a machine-check interruption.

Locations Registers
4608-4735 Floating-point registers 0-15
4736-4863 General registers 0-15
4892-4895 Floating-point-control register
4900-4903 TOD programmable register
4904-4911 CPU timer
4913-4919 Clock comparator
4928-4991 Access registers 0-15
4992-5119 Control registers 0-15

 External-Damage Code

The word at real location 244 is the external-
damage code. This field, when implemented and
indicated as valid, describes the cause of external
damage. The field is valid only when the external-
damage bit and the external-damage-code-validity
bit (bits 5 and 26 in the machine-
check-interruption code) are both ones. The pres-
ence and extent of reporting an external-damage
code depend on the model.

The external-damage code has the following
format:

┌──/──┬─┬──/──┐
│ │S│ │
│� �│C│� �│
└──/──┴─┴──/──┘
� 19 31

ETR Sync Check (SC): Bit 19, when one, indi-
cates that bits 32 through the rightmost incre-
mented bit of a running clock are not in synchro-
nism with the same bits of the ETR.

If the condition happens more than once before
the interruption occurs, the condition is generated
only once. The condition is generated for all
CPUs in the configuration, and the condition for a
CPU is cleared by the interruption taken by the
CPU.

Reserved: Bits 0-7, 10-16, and 21-31 are
reserved for future expansion and are always set
to zero.

 Failing-Storage Address

When storage error uncorrected, storage error cor-
rected, or storage-key error uncorrected is indi-
cated in the machine-check-interruption code, the
associated address, called the failing-storage
address, is stored at real locations 248-255. The
field is valid only if the failing-storage-address
validity bit, bit 24 of the machine-
check-interruption code, is one.

In the case of storage errors, the failing-storage
address may designate any byte within the
checking block. For storage-key error uncor-
rected, the failing-storage address may designate
any address within the block of storage associated
with the storage key that is in error. When an
error is detected in more than one location before
the interruption, the failing-storage address may
designate any of the failing locations. The
address stored is an absolute address; that is, the
value stored is the address that is used to refer-
ence storage after dynamic address translation
and prefixing have been applied.

Handling of Machine-Check
Conditions

Floating Interruption Conditions

An interruption condition which is made available
to any CPU in a multiprocessing configuration is
called a floating interruption condition. The first
CPU that accepts the interruption clears the inter-
ruption condition, and it is no longer available to
any other CPU in the configuration.

Floating interruption conditions include service-
signal external-interruption and I/O-interruption
conditions. Two machine-check-interruption condi-
tions, channel report pending and channel-
subsystem damage, are floating interruption condi-
tions. Depending on the model, some machine-
check-interruption conditions associated with
system recovery and warning may also be floating
interruption conditions.

A floating interruption is presented to the first CPU
in the configuration which is enabled for the inter-
ruption condition and can accept the interruption.
A CPU cannot accept the interruption when the
CPU is in the check-stop state, has an invalid

 Chapter 11. Machine-Check Handling 11-23

prefix, is performing an unending string of inter-
ruptions due to a PSW-format error of the type
that is recognized early, or is in the stopped state.
However, a CPU with the rate control set to
instruction step can accept the interruption when
the start key is activated.

Programming Note: When a CPU enters the
check-stop state in a multiprocessing configura-
tion, the program on another CPU can determine
whether a floating interruption may have been
reported to the failing CPU and then lost. This
can be accomplished if the interruption program
places zeros in the real storage locations con-
taining old PSWs and interruption codes after the
interruption has been handled (or has been moved
into another area for later processing). After a
CPU enters the check-stop state, the program on
another CPU can inspect the old-PSW and
interruption-code locations of the failing CPU. A
nonzero value in an old PSW or interruption code
indicates that the CPU has been interrupted but
the program did not complete the handling of the
interruption.

 Floating Machine-Check-Interruption
Conditions
Floating machine-check-interruption conditions are
reset only by the manually initiated resets through
the operator facilities. When a machine check
occurs which prohibits completion of a floating
machine-check interruption, the interruption condi-
tion is no longer considered a floating interruption
condition, and system damage is indicated.

Floating I/O Interruptions
The detection of a machine malfunction by the
channel subsystem, while in the process of pre-
senting an I/O-interruption request for a floating
I/O interruption, may be reported as channel
report pending or as channel-subsystem damage.
Detection of a machine malfunction by a CPU,
while in the process of accepting a floating I/O
interruption, is reported as system damage.

 Machine-Check Masking
All machine-check interruptions are under control
of the machine-check mask, PSW bit 13. In addi-
tion, some machine-check conditions are con-
trolled by subclass masks in control register 14.

The exigent machine-check conditions (system

damage and instruction-processing damage) are
controlled only by the machine-check mask, PSW
bit 13. When PSW bit 13 is one, an exigent con-
dition causes a machine-check interruption. When
PSW bit 13 is zero, the occurrence of an exigent
machine-check condition causes the CPU to enter
the check-stop state.

The repressible machine-check conditions, except
channel-subsystem damage and service-processor
damage, are controlled both by the machine-check
mask, PSW bit 13, and by five subclass-mask bits
in control register 14. If PSW bit 13 is one and
one of the subclass-mask bits is one, the associ-
ated condition initiates a machine-check inter-
ruption. If a subclass-mask bit is zero, the associ-
ated condition does not initiate an interruption but
is held pending. However, when a machine-check
interruption is initiated because of a condition for
which the CPU is enabled, those conditions for
which the CPU is not enabled may be presented
along with the condition which initiates the inter-
ruption. All conditions presented are then cleared.

Control register 14 contains mask bits that specify
whether certain conditions can cause machine-
check interruptions. It has the following format:

┌──/──┬───┬─────┬─
│ │ │CRDEW│
│ │ │MMMMM│
└──/──┴───┴─────┴─
� 32 35 39

Bits 35-39 of control register 14 are the subclass
masks for repressible machine-check conditions.
In addition, bit 32 of control register 14 is initial-
ized to one but is otherwise ignored by the
machine.

Programming Note: The program should avoid,
whenever possible, operating with PSW bit 13, the
machine-check mask, set to zero, since any
exigent machine-check condition which is recog-
nized during this situation will cause the CPU to
enter the check-stop state. In particular, the
program should avoid executing I/O instructions or
allowing I/O interruptions with PSW bit 13 zero.

 Channel-Report-Pending Subclass
Mask
Bit 35 (CM) of control register 14 controls channel-
report-pending interruption conditions. This bit is
initialized to zero.

11-24 z/Architecture Principles of Operation

Recovery Subclass Mask
Bit 36 (RM) of control register 14 controls system-
recovery interruption conditions. This bit is initial-
ized to zero.

Degradation Subclass Mask
Bit 37 (DM) of control register 14 controls degra-
dation interruption conditions. This bit is initialized
to zero.

External-Damage Subclass Mask
Bit 38 (EM) of control register 14 controls timing-
facility-damage and external-damage interruption
conditions. This bit is initialized to one.

Warning Subclass Mask
Bit 39 (WM) of control register 14 controls warning
interruption conditions. This bit is initialized to
zero.

 Machine-Check Logout

As part of the machine-check interruption, some
models may place model-dependent information in
the fixed-logout area. This area is 16 bytes in
length and starts at real location 4864.

Summary of Machine-Check
Masking
A summary of machine-check masking is given in
Figure 11-4 and Figure 11-5 on page 11-26.

┌─────────────────────────────────────┬───────┬─────────────────────┐
│ Machine-Check Condition │ │ │
├────┬────────────────────────────────┤ Sub- │ Action when CPU │
│MCIC│ │ Class │ Disabled │
│Bit │ Subclass │ Mask │ for Subclass │
├────┼────────────────────────────────┼───────┼─────────────────────┤
│ � │ System damage │ - │ Check stop │
│ 1 │ Instruction-processing damage │ - │ Check stop │
│ 2 │ System recovery │ RM │ Y │
│ 4 │ Timing-facility damage │ EM │ P │
│ 5 │ External damage │ EM │ P │
│ 7 │ Degradation │ DM │ P │
│ 8 │ Warning │ WM │ P │
│ 9 │ Channel report pending │ CM │ P │
│ 1� │ Service-processor damage │ - │ P │
│ 11 │ Channel-subsystem damage │ - │ P │
├────┴────────────────────────────────┴───────┴─────────────────────┤
│Explanation: │
│ │
│ - The condition does not have a subclass mask. │
│ │
│ P Indication is held pending. │
│ │
│ Y Indication may be held pending or may be discarded. │
│ │
│ CM Channel-report-pending subclass mask (bit 35 of CR14). │
│ │
│ DM Degradation subclass mask (bit 37 of CR14). │
│ │
│ EM External-damage subclass mask (bit 38 of CR14). │
│ │
│ RM Recovery subclass mask (bit 36 of CR14). │
│ │
│ WM Warning subclass mask (bit 39 of CR14). │
└───┘

Figure 11-4. Machine-Check-Condition Masking

 Chapter 11. Machine-Check Handling 11-25

┌────────────────────────────────────┬────────────┬─────────────┐
│ │ Control │State of Bit │
│ │Register 14 │ on Initial │
│ Bit Description │Bit Position│ CPU Reset │
├────────────────────────────────────┼────────────┼─────────────┤
│Channel-report-pending subclass mask│ 35 │ � │
│Recovery subclass mask │ 36 │ � │
│Degradation subclass mask │ 37 │ � │
│External-damage subclass mask │ 38 │ 1 │
│Warning subclass mask │ 39 │ � │
└────────────────────────────────────┴────────────┴─────────────┘

Figure 11-5. Machine-Check Control-Register Bits

11-26 z/Architecture Principles of Operation

 Chapter 12. Operator Facilities

Manual Operation 12-1
Basic Operator Facilities 12-1

Address-Compare Controls 12-1
Alter-and-Display Controls 12-2
Architectural-Mode Indicator 12-2
Architectural-Mode-Selection Controls . . . 12-2
Check-Stop Indicator 12-3
IML Controls 12-3
Interrupt Key 12-3
Load Indicator 12-3
Load-Clear Key 12-3
Load-Normal Key 12-3
Load-Unit-Address Controls 12-3

Manual Indicator 12-3
Power Controls 12-4
Rate Control 12-4
Restart Key 12-4
Start Key 12-4
Stop Key 12-4
Store-Status Key 12-5
System-Reset-Clear Key 12-5
System-Reset-Normal Key 12-5
Test Indicator 12-5
TOD-Clock Control 12-5
Wait Indicator 12-6

Multiprocessing Configurations 12-6

 Manual Operation
The operator facilities provide functions for the
manual operation and control of the machine. The
functions include operator-to-machine communi-
cation, indication of machine status, control over
the setting of the TOD clock, initial program
loading, resets, and other manual controls for
operator intervention in normal machine operation.

A model may provide additional operator facilities
which are not described in this chapter. Examples
are the means to indicate specific error conditions
in the equipment, to change equipment configura-
tions, and to facilitate maintenance. Furthermore,
controls covered in this chapter may have addi-
tional settings which are not described here. Such
additional facilities and settings may be described
in the appropriate System Library publication.

Most models provide, in association with the oper-
ator facilities, a console device which may be
used as an I/O device for operator communication
with the program; this console device may also be
used to implement some or all of the facilities
described in this chapter.

The operator facilities may be implemented on dif-
ferent models in various technologies and config-
urations. On some models, more than one set of
physical representations of some keys, controls,
and indicators may be provided, such as on mul-
tiple local or remote operating stations, which may
be effective concurrently.

A machine malfunction that prevents a manual
operation from being performed correctly, as
defined for that operation, may cause the CPU to
enter the check-stop state or give some other indi-
cation to the operator that the operation has failed.
Alternatively, a machine malfunction may cause a
machine-check-interruption condition to be recog-
nized.

Basic Operator Facilities

 Address-Compare Controls

The address-compare controls provide a way to
stop the CPU when a preset address matches the
address used in a specified type of main-storage
reference.

One of the address-compare controls is used to
set up the address to be compared with the
storage address.

Another control provides at least two positions to
specify the action, if any, to be taken when the
address match occurs:

1. The normal position disables the address-
compare operation.

2. The stop position causes the CPU to enter the
stopped state on an address match. When
the control is in this setting, the test indicator
is on. Depending on the model and the type
of reference, pending I/O, external, and

 Copyright IBM Corp. 1990-2003 12-1

machine-check interruptions may or may not
be taken before entering the stopped state.

A third control may specify the type of storage ref-
erence for which the address comparison is to be
made. A model may provide one or more of the
following positions, as well as others:

1. The any position causes the address compar-
ison to be performed on all storage refer-
ences.

2. The data-store position causes address com-
parison to be performed when storage is
addressed to store data.

3. The I/O position causes address comparison
to be performed when storage is addressed
by the channel subsystem to transfer data or
to fetch a channel-command or indirect-
data-address word. Whether references to
the measurement block, interruption-response
block, channel-path-status word, channel-
report word, subchannel-status word,
subchannel-information block, and operation-
request block cause a match to be indicated
depends on the model.

4. The instruction-address position causes
address comparison to be performed when
storage is addressed to fetch an instruction.
The rightmost bit of the address setting may
or may not be ignored. The match is indi-
cated only when the first byte of the instruc-
tion is fetched from the selected location. It
depends on the model whether a match is
indicated when fetching the target instruction
of EXECUTE.

Depending on the model and the type of refer-
ence, address comparison may be performed on
virtual, real, or absolute addresses, and it may be
possible to specify the type of address.

In a multiprocessing configuration, it depends on
the model whether the address setting applies to
one or all CPUs in the configuration and whether
an address match causes one or all CPUs in the
configuration to stop.

 Alter-and-Display Controls

The operator facilities provide controls and proce-
dures to permit the operator to alter and display
the contents of locations in storage, the storage
keys, the general, floating-point, floating-
point-control, access, and control registers, the
prefix, and the PSW.

Before alter-and-display operations may be per-
formed, the CPU must first be placed in the
stopped state. During alter-and-display oper-
ations, the manual indicator may be turned off
temporarily, and the start and restart keys may be
inoperative.

Addresses used to select storage locations for
alter-and-display operations are real addresses.
The capability of specifying logical, virtual, or
absolute addresses may also be provided.

 Architectural-Mode Indicator

The architectural-mode indicator shows the archi-
tectural mode of operation (the ESA/390 mode,
z/Architecture mode, or some other mode)
selected by the last architectural-mode-selection
operation and by the last SIGNAL PROCESSOR
set-architecture order or the last reset that deter-
mined the mode.

 Architectural-Mode-Selection
Controls

The architectural-mode-selection controls provide
for the selection of either the ESA/390 architec-
tural mode of operation or, possibly, some other
architectural mode of operation. (The
z/Architecture mode is selected from the ESA/390
mode by the SIGNAL PROCESSOR set-
architecture order.) Depending on the model, the
architectural-mode selection may be provided as
part of the IML operation or may be a separate
operation.

As part of the architectural-mode-selection
process, all CPUs and the associated channel-
subsystem components in a particular configura-
tion are placed in the same architectural mode.

12-2 z/Architecture Principles of Operation

 Check-Stop Indicator

The check-stop indicator is on when the CPU is in
the check-stop state. Reset operations normally
cause the CPU to leave the check-stop state and
thus turn off the indicator. The manual indicator
may also be on in the check-stop state.

 IML Controls

The IML controls provided with some models
perform initial machine loading (IML), which is the
loading of licensed internal code into the machine.
The IML operation, when provided, may be used
to select the ESA/390 mode or, possibly, some
other mode of operation.

When the IML operation is completed, the state of
the affected CPUs, channel subsystem, main
storage, and operator facilities is the same as if a
power-on reset had been performed, except that
the value and state of the TOD clock are not
changed. The contents of expanded storage may
have been cleared to zeros with valid checking-
block code or may have remained unchanged,
depending on the model.

The IML controls are effective while the power is
on.

 Interrupt Key

When the interrupt key is activated, an external-
interruption condition indicating the interrupt key is
generated. (See “Interrupt Key” on page 6-12.)

The interrupt key is effective when the CPU is in
the operating or stopped state. It depends on the
model whether the interrupt key is effective when
the CPU is in the load state.

 Load Indicator

The load indicator is on during initial program
loading, indicating that the CPU is in the load
state. The indicator goes on for a particular CPU
when the load-clear or load-normal key is acti-
vated for that CPU and the corresponding opera-
tion is started. It goes off after the new PSW is

loaded successfully. For details, see “Initial
Program Loading” on page 4-50.)

 Load-Clear Key

Activating the load-clear key causes a reset oper-
ation to be performed and initial program loading
to be started by using the I/O device designated
by the load-unit-address controls. Clear reset is
performed on the configuration. For details, see
“Resets” on page 4-43 and “Initial Program
Loading” on page 4-50.

The load-clear key is effective when the CPU is in
the operating, stopped, load, or check-stop state.

 Load-Normal Key

Activating the load-normal key causes a reset
operation to be performed and initial program
loading to be started by using the I/O device des-
ignated by the load-unit-address controls. Initial
CPU reset is performed on the CPU for which the
load-normal key was activated, CPU reset is prop-
agated to all other CPUs in the configuration, and
a subsystem reset is performed on the remainder
of the configuration. For details, see “Resets” on
page 4-43 and “Initial Program Loading” on
page 4-50.

The load-normal key is effective when the CPU is
in the operating, stopped, load, or check-stop
state.

 Load-Unit-Address Controls

The load-unit-address controls specify four
hexadecimal digits that provide the device number
used for initial program loading. For details, see
“Initial Program Loading” on page 4-50.

 Manual Indicator

The manual indicator is on when the CPU is in the
stopped state. Some functions and several
manual controls are effective only when the CPU
is in the stopped state.

 Chapter 12. Operator Facilities 12-3

 Power Controls

The power controls are used to turn the power on
and off.

The CPUs, storage, channel subsystem, operator
facilities, and I/O devices may all have their power
turned on and off by common controls, or they
may have separate power controls. When a par-
ticular unit has its power turned on, that unit is
reset. The sequence is performed so that no
instructions or I/O operations are performed until
explicitly specified. The controls may also permit
power to be turned on in stages, but the machine
does not become operational until power on is
complete.

When the power is completely turned on, an IML
operation is performed on models which have an
IML function. A power-on reset is then initiated
(see “Resets” on page 4-43). It depends on the
model whether the architectural mode of operation
can be selected when the power is turned on, or
whether the mode-selection controls have to be
used to change the mode after the power is on.

 Rate Control

The setting of the rate control determines the
effect of the start function and the manner in
which instructions are executed.

The rate control has at least two positions. The
normal position is the process position. Another
position is the instruction-step position. When the
rate control is set to the process position and the
start function is performed, the CPU starts oper-
ating at normal speed. When the rate control is
set to the instruction-step position and the wait-
state bit is zero, one instruction or, for interruptible
instructions, one unit of operation is executed, and
all pending allowed interruptions are taken before
the CPU returns to the stopped state. When the
rate control is set to the instruction-step position
and the wait-state bit is one, no instruction is exe-
cuted, but all pending allowed interruptions are
taken before the CPU returns to the stopped state.
For details, see “Stopped, Operating, Load, and
Check-Stop States” on page 4-1.

The test indicator is on while the rate control is not
set to the process position.

If the setting of the rate control is changed while
the CPU is in the operating or load state, the
results are unpredictable.

 Restart Key

Activating the restart key initiates a restart inter-
ruption. (See “Restart Interruption” on
page 6-47.)

The restart key is effective when the CPU is in the
operating or stopped state. The key is not effec-
tive when the CPU is in the check-stop state. It
depends on the model whether the restart key is
effective when any CPU in the configuration is in
the load state.

The effect is unpredictable when the restart key is
activated while any CPU in the configuration is in
the load state. In particular, if the CPU performs a
restart interruption and enters the operating state
while another CPU is in the load state, operations
such as I/O instructions, the SIGNAL
PROCESSOR instruction, and the INVALIDATE
PAGE TABLE ENTRY instruction may not operate
according to the definitions given in this publica-
tion.

 Start Key

Activating the start key causes the CPU to
perform the start function. (See “Stopped, Oper-
ating, Load, and Check-Stop States” on
page 4-1.)

The start key is effective only when the CPU is in
the stopped state. The effect is unpredictable
when the stopped state has been entered by a
reset.

 Stop Key

Activating the stop key causes the CPU to perform
the stop function. (See “Stopped, Operating,
Load, and Check-Stop States” on page 4-1.)

The stop key is effective only when the CPU is in
the operating state.

Operation Note: Activating the stop key has no
effect when:

� An unending string of certain program or
external interruptions occurs.

12-4 z/Architecture Principles of Operation

� The prefix register contains an invalid
address.

� The CPU is in the load or check-stop state.

 Store-Status Key

Activating the store-status key initiates a store-
status operation. (See “Store Status” on
page 4-50.)

The store-status key is effective only when the
CPU is in the stopped state.

Operation Note: The store-status operation may
be used in conjunction with a standalone dump
program for the analysis of major program mal-
functions. For such an operation, the following
sequence would be called for:

1. Activation of the stop or system-reset-normal
key

2. Activation of the store-status key
3. Activation of the load-normal key to enter a

standalone dump program

The system-reset-normal key must be activated in
step 1 when (1) the stop key is not effective
because a continuous string of interruptions is
occurring, (2) the prefix register contains an
invalid address, or (3) the CPU is in the check-
stop state.

 System-Reset-Clear Key

Activating the system-reset-clear key causes a
clear-reset operation to be performed on the con-
figuration. For details, see “Resets” on
page 4-43.

The system-reset-clear key is effective when the
CPU is in the operating, stopped, load, or check-
stop state.

 System-Reset-Normal Key

Activating the system-reset-normal key causes a
CPU-reset operation and a subsystem-reset oper-
ation to be performed. In a multiprocessing con-
figuration, a CPU reset is propagated to all CPUs
in the configuration. For details, see the section
“Resets” in Chapter 4, “Control.”

The system-reset-normal key is effective when the
CPU is in the operating, stopped, load, or check-
stop state.

 Test Indicator

The test indicator is on when a manual control for
operation or maintenance is in an abnormal posi-
tion that can affect the normal operation of a
program.

Setting the address-compare controls to the stop
position or setting the rate control to the
instruction-step position turns on the test indicator.

The test indicator may be on when one or more
diagnostic functions under the control of DIAG-
NOSE are activated, or when other abnormal con-
ditions occur.

The abnormal setting of a manual control causes
the test indicator of the affected CPU to be turned
on; however, in a multiprocessing configuration,
the operation of other CPUs may be affected even
though their test indicators are not turned on.

Operation Note: If a manual control is left in a
setting intended for maintenance purposes, such
an abnormal setting may, among other things,
result in false machine-check indications or cause
actual machine malfunctions to be ignored. It may
also alter other aspects of machine operation,
including instruction execution, channel-subsystem
operation, and the functioning of operator controls
and indicators, to the extent that operation of the
machine does not comply with that described in
this publication.

 TOD-Clock Control

When the TOD-clock control is not activated, that
is, the control is set to the secure position, the
state and value of the TOD clock are protected
against unauthorized or inadvertent change by not
permitting the instructions SET CLOCK or DIAG-
NOSE to change the state or value.

When the TOD-clock control is activated, that is,
the control is set to the enable-set position, alter-
ation of the clock state or value by means of SET
CLOCK or DIAGNOSE is permitted. This setting
is momentary, and the control automatically
returns to the secure position.

If there is more than one physical representation
of the TOD-clock control, the TOD clock is secure

 Chapter 12. Operator Facilities 12-5

only if all TOD-clock controls in the configuration
are set to the secure position.

 Wait Indicator

The wait indicator is on when the wait-state bit in
the current PSW is one. Instead of a wait indi-
cator, a model may have a means of indicating a
time-averaged value of the wait-state bit.

 Multiprocessing Configurations
In a multiprocessing configuration, one of each of
the following keys and controls is provided for
each CPU: alter and display, interrupt, rate,
restart, start, stop, and store status. The load-
clear key, load-normal key, and load-unit-address
controls are provided for each CPU capable of
performing I/O operations. Alternatively, a single
set of initial-program-loading keys and controls

may be used together with a control to select the
desired CPU.

There need not be more than one of each of the
following keys and controls in a multiprocessing
configuration: address compare, IML, power,
system reset clear, system reset normal, and TOD
clock.

One check-stop, manual, test, and wait indicator is
provided for each CPU. A load indicator is pro-
vided only on a CPU capable of performing I/O
operations. Alternatively, a single set of indicators
may be switched to more than one CPU.

There need not be more than one architectural-
mode indicator in a multiprocessing configuration.

In a system capable of reconfiguration, there must
be a separate set of keys, controls, and indicators
in each configuration.

12-6 z/Architecture Principles of Operation

 Chapter 13. I/O Overview

Input/Output (I/O) 13-1
The Channel Subsystem 13-1

Subchannels 13-2
Attachment of Input/Output Devices 13-2

Channel Paths 13-2
Control Units 13-4
I/O Devices 13-4

I/O Addressing 13-5
Channel-Path Identifier 13-5

Subchannel Number 13-5
Device Number 13-5
Device Identifier 13-5

Execution of I/O Operations 13-6
Start-Function Initiation 13-6
Path Management 13-6
Channel-Program Execution 13-7
Conclusion of I/O Operations 13-8
I/O Interruptions 13-9

 Input/Output (I/O)

The terms “input” and “output” are used to
describe the transfer of data between I/O devices
and main storage. An operation involving this kind
of transfer is referred to as an I/O operation. The
facilities used to control I/O operations are collec-
tively called the channel subsystem. (I/O devices
and their control units attach to the channel sub-
system.) This chapter provides a brief description
of the basic components and operation of the
channel subsystem.

The Channel Subsystem
The channel subsystem directs the flow of infor-
mation between I/O devices and main storage. It
relieves CPUs of the task of communicating
directly with I/O devices and permits data proc-
essing to proceed concurrently with I/O proc-
essing. The channel subsystem uses one or more
channel paths as the communication link in man-
aging the flow of information to or from I/O
devices. As part of I/O processing, the channel
subsystem also performs a path-management
operation by testing for channel-path availability,
chooses an available channel path, and initiates
the performance of the I/O operation by the
device.

Within the channel subsystem are subchannels.
One subchannel is provided for and dedicated to

| each I/O device accessible to the program through
| the channel subsystem. Each subchannel provides

information concerning the associated I/O device
and its attachment to the channel subsystem. The
subchannel also provides information concerning
I/O operations and other functions involving the

associated I/O device. The subchannel is the
means by which the channel subsystem provides
information about associated I/O devices to CPUs,
which obtain this information by executing I/O
instructions. The actual number of subchannels
provided depends on the model and the configura-

| tion; the maximum addressability is 0-65,535.

I/O devices are attached through control units to
the channel subsystem by means of channel
paths. Control units may be attached to the
channel subsystem by more than one channel
path, and an I/O device may be attached to more
than one control unit. In all, an individual I/O
device may be accessible to the channel sub-
system by as many as eight different channel

| paths via a subchannel, depending on the model
and the configuration. The total number of
channel paths provided by a channel subsystem
depends on the model and the configuration; the

| maximum addressability is 0-255.

The performance of a channel subsystem
depends on its use and on the system model in
which it is implemented. Channel paths are pro-
vided with different data-transfer capabilities, and
an I/O device designed to transfer data only at a
specific rate (a magnetic-tape unit or a disk
storage, for example) can operate only on a
channel path that can accommodate at least this
data rate.

The channel subsystem contains common facilities
for the control of I/O operations. When these
facilities are provided in the form of separate,
autonomous equipment designed specifically to
control I/O devices, I/O operations are completely
overlapped with the activity in CPUs. The only
main-storage cycles required by the channel sub-

 Copyright IBM Corp. 1990-2003 13-1

system during I/O operations are those needed to
transfer data and control information to or from the
final locations in main storage, along with those
cycles that may be required for the channel sub-
system to access the subchannels when they are
implemented as part of nonaddressable main
storage. These cycles do not delay CPU pro-
grams, except when both the CPU and the
channel subsystem concurrently attempt to refer-
ence the same main-storage area.

 Subchannels

A subchannel provides the logical appearance of a
device to the program and contains the informa-
tion required for sustaining a single I/O operation.
The subchannel consists of internal storage that
contains information in the form of a CCW
address, channel-path identifier, device number,
count, status indications, and
I/O-interruption-subclass code, as well as informa-
tion on path availability and functions pending or
being performed. I/O operations are initiated with
a device by the execution of I/O instructions that
designate the subchannel associated with the
device.

| Each device is accessible by means of one sub-
| channel in each channel subsystem to which it is
| assigned during configuration at installation time.

The device may be a physically identifiable unit or
may be housed internal to a control unit. For
example, in certain disk-storage devices, each
actuator used in retrieving data is considered to
be a device. In all cases, a device, from the point
of view of the channel subsystem, is an entity that
is uniquely associated with one subchannel and
that responds to selection by the channel sub-
system by using the communication protocols
defined for the type of channel path by which it is
accessible.

On some models, subchannels are provided in
blocks. On these models, more subchannels may
be provided than there are attached devices.
Subchannels that are provided but do not have
devices assigned to them are not used by the
channel subsystem to perform any function and
are indicated by storing the associated device-
number-valid bit as zero in the subchannel-
information block of the subchannel.

The number of subchannels provided by the
channel subsystem is independent of the number

of channel paths to the associated devices. For
example, a device accessible through alternate
channel paths still is represented by a single sub-
channel. Each subchannel is addressed by using

| a 16-bit binary subchannel number.

After I/O processing at the subchannel has been
requested by the execution of START SUB-
CHANNEL, the CPU is released for other work,
and the channel subsystem assembles or disas-
sembles data and synchronizes the transfer of
data bytes between the I/O device and main
storage. To accomplish this, the channel sub-
system maintains and updates an address and a
count that describe the destination or source of
data in main storage. Similarly, when an I/O
device provides signals that should be brought to
the attention of the program, the channel sub-
system transforms the signals into status informa-
tion and stores the information in the subchannel,
where it can be retrieved by the program.

Attachment of Input/Output
Devices

 Channel Paths

The channel subsystem communicates with I/O
devices by means of channel paths between the
channel subsystem and control units. A control
unit may be accessible by the channel subsystem
by more than one channel path. Similarly, an I/O
device may be accessible by the channel sub-
system through more than one control unit, each
having one or more channel paths to the channel
subsystem.

Devices that are attached to the channel sub-
| system by multiple channel paths configured to a
| subchannel, may be accessed by the channel

subsystem using any of the available channel
paths. Similarly, a device having the dynamic-
reconnection feature and operating in the multi-
path mode can be initialized to operate such that

| the device may choose any of the available
| channel paths configured to the subchannel, when

logically reconnecting to the channel subsystem to
continue a chain of I/O operations.

The channel subsystem may contain more than
one type of channel path. Examples of channel-
path types used by the channel subsystem are the

13-2 z/Architecture Principles of Operation

ESCON I/O interface, FICON I/O interface,
FICON-converted I/O interface, and IBM
System/360 and System/370 I/O interface. The
term “serial-I/O interface” is used to refer the
ESCON I/O interface, the FICON I/O interface,
and the FICON-converted I/O interface. The term
“parallel-I/O interface” is used to refer to the IBM
System/360 and System/370 I/O interface.

The ESCON I/O interface is described in the
System Library publication IBM Enterprise
Systems Architecture/390 ESCON I/O Interface,
SA22-7202. The FICON I/O interface is described
in the ANSI standards document Fibre Channel -
Single-Byte Command Code Sets-2 (FC-SB-2).
The IBM System/360 and System/370 I/O inter-
face is described in the System Library publication
IBM System/360 and System/370 I/O Interface
Channel to Control Unit OEMI, GA22-6974.

Depending on the type of channel path, the facili-
ties provided by the channel path, and the I/O
device, an I/O operation may occur in one of three
modes, frame-multiplex mode, burst mode, or
byte-multiplex mode.

In the frame-multiplex mode, the I/O device may
stay logically connected to the channel path for
the duration of the execution of a channel
program. The facilities of a channel path capable
of operating in the frame-multiplex mode may be
shared by a number of concurrently operating I/O
devices. In this mode the information required to
complete an I/O operation is divided into frames
that may be interleaved with frames from I/O oper-
ations for other I/O devices. During this period,
multiple I/O devices are considered to be logically
connected to the channel path.

In the burst mode, the I/O device monopolizes a
channel path and stays logically connected to the
channel path for the transfer of a burst of informa-
tion. No other device can communicate over the
channel path during the time a burst is transferred.
The burst can consist of a few bytes, a whole
block of data, a sequence of blocks with associ-
ated control and status information (the block
lengths may be zero), or status information that
monopolizes the channel path. The facilities of
the channel path capable of operating in the burst
mode may be shared by a number of concurrently
operating I/O devices.

Some channel paths can tolerate an absence of
data transfer for about a half minute during a
burst-mode operation, such as occurs when a long
gap on magnetic tape is read. An equipment mal-
function may be indicated when an absence of
data transfer exceeds the prescribed limit.

In the byte-multiplex mode, the I/O device stays
logically connected to the channel path only for a
short interval of time. The facilities of a channel
path capable of operating in the byte-multiplex
mode may be shared by a number of concurrently
operating I/O devices. In this mode, all I/O oper-
ations are split into short intervals of time during
which only a segment of information is transferred
over the channel path. During such an interval,
only one device and its associated subchannel are
logically connected to the channel path. The inter-
vals associated with the concurrent operation of
multiple I/O devices are sequenced in response to
demands from the devices. The channel-
subsystem facility associated with a subchannel
exercises its controls for any one operation only
for the time required to transfer a segment of
information. The segment can consist of a single
byte of data, a few bytes of data, a status report
from the device, or a control sequence used for
the initiation of a new operation.

Ordinarily, devices with high data-transfer-rate
requirements operate with the channel path in the
frame-multiplex mode, slower devices operate in
the burst mode, and the slowest devices operate
in the byte-multiplex mode. Some control units
have a manual switch for setting the desired mode
of operation.

An I/O operation that occurs on a
parallel-I/O-interface type of channel path may
occur in either the burst mode or the byte-
multiplex mode depending on the facilities pro-
vided by the channel path and the I/O device. For
improved performance, some channel paths and
control units are provided with facilities for high-
speed transfer and data streaming. See the
System Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
OEMI, GA22-6974, for a description of those two
facilities.

An I/O operation that occurs on a
serial-I/O-interface type of channel path may occur
in either the frame-multiplex mode or the burst
mode. For improved performance, some control

 Chapter 13. I/O Overview 13-3

units attaching to the serial-I/O interface provide
the capability to provide sense data to the
program concurrent with the presentation of unit-
check status, if permitted to do so by the program.
(See “Concurrent Sense” on page 17-21.)

Depending on the control unit or channel sub-
system, access to a device through a subchannel
may be restricted to a single channel-path type.

The modes and features described above affect
only the protocol used to transfer information over
the channel path and the speed of transmission.
No effects are observable by CPU or channel pro-
grams with respect to the way these programs are
executed.

 Control Units

A control unit provides the logical capabilities nec-
essary to operate and control an I/O device and
adapts the characteristics of each device so that it
can respond to the standard form of control pro-
vided by the channel subsystem.

Communication between the control unit and the
channel subsystem takes place over a channel
path. The control unit accepts control signals from
the channel subsystem, controls the timing of data
transfer over the channel path, and provides indi-
cations concerning the status of the device.

The I/O device attached to the control unit may be
designed to perform only certain limited oper-
ations, or it may perform many different oper-
ations. A typical operation is moving a recording
medium and recording data. To accomplish its
operations, the device needs detailed signal
sequences peculiar to its type of device. The
control unit decodes the commands received from
the channel subsystem, interprets them for the
particular type of device, and provides the signal
sequence required for the performance of the
operation.

A control unit may be housed separately, or it may
be physically and logically integrated with the I/O
device, the channel subsystem, or a CPU. In the
case of most electromechanical devices, a well-
defined interface exists between the device and
the control unit because of the difference in the
type of equipment the control unit and the device
require. These electromechanical devices often
are of a type where only one device of a group

attached to a control unit is required to transfer
data at a time (magnetic-tape units or disk-access
mechanisms, for example), and the control unit is
shared among a number of I/O devices. On the
other hand, in some electronic I/O devices, such
as the channel-to-channel adapter, the control unit
does not have an identity of its own.

From the programmer's point of view, most func-
tions performed by the control unit can be merged
with those performed by the I/O device. There-
fore, this publication normally makes no specific
mention of the control-unit function; the perform-
ance of I/O operations is described as if the I/O
devices communicated directly with the channel
subsystem. Reference is made to the control unit
only when emphasizing a function performed by it
or when describing how the sharing of the control
unit among a number of devices affects the per-
formance of I/O operations.

 I/O Devices

An input/output (I/O) device provides external
storage, a means of communication between data-
processing systems, or a means of communication
between a system and its environment. I/O
devices include such equipment as magnetic-tape
units, direct-access-storage devices (for example,
disks), display units, typewriter-keyboard devices,
printers, teleprocessing devices, and sensor-based
equipment. An I/O device may be physically dis-
tinct equipment, or it may share equipment with
other I/O devices.

Most types of I/O devices, such as printers, or
tape devices, use external media, and these
devices are physically distinguishable and identifi-
able. Other types are solely electronic and do not
directly handle physical recording media. The
channel-to-channel adapter, for example, provides
for data transfer between two channel paths, and
the data never reaches a physical recording
medium outside main storage. Similarly, commu-
nication controllers may handle the transmission of
information between the data-processing system
and a remote station, and its input and output are
signals on a transmission line.

In the simplest case, an I/O device is attached to
one control unit and is accessible from one
channel path. Switching equipment is available to
make some devices accessible from two or more
channel paths by switching devices among control

13-4 z/Architecture Principles of Operation

units and by switching control units among
channel paths. Such switching equipment pro-
vides multiple paths by which an I/O device may
be accessed. Multiple channel paths to an I/O
device are provided to improve performance or I/O
availability, or both, within the system. The man-
agement of multiple channel paths to devices is
under the control of the channel subsystem and
the device, but the channel paths may indirectly
be controlled by the program.

 I/O Addressing
Four different types of I/O addressing are provided
by the channel subsystem for the necessary
addressing of the various components: channel-
path identifiers, subchannel numbers, device
numbers, and, though not visible to programs,
addresses dependent on the channel-path type.

 Channel-Path Identifier

| The channel-path identifier (CHPID) is a system-
| unique eight-bit value assigned to each installed
| channel path of the system. A CHPID is used to
| address a channel path. A CHPID is specified by
| the second-operand address of RESET CHANNEL
| PATH and used to designate the channel path
| that is to be reset. The channel paths by which a

device is accessible are identified in the
subchannel-information block (SCHIB), each by its
associated CHPID, when STORE SUBCHANNEL
is executed. The CHPID can also be used in
operator messages when it is necessary to identify
a particular channel path. A system model may
provide as many as 256 channel paths. The
maximum number of channel paths and the
assignment of CHPIDs to channel paths depends
on the system model.

 Subchannel Number

| A subchannel number is a system-unique 16-bit
| value used to address a subchannel. This value
| is unique within a channel subsystem. The sub-

channel is addressed by eight I/O instructions:
CANCEL SUBCHANNEL, CLEAR SUBCHANNEL,
HALT SUBCHANNEL, MODIFY SUBCHANNEL,
RESUME SUBCHANNEL, START SUBCHANNEL,
STORE SUBCHANNEL, and TEST SUB-
CHANNEL. All I/O functions relative to a specific
I/O device are specified by the program by desig-

| nating a subchannel assigned to the I/O device.

Subchannels are always assigned subchannel
numbers within a single range of contiguous
numbers. The lowest-numbered subchannel is
subchannel 0. The highest-numbered subchannel

| of the channel subsystem has a subchannel
number equal to one less than the number of sub-
channels provided. A maximum of 65,536 sub-
channels can be provided. Normally, subchannel
numbers are only used in communication between
the CPU program and the channel subsystem.

 Device Number

Each subchannel that has an I/O device assigned
to it also contains a parameter called the device
number. The device number is a 16-bit value that
is assigned as one of the parameters of the sub-
channel at the time the device is assigned to the

| subchannel. The device number uniquely identi-
| fies a device to the program.

The device number provides a means to identify a
device, independent of any limitations imposed by
the system model, the configuration, or channel-
path protocols. The device number is used in
communications concerning the device that take
place between the system and the system oper-
ator. For example, the device number is entered
by the system operator to designate the input
device to be used for initial program loading.

Programming Note: The device number is
assigned at device-installation time and may have
any value. However, the user must observe any
restrictions on device-number assignment that
may be required by the control program, support
programs, or the particular control unit or I/O
device.

 Device Identifier

A device identifier is an address, not apparent to
the program, that is used by the channel sub-
system to communicate with I/O devices. The
type of device identifier used depends on the spe-
cific channel-path type and the protocols provided.
Each subchannel contains one or more device
identifiers.

For a channel path of the parallel-I/O-interface
type the device identifier is called a device
address and consists of an eight-bit value. For
the ESCON I/O interface, the device identifier con-
sists of a four-bit control-unit address and an

 Chapter 13. I/O Overview 13-5

eight-bit device address. For the FICON I/O inter-
face, the device identifier consists of an eight-bit
control-unit-image ID and an eight-bit device
address. For the FICON-converted I/O interface,
the device identifier consists of a four-bit control-
unit address and an eight-bit device address.

The device address identifies the particular I/O
device (and, on the parallel-I/O interface, the
control unit) associated with a subchannel. The
device address may identify, for example, a partic-
ular magnetic-tape drive, disk-access mechanism,
or transmission line. Any number in the range
0-255 can be assigned as a device address.

For further information about the device identifier
used with a particular channel-path type, see the
appropriate publication for the channel-path type.

Execution of I/O Operations
I/O operations are initiated and controlled by infor-
mation with three types of formats: the instruction
START SUBCHANNEL, channel-command words
(CCWs), and orders. The START SUBCHANNEL
instruction is executed by a CPU and is part of the
CPU program that supervises the flow of requests
for I/O operations from other programs that
manage or process the I/O data.

When START SUBCHANNEL is executed, param-
eters are passed to the target subchannel
requesting that the channel subsystem perform a
start function with the I/O device associated with
the subchannel. The channel subsystem performs
the start function by using information at the sub-
channel, including the information passed during
the execution of the START SUBCHANNEL
instruction, to find an accessible channel path to
the device. Once the device has been selected,
the execution of an I/O operation is accomplished
by the decoding and execution of a CCW by the
channel subsystem and the I/O device. One or
more CCWs arranged for sequential execution
form a channel program and are executed as one
or more I/O operations, respectively. Both
instructions and CCWs are fetched from main
storage, and their formats are common for all
types of I/O devices, although the modifier bits in
the command code of a CCW may specify device-
dependent conditions for the execution of an oper-
ation at the device.

Operations peculiar to a device, such as rewinding
tape or positioning the access mechanism on a
disk drive, are specified by orders that are
decoded and executed by I/O devices. Orders
may be transferred to the device as modifier bits
in the command code of a control command, may
be transferred to the device as data during a
control or write operation, or may be made avail-
able to the device by other means.

 Start-Function Initiation

CPU programs initiate I/O operations with the
instruction START SUBCHANNEL. This instruc-
tion passes the contents of an operation-request
block (ORB) to the subchannel. The contents of
the ORB include the subchannel key, the address
of the first CCW to be executed, and a specifica-
tion of the format of the CCWs. The CCW speci-
fies the command to be executed and the storage
area, if any, to be used.

When the ORB contents have been passed to the
subchannel, the execution of START SUB-
CHANNEL is complete. The results of the exe-
cution of the instruction are indicated by the condi-
tion code set in the program-status word.

When facilities become available, the channel sub-
system fetches the first CCW and decodes it
according to the format bit specified in the ORB.
If the format bit is zero, format-0 CCWs are speci-
fied. If the format bit is one, format-1 CCWs are
specified. Format-0 and format-1 CCWs contain
the same information, but the fields are arranged
differently in the format-1 CCW so that 31-bit
addresses can be specified directly in the CCW.

 Path Management

If the first CCW passes certain validity tests and
does not have the suspend flag specified as one,
the channel subsystem attempts device selection
by choosing a channel path from the group of
channel paths that are available for selection. A
control unit that recognizes the device identifier
connects itself logically to the channel path and
responds to its selection. The channel subsystem
sends the command-code part of the CCW over
the channel path, and the device responds with a
status byte indicating whether the command can
be executed. The control unit may logically dis-

13-6 z/Architecture Principles of Operation

connect from the channel path at this time, or it
may remain connected to initiate data transfer.

If the attempted selection does not occur as a
result of either a busy indication or a path-not-
operational condition, the channel subsystem
attempts to select the device by an alternate
channel path if one is available. When selection
has been attempted on all paths available for
selection and the busy condition persists, the
operation remains pending until a path becomes
free. If a path-not-operational condition is
detected on one or more of the channel paths on
which device selection was attempted, the
program is alerted by a subsequent I/O inter-
ruption. The I/O interruption occurs either upon
execution of the channel program (assuming the
device was selected on an alternate channel path)
or as a result of the execution being abandoned
because path-not-operational conditions were
detected on all of the channel paths on which
device selection was attempted.

 Channel-Program Execution

If the command is initiated at the device and
command execution does not require any data to
be transferred to or from the device, the device
may signal the end of the operation immediately
on receipt of the command code. In operations
that involve the transfer of data, the subchannel is
set up so that the channel subsystem will respond
to service requests from the device and assume
further control of the operation.

An I/O operation may involve the transfer of data
to or from one storage area, designated by a
single CCW, or to or from a number of noncontig-
uous storage areas. In the latter case, generally a
list of CCWs is used for the execution of the I/O
operation, with each CCW designating a contig-
uous storage area and the CCWs are coupled by
data chaining. Data chaining is specified by a flag
in the CCW and causes the channel subsystem to
fetch another CCW upon the exhaustion or filling
of the storage area designated by the current
CCW. The storage area designated by a CCW
fetched on data chaining pertains to the I/O opera-
tion already in progress at the I/O device, and the
I/O device is not notified when a new CCW is
fetched.

Provision is made in the CCW format for the pro-
grammer to specify that, when the CCW is
decoded, the channel subsystem request an I/O
interruption as soon as possible, thereby notifying
a CPU program that chaining has progressed at
least as far as that CCW in the channel program.

To complement dynamic address translation in
CPUs, CCW indirect data addressing is provided.
A flag in the CCW specifies that an indirect-
data-address list is to be used to designate the
storage areas for that CCW. Each time the
boundary of a block of storage is reached, the list
is referenced to determine the next block of
storage to be used. The ORB specifies whether
the size of each block of storage is 2K bytes or 4K
bytes. CCW indirect data addressing permits
essentially the same CCW sequences to be used
for a program running with dynamic address trans-
lation active in the CPU as would be used if the
CPU were operating with equivalent contiguous
real storage. CCW indirect data addressing
permits the program to designate data blocks
having absolute storage addresses up to 2��-1,
independent of whether format-0 or format-1
CCWs have been specified in the ORB.

In general, the execution of an I/O operation or
chain of operations involves as many as three
levels of participation:

1. Except for effects due to the integration of
CPU and channel-subsystem equipment, a
CPU is busy for the duration of the execution
of START SUBCHANNEL, which lasts until
the addressed subchannel has been passed
the ORB contents.

2. The subchannel is busy for a new START
SUBCHANNEL from the receipt of the ORB
contents until the primary interruption condi-
tion is cleared at the subchannel.

3. The I/O device is busy from the initiation of
the first operation at the device until either the
subchannel becomes suspended or the sec-
ondary interruption condition is placed at the
subchannel. In the case of a suspended sub-
channel, the device again becomes busy
when the execution of the suspended channel
program is resumed.

 Chapter 13. I/O Overview 13-7

Conclusion of I/O Operations

The conclusion of an I/O operation normally is
indicated by two status conditions: channel end
and device end. The channel-end condition indi-
cates that the I/O device has received or provided
all data associated with the operation and no
longer needs channel-subsystem facilities. This
condition is called the primary interruption condi-
tion, and the channel end in this case is the
primary status. Generally, the primary interruption
condition is any interruption condition that relates
to an I/O operation and that signals the conclusion
at the subchannel of the I/O operation or chain of
I/O operations.

The device-end signal indicates that the I/O device
has concluded execution and is ready to perform
another operation. This condition is called the
secondary interruption condition, and the device
end in this case is the secondary status. Gener-
ally, the secondary interruption condition is any
interruption condition that relates to an I/O opera-
tion and that signals the conclusion at the device
of the I/O operation or chain of operations. The
secondary interruption condition can occur concur-
rently with, or later than, the primary interruption
condition.

Concurrent with the primary or secondary inter-
ruption conditions, both the channel subsystem
and the I/O device can provide indications of
unusual situations.

The conditions signaling the conclusion of an I/O
operation can be brought to the attention of the
program by I/O interruptions or, when the CPUs
are disabled for I/O interruptions, by programmed
interrogation of the channel subsystem. In the
former case, these conditions cause storing of the
I/O-interruption code, which contains information
concerning the interrupting source. In the latter
case, the interruption code is stored as a result of
the execution of TEST PENDING
INTERRUPTION.

When the primary interruption condition is recog-
nized, the channel subsystem attempts to notify
the program, by means of an interruption request,
that a subchannel contains information describing
the conclusion of an I/O operation at the sub-
channel. The information identifies the last CCW
used and may provide its residual byte count, thus
describing the extent of main storage used. Both

the channel subsystem and the I/O device may
provide additional indications of unusual conditions
as part of either the primary or the secondary
interruption condition. The information contained
at the subchannel may be stored by the execution
of TEST SUBCHANNEL or the execution of
STORE SUBCHANNEL. This information, when
stored, is called a subchannel-status word
(SCSW).

Facilities are provided for the program to initiate
the execution of a chain of I/O operations with a
single START SUBCHANNEL instruction. When
the current CCW specifies command chaining and
no unusual conditions have been detected during
the operation, the receipt of the device-end signal
causes the channel subsystem to fetch a new
CCW. If the CCW passes certain validity tests
and the suspend flag is not specified as a one in
the new CCW, execution of a new command is
initiated at the device. If the CCW fails to pass
the validity tests, the new command is not initi-
ated, command chaining is suppressed, and the
status associated with the new CCW causes an
interruption condition to be generated. If the
suspend flag is specified as a one and this value
is valid because of a one value in the suspend
control, bit 4 of word 1 of the associated ORB,
execution of the new command is not initiated,
and command chaining is concluded.

Execution of the new command is initiated by the
channel subsystem in the same way as in the pre-
vious operation. The ending signals occurring at
the conclusion of an operation caused by a CCW
specifying command chaining are not made avail-
able to the program. When another I/O operation
is initiated by command chaining, the channel sub-
system continues execution of the channel
program. If, however, an unusual condition has
been detected, command chaining is suppressed,
the channel program is terminated, an interruption
condition is generated, and the ending signals
causing the termination are made available to the
program.

The suspend-and-resume function provides the
program with control over the execution of a
channel program. The initiation of the suspend
function is controlled by the setting of the

| suspend-control bit in the ORB. The suspend
| function is signaled to the channel subsystem
| during channel-program execution when the
| suspend-control bit in the ORB is one and the

13-8 z/Architecture Principles of Operation

| suspend flag in the first CCW or in a CCW fetched
| during command chaining is one.

Suspension occurs when the channel subsystem
fetches a CCW with the suspend flag validly
(because of a one value of the suspend-control bit
in the ORB) specified as one. The command in
this CCW is not sent to the I/O device, and the
device is signaled that the chain of commands is
concluded. A subsequent RESUME SUB-
CHANNEL instruction informs the channel sub-
system that the CCW that caused suspension may
have been modified and that the channel sub-
system must refetch the CCW and examine the
current setting of the suspend flag. If the suspend
flag is found to be zero in the CCW, the channel
subsystem resumes execution of the chain of
commands with the I/O device.

Channel-program execution may be terminated
prematurely by CANCEL SUBCHANNEL, HALT
SUBCHANNEL or CLEAR SUBCHANNEL. The
execution of CANCEL SUBCHANNEL causes the
channel subsystem to terminate the start function
at the subchannel if the channel program has not
been initiated at the device. When the start func-
tion is terminated by the execution of CANCEL
SUBCHANNEL, the channel subsystem sets con-
dition code 0 in response to the CANCEL SUB-
CHANNEL instruction. The execution of HALT
SUBCHANNEL causes the channel subsystem to
issue the halt signal to the I/O device and termi-
nate channel-program execution at the sub-
channel. When channel-program execution is ter-
minated by the execution of HALT SUBCHANNEL,
the program is notified of the termination by
means of an I/O-interruption request. The inter-
ruption request is generated when the device pre-
sents status for the terminated operation. If,
however, the halt signal was issued to the device
during command chaining after the receipt of
device end but before the next command was
transferred to the device, the interruption request
is generated after the device has been signaled.
In the latter case, the device-status field of the
SCSW will contain zeros. The execution of
CLEAR SUBCHANNEL clears the subchannel of
indications of the channel program in execution,
causes the channel subsystem to issue the clear
signal to the I/O device, and causes the channel
subsystem to generate an I/O-interruption request
to notify the program of the completion of the clear
function.

 I/O Interruptions

Conditions causing I/O-interruption requests are
asynchronous to activity in CPUs, and more than
one condition can occur at the same time. The
conditions are preserved at the subchannels until
cleared by TEST SUBCHANNEL or CLEAR SUB-
CHANNEL, or reset by an I/O-system reset.

When an I/O-interruption condition has been
recognized by the channel subsystem and indi-
cated at the subchannel, an I/O-interruption
request is made pending for the I/O-interruption
subclass specified at the subchannel. The
I/O-interruption subclass for which the interruption
is made pending is under programmed control
through the use of MODIFY SUBCHANNEL. A
pending I/O interruption may be accepted by any
CPU that is enabled for interruptions from its
I/O-interruption subclass. Each CPU has eight
mask bits, in control register 6, that control the
enablement of that CPU for each of the eight
I/O-interruption subclasses, with the I/O mask, bit
6 in the PSW, being the master I/O-interruption
mask for the CPU.

When an I/O interruption occurs at a CPU, the
I/O-interruption code is stored in the
I/O-communication area of that CPU, and the
I/O-interruption request is cleared. The
I/O-interruption code identifies the subchannel for
which the interruption was pending. The condi-
tions causing the generation of the interruption
request may then be retrieved from the sub-
channel explicitly by TEST SUBCHANNEL or by
STORE SUBCHANNEL.

A pending I/O-interruption request may also be
cleared by TEST PENDING INTERRUPTION
when the corresponding I/O-interruption subclass
is enabled but the PSW has I/O interruptions disa-
bled or by TEST SUBCHANNEL when the CPU is
disabled for I/O interruptions from the corre-
sponding I/O-interruption subclass. A pending
I/O-interruption request may also be cleared by
CLEAR SUBCHANNEL. Both CLEAR SUB-
CHANNEL and TEST SUBCHANNEL clear the
preserved interruption condition at the subchannel
as well.

Normally, unless the interruption request is
cleared by CLEAR SUBCHANNEL, the program
issues TEST SUBCHANNEL to obtain information
concerning the execution of the operation.

 Chapter 13. I/O Overview 13-9

13-10 z/Architecture Principles of Operation

 Chapter 14. I/O Instructions

I/O-Instruction Formats 14-1
I/O-Instruction Execution 14-1

Serialization 14-1
Operand Access 14-1
Condition Code 14-2
Program Exceptions 14-2

Instructions . 14-2
CANCEL SUBCHANNEL 14-4
CLEAR SUBCHANNEL 14-4
HALT SUBCHANNEL 14-5
MODIFY SUBCHANNEL 14-7

RESET CHANNEL PATH 14-8
RESUME SUBCHANNEL 14-10
SET ADDRESS LIMIT 14-11
SET CHANNEL MONITOR 14-12
START SUBCHANNEL 14-14
STORE CHANNEL PATH STATUS . . . 14-16
STORE CHANNEL REPORT WORD . . 14-16
STORE SUBCHANNEL 14-17
TEST PENDING INTERRUPTION 14-18
TEST SUBCHANNEL 14-20

| All the I/O instructions described here are pro-
vided for the control of channel-subsystem oper-
ations. The I/O instructions are listed in
Figure 14-1 on page 14-3. All of the I/O
instructions are privileged instructions.

Several I/O instructions result in the channel sub-
system being signaled to perform functions asyn-
chronous to the execution of the instructions. The
description of each instruction of this type contains
a section, “Associated Functions,” that summa-
rizes the asynchronous functions.

 I/O-Instruction Formats
| All I/O instructions use the S format:

┌────────────────┬────┬────────────┐
│ Op Code │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The use of the second-operand address and
general registers 1 and 2 (as implied operands)
depends on the I/O instruction. Figure 14-1 on
page 14-3 defines which operands are used to
execute each I/O instruction. In addition, detailed
information regarding operand usage appears in
the description of each I/O instruction.

All I/O instructions that reference a subchannel
use the contents of general register 1 as an
implied operand. For these I/O instructions,
general register 1 contains the subsystem-

| identification word. The format of the subsystem-
identification word is as follows:

┌─/─┬────────────────┬──────────────┐
│ │ │ Subchannel │
│///│���������������1│ Number │
└─/─┴────────────────┴──────────────┘
� 32 48 63

Bit positions 48-63 of general register 1 contain
the binary number of the subchannel to be used
for the function specified by the instruction. Bit
positions 0-31 of general register 1 are ignored
and bits 32-47 specify the binary number one.

 I/O-Instruction Execution

 Serialization

The execution of any I/O instruction causes serial-
ization and checkpoint synchronization to occur.
For a definition of the serialization of CPU oper-
ations, see “CPU Serialization” on page 5-91.

 Operand Access

During the execution of an I/O instruction, the
order in which fields of the operand and fields of
the subchannel, if applicable, are accessed is
unpredictable. It is also unpredictable whether
fetch accesses are made to fields of an operand
or the subchannel, as applicable, when those
fields are not needed to complete the execution of
the I/O instruction. (See “Relation between
Operand Accesses” on page 5-90.)

 Copyright IBM Corp. 1990-2003 14-1

 Condition Code

During the execution of some I/O instructions, the
results of certain tests are used to set one of four
condition codes in the PSW. The I/O instructions
for which execution can result in the setting of the
condition code are listed in Figure 14-1 on
page 14-3. The condition code indicates the
result of the execution of the I/O instruction. The
general meaning of the condition code for I/O
instructions is given below; the meaning of the
condition code for a specific instruction appears in
the description of that instruction.

Condition Code 0: Instruction execution
produced the expected or most probable result.
(See “Deferred Condition Code (CC)” on page
16-8 for a description of conditions that can be
encountered subsequent to the presentation of
condition code 0 that result in a nonzero deferred
condition code.)

Condition Code 1: Instruction execution
produced the alternate or second-most-probable
result, or status conditions were present that may
or may not have prevented the expected result.

Condition Code 2: Instruction execution was
ineffective because the designated subchannel or
channel-subsystem facility was busy with a previ-
ously initiated function.

Condition Code 3: Instruction execution was
ineffective because the designated element was
not operational or because some condition pre-
cluded initiation of the normal function.

In situations where conditions exist that could
cause more than one nonzero condition code to

be set, the priority of the condition codes is as
follows:

Condition code 3 has precedence over condition
codes 1 and 2.

Condition code 1 has precedence over condition
code 2.

 Program Exceptions

The program exceptions that the I/O instructions
can encounter are access, operand, privileged-
operation, and specification exceptions.
Figure 14-1 on page 14-3 shows the exceptions
that are applicable to each of the I/O instructions.
The execution of the instruction is suppressed for
privileged-operation, operand, and specification
exceptions. Except as indicated otherwise in the
section “Special Conditions” for each instruction,
the instruction ending for access exceptions is as
described in “Recognition of Access Exceptions”
on page 6-36.

 Instructions
The mnemonics, format, and operation codes of
the I/O instructions are given in Figure 14-1 on
page 14-3. The figure also indicates the condi-
tions that can cause a program interruption and
whether the condition code is set.

In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language
are shown with each instruction. For START
SUBCHANNEL, for example, SSCH is the mne-
monic and D�(B�) the operand designation.

14-2 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│CANCEL SUBCHANNEL │XSCH │S C │P │OP ¢ GS │ │ │B276│
│CLEAR SUBCHANNEL │CSCH │S C │P │OP ¢ GS │ │ │B23�│
│HALT SUBCHANNEL │HSCH │S C │P │OP ¢ GS │ │ │B231│
│MODIFY SUBCHANNEL │MSCH │S C │P A SP│OP ¢ GS │ │ B�│B232│
│RESET CHANNEL PATH │RCHP │S C │P │OP ¢ G1 │ │ │B23B│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│RESUME SUBCHANNEL │RSCH │S C │P │OP ¢ GS │ │ │B238│
│SET ADDRESS LIMIT │SAL │S │P │OP ¢ G1 │ │ │B237│
│SET CHANNEL MONITOR │SCHM │S │P │OP ¢ GM │ │ │B23C│
│START SUBCHANNEL │SSCH │S C │P A SP│OP ¢ GS │ │ B�│B233│
│STORE CHANNEL PATH STATUS │STCPS│S │P A SP│ ¢ │ ST│ B�│B23A│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│STORE CHANNEL REPORT WORD │STCRW│S C │P A SP│ ¢ │ ST│ B�│B239│
│STORE SUBCHANNEL │STSCH│S C │P A SP│OP ¢ GS │ ST│ B�│B234│
│TEST PENDING INTERRUPTION │TPI │S C │P A� SP│ ¢ │ ST│ B�│B236│
│TEST SUBCHANNEL │TSCH │S C │P A SP│OP ¢ GS │ ST│ B�│B235│
├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤
│Explanation: │
│ │
│ ¢ Causes serialization and checkpoint synchronization. │
│ A Access exceptions for logical addresses. │
│ A� When the effective address is zero, it is not used to access storage, and no access │
│ exceptions can occur, except that access exceptions may occur during access-register │
│ translation. │
│ B� B� field designates an access register in the access-register mode. │
│ C Condition code is set. │
│ G1 Instruction execution includes the implied use of general register 1 as a parameter. │
│ GM Instruction execution includes the implied use of multiple general registers. │
│ GS Instruction execution includes the implied use of general register 1 as the subsystem- │
│ identification word. │
│ P Privileged-operation exception. │
│ S S instruction format. │
│ SP Specification exception. │
│ ST PER storage-alteration event. │
└──┘

Figure 14-1. Summary of I/O Instructions

 Chapter 14. I/O Instructions 14-3

 CANCEL SUBCHANNEL

XSCH [S]
┌────────────────┬────────────────┐
│ 'B276' │////////////////│
└────────────────┴────────────────┘
� 16 31

The current start function, if any, is terminated at
the designated subchannel if CANCEL SUB-
CHANNEL is applicable.

General register 1 contains a subsystem-
identification word that designates the subchannel
for which the current START FUNCTION, if any, is
to be terminated.

If the subchannel (1) is not subchannel active,
(2) is start pending, resume pending, or sus-
pended, and (3) is performing only the start func-
tion, then the start function at the subchannel is
terminated, and the subchannel is made no longer
start pending, resume pending, or suspended, as
appropriate. In addition, internal indications of
busy are reset for the subchannel.

Condition code 0 is set to indicate that the actions
described above have been taken.

If an invalid ORB field or a no-path-available con-
dition is present for a previously initiated start
function and the condition was not reported during
the execution of START SUBCHANNEL, condition
code 0 may be indicated for CANCEL SUB-
CHANNEL provided that the subchannel is not yet
status pending to report the error condition; if con-
dition code 0 is presented, no subsequent status
is generated to indicate the error condition.

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending with
any status.

Condition code 2 is set, and no other action is
taken, when CANCEL SUBCHANNEL is not appli-
cable and the subchannel is not status pending.
CANCEL SUBCHANNEL is not applicable when
the subchannel (1) has no function specified,
(2) has a function other than the start function
alone specified, (3) is not resume pending, is not
start pending, and is not suspended, or (4) is sub-
channel active.

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
CANCEL SUBCHANNEL. A subchannel is not
operational for CANCEL SUBCHANNEL when the
subchannel is not provided by the channel sub-
system, has no valid device number assigned to it,
or is not enabled.

| CANCEL SUBCHANNEL can encounter the
| program exceptions described or listed below.

| Bits 32-47 of the SID must contain 0001 hex; oth-
| erwise, an operand exception is recognized.

Resulting Condition Code:

0 Start function canceled
1 Status pending
2 CANCEL SUBCHANNEL not applicable
3 Not operational

 Program Exceptions:

 � Operand
 � Privileged operation

Programming Notes:

1. The actions taken by CANCEL SUBCHANNEL
are completed during the execution of the
instruction. If condition code 0 is presented,
there is no subsequent I/O interruption
resulting from the terminated I/O operation.
However, the device may have signaled a
busy condition while the canceled operation
was start pending. In this case, the device
owes a no-longer-busy signal to the channel
subsystem. This may result in unsolicited
device-end status before the next operation is
initiated at the device.

2. Upon the completion of CANCEL SUB-
CHANNEL with condition code 0, the sub-
channel is ready to accept a new start func-
tion initiated by START SUBCHANNEL.

 CLEAR SUBCHANNEL

CSCH [S]
┌────────────────┬────────────────┐
│ 'B23�' │////////////////│
└────────────────┴────────────────┘
� 16 31

The designated subchannel is cleared, the current
start or halt function, if any, is terminated at the
designated subchannel, and the channel sub-

14-4 z/Architecture Principles of Operation

system is signaled to asynchronously perform the
clear function at the designated subchannel and at
the associated device.

General register 1 contains a subsystem-
identification word (SID) that designates the sub-
channel to be cleared.

If a start or halt function is in progress, it is termi-
nated at the subchannel.

The subchannel is made no longer status pending.
All activity, as indicated in the activity-control field
of the SCSW, is cleared at the subchannel, except
that the subchannel is made clear pending. Any
functions in progress, as indicated in the function-
control field of the SCSW, are cleared at the sub-
channel, except for the clear function that is to be
performed because of the execution of this
instruction.

The channel subsystem is signaled to asynchro-
nously perform the clear function. The clear func-
tion is summarized below in the section “Associ-
ated Functions” and is described in detail in “Clear
Function” on page 15-14.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of CLEAR SUB-
CHANNEL, the channel subsystem asynchro-
nously performs the clear function. If conditions
allow, the channel subsystem chooses a channel
path and attempts to issue the clear signal to the
device to terminate the I/O operation, if any. The
subchannel then becomes status pending. Condi-
tions encountered by the channel subsystem that
preclude issuing the clear signal to the device do
not prevent the subchannel from becoming status
pending (see “Clear Function” on page 15-14).

When the subchannel becomes status pending as
a result of performing the clear function, data
transfer, if any, with the associated device has
been terminated. The SCSW stored when the
resulting status is cleared by TEST SUB-
CHANNEL has the clear-function bit stored as
one. If the channel subsystem can determine that
the clear signal was issued to the device, the
clear-pending bit is stored as zero in the SCSW.
Otherwise, the clear-pending bit is stored as one,

and other indications are provided that describe in
greater detail the condition that was encountered.
(See “Interruption-Response Block” on
page 16-6.)

Measurement data is not accumulated, and
device-connect time is not stored in the extended-
status word for the subchannel, for a start function
that is terminated by CLEAR SUBCHANNEL.

Special Conditions

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
CLEAR SUBCHANNEL. A subchannel is not
operational for CLEAR SUBCHANNEL when the
subchannel is not provided in the channel sub-
system, has no valid device number assigned to it,
or is not enabled.

| CLEAR SUBCHANNEL can encounter the
| program exceptions described or listed below.

| Bits 32-47 of the SID must contain 0001 hex; oth-
| erwise, an operand exception is recognized.

Resulting Condition Code:

0 Function initiated
1 --
2 --
3 Not operational

 Program Exceptions:

 � Operand
 � Privileged operation

 HALT SUBCHANNEL

HSCH [S]
┌────────────────┬────────────────┐
│ 'B231' │////////////////│
└────────────────┴────────────────┘
� 16 31

The current start function, if any, is terminated at
the designated subchannel, and the channel sub-
system is signaled to asynchronously perform the
halt function at the designated subchannel and at
the associated device.

General register 1 contains a subsystem-
identification word that designates the subchannel
to be halted.

 Chapter 14. I/O Instructions 14-5

If a start function is in progress, it is terminated at
the subchannel.

The subchannel is made halt pending, and the
halt function is indicated at the subchannel.

When HALT SUBCHANNEL is executed and the
designated subchannel is subchannel-and-device
active and status pending with intermediate status,
the status-pending indication is eliminated (see the
discussion of bits 24, 25, and 28 in “Activity
Control (AC)” on page 16-13). The status-
pending condition is reestablished as part of the
halt function (see the section “Associated
Functions” below).

The channel subsystem is signaled to asynchro-
nously perform the halt function. The halt function
is summarized below in the section “Associated
Functions” and is described in detail in “Halt
Function” on page 15-15.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of HALT SUB-
CHANNEL, the channel subsystem asynchro-
nously performs the halt function. If conditions
allow, the channel subsystem chooses a channel
path and attempts to issue the halt signal to the
device to terminate the I/O operation, if any. The
subchannel then becomes status pending.

When the subchannel becomes status pending as
a result of performing the halt function, data
transfer, if any, with the associated device has
been terminated. The SCSW stored when the
resulting status is cleared by TEST SUB-
CHANNEL has the halt-function bit stored as one.
If the halt signal was issued to the device, the
halt-pending bit is stored as zero. Otherwise, the
halt-pending bit is stored as one, and other indi-
cations are provided that describe in greater detail
the condition that was encountered. (See
“Interruption-Response Block” on page 16-6 and
“Halt Function” on page 15-15.)

On some models, path availability is tested as part
of the halt function instead of as part of the exe-
cution of the instruction. In these models, when
no channel path is available for selection, the halt
signal is not issued, and the subchannel is made

status pending. When the status-pending condi-
tion is subsequently cleared by TEST SUB-
CHANNEL, the halt-pending bit is stored as one in
the SCSW.

If a status-pending condition is eliminated during
the execution of HALT SUBCHANNEL, then this
condition is reestablished along with the other
status conditions when the completion of the halt
function is indicated to the program.

The halt-pending condition may not be recognized
by the channel subsystem if a status-pending con-
dition has been generated. This situation could
occur, for example, when alert status is presented
or generated while the subchannel is already start
pending or resume pending, or when primary
status is presented during the attempt to initiate
the I/O operation for the first command as speci-
fied by the start function or implied by the resume
function. If recognition of the status-pending con-
dition by the channel subsystem has occurred log-
ically prior to recognition of the halt-pending condi-
tion, the SCSW, when cleared by TEST SUB-
CHANNEL, has the halt-pending bit stored as one.

If measurement data is being accumulated when a
start function is terminated by HALT SUB-
CHANNEL, the measurement data continues to be
accumulated for the subchannel and reflects the
extent of subchannel and device usage required, if
any, while performing the currently terminated
start function. The measurement data, if any, is
accumulated in the measurement block for the
subchannel or placed in the extended-status word,
as appropriate, when the subchannel becomes
status-pending with primary or secondary status.
(See “Channel-Subsystem Monitoring” on
page 17-1.)

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending
alone or is status pending with any combination of
alert, primary, or secondary status.

Condition code 2 is set, and no other action is
taken, when the subchannel is busy for HALT
SUBCHANNEL. The subchannel is busy for
HALT SUBCHANNEL when a halt function or
clear function is already in progress at the sub-
channel.

14-6 z/Architecture Principles of Operation

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
HALT SUBCHANNEL. A subchannel is not opera-
tional for HALT SUBCHANNEL when the sub-
channel is not provided in the channel subsystem,
has no valid device number assigned to it, or is
not enabled. On some models, a subchannel is
also not operational for HALT SUBCHANNEL
when no channel path is available for selection by
the device. (See “Channel-Path Availability” on
page 15-13 for a description of channel paths
that are available for selection.)

| HALT SUBCHANNEL can encounter the program
| exceptions described or listed below.

| Bits 32-47 of the SID must contain 0001 hex; oth-
| erwise, an operand exception is recognized.

Resulting Condition Code:

0 Function initiated
1 Status pending with other than intermediate

status
2 Busy
3 Not operational

 Program Exceptions:

 � Operand
 � Privileged operation

Programming Note: After the execution of HALT
SUBCHANNEL, the status-pending condition indi-
cating the completion of the halt function may be
delayed for an extended period of time, for
example, when the device is a magnetic-tape unit
executing a rewind command.

 MODIFY SUBCHANNEL

MSCH D�(B�) [S]
┌────────────────┬────┬────────────┐
│ 'B232' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The information contained in the subchannel-
information block (SCHIB) is placed in the
program-modifiable fields at the subchannel. As a
result, the program influences, for that sub-
channel, certain aspects of I/O processing relative
to the clear, halt, resume, and start functions and
certain I/O support functions.

General register 1 contains a subsystem-
identification word (SID) that designates the sub-
channel that is to be modified as specified by
certain fields of the SCHIB. The second-operand
address is the logical address of the SCHIB and
must be designated on a word boundary; other-
wise, a specification exception is recognized.

The channel-subsystem operations that may be
influenced due to placement of SCHIB information
in the subchannel are:

� I/O processing (E field)
� Interruption processing (interruption param-

eter and ISC field)
� Path management (D, LPM, and POM fields)
� Monitoring and address-limit checking

(measurement-block index, LM, and MM
fields)

� Concurrent-sense facility (S field)
| � Measurement-block address (MBA)

| Bits 0, 1, 6, and 7 of word 1, and bits 0-28 of word
| 6 of the SCHIB operand must be zeros, and bits 9
| and 10 of word 1 must not both be ones. When
| the extended-I/O-measurement-block facility is
| installed, bits 26-31 of word 11 must be specified
| as zeros. When the
| extended-I/O-measurement-block facility is not
| installed, bit 29 of word 6 must be specified as
| zero; otherwise, an operand exception is recog-
| nized. When the extended-I/O-measurement-word
| facility is not installed, or is installed but not
| enabled, bit 30 of word 6 must be specified as
| zero; otherwise, an operand exception is recog-
| nized. The remaining fields of the SCHIB are

ignored and do not affect the processing of
MODIFY SUBCHANNEL. (For further details, see
“Subchannel-Information Block” on page 15-1.)

Condition code 0 is set to indicate that the infor-
mation from the SCHIB has been placed in the
program-modifiable fields at the subchannel,
except that, when the device-number-valid bit (V)
at the designated subchannel is zero, then condi-
tion code 0 is set, and the information from the
SCHIB is not placed in the program-modifiable
fields.

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending.
(See “Status Control (SC)” on page 16-16.)

 Chapter 14. I/O Instructions 14-7

Condition code 2 is set, and no other action is
taken, when a clear, halt, or start function is in
progress at the subchannel. (See “Function
Control (FC)” on page 16-12.)

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
MODIFY SUBCHANNEL. A subchannel is not
operational for MODIFY SUBCHANNEL when the
subchannel is not provided in the channel sub-
system.

MODIFY SUBCHANNEL can encounter the
program exceptions described or listed below.

In word 1 of the SCHIB, bits 0, 1, 6, and 7 must
be zeros, and bits 9 and 10 must not both be

| ones. In word 6 of the SCHIB, bits 0-28 must be
zeros. Otherwise an operand exception is recog-
nized.

| When the extended-I/O-measurement-block facility
| is installed, bits 26-31 of word 11 must be speci-
| fied as zeros; otherwise, an operand exception is
| recognized. When the
| extended-I/O-measurement-block facility is not
| installed, bit 29 or word 6 must be specified as
| zero; otherwise, an operand exception is recog-
| nized. When the extended-I/O-measurement-word
| facility is not installed, or is installed but not
| enabled, bit 30 or word 6 must be specified as
| zero; otherwise, an operand exception is recog-
| nized.

| Bits 32-47 of the SID must contain 0001 hex; oth-
| erwise, an operand exception is recognized.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

The execution of MODIFY SUBCHANNEL is sup-
pressed on all addressing and protection
exceptions.

Resulting Condition Code:

0 Function completed
1 Status pending
2 Busy
3 Not operational

 Program Exceptions:

� Access (fetch, operand 2)
 � Operand

 � Privileged operation
 � Specification

Programming Notes:

1. If a device signals I/O-error alert while the
associated subchannel is disabled, the
channel subsystem issues the clear signal to
the device and discards the I/O-error-alert
indication without generating an
I/O-interruption condition.

2. If a device presents unsolicited status while
the associated subchannel is disabled, that
status is discarded by the channel subsystem
without generating an I/O-interruption condi-
tion. However, if the status presented con-
tains unit check, the channel subsystem
issues the clear signal for the associated sub-
channel and does not generate an
I/O-interruption condition. This should be
taken into account when the program uses
MODIFY SUBCHANNEL to enable a sub-
channel. For example, the medium on the
associated device that was present when the
subchannel became disabled may have been
replaced, and, therefore, the program should
verify the integrity of that medium.

3. It is recommended that the program inspect
the contents of the subchannel by subse-
quently issuing STORE SUBCHANNEL when
MODIFY SUBCHANNEL sets condition code
0. Use of STORE SUBCHANNEL is a
method for determining if the designated sub-
channel was changed or not. Failure to
inspect the subchannel following the setting of
condition code 0 by MODIFY SUBCHANNEL
may result in conditions that the program does
not expect to occur.

RESET CHANNEL PATH

RCHP [S]
┌────────────────┬────────────────┐
│ 'B23B' │////////////////│
└────────────────┴────────────────┘
� 16 31

The channel-path-reset facility is signaled to
perform the channel-path-reset function on the
channel path designated by the contents of
general register 1.

| The format of general register 1 is as follows:

14-8 z/Architecture Principles of Operation

┌─/─┬────────────────────────┬───────┐
│///│������������������������│ CHPID │
└─/─┴────────────────────────┴───────┘
� 32 56 63

Channel-Path Identifier (CHPID): Bit positions
56-63 of general register 1 contain an unsigned
binary integer that designates the channel path on
which the channel-path-reset function is to be per-
formed.

| Bit positions in general register 1 that are shown
| as zeros, are reserved and must contain zeros;
| otherwise, an operand exception is recognized.
| Bit positions 0-31 of general register 1 are
| ignored.

If conditions allow, the channel-path-reset facility
is signaled to asynchronously perform the
channel-path-reset function on the designated
channel path. The channel-path-reset function is
summarized below in the section “Associated
Functions” and is described in detail in “Channel-
Path Reset” on page 17-13.

Condition code 0 is set to indicate that the
channel-path-reset facility has been signaled.

Associated Functions

Subsequent to the execution of RESET CHANNEL
PATH, the channel-path-reset facility asynchro-
nously performs the channel-path-reset function.
Certain indications are reset at all subchannels
that have access to the designated channel path,
and the reset signal is issued on that channel
path. Any I/O functions in progress at the devices
are reset, but only for the channel path on which
the reset signal is received. An I/O operation or
chain of I/O operations taking place in the multi-
path mode may be able to continue to be exe-
cuted on other channel paths in the multipath
group, if any. (See “Channel-Path-Reset
Function” on page 15-45.)

The result of performing the channel-path-reset
function on the designated channel path is com-
municated to the program by means of a channel
report (see “Channel Report” on page 17-22).

Special Conditions

Condition code 2 is set, and no other action is
taken, when, on some models, the channel-path-
reset facility is busy performing the channel-path-
reset function for a previous execution of the
RESET CHANNEL PATH instruction.

Condition code 3 is set, and no other action is
taken, when, on some models, the designated
channel path is not operational for the execution
of RESET CHANNEL PATH. On these models,
the channel path is not operational for the exe-
cution of RESET CHANNEL PATH when the des-
ignated channel path is not physically available.

If the channel-path-reset facility is busy and the
designated channel path is not physically avail-
able, it depends on the model whether condition
code 2 or 3 is set.

| RESET CHANNEL PATH can encounter the
| program exceptions described or listed below.

| Bit positions 32-55 of general register 1 must
| contain zeros; otherwise, an operand exception is
| recognized. Bit positions 0-31 of general register
| 1 are ignored.

Resulting Condition Code:

0 Function initiated
1 --
2 Busy
3 Not operational

 Program Exceptions:

 � Operand
 � Privileged operation

Programming Notes:

1. To eliminate the possibility of a data-integrity
exposure for devices that have the capability
of generating unsolicited device-end status,
I/O operations in progress with such devices
on the channel path for which RESET
CHANNEL PATH is to be executed must be
terminated by the execution of either HALT
SUBCHANNEL or CLEAR SUBCHANNEL.
Otherwise, subsequent to receiving the reset
signal, the device may present an unsolicited
device end that may be interpreted by the
channel subsystem as a solicited device end
and cause command chaining to occur.

 Chapter 14. I/O Instructions 14-9

2. If the status-verification facility is being used
and RESET CHANNEL PATH is executed
without first stopping all ongoing operations
associated with the channel path being reset,
erroneous device-status-check conditions may
be detected.

 RESUME SUBCHANNEL

RSCH [S]
┌────────────────┬────────────────┐
│ 'B238' │////////////////│
└────────────────┴────────────────┘
� 16 31

The channel subsystem is signaled to perform the
resume function at the designated subchannel.

General register 1 contains a subsystem-
identification word that designates the subchannel
at which the resume function is to be performed.

The subchannel is made resume pending.

Logically prior to the setting of condition code 0
and only if the subchannel is currently in the sus-
pended state, path-not-operational conditions at
the subchannel, if any, are cleared.

The channel subsystem is signaled to asynchro-
nously perform the resume function. The resume
function is summarized below in the section
“Associated Functions” and is described in detail
in “Start Function and Resume Function” on
page 15-18.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of RESUME SUB-
CHANNEL, the channel subsystem asynchro-
nously performs the resume function. Except
when the subchannel is subchannel active, if the
execution of RESUME SUBCHANNEL results in
the setting of condition code 0, performance of the
resume function causes execution of a currently
suspended channel program to be resumed with
the associated device, provided that the suspend
flag for the current CCW has been set to zero by
the program. If the suspend flag remains one,
execution of the channel program remains sus-

pended. But, if the subchannel is subchannel
active at the time the execution of RESUME SUB-
CHANNEL results in the setting of condition code
0, then it is unpredictable whether execution of the
current program is resumed or whether it is found
by the resume function that the subchannel has
become suspended in the interim. The sub-
channel is found to be suspended by the resume
function only if the subchannel is status pending
with intermediate status when the resume-pending
condition is recognized by the channel subsystem.
(See “Start Function and Resume Function” on
page 15-18.)

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending.

Condition code 2 is set, and no other action is
taken, when the resume function is not applicable.
The resume function is not applicable when the
subchannel (1) has any function other than the
start function alone specified, (2) has no function
specified, (3) is resume pending, or (4) does not
have suspend control specified for the start func-
tion in progress.

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
the resume function. A subchannel is not opera-
tional for the resume function if the subchannel is
not provided in the channel subsystem, has no
valid device number assigned to it, or is not
enabled.

| RESUME SUBCHANNEL can encounter the
| program exceptions described or listed below.

| Bits 32-47 of the SID must contain 0001 hex; oth-
| erwise, an operand exception is recognized.

Resulting Condition Code:

0 Function initiated
1 Status pending
2 Function not applicable
3 Not operational

 Program Exceptions:

 � Operand
 � Privileged operation

14-10 z/Architecture Principles of Operation

Programming Notes:

1. When channel-program execution is resumed
from the suspended state, the device views
the resumption as the beginning of a new
chain of commands. When the suspension of
channel-program execution occurs and the
device requires that certain commands be first
or appear only once in a chain of commands
(for example, direct-access-storage devices),
the program must ensure that the appropriate
commands in the proper sequence are
fetched by the channel subsystem after
channel-program execution is resumed. One
way the program can ensure proper
sequencing of commands at the device is by
allowing the I/O interruption to occur for an
intermediate interruption condition due to sus-
pension.

It is not reliable to notify the program that the
subchannel is suspended by using the PCI
flag in the CCW that contains the S flag
because the PCI I/O interruption may occur
before the subchannel is suspended. The
SCSW would indicate that an I/O operation is
in progress at the subchannel and device in
this case.

The suspend flag of the target CCW should
be set to zero before RESUME SUB-
CHANNEL is executed; otherwise, it is pos-
sible that the resume-pending condition may
be recognized and the CCW refetched while
the suspend flag is still one, in which case the
resume-pending condition would be reset, and
the execution of the channel program would
be suspended. If the suspend flag of the
target CCW is set to zero before the execution
of RESUME SUBCHANNEL, the channel
program is not suspended, provided that the
subchannel is not subchannel active at the
time the execution of RESUME SUB-
CHANNEL results in the setting of condition
code 0. If condition code 0 is set while the
subchannel is still subchannel active, it is
unpredictable whether the resume-pending
condition is recognized by the channel sub-
system or whether it is found by the resume
function that the subchannel has become sus-
pended in the interim. The subchannel is
found to be suspended by the resume function
only if the subchannel is status pending with
intermediate status at the time the resume-
pending condition is recognized. When the

subchannel is suspended, the execution of
TEST SUBCHANNEL, which clears the inter-
mediate interruption condition, also clears the
indication of resume pending.

2. Some models recognize a resume-pending
condition only after a CCW having an S flag
validly set to one is fetched. Therefore, if a
subchannel is resume pending and, during the
execution of the channel program, no CCW is
fetched having an S flag validly set to one, the
subchannel remains resume pending until the
primary interruption condition is cleared by
TEST SUBCHANNEL.

3. Path availability is not tested during the exe-
cution of RESUME SUBCHANNEL. Instead,
path availability is tested when the channel
subsystem begins performance of the resume
function.

4. The contents of the CCW fetched during per-
formance of the resume function may be dif-
ferent from the contents of the same CCW
when it was previously fetched and contained
an S flag validly set to one.

SET ADDRESS LIMIT

SAL [S]
┌────────────────┬────────────────┐
│ 'B237' │////////////////│
└────────────────┴────────────────┘
� 16 31

The address-limit-checking facility is signaled to
use the specified address as the address-limit
value, and the specified address is passed to the

| facility. Depending on the model, this instruction
| may not be provided. When this instruction is not
| provided, it is checked for operand exception and
| privileged-operation exception, and then is sup-
| pressed.

General register 1 contains the absolute address
to be used as the address-limit value. The speci-
fied address must be on a 64K-byte boundary and
may designate a maximum absolute storage
address of 2,147,418,112 (7FFF0000 hex) regard-

| less of whether the CPU is operating in the 24-bit,
31-bit, or 64-bit addressing mode. Bits 0-31 of
general register 1 are ignored, and bit 32 must be
zero.

General register 1 has the following format:

 Chapter 14. I/O Instructions 14-11

┌─/─┬─┬────────────────────────────┐
│///│�│ Address-Limit Value │
└─/─┴─┴────────────────────────────┘
� 32 63

Associated Functions

The value that is used by the address-
limit-checking facility when determining whether to
permit or prohibit a data access is called the
address-limit value. The initial address-limit value
is zero. The initial address-limit value is used by
the address-limit-checking facility until the facility
recognizes a signal, caused by the execution of
SET ADDRESS LIMIT, to use a specified address.
The recognition of this specified address as the
new address-limit value occurs asynchronously
with respect to the execution of SET ADDRESS
LIMIT.

If address-limit checking is specified for a sub-
channel, then whether the specified address is
used by the address-limit-checking facility, when
determining whether to permit or prohibit a data
access, depends on whether SET ADDRESS
LIMIT was executed before, during, or after the
execution of START SUBCHANNEL for that sub-
channel. If SET ADDRESS LIMIT is executed
before START SUBCHANNEL, the specified
address is used by the address-limit-checking
facility. If SET ADDRESS LIMIT is executed
during or after the execution of START SUB-
CHANNEL, it is unpredictable whether the speci-
fied address is used by the address-limit-checking
facility for that particular start function. For a
description of the manner in which address-limit
checking is performed, see “Address-Limit
Checking” on page 17-20.

Special Conditions

SET ADDRESS LIMIT can encounter the program
exceptions described or listed below.

The address in general register 1 must be desig-
nated on a 64K byte boundary, and bit 32 of
general register 1 must be zero; otherwise, an
operand exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Operand
 � Privileged operation

SET CHANNEL MONITOR

SCHM [S]
┌────────────────┬────────────────┐
│ 'B23C' │////////////////│
└────────────────┴────────────────┘
� 16 31

Each of the measurement-block-update mode and
device-connect-time-measurement mode of the
channel subsystem is made either active or inac-
tive, depending on the values of the
measurement-mode-control bits in general register
1. If the measurement-mode-control bit for
measurement-block update is one, the
measurement-block origin and measurement-block
key are passed to the channel subsystem.

General register 1 has the following format:

┌─/─┬────┬──────────────────────────┬─┬─┐
│///│MBK │��������������������������│M│D│
└─/─┴────┴──────────────────────────┴─┴─┘
� 32 36 62 63

Ignored: Bit positions 0-31 of general register 1
are ignored.

Measurement-Block Key (MBK): Bit positions
32-35 of general register 1 contain the
measurement-block key. When bit 62 is one,
MBK specifies the access key that is to be used
by the channel subsystem when it accesses the

| measurement-block area and, when the
| extended-I/O-measurement-block facility is
| installed, to access format-1 measurement blocks.

Otherwise, MBK is ignored.

Measurement-Block-Update Control (M): Bit 62
of general register 1 is the measurement-
mode-control bit that controls the measurement-
block-update mode. When bit 62 of general reg-
ister 1 is one and conditions allow, the
measurement-block-update facility is signaled to
asynchronously make the measurement-
block-update mode active. In addition, the
measurement-block-origin (MBO) address in
general register 2 and the measurement-block key
(MBK) in general register 1 are passed to the

| measurement-block-update facility. The
| measurement-block origin is used to determine the
| location of format-0 measurement blocks; the
| address of format-1 measurement blocks is stored
| at the subchannel using MODIFY SUBCHANNEL.

14-12 z/Architecture Principles of Operation

| The measurement-block key is used to access
| both format-0 and format-1 measurement blocks.

The asynchronous functions that are performed by
the measurement-block-update facility are summa-
rized below in the section “Associated Functions”
and are described in detail in “Channel-Subsystem
Monitoring” on page 17-1.

When bit 62 of general register 1 is zero and con-
ditions allow, the measurement-block-update
mode is made inactive if it is active or remains
inactive if it is inactive. The contents of bit posi-
tions 32-35 (MBK) of general register 1 and the
contents of general register 2 are ignored.

 Device-Connect-Time-Measurement Control
(D): Bit 63 of general register 1 is the
measurement-mode-control bit (D). When bit 63
is one and conditions allow, the device-
connect-time-measurement mode is made active if
it is inactive or remains active if it is active. When
bit 63 is zero and conditions allow, the device-
connect-time-measurement mode is made inactive
if it is active or remains inactive if it is inactive.

Bit positions 36-61 of general register 1 are
reserved and must contain zeros; otherwise, an
operand exception is recognized.

General register 2 has the following format:

┌───────────────────────────────────────┐
│ MBO Address │
└───────────────────────────────────────┘
� 63

Measurement-Block-Origin (MBO) Address:
| When bit 62 (M) of general register 1 is one, bit
| positions 0-63 of general register 2 contain the
| absolute address of the measurement-block origin
| (MBO), which is the beginning of the
| measurement-block area. The MBO address is
| used by the channel subsystem to locate format-0
| measurement blocks. The origin of the
| measurement-block area must be designated on a
| 32-byte boundary; otherwise, an operand excep-
| tion is recognized. When bit 62 of general register

1 is zero, the contents of general register 2 are
ignored.

If the channel-subsystem timer that is used by the
channel-subsystem-monitoring facilities is in the
error state, the state is reset. This happens inde-
pendent of the setting of the two measurement-
mode-control bits. (See “Channel-Subsystem

Timing” on page 17-2 for a description of the
timing facilities.)

Associated Functions

When the measurement-block-update facility is
signaled (by means of SET CHANNEL MONITOR)
to make the measurement-block-update mode
active, the functions that are performed by the
facility depend on whether or not the mode is
already active when the signal is generated.

If the measurement-block-update mode is inactive
when the signal is generated, the mode remains
inactive until the measurement-block-update
facility recognizes the signal. When the
measurement-block-update facility recognizes the
signal, the measurement-block-update mode is

| made active, and the MBK that was passed when
| the signal was generated is used to access all
| measurement blocks, and the MBO that was
| passed when the signal was generated is used to
| determine the address of format-0 measurement
| blocks.

If the measurement-block-update mode is active
when the signal is generated, the mode remains
active, and the MBK and MBO associated with the
execution of a previous SET CHANNEL
MONITOR instruction continue to be used to
control the storing of measurement data until the
measurement-block-update facility recognizes the
signal. When the measurement-block-update
facility recognizes the signal, the MBK and MBO
associated with that signal are used instead of the
MBK and MBO associated with the execution of a
previous SET CHANNEL MONITOR instruction.

| The SET CHANNEL MONITOR instruction does
| not affect the measurement-block address used
| for format-1 measurement blocks, but the MBK
| associated with the signal becomes the key used
| to access the measurement block.

| In all above cases, the measurement-block-update
facility recognizes the signal during, or subsequent
to, the execution of the SET CHANNEL MONITOR
instruction that caused the signal to be generated
and logically prior to the performance of any start
function that is initiated by the subsequent exe-
cution of START SUBCHANNEL for a subchannel
that is enabled for measurement by this facility. If
a subchannel that is enabled for measurement by
this facility already has a start function in progress
when the signal is generated, it is unpredictable

 Chapter 14. I/O Instructions 14-13

when measurement data for that subchannel is
stored by using the MBK and MBO associated
with that signal.

While the measurement-block-update mode is
active, performance measurements are accumu-
lated for subchannels that are enabled for
measurement-block update. Measurements for a

| subchannel are either accumulated in a single
32-byte format-0 measurement block within the

| measurement-block area, or a 64-byte format-1
| measurement block pointed to by the
| measurement-block address at the subchannel. A

subchannel is enabled for the measurement-
block-update mode by setting the measurement-
block-update-enable bit to one in the SCHIB and
then executing the MODIFY SUBCHANNEL

| instruction for that subchannel. The
| measurement-block-format-control bit (F) at the
| subchannel specifies whether a format-0 or
| format-1 measurement block is stored for a sub-
| channel when the measurement-block-update
| mode is active and the subchannel is enabled for
| measurement-block updates. When the F bit is
| zero, the MBO and MBI are used to determine the
| address of the measurement block for the sub-
| channel, and a format-0 measurement block is
| stored. When the F bit is one, the measurement-
| block-address field at the subchannel contains the
| address of the measurement block for the sub-
| channel, and a format-1 measurement block is
| stored. The F bit and measurement-block-address
| field are modified using the MODIFY SUB-
| CHANNEL instruction.

When the device-connect-time-measurement
mode is active, measurements of the length of
time that the device is actively communicating with
the channel subsystem during the execution of a
channel program are accumulated for subchannels
that are enabled for device-connect-time measure-
ment. Measurements for a subchannel are pro-
vided in the extended-status word ESW of the
IRB. A subchannel is enabled for device-
connect-time-measurement mode by setting the
device-connect-time-measurement-enable bit to
one in the SCHIB and then executing MODIFY
SUBCHANNEL for that subchannel.

For a more detailed description of the
measurement-block-update mode, the format and
contents of the measurement block, and the
device-connect-time-measurement mode, see
“Channel-Subsystem Monitoring” on page 17-1.

Special Conditions

SET CHANNEL MONITOR can encounter the
program exceptions described or listed below.

Bits 36-61 of general register 1 must be zeros.
When bit 62 (M) of general register 1 is one, the
MBO address in general register 2 must be desig-
nated on a 32-byte boundary. Otherwise, an
operand exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

 � Operand
 � Privileged operation

Programming Note: When the channel sub-
system is initialized, the measurement-
block-update and device-
connect-time-measurement modes are made inac-
tive.

 START SUBCHANNEL

SSCH D�(B�) [S]
┌────────────────┬────┬────────────┐
│ 'B233' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The channel subsystem is signaled to asynchro-
nously perform the start function for the associ-
ated device, and the execution parameters that
are contained in the designated ORB are placed
at the designated subchannel. (See “Operation-
Request Block” on page 15-22.)

General register 1 contains a subsystem-
identification word that designates the subchannel
to be started. The second-operand address is the
logical address of the ORB and must be desig-
nated on a word boundary; otherwise, a specifica-
tion exception is recognized.

The execution parameters contained in the ORB
are placed at the subchannel.

When START SUBCHANNEL is executed, the
subchannel is status pending with only secondary
status, and the extended-status-word-format bit (L)
is zero, the status-pending condition is discarded
at the subchannel.

14-14 z/Architecture Principles of Operation

The subchannel is made start pending, and the
start function is indicated at the subchannel.

Logically prior to the setting of condition code 0,
path-not-operational conditions at the subchannel,
if any, are cleared.

The channel subsystem is signaled to asynchro-
nously perform the start function. The start func-
tion is summarized below in the section “Associ-
ated Functions” and is described in detail in “Start
Function and Resume Function” on page 15-18.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of START SUB-
CHANNEL, the channel subsystem asynchro-
nously performs the start function.

The contents of the ORB, other than the fields that
must contain all zeros, are checked for validity.
On some models, the fields of the ORB that must
contain zeros are checked asynchronously,
instead of during the execution of the instruction.
When invalid fields are detected asynchronously,
the subchannel becomes status pending with
primary, secondary, and alert status and with
deferred condition code 1 and program check indi-
cated. (See “Program Check” on page 16-24.) In
this situation, the I/O operation or chain of I/O
operations is not initiated at the device, and the
condition is indicated by the start-pending bit
being stored as one when the SCSW is cleared by
the execution of TEST SUBCHANNEL. (See
“Subchannel-Status Word” on page 16-6).

On some models, path availability is tested asyn-
chronously, instead of during the execution of the
instruction. When no channel path is available for
selection, the subchannel becomes status pending
with primary and secondary status and with
deferred condition code 3 indicated. The I/O oper-
ation or chain of I/O operations is not initiated at
the device, and this condition is indicated by the
start-pending bit being stored as one when the
SCSW is cleared by the execution of TEST SUB-
CHANNEL.

If conditions allow, a channel path is chosen, and
execution of the channel program that is desig-

nated in the ORB is initiated. (See “Start Function
and Resume Function” on page 15-18.)

Special Conditions

Condition code 1 is set, and no other action is
taken, when the subchannel is status pending
when START SUBCHANNEL is executed. On
some models, condition code 1 is not set when
the subchannel is status pending with only sec-
ondary status; instead, the status-pending condi-
tion is discarded.

Condition code 2 is set, and no other action is
taken, when a start, halt, or clear function is cur-
rently in progress at the subchannel (see “Func-
tion Control (FC)” on page 16-12).

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
START SUBCHANNEL. A subchannel is not
operational for START SUBCHANNEL if the sub-
channel is not provided in the channel subsystem,
has no valid device number associated with it, or
is not enabled.

A subchannel is also not operational for START
SUBCHANNEL, on some models, when no
channel path is available for selection. On these
models, the lack of an available channel path is
detected as part of the START SUBCHANNEL
execution. On other models, channel-path avail-
ability is only tested as part of the asynchronous
start function.

START SUBCHANNEL can encounter the
program exceptions described or listed below.

In word 1 of the ORB, bits 13 and 25-30 must be
zeros, and, in word 2 of the ORB, bit 0 must be
zero. Otherwise, on some models, an operand
exception is recognized. On other models, an
I/O-interruption condition is generated, indicating
program check, as part of the asynchronous start
function.

| START SUBCHANNEL can also encounter the
| program exceptions listed below.

| Bits 32-47 of the SID must contain 0001 hex; oth-
| erwise, an operand exception is recognized.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

 Chapter 14. I/O Instructions 14-15

The execution of START SUBCHANNEL is sup-
pressed on all addressing and protection
exceptions.

Resulting Condition Code:

0 Function initiated
1 Status pending
2 Busy
3 Not operational

 Program Exceptions:

� Access (fetch, operand 2)
 � Operand
 � Privileged operation
 � Specification

STORE CHANNEL PATH STATUS

STCPS D�(B�) [S]
┌────────────────┬────┬────────────┐
│ 'B23A' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

| Depending on the model, this instruction may not
| be provided. When this instruction is not pro-
| vided, it is checked for privileged operation excep-
| tion and the instruction is suppressed by the
| machine.

A channel-path-status word of up to 256 bits is
stored at the designated location.

The second-operand address is the logical
address of the location where the channel-path-
status word is to be stored and must be desig-
nated on a 32-byte boundary; otherwise, a specifi-
cation exception is recognized.

The channel-path-status word indicates which
channel paths are actively communicating with a
device at the time STORE CHANNEL PATH
STATUS is executed. Bit positions 0-255 corre-
spond, respectively, to the channel paths having
the channel-path identifiers 0-255. Each of the
256 bits at the designated location is set to one,
set to zero, or left unchanged, as follows:

� For all channel paths in the configuration that
are actively communicating with devices at the
time STORE CHANNEL PATH STATUS is
executed, the corresponding bits are stored as
ones.

� For all channel paths that are (1) provided in
the system (PIM bit in the PMCW is one) and
(2) in the configuration but not currently being
used by the channel subsystem in actively
communicating with devices, the corre-
sponding bits are stored as zeros.

� For all channel paths that are not provided in
the system (PIM bit in the PMCW is zero), the
corresponding bits either are not stored or are
stored as zeros.

� For all channel paths in the configuration that
are in the channel-path-terminal state or are
not physically available (the corresponding
PAM bit in the PMCW is zero), the corre-
sponding bits are stored as zeros.

Special Conditions

STORE CHANNEL PATH STATUS can encounter
the program exceptions described or listed below.

The second operand must be designated on a
32-byte boundary; otherwise, a specification
exception is recognized.

The execution of STORE CHANNEL PATH
STATUS is suppressed on all addressing and pro-
tection exceptions.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (store, operand 2)
 � Privileged operation
 � Specification

Programming Notes:

1. To ensure a consistent interpretation of
channel-path-status-word bits, the program
should, prior to the initial use of the area,
store zeros at the location where the channel-
path-status word is to be stored.

STORE CHANNEL REPORT
WORD

STCRW D�(B�) [S]
┌────────────────┬────┬────────────┐
│ 'B239' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

14-16 z/Architecture Principles of Operation

A CRW containing information affecting the
| channel subsystem is stored at the designated

location.

The second-operand address is the logical
address of the location where the CRW is to be
stored and must be designated on a word
boundary; otherwise, a specification exception is
recognized.

When a malfunction or other condition affecting
channel-subsystem operation is recognized, a
channel report (consisting of one or more CRWs)
describing the condition is made pending for
retrieval and analysis by the program. The

| channel report contains information concerning the
| identity and state of a facility following the

detection of the malfunction or other condition.
For a description of the channel report, the CRW,
and program-recovery actions related to the
channel subsystem, see “Channel-Subsystem
Recovery” on page 17-21.

When one or more channel reports are pending,
the instruction causes a CRW to be stored at the
designated location and condition code 0 to be
set. A pending CRW can only be stored by the
execution of STORE CHANNEL REPORT WORD
and, once stored, is no longer pending. Thus,
each pending CRW is presented only once to the
program.

When no channel reports are pending in the
channel subsystem execution of STORE
CHANNEL REPORT WORD causes zeros to be
stored at the designated location and condition
code 1 to be set.

Special Conditions

STORE CHANNEL REPORT WORD can
encounter the program exceptions described or
listed below.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

The execution of STORE CHANNEL REPORT
WORD is suppressed on all addressing and pro-
tection exceptions.

Resulting Condition Code:

0 CRW stored
1 Zeros stored
2 --
3 --

 Program Exceptions:

� Access (store, operand 2)
 � Privileged operation
 � Specification

Programming Notes:

1. CRW overflow conditions may occur if STORE
CHANNEL REPORT WORD is not executed
to clear pending channel reports. If the over-
flow condition is encountered, one or more
channel-report words have been lost. (See
“Channel-Subsystem Recovery” on
page 17-21 for details.)

2. A pending CRW can be cleared by any CPU
in the configuration executing STORE
CHANNEL REPORT WORD, regardless of
whether a machine-check interruption has
occurred in any CPU.

 STORE SUBCHANNEL

STSCH D�(B�) [S]
┌────────────────┬────┬────────────┐
│ 'B234' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

Control and status information for the designated
subchannel is stored in the designated SCHIB.

General register 1 contains a subsystem-
identification word that designates the subchannel
for which the information is to be stored. The
second-operand address is the logical address of
the SCHIB and must be designated on a word
boundary; otherwise, a specification exception is
recognized.

| When the extended-I/O-measurement-block facility
| is not installed, the information that is stored in the
| SCHIB consists of a path-management-control
| word, a SCSW, and three words of model-
| dependent information. When the
| extended-I/O-measurement-block facility is
| installed, the information that is stored in the
| SCHIB consists of a path-management-control
| word, a SCSW, the measurement-block-address

 Chapter 14. I/O Instructions 14-17

| field, and one word of model-dependent informa-
| tion. (See “Subchannel-Information Block” on

page 15-1.)

The execution of STORE SUBCHANNEL does not
change any information at the subchannel.

Condition code 0 is set to indicate that control and
status information for the designated subchannel
has been stored in the SCHIB. When the exe-
cution of STORE SUBCHANNEL results in the
setting of condition code 0, the information in the
SCHIB indicates a consistent state of the sub-
channel.

Special Conditions

Condition code 3 is set, and no other action is
taken, when the designated subchannel is not
operational for STORE SUBCHANNEL. A sub-
channel is not operational for STORE SUB-
CHANNEL if the subchannel is not provided in the
channel subsystem.

| STORE SUBCHANNEL can encounter the
| program exceptions described or listed below.

| Bits 32-47 of the SID must contain 0001 hex; oth-
| erwise, an operand exception is recognized.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:

0 SCHIB stored
1 --
2 --
3 Not operational

 Program Exceptions:

� Access (store, operand 2)
 � Operand
 � Privileged operation
 � Specification

Programming Notes:

1. Device status that is stored in the SCSW may
include device-busy, control-unit-busy, or
control-unit-end indications.

2. The information that is stored in the SCHIB is
obtained from the subchannel. The STORE
SUBCHANNEL instruction does not cause the

channel subsystem to interrogate the
addressed device.

3. STORE SUBCHANNEL may be executed at
any time to sample conditions existing at the
subchannel, without causing any pending
status conditions to be cleared.

4. Repeated execution of STORE SUB-
CHANNEL without an intervening delay (for
example, to determine when a subchannel
changes state) should be avoided because
repeated accesses of the subchannel by the
CPU may delay or prohibit access of the sub-
channel by a channel subsystem to update
the subchannel.

TEST PENDING INTERRUPTION

TPI D�(B�) [S]
┌────────────────┬────┬────────────┐
│ 'B236' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

The I/O-interruption code for a pending I/O inter-
ruption at a subchannel is stored at the location
designated by the second-operand address, and
the pending I/O-interruption request is cleared.

The second-operand address, when nonzero, is
the logical address of the location where the two-
word I/O-interruption code, consisting of words 0
and 1, is to be stored. The second-operand
address must be designated on a word boundary;
otherwise, a specification exception is recognized.

If the second-operand address is zero, the three-
word I/O-interruption code, consisting of words
0-2, is stored at real locations 184-195. In this
case, low-address protection and key-controlled
protection do not apply.

In the access-register mode when the second-
operand address is zero, it is unpredictable
whether access-register translation occurs for
access register B�. If the translation occurs, the
resulting address-space-control element is not
used; that is, the interruption code still is stored at
real locations 184-195.

Pending I/O-interruption requests are accepted
only for those I/O-interruption subclasses allowed
by the I/O-interruption-subclass mask in control
register 6 of the CPU executing the instruction. If
no I/O-interruption requests exist that are allowed

14-18 z/Architecture Principles of Operation

by control register 6, the I/O-interruption code is
not stored, the second-operand location is not
modified, and condition code 0 is set.

If a pending I/O-interruption request is accepted,
the I/O-interruption code is stored, the pending
I/O-interruption request is cleared, and condition
code 1 is set. The I/O-interruption code that is
stored is the same as would be stored if an I/O
interruption had occurred. However, PSWs are
not swapped as when an I/O-interruption occurs.

The I/O-interruption code that is stored during the
execution of the instruction is defined as follows:

 ┌────────────────────────────────┐
Word �│ Subsystem-Identification Word │
 ├────────────────────────────────┤
 1│ Interruption Parameter │
 ├────────────────────────────────┤
 2│Interruption-Identification Word│
 └────────────────────────────────┘
 � 31

| Subsystem-Identification Word (SID): Bits
| 32-63 of the SID is placed in word 0. See

“I/O-Instruction Formats” in Chapter 14.

Interruption Parameter: Word 1 contains a four-
byte parameter that was specified by the program
and passed to the subchannel in word 0 of the
ORB or the PMCW. When a device presents alert
status and the interruption parameter was not pre-
viously passed to the subchannel by an execution
of START SUBCHANNEL or MODIFY SUB-
CHANNEL, this field contains zeros.

Interruption-Identification Word: Word 2, when
stored, contains the interruption-identification
word, which further identifies the source of the
I/O-interruption. Word 2 is stored only when the
second-operand address is zero. The interruption-
identification word is defined as follows:

┌─┬─┬───┬───┬────────────────────────┐
│A│�│ISC│���│������������������������│
└─┴─┴───┴───┴────────────────────────┘
� 2 5 8 31

A bit (A): Bit 0 of the interruption-identification
word specifies the type of pending I/O-interruption
request that was cleared. When bit 0 is zero, the
I/O-interruption request was associated with a
subchannel.

I/O-Interruption Subclass (ISC): Bit positions
2-4 of the interruption-identification word contain
an unsigned binary integer, in the range 0-7, that
specifies the I/O-interruption subclass associated
with the subchannel for which the pending
I/O-interruption request was cleared.

The remaining bit positions are reserved and
stored as zeros.

Special Conditions

TEST PENDING INTERRUPTION can encounter
the program exceptions described or listed below.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

The execution of TEST PENDING INTER-
RUPTION is suppressed on all addressing and
protection exceptions.

Resulting Condition Code:

0 Interruption code not stored
1 Interruption code stored
2 --
3 --

 Program Exceptions:

� Access (store, operand 2, second-operand
address nonzero only)

 � Privileged operation
 � Specification

Programming Notes:

1. TEST PENDING INTERRUPTION should only
be executed with a second-operand address
of zero when I/O interruptions are masked off.
Otherwise, an I/O-interruption code stored by
the instruction may be lost if an I/O inter-
ruption occurs. The I/O-interruption code that
identifies the source of an I/O interruption
taken subsequent to TEST PENDING INTER-
RUPTION is also stored at real locations
184-195, replacing an I/O-interruption code
that was stored by the instruction.

2. In the access-register mode when the second-
operand address is zero, an access exception
is recognized if access-register translation
occurs and the access register is in error.
This exception can be prevented by making
the B� field zero or by placing 00000000 hex,

 Chapter 14. I/O Instructions 14-19

00000001 hex, or any other valid contents in
the access register.

 TEST SUBCHANNEL

TSCH D�(B�) [S]
┌────────────────┬────┬────────────┐
│ 'B235' │ B� │ D� │
└────────────────┴────┴────────────┘
� 16 2� 31

Control and status information for the subchannel
is stored in the designated IRB.

General register 1 contains a subsystem-
identification word that designates the subchannel
for which the information is to be stored. The
second-operand address is the logical address of
the IRB and must be designated on a word
boundary; otherwise, a specification exception is
recognized.

The information that is stored in the IRB consists
of a SCSW, an extended-status word, and an
extended-control word. (See “Interruption-
Response Block” on page 16-6.)

If the subchannel is status pending, the status-
pending bit of the status-control field is stored as
one. Whether or not the subchannel is status
pending has an effect on the functions that are
performed when TEST SUBCHANNEL is exe-
cuted.

When the subchannel is status pending and TEST
SUBCHANNEL is executed, information, as
described above, is stored in the IRB, followed by
the clearing of certain conditions and indications
that exist at the subchannel as described in
Figure 14-2. If an I/O-interruption request is
pending for the subchannel, the request is
cleared. Condition code 0 is set to indicate that
these actions have been taken.

When the subchannel is not status pending and
TEST SUBCHANNEL is executed, information (as
described above) is stored in the IRB, and no con-
ditions or indications are cleared. Condition code
1 is set to indicate that these actions have been
taken.

Figure 14-2 describes which conditions and indi-
cations are cleared by TEST SUBCHANNEL when

the subchannel is status pending. All other condi-
tions and indications at the subchannel remain
unchanged.

┌──────────────┬──────────────────────────────────┐
│ │ Subchannel Condition� │
│ ├──────┬──────┬──────┬──────┬──────┤
│ │Alert │ Int │ Pri │ Sec │Status│
│ │Status│Status│Status│Status│ Pdg │
│ Field │ Pdg │ Pdg │ Pdg │ Pdg │Alone │
├──────────────┼──────┼──────┼──────┼──────┼──────┤
│Function │ C │ Nc │ C │ C │ C │
│Control │ │ │ │ │ │
├──────────────┼──────┼──────┼──────┼──────┼──────┤
│Activity │ Cp │ Nr │ Cp │ Cp │ Cp │
│Control │ │ │ │ │ │
├──────────────┼──────┼──────┼──────┼──────┼──────┤
│Status │ Cs │ Cs │ Cs │ Cs │ Cs │
│Control │ │ │ │ │ │
├──────────────┼──────┼──────┼──────┼──────┼──────┤
│N condition │ C │ Nr │ C │ C │ C │
│ │ │ │ │ │ │
├──────────────┴──────┴──────┴──────┴──────┴──────┤
│Explanation: │
│ │
│ � Note that the rightmost column applies to │
│ status pending when it is alone. The other │
│ four status-pending conditions result in the │
│ clearing actions given. These actions apply │
│ both when a single status-pending condition │
│ occurs and when a combination of the four │
│ status-pending conditions occurs. In the │
│ combination case, all the clearing actions │
│ of the individual cases apply. │
│ C Cleared. │
│ Cp The resume-, start-, halt-, clear pending, │
│ and suspended conditions are cleared. │
│ Cs The status-pending condition is cleared. │
│ Nc Not changed unless function control indicates│
│ the halt function and activity control │
│ indicates suspended. If both the halt │
│ function and suspended are indicated, condi- │
│ tions are cleared as for status pending │
│ alone. │
│ Nr Not changed unless activity control indicates│
│ suspended and function control indicates the │
│ start function with or without the halt func-│
│ tion. If the halt function is indicated, the│
│ conditions are cleared as for status pending │
│ alone. If only the start function is indi- │
│ cated, the resume-pending condition and the │
│ N condition are cleared. │
└───┘

Figure 14-2. Conditions and Indications Cleared at the
Subchannel by TEST SUBCHANNEL

Special Conditions

Condition code 3 is set, and no other action is
taken, when the subchannel is not operational for
TEST SUBCHANNEL. A subchannel is not opera-
tional for TEST SUBCHANNEL if the subchannel
is not provided, has no valid device number asso-
ciated with it, or is not enabled.

14-20 z/Architecture Principles of Operation

| TEST SUBCHANNEL can encounter the program
| exceptions described or listed below.

| Bits 32-47 of the SID must contain 0001 hex; oth-
| erwise, an operand exception is recognized.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

When the execution of TEST SUBCHANNEL is
terminated on addressing and protection
exceptions, the state of the subchannel is not
changed.

Resulting Condition Code:

0 IRB stored; subchannel status pending
1 IRB stored; subchannel not status pending
2 --
3 Not operational

 Program Exceptions:

� Access (store, operand 2)
 � Operand
 � Privileged operation
 � Specification

Programming Notes:

1. Device status that is stored in the SCSW may
include device-busy, control-unit-busy, or
control-unit-end indications.

2. The information that is stored in the IRB is
obtained from the subchannel. The TEST
SUBCHANNEL instruction does not cause the
channel subsystem to interrogate the
addressed device.

3. When an I/O interruption occurs, it is the
result of a status-pending condition at the sub-
channel, and typically TEST SUBCHANNEL is
executed to clear the status. TEST SUB-

CHANNEL may also be executed at any other
time to sample conditions existing at the sub-
channel.

4. Repeated execution of TEST SUBCHANNEL
to determine when a start function has been
completed should be avoided because there
are conditions under which the completion of
the start function may or may not be indicated.
For example, if the channel subsystem is
holding an interface-control-check (IFCC) con-
dition in abeyance (for any subchannel)
because another subchannel is already status
pending, and if the start function being tested
by TEST SUBCHANNEL has as the only path
available for selection the channel path with
the IFCC condition, then the start function
may not be initiated until the status-pending
condition in the other subchannel is cleared,
allowing the IFCC condition to be indicated at
the subchannel to which it applies.

5. Repeated execution of TEST SUBCHANNEL
without an intervening delay, for example, to
determine when a subchannel changes state,
should be avoided because repeated
accesses of the subchannel by the CPU may
delay or prohibit accessing of the subchannel
by the channel subsystem. Execution of
TEST SUBCHANNEL by multiple CPUs for
the same subchannel at approximately the
same time may have the same effect and also
should be avoided.

6. The priority of I/O-interruption handling by a
CPU can be modified by the execution of
TEST SUBCHANNEL. When TEST SUB-
CHANNEL is executed and the designated
subchannel has an I/O-interruption request
pending, that I/O-interruption request is
cleared, and the SCSW is stored, without
regard to any previously established priority.
The relative priority of the remaining
I/O-interruption requests is unchanged.

 Chapter 14. I/O Instructions 14-21

14-22 z/Architecture Principles of Operation

Chapter 15. Basic I/O Functions

Control of Basic I/O Functions 15-1
Subchannel-Information Block 15-1

Path-Management-Control Word 15-2
Subchannel-Status Word 15-8

| Model-Dependent Area/Measurement
| Block Address 15-8

Summary of Modifiable Fields 15-9
Channel-Path Allegiance 15-11

Working Allegiance 15-12
Active Allegiance 15-12
Dedicated Allegiance 15-12
Channel-Path Availability 15-13
Control-Unit Type 15-13

Clear Function 15-14
Clear-Function Path Management 15-14
Clear-Function Subchannel Modification . 15-14
Clear-Function Signaling and

Completion 15-15
Halt Function 15-15

Halt-Function Path Management 15-16
Halt-Function Signaling and Completion . 15-16

Start Function and Resume Function 15-18
Start-Function and Resume-Function

Path Management 15-19
Execution of I/O Operations 15-21

Blocking of Data 15-22

Operation-Request Block 15-22
Channel-Command Word 15-27
Command Code 15-29
Designation of Storage Area 15-29
Chaining 15-31

Data Chaining 15-33
Command Chaining 15-34

Skipping 15-35
Program-Controlled Interruption 15-35
CCW Indirect Data Addressing 15-36
Suspension of Channel-Program

Execution 15-38
Commands and Flags 15-40
Branching in Channel Programs 15-41

Transfer in Channel 15-41
Command Retry 15-42

Concluding I/O Operations before Initiation . 15-42
Concluding I/O Operations during Initiation . 15-42
Immediate Conclusion of I/O Operations . . 15-43
Concluding I/O Operations during Data

Transfer 15-43
Channel-Path-Reset Function 15-45

Channel-Path-Reset-Function Signaling . 15-45
Channel-Path-Reset-Function-

Completion Signaling 15-45

Some I/O instructions specify to the channel sub-
system that a function is to be performed. Collec-
tively, these functions are referred to as the basic
I/O functions. The basic I/O functions are the
clear, halt, start, resume, and channel-path-reset
functions.

Control of Basic I/O Functions
Information that is present at the subchannel con-
trols how the clear, halt, resume, and start func-
tions are performed. This information is communi-
cated to the program in the subchannel-
information block during the execution of STORE
SUBCHANNEL.

 Subchannel-Information Block

The subchannel-information block (SCHIB) is the
operand of the MODIFY SUBCHANNEL and
STORE SUBCHANNEL instructions. The two
rightmost bits of the SCHIB address are zeros,
designating the SCHIB on a word boundary. The
SCHIB contains three major fields: the path-
management-control word (PMCW), the
subchannel-status word (SCSW), and a model-

| dependent area. When the
| extended-I/O-measurement-block facility is
| installed the SCHIB also contains the
| measurement-block-address field. (Figure 15-1

on page 15-2 shows the format of the PMCW,
and Figure 16-2 on page 16-7 shows the format
of the SCSW.)

STORE SUBCHANNEL is used to store the
| current PMCW, the SCSW, model-dependent
| data, and, when the
| extended-I/O-measurement-block facility is

 Copyright IBM Corp. 1990-2003 15-1

| installed, the measurement-block-address field, for
| the designated subchannel. MODIFY SUB-
| CHANNEL alters certain PMCW fields and, when
| the extended-I/O-measurement-block facility is
| installed, the measurement-block address in the

subchannel. When the program needs to change
the contents of one or more of the PMCW fields,
the normal procedure is to (1) issue STORE SUB-
CHANNEL to obtain the current contents,
(2) perform the required modifications to the

| PMCW field or the measurement-block-address
| field in main storage, and (3) issue MODIFY SUB-

CHANNEL to pass the new information to the sub-
channel. The SCHIB has the following format:

 ┌────────────────────────────────┐
Word �│ │
 │ │
 1│ │
 │ │
 2│ │
 │ Path-Management-Control Word │
 3│ │
 │ │
 4│ │
 │ │
 5│ │
 │ │
 6│ │
 ├────────────────────────────────┤
 7│ │
 │ │
 8│ Subchannel-Status Word │
 │ │
 9│ │
 ├────────────────────────────────┤

| 1�│ Model-Dependent Area / │
| │ Measurement-Block Address │
| 11│ │
| ├────────────────────────────────┤
| 12│ Model-Dependent Area │
| └────────────────────────────────┘

 Path-Management-Control Word
Words 0-6 of the SCHIB contain the path-
management-control word (PMCW). The PMCW
has the format shown in Figure 15-1 when the
subchannel is valid (see “Device Number Valid
(V)” on page 15-4).

The format of the PMCW is as follows:

 ┌───┐
�│ Interruption Parameter │
 ├───┬───┬─────┬─┬──┬──┬─┬─┬─┬───────────────────────────┤
1│�� │ISC│ ��� │E│LM│MM│D│T│V│ Device Number │
 ├───┴───┴─────┼─┴──┴──┴─┴─┴─┼─────────────┬─────────────┤
2│ LPM │ PNOM │ LPUM │ PIM │
 ├─────────────┴─────────────┼─────────────┼─────────────┤
3│ MBI │ POM │ PAM │
 ├─────────────┬─────────────┼─────────────┼─────────────┤
4│ CHPID-� │ CHPID-1 │ CHPID-2 │ CHPID-3 │
 ├─────────────┼─────────────┼─────────────┼─────────────┤
5│ CHPID-4 │ CHPID-5 │ CHPID-6 │ CHPID-7 │
 ├─────────────┼─────────────┼─────────────┼───────┬─┬─┬─┤

| 6│ �������� │ �������� │ �������� │ ����� │F│X│S│
| └─────────────┴─────────────┴─────────────┴───────┴─┴─┴─┘

� 8 16 24 31

Figure 15-1. PMCW Format

Interruption Parameter: Bit positions 0-31 of
word 0 contain the interruption parameter that is
stored as word 1 of the interruption code. The
interruption parameter can be set to any value by
START SUBCHANNEL and MODIFY SUB-
CHANNEL. The initial value of the interruption
parameter is zero.

I/O-Interruption-Subclass Code (ISC): Bits 2-4
of word 1 are an unsigned binary integer, in the
range 0-7, that corresponds to the bit position of
the I/O-interruption subclass-mask bit in control
register 6 of each CPU in the configuration. The
setting of that mask bit in control register 6 of a
CPU controls the recognition of interruption
requests relating to this subchannel by that CPU
(see “Priority of Interruptions” on page 16-4). The
ISC can be set to any value by MODIFY SUB-
CHANNEL. The initial value of the ISC is zero.

Reserved: Bits 0, 1, and 5-7 of word 1 are
reserved and stored as zeros by STORE SUB-
CHANNEL. Bits 0, 1, 6, and 7 must be zeros
when MODIFY SUBCHANNEL is executed; other-
wise, an operand exception is recognized. Bit 5 of
word 1 is ignored when MODIFY SUBCHANNEL
is executed.

Enabled (E): Bit 8 of word 1, when one, indi-
cates that the subchannel is enabled for all I/O
functions. When the E bit is zero, status pre-
sented by the device is not made available to the
program, and I/O instructions other than MODIFY
SUBCHANNEL and STORE SUBCHANNEL that
are executed for the designated subchannel cause
condition code 3 to be set. The E bit can be
either zero or one when MODIFY SUBCHANNEL
is executed; initially, all subchannels are not
enabled; IPL causes the IPL I/O device to become
enabled.

15-2 z/Architecture Principles of Operation

| Limit Mode (LM): When the address-
| limit-checking facility is installed, bits 9 and 10 of

word 1 define the limit mode (LM) of the sub-
channel. The limit mode is used by the channel
subsystem when address-limit checking is invoked
for an I/O operation. (See “Address-Limit
Checking” on page 17-20.) Address-limit
checking is under the control of the address-
limit-checking-control bit that is passed to the sub-
channel in the operation-request block (ORB)
during the execution of START SUBCHANNEL.
(See “Address-Limit-Checking Control (A)” on
page 15-25.) The definitions of the LM bits,
whose values are used during data transfer, are
as follows:

Bit positions 9 and 10 can contain any of the first
three bit combinations shown above when
MODIFY SUBCHANNEL is executed. Specifica-
tion of the reserved bit combination in the operand
causes an operand exception to be recognized
when MODIFY SUBCHANNEL is executed.

| When the address-limit-checking facility is not
| installed, bits 9-10 of word 1 may be set as
| described above; however, they are ignored and
| are not set at the specified subchannel. When
| bits 9-10 are not specified as described above and
| MODIFY SUBCHANNEL is executed, an operand
| exception is recognized.

Measurement-Mode Enable (MM): Bits 11 and
12 of word 1 enable the measurement-
block-update mode and the device-
connect-time-measurement mode, respectively, of
the subchannel. These bits can have any value
when MODIFY SUBCHANNEL is executed; ini-
tially, neither measurement mode is enabled. The
definition of each of these bits is as follows:

The meaning of the measurement-mode-enable
bits (MM), described above, applies when the
timing-facility bit for the subchannel is one. When
the timing-facility bit is zero, the effect of the MM
bits is changed, as described below under “Timing
Facility.” (For more discussion on measurement
modes, see “Measurement-Block Update” on
page 17-3 and “Device-Connect-Time
Measurement” on page 17-10.)

Multipath Mode (D): Bit 13 of word 1, when one,
indicates that the subchannel operates in the
multipath mode when performing an I/O operation

Bit
Measurement-Block-Update Enable:11

0 Initialized value. The subchannel is not
enabled for measurement-block update.
Storing of measurement-block data does not
occur.

1 The subchannel is enabled for
measurement-block update. If the
measurement-block-update mode is active,
measurement data is accumulated in the
measurement block at the time channel-
program execution is completed or sus-
pended at the subchannel or completed at
the device, as appropriate, provided no error
conditions described by subchannel logout
have been detected. (See “Measurement-
Block Update” on page 17-3.) If the
measurement-block-update mode is inactive,
no measurement-block data is stored.

Bit Bit
Function9 10

0 0 Initialized value. No limit checking is
performed for this subchannel.

0 1 Data address must be equal to or
greater than the current address limit.

Bit Device-Connect-Time-Measurement
Enable:12

1 0 Data address must be less than the
current address limit.

0 Initialized value. The subchannel is not
enabled for device-connect-time measure-
ment. Storing of the device-connect-time
interval (DCTI) in the extended-status word
(ESW) does not occur.

1 1 Reserved.

1 The subchannel is enabled for device-
connect-time measurement. If the device-
connect-time-measurement mode is active
and timing facilities are provided for the sub-
channel, the value of the DCTI is stored in
the ESW when TEST SUBCHANNEL is exe-
cuted after channel-program execution is
completed or suspended at the subchannel,
provided no error conditions described by
subchannel logout have been detected. If
the device-connect-time-measurement mode
is inactive, no measurement values are
stored in the ESW.

 Chapter 15. Basic I/O Functions 15-3

or chain of I/O operations. For proper operation in
the multipath mode when more than one channel
path is available for selection, the associated
device must have the dynamic-reconnection
feature installed and must be set up for multipath-
mode operation. During performance of a start
function in the multipath mode, a device is allowed
to request service from the channel subsystem
over any of the channel paths indicated at the
subchannel as being available for selection (see
“Logical-Path Mask (LPM)” and “Path-Available
Mask (PAM)” on page 15-7). Bit 13, when zero,
indicates that the subchannel operates in single-
path mode when performing an I/O operation or
chain of I/O operations. In the single-path mode,
the entire start function is performed by using the
channel path on which the first command of the
I/O operation or chain of I/O operations was
accepted by the device. The D bit can be either
zero or one when MODIFY SUBCHANNEL is exe-
cuted; initially, the subchannel is in the single-path
mode.

Timing Facility (T): Bit 14 of word 1, when one,
indicates that the channel-subsystem-timing facility
is available for the subchannel and is under the
control of the two measurement-mode-enable bits
(MM) and SET CHANNEL MONITOR. Bit 14,
when zero, indicates that the channel-
subsystem-timing facility is not available for the
subchannel. When bit 14 is zero, the START
SUBCHANNEL count is the only measurement
data that can be accumulated in the measurement
block for the subchannel. Storing of the START
SUBCHANNEL count is under the control of bit 11
and SET CHANNEL MONITOR, as described
above under “Measurement Mode Enable.” Simi-
larly, if the T bit is zero, no device-
connect-time-interval (DCTI) values can be meas-
ured for the subchannel. (See “Measurement-
Block Update” on page 17-3 and “Device-
Connect-Time Measurement” on page 17-10.)

Device Number Valid (V): Bit 15 of word 1,
when one, indicates that the device-number field
(see below) contains a valid device number and
that a device associated with this subchannel may
be physically installed. Bit 15, when zero, indi-
cates that the subchannel is not valid, there is no
I/O device currently associated with the sub-
channel, and the contents of all other defined
fields of the SCHIB are unpredictable.

Device Number: Bit positions 16-31 of word 1
contain the binary representation of the four-digit
hexadecimal device number of the device that is
associated with this subchannel. The device
number is a system-unique parameter that is
assigned to the subchannel and the associated
device when the device is installed.

Logical-Path Mask (LPM): Bits 0-7 of word 2
indicate the logical availability of channel paths to
the associated device. Each bit of the LPM corre-
sponds one-for-one, by relative bit position, with a
CHPID located in an associated byte of words 4
and 5 of the SCHIB. A bit set to one means that
the corresponding channel path is logically avail-
able; a zero means the corresponding channel
path is logically not available. When a channel
path is logically not available, the channel sub-
system does not use that channel path to initiate
performance of any clear, halt, resume, or start
function, except when a dedicated allegiance
exists for that channel path. When a dedicated
allegiance exists at the subchannel for a channel
path, the logical availability of the channel path is
ignored whenever a clear, halt, resume, or start
function is performed. (See “Channel-Path
Allegiance” on page 15-11). If the subchannel is
idle, the logical availability of the channel path is
ignored whenever the control unit initiates a
request to present alert status to the channel sub-
system. The logical availability of a channel path
associated with the subchannel can be changed
by setting the corresponding LPM bit in the SCHIB
and then issuing MODIFY SUBCHANNEL, or by
setting the corresponding LPM bit in the ORB and
then issuing START SUBCHANNEL. Initially,
each installed channel path is logically available.

Path-Not-Operational Mask (PNOM): Any of
bits 8-15 of word 2, when one, indicates that a
path-not-operational condition has been recog-
nized on the corresponding channel path. Each
bit of the PNOM corresponds one-for-one, by rela-
tive bit position, with a CHPID located in an asso-
ciated byte of words 4 and 5 of the SCHIB. The
channel subsystem recognizes a path-not-
operational condition when, during an attempted
device selection in order to perform a clear, halt,
resume, or start function, the device associated
with the subchannel appears not operational on a
channel path that is operational for the sub-
channel. When a path-not-operational condition is
recognized, the state of the channel path changes
from operational for the subchannel to not opera-

15-4 z/Architecture Principles of Operation

tional for the subchannel. A channel path is oper-
ational for the subchannel if the associated device
appeared operational on that channel path the last
time the channel subsystem attempted device
selection in order to perform a clear, halt, resume,
or start function. A device appears to be opera-
tional on a channel path when the device
responds to an attempted device selection. A
channel path is not operational for the subchannel
if the associated device appeared not operational
on that channel path the last time the channel
subsystem attempted device selection in order to
perform a clear, halt, resume, or start function.
Any of bits 8-15 of word 2, when zero, indicates
that a path-not-operational condition has not been
recognized on the corresponding channel path.

Initially, each of the eight possible channel paths
associated with each subchannel is considered to
be operational, regardless of whether the respec-
tive channel paths are installed or available; there-
fore, unless a path-not-operational condition is
recognized during initial program loading, the
PMCW, if stored, contains a PNOM of all zeros if
stored prior to the execution of a CLEAR SUB-
CHANNEL, HALT SUBCHANNEL, RESUME SUB-
CHANNEL, or START SUBCHANNEL instruction.

Programming Note: The PNOM indicates those
channel paths for which a path-not-operational
condition has been recognized during the perform-
ance of the most recent clear, halt, resume, or
start function. That is, the PNOM indicates which
of the channel paths associated with the sub-
channel have made a transition from the opera-
tional to the not-operational state for the sub-
channel during the performance of the most recent
clear, halt, resume, or start function. However,
the transition of a channel path from the not-
operational to the operational state for the sub-
channel is indicated in the POM. Therefore, the
POM must be examined in order to determine
whether any of the channel paths that are associ-
ated with a designated subchannel are operational
for the subchannel.

Furthermore, while performing either a start func-
tion or a resume function, the transition of a
channel path from the not-operational to the oper-
ational state for the subchannel is recognized by
the channel subsystem only during the initiation
sequence for the first command specified by the
start function or implied by the resume function.

Therefore, a channel path that is currently not
operational for the subchannel can be used by the
device associated with the subchannel when
reconnecting to the channel subsystem in order to
continue command chaining; however, the channel
subsystem does not indicate a transition of that
channel path from the not-operational to the oper-
ational state for the subchannel in the POM.

┌───────────────────┬─────────────────────────────┐
│ POM Value and │ │
│ Device State │ Value of Specified Bit │
│ before Selection │ Subsequent to Selection │
│ Attempt │ Attempt │
├─────────┬─────────┼─────────┬─────────┬─────────┤
│ Device │ │ │ │ SCSW │
│ State� │ POM │ POM │ PNOM� │ N Bit │
├─────────┼─────────┼─────────┼─────────┼─────────┤
│ OP │ � │ 1 │ � │ � │
│ NOP │ � │ � │ � │ � │
│ OP │ 1 │ 1 │ � │ � │
│ NOP │ 1 │ � │ 1 │ 1� │
├─────────┴─────────┴─────────┴─────────┴─────────┤
│Explanation: │
│ │
│ � Device state as it appears on the │
│ corresponding channel path. │
│ │
│ � Prior to the attempted device selection │
│ during the performance of either a start │
│ function or a resume function while the │
│ subchannel is suspended, the channel │
│ subsystem clears all existing │
│ path-not-operational conditions, if any, │
│ at the designated subchannel. │
│ │
│ � The N bit (bit 15 of word � of the SCSW) is │
│ indicated to the program and the N │
│ condition is cleared at the subchannel when │
│ TEST SUBCHANNEL is executed the next time │
│ the subchannel is status pending for other │
│ than intermediate status alone provided that│
│ it is not also suspended. │
│ │
│ NOP The device is not operational on the │
│ corresponding channel path. │
│ │
│ OP The device is operational on the │
│ corresponding channel path. │
└───┘

Figure 15-2. Resulting POM, PNOM, and N-Bit Values
Subsequent to Selection Attempt

Last-Path-Used Mask (LPUM): Bits 16-23 of
word 2 indicate the channel path that was last
used for communicating or transferring information
between the channel subsystem and the device.
Each bit of the LPUM corresponds one-for-one, by
relative bit position, with a CHPID located in an
associated byte of words 4 and 5 of the SCHIB.
Each bit of the LPUM is stored as zero, except for
the bit that corresponds to the channel path last
used, whenever one of the following occurs:

 Chapter 15. Basic I/O Functions 15-5

1. The first command of a start or resume func-
tion is accepted by the device (see “Activity
Control (AC)” on page 16-13).

2. The device and channel subsystem are
actively communicating when the suspend
function is performed for the channel program
in execution.

3. Status has been accepted from the device
and is recognized as an interruption condition,
or a condition has been recognized that sup-
presses command chaining (see “Interruption
Conditions” on page 16-2).

4. An interface-control-check condition has been
recognized (see “Interface-Control Check” on
page 16-28), and no subchannel-logout infor-
mation is currently present in the subchannel.

The LPUM field of the PMCW contains the most
recent setting. The initial value of the LPUM is
zero.

Path-Installed Mask (PIM): Bits 24-31 of word 2
indicate which of the channel paths 0-7 to the I/O
device are physically installed. The PIM indicates
the validity of the channel-path identifiers (see
below) for those channel paths that are physically
installed. Each bit of the PIM corresponds one-
for-one, by relative bit position, with a CHPID
located in an associated byte of words 4 and 5 of
the SCHIB. A PIM bit stored as one indicates that
the corresponding channel path is installed. A
PIM bit stored as zero indicates that the corre-
sponding channel path is not installed. The PIM
always reflects the full complement of installed
paths to the device, regardless of how the system
is configured. Therefore, some of the channel
paths indicated in the PIM may not be physically
available in that configuration, as indicated by the
bit settings in the path-available mask (see below).
The initial value of the PIM indicates all the phys-
ically installed channel paths to the device.

Measurement-Block Index (MBI): Bits 0-15 of
word 3 form an index value used by the
measurement-block-update facility when the
measurement-block-update mode is active (see
“SET CHANNEL MONITOR” on page 14-12) and
the subchannel is enabled for the mode (see
“Measurement-Mode Enable (MM)” on
page 15-3). When the measurement-block index
is used, five zero bits are appended on the right,
and the result is added to the measurement-
block-origin address designated by SET

CHANNEL MONITOR. The calculated address,
called the measurement-block address, designates
the beginning of a 32-byte storage area where
measurement data is stored. (See “Measurement
Block” on page 17-3.) The MBI can contain any
value when MODIFY SUBCHANNEL is executed;
the initial value is zero.

Path-Operational Mask (POM): Bits 16-23 of
word 3 indicate the last known operational state of
the device on the corresponding channel paths.
Each bit of the POM corresponds one-for-one, by
relative bit position, with a CHPID located in an
associated byte of words 4 and 5 of the SCHIB. If
the associated device appeared operational on a
channel path the last time the channel subsystem
attempted device selection in order to perform a
clear, halt, resume, or start function, then the
channel path is operational for the subchannel,
and the bit corresponding to the channel path in
the POM is one. A device appears to be opera-
tional on a channel path when the device
responds to an attempted device selection. A
channel path is also operational for the sub-
channel if MODIFY SUBCHANNEL is executed
and the bit corresponding to that channel path in
the POM is specified as one.

If the associated device appeared not operational
on a channel path the last time the channel sub-
system attempted device selection in order to
perform a clear, halt, resume, or start function,
then the channel path is not operational for the
subchannel, and the bit corresponding to the
channel path in the POM is zero. A channel path
is also not operational for the subchannel if
MODIFY SUBCHANNEL is executed and the bit
corresponding to that channel path in the POM is
specified as zero.

If the device associated with the subchannel
appears not operational on a channel path that is
operational for the subchannel during an
attempted device selection in order to perform a
clear, halt, resume, or start function, then the
channel subsystem recognizes a path-not-
operational condition. If an SCSW is subse-
quently stored, then bit 15 of word 0 is one, indi-
cating the path-not-operational condition. When a
path-not-operational condition is recognized, the
state of the channel path changes from opera-
tional for the subchannel to not operational for the
subchannel.

15-6 z/Architecture Principles of Operation

When the channel path is not operational for the
subchannel, a path-not-operational condition
cannot be recognized. Moreover, a channel path
that is not operational for the subchannel may be
available for selection; if the channel subsystem
chooses that channel path while performing a
path-management operation, and if, during the
attempted device selection, the device appears to
be operational again on that channel path, then
the state of the channel path changes from not
operational for the subchannel to operational for
the subchannel.

The POM can contain any value when MODIFY
SUBCHANNEL is executed. Initially, each of the
eight possible channel paths associated with each
subchannel is considered to be operational,
regardless of whether the respective channel
paths are installed or available; therefore, unless a
path-not-operational condition is recognized during
initial program loading, the PMCW, if stored, con-
tains a POM of all ones if stored prior to the exe-
cution of a CLEAR SUBCHANNEL, HALT SUB-
CHANNEL, RESUME SUBCHANNEL, or START
SUBCHANNEL instruction.

Path-Available Mask (PAM): Bits 24-31 of word
3 indicate the physical availability of installed
channel paths. Each bit of the PAM corresponds
one-for-one, by relative bit position, with a CHPID
located in an associated byte of words 4 and 5 of
the SCHIB. A PAM bit of one indicates that the
corresponding channel path is physically available
for use in accessing the device. A PAM bit of
zero indicates the channel path is not physically
available for use in accessing the device. When a
channel path is not physically available, it may,
depending on the model and the extent of failure,
be used during performance of the reset-
channel-path function. A channel path that is
physically available may become not physically
available as a result of reconfiguring the system,
or this may occur as a result of the performance
of the channel-path-reset function. The initial
value of the PAM reflects the set of channel paths
by which the I/O device is physically accessible at
the time of initialization.

Note: The change in the availability of a channel
path affects all subchannels having access to that
channel path. Whenever the setting of a PAM bit
is referred to in conjunction with the availability
status of a channel path, for brevity, reference is
made in this chapter to a single PAM bit instead of
to the respective PAM bits in all of the affected
subchannels.

Channel-Path Identifiers (CHPIDs): Words 4
and 5 contain eight one-byte channel-path identi-
fiers corresponding to channel paths 0-7 of the
PIM. A CHPID is valid if the corresponding PIM
bit is one. Each valid CHPID contains the identi-
fier of a physical channel path to a control unit by
which the associated I/O device may be accessed.
A unique CHPID is assigned to each physical
channel path in the system.

Different devices that are accessible by the same
physical channel path have, in their respective
subchannels, the same CHPID value. The CHPID
value may, however, appear in each subchannel
in different locations in the CHPID fields 0-7.

Subchannels that share an identical set of channel
paths have the same corresponding PIM bits set
to ones. The channel-path identifiers (CHPIDs)
for these channel paths are the same and occupy
the same respective locations in each SCHIB.

| Reserved: Bits 0-28 of word 6 are reserved and
are stored as zeros by STORE SUBCHANNEL.
They must be zeros when MODIFY SUB-
CHANNEL is executed; otherwise, an operand
exception may be recognized.

| Measurement Block Format Control (F): when
| the extended-measurement-block facility is
| installed, bit 29 of word 6 specifies the format of
| the measurement block to be stored when the
| subchannel is enabled for the measurement-
| block-update mode, and measurement-
| block-update mode is active. The bit can contain
| any value when MODIFY SUBCHANNEL is exe-
| cuted. The initial value is zero. The definition of
| the bit is as follows:

 Chapter 15. Basic I/O Functions 15-7

| If the extended-measurement-block facility is not
| installed, bit 29 of word 6 of the SCHIB operand
| must be zero when MODIFY SUBCHANNEL is
| executed; otherwise, an operand exception is
| recognized.

| Extended Measurement Word Mode Enable
| (X): When the extended-measurement-word
| facility is installed and enabled, bit 30 of word 6
| enables the extended-measurement-word mode
| for the subchannel. Initially, the extended-
| measurement-word mode is not enabled. The
| definition of the bit is as follows:

| If the extended-measurement-word facility is not
| installed, or is installed but is not enabled, bit 30
| of word 6 of the SCHIB operand must be zero
| when MODIFY SUBCHANNEL is executed; other-
| wise, an operand exception is recognized.

Bit
Measurement-Block-Format Control:

Concurrent Sense (S): Bit 31 of word 6, when
one, indicates that the subchannel is in the
concurrent-sense mode. When the subchannel is
in concurrent-sense mode, whenever the sub-
channel becomes status pending with alert status,
and the status byte accepted from the device con-
tains the unit-check indication, then the channel
subsystem may attempt to retrieve sense informa-
tion from the associated device and place that
sense information in the extended-control word.

If the concurrent-sense facility is not installed, bit
31 of word 6 of the SCHIB operand must be zero
when MODIFY SUBCHANNEL is executed; other-
wise, an operand exception is recognized.

 Subchannel-Status Word
Words 7-9 of the SCHIB contain a copy of the
SCSW. The format of the SCSW is described in
“Subchannel-Status Word” on page 16-6. The
SCSW is stored by the execution of either STORE
SUBCHANNEL or TEST SUBCHANNEL (see
“STORE SUBCHANNEL” on page 14-17 and
“TEST SUBCHANNEL” on page 14-20).

| Model-Dependent Area/Measurement
| Block Address
| When the extended-I/O-measurement-block facility
| is not installed, words 10-12 of the SCHIB contain
| model-dependent information.

| When the extended-I/O-measurement-block facility
| is installed, words 10-11 are defined as the
| measurement-block-address field. Word 12 con-
| tains model-dependent information.

| When (1) the measurement-block-update mode is
| active (see “SET CHANNEL MONITOR” on
| page 14-12), (2) the subchannel is enabled for the
| mode (see “Measurement-Mode Enable (MM)” on
| page 15-3), and (3) the format-1-measurement
| block is specified (see “Measurement Block
| Format Control (F)” on page 15-7) at the sub-
| channel, the measurement-block-address field
| contains the absolute storage address of the
| measurement block used by the measurement-
| block-update facility. The measurement-block
| address designates the beginning of a 64-byte
| storage area and must be designated on 64-byte
| boundary. The initial value of the measurement
| block address is zero.

29
| 0| Format-0 measurement block. Specifies that
| a format-0 measurement block is used when
| performing a measurement-block update for
| the subchannel. The address of the
| 32-byte measurement block is obtained
| using the MBI provided by MSCH in con-
| junction with the MBO provided by SCHM.
| 1| Format-1 measurement block. Specifies that
| a format-1 measurement block is used when
| performing a measurement-block update for
| the subchannel. The address of the 64-byte
| format-1 measurement block is provided by
| MSCH.

Bit Extended-Measurement-Word-Mode
Enable:30

| 0| Initialized value. The subchannel is not
| enabled for extended-measurement-word
| mode. Storing of the extended-measurement
| word does not occur.
| 1| The subchannel is enabled for extended-
| measurement-word mode. Measurement
| data is stored in the extended-measurement
| word at the time channel-program execution
| is completed or suspended at the sub-
| channel or completed at the device, as
| appropriate, provided no error conditions
| described by subchannel logout have been
| detected.

15-8 z/Architecture Principles of Operation

Summary of Modifiable Fields
Figure 15-3 on page 15-9 lists the initial settings
for fields in a subchannel whose device-
number-valid bit is one and indicates what modi-
fies the fields.

All of the PMCW fields contain meaningful infor-
mation when STORE SUBCHANNEL is executed

and the designated subchannel is idle. Sub-
channel fields that the channel subsystem does
not modify contain valid information whenever
STORE SUBCHANNEL is executed, provided that
the device-number-valid bit is one. The validity of
the subchannel fields that are modifiable by the
channel subsystem depends on the state of the
subchannel at the time STORE SUBCHANNEL is
executed.

┌────────────────────────────────┬───────────────────┬──────────────────┬───────────┐
│ │ │ │ Modified │
│ │ │ Program Modifies │ by Channel│
│ Subchannel Field │ Initial Value� │ by Executing │ Subsystem�│
├────────────────────────────────┼───────────────────┼──────────────────┼───────────┤
│Interruption parameter │ Zeros │ MSCH,SSCH │ No │
│ │ │ │ │
│I/O-interruption-subclass code │ Zeros │ MSCH │ No │
│ │ │ │ │
│Enabled (E) │ Zero │ MSCH │ No │
│ │ │ │ │

| │Limit mode (LM) │ Zeros │ MSCH% │ No │
| │ │ │ │ │

│Measurement mode (MM) │ Zeros │ MSCH │ Yes� │
│ │ │ │ │
│Multipath mode (D) │ Zero │ MSCH │ No │
│ │ │ │ │
│Timing facility (T) │Installed value� │ None │ No │
│ │ │ │ │
│Device number valid (V) │Installed value� │ None │ No │
│ │ │ │ │
│Device number │Installed value� │ None │ No │
│ │ │ │ │
│Logical-path mask (LPM) │Path-installed-mask│ MSCH,SSCH │ No │
│ │value │ │ │
│ │ │ │ │
│Path-not-operational mask (PNOM)│ Zeros │ CSCH,SSCH,RSCH�│ Yes │
│ │ │ │ │
│Last-path-used mask (LPUM) │ Zeros │ CSCH │ Yes │
│ │ │ │ │
│Path-installed mask (PIM) │Installed value� │ None │ No │
│ │ │ │ │
│Measurement-block index (MBI) │ Zeros │ MSCH │ No │
│ │ │ │ │
│Path-operational mask (POM) │ Ones │ CSCH,MSCH,RSCH�│ Yes │
│ │ │ │ │
│Path-available mask (PAM) │Installed values� �│ None │ Yes� │
│ │ │ │ │
│Channel-path ID �-7 (CHPID) │Installed value� │ None │ No │
│ │ │ │ │
│Concurrent sense (S) │ Zero │ MSCH │ No │
│ │ │ │ │
│Subchannel-status word (SCSW) │ Zero │ TSCH │ Yes │
│ │ │ │ │
│Model-dependent area │ � │ None │ � │
│ │ │ │ │

| │Measurement-block-format control│ Zero │ MSCH │ No │
| │ │ │ │ │
| │Extended-measurement-word enable│ Zero │ MSCH │ No │
| │ │ │ │ │
| │Measurement-block Address │ Zeros │ MSCH │ No │

└────────────────────────────────┴───────────────────┴──────────────────┴───────────┘

Figure 15-3 (Part 1 of 2). Modification of Subchannel Fields

 Chapter 15. Basic I/O Functions 15-9

┌───┐
│Explanation: │
│ │
│ � Model-dependent. │
│ │
│ � These fields are not meaningful if the subchannel is not valid. │
│ Initialization of a subchannel is performed when I/O-system reset occurs. │
│ (See the section “I/O-System Reset” in Chapter 17, “I/O Support │
│ Functions.”) One or more of the installed-value parameters that are │
│ unmodifiable by the program may be set when the subchannel is idle. In │
│ this case, all the program-modifiable fields are set to their initialized │
│ values, and the program is notified of such a change by a channel report. │
│ (See the section “Channel-Report Word” in Chapter 17, “I/O │
│ Support Functions.”) │
│ � Subchannel fields that are not normally modifiable by the channel subsystem│
│ may be modified as a result of dynamic configuration changes or as a │
│ result of external actions. When this occurs, the program is notified │
│ of the change by a channel report that is made pending at the time of the │
│ change. │
│ � When any of the following error conditions associated with the │
│ measurement-block-update mode is detected, the measurement-block-update │
│ mode is disabled by the channel subsystem (bit 11 of word 1 of the SCHIB is│
│ zero) in the affected subchannel. The device-connect-time-measurement- │
│ enable bit (bit 12 of word 1 of the SCHIB) is never modified by the channel│
│ subsystem. │
│ Measurement program check │
│ Measurement protection check │
│ Measurement data check │
│ Measurement key check │
│ � This information is entered when the channel-subsystem configuration is │
│ established. │
│ � The mask is modified by the resume function only when the subchannel is in │
│ the suspended state at the time RESUME SUBCHANNEL is executed. │
│ � The channel subsystem may modify the PAM to reflect changes in the system │
│ configuration caused by partitioning or unpartitioning channel paths │
│ because of reconfiguration or permanent failure of part of the I/O system. │

| │ % The limit mode bits are modified by MSCH only when the instruction │
| │ is executed when the address-limit-checking facility is installed and │
| │ the CPC is operating in basic mode. │

└───┘

Figure 15-3 (Part 2 of 2). Modification of Subchannel Fields

15-10 z/Architecture Principles of Operation

Programming Notes:

1. System performance may be degraded if the
LPM is not used to make channel paths for
which a path-not-operational condition has
been indicated in the PNOM logically not
available.

2. If, during the performance of a start function, a
channel path becomes not physically available
because a channel-path failure has been
recognized, continued performance of the start
function may be precluded. That is, the
program may or may not be notified, and the
subchannel may remain in the subchannel-
and-device-active state until cleared by the
performance of the clear function.

3. If the same MBI is placed in more than one
subchannel by the program, the channel-
subsystem-monitoring facility updates the
same locations with measurement data
relating to more than one subchannel. In this
case, the values stored in the measurement
data are unpredictable. (See “Measurement-
Block Update” on page 17-3.)

4. Modification of the I/O configuration (reconfig-
uration) may be accomplished in various ways
depending on the model. If the reconfigura-
tion procedure affects the physical availability
of a channel path, then any change in avail-
ability can be detected by executing STORE
SUBCHANNEL for a subchannel that has
access to the channel path and by subse-
quently examining the PAM bits of the SCHIB.

5. The definitions of the PNOM, POM, and N bit
are such that a path-not-operational condition
is reported to the program only the first time
the condition is detected by the channel sub-
system after the corresponding POM bit is set
to one.

For example, if the POM bit for every channel
path available for selection is one and the
device appears not operational on all corre-
sponding channel paths while the channel
subsystem is attempting to initiate a start func-
tion at the device, the channel subsystem
makes the subchannel status pending, with
deferred condition code 3 and with the N bit
stored as one. The PNOM in the SCHIB indi-
cates the channel path or channel paths that
appeared not operational, for which the corre-

sponding POM bits have been set to zeros.
The next START SUBCHANNEL causes the
channel subsystem to again attempt device
selection by choosing a channel path from
among all of the channel paths that are avail-
able for selection. If device selection is not
successful and all channel paths available for
selection have again been chosen, deferred
condition code 3 is set, but the N bit in the
SCSW is zero. The POM contains zeros in at
least those bit positions that correspond to the
channel paths that are available for selection.
(See “Channel-Path Availability” on
page 15-13 for a description of the term
“available for selection.”) When the N bit in the
SCSW is zero, the PNOM is also zero.

6. If the program is to detect path-not-operational
conditions, the PNOM should be inspected fol-
lowing the execution of TEST SUBCHANNEL
(which results in the setting of condition code
zero and the valid storing of the N bit as one)
and preceding the performance of another
start, resume, halt, or clear function at the
subchannel.

 Channel-Path Allegiance
The channel subsystem establishes allegiance
conditions between subchannels and channel
paths. The kind of allegiance established at a
subchannel for a channel path or set of channel
paths depends upon the state of the subchannel,
the device, and the information, if any, transferred
between the channel subsystem and device. The
way in which path management is handled during
the performance of a clear, halt, resume, or start
function is determined by the kind of allegiance, if
any, currently recognized between a subchannel
and a channel path.

Performing the clear function at a subchannel
clears any currently existing allegiance condition in
the subchannel for all channel paths.

Performing the reset-channel-path function clears
all currently existing allegiances for that channel
path in all subchannels.

When a channel path becomes not physically
available, all internal indications of prior allegiance
conditions are cleared in all subchannels having
access to the designated channel path.

 Chapter 15. Basic I/O Functions 15-11

 Working Allegiance

A subchannel has a working allegiance for a
channel path when the subchannel becomes
device active on that channel path. Once a
working allegiance is established, the channel
subsystem maintains the working allegiance at the
subchannel for the channel path until either the
subchannel is no longer device active or a dedi-
cated allegiance is recognized, whichever occurs
earlier. Unless a dedicated allegiance is recog-
nized, a working allegiance for a channel path is
extended to the set of channel paths that are
available for selection if the device is specified to
be operating in the multipath mode (that is, the
multipath-mode bit is stored as one in the SCHIB).
Otherwise, the working allegiance remains only for
that channel path over which the start function
was initiated.

Once a working allegiance is established for a
channel path or set of channel paths, the working
allegiance is not changed until the subchannel is
no longer device active or until a dedicated alle-
giance is established. If the subchannel is oper-
ating in the single-path mode, a working alle-
giance is maintained only for a single path.

While a working allegiance exists at a subchannel,
an active allegiance can occur only for a channel
path for which the working allegiance is being
maintained, unless the device is specified as oper-
ating in the multipath mode. When the device is
specified as operating in the multipath mode, an
active allegiance may also occur for a channel
path that is not available for selection if the pres-
entation of status by the device on that channel
path causes an alert interruption condition to be
recognized.

A working allegiance is cleared in any subchannel
having access to a channel path if the channel
path becomes not physically available.

 Active Allegiance

A subchannel has an active allegiance established
for a channel path no later than when active com-
munication has been initiated on that channel path
with an I/O device. The subchannel can have an
active allegiance to only one channel path at a
time. While the subchannel has an active alle-
giance for a channel path, the channel subsystem

does not actively communicate with that device on
any other channel path. When the channel sub-
system accepts a no-longer-busy indication from
the device that does not cause an interruption
condition, this status does not constitute the initi-
ation of active communication. An active alle-
giance at a subchannel for a channel path is ter-
minated when the channel subsystem is no longer
actively communicating with the I/O device on that
channel path.

A working allegiance can become an active alle-
giance.

 Dedicated Allegiance

If a channel path is physically available (that is, if
the corresponding PAM bit is one), a dedicated
allegiance may be recognized for that channel
path. If a channel path is not physically available,
a dedicated allegiance cannot be recognized for
the corresponding channel path. The channel
subsystem establishes a dedicated allegiance at
the subchannel for a channel path when (1) the
subchannel becomes status pending with alert
status, and device status containing the unit-check
indication is present but (2) concurrent-sense
information is not present at the subchannel. A
dedicated allegiance is maintained until the sub-
channel is no longer start pending (unless it
becomes suspended) or resume pending following
performance of the next start function, clear func-
tion, or channel-path-reset function or the next
resume function if applicable. If the subchannel
becomes suspended, the dedicated allegiance
remains until the resume function is initiated and
the subchannel is no longer resume pending.
Unless a clear or channel-path-reset function is
performed, the subchannel establishes a working
allegiance when the dedicated allegiance ends.
This occurs when the subchannel becomes device
active. While a dedicated allegiance exists at a
subchannel for a channel path, only that channel
path is available for selection until the dedicated-
allegiance condition is cleared.

A dedicated allegiance can become an active alle-
giance. While a dedicated allegiance exists, an
active allegiance can only occur for the same
channel path.

A currently existing dedicated allegiance is cleared
at any subchannel having access to a channel
path when the channel path becomes not phys-

15-12 z/Architecture Principles of Operation

ically available or whenever the device appears
not operational on the channel path for which the
dedicated allegiance exists.

 Channel-Path Availability

When a channel path is not physically available,
the channel subsystem does not use the channel
path to perform any of the basic I/O functions
except, in some cases, the channel-path-reset
function and does not respond to any control-unit-
initiated requests on that same channel path. If a
channel path is not physically available, the condi-
tion is indicated by the corresponding path-
available-mask PAM bit being zero when STORE
SUBCHANNEL is executed (see “Path-Available
Mask (PAM)” on page 15-7). Furthermore, if the
channel path is not physically available for the
subchannel designated by STORE SUB-
CHANNEL, then it is not physically available for
any subchannel that has a device which is acces-
sible by that channel path.

Unless a dedicated allegiance exists at a sub-
channel for the channel path, a channel path
becomes available for selection if it is logically
available and physically available, as indicated by
the bits in the LPM and PAM corresponding to the
channel path being stored as ones when STORE
SUBCHANNEL is executed. If a dedicated alle-
giance exists at a subchannel for the channel
path, only that channel path is available for
selection, and the setting of the corresponding
LPM bit is ignored. If the channel path is currently
being used and a dedicated allegiance exists at
the subchannel for the channel path, selection of
the device is delayed until the channel path is no
longer being used.

The availability status of the eight logical paths to
the associated device described in Figure 15-4 is
determined by the hierarchical arrangement of the
corresponding bit values contained in the PIM,
PAM, and LPM and by existing conditions, if any,
recognized by the channel subsystem.

┌───────────┬──────────┬──────────────────────────┐
│ Value of │ │ │
│ Bit 'n' │ Channel- │ │
├───┬───┬───┤ Path │ │
│PIM│PAM│LPM│Condition�│ Channel-Path State │
├───┼───┼───┼──────────┼──────────────────────────┤
│ � │ ��│ - │ X │ Not installed │
├───┼───┼───┼──────────┼──────────────────────────┤
│ 1 │ � │ - │ X │ Not physically available │
├───┼───┼───┼──────────┼──────────────────────────┤
│ 1 │ 1 │ ��│ X │ Not logically available │
├───┼───┼───┼──────────┼──────────────────────────┤
│ 1 │ 1 │ 1�│ Active │ Available for selection� │
├───┼───┼───┼──────────┼──────────────────────────┤
│ 1 │ 1 │ 1 │ Inactive │ Available for selection │
├───┴───┴───┴──────────┴──────────────────────────┤
│Explanation: │
│ │
│ - Bit value is not meaningful. │
│ │
│ � If the channel path is recognized as being │
│ used in active communication with a device, │
│ the channel-path condition is described as │
│ active. Otherwise, its condition is described│
│ as inactive. │
│ │
│ � A PAM bit cannot have the value one when the │
│ corresponding PIM bit has the value zero. │
│ │
│ � If a dedicated allegiance exists to the │
│ channel path at the subchannel, the state of │
│ the bit is ignored, and the channel path is │
│ considered to be available for selection. │
│ │
│ � The channel path may appear to be active when │
│ a channel-path-terminal condition has been │
│ recognized. │
│ │
│ X Condition is not meaningful. │
└───┘

Figure 15-4. Path Condition and Path-Availability
Status for PIM, PAM, and LPM Values

 Control-Unit Type

In “Clear Function” on page 15-14, “Halt Function”
on page 15-15, and “Start Function and Resume
Function” on page 15-18, reference is made to
type-1, type-2, and type-3 control units. For a
description of these control-unit types, see the
System Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
OEMI, GA22-6974. For the purposes of this defi-
nition, all control units attaching to a serial-I/O
interface are considered type-2 control units.

 Chapter 15. Basic I/O Functions 15-13

 Clear Function
Subsequent to the execution of CLEAR SUB-
CHANNEL, the channel subsystem performs the
clear function. Performance of the clear function
consists in (1) performing a path-management
operation, (2) modifying fields at the subchannel,
(3) issuing the clear signal to the associated
device, and (4) causing the subchannel to be
made status pending, indicating the completion of
the clear function.

Clear-Function Path Management

A path-management operation is performed as
part of the clear function in order to examine
channel-path conditions for the associated sub-
channel and to attempt to choose an available
channel path on which the clear signal can be
issued to the associated device.

Channel-path conditions are examined in the fol-
lowing order:

1. If the channel subsystem is actively communi-
cating or attempting to establish active com-
munication with the device to be signaled, the
channel path that is in use is chosen.

2. If the channel subsystem is in the process of
accepting a no-longer-busy indication (which
will not cause an interruption condition to be
recognized) from the device to be signaled,
and the associated subchannel has no alle-
giance to any channel path, the channel path
that is in use is chosen.

3. If the associated subchannel has a dedicated
allegiance for a channel path, that channel
path is chosen.

4. If the associated subchannel has a working
allegiance for one or more channel paths, one
of those channel paths is chosen.

5. If the associated subchannel has no alle-
giance for any channel path, if a last-used
channel path is indicated, and if that channel
path is available for selection, that channel
path is chosen. If that channel path is not
available for selection, either no channel path
is chosen or a channel path is chosen from
the set of channel paths, if any, that are avail-
able for selection (as though no last-used
channel path were indicated).

6. If the associated subchannel has no alle-
giance for any channel path, if no last-used
channel path is indicated, and if there exist
one or more channel paths that are available
for selection, one of those channel paths is
chosen.

If none of the channel-path conditions listed above
apply, no channel path is chosen.

For item 4, for item 5 under the specified condi-
tions, and for item 6, the channel subsystem
chooses a channel path from a set of channel
paths. In these cases, the channel subsystem
may attempt to choose a channel path, provided
that the following conditions do not apply:

1. A channel-path-terminal condition exists for
the channel path.

2. Another subchannel has an active allegiance
for the channel path.

3. The device to be signaled is attached to a
type-1 control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle-
giance and primary status has been accepted
by that subchannel.

4. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

 Clear-Function Subchannel
Modification

Path-management-control indications at the sub-
channel are modified during performance of the
clear function. Effectively, this modification occurs
after the attempt to choose a channel path, but
prior to the attempt to select the device to issue
the clear signal. The path-management-control
indications that are modified are as follows:

1. The state of all eight possible channel paths
at the subchannel is set to operational for the
subchannel.

2. The last-path-used indication is reset to indi-
cate no last-used channel path.

3. Path-not-operational conditions, if any, are
reset.

15-14 z/Architecture Principles of Operation

Clear-Function Signaling and
Completion

Subsequent to the attempt to choose a channel
path and the modification of the path-
management-control fields, the channel sub-
system, if conditions allow, attempts to select the
device to issue the clear signal. (See “Clear
Signal” on page 17-12.) Conditions associated
with the subchannel and the chosen channel path,
if any, affect (1) whether an attempt is made to
issue the clear signal, and (2) whether the attempt
to issue the clear signal is successful. Inde-
pendent of these conditions, the subchannel is
subsequently set status pending, and the perform-
ance of the clear function is complete. These
conditions and their effect on the clear function
are described as follows:

No Attempt Is Made to Issue the Clear Signal:
The channel subsystem does not attempt to issue
the clear signal to the device if any of the fol-
lowing conditions exist:

1. No channel path was chosen. (See “Clear-
Function Path Management” on page 15-14.)

2. The chosen channel path is no longer avail-
able for selection.

3. A channel-path-terminal condition exists for
the chosen channel path.

4. The chosen channel path is currently being
used to actively communicate with a different
device.

5. The device to be signaled is attached to a
type-1 control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle-
giance and primary status has been accepted
by that subchannel.

6. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

If any of the conditions above exist, the sub-
channel remains clear pending and is set status
pending, and the performance of the clear function
is complete.

The Attempt to Issue the Clear Signal Is Not
Successful: When the channel subsystem
attempts to issue the clear signal to the device,
the attempt may not be successful because of the
following conditions:

1. The control unit or device signals a busy con-
dition when the channel subsystem attempts
to select the device to issue the clear signal.

2. A path-not-operational condition is recognized
when the channel subsystem attempts to
select the device to issue the clear signal.

3. An error condition is encountered when the
channel subsystem attempts to issue the clear
signal.

If any of the conditions above exists and the
channel subsystem either determines that the
attempt to issue the clear signal was not suc-
cessful or cannot determine whether the attempt
was successful, the subchannel remains clear
pending and is set status pending, and the per-
formance of the clear function is complete.

The Attempt to Issue the Clear Signal Is Suc-
cessful: When the channel subsystem deter-
mines that the attempt to issue the clear signal
was successful, the subchannel is no longer clear
pending and is set status pending, and the per-
formance of the clear function is complete. When
the subchannel becomes status pending, the I/O
operation, if any, with the associated device has
been terminated.

Programming Note: Subsequent to the perform-
ance of the clear function, any nonzero status,
except control unit end alone, that is presented to
the channel subsystem by the device is passed to
the program as unsolicited alert status. Unsolic-
ited status consisting of control unit end alone or
zero status is not presented to the program.

 Halt Function
Subsequent to the execution of HALT SUB-
CHANNEL, the channel subsystem performs the
halt function. Performance of the halt function
consists of (1) performing a path-management
operation, (2) issuing the halt signal to the associ-
ated device, and (3) causing the subchannel to be
made status pending, indicating the completion of
the halt function.

 Chapter 15. Basic I/O Functions 15-15

Halt-Function Path Management

A path-management operation is performed as
part of the halt function to examine channel-path
conditions for the associated subchannel and to
attempt to choose a channel path on which the
halt signal can be issued to the associated device.

Channel-path conditions are examined in the fol-
lowing order:

1. If the channel subsystem is actively communi-
cating or attempting to establish active com-
munication with the device to be signaled, the
channel path that is in use is chosen.

2. If the channel subsystem is in the process of
accepting a no-longer-busy indication (which
will not cause an interruption condition to be
recognized) from the device to be signaled,
and the associated subchannel has no alle-
giance to any channel path, the channel path
that is in use is chosen.

3. If the associated subchannel has a dedicated
allegiance for a channel path, that channel
path is chosen.

4. If the associated subchannel has a working
allegiance for one or more channel paths, one
of those channel paths is chosen.

5. If the associated subchannel has no alle-
giance for any channel path, if a last-used
channel path is indicated, and if that channel
path is available for selection, that channel
path is chosen. If that channel path is not
available for selection, either no channel path
is chosen or a channel path is chosen from
the set of channel paths, if any, that are avail-
able for selection (as though no last-used
channel path were indicated).

6. If the associated subchannel has no alle-
giance for any channel path, if no last-used
channel path is indicated, and if there exist
one or more channel paths that are available
for selection, one of those channel paths is
chosen.

If none of the channel-path conditions listed above
apply, no channel path is chosen.

For item 4, for item 5 under the specified condi-
tions, and for item 6, the channel subsystem
chooses a channel path from a set of channel
paths. In these cases, the channel subsystem

may attempt to choose a channel path for which
the following conditions do not apply:

1. A channel-path-terminal condition exists for
the channel path.

2. Another subchannel has an active allegiance
for the channel path.

3. The device to be signaled is attached to a
type-1 control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle-
giance and primary status has been accepted
by that subchannel.

4. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

Halt-Function Signaling and
Completion

Subsequent to the attempt to choose a channel
path, the channel subsystem, if conditions allow,
attempts to select the device to issue the halt
signal. (See “Halt Signal” on page 17-12.) Con-
ditions associated with the subchannel and the
chosen channel path, if any, affect (1) whether an
attempt is made to issue the halt signal,
(2) whether the attempt to issue the halt signal is
successful, and (3) whether the subchannel is
made status pending to complete the halt function.
These conditions and their effect on the halt func-
tion are described as follows:

No Attempt Is Made to Issue the Halt Signal:
The channel subsystem does not attempt to issue
the halt signal to the device if any of the following
conditions exist:

1. No channel path was chosen. (See “Halt-
Function Path Management.”)

2. The chosen channel path is no longer avail-
able for selection.

3. A channel-path-terminal condition exists for
the chosen channel path.

4. The associated subchannel is status pending
with other than intermediate status alone.

5. The device to be signaled is attached to a
type-1 control unit, and the subchannel for

15-16 z/Architecture Principles of Operation

another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle-
giance and primary status has been accepted
by that subchannel.

6. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

If the conditions described in items 3 on
page 15-16, 5 on page 15-16, or 6 exist, the
associated subchannel remains halt pending until
those conditions no longer exist. When the condi-
tions no longer exist (for the channel-path-terminal
condition, when the condition no longer exists as a
result of executing RESET CHANNEL PATH), the
channel subsystem attempts to issue the halt
signal to the device.

If any of the remaining conditions above exist, the
subchannel remains halt pending and is set status
pending, and the halt function is complete.

The Attempt to Issue the Halt Signal Is Not
Successful: When the channel subsystem
attempts to issue the halt signal to the device, the
attempt may not be successful because of the fol-
lowing conditions:

1. The control unit or device signals a busy con-
dition when the channel subsystem attempts
to select the device to issue the halt signal.

2. A path-not-operational condition is recognized
when the channel subsystem attempts to
select the device to issue the halt signal.

3. An error condition is encountered when the
channel subsystem attempts to issue the halt
signal.

If the control unit or device signals a busy condi-
tion (item 1), the subchannel remains halt pending
until the internal indication of busy is reset. When
this event occurs, the channel subsystem again
attempts to issue the halt signal to the device.

If any of the remaining conditions above exists
and the channel subsystem either determines that
the attempt to issue the halt signal was not suc-
cessful or cannot determine whether the attempt
was successful, then the subchannel remains halt
pending and is set status pending, and the halt
function is complete.

The Attempt to Issue the Halt Signal Is Suc-
cessful: When the channel subsystem deter-
mines that the attempt to issue the halt signal was
successful and ending status, if appropriate, has
been received at the subchannel, the subchannel
is no longer halt pending and is set status
pending, and the halt function is complete. When
the subchannel becomes status pending, the I/O
operation, if any, with the associated device has
been terminated. The conditions that affect the
receipt of ending status at the subchannel, and
the effect of the halt signal at the device are
described in the following discussion.

When the subchannel is subchannel-and-device
active or only device active during the perform-
ance of the halt function, the state continues until
the subchannel is made status pending because
(1) the device has provided ending status or
(2) the channel subsystem has determined that
ending status is unavailable. When the sub-
channel is idle, start pending, start pending and
resume pending, suspended, or suspended and
resume pending, or when the halt signal is issued
during command chaining after the receipt of
device end but before the next command is trans-
ferred to the device, no operation is in progress at
the device, and therefore no status is generated
by the device as a result of receiving the halt
signal. When the subchannel is neither sub-
channel active, nor status pending with interme-
diate status, and no errors are detected during the
attempt to issue the halt signal to the device, an
interruption condition indicating status pending
alone is generated after the halt signal is issued.

The effect of the halt signal at the device depends
partially on the type of device and its state. The
effect of the halt signal on a device that is not
active or that is performing a mechanical operation
in which data is not transferred across the channel
path, such as rewinding tape or positioning a disk-
access mechanism, depends upon the control-unit
or device model. If the device is performing a
type of operation that is unpredictable in duration
or in which data is transferred across the channel
path, the control unit interprets the signal as one
to terminate the operation. Pending status condi-
tions at the device are not reset. When the
control unit recognizes the halt signal, it imme-
diately ceases all communication with the channel
subsystem until it has reached the normal ending
point. The control unit then requests selection by

 Chapter 15. Basic I/O Functions 15-17

the channel subsystem to present any generated
status.

If the subchannel is involved in the data-transfer
portion of an I/O operation, data transfer is termi-
nated during the performance of the halt function,
and the device is logically disconnected from the
channel path. If the halt function is addressed to
a subchannel performing a chain of I/O operations
and the device has already provided channel end
for the current I/O operation, the channel sub-
system causes the device to be disconnected and
command chaining or command retry to be sup-
pressed. If the subchannel is performing a chain
of I/O operations with the device and the halt
signal is issued during command chaining at a
point after the receipt of device end for the pre-
vious I/O operation but before the next command
is transferred to the device, the subchannel is
made status pending with primary and secondary
status immediately after the halt signal is issued.
The device-status field of the SCSW contains
zeros in this case. If the halt function is
addressed to a subchannel that is start pending
and the halt-pending condition is recognized
before initiation of the start function, initiation of
the start function is not attempted, and the sub-
channel becomes status pending after the device
has been signaled.

When the subchannel is not performing an I/O
operation with the associated device, the device is
selected, and an attempt is made to issue the halt
signal as the device responds. If the subchannel
is in the device-active state, the subchannel does
not become status pending until it receives the
device-end status from the halted device. If the
subchannel is neither subchannel-and-device
active nor device active, the subchannel becomes
status pending immediately after selecting the
device and issuing the halt signal. The SCSW for
the latter case has the status-pending bit set to
one (see “Status-Pending (Bit 31)” on
page 16-18).

The termination of an I/O operation by performing
the halt function may result in two distinct inter-
ruption conditions.

The first interruption condition occurs when the
device generates the channel-end condition. The
channel subsystem handles this condition as it
would any other interruption condition from the
device, except that the command address in the

associated SCSW designates the point at which
the I/O operation is terminated, and the
subchannel-status bits may reflect unusual condi-
tions that were detected. If the halt signal was
issued before all data designated for the operation
had been transferred, incorrect length is indicated,
subject to the control of the SLI flag in the current
CCW. The value in the count field of the associ-
ated SCSW is unpredictable.

The second interruption condition occurs if
device-end status was not presented with the
channel-end interruption condition. In this situ-
ation, the subchannel-key, command-address, and
count fields of the associated SCSW are not
meaningful.

When HALT SUBCHANNEL terminates an I/O
operation, the method of termination differs from
that used upon exhaustion of count or upon
detection of programming errors to the extent that
termination by HALT SUBCHANNEL is not contin-
gent on the receipt of a service request from the
associated device.

Programming Notes:

1. When, after an operation is terminated by
HALT SUBCHANNEL, the subchannel is
status pending with primary, primary and sec-
ondary, or secondary status, the extent of
data transferred as described by the count
field is unpredictable.

2. When the path that is chosen by the path-
management operation has a channel-path-
terminal condition associated with it, the halt
function remains pending until the condition no
longer exists. Until the condition is cleared,
the associated subchannel cannot be used to
perform I/O operations, even if other channel
paths become available for selection. CLEAR
SUBCHANNEL can be executed to terminate
the halt-pending condition and make the sub-
channel usable.

Start Function and Resume
Function
Subsequent to the execution of START SUB-
CHANNEL and RESUME SUBCHANNEL, the
channel subsystem performs the start and resume
functions, respectively, to initiate an I/O operation
with the associated device. Performance of a

15-18 z/Architecture Principles of Operation

start or resume function consists of: (1) per-
forming a path-management operation, (2) per-
forming an I/O operation or chain of I/O operations
with the associated device, and (3) causing the
subchannel to be made status pending, indicating
the completion of the start function. (Completion
of a start function is described in Chapter 16, “I/O
Interruptions” on page 16-1.) The start function
initiates the execution of a channel program that is
designated in the ORB, which in turn is desig-
nated as the operand of START SUBCHANNEL,
in contrast to the resume function that initiates the
execution of a suspended channel program, if any,
beginning at the CCW that caused suspension;
otherwise, the resume function is performed as if it
were a start function (see “Resume-Pending (Bit
20)” on page 16-13).

 Start-Function and
Resume-Function Path
Management

A path-management operation is performed by the
channel subsystem during the performance of
either a start or a resume function to choose an
available channel path that can be used for device
selection to initiate an I/O operation with that
device. The actions taken are as follows:

1. If the subchannel is currently start pending
and device active, the start function remains
pending at the subchannel until the secondary
status for the previous start function has been
accepted from the associated device and the
subchannel is made start pending alone.
When the status is accepted and does not
describe an alert interruption condition, the
subchannel is not made status pending, and
the performance of the pending start function
is subsequently initiated. If the status
describes an alert interruption condition, the
subchannel becomes status pending with sec-
ondary and alert status, the pending start
function is not initiated, deferred condition
code 1 is set, and the start-pending bit
remains one. If the subchannel is currently
start pending alone, the performance of the
start function is initiated as described below.

2. If a dedicated allegiance exists at the sub-
channel for a channel path, the channel sub-
system chooses that path for device selection.
If a busy condition is encountered while
attempting to select the device and a dedi-

cated allegiance exists at the subchannel, the
start function remains pending until the
internal indication of busy is reset for that
channel path. When the internal indication of
busy is reset, the performance of the pending
start function is initiated on that channel path.

3. If no channel path is available for selection
and no dedicated allegiance exists in the sub-
channel for a channel path, a channel path is
not chosen.

4. If all channel paths that are available for
selection have been tried and one or more of
them are being used to actively communicate
with other devices, or, alternatively, if the
channel subsystem has encountered either a
control-unit-busy or a device-busy condition on
one or more of those channel paths, or a
combination of those conditions on one or
more of those channel paths, the start function
remains pending at the subchannel until a
channel path, control unit, or device, as appro-
priate, becomes available.

5. If (1) the start function is to be initiated on a
channel path with a device attached to a
type-1 control unit and (2) no other device is
attached to the same control unit whose sub-
channel has either a dedicated allegiance to
the same channel path or a working alle-
giance to the same channel path where
primary status has not been received for that
subchannel, then that channel path is chosen
if it is available for selection; otherwise, that
channel path is not chosen. If, however,
another channel path to the device is available
for selection and no allegiances exist as
described above, that channel path is chosen.
If no other channel path is available for
selection, the start or resume function, as
appropriate, remains pending until a channel
path becomes available.

6. If the device is attached to a type-3 control
unit, and if at least one other device is
attached to the same control unit whose sub-
channel has a dedicated allegiance to the
same channel path, another channel path that
is available for selection may be chosen, or
the start function remains pending until the
dedicated allegiance for the other device is
cleared.

7. If a channel path has been chosen and a busy
indication is received during device selection

 Chapter 15. Basic I/O Functions 15-19

to initiate the execution of the first command
of a pending channel program, the channel
path over which the busy indication is
received is not used again for that device or
control unit (depending on the device-busy or
control-unit-busy indication received) until the
internal indication of busy is reset.

8. If, during an attempt to select the device in
order to initiate the execution of the first
command specified for the start or implied for
the resume function (as described in action 7
on page 15-19), the channel subsystem
receives a busy indication, it performs one of
the following actions:

a. If the device is specified to be operating in
the multipath mode and the busy indi-
cation received is device busy, then the
start or resume function remains pending
until the internal indication of busy is
reset. (See “Multipath Mode (D)” on
page 15-3.)

b. If the device is specified to be operating in
the multipath mode and the busy indi-
cation received is control unit busy, or if
the device is specified to be operating in
the single-path mode, the channel sub-
system attempts selection of the device by
choosing an alternate channel path that is
available for selection and continues the
path-management operation until either
the start or the resume function is initiated
or selection of the device has been
attempted on all channel paths that are
available for selection. If the start or
resume function has not been initiated by
the channel subsystem after all channel
paths available for selection have been
chosen, the start or resume function
remains pending until the internal indi-
cation of busy is reset.

c. If the subchannel has a dedicated alle-
giance, then action 2 on page 15-19
applies.

9. When, during the selection attempt to transfer
the first command, the device appears not
operational and the corresponding channel
path is operational for the subchannel, a path-
not-operational condition is recognized, and
the state of the channel path changes at the
subchannel from operational for the sub-
channel to not operational for the subchannel

(see “Path-Not-Operational Mask (PNOM)” on
page 15-4). The path-not-operational condi-
tions at the subchannel, if any, are preserved
until the subchannel next becomes clear
pending, start pending, or resume pending (if
the subchannel was suspended), at which
time the path-not-operational conditions are
cleared. If, however, the corresponding
channel path is not operational for the sub-
channel, a path-not-operational condition is
not recognized. When the device appears not
operational during the selection attempt to
transfer the first command on a channel path
that is available for selection, one of the fol-
lowing actions occurs:

a. If a dedicated allegiance exists for that
channel path, then it is the only channel
path that is available for selection; there-
fore, further attempts to initiate the start or
resume function are abandoned, and an
interruption condition is recognized.

b. If no dedicated allegiance exists and there
are alternate channel paths available for
selection that have not been tried, one of
those channel paths is chosen to attempt
device selection and transfer the first
command.

c. If no dedicated allegiance exists, no alter-
nate channel paths are available for
selection that have not been tried, and the
device has appeared operational on at
least one of the channel paths that were
tried, the start or resume function remains
pending at the subchannel until a channel
path, a control unit, or the device, as
appropriate, becomes available.

d. If no dedicated allegiance exists, no alter-
nate channel paths are available for
selection that have not been tried, and the
device has appeared not operational on all
channel paths that were tried, further
attempts to initiate the start or resume
function are abandoned, and an inter-
ruption condition is recognized.

10. When the subchannel is active and an I/O
operation is to be initiated with a device, all
device selections occur according to the
LPUM indication if the multipath mode is not
specified at the subchannel. For example, if
command chaining is specified, the channel
subsystem transfers the first and all subse-

15-20 z/Architecture Principles of Operation

quent commands describing a chain of I/O
operations over the same channel path.

Execution of I/O Operations
After a channel path is chosen, the channel sub-
system, if conditions allow, initiates the execution
of an I/O operation with the associated device.
Execution of additional I/O operations may follow
the initiation and execution of the first I/O opera-
tion. The channel subsystem can execute seven
commands: write, read, read backward, control,
sense, sense ID, and transfer in channel. Each
command, except transfer in channel, initiates a
corresponding I/O operation. Except for periods
when channel-program execution is suspended at
the subchannel (see “Suspension of Channel-
Program Execution” on page 15-38), the sub-
channel is active from the acceptance of the first
command until the primary interruption condition is
recognized at the subchannel. If the primary inter-
ruption condition is recognized before the accept-
ance of the first command, the subchannel does
not become active. Normally, the primary inter-
ruption condition is caused by the channel-end
signal or, in the case of command chaining, the
channel-end signal for the last CCW of the chain.
(See “Primary Interruption Condition” on
page 16-4.) The device is active until the sec-
ondary interruption condition is recognized at the
subchannel. Normally, the secondary interruption
condition is caused by the device-end signal or, in
the case of command chaining, the device-end
signal for the last CCW of the chain. (See “Sec-
ondary Interruption Condition” on page 16-4.)

Programming Notes:

In the single-path mode, all transfers of com-
mands, data, and status for the I/O operation or
chain of I/O operations occur on the channel path
over which the first command was transferred to
the device.

When the device has the dynamic-reconnection
feature installed, an I/O operation or chain of I/O
operations may be performed in the multipath
mode. To operate in the multipath mode,
MODIFY SUBCHANNEL must have been previ-
ously executed for the subchannel with bit 13 of
word 1 of the SCHIB specified as one. (See
“Multipath Mode (D)” on page 15-3.) In addition,
the device must be set up for the multipath mode
by the execution of certain model-dependent com-

mands appropriate to that type of device. The
general procedures for handling multipath-mode
operations are as follows:

 1. Setup

a. A set-multipath-mode type of command
must be successfully executed by the
device on each channel path that is to be
a member of the multipath group being set
up; otherwise, the multipath mode of oper-
ation may give unpredictable results at the
subchannel. If, for any reason, one or
more physically available channel paths to
the device are not included in the multi-
path group, these channel paths must not
be available for selection while the sub-
channel is operating in the multipath
mode. A channel path can be made not
available for selection by having the corre-
sponding LPM bit set to zero either in the
SCHIB prior to the execution of MODIFY
SUBCHANNEL or in the ORB prior to the
execution of START SUBCHANNEL.

b. When a set-multipath-mode type of
command is transferred to a device, only
a single channel path must be logically
available in order to avoid alternate
channel-path selection for the execution of
that start function; otherwise, device-busy
conditions may be detected by the
channel subsystem on more than one
channel path, which may cause unpredict-
able results for subsequent multipath-
mode operations. This type of setup pro-
cedure should be used whenever the
membership of a multipath group is
changed.

2. Leaving the Multipath Mode

To leave the multipath mode and continue
processing in the single-path mode, either of
the following two procedures may be used:

a. A disband-multipath-mode type of
command may be executed for any
channel path of the multipath group. This
command must be followed by either
(1) the execution of MODIFY SUB-
CHANNEL with bit 13 of word 1 of the
SCHIB specified as zero, or (2) the spec-
ification of only a single channel path as
logically available in the LPM. A start
function must not be performed at a sub-
channel operating in the multipath mode

 Chapter 15. Basic I/O Functions 15-21

with multiple channel paths available for
selection while the device is operating in
single-path mode; otherwise, unpredict-
able results may occur at the subchannel
for that function or subsequent start func-
tions.

b. A resign-multipath-mode type of command
is executed on each channel path of the
multipath group (the reverse of the setup
described in item 1 on page 15-21). This
command must be followed by either
(1) the execution of MODIFY SUB-
CHANNEL with bit 13 of word 1 of the
SCHIB specified as zero, or (2) the spec-
ification of only a single channel path as
logically available in the LPM. No start
function may be performed at a sub-
channel operating in the multipath mode
with multiple channel paths available for
selection while the device is operating in
single-path mode; otherwise, unpredict-
able results may occur at the subchannel
for that or subsequent start functions.

Blocking of Data

Data recorded by an I/O device is divided into
blocks. The length of a block depends on the
device; for example, a block can be a card, a line
of printing, or the information recorded between
two consecutive gaps on magnetic tape.

The maximum amount of information that can be
transferred in one I/O operation is one block. An
I/O operation is terminated when the associated
main-storage area is exhausted or the end of the
block is reached, whichever occurs first. For
some operations, such as writing on a magnetic-
tape unit or at an inquiry station, blocks are not
defined, and the amount of information transferred
is controlled only by the program.

 Operation-Request Block

The operation-request block (ORB) is the operand
of START SUBCHANNEL. The ORB specifies the
parameters to be used in controlling that particular
start function. These parameters include the inter-
ruption parameter, the subchannel key, the
address of the first CCW, operation-control bits,
numbers controlling priority, and a specification of
the logical availability of channel paths.

The contents of the ORB are placed at the desig-
nated subchannel during the execution of START
SUBCHANNEL, prior to the setting of condition
code 0. If the execution will result in a nonzero
condition code, the contents of the ORB are not
placed at the designated subchannel.

The two rightmost bits of the ORB address must
be zeros, placing the ORB on a word boundary;
otherwise, a specification exception is recognized.
The format of the ORB is as follows:

Word
 ┌──┐
� │ Interruption Parameter │
 ├──────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬───────────────┬─┬─┬─┬─┬─┬─┬─┬─┤
1 │ Key │S│C│M│Y│F│P│I│A│U│�│H│T│ LPM │L│�│�│�│�│�│�│X│
 ├──────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴───────────────┴─┴─┴─┴─┴─┴─┴─┴─┤
2 │ Channel-Program Address │
 ├──────────────┬───────────────┬───────────────┬───────────────┤
3 │ CSS Priority │ Reserved │ CU Priority │ Reserved │
 ├──────────────┴───────────────┴───────────────┴───────────────┤
4 │ Reserved │
 ├──┤
5 │ Reserved │
 ├──┤
6 │ Reserved │
 ├──┤
7 │ Reserved │
 └──┘
� 8 16 24 31

The fields in the ORB are defined as follows:

Interruption Parameter: Bits 0-31 of word 0 are
preserved unmodified in the subchannel until
replaced by a subsequent START SUBCHANNEL
or MODIFY SUBCHANNEL instruction. These bits
are placed in word 1 of the interruption code when
an I/O interruption occurs and when an inter-
ruption request is cleared by the execution of
TEST PENDING INTERRUPTION.

Subchannel Key: Bits 0-3 of word 1 form the
subchannel key for all fetching of CCWs, IDAWs,
and output data and for the storing of input data
associated with the start function initiated by
START SUBCHANNEL. This key is matched with
a storage key during these storage references.
For details, see the section “Key-Controlled
Protection” on page 3-9.

Suspend Control (S): Bit 4 of word 1 controls
the performance of the suspend function for the
channel program designated in the ORB. The
setting of the S bit applies to all CCWs of the
channel program designated by the ORB (see
“Commands and Flags” on page 15-40). When
bit 4 is one, suspend control is specified, and
channel-program suspension occurs when a
suspend flag set to one is detected in a CCW.

15-22 z/Architecture Principles of Operation

When bit 4 is zero, suspend control is not speci-
fied, and the presence of a suspend flag set to
one in any CCW of the channel program causes a
program-check condition to be recognized.

Streaming-Mode Control (C): Bit 5 of word 1
controls streaming-mode enablement for subchan-
nels configured to FICON-converted-I/O-interface
channel paths during performance of the specified
start function. When bit 5 is zero, the streaming
mode is enabled at the subchannel. When bit 5 is
one, the streaming mode is disabled at the sub-
channel. Bit 5 is meaningful only for subchannels
configured to FICON-converted-I/O-interface
channel paths and is ignored for subchannels con-
figured to other channel-path types.

When the streaming mode is enabled, the channel
path considers the first command of the desig-
nated channel program to be in progress at the
associated device when the channel path receives
the indication that the command has been
accepted at the device. In addition, the channel
path's acceptance of status, under certain condi-
tions, is recognized by the channel path without
receiving acknowledgement of status acceptance
from the device.

When the streaming mode is not enabled, the
channel path does not consider the first command
of the designated channel program to be in
progress at the associated device until the appro-
priate channel-path response, indicating that the
device-command response or status has been
accepted at the channel path, is sent to the
device. In addition, when the device sends status
to the channel path, the channel path's accept-
ance of that status is not recognized at the
channel path until the channel path's confirmation
of acceptance is received and acknowledged by
the device.

Modification Control (M): Bit 6 of word 1 speci-
fies whether modification control is required for the
channel program. When bit 6 is zero, modification
control is specified. When bit 6 is one, modifica-
tion control is not specified.

When modification control is specified, the channel
subsystem forces command synchronization with
the addressed I/O device each time a command is
executed and the previously executed command
has the PCI and chain-command flags set to one
and the chain-data and suspend flags set to zero.

When this condition is recognized, the channel
subsystem signals a synchronization request to
the I/O device for the current command. The
channel subsystem temporarily suspends
command chaining and does not fetch (or refetch)
the next command-chained CCW until after normal
ending status is received for the synchronizing
command.

When modification control is not specified, then
command synchronization is not required, and the
channel subsystem may transfer commands to the
I/O device without waiting for status.

The M bit is meaningful only for subchannels con-
figured to FICON-I/O-interface or
FICON-converted-I/O-interface channel paths and
is ignored for other subchannels configured to
other channel-path types.

Programming Notes:

1. FICON-converted-I/O-interface channel paths,
modification control provides the capability to
optimize dynamically modified channel pro-
grams that use the PCI flag in the CCW to ini-
tiate channel-program modification. Specif-
ically, it allows the program to delay the
channel-subsystem fetching and transferring
of commands until after status is received for
the command following the command with the
PCI bit set. This increases the likelihood that
a program-controlled interruption will be
accepted by a CPU and acted upon by the
program that dynamically modifies one or
more command-chained CCWs that follow the
synchronizing command.

In order to increase the probability that any
dynamically modified CCWs are fetched after
their modification and not prior to their modifi-
cation, the modifying program should be exe-
cuted as soon as possible following the CPU's
acceptance of the program-controlled inter-
ruption. Additionally, the program should mini-
mize the periods during which the configured
CPUs are disabled for I/O interruptions.

For channel paths other than
FICON-I/O-interface or
FICON-converted-I/O-interface channel paths,
command synchronization is implicit in the sig-
nalling protocol between the channel sub-
system and the I/O device; therefore no
explicit programming action is required to

 Chapter 15. Basic I/O Functions 15-23

force command synchronization. Regardless,
the program should still attempt to accept and
process program-controlled interruptions for
these channel-path types in as timely a
manner as possible for the same reason as
stated above.

2. In order to allow the channel subsystem to
optimize the execution of channel programs
for FICON-I/O-interface or
FICON-converted-I/O-interface channel paths,
use of the modification-control facility is dis-
couraged except for channel programs that
require dynamic modification.

Synchronization Control (Y): Bit 7 of word 1
specifies whether synchronization control is
required for the channel program. When bit 7 is
zero and the prefetch-control bit, bit 9 of word 1, is
one, synchronization control is specified. When
bit 7 is one and bit 9 is one, synchronization
control is not specified.

When synchronization control is specified, the
channel subsystem forces command synchroniza-
tion with the addressed I/O device whenever the
current command in execution describes an input
operation and the next CCW to be fetched
describes an output operation. When this condi-
tion is recognized, the channel subsystem signals
a synchronization request to the I/O device when
the input command is transferred. The transfer of
the output command is held pending at the sub-
channel until normal ending status, signaling the
completion of the performance of the input opera-
tion by the I/O device, is received. Upon receipt
of the ending status, the channel subsystem
fetches (or refetches) the data associated with the
output command and transfers it to the I/O device.

When synchronization control is not specified, the
channel subsystem may transfer commands of the
channel program without awaiting status that
would signal the completion of the I/O operation
for each command.

The Y bit is meaningful only when the subchannel
is configured to FICON-I/O-interface or
FICON-converted-I/O-interface channel paths and
the prefetch-control bit, bit 9 of word 1, is one.
The Y bit is ignored for subchannels configured to
other channel-path types and when the prefetch-
control bit is zero.

Format Control (F): Bit 8 of word 1 specifies the
format of the channel-command words (CCWs)
that make up the channel program designated by
the channel-program-address field. When bit 8 of
word 1 is zero, format-0 CCWs are specified.
When bit 8 is one, format-1 CCWs are specified.
(See “Channel-Command Word” on page 15-27
for the definition of the CCW formats.)

Prefetch Control (P): Bit 9 of word 1 specifies
whether or not unlimited prefetching of CCWs is
allowed for the channel program. When bit 9 is
one, unlimited prefetching of CCWs is allowed.
(Unlimited prefetching of data and IDAWs associ-
ated with the current and prefetched CCWs is
always allowed.) It is model dependent whether
prefetching is actually performed.

When bit 9 of word 0 is zero, no prefetching is
allowed, except in the case of data chaining on
output, where the prefetching of one CCW
describing a data area is allowed. When bit 9 of
word 0 is zero, the synchronization-control bit, bit
7 of word 1, is ignored.

Additional controls may limit the scope of pre-
fetching.

Initial-Status-Interruption Control (I): Bit 10 of
word 1 specifies whether or not the channel sub-
system must verify to the program that the device
has accepted the first command associated with a
start or resume function. When the I bit is speci-
fied as one in the ORB, then, when the sub-
channel becomes active, indicating that the first
command has been accepted for this start or
resume function, the Z bit (see “Zero Condition
Code (Z)” on page 16-11) is set to one at this
subchannel, and the subchannel becomes status
pending with intermediate status.

If the subchannel does not become active — for
example, when the device signals channel end
immediately upon receiving the first command,
command chaining is not specified in the CCW,
and command retry is not signaled — the
command-accepted condition (Z bit set to one) is
not generated; instead, the subchannel becomes
status pending with primary status. Intermediate
status may also be indicated in this case when the
command is accepted if the first CCW contained
the PCI flag set to one.

15-24 z/Architecture Principles of Operation

| Address-Limit-Checking Control (A): When
| the address-limit-checking facility is installed, bit

11 of word 1 specifies whether or not address-limit
checking is specified for the channel program.
When this bit is zero, no address-limit checking is
performed for the execution of the channel
program, independent of the setting of the limit-
mode bits in the subchannel (see “Limit Mode
(LM)” on page 15-3). When this bit is one,
address-limit checking is allowed for the channel
program, subject to the setting of the limit-mode
bits in the subchannel.

| When the address-limit-checking facility is not
| installed, the address-limit-checking-control bit (A)
| must be zero in the ORB when START SUB-
| CHANNEL is executed; otherwise, an operand
| exception is recognized.

Suppress-Suspended-Interruption Control (U):
Bit 12 of word 1, when one, specifies that the
channel subsystem is to suppress the generation
of an intermediate interruption condition due to
suspension if the subchannel becomes sus-
pended. When bit 12 is zero, the channel sub-
system generates an intermediate interruption
condition whenever the subchannel becomes sus-
pended during the execution of the channel
program.

Format-2-IDAW Control (H): Bit 14 of word 1
specifies the format of IDAWs for CCWs that
specify indirect data addressing. When bit 14 of
word 1 is one, format-2 (64-bit data address)
IDAWs are provided for all CCWs that have the
IDAW flag set to one in the CCW. When bit 14 of
word 1 is zero, format-1 (31-bit data address)
IDAWs are provided for all CCWs that have the
IDAW flag set to one in the CCW.

Programming Note: Sixty-four-bit IDAWs
provide the only means by which data can be
transferred directly between an I/O device and
storage locations with addresses greater than 2G
bytes.

2K-IDAW Control (T): Bit 15 of word 1 specifies
the main-storage block size for format-2-IDAW
data areas. Bit 15 is meaningful only when bit 14
(format-2 IDAW control) is one and is ignored
when bit 14 is zero. When bit 15 of word 1 is
one, all format-2 IDAWs designate 2K-byte
storage blocks. When bit 15 of word 1 is zero, all
format-2 IDAWs designate 4K-byte storage blocks.

Bit 13 of word 1 is reserved for future use and
must be zero; otherwise, either an operand excep-
tion or a program-check condition is recognized.

Logical-Path Mask (LPM): Bits 16-23 of word 1
are preserved unmodified in the subchannel and
specify to the channel subsystem which of the
logical paths 0-7 are to be considered logically
available, as viewed by the program. A bit setting
of one means that the corresponding channel path
is logically available; a zero specifies that the cor-
responding channel path is logically not available.
If a channel path is specified by the program as
being logically not available, the channel sub-
system does not use that channel path to perform
clear, halt, resume, or start functions when
requested by the program, except when a
dedicated-allegiance condition exists for that
channel path. If a dedicated-allegiance condition
exists, the setting of the LPM is ignored, and a
resume, start, halt, or clear function is performed
by using the channel path having the dedicated
allegiance.

 Incorrect-Length-Suppression Mode (L): When
bit 8 of word 1 is one, then bit 24 of word 1, when
one, specifies the incorrect-length-suppression
mode. When the subchannel is in this mode
when an immediate operation occurs (that is,
when a device signals the channel-end condition
during initiation of the command) and the current
CCW contains a nonzero value in bit positions
16-31, indication of an incorrect-length condition is
suppressed.

When bit 8 of word 1 is one, then bit 24 of word 1,
when zero, specifies the incorrect-length-indication
mode. When the subchannel is in this mode
when an immediate operation occurs (that is,
when a device signals the channel-end condition
during initiation of the command) and the current
CCW contains a nonzero value in bit positions
16-31, indication of an incorrect-length condition is
recognized. Command chaining is suppressed
unless the SLI flag in the CCW is one and the
chain-data flag is zero.

When bit 8 of word 1 is zero, the value of bit 24 is
ignored by the channel subsystem, and the sub-
channel is in the incorrect-length-suppression
mode.

 Chapter 15. Basic I/O Functions 15-25

ORB-Extension Control (X): Bit 31 of word 1
specifies whether the ORB is extended. When bit
31 of word 1 is zero, the ORB consists of words
0-2, and words 3-7 are ignored. When bit 31 of
word 1 is one, the ORB consists of words 0-7.
Words 0 and 1 are described above. Words 2-7
are described below.

Reserved: Bits 25-30 of word 1 are reserved for
future use and must be set to zeros. Bit 31 of
word 1 must be zero if the ORB-extension facility
is not installed. Otherwise, an operand exception
or program-check condition is recognized.

Channel-Program Address: Bits 1-31 of word 2
specify the absolute address of the first CCW in
main storage. Bit 0 of word 2 must be zero; oth-
erwise, either an operand exception or a program-
check condition is recognized. If format-0 CCWs
are specified by bit 8 of word 1, then bits 1-7 of
word 2 also must be zeros; otherwise, a program-
check condition is recognized.

The three rightmost bits of the channel-program
address must be zeros, designating the CCW on a
doubleword boundary; otherwise, a program-check
condition is recognized.

If the channel-program address designates a
location protected against fetching or designates a
location outside the storage of the particular instal-
lation, the start function is not initiated at the
device. In this situation, the subchannel becomes
status pending with primary, secondary, and alert
status.

Channel-Subsystem (CSS) Priority: When bit
31 (X) of word 1 of the ORB is one, byte 0 of
word 3 contains an unsigned binary integer, called
the channel-subsystem-priority number, that is
assigned to the designated subchannel and used
to order the selection of subchannels when either
a start function or a resume function is to be initi-
ated for one or more subchannels that are start
pending or resume pending.

The specified channel-subsystem-priority number
can be any number in the range of 0 to 255. The
numbers 0 and 255 designate the lowest and
highest priorities, respectively.

Depending on the model and the configuration:

1. Fewer than 256 priority levels may be pro-
vided. For such models, the ORB-specified
priority number may be ignored, and an alter-
native priority number may be implicitly
assigned to the subchannel when the sub-
channel becomes start pending.

2. When bit 31 (X) of word 1 of the ORB is zero,
an implicit priority number is assigned to the
subchannel.

See “Channel-Subsystem-I/O-Priority Facility” on
page 17-25 for details about how the priority
number is assigned for both of these cases.

Control-Unit (CU) Priority: When bit 31 (X) of
word 1 of the ORB is one, byte 2 of word 3 con-
tains an unsigned binary integer, called the
control-unit-priority number, that specifies, for an
associated control unit attached by a FICON
channel path, the priority level that is applied at
the associated control unit for all I/O operations
associated with the start function.

The specified control-unit-priority number can be
any integer in the range of 1 to 255. The
numbers 1 and 255 designate the lowest and
highest priorities, respectively. The number 0 des-
ignates that no priority is assigned to the I/O oper-
ations associated with the start function. The han-
dling of I/O operations when the priority number is
0 depends on the control-unit model.

Also depending on the control-unit model, fewer
than 255 priority levels may be supported by the
control unit. See the control-unit's System Library
publication for additional information regarding the
range of priority numbers supported and how this
priority number is used.

The specified control-unit-priority number is
ignored if any of the following conditions exists:

1. Bit 31 (X) of word 1 is zero. In this case, a
control-unit-priority number of 0 is transmitted
in the associated outbound frames.

2. The designated subchannel is not associated
with a control unit configured to a FICON
channel path.

3. The associated control unit does not provide
prioritized performance of I/O operations. In
this case, the control-unit-priority number in
the associated outbound frames is ignored at
the control unit.

15-26 z/Architecture Principles of Operation

4. The channel-subsystem model does not
provide for the transmission of the control-
unit-priority number.

5. The channel-subsystem-I/O-priority facility is
not operational due to an operator action.

Reserved: All fields in the ORB that are defined
as either “0” or “Reserved” must contain zeros
when START SUBCHANNEL is executed; other-
wise, either an operand exception or a program-
check condition is recognized.

Programming Notes:

1. Bit positions of the ORB that presently are
specified to contain zeros may in the future be
assigned for the control of new functions.

2. The interruption parameter may contain any
information, but ordinarily the information is of
significance to the program handling the I/O
interruption.

 Channel-Command Word

The channel-command word (CCW) specifies the
command to be executed and, for commands initi-
ating certain I/O operations, it designates the
storage area associated with the operation, the
action to be taken whenever transfer to or from
the area is completed, and other options.

A channel program consists of one or more CCWs
that are logically linked such that they are fetched
and executed by the channel subsystem in either
a sequential or a nonsequential order. Sequential
(contiguous) CCWs are linked by the use of the
chain-data and chain-command flags, and nonse-
quential (noncontiguous) CCWs are linked by a
CCW specifying the transfer-in-channel command.

As each CCW is executed, it is recognized as the
current CCW. A CCW becomes current (1) when
it is the first CCW of a channel program and has
been fetched, (2) when, during command
chaining, the new CCW is logically fetched, or
(3) when, during data chaining, the new CCW
takes over control of the I/O operation (see “Data
Chaining” on page 15-33). When chaining is not
specified, a CCW is no longer current after TEST
SUBCHANNEL clears the start-function bit in the
subchannel.

The location of the first CCW of the channel
program is designated in the ORB that is the
operand of START SUBCHANNEL. The first
CCW is fetched subsequent to the execution of
the instruction. The format of the CCWs fetched
by the channel subsystem is specified by bit 8 of
word 1 of the ORB. Each additional CCW in the
channel program is obtained when the CCW is
needed. Fetching of the CCWs by the channel
subsystem does not affect those locations in main
storage.

CCWs have either of two different formats, format
0 or format 1. The two formats do not differ in the
information contained in the CCW, but they do
differ in the size of the address and the arrange-
ment of fields within the CCW.

The formats are defined as follows:

Format-� CCW
┌────────┬──┐
│Cmd Code│ Data Address │
└────────┴──┘
� 8 31

┌─────────────┬─┬────────┬────────────────────────┐
│ Flags │�│////////│ Count │
└─────────────┴─┴────────┴────────────────────────┘
32 39 48 63

Format-1 CCW
┌────────┬─────────────┬─┬────────────────────────┐
│Cmd Code│ Flags │�│ Count │
└────────┴─────────────┴─┴────────────────────────┘
� 8 15 31

┌─┬───┐
│�│ Data Address │
└─┴───┘
32 63

Flags
┌─┬─┬─┬─┬─┬─┬─┐
│ │ │S│S│P│I│ │
│C│C│L│K│C│D│ │
│D│C│I│P│I│A│S│
└─┴─┴─┴─┴─┴─┴─┘
32 34 36 38 (in format-� CCW)
8 1� 12 14 (in format-1 CCW)

Format-0 CCWs can be located anywhere in the
first 2�� (16M) bytes of absolute storage, and
format-1 CCWs can be located anywhere in the
first 2�� (2G) bytes of absolute storage.

Bit 39 (format 0) or bit 15 (format 1) of every CCW
other than a format-0 CCW specifying transfer in
channel must be zero. If indirect data addressing
is specified and the format-2-IDAW-control bit is
zero in the ORB associated with the CCW, then:

 Chapter 15. Basic I/O Functions 15-27

1. Bits 30 and 31 (format 0) or 62 and 63 (format
1) of the CCW must be zeros, designating a
word boundary,

2. Bit 0 of the first entry of the indirect-
data-address list must be zero.

If indirect data addressing is specified and the
format-2-IDAW-control bit is one in the ORB asso-
ciated with the CCW, bits 29-31 (format 0) or bits
61-63 (format 1) of the CCW must be zeros, des-
ignating a doubleword boundary. When any of
these requirements is not met, a program-check
condition may be recognized (see “CCW Indirect
Data Addressing” on page 15-36). Detection of
this condition during data chaining causes the I/O
device to be signaled to conclude the operation.
When the absence of these zeros is detected
during command chaining or subsequent to the
execution of START SUBCHANNEL, the new
operation is not initiated, and an interruption con-
dition is generated.

The contents of bit positions 40-47 of a format-0
CCW are ignored.

The fields in the CCWs are defined as follows:

Command Code: Bits 0-7 (both formats) specify
the operation to be performed.

Data Address: Bits 8-31 (format 0) or bits 33-63
(format 1) designate a location in absolute
storage. The designated location is the first
location referred to in the area designated by the
CCW. Bit 32 of a format-1 CCW must be zero;
otherwise, a program-check condition is recog-
nized. If a byte count of zero is specified, this
field is not checked.

See the section “CCW Indirect Data Addressing”
on page 15-36 for information about the specifica-
tion of data addresses greater than 2G bytes.

Chain-Data (CD) Flag: Bit 32 (format 0) or bit 8
(format 1), when one, specifies chaining of data.
The bit causes the storage area designated by the
next CCW to be used with the current I/O opera-
tion. When the CD flag is one in a CCW, the
chain-command and suppress-length-indication
flags (see below) are ignored.

Chain-Command (CC) Flag: Bit 33 (format 0) or
bit 9 (format 1), when one, and when the CD flag
and S flag are both zeros, specifies chaining of

commands. The bit causes the operation speci-
fied by the command code in the next CCW to be
initiated upon the normal completion of the current
operation.

Suppress-Length-Indication (SLI) Flag: Bit 34
(format 0) or bit 10 (format 1) controls whether an
incorrect-length condition is to be indicated to the
program. When this bit is one and the CD flag is
zero, the incorrect-length indication is suppressed.
When both the CC and SLI flags are ones and the
CD flag is zero, command chaining takes place,
regardless of the presence of an incorrect-length
condition. This bit should be specified in all
CCWs where suppression of the incorrect-length
indication is desired.

Skip (SKP) Flag: Bit 35 (format 0) or bit 11
(format 1), when one, specifies the suppression of
transfer of information to storage during a read,
read-backward, sense ID, or sense operation.

 Program-Controlled-Interruption (PCI) Flag: Bit
36 (format 0) or bit 12 (format 1), when one,
causes the channel subsystem to generate an
intermediate interruption condition when the CCW
containing the bit takes control of the I/O opera-
tion. When the PCI flag bit is zero, normal opera-
tion takes place.

Indirect-Data-Address (IDA) Flag: Bit 37
(format 0) or bit 13 (format 1), when one, specifies
indirect data addressing.

Suspend (S) Flag: Bit 38 (format 0) or bit 14
(format 1), when one, specifies suspension of
channel-program execution. When valid, it causes
channel-program execution to be suspended prior
to the execution of the CCW containing the S flag.
A one value of the S flag is valid when bit 4 of
word 1 of the associated ORB is one.

Count: Bits 48-63 (format 0) or bits 16-31
(format 1) specify the number of bytes in the
storage area designated by the CCW.

Programming Note: Bit 39 of a format-0 CCW
or bit 15 of a format-1 CCW, which presently must
be zero, may in the future be assigned for the
control of new functions. It is recommended,
therefore, that this bit not be set to one for the
purpose of obtaining an intentional program-check
indication.

15-28 z/Architecture Principles of Operation

 Command Code

The command code, bit positions 0-7 of the CCW,
specifies to the channel subsystem and the I/O
device the operation to be performed.

The two rightmost bits or, when these bits are
zeros, the four rightmost bits of the command
code identify the operation to the channel sub-
system. The channel subsystem distinguishes
among the following four operations:

� Output forward (write, control)
� Input forward (read, sense, sense ID)
� Input backward (read backward)
� Branching (transfer in channel)

The channel subsystem ignores the leftmost bits
of the command code, except in a format-1 CCW
specifying transfer in channel. In this case, all bits
of the command code are decoded by the channel
subsystem.

Commands that initiate I/O operations (write, read,
read backward, control, sense, and sense ID)
cause all eight bits of the command code to be
transferred to the control unit. In these command
codes, the leftmost bit positions contain modifier
bits. The modifier bits specify to the device how
the command is to be executed. They may, for
example, cause the device to compare data
received during a write operation with data previ-
ously recorded, and they may specify such attri-
butes as recording density and parity. For the
control command, the modifier bits may contain
the order code specifying the control function to
be performed. The meaning of the modifier bits
depends on the type of I/O device and is specified
in the System Library publication for the device.

The command-code assignment is listed in
Figure 15-5. The symbol x indicates that the bit
position is ignored; m identifies a modifier bit.

┌───────────────────┬──────────────────────────┐
│ Code │ Command │
├───────────────────┼──────────────────────────┤
│ x x x x � � � � │ Invalid │
│ m m m m m m � 1 │ Write │
│ m m m m m m 1 � │ Read │
│ m m m m 1 1 � � │ Read backward │
│ m m m m m m 1 1 │ Control │
│ m m m m � 1 � � │ Sense │
│ 1 1 1 � � 1 � � │ Sense ID │
│ x x x x 1 � � � │ Transfer in channel� │
│ � � � � 1 � � � │ Transfer in channel� │
│ m m m m 1 � � � │ Invalid� │
├───────────────────┴──────────────────────────┤
│Explanation: │
│ │
│ m Modifier bit │
│ │
│ x Ignored │
│ │
│ � Format-� CCW │
│ │
│ � Format-1 CCW │
│ │
│ � Format-1 CCW with any of bits �-3 nonzero │
└──┘

Figure 15-5. Command-Code Assignment

Whenever the channel subsystem detects an
invalid command code during the initiation of
command execution, the program-check-
interruption condition is generated, and channel-
program execution is terminated. The command
code is ignored during data chaining, unless it
specifies transfer in channel.

Designation of Storage Area

The main-storage area associated with an I/O
operation is defined by one or more CCWs. A
CCW defines an area by specifying the address of
the first byte to be transferred and the number of
consecutive bytes contained in the area. The
address of the first byte of data to be transferred
is specified either directly in the data-address field
of the CCW or indirectly in an indirect-
data-address word (IDAW) designated by the
data-address field of the CCW. The number of
bytes contained in the storage area is specified in
the count field.

In write, read, control, and sense operations,
storage locations are used in ascending order of
addresses. As information is transferred to or
from main storage, the address from the address
field is incremented, and the count from the count
field is decremented. The read-backward opera-
tion places data in storage in a descending order
of addresses, and both the count and the address

 Chapter 15. Basic I/O Functions 15-29

are decremented. When the count reaches zero,
the storage area defined by the CCW is
exhausted.

Any main-storage location available to the start
function can be used in the transfer of data to or
from an I/O device, provided that the location is
not protected against that type of reference.
Format-0 CCWs can be located in any available
part of the first 2�� (16M) bytes of absolute
storage, and format-1 CCWs can be located in
any available part of the first 2�� (2G) bytes of
absolute storage, provided that, in both cases, the
location is not protected against a fetch-type refer-
ence. When the channel subsystem attempts to
refer to a protected location, the protection-check
condition is generated, and the device is signaled
to terminate the operation.

A main-storage location is available if it is avail-
able in the configuration and, in the case of a data
location (not a CCW or IDAW), access to it is not
prevented by the address-limit-checking facility. If
a main-storage location is not available, it is said
to have an invalid address.

If the channel subsystem refers to a location that
is not available, the program-check condition is
generated. When the first CCW designated by the
channel-program address is at an unavailable
location, the start function is not initiated at the
device, the status portion of the SCSW is updated
with the program-check indication, the subchannel
becomes status pending with primary, secondary,
and alert status, and deferred condition code 1 is
indicated. Invalid data addresses, as well as any
invalid CCW addresses detected on chaining or
subsequent to the execution of START SUB-
CHANNEL, cause the channel subsystem to
signal the device to conclude the operation the
next time the device requests or offers a byte of
data or status. In this situation, the subchannel is
made status pending with program check indi-
cated in the subchannel status, and the device
status is a function of the status received from the
device. The program-check condition causes
command chaining and command retry to be sup-
pressed.

During an output operation, the channel sub-
system may fetch data from main storage before
the time the I/O device requests the data. Any
number of bytes specified by the current CCW
may be prefetched and buffered. When data

chaining during an output operation, the channel
subsystem may fetch one CCW describing a data
area at any time during the execution of the
current CCW. If unlimited prefetching is allowed
by the setting of the prefetch-control bit in the
ORB, any number of CCWs and IDAWs and the
associated data may be prefetched by the channel
subsystem. When the I/O operation uses data
and CCWs from locations near the end of the
available storage, such prefetching may cause the
channel subsystem to refer to locations that do not
exist. Invalid addresses detected during pre-
fetching do not affect the performance of the I/O
operation and do not cause error indications until
the operation actually attempts to use the informa-
tion. If the operation is concluded by the I/O
device or by the execution of HALT SUB-
CHANNEL or CLEAR SUBCHANNEL before the
invalid information is needed, the condition is not
brought to the attention of the program.

The count field in the CCW can specify any
number of bytes up to 65,535. In format-0 CCWs,
the count field is always nonzero unless the
command code specifies transfer in channel, in
which case the count field is ignored. In format-1
CCWs, the count field may contain the value zero
unless data chaining is specified or the CCW is
fetched while data chaining. Whenever (1) the
count field in a format-1 CCW is zero, (2) data
chaining is either not specified or not in effect, and
(3) data transfer is requested by the device, the
device is signaled to stop, and the I/O operation is
terminated. The channel subsystem sets the
incorrect-length condition if the SLI flag is not one
in the CCW. No data is transferred. If the device
does not request data transfer, the operation pro-
ceeds to the normal ending point.

If a zero byte count is contained in a format-0
CCW that does not specify transfer in channel, or
if a zero byte count is contained in a format-1
CCW that specifies data chaining or was fetched
while data chaining, a program-check condition is
recognized, and the subchannel is made status
pending with combinations of primary, secondary,
and alert status as a function of the state of the
subchannel and the status received from the
device.

Note: For a description of the storage area asso-
ciated with a CCW when indirect data addressing
is used, see “CCW Indirect Data Addressing” on
page 15-36.

15-30 z/Architecture Principles of Operation

Programming Notes:

1. Since a format-1 CCW with a count of zero is
valid, the program can use the CCW count
field to specify that no data be transferred to
the I/O device. If the device requests a data
transfer, the device is signaled to terminate
data transfer. If the SLI and chain-command
flags are also specified as ones, and no
unusual conditions are encountered subse-
quent to signaling the device to terminate data
transfer, the new operation is initiated upon
receipt of device end from the device.

2. If the subchannel is in the incorrect-
length-suppression mode, the chain-data flag
in the current CCW is zero, and the operation
is performed as an immediate operation, then
incorrect length is not indicated, regardless of
the setting of the SLI flag.

If the subchannel is in the incorrect-
length-indication mode, if the chain-data flag
in the current CCW is zero, and if the opera-
tion is performed as an immediate operation,
then incorrect length is indicated if the count
field of the current CCW specifies a nonzero
value, unless suppressed by the SLI flag of
the CCW; incorrect length is not indicated,
however, if the count field of the CCW speci-
fies a value of zero.

If a new CCW that has a count field of zero is
fetched during data chaining or if a CCW is
fetched with the chain-data flag set to one and
a count field of zero, a program-check condi-
tion is recognized by the channel subsystem.

 Chaining

When the channel subsystem has completed the
transfer of information specified by a CCW, it can
continue performing the start function by fetching
a new CCW. Such fetching of a new CCW is
called chaining, and the CCWs belonging to such
a sequence are said to be chained.

Chaining takes place between CCWs located in
successive doubleword locations in storage. It
proceeds in an ascending order of addresses; that
is, the address of the new CCW is obtained by
adding 8 to the address of the current CCW. Two
chains of CCWs located in noncontiguous storage
areas can be coupled for chaining purposes by a
transfer-in-channel command. All CCWs in a
chain apply to the I/O device that is associated
with the subchannel designated by the original
START SUBCHANNEL instruction.

Two types of chaining are provided: chaining of
data and chaining of commands. Chaining is con-
trolled by the chain-data (CD) and chain-command
(CC) flags in conjunction with the suppress-
length-indication (SLI) flag in the CCW. These
flags specify the action to be taken by the channel
subsystem upon the exhaustion of the current
CCW and upon receipt of ending status from the
device, as shown in Figure 15-6 on page 15-32.

The specification of chaining is effectively propa-
gated through a transfer-in-channel command.
When, in the process of chaining, a transfer-in-
channel command is fetched, the CCW desig-
nated by the transfer-in-channel command is used
for the type of chaining specified in the CCW pre-
ceding the transfer-in-channel command.

The CD and CC flags are ignored in a format-0
CCW specifying the transfer-in-channel command.
In a format-1 CCW specifying the transfer-in-
channel command, the CD and CC flags must be
zeros; otherwise, a program-check condition is
recognized.

 Chapter 15. Basic I/O Functions 15-31

┌───────────┬──┐
│ │Action at the Subchannel upon Exhaustion of Count or Receipt of Channel End │
│ ├───┬────────────────────────────────┤
│ │ Immediate Operation │ Non-immediate Operation │
│ ├─────────────────────┬─────────────────────┼─────────────────────┬──────────┤
│Flags in │ Incorrect-Length- │ Incorrect-Length- │ │ │
│Current CCW│ Suppression Mode� │ Indication Mode │ Count Exhausted │Count Not │
├───┬───┬───┼──────────┬──────────┼──────────┬──────────┼──────────┬──────────┤Exhausted │
│ │ │ │ CCW │ CCW │ CCW │ CCW │ CE Not │ CE │ and CE │
│CD │CC │SLI│ Count/=� │ Count=� │ Count/=� │ Count=� │ Received │ Received │ Received │
├───┼───┼───┼──────────┼──────────┼──────────┼──────────┼──────────┼──────────┼──────────┤
│ � │ � │ � │ End, NIL │ End, NIL │ End, IL │ End, NIL │ Stop, IL │ End, NIL │ End, IL │
│ � │ � │ 1 │ End, NIL │ End, NIL │ End, NIL │ End, NIL │ Stop,NIL │ End, NIL │ End, NIL │
│ � │ 1 │ � │ CC │ CC │ End, IL │ CC │ Stop, IL │ CC │ End, IL │
│ � │ 1 │ 1 │ CC │ CC │ CC │ CC │ Stop, CC │ CC │ CC │
│ │ │ │ │ │ │ │ │ │ │
│ 1 │ - │ - │ End, NIL │ PC │ End, IL │ PC │ CD │ � │ End, IL │
├───┴───┴───┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┤
│Explanation: │
│ │
│ - The selected bit is ignored and may be either zero or one. │
│ │
│ � These situations cannot validly occur. When data chaining is specified, the new │
│ CCW takes control of the operation after transferring the last byte of data │
│ designated by the current CCW, but before the next request for data or status │
│ transfer from the device. The new CCW (which cannot contain a count of zero │
│ unless a program-check condition is also recognized) is in control of the │
│ operation. │
│ │
│ � The count field must contain a nonzero value when format-� CCWs are specified; │
│ otherwise, the operation is terminated with a program-check condition. │
│ │
│ CC Command chaining is performed by the channel subsystem upon receipt of device │
│ end. │
│ │
│ CD The chain-data flag causes the channel subsystem to immediately fetch a new CCW │
│ for the same operation. The operation continues unless the CCW thus fetched has │
│ a count field of zero, in which case the operation is terminated with a │
│ program-check condition. │
│ │
│ CE Channel end from the device that indicates end of block. │
│ │
│ End Operation is terminated. │
│ │
│ IL Incorrect length is indicated with the subsequent interruption condition │
│ generated at the subchannel. │
│ │
│ NIL Incorrect length is not indicated with the subsequent interruption condition │
│ generated at the subchannel. │
│ │
│ PC These situations cannot validly occur. The channel subsystem recognizes a │
│ program-check condition when a CCW is fetched that has the chain-data flag set to│
│ one and a count field of zero. │
│ │
│ Stop Device is signaled to terminate data transfer, but subchannel remains │
│ subchannel active until channel end is received. │
└──┘

Figure 15-6. Subchannel Chaining Action

15-32 z/Architecture Principles of Operation

Programming Note: When bit 9 of word 1 of the
ORB is one, unlimited prefetching of chained
CCWs (including CCWs linked by a transfer-in-
channel command) by the channel subsystem is
permitted. When prefetching is allowed by the
ORB, no modification of the channel program
should be performed after START SUBCHANNEL
is executed and before the primary interruption
condition for the operation has been received
unless the subchannel is currently suspended and
is not resume pending.

 Data Chaining
During data chaining, the new CCW fetched by
the channel subsystem defines a new storage
area for the original I/O operation. If the channel
path is of the parallel-I/O-interface type, the per-
formance of the operation at the I/O device is not
affected. If the channel path is of the
serial-I/O-interface type, then the performance of
the operation at the I/O device either is not
affected or, depending on the device model, may
be terminated with unit-check status. When the
operation at the I/O device is not affected and all
data designated by the current CCW has been
transferred to main storage or to the device, data
chaining causes the operation to continue, using
the storage area designated by the new CCW.
The contents of the command-code field of the
new CCW are ignored, unless they specify
transfer in channel.

Data chaining is considered to occur immediately
after the last byte of data designated by the
current CCW has been transferred to main
storage or to the device. When the last byte of
the data transfer has been placed in main storage
or accepted by the device, the new CCW takes
over the control of the operation. If the device
sends channel end after exhausting the count of
the current CCW but before transferring any data
to or from the storage area designated by the new
CCW, the SCSW associated with the concluded
operation pertains to the new CCW.

If programming errors are detected in the new
CCW or during its fetching, the error indication is
generated, and the device is signaled to conclude
the operation when it attempts to transfer data
designated by the new CCW. If the device signals
the channel-end condition before transferring any
data designated by the new CCW, program check
or protection check is indicated in the SCSW
associated with the termination. The contents of

the SCSW pertain to the new CCW unless the
address of the new CCW is invalid, the location is
protected against fetching, or programming errors
are detected in an intervening transfer-in-channel
command. A data address referring to a nonex-
istent or protected area causes an error indication
only after the I/O device has attempted to transfer
data to or from the invalid location.

Data chaining during an input operation causes
the new CCW to be fetched when all data desig-
nated by the current CCW has been placed in
main storage. On an output operation, the
channel subsystem may fetch the new CCW from
main storage before data chaining occurs. Any
programming errors in the prefetched CCW,
however, do not affect the performance of the
operation until all data designated by the current
CCW has been transferred to the I/O device. If
the device concludes the operation before all data
designated by the current CCW has been trans-
ferred, the conditions associated with the pre-
fetched CCW are not indicated to the program.
Unlimited prefetching is allowed under the control
of the prefetch bit specified in the ORB. (See
“Prefetch Control (P)” on page 15-24.) When
unlimited prefetching is not allowed and an output
operation is specified, only one CCW describing a
data area may be prefetched. If a prefetched
CCW specifies transfer in channel, only one more
CCW may be fetched before the exhaustion of the
current CCW.

Programming Notes:

1. If the ORB does not specify unlimited pre-
fetching, no prefetching of CCWs is per-
formed, except in the case of data chaining on
an output operation where one CCW
describing a data area may be prefetched at a
time.

If the ORB for the I/O operation specifies that
prefetching is allowed, any number of CCWs
and IDAWs and the associated data areas
may be prefetched and buffered in the
channel subsystem.

The same actions for signaling errors and ter-
minating operations take place when unlimited
prefetching is allowed by the ORB as when it
is not allowed. However, when unlimited pre-
fetching is specified and an error condition is
detected, both the channel subsystem and the
program must recognize that the points of ter-

 Chapter 15. Basic I/O Functions 15-33

mination at the channel subsystem and at the
I/O device may be different in terms of the
channel command in execution at the point of
error. The channel subsystem indicates the
point of termination at the channel subsystem
by storing the appropriate CCW address in
word 1 of the subchannel-status word and the
point of termination at the device by storing
the secondary-CCW address in word 4 of the
format-0 extended-status word.

When prefetching has been specified in the
ORB, the result of modifications to CCWs
after START SUBCHANNEL has been exe-
cuted or after self-describing channel pro-
grams have been used is unpredictable. (See
note 2 for the definition of self-describing
channel programs.)

2. Data chaining may be used to rearrange infor-
mation as it is transferred between main
storage and an I/O device. Data chaining
permits blocks of information to be transferred
to or from noncontiguous areas of storage,
and, when used in conjunction with the skip-
ping function, data chaining allows the
program to place in main storage specified
portions of a block of data.

When, during an input operation, the program
specifies data chaining to a location in which
data has been placed under the control of the
current CCW, the channel subsystem, in
fetching the next CCW, fetches the new con-
tents of the location. This is true even if the
location contains the last byte transferred
under the control of the current CCW. When
a channel program data-chains to a CCW
placed in storage by the CCW specifying data
chaining, the input block is said to be self-
describing. A self-describing block contains
one or more CCWs that designate storage
locations and counts for subsequent data in
the same input block.

The use of self-describing blocks is equivalent
to the use of unchecked data. An I/O data-
transfer malfunction that affects validity of a
block of information is signaled only at the
completion of data transfer. The error condi-
tion normally does not prematurely terminate
or otherwise affect the performance of the
operation. Thus, there is no assurance that a
CCW read as data is valid until the operation
is completed. If the CCW thus read is in
error, use of the CCW in the current operation

may cause subsequent data to be placed at
wrong locations in main storage with resultant
destruction of its contents, subject only to the
control of the protection key and the address-
limit-checking facility, if used.

3. When, during data chaining, a device transfers
data by using the data-streaming feature, an
overrun or chaining-check condition may be
recognized when a small byte-count value is
specified in the CCW. The minimum accept-
able number of bytes that can be specified
varies as a function of the system model and
system activity.

 Command Chaining
During command chaining, the new CCW fetched
by the channel subsystem specifies a new I/O
operation. The channel subsystem fetches the
new CCW upon the receipt of the device-end
signal for the current operation. If the new CCW
does not have its S flag set to one and no unusual
conditions are detected, the channel subsystem
initiates the new operation. The presence of the S
flag set to one or unusual conditions causes
command chaining to be suppressed. When
command chaining takes place, the completion of
the current operation does not cause an I/O inter-
ruption, and the count indicating the amount of
data transferred during the current operation is not
made available to the program. For operations
involving data transfer, the new command always
applies to the next block of data at the device.

Command chaining takes place and the new oper-
ation is initiated only if no unusual conditions have
been detected in the current operation. In partic-
ular, the channel subsystem initiates a new I/O
operation by command chaining upon receipt of a
status byte containing only the following bit combi-
nations: (1) device end, (2) device end and
status modifier, (3) device end and channel end,
and (4) device end, channel end, and status mod-
ifier. In the first two cases, channel end is sig-
naled before device end, with all other status bits
zeros. If a condition such as attention, unit check,
unit exception, incorrect length, program check, or
protection check has occurred, the sequence of
operations is concluded, and the status associated
with the current operation causes an interruption
condition to be generated. The new CCW in this
case is not fetched. The incorrect-length condition
does not suppress command chaining if the
current CCW has the SLI flag set to one.

15-34 z/Architecture Principles of Operation

An exception to sequential chaining of CCWs
occurs when the I/O device presents the status-
modifier condition with the device-end signal or
channel-end and device-end signals. When
command chaining is specified and no unusual
conditions have been detected, or when command
retry has been previously signaled and an imme-
diate retry could not be performed, the combina-
tion of status-modifier and device-end bits causes
the channel subsystem to alter the sequential exe-
cution of CCWs. If command chaining was speci-
fied, status modifier and device end cause the
channel subsystem to fetch and chain to the CCW
whose main-storage address is 16 higher than
that of the CCW that specified chaining. If
command retry was previously signaled and
immediate retry could not be performed, the status
causes the channel subsystem to command chain
to the CCW whose storage address is 8 higher
than that of the CCW for which retry was initially
signaled.

When both command and data chaining are speci-
fied, the first CCW associated with the operation
specifies the operation to be performed, and the
last CCW specifies whether another operation
follows.

Programming Note: Command chaining makes
it possible for the program to initiate transfer of
multiple blocks of data by issuing a single START
SUBCHANNEL instruction. It also permits a sub-
channel to be set for execution of other com-
mands, such as positioning the disk-access mech-
anism, and for data-transfer operations without
interference by the program at the end of each
operation. Command chaining, in conjunction with
the status-modifier condition, permits the channel
subsystem to modify the normal sequence of
operations in response to signals provided by the
I/O device.

 Skipping

Skipping causes the suppression of main-storage
references during an I/O operation. It is defined
only for read, read-backward, sense-ID, and sense
operations, and is controlled by the skip flag,
which can be specified individually for each CCW.
When the skip flag is one, skipping occurs; when
it is zero, normal operation takes place. The
setting of the skip flag is ignored in all other oper-
ations.

Skipping affects only the handling of information
by the channel subsystem. The operation at the
I/O device proceeds normally, and information is
transferred. The channel subsystem keeps
updating the count but does not place the informa-
tion in main storage. Chaining is not precluded by
skipping. In the case of data chaining, normal
operation is resumed if the skip flag in the new
CCW is zero.

No checking for invalid or protected data
addresses takes place during skipping.

Programming Note: Skipping, when combined
with data chaining, permits the program to place in
main storage specified portions of a block of infor-
mation from an I/O device.

 Program-Controlled Interruption

The program-controlled-interruption (PCI) function
permits the program to cause an I/O interruption
during the performance of an I/O operation. The
function is controlled by the PCI flag of the CCW.
Neither the value of the PCI flag nor the associ-
ated interruption request affects the performance
of the current operation.

The value of the PCI flag can be one either in the
first CCW designated for the current start or
resume function or in a CCW fetched during
chaining. If the PCI flag is one in a CCW that has
become current, the subchannel becomes status
pending with intermediate status, and an
I/O-interruption request is generated. The point at
which the subchannel becomes status pending
depends on the progress of the current start or
resume function as follows:

1. If the PCI flag is one in the first CCW associ-
ated with a start function or a resume function,
the subchannel becomes status pending with
intermediate status only after the command
has been accepted.

2. If the PCI flag is one in a CCW that has
become current while data chaining, the sub-
channel becomes status pending with interme-
diate status after all data designated by the
preceding CCW has been transferred.

3. If the PCI flag is one in a CCW that has
become current while command chaining, the
subchannel becomes status pending with
intermediate status as that CCW becomes
current.

 Chapter 15. Basic I/O Functions 15-35

In all cases, if the subchannel is enabled for I/O
interruptions, the point of interruption depends on
the current activity in the system and may be
delayed. No predictable relationship exists
between the point at which the interruption request
is generated because of the PCI flag and the
extent to which data transfer has been completed
to or from the area designated by the CCW.
However, all the fields within the SCSW pertain to
the same instant.

An intermediate interruption condition that is made
pending because of a PCI flag remains pending
during chaining if not cleared by TEST SUB-
CHANNEL or CLEAR SUBCHANNEL. If another
CCW containing a PCI flag that is one becomes
current prior to the clearing of the intermediate
interruption condition, only one interruption condi-
tion is preserved.

An intermediate interruption may occur while the
subchannel is subchannel-and-device active with
the operation specified by the CCW causing the
intermediate interruption condition or with the
operation specified by a CCW that has subse-
quently become current. If the intermediate inter-
ruption condition is not cleared prior to the conclu-
sion of the operation or chain of operations, the
condition is indicated together with the primary
interruption condition at the conclusion of the
operation or chain of operations. The intermediate
interruption condition may be cleared by TEST
SUBCHANNEL while the subchannel is sub-
channel active.

If the SCSW stored by TEST SUBCHANNEL indi-
cates that the subchannel is status pending with
intermediate status and the operation or chain of
operations has not been concluded (that is, the
activity-control field indicates subchannel-
and-device active or suspended), then the
CCW-address field contains an address that is 8
higher than the address of the most recent CCW
to become current and have a PCI flag that is
one, or the CCW-address field contains an
address that is 8 higher than the address of a
CCW that has subsequently become current.
Unless the SCSW also contains the primary-status
bit set to one, the device-status field contains
zeros, and the count is unpredictable.

Subchannel-status conditions other than PCI may
be indicated when the SCSW is stored. If the
subchannel is not also status pending with primary

status, these conditions may or may not be indi-
cated again. If the subchannel-status condition is
detected while prefetching and the operation or
chain of operations is concluded before the condi-
tion affects an operation, the condition is reset and
is not indicated when the subchannel subse-
quently becomes status pending with primary
status. If the subchannel-status condition affects
an operation, the condition is indicated when the
subchannel becomes status pending with primary
status.

If the program-controlled-interruption condition
remains pending until the operation or chain of
operations is concluded at the subchannel, a
single interruption request exists. When TEST
SUBCHANNEL is subsequently executed, the
status-control field of the SCSW stored indicates
both the primary interruption condition and the
intermediate interruption condition, and the PCI bit
of the subchannel-status field is one.

The value of the PCI flag is inspected in every
CCW except for those CCWs that specify the
transfer-in-channel command. The PCI flag is
ignored during initial program loading.

Programming Notes:

1. The program-controlled interruption provides a
means of alerting the program to the progress
of chaining during an I/O operation. It permits
programmed dynamic main-storage allocation.

2. A CCW with a PCI flag set to one may, if
retried because of command retry, cause mul-
tiple PCI interruptions to occur. (See
“Command Retry” on page 15-42.)

CCW Indirect Data Addressing

CCW indirect data addressing permits a single
channel-command word to control the transfer of
data that spans noncontiguous 2K-byte or 4K-byte
blocks in main storage. The use of CCW indirect
data addressing also allows the program to desig-
nate data addresses above 16M bytes when using
format-0 CCWs or above 2G bytes when using
format-1 CCWs..

CCW indirect data addressing is specified by a
flag in the CCW which, when one, indicates that
the data address is not used to directly address
data. Instead, the address points to a list of
words or doublewords, called indirect-

15-36 z/Architecture Principles of Operation

data-address words (IDAWs), each of which con-
tains an absolute address designating a data area
in main storage.

IDAWs have either of two formats, called format 1
and format 2, as determined by the
format-2-IDAW control, bit 14 of word 1 of the
ORB associated with the channel program being
executed. When the format-2-IDAW control is
zero, the IDAW is format 1 and is a word con-
taining a 31-bit address. When the control is one,
the IDAW is format 2 and is a doubleword con-
taining a 64-bit address. The IDAW formats are
as follows:

Format-1 IDAW
┌─┬───────────────────────────────┐
│�│ Data Address │
└─┴───────────────────────────────┘
� 31

Format-2 IDAW
┌─────────────────────────────────┐
│ Data Address (Bytes �-3) │
└─────────────────────────────────┘
� 31

┌─────────────────────────────────┐
│ Data Address (Bytes 4-7) │
└─────────────────────────────────┘
32 63

Bit 0 (format 1) is reserved for future use and
must be zero; otherwise, a program-check condi-
tion may be recognized, as described below.

A format-1 IDAW designates a data area within a
2K-byte block of main storage and is capable of
addressing storage in the range of 0 to 2�� - 1.

A format-2 IDAW designates a data area within a
2K-byte or 4K-byte block of main storage, as
determined by the 2K-IDAW control, bit 15 of word
1 of the ORB associated with the channel program
being executed, and is capable of addressing
storage in the range of 0 to 2�� - 1. When the
2K-IDAW-control bit is zero, each format-2 IDAW
of the designated channel program designates a
4K-byte block of main storage. When the
2K-IDAW-control bit is one, each format-2 IDAW
designates a 2K-byte data-area block. All IDAWs
associated with the designated channel program
must have the same IDAW format, and all of
those IDAWs specify the same size of storage
block.

When the indirect-data-addressing bit in the CCW
is one, the data-address field of the CCW desig-
nates the location of the first IDAW to be used for
data transfer for the command. Additional IDAWs,
if needed for completing the data transfer for the
CCW, are in successive locations in storage. The
number of IDAWs required for a CCW is deter-
mined by the IDAW format as specified in the
ORB, by the count field of the CCW, and by the
data address in the initial IDAW. When, for
example, (1) the ORB specifies format-2 IDAWs
with 4K-byte blocks, (2) the CCW count field
specifies 8K bytes, and (3) the first IDAW desig-
nates a location in the middle of a 4K-byte block,
then three IDAWs are required.

The IDAW designated by the CCW can designate
any location. Data is then transferred, for read,
write, control, sense ID, and sense commands, to
or from successively higher storage locations or,
for a read-backward command, to successively
lower storage locations, until a 2K-byte block
boundary (format-1 or format-2 IDAW) or a
4K-byte block boundary (format-2 IDAW) is
reached. The control of data transfer is then
passed to the next IDAW. The second and any
subsequent IDAWs must designate, depending on
the command, the first byte, or the last byte for
read backward, of a 2K-byte block (format-1 or
format-2 IDAW) or a 4K-byte block (format-2
IDAW). Thus, for read, write, control, sense ID,
and sense commands, such format-1 IDAWs must
have zeros in bit positions 21-31, and such
format-2 IDAWs must have zeros in bit positions
53-63 (2K-byte blocks) or 52-63 (4K-byte blocks).
For a read-backward command, such format-1
IDAWs must have ones in bit positions 21-31, and
such format-2 IDAWs must have ones in bit posi-
tions 53-63 (2K-byte blocks) or 52-63 (4K-byte
blocks). If any of these rules is violated, a
program-check condition is recognized.

Except for the unique restrictions on the desig-
nation of the data address by the IDAW, all other
actions taken for the data address, such as for
protected storage and invalid addresses, and the
actions taken for data prefetching are the same as
when indirect data addressing is not used.

IDAWs pertaining to the current CCW or a pre-
fetched CCW may be prefetched. The number of
IDAWs that can be prefetched cannot exceed that
required to satisfy the count in the CCW that
points to the IDAWs. An IDAW takes control of

 Chapter 15. Basic I/O Functions 15-37

data transfer when the last byte has been trans-
ferred for the previous IDAW. The same actions
take place as with data chaining regarding when
an IDAW takes control of data transfer during an
I/O operation. That is, when the count for the
CCW has not reached zero, a new IDAW takes
control of the data transfer when the last byte has
been transferred for the previous IDAW for that
CCW, even in situations where (1) channel end,
(2) channel end and device end, or (3) channel
end, device end, and status modifier are received
prior to the transfer of any data bytes pertaining to
the new IDAW.

A prefetched IDAW does not take control of an I/O
operation if the count in the CCW has reached
zero with the transfer of the last byte of data for
the previous IDAW for that CCW. Program or
access errors detected in prefetched IDAWs are
not indicated to the program until the IDAW takes
control of data transfer. However, when the
channel subsystem detects an invalid CBC on the
contents of a prefetched IDAW or its associated
key, the condition may be indicated to the
program, when detected, before the IDAW takes
control of data transfer. For a description of the
indications provided when an invalid CBC is
detected on the contents of an IDAW or its associ-
ated key, see “Channel-Control Check” on
page 16-27.

Bits 1-31 (format 1) or bits 0-63 (format 2) desig-
nate the absolute storage location of the first byte
to be used in the data transfer. When format-1
IDAWs are specified, the channel subsystem
forms a 64-bit absolute main-storage address by
appending 33 zero bits on the left of bit 1.

When the IDAW flag of the CCW is set to one and
any of the following conditions occurs:

1. Format-1 IDAWs are specified in the ORB,
and the address in the CCW does not desig-
nate the first IDAW on a word boundary,

2. Format-2 IDAWs are specified in the ORB,
and the address in the CCW does not desig-
nate the first IDAW on a doubleword
boundary,

3. The address in the CCW designates a storage
location that is not physically available,

4. Access to the storage location specified by the
address in the CCW is prohibited by pro-
tection, or

5. Bit 0 (format 1 only) of the first IDAW is not
zero,

then, depending on the model, one of the fol-
lowing two actions is taken independent of the
setting of the skip flag (if condition 5 above is true,
action 2 must be taken).

1. The above conditions are checked before initi-
ating the operation at the device. If any of
these conditions is recognized, initiation of the
I/O operation does not occur, and the sub-
channel is made status pending with primary,
secondary, and alert status.

2. The operation is initiated at the device prior to
checking for these conditions. If the device
attempts to transfer data, the device is sig-
naled to terminate the I/O operation, and the
subchannel is made status pending with
primary, secondary, and alert status as a func-
tion of the subchannel state and the status
presented by the device.

Suspension of Channel-Program
Execution

The suspend function, when used in conjunction
with RESUME SUBCHANNEL, provides the
program with a means to stop and restart the exe-
cution of a channel program. The initiation of the
suspend function is controlled by the setting of the
suspend control, bit 4 of word 1 of the ORB. The
suspend function is signaled when suspend
control has been specified for the subchannel in
the ORB and a CCW containing an S flag set to
one becomes the current CCW. The flag can be
indicated either in the first CCW of the channel
program or in a CCW fetched while command
chaining. The S flag is not valid and causes a
program-check condition to be recognized if
(1) the ORB contains the suspend-control bit set
to zero, or (2) the CCW is fetched while data
chaining (see “Data Chaining” on page 15-33,
concerning the handling of programming errors
detected during data chaining).

Upon recognition of the suspend function, suspen-
sion of channel-program execution occurs when
the CCW becomes current (see “Channel-
Command Word” on page 15-27, for a definition
of when a CCW becomes current). If suspension
occurs during command chaining, the device is
signaled that command chaining is no longer in
effect.

15-38 z/Architecture Principles of Operation

RESUME SUBCHANNEL signals that the CCW
that caused channel-program suspension may
have been modified, that the CCW must be
refetched, and that the contents of the CCW must
be examined to determine the settings of the
flags. If the S flag is one, execution of that CCW
does not occur. If the CCW is valid and the S flag
in the CCW is zero, execution is initiated (see
“RESUME SUBCHANNEL” on page 14-10 and
“Start Function and Resume Function” on
page 15-18).

When a valid CCW that contains an S flag validly
set to one becomes the current CCW during
command chaining and the resume-pending condi-
tion is not recognized, the suspend function is per-
formed and causes the following actions to occur
in the order given:

1. The device is signaled that the chain of oper-
ations has been concluded.

2. Channel-program execution is suspended at
the subchannel; all prefetched IDAWs, CCWs,
and data are discarded; and the subchannel is
set up such that the resume function can be
performed when the subchannel is next recog-
nized to be resume pending.

3. If the measurement-block-update mode is
active and the subchannel is enabled for the
mode, the accrued values of the measurement
data, including the start-subchannel and
sample count, are added to the accumulated
values in the measurement block for the sub-
channel. The start-subchannel count is the
only measurement data that is updated in the
measurement block if the channel-
subsystem-timing facility is not available for
the subchannel. (See “Channel-Subsystem
Monitoring” on page 17-1 for more informa-
tion.)

If a measurement-check condition is detected
during the measurement-block update, the
channel program is terminated at the sub-
channel. The subchannel is made status
pending with primary, secondary, and alert
status, the device-status and subchannel-
status fields are set to zero, and one of the
measurement-check conditions is indicated in
the extended-status flags of the format-0
ESW. The subchannel is not placed in the
suspended state. (See “Subchannel-Control
Field” on page 16-11.)

4. The subchannel is placed in the suspended
state.

5. If the subchannel is not resume pending at
this point, the intermediate interruption condi-
tion due to suspension is recognized if the
suppress-suspended-interruption bit of the
ORB is zero; otherwise, the resume function is
performed.

When a valid CCW that contains an S flag validly
set to one becomes the current CCW during
command chaining and the resume-pending condi-
tion is recognized, the resume function is per-
formed instead of the suspend function.

When the first CCW of a channel program con-
tains an S flag validly set to one and the resume-
pending condition is not recognized, the suspend
function is performed and causes the following
actions to occur in the order given:

1. Channel-program execution is suspended
prior to the selection of the device.

2. The subchannel is set up such that the
resume function can be performed when the
subchannel is next recognized to be resume
pending.

3. If the measurement-block-update mode is
active and the subchannel is enabled for the
mode, the SSCH+RSCH count is incremented,
and the accrued function-pending time (a
function of the setting of the timing-facility bit)
is added to the accumulated value in the
measurement block for the subchannel.

If a measurement-check condition is detected
during the measurement-block update, the
channel program is not started at the sub-
channel. The subchannel is made status
pending with primary, secondary, and alert
status. Deferred condition code one is set,
and the start-pending bit remains set to one.
The device-status and subchannel-status
fields are set to zero, and one of the
measurement-check conditions is indicated in
the extended-status flags of the format-0
ESW. The subchannel is not placed in the
suspended state. (See “Subchannel-Control
Field” on page 16-11.)

4. The subchannel is placed in the suspended
state.

5. If the subchannel is not resume pending at
this point, the subchannel is made status

 Chapter 15. Basic I/O Functions 15-39

pending with intermediate status due to sus-
pension if the suppress-
suspended-interruption-control bit of the ORB
is zero; otherwise, the resume function is per-
formed.

When the first CCW of a channel program con-
tains an S flag validly set to one and the resume-
pending condition is recognized, the resume func-
tion is performed instead of the suspend function.

Programming Notes:

1. The execution of MODIFY SUBCHANNEL and
START SUBCHANNEL completes with condi-
tion code 2 set if the designated subchannel is
suspended. The start function is indicated at
the subchannel while the subchannel is in the
suspended state.

2. In certain situations, normal resumption of the
execution of a channel program that has been
suspended may not be desired. Normal termi-
nation of the suspended channel-program
execution may be accomplished by:

a. Executing HALT SUBCHANNEL and des-
ignating the subchannel.

b. Modifying the CCWs in storage such that,
when channel-program execution is
resumed, the command transferred to the
device is a control command with all modi-
fier bits specified as zeros (no-operation)
and with the chain-command flag specified
as zero; and then executing RESUME
SUBCHANNEL.

c. When an IRB indicates measurement
check along with zero device status, zero
subchannel status, and status pending
with primary, secondary, and alert status,
it may indicate that the measurement
check was detected during an attempt to
place the subchannel into the suspended
state.

3. If the suspended interruption is suppressed,
the N condition and DCTI values applicable to
the preceding subchannel-active period are
not made available to the program. The exe-
cution of RESUME SUBCHANNEL when the
subchannel is in the suspended state causes
path-not-operational conditions and the N con-

dition to be reset to zeros. Path-not-
operational conditions and the N condition are
not reset when RESUME SUBCHANNEL is
executed and the designated subchannel is
not in the suspended state.

Commands and Flags

Figure 15-7 lists the command codes for the
seven commands and indicates which flags are
defined for each command. Except for a format-1
CCW specifying transfer in channel, the flags are
ignored for all commands for which they are not
defined. The flags are reserved in a format-1
CCW specifying transfer in channel and must be
zeros.

┌─────────────┬──────────────────┬────────────────────────┐
│ Name │ Code │ Flags │
├─────────────┼──────────────────┼────────────────────────┤
│Write │ M M M M M M � 1 │ CD CC SLI PCI IDA S │
│Read │ M M M M M M 1 � │ CD CC SLI SK PCI IDA S │
│Read backward│ M M M M 1 1 � � │ CD CC SLI SK PCI IDA S │
│Control │ M M M M M M 1 1 │ CD CC SLI PCI IDA S │
│Sense │ M M M M � 1 � � │ CD CC SLI SK PCI IDA S │
│Sense ID │ 1 1 1 � � 1 � � │ CD CC SLI SK PCI IDA S │
│Transfer in │ X X X X 1 � � � │ (See note below) │
│channel │ │ │
├─────────────┴──────────────────┴────────────────────────┤
│Explanation: │
│ │
│ CC Chain command │
│ CD Chain data │
│ IDA Indirect data addressing │
│ M Modifier bit │
│ PCI Program-controlled interruption │
│ S Suspend │
│ SK Skip │
│ SLI Suppress-length indication │
│ X Ignored in a format-� CCW; must be zero in a │
│ format-1 CCW │
│ │
│Note: Flags are ignored in a format-� transfer-in- │
│ channel CCW and must be zeros in a format-1 │
│ transfer-in-channel CCW. │
└───┘

Figure 15-7. Command Codes and Flags

All flags have individual significance, except that
the CC and SLI flags are ignored when the CD
flag is set to one, and, for output forward oper-
ations the SK flag is ignored. The presence of the
SLI flag is ignored for immediate operations
involving format-0 CCWs, in which case the
incorrect-length indication is suppressed regard-
less of the setting of the flag. The incorrect-length
indication may be suppressed for immediate oper-
ations when executing a format-1 CCW,
depending on the incorrect-length-suppression
mode. The PCI flag is ignored during initial
program loading. All flags, except the PCI flag,
are ignored when the S flag is one.

15-40 z/Architecture Principles of Operation

Programming Notes:

1. A malfunction that affects the validity of data
transferred in an I/O operation is signaled at
the end of the operation by means of unit
check or channel-data check, depending on
whether the device (control unit) or the
channel subsystem detected the error. In
order to make use of the checking facilities
provided in the system, data read in an input
operation should not be used until the end of
the operation has been reached and the
validity of the data has been checked. Simi-
larly, on writing, the copy of data in main
storage should not be destroyed until the
program has verified that no malfunction
affecting the transfer and recording of data
was detected.

2. An error condition may be recognized and the
I/O operation terminated when 256 or more
chained commands are executed with a
device and none of the executed commands
result in the transfer of any data. When this
condition is recognized, program check is indi-
cated.

3. All CCWs that require suppression of
incorrect-length indications must use the SLI
flag.

Branching in Channel Programs

The channel subsystem provides two methods to
modify the normal sequential execution of the
CCWs in a channel program. One is the transfer-
in-channel (TIC) command (described in “Transfer
in Channel”), which can be used to loop back to a
previously executed CCW, or to connect discontig-
uous segments of the channel program. The
other method, which uses the status-modifier
device-status bit (described in the publication
ESA/390 Common I/O-Device Commands,
SA22-7204), allows conditions at the device to
cause the channel to bypass the next CCW in the
channel program.

Transfer in Channel

Format-� TIC CCW
┌────┬────┬───────────────────────────────────────┐
│////│1���│ CCW Address │
└────┴────┴───────────────────────────────────────┘
� 8 31

┌───┐
│///│
└───┘
32 63

Format-1 TIC CCW
┌────────┬──┐
│����1���│ Zeros │
└────────┴──┘
� 8 31

┌─┬───┐
│�│ CCW Address │
└─┴───┘
32 63

The next CCW is fetched from the location in
absolute main storage designated by the data-
address field of the CCW specifying transfer in
channel. The transfer-in-channel command does
not initiate any I/O operation, and the I/O device is
not signaled of the execution of the command.
The purpose of the transfer-in-channel command
is to provide chaining between CCWs not located
in adjacent doubleword locations in an ascending
order of addresses. The command can occur in
both data and command chaining.

Bits 29-31 (format 0) or bits 61-63 (format 1) of a
CCW that specifies the transfer-in-channel
command must be zeros, designating a CCW on a
doubleword boundary. Furthermore, a CCW spec-
ifying transfer in channel may not be fetched from
a location designated by an immediately preceding
transfer in channel. When either of these errors is
detected or when an invalid address is designated
in the transfer-in-channel command, the program-
check condition is generated. When a CCW that
specifies the transfer-in-channel command desig-
nates a CCW at a location protected against
fetching, the protection-check condition is gener-
ated. Detection of these errors during data
chaining causes the operation at the I/O device to
be terminated and an interruption condition to be
generated, while during command chaining it
causes only an interruption condition to be gener-
ated.

The contents of the second half of the format-0
CCW, bit positions 32-63, are ignored. Similarly,

 Chapter 15. Basic I/O Functions 15-41

the contents of bit positions 0-3 of the format-0
CCW are ignored.

Bit positions 0-3 and 8-32 of the format-1 CCW
must contain zeros; otherwise, a program-check
condition is generated.

 Command Retry

The channel subsystem has the capability to
perform command retry, a procedure that causes
a command to be retried without requiring an I/O
interruption. This retry is initiated by the control
unit presenting either of two status-bit combina-
tions by means of a special sequence. When
immediate retry can be performed, it presents a
channel-end, unit-check, and status-modifier
status-bit combination, together with device end.
When immediate retry cannot be performed, the
presentation of device end is delayed until the
control unit is prepared. When device end is pre-
sented alone, the previous command is trans-
ferred again. If device end is accompanied by
status modifier, command retry is not performed,
and the channel subsystem command-chains to
the CCW following the one for which command
retry was signaled (for information on status modi-
fier, see the publication ESA/390 Common
I/O-Device Commands, SA22-7204). When the
channel subsystem is not capable of performing
command retry due to an error condition, or when
any status bit other than device end or device end
and status modifier accompanies the requested
command-retry initiation, the retry is suppressed,
and the subchannel becomes status pending. The
SCSW stored by TEST SUBCHANNEL contains
the status provided by the I/O device.

Programming Note: The following possible
results of a command retry must be anticipated by
the program:

1. A CCW containing a PCI may, if retried
because of command retry, cause multiple
PCI interruptions to occur.

2. If a CCW used in an operation is changed
before that operation has been successfully
completed, the results are unpredictable.

Concluding I/O Operations before
Initiation
Subsequent to the execution of START SUB-
CHANNEL or RESUME SUBCHANNEL and
before the first command is accepted, the start
function can be ended at the subchannel by
CANCEL SUBCHANNEL (if the instruction is
installed), CLEAR SUBCHANNEL, or HALT SUB-
CHANNEL. If the I/O operation is ended by
CANCEL SUBCHANNEL, there is no subsequent
interruption condition from the I/O operation, and
the subchannel is available for the initiation of
another start function. However, the device may
have signaled a busy condition while the canceled
operation was start pending. In this case, the
device owes a no-longer-busy signal to the
channel subsystem. This may result in unsolicited
device-end status before the next operation is initi-
ated at the device. (See also “Clear Function” on
page 15-14 and “Halt Function” on page 15-15.)

Concluding I/O Operations during
Initiation
After the designated subchannel has been deter-
mined to be in a state such that START SUB-
CHANNEL can be executed, certain tests are per-
formed on the validity of the information specified
by the program and on the logical availability of
the associated device. This testing occurs during
or subsequent to the execution of START SUB-
CHANNEL and during command chaining and
command retry.

A data-transfer operation is initiated at the sub-
channel and device only when no programming or
equipment errors are detected by the channel sub-
system and when the device responds with zero
status during the initiation sequence. When the
channel subsystem detects or the device signals
any unusual condition during the initiation of an
I/O operation, the command is said to be not
accepted. In this case, the subchannel becomes
status pending with primary, secondary, and alert
status. Deferred condition code 1 is set, and the
start-pending bit remains set to one.

Conditions that preclude the initiation of an I/O
operation are detailed in the SCSW stored by
TEST SUBCHANNEL. In this situation, the device
is not started, no interruption conditions are gener-
ated subsequent to TEST SUBCHANNEL, and the

15-42 z/Architecture Principles of Operation

subchannel is idle. The device is immediately
available for the initiation of another operation,
provided the command was not rejected because
of the busy or not-operational condition.

When an unusual condition causes a command to
be not accepted during the initiation of an I/O
operation by command chaining or command
retry, an interruption condition is generated, and
the subchannel becomes status pending with com-
binations of primary, secondary, and alert status
as a function of the status signaled by the device.
The status describing the condition remains at the
subchannel until cleared by TEST SUBCHANNEL.
The conditions are indicated to the program by
means of the corresponding status bits in the
SCSW. A path-not-operational condition recog-
nized during command chaining is signaled to the
program by means of an interface-control-check
indication. The new I/O operation at the device is
not started.

START SUBCHANNEL is executed independent
of its associated device. Tests on most program-
specified information, on device availability and
unit status, and on most error conditions are per-
formed subsequent to the execution of START
SUBCHANNEL. When any conditions are
detected that preclude the performance of the
start function, an interruption condition is gener-
ated by the channel subsystem and placed at the
subchannel, causing it to become status pending.

Immediate Conclusion of I/O
Operations
During the initiation of an I/O operation, the device
can accept the command and signal the
channel-end condition immediately upon receipt of
the command code. An I/O operation causing the
channel-end condition to be signaled during the
initiation sequence is called an immediate opera-
tion. Status generated by the device for the
immediate command, when command chaining is
not specified and command retry is not signaled,
causes the subchannel to become status pending
with combinations of primary, secondary, interme-
diate, and alert status as a result of information
specified in the ORB and CCW and status pre-
sented by the device. If the immediate operation
is the first operation of the channel program,
deferred condition code 1 is set and accompanies
the status indications. If intermediate status is

indicated, the indication can occur only as a result
of the CCW having the PCI flag set to one (see
“Program-Controlled Interruption” on page 15-35).

Whenever command chaining is specified after an
immediate operation and no unusual conditions
have been detected during the operation, or when
command retry occurs for an immediate operation,
an interruption condition is not generated. The
subsequent commands in the chain are handled
normally, and, usually, the channel-end condition
for the last CCW generates a primary interruption
condition. If device end is signaled with channel
end, a secondary interruption condition is also
generated.

Whenever immediate completion of an I/O opera-
tion is signaled, no data has been transferred to or
from the device, and the data address in the CCW
is not checked for validity. If the subchannel is in
the incorrect-length-suppression mode, incorrect
length is not indicated to the program, and
command chaining is performed when specified.
If the subchannel is in the incorrect-
length-indication mode, incorrect length and
command chaining are under control of the SLI
and chain-command flags. The conditions that
cause the incorrect-length indication to be sup-
pressed are summarized in Figure 15-6 on
page 15-32.

Programming Note: I/O operations for which the
entire operation is specified in the command code
may be performed as immediate operations.
Whether the command is executed as an imme-
diate operation depends on the operation and type
of device.

Concluding I/O Operations during
Data Transfer
When the subchannel has been passed the con-
tents of an ORB, the subchannel is said to be
start pending. When the I/O operation has been
initiated and the command has been accepted, the
subchannel becomes subchannel-and-device
active and remains in that state unless (1) the
channel subsystem detects an equipment malfunc-
tion, (2) the operation is concluded by the exe-
cution of CLEAR SUBCHANNEL or HALT SUB-
CHANNEL, or (3) status that causes a primary
interruption condition to be recognized (usually
channel end) is accepted from the device. When
command chaining and command retry are not

 Chapter 15. Basic I/O Functions 15-43

specified or when chaining is suppressed because
of unusual conditions, the status that is recognized
as primary status causes the operation at the sub-
channel to be concluded and an interruption con-
dition to be generated. The status bits in the
associated SCSW indicate primary status and the
unusual conditions, if any. The device can
present status that is recognized as primary status
at any time after the initiation of the I/O operation,
and the presentation of status may occur before
any data has been transferred.

For operations not involving data transfer, the
device normally controls the timing of the
channel-end condition. The duration of data-
transfer operations may be variable and may be
controlled by the device or the channel sub-
system.

Excluding equipment errors and the execution of
the CLEAR SUBCHANNEL, HALT SUB-
CHANNEL, and RESET CHANNEL PATH
instructions, the channel subsystem signals the
device to conclude the performance of an I/O
operation during data transfer whenever any of the
following conditions occurs:

� The storage areas designated for the opera-
tion are exhausted or filled.

� A program-check condition is detected.

� A protection-check condition is detected.

� A chaining-check condition is detected.

� A channel-control-check condition is detected
that does not affect the control of the I/O oper-
ation.

The first of these conditions occurs when the
channel subsystem has decremented the count to
zero in the last CCW associated with the opera-
tion. A count of zero indicates that the channel
subsystem has transferred all information specified
by the I/O operation. The other four conditions are
due to errors and cause premature conclusion of
data transfer. In either case, the conclusion is sig-
naled in response to a service request from the
device and causes data transfer to cease. If the
device has no blocks defined for the operation
(such as writing on magnetic tape), it concludes
the operation and presents channel-end status.

The device can control the duration of an opera-
tion and the timing of channel end by blocking of
data. On certain operations for which blocks are

defined (such as reading on magnetic tape), the
device does not present channel-end status until
the end of the block is reached, regardless of
whether the device has been previously signaled
to conclude data transfer.

Checking for the validity of the data address is
performed only as data is transferred to or from
main storage. When the initial data address in the
CCW is invalid, no data is transferred during the
operation, and the device is signaled to conclude
the operation in response to the first service
request. On writing, devices such as magnetic-
tape units request the first byte of data before any
mechanical motion is started, and, if the initial
data address is invalid, the operation is terminated
by the channel subsystem before the recording
medium has been advanced. However, since the
operation has been initiated at the device, the
device presents channel-end status, causing the
channel subsystem to recognize a primary inter-
ruption condition. Subsequently, the device also
presents device-end status, causing the channel
subsystem to recognize a secondary interruption
condition. Whether a block at the device is
advanced when no data is transferred depends on
the type of device.

When command chaining takes place, the sub-
channel is in the subchannel-and-device-active
state from the time the first I/O operation is initi-
ated at the device until the device presents
channel-end status for the last I/O operation of the
chain. The subchannel remains in the device-
active state until the device presents the
device-end status for the last I/O operation of the
chain.

Any unusual conditions cause command chaining
to be suppressed and a primary interruption condi-
tion to be generated. The unusual conditions can
be detected by either the channel subsystem or
the device, and the device can provide the indi-
cations with channel end, control unit end, or
device end. When the channel subsystem is
aware of the unusual condition by the time the
channel-end status for the operation is accepted,
the chain is ended as if the operation during which
the condition occurred were the last operation of
the chain. The device-end status is recognized as
a secondary interruption condition whether pre-
sented together with the channel-end status or
separately. If the device presents unit check or
unit exception together with either control unit end

15-44 z/Architecture Principles of Operation

or device end as status that causes the channel
subsystem to recognize the primary interruption
condition, then the subchannel-and-device-active
state of the subchannel is terminated, and the
subchannel is made status pending with primary,
secondary, and alert status. Intermediate status
may also be indicated if an intermediate inter-
ruption condition previously existed at the sub-
channel for the initial-status-interruption condition
or the PCI condition and that condition still
remains pending at the subchannel. The
channel-end status that was presented to the
channel subsystem previously when command
chaining was signaled is not made available to the
program.

 Channel-Path-Reset Function
Subsequent to the execution of RESET CHANNEL
PATH, the channel-path-reset function is per-
formed. The performance of the function consists
of: (1) issuing the reset signal on the designated
channel path and (2) causing a channel report to
be made pending, indicating the completion of the
channel-path-reset function.

 Channel-Path-Reset-Function
Signaling

The channel subsystem issues the reset signal on
the designated channel path. As part of this oper-
ation, the following actions are taken:

1. All internal indications associated with control-
unit-busy, device-busy, and allegiance condi-
tions for the designated channel path are
reset. These indications are reset at all sub-
channels that have access to the designated
channel path. The reset function has no other
effect on subchannels, including those having
I/O operations in progress.

2. If the channel path fails to respond properly to
the reset signal (see “I/O-System Reset” on
page 17-13 for a detailed description) or,
because of a malfunction, the reset signal
could not be issued, the channel path is made
physically not available at each applicable
subchannel.

3. If an I/O operation is in progress at the device
and the device is actively communicating on
the channel path in the performance of that
I/O operation when the reset signal is received

on that channel path, the I/O operation is
reset, and the control unit and device imme-
diately terminate current communication with
the channel subsystem. (To avoid possible
misinterpretation of unsolicited device-end
status, programming measures can be taken
as described in programming note 2 on
page 15-46.)

4. If an I/O operation is in progress in the multi-
path mode at the device and the device is not
currently communicating over the channel
path in the performance of that I/O operation
when the reset signal is received, then the I/O
operation may or may not be reset depending
on whether another channel path is available
for selection in the same multipath group for
the device. If there is at least one other
channel path in the multipath group for the
device that is available for selection, the I/O
operation is not reset. However, the channel
path on which the system reset is received is
removed from the current set of channel paths
that form the multipath group. If the channel
path on which the reset signal is received is
the only channel path of a multipath group, or
if the device is operating in the single-path
mode, the I/O operation is reset.

5. The channel-path-reset function causes I/O
operations to be terminated at the device as
described above; however, I/O operations are
never terminated at the subchannel by the
channel-path-reset function.

If an I/O operation is in progress at the sub-
channel and the channel path designated for the
performance of the channel-path-reset function is
being used for that I/O operation, the subchannel
may or may not accurately reflect the progress of
the I/O operation up to that instant. The sub-
channel remains in the state that exists at the time
the channel-path-reset function is performed until
the state is changed because of some action
taken by the program or by the device.

 Channel-Path-Reset-Function-
Completion Signaling

After the reset signal has been issued and an
attempt has been made to issue the reset signal,
or after it has been determined that the reset
signal cannot be issued, the channel-path-reset
function is completed. (See “Reset Signal” on
page 17-13.)

 Chapter 15. Basic I/O Functions 15-45

As a result of the channel-path-reset function
being performed, a channel report is made
pending (see “Channel-Subsystem Recovery” on
page 17-21) to report the results. If the channel
path responds properly to the system-reset signal,
the channel report indicates that the channel path
has been initialized and is physically available for
use. If the reset signal was issued but either the
channel path failed to respond properly or the
channel path was already not physically available
at each subchannel having access to the channel
path, the channel report indicates that the channel
path has been initialized but is not physically avail-
able for use. If, because of a malfunction or
because the designated channel path is not in the
configuration, the reset signal could not be issued,
the channel report indicates that the channel path
has not been initialized and is not physically avail-
able for use.

Programming Notes:

1. If an I/O operation is in progress in the multi-
path mode when the channel-path-reset func-
tion is performed on a channel path of the
multipath group, it is possible for the I/O oper-
ation to be continued on a remaining channel
path of the group.

2. When the performance of the channel-path-
reset function causes the I/O operation at the
device to be reset, unsolicited device-end
status presented by the device, if any, may be
erroneously interpreted by the channel sub-
system to be chaining status and thus cause
the channel subsystem to continue the chain
of commands. If this situation occurs, then
the device-end status is not made available to
the program, and the device is selected again
by the channel subsystem; however, the
device may interpret the initiation sequence as
the beginning of a new channel program
instead of as command chaining. This possi-
bility can be avoided by issuing CLEAR SUB-
CHANNEL or HALT SUBCHANNEL, desig-
nating the affected subchannels, prior to
issuing RESET CHANNEL PATH.

3. The performance of the channel-path-reset
function may, on some models, cause over-
runs to occur on other channel paths.

4. Even though reset is signaled on the desig-
nated channel path, allegiances to that
channel path by one or more devices may not
have been reset because of a malfunction at a
control unit or a malfunction at the physical
channel path to the control unit.

15-46 z/Architecture Principles of Operation

 Chapter 16. I/O Interruptions

Interruption Conditions 16-2
Intermediate Interruption Condition 16-4
Primary Interruption Condition 16-4
Secondary Interruption Condition 16-4
Alert Interruption Condition 16-4

Priority of Interruptions 16-4
Interruption Action 16-5
Interruption-Response Block 16-6
Subchannel-Status Word 16-6

Subchannel Key 16-8
Suspend Control (S) 16-8
Extended-Status-Word Format (L) . . . 16-8
Deferred Condition Code (CC) 16-8
Format (F) 16-10
Prefetch (P) 16-10
Initial-Status-Interruption Control (I) . . 16-11
Address-Limit-Checking Control (A) . 16-11
Suppress-Suspended Interruption (U) . 16-11

Subchannel-Control Field 16-11
Zero Condition Code (Z) 16-11
Extended Control (E) 16-11
Path Not Operational (N) 16-12
Function Control (FC) 16-12
Activity Control (AC) 16-13

Status Control (SC) 16-16
CCW-Address Field 16-18
Device-Status Field 16-23
Subchannel-Status Field 16-23

Program-Controlled Interruption 16-23
Incorrect Length 16-23
Program Check 16-24
Protection Check 16-26
Channel-Data Check 16-26
Channel-Control Check 16-27
Interface-Control Check 16-28
Chaining Check 16-29

Count Field 16-29
Extended-Status Word 16-32

Extended-Status Format 0 16-32
Subchannel Logout 16-32
Extended-Report Word 16-36
Failing-Storage Address 16-37
Secondary-CCW Address 16-38

Extended-Status Format 1 16-38
Extended-Status Format 2 16-38
Extended-Status Format 3 16-39

Extended-Control Word 16-40
| Extended-Measurement Word 16-40

When an I/O operation or sequence of I/O oper-
ations initiated by the execution of START SUB-
CHANNEL is ended, the channel subsystem and
the device generate status conditions. The gener-
ation of these conditions can be brought to the
attention of the program by means of an I/O inter-
ruption or by means of the execution of the TEST
PENDING INTERRUPTION instruction. (During
certain abnormal situations, these conditions can
be brought to the attention of the program by
means of a machine-check interruption. See
“Channel-Subsystem Recovery” on page 17-21 for
details.) The status conditions, as well as an
address and a count indicating the extent of the
operation sequence, are presented to the program
in the form of a subchannel-status word (SCSW).
The SCSW is stored in an interruption-response
block (IRB) during the execution of TEST SUB-
CHANNEL.

Normally an I/O operation is being performed until
the device signals primary interruption status.
Primary interruption status can be signaled during
initiation of an I/O operation, or later. An I/O oper-
ation can be terminated by the channel subsystem
performing a clear or halt function when it detects
an equipment malfunction, a program check, a
chaining check, a protection check, or an
incorrect-length condition, or by performing a
clear, halt, or channel-path-reset function as a
result of the execution of CLEAR SUBCHANNEL,
HALT SUBCHANNEL, or RESET CHANNEL
PATH, respectively.

I/O interruptions provide a means for the CPU to
change its state in response to conditions that
occur at I/O devices or subchannels. These con-
ditions can be caused by the program, by the
channel subsystem, or by an external event at the
device.

 Copyright IBM Corp. 1990-2003 16-1

 Interruption Conditions
The conditions causing requests for I/O inter-
ruptions to be initiated are called I/O-interruption
conditions. When an interruption condition is
recognized by the channel subsystem, it is indi-
cated at the appropriate subchannel. The sub-
channel is then said to be status pending. The
subchannel becoming status pending causes the
channel subsystem to generate an I/O-interruption
request. An I/O-interruption request can be
brought to the attention of the program only once.

An I/O-interruption request remains pending until it
is accepted by a CPU in the configuration, is with-
drawn by the channel subsystem, or is cleared by
means of the execution of TEST PENDING
INTERRUPTION, TEST SUBCHANNEL, or
CLEAR SUBCHANNEL, or by means of sub-
system reset. When a CPU accepts an inter-
ruption request and stores the associated inter-
ruption code, the interruption request is cleared.
Alternatively, an I/O-interruption request can be
cleared by means of the execution of TEST
PENDING INTERRUPTION. In either case, the
subchannel remains status pending until the asso-
ciated interruption condition is cleared when TEST
SUBCHANNEL or CLEAR SUBCHANNEL is exe-
cuted or when the subchannel is reset.

An I/O-interruption condition is normally cleared by
means of the execution of TEST SUBCHANNEL.
If TEST SUBCHANNEL is executed, designating a
subchannel that has an I/O-interruption request
pending, both the interruption request and the
interruption condition at the subchannel are
cleared. The interruption request and the inter-
ruption condition can also be cleared by CLEAR
SUBCHANNEL.

A device-end status condition generated by the
I/O device and presented following the conclusion
of the last I/O operation of a start function is reset
at the subchannel by the channel subsystem
without generating an I/O-interruption condition or
I/O-interruption request if the subchannel is cur-
rently start pending and if the status contains
device end either alone or accompanied by control
unit end. If any other status bits accompany the
device-end status bit, then the channel subsystem
generates an I/O-interruption request with deferred
condition code 1 indicated.

When an I/O operation is terminated because of
an unusual condition detected by the channel sub-
system during the command-initiation sequence,
status describing the interruption condition is
placed at the subchannel, causing it to become
status pending. If the unusual condition is
detected by the device, the device-status field of
the associated SCSW identifies the condition.

When command chaining takes place, the gener-
ation of status by the device does not cause an
interruption, and the status is not made available
to the program.

When the channel subsystem detects any of the
following interruption conditions, it initiates a
request for an I/O interruption without necessarily
communicating with, or having received the status
byte from, the device:

� A programming error associated with the con-
tents of the ORB passed to the subchannel by
the previous execution of START SUB-
CHANNEL

� A suspend flag set to one in the first CCW
fetched that initiates channel-program exe-
cution for either START SUBCHANNEL or
RESUME SUBCHANNEL, and suppress sus-
pended interruption not specified in the ORB

� A programming error associated with the first
CCW or first IDAW

These interruption conditions from the subchannel,
except for the suspended condition, can be
accompanied by other subchannel-status indi-
cations, but the device-status indications are all
stored as zeros.

The channel subsystem issues the clear signal to
the device when status containing unit check is
presented to a subchannel that is disabled or
when the device is not associated with any sub-
channel. However, if the presented status does
not contain unit check, the status is accepted by
the channel subsystem and discarded without
causing the subchannel to become status
pending.

An interruption condition caused by the device
may be accompanied by multiple device-status
conditions. Furthermore, more than one inter-
ruption condition associated with the same device
can be accepted by the channel subsystem
without an intervening I/O interruption. As an

16-2 z/Architecture Principles of Operation

example, when the channel-end condition is not
cleared at the device by the time device end is
generated, both conditions may be cleared at the
device concurrently and indicated in the SCSW
together. Alternatively, channel-end status may
have been previously accepted at the subchannel,
and an I/O interruption may have occurred;
however, the associated status-pending condition
may not have been cleared by TEST SUB-
CHANNEL by the time device-end status was
accepted at the subchannel. In this situation, the
device-end status may be merged with the
channel-end status without causing an additional
I/O interruption. Whether an interruption condition
may be merged at the subchannel with other
existing interruption conditions depends upon
whether the interruption condition is unsolicited or
solicited.

Unsolicited Interruption Condition: An unsolic-
ited interruption condition is any interruption condi-
tion that is unrelated to the performance of a
clear, halt, resume, or start function. An unsolic-
ited interruption condition is identified at the sub-
channel as alert status. An unsolicited interruption
condition can be generated only when the sub-
channel is not device active.

The subchannel and device status associated with
an unsolicited interruption condition is never
merged with that of any currently existing inter-
ruption condition. If the subchannel is currently
status pending, the unsolicited interruption condi-
tion is held in abeyance in either the channel sub-
system or the device, as appropriate, until the
status-pending condition has been cleared.
Whenever the subchannel is idle and zero status
is presented by the device, the status is dis-
carded.

Solicited Interruption Condition: A solicited
interruption condition is any interruption condition
generated as a direct consequence of performing
or attempting to perform a clear, halt, resume, or
start function. Solicited interruption conditions
include any interruption condition generated while
the subchannel is either subchannel-and-device
active or device active. The subchannel and
device status associated with a solicited inter-
ruption condition may be merged at the sub-
channel with that of another currently existing
solicited interruption condition. Figure 16-1
describes the interruption condition that results
from any combination of bits in the status-control
field of the SCSW.

┌────────────────────┬───┐
│Status-Control Field│ Status-Control-Bit Combinations │
├────────────────────┼───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤
│Alert │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ � │ � │ � │ � │ � │ � │ � │ � │
│Primary │ � │ 1 │ 1 │ 1 │ 1 │ � │ � │ � │ 1 │ 1 │ 1 │ 1 │ � │ � │ � │ � │
│Secondary │ � │ � │ 1 │ 1 │ � │ 1 │ 1 │ � │ � │ 1 │ 1 │ � │ 1 │ 1 │ � │ � │
│Intermediate │ � │ � │ � │ 1 │ 1 │ � │ 1 │ 1 │ � │ � │ 1 │ 1 │ � │ 1 │ 1 │ � │
│Status pending │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │
├────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
│Resulting interrup- │ E │ S │ S │ S │ S │ S │ - │ S │ S │ S │ S │ S │ S │ - │ S │ S │
│ tion condition │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤
│Explanation: │
│ │
│ - Combination does not occur. │
│ E Unsolicited or solicited interruption condition. │
│ S Solicited interruption condition. │
│ � Indicates the bit stored as zero. │
│ 1 Indicates the bit stored as one. │
└──┘

Figure 16-1. Interruption Condition for Status-Control-Bit Combinations

 Chapter 16. I/O Interruptions 16-3

 Intermediate Interruption
Condition

An intermediate interruption condition is a solicited
interruption condition that indicates that an event
has occurred for which the program had previ-
ously requested notification. An intermediate
interruption condition is described by solicited sub-
channel status, the Z bit, the subchannel-
suspended condition, or any combination of the
three. An intermediate interruption condition can
occur only after it has been requested by the
program through the use of flags in the ORB or a
CCW. Depending on the state of the subchannel,
the performance or suspension of the I/O opera-
tion continues, unaffected by the setting of the
intermediate-status bit.

An intermediate interruption condition can be indi-
cated only together with one of the following indi-
cations:

 1. Subchannel active

2. Status pending with primary status alone

3. Status pending with primary status together
with alert status or secondary status or both

 4. Suspended

If only the intermediate-status bit and the status-
pending bit of the status-control field are ones
during the execution of TEST SUBCHANNEL, the
device-status field is zero.

Primary Interruption Condition

A primary interruption condition is a solicited inter-
ruption condition that indicates the performance of
the start function is completed at the subchannel.
A primary interruption condition is described by
the SCSW stored as a result of the execution of
TEST SUBCHANNEL while the subchannel is
status pending with primary status. Once the
primary interruption condition is indicated at the
subchannel, the channel subsystem is no longer
actively participating in the I/O operation by trans-
ferring commands or data. When a subchannel is
status pending with a primary interruption condi-
tion, the execution of any of the following
instructions results in the setting of a nonzero con-
dition code: HALT SUBCHANNEL, MODIFY SUB-
CHANNEL, RESUME SUBCHANNEL, and START
SUBCHANNEL. Once the primary interruption
condition is cleared by the execution of TEST

SUBCHANNEL, the subchannel accepts the
START SUBCHANNEL instruction. (See “START
SUBCHANNEL” on page 14-14.)

Secondary Interruption Condition

A secondary interruption condition is a solicited
interruption condition that normally indicates the
completion of an I/O operation at the device. A
secondary interruption condition is also generated
by the channel subsystem if the start function is
terminated because a solicited alert interruption
condition is recognized prior to initiating the first
I/O operation at the device. A secondary inter-
ruption condition is described by the SCSW stored
as a result of the execution of TEST SUB-
CHANNEL while the subchannel is status pending
with secondary status. Once the channel sub-
system has accepted status from the device that
causes a secondary interruption condition to be
recognized, the start function is completed at the
device.

Alert Interruption Condition

An alert interruption condition is either a solicited
interruption condition that indicates the occurrence
of an unusual condition in a halt, resume, or start
function or an unsolicited interruption condition
that describes a condition unrelated to the per-
formance of a halt, resume, or start function. An
alert interruption condition is described by the
SCSW stored as a result of the execution of TEST
SUBCHANNEL while the subchannel is status
pending with alert status. An alert interruption
condition may be generated by either the channel
subsystem or the device. Nonzero alert status is
always brought to the attention of the program.

Priority of Interruptions
All requests for an I/O interruption are asynchro-
nous to any activity in any CPU, and interruption
requests associated with more than one sub-
channel can exist at the same time. The priority
of interruptions is controlled by two types of mech-
anisms — one establishes within the channel sub-
system the priority among interruption requests
from subchannels associated with the same
I/O-interruption subclass, and another establishes
within a given CPU the priority among requests
from subchannels of different I/O-interruption sub-

16-4 z/Architecture Principles of Operation

classes. The channel subsystem requests an I/O
interruption only after it has established priority
among requests from its subchannels. The condi-
tions responsible for the I/O-interruption requests
associated with subchannels are preserved at the
subchannels until cleared by a CPU's execution of
TEST SUBCHANNEL or CLEAR SUBCHANNEL
or I/O-system reset is performed.

The assignment of priority among requests for
interruption from subchannels of the same
I/O-interruption subclass is in the order that the
need for interruption is recognized by the channel
subsystem. The order of recognition by the
channel subsystem is a function of the type of
interruption condition and the type of channel
path. For the parallel-I/O-interface type of channel
path, the order depends on the electrical position
of the device on the channel path to which it is
attached. (A device's electrical position on the
parallel-I/O interface is not related to its device
address.)

The assignment of priority among requests for
interruption from subchannels of different
I/O-interruption subclasses is made by the CPU
according to the numerical value of the
I/O-interruption subclass codes (with zero having
highest priority), in conjunction with the
I/O-interruption-subclass mask in control register
6. The numerical value of the
I/O-interruption-subclass code directly corresponds
to the bit position in the I/O-interruption-subclass
mask in control register 6 of a CPU. If, in any
CPU, an I/O-interruption-subclass-mask bit is zero,
then all subchannels having an
I/O-interruption-subclass code numerically equal to
the associated position in the mask register are
said to be masked off in the respective CPU.
Therefore, a CPU accepts the highest-priority
I/O-interruption request from a subchannel that
has the lowest-numbered I/O-interruption subclass
code that is not masked off by a corresponding bit
in control register 6 of that CPU. When the
highest-priority interruption request is accepted by
a CPU, it is cleared so that the interruption
request is not accepted by any other CPU in the
configuration.

The priority of interruption handling can be modi-
fied by the execution of either TEST SUB-
CHANNEL or CLEAR SUBCHANNEL. When
either of these instructions is executed and the
designated subchannel has an interruption request

pending, that interruption request is cleared,
without regard to any previous established priority.
The relative priority of the remaining interruption
requests is unchanged.

Programming Notes:

1. The I/O-interruption subclass mask is in
control register 6, which has the following
format:

┌─/─┬────────┬───────────────────────┐
│///│ISC Mask│ Reserved │
└─/─┴────────┴───────────────────────┘
� 32 4� 63

2. Control register 6 is set to all zeros during
initial CPU reset.

 Interruption Action
An I/O interruption can occur only when the
I/O-interruption-subclass-mask bit associated with
the subchannel is one and the CPU is enabled for
I/O interruptions.

The interruption occurs at the completion of a unit
of operation (see “Point of Interruption” on
page 5-21). If the channel subsystem establishes
the priority among requests for interruption from
subchannels while the CPU is disabled for I/O
interruptions, the interruption occurs immediately
after the completion of the instruction enabling the
CPU and before the next instruction is executed,
provided that the I/O-interruption subclass-mask
bit associated with the subchannel is one. Alter-
natively, if the channel subsystem establishes the
priority among requests for interruption from sub-
channels while the I/O-interruption-subclass-mask
bit is zero for each subchannel that is status
pending, the interruption occurs immediately after
the completion of the instruction that sets at least
one of the I/O-interruption-subclass-mask bits to
one, provided that the CPU is also enabled for I/O
interruptions. This interruption is associated with
the highest-priority I/O-interruption request, as
established by the CPU.

If the channel subsystem has not established the
priority among requests for interruption from the
subchannels by the time the interruption is
allowed, the interruption does not necessarily
occur immediately after the completion of the
instruction enabling the CPU. A delay can occur

 Chapter 16. I/O Interruptions 16-5

regardless of how long the interruption condition
has existed at the subchannel.

The interruption causes the current PSW to be
stored as the input/output old PSW at real
locations 368-383 and causes the I/O-interruption
code associated with the interruption to be stored
at real locations 184-195 of the CPU allowing the
interruption. Subsequently, a new input/output
PSW is loaded from real locations 496-511, and
processing resumes in the CPU state indicated by
that PSW. The subchannel causing the inter-
ruption is identified by the interruption code.

The I/O-interruption code has the following format
when it is stored. The code is described in “TEST
PENDING INTERRUPTION” on page 14-18.

Hex. Dec.
 ┌─────────────────────────────┐
 B8 184 │Subsystem-Identification Word│
 ├─────────────────────────────┤
 BC 188 │ I/O-Interruption Parameter │
 ├─────────────────────────────┤
C� 192 │ I/O-Interruption- │
 │ Identification Word │
 └─────────────────────────────┘
 � 31

Programming Note: The I/O-interruption sub-
class code for all subchannels is set to zero by
I/O-system reset. It may be set to any of the
values 0-7 by the execution of MODIFY SUB-
CHANNEL. (The operation of the instruction is
described in “MODIFY SUBCHANNEL” on
page 14-7.)

 Interruption-Response Block
The interruption-response block (IRB) is the
operand of TEST SUBCHANNEL. The two right-
most bits of the IRB address are zeros, desig-
nating the IRB on a word boundary. The IRB con-
tains three major fields: the subchannel-status
word, the extended-status word, and the

| extended-control word. When the
| extended-I/O-measurement-word mode is enabled
| at the subchannel, the IRB contains a fourth major
| field, the extended-measurement word. The

format of the IRB is as follows:

 ┌────────────────────────────────┐
Word �│ │
 1│ Subchannel-Status Word │
 2│ │
 ├────────────────────────────────┤
 3│ │
 4│ │
 5│ Extended-Status Word │
 6│ │
 7│ │
 ├────────────────────────────────┤
 8│ │
 │ │
 / Extended-Control Word /
 │ │
 15│ │
 ├────────────────────────────────┤

| 16│ │
| │ │
| / Extended-Measurement Word /
| │ │
| 23│ │
| └────────────────────────────────┘

 � 31

The length of the subchannel-status and
extended-status words is 12 bytes and 20 bytes,
respectively. The length of the extended-control
word is 32 bytes. When the extended-control bit,
bit 14 of word 0 of the SCSW, is zero, words 8-15
of the interruption-response block may or may not

| be stored. The length of the extended-
| measurement word is 32 bytes. When the condi-
| tions for storing the extended-measurement word
| are not met (see “Extended-Measurement Word”
| on page 16-40), words 16-23 of the interruption-
| response block may or may not be stored.

 Subchannel-Status Word
The subchannel-status word (SCSW) provides to
the program indications describing the status of a
subchannel and its associated device. If perform-
ance of a halt, resume, or start function has
occurred, the SCSW may describe the conditions
under which the operation was concluded.

The SCSW is stored when TEST SUBCHANNEL
is executed and the designated subchannel is
operational. The SCSW is placed in words 0-2 of
the IRB that is designated as the TEST SUB-
CHANNEL operand. When STORE SUB-
CHANNEL is executed, the SCSW is stored in
words 7-9 of the subchannel-information block
(described in “Subchannel-Information Block” on
page 15-1). Figure 16-2 on page 16-7 shows the
format of the SCSW and summarizes its contents.

16-6 z/Architecture Principles of Operation

Word ┌───────┬─┬─┬───┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─────┬─────────────┬─────────┐
� │ Key │S│L│ CC│F│P│I│A│U│Z│E│N│�│ FC │ AC │ SC │

 ├───────┴─┴─┴───┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─────┴─────────────┴─────────┤
 1 │ CCW Address │
 ├───────────────┬───────────────┬───────────────────────────────┤

2 │ Device Status │ Subch. Status │ Count │
 └───────────────┴───────────────┴───────────────────────────────┘
 � 4 8 16 2� 27 31

Bits Name

Word �
 �-3 Subchannel key

4 Suspend control (S)
5 ESW format (L)

6-7 Deferred condition code (CC)
 8 Format (F)
 9 Prefetch (P)

1� Initial-status interruption control (I)
11 Address-limit-checking control (A)
12 Suppress-suspended interruption (U)
13 Zero condition code (Z)
14 Extended control (E)
15 Path not operational (N)

 16 Reserved
 17-19 Function control (FC)

(bit 17, start function; bit 18, halt function;
bit 19, clear function)

 2�-26 Activity control (AC)
(bit 2�, resume pending; bit 21, start pending;
bit 22, halt pending; bit 23, clear pending;
bit 24, subchannel active; bit 25, device active;
bit 26, suspended)

 27-31 Status control (SC)
(bit 27, alert status; bit 28, intermediate status;
bit 29, primary status; bit 3�, secondary status;
bit 31, status pending)

Word 1
 �-31 CCW address

Word 2
 �-7 Device status

(bit �, attention; bit 1, status modifier;
bit 2, control unit end; bit 3, busy;
bit 4, channel end; bit 5, device end;
bit 6, unit check; bit 7, unit exception)

 8-15 Subchannel status
(bit 8, program-controlled interruption; bit 9, incorrect length;
bit 1�, program check; bit 11, protection check;
bit 12, channel-data check; bit 13, channel-control check;
bit 14, interface-control check; bit 15, chaining check)

 16-31 Count

Figure 16-2. SCSW Format

The contents of the subchannel-status word
(SCSW) depend on the state of the subchannel
when the SCSW is stored. Depending on the
state of the subchannel and the device, the spe-
cific fields of the SCSW may contain (1) informa-

tion pertaining to the last operation, (2) informa-
tion unrelated to the performance of an operation,
(3) zeros, or (4) meaningless values. The fol-
lowing descriptions indicate when an SCSW field
contains meaningful information.

 Chapter 16. I/O Interruptions 16-7

 Subchannel Key
When the start-function bit, bit 17 of word 0, is
one, bit positions 0-3 of word 0 contain the access
key used during performance of the associated
start function. These bits are identical with the
key specified in bit positions 0-3 of word 1 of the
ORB. The subchannel key is meaningful only
when the start-function bit, bit 17 of word 0, is
one.

Suspend Control (S)
When the start-function bit, bit 17 of word 0, is
one, bit 4 of word 0, when one, indicates that the
suspend function can be initiated at the sub-
channel. Bit 4 is meaningful only when bit 17 is
one. If bit 17 is one and bit 4 is one, channel-
program execution can be suspended if the
channel subsystem recognizes an S flag set to
one in a CCW. If bit 4 is zero, channel-program
execution cannot be suspended, and, if an S flag
set to one in a CCW is encountered, a program-
check condition is recognized.

Extended-Status-Word Format (L)
When the status-pending bit, bit 31 of word 0, is
one, bit 5 of word 0, when one, indicates that a
format-0 ESW has been stored. A format-0 ESW
is stored when an interruption condition containing
any of the following indications is cleared by TEST
SUBCHANNEL:

 Channel-data check
 Channel-control check
 Interface-control check
 Measurement-block-program check
 Measurement-block-data check
 Measurement-block-protection check

Path verification required
 Authorization check

| Program check for QDIO subchannels
| Protection check for QDIO subchannels

The extended-status-word-format bit is meaningful
whenever the subchannel is status pending. The
extended-status information that is used to form a
format-0 ESW is cleared at the subchannel by
TEST SUBCHANNEL or CLEAR SUBCHANNEL.

Deferred Condition Code (CC)
When the start-function bit, bit 17 of word 0, is
one and the status-pending bit, bit 31 of word 0, is
also one, bits 6 and 7 of word 0 indicate the
general reason that the subchannel was status
pending when TEST SUBCHANNEL or STORE
SUBCHANNEL was executed. The deferred con-
dition code is meaningful when the subchannel is
status pending with any combination of status and
only when the start-function bit of the function-
control field in the SCSW is one. The meaning of
the deferred condition code for each value when
the subchannel is status pending is given in
Figure 16-3 on page 16-10.

The deferred condition code, if not zero, is used to
indicate whether conditions have been encount-
ered that preclude the subchannel becoming
subchannel-and-device active while the sub-
channel is either start pending or suspended.

Deferred Condition Code 0: A normal I/O inter-
ruption has taken place.

Deferred Condition Code 1: Status is present in
the SCSW that was presented by the associated
device or generated by the channel subsystem
subsequent to the setting of condition code 0 for
START SUBCHANNEL or RESUME SUB-
CHANNEL. If only the alert-status bit and the
status-pending bit of the status-control field of the
SCSW are ones, the status present is not related
to the execution of a channel program. If the
intermediate-status bit, the primary-status bit, or
both are ones, then the status is related to the
execution of the channel program specified by the
most recently executed START SUBCHANNEL
instruction or implied by the most recently exe-
cuted RESUME SUBCHANNEL instruction. (See
“Immediate Conclusion of I/O Operations” on
page 15-43.) If the secondary-status bit is one
and the primary-status bit is zero, the status
present is related to the channel program speci-
fied by the START SUBCHANNEL instruction or
implied by the RESUME SUBCHANNEL instruc-
tion that preceded the most recently executed
START SUBCHANNEL instruction.

Deferred Condition Code 2: This code does not
occur and is reserved for future use.

Deferred Condition Code 3: An attempted
device selection has occurred, and the device
appeared not operational on all of the channel

16-8 z/Architecture Principles of Operation

paths that were available for selection of the
device.

A device appears not operational when it does not
respond to a selection attempt by the channel
subsystem. This occurs when the control unit is
not provided in the system, when power is off in
the control unit, or when the control unit has been
logically switched off the channel path. The not-
operational state is also indicated when the control
unit is provided and is capable of attaching the
device, but the device has not been installed and
the control unit is not designed to recognize the
device being selected as one of its attached
devices. (See also “I/O Addressing” on
page 13-5.)

A deferred condition code 3 also can be set by the
channel subsystem if no channel paths to the
device are available for selection. (See
Figure 16-3 on page 16-10.)

Programming Notes:

1. If, during performance of a start function, the
I/O device being selected is not installed or
has been logically removed from the control
unit, but the associated control unit is opera-
tional and the control unit recognizes the I/O
device being selected as one of its I/O
devices, the control unit, depending upon the
model, either fails to recognize the address of

the I/O device or considers the I/O device to
be not ready. In the former case, a path-not-
operational condition is recognized, subject to
the setting of the path-operational mask. (See
“Path-Operational Mask (POM)” on
page 15-6.) In the latter case, the not-ready
condition is indicated when the control unit
responds to the selection and indicates unit
check whenever the not-ready state precludes
successful initiation of the operation at the I/O
device. In this case, unit-check status is indi-
cated in the SCSW, the subchannel becomes
status pending with primary, secondary, and
alert status, and with deferred condition code
1 indicated. (See the publication ESA/390
Common I/O-Device Commands, SA22-7204,
for a description of unit-check status.) Refer
to the System Library publication for the
control unit to determine how the condition is
indicated.

2. The deferred condition code is 1, and the
status-control field contains the status-pending
and intermediate-status bits or the status-
pending, intermediate-status, and alert-status
bits as ones when HALT SUBCHANNEL has
been executed and the designated sub-
channel is suspended and status pending with
intermediate status. If the alert-status bit is
one, then subchannel-logout information was
generated as a result of attempting to issue
the halt signal to the device.

 Chapter 16. I/O Interruptions 16-9

┌─────┬─────┬───────────────┬───┐
│Bit 6│Bit 7│Status Control�│ Meaning │
├─────┼─────┼───────────────┼───┤
│ � │ � │ A I P S X │Normal I/O interruption │
│ │ │ A I P - X │ │
│ │ │ A - P S X │ │
│ │ │ A - P - X │ │
│ │ │ - I P S X │ │
│ │ │ - I P - X │ │
│ │ │ - I - - X │ │
│ │ │ - - P S X │ │
│ │ │ - - P - X │ │
├─────┼─────┼───────────────┼───┤
│ � │ 1 │ A I P S X │Either an immediate operation, with chaining not │
│ │ │ A I P - X │specified, has ended normally, or the setting of some │
│ │ │ A I - - X� │status condition precluded the initiation or resumpt- │
│ │ │ A - P S X │ion of a requested I/O operation at the device. │
│ │ │ A - P - X │ │
│ │ │ A - - S X │ │
│ │ │ A - - - X │ │
│ │ │ - I P S X │ │
│ │ │ - I P - X │ │
│ │ │ - I - - X� │ │
│ │ │ - - P S X │ │
│ │ │ - - P - X │ │
│ │ │ - - - S X� │ │
│ │ │ - - - - X� � │ │
├─────┼─────┼───────────────┼───┤
│ 1 │ � │ Reserved │Reserved │
├─────┼─────┼───────────────┼───┤
│ 1 │ 1 │ - - P S X │The device is not operational on any available path or,│
│ │ │ - I P S X │if a dedicated-allegiance condition exists, the device │
│ │ │ │is not operational on the path to which the dedicated │
│ │ │ │allegiance is owed. │
├─────┴─────┴───────────────┴───┤
│Explanation: │
│ │
│ - Bit is zero. │
│ � The allowed combinations of status-control-bit settings when the │
│ start-function bit is one in the function-control field. │
│ � The condition is encountered after the execution of HALT SUBCHANNEL when the │
│ subchannel is currently suspended. │
│ � The condition is encountered after the execution of HALT SUBCHANNEL when the │
│ subchannel is currently start pending. │
│ A Alert status. │
│ I Intermediate status. │
│ P Primary status. │
│ S Secondary status. │
│ X Status pending. │
└───┘

Figure 16-3. Deferred-Condition-Code Meaning for Status-Pending Subchannel

 Format (F)
When the start-function bit, bit 17 of word 0, is
one, bit 8 of word 0 indicates the format of the
CCWs associated with an I/O operation. The
format bit is meaningful only when bit 17 is one. If
bit 8 of word 0 is zero, format-0 CCWs are indi-
cated. If it is one, format-1 CCWs are indicated.
(See “Channel-Command Word” on page 15-27
for the description of the two CCW formats.)

 Prefetch (P)
When the start-function bit, bit 17 of word 0, is
one, bit 9 of word 0 indicates whether or not
unlimited prefetching of CCWs, IDAWs, and asso-
ciated data is allowed. The prefetch bit is mean-
ingful only when bit 17 is one. If bit 9 is zero, pre-
fetching of one CCW describing a data area is
allowed during output-data-chaining operations

16-10 z/Architecture Principles of Operation

and is not allowed during any other operations. If
bit 9 is one, unlimited prefetching of CCWs,
IDAWs, and associated data is allowed. It is
model dependent whether prefetching is actually
performed for any or all of the CCWs, IDAWs, and
associated data that comprise the channel
program.

Initial-Status-Interruption Control (I)
When the start-function bit, bit 17 of word 0, is
one, bit 10 of word 0, when one, indicates that the
channel subsystem is to generate an intermediate
interruption condition if the subchannel becomes
subchannel active (see “Initial-Status-Interruption
Control (I)” on page 15-24). Bit 10 of word 0,
when zero, indicates that the subchannel
becoming subchannel active is not to cause an
intermediate interruption condition to be gener-
ated.

The program requests the intermediate inter-
ruption condition by means of the ORB. An I/O
interruption that results from that request may be
due to the channel subsystem performing either a
start function or a resume function. (See “Zero
Condition Code (Z)” for details of the indication
given by the channel subsystem when the inter-
mediate interruption condition is cleared by TEST
SUBCHANNEL.)

Address-Limit-Checking Control (A)
When the start-function bit, bit 17 of word 0, is
one, bit 11 of word 0, when one, indicates that the
channel subsystem has been requested by the
program to perform address-limit checking, subject
to the setting of the limit mode at the subchannel
(see “Address-Limit-Checking Control (A)” on
page 15-25). The address-limit-checking-control
bit is meaningful only when bit 17 is one.

Suppress-Suspended Interruption (U)
When the start-function bit, bit 17 of word 0, is
one, bit 12 of word 0, when one, indicates that the
channel subsystem has been requested by the
program to suppress the generation of a
subchannel-suspended interruption condition when
the subchannel is suspended (see “Suppress-
Suspended-Interruption Control (U)” on
page 15-25). When bit 12 is zero, the channel
subsystem generates an intermediate interruption
condition whenever the subchannel is suspended
during the execution of the associated channel

program. The suppress-suspended-interruption bit
is meaningful only when bit 17 is one.

 Subchannel-Control Field

The following subchannel-control-information
descriptions apply to the subchannel-control field,
bits 13-31 of word 0 of the SCSW.

Zero Condition Code (Z)
Bit 13 of word 0, when one, indicates that the sub-
channel has become subchannel active and the
channel subsystem has recognized an initial-
status-interruption condition at the subchannel.
The Z bit is meaningful only when the
intermediate-status bit, bit 28 of word 0, and the
start-function bit, bit 17 of word 0, are both ones.

If the initial-status-interruption-control bit, bit 10 of
word 1 of the ORB, is one when START SUB-
CHANNEL is executed, then the subchannel
becoming subchannel active causes the sub-
channel to be made status pending with interme-
diate status indicating the initial-status-interruption
condition. The initial-status-interruption condition
remains at the subchannel until the intermediate
interruption condition is cleared by the execution
of TEST SUBCHANNEL or CLEAR SUB-
CHANNEL. If the initial-status-interruption-control
bit of the ORB is zero when START SUB-
CHANNEL is executed, then the subchannel
becoming subchannel active does not cause an
intermediate interruption condition to be gener-
ated, and the initial-status-interruption condition is
not recognized.

Extended Control (E)
Bit 14 of word 0, when one, indicates that model-
dependent information or concurrent-sense infor-
mation is stored in the extended-control word
(ECW). When bit 14 is zero, the contents of
words 0-7 of the ECW, if stored, are unpredict-
able. The E bit is meaningful whenever the sub-
channel is status pending with alert status either
alone or together with primary status, secondary
status, or both.

Programming Note: During the execution of
TEST SUBCHANNEL, the storing of words 0-7 of
the ECW is a model-dependent function subject to
the setting of bit 14 as described above. There-
fore, the program should always provide sufficient
storage to accommodate the storing of a 64-byte
IRB.

 Chapter 16. I/O Interruptions 16-11

Path Not Operational (N)
Bit 15 of word 0, when one, indicates that the N
condition has been recognized by the channel
subsystem. The N condition, in turn, indicates
that one or more path-not-operational conditions
have been recognized. The channel subsystem
recognizes a path-not-operational condition when,
during an attempted device selection in order to
perform a clear, halt, resume, or start function, the
device associated with the subchannel appears
not operational on a channel path that is opera-
tional for the subchannel. A channel path is oper-
ational for the subchannel if the associated device
appeared operational on that channel path the last
time the channel subsystem attempted device
selection in order to perform a clear, halt, resume,
or start function. A channel path is not operational
for the subchannel if the associated device
appeared not operational on that channel path the
last time the channel subsystem attempted device
selection in order to perform a clear, halt, resume,
or start function. A device appears to be opera-
tional on a channel path when the device
responds to an attempted device selection.

The N bit is meaningful whenever the status-
control field contains any of the indications listed
below and at least one basic I/O function is also
indicated at the subchannel:

� Status pending with any combination of
primary, secondary, or alert status

� Status pending alone

� Status pending with intermediate status when
the subchannel is also suspended

The N condition is reset whenever the execution
of TEST SUBCHANNEL results in the setting of
condition code 0 and the N bit is meaningful as
described above.

Notes:

1. A path-not-operational condition does not
imply a malfunctioning channel path. A mal-
functioning channel path causes the gener-
ation of an error indication, such as interface-
control check.

2. When a path-not-operational condition has
been recognized and the subchannel subse-
quently becomes status pending with only
intermediate status, the path-not-operational
condition (a) continues to be recognized until
the subchannel becomes status pending with

primary status or becomes suspended and
(b) is indicated by storing the path-not-
operational bit as a one during the execution
of TEST SUBCHANNEL. When a path-not-
operational condition has been recognized
and the channel-program execution subse-
quently becomes suspended, the path-not-
operational condition does not remain pending
if channel-program execution is subsequently
resumed. Instead, the old indication is lost,
and the path-not-operational indication, if any,
pertains to the attempt by the channel sub-
system to resume channel-program execution.

Function Control (FC)
The function-control field indicates the basic I/O
functions that are indicated at the subchannel.
This field may indicate the acceptance of as many
as two functions. The function-control field is con-
tained in bit positions 17-19 of the first word of the
SCSW. The function-control field is meaningful at
an installed subchannel whenever the subchannel
is valid (see “Device Number Valid (V)” on
page 15-4). The function-control field contains all
zeros whenever both the activity- and status-
control fields contain all zeros. The meaning of
the individual bits is as follows:

Start Function (Bit 17): When one, bit 17 indi-
cates that a start function has been requested and
is either pending or in progress at the subchannel.
A start function is requested by the execution of
START SUBCHANNEL. A start function is indi-
cated at the subchannel when condition code 0 is
set during the execution of START SUB-
CHANNEL. The start-function indication is cleared
at the subchannel when TEST SUBCHANNEL is
executed and the subchannel is either status
pending alone or status pending with any combi-
nation of alert, primary, or secondary status. The
start-function indication is also cleared at the sub-
channel during the execution of CLEAR SUB-
CHANNEL.

Halt Function (Bit 18): When one, bit 18 indi-
cates that a halt function has been requested and
is either pending or in progress at the subchannel.
A halt function is requested by the execution of
HALT SUBCHANNEL. A halt function is indicated
at the subchannel when condition code 0 is set for
HALT SUBCHANNEL. The halt-function indication
is cleared at the subchannel when the next status-
pending condition that occurs is cleared by the
execution of TEST SUBCHANNEL. The next

16-12 z/Architecture Principles of Operation

status-pending condition depends on the state of
the subchannel when HALT SUBCHANNEL is
executed. If the subchannel is subchannel active
when HALT SUBCHANNEL is executed, then the
next status-pending condition is status pending
with at least primary status indicated. If the sub-
channel is device active when HALT SUB-
CHANNEL is executed, then the next status-
pending condition is status pending with at least
secondary status indicated. If the subchannel is
suspended and status pending with intermediate
status when HALT SUBCHANNEL is executed,
then the next status-pending condition is status
pending with intermediate status. If the sub-
channel is idle when HALT SUBCHANNEL is exe-
cuted, then the next status-pending condition is
status pending alone. The halt-function indication
is also cleared at the subchannel during the exe-
cution of CLEAR SUBCHANNEL. In normal oper-
ations, this function is indicated together with bit
17; that is, there is a start function either pending
or in progress that is to be halted.

Clear Function (Bit 19): When one, bit 19 indi-
cates that a clear function has been requested
and is either pending or in progress at the sub-
channel. A clear function is requested by the exe-
cution of CLEAR SUBCHANNEL. A clear function
is indicated at the subchannel when condition
code 0 is set for CLEAR SUBCHANNEL (see
“CLEAR SUBCHANNEL” on page 14-4). The
clear-function indication is cleared at the sub-
channel when the resulting status-pending condi-
tion is cleared by TEST SUBCHANNEL.

Activity Control (AC)
The activity-control field is contained in bit posi-
tions 20-26 of the first word of the SCSW. This
field indicates the current progress of a basic I/O
function previously accepted at the subchannel.
By using the contents of this field, the program
can determine the degree of completion of the
basic I/O function. The activity-control field is
meaningful at an installed subchannel whenever
the subchannel is valid (see “Device Number Valid
(V)” on page 15-4). However, if an IFCC or CCC
condition is detected during the performance of a
basic I/O function and that function is indicated as
pending, I/O operations may or may not have
been performed at the device. The activity-control
bits are defined as follows:

Bit Meaning
20 Resume pending

21 Start pending
22 Halt pending
23 Clear pending
24 Subchannel active
25 Device active
26 Suspended

When an SCSW is stored that has the status-
pending bit of the status-control field zero and all
zeros in the activity-control field, the subchannel is
said to be idle or in the idle state.

Note: All conditions that are represented by the
bits in the function-control field and by the
resume-pending, start-pending, halt-pending,
clear-pending, subchannel-active, and suspended
bits in the activity-control field are reset at the sub-
channel when TEST SUBCHANNEL is executed
and the subchannel is (1) status pending alone,
(2) status pending with primary status, (3) status
pending with alert status, or (4) status pending
with intermediate status and is also suspended.

Resume-Pending (Bit 20): When one, bit 20
indicates that the subchannel is resume pending.
The channel subsystem may or may not be in the
process of performing the start function. The sub-
channel becomes resume pending when condition
code 0 is set for RESUME SUBCHANNEL. The
point at which the subchannel is no longer resume
pending is a function of the subchannel state
existing when the resume-pending condition is
recognized and the state of the device if channel-
program execution is resumed.

If the subchannel is in the suspended state when
the resume-pending condition is recognized, the
CCW that caused the suspension is refetched, the
setting of the suspend flag is examined, and one
of the following actions is taken by the channel
subsystem:

1. If the CCW suspend flag is one, the device is
not selected, the subchannel is no longer
resume pending, and the channel-program
execution remains suspended.

2. If the CCW suspend flag is zero, the channel
subsystem attempts to resume channel-
program execution by performing a modified
start function. The resumption of channel-
program execution appears to the device as
the initiation of a new channel-program exe-
cution. The resume function causes the
channel subsystem to perform the path-
management operation as if a new start func-

 Chapter 16. I/O Interruptions 16-13

tion were being initiated, using the ORB
parameters previously passed to the sub-
channel by START SUBCHANNEL with the
exception that the channel-program address is
the address of the CCW that caused the sus-
pension of the channel-program execution.

The subchannel remains resume pending
when, during the performance of the start
function, the channel subsystem (1) deter-
mines that it is not possible to attempt to ini-
tiate the I/O operation for the first command,
(2) determines that an attempt to initiate the
I/O operation for the first command does not
result in the command being accepted, or
(3) detects an IFCC or CCC condition and is
unable to determine whether the first
command has been accepted. (See “Start
Function and Resume Function” on
page 15-18.)

The subchannel is no longer resume pending
when any of the following events occurs:

a. While performing the start function, the
subchannel becomes subchannel-
and-device active or device active only, or
the first command is accepted with
channel-end and device-end initial status
and the CCW does not specify command
chaining.

b. CLEAR SUBCHANNEL is executed.

c. TEST SUBCHANNEL clears any combina-
tion of primary, secondary, and alert
status or clears the status-pending condi-
tion alone.

d. TEST SUBCHANNEL clears intermediate
status while the subchannel is suspended.

e. CANCEL SUBCHANNEL is executed with
a resulting condition code 0.

If the subchannel is not in the suspended state
when the resume-pending condition is recognized,
the CCW suspend flag of the most recently
fetched CCW, if any, is examined, and one of the
following actions is taken by the channel sub-
system:

1. If a CCW has not been fetched or the
suspend flag of the most recently fetched
CCW is zero, the subchannel is no longer
resume pending, and the resume function is
not performed.

2. If the suspend flag of the most recently
fetched CCW is one, the subchannel is no
longer resume pending, and the CCW is
refetched. The subchannel proceeds with
channel-program execution if the suspend flag
of the refetched CCW is zero. The sub-
channel suspends channel-program execution
if the suspend flag of the refetched CCW is
one.

Some models recognize a resume-pending condi-
tion only after a CCW having an S flag validly set
to one is fetched. Therefore, if a subchannel is
resume pending and, during the execution of the
channel program, no CCW is fetched that has an
S flag validly set to one, the subchannel remains
resume pending until the primary interruption con-
dition is cleared by TEST SUBCHANNEL.

Start-Pending (Bit 21): When one, bit 21 indi-
cates that the subchannel is start pending. The
channel subsystem may or may not be in the
process of performing the start function. The sub-
channel becomes start pending when condition
code 0 is set for START SUBCHANNEL. The
subchannel remains start pending when, during
the performance of the start function, the channel
subsystem (1) determines that it is not possible to
attempt to initiate the I/O operation for the first
command, (2) determines that an attempt to ini-
tiate the I/O operation for the first command does
not result in the command being accepted, or
(3) detects an IFCC or CCC condition and is
unable to determine whether the first command
has been accepted. (See “Start Function and
Resume Function” on page 15-18.)

The subchannel becomes no longer start pending
when any of the following occurs:

1. While performing the start function, the sub-
channel becomes subchannel-and-device
active or device active only, or the first
command is accepted with channel-end and
device-end initial status and the CCW does
not specify command chaining.

2. The subchannel becomes suspended because
of a suspend flag validly set to one in the first
CCW.

3. CLEAR SUBCHANNEL is executed.

4. TEST SUBCHANNEL clears any combination
of primary, secondary, and alert status or
clears the status-pending condition alone.

16-14 z/Architecture Principles of Operation

5. CANCEL SUBCHANNEL is executed with a
resulting condition code 0.

Halt-Pending (Bit 22): When one, bit 22 indi-
cates that the subchannel is halt pending. The
channel subsystem may or may not be in the
process of performing the halt function. The sub-
channel becomes halt pending when condition
code 0 is set for HALT SUBCHANNEL. The sub-
channel remains halt pending when, during the
performance of the halt function, the channel sub-
system (1) determines that it is not possible to
attempt to issue the halt signal to the device,
(2) determines that the attempt to issue the halt
signal to the device is not successful, or
(3) detects an IFCC or CCC condition and is
unable to determine whether the halt signal is
issued to the device. (See “Halt Function” on
page 15-15.)

The subchannel is no longer halt pending when
any of the following occurs:

1. While performing the halt function, the channel
subsystem determines that the halt signal has
been issued to the device.

2. CLEAR SUBCHANNEL is executed.

3. TEST SUBCHANNEL clears any combination
of primary, secondary, and alert status or
clears the status-pending condition alone.

4. TEST SUBCHANNEL clears intermediate
status while the subchannel is suspended.

Clear-Pending (Bit 23): When one, bit 23 indi-
cates that the subchannel is clear pending. The
channel subsystem may or may not be in the
process of performing the clear function. The sub-
channel becomes clear pending when condition
code 0 is set for CLEAR SUBCHANNEL. The
subchannel remains clear pending when, during
performance of the clear function, the channel
subsystem (1) determines that it is not possible to
attempt to issue the clear signal to the device,
(2) determines that the attempt to issue the clear
signal to the device is not successful, or
(3) detects an IFCC or CCC condition and is
unable to determine whether the clear signal is
issued to the device. (See “Clear Function” on
page 15-14.)

The subchannel is no longer clear pending when
either of the following occurs:

1. While performing the clear function, the
channel subsystem determines that the clear
signal has been issued to the device.

2. TEST SUBCHANNEL clears the status-
pending condition alone.

Subchannel Active (Bit 24): When one, bit 24
indicates that the subchannel is subchannel
active. A subchannel is said to be subchannel
active when an I/O operation is currently being
performed at the subchannel. The subchannel
becomes subchannel active when the first
command is accepted and the start function or
resume function is not immediately concluded at
the subchannel. (See “Immediate Conclusion of
I/O Operations” on page 15-43.) The subchannel
is no longer subchannel active when any of the
following occurs:

1. The subchannel becomes suspended.

2. The subchannel becomes status pending with
primary status.

3. CLEAR SUBCHANNEL is executed.

4. The device appears not operational during
performance of a halt function.

The subchannel does not become subchannel
active during performance of the function specified
by either a HALT SUBCHANNEL or a CLEAR
SUBCHANNEL instruction.

Device Active (Bit 25): When one, bit 25 indi-
cates that the subchannel is device active. A sub-
channel is said to be device active when an I/O
operation is currently in progress at the associated
device. The subchannel becomes device active
when the first command is accepted. The sub-
channel is no longer device active when any of
the following occurs:

1. The subchannel becomes suspended.

2. The subchannel becomes status pending with
secondary status.

3. CLEAR SUBCHANNEL is executed.

4. The device appears not operational during
performance of a halt function.

If the subchannel is not start pending or if the
status accepted from the device also describes an
alert condition, the subchannel becomes status
pending with secondary status. After the status
has been accepted from the device, the device is
capable of accepting a command for performing a

 Chapter 16. I/O Interruptions 16-15

new I/O operation. If the subchannel is start
pending and the status is device end or device
end with control unit end, then the channel sub-
system discards the status and performs the start
function for the new channel program. (See “Start
Function and Resume Function” on page 15-18)
In this situation, the subchannel does not become
status pending with the secondary interruption
condition, and the status is not made available to
the program.

The subchannel does not become device active
during performance of the functions specified by
either a HALT SUBCHANNEL or a CLEAR SUB-
CHANNEL instruction.

Suspended (Bit 26): When one, bit 26 indicates
that the subchannel is suspended. A subchannel
is said to be suspended when channel-program
execution is currently suspended. The sub-
channel becomes suspended as part of the
suspend function. (See “Suspension of Channel-
Program Execution” on page 15-38.)

The subchannel is no longer suspended when any
of the following occurs:

1. As part of the resume function following the
execution of RESUME SUBCHANNEL when
the subchannel becomes subchannel-
and-device active or device active only, or the
first command is accepted for channel-end
and device-end initial status, with or without
status modifier, and the CCW does not specify
command chaining.

2. CLEAR SUBCHANNEL is executed.

3. TEST SUBCHANNEL clears any combination
of primary, secondary, and alert status or
clears the status-pending condition alone.

4. TEST SUBCHANNEL clears intermediate
status while the halt function is specified.

5. CANCEL SUBCHANNEL is executed with a
resulting condition code 0.

Programming Note: When an SCSW is stored
by STORE SUBCHANNEL or TEST SUB-
CHANNEL following CLEAR SUBCHANNEL but
prior to the subchannel becoming status pending,
and the subchannel-active bit, bit 24 of word 0, is
stored as zero, this does not mean that data
transfer has stopped for the device. The program
cannot determine whether data transfer has
stopped until the subchannel becomes status

pending as a result of performing the clear func-
tion.

Status Control (SC)
The status-control field is contained in bit positions
27-31 of the first word of the SCSW. This field
provides the program with a summary-level indi-
cation of the interruption condition described by
either subchannel or device status, the Z bit, or, in
the case of the subchannel-suspended inter-
ruption, the suspended bit, bit 26. More than one
summary indication may be signaled as a result of
existing conditions at the subchannel. Whenever
the subchannel is enabled (see “Enabled (E)” on
page 15-2) and at least bit 31 is one, the sub-
channel is said to be status pending. Whenever
the subchannel is disabled, the subchannel is not
made status pending. Bit 31 of SCSW word 0 is
meaningful at an installed subchannel whenever
the subchannel is valid (see “Device Number Valid
(V)” on page 15-4); bits 27-30 are meaningful
when bit 31 is one. The status-control bits are
defined as follows:

Alert Status (Bit 27): When one (and when the
status-pending bit is also one), bit 27 indicates an
alert interruption condition exists. In such a case,
the subchannel is said to be status pending with
alert status. An alert interruption condition is
recognized when alert status is present at the sub-
channel. Alert status may be subchannel status
or device status. Alert status is status generated
by either the channel subsystem or the device
under any of the following conditions:

� The subchannel is idle (activity-control bits
20-26 and status-control bit 31 are zeros).

� The subchannel is start pending, and the
status condition precludes initiation of the I/O
operation.

� The subchannel is subchannel-and-device
active, and the status condition has sup-
pressed command chaining or would have
suppressed command chaining if chaining had
been specified (see “Chaining” on
page 15-31).

� The subchannel is subchannel-and-device
active, command chaining is not specified, the
execution of the channel program has just
been concluded, and the status presented by
the device is attempting to alter the sequential
execution of commands (see the publication
ESA/390 Common I/O-Device Commands,

16-16 z/Architecture Principles of Operation

SA22-7204, for more information on the use of
status modifier to alter the sequential exe-
cution of commands).

� The subchannel is device active only, and the
status presented by the device is other than
device end, control unit end, or device end
and control unit end.

� The subchannel is suspended (bit 26 is one).

If the subchannel is start pending when an alert
interruption condition is recognized, the sub-
channel becomes status pending with alert status,
deferred condition code 1 is set, the start-pending
bit remains one, and the performance of the
pending I/O operation is not initiated.

When TEST SUBCHANNEL is executed and
stores an SCSW with the alert-status bit and the
status-pending bit as ones in the IRB, the alert
interruption condition is cleared at the subchannel.
The alert interruption condition is also cleared
during the execution of CLEAR SUBCHANNEL.

Whenever alert status is present at the sub-
channel, it is brought to the attention of the
program. Examples of alert status include atten-
tion, device end (which signals a transition from
the not-ready to the ready state), incorrect length,
program check, and unit check.

Intermediate Status (Bit 28): When one (and
when the status-pending bit is also one), bit 28
indicates an intermediate interruption condition
exists. In such a case, the subchannel is said to
be status pending with intermediate status. Inter-
mediate status can be indicated when the Z bit (of
the subchannel-control field), the suspended bit (of
the activity-control field), or the PCI bit (of the
subchannel-status field) is one.

When the initial-status-interruption-control bit is
one in the ORB, the subchannel becomes status
pending with intermediate status (the Z bit indi-
cated) only after the subchannel is subchannel
active. If the subchannel does not become sub-
channel active, the Z condition is not generated.

When suspend control is specified and the gener-
ation of an intermediate interruption condition due
to suspension is not suppressed in the ORB, then
the subchannel can become status pending with
intermediate status due to suspension if a CCW
becomes current that contains the suspend flag

set to one. When the suspend flag is specified in
the first CCW of a channel program, channel-
program execution is suspended, and the sub-
channel becomes status pending with intermediate
status (the suspended bit indicated) before the
command in the first CCW is transferred to the
device. When the suspend flag is specified in a
CCW fetched during command chaining, then
channel-program execution is suspended, and the
subchannel becomes status pending with interme-
diate status (the suspended bit is indicated), only
after the execution of the preceding CCW is com-
plete.

When the PCI flag is specified in a CCW, the gen-
eration of an intermediate interruption condition
due to PCI depends on whether the CCW is the
first CCW of the channel program. When the PCI
flag is specified in the first CCW of a channel
program, the subchannel becomes status pending
with intermediate status (the PCI bit indicated)
only after initial status is received for the first
CCW of the channel program indicating the
command has been accepted. When the PCI flag
is specified in a CCW fetched while chaining, the
subchannel becomes status pending with interme-
diate status (the PCI bit indicated) only after the
execution of the preceding CCW is complete. If
chaining occurs before an interruption condition
containing PCI is cleared by TEST SUB-
CHANNEL, the condition is carried over to the
next CCW. This carry-over occurs during both
data and command chaining, and, in either case,
the condition is propagated through the transfer-
in-channel command.

If the subchannel is status pending with interme-
diate status when HALT SUBCHANNEL is exe-
cuted, the intermediate interruption condition
remains at the subchannel, but the interruption
request, if any, is withdrawn, and the subchannel
becomes no longer status-pending. The sub-
channel remains no longer status pending until
performance of the halt function has ended. The
subchannel then becomes status pending with
intermediate status indicated (possibly together
with any combination of primary, secondary, and
alert status).

When TEST SUBCHANNEL is executed and
stores an SCSW with the intermediate-status bit
and the status-pending bit as ones in the IRB, the
intermediate interruption condition is cleared at the
subchannel. The intermediate interruption condi-

 Chapter 16. I/O Interruptions 16-17

tion is also cleared at the subchannel during the
execution of CLEAR SUBCHANNEL.

Primary Status (Bit 29): When one (and when
the status-pending bit is also one), bit 29 indicates
a primary interruption condition exists. In such a
case, the subchannel is said to be status pending
with primary status. A primary interruption condi-
tion is a solicited interruption condition that indi-
cates the completion of the start function at the
subchannel. The primary interruption condition is
described by the SCSW stored. When an I/O
operation is terminated by HALT SUBCHANNEL
but the halt signal is not issued to the device
because the device appeared not operational, the
subchannel is made status pending with primary
status (and secondary status) with both the
subchannel-status field and the device-status field
set to zero.

When TEST SUBCHANNEL is executed and
stores an SCSW with the primary-status bit and
the status-pending bit as ones in the IRB, the
primary interruption condition is cleared at the
subchannel. The primary interruption condition is
also cleared at the subchannel during the exe-
cution of CLEAR SUBCHANNEL.

Secondary Status (Bit 30): When one (and
when the status-pending bit is also one), bit 30
indicates a secondary interruption condition exists.
In such a case, the subchannel is said to be
status pending with secondary status. A sec-
ondary interruption condition is a solicited inter-
ruption condition that normally indicates the com-
pletion of the I/O operation at the device. The
secondary interruption condition is described by
the SCSW stored.

When an I/O operation is terminated by HALT
SUBCHANNEL but the halt signal is not issued to
the device because the device appeared not oper-
ational, the subchannel is made status pending
with secondary status (and primary status if the
subchannel is also subchannel active) with zeros
for subchannel and device status.

When TEST SUBCHANNEL is executed and
stores an SCSW with the secondary-status bit as
one in the IRB, the secondary interruption condi-
tion is cleared at the subchannel. The secondary
interruption condition is also cleared at the sub-
channel during the execution of CLEAR SUB-
CHANNEL.

Status-Pending (Bit 31): When one, bit 31 indi-
cates that the subchannel is status pending and
that information describing the cause of the inter-
ruption condition is available to the program. The
subchannel becomes status pending whenever
intermediate, primary, secondary, or alert status is
generated. When HALT SUBCHANNEL is exe-
cuted, designating a subchannel that is idle, the
subchannel becomes status pending subsequent
to performance of the halt function to notify the
program that the halt function has been com-
pleted. When TEST SUBCHANNEL is executed,
thus storing an SCSW with the status-pending bit
as one in the IRB, the status-pending condition is
cleared at the subchannel. The status-pending
condition is also cleared at the subchannel during
the execution of CLEAR SUBCHANNEL. When
CLEAR SUBCHANNEL is executed and the desig-
nated subchannel is operational, the subchannel
becomes status pending subsequent to perform-
ance of the clear function to notify the program
that the clear function has been completed.

Note: The status-pending bit, in conjunction with
the remaining bits of the status-control field, indi-
cates the type of status condition. For example, if
bits 29 and 31 are ones, the subchannel is status
pending with primary status. Alternatively, if only
bit 31 is one, then the subchannel is said to be
status pending or status pending alone. If only bit
31 is one in the status-control field, the settings of
all bits in the subchannel-status and device-status
fields are unpredictable. If bit 31 is not one, then
the remaining bits of the status-control field are
not meaningful.

 CCW-Address Field

Bits 1-31 of word 1 form an absolute address.
The address indicated is a function of the sub-
channel state when the SCSW is stored, as indi-
cated in Figure 16-4 on page 16-19. When the
subchannel-status field indicates channel-control
check, channel-data check, or interface-control
check, the CCW-address field is usable for
recovery purposes if the CCW-address field-
validity flag in the ESW is one.

Programming Note: When a CCW address,
either detected in the channel-program address
(see “Channel-Program Address” on page 15-26)
or generated during chaining, would cause the
channel subsystem to fetch a CCW from a

16-18 z/Architecture Principles of Operation

location greater than 2�� - 1 while format-0
CCWs are specified for the operation, the invalid
address is stored in the CCW-address field of the
SCSW without truncation. If the invalid address
causes the channel subsystem, while chaining, to

fetch a CCW from a location greater than 2�� - 1
while format-1 CCWs are specified for the opera-
tion, the rightmost 31 bits of the invalid address
are stored in the CCW-address field.

┌──┬──────────────────────────────────────┐
│ Subchannel State� │ CCW Address� │
├──┼──────────────────────────────────────┤
│Start pending (UUUU�/AIPSX)� │ Unpredictable │
│ │ │
│Start pending and device active (UUUU�/AIPSX)�│ Unpredictable │
│ │ │
│Subchannel-and-device active (UUUU�/AIPSX)� │ Unpredictable │
│ │ │
│Device active only (UUUU�/AIPSX) │ Unpredictable │
│ │ │
│Suspended (YYYYY/AIPSX)� │ See note 1 │
│ │ │
│Status pending (1���1/AIPSX) because of │ Channel-program address + 8 │
│unsolicited alert status from the device while│ │
│the subchannel was start pending� │ │
│ │ │
│Status pending (�Y111/AIPSX) because the │ Channel-program address + 8 │
│device appeared not operational on all paths� │ │
│ │ │
│Status pending (1��11/AIPSX) because of │ Channel-program address + 8 │
│solicited alert status from the device while │ │
│the subchannel was start pending and device │ │
│active� │ │
│ │ │
│Status pending (1�111/AIPSX) because of │ See note 2 │
│solicited alert status generated by the │ │
│channel subsystem while the subchannel was │ │
│start pending� or start pending and device │ │
│active� │ │
│ │ │
│Status pending (�1��1/AIPSX) for the program-│ CCW + 8 of the CCW that contained the│
│controlled-interruption condition while the │ last recognized PCI, or 8 higher than│
│subchannel was subchannel-and-device active� │ a CCW that has subsequently become │
│ │ current │
│ │ │
│Status pending (�1��1/AIPSX) for the initial- │ CCW + 8 of the CCW causing the │
│status-interruption condition while the │ intermediate interruption condition, │
│subchannel was subchannel-and-device active� │ or a CCW that has subsequently │
│ │ become current │
│ │ │
│Status pending (1Y1Y1/AIPSX); termination │ │
│occurred because of program check caused by │ │
│one of the following conditions:� │ │
│ │ │
│ Bit 24 of word 1 of the ORB set to one; │ Channel-program address + 8 │
│ incorrect-length-indication-suppression │ │
│ facility not installed │ │
│ │ │
│ Unused bits in ORB not set to zeros │ Channel-program address + 8 │
│ │ │
│ Invalid CCW-address specification in │ Address of TIC + 8 │
│ transfer in channel (TIC) │ │
│ │ │
│ Invalid CCW-address specification in the │ Channel-program address + 8� │
│ channel-program address in the ORB │ │
└──┴──────────────────────────────────────┘

Figure 16-4 (Part 1 of 4). CCW Address as Function of Subchannel State

 Chapter 16. I/O Interruptions 16-19

┌──┬──────────────────────────────────────┐
│ Subchannel State� │ CCW Address� │
├──┼──────────────────────────────────────┤
│ Invalid CCW address in TIC │ Address of TIC + 8 │
│ │ │
│ Invalid CCW address in the channel-program │ Channel-program address + 8� │
│ address in the ORB │ │
│ │ │
│ Invalid CCW address while chaining │ Invalid CCW address + 8 │
│ │ │
│ Invalid command code │ Address of invalid CCW + 8� │
│ │ │
│ Invalid count │ Address of invalid CCW + 8� │
│ │ │
│ Invalid IDAW-address specification │ Address of invalid CCW + 8� │
│ │ │
│ Invalid IDAW address in a CCW │ Address of invalid CCW + 8� │
│ │ │
│ Invalid IDAW address while sequentially │ Address of current CCW + 8 │
│ fetching IDAWs │ │
│ │ │
│ Invalid data-address specification, │ Address of invalid CCW + 8� │
│ format 1 │ │
│ │ │
│ Invalid data address in a CCW │ Address of invalid CCW + 8� │
│ │ │
│ Invalid data address while sequentially │ Address of current CCW + 8 │
│ accessing storage │ │
│ │ │
│ Invalid data address in IDAW │ Address of current CCW + 8 │
│ │ │
│ Invalid IDAW specification │ Address of current CCW + 8 │
│ │ │
│ Invalid CCW, format � or 1, for a CCW other│ Address of invalid CCW + 8� │
│ than a TIC │ │
│ │ │
│ Invalid suspend flag — CCW fetched during │ Address of invalid CCW + 8 │
│ data chaining has suspend flag set to one │ │
│ │ │
│ Invalid suspend flag — CCW has suspend │ Address of invalid CCW + 8 │
│ flag set to one, but suspend control was │ │
│ not specified in the ORB │ │
│ │ │
│ Invalid CCW, format 1, for a TIC │ Address of TIC + 8 │
│ │ │
│ Invalid sequence — two TICs │ Address of second TIC + 8 │
│ │ │
│ Invalid sequence — 256 or more CCWs │ Address of 256th CCW + 8 │
│ without data transfer │ │
│ │ │
│Status pending (1Y1Y1/AIPSX); termination │ │
│occurred because of protection check detected │ │
│as follows:� │ │
│ │ │
│ On a CCW access │ Address of the protected CCW + 8� │
│ │ │
│ On data or an IDAW access │ Address of current CCW + 8 │
└──┴──────────────────────────────────────┘

Figure 16-4 (Part 2 of 4). CCW Address as Function of Subchannel State

16-20 z/Architecture Principles of Operation

┌──┬──────────────────────────────────────┐
│ Subchannel State� │ CCW Address� │
├──┼──────────────────────────────────────┤
│Status pending (1Y1Y1/AIPSX); termination │ Address of current CCW + 8 │
│occurred because of chaining check� │ │
│ │ │
│Status pending (YY1Y1/AIPSX); termination │ Address of current CCW + 8� │
│occurred under count control� │ │
│ │ │
│Status pending (1Y1Y1/AIPSX); operation │ Address of current CCW + 8� │
│prematurely terminated by the device because │ │
│of alert status� │ │
│ │ │
│Status pending (YYYY1/AIPSX) after termination│ │
│by HALT SUBCHANNEL and the activity-control- │ │
│field bits indicated below set to ones: │ │
│ │ │
│ Status pending alone │ Unpredictable │
│ │ │
│ Start pending� │ Unpredictable │
│ │ │
│ Device active and start pending� │ Unpredictable │
│ │ │
│ Device active │ Unpredictable │
│ │ │
│ Subchannel active and device active� │ CCW + 8 of the last-executed CCW │
│ │ │
│ Suspended │ CCW + 8 of CCW causing suspension │
│ │ │
│ Suspended and resume pending │ Unpredictable │
│ │ │
│Status pending (����1/AIPSX) after termination│ Unpredictable │
│by CLEAR SUBCHANNEL │ │
│ │ │
│Status pending (YY1Y1/AIPSX); operation │ CCW + 8 of the last-executed CCW� │
│completed normally at the subchannel� │ │
│ │ │
│Status pending (���11/AIPSX) │ Unpredictable │
│ │ │
│Status pending (1���1/AIPSX) │ Unpredictable │
│ │ │
│Status pending (����1/AIPSX) │ Unpredictable │
│ │ │
│Status pending (1Y111/AIPSX); command chaining│ Address of current CCW + 8� │
│suppressed because of alert status other than │ │
│channel-control check or interface-control │ │
│check� │ │
│ │ │
│Status pending (1YYY1/AIPSX) because of alert │ See note 3� │
│status for channel-control check or │ │
│interface-control check� │ │
│ │ │
│Status pending (1Y1Y1/AIPSX) because of │ Address of current CCW + 8� │
│channel-data check� │ │
└──┴──────────────────────────────────────┘

Figure 16-4 (Part 3 of 4). CCW Address as Function of Subchannel State

 Chapter 16. I/O Interruptions 16-21

┌───┐
│Explanation: │
│ │
│ � The meaning of the notation used in this column is as follows: │
│ A Alert status │
│ I Intermediate status │
│ P Primary status │
│ S Secondary status │
│ X Status pending │
│ The possible combination of status-control-bit settings is shown to the left of│
│ the “/” symbol by the use of these symbols: │
│ │
│ � Corresponding condition is not indicated. │
│ 1 Corresponding condition is indicated. │
│ U Unpredictable. The corresponding condition is not meaningful when the │
│ subchannel is not status pending. │
│ Y The corresponding condition is not significant and is indicated as a │
│ function of the subchannel state. │
│ │
│ � A CCW becomes current when (1) it is the first CCW of a channel program and │
│ has been fetched, (2) while command chaining, the previous CCW is no longer │
│ current and the new CCW has been fetched, or (3) in the case of data chaining, │
│ the new CCW takes over control of the I/O operation (see the section “Data │
│ Chaining” in Chapter 15, “Basic I/O Functions”). If chaining is not specified │
│ or is suppressed, a CCW is no longer current and becomes the last-executed CCW │
│ when secondary status has been accepted by the channel subsystem. During │
│ command chaining, a CCW is no longer current when device-end status has been │
│ accepted or, in the case of data chaining, when the last byte of data for that │
│ CCW has been accepted. │
│ │
│ � The subchannel may also be resume pending. │
│ │
│ � The stored address is the channel-program address (in the ORB) + 8 even though │
│ it is either invalid or protected. │
│ │
│ � The stored address is the address of the current CCW + 8 even though it is │
│ either invalid or protected. │
│ │
│ � Incorrect length is indicated as a function of the setting of the │
│ suppress-length-indication flag in the current CCW (see the section │
│ “Channel-Command Word” in Chapter 15, “Basic I/O Functions”). │
│ │
│Notes: │
│ │
│ 1. Unless the subchannel is also resume pending, the address stored is the address│
│ of the CCW that caused suspension, plus 8. Otherwise, the address stored is │
│ unpredictable. │
│ 2. The address of the CCW is given as a function of the alert status indicated. │
│ For example, if a program-check or protection-check condition is recognized, │
│ the CCW address stored is the same as for the entry for program check or │
│ protection check, respectively, in this table. Alternatively, if alert status │
│ for interface-control check or channel-control check is indicated, the CCW │
│ address stored is either the channel-program address (in the ORB) + 8 or │
│ invalid as specified by the field-validity flags in the subchannel logout. │
│ 3. Bit 21 of the subchannel-logout information, when stored as one, indicates that│
│ the address is CCW + 8 of the last-fetched CCW if the command for the CCW has │
│ not been accepted by the device. If the command has been accepted by the │
│ device at the time the error condition is recognized, then the address stored │
│ is the address of the CCW + 8 of the last-executed CCW. │
└───┘

Figure 16-4 (Part 4 of 4). CCW Address as Function of Subchannel State

16-22 z/Architecture Principles of Operation

 Device-Status Field

Device-status conditions are generated by the I/O
device and are presented to the channel sub-
system over the channel path. The timing and
causes of these conditions for each type of device
are specified in the System Library publication for
the device. The device-status field is meaningful
whenever the subchannel is status pending with
any combination of primary, secondary, interme-
diate, or alert status. Whenever the subchannel is
status pending with intermediate status alone, the
device-status field is zero. When the subchannel-
status field indicates channel-control check,
channel-data check, or interface-control check, the
device-status field is usable for recovery purposes
if the device-status field-validity flag in the ESW is
one. When the subchannel is status pending with
deferred condition code 3 indicated, the contents
of the device-status field are not meaningful.

If, within a system, the I/O device is accessible
from more than one channel path, status related
to channel-subsystem-initiated operations in the
single-path mode (solicited status) is signaled over
the initiating channel path. Devices operating in
the multipath mode may signal solicited status
over any channel path that belongs to the same
path group as the initiating channel path. The
handling of conditions not associated with I/O
operations (unsolicited alert status), such as atten-
tion, unit exception, and device end due to transi-
tion from the not-ready to the ready state,
depends on the type of device and condition and
is specified in the System Library publication for
the device.

The channel subsystem does not modify the
status bits received from the I/O device. These
bits appear in the SCSW as received over the
channel path. For more information on the status
bits received from the I/O device, see the publica-
tion ESA/390 Common I/O-Device Commands,
SA22-7204.

 Subchannel-Status Field

Subchannel-status conditions are detected and
indicated in the SCSW by the channel subsystem.
Except for the conditions caused by equipment
malfunctioning, they can occur only while the
channel subsystem is involved with the perform-
ance of a halt, resume, or start function. The

subchannel-status field is meaningful whenever
the subchannel is status pending with any combi-
nation of primary, secondary, intermediate, or alert
status. Individual bits contained in the
subchannel-status field may be unpredictable even
when the subchannel-status field is meaningful.
When the subchannel is status pending with
deferred condition code 3 indicated, the contents
of the subchannel-status field are not meaningful.

 Program-Controlled Interruption
An intermediate interruption condition is generated
after a CCW with the program-
controlled-interruption (PCI) flag set to one
becomes the current CCW. The I/O interruption
due to the PCI flag may be delayed an unpredict-
able amount of time because of masking of the
interruption request or other activity in the system.
(See “Program-Controlled Interruption” on
page 15-35.) When the channel subsystem
recognizes an alert interruption condition due to
either a channel-control-check condition or an
interface-control-check condition, then any previ-
ously existing intermediate interruption condition
caused by a PCI flag in a CCW may or may not
be recognized by the channel subsystem.

Detection of the PCI condition does not affect the
progress of the I/O operation.

 Incorrect Length
Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the
I/O operation is not equal to the number of bytes
requested or offered by the I/O device. Incorrect
length is indicated for one of the following
reasons:

Long Block on Input: During a read, read-
backward, or sense operation, the device
attempted to transfer one or more bytes to main
storage after the assigned main-storage areas
were filled, or the device indicated that more data
could have been transferred if the count had been
larger. The extra bytes have not been placed in
main storage. The count in the SCSW is zero.

Long Block on Output: During a write or control
operation, the device requested one or more bytes
from the channel subsystem after the assigned
main-storage areas were exhausted, or the device
indicated that more data could have been trans-
ferred if the count had been larger. The count in
the SCSW is zero.

 Chapter 16. I/O Interruptions 16-23

Short Block on Input: The number of bytes
transferred during a read, read-backward, or
sense operation is insufficient to fill the main-
storage areas assigned to the operation. The
count in the SCSW is not zero.

Short Block on Output: The device terminated
a write or control operation before all information
contained in the assigned main-storage areas was
transferred to the device. The count in the SCSW
is not zero.

The incorrect-length indication is suppressed when
the current CCW has the SLI flag set to one and
the CD flag set to zero. The indication does not
occur for operations rejected during the initiation
sequence. The indication also does not occur for
immediate operations when the count field is
nonzero and the subchannel is in the incorrect-
length-suppression mode. The incorrect-length
indication is not meaningful when the count field of
the SCSW is not meaningful.

Presence of the incorrect-length condition sup-
presses command chaining unless the SLI flag in
the CCW is one or unless the condition occurs in
an immediate operation when the subchannel is in
the incorrect-length-suppression mode.

 Program Check
Program check occurs when programming errors
are detected by the channel subsystem. The con-
dition can be due to the following causes:

 Invalid CCW-Address Specification: The
channel-program address (CPA) or the transfer-
in-channel command does not designate the CCW
on a doubleword boundary, or bit 0 of the CPA or
bit 32 of a format-1 CCW specifying the transfer-
in-channel command is not zero.

Invalid CCW Address: The channel subsystem
has attempted to fetch a CCW from a main-
storage location that is not available. An invalid
CCW address can occur because the program
has designated an invalid address in the channel-
program-address field of the ORB or in the
transfer-in-channel command or because, on
chaining, the channel subsystem attempts to fetch
a CCW from an unavailable location. A main-
storage location is unavailable when any of the
following conditions is detected:

1. The absolute CCW address does not corre-
spond to a physical location.

2. Format-0 CCWs are specified in the ORB, and
the absolute CCW address is greater than
2�� - 1.

3. Format-1 CCWs are specified in the ORB, and
the absolute CCW address is greater than
2�� - 1.

Invalid Command Code: There are zeros in the
four rightmost bit positions of the command code
in the CCW designated by the CPA or in a CCW
fetched on command chaining. The command
code is not tested for validity during data chaining.

Invalid Count, Format 0: A CCW, which is other
than a CCW specifying transfer in channel, con-
tains zeros in bit positions 48-63.

Invalid Count, Format 1: A CCW that specifies
data chaining or a CCW fetched while data
chaining contains zeros in bit positions 16-31.

Invalid IDAW-Address Specification: Indirect
data addressing is specified, and either of the fol-
lowing conditions is detected:

1. The ORB specifies format-1 IDAWs, and the
contents of the data-address field in the CCW
do not designate the first IDAW on a word
boundary; that is, bits 30 and 31 (format-0
CCW) or 62 and 63 (format-1 CCW) are not
zeros.

2. The ORB specifies format-2 IDAWs, and the
contents of the data-address field in the CCW
do not designate the first IDAW on a
doubleword boundary; that is, bits 29-31
(format-0 CCW) or 61-63 (format-1 CCW) are
not zeros.

Invalid IDAW Address: The channel subsystem
has attempted to fetch an IDAW from a main-
storage location that is not available. An invalid
IDAW address can occur because the program
has designated an invalid address in a CCW that
specifies indirect data addressing or because the
channel subsystem, on sequentially fetching
IDAWs, attempts to fetch from an unavailable
location. A main-storage location is unavailable
when any of the following conditions is detected:

1. The absolute IDAW address does not corre-
spond to a physical location.

16-24 z/Architecture Principles of Operation

2. Format-0 CCWs are specified in the ORB, and
the absolute IDAW address is greater than
2�� - 1.

3. Format-1 CCWs are specified in the ORB, and
the absolute IDAW address is greater than
2�� - 1.

Invalid Data-Address Specification: Bit 32 of a
format-1 CCW is not zero.

Invalid Data Address: When any of the fol-
lowing conditions is detected, an invalid data
address is recognized by the channel subsystem.

1. Use of the data address has caused the
channel subsystem to attempt to wrap from
the maximum storage address to zero.

2. Use of the data address has caused the
channel subsystem to attempt to wrap from
zero to the maximum storage address during
a read-backward operation.

3. The channel subsystem has attempted to
transfer data to a storage location that is una-
vailable.

An invalid data address can occur because the
program has designated an unavailable location in
a CCW or in an IDAW, or because the channel
subsystem, on sequentially accessing storage,
attempted to access an unavailable location. A
main-storage location is unavailable when any of
the following conditions is detected:

1. The absolute address of the location does not
correspond to a physical location.

2. Format-0 CCWs are specified in the ORB,
indirect data addressing is not specified in the
CCW, and the absolute address is greater
than 2�� - 1.

3. Format-1 CCWs are specified in the ORB,
indirect data addressing is not specified in the
CCW, and the absolute address is greater
than 2�� - 1.

4. Format-1 IDAWs are specified in the ORB,
indirect data addressing is specified in the
CCW, and the absolute address is greater
than 2�� - 1.

5. The absolute address is outside the
addressing range specified by SET ADDRESS
LIMIT, and the limit mode at the subchannel is
active.

Note: The maximum storage address is deter-
mined as a function of the CCW and IDAW
formats used. When an IDAW is not used, the
maximum storage address is a function of the
CCW format specified, as follows:

1. When 24-bit (format 0) CCWs are specified,
the maximum storage address recognized by
the channel subsystem is 2�� - 1.

2. When 31-bit (format 1) CCWs are specified,
the maximum storage address recognized by
the channel subsystem is 2�� - 1.

When an IDAW is used, the maximum storage
address is a function of the IDAW format speci-
fied, as follows:

1. When 31-bit (format 1) IDAWs are specified,
the maximum storage address recognized by
the channel subsystem is 2�� - 1.

2. When 64-bit (format 2) IDAWs are specified,
the maximum storage address recognized by
the channel subsystem is 2�� - 1

Invalid IDAW Specification: When any of the
following conditions is detected, an invalid IDAW
specification is recognized by the channel sub-
system:

1. Bit 0 of a format-1 IDAW is not zero.

2. A second or subsequent format-1 IDAW does
not designate the location of the beginning
byte of a 2K-byte block or, for read-backward
operations, the location of the ending byte of a
2K-byte block.

3. A second or subsequent format-2 IDAW does
not designate the location of the beginning
byte of a 2K-byte or 4K-byte block, as
required by the 2K-IDAW control in the ORB,
or, for read-backward operations, the location
of the ending byte of a 2K-byte or 4K-byte
block.

Invalid CCW, Format 0: A CCW other than a
CCW specifying transfer in channel does not
contain a zero in bit position 39.

Invalid CCW, Format 1: A CCW other than a
CCW specifying transfer in channel does not
contain a zero in bit position 15, or a CCW speci-
fying transfer in channel does not contain zeros in
bit positions 0-3 and 8-31.

 Chapter 16. I/O Interruptions 16-25

Invalid Suspend Flag: A format-0 or format-1
CCW fetched during data chaining, other than a
CCW specifying transfer in channel, does not
contain a zero in bit position 38 or 14, respec-
tively. A CCW other than a CCW specifying
transfer in channel does not contain a zero in bit
position 38 for a format-0 CCW or bit position 14
for a format-1 CCW, and suspend control was not
specified by bit 4 of word 1 of the ORB.

Invalid ORB Format: One or more reserved bit
positions in the operation-request block (ORB) is
not zero. (See “Operation-Request Block” on
page 15-22 for more information.) If the incorrect-
length-indication-suppression facility is not
installed, then bit 24 of word 1 of the ORB must
also be zero.

Invalid Sequence: The channel subsystem has
fetched two successive CCWs both of which
specify transfer in channel, or, depending on the
model, a sequence of 256 or more CCWs with
command chaining specified was executed by the
channel subsystem and did not result in the
transfer of any data to or from an I/O device.

Detection of the program-check condition during
the initiation of an operation at the device causes
the operation to be suppressed and the sub-
channel to be made status pending with primary,
secondary, and alert status. When the condition
is detected after the I/O operation has been initi-
ated at the device, the device is signaled to con-
clude the operation the next time the device
requests or offers a byte of data or status. In this
situation, the subchannel is made status pending
as a function of the status received from the
device. The program-check condition causes
command chaining and command retry to be sup-
pressed.

 Protection Check
Protection check occurs when the channel sub-
system attempts a storage access that is prohib-
ited by the protection mechanism. Protection
applies to the fetching of CCWs, IDAWs, and
output data and to the storing of input data. The
subchannel key provided in the ORB is used as
the access key for storage accesses associated
with an I/O operation.

Detection of the protection-check condition during
the fetching of the first CCW or IDAW causes the
operation to be suppressed and the subchannel to

be made status pending with primary, secondary,
and alert status. When protection check is
detected after the I/O operation has been initiated
at the device, the device is signaled to conclude
the operation after the available data logically prior
to the protection check has been transferred.
However, if an access violation occurs when the
channel subsystem is in the process of fetching
either a new IDAW or a new CCW while data
chaining, and if the device signals the channel-end
condition before transferring any data designated
by the new CCW or IDAW, then the status is
accepted, and the subchannel becomes status
pending with primary and alert status and with
protection check indicated. Other indications may
accompany the protection-check indication as a
function of the operation specified by the CCW,
the status received from the device, and the
current state of the subchannel. The protection-
check condition causes command chaining and
command retry to be suppressed.

 Channel-Data Check
Channel-data check indicates that an uncorrected
storage error has been detected in regard to data,
contained in main storage, that is currently used in
the performance of an I/O operation. The condi-
tion may be indicated when detected, even if the
data is not used when prefetched. Channel-data
check is indicated when data or the associated
key has an invalid checking-block code (CBC) in
main storage when that data is referenced by the
channel subsystem.

On an input operation, when the channel sub-
system attempts to store less than a complete
checking block, and invalid CBC is detected on
the checking block in storage, the contents of the
location remain unchanged and with invalid CBC.
On an output operation, whenever channel-data
check is indicated, no bytes from the checking
block with invalid CBC are transferred to the
device.

During a storage access, the maximum number of
bytes that can be transferred is model dependent.
If a channel-data-check condition is recognized
during that storage access, the number of bytes
transferred to or from storage may not be detect-
able by the channel subsystem. Consequently,
the number of bytes transferred to or from storage
may not be correctly reflected by the residual
count. However, the residual count that is stored
in the SCSW, when used in conjunction with the

16-26 z/Architecture Principles of Operation

storage-access code and the CCW address, des-
ignates a byte location within the page in which
the channel-data-check condition was recognized.

A condition indicated as channel-data check
causes the current operation, if any, to be termi-
nated. The subchannel becomes status pending
with primary and alert status, or with primary, sec-
ondary, and alert status, as a function of the
status received from the device. The count and
address fields of the SCSW stored by TEST SUB-
CHANNEL pertain to the operation terminated.
The extended-status-word-format bit is one, and
subchannel-logout information is stored in the
ESW, when TEST SUBCHANNEL is executed.

Whenever the channel-data-check condition per-
tains to prefetched data, the failing-
storage-address-validity flag, bit 6 of the ERW, is
one. An address of a location within the checking
block for which the channel-data-check condition
is generated is stored in the ESW failing-
storage-address field.

Uncorrectable storage or key errors detected on
prefetched data while the subchannel is start
pending cause the operation to be canceled
before initiation at the device. In this case, the
subchannel is made status pending with primary,
secondary, and alert status, with channel-data
check indicated, and with the ESW failing-storage
address stored.

Whenever channel-data check is indicated, no
measurement data for the subchannel is stored.

 Channel-Control Check
Channel-control check is caused by any machine
malfunction affecting channel-subsystem controls.
The condition includes invalid CBC on a CCW, an
IDAW, or the respective associated key. The con-
dition may be indicated when an invalid CBC is
detected on a prefetched CCW, IDAW, or the
respective associated key, even if that CCW or
IDAW is not used.

Channel-control check may also indicate that an
error has been detected in the information trans-
ferred to or from main storage during an I/O oper-
ation. However, when this condition is detected,
the error has occurred inboard of the channel
path: in the channel subsystem or in the path
between the channel subsystem and main
storage.

Detection of the channel-control-check condition
causes the current operation, if any, to be termi-
nated immediately. The subchannel is made
status pending with primary and alert status or
with primary, secondary, and alert status as a
function of the type of termination, the current sub-
channel state, and the device status presented, if
any. When the channel subsystem recognizes a
channel-control-check condition, any previously
existing intermediate interruption condition caused
by a PCI flag in a CCW may or may not be recog-
nized by the channel subsystem. The count and
data-address fields of the SCSW stored by TEST
SUBCHANNEL pertain to the operation termi-
nated. The extended-status-word-format bit is
one, and subchannel-logout information is stored
in the ESW, when TEST SUBCHANNEL is exe-
cuted.

Whenever the channel-control-check condition
pertains to an invalid CBC detected on a pre-
fetched CCW, a prefetched IDAW, or the key
associated with the prefetched CCW or the pre-
fetched IDAW, an extended-report word with bit 6
set to one, and the failing-storage address, are
stored in the ESW when TEST SUBCHANNEL is
executed.

Channel-control-check conditions encountered
while prefetching when the subchannel is start
pending cause the operation to be canceled
before initiation at the device. In this case, the
subchannel is made status pending with primary,
secondary, and alert status, with channel-control
check indicated, and with a failing-storage address
that will be stored in the ESW.

If a subchannel is halt pending and the channel
subsystem encounters a channel-control-check
condition while performing the halt function for that
subchannel, the subchannel remains halt pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel
remains halt pending even if the channel sub-
system was attempting to issue the halt signal and
is unable to determine if the halt signal was
issued.

If a subchannel is start pending or resume
pending and the channel subsystem encounters a
channel-control-check condition while performing
the start function for that subchannel, the sub-
channel remains start pending or resume pending

 Chapter 16. I/O Interruptions 16-27

unless the channel subsystem can determine that
the first command was accepted. The subchannel
remains start pending or resume pending even if
the channel subsystem was attempting to initiate
the I/O operation for the first command and is
unable to determine if the command was
accepted. If the channel subsystem is unable to
determine whether the first command was
accepted, the subchannel is made status pending
with at least alert and primary status.

In some situations in which a channel-subsystem
malfunction exists, the channel-control-check con-
dition may be reported as a machine-check condi-
tion.

Whenever channel-control check is indicated, no
measurement data for the subchannel is stored.

Programming Note: If the status-control field of
the SCSW indicates that the subchannel is status
pending with alert status but the field-validity flags
of the SCSW indicate that the device-status field
is not usable for error-recovery purposes, the
program should (1) assume that the channel-
control-check condition occurred while the channel
subsystem was accepting alert status from the
device and (2) take the appropriate action for alert
status, even though the status itself has been lost.

 Interface-Control Check
Interface-control check indicates that an invalid
signal has occurred on the channel path. The
condition is detected by the channel subsystem
and usually indicates malfunctioning of an I/O
device. Interface-control check can occur for any
of the following reasons:

1. A data or status byte received from a device
while the subchannel is subchannel-
and-device active or device active has an
invalid checking-block code.

2. The status byte received from a device while
the subchannel is idle, start pending, sus-
pended, or halt pending has an invalid
checking-block code.

3. A device responded with an address other
than the address designated by the channel
subsystem during initiation of an operation.

4. During command chaining, the device
appeared not operational.

5. A signal from an I/O device either did not
occur or occurred at an invalid time or had an
invalid duration.

6. The channel subsystem recognized the
I/O-error-alert condition (see “I/O-Error Alert
(A)” on page 16-35).

7. ESW bit 26, indicating device-status check, is
set to one.

Detection of the interface-control-check condition
causes the current operation, if any, to be termi-
nated immediately, and the subchannel is made
status pending with alert status, primary and alert
status, secondary and alert status, or primary,
secondary, and alert status as a function of the
type of termination, the current subchannel state,
and the device status presented, if any. When the
channel subsystem recognizes an interface-
control-check condition, any previously existing
intermediate interruption condition caused by a
PCI flag in a CCW may or may not be recognized
by the channel subsystem. The extended-
status-word-format bit is one, and subchannel-
logout information is stored in the ESW, when
TEST SUBCHANNEL is executed.

If a subchannel is halt pending and the channel
subsystem encounters an interface-control-check
condition while performing the halt function for that
subchannel, the subchannel remains halt pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel
remains halt pending even if the channel sub-
system was attempting to issue the halt signal and
is unable to determine if the halt signal was
issued.

If a subchannel is start pending or resume
pending and the channel subsystem encounters
an interface-control-check condition while per-
forming the start function for that subchannel, the
subchannel remains start pending or resume
pending unless the channel subsystem can deter-
mine that the first command was accepted. The
subchannel remains start pending or resume
pending even if the channel subsystem was
attempting to initiate the I/O operation for the first
command and is unable to determine if the
command was accepted. If the channel sub-
system is unable to determine whether the first
command was accepted, the subchannel is made
status pending with at least alert and primary
status.

16-28 z/Architecture Principles of Operation

If, while initiating a signaling sequence with the
channel subsystem for the purpose of presenting
status or transferring data, the device presents an
address with invalid parity, the error condition is
not made available to the program since the iden-
tity of the device and associated subchannel are
unknown.

Whenever interface-control check is indicated, no
measurement data for the subchannel is stored.

Programming Note: If the status-control field of
the SCSW indicates that the subchannel is status
pending with alert status but the field-validity flags
of the SCSW indicate that the device-status field
is not usable for error-recovery purposes, the
program should (1) assume that the interface-
control-check condition occurred while the channel
subsystem was accepting alert status from the
device and (2) take the appropriate action for alert
status, even though the status itself has been lost.

 Chaining Check
Chaining check is caused by channel-subsystem
overrun during data chaining on input operations.
The condition occurs when the I/O-data rate is too
high for the particular resolution of data
addresses. Chaining check cannot occur on
output operations.

Detection of the chaining-check condition causes
the I/O device to be signaled to conclude the
operation. It causes command chaining to be
suppressed.

 Count Field

Bit positions 16-31 of word 2 contain the residual
count. The count is to be used in conjunction with
the original count specified in the last CCW and,
depending upon existing conditions (see
Figure 16-4 on page 16-19), indicates the number
of bytes transferred to or from the area designated
by the CCW. The count field is meaningful when-
ever the subchannel is status pending with
primary status that consists of either (1) device
status only or (2) device status together with sub-
channel status of incorrect length only, PCI only,
or both.

In Figure 16-5 on page 16-30, the contents of the
count field are listed for all cases where the sub-
channel is start pending, subchannel-and-device
active, device active, suspended, or status
pending.

 Chapter 16. I/O Interruptions 16-29

┌───┬──────────────────────────────────────┐
│ Subchannel State� │ Count │
├───┼──────────────────────────────────────┤
│Start pending (UUUU�/AIPSX)� │Not meaningful� │
│ │ │
│Start pending and status pending │Not meaningful� │
│(1�YY1/AIPSX)� │ │
│ │ │
│Start pending and status pending (��111/AIPSX) │Not meaningful� │
│because the device appeared not operational on │ │
│all paths� │ │
│ │ │
│Start pending and device active (UUUU�/AIPSX)� │Not meaningful� │
│ │ │
│Suspended (YYYYY/AIPSX)� │Not meaningful� │
│ │ │
│Subchannel-and-device active (UUUU�/AIPSX)� │Not meaningful� │
│ │ │
│Device active (UUUU�/AIPSX) │Not meaningful� │
│ │ │
│Status pending (�1��1/AIPSX) because of │Not meaningful� │
│program-controlled-interruption condition or │ │
│initial-status interruption │ │
│ │ │
│Status pending (1Y1Y1/AIPSX); termination │ │
│occurred because of:� │ │
│ │ │
│ Program check │Not meaningful� │
│ Protection check │Not meaningful� │
│ Chaining check │Not meaningful� │
│ Channel-control check │See note 1 │
│ Interface-control check │Not meaningful� │
│ Channel-data check │See note 2 │
│ │ │
│Status pending (YY1Y1/AIPSX); termination │Correct │
│occurred under count control� │ │
│ │ │
│Status pending (Y��11/AIPSX)� │Not meaningful� │
│ │ │
│Status pending (1Y1Y1/AIPSX)� │Correct; residual count of last used │
│ │CCW │
│ │ │
│Status pending (1Y111/AIPSX); command chaining │Correct; residual count of last used │
│suppressed because of alert status� │CCW │
│ │ │
│Status pending (YYYY1/AIPSX); after termination│Unpredictable │
│by HALT SUBCHANNEL� │ │
│ │ │
│Status pending (����1/AIPSX); after termination│Not meaningful� │
│by CLEAR SUBCHANNEL │ │
│ │ │
│Status pending (YY1Y1/AIPSX); operation │Correct; indicates the residual count │
│completed normally at the subchannel� │ │
└───┴──────────────────────────────────────┘

Figure 16-5 (Part 1 of 2). Contents of Count Field in the SCSW

16-30 z/Architecture Principles of Operation

┌───┬──────────────────────────────────────┐
│ Subchannel State� │ Count │
├───┼──────────────────────────────────────┤
│Status pending (1Y111/AIPSX); command chaining │Correct; original count of CCW │
│terminated because of alert status� │specifying the new I/O operation │
│ │ │
│Status pending (1���1/AIPSX) because of alert │Not meaningful� │
│status │ │
├───┴──────────────────────────────────────┤
│Explanation: │
│ │
│ � In situations where more than a single condition exists because of, for example,│
│ alert status that is described by program check and unit check, the entry │
│ appearing first in the table takes precedence. │
│ │
│ The meaning of the notation in this column is as follows: │
│ │
│ A Alert status │
│ I Intermediate status │
│ P Primary status │
│ S Secondary status │
│ X Status pending │
│ │
│ The allowed combination of status-control-bit settings is shown to the left of │
│ the “/” symbol. │
│ │
│ Bit settings are specified as follows: │
│ │
│ � Corresponding condition is not indicated. │
│ 1 Corresponding condition is indicated. │
│ U Unpredictable. The corresponding condition is not meaningful when the │
│ subchannel is not status pending. │
│ Y Corresponding condition is not significant and is indicated as a function │
│ of the subchannel state. │
│ │
│ � The subchannel may also be resume pending. │
│ │
│ � The contents of the count field are not meaningful because the count field is │
│ not valid when the SCSW is stored and the subchannel is in the given state. │
│ │
│Notes: │
│ │
│ 1. The count is unpredictable unless IDAW check is indicated, in which case the │
│ count may not correctly reflect the number of bytes transferred to or from main │
│ storage but will (when used in conjunction with the CCW address) designate a │
│ byte location within the page in which the channel-control-check condition was │
│ recognized. │
│ │
│ 2. During a storage access, the maximum number of bytes that can be stored by a │
│ channel subsystem is model dependent. If a channel-data-check condition is │
│ recognized during that access, the number of bytes transferred to or from │
│ storage may not be detectable by the channel subsystem. Consequently, the │
│ number of bytes transferred to or from storage may not be correctly reflected by│
│ the residual count. However, the residual count that is stored when used in │
│ conjunction with the storage-access code and the CCW address designates a byte │
│ location within the page in which the channel-data-check condition was │
│ recognized. │
└──┘

Figure 16-5 (Part 2 of 2). Contents of Count Field in the SCSW

 Chapter 16. I/O Interruptions 16-31

 Extended-Status Word
The extended-status word (ESW) provides addi-
tional information to the program about the sub-
channel and its associated device. The ESW is
placed in words 3-7 of the IRB designated by the
second operand of TEST SUBCHANNEL when
TEST SUBCHANNEL is executed and the sub-
channel designated is operational. If the sub-
channel is status pending or status pending with
any combination of primary, secondary, interme-
diate, or alert status (except as noted in the next
paragraph) when TEST SUBCHANNEL is exe-
cuted, the ESW may have any of the following
types of extended-status format:

Format 0 Subchannel logout in word 0, an ERW in
word 1, a failing-storage address or
zeros in words 2 and 3, and a
secondary-CCW address or zeros in
word 4.

Format 1 Zeros in bytes 0, 2, and 3 of word 0, the
LPUM in byte 1 of word 0, an ERW in
word 1, and zeros in words 2-4.

Format 2 Zeros in byte 0, the LPUM in byte 1, and
the device-connect time in bytes 2 and 3
of word 0; an ERW in word 1; zeros in
words 2-4.

Format 3 Zeros in byte 0, the LPUM in byte 1, and
unpredictable values in bytes 2 and 3 of
word 0; an ERW in word 1; zeros in
words 2-4.

Words 0-4 of the ESW contain unpredictable
values if any of the following conditions is met:

1. The subchannel is not status pending.

2. The subchannel is status pending alone, and
the extended-status-word-format bit is zero.

3. The subchannel is status pending with inter-
mediate status alone for other than the inter-
mediate interruption condition due to suspen-
sion.

The type of extended-status format stored
depends upon conditions existing at the sub-
channel at the time TEST SUBCHANNEL is exe-
cuted. The conditions under which each of the
types of formats is stored are described in the
remainder of this section.

Extended-Status Format 0

The ESW stored by TEST SUBCHANNEL is a
format-0 ESW when the extended-
status-word-format bit, bit 5 of word 0 of the
SCSW, is one and the subchannel is status
pending with any combination of status as defined
in Figure 16-6 on page 16-36. In this case,
subchannel-logout information and an ERW are
stored in the extended-status word. Subchannel
logout provides detailed model-independent infor-
mation relating to a subchannel and describing
equipment errors detected by the channel sub-
system. The information is provided to aid the
recovery of an I/O operation, a device, or both.
Whenever subchannel logout is provided, the error
conditions relate only to the subchannel reporting
the error. If I/O operations involving other sub-
channels have been affected by the error condi-
tion, those subchannels also provide similar
subchannel-logout information. An extended-
report word provides additional information relating
to the cause of the malfunction.

A format-0 ESW has the following format:

 ┌───┐
� │ Subchannel Logout │
 ├───┤
1 │ Extended-Report Word │
 ├───┤
2 │ │
 │ Failing-Storage Address │
3 │ │
 ├───┤
4 │ Secondary-CCW Address │
 └───┘
 � 31

 Subchannel Logout
The subchannel logout has the following format:

┌─┬─────────┬──────────┬─┬─────┬──┬──┬─┬─┬─┬───┐
│�│ ESF │ LPUM │R│ FVF │SA│TC│D│E│A│ SC│
└─┴─────────┴──────────┴─┴─────┴──┴──┴─┴─┴─┴───┘
� 1 8 16 22 24 26 31

Extended-Status Flags (ESF): Any of bits 1-7,
when one, specifies that an error-check condition
has been detected by the channel subsystem.
The following indications are provided in the ESF
field:

Key Check. Bit 1, when one, indicates that
the channel subsystem, when accessing data,
when attempting to update the measurement
block, or when attempting to fetch either a

16-32 z/Architecture Principles of Operation

CCW or an IDAW, has detected an invalid
checking-block code (CBC) on the associated
storage key. The channel-data-check bit, bit
12 of word 2 of the SCSW, the measurement-
block data-check bit, bit 3 of word 0 of the
ESW, the CCW-check bit, bit 5 of word 0 of
the ESW, or the IDAW-check bit, bit 6 of word
0 of the ESW, identifies the source of the key
error.

Note: This condition may be indicated to the
program when an invalid checking-block code
on a key is detected but the data, CCW, or
IDAW then is not used after being prefetched.
In this case, the failing-
storage-address-validity bit, bit 6 of the ERW,
is one, indicating that the address of a
location within the storage block having the
key is stored in words 2 and 3 of the ESW.

Measurement-Block Program Check. Bit 2,
when one, indicates that the channel sub-
system, in attempting to update the measure-

| ment block, has either detected an invalid
| absolute address when combining the
| measurement-block origin with the
| measurement-block index for this subchannel
| or has detected an invalid measurement-block
| address at the subchannel.

Measurement-Block Data Check. Bit 3, when
one, indicates that a malfunction has been
detected involving the data of the measure-
ment block in main storage. (See “Measure-
ment Block” on page 17-3.) Measurement-
block data check is indicated when the meas-
urement block is updated and an invalid
checking-block code (CBC) is detected on the
storage used to contain the measurement
data or on the associated key. When invalid
CBC on the associated key is detected, the
key-check bit, bit 1 of the ESF field, is also
stored as one.

Measurement-Block Protection Check. Bit 4,
when one, indicates that the channel sub-
system, when attempting to update the meas-
urement block, has been prohibited from
accessing the measurement block because
the storage key does not match the
measurement-block key (see “Measurement
Block” on page 17-3.) The key provided by
SET CHANNEL MONITOR is used for the
access of storage associated with
measurement-block-update operations (see
“SET CHANNEL MONITOR” on page 14-12).

Note: Whenever any of the measurement-
check conditions is indicated by bits 2-4, the
channel subsystem sets the subchannel
measurement-block-update-enable bit to zero,
disabling the storing of measurement data for
the subchannel (see “Measurement-Mode
Enable (MM)” on page 15-3).

CCW Check. Bit 5, when one, indicates that
an invalid CBC on the contents of the CCW or
its associated key has been detected. When
either of these conditions is detected, the I/O
operation is terminated, the subchannel
becomes status pending with primary and
alert status, the extended-status-word-format
bit in the SCSW is stored as one, and
channel-control check is indicated in the
subchannel-status field. The subchannel also
becomes status pending with secondary
status as a function of the type of termination
or status received from the device. When
invalid CBC on the associated key is detected,
the key-check bit, bit 1 of the ESF field, is
also stored as one.

Note: This condition may be indicated to the
program when an invalid checking-block code
on a prefetched CCW is detected but the
CCW is not used. In this case, the failing-
storage-address-validity bit, bit 6 of the ERW,
is one, indicating that the address of a
location having the invalid CBC is stored in
words 2 and 3 of the ESW.

IDAW Check. Bit 6, when one, indicates that
an invalid CBC on the contents of an IDAW or
its associated key has been detected. When
either of these conditions is detected, the I/O
operation is terminated with the device, the
subchannel becomes status pending with
primary and alert status, the extended-
status-word-format bit in the SCSW is one,
and channel-control check is indicated in the
subchannel-status field. The subchannel also
becomes status pending with secondary
status as a function of the type of termination
or status received from the device. When
invalid CBC on the associated key is detected,
the key-check bit, bit 1 of the ESF field, is
also one.

Note: This condition may be indicated to the
program when an invalid checking-block code
on the contents of a prefetched IDAW is
detected but the IDAW is not used. In this

 Chapter 16. I/O Interruptions 16-33

case, the failing-storage-address-validity bit,
bit 6 of the ERW, is one, indicating that the
address of a location having the invalid CBC
is stored in words 2 and 3 of the ESW.
Detection of a channel-data-check condition
does not cause the CCW-check and
IDAW-check bits to be stored as ones.

Reserved. Bit 7 is stored as zero.

Last-Path-Used Mask (LPUM): Bits 8-15 indi-
cate the channel path that was last used for com-
municating or transferring information between the
channel subsystem and the device. The bit corre-
sponding to the channel path in use is set when-
ever any of the following occurs:

1. The first command of a start-subchannel func-
tion is accepted by the device (see “Activity
Control (AC)” on page 16-13).

2. The device and channel subsystem are
actively communicating when the channel sub-
system performs the suspend function for the
channel program in execution.

3. The channel subsystem accepts status from
the device that is recognized as an inter-
ruption condition, or a condition has been
recognized that suppresses command
chaining (see “Interruption Conditions” on
page 16-2).

4. The channel subsystem recognizes an
interface-control-check condition (see
“Interface-Control Check” on page 16-28), and
no subchannel-logout information is currently
present at the subchannel.

The LPUM field contains the most recent setting
and is valid whenever the ESW contains informa-
tion in one of the formats 0-3 (see “Extended-
Status Word” on page 16-32) and the SCSW is
stored. When subchannel-logout information is
present in the ESW, a zero LPUM-field-validity
flag indicates that the LPUM setting is not con-
sistent with the other subchannel-logout indi-
cations.

Ancillary Report (R): Bit 16, when one, indi-
cates that a malfunction of a system component
has occurred that has been recognized previously
or that has affected the activities of multiple sub-
channels. When the malfunction affects the activ-
ities of multiple subchannels, an ancillary-report
condition is recognized for all of the affected sub-
channels except one. This bit, when zero, indi-

cates that this malfunction of a system component
has not been recognized previously. This bit is
meaningful only when a channel-control check,
channel-data check, or an interface-control check
is indicated in bit positions 12-14 of word 2 of the
SCSW.

Depending on the model, recognition of an
ancillary-report condition may not be provided or it
may not be provided for all system malfunctions
that effect subchannel activity. When ancillary-
report recognition is not provided, bit 16 is set to
zero.

Field-Validity Flags (FVF): Bits 17-21 indicate
the validity of the information stored in the corre-
sponding fields of either the SCSW or the
extended-status word. When the validity bit is
one, the corresponding field has been stored and
is usable for recovery purposes. When the validity
bit is zero, the corresponding field is not usable.

This bit-significant field has meaning when
channel-data check, channel-control check, or
interface-control check is indicated in the SCSW.
When these checks are not indicated, this field, as
well as the termination-code and sequence-code
fields, has no meaning. Furthermore, when these
checks are not indicated, the last-path-used-mask,
device-status, and CCW-address fields are all
valid. The fields are defined as follows:

17 Last-path-used mask
18 Termination code
19 Sequence code
20 Device status
21 CCW address

Storage-Access Code (SA): Bits 22-23 indicate
the type of storage access that was being per-
formed by the channel subsystem at the time of
error. The SA field pertains only to the access of
storage for the purpose of fetching or storing data
during the performance of an I/O operation. This
encoded field has meaning only when channel-
data check, channel-control check, or interface-
control check is indicated in the subchannel
status. The access-code assignments are as
follows:

00 Access type unknown
01 Read
10 Write
11 Read backward

16-34 z/Architecture Principles of Operation

Termination Code (TC): Bits 24 and 25 indicate
the type of termination that has occurred. This
encoded field has meaning only when channel-
data check, channel-control check, or interface-
control check is indicated in the SCSW. The
types of termination are as follows:

00 Halt signal issued
01 Stop, stack, or normal termination
10 Clear signal issued
11 Reserved

When at least one channel check is indicated in
the SCSW but the termination-code-field-validity
flag is zero, it is unpredictable which, if any, termi-
nation has been signaled to the device. If more
than one channel-check condition is indicated in
the SCSW, the device may have been signaled
one or more termination codes that are the same
or different. In this situation, if the termination-
code-field-validity flag is one, the termination code
indicates the most severe of the terminations sig-
naled to the device. The termination codes, in
order of increasing severity, are: stop, stack, or
normal termination (01); halt signal issued (00);
and clear signal issued (10).

Device-Status Check (D): When the status-
verification facility is installed, bit 26, when one,
indicates that the subchannel logout in the ESW
resulted from the channel subsystem detecting
device status that had valid CBC but that con-
tained a combination of bits that was inappropriate
when the status byte was presented to the
channel subsystem. When the device-
status-check bit is one, the interface-control-check
status bit is set to one. If, additionally, bit 20 of
the subchannel-logout field has been stored as
one, then the status byte in error has been stored
in the device-status field of the SCSW. If the
status-verification facility is not installed, bit 26 is
stored as zero.

Secondary Error (E): Bit 27, when one, indi-
cates that a malfunction of a system component
that may or may not have been directly related to
any activity involving subchannels or I/O devices
has occurred. Subsequent to this occurrence, the
activity related to this subchannel and the associ-
ated I/O device was affected and caused the sub-
channel to be set status pending with either
channel-control check or interface-control check.

I/O-Error Alert (A): Bit 28, when one, indicates
that subchannel logout in the ESW resulted from
the signaling of I/O-error alert. The I/O-error-alert
signal indicates that the control unit or device has
detected a malfunction that must be reported to
the channel subsystem. The channel subsystem,
in response, issues a clear signal and, except as
described in the next paragraph, causes interface-
control check to be set and
extended-status-format-0 (logout) information to be
stored in the ESW.

When I/O-error alert is signaled and the sub-
channel has previously been set disabled or no
subchannel is associated with the device, the
clear signal is issued to the device, and the
I/O-error-alert indication is ignored by the channel
subsystem.

Sequence Code (SC): Bits 29-31 identify the I/O
sequence in progress at the time of error. The
sequence code pertains only to I/O operations ini-
tiated by the execution of START SUBCHANNEL
or RESUME SUBCHANNEL. This encoded field
has meaning only when channel-data check,
channel-control check, or interface-control check is
indicated in the SCSW.

The sequence-code assignments are:

000 Reserved.

001 A nonzero command byte has been sent by
the channel subsystem, but a response has
not yet been analyzed by the channel sub-
system. This code is set during the initiation
sequence.

010 The command has been accepted by the
device, but no data has been transferred.

011 At least one byte of data has been trans-
ferred between the channel subsystem and
the device. This code may be used when
the channel path is in an idle or polling state.

100 The command in the current CCW (1) has
not yet been sent to the device, (2) was sent
but not accepted by the device, or (3) was
sent and accepted but command-retry status
was presented. This code is set when any
of the following conditions occurs:

1. The command address is updated during
command chaining or during the initiation
of a start function or resume function at
the device.

 Chapter 16. I/O Interruptions 16-35

2. During the initiation sequence, the status
includes attention, control unit end, unit
check, unit exception, busy, status modi-
fier (without channel end and device
end), or device end (without channel
end).

3. Command retry is signaled.

4. The channel subsystem interrogates the
device in the process of clearing an
interruption condition.

5. The channel subsystem signals the con-
clusion of the chain of operations to the
device during command chaining while
performing the suspend function.

101 The command in the current CCW has been
accepted, but data transfer is unpredictable.
This code applies from the time a device is
logically connected to a channel path until
the time it is determined that a new
sequence code applies. This code may also
be used when the channel subsystem places
a channel path in the polling or idle state and
it is impossible to determine that code 010 or
011 applies. It may also be used at other
times when a channel path cannot distin-
guish between code 010 or 011.

110 Reserved.

111 Reserved.

Figure 16-6 defines the relationship between indi-
cations provided as subchannel-logout data and
the appropriate SCSW bits.

┌──────────────────────────────────────┬──────────────────┐
│ │ Logout Condition │
│ │ for SCSW │
│ │ Indication of� │
│ ├─────┬─────┬──────┤
│Subchannel-Logout Condition Indicated │ CDC │ CCC │ IFCC │
├──────────────────────────────────────┼─────┼─────┼──────┤
│Key check │ V │ V │ - │
│Measurement-block-program check� │ - │ - │ - │
│Measurement-block-data check� │ - │ - │ - │
│Measurement-block-protection check� │ - │ - │ - │
│CCW check │ - │ V │ - │
│IDAW check │ - │ V │ - │
│Last-path-used mask� │ V │ V │ V │
│Field-validity flags │ V │ V │ V │
│Termination code� │ V │ V │ V │
│Device-status check │ - │ - │ V │
│Secondary error │ - │ V │ V │
│I/O-error alert │ - │ - │ V │
│Sequence code� │ V │ V │ V │
├──────────────────────────────────────┴─────┴─────┴──────┤
│Explanation: │
│ │
│ - No relationship. │
│ │
│ � When more than one SCSW indication is signaled, │
│ the subchannel-logout conditions that are valid │
│ are the logical OR for each of the respective SCSW│
│ indications. │
│ │
│ � Only one measurement-block check may be indicated │
│ in a specific subchannel logout. │
│ │
│ � This field has a field-validity flag. │
│ │
│ CCC Channel-control check. │
│ │
│ CDC Channel-data check. │
│ │
│ IFCC Interface-control check. │
│ │
│ V Bit setting valid. │
└───┘

Figure 16-6. Relationship between Subchannel-Logout
Data and SCSW Bits

 Extended-Report Word
The extended-report word (ERW) provides infor-
mation to the program describing specific condi-
tions that may exist at the device, subchannel, or
channel subsystem. The ERW is stored whenever
the extended-status word is stored. When the
extended-status-word-format bit, bit 5 of word 0 of
the SCSW, and the extended-control bit, bit 14 of
word 0 of the SCSW, are both zeros, the ERW
contains all zeros. When the extended-
status-word-format bit or the extended-control bit
or both are ones, the ERW has the following
format:

┌───┬─┬─┬─┬─┬─┬─┬─┬──────┬─────┬───────────┐
│���│A│P│T│F│S│C│R│ SCNT │�����│�����������│
└───┴─┴─┴─┴─┴─┴─┴─┴──────┴─────┴───────────┘
� 3 8 1� 16 21 31

Authorization Check (A): Bit 3, when one, indi-
cates that the start or resume function was termi-
nated because the channel subsystem has been
placed in the isolated state in which pending I/O
operations are not initiated and I/O operations cur-

16-36 z/Architecture Principles of Operation

rently being performed either are in the process of
being terminated or have been terminated.

Path Verification Required (P): Bit 4, when one,
indicates that the program must verify the identity
of the device. The LPUM, when valid, indicates
the channel path for which device verification is to
be performed. When a valid LPUM is not avail-
able, the identity of the device must be verified for
each available channel path.

Channel-Path Timeout (T): Bit 5, when one,
indicates that, during a signaling sequence, an
appropriate signal from the device did not occur
within a predetermined time interval. Bit 5 is
meaningful when the extended-status-word-format
bit, bit 5 of word 0 of the SCSW, and the
interface-control-check bit, bit 14 of word 2 of the
SCSW, are both ones.

Failing-Storage-Address Validity (F): Bit 6,
when one, and when the extended-
status-word-format bit, bit 5 of word 0 of the
SCSW, is also one, indicates that the channel
subsystem has detected an invalid CBC on a
CCW, a data location, an IDAW, or the respective
associated key and has stored, in words 2 and 3
of the ESW, the absolute address of a location
associated with the invalid CBC. When an ERW
is stored with bit 6 set to zero, zeros are stored in
words 2 and 3 of the ESW.

Concurrent Sense (S): Bit 7, when one, indi-
cates that the concurrent-sense facility has placed
sense information accepted from the device in the
extended-control word and has stored a value, in
bit positions 10-15 of the ERW, that specifies the
number of sense bytes that have been stored in
the extended-control word. When bit 7 is one, bit
14 of word 0 of the SCSW is also one.

Concurrent-Sense Count (SCNT): When bit 7 is
one, bit positions 10-15 contain a value, in the
range 1-32, that specifies the number of sense
bytes stored into the extended-control word by the
concurrent-sense facility. When bit 7 is zero, bit
positions 10-15 contain zeros.

Secondary-CCW-Address Validity (C): Bit 8,
when one, and when the extended-
status-word-format bit, bit 5 of word 0 of the
SCSW, is also one, indicates that the channel
subsystem has detected an error condition that
precludes the continued performance of an I/O

operation. When prefetching applies (bit 9 of word
1 of the ORB is one) and certain error conditions
identified by channel-control check, channel-data
check, or interface-control check are recognized
by the channel subsystem, situations may exist
where the termination point of execution of the
channel program differs between the channel sub-
system and the I/O device. To properly identify
the termination points, bit 8 is set to one, and a
second CCW address (secondary-CCW address)
is provided in the ESW and designates the last
CCW executed at the device. When the validity
bit is zero for the previously mentioned errors, the
channel subsystem was unable to determine the
termination point of the control-unit execution, and
the secondary-CCW-address field contains zeros.

Bit 8 is not set to one unless the program has per-
mitted prefetching by setting the prefetch-control
bit, bit 9 of word 1 of the ORB, to one for the
channel program in execution.

Failing-Storage-Address Format (R): Bit 9 indi-
cates the format of the failing-storage address
when the failing-storage-address validity bit, bit 6
of the ERW, is one. When bit 6 is zero, bit 9 is
not meaningful and is stored as zero. When bit 6
is one and bit 9 is zero, a format-1 failing-storage
address is stored in words 2 and 3 of the ESW.
When bit 6 is one and bit 9 is one, a format-2
failing-storage address is stored in words 2 and 3.
See “Failing-Storage Address” below for a
description of format-1 and format-2 addresses.

 Failing-Storage Address
Words 2 and 3 of the extended-status contain a
24-, 31-, or 64-bit absolute address. When the
failing-storage-address-validity flag, bit 6 of the
ERW, is one, words 2 and 3 contain either a
format-1 failing-storage address or a format-2
failing-storage address. When bit 6 is zero, words
2 and 3 are stored as zeros. When bit 6 is one,
the failing-storage-address field designates a byte
location within the invalid checking block associ-
ated with an invalid CBC for a CCW, data
location, IDAW, or their respective associated key.

The form of the address stored in words 2 and 3
depends on the format-2-IDAW control, bit 14 of
word 1 of the ORB, when an error condition is
detected. When the control is zero, specifying
that fullword IDAWs containing 31-bit addresses
are used, a format-1 address is stored, and the
failing-storage-address-format bit, bit 9 of the

 Chapter 16. I/O Interruptions 16-37

ERW, is stored as zero. When the format-2-IDAW
control is one, specifying that doubleword IDAWs
containing 64-bit addresses are used, a format-2
address is stored, and the failing-
storage-address-format bit is stored as one.

When a format-1 address is stored, bits 1-31 of
word 2 form the address associated with the
reported error condition, and bit 0 of word 2 and
all of word 3 are stored as zeros. When a
format-2 address is stored, bits 0-31 of word 2 fol-
lowed by bits 0-31 of word 3 form the 64-bit
address associated with the reported error condi-
tion.

 Secondary-CCW Address
When the subchannel-status field indicates
channel-control check, channel-data check, or
interface-control check and the
secondary-CCW-address-validity flag, bit 8 of word
1, is one, bits 1-31 of word 4 form an absolute
address of the last CCW executed by the I/O
device at the point the reported check condition
caused channel-program termination. When pro-
vided, the secondary-CCW address may be used
for recovery purposes. When the
secondary-CCW-address-validity flag is zero, this
field contains zeros.

Extended-Status Format 1

The ESW stored by TEST SUBCHANNEL is a
format-1 ESW when all of the following conditions
are met:

1. The extended-status-word-format bit, bit 5 of
word 0 of the SCSW, is zero.

2. The subchannel status-control field has the
status-pending bit, bit 31 of word 0 of the
SCSW, set to one, together with:

a. The primary-status bit, bit 29 of word 0 of
the SCSW, alone,

b. The primary-status bit and other status-
control bits, or

c. The intermediate-status bit, bit 28 of word
0 of the SCSW, and the suspended bit, bit
26 of word 0 of the SCSW.

3. At least one of the following conditions is indi-
cated:

 a. The device-connect-time-measurement
mode is inactive.

b. The channel-subsystem-timing facility is
not available for the subchannel.

c. The subchannel is not enabled for the
device-connect-time-measurement mode.

Zeros are stored in bytes 0, 2, and 3 of word 0,
and the LPUM is stored in byte 1 of word 0; an
ERW is stored in word 1; zeros are stored in
words 2-4.

The device-connect-time-measurement mode is
made inactive when SET CHANNEL MONITOR is
executed and bit 31 of general register 1 is zero.

A format-1 ESW has the following format:

 ┌──────────┬──────────┬─────────────────────┐
� │ Zeros │ LPUM │ Zeros │
 ├──────────┴──────────┴─────────────────────┤
1 │ Extended-Report Word │
 ├───┤
2 │ │
3 │ Zeros │
4 │ │
 └───┘
 � 8 16 31

Last-Path-Used Mask (LPUM): For a definition
of the LPUM, see “Last-Path-Used Mask (LPUM)”
on page 16-34.

Extended-Report Word (ERW): For a definition
of the ERW, see “Extended-Report Word” on
page 16-36.

Extended-Status Format 2

The ESW stored by TEST SUBCHANNEL is a
format-2 ESW when all of the following conditions
are met:

1. The extended-status-word-format bit, bit 5 of
word 0 of the SCSW, is zero.

2. The channel-subsystem-timing facility is avail-
able for the subchannel.

3. The subchannel is enabled for the device-
connect-time-measurement mode.

4. The device-connect-time-measurement mode
is active.

5. The subchannel status-control field has the
status-pending bit, bit 31 of word 0 of the
SCSW, set to one, together with:

a. The primary-status bit, bit 29 of word 0 of
the SCSW, alone,

16-38 z/Architecture Principles of Operation

b. The primary-status bit and other status-
control bits, or

c. The intermediate-status bit, bit 28 of word
0 of the SCSW, and the suspended bit, bit
26 of word 0 of the SCSW.

Zeros are stored in byte 0 of word 0, the LPUM is
stored in byte 1 of word 0, and the device-connect
time is stored in bytes 2 and 3 of word 0; an ERW
is stored in word 1; zeros are stored in words 2-4.

A format-2 ESW has the following format:

 ┌──────────┬──────────┬─────────────────────┐
� │ Zeros │ LPUM │ DCTI │
 ├──────────┴──────────┴─────────────────────┤
1 │ Extended-Report Word │
 ├───┤
2 │ │
3 │ Zeros │
4 │ │
 └───┘
 � 8 16 31

Last-Path-Used Mask (LPUM): For a definition
of the LPUM, see “Last-Path-Used Mask (LPUM)”
on page 16-34.

Device-Connect-Time Interval (DCTI): Bit posi-
tions 16-31 contain the binary count of time incre-
ments accumulated by the channel subsystem
during the time that the channel subsystem and
the device were actively communicating and the
subchannel was subchannel active. The time
increment of the DCTI is 128 microseconds.

If the above conditions for the storing of the DCTI
value in the ESW are met but the device-
connect-time-measurement mode was made
active by SET CHANNEL MONITOR subsequent
to the execution of START SUBCHANNEL for this
subchannel, the DCTI value stored is greater than
or equal to zero and less than or equal to the
correct DCTI value.

Note: The DCTI value stored in the ESW is the
same as that used to update the corresponding
measurement-block data for the subchannel if the
measurement-block-update mode is in use for the
subchannel. If the measurement-block-update
mode for the channel subsystem is active and the
subchannel is enabled for the device-

connect-time-measurement mode but no DCTI
value is stored in the ESW (because of the pres-
ence of subchannel-logout information), or if the
DCTI is zero, then nothing is added to the corre-
sponding measurement-block data.

Extended-Report Word (ERW): For a definition
of the ERW, see “Extended-Report Word” on
page 16-36.

Extended-Status Format 3

The ESW stored by TEST SUBCHANNEL is a
format-3 ESW when the extended-
status-word-format bit, bit 5 of word 0 of the
SCSW, is zero and the subchannel is status
pending with (1) secondary status, alert status, or
both when primary status is not also present, or
(2) intermediate status when the subchannel is
not suspended. Zeros are stored in byte 0 of
word 0, and the LPUM is stored in byte 1 of word
0. Bytes 2 and 3 of word 0 contain unpredictable
values; an ERW is stored in word 1; zeros are
stored in words 2-4.

A format-3 ESW has the following format:

 ┌──────────┬──────────┬─────────────────────┐
� │ Zeros │ LPUM │ XXXXXXXX │ XXXXXXXX │
 ├──────────┴──────────┴─────────────────────┤
1 │ Extended-Report Word │
 ├───┤
2 │ │
3 │ Zeros │
4 │ │
 └───┘
 � 8 16 31

Last-Path-Used Mask (LPUM): For a definition
of the LPUM, see “Last-Path-Used Mask (LPUM)”
on page 16-34.

An “X” in the format indicates the bit may be zero
or one.

Extended-Report Word (ERW): For a definition
of the ERW, see “Extended-Report Word” on
page 16-36.

Figure 16-7 on page 16-40 summarizes the con-
ditions at the subchannel under which each type
of information is stored in the ESW.

 Chapter 16. I/O Interruptions 16-39

┌───┬─────────────┐
│Subchannel Conditions When IRB Is Stored │ │
├────────────────┬────────┬─────────────────┤ │
│Subchannel- │ │Path-Management- │ │
│Status Word │ │Control Word │ Extended- │
├───────┬───┬────┤ ├────────┬────────┤ Status │
│ │ │ │ │ │Device- │ Word (ESW), │
│ │ │ │ │ │Connect-│ Word � │
│Status-│ │ │Device- │ │Time- ├────┬────────┤
│Control│ │Sus-│Connect-│ │Msrmnt- │ │Contents│
│Field │ │pen-│Time- │Timing- │Mode- │ │ │
│ │ L │ded │Msrmnt │Facility│Enable │For-│ Bytes │
│ AIPSX │Bit│Bit │Mode │Bit │Bit │mat │�,1,2,3 │
├───────┼───┴────┴────────┴────────┴────────┼────┼────────┤
│ ----� │///////////////////////////////////│ │ │
├───────┼───┐///////////////////////////////│ │ │
│ ����1 │ � │///////////////////////////////│ U │ ���� │
├───────┼───┼────┐//////////////////////////│ │ │
│ │ │ � │//////////////////////////│ │ │
│ │ ├────┼────────┬─────────────────┼────┼────────┤
│ │ │ │Inactive│/////////////////│ │ │
│ │ │ ├────────┼────────┐////////│ │ │
│ �1��1 │ � │ │ │ � │////////│ 1 │ ZMZZ │
│ │ │ 1 │ ├────────┼────────┤ │ │
│ │ │ │ Active │ │ � │ │ │
│ │ │ │ │ 1 ├────────┼────┼────────┤
│ │ │ │ │ │ 1 │ 2 │ ZMDD │
├───────┼───┼────┼────────┼────────┴────────┼────┼────────┤
│ │ │////│Inactive│/////////////////│ │ │
│ │ │////├────────┼────────┐////////│ │ │
│ │ │////│ │ � │////////│ 1 │ ZMZZ │
│ ��1�1 │ � │////│ ├────────┼────────┤ │ │
│ │ │////│ Active │ │ � │ │ │
│ │ │////│ │ 1 ├────────┼────┼────────┤
│ │ │////│ │ │ 1 │ 2 │ ZMDD │
├───────┼───┼────┴────────┴────────┴────────┼────┼────────┤
│ ���11 │ � │///////////////////////////////│ │ │
├───────┼───┤///////////////////////////////│ 3 │ ZM�� │
│ 1���1 │ � │///////////////////////////////│ │ │
├───────┼───┼───────────────────────────────┼────┼────────┤
│ ����1 │ 1 │///////////////////////////////│ � │ RRRR │
├───────┴───┴───────────────────────────────┴────┴────────┤
│Explanation: │
│ │
│ - Defined to be not meaningful when X is zero. │
│ � Bits may be zeros or ones. │
│ / Information not relevant in this situation. │
│ A Alert status. │
│ D Accumulated device-connect-time-interval (DCTI) │
│ value stored in bytes 2 and 3. │
│ I Intermediate status. │
│ L Extended-status-word format. │
│ M Last-path-used mask (LPUM) stored in byte 1. │
│ P Primary status. │
│ R Subchannel-logout information stored in word �. │
│ S Secondary status. │
│ U No format defined. │
│ X Status pending. │
│ Z Bits are stored as zeros. │
└───┘

Figure 16-7. Information Stored in ESW

 Extended-Control Word
The extended-control word, which is words 8-15 of
an interruption-response block (see “Interruption-
Response Block” on page 16-6), provides addi-
tional information to the program describing condi-
tions that may exist at the channel subsystem,
subchannel, or device. The extended-control (E)
bit, bit 14 of word 0 of the SCSW, when one, indi-
cates that model-dependent information or
concurrent-sense information has been stored in
the extended-control word.

The information provided in the extended-control
word is as follows:

┌──────┬─────┬────────┬──────────────────────────────┐
│ SCSW │ ERW │ ERW │ │
│ Bits │ Bit │ Bits │ │
│ 5 14 │ 7 │ 1�-15 │ ECW Words �-7 │
├──────┼─────┼────────┼──────────────────────────────┤
│ � � │ � │ Zeros │ Unpredictable� │
│ � 1 │ � │ (�) │ (�) │
│ � 1 │ 1 │ (�) │ Concurrent-sense information�│
│ 1 � │ � │ Zeros │ Unpredictable� │
│ 1 1 │ � │ Zeros │ Model-dependent information� │
│ 1 1 │ 1 │ (�) │ Concurrent-sense information�│
├──────┴─────┴────────┴──────────────────────────────┤
│Explanation: │
│ │
│ � If stored, the value of these words is │
│ unpredictable. │
│ │
│ � Unused bits in the model-dependent information │
│ are stored as zeros. │
│ │
│ � Bit positions 1�-15 contain a value equal to the │
│ number of sense bytes returned. │
│ │
│ � Unused bytes in the concurrent-sense information │
│ are stored as zeros. │
│ │
│ � The combination of SCSW bit 5 as �, SCSW bit 14 │
│ as one, and ERW bit 7 as zero does not occur. │
└──┘

| Extended-Measurement Word
| The extended-measurement word (EMW) provides
| I/O measurement information to the program for
| the most recent start or resume operation per-
| formed at the subchannel. When the
| extended-I/O-measurement-word facility is
| installed and enabled, the EMW is conditionally
| stored in words 16-23 of the IRB designated by
| the second operand of TEST SUBCHANNEL
| when TEST SUBCHANNEL is executed. The
| EMW is stored by TEST SUBCHANNEL when all
| of the following conditions are met:

| 1. The extended-status-word-format (L) bit (bit 5,
| word 0 of the SCSW) is zero.

| 2. The channel-subsystem-timing facility is avail-
| able for the subchannel, as indicated by the
| timing facility bit (T) at the subchannel.

| 3. The extended-I/O-measurement-word-mode
| enable bit (X) at the subchannel is one.

| 4. The subchannel status-control field has the
| status-pending bit (bit 31, word 0 of the
| SCSW) set to one, together with:

| a. The primary-status bit (bit 29, word 0 of
| the SCSW) alone, or

16-40 z/Architecture Principles of Operation

| b. The primary-status bit and other status-
| control bits, or

| c. The secondary-status bit (bit 29, word 0 of
| the SCSW) alone, or

| d. The intermediate-status bit (bit 28, word 0
| of the SCSW) and the suspended bit (bit
| 26, word 0 of the SCSW).

| Words 16-23 of the IRB contain unpredictable
| values when the extended-I/O-measurement-word
| facility is installed and enabled but the conditions
| listed above are not met.

| When the extended-I/O-measurement-word facility
| is not installed, or the facility is installed but not
| enabled, words 16-23 of the IRB are not accessed
| by the channel subsystem.

| The format of the extended-measurement word is
| shown below:

| ┌────────────────────────────────┐
| Word �│ Device-Connect Time │
| ├────────────────────────────────┤
| 1│ Function-Pending Time │
| ├────────────────────────────────┤
| 2│ Device-Disconnect Time │
| ├────────────────────────────────┤
| 3│ Control-Unit-Queuing Time │
| ├────────────────────────────────┤
| 4│ Device-Active-Only Time │
| ├────────────────────────────────┤
| 5│ Device-Busy Time │
| ├────────────────────────────────┤
| 6│ Initial Command Response Time │
| ├────────────────────────────────┤
| 7│ reserved │
| └────────────────────────────────┘
| � 31

| Each field in the EMW, when valid, contains a 32
| bit binary count in which each increment of the
| count represents a value of 0.5 microseconds. A
| value of 00000000 hex represents a time period of
| zero seconds; the maximum value of FFFFFFFF
| hex represents approximately 35.79 minutes.

| The accuracy of each of the measurement fields
| stored by the measurement facility is undefined
| and may vary depending on the resolution of
| timers implemented at the channel subsystem, the
| types of channels used to perform the operation,
| the capabilities of control units accessed during
| the operation, and the overall length of the I/O
| operation that was performed. The maximum
| value of FFFFFFFF hex is stored if a counter

| overflows; the program is not alerted when an
| overflow occurs.

| Device-Connect Time: Bit positions 0-31 of
| word 0 contain the measured device-connect time
| for the operation. The device-connect time is the
| sum of the time intervals measured whenever the
| device is logically connected to a channel path
| while the subchannel is subchannel active and
| the device is actively communicating with the
| channel path, as defined in the section “Device-
| Connect Time” on page 17-5.

| Function-Pending Time: Bit positions 0-31 of
| word 1 contain the SSCH- or
| RSCH-function-pending time for the operation.
| Function-pending time is the time interval between
| acceptance of the start function (or resume func-
| tion if the subchannel is in the suspended state) at
| the subchannel and acceptance of the first
| command associated with the initiation or
| resumption of channel-program execution at the
| device, as defined in the section “Function-
| Pending Time” on page 17-5.

| Device-Disconnect Time: Bit positions 0-31 of
| word 2 contain the device-disconnect time for the
| operation. Device-disconnect time is the sum of
| the time intervals measured whenever the device
| is logically disconnected from the channel sub-
| system while the subchannel is subchannel-active,
| as defined in the section “Device-Disconnect
| Time” on page 17-5.

| Control-Unit-Queuing Time: Bit positions 0-31
| of word 3 contain the control-unit-queuing time for
| the operation. Control-unit-queuing time is the
| sum of the time intervals measured by the control
| unit whenever the device is logically disconnected
| from the channel subsystem during an I/O opera-
| tion while the device is busy with an operation ini-
| tiated from a different system, as defined in the
| section “Control-Unit-Queuing Time” on
| page 17-6.

| Device-active-only time: Bit positions 0-31 of
| word 4 contain the device-active-only time for the
| operation. Device-active-only time is the sum of
| the time intervals when the subchannel is device-
| active but not subchannel-active at the end of an
| I/O operation or chain of I/O operations initiated by
| a start function or resume function, as defined in
| section “Device-Active-Only Time” on page 17-6.

 Chapter 16. I/O Interruptions 16-41

| Device-busy time: Bit positions 0-31 of word 5
| contain the device-busy time for the operation.
| Device-busy time is the sum of the time intervals
| when the device is found to be device busy during
| an attempt to initiate a start function or resume
| function at the subchannel, as defined in the
| section “Device-Busy Time” on page 17-6.

| Initial Command Response Time: Bit positions
| 0-31 of word 6 contain the initial-
| command-response time for the operation. The
| initial-command-response time for an operation is
| the time interval beginning from when the first
| command of the channel program is sent to the
| device until the device indicates it has accepted
| the command.

16-42 z/Architecture Principles of Operation

Chapter 17. I/O Support Functions

Channel-Subsystem Monitoring 17-1
Channel-Subsystem Timing 17-2

Channel-Subsystem Timer 17-2
Measurement-Block Update 17-3

Measurement Block 17-3
| Measurement-Block Format 17-7

Measurement-Block Origin 17-7
| Measurement-Block Address 17-8

Measurement-Block Key 17-8
Measurement-Block Index 17-8
Measurement-Block-Update Mode . . . 17-8

| Measurement-Block-Format Control . . 17-9
Measurement-Block-Update Enable . . 17-9
Control-Unit-Queuing Measurement . . 17-9
Control-Unit-Defer Time 17-9
Device-Active-Only Measurement 17-9

| Initial-Command-Response
| Measurement 17-10

Time-Interval-Measurement Accuracy . 17-10
Device-Connect-Time Measurement . . . 17-10

Device-Connect-Time-Measurement
Mode 17-10

Device-Connect-Time-Measurement
Enable 17-11

| Extended Measurement Word 17-11
| Extended-Measurement-Word Enable 17-11

Signals and Resets 17-12
Signals . 17-12

Halt Signal 17-12
Clear Signal 17-12
Reset Signal 17-13

Resets . 17-13
Channel-Path Reset 17-13
I/O-System Reset 17-13

Externally Initiated Functions 17-17
Initial Program Loading 17-17
Reconfiguration of the I/O System 17-20

Status Verification 17-20
Address-Limit Checking 17-20
Configuration Alert 17-21
Incorrect-Length-Indication Suppression . . 17-21
Concurrent Sense 17-21
Channel-Subsystem Recovery 17-21

Channel Report 17-22
Channel-Report Word 17-23

Channel-Subsystem-I/O-Priority Facility . . 17-25
Number of

Channel-Subsystem-Priority Levels 17-26

The I/O support functions are those functions of
the channel subsystem that are not directly related
to the initiation or control of I/O operations. The
following I/O support functions are described in
this chapter:

 � Channel-subsystem monitoring
� Signals and resets
� Externally initiated functions

 � Status verification
 � Address-limit checking
 � Configuration alert
 � Incorrect-length-indication suppression
 � Concurrent sense
 � Channel-subsystem recovery
 � I/O-priority facility

 Channel-Subsystem Monitoring
Monitoring facilities are provided in the channel
subsystem so that the program can retrieve meas-
ured values on performance for a designated sub-
channel. The use of these facilities is under
program control by means of the execution of the

| SET CHANNEL MONITOR instruction and the
| MODIFY SUBCHANNEL instruction.

The principal components of the channel-
subsystem-monitoring facilities are the channel-
subsystem-timing facility, measurement-
block-update facility, and device-
connect-time-measurement facility. The
measurement-block-update facility and device-
connect-time-measurement facility both use the
channel-subsystem-timing facility but otherwise
are logically distinct and operate independent of
one another.

| Other components of the channel-
| subsystem-monitoring facilities are the control-
| unit-queuing-measurement facility, the control-

 Copyright IBM Corp. 1990-2003 17-1

| unit-defer-time facility, the device-
| active-only-measurement facility, the initial-
| command-response-measurement facility, the
| extended-I/O-measurement-block facility, and the
| extended-I/O-measurement-word facility. These
| enhance the measurements of the measurement-
| block-update facility if they are available as
| described in later sections, where each of the

facilities that constitute the channel-
subsystem-monitoring facilities is described in this
chapter.

 Channel-Subsystem Timing

The channel-subsystem-timing facility provides the
channel subsystem with the capability of meas-
uring the elapsed time required for performing
several different phases of the processing of a
start function initiated by START SUBCHANNEL.
These elapsed-time measurements are used by
both the measurement-block-update facility and
the device-connect-time-measurement facility to
provide subchannel performance information to
the program.

While every channel subsystem has a channel-
subsystem-timing facility, it may or may not be
provided for use with all subchannels. Subchan-
nels for which the facility is provided have the
timing-facility bit, bit 14 of word 1, stored as one in
the associated subchannel-information block.
(See “Timing Facility (T)” on page 15-4.) If the
channel-subsystem-timing facility is not provided
for the subchannel, the subchannel's timing-facility
bit is stored as zero.

Subchannels that do not have the channel-
subsystem-timing facility provided are those for
which the characteristics of the associated device,
the manner in which it is attached to the channel
subsystem, or the channel-subsystem resources
required to support the device are such that use of
the channel-subsystem-timing facility is precluded.

The channel-subsystem-timing facility consists of
at least one channel-subsystem timer and the
associated logic and storage required for com-
puting and recording the elapsed-time intervals for
use by the two measurement facilities. The

aspects of the channel-subsystem-timing facility
that are of importance to the program are
described below.

 Channel-Subsystem Timer
Each channel-subsystem timer is a binary counter
that is not accessible to the program. The

| channel-subsystem timer provides a minimum
| timer resolution of 128 microseconds. A timer
| resolution of 1.0 microseconds is provided when
| FICON-I/O-interface channel paths are supported.

When incrementing the channel-subsystem timer
causes a carry out of the leftmost bit position, the
carry is ignored, and counting continues from
zero. No indications are generated as a result of
the overflow.

Just as every CPU has access to a TOD clock,
every channel subsystem has access to at least
one channel-subsystem timer. When multiple
channel-subsystem timers are provided, synchro-
nization among these timers is also provided, cre-
ating the effect that all the timing facilities of the
channel subsystem share a single timer. Synchro-
nization among these timers may be supplied
either through some TOD clock or independently
by the channel subsystem.

If the TOD clocks are not synchronized, the
elapsed times measured by the channel-
subsystem-timing facility may have unpredictable
values for some or all of the subchannels,
depending on the model and on the particular
channel-subsystem timer and the way the associ-
ated devices are physically attached to the
system. The values are unpredictable for those
devices attached to the system by separately
configurable channel paths whose associated
CPU TOD clocks are not synchronized.

Synchronization: If either the measurement-
block-update mode or the device-
connect-time-measurement mode is active and
any of the channel-subsystem timers is found to
be out of synchronization, a channel-
subsystem-timer-sync check is recognized, and a
channel report is generated to alert the program
(see “Channel-Subsystem Recovery” on
page 17-21). If neither of these modes is active,
the lack of synchronization is not recognized.

17-2 z/Architecture Principles of Operation

 Measurement-Block Update

The measurement-block-update facility provides
the program with the capability of accumulating
performance information for subchannels that are
enabled for the measurement-block-update mode
when the measurement-block-update mode is
active. A subchannel is enabled for the
measurement-block-update mode by setting bit 11
of word 1 of the SCHIB operand to one and then
issuing MODIFY SUBCHANNEL. The
measurement-block-update mode is made active
by the execution of SET CHANNEL MONITOR
when bit 62 of general register 1 is one.

When the measurement-block-update mode is
active and the subchannel is enabled for the
measurement-block-update mode, information is
accumulated in a measurement block associated

| with the subchannel. A measurement block is
| either a 32-byte area (format-0 measurement
| block) or a 64-byte area (format-1 measurement
| block) in main storage that is associated with a
| subchannel for the purpose of accumulating meas-
| urement data.

| For format-0 measurement blocks, the program
specifies a contiguous area of absolute storage,
referred to as the measurement-block area, and
subdivides this area into 32-byte blocks, one block
for each subchannel for which measurement data
is to be accumulated. The measurement-
block-update facility uses the measurement-block
index contained at the subchannel in conjunction
with the measurement- block origin established by
the execution of SET CHANNEL MONITOR to
compute the absolute address of the measure-
ment block associated with a subchannel.

| For format-1 measurement blocks, the program
| provides a 64-byte contiguous area of absolute
| storage for the subchannel. The measurement-
| block-update facility uses the measurement-block
| address provided by the MSCH instruction to
| access the measurement block.

Measurement data is stored in the measurement
block associated with the subchannel each time
an I/O operation or chain of I/O operations initi-

| ated by a START SUBCHANNEL instruction or
| RESUME SUBCHANNEL instruction is suspended
| or is completed at the device The completion of

| an I/O operation or chain of I/O operations at the
| device is normally determined when secondary
| status is accepted from the device.

| The measurement data accumulated in the
| format-0 and format-1 measurement blocks by the
| measurement-block-update facility is described in
| the following section, “Measurement Block.”

 Measurement Block

| A measurement block is either a 32-byte area
| (format-0 measurement block) at a location desig-
| nated by the program by its use of a

measurement-block-origin address in conjunction
| with the measurement-block index, or a 64-byte
| area (format-1 measurement block) at a location
| designated by the measurement-block address
| provided in the SCHIB during the execution of the
| MODIFY SUBCHANNEL instruction. The meas-

urement block contains the accumulated values of
the measurement data described below. When the
measurement-block-update mode is active and the
subchannel is enabled for measurement-block
update, the measurement-block-update facility
accumulates the values for the measurement data
that accrue during the performance of an I/O oper-
ation or chain of I/O operations initiated by START
SUBCHANNEL.

When the I/O operation or chain of I/O operations
is suspended or completed and no error condition
is encountered, the accrued values are added to
the accumulated values in the measurement block
for that subchannel. If an error condition is
detected and subchannel-logout information is
stored in the extended-status word (ESW), the
accrued values are not added to the accumulated
values in the measurement block for the sub-
channel, and the two count fields in the measure-
ment block are not incremented.

If (1) any of the accrued time values is detected
to exceed the internal storage provided for con-
taining these values, (2) the control unit cannot
provide an accurate queuing time or defer time for
the current operation, or (3) the channel sub-
system successfully recovers from certain error
conditions, none of the accrued values is added to
the measurement block for the subchannel, and
the sample count in the measurement block is not
incremented, but the SSCH+RSCH count in the
block is incremented.

 Chapter 17. I/O Support Functions 17-3

References to the measurement block by the
measurement-block-update facility, in order to
accumulate measurement data at the suspension
or completion of an I/O function, are single-access
references and appear to be word concurrent as
observed by CPUs.

The measurement-block-update facility updates all
fields in the measurement block that are required
to be updated for a suspended I/O operation prior
to putting the subchannel into the suspended
state. The measurement-block-update facility
updates all fields in the measurement block that
are required to be updated for a completed I/O
operation prior to making the subchannel status
pending with secondary status or, if the sub-
channel is start pending for a subsequent opera-
tion, prior to initiating the start function.

| A format-0 measurement block is stored when the
| measurement-block-format-control bit at the sub-
| channel is zero; a format-1 measurement block is
| stored when the measurement-
| block-format-control bit at the subchannel is one.

The format-0 measurement block has the following
format:

 ┌───────────────┬────────────────┐
Word �│SSCH+RSCH Count│ Sample Count │
 ├───────────────┴────────────────┤
 1│ Device-Connect Time │
 ├────────────────────────────────┤
 2│ Function-Pending Time │
 ├────────────────────────────────┤
 3│ Device-Disconnect Time │
 ├────────────────────────────────┤
 4│ Control-Unit-Queuing Time │
 ├────────────────────────────────┤
 5│ Device-Active-Only Time │
 ├────────────────────────────────┤

| 6│ Device-Busy Time │
 ├────────────────────────────────┤

7│ Initial-Command-Response Time │
 └────────────────────────────────┘
 � 16 31

| The format-1 measurement block has the following
| format:

| ┌────────────────────────────────┐
| Word �│ SSCH+RSCH Count │
| ├────────────────────────────────┤
| 1│ Sample Count │
| ├────────────────────────────────┤
| 2│ Device-Connect Time │
| ├────────────────────────────────┤
| 3│ Function-Pending Time │
| ├────────────────────────────────┤
| 4│ Device-Disconnect Time │
| ├────────────────────────────────┤
| 5│ Control-Unit-Queuing Time │
| ├────────────────────────────────┤
| 6│ Device-Active-Only Time │
| ├────────────────────────────────┤
| 7│ Device-Busy Time │
| ├────────────────────────────────┤
| 8│ Initial-Command-Response Time │
| ├────────────────────────────────┤
| 9│ │
| │ │
| 1�│ │
| │ │
| 11│ │
| │ Reserved │
| 12│ │
| │ │
| 13│ │
| │ │
| 14│ │
| │ │
| 15│ │
| └────────────────────────────────┘
| � 31

| SSCH+RSCH Count: Bits 0-15 of word 0 in the
| format-0 measurement block and bits 0-31 of word
| 0 in the format-1 measurement block are used as

a binary counter. During the performance of a
start function for which measurement-block update

| is active, when (1) the secondary status condition
is recognized or (2) the suspend function is per-

| formed, the counter is incremented by one, and
the measurement data is stored. The counter

| wraps around from the maximum value to 0. The
program is not alerted when counter overflow
occurs.

If the measurement-block-update mode is active
and the subchannel is enabled for measuring, the
SSCH+RSCH count is incremented even when
the lack of measured values for an individual start
function precludes the updating of the remaining
fields of the measurement block or when the
timing-facility bit for the subchannel is zero. The
SSCH+RSCH count is not incremented if the
measurement-block-update mode is inactive, if the
subchannel is not enabled for the measurement-
block update, or if subchannel-logout information
has been generated for the start function.

17-4 z/Architecture Principles of Operation

| Sample Count: Bits 16-31 of word 0 in the
| format-0 measurement block and bits 0-31 of word
| 1 in the format-1 measurement block are used as

a binary counter. When the time-accumulation
fields following word 0 of the measurement block

| are updated, the counter is incremented by one.
On some models, certain conditions may prevent
the measurement-block-update facility from
obtaining the accrued values of the measurement
data for an individual start function, even when the
measurement-block-update mode is active and the
subchannel is enabled for that mode. The control
unit may also signal that it was not able to accu-
mulate an accurate queuing time. In these situ-
ations, the sample-count field is not incremented.

The counter wraps around from the maximum
| value to 0. The program is not alerted when

counter overflow occurs. This field is not updated
if the channel-subsystem-timing facility is not pro-
vided for the subchannel.

The System Library publication for the system
model specifies the conditions, if any, that pre-
clude the updating of the sample count and time-
accumulation fields of the measurement block.

Device-Connect Time: Bit positions 0-31 of
| word 1 in the format-0 measurement block and bit
| positions 0-31 of word 2 in the format-1 measure-
| ment block contain the accumulation of measured

device-connect-time intervals. The device-
connect-time interval (DCTI) is the sum of the time
intervals measured whenever the device is log-
ically connected to a channel path while the sub-
channel is subchannel active and the device is
actively communicating with the channel path.
The device-connect time does not include the
intervals when a device is logically connected to a
channel path but is not actively communicating
with the channel. The device reports the accumu-
lation of time intervals when the device is logically
connected but not actively communicating with the
channel path as control-unit-defer time. The
control-unit-defer time is not included in the
device-connect-time measurement but, instead, is
added to the accrued device-disconnect-time
measurement for the operation.

| The time intervals are stored using a resolution of
128 microseconds. The accumulated value is
modulo approximately 152.71 hours, and the
program is not alerted when an overflow occurs.
This field is not updated if (1) the channel-

subsystem-timing facility is not provided for the
subchannel, (2) the measurement-block-update
mode is inactive, or (3) any of the time values
accrued for the current start function has been
detected to exceed the internal storage in which it
was accrued.

Accumulation of device-connect-time intervals for
a subchannel and storing this data in the ESW are
not affected by whether the measurement-
block-update mode is active. (See “Device-
Connect-Time Measurement” on page 17-10.)

Function-Pending Time: Bit positions 0-31 of
| word 2 in the format-0 measurement block and bit
| positions 0-31 of word 3 in the format-1 measure-
| ment block contain the accumulated SSCH- and

RSCH-function-pending time. Function-pending
time is the time interval between acceptance of
the start function (or resume function if the sub-
channel is in the suspended state) at the sub-
channel and acceptance of the first command
associated with the initiation or resumption of
channel-program execution at the device.

When channel-program execution is suspended
because of a suspend flag in the first CCW of a
channel program, the suspension occurs prior to
transferring the first command to the device. In
this case, the function-pending time accumulated
up to that point is added to the value in the
function-pending-time field of the measurement
block. Function-pending time is not accrued while
the subchannel is suspended. Function-pending
time begins to be accrued again, in this case,
when RESUME SUBCHANNEL is subsequently
executed while the designated subchannel is in
the suspended state.

| The function-pending-time interval is stored using
a resolution of 128 microseconds. The accumu-
lated value is modulo approximately 152.71 hours,
and the program is not alerted when an overflow
occurs. This field is not updated if the channel-
subsystem-timing facility is not provided for the
subchannel.

Device-Disconnect Time: Bit positions 0-31 of
| word 3 in the format-0 measurement block and bit
| positions 0-31 of word 4 in the format-1 measure-
| ment block contain the accumulated device-

disconnect time. Device-disconnect time is the
sum of the time intervals measured whenever the
device is logically disconnected from the channel

 Chapter 17. I/O Support Functions 17-5

subsystem while the subchannel is subchannel
active. The device-disconnect time also includes
the sum of control-unit-defer-time intervals
reported by the device during the I/O operation.

Device-disconnect time is not accrued while the
subchannel is in the suspended state. Device-
disconnect time begins to be accrued again, in
this case, on the first device disconnection after
channel-program execution has been resumed at
the device (the subchannel is again subchannel
active).

| The device-disconnect-time interval is stored using
a resolution of 128 microseconds. The accumu-
lated value is modulo approximately 152.71 hours;
the program is not alerted when an overflow
occurs. This field is not updated if the channel-
subsystem-timing facility is not provided for the
subchannel.

The device-disconnect time does not include the
interval between the primary status condition and
the secondary status condition at the end of an
I/O operation when the subchannel is no longer
subchannel active but the I/O device is active. If
the channel subsystem provides the device-
active-only measurement facility, this time is accu-
mulated in the device-active-only-time field of the
measurement block.

Control-Unit-Queuing Time: Bit positions 0-31
| of word 4 in the format-0 measurement block and
| bit positions 0-31 of word 5 in the format-1 meas-
| urement block contain the accumulated control-

unit-queuing time. Control-unit-queuing time is the
sum of the time intervals measured by the control
unit whenever the device is logically disconnected
from the channel subsystem during an I/O opera-
tion while the device is busy with an operation ini-
tiated from a different system.

Control-unit-queuing time is not accrued while the
subchannel is in the suspended state. Control-
unit-queuing time may be accrued for the channel
program after the subchannel becomes sub-
channel active following a successful resumption.

The control-unit-queuing-time field is updated such
that bit 31 represents 128 microseconds. The
accumulated value is modulo approximately
152.71 hours; the program is not alerted when an
overflow occurs. This field is not updated if the
channel-subsystem-timing facility is not provided

for the subchannel or if the control unit does not
provide a queuing time.

Device-Active-Only Time: Bit positions 0-31 of
| word 5 in the format-0 measurement block and bit
| positions 0-31 of word 6 in the format-1 measure-
| ment block contain the accumulated device-

active-only time. Device-active-only time is the
sum of the time intervals when the subchannel is
device active but not subchannel active at the end
of an I/O operation or chain of I/O operations initi-
ated by a start function or resume function.

Device-active-only time is not accumulated when
the subchannel is device active during periods
when the subchannel is active; such time is accu-
mulated as device-connect time or device-
disconnect time, as appropriate.

The device-active-only-time field is updated such
that bit 31 represents 128 microseconds. The
accumulated value is modulo approximately
152.71 hours; the program is not alerted when an
overflow occurs. This field is not updated if the
channel-subsystem-timing facility is not provided
for the subchannel.

| Device-Busy Time: When the
| extended-I/O-measurement-block facility is
| installed, bit positions 0-31 of word 6 in the
| format-0 measurement block, and bit positions
| 0-31 of word 7 in the format-1 measurement block
| contain the accumulated device-busy time.
| Device-busy time is the sum of the time intervals
| when the subchannel is device busy during an
| attempt to initiate a start function or resume func-
| tion at the subchannel.

| The device-busy-time field is updated such that bit
| 31 represents 128 microseconds. The accumu-
| lated value is modulo approximately 152.71 hours;
| the program is not alerted when an overflow
| occurs. This field is not updated if the channel-
| subsystem-timing facility is not provided for the
| subchannel.

Initial-Command-Response Time: Bit positions
0-31 of word 7 in the format-0 measurement

| block, and bit positions 0-31 of word 8 in the
| format-1 measurement block contain the accumu-

lated initial-command-response time for the sub-
channel. The initial-command-response time for a
start or resume function is the time interval begin-
ning from when the first command of the channel

17-6 z/Architecture Principles of Operation

program is sent to the device until the device indi-
cates it has accepted the command.

The initial-command-response time is stored at a
resolution of 128 microseconds. The accumulated
value is modulo approximately 152.71 hours; the
program is not alerted when an overflow occurs.

| This field is not updated if the channel-
| subsystem-timing facility is not provided for the
| subchannel or if the initial-
| command-response-measurement facility is not
| installed.

 Control-Unit-Defer Time: Control-unit-defer time
is the sum of the time intervals measured by the
control unit whenever the device is logically con-
nected to the channel subsystem during an I/O
operation but is not actively communicating with
the channel because of device-dependent delays
in channel-program execution. The control-unit-
defer time is not stored in the measurement block
as a separate measurement field but is used in
the calculation of device-connect-time measure-
ment and device-disconnect-time measurement for
an operation.

Control-unit-defer time, if provided by a control
unit, is accrued while the device is logically con-
nected to the channel. The time is reported to the
channel when channel-end status is presented
that causes a device disconnection or terminates
the I/O operation. Control-unit-defer time is sub-
tracted from the device-connect-time measure-
ment and is added to the device-disconnect-time
measurement reported for the operation.

Reserved: The remaining words of the measure-
ment block, along with any words associated with
facilities that are not provided by the channel sub-
system or the subchannel, are reserved for future
use. They are not updated by the measurement-
block-update facility.

Programming Note: On models that do not have
the z/Architecture installed, it is possible for the
program to fetch a portion of a measurement
block immediately prior to a measurement block
update, for the measurement-block-update facility
to perform a block-concurrent update of the block,
and for the program to then fetch the remainder of
the now-updated measurement block. To ensure

that a consistent measurement block is fetched,
the program should re-fetch the sample-count field
after fetching the entire measurement block and
compare the re-fetched count with the sample-
count value originally fetched. If the two values
match, a consistent measurement block has been
obtained. If they do not match, the entire meas-
urement block should be re-fetched in the same
manner.

On models that have the z/Architecture installed, it
is possible for the program to fetch a portion of a
measurement block immediately prior to, or
during, a measurement block update by the
measurement-block-update facility. To ensure that
a consistent measurement block is fetched, the
program should not fetch measurement data for a
subchannel during the time from when a start or
resume function is initiated at the subchannel until
the operation is suspended or completes with sec-
ondary status.

| Measurement-Block Format
| The measurement block is stored as either a
| format-0 measurement block or a format-1 meas-
| urement block. The format-0 measurement block
| is a 32-byte area (format-0 measurement block) at
| a location designated by the program using the
| measurement-block origin in conjunction with the
| measurement-block index. The format-1 measure-
| ment block is a 64-byte area (format-1 measure-
| ment block) at a location designated by the
| measurement-block address provided in the
| SCHIB during the execution of the MODIFY SUB-
| CHANNEL instruction. The measurement-
| block-format-control bit at the subchannel indi-
| cates whether a format-0 or format-1 measure-
| ment block is stored when measurement-
| block-update mode is active and enabled at the
| subchannel.

 Measurement-Block Origin
| The measurement-block origin is the beginning of
| the measurement-block area in main storage,
| used to store format-0 measurement blocks. The
| absolute address of the measurement-block origin,
| specified on a 32-byte boundary, is passed in
| general register 2 to the measurement-

block-update facility when SET CHANNEL
MONITOR is executed with bit 62 of general reg-
ister 1 set to one.

 Chapter 17. I/O Support Functions 17-7

| Measurement-Block Address
| The measurement-block address is set at the sub-
| channel through the execution of MODIFY SUB-
| CHANNEL. The measurement block address
| specifies the absolute address of the beginning of
| the 64-byte area to be used for accumulating
| format-1 measurement-block parameters for that
| subchannel.

| Programming Note: The initial value of the
| measurement-block address is zero. The program
| is responsible for setting the measurement-block
| address to the proper value prior to enabling the
| subchannel for the measurement-block-update
| mode for format-1 measurement blocks and
| making the mode active.

 Measurement-Block Key
Bits 32-35 of general register 1 form the four-bit
access key to be used for subsequent
measurement-block updates when SET CHANNEL
MONITOR causes the measurement-block-update
mode to be made active. The measurement-block
key is passed to the measurement-block-update

| facility whenever the measurement-block-update
| mode is made active. The key is used for both
| format-0 and format-1 measurement block
| updates.

 Measurement-Block Index
The measurement-block index is set in the sub-
channel through the execution of MODIFY SUB-
CHANNEL. The measurement-block index speci-
fies which 32-byte measurement block, relative to
the measurement-block origin, is to be used for

| accumulating the format-0 measurement-block
parameters for that subchannel. The location of

| the format-0 measurement block of a subchannel
is computed by the measurement-block-update
facility by appending five rightmost zeros to the
measurement-block index of the subchannel and
adding the result to the measurement-block origin.
The result is the absolute address of the 32-byte

| format-0 measurement block for that subchannel.
When the computed measurement-block address
exceeds 2��-1, a measurement-block program-
check condition is recognized, and measurement-
block updating does not occur for the preceding
subchannel-active period.

Programming Note: The initial value of the
measurement-block index is zero. The program is
responsible for setting the measurement-block

index to the proper value prior to enabling the
subchannel for the measurement-block-update
mode and making the mode active. To ensure
predictable results for the measured parameters in
the measurement block, each subchannel for
which measured parameters are to be accumu-
lated must have a different value for its
measurement-block index.

 Measurement-Block-Update Mode
The measurement-block-update mode is made
active by the execution of SET CHANNEL
MONITOR with bit 62 of general register 1 set to
one. If bit 62 of general register 1 is zero when
SET CHANNEL MONITOR is executed, the mode
is made inactive. When the measurement-
block-update mode is inactive, no measurement
values are accumulated in main storage. When
the measurement-block-update mode is made
active, the contents of general register 2 are
passed to the measurement-block-update facility
as the absolute address of the measurement-block

| origin and is used to calculate the address of
| format-0 measurement blocks. The measurement-
| block origin is not used for format-1 measurement
| blocks. The MBK is also passed to the

measurement-block-update facility as the access
| key to be used when updating either format-0 or
| format-1 measurement blocks for each sub-

channel. When the measurement-block-update
mode is active, the measurement-block-update
facility accumulates measurements in individual

| measurement blocks for subchannels whose
measurement-block-update-enable bit is one.
(See the section “Measurement Block” on
page 17-3 for a description of the measured
parameters.)

If the measurement-block-update mode is already
active when SET CHANNEL MONITOR is exe-
cuted, the values for the measurement-block origin
and measurement-block key that are used for a
subchannel enabled for measuring by the
measurement-block-update facility are dependent
upon whether SET CHANNEL MONITOR is exe-
cuted prior to, during, or subsequent to the exe-
cution of START SUBCHANNEL for that sub-
channel. If SET CHANNEL MONITOR is exe-
cuted prior to START SUBCHANNEL, the current
measurement-block origin and measurement-block
key are in control. If SET CHANNEL MONITOR is
executed during or subsequent to execution of
START SUBCHANNEL, it is unpredictable
whether the measurement-block origin and

17-8 z/Architecture Principles of Operation

measurement-block key that are in control are old
or current.

| Measurement-Block-Format Control
| Bit 29, word 6, of the SCHIB is the measurement-
| block-format-control bit. This bit provides the
| capability of specifying whether a format-0 or
| format-1 measurement block is stored on a sub-
| channel basis. The initial value of the bit is zero.
| When MODIFY SUBCHANNEL is executed with
| the measurement-block-format-control bit in the
| SCHIB operand set to one, the format-1 measure-
| ment block is specified for the subchannel. If the
| measurement-block-update mode is active and
| enabled at the subchannel, the measurement-
| block-update facility stores a format-1
| measurement-block for the subchannel, starting
| with the next START SUBCHANNEL issued to
| that subchannel. Similarly, if MODIFY SUB-
| CHANNEL is executed with measurement-
| block-format-control bit of the SCHIB operand set
| to zero by the program, the measurement-
| block-update facility stores a format-0
| measurement-block for the subchannel, starting
| with the next START SUBCHANNEL issued to
| that subchannel.

 Measurement-Block-Update Enable
Bit 11 of word 1 of the SCHIB is the
measurement-block-update-enable bit. This bit
provides the capability of controlling the accumu-
lation of measurement-block parameters on a sub-
channel basis. The initial value of the enable bit
is zero. When MODIFY SUBCHANNEL is exe-
cuted with the enable bit set to one in the SCHIB,
the subchannel is enabled for the measurement-
block-update mode. If the measurement-
block-update mode is active, the measurement-
block-update facility accumulates measurement-
block parameters for the subchannel, starting with
the next START SUBCHANNEL issued to that
subchannel. Conversely, if MODIFY SUB-
CHANNEL is executed with bit 11 of word 1 of the
SCHIB operand set to zero by the program, the
subchannel is disabled for the measurement-
block-update mode, and no additional
measurement-block parameters are accumulated
for that subchannel.

 Control-Unit-Queuing Measurement

The control-unit-queuing-measurement facility
allows the channel subsystem to accept queuing
times from control units and, in conjunction with
the measurement-block-update facility, to accumu-
late those times in the measurement block.

The System Library publication for the control-unit
model specifies its ability to supply queuing time.
If a control-unit model is capable of supplying
queuing time, the publication specifies the condi-
tions that prevent the control unit from accumu-
lating an accurate control-unit-queuing time.

 Control-Unit-Defer Time

The control-unit-defer-time facility allows the
channel subsystem to accept defer times from
control units and, in conjunction with the
measurement-block-update facility, to modify the
device-connect and device-disconnect times
reported in the measurement block to reflect the
defer time. The control-unit-defer time is sub-
tracted from the device-connect-time measure-
ment and is added to the device-disconnect-time
measurement reported for an I/O operation.

The System Library publication for the control-unit
model specifies its ability to supply defer time. If a
control-unit model is capable of supplying defer
time, the publication specifies the conditions that
prevent the control unit from accumulating an
accurate control-unit-defer time.

 Device-Active-Only Measurement
The device-active-only-measurement facility
permits the channel subsystem to report the times
that the device is disconnected between primary
status and secondary status at the end of an I/O

| operation or chain of I/O operations.

The measurement-block updates are performed at
the time that secondary status is accepted from
the I/O device, in order that the device-active time
between primary status and secondary status can
be reported.

If the subchannel is start pending when secondary
status is accepted from the I/O device and the
measurement-block update is to be performed, the
measurement-block update is performed prior to
performing the start function. If measurement-
block errors occur, they are reported to the

 Chapter 17. I/O Support Functions 17-9

program along with the secondary status instead
of performing the start function.

| Initial-Command-Response
| Measurement

| The initial-command-response-measurement
| facility allows the channel subsystem to calculate
| initial-command-response time for I/O operations
| and, in conjunction with the measurement-
| block-update facility, to accumulate those times in
| the measurement block. The initial-
| command-response time is accumulated in word 7
| of the measurement block.

 Time-Interval-Measurement Accuracy
On some models, when time intervals are to be
measured and condition code 0 is set for START
SUBCHANNEL (or RESUME SUBCHANNEL in
the case of a suspended subchannel), a period of
latency may occur prior to the initiation of the
function-pending time measurement. The System
Library publication for the system model specifies
the mean latency value and variance for each of
the measured time intervals.

Programming Notes:

1. Excessive delays may be encountered by the
channel subsystem when attempting to update
measurement data if the program is concur-
rently accessing the same measurement-block
area. A programming convention should
ensure that the storage block designated by
SET CHANNEL MONITOR is made read-only
while the measurement-block-update mode is
active.

2. To ensure that programs written to support
measurement functions are executed properly,
the program should initialize all the measure-
ment blocks to zeros prior to making the
measurement-block-update mode active. Only
zeros should appear in the reserved and
unused words of the measurement blocks.

3. When the incrementing of an accumulated
value causes a carry to be propagated out of
bit position 0, the carry is ignored, and accu-
mulating continues from zero on.

 Device-Connect-Time
Measurement

The device-connect-time-measurement facility pro-
vides the program with the capability of retrieving
the length of time that a device is actively commu-
nicating with the channel subsystem while exe-
cuting a channel program. The measured length
of time that the device spends actively communi-
cating on a channel path during the execution of a
channel program is called the device-connect-time
interval (DCTI). Control-unit-defer time is not
included in the DCTI.

If timing facilities are provided for the subchannel,
the DCTI value is passed to the program in the
extended-status word (ESW) at the completion of
the operation when the primary-status condition is
cleared by TEST SUBCHANNEL and when TEST
SUBCHANNEL clears an intermediate-status con-
dition alone while the subchannel is suspended.
The DCTI value passed in the ESW pertains to
the previous subchannel-active period. The
passing of the DCTI in the ESW is under program
control by the SET CHANNEL MONITOR device-
connect-time-measurement mode-control bit and
the corresponding enable bit in the subchannel.
However, the DCTI value is not stored in the ESW
if the I/O function initiated by START SUB-
CHANNEL is terminated because of an error con-
dition that is described by subchannel logout. See
the section “Extended-Status Format 0” on
page 16-32. In this case, the extended-status bit
(L) of the SCSW is stored as one, indicating that
the ESW contains logout information describing
the error condition. See the section “Extended-
Status Word” on page 16-32 for the description of
the logout information. If the accrued DCTI value
exceeded 8.388608 seconds during the previous
subchannel-active period, then the maximum
value (FFFF hex) is passed in the ESW.

 Device-Connect-Time-Measurement
Mode
The device-connect-time-measurement mode is
made active by the execution of SET CHANNEL
MONITOR when bit 63 of general register 1 is
one. If bit 63 of general register 1 is zero when
SET CHANNEL MONITOR is executed, the mode
is made inactive, and DCTIs are not passed to the
program. When timing facilities are provided for
the subchannel, the device-
connect-time-measurement mode is active, and

17-10 z/Architecture Principles of Operation

the subchannel is enabled for the mode, the DCTI
value is passed to the program in the ESW stored
when TEST SUBCHANNEL (1) clears the primary-
interruption condition with no logout information
indicated in the SCSW (extended-
status-word-format bit is zero) or (2) clears the
intermediate-status condition alone while the sub-
channel is suspended.

If a start function is currently being executed with
a subchannel enabled for the device-
connect-time-measurement mode when SET
CHANNEL MONITOR makes this mode active for
the channel subsystem, the value of the DCTI
stored under the appropriate conditions may be
zero, a partial result, or the full and correct value,
depending on the model and the progress of the
start function at the time the mode was activated.

Provision of the DCTI value in the measurement-
block area is not affected by whether the device-
connect-time-measurement mode is active.

 Device-Connect-Time-Measurement
Enable
Bit 12 of word 1 of the SCHIB is the device-
connect-time measurement-mode-enable bit. This
bit provides the program with the capability of
selectively controlling the storing of DCTI values
for a subchannel when the device-
connect-time-measurement mode is active. The
initial value of the enable bit is zero. When this
enable bit is one in the SCHIB and MODIFY SUB-
CHANNEL is executed, the subchannel is enabled
for the device-connect-time-measurement mode.
If the device-connect-time-measurement mode is
active, the device-connect-time-measurement
facility begins providing DCTI values for the sub-
channel, starting with the next START SUB-
CHANNEL issued to the subchannel. In this situ-
ation, the DCTI values are provided in the ESW
(see the section “Extended-Status Format 2” on
page 16-38). Similarly, if MODIFY SUB-
CHANNEL is executed with bit 12 of word 1 of the
SCHIB operand set to zero by the program, the
subchannel is disabled for the device-
connect-time-measurement mode, and no further
DCTI values are passed to the program for that
subchannel.

| Extended Measurement Word

| The extended-I/O-measurement-word facility pro-
| vides the program with the capability of retrieving
| measurement information for a channel program.
| The measurement information is stored into the
| extended-measurement word (EMW) in the Inter-
| ruption Response Block when the extended-
| measurement-word enable bit is one at the sub-
| channel. See the section “Extended-Measurement
| Word” on page 16-40 in Chapter 16, “I/O Inter-
| ruptions,” for the description of the extended-
| measurement word.

| When the extended-measurement-word is enabled
| for the subchannel, measurement values are
| passed to program in the EMW when TEST SUB-
| CHANNEL clears a primary-status condition,
| secondary-status condition alone, or an
| intermediate-status condition alone while the sub-
| channel is suspended. The measurement values
| stored in the EMW pertain to the previous
| subchannel-active and device-active period.
| Measurement values are not stored in the EMW if
| the I/O function initiated by START SUB-
| CHANNEL is terminated because of an error con-
| dition that is described by subchannel logout (see
| the section “Extended-Status Format 0” on
| page 16-32). In this case, the extended-status bit
| (L) of the SCSW is stored as one, indicating that
| the ESW contains logout information describing
| the error condition. See the section “Extended-
| Status Word” on page 16-32 for the description of
| the logout information. If any of the accrued
| measurement values exceeded the maximum
| value capable of being measured during the pre-
| vious subchannel-active and device-active period,
| then the maximum value is stored for that value in
| the EMW.

| Extended-Measurement-Word Enable
| Bit 30 of word 6 of the SCHIB is the extended-
| measurement-word enable bit. This bit provides
| the program with the capability of selectively con-
| trolling the storing of measurement values for a
| subchannel. The initial value of the enable bit is
| zero. When this enable bit is one in the SCHIB
| and MODIFY SUBCHANNEL is executed, the sub-
| channel is enabled for the extended-
| measurement-word and the extended-
| measurement-word facility begins providing meas-
| urement values for the subchannel starting with
| the next START SUBCHANNEL issued to the sub-

 Chapter 17. I/O Support Functions 17-11

| channel. Similarly, if MODIFY SUBCHANNEL is
| executed with bit 30, word 6, of the SCHIB
| operand set to zero by the program, the sub-
| channel is disabled for the extended-
| measurement-word and no further measurement
| values are passed to the program for that sub-
| channel.

Signals and Resets
During system operation, it may become neces-
sary to terminate an I/O operation or to reset
either the I/O system or a portion of the I/O
system. (The I/O system consists of the channel
subsystem plus all of the attached control units
and devices.) Various signals and resets are pro-
vided for this purpose. Three signals are provided
for the channel subsystem to notify an I/O device
to terminate an operation or perform a reset func-
tion or both. Two resets are provided to cause
the channel subsystem to reinitialize certain infor-
mation contained either at the I/O device or at the
channel subsystem.

 Signals

The request that the channel subsystem initiate a
signaling sequence is made by one of the fol-
lowing:

1. The program's issuance of the CLEAR SUB-
CHANNEL, HALT SUBCHANNEL, or RESET
CHANNEL PATH instruction

2. The I/O device's signaling of I/O-error alert

3. The channel subsystem itself, upon detecting
certain error conditions or equipment malfunc-
tions

The three signals are the halt signal, the clear
signal, and the reset signal.

 Halt Signal
The halt signal is provided so the channel sub-
system can terminate an I/O operation. The halt
signal is issued by the channel subsystem as part
of the halt function performed subsequent to the
execution of HALT SUBCHANNEL. The halt
signal is also issued by the channel subsystem
when certain error conditions are encountered.

For the parallel-I/O-interface type of channel path,
the halt signal results in the channel subsystem
using the interface-disconnect sequence control

defined in the System Library publication IBM
System/360 and System/370 I/O Interface
Channel to Control Unit OEMI, GA22-6974.

For the ESCON-I/O-interface type of channel path,
the halt signal results in the channel subsystem
using the cancel function defined in the System
Library publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202.

For the FICON-I/O-interface type of channel path,
the halt signal results in the channel subsystem
using the cancel function defined in the ANSI
standards document Fibre Channel - Single-Byte
Command Code Sets-2 (FC-SB-2).

 Clear Signal
The clear signal is provided so the channel sub-
system can terminate an I/O operation and reset
status and control information contained at the
device. The clear signal is issued as part of the
clear function performed subsequent to the exe-
cution of CLEAR SUBCHANNEL. The clear signal
is also issued by the channel subsystem when
certain error conditions or equipment malfunctions
are detected by the I/O device or the channel sub-
system.

For the parallel-I/O-interface type of channel path,
the clear signal results in the channel subsystem
using the selective-reset sequence control defined
in the System Library publication IBM System/360
and System/370 I/O Interface Channel to Control
Unit OEMI, GA22-6974.

For the ESCON-I/O-interface type of channel path,
the clear signal results in the channel subsystem
using the selective-reset function defined in the
System Library publication IBM Enterprise
Systems Architecture/390 ESCON I/O Interface,
SA22-7202.

For the FICON-I/O-interface type of channel path,
the clear signal results in the channel subsystem
using the selective-reset function defined in the
ANSI standards document Fibre Channel - Single-
Byte Command Code Sets-2 (FC-SB-2).

If an I/O operation is in progress at the device and
the device is actively communicating over a
channel path in the performance of that I/O opera-
tion when a clear signal is received on that
channel path, the device disconnects from that

17-12 z/Architecture Principles of Operation

channel path upon receiving the clear signal.
Data transfer and any operation using the facilities
of the control unit are immediately concluded, and
the I/O device is not necessarily positioned at the
beginning of a block. Mechanical motion not
involving the use of the control unit, such as
rewinding magnetic tape or positioning a disk-
access mechanism, proceeds to the normal stop-
ping point, if possible. The device may appear
busy until termination of the mechanical motion or
the inherent cycle of operation, if any, whereupon
it becomes available. Status information in the
device and control unit is reset, but an interruption
condition may be generated upon the completion
of any mechanical operation.

 Reset Signal
The reset signal is provided so the channel sub-
system can reset all I/O devices on a channel
path. The reset signal is issued by the channel
subsystem as part of the channel-path-reset func-
tion performed subsequent to the execution of
RESET CHANNEL PATH. The reset signal is
also issued by the channel subsystem as part of
the I/O-system-reset function.

For the parallel-I/O-interface type of channel path,
the reset signal results in the channel subsystem
using the system-reset sequence control defined
in the System Library publication IBM System/360
and System/370 I/O Interface Channel to Control
Unit OEMI, GA22-6974.

For the ESCON-I/O-interface type of channel path,
the reset signal results in the channel subsystem
using the system-reset function defined in the
System Library publication IBM Enterprise
Systems Architecture/390 ESCON I/O Interface,
SA22-7202.

For the FICON-I/O-interface type of channel path,
the reset signal results in the channel subsystem
using the system-reset function defined in the
ANSI standards document Fibre Channel - Single-
Byte Command Code Sets-2 (FC-SB-2).

 Resets

Two resets are provided so the channel sub-
system can reinitialize certain information con-
tained at either the I/O device or the channel sub-
system. The request that the channel subsystem
initiate one of the reset functions is made by one
of the following:

1. The program's issuance of the RESET
CHANNEL PATH instruction

2. The operator's activation of a system-reset-
clear or system-reset-normal key or a load-
clear or load-normal key

3. The channel subsystem itself upon detecting
certain error conditions or equipment malfunc-
tions

The resets are channel-path reset and I/O-system
reset.

 Channel-Path Reset
The channel-path-reset facility provides a mech-
anism to reset certain indications that pertain to a
designated channel path at all associated sub-
channels. Channel-path reset occurs when the
channel subsystem performs the channel-path-
reset function initiated by RESET CHANNEL
PATH. (See “RESET CHANNEL PATH” on
page 14-8.) All internal indications of dedicated
allegiance, control unit busy, and device busy that
pertain to the designated channel path are cleared
in all subchannels, and reset is signaled on that
channel path. The receipt of the reset signal by
control units attached to that channel path causes
all operations in progress and all status, mode set-
tings, and allegiance, pertaining to that channel
path, of the control unit and its attached devices to
be reset. (See also the description of the system-
reset-signal actions in “I/O-System Reset.”)

The results of the channel-path-reset function on
the designated channel path are communicated to
the program by means of a subsequent machine-
check-interruption condition generated by the
channel subsystem (see “Channel-Subsystem
Recovery” on page 17-21).

 I/O-System Reset

The I/O-system-reset function is performed when
the channel subsystem is powered on, when initial
program loading is initiated manually (see “Initial
Program Loading” on page 17-17), and when the
system-reset-clear or system-reset-normal key is
activated. The I/O-system-reset function cannot
be initiated under program control; it must be initi-
ated manually. I/O-system reset may fail to com-
plete due to malfunctions detected at the channel
subsystem or on a channel path. I/O-system reset
is performed as part of subsystem reset, which
also resets all floating interruption requests,

 Chapter 17. I/O Support Functions 17-13

including pending I/O interruptions. (See “Sub-
system Reset” on page 4-48.) Detailed
descriptions of the effects of I/O-system reset on
the various components of the I/O system appear
later in this chapter.

I/O-system reset provides a means for placing the
channel subsystem and its attached I/O devices in
the initialized state. I/O-system reset affects only
the channel-subsystem configuration in which it is
performed, including all channel-subsystem com-
ponents configured to that channel subsystem.
I/O-system reset has no effect on any system
components that are not part of the channel-
subsystem configuration that is being reset. The
effects of I/O-system reset on the configured com-
ponents of the channel subsystem are described
in the following sections.

 Channel-Subsystem State: I/O-system reset
causes the channel subsystem to be placed in the
initialized state, with all the channel-subsystem
components in the states described in the fol-
lowing sections. All operations in progress are
terminated and reset, and all indications of prior
conditions are reset. These indications include
status information, interruption conditions (but not
pending interruptions), dedicated-allegiance condi-
tions, pending channel reports, and all internal
information regarding prior conditions and oper-
ations. In the initialized state, the channel sub-
system has no activity in progress and is ready to
perform the initial-program-loading (IPL) function
or respond to I/O instructions, as described in
Chapter 14, “I/O Instructions.”

Control Units and Devices: I/O-system reset
causes a reset signal to be sent on all configured
channel paths, including those which are not phys-
ically available (as indicated by the PAM bit being
zero) because of a permanent error condition
detected earlier. When the reset signal is
received by a control unit, control-unit functions in
progress, control-unit status, control-unit alle-
giance, and control-unit modes for the resetting
channel path are reset. Device operations in
progress, device status, device allegiance, and the
device mode for the resetting channel path are
also reset. Control-unit and device mode, alle-
giance, status, and I/O functions in progress for
other channel paths are not affected.

For devices that are operating in the single-path
mode, an operation can be in progress for, at

most, one channel path. Therefore, if the reset
signal is received on that channel path, the opera-
tion in progress is reset. Devices that have the
dynamic-reconnection feature and are operating in
the multipath mode, however, have the capability
to establish an allegiance to a group of channel
paths during an I/O operation, where all the
channel paths of the path group are configured to
the same channel subsystem. If an operation is in
progress for a device that is operating in the multi-
path mode and the reset signal is received on one
of the channel paths of that path group, then the
operation in progress is reset for the resetting
channel path only. Although the operation in
progress cannot continue on the resetting channel
path, it can continue on the other channel paths of
the path group, subject to the following
restrictions:

1. If the device is actively communicating with
the channel subsystem on a channel path
when it receives the reset signal on that
channel path, then the operation is reset
unconditionally, regardless of path groups.

2. If the operation is in progress in the multipath
mode but the path group consists only of the
resetting path, then the operation is reset.

3. Except as noted in item 2, if the operation in
progress is currently in a disconnected state
(device not actively communicating with the
channel subsystem) or is active on another
channel path of a path group, system reset
has no effect upon the continued performance
of the operation.

A control unit is completely reset after the reset
signal has been received on all its channel paths,
provided no new activity is initiated at the control
unit between the receipt of the first and last reset
signal. “Completely reset” means that the current
operation, if any, at the control unit is terminated
and that control-unit allegiance, control-unit status,
and the control-unit mode, if any, are reset.

An I/O device is completely reset after the reset
signal has been received on all channel paths of
all control units by which the device is accessible,
provided no new activity is initiated at the device
between the receipt of the first and last reset
signal. “Completely reset” means that the current
operation, if any, at the device is terminated and
that device allegiance, device status, and the
device mode are reset.

17-14 z/Architecture Principles of Operation

In summary, system reset always causes an oper-
ation in progress to be reset for the channel path
on which the reset signal is received. If the reset-
ting channel path is the only channel path for
which the operation is in progress, then the opera-
tion is completely reset. If a device is actively
communicating on a channel path over which the
reset signal is received, then the operation in
progress is unconditionally and completely reset.

The reset signal is not received by control units
and devices on channel paths from which the
control unit has been partitioned. A control unit is
partitioned from a channel path by means of an
enable/disable switch on the control unit for each
channel path by which it is accessible. Multi-
tagged, unsolicited status, if any, remains pending
at the control unit for such a channel path in this
case. However, from the point of view of the
program, the control unit and device appear to be
completely reset if the reset signal is received by
the control unit on all the channel paths by which
it is currently accessible.

The resultant reset state of individual control units
and devices is described in the System Library
publication for the control unit.

Channel Paths: I/O-system reset causes a reset
signal to be sent on all configured channel paths
and causes the channel subsystem to be placed
in the reset and initialized state, as described in
the previous sections. As a result of these
actions, all communication between the channel
subsystem and its attached control units and
devices is terminated and the components reset,
and all configured channel paths are made
quiescent or are deconfigured.

Subchannels: I/O-system reset causes all oper-
ations on all subchannels to be concluded. Status
information, all interruption conditions (but not
pending interruptions), dedicated-allegiance condi-
tions, and internal indications regarding prior con-
ditions and operations in all subchannels are
reset, and all valid subchannels are placed in the
initialized state.

In the initialized state, the subchannel parameters
of all valid subchannels are set to their initial
values. The initial values of the following sub-
channel parameters are zeros:

 � Interruption parameter
� I/O-interruption-subclass code (ISC)

 � Enabled
 � Limit mode
 � Measurement mode
 � Multipath mode
 � Path-not-operational mask
 � Last-path-used mask
 � Measurement-block index
 � Concurrent sense

The initial values of the following subchannel
parameters are assigned as part of the installation
procedure for the device associated with each
valid subchannel:

 � Timing facility
 � Device number
� Logical-path mask (same value as path-

installed mask)
 � Path-installed mask
 � Path-available mask
� Channel-path ID 0-7

The values assigned may depend upon the partic-
ular system model and the configuration; depend-
encies, if any, are described in the System Library
publication for the system model. Programming
considerations may further constrain the values
assigned.

The initial value of the path-operational mask is all
ones.

The device-number-valid bit is one for all subchan-
nels having an assigned I/O device.

The initial value of the model-dependent area of
the subchannel-information block is described in
the System Library publication for the system
model.

The initial value of the subchannel-status word
and extended-status word is all zeros.

The initialized state of the subchannel is the state
specified by the initial values for the subchannel
parameters described above. The description of
the subchannel parameters can be found in
“Subchannel-Information Block” on page 15-1,

“Subchannel-Status Word” on page 16-6, and
“Extended-Status Word” on page 16-32.

Channel-Path-Reset Facility: I/O-system reset
causes the channel-path-reset facility to be reset.
A channel-path-reset function initiated by RESET
CHANNEL PATH, either pending or in progress, is

 Chapter 17. I/O Support Functions 17-15

overridden by I/O-system reset. The machine-
check-interruption condition, which normally
signals the completion of a channel-path-reset
function, is not generated for a channel-path-reset
function that is pending or in progress at the time
I/O-system reset occurs.

 Address-Limit-Checking Facility: I/O-system
reset causes the address-limit-checking facility to
be reset. The address-limit value is initialized to
all zeros and validated.

 Channel-Subsystem-Monitoring Facilities:
I/O-system reset causes the channel-
subsystem-monitoring facilities to be reset. The
measurement-block-update mode and the device-
connect-time-measurement mode, if active, are
made inactive. The measurement-block origin and

the measurement-block key are both initialized to
zeros and validated.

Pending Channel Reports: I/O-system reset
causes pending channel reports to be reset.

Channel-Subsystem Timer: I/O-system reset
does not necessarily affect the contents of the
channel-subsystem timer. In models that provide
channel-subsystem-timer checking, I/O-system
reset may cause the channel-subsystem timer to
be validated.

Pending I/O Interruptions: I/O-system reset
does not affect pending I/O interruptions.
However, during subsystem reset, I/O interruptions
are cleared concurrently with the performance of
I/O-system reset. (See “Subsystem Reset” on
page 4-48.)

17-16 z/Architecture Principles of Operation

┌───────────────────────────────────────┬─────────────────────────────┐
│ Area Affected │ Effect of I/O─System Reset� │
├───────────────────────────────────────┼─────────────────────────────┤
│ Channel-subsystem state │ Reset and initialized │
│ Control units and devices │ Reset │
│ Channel paths │ Quiescent │
│ Subchannels │ Reset and initialized │
│ Interruption parameter │ Zeros� │
│ I/O-interruption─subclass code (ISC) │ Zeros� │
│ Enabled bit │ Zero� │
│ Address-limit-mode bits │ Zeros� │
│ Timing-facility bit │ Installed value� │
│ Multipath-mode bit │ Zero� │
│ Measurement-mode bits │ Zeros� │
│ Device-number-valid bit │ Installed value� │
│ Device number │ Installed value� │
│ Logical-path mask │ Equal to path-installed │
│ │ mask value� │
│ Path-not-operational mask │ Zeros� │
│ Last-path-used mask │ Zeros� │
│ Path-installed mask │ Installed value� │
│ Measurement-block index │ Zeros� │
│ Path-operational mask │ Ones� │
│ Path-available mask │ Installed value� � │
│ Channel-path ID �-7 │ Installed value� │
│ Concurrent-sense bit │ Zero� │
│ Subchannel-status word │ Zeros� │
│ Extended-status word │ Zeros� │
│ Model-dependent area │ Model dependent � │
│ Channel-path-reset facility │ Reset │
│ Address-limit-checking facility │ Reset and initialized │
│ Address-limit value │ Zeros� │
│ Channel-subsystem-monitoring │ Reset and initialized │
│ facility │ │
│ Measurement-block-update mode │ Inactive� │
│ Device-connect-time- │ Inactive� │
│ measurement mode │ │
│ Measurement-block origin │ Zeros� │
│ Measurement-block key │ Zeros� │
│ Pending channel-report words │ Cleared │
│ Channel-subsystem timer │ Unchanged/validated │
├───────────────────────────────────────┴─────────────────────────────┤
│Explanation: │
│ │
│ � For a detailed description of the effect of I/O-system reset │
│ on each area, see the text. │
│ │
│ � Initialized value. │
│ │
│ � Also subject to model-dependent configuration controls, if any.│
│ │
└───┘

Figure 17-1. Summary of I/O-System-Reset Actions

Externally Initiated Functions
I/O-system reset, which is an externally initiated
function, is described in “I/O-System Reset” on
page 17-13.

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a
designated device and for initiating execution of
that program.

Some models may provide additional controls and
indications relating to IPL; this additional informa-
tion is specified in the System Library publication
for the model.

 Chapter 17. I/O Support Functions 17-17

IPL is initiated manually by setting the load-unit-
address controls to a four-digit number to desig-
nate an input device and by subsequently acti-

| vating the load-clear or load-normal key. Acti-
| vating the load-clear or load-normal key sets the
| architectural mode to the ESA/390 mode. For
| ease of reference, the additional elements of the
| description of the ESA/390 IPL are given below.

Activating the load-clear key causes a clear reset
to be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU
reset to be propagated to all other CPUs in the
configuration, and a subsystem reset to be per-
formed on the remainder of the configuration.

In the loading part of the operation, after the
resets have been performed, this CPU enters the
load state. This CPU does not necessarily enter
the stopped state during performance of the reset.
The load indicator is on while the CPU is in the
load state.

Subsequently, if conditions allow, a read operation
is initiated from the designated input device and
associated subchannel. The read operation is
performed as if a START SUBCHANNEL instruc-
tion were executed that designated (1) the sub-
channel corresponding to the device number spec-
ified by the load-unit-address controls and (2) an
ORB containing all zeros, except for a byte of all
ones in the logical-path-mask field. The ORB
parameters are interpreted by the channel sub-
system as follows:

� Interruption parameter: All zeros
� Subchannel key: All zeros
� Suspend control: Zero (suspension not

allowed)
� CCW format: Zero
� CCW prefetch: Zero (prefetching not allowed)
� Initial-status-interruption control: Zero (no

request)
� Address-limit-checking control: Zero (no

checking)
� Suppress suspended interruption: Zero

(suppression not allowed)
� Logical-path mask: Ones (all channel paths

logically available)
� Incorrect-length-suppression mode: Zero

(ignored because format-0 CCWs are speci-
fied)

� Channel-program address: Absolute address
0

| The first CCW to be executed is not fetched from
| storage. Instead, the effect is as if an implied
| format-0 CCW, beginning in absolute location 0
| and having the following detailed format, were
| executed:

Loc.
 ┌────────┬─────────────────────────┐
 �� │������1�│�������� ����������������│
 ├────────┼────────┬────────────────┤
 �4 │�11�����│////////│�����������11���│
 └────────┴────────┴────────────────┘
 � 8 16 31

In the illustration above, the CCW specifies a read
command with the modifier bits zeros, a data
address of 0, a byte count of 24, the chain-
command flag one, the suppress-
incorrect-length-indication flag one, the chain-data
flag zero, the skip flag zero, the program-
controlled-interruption (PCI) flag zero, the indirect-
data-address (IDA) flag zero, and the suspend flag
zero. The CCW fetched, as a result of command
chaining, from location 8 or 16, as well as any
subsequent CCW in the IPL sequence, is inter-
preted the same as a CCW in any I/O operation,
except that any PCI flags that are specified in the
IPL channel program are ignored.

At the time the subchannel is made start pending
for the IPL read, it is also enabled, which ensures
proper handling of subsequent status from the
device by the channel subsystem and facilitates
subsequent I/O operations using the IPL device.
(Except for the subchannel used by the IPL I/O
operation, each subchannel must first be made
enabled by MODIFY SUBCHANNEL before it can
accept a start function or any status from the
device.)

When the IPL subchannel becomes status
pending for the last operation of the IPL channel
program, no I/O-interruption condition is gener-
ated. Instead, the subsystem ID is stored in abso-
lute locations 184-187, zeros are stored in abso-
lute locations 188-191, and the subchannel is
cleared of the pending status as if TEST SUB-
CHANNEL had been executed but without storing
information usually stored in an IRB. If the
subchannel-status field that would normally have
been stored is all zeros and the device-status field
that would normally have been stored contains
only the channel-end indication, with or without the

17-18 z/Architecture Principles of Operation

device-end indication, the IPL I/O operation is con-
sidered to be completed successfully. If the
device-end status for the IPL I/O operation is pro-
vided separately after channel-end status, it
causes an I/O-interruption condition to be gener-
ated. When the IPL I/O operation is completed
successfully, a new PSW is loaded from absolute
locations 0-7. If the PSW loading is successful
and no malfunctions are recognized that preclude
the completion of IPL, then the CPU leaves the
load state, and the load indicator is turned off. If
the rate control is set to the process position, the
CPU enters the operating state, and CPU opera-
tion proceeds under control of the new PSW. If
the rate control is set to the instruction-step posi-
tion, the CPU enters the stopped state, with the
manual indicator on, after the new PSW has been
loaded.

If the IPL I/O operation or the PSW loading is not
completed successfully, the CPU remains in the
load state, and the load indicator remains on.

IPL does not complete when any of the following
occurs:

� No subchannel contains a valid device
number equal to the IPL device number speci-
fied by the load-unit-address controls.

� A malfunction is detected in the CPU, main
storage, or channel subsystem that precludes
the completion of IPL.

� Unsolicited alert status is presented by the
device subsequent to the subchannel
becoming start pending for the IPL read and
before the IPL subchannel becomes sub-
channel active. The IPL read operation is not
initiated in this case.

� The IPL device appeared not operational on
all available channel paths to the device, or
there were no available channel paths.

� The IPL device presented a status byte con-
taining indications other than channel end,
device end, status modifier, control unit end,
control unit busy, device busy, or retry status
during the IPL I/O operation. Whenever
control-unit end, control-unit busy, or device
busy is presented in the status byte, normal
path-management actions are taken.

� A subchannel-status indication other than PCI
was generated during the IPL I/O operation.

� The PSW loaded from absolute locations 0-7
has a PSW-format error of the type that is
recognized early.

Except in the cases of no corresponding sub-
channel for the device number entered or a
machine malfunction, the subsystem ID of the IPL
device is stored in absolute locations 184-187;
otherwise, the contents of these locations are
unpredictable. In all cases of unsuccessful IPL,
the contents of absolute locations 0-7 are unpre-
dictable.

Subsequent to a successful IPL, the subchannel
parameters contain the normal values as if an
actual START SUBCHANNEL had been executed,
designating the ORB as described above.

Programming Notes:

1. The information read and placed at absolute
locations 8-15 and 16-23 may be used as
CCWs for reading additional information
during the IPL I/O operation: the CCW at
location 8 may specify reading additional
CCWs elsewhere in storage, and the CCW at
location 16 may specify the transfer-in-channel
command, causing transfer to these CCWs.

2. The status-modifier bit has its normal effect
during the IPL I/O operation, causing the
channel subsystem to fetch and chain to the
CCW whose address is 16 higher than that of
the current CCW. This applies also to the
initial chaining that occurs after completion of
the read operation specified by the implicit
CCW.

3. The PSW that is loaded at the completion of
the IPL operation may be provided by the first
eight bytes of the IPL I/O operation or may be
placed at absolute locations 0-7 by a subse-
quent CCW.

4. Activating the load-normal key implicitly speci-
fies the use of the first 24 bytes of main
storage and the eight bytes at absolute
locations 184-191. Since the remainder of the
IPL program may be placed in any part of
storage, it is possible to preserve such areas
of storage as may be helpful in debugging or
recovery. The IPL program should not be
placed in the low 512 bytes of storage since
that area is reserved as described in a pro-
gramming note under “Compatibility between
z/Architecture and ESA/390” on page 1-16.

 Chapter 17. I/O Support Functions 17-19

When the load-clear key is activated, the IPL
program starts with a cleared machine in a
known state, except that information on
external storage remains unchanged.

5. When the PSW at absolute location 0 has bit
14 set to one, the CPU is placed in the wait
state after the IPL operation is completed. At
that point, the load and manual indicators are
off, and the wait indicator is on.

Reconfiguration of the I/O
System

Reconfiguration of the I/O system is handled in a
model-dependent manner. For example, changes
may be made under program control, by using the
model-dependent DIAGNOSE instruction; or man-
ually, by using system-operator configuration con-
trols; or by using a combination of DIAGNOSE
and manual controls. The method used depends
on the system model. The System Library publi-
cation for the system model specifies how the
changes are made. The partitioning of channel
paths because of reconfiguration is indicated by
the setting of the PAM bits in the SCHIB stored
when STORE SUBCHANNEL is executed (see
“Path-Available Mask (PAM)” on page 15-7).

 Status Verification
The status-verification facility provides the channel
subsystem with a means of indicating that a
device has presented a device-status byte that
has valid CBC but that contained a combination of
bits that was inappropriate when the status byte
was presented to the channel subsystem. The
indication provided to the program in the ESW by
the channel subsystem is called device-status
check. When the channel subsystem recognizes
a device-status-check condition, an interface-
control-check condition is also recognized. For a
summary of the status combinations considered to
be appropriate or inappropriate, see the System
Library publications IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202, and IBM System/360 and System/370
I/O Interface Channel to Control Unit OEMI,
GA22-6974, and the ANSI standards document
Fibre Channel - Single-Byte Command Code
Sets-2 (FC-SB-2).

 Address-Limit Checking
The address-limit-checking facility provides a
storage-protection mechanism for I/O data
accesses to storage that augments key-controlled
protection. When address-limit checking is used,
absolute storage is divided into two parts by a
program-controlled address-limit value. I/O data
accesses can then be optionally restricted to only
one of the two parts of absolute storage by the
limit mode at each subchannel. The address-limit

| constraint applies at a higher priority than key-
| controlled protection, that is, I/O data accesses to
| the part of main storage that is protected by
| address-limit checking are prevented even when
| the subchannel key is zero or matches the key in
| storage. Address-limit checking does not apply to
| the fetching of CCWs and IDAWs.

The address-limit-checking facility consists of the
following elements:

� The I/O instruction SET ADDRESS LIMIT.

� The limit mode at each subchannel.

� The address-limit-checking-control bit in the
ORB.

The execution of SET ADDRESS LIMIT passes
the contents of general register 1 to the address-
limit-checking facility to be used as the address-
limit value. Bits 32 and 48-63 of general register
1 must be zeros to designate a valid absolute
address on a 64K-byte boundary; otherwise, an
operand exception is recognized, and the exe-
cution of the instruction is suppressed.

The limit mode at each subchannel indicates the
manner in which address-limit checking is to be
performed. The limit mode is set by placing the
desired value in bit positions 9 and 10 of word 1 in
the SCHIB and executing MODIFY SUB-
CHANNEL. The settings of these bits in the
SCHIB have the following meanings:

00 No limit checking (initialized value).

01 Data address must be equal to or greater
than the current address limit.

10 Data address must be less than the current
address limit.

11 Reserved. This combination of limit-mode
bits causes an operand exception to be
recognized when MODIFY SUBCHANNEL is
executed.

17-20 z/Architecture Principles of Operation

The address-limit-checking-control bit, bit 11 of
word 1 of the ORB, specifies whether address-
limit checking is to be used for the start function
that is accepted when the execution of START
SUBCHANNEL causes the contents of the ORB to
be passed to the subchannel. If the address-
limit-checking-control bit is zero when the contents
of the ORB are passed, address-limit checking is
not specified for that start function. If the bit is
one, address-limit checking is specified and is
under the control of the current address limit and
the current setting of the limit mode at the sub-
channel.

During the performance of the start function, an
attempt to access an absolute storage location for
data that is protected by an address limit (either
high or low) is recognized as an address-limit vio-
lation, and the access is not allowed. A program-
check condition is recognized, and channel-
program execution is terminated, just as when an
attempt is made to access an invalid address.

 Configuration Alert
The configuration-alert facility provides a detection
mechanism for devices that are not associated
with a subchannel in the configuration. The
configuration-alert facility notifies the program, by
means of a channel report, that a device which is
not associated with a subchannel has attempted
to communicate with the program.

Each device must be assigned to a subchannel
during an installation procedure; otherwise, the
channel subsystem is unable to generate an
I/O-interruption condition for the device. This is
because the I/O-interruption code contains the
subchannel number that identifies the particular
device causing the I/O-interruption condition.
When a device that is not associated with a sub-
channel attempts to communicate with the channel
subsystem, the configuration-alert facility gener-
ates a channel report in which the unassociated
device is identified. For a description of the
means by which the program is notified of a
pending channel report and how the information in
the channel report is retrieved, see “Channel
Report” on page 17-22.

 Incorrect-Length-Indication
Suppression
The incorrect-length-indication-suppression facility
allows the indication of incorrect length for imme-
diate operations to be suppressed in the same
manner when using format-1 CCWs as when
using format-0 CCWs. When the incorrect-
length-indication-suppression facility is installed,
bit 24 of word 1 of the ORB specifies whether the
channel subsystem is to suppress the indication of
incorrect length for an immediate operation when
format-1 CCWs are used or whether this indication
will remain under the control of the SLI flag of the
current CCW (as is the case for CCWs not exe-
cuted as immediate operations). This bit provides
the capability for a channel program to operate in
the same manner regarding the indication of incor-
rect length regardless of whether format-0 or
format-1 CCWs are used.

 Concurrent Sense
The concurrent-sense facility provides a mech-
anism whereby sense information that is provided
by the device can be presented by the channel
subsystem to the program in the same IRB that
contains the unit-check indication when the sub-
channel is in the concurrent-sense mode. The
concurrent-sense mode is made active at a sub-
channel for which the concurrent-sense facility is
applicable when MODIFY SUBCHANNEL is exe-
cuted and bit 31 of word 6 of the SCHIB operand
is set to one. The concurrent-sense facility is
applicable to subchannels that are associated with
channel paths by which the channel subsystem
can attempt to retrieve sense information from the
device without requiring program intervention.

 Channel-Subsystem Recovery
| The channel subsystem provides various methods
| for extensive detection of malfunctions and other
| conditions to ensure the integrity of channel-
| subsystem operation and to achieve automatic
| recovery of some malfunctions.

The method used to report a particular malfunction
or other condition is dependent upon the severity
of the malfunction or other condition and the
degree to which the malfunction or other condition
can be isolated. A malfunction or other condition
in the channel subsystem may be indicated to the

 Chapter 17. I/O Support Functions 17-21

program by information being stored by one of the
following methods:

1. Information is provided in the IRB describing a
condition that has been recognized by either
the channel subsystem or device that must be
brought to the attention of the program. Gen-
erally, this information is made available to the
program by the execution of TEST SUB-
CHANNEL, which is usually executed in
response to the occurrence of an I/O inter-
ruption. (See “Interruption Action” on
page 16-5, for a definition of the information
stored, as well as Chapter 6, “Interruptions”
on page 6-1.)

2. Information is provided in a channel report
describing a machine malfunction affecting the
identified facility associated with the channel-
subsystem. This information is made avail-
able to the program by the execution of
STORE CHANNEL REPORT WORD, which is
usually executed in response to the occur-
rence of a machine-check interruption. (See
Chapter 11, “Machine-Check Handling” on
page 11-1 for a description of the machine-
check-interruption mechanism and the con-
tents of the machine-check-interruption code.)

3. Information is provided in a channel report
describing a malfunction or other condition
affecting a collection of channel-subsystem
facilities. This information is made available
to the program as indicated in item 2.

4. Information is provided in the machine-
check-interruption code (MCIC) describing a
malfunction affecting the continued operational
integrity of the channel subsystem. (See
“Channel-Subsystem Damage” on
page 11-18.)

5. Information is provided in the MCIC describing
a malfunction affecting the continued opera-
tional integrity of a process or of the system.
(See “Instruction-Processing Damage” on
page 11-16 and “System Damage” on
page 11-16.)

Channel reports are used to report malfunctions or
other conditions only when the use of the
I/O-interruption facility is not appropriate and in
preference to reporting channel-subsystem
damage, instruction-processing damage, or
system damage.

 Channel Report

When a malfunction or other condition affecting
elements of the channel subsystem has been
recognized, a channel report is generated. The
performance of recovery actions by the program
or by external means may be required to gain
recovery from the error condition. The channel
report indicates the source of the channel report
and the recovery state to the extent necessary for
determining the proper recovery action. A channel
report consists of one or more channel-report
words (CRWs) that have been generated from an
analysis of the malfunction or other condition. The
inclusion of two or more CRWs within a channel
report is indicated by the chaining flag being
stored as one in all of the CRWs of the channel
report except the last one in the chain.

When a channel report is made pending by the
channel subsystem for retrieval and analysis by
the program (by means of the execution of
STORE CHANNEL REPORT WORD), a malfunc-
tion or other condition that affects the normal
operation of one or more of the channel-
subsystem facilities has been recognized. If the
channel report that is made pending is an initial
channel report, a machine-check-interruption con-
dition is generated that indicates one or more
CRWs are pending at the channel subsystem. A
channel report is initial either if it is the first
channel report to be generated after the most
recent I/O-system reset or if no previously gener-
ated reports are pending and the last STORE
CHANNEL REPORT WORD instruction that was
executed resulted in the setting of condition code
1, indicating that no channel report was pending.
When the machine-check interruption occurs and
bit 9 of the machine-check-interruption code
(channel report pending) is one, a channel report
is pending. If the program clears the first CRW of
a channel report before the associated machine-
check interruption has occurred, some models
may reset the machine-check-interruption condi-
tion, and the associated machine-check inter-
ruption does not occur. A machine-check inter-
ruption indicating that a channel report is pending
occurs only if the machine-check mask (PSW bit
13) and the channel-report-pending subclass
mask, bit 3 of control register 14, are both ones.

If the channel report that is made pending is not
an initial channel report, a machine-
check-interruption condition is not generated. The

17-22 z/Architecture Principles of Operation

CRW that is presented to the program in response
to the first STORE CHANNEL REPORT WORD
instruction that is executed after a machine-check
interruption may or may not be part of the initial
channel report that caused the machine-check
condition to be generated. A pending channel-
report word is cleared by any CPU executing
STORE CHANNEL REPORT WORD, regardless
of whether a machine-check interruption has
occurred in any CPU. If a CRW is not pending
and STORE CHANNEL REPORT WORD is exe-
cuted, condition code 1 is set, and zeros are
stored at the location designated by the second-
operand address. During the execution of STORE
CHANNEL REPORT WORD as a result of
receiving a machine-check interruption, condition
code 1 may be set, and zeros may be stored
because (1) the related channel report has been
cleared by another CPU or (2) a malfunction
occurred during the generation of a channel
report. In the latter case, if, during a subsequent
attempt, a valid channel report can be made
pending, an additional machine-check-interruption
condition is generated.

When a channel report consists of multiple
chained CRWs, they are presented to the program
in the same order that they are placed in the chain
by the channel subsystem as a result of consec-
utive executions of STORE CHANNEL REPORT
WORD. If, for example, the first CRW of a chain
is presented to the program as a result of exe-
cuting STORE CHANNEL REPORT WORD, the
CRW that is presented as a result of the next exe-
cution of STORE CHANNEL REPORT WORD is
the second CRW of the same chain and not a
CRW that is part of another channel report.

Channel reports are not presented to the program
in any special order, except for channel reports
whose first or only CRW indicates the same
reporting-source code and the same reporting-
source ID. These channel reports are presented
to the program in the same order that they are
generated by the channel subsystem, but they are
not necessarily presented consecutively. For
example, suppose the channel subsystem gener-
ates channel reports A, B, and C, in that order.
The first CRW of channel reports B and C indi-
cates the same reporting-source code and the
same reporting-source ID. Channel report B is
presented to the program before channel report C

is presented, but channel report A may be pre-
sented after channel report B and before channel
report C.

Programming Notes:

1. The information that is provided in a single
CRW may be made obsolete by another CRW
that is subsequently generated for the same
channel-subsystem facility. Therefore, the
information that is provided in one channel
report should be interpreted in light of the
information provided by all of the channel
reports that are pending at a given instant.

2. A machine-check-interruption condition is not
always generated when a channel report is
made pending. The conditions that result in a
machine-check-interruption condition being
generated are described earlier in this section.

3. After a machine-check interruption has
occurred with bit 9 of the machine-
check-interruption code set to one, STORE
CHANNEL REPORT WORD should be issued
repeatedly until all of the pending channel
reports have been cleared and condition code
1 has been set.

4. A CRW-overflow condition can occur if the
program does not issue successive STORE
CHANNEL REPORT WORD instructions in a
timely manner after the machine-check inter-
ruption occurs.

5. The number of CRWs that can be pending at
the same time is model dependent. During
the existence of an overflow condition, CRWs
that would have otherwise been made
pending are lost and are never presented to
the program.

 Channel-Report Word

The channel-report word (CRW) provides informa-
tion to the program that can be used to facilitate
the recovery of an I/O operation, a device, or
some element of the channel subsystem, such as
a channel path or subchannel.

The format of the CRW is as follows:

┌─┬─┬─┬─┬────┬─┬─┬──────┬─────────────────────────┐
│�│S│R│C│RSC │A│�│ ERC │ Reporting-Source ID │
└─┴─┴─┴─┴────┴─┴─┴──────┴─────────────────────────┘
� 1 2 3 4 8 1� 16 31

 Chapter 17. I/O Support Functions 17-23

Solicited CRW (S): Bit 1, when one, indicates a
solicited CRW. A CRW is considered by the
channel subsystem to be solicited if it is made
pending as the direct result of some action that is
taken by the program. When bit 1 is zero, the
CRW is unsolicited and has been made pending
as the result of an action taken by the channel
subsystem that is independent of the program.

Overflow (R): Bit 2, when one, indicates that a
CRW-overflow condition has been recognized
since this CRW became pending and that one or
more CRWs have been lost. This bit is one in the
CRW that has most recently been set pending
when the overflow condition is recognized. When
bit 2 is zero, a CRW-overflow condition has not
been recognized.

A CRW that is part of a channel report is not
made pending, even though the overflow condition
does not exist, if an overflow condition prevented
a previous CRW of that report from being made
pending.

Chaining (C): Bit 3, when one, and when the
overflow flag is zero, indicates chaining of associ-
ated CRWs. Chaining of CRWs is indicated
whenever a malfunction or other condition is
described by more than a single CRW. The
chaining flag is zero if the channel report is
described by a single CRW or if the CRW is the
last CRW of a channel report.

The chaining flag is not meaningful if the overflow
bit, bit 2, is one.

Reporting-Source Code (RSC): Bits 4-7 identify
the channel-subsystem facility that is associated
with the channel report. Some facilities are further
identified in the reporting-source-identification field
(see below). The following combinations of bits
identify the facilities:

 Bits
4 5 6 7 Facility
0 0 1 0 Monitoring facility
0 0 1 1 Subchannel
0 1 0 0 Channel path
1 0 0 1 Configuration-alert facility
1 0 1 1 Channel subsystem

All other bit combinations in the reporting-
source-code field are reserved.

Ancillary Report (A): Bit 8, when one, indicates
that a malfunction of a system component has
occurred that was recognized previously or which
has affected the activity of multiple channel-
subsystem facilities. When the malfunction affects
the activity of multiple channel-subsystem facili-
ties, an ancillary-report condition is recognized for
all of the affected facilities except one. This bit,
when zero, indicates that this malfunction of a
system component was not recognized previously.
This bit is meaningful for all channel reports.

Depending on the model, recognition of an
ancillary-report condition may not be provided, or
it may not be provided for all system malfunctions
that affect channel-subsystem facilities. When
ancillary-report recognition is not provided, bit 8 is
set to zero.

Error-Recovery Code (ERC): Bits 10-15, when
zero, indicate that the channel subsystem has
error information regarding the channel-subsystem
facility identified in the reporting-source code, and
that the program can now request that information.
Otherwise, bit positions 10-15 contain the error-
recovery code that defines the recovery state of
the channel-subsystem facility identified in the
reporting-source code. This field, when used in
conjunction with the reporting-source code, can be
used by the program to determine whether the
identified facility has already been recovered and
is available for use or whether recovery actions
are still required. The following error-recovery
codes are defined:

17-24 z/Architecture Principles of Operation

All other bit combinations in the error-
recovery-code field are reserved.

The specific meaning of each error-recovery code
depends on the particular reporting-source code
that accompanies it in a CRW. The error-recovery
codes are defined as follows:

Event-Information Pending: Event information for
the identified facility is available for retrieval by the
program. This CRW does not indicate the state of
the identified facility.

Available: The identified facility is in the same
state that the program would expect if the CRW
had not been generated.

Initialized: The identified facility is in the same
state that existed immediately following the
I/O-system reset that was part of the most recent
system IPL.

Temporary Error: The identified facility is not
operating in a normal manner or has recognized
the occurrence of an abnormal event. It is
expected that subsequent actions either will
restore the facility to normal operation or will
record the appropriate information describing the
abnormal event.

Installed Parameters Initialized: This state is the
same as the initialized state, except that one or
more parameters that are associated with the
facility and that are not modifiable by the program
may have been changed.

Bits Terminal: The identified facility is in a state such
that an operation that was in progress can neither
be completed nor terminated in the normal
manner.

Permanent Error with Facility Not Initialized: The
identified facility is in a state of malfunction, and
the channel subsystem has not caused a reset
function to be performed for that facility.

Permanent Error with Facility Initialized: The
identified facility is in a state of malfunction, and
the channel subsystem has caused or may have
caused a reset function to be performed for that
facility.

Installed Parameters Modified: One or more
parameters of the specified facility have been
changed.

Reporting-Source ID (RSID): Bit positions 16-31
contain the reporting-source ID, which may,
depending upon the condition that caused the
channel report and the reporting-source code,
either further identify the affected channel-
subsystem facility or provide additional information
describing the condition that caused the channel
report. The RSID field has the following format as
a function of the bit settings of the reporting-
source code.

 Channel-Subsystem-I/O-Priority
Facility
The channel-subsystem-I/O-priority facility pro-
vides a means by which the program can estab-
lish a priority relationship, at the channel sub-
system, among the subchannels that are placed
into the start-pending state when START SUB-
CHANNEL is executed and condition code 0 is

10 11 12 13 14 15 State
0 0 0 0 0 0 Event-information pending
0 0 0 0 0 1 Available
0 0 0 0 1 0 Initialized
0 0 0 0 1 1 Temporary error
0 0 0 1 0 0 Installed parameters initial-

ized
0 0 0 1 0 1 Terminal
0 0 0 1 1 0 Permanent error with facility

not initialized
0 0 0 1 1 1 Permanent error with facility

initialized
0 0 1 0 0 0 Installed parameters modi-

fied

Reporting-Source
Code Reporting-Source ID

4 5 6 7 Bits 16-31
0 0 1 0 0000 0000 0000 0000
0 0 1 1 xxxx xxxx xxxx xxxx
0 1 0 0 0000 0000 yyyy yyyy
1 0 0 1 0000 0000 yyyy yyyy
1 0 1 1 0000 0000 0000 0000

Note:

xxxx xxxx xxxx xxxx Subchannel number
yyyy yyyy Channel-path ID

(CHPID)

 Chapter 17. I/O Support Functions 17-25

indicated. For I/O-subchannels that are config-
ured to fibre-channel channel paths (FICON and
FICON-converted channel paths), it also provides
a means by which the program can establish a
priority relationship for I/O operations at the fibre-
channel-attached control units.

The program assigns the desired channel-
subsystem priority and control-unit priority by
specifying the desired priority numbers in the ORB
extension when START SUBCHANNEL is exe-
cuted.

The channel-subsystem-priority number specified
in the ORB is used by the channel subsystem to
determine the order in which start-pending and
resume-pending subchannels are selected when
the channel subsystem attempts to initiate a start
function or a resume function. See the section
“Start Function and Resume Function” on

page 15-18 for details about these functions. In
general, I/O subchannels that are in the start-
pending or resume-pending state and have a
higher priority number are selected for start-
function or resume-function initiation by the
channel subsystem before start-pending or
resume-pending subchannels that have a lower
priority number. The specific priority selection
algorithm used by the channel subsystem for this
purpose depends on the model. Additionally, the
channel subsystem also applies a fairness
selection algorithm in conjunction with the priority
selection algorithm when selecting I/O subchan-
nels. The specific fairness selection algorithm

also depends on the model. For all models, the
channel-subsystem priority and fairness selection
algorithms are always applied to I/O subchannels
that are either start pending or resume pending.
Some models may also apply both algorithms to
subchannels that are either clear pending or halt
pending. See a model's System-Library publica-
tion for a description of the priority and fairness
selection algorithms that the model provides and
whether these algorithms are also applied to clear-
pending or halt-pending subchannels.

The control-unit-priority number specified in the
ORB is used by control units attached to fibre-
channel channel paths in order to determine the
priority of the execution of CCWs at the control
unit. See “Control-Unit (CU) Priority:” on page
15-26 for additional information.

Number of Channel-Subsystem-Priority
Levels
Depending on the model, fewer than 256 channel-
subsystem-priority levels may be provided by the
channel subsystem. Each priority level that the
model provides is designated by an eight-bit
unsigned binary integer. The lowest provided
channel-subsystem-priority level is designated by
the integer 0, and each succeeding higher priority
level is designated by the next-higher sequential
integer. For example, if the model provides 16
priority levels, they are numbered 0-15, respec-
tively, from the lowest priority level to the highest
priority level.

17-26 z/Architecture Principles of Operation

 Chapter 18. Hexadecimal-Floating-Point Instructions

HFP Arithmetic 18-1
HFP Number Representation 18-1
Normalization 18-3
HFP Data Format 18-3

Instructions . 18-4
ADD NORMALIZED 18-8
ADD UNNORMALIZED 18-10
COMPARE 18-10
CONVERT FROM FIXED 18-11
CONVERT TO FIXED 18-11
DIVIDE 18-12
HALVE . 18-13
LOAD AND TEST 18-14

LOAD COMPLEMENT 18-14
LOAD FP INTEGER 18-15
LOAD LENGTHENED 18-15
LOAD NEGATIVE 18-16
LOAD POSITIVE 18-16
LOAD ROUNDED 18-17
MULTIPLY 18-18

| MULTIPLY AND ADD 18-19
| MULTIPLY AND SUBTRACT 18-20

SQUARE ROOT 18-21
SUBTRACT NORMALIZED 18-22
SUBTRACT UNNORMALIZED 18-22

 HFP Arithmetic

HFP Number Representation

A hexadecimal-floating-point (HFP) number con-
sists of a sign bit, a hexadecimal fraction, and an
unsigned seven-bit binary integer called the char-
acteristic. The characteristic represents a signed
exponent and is obtained by adding 64 to the
exponent value (excess-64 notation). The range
of the characteristic is 0 to 127, which corre-
sponds to an exponent range of −64 to +63. The
magnitude of an HFP number is the product of its
fraction and the number 16 raised to the power of
the exponent that is represented by its character-
istic. The number is positive or negative
depending on whether the sign bit is zero or one,
respectively.

The fraction of an HFP number is treated as a
hexadecimal number because it is considered to
be multiplied by a number which is a power of 16.
The name, fraction, indicates that the radix point is
assumed to be immediately to the left of the left-
most fraction digit.

When an HFP operation would cause the result
exponent to exceed 63, the characteristic wraps
around from 127 to 0, and an
HFP-exponent-overflow condition exists. The
result characteristic is then too small by 128.
When an operation would cause the exponent to
be less than −64, the characteristic wraps around
from 0 to 127, and an HFP-exponent-underflow

condition exists. The result characteristic is then
too large by 128, except that a zero characteristic
is produced when a true zero is forced.

A true zero is an HFP number with a zero charac-
teristic and zero fraction. A true zero may arise
as the normal result of an arithmetic operation
because of the particular magnitude of the oper-
ands. For HFP operations, the result is forced to
be a positive true zero when:

1. An HFP exponent underflow occurs and the
HFP-exponent-underflow mask bit in the PSW
is zero.

2. The result fraction of an addition or sub-
traction operation is zero and the
HFP-significance mask bit in the PSW is zero.

3. The operand of the CONVERT FROM FIXED
instruction is zero.

4. The dividend in the DIVIDE instruction has a
zero fraction.

5. The operand of the HALVE, LOAD FP
INTEGER, or SQUARE ROOT instruction has
a zero fraction.

6. One or both operands of a multiplication oper-
ation has a zero fraction.

Item 2, above, applies to normalized and unnor-
malized instructions.

When a program interruption for HFP exponent
underflow occurs, a true zero is not forced;
instead, the fraction and sign remain correct, and
the characteristic is too large by 128. When a

 Copyright IBM Corp. 1990-2003 18-1

Figure 18-1. Normalization and Zero Handling for Instructions with HFP Results

Instruction

Nonzero
Result

Normalized

Zero Result
Forced to True Zero

Zero Result
Made Positive

Short and
Long Extended

Short and
Long Extended

ADD NORMALIZED Yes Y/N Y/N Yes Yes

ADD UNNORMALIZED No Y/N - Yes -

CONVERT BFP TO
HFP�

Yes Yes - No -

CONVERT FROM
FIXED

Yes Yes Yes Yes Yes

DIVIDE Yes Yes Yes Yes Yes

HALVE Yes Yes - Yes -

LOAD� No No No No No

LOAD AND TEST No No Yes No No

LOAD COMPLEMENT No No Yes No No

LOAD FP INTEGER Yes Yes Yes Yes Yes

LOAD LENGTHENED No No Yes No No

LOAD NEGATIVE No No Yes No No

LOAD POSITIVE No No Yes Yes Yes

LOAD ROUNDED No No - No -

LOAD ZERO� - Yes Yes Yes Yes

MULTIPLY Yes Yes Yes Yes Yes

SQUARE ROOT Yes Yes Yes Yes Yes

STORE� No No - No -

SUBTRACT NORMAL-
IZED

Yes Y/N Y/N Yes Yes

SUBTRACT UNNOR-
MALIZED

No Y/N - Yes -

Explanation:

 - Not applicable.
 � Floating-point-support instruction.
Y/N When the HFP-significance mask bit (PSW bit 23) is zero, a true zero is forced.

When the HFP-significance mask bit is one, the characteristic remains unchanged,
and a program interruption for HFP significance occurs.

program interruption for HFP significance occurs,
the fraction remains zero, the sign is positive, and
the characteristic remains correct.

The sign of a sum, difference, product, quotient,
square root, the result of CONVERT FROM
FIXED, or the result of LOAD FP INTEGER with a
zero fraction is positive. The sign for a zero frac-

18-2 z/Architecture Principles of Operation

tion resulting from other HFP operations is estab-
lished from the operand sign, the same as for
nonzero fractions.

 Normalization

A quantity can be represented with the greatest
precision by an HFP number of a given fraction
length when that number is normalized. A normal-
ized HFP number has a nonzero leftmost
hexadecimal fraction digit. If one or more leftmost
fraction digits are zeros, the number is said to be
unnormalized.

Unnormalized numbers are normalized by shifting
the fraction left, one digit at a time, until the left-
most hexadecimal digit is nonzero and reducing
the characteristic by the number of hexadecimal
digits shifted. A number with a zero fraction
cannot be normalized; either its characteristic
remains unchanged or its characteristic is made
zero when the result is forced to be a true zero.

Addition and subtraction with extended operands,
as well as the MULTIPLY, DIVIDE, CONVERT
FROM FIXED, HALVE, LOAD FP INTEGER, and
SQUARE ROOT operations, are performed only
with normalization. Addition and subtraction with
short or long operands may be specified as either
normalized or unnormalized. For all other oper-
ations, the result is produced without normaliza-
tion.

With unnormalized operations, leftmost zeros in
the result fraction are not eliminated. The result
may or may not be in normalized form, depending
upon the original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized
form. The operands for multiply, divide, and
square-root operations are normalized before the
arithmetic process. For other normalized oper-
ations, normalization takes place when the inter-
mediate arithmetic result is changed to the final
result.

When the intermediate result of addition, sub-
traction, or rounding causes the fraction to over-
flow, the fraction is shifted right by one
hexadecimal-digit position, and the value one is
supplied to the vacated leftmost digit position.
The fraction is then truncated to the final result

length, while the characteristic is increased by
one. This adjustment is made for both normalized
and unnormalized operations.

Figure 18-1 on page 18-2 summarizes, for all
instructions producing HFP results, the handling of
zero results and whether normalization occurs for
nonzero results.

Programming Note: Up to three leftmost bits of
the fraction of a normalized number may be zeros,
since the nonzero test applies to the entire left-
most hexadecimal digit.

HFP Data Format

HFP numbers have a 32-bit (short) format, a
64-bit (long) format, or a 128-bit (extended)
format. Numbers in the short and long formats
may be designated as operands both in storage
and in the floating-point registers, whereas oper-
ands having the extended format can be desig-
nated only in the floating-point registers.

In all formats, the first bit (bit 0) is the sign bit (S).
The next seven bits are the characteristic. In the
short and long formats, the remaining bits consti-
tute the fraction, which consists of six or 14
hexadecimal digits, respectively.

Short HFP Number
┌─┬──────────────┬──────────/─────────┐
│S│Characteristic│ 6-Digit Fraction │
└─┴──────────────┴──────────/─────────┘
� 1 8 31

Long HFP Number
┌─┬──────────────┬─────────/───────────┐
│S│Characteristic│ 14-Digit Fraction │
└─┴──────────────┴─────────/───────────┘
� 1 8 63

Extended HFP Number
 High-Order Part
┌─┬──────────────┬────────/────────────┐
│ │ High-Order │ Leftmost 14 Digits │
│S│Characteristic│of 28-Digit Fraction │
└─┴──────────────┴────────/────────────┘
� 1 8 63

 Low-Order Part
┌─┬──────────────┬────────/────────────┐
│ │ Low-Order │Rightmost 14 Digits │
│S│Characteristic│of 28-Digit Fraction │
└─┴──────────────┴────────/────────────┘
64 72 127

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-3

An extended HFP number has a 28-digit fraction
and consists of two long HFP numbers that are
called the high-order and low-order parts. The
high-order part may be any long HFP number.
The fraction of the high-order part contains the
leftmost 14 hexadecimal digits of the 28-digit frac-
tion. The characteristic and sign of the high-order
part are the characteristic and sign of the
extended HFP number. If the high-order part is
normalized, the extended number is considered
normalized. The fraction of the low-order part
contains the rightmost 14 digits of the 28-digit
fraction. The sign and characteristic of the low-
order part of an extended operand are ignored.

When a result is generated in the extended format
and placed in a register pair, the sign of the low-
order part is made the same as that of the high-
order part, and, unless the result is a true zero,
the low-order characteristic is made 14 less than
the high-order characteristic. When the sub-
traction of 14 would cause the low-order charac-
teristic to become less than zero, the character-
istic is made 128 greater than its correct value.
(Thus, the subtraction is performed modulo 128.)
HFP exponent underflow is indicated only when
the high-order characteristic underflows.

When an extended result is made a true zero,
both the high-order and low-order parts are made
a true zero.

The range covered by the magnitude (M) of a nor-
malized HFP number depends on the format.

In the short format:

16-65 ≤ M ≤ (1 - 16-6) x 1663

In the long format:

16-65 ≤ M ≤ (1 - 16-14) x 1663

In the extended format:

16-65 ≤ M ≤ (1 - 16-28) x 1663

In all formats, approximately:

5.4 x 1�-79 ≤ M ≤ 7.2 x 1�75

Although the final result of an HFP operation has
six hexadecimal fraction digits in the short format,
14 fraction digits in the long format, and 28 frac-
tion digits in the extended format, intermediate
results have one additional hexadecimal digit on
the right. This digit is called the guard digit. The
guard digit may increase the precision of the final
result because it participates in addition, sub-

traction, and comparison operations and in the left
shift that occurs during normalization.

The entire set of HFP operations with normalized
results is available for short, long, and extended
operands in register-register versions; and for
short and long operands in register-storage ver-
sions. Most instructions generate a result that has
the same format as the source operands, except
that there are multiplication operations which can
generate a long product from short operands or an
extended product from long operands. Other
exceptions are instructions which convert oper-
ands from one floating-point format to another or
between floating-point and fixed-point (binary-
integer) formats.

Programming Notes:

1. In the absence of an HFP exponent overflow
or HFP exponent underflow, the long HFP
number constituting the low-order part of an
extended result correctly expresses the value
of the low-order part of the extended result
when the characteristic of the high-order part
is 14 or higher. This applies also when the
result is a true zero. When the high-order
characteristic is less than 14 but the number
is not a true zero, the low-order part, when
considered as a long HFP number, does not
express the correct characteristic value.

2. The entire fraction of an extended result par-
ticipates in normalization. The low-order part
alone may or may not appear to be a normal-
ized long HFP number, depending on whether
the 15th digit of the normalized 28-digit frac-
tion is nonzero or zero.

 Instructions
The HFP instructions and their mnemonics and
operation codes are listed in Figure 18-2 on
page 18-6. The figure indicates, in the column
labeled “Characteristics,” the instruction format,
when the condition code is set, the instruction
fields that designate access registers, and the
exceptional conditions in operand designations,
data, or results that cause a program interruption.

All HFP instructions are subject to the
AFP-register-control bit, bit 45 of control register 0.
The AFP-register-control bit must be one when an
AFP register is specified as an operand location;

18-4 z/Architecture Principles of Operation

otherwise, an AFP-register data exception, DXC 1,
is recognized.

Mnemonics for the HFP instructions have an R as
the last letter when the instruction is in the RR,
RRE, or RRF format. Certain letters are used for
HFP instructions to represent operand-format
length and normalization, as follows:

F Thirty-two-bit fixed point
G Sixty-four-bit fixed point
D Long normalized
E Short normalized
U Short unnormalized
W Long unnormalized
X Extended normalized

Note: In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler lan-
guage are shown with each instruction. For a
register-to-register operation using COMPARE
(short), for example, CER is the mnemonic and
R�,R� the operand designation.

| Programming Note: The following additional
| HFP instructions are available when the
| HFP-multiply-and-add/subtract facility is installed:

| � MULTIPLY AND ADD (MAD, MADR, MAE,
| MAER)
| � MULTIPLY AND SUBTRACT (MSD, MSDR,
| MSE, MSER)

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-5

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│ADD NORMALIZED (extended HFP) │AXR │RR C │ SP│Da EU EO LS │ │ │36 │
│ADD NORMALIZED (long HFP) │ADR │RR C │ │Da EU EO LS │ │ │2A │
│ADD NORMALIZED (long HFP) │AD │RX C │ A │Da EU EO LS │ │ B�│6A │
│ADD NORMALIZED (short HFP) │AER │RR C │ │Da EU EO LS │ │ │3A │
│ADD NORMALIZED (short HFP) │AE │RX C │ A │Da EU EO LS │ │ B�│7A │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│ADD UNNORMALIZED (long HFP) │AWR │RR C │ │Da EO LS │ │ │2E │
│ADD UNNORMALIZED (long HFP) │AW │RX C │ A │Da EO LS │ │ B�│6E │
│ADD UNNORMALIZED (short HFP) │AUR │RR C │ │Da EO LS │ │ │3E │
│ADD UNNORMALIZED (short HFP) │AU │RX C │ A │Da EO LS │ │ B�│7E │
│COMPARE (extended HFP) │CXR │RRE C │ SP│Da │ │ │B369│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│COMPARE (long HFP) │CDR │RR C │ │Da │ │ │29 │
│COMPARE (long HFP) │CD │RX C │ A │Da │ │ B�│69 │
│COMPARE (short HFP) │CER │RR C │ │Da │ │ │39 │
│COMPARE (short HFP) │CE │RX C │ A │Da │ │ B�│79 │
│CONVERT FROM FIXED (32 to ext. HFP) │CXFR │RRE │ SP│Da │ │ │B3B6│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CONVERT FROM FIXED (32 to long HFP) │CDFR │RRE │ │Da │ │ │B3B5│
│CONVERT FROM FIXED (32 to short HFP)│CEFR │RRE │ │Da │ │ │B3B4│
│CONVERT FROM FIXED (64 to ext. HFP) │CXGR │RRE N │ SP│Da │ │ │B3C6│
│CONVERT FROM FIXED (64 to long HFP) │CDGR │RRE N │ │Da │ │ │B3C5│
│CONVERT FROM FIXED (64 to short HFP)│CEGR │RRE N │ │Da │ │ │B3C4│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CONVERT TO FIXED (ext. HFP to 32) │CFXR │RRF C │ SP│Da │ │ │B3BA│
│CONVERT TO FIXED (long HFP to 32) │CFDR │RRF C │ SP│Da │ │ │B3B9│
│CONVERT TO FIXED (short HFP to 32) │CFER │RRF C │ SP│Da │ │ │B3B8│
│CONVERT TO FIXED (ext. HFP to 64) │CGXR │RRF C N │ SP│Da │ │ │B3CA│
│CONVERT TO FIXED (long HFP to 64) │CGDR │RRF C N │ SP│Da │ │ │B3C9│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CONVERT TO FIXED (short HFP to 64) │CGER │RRF C N │ SP│Da │ │ │B3C8│
│DIVIDE (extended HFP) │DXR │RRE │ SP│Da EU EO FK │ │ │B22D│
│DIVIDE (long HFP) │DDR │RR │ │Da EU EO FK │ │ │2D │
│DIVIDE (long HFP) │DD │RX │ A │Da EU EO FK │ │ B�│6D │
│DIVIDE (short HFP) │DER │RR │ │Da EU EO FK │ │ │3D │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│DIVIDE (short HFP) │DE │RX │ A │Da EU EO FK │ │ B�│7D │
│HALVE (long HFP) │HDR │RR │ │Da EU │ │ │24 │
│HALVE (short HFP) │HER │RR │ │Da EU │ │ │34 │
│LOAD AND TEST (extended HFP) │LTXR │RRE C │ SP│Da │ │ │B362│
│LOAD AND TEST (long HFP) │LTDR │RR C │ │Da │ │ │22 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD AND TEST (short HFP) │LTER │RR C │ │Da │ │ │32 │
│LOAD COMPLEMENT (extended HFP) │LCXR │RRE C │ SP│Da │ │ │B363│
│LOAD COMPLEMENT (long HFP) │LCDR │RR C │ │Da │ │ │23 │
│LOAD COMPLEMENT (short HFP) │LCER │RR C │ │Da │ │ │33 │
│LOAD FP INTEGER (extended HFP) │FIXR │RRE │ SP│Da │ │ │B367│
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 18-2 (Part 1 of 3). Summary of HFP Instructions

18-6 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│LOAD FP INTEGER (long HFP) │FIDR │RRE │ │Da │ │ │B37F│
│LOAD FP INTEGER (short HFP) │FIER │RRE │ │Da │ │ │B377│
│LOAD LENGTHENED (long to ext. HFP) │LXDR │RRE │ SP│Da │ │ │B325│
│LOAD LENGTHENED (long to ext. HFP) │LXD │RXE │ A SP│Da │ │ B�│ED25│
│LOAD LENGTHENED (short to ext. HFP) │LXER │RRE │ SP│Da │ │ │B326│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD LENGTHENED (short to ext. HFP) │LXE │RXE │ A SP│Da │ │ B�│ED26│
│LOAD LENGTHENED (short to long HFP) │LDER │RRE │ │Da │ │ │B324│
│LOAD LENGTHENED (short to long HFP) │LDE │RXE │ A │Da │ │ B�│ED24│
│LOAD NEGATIVE (extended HFP) │LNXR │RRE C │ SP│Da │ │ │B361│
│LOAD NEGATIVE (long HFP) │LNDR │RR C │ │Da │ │ │21 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD NEGATIVE (short HFP) │LNER │RR C │ │Da │ │ │31 │
│LOAD POSITIVE (extended HFP) │LPXR │RRE C │ SP│Da │ │ │B36�│
│LOAD POSITIVE (long HFP) │LPDR │RR C │ │Da │ │ │2� │
│LOAD POSITIVE (short HFP) │LPER │RR C │ │Da │ │ │3� │
│LOAD ROUNDED (extended to long HFP) │LDXR │RR │ SP│Da EO │ │ │25 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD ROUNDED (extended to long HFP) │LRDR │RR │ SP│Da EO │ │ │25 │
│LOAD ROUNDED (extended to short HFP)│LEXR │RRE │ SP│Da EO │ │ │B366│
│LOAD ROUNDED (long to short HFP) │LEDR │RR │ │Da EO │ │ │35 │
│LOAD ROUNDED (long to short HFP) │LRER │RR │ │Da EO │ │ │35 │
│MULTIPLY (extended HFP) │MXR │RR │ SP│Da EU EO │ │ │26 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY (long HFP) │MDR │RR │ │Da EU EO │ │ │2C │
│MULTIPLY (long HFP) │MD │RX │ A │Da EU EO │ │ B�│6C │
│MULTIPLY (long to extended HFP) │MXDR │RR │ SP│Da EU EO │ │ │27 │
│MULTIPLY (long to extended HFP) │MXD │RX │ A SP│Da EU EO │ │ B�│67 │
│MULTIPLY (short HFP) │MEER │RRE │ │Da EU EO │ │ │B337│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY (short HFP) │MEE │RXE │ A │Da EU EO │ │ B�│ED37│
│MULTIPLY (short to long HFP) │MDER │RR │ │Da EU EO │ │ │3C │
│MULTIPLY (short to long HFP) │MER │RR │ │Da EU EO │ │ │3C │
│MULTIPLY (short to long HFP) │MDE │RX │ A │Da EU EO │ │ B�│7C │
│MULTIPLY (short to long HFP) │ME │RX │ A │Da EU EO │ │ B�│7C │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

| │MULTIPLY AND ADD (long HFP) │MADR │RRF HM│ │Da EU EO │ │ │B33E│
| │MULTIPLY AND ADD (long HFP) │MAD │RXF HM│ A │Da EU EO │ │ B�│ED3E│
| │MULTIPLY AND ADD (short HFP) │MAER │RRF HM│ │Da EU EO │ │ │B32E│
| │MULTIPLY AND ADD (short HFP) │MAE │RXF HM│ A │Da EU EO │ │ B�│ED2E│
| │MULTIPLY AND SUBTRACT (long HFP) │MSDR │RRF HM│ │Da EU EO │ │ │B33F│
| ├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
| │MULTIPLY AND SUBTRACT (long HFP) │MSD │RXF HM│ A │Da EU EO │ │ B�│ED3F│
| │MULTIPLY AND SUBTRACT (short HFP) │MSER │RRF HM│ │Da EU EO │ │ │B32F│
| │MULTIPLY AND SUBTRACT (short HFP) │MSE │RXF HM│ A │Da EU EO │ │ B�│ED2F│

│SQUARE ROOT (extended HFP) │SQXR │RRE │ SP│Da SQ │ │ │B336│
│SQUARE ROOT (long HFP) │SQDR │RRE │ │Da SQ │ │ │B244│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SQUARE ROOT (long HFP) │SQD │RXE │ A │Da SQ │ │ B�│ED35│
│SQUARE ROOT (short HFP) │SQER │RRE │ │Da SQ │ │ │B245│
│SQUARE ROOT (short HFP) │SQE │RXE │ A │Da SQ │ │ B�│ED34│
│SUBTRACT NORMALIZED (extended HFP) │SXR │RR C │ SP│Da EU EO LS │ │ │37 │
│SUBTRACT NORMALIZED (long HFP) │SDR │RR C │ │Da EU EO LS │ │ │2B │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 18-2 (Part 2 of 3). Summary of HFP Instructions

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-7

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│SUBTRACT NORMALIZED (long HFP) │SD │RX C │ A │Da EU EO LS │ │ B�│6B │
│SUBTRACT NORMALIZED (short HFP) │SER │RR C │ │Da EU EO LS │ │ │3B │
│SUBTRACT NORMALIZED (short HFP) │SE │RX C │ A │Da EU EO LS │ │ B�│7B │
│SUBTRACT UNNORMALIZED (long HFP) │SWR │RR C │ │Da EO LS │ │ │2F │
│SUBTRACT UNNORMALIZED (long HFP) │SW │RX C │ A │Da EO LS │ │ B�│6F │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SUBTRACT UNNORMALIZED (short HFP) │SUR │RR C │ │Da EO LS │ │ │3F │
│SUBTRACT UNNORMALIZED (short HFP) │SU │RX C │ A │Da EO LS │ │ B�│7F │
├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤
│Explanation: │
│ │
│ A Access exceptions for logical addresses. │
│ B� B� field designates an access register in the access-register mode. │
│ C Condition code is set. │
│ Da AFP-register data exception. │
│ EO HFP-exponent-overflow exception. │
│ EU HFP-exponent-underflow exception. │
│ FK HFP-divide exception. │

| │ HM HFP-multiply-add/subtract facility. │
│ HX HFP-extensions facility. │
│ LS HFP-significance exception. │
│ N Instruction is new in z/Architecture as compared to ESA/39�. │
│ QR Square-root facility. │
│ RR RR instruction format. │
│ RRE RRE instruction format. │
│ RRF RRF instruction format. │
│ RX RX instruction format. │
│ RXE RXE instruction format. │
│ SP Specification exception. │
│ SQ HFP-square-root exception. │
└──┘

Figure 18-2 (Part 3 of 3). Summary of HFP Instructions

 ADD NORMALIZED

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
AER '3A' Short HFP
ADR '2A' Long HFP
AXR '36' Extended HFP

Mnemonic2 R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic2 Op Code Operands
AE '7A' Short HFP
AD '6A' Long HFP

The second operand is added to the first operand,
and the normalized sum is placed at the first-
operand location.

Addition of two HFP numbers consists in charac-
teristic comparison, fraction alignment, and signed
fraction addition. The characteristics of the two
operands are compared, and the fraction accom-
panying the smaller characteristic is aligned with
the other fraction by a right shift, with its charac-
teristic increased by one for each hexadecimal
digit of shift until the two characteristics agree.

When a fraction is shifted right during alignment,
the leftmost hexadecimal digit shifted out is
retained as a guard digit. The fraction that is not
shifted is considered to be extended with a zero in
the guard-digit position. When no alignment shift
occurs, both operands are considered to be
extended with zeros in the guard-digit position.
The fractions with signs are then added algebra-
ically to form a signed intermediate sum.

18-8 z/Architecture Principles of Operation

The intermediate-sum fraction consists of seven
(short format), 15 (long format), or 29 (extended
format) hexadecimal digits, including the guard
digit, and a possible carry. If a carry is present,
the sum is shifted right one digit position so that
the carry becomes the leftmost digit of the frac-
tion, and the characteristic is increased by one.

If the addition produces no carry, the
intermediate-sum fraction is shifted left as neces-
sary to eliminate any leading hexadecimal zero
digits resulting from the addition, provided the
fraction is not zero. Zeros are supplied to the
vacated rightmost digits, and the characteristic is
reduced by the number of hexadecimal digits of
shift. The fraction thus normalized is then trun-
cated on the right to six (short format), 14 (long
format), or 28 (extended format) hexadecimal
digits. In the extended format, a characteristic is
generated for the low-order part, which is 14 less
than the high-order characteristic.

The sign of the sum is determined by the rules of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the result is made
a positive true zero.

An HFP-exponent-overflow exception exists when
a carry from the leftmost position of the
intermediate-sum fraction would cause the charac-
teristic of the normalized sum to exceed 127. The
operation is completed by making the result char-
acteristic 128 less than the correct value, and a
program interruption for HFP exponent overflow
occurs. The result is normalized, and the sign
and fraction remain correct. For extended results,
the characteristic of the low-order part remains
correct.

An HFP-exponent-underflow exception exists
when the characteristic of the normalized sum
would be less than zero and the fraction is not
zero. If the HFP-exponent-underflow mask bit in
the PSW is one, the operation is completed by
making the result characteristic 128 greater than
the correct value, and a program interruption for
HFP exponent underflow occurs. The result is
normalized, and the sign and fraction remain
correct. If the HFP-exponent-underflow mask bit
in the PSW is zero, a program interruption does

not occur; instead, the operation is completed by
making the result a positive true zero. For
extended results, HFP exponent underflow is not
recognized when the low-order characteristic is
less than zero but the high-order characteristic is
equal to or greater than zero.

The result fraction is zero when the
intermediate-sum fraction, including the guard
digit, is zero. With a zero result fraction, the
action depends on the setting of the
HFP-significance mask bit in the PSW. If the
HFP-significance mask bit in the PSW is one, no
normalization occurs, the intermediate and final
result characteristics are the same, and a program
interruption for HFP significance occurs. If the
HFP-significance mask bit in the PSW is zero, the
program interruption does not occur; instead, the
result is made a positive true zero.

For AXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

 Program Exceptions:

� Access (fetch, operand 2 of AE and AD only)
� Data with DXC 1, AFP register
� HFP exponent overflow
� HFP exponent underflow

 � HFP significance
� Specification (AXR only)

Programming Notes:

1. An example of the use of the ADD NORMAL-
IZED instruction (AE) is given in Appendix A.

2. Interchanging the two operands in an HFP
addition does not affect the value of the sum.

3. The ADD NORMALIZED instruction normal-
izes the sum but not the operands. Thus, if
one or both operands are unnormalized, preci-
sion may be lost during fraction alignment.

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-9

 ADD UNNORMALIZED

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
AUR '3E' Short HFP
AWR '2E' Long HFP

Mnemonic2 R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic2 Op Code Operands
AU '7E' Short HFP
AW '6E' Long HFP

The second operand is added to the first operand,
and the unnormalized sum is placed at the first-
operand location.

The execution of ADD UNNORMALIZED is iden-
tical to that of ADD NORMALIZED, except that:

1. When no carry is present after the addition,
the intermediate-sum fraction is truncated to
the proper result-fraction length without a left
shift to eliminate leading hexadecimal zeros
and without the corresponding reduction of the
characteristic.

2. HFP exponent underflow cannot occur.

3. The guard digit does not participate in the
recognition of a zero result fraction. A zero
result fraction is recognized when the fraction
(that is, the intermediate-sum fraction,
excluding the guard digit) is zero.

Resulting Condition Code:

0 Result fraction zero
1 Result less than zero
2 Result greater than zero
3 --

 Program Exceptions:

� Access (fetch, operand 2 of AU and AW only)
� Data with DXC 1, AFP register
� HFP exponent overflow

 � HFP significance

Programming Notes:

1. An example of the use of the ADD UNNOR-
MALIZED instruction (AU) is given in
Appendix A.

2. Except when the result is made a true zero,
the characteristic of the result of ADD
UNNORMALIZED is equal to the greater of
the two operand characteristics, increased by
one if the fraction addition produced a carry,
or set to zero if HFP exponent overflow
occurred.

 COMPARE

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
CER '39' Short HFP
CDR '29' Long HFP

Mnemonic2 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic2 Op Code Operands
CXR 'B369' Extended HFP

Mnemonic3 R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic3 Op Code Operands
CE '79' Short HFP
CD '69' Long HFP

The first operand is compared with the second
operand, and the condition code is set to indicate
the result.

The comparison is algebraic and follows the pro-
cedure for normalized subtraction, except that the
difference is discarded after setting the condition
code and both operands remain unchanged.
When the difference, including the guard digit, is
zero, the operands are equal. When a nonzero
difference is positive or negative, the first operand
is high or low, respectively.

18-10 z/Architecture Principles of Operation

An HFP-exponent-overflow,
HFP-exponent-underflow, or HFP-significance
exception cannot occur.

For CXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions:

� Access (fetch, operand 2 of CE and CD only)
� Data with DXC 1, AFP register
� Specification (CXR only)

Programming Notes:

1. Examples of the use of the COMPARE
instruction (CDR) are given in Appendix A.

2. An exponent inequality alone is not sufficient
to determine the inequality of two operands
with the same sign, because the fractions may
have different numbers of leading
hexadecimal zeros.

3. Numbers with zero fractions compare equal
even when they differ in sign or characteristic.

CONVERT FROM FIXED

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
CEFR 'B3B4' 32-bit binary-integer

operand, short HFP result
CDFR 'B3B5' 32-bit binary-integer

operand, long HFP result
CXFR 'B3B6' 32-bit binary-integer

operand, extended HFP
 result
CEGR 'B3C4' 64-bit binary-integer

operand, short HFP result
CDGR 'B3C5' 64-bit binary-integer

operand, long HFP result
CXGR 'B3C6' 64-bit binary-integer

operand, extended HFP
 result

The fixed-point second operand is converted to
the HFP format, and the normalized result is
placed at the first-operand location.

A nonzero result is normalized. A zero result is
made a positive true zero.

The second operand is a signed binary integer
that is located in the general register designated
by R�. A 32-bit operand is in bit positions 32-63
of the register.

The result is normalized and rounded toward zero
(truncated) before it is placed at the first-operand
location.

For CXFR and CXGR, the R� field must designate
a valid floating-point-register pair; otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Data with DXC 1, AFP register
� Specification (CXFR and CXGR)

CONVERT TO FIXED

Mnemonic R�,M�,R� [RRF]

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ M� │////│ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

Mnemonic Op Code Operands
CFER 'B3B8' Short HFP operand, 32-bit
 binary-integer result
CFDR 'B3B9' Long HFP operand, 32-bit
 binary-integer result
CFXR 'B3BA' Extended HFP operand, 32-

bit binary-integer result
CGER 'B3C8' Short HFP operand, 64-bit
 binary-integer result
CGDR 'B3C9' Long HFP operand, 64-bit
 binary-integer result
CGXR 'B3CA' Extended HFP operand, 64-

bit binary-integer result

The HFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is a signed binary integer that is placed
in the general register designated by R�. A 32-bit
result replaces bits 32-63 of the register, and bits
0-31 of the register remain unchanged.

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-11

The second operand is rounded to an integer
value by rounding as specified by the modifier in
the M� field:

M� Rounding Method
0 Round toward 0
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

The sign of the result is the sign of the second
operand, except that a zero result has a plus sign.

If the rounded result would have a value
exceeding the range that can be represented in
the result format, the largest (in magnitude) repre-
sentable number of the same sign as the source
is placed at the target location, and condition code
3 is set.

HFP exponent underflow is not recognized
because small values are rounded to one (with the
appropriate sign) or to zero, depending on the
rounding mode.

The M� field must designate a valid modifier; oth-
erwise, a specification exception is recognized.
For CFXR and CGXR, the R� field must designate
a valid floating-point-register pair; otherwise, a
specification exception is recognized.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

 Program Exceptions:

� Data with DXC 1, AFP register
 � Specification

 DIVIDE

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
DER '3D' Short HFP
DDR '2D' Long HFP

Mnemonic2 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ 'B22D' │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic2 Op Code Operands
DXR 'B22D' Extended HFP

Mnemonic3 R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic3 Op Code Operands
DE '7D' Short HFP
DD '6D' Long HFP

The first operand (the dividend) is divided by the
second operand (the divisor), and the normalized
quotient is placed at the first-operand location. No
remainder is preserved.

HFP division consists in characteristic subtraction
and fraction division. The operands are first nor-
malized to eliminate leading hexadecimal zeros.
The difference between the dividend and divisor
characteristics of the normalized operands, plus
64, is used as the characteristic of an intermediate
quotient.

All dividend and divisor fraction digits participate in
forming the fraction of the intermediate quotient.
The intermediate-quotient fraction can have no
leading hexadecimal zeros, but a right shift of one
digit position may be necessary, with this causing
an increase of the characteristic by one. The frac-
tion is then truncated to the proper result-fraction
length.

An HFP-exponent-overflow exception exists when
the characteristic of the final quotient would
exceed 127 and the fraction is not zero. The
operation is completed by making the result char-
acteristic 128 less than the correct value, and a

18-12 z/Architecture Principles of Operation

program interruption for HFP exponent overflow
occurs. The result is normalized, and the sign
and fraction remain correct. If, for extended
results, the low-order characteristic would also
exceed 127, it too is decreased by 128.

An HFP-exponent-underflow exception exists
when the characteristic of the final quotient would
be less than zero and the fraction is not zero. If
the HFP-exponent-underflow mask bit in the PSW
is one, the operation is completed by making the
result characteristic 128 greater than the correct
value, and a program interruption for HFP expo-
nent underflow occurs. The result is normalized,
and the sign and fraction remain correct. If the
HFP-exponent-underflow mask bit in the PSW is
zero, a program interruption does not occur;
instead, the operation is completed by making the
result a positive true zero. For extended results,
HFP exponent underflow is not recognized when
the low-order characteristic is less than zero but
the high-order characteristic is equal to or greater
than zero.

HFP exponent underflow does not occur when the
characteristic of an operand becomes less than
zero during normalization of the operands or when
the intermediate-quotient characteristic is less than
zero, as long as the final quotient can be repres-
ented with the correct characteristic.

When the divisor fraction is zero, an HFP-divide
exception is recognized. This includes the case of
division of zero by zero.

When the dividend fraction is zero but the divisor
fraction is nonzero, the quotient is made a positive
true zero. No HFP exponent overflow or HFP
exponent underflow occurs.

The sign of the quotient is the exclusive or of the
operand signs, except that the sign is always plus
when the quotient is made a positive true zero.

For DXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of DE and DD only)
� Data with DXC 1, AFP register

 � HFP divide
� HFP exponent overflow
� HFP exponent underflow
� Specification (DXR only)

Programming Note: Examples of the use of the
DIVIDE instruction (DER) are given in Appendix A.

 HALVE

Mnemonic R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic Op Code Operands
HER '34' Short HFP
HDR '24' Long HFP

The second operand is divided by 2, and the nor-
malized quotient is placed at the first-operand
location.

The fraction of the second operand is shifted right
one bit position, placing the contents of the right-
most bit position in the leftmost bit position of the
guard digit, and a zero is supplied to the leftmost
bit position of the fraction. The intermediate
result, including the guard digit, is then normal-
ized, and the final result is truncated to the proper
length.

An HFP-exponent-underflow exception exists
when the characteristic of the final result would be
less than zero and the fraction is not zero. If the
HFP-exponent-underflow mask bit in the PSW is
one, the operation is completed by making the
result characteristic 128 greater than the correct
value, and a program interruption for HFP expo-
nent underflow occurs. The result is normalized,
and the sign and fraction remain correct. If the
HFP-exponent-underflow mask bit in the PSW is
zero, a program interruption does not occur;
instead, the operation is completed by making the
result a positive true zero.

When the fraction of the second operand is zero,
the result is made a positive true zero, and no
HFP exponent underflow occurs.

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-13

The sign of the result is the same as that of the
second operand, except that the sign is always
plus when the quotient is made a positive true
zero.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Data with DXC 1, AFP register
� HFP exponent underflow

Programming Notes:

1. An example of the use of the HALVE instruc-
tion (HDR) is given in Appendix A.

2. With short and long operands, the halve oper-
ation is identical to a divide operation with the
number 2 as divisor. Similarly, the result of
HDR is identical to that of MD or MDR with
one-half as a multiplier, and the result of HER
is identical to that of MEE or MEER with one-
half as a multiplier.

LOAD AND TEST

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
LTER '32' Short HFP
LTDR '22' Long HFP

Mnemonic2 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic2 Op Code Operands
LTXR 'B362' Extended HFP

The second operand is placed at the first-operand
location, and its sign and magnitude are tested to
determine the setting of the condition code. The
condition code is set the same as for a compar-
ison of the second operand with zero.

For short and long operands, the second operand
is placed unchanged in the first-operand location.

For extended operands, the high-order sign and
the entire fraction of the source are placed

unchanged in the result, and the low-order sign is
set equal to the high-order sign. If the extended-
operand fraction is nonzero, the high-order char-
acteristic is placed unchanged in the result high-
order characteristic, and the low-order character-
istic is set to 14 less than the high-order charac-
teristic, modulo 128. If the extended-operand frac-
tion is zero, the result is made a true zero with the
same sign as the source (the high-order and low-
order sign bits of the result are the same as the
high-order sign bit of the source).

For LTXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

 Program Exceptions:

� Data with DXC 1, AFP register
� Specification (LTXR only)

Programming Note: When, for LTER and LTDR,
the same register is designated as the first-
operand and second-operand location, the opera-
tion is equivalent to a test without data movement.

 LOAD COMPLEMENT

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
LCER '33' Short HFP
LCDR '23' Long HFP

Mnemonic2 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic2 Op Code Operands
LCXR 'B363' Extended HFP

The second operand is placed at the first-operand
location with the sign bit inverted.

18-14 z/Architecture Principles of Operation

The sign bit is inverted even if the operand is
zero. For all operand lengths, the source fraction
is placed unchanged in the result.

For short and long operands, the source charac-
teristic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-
operand fraction is nonzero, the high-order char-
acteristic is placed unchanged in the result high-
order characteristic, and the low-order character-
istic is set to 14 less than the high-order charac-
teristic, modulo 128. If the extended-operand frac-
tion is zero, the result is made a true zero with the
sign inverted from the source (the high-order and
low-order sign bits of the result are inverted from
the high-order sign bit of the source).

For LCXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

 Program Exceptions:

� Data with DXC 1, AFP register
� Specification (LCXR only)

LOAD FP INTEGER

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
FIER 'B377' Short HFP
FIDR 'B37F' Long HFP
FIXR 'B367' Extended HFP

The second operand is truncated (rounded toward
zero) to an integer value in the same floating-point
format, and the normalized result is placed at the
first-operand location.

A nonzero result is normalized. A zero result is
made a positive true zero.

For FIXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Data with DXC 1, AFP register
� Specification (FIXR only)

Programming Notes:

1. LOAD FP INTEGER truncates (rounds toward
zero) an HFP number to an integer value.
These integers, which remain in the HFP
format, should not be confused with binary
integers, which use a fixed-point format.

2. If the HFP operand is numeric with a large
enough exponent so that it is already an
integer, the result value remains the same,
except that an unnormalized operand is nor-
malized, and an operand with a zero fraction
is changed to a positive true zero.

 LOAD LENGTHENED

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
LDER 'B324' Short HFP operand 2,

long HFP operand 1
LXDR 'B325' Long HFP operand 2,

extended HFP operand 1
LXER 'B326' Short HFP operand 2,

extended HFP operand 1

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
LDE 'ED24' Short HFP operand 2,

long HFP operand 1
LXD 'ED25' Long HFP operand 2,

extended HFP operand 1
LXE 'ED26' Short HFP operand 2,

extended HFP operand 1

The second operand is extended to a longer
format, and the result is placed at the first-operand
location.

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-15

For all operand lengths, the source fraction is
extended with zeros and placed in the result. The
sign bit of the result is set the same as the sign of
the source even when the result is made a true
zero.

For long results, the source characteristic is
placed unchanged in the result.

For extended results, the low-order sign is set
equal to the high-order sign. If the fraction is
nonzero, the source characteristic is placed
unchanged in the result high-order characteristic,
and the low-order characteristic is set to 14 less
than the high-order characteristic, modulo 128. If
the fraction is zero, the result is made a true zero
with the same sign as the source (the high-order
and low-order sign bits of the result are the same
as the sign bit of the source).

For LXD, LXDR, LXE, and LXER, the R� field
must designate a valid floating-point-register pair;
otherwise, a specification exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of LDE, LXE, and
LXD only)

� Data with DXC 1, AFP register
� Specification (LXE, LXER, LXD, LXDR)

 LOAD NEGATIVE

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
LNER '31' Short HFP
LNDR '21' Long HFP

Mnemonic2 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic2 Op Code Operands
LNXR 'B361' Extended HFP

The second operand is placed at the first-operand
location with the sign bit made one.

The sign bit is made one even if the operand is
zero. For all operand lengths, the source fraction
is placed unchanged in the result.

For short and long operands, the source charac-
teristic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-
operand fraction is nonzero, the high-order char-
acteristic is placed unchanged in the result high-
order characteristic, and the low-order character-
istic is set to 14 less than the high-order charac-
teristic, modulo 128. If the extended-operand frac-
tion is zero, the result is made a negative true
zero (the high-order and low-order sign bits of the
result are set to one).

For LNXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 --
3 --

 Program Exceptions:

� Data with DXC 1, AFP register
� Specification (LNXR only)

 LOAD POSITIVE

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
LPER '3�' Short HFP
LPDR '2�' Long HFP

Mnemonic2 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic2 Op Code Operands
LPXR 'B36�' Extended HFP

The second operand is placed at the first-operand
location with the sign bit made zero.

18-16 z/Architecture Principles of Operation

For all operand lengths, the sign bit is made zero,
and the source fraction is placed unchanged in the
result.

For short and long operands, the source charac-
teristic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-
operand fraction is nonzero, the high-order char-
acteristic is placed unchanged in the result high-
order characteristic, and the low-order character-
istic is set to 14 less than the high-order charac-
teristic, modulo 128. If the extended-operand frac-
tion is zero, the result is made a positive true zero
(the high-order and low-order sign bits of the
result are set to zero).

For LPXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 --
2 Result is greater than zero
3 --

 Program Exceptions:

� Data with DXC 1, AFP register
� Specification (LPXR only)

 LOAD ROUNDED

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
LEDR '35' Long HFP operand 2,

short HFP operand 1
LDXR '25' Extended HFP operand 2,

long HFP operand 1

The above mnemonics are alternatives to the fol-
lowing older mnemonics that are less descriptive
of operand lengths:

LRER '35' Long HFP operand 2,
short HFP operand 1

LRDR '25' Extended HFP operand 2,
long HFP operand 1

Mnemonic2 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic2 Op Code Operands
LEXR 'B366' Extended HFP operand 2,

short HFP operand 1

The second operand is rounded to a shorter
format, and the result is placed at the first-operand
location.

Rounding consists in adding a one to the leftmost
bit position of the second operand that is to be
dropped and propagating any carry through the
fraction. The sign of the second operand is
ignored, and addition is performed as if the frac-
tion were positive.

If rounding causes a carry out of the leftmost
hexadecimal digit position of the fraction, the frac-
tion is shifted right one digit position so that the
carry becomes the leftmost digit of the fraction,
and the characteristic is increased by one.

The intermediate fraction is then truncated to the
| proper result-fraction length. For LEDR and
| LEXR, the result replaces the leftmost 32 bits of
| the target register, and the rightmost 32 bit posi-
| tions of the target register remain unchanged. For
| LDXR, the 64-bit result is placed in a floating-point
| register, not a floating-point register pair.

The sign of the result is the same as the sign of
the second operand. There is no normalization to
eliminate leading zeros.

An HFP-exponent-overflow exception exists when
shifting the fraction right would cause the charac-
teristic to exceed 127. The operation is completed
by making the result characteristic 128 less than
the correct value, and a program interruption for
HFP exponent overflow occurs. The result is nor-
malized, and the sign and fraction remain correct.

HFP-exponent-underflow and HFP-significance
exceptions cannot occur.

For LDXR (or LRDR) and LEXR, the R� field must
designate a valid floating-point-register pair; other-
wise, a specification exception is recognized.

Condition Code: The code remains unchanged.

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-17

 Program Exceptions:

� Data with DXC 1, AFP register
� HFP exponent overflow
� Specification (LDXR, LEXR, LRDR)

Programming Note: The sign of the rounded
result is the same as the sign of the operand,
even when the result is zero.

 MULTIPLY

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
MEER 'B337' Short HFP

Mnemonic2 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic2 Op Code Operands
MDR '2C' Long HFP
MXR '26' Extended HFP
MDER '3C' Short HFP multiplier and

multiplicand, long HFP
 product
MXDR '27' Long HFP multiplier and
 multiplicand, extended
 HFP product

The above mnemonic MDER is an alternative to
the following older mnemonic that is less descrip-
tive of operand lengths:

MER '3C' Short HFP multiplier and
multiplicand, long HFP

 product

Mnemonic3 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic3 Op Code Operands
MEE 'ED37' Short HFP

Mnemonic4 R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic4 Op Code Operands
MD '6C' Long HFP
MDE '7C' Short HFP multiplier and

multiplicand, long HFP
 product
MXD '67' Long HFP multiplier and
 multiplicand, extended
 HFP product

The above mnemonic MDE is an alternative to
the following older mnemonic that is less
descriptive of operand lengths:

ME '7C' Short HFP multiplier and
multiplicand, long HFP

 product

The normalized product of the second operand
(the multiplier) and the first operand (the multipli-
cand) is placed at the first-operand location.

Multiplication of two HFP numbers consists in
exponent addition and fraction multiplication. The
operands are first normalized to eliminate leading
hexadecimal zeros. The sum of the character-
istics of the normalized operands, less 64, is used
as the characteristic of the intermediate product.

The fraction of the intermediate product is the
exact product of the normalized operand fractions.
If the intermediate-product fraction has one
leading hexadecimal zero digit, the fraction is
shifted left one digit position, bringing the contents
of the guard-digit position into the rightmost posi-
tion of the result fraction, and the intermediate-
product characteristic is reduced by one. The
fraction is then truncated to the proper result-
fraction length.

For MDE and MDER, the multiplier and multipli-
cand fractions have six hexadecimal digits; the
product fraction has the full 14 digits of the long
format, with the two rightmost fraction digits
always zeros. For MEE and MEER, the multiplier
and multiplicand fractions have six digits, and the

| final product fraction is truncated to six digits; the
result, as for all short-format results, replaces the
leftmost 32 bits of the target register, and the
rightmost 32 bit positions of the target register
remain unchanged.

For MD and MDR, the multiplier and multiplicand
fractions have 14 digits, and the final product frac-

18-18 z/Architecture Principles of Operation

tion is truncated to 14 digits. For MXD and
MXDR, the multiplier and multiplicand fractions
have 14 digits, with the multiplicand occupying the
high-order part of the first operand; the final
product fraction contains 28 digits and is an exact
product of the operand fractions. For MXR, the
multiplier and multiplicand fractions have 28 digits,
and the final product fraction is truncated to 28
digits.

An HFP-exponent-overflow exception exists when
the characteristic of the final product would
exceed 127 and the fraction is not zero. The
operation is completed by making the result char-
acteristic 128 less than the correct value, and a
program interruption for HFP exponent overflow
occurs. The result is normalized, and the sign
and fraction remain correct. If, for extended
results, the low-order characteristic would also
exceed 127, it too is decreased by 128.

HFP exponent overflow is not recognized when
the intermediate-product characteristic is initially
128 but is brought back within range by normaliza-
tion.

An HFP-exponent-underflow exception exists
when the characteristic of the final product would
be less than zero and the fraction is not zero. If
the HFP-exponent-underflow mask bit in the PSW
is one, the operation is completed by making the
result characteristic 128 greater than the correct
value, and a program interruption for HFP expo-
nent underflow occurs. The result is normalized,
and the sign and fraction remain correct. If the
HFP-exponent-underflow mask bit in the PSW is
zero, a program interruption does not occur;
instead, the operation is completed by making the
result a positive true zero. For extended results,
HFP exponent underflow is not recognized when
the low-order characteristic is less than zero but
the high-order characteristic is equal to or greater
than zero.

HFP exponent underflow does not occur when the
characteristic of an operand becomes less than
zero during normalization of the operands, as long
as the final product can be represented with the
correct characteristic.

If either or both operand fractions are zero, the
result is made a positive true zero, and no HFP
exponent overflow or HFP exponent underflow
occurs.

The sign of the product is the exclusive or of the
operand signs, except that the sign is always plus
when the result is made a true zero.

The R� field for MXD, MXDR, and MXR, and the
R� field for MXR must designate valid floating-
point-register pairs. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of MDE, MEE, MD,
and MXD only)

� Data with DXC 1, AFP register
� HFP exponent overflow
� HFP exponent underflow
� Specification (MXD, MXDR, MXR)

Programming Notes:

1. An example of the use of the MULTIPLY
instruction (MDR) is given in Appendix A.

2. Interchanging the two operands in an HFP
multiplication does not affect the value of the
product.

| MULTIPLY AND ADD

| Mnemonic1 R�,R�,R� [RRF]

| ┌────────────────┬────┬────┬────┬────┐
| │ Op Code │ R� │////│ R� │ R� │
| └────────────────┴────┴────┴────┴────┘
| � 16 2� 24 28 31

| Mnemonic1 Op Code Operands
| MAER 'B32E' Short HFP
| MADR 'B33E' Long HFP

| Mnemonic2 R�,R�,D�(X�,B�) [RXF]

| ┌────────┬────┬────┬────┬─/──┬────┬────┬────────┐
| │Op Code │ R� │ X� │ B� │ D� │ R� │////│Op Code │
| └────────┴────┴────┴────┴─/──┴────┴────┴────────┘
| � 8 12 16 2� 32 36 4� 47

| Mnemonic2 Op Code Operands
| MAE 'ED2E' Short HFP
| MAD 'ED3E' Long HFP

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-19

| MULTIPLY AND SUBTRACT

| Mnemonic1 R�,R�,R� [RRF]

| ┌────────────────┬────┬────┬────┬────┐
| │ Op Code │ R� │////│ R� │ R� │
| └────────────────┴────┴────┴────┴────┘
| � 16 2� 24 28 31

| Mnemonic1 Op Code Operands
| MSER 'B32F' Short HFP
| MSDR 'B33F' Long HFP

| Mnemonic2 R�,R�,D�(X�,B�) [RXF]

| ┌────────┬────┬────┬────┬─/──┬────┬────┬────────┐
| │Op Code │ R� │ X� │ B� │ D� │ R� │////│Op Code │
| └────────┴────┴────┴────┴─/──┴────┴────┴────────┘
| � 8 12 16 2� 32 36 4� 47

| Mnemonic2 Op Code Operands
| MSE 'ED2F' Short HFP
| MSD 'ED3F' Long HFP

| The third operand is multiplied by the second
| operand, and then the first operand is added to or
| subtracted from the product. The sum or differ-
| ence is placed at the first-operand location. The
| MULTIPLY AND ADD and MULTIPLY AND SUB-
| TRACT operations may be summarized as:

| op� = op��op�±op�

| The third and second HFP operands are multi-
| plied, forming an intermediate product, and the
| first operand is then added (or subtracted) alge-
| braically to (or from) the intermediate product,
| forming an intermediate result. The exponent and
| fraction of the intermediate product and interme-
| diate result are maintained exactly. The interme-
| diate result, if nonzero, is normalized and trun-
| cated to the operand format and then placed at
| the first-operand location.

| The sign of the result is determined by the rules of
| algebra, unless the intermediate-result fraction is
| zero, in which case the result is made a positive
| true zero.

| An HFP-exponent-overflow exception exists when
| the characteristic of the normalized result would
| exceed 127 and the fraction is not zero. The
| operation is completed by making the result char-
| acteristic 128 less than the correct value, and a
| program interruption for HFP exponent overflow
| occurs. The result is normalized, and the sign
| and fraction remain correct.

| HFP exponent overflow is not recognized on inter-
| mediate values, provided the normalized result
| can be represented with the correct characteristic.

| An HFP-exponent-underflow exception exists
| when the characteristic of the normalized result
| would be less than zero and the fraction is not
| zero. If the HFP-exponent-underflow mask bit in
| the PSW is one, the operation is completed by
| making the result characteristic 128 greater than
| the correct value, and a program interruption for
| HFP exponent underflow occurs. The result is
| normalized, and the sign and fraction remain
| correct. If the HFP-exponent-underflow mask bit
| in the PSW is zero, a program interruption does
| not occur; instead, the operation is completed by
| making the result a positive true zero.

| HFP exponent underflow is not recognized on
| input operands and intermediate values, provided
| the normalized result can be represented with the
| correct characteristic.

| Condition Code: The code remains unchanged.

| Program Exceptions:

| � Access (fetch, operand 2 of MAE, MAD, MSE,
| MSD)
| � Data with DXC 1, AFP register
| � HFP exponent overflow
| � HFP exponent underflow
| � Operation (if the HFP multiply-add/subtract
| facility is not installed)

| Programming Note: MULTIPLY AND ADD
| (SUBTRACT) differs from MULTIPLY followed by
| ADD (SUBTRACT) NORMALIZED in the following
| ways:

| 1. The product is maintained to full precision,
| and overflow and underflow are not recog-
| nized on the product.

| 2. The HFP-significance exception is not recog-
| nized for MULTIPLY AND ADD (SUBTRACT).

| 3. ADD (SUBTRACT) NORMALIZED maintains
| only a single guard digit and does not prenor-
| malize input operands; thus, in some cases,
| an unnormalized input operand may cause
| loss of precision in the result. MULTIPLY
| AND ADD (SUBTRACT) maintains the entire
| intermediate sum (difference), which is nor-
| malized before the truncation operation is per-
| formed; thus, unnormalized operands do not
| cause any additional loss of precision.

18-20 z/Architecture Principles of Operation

| 4. On most models, the execution time of MUL-
| TIPLY AND ADD (SUBTRACT) is less than
| the combined execution time of MULTIPLY
| followed by ADD (SUBTRACT) NORMAL-
| IZED. The performance of MULTIPLY AND
| ADD (SUBTRACT) may be severely degraded
| in the case of unnormalized input operands.

 SQUARE ROOT

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
SQER 'B245' Short HFP
SQDR 'B244' Long HFP
SQXR 'B336' Extended HFP

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
SQE 'ED34' Short HFP
SQD 'ED35' Long HFP

The normalized and rounded square root of the
second operand is placed at the first-operand
location.

When the fraction of the second operand is zero,
the sign and characteristic of the second operand
are ignored, and the operation is completed by
placing a positive true zero at the first-operand
location.

If the second operand is less than zero, an
HFP-square-root exception is recognized.

If the second operand is normalized and greater
than zero, the characteristic, fraction, and sign of
the result are produced as follows:

� The result characteristic is one-half of the sum
of the operand characteristic and either 64, if
the operand characteristic is even, or 65, if it
is odd.

� If the operand characteristic is odd, the
operand fraction is shifted right one digit posi-
tion, the rightmost digit entering the guard-digit
position.

� An intermediate-result fraction is produced by
computing without rounding the square root of
the operand fraction, after any right shift as
described. The intermediate-result fraction
consists of the 29 most significant
hexadecimal digits of the square-root result in
the extended format, 15 in the long format, or
seven in the short format, where all three
formats include a guard digit on the right.

� A one is added to the leftmost bit of the guard
digit of the intermediate result, any carry is
propagated to the left, and the guard digit is
dropped to produce the result fraction.

� The result sign is made plus.

If the second operand is unnormalized and greater
than zero, the operand is first normalized. The
operation then proceeds as for normalized oper-
ands.

For SQXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

 Program Exceptions:

� Access (fetch, operand 2 of SQE and SQD
only)

� Data with DXC 1, AFP register
� HFP square root
� Specification (SQXR only)

Programming Notes:

1. The use of the SQUARE ROOT instruction
with short operands (SQER) is illustrated by
the examples in the following table:

┌─────────┬───────┬─────────┬─────────┐
│ Operand │Decimal│ Result │ Decimal │
│ (hex) │ Value │ (hex) │ Value │
├─────────┼───────┼─────────┼─────────┤
│42 19����│25.� │41 5�����│5.� │
│4� 4�����│ �.25� │4� 8�����│�.5� │
│4� 8�����│ �.5� │4� B5�4F3│�.7�71...│
│41 8�����│ 8.� │41 2D413D│2.8284...│
└─────────┴───────┴─────────┴─────────┘

2. The result fraction is correctly normalized
without any further left or right shifts of the
intermediate-result fraction and without any
further exponent adjustment. Rounding
cannot cause a carry out of the leftmost digit.

3. Although a characteristic greater than 127 or
less than zero may temporarily be generated

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-21

during the operation, the result characteristic
is always within the representable range, and
no HFP exponent overflow or underflow
occurs.

Specifically, the smallest nonzero operand in
the long format consists of a one bit, preceded
on the left by 63 zeros. This operand is an
unnormalized number with a value of 16-78,
and its square root is 16-39. The normalized
representation of this result has a character-
istic of 26 (decimal). Similarly, the square root
of the largest representable operand has a
characteristic of 96 (decimal). The instruction,
therefore, cannot produce a nonzero result
with a characteristic outside the range of 26 to
96.

 SUBTRACT NORMALIZED

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
SER '3B' Short HFP
SDR '2B' Long HFP
SXR '37' Extended HFP

Mnemonic2 R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic2 Op Code Operands
SE '7B' Short HFP
SD '6B' Long HFP

The second operand is subtracted from the first
operand, and the normalized difference is placed
at the first-operand location.

The execution of SUBTRACT NORMALIZED is
identical to that of ADD NORMALIZED, except
that the second operand participates in the opera-
tion with its sign bit inverted.

For SXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

 Program Exceptions:

� Access (fetch, operand 2 of SE and SD only)
� Data with DXC 1, AFP register
� HFP exponent overflow
� HFP exponent underflow

 � HFP significance
� Specification (SXR only)

 SUBTRACT UNNORMALIZED

Mnemonic1 R�,R� [RR]

┌────────┬────┬────┐
│Op Code │ R� │ R� │
└────────┴────┴────┘
� 8 12 15

Mnemonic1 Op Code Operands
SUR '3F' Short HFP
SWR '2F' Long HFP

Mnemonic2 R�,D�(X�,B�) [RX]

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R� │ X� │ B� │ D� │
└────────┴────┴────┴────┴────────────┘
� 8 12 16 2� 31

Mnemonic2 Op Code Operands
SU '7F' Short HFP
SW '6F' Long HFP

The second operand is subtracted from the first
operand, and the unnormalized difference is
placed at the first-operand location.

The execution of SUBTRACT UNNORMALIZED is
identical to that of ADD UNNORMALIZED, except
that the second operand participates in the opera-
tion with its sign bit inverted.

Resulting Condition Code:

0 Result fraction zero
1 Result less than zero
2 Result greater than zero
3 --

18-22 z/Architecture Principles of Operation

 Program Exceptions:

� Access (fetch, operand 2 of SU and SW only)
� Data with DXC 1, AFP register

� HFP exponent overflow
 � HFP significance

 Chapter 18. Hexadecimal-Floating-Point Instructions 18-23

18-24 z/Architecture Principles of Operation

 Chapter 19. Binary-Floating-Point Instructions

Binary-Floating-Point Facility 19-1
Floating-Point-Control (FPC) Register . . . 19-2

IEEE Masks and Flags 19-3
FPC DXC Byte 19-3
Operations on the FPC Register 19-3

BFP Arithmetic 19-4
BFP Data Formats 19-4

BFP Short Format 19-4
BFP Long Format 19-4
BFP Extended Format 19-4
Biased Exponent 19-4
Significand 19-4
Values of Nonzero Numbers 19-4

Classes of BFP Data 19-5
Zeros . 19-6
Denormalized Numbers 19-6
Normalized Numbers 19-6
Infinities 19-6
Signaling and Quiet NaNs 19-6

BFP-Format Conversion 19-7
BFP Rounding 19-7

Rounding Mode 19-7
Normalization and Denormalization 19-8
BFP Comparison 19-8
Condition Codes for BFP Instructions . . . 19-9
Remainder 19-9
IEEE Exception Conditions 19-10

IEEE Invalid Operation 19-10
IEEE Division-By-Zero 19-11
IEEE Overflow 19-11
IEEE Underflow 19-12

IEEE Inexact 19-12
Result Figures 19-13

Data-Exception Codes (DXC) and
Abbreviations 19-14

Instructions 19-14
ADD . 19-18
COMPARE 19-23
COMPARE AND SIGNAL 19-24
CONVERT FROM FIXED 19-26
CONVERT TO FIXED 19-26
DIVIDE 19-29
DIVIDE TO INTEGER 19-29
EXTRACT FPC 19-33
LOAD AND TEST 19-34
LOAD COMPLEMENT 19-34
LOAD FP INTEGER 19-35
LOAD FPC 19-36
LOAD LENGTHENED 19-37
LOAD NEGATIVE 19-37
LOAD POSITIVE 19-38
LOAD ROUNDED 19-38
MULTIPLY 19-39
MULTIPLY AND ADD 19-41
MULTIPLY AND SUBTRACT 19-41
SET FPC 19-43
SET ROUNDING MODE 19-43
SQUARE ROOT 19-44
STORE FPC 19-44
SUBTRACT 19-44
TEST DATA CLASS 19-45

 Binary-Floating-Point Facility
The binary-floating-point (BFP) facility provides
instructions to operate on binary (radix-2) floating-
point data.

BFP provides a number of important advantages
over hexadecimal floating point (HFP):

� Greater precision and exponent range (except
for numbers in the short format where HFP
has the greater range).

� Automatic rounding to the nearest value for all
arithmetic operations. There are directed-
rounding options that may be used instead.

� Special entities of “infinity” and
“Not-a-Number” (NaN), which are accepted
and handled by arithmetic operations in a rea-
sonable fashion. They provide better defaults
for exponent overflow and invalid operations
(such as division of zero by zero). This allows
most programs to continue running without
hiding such errors and without using special-
ized exception handlers.

� Exponent underflow gives “denormalized”
numbers as the default, which provides more
consistent results than the abrupt result of
zero produced by the HFP instructions.

� The greater exponent range makes exponent
overflow and underflow in correctly written

 Copyright IBM Corp. 1990-2003 19-1

programs very unlikely, so that programmers
may often be able to ignore these conditions.

� Both mask and flag bits are provided for all
arithmetic exception conditions. The mask
bits enable or disable interruptions. When
interruptions are disabled, the flag bits keep
track of exception conditions during execution
so that warning messages may be issued.

� Programs can be migrated from and to work-
stations and other systems using different
architectures and still give consistent results,
provided that floating-point operations on the
other systems also conform to the IEEE
standard. This does not mean, however, that
bit-wise compatible results can be guaranteed,
because the standard allows implementation
flexibility, especially in the presence of
exceptions.

Programming Note: The bit representation of
the BFP data formats in storage is defined to be
left-to-right in a manner that is uniform for all
numeric operands in the z/Architecture architec-
ture. Although the format diagrams in the IEEE
floating-point standard appear to use the same

left-to-right bit sequence, the standard only defines
the meaning of the bits without specifying how
they appear in storage; the storage arrangement
is left to the implementation. Several implementa-
tions in fact use other sequences; this may affect
programs which are dependent on the bit repre-
sentation of floating-point data in storage.

 Floating-Point-Control (FPC)
Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. An over-
view of the FPC register is shown in Figure 19-1.
Details are shown in Figure 19-2 on page 19-3
and in Figure 19-3 on page 19-3. (In
Figure 19-2, the abbreviations “IM” and “SF” are
based on the terms “interruption mask” and “status
flag,” respectively.)

The bits of the FPC register are often referred to
as, for example, FPC 1.0, meaning bit 0 of byte 1
of the register.

│�─masks─�│ │�─flags─�│ │�─────DXC─────�│
┌─┬─┐
│I I I I I│ │S S S S S│ │ │ │ │
│M M M M M│� � �│F F F F F│� � �│i z o u x y │� � � � � �│RM │
│i z o u x│ │i z o u x│ │ │ │ │
└─┴─┘
│�─── Byte � ──�│�─── Byte 1 ──�│�─── Byte 2 ──�│�─── Byte 3 ──�│

Figure 19-1. FPC Register Overview

19-2 z/Architecture Principles of Operation

Figure 19-2. FPC-Register Bit Assignments

Figure 19-3. Rounding Mode

IEEE Masks and Flags
The FPC register contains five IEEE mask bits
and five IEEE flag bits that each correspond to
one of the five arithmetic exception conditions that
may occur when a BFP instruction is executed.
The masks bits, when one, cause an interruption
to occur if an exception condition is recognized. If
the mask bit for an exception condition is zero, the
recognition of the condition causes the corre-
sponding flag bit to be set to one. Thus, a flag bit
indicates whether the corresponding exception
condition has been recognized at least once since
the program last set the flag bit to zero. The

mask bits are ignored, and the flag bits remain
unchanged, when arithmetic exceptions are recog-
nized for floating-point-support (FPS) and HFP
instructions.

The IEEE flag bits in the FPC register are set to
zero only by explicit program action, clear reset, or
power-on reset.

FPC DXC Byte
Byte 2 of the FPC register contains the data-
exception code (DXC), which is an eight-bit code
indicating the specific cause of a data exception.
When the AFP-register-control bit, bit 45 of control
register 0, is one and a program interruption
causes the DXC to be placed at real location 147,
the DXC is also placed in the DXC field of the
FPC register. The DXC field in the FPC register
remains unchanged when the AFP-register-control
bit is zero or when any other program exception is
reported. The DXC is described in “Data-
Exception Code (DXC)” on page 6-15.

The DXC is a code, meaning it should be treated
as an integer rather than as individual bits.
However, when bits 6 and 7 are zero, bits 0-5 are
bit significant; bits 0-4 (i,z,o,u,x) are trap flags and
correspond to the same bits in bytes 0 and 1 of
the FPC register (IEEE masks and IEEE flags),
and bit 5 (y) is used in conjunction with bit 4,
inexact (x), to indicate that the result has been
incremented in magnitude. The trap flag for an
exception, instead of the IEEE flag, is set to one
when an interruption for the exception is enabled
by the corresponding IEEE mask bit.

Operations on the FPC Register
The following unprivileged BFP instructions allow
problem-state programs to operate on the FPC
register:

 EXTRACT FPC
 LOAD FPC
 SET FPC

SET ROUNDING MODE
 STORE FPC

These instructions are subject to the
AFP-register-control bit, bit 45 of control register 0.
An attempt to execute any of the above
instructions when the AFP-register-control bit is
zero results in a BFP-instruction data exception,
DXC 2.

Byte Bit(s) Name Abbr.

0 0 IEEE-invalid-operation mask IMi

0 1 IEEE-division-by-zero mask IMz

0 2 IEEE-overflow mask IMo

0 3 IEEE-underflow mask IMu

0 4 IEEE-inexact mask IMx

0 5-7 (Reserved) 0

1 0 IEEE-invalid-operation flag SFi

1 1 IEEE-division-by-zero flag SFz

1 2 IEEE-overflow flag SFo

1 3 IEEE-underflow flag SFu

1 4 IEEE-inexact flag SFx

1 5-7 (Reserved) 0

2 0-7 Data-exception code DXC

3 0-5 (Reserved) 0

3 6-7 Rounding mode RM

FPC
Byte 3
Bits 6-7 Rounding Mode

00 Round to nearest

01 Round toward 0

10 Round toward +∞

11 Round toward −∞

 Chapter 19. Binary-Floating-Point Instructions 19-3

 BFP Arithmetic

BFP Data Formats

Binary-floating-point numbers and NaNs may be
represented in any of three formats: short, long, or
extended.

BFP Short Format

┌─┬──────────────┬─────────/─────────┐
│ │Exponent + 127│ Fraction │
│S│ (8 bits) │ (23 bits) │
└─┴──────────────┴─────────/─────────┘
 � 1 9 31

Figure 19-4. BFP Short Format (4 bytes)

When a number or NaN in the BFP short format is
loaded into a floating-point register, it occupies the
left half of the register, and the right half remains
unchanged.

BFP Long Format

┌─┬─────────────────┬─────────/─────────┐
│ │ Exponent + 1�23 │ Fraction │
│S│ (11 bits) │ (52 bits) │
└─┴─────────────────┴─────────/─────────┘
 � 1 12 63

Figure 19-5. BFP Long Format (8 bytes)

When a number or NaN in the BFP long format is
loaded into a floating-point register, it occupies the
entire register.

BFP Extended Format

┌─┬────────────────────┬───────────/───────────┐
│ │ Exponent + 16383 │ Fraction │
│S│ (15 bits) │ (112 bits) │
└─┴────────────────────┴───────────/───────────┘
 � 1 16 127

Figure 19-6. BFP Extended Format (16 bytes)

A number or NaN in the BFP extended format
occupies a register pair. The sign and biased
exponent are in the leftmost 16 bits of the left reg-
ister and are followed by the leftmost 48 bits of
the fraction. The rightmost 64 bits of the fraction
are in the right register of the pair.

The properties of the three formats are tabulated
in Figure 19-7 on page 19-5.

 Biased Exponent
For each format, the bias that is used to allow all
exponents to be expressed as unsigned numbers
is shown in the Figure 19-7 on page 19-5.
Biased exponents are similar to the characteristics
of the HFP format, except that special meanings
are attached to biased exponents of all zeros and
all ones, which are discussed in the section
“Classes of BFP Data” on page 19-5.

 Significand
In each format, the binary point of a BFP number
is considered to be to the left of the leftmost frac-
tion bit. To the left of the binary point there is an
implied unit bit, which is considered to be one for
normalized numbers and zero for zeros and
denormalized numbers. The fraction with the
implied unit bit appended on the left is the
significand of the number.

The value of a normalized BFP number is the
significand multiplied by the radix 2 raised to the
power of the unbiased exponent. The value of a
denormalized BFP number is the significand multi-
plied by the radix 2 raised to the power of the
minimum exponent.

A value of one in the rightmost bit position of the
significand in each format is sometimes referred to
as one ulp (unit in the last place).

Values of Nonzero Numbers
The values of nonzero numbers in the various
formats are shown in Figure 19-8.

Figure 19-8. Values of Nonzero Numbers

Programming Note: The IEEE standard speci-
fies minimum requirements for the extended

Number Class Format Value

Normalized Short ±2e−127×(1.f)

Long ±2e−1023×(1.f)

Extended ±2e−16383×(1.f)

Denormalized Short ±2−126×(0.f)

Long ±2−1022×(0.f)

Extended ±2−16382×(0.f)

Explanation:

e Biased exponent (shown in decimal).
f Fraction (in binary).

19-4 z/Architecture Principles of Operation

Figure 19-7. Summary of BFP Data Formats

Property

Format

Short Long Extended

Format length (bits) 32 64 128

Biased-exponent length
(bits)

8 11 15

Fraction length (bits) 23 52 112

Precision (p) 24 53 113

Maximum exponent (Emax) 127 1023 16383

Minimum exponent (Emin) -126 -1022 -16382

Exponent bias 127 1023 16383

Nmax (1-2-24)×2128

�3.4×1038

(1-2-53)×21024

�1.8×10308

(1-2-113)×216384

�1.2×104932

Nmin 1.0×2-126

�1.2×10-38

1.0×2-1022

�2.2×10-308

1.0×2-16382

�3.4×10-4932

Dmin 1.0×2-149

�1.4×10-45

1.0×2-1074

�4.9×10-324

1.0×2-16494

�6.5×10-4966

Explanation:

� Value is approximate.
Dmin Smallest (in magnitude) representable denormalized number.
Nmax Largest (in magnitude) representable number.
Nmin Smallest (in magnitude) representable normalized number.

format but does not include details. The BFP
extended format meets these requirements, far
exceeding them in the area of precision.

Classes of BFP Data

There are six classes of BFP data, which include
numeric and related nonnumeric entities. Each
data item consists of a sign, an exponent, and a
significand. The exponent is biased such that all
biased exponents are nonnegative unsigned
numbers and the minimum biased exponent is
zero. The significand consists of an explicit frac-
tion and an implicit unit bit to the left of the binary
point. The sign bit is zero for plus and one for
minus.

All finite nonzero numbers within the normalized
range permitted by a given format have a unique
BFP representation. There are no unnormalized
numbers, which numbers might allow multiple
representations for the same values, and there are
no unnormalized arithmetic operations. Tiny
numbers of a magnitude below the minimum nor-
malized number in a given format are represented
as denormalized numbers, but those values are
also represented uniquely. The implied unit bit of
a normalized number is one, and that of a a
denormalized number or a zero is zero.

The six classes of BFP data are summarized in
Figure 19-9 on page 19-6.

 Chapter 19. Binary-Floating-Point Instructions 19-5

Figure 19-9. Classes of BFP Data

The instruction TEST DATA CLASS may be used
to determine the class of a BFP operand.

 Zeros
Zeros have a biased exponent of zero and a zero
fraction. The implied unit bit is zero. A +0 is dis-
tinct from −0, except that comparison treats them
as equal.

 Denormalized Numbers
Denormalized numbers are numbers which are
smaller than the smallest normalized number and
greater than zero in magnitude. They have a
biased exponent of zero and a nonzero fraction.
The biased exponent is treated arithmetically as if
it were one, which causes the exponent to be the
minimum exponent. The implied unit bit is zero.

 Normalized Numbers
Normalized numbers have a biased exponent
greater than zero but less than all ones. The
implied unit bit is one, and the fraction may have
any value.

 Infinities
An infinity is represented by a biased exponent of
all ones and a zero fraction. Infinities can partic-
ipate in most arithmetic operations and give a con-
sistent result, usually infinity. In comparisons, +∞
compares greater than any finite number, and −∞
compares less than any finite number.

Signaling and Quiet NaNs
A NaN (not-a-number) entity is represented by a
biased exponent of all ones and a nonzero frac-
tion. NaNs are produced in place of a numeric
result after an invalid operation when there is no
interruption. NaNs may also be used by the
program to flag special operands, such as the
contents of an uninitialized storage area.

There are two types of NaNs, signaling and quiet.
A signaling NaN (SNaN) is distinguished from the
corresponding quiet NaN (QNaN) by the leftmost
fraction bit: zero for the SNaN and one for the
QNaN. A special QNaN is supplied as the default
result for an IEEE-invalid-operation condition; it
has a plus sign and a leftmost fraction bit of one,
with the remaining fraction bits being set to zeros.

Normally, QNaNs are just propagated during com-
putations so that they will remain visible at the
end. An SNaN operand causes an
IEEE-invalid-operation exception. If the
IEEE-invalid-operation mask (FPC 0.0) is zero, the
result is the corresponding QNaN, which is
produced by setting the leftmost fraction bit to
one, and the IEEE-invalid-operation flag (FPC 1.0)
is set to one. If the IEEE-invalid-operation mask
(FPC 0.0) is one, the operation is suppressed, and
a data exception for IEEE-invalid operation occurs.

Programming Notes:

1. The program can generate and assign
meanings to any nonzero fraction values of a
NaN. The CPU propagates those values
unchanged, except that an SNaN is changed
to the corresponding QNaN if the
IEEE-invalid-operation mask bit is zero, and
conversion to a narrower format may truncate
significant bits on the right.

2. The standard requires SNaNs to signal the
invalid-operation exception for the arithmetic,
comparison, and conversion operations that
are part of the standard, but it makes it an
implementation option whether copying an
SNaN without a change of format signals the

Data Class Sign
Biased

Exponent Unit Bit* Fraction

Zero ± 0 0 0

Denormalized
numbers

± 0** 0 Not 0

Normalized
numbers

± Not 0, not
all ones

1 Any

Infinity ± All ones — 0

Quiet NaN ± All ones — F0=1,
Fr=any

Signaling NaN ± All ones — F0=0,
Fr≠0

Explanation:

— Does not apply.
* The unit bit is implied.
** The biased exponent is treated arithmetically

as if it had the value one.
F0 Leftmost bit of fraction.
Fr Remaining bits of fraction.

 NaN Not-a-number.

19-6 z/Architecture Principles of Operation

exception. In the appendix, the standard also
makes it an implementation option whether
SNaNs should signal the invalid-operation
exception for the recommended functions of
copying the sign, taking the absolute value,
reversing the sign, and testing the data class
of a number.

The above functions generally correspond to
the instructions LOAD, LOAD COMPLEMENT,
LOAD NEGATIVE, LOAD POSITIVE, and
TEST DATA CLASS. These instructions do
not signal the invalid-operation exception but,
instead, treat SNaNs like any other data;
giving an exception would be disruptive when
the intention is to include SNaNs. TEST
DATA CLASS does not give an exception
since it is the instruction with which to test for
the presence of SNaNs.

3. LOAD AND TEST signals the invalid-operation
exception when the operand is an SNaN.
This instruction, in conjunction with the above
instructions, gives the program the choice of
either option permitted by the standard.

4. Load-type instructions which change the preci-
sion signal the invalid-operation exception
when the operand is an SNaN, as this is
required by the standard.

 BFP-Format Conversion

The instructions LOAD LENGTHENED and LOAD
ROUNDED perform conversions of numbers
between the short, long, and extended formats.
For BFP formats, conversion involves adjustments
to both the fraction and the exponent. When con-
verting a normalized number to a wider format
(short to long, long to extended, or short to
extended), the fraction is adjusted by appending
sufficient zeros on the right. Conversion to a nar-
rower format requires rounding of the fraction
before dropping excess bits on the right, and an
IEEE-inexact condition may result.

The exponent is adjusted by adding or subtracting
the difference in the biases of the two formats.
When converting to a narrower format, this adjust-
ment causes IEEE underflow if the resultant
biased exponent would be less than one, or IEEE
overflow if the resultant exponent would be equal
to or greater than the maximum exponent for the
new format.

When a denormalized number is converted to a
wider format, the biased exponent of the source
operand is treated as if it had the value one. The
result is normalized.

Programming Notes:

1. When a NaN is converted to a narrower
format, the appropriate number of fraction bits
on the right are simply dropped with no indi-
cation. This is unlike the conversion of
nonzero numbers, where the loss of nonzero
fraction bits causes an IEEE-inexact condition.
Thus, programs which encode NaN fraction
bits for specific purposes must ensure that the
distinguishing bits are placed in the left part of
the fraction.

2. Converting a NaN from a wide format to a
narrower format cannot turn the NaN into an
infinity because an SNaN either causes an
interruption or turns into a QNaN, and all
QNaNs have a leftmost fraction bit of one.

 BFP Rounding

Arithmetic and conversion operations are per-
formed as if they first produced an intermediate
result correct to infinite precision and with
unbounded range. If this intermediate result can
be represented exactly in the target format, then it
is given exactly. Otherwise, the intermediate
result is replaced by one of the two closest values
that can be represented, the choice depending on
the rounding mode.

Rounding is performed automatically as part of
every arithmetic and conversion operation. The
precision of the target (short, long, or extended) is
specified by the operation code.

 Rounding Mode
There are four rounding modes. The current
rounding mode is specified by the value of two
rounding-mode bits in the FPC register, as follows:

00 Round to nearest (default). Round the inter-
mediate result up or down to the nearest
representable value; that is, add, ignoring
the sign, a one to the bit just beyond the last
result bit to be retained, propagate the carry,
and discard the bits beyond the last one to
be retained. If the difference was exactly
one-half ulp (a one in the bit position just
beyond the last place, with all zeros beyond

 Chapter 19. Binary-Floating-Point Instructions 19-7

that), the nearest even number is chosen;
that is, after the rounding addition, the last
result bit retained is set to zero.

If the absolute value of the intermediate
result is equal to or greater than the largest
representable number plus one-half ulp, that
is, if the absolute value is equal to or greater
than 2Emax × (2 − 2− p), the result is rounded to
infinity with the same sign as the interme-
diate result.

01 Round toward 0. Discard all bits to the right
of the last intermediate-result bit to be
retained.

10 Round toward +∞. If the intermediate result
is positive and there are any ones to the
right of the last result bit to be retained, add
one to that bit. Then, for either sign, discard
the bits beyond the last one to be retained.

11 Round toward −∞. If the intermediate result
is negative and there are any ones to the
right of the last result bit to be retained, sub-
tract one from that bit (that is, add one to the
magnitude). Then, for either sign, discard
the bits beyond the last one to be retained.

Programming Notes:

1. Rounding a finite result toward zero cannot
give infinity.

2. Rounding a result toward +∞ can give +∞ but
not −∞.

3. Rounding a result toward −∞ can give −∞ but
not +∞.

 Normalization and
Denormalization

Every arithmetic or conversion operation is consid-
ered to produce an intermediate result as if the
precision and exponent range were unbounded,
unless the result is defined to be zero, infinity, or
NaN. The final result is produced by normalizing
and then rounding this intermediate result. When
there is exponent underflow, that is, the biased
exponent of the normalized intermediate result is
less than one, then the intermediate result is
denormalized to produce the final result, as
described below.

Denormalization consists in shifting the
significand, including the units bit, to the right

while introducing zero bits on the left, and in
increasing the exponent by one for each bit of
shift. When the biased exponent reaches +1, the
significand is rounded according to the current
rounding mode. If all bits of the rounded
significand are zeros, the result is made zero. If
rounding produces a carry into the units bit posi-
tion of the significand, the biased exponent
remains +1, since this result is a normalized
number (±2Emin). Otherwise, the units bit remains
zero, the biased exponent is set to zero, and the
result is considered denormalized.

Arithmetic operations on denormalized operands
are performed as if the operands had first been
normalized.

Intermediate results are first normalized or denor-
malized, as required, and then rounded. This
avoids double rounding of a single operation,
which might increase the rounding error. (Any
right shift required after a carry from rounding to
renormalize the result does not require a second
rounding, because the bit shifted off on the right is
always zero.)

 BFP Comparison

Comparisons are always exact and cannot cause
an IEEE-inexact condition.

Comparison ignores the sign of zero, that is, +0
equals −0.

Infinities with like sign compare equal, that is, +∞
equals +∞, and −∞ equals −∞.

A NaN compares as unordered with any other
operand, whether a finite number, an infinity, or
another NaN, including itself.

Two sets of instructions are provided: COMPARE
and COMPARE AND SIGNAL. In the absence of
QNaNs, these instructions work the same. These
instructions work differently only when both of the
following are true:

� Neither operand of the instruction is an SNaN

� At least one operand of the instruction is a
QNaN

In this case, COMPARE simply sets condition
code 3, but COMPARE AND SIGNAL recognizes
the IEEE-invalid-operation condition. If any

19-8 z/Architecture Principles of Operation

operand is an SNaN, both instructions recognize
the IEEE-invalid-operation condition.

The action when the IEEE-invalid-operation condi-
tion is recognized depends on the
IEEE-invalid-operation mask bit in the FPC reg-
ister. If the mask bit is zero, then the instruction
execution is completed by setting condition code
3, and the IEEE-invalid-operation flag in the FPC
register is set to one. If the mask bit is one, then
the condition is reported as a program interruption
for a data exception with DXC 80 hex (IEEE
invalid operation).

Programming Note: A compiler can select either
COMPARE or COMPARE AND SIGNAL for a
comparison, depending on whether the IEEE
standard or a relevant language standard requires
a QNaN to be recognized as an exception condi-
tion.

Condition Codes for BFP
Instructions

For arithmetic operations with finite or infinite
numeric results, condition codes 0, 1, and 2 are
set to indicate that the result is a zero of either
sign, less than zero, or greater than zero, respec-
tively. The condition-code setting depends only
on an inspection of the rounded result. For com-
parison operations, condition codes 0, 1, and 2
indicate equal, low, or high, respectively. These
settings are the same as for the HFP instructions.

Condition code 3 can also be set. After an arith-
metic operation, condition code 3 indicates a NaN
result of either sign. After a comparison, it indi-
cates that a NaN was involved in the comparison
(the unordered condition). See Figure 19-10.

Figure 19-10. Condition Codes

 Remainder

The instruction DIVIDE TO INTEGER produces
two floating-point results, an exact integer quotient
and the corresponding remainder. The remainder
is defined as follows:

Let

a = Dividend
b = Divisor
q = Exact quotient (a÷b)
r = Remainder

in the selected floating-point format. Then

r = a−b�n

where n is an integer. If q is an integer, then n
equals q. Otherwise, n is obtained by rounding q
according to a specified quotient rounding mode.

When the specified quotient rounding mode is
round to nearest or round toward zero, the
remainder is exact for any finite dividend and any
nonzero divisor. The remainder cannot overflow.

If the integer quotient has a value that lies outside
the range of the operand format, a wrapped result
is provided.

In certain cases where the number of bits in the
integer quotient exceeds or may exceed the
maximum number of bits provided in the precision
of the operand format, partial results are
produced, and more than one execution of the
instruction is required to obtain the final result; this
may be done with a simple instruction loop.

Partial results are produced when the precise quo-
tient is not an integer and the two integers closest
to this precise quotient cannot both be repres-
ented exactly in the precision of the quotient. This
situation exists when the precise quotient is
greater than 2P, where P is the precision of the
operand format, and the remainder is not zero.
When the remainder is zero, then the quotient is
an integer, and the number of bits required to rep-
resent the quotient is never more than the preci-
sion of the target.

Programming Note: The remainder result of
DIVIDE TO INTEGER with a specified quotient
rounding mode of round to nearest corresponds to
the Remainder function in the IEEE standard.
This function is similar to the MOD function found
in some languages and to the mathematical

CC Arithmetic Comparison

0 ±0 Equal
1 <0 Low
2 >0 High
3 ±NaN Unordered

 Chapter 19. Binary-Floating-Point Instructions 19-9

modulo function, but they are not the same. They
differ in the definition of n:

Remainder n is q rounded to nearest.
modulo n is q rounded toward −∞.
MOD n is q rounded toward 0.

Another important difference is that implementa-
tions of modulo and MOD may put range
restrictions on the result because they may simply
use the DIVIDE instruction and accept its range
restrictions.

The MOD definition provides an exact result, as
does Remainder, but the modulo definition may
result in rounding errors.

The differences between the various methods may
be illustrated by the simple example of computing
a divided by b to obtain an integer quotient n,
where a is a series of integers, and b is +4 or −4.
Figure 19-11 on page 19-11 shows the results for
the three definitions.

The result of Remainder lies in the range of zero
to one-half the divisor, inclusive, in magnitude. A
zero result is defined to have the sign of the divi-
dend. A zero divisor is invalid.

The modulo and MOD results can both be com-
puted from the Remainder result; the reverse may
not be true, because of rounding errors and,
depending on the implementation, range
restrictions.

An extreme example of the rounding error that can
occur with the modulo definition is the following,
where the result is restricted to two significant
decimal digits:

modulo(�.�1,-95) = -94.99, which rounds to -95

Remainder(�.�1,-95) = �.�1

The properly rounded modulo result is completely
wrong since it is equal to the divisor instead of
being smaller in magnitude. The Remainder result
is exact and can be used to compute the theore-
tical result of modulo.

Remainder is included as an arithmetic operation
because of its usefulness in argument reduction
when computing elementary transcendental func-
tions. Thus, SIN(X) can be computed to full preci-
sion for any value of X in degrees by first reducing
the argument to Remainder(X,360).

IEEE Exception Conditions

The results of each of the IEEE exception condi-
tions are controlled by a mask bit in the FPC reg-
ister. When an IEEE exception condition is recog-
nized, one of two actions is taken:

� If the corresponding mask bit in the FPC reg-
ister is zero, a default action is taken, as
specified for each condition, and the corre-
sponding flag bit in the FPC register is set to
one. Program execution then continues
normally.

� If the corresponding mask bit in the FPC reg-
ister is one, a program interruption for a data
exception occurs, the operation is suppressed
or completed, depending on the condition, and
the data-exception code (DXC) assigned for
that condition is provided.

IEEE Invalid Operation
An IEEE-invalid-operation condition is recognized
when, in the execution of a BFP instruction, any of
the following occurs:

1. An SNaN is encountered in any BFP arith-
metic, comparison, or conversion operation or
by LOAD AND TEST.

2. A QNaN is encountered in a BFP comparison
by COMPARE AND SIGNAL.

3. A BFP difference is undefined (addition of
infinities of opposite sign, or subtraction of
infinities of like sign).

4. A BFP product is undefined (zero times
infinity).

5. A BFP quotient is undefined (DIVIDE instruc-
tion with both operands zero or both operands
infinity).

6. A BFP remainder is undefined (DIVIDE TO
INTEGER with a dividend of infinity or a
divisor of zero).

7. A BFP square root is undefined (negative
nonzero operand).

If the IEEE-invalid-operation mask bit in the FPC
register is zero, the IEEE-invalid-operation flag bit
in the FPC register is set to one. The completion
of the operation depends on the type of operation
and the operands.

19-10 z/Architecture Principles of Operation

┌─────────┬───┐
│ │ a │
│ │ -8 -7 -6 -5 -4 -3 -2 -1 -� +� +1 +2 +3 +4 +5 +6 +7 +8 │
├─────────┼───┤
│ │ Remainder │
│ b=+4: n │ -2 -2 -2 -1 -1 -1 -� -� -� +� +� +� +1 +1 +1 +2 +2 +2 │
│ r │ -� +1 +2 -1 -� 1 -2 -1 -� +� +1 +2 -1 +� +1 -2 -1 +� │
│ b=-4: n │ +2 +2 +2 +1 +1 +1 +� +� +� -� -� -� -1 -1 -1 -2 -2 -2 │
│ r │ -� +1 +2 -1 -� +1 -2 -1 -� +� +1 +2 -1 +� +1 -2 -1 +� │
├─────────┼───┤
│ │ MOD │
│ b=+4: n │ -2 -1 -1 -1 -1 � � � � � � � +1 +1 +1 +1 +2 │
│ r │ � -3 -2 -1 � -3 -2 -1 � +1 +2 +3 � +1 +2 +3 � │
│ b=-4: n │ +2 +1 +1 +1 +1 � � � � � � � -1 -1 -1 -1 -2 │
│ r │ � -3 -2 -1 � -3 -2 -1 � +1 +2 +3 � +1 +2 +3 � │
├─────────┼───┤
│ │ modulo │
│ b=+4: n │ -2 -2 -2 -2 -1 -1 -1 -1 � � � � +1 +1 +1 +1 +2 │
│ r │ � +1 +2 +3 � +1 +2 +3 � +1 +2 +3 � +1 +2 +3 � │
│ b=-4: n │ +2 +1 +1 +1 +1 � � � � -1 -1 -1 -1 -2 -2 -2 -2 │
│ r │ � -3 -2 -1 � -3 -2 -1 � -3 -2 -1 � -3 -2 -1 � │
├─────────┴───┤
│Explanation: │
│ │
│ a Dividend. │
│ b Divisor. │
│ n Integer quotient. │
│ r Result (Remainder, MOD, or modulo). │
└───┘

Figure 19-11. Comparison of Remainder with MOD and Modulo

If the instruction performs a comparison and no
program interruption occurs, the comparison result
is unordered.

If the instruction is one that produces a BFP
result, if no program interruption occurs, and if
none of the operands is a NaN, the result is the
default QNaN. If one of the operands is a NaN,
that operand becomes the result unchanged,
except that an SNaN is first converted to the cor-
responding QNaN by setting the leftmost fraction
bit to one.

If the IEEE-invalid-operation mask bit in the FPC
register is one, the operation is suppressed, and
the condition is reported as a program interruption
for a data exception with DXC 80 hex.

 IEEE Division-By-Zero
An IEEE-division-by-zero condition is recognized
when in BFP division the divisor is zero and the
dividend is a finite nonzero number.

If the IEEE-division-by-zero mask bit in the FPC
register is zero, the IEEE-division-by-zero flag bit
in the FPC register is set to one. The operation is
completed using as the result an infinity with a

sign that is the exclusive or of the dividend and
divisor signs.

If the IEEE-division-by-zero mask bit in the FPC
register is one, the operation is suppressed, and
the condition is reported as a program interruption
for a data exception with DXC 40 hex.

 IEEE Overflow
An IEEE-overflow condition is recognized when
the exponent of the rounded result of a BFP oper-
ation would be greater than the maximum expo-
nent of the target format if the exponent range
were unbounded.

If the IEEE-overflow mask bit in the FPC register
is zero, the IEEE-overflow flag bit in the FPC reg-
ister is set to one. The result of the operation
depends on the sign of the intermediate result and
on the current rounding mode:

1. When rounding to nearest, the result is infinity
with the sign of the intermediate result.

2. When rounding toward 0, the result is the
largest finite number of the format, with the
sign of the intermediate result.

 Chapter 19. Binary-Floating-Point Instructions 19-11

3. When rounding toward +∞, the result is +∞ if
the sign is plus, or it is the finite negative
number with the largest magnitude if the sign
is minus.

4. When rounding toward −∞, the result is the
largest finite positive number if the sign is plus
or −∞ if the sign is minus.

If the IEEE-overflow mask bit in the FPC register
is one, the operation is completed by producing a
wrapped result, and the condition is reported as a
program interruption for a data exception with
DXC 20, 28, or 2C hex, depending on whether the
wrapped result is exact, inexact and truncated, or
inexact and incremented, respectively.

 IEEE Underflow
An IEEE-underflow condition is recognized when
the exponent of the exact result of a BFP opera-
tion would be less than the minimum exponent of
the target format.

If the IEEE-underflow mask bit in the FPC register
is zero, then the action depends on whether the
result can be represented exactly and, if not, also
on the setting of the IEEE-inexact mask bit in the
FPC register. If the result can be represented
exactly, the operation is completed by denormal-
izing the intermediate result. If the result cannot
be represented exactly and the IEEE-inexact mask
bit in the FPC register is zero, the operation is
completed by denormalizing and rounding the
intermediate result, and the IEEE-underflow and
IEEE-inexact flag bits in the FPC register are set
to ones. If the result cannot be represented
exactly and the IEEE-inexact mask bit in the FPC
register is one, the IEEE-underflow flag bit in the
FPC register is set to one, and the inexact condi-
tion is reported as a program interruption for a
data exception with DXC 08 or 0C hex, depending
on whether the result is inexact and truncated or
inexact and incremented, respectively.

If the IEEE-underflow mask bit in the FPC register
is one, then, regardless of whether the result
could have been represented exactly, the opera-
tion is completed by producing a wrapped result,
and the condition is reported as a program inter-
ruption for a data exception with DXC 10, 18, or
1C hex, depending on whether the wrapped result
is exact, inexact and truncated, or inexact and
incremented, respectively.

 IEEE Inexact
An IEEE-inexact condition is recognized when the
rounded result of a BFP operation differs in value
from the intermediate result computed as if expo-
nent range and precision were unbounded. The
condition is also recognized if rounding the result
causes IEEE overflow and the IEEE-overflow
mask bit is zero. The operation is completed
using the rounded result or, in case of overflow or
underflow, the result specified for IEEE overflow or
IEEE underflow.

If the IEEE-inexact mask bit in the FPC register is
zero, the IEEE-inexact flag bit in the FPC register
is set to one.

If the IEEE-inexact mask bit in the FPC register is
one, the operation is completed, and the condition
is reported as a program interruption for a data
exception with DXC 08 or 0C hex, depending on
whether the result is inexact and truncated or
inexact and incremented, respectively.

Programming Notes:

1. All IEEE traps are reported by means of a
program interruption for a data exception with
a data-exception code. The use of data
exception provides the application program
with a convenient interface since this excep-
tion is one of the original 15 exceptions in the
System/360 architecture and is supported by
most control programs that support the
ESA/390 architecture.

2. The IEEE standard includes recommendations
for the trap handler. When a system traps,
the trap handler should be able to determine:

a. Which exception(s) occurred on this oper-
ation.

b. The kind of operation that was being per-
formed.

c. The destination's format.

d. For overflow, underflow, and inexact
exceptions, the correctly rounded result,
including information that might not fit in
the destination's format.

e. For invalid-operation and divide-by-zero
exceptions, the operand values.

Items a and d are supplied as part of the
interruption action. Items b, c, and e can be
obtained starting with the instruction address

19-12 z/Architecture Principles of Operation

in the old PSW and from this finding the
instruction (which indicates the operation and
format) and then the operands.

3. The description of underflow is one of the
most difficult parts of the standard to under-
stand. This is because:

a. The condition is described as two “corre-
lated events” — “tininess” and “loss of
accuracy.”

b. For tininess, the standard provides two
options for detection: “after rounding” or
“before rounding.”

c. For loss of accuracy, the standard pro-
vides two options for detection: “denormal-
ization loss” or “inexact result.”

d. Implementation of the trap is optional.

e. The conditions to signal underflow are dif-
ferent depending on whether or not the
trap is taken.

Each of the above items is discussed below.

a. Tininess refers to a nonzero number
strictly between ±2Emin. (All denormalized
numbers are in this range.) Loss of accu-
racy means that the result cannot be
represented exactly.

b. Detection of tininess after or before
rounding differs only for the case when
“rounding” would increase the magnitude
of the result to exactly ±2Emin. It must be
noted, however, that the action which the
standard here calls “rounding” is not the
rounding to produce the delivered result
but rounding to compute an intermediate
value having the precision of the result but
“as though the exponent range were
unbounded.” In fact, it is possible that the
delivered result may not be tiny even
though the intermediate value “after
rounding” is tiny.

The option selected in the ESA/390 BFP
architecture (and the RS/6000) is to detect
tininess before rounding.

c. The difference between detection of loss
of accuracy as a denormalization loss or
as an inexact result can best be under-
stood by considering two intermediate
values: (1) a precise intermediate value,
which has unbounded precision and
unbounded exponent range, and (2) a

rounded intermediate value, which is
obtained by rounding the precise interme-
diate value to the precision of the result
but with unbounded exponent range.
Inexact result is said to occur when the
delivered result differs from the precise
intermediate value. Denormalization loss
is said to occur when the delivered result
differs from the rounded intermediate
value. The two options differ in the case
when the delivered result is equal in value
to the rounded intermediate value but
these are not equal to the precise interme-
diate value. Although the standard uses
the term “denormalization loss,” this condi-
tion includes a case in which the delivered
result is normalized.

The option selected in the ESA/390 BFP
architecture (and the RS/6000) is to detect
“loss of accuracy” as an inexact result.

d. Although the standard does not require
traps to be implemented for underflow or
the other arithmetic exceptions, it does
state that “with each exception should be
associated a trap under user control.”
Since it also defines “should” as “that
which is strongly recommended as being
in keeping with the intent of the standard,”
the ESA/390 BFP architecture provides
traps by means of program interruptions.

e. When the underflow trap is enabled,
underflow is to be signaled when tininess
is detected regardless of loss of accuracy.
When the underflow trap is not enabled,
the underflow flag bit is to be set only
when both tininess and loss of accuracy
have been detected. Add and subtract
can result in tiny or inexact results, but not
both. Thus, when underflow is disabled,
add and subtract never set the underflow
flag bit.

 Result Figures
Concise descriptions of the results produced by
many of the BFP instructions are made by means
of figures which contain columns and rows repres-
enting all possible combinations of BFP data class
for the source operands of an instruction. The
information shown at the intersection of a row and
a column is one or more symbols representing the
result or results produced for that particular combi-

 Chapter 19. Binary-Floating-Point Instructions 19-13

nation of source-operand data classes. Explana-
tions of the symbols used are contained in each
figure. In many cases, the explanation of a partic-
ular result is in the form of a cross reference to
another figure. In many cases, the information
shown at the intersection consists of several
symbols separated by commas. All such results
are produced unless one of the results is a
program interruption. In the case of a program
interruption, the operation is suppressed or com-
pleted as shown in Figure 19-13.

Data-Exception Codes (DXC) and
Abbreviations

Figure 19-12 on page 19-15 shows IEEE
exception-condition and flag abbreviations that are
used in the result figures, and it explains the

symbols “Xi:” and “Xz:” that are used in the
figures. Bits 0-4 (i,z,o,u,x) of the eight-bit data-
exception code (DXC) in byte 2 of the FPC reg-
ister are trap flags and correspond to the same
bits in bytes 0 and 1 of the register (IEEE masks
and IEEE flags). The trap flag for an exception,
instead of the IEEE flag, is set to one when an
interruption for the exception is enabled by the
corresponding IEEE mask bit. Bit 5 of byte 2 (y)
is used in conjunction with bit 4, inexact (x), to
indicate that the result has been incremented in
magnitude.

Figure 19-13 shows the various DXCs that can be
indicated, the associated instruction endings, and
abbreviations that are used for the DXCs in the
result figures. (The abbreviation “PID” stands for
“program interruption for a data exception.”)

Figure 19-13. IEEE Data-Exception Codes (DXC) and Abbreviations

Abbr.
DXC
(Hex) Data-Exception-Code Name Instruction Ending

PIDx 08 IEEE inexact and truncated Complete

PIDy 0C IEEE inexact and incremented Complete

PIDu 10 IEEE underflow, exact Complete, wrap exponent

PIDux 18 IEEE underflow, inexact and truncated Complete, wrap exponent

PIDuy 1C IEEE underflow, inexact and incremented Complete, wrap exponent

PIDo 20 IEEE overflow, exact Complete, wrap exponent

PIDox 28 IEEE overflow, inexact and truncated Complete, wrap exponent

PIDoy 2C IEEE overflow, inexact and incremented Complete, wrap exponent

PIDz 40 IEEE division by zero Suppress

PIDi 80 IEEE invalid operation Suppress

 Instructions
The BFP instructions and their mnemonics and
operation codes are listed in Figure 19-14 on
page 19-16. The figure indicates, in the column
labeled “Characteristics,” the instruction format,
when the condition code is set, the instruction
fields that designate access registers, and the
exceptional conditions in operand designations,
data, or results that cause a program interruption.

All BFP instructions are subject to the
AFP-register-control bit, bit 45 of control register 0.
For the BFP instructions to be executed success-

fully, the AFP-register-control bit must be one; oth-
erwise, a BFP-instruction data exception, DXC 2,
is recognized.

Mnemonics for the BFP instructions are distin-
guished from the corresponding HFP instructions
by a B in the mnemonic. Mnemonics for the BFP
instructions have an R as the last letter when the
instruction is in the RRE or RRF format. Certain
letters are used for BFP instructions to represent
operand-format length, as follows:

F Thirty-two-bit fixed point
G Sixty-four-bit fixed point
D Long

19-14 z/Architecture Principles of Operation

Figure 19-12. IEEE Exception-Condition and Flag
Abbreviations

E Short
X Extended

Note: In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler lan-
guage are shown with each instruction. For a
register-to-register operation using COMPARE
(short), for example, CEBR is the mnemonic and
R�,R� the operand designation.

Exception Condition FPC
IEEE
Mask

Bit

IEEE Flag

Name Abbr.
FPC
Bit Abbr.

IEEE invalid operation Xi� 0.0 1.0 SFi

IEEE division by zero Xz� 0.1 1.1 SFz

IEEE overflow Xo 0.2 1.2 SFo

IEEE underflow Xu 0.3 1.3 SFu

IEEE inexact Xx 0.4 1.4 SFx

Explanation:

� The symbol “Xi:” followed by a list of results
in a figure indicates that, when FPC 0.0 is
zero, then instruction execution is completed
by setting SFi (FPC 1.0) to one and
producing the indicated results; and when
FPC 0.0 is one, then instruction execution is
suppressed, the data exception code (DXC)
is set to 80 hex, and a program interruption
for a data exception occurs.

� The symbol “Xz:” followed by a list of results
in a figure indicates that, when FPC 0.1 is
zero, then instruction execution is completed
by setting SFz (FPC 1.1) to one and
producing the indicated results; and when
FPC 0.1 is one, then instruction execution is
suppressed, the data exception code (DXC)
is set to 40 hex, and a program interruption
for a data exception occurs.

 Chapter 19. Binary-Floating-Point Instructions 19-15

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│ADD (extended BFP) │AXBR │RRE C │ SP│Db Xi Xo Xu Xx│ │ │B34A│
│ADD (long BFP) │ADBR │RRE C │ │Db Xi Xo Xu Xx│ │ │B31A│
│ADD (long BFP) │ADB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED1A│
│ADD (short BFP) │AEBR │RRE C │ │Db Xi Xo Xu Xx│ │ │B3�A│
│ADD (short BFP) │AEB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED�A│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│COMPARE (extended BFP) │CXBR │RRE C │ SP│Db Xi │ │ │B349│
│COMPARE (long BFP) │CDBR │RRE C │ │Db Xi │ │ │B319│
│COMPARE (long BFP) │CDB │RXE C │ A │Db Xi │ │ B�│ED19│
│COMPARE (short BFP) │CEBR │RRE C │ │Db Xi │ │ │B3�9│
│COMPARE (short BFP) │CEB │RXE C │ A │Db Xi │ │ B�│ED�9│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│COMPARE AND SIGNAL (extended BFP) │KXBR │RRE C │ SP│Db Xi │ │ │B348│
│COMPARE AND SIGNAL (long BFP) │KDBR │RRE C │ │Db Xi │ │ │B318│
│COMPARE AND SIGNAL (long BFP) │KDB │RXE C │ A │Db Xi │ │ B�│ED18│
│COMPARE AND SIGNAL (short BFP) │KEBR │RRE C │ │Db Xi │ │ │B3�8│
│COMPARE AND SIGNAL (short BFP) │KEB │RXE C │ A │Db Xi │ │ B�│ED�8│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CONVERT FROM FIXED (32 to ext. BFP) │CXFBR│RRE │ SP│Db │ │ │B396│
│CONVERT FROM FIXED (32 to long BFP) │CDFBR│RRE │ │Db │ │ │B395│
│CONVERT FROM FIXED (32 to short BFP)│CEFBR│RRE │ │Db Xx│ │ │B394│
│CONVERT FROM FIXED (64 to ext. BFP) │CXGBR│RRE N │ SP│Db │ │ │B3A6│
│CONVERT FROM FIXED (64 to long BFP) │CDGBR│RRE N │ │Db Xx│ │ │B3A5│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CONVERT FROM FIXED (64 to short BFP)│CEGBR│RRE N │ │Db Xx│ │ │B3A4│
│CONVERT TO FIXED (ext. BFP to 32) │CFXBR│RRF C │ SP│Db Xi Xx│ │ │B39A│
│CONVERT TO FIXED (long BFP to 32) │CFDBR│RRF C │ SP│Db Xi Xx│ │ │B399│
│CONVERT TO FIXED (short BFP to 32) │CFEBR│RRF C │ SP│Db Xi Xx│ │ │B398│
│CONVERT TO FIXED (ext. BFP to 64) │CGXBR│RRF C N │ SP│Db Xi Xx│ │ │B3AA│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│CONVERT TO FIXED (long BFP to 64) │CGDBR│RRF C N │ SP│Db Xi Xx│ │ │B3A9│
│CONVERT TO FIXED (short BFP to 64) │CGEBR│RRF C N │ SP│Db Xi Xx│ │ │B3A8│
│DIVIDE (extended BFP) │DXBR │RRE │ SP│Db Xi Xz Xo Xu Xx│ │ │B34D│
│DIVIDE (long BFP) │DDBR │RRE │ │Db Xi Xz Xo Xu Xx│ │ │B31D│
│DIVIDE (long BFP) │DDB │RXE │ A │Db Xi Xz Xo Xu Xx│ │ B�│ED1D│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│DIVIDE (short BFP) │DEBR │RRE │ │Db Xi Xz Xo Xu Xx│ │ │B3�D│
│DIVIDE (short BFP) │DEB │RXE │ A │Db Xi Xz Xo Xu Xx│ │ B�│ED�D│
│DIVIDE TO INTEGER (long BFP) │DIDBR│RRF C │ SP│Db Xi Xu Xx│ │ │B35B│
│DIVIDE TO INTEGER (short BFP) │DIEBR│RRF C │ SP│Db Xi Xu Xx│ │ │B353│
│EXTRACT FPC │EFPC │RRE │ │Db │ │ │B38C│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD AND TEST (extended BFP) │LTXBR│RRE C │ SP│Db Xi │ │ │B342│
│LOAD AND TEST (long BFP) │LTDBR│RRE C │ │Db Xi │ │ │B312│
│LOAD AND TEST (short BFP) │LTEBR│RRE C │ │Db Xi │ │ │B3�2│
│LOAD COMPLEMENT (extended BFP) │LCXBR│RRE C │ SP│Db │ │ │B343│
│LOAD COMPLEMENT (long BFP) │LCDBR│RRE C │ │Db │ │ │B313│
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 19-14 (Part 1 of 3). Summary of BFP Instructions

19-16 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│LOAD COMPLEMENT (short BFP) │LCEBR│RRE C │ │Db │ │ │B3�3│
│LOAD FP INTEGER (extended BFP) │FIXBR│RRF │ SP│Db Xi Xx│ │ │B347│
│LOAD FP INTEGER (long BFP) │FIDBR│RRF │ SP│Db Xi Xx│ │ │B35F│
│LOAD FP INTEGER (short BFP) │FIEBR│RRF │ SP│Db Xi Xx│ │ │B357│
│LOAD FPC │LFPC │S │ A SP│Db │ │ B�│B29D│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD LENGTHENED (long to ext. BFP) │LXDBR│RRE │ SP│Db Xi │ │ │B3�5│
│LOAD LENGTHENED (long to ext. BFP) │LXDB │RXE │ A SP│Db Xi │ │ B�│ED�5│
│LOAD LENGTHENED (short to ext. BFP) │LXEBR│RRE │ SP│Db Xi │ │ │B3�6│
│LOAD LENGTHENED (short to ext. BFP) │LXEB │RXE │ A SP│Db Xi │ │ B�│ED�6│
│LOAD LENGTHENED (short to long BFP) │LDEBR│RRE │ │Db Xi │ │ │B3�4│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD LENGTHENED (short to long BFP) │LDEB │RXE │ A │Db Xi │ │ B�│ED�4│
│LOAD NEGATIVE (extended BFP) │LNXBR│RRE C │ SP│Db │ │ │B341│
│LOAD NEGATIVE (long BFP) │LNDBR│RRE C │ │Db │ │ │B311│
│LOAD NEGATIVE (short BFP) │LNEBR│RRE C │ │Db │ │ │B3�1│
│LOAD POSITIVE (extended BFP) │LPXBR│RRE C │ SP│Db │ │ │B34�│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│LOAD POSITIVE (long BFP) │LPDBR│RRE C │ │Db │ │ │B31�│
│LOAD POSITIVE (short BFP) │LPEBR│RRE C │ │Db │ │ │B3��│
│LOAD ROUNDED (extended to long BFP) │LDXBR│RRE │ SP│Db Xi Xo Xu Xx│ │ │B345│
│LOAD ROUNDED (extended to short BFP)│LEXBR│RRE │ SP│Db Xi Xo Xu Xx│ │ │B346│
│LOAD ROUNDED (long to short BFP) │LEDBR│RRE │ │Db Xi Xo Xu Xx│ │ │B344│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY (extended BFP) │MXBR │RRE │ SP│Db Xi Xo Xu Xx│ │ │B34C│
│MULTIPLY (long BFP) │MDBR │RRE │ │Db Xi Xo Xu Xx│ │ │B31C│
│MULTIPLY (long BFP) │MDB │RXE │ A │Db Xi Xo Xu Xx│ │ B�│ED1C│
│MULTIPLY (long to extended BFP) │MXDBR│RRE │ SP│Db Xi │ │ │B3�7│
│MULTIPLY (long to extended BFP) │MXDB │RXE │ A SP│Db Xi │ │ B�│ED�7│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY (short BFP) │MEEBR│RRE │ │Db Xi Xo Xu Xx│ │ │B317│
│MULTIPLY (short BFP) │MEEB │RXE │ A │Db Xi Xo Xu Xx│ │ B�│ED17│
│MULTIPLY (short to long BFP) │MDEBR│RRE │ │Db Xi │ │ │B3�C│
│MULTIPLY (short to long BFP) │MDEB │RXE │ A │Db Xi │ │ B�│ED�C│
│MULTIPLY AND ADD (long BFP) │MADBR│RRF │ │Db Xi Xo Xu Xx│ │ │B31E│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY AND ADD (long BFP) │MADB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED1E│
│MULTIPLY AND ADD (short BFP) │MAEBR│RRF │ │Db Xi Xo Xu Xx│ │ │B3�E│
│MULTIPLY AND ADD (short BFP) │MAEB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED�E│
│MULTIPLY AND SUBTRACT (long BFP) │MSDBR│RRF │ │Db Xi Xo Xu Xx│ │ │B31F│
│MULTIPLY AND SUBTRACT (long BFP) │MSDB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED1F│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│MULTIPLY AND SUBTRACT (short BFP) │MSEBR│RRF │ │Db Xi Xo Xu Xx│ │ │B3�F│
│MULTIPLY AND SUBTRACT (short BFP) │MSEB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED�F│
│SET FPC │SFPC │RRE │ SP│Db │ │ │B384│
│SET ROUNDING MODE │SRNM │S │ │Db │ │ │B299│
│SQUARE ROOT (extended BFP) │SQXBR│RRE │ SP│Db Xi Xx│ │ │B316│
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 19-14 (Part 2 of 3). Summary of BFP Instructions

 Chapter 19. Binary-Floating-Point Instructions 19-17

┌────────────────────────────────────┬─────┬──┬────┐
│ │Mne- │ │Op │
│ Name │monic│ Characteristics │Code│
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤
│SQUARE ROOT (long BFP) │SQDBR│RRE │ │Db Xi Xx│ │ │B315│
│SQUARE ROOT (long BFP) │SQDB │RXE │ A │Db Xi Xx│ │ B�│ED15│
│SQUARE ROOT (short BFP) │SQEBR│RRE │ │Db Xi Xx│ │ │B314│
│SQUARE ROOT (short BFP) │SQEB │RXE │ A │Db Xi Xx│ │ B�│ED14│
│STORE FPC │STFPC│S │ A │Db │ ST│ B�│B29C│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│SUBTRACT (extended BFP) │SXBR │RRE C │ SP│Db Xi Xo Xu Xx│ │ │B34B│
│SUBTRACT (long BFP) │SDBR │RRE C │ │Db Xi Xo Xu Xx│ │ │B31B│
│SUBTRACT (long BFP) │SDB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED1B│
│SUBTRACT (short BFP) │SEBR │RRE C │ │Db Xi Xo Xu Xx│ │ │B3�B│
│SUBTRACT (short BFP) │SEB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED�B│
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤
│TEST DATA CLASS (extended BFP) │TCXB │RXE C │ SP│Db │ │ │ED12│
│TEST DATA CLASS (long BFP) │TCDB │RXE C │ │Db │ │ │ED11│
│TEST DATA CLASS (short BFP) │TCEB │RXE C │ │Db │ │ │ED1�│
├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤
│Explanation: │
│ │
│ A Access exceptions for logical addresses. │
│ B� B� field designates an access register in the access-register mode. │
│ C Condition code is set. │
│ Db BFP-instruction data exception. │
│ N Instruction is new in z/Architecture as compared to ESA/39�. │
│ RRE RRE instruction format. │
│ RRF RRF instruction format. │
│ RXE RXE instruction format. │
│ RXF RXF instruction format. │
│ SP Specification exception. │
│ ST PER storage-alteration event. │
│ Xi IEEE invalid-operation condition. │
│ Xo IEEE overflow condition. │
│ Xu IEEE underflow condition. │
│ Xx IEEE inexact condition. │
│ Xz IEEE division-by-zero condition. │
└──┘

Figure 19-14 (Part 3 of 3). Summary of BFP Instructions

 ADD

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
AEBR 'B3�A' Short BFP
ADBR 'B31A' Long BFP
AXBR 'B34A' Extended BFP

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
AEB 'ED�A' Short BFP
ADB 'ED1A' Long BFP

19-18 z/Architecture Principles of Operation

The second operand is added to the first operand,
and the sum is placed at the first-operand
location.

If both operands are numeric and finite, they are
added algebraically, forming an intermediate sum.
The intermediate sum, if nonzero, is normalized
and rounded to the operand format according to
the current rounding mode. The sum is then
placed at the result location.

The sign of the sum is determined by the rules of
algebra. This also applies to a result of zero:

� If the result of rounding a nonzero interme-
diate sum is zero, the sign of the zero result is
the sign of the intermediate sum.

� If the sum of two operands with opposite signs
is exactly zero, the sign of the result is plus in
all rounding modes except round toward −∞,
in which mode the sign is minus.

� The sign of the sum x plus x is the sign of x,
even when x is zero.

If one operand is an infinity and the other is finite
and numeric, the result is that infinity. If both
operands are infinities of the same sign, the result
is the same infinity. If the two operands are infin-
ities of opposite signs, an IEEE-invalid-operation
condition is recognized.

See Figure 19-16 on page 19-20 for a detailed
description of the results of this instruction.
(Figure 19-15 is referred to by Figure 19-16.)

For AXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions:

 � Invalid operation
 � Overflow
 � Underflow
 � Inexact

 Program Exceptions:

� Access (fetch, operand 2 of AEB and ADB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (AXBR only)

Programming Note: Interchanging the two oper-
ands in a BFP addition does not affect the value
of the sum when the result is numeric. This is not
true, however, when both operands are QNaNs, in
which case the result is the first operand; or when
both operands are SNaNs and the
IEEE-invalid-operation mask bit in the FPC reg-
ister is zero, in which case the result is the QNaN
derived from the first operand.

Figure 19-15. Condition Code for Resultant Sum

Value of Result (r) Condition Code

r=0 cc0

r<0 cc1

r>0 cc2

Explanation:

ccn Condition code is set to n.

 Chapter 19. Binary-Floating-Point Instructions 19-19

Figure 19-16. Results: ADD

First
Operand

(a) Is

Results for ADD (a+b)
when Second Operand (b) Is

−∞ −Nn −Dn −0 +0 +Dn +Nn +∞ QNaN SNaN

−∞ T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

Xi:
T(dNaN),

cc3

T(b),
cc3

Xi:
T(b*),
cc3

−Nn T(−∞),
cc1

R(a+b),
cc1

R(a+b),
cc1

T(a),
cc1

T(a),
cc1

R(a+b),
cc1

R(a+b),
ccrs

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

−Dn T(−∞),
cc1

R(a+b),
cc1

R(a+b),
cc1

R(a),
cc1

R(a),
cc1

R(a+b),
ccrs

R(a+b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

−0 T(−∞),
cc1

T(b),
cc1

R(b),
cc1

T(−0),
cc0

Rezd,
cc0

R(b),
cc2

T(b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

+0 T(−∞),
cc1

T(b),
cc1

R(b),
cc1

Rezd,
cc0

T(+0),
cc0

R(b),
cc2

T(b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

+Dn T(−∞),
cc1

R(a+b),
cc1

R(a+b),
ccrs

R(a),
cc2

R(a),
cc2

R(a+b),
cc2

R(a+b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

+Nn T(−∞),
cc1

R(a+b),
ccrs

R(a+b),
cc2

T(a),
cc2

T(a),
cc2

R(a+b),
cc2

R(a+b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

+∞ Xi:
T(dNaN),

cc3

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

QNaN T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

Xi:
T(b*),
cc3

SNaN Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

ccn Condition code is set to n.
ccrs Condition code is set according to the resultant sum. See Figure 19-15 on page 19-19.
dNaN Default quiet NaN.

 Dn Denormalized number.
Nn Normalized nonzero number.
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
Rezd Exact zero-difference result. See Figure 19-17 on page 19-21.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

19-20 z/Architecture Principles of Operation

Figure 19-17 (Part 1 of 2). Action for R(v): Rounding and Range Function

Range of v Case

Normal Result (r)
when Rounding Mode Is

To
Nearest

Toward
0

Toward
+∞

Toward
−∞

v < −Nmax, p < −Nmax Overflow −∞� −Nmax −Nmax −∞�

v < −Nmax, p = −Nmax Normal −Nmax −Nmax −Nmax –

−Nmax ≤ v ≤ −Nmin Normal p p p p

−Nmin < v ≤ −Dmin Tiny d* d d d*

−Dmin < v < −Dmin/2 Tiny −Dmin −0 −0 −Dmin

−Dmin/2 ≤ v < 0 Tiny −0 −0 −0 −Dmin

v = 0 Exact zero difference� +0 +0 +0 −0

0 < v ≤ +Dmin/2 Tiny +0 +0 +Dmin +0

+Dmin/2 < v < +Dmin Tiny +Dmin +0 +Dmin +0

+Dmin ≤ v < +Nmin Tiny d* d d* d

+Nmin ≤ v ≤ +Nmax Normal p p p p

+Nmax < v, p = +Nmax Normal +Nmax +Nmax – +Nmax

+Nmax < v, +Nmax < p Overflow +∞� +Nmax +∞� +Nmax

Explanation:

– This situation cannot occur.
* The rounded value, in the extreme case, may be Nmin. In this case, the exception condi-

tions are underflow, inexact and incremented.
� The normal result r is considered to have been incremented.
� The exact-zero-difference case applies only to ADD, SUBTRACT, MULTIPLY AND ADD,

and MULTIPLY AND SUBTRACT. For all other operations, a zero result is detected by
inspection of the source operands without use of the R(v) function.

d The value derived when the exact result v is rounded to the format of the target, including
both precision and bounded exponent range. Except as explained in note *, this is a
denormalized number.

p The value derived when the exact result v is rounded to the precision of the target, but
assuming an unbounded exponent range.

v Exact result before rounding, assuming unbounded precision and an unbounded exponent
range. For LOAD ROUNDED, v is the source value a.

Dmin Smallest (in magnitude) representable denormalized number in the target format.
Nmax Largest (in magnitude) representable finite number in the target format.
Nmin Smallest (in magnitude) representable normalized number in the target format.

 Chapter 19. Binary-Floating-Point Instructions 19-21

Figure 19-17 (Part 2 of 2). Action for R(v): Rounding and Range Function

Case

Is r
Inexact

(r≠v)

Overflow
Mask

(FPC 0.2)

Underflow
Mask

(FPC 0.3)

Inexact
Mask

(FPC 0.4)

Is r Inc-
remented
(|r|>|v|)

Is p
Inexact
(p≠v)

Is p Inc-
remented
(|p|>|v|) Results

Overflow Yes� 0 – 0 – – – T(r), SFo←1, SFx←1

Overflow Yes� 0 – 1 No – – T(r), SFo←1, PIDx(08)

Overflow Yes� 0 – 1 Yes – – T(r), SFo←1, PIDy(0C)

Overflow Yes� 1 – – – No No� Tw(p÷β), PIDo(20)

Overflow Yes� 1 – – – Yes No Tw(p÷β), PIDox(28)

Overflow Yes� 1 – – – Yes Yes Tw(p÷β), PIDoy(2C)

Normal No – – – – – – T(r)

Normal Yes – – 0 – – – T(r), SFx←1

Normal Yes – – 1 No – – T(r), PIDx(08)

Normal Yes – – 1 Yes – – T(r), PIDy(0C)

Tiny No – 0 – – – – T(r)

Tiny No – 1 – – No� No� Tw(p�β), PIDu(10)

Tiny Yes – 0 0 – – – T(r), SFu←1, SFx←1

Tiny Yes – 0 1 No – – T(r), SFu←1, PIDx(08)

Tiny Yes – 0 1 Yes – – T(r), SFu←1, PIDy(0C)

Tiny Yes – 1 – – No No� Tw(p�β), PIDu(10)

Tiny Yes – 1 – – Yes No Tw(p�β), PIDux(18)

Tiny Yes – 1 – – Yes Yes Tw(p�β), PIDuy(1C)

Explanation:

– The results do not depend on this condition or mask bit.
� This condition is true by virtue of the state of some condition to the left of this column.
β Wrap adjust, which depends on the type of operation and operand format. For all operations except

LOAD ROUNDED, the wrap adjust depends on the target format: β = 2α, where α is 192 for short, 1536
for long, and 24576 for extended. For LOAD ROUNDED, the wrap adjust depends on the source format:
β = 2κ, where κ is 512 for long and 8192 for extended.

p The value derived when the exact result v is rounded to the precision of the target, but assuming an
unbounded exponent range.

r Normal result as defined in Part 1 of this figure.
v Exact result before rounding, assuming unbounded precision and unbounded exponent range.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-13 on

page 19-14.
SFo IEEE overflow flag, FPC 1.2.
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.
Tw(x) The wrapped result x is placed at the target operand location. For all operations except LOAD

ROUNDED, the wrapped result is in the same format and length as normal results at the target location.
For LOAD ROUNDED, the wrapped result is in the same format and length as the source, but rounded to
the precision of the target.

19-22 z/Architecture Principles of Operation

 COMPARE

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
CEBR 'B3�9' Short BFP
CDBR 'B319' Long BFP
CXBR 'B349' Extended BFP

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
CEB 'ED�9' Short BFP
CDB 'ED19' Long BFP

The first operand is compared with the second
operand, and the condition code is set to indicate
the result.

If both operands are numeric and finite, the com-
parison is algebraic and follows the procedure for
BFP subtraction, except that the difference is dis-
carded after setting the condition code, and both
operands remain unchanged. If the difference is
exactly zero with either sign, the operands are
equal; this includes zero operands (so +0 equals
−0). If a nonzero difference is positive or nega-
tive, the first operand is high or low, respectively.

+∞ compares greater than any finite number, and
all finite numbers compare greater than −∞. Two
infinity operands of like sign compare equal.

Numeric comparison is exact, and the condition
code is determined for finite operands as if range
and precision were unlimited. No overflow or
underflow condition can occur.

If either or both operands are QNaNs and neither
operand is an SNaN, the comparison result is
unordered, and condition code 3 is set.

If either or both operands are SNaNs, an
IEEE-invalid-operation condition is recognized. If
the IEEE invalid-operation mask bit is one, a
program interruption for a data exception with
DXC 80 hex (IEEE invalid operation) occurs. If
the IEEE-invalid-operation mask bit is zero, the
IEEE-invalid-operation flag bit is set to one, and
instruction execution is completed by setting con-
dition code 3.

See Figure 19-18 on page 19-24 for a detailed
description of the results of this instruction.

For CXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered

IEEE Exception Conditions:

 � Invalid operation

 Program Exceptions:

� Access (fetch, operand 2 of CEB and CDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (CXBR only)

Programming Notes:

1. COMPARE may be used by a compiler to
implement those comparisons which are
required by the IEEE standard to not recog-
nize an exception condition when the result is
unordered due to a QNaN.

2. The IEEE standard requires that it be possible
to compare BFP operands in different formats.
To accomplish this, LOAD LENGTHENED
may be used before COMPARE to convert the
shorter operand to the same format as the
longer.

 Chapter 19. Binary-Floating-Point Instructions 19-23

Figure 19-18. Results: COMPARE

First
Operand

(a) Is

Results for COMPARE (a:b)
when Second Operand (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ cc0 cc1 cc1 cc1 cc1 cc1 cc3 Xi: cc3

−Fn cc2 C(a:b) cc1 cc1 cc1 cc1 cc3 Xi: cc3

−0 cc2 cc2 cc0 cc0 cc1 cc1 cc3 Xi: cc3

+0 cc2 cc2 cc0 cc0 cc1 cc1 cc3 Xi: cc3

+Fn cc2 cc2 cc2 cc2 C(a:b) cc1 cc3 Xi: cc3

+∞ cc2 cc2 cc2 cc2 cc2 cc0 cc3 Xi: cc3

QNaN cc3 cc3 cc3 cc3 cc3 cc3 cc3 Xi: cc3

SNaN Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3

Explanation:

ccn Condition code is set to n.
C(a:b) Basic compare results. See Figure 19-19.
Fn Finite nonzero number (includes both denormalized and normalized).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-19. Basic Compare Results

COMPARE AND SIGNAL

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
KEBR 'B3�8' Short BFP
KDBR 'B318' Long BFP
KXBR 'B348' Extended BFP

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
KEB 'ED�8' Short BFP
KDB 'ED18' Long BFP

The first operand is compared with the second
operand, and the condition code is set to indicate
the result. The operation is the same as for
COMPARE except that QNaN operands cause an
IEEE-invalid-operation condition to be recognized.
Thus, QNaN operands are treated as if they were
SNaNs.

See Figure 19-20 on page 19-25 for a detailed
description of the results of this instruction.

For KXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered

Relation of Value
(a) to Value (b)

Condition Code
for C(a:b)

a=b cc0

a<b cc1

a>b cc2

Explanation:

ccn Condition code is set to n.

19-24 z/Architecture Principles of Operation

IEEE Exception Conditions:

 � Invalid operation

 Program Exceptions:

� Access (fetch, operand 2 of KEB and KDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (KXBR only)

Programming Notes:

1. COMPARE AND SIGNAL may be used by a
compiler to implement those comparisons
which are required by the IEEE standard to
recognize an exception condition when the
result is unordered due to a QNaN.

2. The IEEE standard requires that it be possible
to compare BFP operands in different formats.
To accomplish this, LOAD LENGTHENED
may be used before COMPARE AND SIGNAL
to convert the shorter operand to the same
format as the longer.

Figure 19-20. Results: COMPARE AND SIGNAL

First
Operand

(a) Is

Results for COMPARE AND SIGNAL (a:b)
when Second Operand (b) Is

−∞ −Fn −0 +0 +Fn +∞ NaN

−∞ cc0 cc1 cc1 cc1 cc1 cc1 Xi: cc3

−Fn cc2 C(a:b) cc1 cc1 cc1 cc1 Xi: cc3

−0 cc2 cc2 cc0 cc0 cc1 cc1 Xi: cc3

+0 cc2 cc2 cc0 cc0 cc1 cc1 Xi: cc3

+Fn cc2 cc2 cc2 cc2 C(a:b) cc1 Xi: cc3

+∞ cc2 cc2 cc2 cc2 cc2 cc0 Xi: cc3

NaN Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3

Explanation:

ccn Condition code is set to n.
C(a:b) Basic compare results. See Figure 19-19 on page 19-24.
Fn Finite nonzero number (includes both denormalized and normalized).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

 Chapter 19. Binary-Floating-Point Instructions 19-25

CONVERT FROM FIXED

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
CEFBR 'B394' 32-bit binary-integer

operand, short BFP result
CDFBR 'B395' 32-bit binary-integer

operand, long BFP result
CXFBR 'B396' 32-bit binary-integer

operand, extended BFP
 result
CEGBR 'B3A4' 64-bit binary-integer

operand, short BFP result
CDGBR 'B3A5' 64-bit binary-integer

operand, long BFP result
CXGBR 'B3A6' 64-bit binary-integer

operand, extended BFP
 result

The fixed-point second operand is converted to
the BFP format, and the result is placed at the
first-operand location.

The second operand is a signed binary integer
that is located in the general register designated
by R�. A 32-bit operand is in bit positions 32-63
of the register.

The result is rounded according to the current
rounding mode before it is placed at the first-
operand location.

See Figure 19-21 on page 19-27 for a detailed
description of the results of this instruction.

For CXFBR and CXGBR, the R� field must desig-
nate a valid floating-point-register pair; otherwise,
a specification exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exception Conditions:

� Inexact (CEFBR, CDGBR, CEGBR)

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (CXFBR and CXGBR)

CONVERT TO FIXED

Mnemonic R�,M�,R� [RRF]

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ M� │////│ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

Mnemonic Op Code Operands
CFEBR 'B398' Short BFP operand, 32-bit
 binary-integer result
CFDBR 'B399' Long BFP operand, 32-bit
 binary-integer result
CFXBR 'B39A' Extended BFP operand, 32-

bit binary-integer result
CGEBR 'B3A8' Short BFP operand, 64-bit
 binary-integer result
CGDBR 'B3A9' Long BFP operand, 64-bit
 binary-integer result
CGXBR 'B3AA' Extended BFP operand, 64-

bit binary-integer result

The BFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is a signed binary integer that is placed
in the general register designated by R�. A 32-bit
result replaces bits 32-63 of the register, and bits
0-31 of the register remain unchanged.

If the second operand is numeric and finite, it is
rounded to an integer value by rounding as speci-
fied by the modifier in the M� field:

M� Rounding Method
0 According to current rounding mode
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

When the modifier field is zero, rounding is con-
trolled by the current rounding mode specified in
the FPC register. When the field is not zero,
rounding is performed as specified by the modifier,
regardless of the current rounding mode.
Rounding for modifiers 4-7 is the same as for
rounding modes 0-3 (binary 00-11), respectively.
Biased round to nearest (modifier 1) is the same
as round to nearest (modifier 4), except when the
second operand is exactly halfway between two
integers, in which case the result for biased
rounding is the next integer that is greater in mag-
nitude.

19-26 z/Architecture Principles of Operation

Figure 19-21. Results: Single-Operand Instructions

Instruction

Results for Instructions with a Single Operand (a)
when Operand (a) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

CONVERT FROM
FIXED

– Rf(a) – T(+0) Rf(a) – – –

LOAD AND TEST T(−∞) T(a) T(−0) T(+0) T(a) T(+∞) T(a) Xi: T(a*)

LOAD LENGTHENED T(−∞) T(a)� T(−0) T(+0) T(a)� T(+∞) T(a)� Xi: T(a*)�

LOAD ROUNDED T(−∞) R(a) T(−0) T(+0) R(a) T(+∞) T(a)� Xi: T(a*)�

SQUARE ROOT Xi:
T(dNaN)

Xi:
T(dNaN)

T(−0) T(+0) R(√ a) T(+∞) T(a) Xi: T(a*)

Explanation:

– This situation cannot occur.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand

location.
� The operand is extended to the longer format by appending zeros on the right before it is

placed at the target operand location.
� The NaN is shortened to the target format by truncating the rightmost bits.
dNaN Default quiet NaN.
Fn Finite nonzero number (includes both denormalized and normalized).
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
Rf(a) The value a is converted to the exact floating-point number v, and then action R(v) is per-

formed.
T(x) The value x is placed in the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

The sign of the result is the sign of the second
operand, except that a zero result has a plus sign.

See Figure 19-22 on page 19-28 for a detailed
description of the results of this instruction.

The M� field must designate a valid modifier; oth-
erwise, a specification exception is recognized.
For CFXBR and CGXBR, the R� field must desig-
nate a valid floating-point-register pair; otherwise,
a specification exception is recognized.

Resulting Condition Code:

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

IEEE Exception Conditions:

 � Invalid operation
 � Inexact

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

 � Specification

 Chapter 19. Binary-Floating-Point Instructions 19-27

Figure 19-22. Results: CONVERT TO FIXED

Operand (a)

Is n
Inexact
(n≠a)

Inv.-Op.
Mask

(FPC 0.0)

Inexact
Mask

(FPC 0.4)

Is n Inc-
remented
(|n|>|a|) Results

−∞ ≤ a < MN, p < MN – 0 0 – T(MN), SFi←1, SFx←1, cc3

−∞ ≤ a < MN, p < MN – 0 1 – T(MN), SFi←1, cc3, PIDx(08)

−∞ ≤ a < MN, p < MN – 1 – – PIDi(80)

−∞ < a < MN, p = MN – – 0 – T(MN), SFx←1, cc1

−∞ < a < MN, p = MN – – 1 – T(MN), cc1, PIDx(08)

MN ≤ a < 0 No – – – T(n), cc1

MN ≤ a < 0 Yes – 0 – T(n), SFx←1, cc1

MN ≤ a < 0 Yes – 1 No T(n), cc1, PIDx(08)

MN ≤ a < 0 Yes – 1 Yes T(n), cc1, PIDy(0C)

−0 No� – – – T(0), cc0

+0 No� – – – T(0), cc0

0 < a ≤ MP No – – – T(n), cc2

0 < a ≤ MP Yes – 0 – T(n), SFx←1, cc2

0 < a ≤ MP Yes – 1 No T(n), cc2, PIDx(08)

0 < a ≤ MP Yes – 1 Yes T(n), cc2, PIDy(0C)

MP < a < +∞, p = MP – – 0 – T(MP), SFx←1, cc2

MP < a < +∞, p = MP – – 1 – T(MP), cc2, PIDx(08)

MP < a ≤ +∞, p > MP – 0 0 – T(MP), SFi←1, SFx←1, cc3

MP < a ≤ +∞, p > MP – 0 1 – T(MP), SFi←1, cc3, PIDx(08)

MP < a ≤ +∞, p > MP – 1 – – PIDi(80)

NaN – 0 0 – T(MN), SFi←1, SFx←1, cc3

NaN – 0 1 – T(MN), SFi←1, cc3, PIDx(08)

NaN – 1 – – PIDi(80)

Explanation:

– The results do not depend on this condition or mask bit.
� This condition is true by virtue of the state of some condition to the left of this column.
ccn Condition code is set to n.
n The value p converted to a fixed-point result.
p The value derived when the source value a is rounded to an integer using the specified rounding mode.
MN Maximum negative number representable in the target fixed-point format.
MP Maximum positive number representable in the target fixed-point format.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-13 on

page 19-14.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.

19-28 z/Architecture Principles of Operation

 DIVIDE

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
DEBR 'B3�D' Short BFP
DDBR 'B31D' Long BFP
DXBR 'B34D' Extended BFP

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
DEB 'ED�D' Short BFP
DDB 'ED1D' Long BFP

The first operand (the dividend) is divided by the
second operand (the divisor), and the quotient is
placed at the first-operand location. No remainder
is preserved.

If the divisor is nonzero and both the dividend and
divisor are numeric and finite, the first operand is
divided by the second operand to form an interme-
diate quotient. The intermediate quotient, if
nonzero, is normalized and rounded to the target
format according to the current rounding mode.

The sign of the quotient is the exclusive or of the
operand signs. This includes the sign of a zero
quotient.

If the divisor is zero but the dividend is nonzero
and finite, an IEEE-division-by-zero condition is
recognized. If the dividend and divisor are both
zero, or if both are infinite, regardless of sign, an
IEEE-invalid-operation condition is recognized.

See Figure 19-23 on page 19-30 for a detailed
description of the results of this instruction.

For DXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exception Conditions:

 � Invalid operation
� Division by zero

 � Overflow
 � Underflow
 � Inexact

 Program Exceptions:

� Access (fetch, operand 2 of DEB and DDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (DXBR only)

DIVIDE TO INTEGER

Mnemonic R�,R�,R�,M" [RRF]

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ R� │ M" │ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

Mnemonic Op Code Operands
DIEBR 'B353' Short BFP
DIDBR 'B35B' Long BFP

The first operand (the dividend) is divided by the
second operand (the divisor). An integer quotient
in BFP form is produced and placed at the third-
operand location. The remainder replaces the div-
idend at the first-operand location. The first,
second, and third operands must be in different
registers. The condition code indicates whether
partial or complete results have been produced
and whether the quotient is numeric and finite.

The remainder result is

r = a−b�n

where a is the dividend, b the divisor, and n an
integer obtained by rounding the precise quotient

q = a÷b.

The first-operand result is r with the sign deter-
mined by the above expression. The third-
operand result is n with a sign that is the exclusive
or of the dividend and divisor signs.

If the precise quotient is not an integer and the
two integers closest to this precise quotient cannot
both be represented exactly in the precision of the
quotient, then a partial quotient and partial
remainder are formed. This partial quotient n and
the corresponding partial remainder

 Chapter 19. Binary-Floating-Point Instructions 19-29

Figure 19-23. Results: DIVIDE

Dividend
(a)

Results for DIVIDE (a÷b)
when Divisor (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ Xi:
T(dNaN)

T(+∞) T(+∞) T(−∞) T(−∞) Xi:
T(dNaN)

T(b) Xi: T(b*)

−Fn T(+0) R(a÷b) Xz: T(+∞) Xz: T(−∞) R(a÷b) T(−0) T(b) Xi: T(b*)

−0 T(+0) T(+0) Xi:
T(dNaN)

Xi:
T(dNaN)

T(−0) T(−0) T(b) Xi: T(b*)

+0 T(−0) T(−0) Xi:
T(dNaN)

Xi:
T(dNaN)

T(+0) T(+0) T(b) Xi: T(b*)

+Fn T(−0) R(a÷b) Xz: T(−∞) Xz: T(+∞) R(a÷b) T(+0) T(b) Xi: T(b*)

+∞ Xi:
T(dNaN)

T(−∞) T(−∞) T(+∞) T(+∞) Xi:
T(dNaN)

T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

Fn Finite nonzero number (includes both denormalized and normalized).
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
Xz: IEEE division-by-zero exception. The results shown are produced only when FPC 0.1 is zero.

r = a−b�n

are used as the results. The sign of a partial
remainder is the same as the sign of the dividend.
The sign of a partial quotient is the exclusive or of
the dividend and divisor signs.

If the remainder is zero, then the precise quotient
is an integer and can be represented exactly in
the precision of the quotient.

The M" field, called the modifier field, specifies
rounding of the final quotient. This rounding is
called the “specified quotient rounding mode” as
contrasted to the “current rounding mode” speci-
fied by the rounding-mode bits in the FPC register.
The final quotient is rounded according to the
specified quotient rounding mode. The specified
quotient rounding mode affects only the final quo-
tient; partial quotients are rounded toward zero.

Since the partial quotient is rounded toward zero,
the partial remainder is always exact. For the
specified quotient rounding modes of round toward
0, round to nearest, and biased round to nearest,
the final remainder is exact. For the specified
quotient rounding modes of round toward +∞ and
round toward −∞, the final remainder may not be
exact.

The final quotient is rounded to an integer by
rounding as specified by the modifier in the M"
field:

M� Rounding Method
0 According to current rounding mode
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

19-30 z/Architecture Principles of Operation

A modifier other than 0, 1, or 4-7 is invalid.

When the modifier field is zero, rounding of the
final quotient is controlled by the current rounding
mode specified in the FPC register. When the
field is not zero, rounding is performed as speci-
fied by the modifier, regardless of the current
rounding mode. Rounding for modifiers 4-7 is the
same as for rounding modes 0-3 (binary 00-11),
respectively. Biased round to nearest (modifier 1)
is the same as round to nearest (modifier 4),
except when the final quotient is exactly halfway
between two integers, in which case the result for
biased rounding is the next integer that is greater
in magnitude.

Underflow is recognized only on the final
remainder, not on the partial remainder.

For the specified quotient rounding modes of
round toward +∞ and round toward −∞, the final
remainder may not be exact. When, in these
cases, the final remainder is inexact, it is rounded
according to the current rounding mode specified
in the FPC register.

The sign of a zero quotient is the exclusive or of
the divisor and dividend signs.

A zero remainder has the sign of the dividend.

See Figure 19-24 on page 19-32 for a detailed
description of the results of this instruction.

If the quotient exponent is greater than the largest
exponent that can be represented in the operand
format, the correct remainder or partial remainder
still is produced, and the third-operand result is
the correct value, but with the exponent reduced
by 192 or 1536 for short or long operands, respec-
tively. The condition code indicates this out-of-
range condition.

The M" field must designate a valid modifier, and
the R�, R�, and R� fields must designate different
registers; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Remainder complete; normal quotient
1 Remainder complete; quotient overflow or

NaN
2 Remainder incomplete; normal quotient
3 Remainder incomplete; quotient overflow or

NaN

IEEE Exception Conditions:

 � Invalid operation
 � Underflow
 � Inexact

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

 � Specification

Programming Notes:

1. The Remainder operation, as defined in the
IEEE standard, is produced by issuing DIVIDE
TO INTEGER in an iterative loop, with the M"
field set to 4.

2. The rounding specifications of round to
nearest, round toward 0, and round toward −∞
permit the instruction to be used directly to
produce the Remainder, MOD, and modulo
functions, respectively.

3. When DIVIDE TO INTEGER is used in an iter-
ative loop, all quotients are produced in BFP
format but may be considered as portions of a
multiple-precision fixed-point number.

4. In the case when the resulting remainder is
denormalized, the IEEE standard requires that
if traps are implemented and the underflow
mask is one, then an underflow trap must
occur. To accomplish this, DIVIDE TO
INTEGER recognizes underflow on the final
remainder but not on the partial remainder.
Since in all cases when underflow occurs on
the partial remainder it will occur again on the
final remainder, recognizing overflow on only
the final remainder avoids two underflow traps
to be reported for what the standard considers
a single Remainder operation.

 Chapter 19. Binary-Floating-Point Instructions 19-31

Figure 19-24 (Part 1 of 2). Results: DIVIDE TO INTEGER

Dividend
(a)

Results for DIVIDE TO INTEGER (a÷b)
when Divisor (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

T(b), cc1 Xi: T(b*),
cc1

−Fn T(a,+0),
cc0

D(a,b) Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

D(a,b) T(a,−0),
cc0

T(b), cc1 Xi: T(b*),
cc1

−0 T(−0,+0),
cc0

T(−0,+0),
cc0

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

T(−0,−0),
cc0

T(−0,−0),
cc0

T(b), cc1 Xi: T(b*),
cc1

+0 T(+0,−0),
cc0

T(+0,−0),
cc0

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

T(+0,+0),
cc0

T(+0,+0),
cc0

T(b), cc1 Xi: T(b*),
cc1

+Fn T(a,−0),
cc0

D(a,b) Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

D(a,b) T(a,+0),
cc0

T(b), cc1 Xi: T(b*),
cc1

+∞ Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

T(b), cc1 Xi: T(b*),
cc1

QNaN T(a), cc1 T(a), cc1 T(a), cc1 T(a), cc1 T(a), cc1 T(a), cc1 T(a), cc1 Xi: T(b*),
cc1

SNaN Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

ccn Condition code is set to n.
D(a,b) Basic divide-to-integer results. See Part 2 of this figure.
Fn Finite nonzero number (includes both denormalized and normalized).
T(r,q) Results r (the remainder) and q (the quotient) are placed in target operands 1 and 3, respec-

tively.
T(x) Value x is placed in both target operands 1 and 3.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

19-32 z/Architecture Principles of Operation

Figure 19-24 (Part 2 of 2). Results: DIVIDE TO INTEGER

|q| < 2P r = 0 Case
Is r
Tiny

Is r
Inexact

Underflow
Mask

(FPC 0.3)

Inexact
mask

(FPC 0.4)
Quotient
Overflow

Is r
Incre-

mented Results for D(a,b)

Yes Yes Final No� No� – – No� – T(r,n), cc0

Yes No Final No No – – No� – T(r,n), cc0

Yes No Final Yes No� 0 – No� – T(r,n), cc0

Yes No Final Yes No� 1 – No� No� T(r�β, n), cc0, PIDu(10)

Yes No Final No Yes – 0 No� – T(r,n), SFx←1, cc0

Yes No Final No Yes – 1 No� No T(r,n), cc0, PIDx(08)

Yes No Final No Yes – 1 No� Yes T(r,n), cc0, PIDy(0C)

No Yes Final No� No� – – No – T(r,n), cc0

No Yes Final No� No� – – Yes – T(r,n÷β), cc1

No No Partial –� No� – – No – T(r,n), cc2

No No Partial –� No� – – Yes – T(r, n÷β), cc3

Explanation:

– The results do not depend on this condition or mask bit.
� This condition is true by virtue of the state of some condition to the left of this column. That is, when |q|

< 2P, there cannot be a quotient overflow; the cases of remainder is zero, tiny, or inexact are mutually
exclusive; and when r is exact, it is not incremented.

� Underflow is not recognized for a partial remainder.
β Wrap adjust, which depends on the target format: β = 2α, where α is 192 for short and 1536 for long.
|q| The absolute value of q., where q is the exact result of a÷b before rounding, assuming unbounded preci-

sion and unbounded exponent range.
cc0 Condition code is set to 0 (remainder complete; normal quotient).
cc1 Condition code is set to 1 (remainder complete; quotient overflow).
cc2 Condition code is set to 2 (remainder incomplete; normal quotient).
cc3 Condition code is set to 3 (remainder incomplete; quotient overflow).
n Integer quotient. n = q, rounded toward 0 for partial results and rounded according to the specified

quotient rounding mode for final results. The sign of the integer quotient, including the cases of partial
and final, wrapped-around overflow and zero, is the exclusive or of the signs of the dividend (a) and
divisor (b).

r Remainder. r = a−b�n. A partial remainder is always exact; no rounding is necessary. The sign of a
partial remainder is always the same as the sign of the dividend (a). A final remainder is rounded
according to the current rounding mode (if necessary). The sign of a zero remainder is the same as the
sign of the dividend (a). The sign of a nonzero final remainder is determined by the rules of algebra.

P Precision of the operand, which depends on the target format: P = 24 for short and 53 for long.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-13 on

page 19-14.
SFi IEEE invalid-operation flag, FPC 1.0.
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(r,n) Results r (the remainder) and n (the integer quotient) are placed in target operands 1 and 3, respec-

tively.

 EXTRACT FPC

EFPC R� [RRE]
┌────────────────┬────────┬────┬────┐
│ 'B38C' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The contents of the FPC (floating-point-control)
register are placed in bit positions 32-63 of the
general register designated by R�. Bit positions
0-31 of the general register remain unchanged.

 Chapter 19. Binary-Floating-Point Instructions 19-33

Condition Code: The code remains unchanged.

IEEE Exception Conditions: None.

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

LOAD AND TEST

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
LTEBR 'B3�2' Short BFP
LTDBR 'B312' Long BFP
LTXBR 'B342' Extended BFP

The second operand is placed at the first-operand
location, and its sign and magnitude are tested to
determine the setting of the condition code. The
condition code is set the same as for a compar-
ison of the second operand with zero.

The second operand is placed unchanged at the
first-operand location. If the second operand is an
SNaN, an IEEE-invalid-operation condition is
recognized; if there is no interruption, the result is
the corresponding QNaN.

See Figure 19-21 on page 19-27 for a detailed
description of the results of this instruction.

For LTXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions:

 � Invalid operation

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (LTXBR only)

Programming Note: The IEEE standard makes
it optional whether operations such as LOAD AND
TEST signal invalid operation when the operand is
an SNaN. TEST DATA CLASS may be used to
test an operand if signaling is not desired.

 LOAD COMPLEMENT

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
LCEBR 'B3�3' Short BFP
LCDBR 'B313' Long BFP
LCXBR 'B343' Extended BFP

The second operand is placed at the first-operand
location with the sign bit inverted.

The sign bit is inverted even if the operand is
zero. The rest of the second operand is placed
unchanged at the first-operand location. The sign
is inverted for any operand, including a QNaN or
SNaN, without causing an arithmetic exception.

For LCXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions: None.

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
� Specification (LCXBR only)

Programming Note: The IEEE standard makes
it optional whether operations such as LOAD
COMPLEMENT signal invalid operation when the
operand is an SNaN. LOAD AND TEST may be

19-34 z/Architecture Principles of Operation

used in conjunction with this instruction if signal-
ling is desired.

LOAD FP INTEGER

Mnemonic R�,M�,R� [RRF]

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ M� │////│ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

Mnemonic Op Code Operands
FIEBR 'B357' Short BFP
FIDBR 'B35F' Long BFP
FIXBR 'B347' Extended BFP

The second operand is rounded to an integer
value in the same floating-point format, and the
result is placed at the first-operand location.

The second operand, if numeric, is rounded to an
integer value as specified by the modifier in the
M� field:

M� Rounding Method
0 According to current rounding mode
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

When the modifier field is zero, rounding is con-
trolled by the current rounding mode in the FPC
register. When the field is not zero, rounding is
performed as specified by the modifier, regardless
of the current rounding mode. Rounding for modi-
fiers 4-7 is the same as for rounding modes 0-3
(binary 00-11), respectively. Biased round to
nearest (modifier 1) is the same as round to
nearest (modifier 4), except when the second

operand is exactly halfway between two integers,
in which case the result for biased rounding is the
next integer that is greater in magnitude.

In the absence of an interruption, if the second
operand is an infinity or a QNaN, the result is that
operand; if the second operand is an SNaN, the
result is the corresponding QNaN.

The sign of the result is the sign of the second
operand, even when the result is zero.

See Figure 19-25 on page 19-36 for a detailed
description of the results of this instruction.

The M� field must designate a valid modifier, and,
for FIXBR, the R fields must designate valid
floating-point-register pairs. Otherwise, a specifi-
cation exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exception Conditions:

 � Invalid operation
 � Inexact

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

 � Specification

Programming Notes:

1. LOAD FP INTEGER rounds a BFP number to
an integer value. These integers, which
remain in the BFP format, should not be con-
fused with binary integers, which have a fixed-
point format.

2. If the BFP operand is numeric with a large
enough exponent so that it is already an
integer, the result value remains the same.

 Chapter 19. Binary-Floating-Point Instructions 19-35

Figure 19-25. Results: LOAD FP INTEGER

Operand
(a)

Is n
Inexact
(n≠a)

Inv.-Op.
Mask
(FPC
0.0)

Inexact
Mask
(FPC
0.4)

Is n Inc-
remented
(|n|>|a|) Results

−∞ No� – – – T(−∞)

−Fn No – – – T(n)

−Fn Yes – 0 – T(n), SFx←1

−Fn Yes – 1 No T(n), PIDx(08)

−Fn Yes – 1 Yes T(n), PIDy(0C)

−0 No� – – – T(−0)

+0 No� – – – T(+0)

+Fn No – – – T(n)

+Fn Yes – 0 – T(n), SFx←1

+Fn Yes – 1 No T(n), PIDx(08)

+Fn Yes – 1 Yes T(n), PIDy(0C)

+∞ No� – – – T(+∞)

QNaN No� – – – T(a)

SNaN No� 0 – – T(a*), SFi←1

SNaN No� 1 – – PIDi(80)

Explanation:

– The results do not depend on this condition or mask bit.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand

location.
� This condition is true by virtue of the state of some condition to the left of this column.
n The value derived when the source value, a, is rounded to an integer using the specified

rounding mode.
Fn Finite nonzero number (includes both denormalized and normalized).
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-13

on page 19-14.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.

 LOAD FPC

LFPC D�(B�) [S]
┌───────────────────┬────┬──────────────┐
│ 'B29D' │ B� │ D� │
└───────────────────┴────┴──────────────┘
� 16 2� 31

The four-byte second operand in storage is loaded
into the FPC (floating-point-control) register.

Bits corresponding to unassigned bit positions in
the FPC register must be zero; otherwise, a spec-
ification exception is recognized.

Condition Code: The code remains unchanged.

19-36 z/Architecture Principles of Operation

IEEE Exception Conditions: None.

 Program Exceptions:

� Access (fetch, operand 2)
� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

 � Specification

 LOAD LENGTHENED

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
LDEBR 'B3�4' Short BFP operand 2,

long BFP operand 1
LXDBR 'B3�5' Long BFP operand 2,

extended BFP operand 1
LXEBR 'B3�6' Short BFP operand 2,

extended BFP operand 1

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
LDEB 'ED�4' Short BFP operand 2,

long BFP operand 1
LXDB 'ED�5' Long BFP operand 2,

extended BFP operand 1
LXEB 'ED�6' Short BFP operand 2,

extended BFP operand 1

The second operand is extended to a longer
format, and the result is placed at the first-operand
location.

The sign of the result is the same as the sign of
the source. The exponent of the second operand
is converted to the corresponding exponent in the
result format, and the fraction is extended by
appending zeros on the right. If the second
operand is an infinity, the result is an infinity of the
same sign. If the second operand is an SNaN, an
IEEE-invalid-operation condition is recognized; if
there is no interruption, the result is the corre-
sponding QNaN with the fraction extended.

See Figure 19-21 on page 19-27 for a detailed
description of the results of this instruction.

For LXDB, LXDBR, LXEB, and LXEBR, the R�
field must designate a valid floating-point-register
pair; otherwise, a specification exception is recog-
nized.

Condition Code: The code remains unchanged.

IEEE Exception Conditions:

 � Invalid operation

 Program Exceptions:

� Access (fetch, operand 2 of LDEB, LXEB, and
LXDB only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (LXEB, LXEBR, LXDB, LXDBR)

 LOAD NEGATIVE

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
LNEBR 'B3�1' Short BFP
LNDBR 'B311' Long BFP
LNXBR 'B341' Extended BFP

The second operand is placed at the first-operand
location with the sign bit made one.

The sign bit is made one even if the operand is
zero. The rest of the second operand is placed
unchanged at the first-operand location. The sign
is set for any operand, including a QNaN or
SNaN, without causing an arithmetic exception.

For LNXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 --
3 Result is a NaN

IEEE Exception Conditions: None.

 Chapter 19. Binary-Floating-Point Instructions 19-37

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
� Specification (LNXBR only)

Programming Note: The IEEE standard makes
it optional whether operations such as LOAD
NEGATIVE signal invalid operation when the
operand is an SNaN. LOAD AND TEST may be
used in conjunction with this instruction if signal-
ling is desired.

 LOAD POSITIVE

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
LPEBR 'B3��' Short BFP
LPDBR 'B31�' Long BFP
LPXBR 'B34�' Extended BFP

The second operand is placed at the first-operand
location with the sign bit made zero.

The sign bit is made zero, and the rest of the
second operand is placed unchanged at the first-
operand location. The sign is set for any operand,
including a QNaN or SNaN, without causing an
arithmetic exception.

For LPXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 --
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions: None.

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
� Specification (LPXBR only)

Programming Note: The IEEE standard makes
it optional whether operations such as LOAD

POSITIVE signal invalid operation when the
operand is an SNaN. LOAD AND TEST may be
used in conjunction with this instruction if signal-
ling is desired.

 LOAD ROUNDED

Mnemonic R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic Op Code Operands
LEDBR 'B344' Long BFP source,

short BFP target
LDXBR 'B345' Extended BFP source,

long BFP target
LEXBR 'B346' Extended BFP source,

short BFP target

The second operand, in the format of the source,
is rounded to the precision of the target, and the
result is placed at the first-operand location. The
sign of the result is the same as the sign of the
second operand.

The second operand, if numeric, is rounded to the
precision of the target fraction according to the
current rounding mode. Normally, the result is in
the format and length of the target. However,
when an IEEE overflow or an IEEE underflow
occurs and the corresponding mask bit is one, the
operation is completed by producing a wrapped
result in the same format and length as the source

| but rounded to the precision of the target. A
| short-format result replaces the leftmost 32 bits of
| the target register, and the rightmost 32 bit posi-
| tions of the target register remain unchanged. A
| long-format result is placed in a floating-point reg-
| ister, and the other register of the floating-point
| register pair, if any, remains unchanged. An
| extended-format result is placed in a floating-point
| register pair.

See Figure 19-21 on page 19-27 for a detailed
description of the results of this instruction.

For LDXBR and LEXBR, the R� and R� fields
must designate valid floating-point-register pairs;
otherwise, a specification exception is recognized.

Condition Code: The code remains unchanged.

19-38 z/Architecture Principles of Operation

IEEE Exception Conditions:

 � Invalid operation
 � Overflow
 � Underflow
 � Inexact

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (LDXBR and LEXBR)

Programming Notes:

1. The sign of the rounded result is the same as
the sign of the operand, even when the result
is zero.

2. The R� field for LDXBR and LEXBR must
designate a valid floating-point-register pair
since in certain cases the result is in the
extended format. In normal operation for
LDXBR and LEXBR, the result format is long
or short, respectively, and this result replaces
the leftmost 32 bits or 64 bits of the target-
register pair. However, when an IEEE over-
flow or an IEEE underflow occurs and the cor-
responding mask bit is one, the operation is
completed by placing a result in the extended
format at the target location. Thus, the
program must take into account the fact that
these instructions sometimes update both reg-
isters of the pair.

 MULTIPLY

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
MEEBR 'B317' Short BFP
MDBR 'B31C' Long BFP
MXBR 'B34C' Extended BFP
MDEBR 'B3�C' Short BFP multiplier and

multiplicand, long BFP
 product
MXDBR 'B3�7' Long BFP multiplier and
 multiplicand, extended
 BFP product

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
MEEB 'ED17' Short BFP
MDB 'ED1C' Long BFP
MDEB 'ED�C' Short BFP multiplier and

multiplicand, long BFP
 product
MXDB 'ED�7' Long BFP multiplier and
 multiplicand, extended
 BFP product

The product of the second operand (the multiplier)
and the first operand (the multiplicand) is placed
at the first-operand location.

The two BFP operands, if numeric and finite, are
multiplied, forming an intermediate product. For
MDEB, MDEBR, MXDB, and MXDBR, the inter-
mediate product is converted to the longer target
format; the result cannot overflow or underflow
and is exact. For MDB, MDBR, MEEB, MEEBR,
and MXBR, the result is rounded to the operand
format according to the current rounding mode.
For MEEB and MEEBR, the result, as for all short-
format results, replaces the leftmost 32 bits of the
target register, and the rightmost 32 bit positions
of the target register remain unchanged.

The sign of the product, if the product is numeric,
is the exclusive or of the operand signs. This
includes the sign of a zero or infinite product.

If one operand is a zero and the other an infinity,
an IEEE-invalid-operation condition is recognized.

See Figure 19-26 on page 19-40 for a detailed
description of the results of this instruction.

The R� field for MXDB, MXDBR, and MXBR, and
the R� field for MXBR, must designate valid
floating-point-register pairs. Otherwise, a specifi-
cation exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exception Conditions:

 � Invalid operation
� Overflow (MDB, MDBR, MEEB, MEEBR,

MXBR)
� Underflow (MDB, MDBR, MEEB, MEEBR,

MXBR)

 Chapter 19. Binary-Floating-Point Instructions 19-39

� Inexact (MDB, MDBR, MEEB, MEEBR,
MXBR)

 Program Exceptions:

� Access (fetch, operand 2 of MDEB, MEEB,
MDB, and MXDB only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

� Specification (MXDB, MXDBR, MXBR)

Programming Note: Interchanging the two oper-
ands in a BFP multiplication does not affect the
value of the product when the result is numeric.
This is not true, however, when both operands are
QNaNs, in which case the result is the first
operand; or when both operands are SNaNs and
the IEEE-invalid-operation mask bit in the FPC
register is zero, in which case the result is the
QNaN derived from the first operand.

Figure 19-26. Results: MULTIPLY

First
Operand

(a) Is

Results for MULTIPLY (a�b)
when Second Operand (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ T(+∞) T(+∞) Xi:
T(dNaN)

Xi:
T(dNaN)

T(−∞) T(−∞) T(b) Xi: T(b*)

−Fn T(+∞) R(a�b) T(+0) T(−0) R(a�b) T(−∞) T(b) Xi: T(b*)

−0 Xi:
T(dNaN)

T(+0) T(+0) T(−0) T(−0) Xi:
T(dNaN)

T(b) Xi: T(b*)

+0 Xi:
T(dNaN)

T(−0) T(−0) T(+0) T(+0) Xi:
T(dNaN)

T(b) Xi: T(b*)

+Fn T(−∞) R(a�b) T(−0) T(+0) R(a�b) T(+∞) T(b) Xi: T(b*)

+∞ T(−∞) T(−∞) Xi:
T(dNaN)

Xi:
T(dNaN)

T(+∞) T(+∞) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

dNaN Default quiet NaN.
Fn Finite nonzero number (includes both denormalized and normalized).
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

19-40 z/Architecture Principles of Operation

MULTIPLY AND ADD

Mnemonic1 R�,R�,R� [RRF]

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ R� │////│ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

Mnemonic1 Op Code Operands
MAEBR 'B3�E' Short BFP
MADBR 'B31E' Long BFP

Mnemonic2 R�,R�,D�(X�,B�) [RXF]

┌────────┬────┬────┬────┬─/──┬────┬────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │ R� │////│Op Code │
└────────┴────┴────┴────┴─/──┴────┴────┴────────┘
� 8 12 16 2� 32 36 4� 47

Mnemonic2 Op Code Operands
MAEB 'ED�E' Short BFP
MADB 'ED1E' Long BFP

MULTIPLY AND SUBTRACT

Mnemonic1 R�,R�,R� [RRF]

┌────────────────┬────┬────┬────┬────┐
│ Op Code │ R� │////│ R� │ R� │
└────────────────┴────┴────┴────┴────┘
� 16 2� 24 28 31

Mnemonic1 Op Code Operands
MSEBR 'B3�F' Short BFP
MSDBR 'B31F' Long BFP

Mnemonic2 R�,R�,D�(X�,B�) [RXF]

┌────────┬────┬────┬────┬─/──┬────┬────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │ R� │////│Op Code │
└────────┴────┴────┴────┴─/──┴────┴────┴────────┘
� 8 12 16 2� 32 36 4� 47

Mnemonic2 Op Code Operands
MSEB 'ED�F' Short BFP
MSDB 'ED1F' Long BFP

The third operand is multiplied by the second
operand, and then the first operand is added to or
subtracted from the product. The sum or differ-
ence is placed at the first-operand location. The
MULTIPLY AND ADD and MULTIPLY AND SUB-
TRACT operations may be summarized as:

op� = op��op�±op�

When the operands are numeric and finite, the
third and second BFP operands are multiplied,
forming an intermediate product, and the first
operand is then added (or subtracted) algebra-
ically to (or from) the intermediate product, forming
an intermediate sum. The intermediate sum, if
nonzero, is normalized and rounded to the
operand format according to the current rounding
mode and then placed at the first-operand
location. The exponent and fraction of the inter-
mediate product are maintained exactly; rounding
and range checking occur only on the intermediate
sum.

See Figure 19-27 on page 19-42 for a detailed
description of the results of MULTIPLY AND ADD.
The results of MULTIPLY AND SUBTRACT are
the same, except that the first operand partic-
ipates in the operation with its sign bit inverted.

Condition Code: The code remains unchanged.

IEEE Exception Conditions:

 � Invalid operation
 � Overflow
 � Underflow
 � Inexact

 Program Exceptions:

� Access (fetch, operand 2 of MAEB, MADB,
MSEB, MSDB)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

Programming Note: MULTIPLY AND ADD and
MULTIPLY AND SUBTRACT produce a precise
intermediate result, and a single rounding opera-
tion is performed after the addition or subtraction.
This definition is consistent with the RS/6000, and,
in certain applications, can be used to great
advantage, especially in algorithms used in math
libraries.

 Chapter 19. Binary-Floating-Point Instructions 19-41

Figure 19-27 (Part 1 of 2). Results: MULTIPLY AND ADD

Third
Operand

(a) Is

Results, Part 1, for
MULTIPLY AND ADD (a�b+c)
when Second Operand (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ P(+∞) P(+∞) Xi:
T(dNaN)

Xi:
T(dNaN)

P(−∞) P(−∞) P(b) Xi: T(b*)

−Fn P(+∞) P(a�b) P(+0) P(−0) P(a�b) P(−∞) P(b) Xi: T(b*)

−0 Xi:
T(dNaN)

P(+0) P(+0) P(−0) P(−0) Xi:
T(dNaN)

P(b) Xi: T(b*)

+0 Xi:
T(dNaN)

P(−0) P(−0) P(+0) P(+0) Xi:
T(dNaN)

P(b) Xi: T(b*)

+Fn P(−∞) P(a�b) P(−0) P(+0) P(a�b) P(+∞) P(b) Xi: T(b*)

+∞ P(−∞) P(−∞) Xi:
T(dNaN)

Xi:
T(dNaN)

P(+∞) P(+∞) P(b) Xi: T(b*)

QNaN P(a) P(a) P(a) P(a) P(a) P(a) P(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

19-42 z/Architecture Principles of Operation

Figure 19-27 (Part 2 of 2). Results: MULTIPLY AND ADD

Value
from Part

1
(p) Is

Results, Part 2, for
MULTIPLY AND ADD (a�b+c)

when First Operand (c) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ T(−∞) T(−∞) T(−∞) T(−∞) T(−∞) Xi:
T(dNaN)

T(c) Xi: T(c*)

−Fn T(−∞) R(p+c) R(p) R(p) R(p+c) T(+∞) T(c) Xi: T(c*)

−0 T(−∞) R(c) T(−0) Rezd R(c) T(+∞) T(c) Xi: T(c*)

+0 T(−∞) R(c) Rezd T(+0) R(c) T(+∞) T(c) Xi: T(c*)

+Fn T(−∞) R(p+c) R(p) R(p) R(p+c) T(+∞) T(c) Xi: T(c*)

+∞ Xi:
T(dNaN)

T(+∞) T(+∞) T(+∞) T(+∞) T(+∞) T(c) Xi: T(c*)

QNaN T(p) T(p) T(p) T(p) T(p) T(p) T(p) Xi: T(c*)

Explanation:

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

dNaN Default quiet NaN.
Fn Finite nonzero number (includes both denormalized and normalized).
P(x) The value x is passed to Part 2 of this figure.
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
Rezd Exact zero-difference result. See Figure 19-17 on page 19-21.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

 SET FPC

SFPC R� [RRE]
┌────────────────┬────────┬────┬────┐
│ 'B384' │////////│ R� │////│
└────────────────┴────────┴────┴────┘
� 16 24 28 31

The contents of bit positions 32-63 of of the
general register designated by R� are placed in
the FPC (floating-point-control) register.

All of bits 32-63 corresponding to unassigned bit
positions in the FPC must be zero; otherwise, a
specification exception is recognized. Bits 0-31 of
the general register are ignored.

Condition Code: The code remains unchanged.

IEEE Exception Conditions: None.

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

 � Specification

SET ROUNDING MODE

SRNM D�(B�) [S]
┌───────────────────┬────┬──────────────┐
│ 'B299' │ B� │ D� │
└───────────────────┴────┴──────────────┘
� 16 2� 31

The rounding-mode bits are set from the second-
operand address.

The second-operand address is not used to
address data; instead, the rounding-mode bits in
the FPC register are set with bits 62 and 63 of the
address.

 Chapter 19. Binary-Floating-Point Instructions 19-43

Bits other than 62 and 63 of the second-operand
address are ignored.

Condition Code: The code remains unchanged.

IEEE Exception Conditions: None.

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

 SQUARE ROOT

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
SQEBR 'B314' Short BFP
SQDBR 'B315' Long BFP
SQXBR 'B316' Extended BFP

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
SQEB 'ED14' Short BFP
SQDB 'ED15' Long BFP

The square root of the second operand is placed
at the first-operand location.

The result rounded according to the current
rounding mode is placed at the first-operand
location.

If the second operand is a finite positive number,
the result is the square root of that number with a
plus sign. If the operand is a zero of either sign,
the result is a zero of the same sign. If the
operand is +∞, the result is +∞.

If the second operand is less than zero, an
IEEE-invalid-operation condition is recognized.

See Figure 19-21 on page 19-27 for a detailed
description of the results of this instruction.

For SQXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code: The code remains unchanged.

IEEE Exception Conditions:

 � Invalid operation
 � Inexact

 Program Exceptions:

� Access (fetch, operand 2 of SQEB and SQDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (SQXBR only)

 STORE FPC

STFPC D�(B�) [S]
┌───────────────────┬────┬──────────────┐
│ 'B29C' │ B� │ D� │
└───────────────────┴────┴──────────────┘
� 16 2� 31

The contents of the FPC (floating-point-control)
register are placed in storage at the second-
operand location.

The operand is four bytes in length. All 32 bits of
the FPC register are stored.

Condition Code: The code remains unchanged.

IEEE Exception Conditions: None.

 Program Exceptions:

� Access (store, operand 2)
� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

 SUBTRACT

Mnemonic1 R�,R� [RRE]

┌────────────────┬────────┬────┬────┐
│ Op Code │////////│ R� │ R� │
└────────────────┴────────┴────┴────┘
� 16 24 28 31

Mnemonic1 Op Code Operands
SEBR 'B3�B' Short BFP
SDBR 'B31B' Long BFP
SXBR 'B34B' Extended BFP

19-44 z/Architecture Principles of Operation

Mnemonic2 R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic2 Op Code Operands
SEB 'ED�B' Short BFP
SDB 'ED1B' Long BFP

The second operand is subtracted from the first
operand, and the difference is placed at the first-
operand location.

The execution of SUBTRACT is identical to that of
ADD, except that the second operand participates
in the operation with its sign bit inverted. See
Figure 19-16 on page 19-20 for the detailed
results of ADD.

For SXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions:

 � Invalid operation
 � Overflow
 � Underflow
 � Inexact

 Program Exceptions:

� Access (fetch, operand 2 of SEB and SDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (SXBR only)

TEST DATA CLASS

Mnemonic R�,D�(X�,B�) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐
│Op Code │ R� │ X� │ B� │ D� │////////│Op Code │
└────────┴────┴────┴────┴─/──┴────────┴────────┘
� 8 12 16 2� 32 4� 47

Mnemonic Op Code Operands
TCEB 'ED1�' Short BFP
TCDB 'ED11' Long BFP
TCXB 'ED12' Extended BFP

The class and sign of the first operand are exam-
ined to select one bit from the second-operand
address. Condition code 0 or 1 is set according to
whether the selected bit is zero or one, respec-
tively.

The second-operand address is not used to
address data; instead, the rightmost 12 bits of the
address, bits 20-31, are used to specify 12 combi-
nations of operand class and sign. Bits 0-19 of
the second-operand address are ignored.

As shown in Figure 19-28, BFP operands are
divided into six classes: zero, normalized number,
denormalized number, infinity, quiet NaN, and sig-
naling NaN.

Figure 19-28. Second-Operand-Address Bits for TEST
DATA CLASS

One or more of the second-operand-address bits
may be set to one. If the second-
operand-address bit corresponding to the class
and sign of the first operand is one, condition
code 1 is set; otherwise, condition code 0 is set.

Operands, including SNaNs and QNaNs, are
examined without causing an arithmetic exception.

BFP Operand Class

Bit Used
when Sign

Is

+ −

Zero 20 21

Normalized number 22 23

Denormalized number 24 25

Infinity 26 27

Quiet NaN 28 29

Signaling NaN 30 31

 Chapter 19. Binary-Floating-Point Instructions 19-45

For TCXB, the R� field must designate a valid
floating-point-register pair; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:

0 Selected bit is 0 (no match)
1 Selected bit is 1 (match)
2 --
3 --

IEEE Exception Conditions: None.

 Program Exceptions:

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
� Specification (TCXB only)

Programming Note: TEST DATA CLASS pro-
vides a way to test an operand without risk of an
exception or setting the IEEE flags.

19-46 z/Architecture Principles of Operation

Appendix A. Number Representation and Instruction-Use
Examples

Number Representation A-2
Binary Integers A-2

Signed Binary Integers A-2
Unsigned Binary Integers A-3

Decimal Integers A-4
Hexadecimal-Floating-Point Numbers . . . A-5
Conversion Example A-6

Instruction-Use Examples A-6
Machine Format A-7
Assembler-Language Format A-7

Addressing Mode in Examples A-7
General Instructions A-7

ADD HALFWORD (AH) A-7
AND (N, NC, NI, NR) A-8

NI Example A-8
Linkage Instructions (BAL, BALR, BAS,

BASR, BASSM, BSM) A-8
Other BALR and BASR Examples . . . A-9

BRANCH AND STACK (BAKR) A-10
BAKR Example 1 A-10
BAKR Example 2 A-11
BAKR Example 3 A-11

BRANCH ON CONDITION (BC, BCR) . A-11
BRANCH ON COUNT (BCT, BCTR) . . A-12
BRANCH ON INDEX HIGH (BXH) A-12

BXH Example 1 A-12
BXH Example 2 A-13

BRANCH ON INDEX LOW OR EQUAL
(BXLE) A-13

BXLE Example 1 A-13
BXLE Example 2 A-14

COMPARE AND FORM CODEWORD
(CFC) A-14

COMPARE HALFWORD (CH) A-14
COMPARE LOGICAL (CL, CLC, CLI,

CLR) . A-14
CLC Example A-14
CLI Example A-15
CLR Example A-15

COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM) A-15

COMPARE LOGICAL LONG (CLCL) . . A-16
COMPARE LOGICAL STRING (CLST) . A-17
CONVERT TO BINARY (CVB) A-18
CONVERT TO DECIMAL (CVD) A-18
DIVIDE (D, DR) A-19
EXCLUSIVE OR (X, XC, XI, XR) A-19

XC Example A-19
XI Example A-20

EXECUTE (EX) A-21
INSERT CHARACTERS UNDER MASK

(ICM) A-21
LOAD (L, LR) A-22
LOAD ADDRESS (LA) A-22
LOAD HALFWORD (LH) A-23
MOVE (MVC, MVI) A-23

MVC Example A-23
MVI Example A-24

MOVE INVERSE (MVCIN) A-24
MOVE LONG (MVCL) A-25
MOVE NUMERICS (MVN) A-25
MOVE STRING (MVST) A-26
MOVE WITH OFFSET (MVO) A-26
MOVE ZONES (MVZ) A-27
MULTIPLY (M, MR) A-27
MULTIPLY HALFWORD (MH) A-27
OR (O, OC, OI, OR) A-28

OI Example A-28
PACK (PACK) A-28
SEARCH STRING (SRST) A-29

SRST Example 1 A-29
SRST Example 2 A-29

SHIFT LEFT DOUBLE (SLDA) A-29
SHIFT LEFT SINGLE (SLA) A-30
STORE CHARACTERS UNDER MASK

(STCM) A-30
STORE MULTIPLE (STM) A-30
TEST UNDER MASK (TM) A-31
TRANSLATE (TR) A-31
TRANSLATE AND TEST (TRT) A-32
UNPACK (UNPK) A-33
UPDATE TREE (UPT) A-34

Decimal Instructions A-34
ADD DECIMAL (AP) A-34
COMPARE DECIMAL (CP) A-34
DIVIDE DECIMAL (DP) A-34
EDIT (ED) A-35
EDIT AND MARK (EDMK) A-36
MULTIPLY DECIMAL (MP) A-36
SHIFT AND ROUND DECIMAL (SRP) . A-37

Decimal Left Shift A-37
Decimal Right Shift A-37
Decimal Right Shift and Round A-38
Multiplying by a Variable Power of 10 . A-38

ZERO AND ADD (ZAP) A-38
Hexadecimal-Floating-Point Instructions . . A-39

ADD NORMALIZED (AD, ADR, AE, AER,
AXR) . A-39

 Copyright IBM Corp. 1990-2003 A-1

ADD UNNORMALIZED (AU, AUR, AW,
AWR) A-39

COMPARE (CD, CDR, CE, CER) A-40
DIVIDE (DD, DDR, DE, DER) A-40
HALVE (HDR, HER) A-41
MULTIPLY (MD, MDR, MDE, MDER,

MXD, MXDR, MXR) A-41
Hexadecimal-Floating-Point-Number

Conversion A-42
Fixed Point to Hexadecimal Floating

Point A-42
Hexadecimal Floating Point to Fixed

Point A-42
Multiprogramming and Multiprocessing

Examples A-43
Example of a Program Failure Using OR

Immediate A-43

Conditional Swapping Instructions (CS,
CDS) A-44

Setting a Single Bit A-44
Updating Counters A-45

Bypassing Post and Wait A-45
Bypass Post Routine A-45
Bypass Wait Routine A-46

Lock/Unlock A-46
Lock/Unlock with LIFO Queuing for

Contentions A-46
Lock/Unlock with FIFO Queuing for

Contentions A-47
Free-Pool Manipulation A-48
PERFORM LOCKED OPERATION (PLO) A-50

Sorting Instructions A-51
Tree Format A-51
Example of Use of Sort Instructions . . . A-53

This appendix is the same as in Enterprise
Systems Architecture/390 Principles of Operation,
SA22-7201; it has not been revised to show the
enlargement of register sizes or the 64-bit
addressing mode.

 Number Representation

 Binary Integers

Signed Binary Integers
Signed binary integers are most commonly repres-
ented as halfwords (16 bits) or words (32 bits). In
both lengths, the leftmost bit (bit 0) is the sign of
the number. The remaining bits (bits 1-15 for
halfwords and 1-31 for words) are used to specify
the magnitude of the number. Binary integers are
also referred to as fixed-point numbers, because
the radix point (binary point) is considered to be
fixed at the right, and any scaling is done by the
programmer.

Positive binary integers are in true binary notation
with a zero sign bit. Negative binary integers are
in two's-complement notation with a one bit in the
sign position. In all cases, the bits between the
sign bit and the leftmost significant bit of the
integer are the same as the sign bit (that is, all
zeros for positive numbers, all ones for negative
numbers).

Negative binary integers are formed in two's-
complement notation by inverting each bit of the
positive binary integer and adding one. As an
example using the halfword format, the binary
number with the decimal value +26 is made nega-
tive (-26) in the following manner:

+26 � ��� ���� ���1 1�1�
Invert 1 111 1111 111� �1�1
Add 1 1
 ────────────────────
-26 1 111 1111 111� �11� (Two's comple-
 ment form)
(S is the sign bit.)

This is equivalent to subtracting the number:

 �������� ���11�1�
from

1 �������� ��������

Negative binary integers are changed to positive
in the same manner.

The following addition examples illustrate two's-
complement arithmetic and overflow conditions.
Only eight bit positions are used.

1. +57 = ��11 1��1
+35 = ��1� ��11

 ───────────────
+92 = �1�1 11��

2. +57 = ��11 1��1
-35 = 11�1 11�1

 ───────────────
+22 = ���1 �11� No overflow — carry into

leftmost position and
 carry out

A-2 z/Architecture Principles of Operation

3. +35 = ��1� ��11
-57 = 11�� �111

 ───────────────
-22 = 111� 1�1� Sign change only — no

carry into leftmost posi-
tion and no carry out

4. -57 = 11�� �111
-35 = 11�1 11�1

 ───────────────
-92 = 1�1� �1�� No overflow — carry into

leftmost position and
 carry out

5. +57 = ��11 1��1
+92 = �1�1 11��

 ───────────────
+149 =�1��1 �1�1 �Overflow — carry into

leftmost position, no
 carry out

6. -57 = 11�� �111
-92 = 1�1� �1��

 ───────────────
-149 =��11� 1�11 �Overflow — no carry into

leftmost position but carry
 out

The presence or absence of an overflow condition
may be recognized from the carries:

� There is no overflow:

1. If there is no carry into the leftmost bit
position and no carry out (examples 1 and
3).

2. If there is a carry into the leftmost position
and also a carry out (examples 2 and 4).

� There is an overflow:

1. If there is a carry into the leftmost position
but no carry out (example 5).

2. If there is no carry into the leftmost posi-
tion but there is a carry out (example 6).

The following are 16-bit signed binary integers.
The first is the maximum positive 16-bit binary
integer. The last is the maximum negative 16-bit
binary integer (the negative 16-bit binary integer
with the greatest absolute value).

 2��-1 = 32,767 = � 111 1111 1111 1111
 2� = 1 = � ��� ���� ���� ���1
 � = � = � ��� ���� ���� ����
-2� = -1 = 1 111 1111 1111 1111
-2�� = -32,768 = 1 ��� ���� ���� ����

Figure A-1 illustrates several 32-bit signed binary
integers arranged in descending order. The first is
the maximum positive binary integer that can be
represented by 32 bits, and the last is the
maximum negative binary integer that can be
represented by 32 bits.

┌──┐
│ 2��-1 = 2 147 483 647 = � 111 1111 1111 1111 1111 1111 1111 1111 │
│ 2�� = 65 536 = � ��� ���� ���� ���1 ���� ���� ���� ���� │
│ 2� = 1 = � ��� ���� ���� ���� ���� ���� ���� ���1 │
│ � = � = � ��� ���� ���� ���� ���� ���� ���� ���� │
│ -2� = -1 = 1 111 1111 1111 1111 1111 1111 1111 1111 │
│ -2� = -2 = 1 111 1111 1111 1111 1111 1111 1111 111� │
│ -2�� = -65 536 = 1 111 1111 1111 1111 ���� ���� ���� ���� │
│ -2��+1 = -2 147 483 647 = 1 ��� ���� ���� ���� ���� ���� ���� ���1 │
│ -2�� = -2 147 483 648 = 1 ��� ���� ���� ���� ���� ���� ���� ���� │
└──┘

Figure A-1. 32-Bit Signed Binary Integers

Unsigned Binary Integers
Certain instructions, such as ADD LOGICAL, treat
binary integers as unsigned rather than signed.
Unsigned binary integers have the same format as
signed binary integers, except that the leftmost bit
is interpreted as another numeric bit rather than a
sign bit. There is no complement notation
because all unsigned binary integers are consid-
ered positive.

The following examples illustrate the addition of
unsigned binary integers. Only eight bit positions

are used. The examples are numbered the same
as the corresponding examples for signed binary
integers.

1. 57 = ��11 1��1
35 = ��1� ��11

 ──────────────
92 = �1�1 11��

2. 57 = ��11 1��1
221 = 11�1 11�1

 ───────────────
278 =����1 �11� �Carry out of leftmost

 position

 Appendix A. Number Representation and Instruction-Use Examples A-3

3. 35 = ��1� ��11
199 = 11�� �111

 ───────────────
234 = 111� 1�1�

4. 199 = 11�� �111
221 = 11�1 11�1

 ───────────────
42� =�1�1� �1�� �Carry out of leftmost

 position

5. 57 = ��11 1��1
92 = �1�1 11��

 ──────────────
149 = 1��1 �1�1

6. 199 = 11�� �111
164 = 1�1� �1��

 ───────────────
363 =��11� 1�11 �Carry out of leftmost

 position

A carry out of the leftmost bit position may or may
not imply an overflow, depending on the applica-
tion.

Figure A-2 illustrates several 32-bit unsigned
binary integers arranged in descending order.

┌───┐
│ 2��-1 = 4 294 967 295 = 1111 1111 1111 1111 1111 1111 1111 1111 │
│ 2�� = 2 147 483 648 = 1��� ���� ���� ���� ���� ���� ���� ���� │
│ 2��-1 = 2 147 483 647 = �111 1111 1111 1111 1111 1111 1111 1111 │
│ 2�� = 65 536 = ���� ���� ���� ���1 ���� ���� ���� ���� │
│ 2� = 1 = ���� ���� ���� ���� ���� ���� ���� ���1 │
│ � = � = ���� ���� ���� ���� ���� ���� ���� ���� │
└───┘

Figure A-2. 32-Bit Unsigned Binary Integers

 Decimal Integers

Decimal integers consist of one or more decimal
digits and a sign. Each digit and the sign are
represented by a 4-bit code. The decimal digits
are in binary-coded decimal (BCD) form, with the
values 0-9 encoded as 0000-1001. The sign is
usually represented as 1100 (C hex) for plus and
1101 (D hex) for minus. These are the preferred
sign codes, which are generated by the machine
for the results of decimal-arithmetic operations.
There are also several alternate sign codes (1010,
1110, and 1111 for plus; 1011 for minus). The
alternate sign codes are accepted by the machine
as valid in source operands but are not generated
for results.

Decimal integers may have different lengths, from
one to 16 bytes. There are two decimal formats:
packed and zoned. In the packed format, each
byte contains two decimal digits, except for the
rightmost byte, which contains the sign code in the
right half. For decimal arithmetic, the number of
decimal digits in the packed format can vary from
one to 31. Because decimal integers must consist
of whole bytes and there must be a sign code on
the right, the number of decimal digits is always
odd. If an even number of significant digits is

desired, a leading zero must be inserted on the
left.

In the zoned format, each byte consists of a
decimal digit on the right and the zone code 1111
(F hex) on the left, except for the rightmost byte
where the sign code replaces the zone code.
Thus, a decimal integer in the zoned format can
have from one to 16 digits. The zoned format
may be used directly for input and output in the
extended binary-coded-decimal interchange code
(EBCDIC), except that the sign must be separated
from the rightmost digit and handled as a separate
character. For positive (unsigned) numbers,
however, the sign can simply be represented by
the zone code of the rightmost digit because the
zone code is one of the acceptable alternate
codes for plus.

In either format, negative decimal integers are
represented in true notation with a separate sign.
As for binary integers, the radix point (decimal
point) of decimal integers is considered to be fixed
at the right, and any scaling is done by the pro-
grammer.

The following are some examples of decimal inte-
gers shown in hexadecimal notation:

A-4 z/Architecture Principles of Operation

Decimal
Value Packed Format Zoned Format

+123 12 3C F1 F2 C3
 or or

12 3F F1 F2 F3

-4321 �4 32 1D F4 F3 F2 D1

+����5� �� �� �5 �C F� F� F� F� F5 C�
 or or

�� �� �5 �F F� F� F� F� F5 F�

-7 7D D7

 ����� �� �� �C F� F� F� F� C�
 or or

�� �� �F F� F� F� F� F�

Under some circumstances, a zero with a minus
sign (negative zero) is produced. For example,
the multiplicand:

�� 12 3D (-123)

times the multiplier:

 �C (+�)

generates the product:

�� �� �D (-�)

because the product sign follows the algebraic
rule of signs even when the value is zero. A neg-
ative zero, however, is equivalent to a positive
zero in that they compare equal in a decimal com-
parison.

 Hexadecimal-Floating-Point
Numbers

A hexadecimal-floating-point (HFP) number is
expressed as a hexadecimal fraction multiplied by
a separate power of 16. The term floating point
indicates that the placement, of the radix
(hexadecimal) point, or scaling, is automatically
maintained by the machine.

The part of an HFP number which represents the
significant digits of the number is called the frac-
tion. A second part specifies the power (expo-
nent) to which 16 is raised and indicates the
location of the radix point of the number. The
fraction and exponent may be represented by 32
bits (short format), 64 bits (long format), or 128
bits (extended format).

Short HFP Number
┌─┬──────────────┬────────/───────┐
│S│Characteristic│6-Digit Fraction│
└─┴──────────────┴────────/───────┘
� 1 8 31

Long HFP Number
┌─┬──────────────┬─────────/──────────┐
│S│Characteristic│ 14-Digit Fraction │
└─┴──────────────┴─────────/──────────┘
� 1 8 63

Extended HFP Number
 High-Order Part
┌─┬──────────────┬─────────/──────────┐
│ │ High-Order │ Leftmost 14 Digits │
│S│Characteristic│of 28-Digit Fraction│
└─┴──────────────┴─────────/──────────┘
� 1 8 63

 Low-Order Part
┌─┬──────────────┬─────────/──────────┐
│ │ Low-Order │Rightmost 14 Digits │
│S│Characteristic│of 28-Digit Fraction│
└─┴──────────────┴─────────/──────────┘
64 72 127

An HFP number has two signs: one for the frac-
tion and one for the exponent. The fraction sign,
which is also the sign of the entire number, is the
leftmost bit of each format (0 for plus, 1 for
minus). The numeric part of the fraction is in true
notation regardless of the sign. The numeric part
is contained in bits 8-31 for the short format, in
bits 8-63 for the long format, and in bits 8-63 fol-
lowed by bits 72-127 for the extended format.

The exponent sign is obtained by expressing the
exponent in excess-64 notation; that is, the expo-
nent is added as a signed number to 64. The
resulting number is called the characteristic. It is
located in bits 1-7 for all formats. The character-
istic can vary from 0 to 127, permitting the expo-
nent to vary from -64 through 0 to +63. This pro-
vides a scale multiplier in the range of 16-�� to
16+��. A nonzero fraction, if normalized, has a
value less than one and greater than or equal to
1/16, so that the range covered by the magnitude
M of a normalized floating-point number is:

16-�� ≤ M < 16��

In decimal terms:

16-�� is approximately 5.4 x 1�-%	

16�� is approximately 7.2 x 1�%�

 Appendix A. Number Representation and Instruction-Use Examples A-5

More precisely,

In the short format:

16-�� ≤ M ≤ (1 - 16-�) x 16��

In the long format:

16-�� ≤ M ≤ (1 - 16-��) x 16��

In the extended format:

16-�� ≤ M ≤ (1 - 16-�
) x 16��

Within a given fraction length (6, 14, or 28 digits),
an HFP operation will provide the greatest preci-
sion if the fraction is normalized. A fraction is nor-
malized when the leftmost digit (bit positions 8, 9,

10, and 11) is nonzero. It is unnormalized if the
leftmost digit contains all zeros.

If normalization of the operand is desired, the HFP
instructions that provide automatic normalization
are used. This automatic normalization is accom-
plished by left-shifting the fraction (four bits per
shift) until a nonzero digit occupies the leftmost
digit position. The characteristic is reduced by
one for each digit shifted.

Figure A-3 illustrates sample normalized short
HFP numbers. The last two numbers represent
the smallest and the largest positive normalized
numbers.

┌──┐
│ 1.� = +1/16x16� = � 1�� ���1 ���1 ���� ���� ���� ���� ����� │
│ �.5 = +8/16x16� = � 1�� ���� 1��� ���� ���� ���� ���� ����� │
│ 1/64 = +4/16x16-� = � �11 1111 �1�� ���� ���� ���� ���� ����� │
│ �.� = +� x16-�� = � ��� ���� ���� ���� ���� ���� ���� ����� │
│ -15.� = -15/16x16� = 1 1�� ���1 1111 ���� ���� ���� ���� ����� │
│ 5.4x1�-%	 � +1/16x16-�� = � ��� ���� ���1 ���� ���� ���� ���� ����� │
│ 7.2x1�%� � (1-16-�)x16�� = � 111 1111 1111 1111 1111 1111 1111 1111� │
└──┘

Figure A-3. Normalized Short Hexadecimal-Floating-Point Numbers

 Conversion Example

Convert the decimal number 59.25 to a short HFP
number. (In another appendix are tables for the
conversion of hexadecimal and decimal integers
and fractions.)

1. The number is separated into a decimal
integer and a decimal fraction.

59.25 = 59 plus �.25

2. The decimal integer is converted to its
hexadecimal representation.

59�@ = 3B�^

3. The decimal fraction is converted to its
hexadecimal representation.

�.25�@ = �.4�^

4. The integral and fractional parts are combined
and expressed as a fraction times a power of
16 (exponent).

3B.4�^ = �.3B4�^ x 16�

5. The characteristic is developed from the expo-
nent and converted to binary.

base + exponent = characteristic
64 + 2 = 66 = 1����1�

6. The fraction is converted to binary and
grouped hexadecimally.

.3B4�^ = .��11 1�11 �1��

7. The characteristic and the fraction are stored
in the short format. The sign position contains
the sign of the fraction.

S Char Fraction
� 1����1� ��11 1�11 �1�� ���� ���� ����

Examples of instruction sequences that may be
used to convert between signed binary integers
and HFP numbers are shown in “Hexadecimal-
Floating-Point-Number Conversion” on page A-42.

 Instruction-Use Examples
The following examples illustrate the use of many
of the unprivileged instructions. Before studying
one of these examples, the reader should consult
the instruction description.

The instruction-use examples are written princi-
pally for assembler-language programmers, to be
used in conjunction with the appropriate
assembler-language publications.

A-6 z/Architecture Principles of Operation

Most examples present one particular instruction,
both as it is written in an assembler-language
statement and as it appears when assembled in
storage (machine format).

 Machine Format

All machine-format values are given in
hexadecimal notation unless otherwise specified.
Storage addresses are also given in hexadecimal.
Hexadecimal operands are shown converted into
binary, decimal, or both if such conversion helps
to clarify the example for the reader.

 Assembler-Language Format

In assembler-language statements, registers and
lengths are presented in decimal. Displacements,
immediate operands, and masks may be shown in
decimal, hexadecimal, or binary notation; for
example, 12, X'C', and B'1100' represent the
same value. Whenever the value in a register or
storage location is referred to as “not significant,”
this value is replaced during the execution of the
instruction.

When SS-format instructions are written in the
assembler language, lengths are given as the total
number of bytes in the field. This differs from the
machine definition, in which the length field speci-
fies the number of bytes to be added to the field
address to obtain the address of the last byte of
the field. Thus, the machine length is one less
than the assembler-language length. The assem-
bler program automatically subtracts one from the
length specified when the instruction is assem-
bled.

In some of the examples, symbolic addresses are
used in order to simplify the examples. In
assembler-language statements, a symbolic
address is represented as a mnemonic term
written in all capitals, such as FLAGS, which may
denote the address of a storage location con-
taining data or program-control information. When
symbolic addresses are used, the assembler sup-
plies actual base and displacement values
according to the programmer's specifications.
Therefore, the actual values for base and dis-
placement are not shown in the assembler-
language format or in the machine-language
format. For assembler-language formats, in the

labels that designate instruction fields, the letter
“S” is used to indicate the combination of base
and displacement fields for an operand address.
(For example, S2 represents the combination of
B2 and D2.) In the machine-language format, the
base and displacement address components are
shown as asterisks (****).

Addressing Mode in Examples
Except where otherwise specified, the examples
assume the 24-bit addressing mode.

 General Instructions
(See Chapter 7, “General Instructions” for a com-
plete description of the general instructions.)

ADD HALFWORD (AH)

The ADD HALFWORD instruction algebraically
adds the contents of a two-byte field in storage to
the contents of a register. The storage operand is
expanded to 32 bits after it is fetched and before it
is used in the add operation. The expansion con-
sists in propagating the leftmost (sign) bit 16 posi-
tions to the left. For example, assume that the
contents of storage locations 2000-2001 are to be
added to register 5. Initially:

Register 5 contains 00 00 00 19 = 25�@.

Storage locations 2000-2001 contain FF FE =
-2�@.

Register 12 contains 00 00 18 00.

Register 13 contains 00 00 01 50.

The format of the required instruction is:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 4A │ 5 │ D │ C │ 6B�│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
───────────────────────
 AH 5,X'6B�'(13,12)

After the instruction is executed, register 5 con-
tains 00 00 00 17 = 23�@. Condition code 2 is set
to indicate a result greater than zero.

 Appendix A. Number Representation and Instruction-Use Examples A-7

AND (N, NC, NI, NR)

When the Boolean operator AND is applied to two
bits, the result is one when both bits are one; oth-
erwise, the result is zero. When two bytes are
ANDed, each pair of bits is handled separately;
there is no connection from one bit position to
another. The following is an example of ANDing
two bytes:

First-operand byte: ��11 �1�1�
Second-operand byte: �1�1 11���
────────────────────────────────
Result byte: ���1 �1���

 NI Example
A frequent use of the AND instruction is to set a
particular bit to zero. For example, assume that
storage location 4891 contains 0100 0011�. To
set the rightmost bit of this byte to zero without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00
00 48 90):

Machine Format
 Op Code I� B� D�
┌────────┬────┬────┬────┐
│ 94 │ FE │ 8 │ ��1│
└────────┴────┴────┴────┘

Assembler Format
Op Code D�(B�),I�
───────────────────
 NI 1(8),X'FE'

When this instruction is executed, the byte in
storage is ANDed with the immediate byte (the I�
field of the instruction):

Location 4891: �1�� ��11�
Immediate byte: 1111 111��
───────────────────────────
Result: �1�� ��1��

The resulting byte, with bit 7 set to zero, is stored
back in location 4891. Condition code 1 is set.

Linkage Instructions (BAL, BALR,
BAS, BASR, BASSM, BSM)

Four unprivileged instructions (BRANCH AND
LINK, BRANCH AND SAVE, BRANCH AND SAVE
AND SET MODE, and BRANCH AND SET
MODE) are available, together with the uncondi-
tional branch (BRANCH ON CONDITION with a

mask of 15), to provide linkage between subrou-
tines. BRANCH AND LINK (BAL or BALR) is pro-
vided primarily for compatibility with programs
written for System/370; BRANCH AND SAVE
(BAS or BASR) is recommended instead for pro-
grams which are to be executed using ESA/370.
The instructions BRANCH AND SAVE AND SET
MODE (BASSM) and BRANCH AND SET MODE
(BSM) provide subroutine linkage together with
switching between the 24-bit and the 31-bit
addressing modes. The use of these instructions
is discussed in a programming note at the end of
“Subroutine Linkage without the Linkage Stack.”
(See also the semiprivileged instruction BRANCH
AND STACK.)

The following example compares the operation of
these instructions and of the unconditional-branch
instruction BRANCH ON CONDITION (BC or BCR
with a mask of 15). Assume that each instruction
in turn is located at the current instruction
address, ready to be executed next. For the first
set of examples, the addressing-mode bit, PSW
bit 32, is initially zero (24-bit addressing in effect).
For the second set, PSW bit 32 is initially one
(31-bit addressing). Assume also that general
register 5 is to receive the linkage information, and
that general register 6 contains the branch
address.

The format of the BALR instruction is:

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ �5 │ 5 │ 6 │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 BALR 5,6

The other linkage instructions in the RR format
have the same format but different op codes:

BASR �D
BASSM �C
BSM �B

For comparison with the RR-format instructions,
the results of two RX-format instructions are also
shown.

The format of the BAL instruction is:

A-8 z/Architecture Principles of Operation

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 45 │ 5 │ � │ 6 │ ���│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
──────────────────────
 BAL 5,�(�,6)

The BAS instruction has the same format, but the
op code is 4D.

The BCR instruction specifies only one register:

Machine Format
 Op Code M� R�
┌────────┬────┬────┐
│ �7 │ F │ 6 │
└────────┴────┴────┘

Assembler Format
Op Code M�,R�
──────────────
 BCR 15,6

Assume that:

Register 5 contains BB BB BB BB.

Register 6 contains 82 46 8A CE.

PSW bits 32-63 contain

00 00 10 D6 (for 24-bit addressing).
80 00 10 D6 (for 31-bit addressing).

Condition code is 01�.

Program mask is 1100�.

The effect of executing each instruction in turn is
as follows:

24-Bit Mode Initially

Instruction Register 5 PSW (32-63)

Before BB BB BB BB �� �� 1� D6

BCR 15,6 BB BB BB BB �� 46 8A CE
BAL 5,�(�,6) 9C �� 1� DA �� 46 8A CE
BAS 5,�(�,6) �� �� 1� DA �� 46 8A CE
BALR 5,6 5C �� 1� D8 �� 46 8A CE
BASR 5,6 �� �� 1� D8 �� 46 8A CE
BASSM 5,6 �� �� 1� D8 82 46 8A CE
BSM 5,6 3B BB BB BB 82 46 8A CE

31-Bit Mode Initially

Instruction Register 5 PSW (32-63)

Before BB BB BB BB 8� �� 1� D6

BCR 15,6 BB BB BB BB 82 46 8A CE
BAL 5,�(�,6) 8� �� 1� DA 82 46 8A CE
BAS 5,�(�,6) 8� �� 1� DA 82 46 8A CE
BALR 5,6 8� �� 1� D8 82 46 8A CE
BASR 5,6 8� �� 1� D8 82 46 8A CE
BASSM 5,6 8� �� 1� D8 82 46 8A CE
BSM 5,6 BB BB BB BB 82 46 8A CE

Note that a value of zero in the R� field of any of
the RR-format instructions indicates that the
branching function is not to be performed; it does
not refer to register 0. Likewise, a value of zero in
the R� field of the BSM instruction indicates that
the old value of PSW bit 32 is not to be saved and
that register 0 is to be left unchanged. Register 0
can be designated by the R� field of instructions
BAL, BALR, BAS, BASR, and BASSM, however.
In the RX-format branch instructions, branching
occurs independent of whether there is a value of
zero in the B� field or X� field of the instruction.
However, when the field is zero, instead of using
the contents of general register 0, a value of zero
is used for that component of address generation.

Programming Note: It should be noted that exe-
cution of BAL in the 24-bit addressing mode
results in bit 0 of register 5 being set to one. This
is because the ILC for an RX-format instruction is
10. This is the only case in which bit zero of the
return register does not correctly reflect the
addressing mode of the caller. Thus, BSM may
be used to return for BALR, BAS, BASR, and
BASSM in both the 24-bit and the 31-bit
addressing modes, but it cannot be used to return
if the program was called by using BAL in the
24-bit addressing mode.

Other BALR and BASR Examples
The BALR or BASR instruction with the R� field
set to zero may be used to load a register for use
as a base register. For example, in the assembler
language, the two statements:

BALR 15,�
USING �,15

or

BASR 15,�
USING �,15

 Appendix A. Number Representation and Instruction-Use Examples A-9

indicate that the address of the next sequential
instruction following the BALR or BASR instruction
will be placed in register 15, and that the assem-
bler may use register 15 as a base register until
otherwise instructed. (The USING statement is an
“assembler instruction” and is thus not a part of
the object program.)

BRANCH AND STACK (BAKR)

The semiprivileged BRANCH AND STACK instruc-
tion facilitates linkage between subroutines by
saving status in a linkage-stack state entry (some-
times called a branch state entry to distinguish it
from a program-call state entry). When BRANCH
AND STACK has been used, the return from the
called program is made by means of the
PROGRAM RETURN instruction. PROGRAM
RETURN restores access registers 2-14, general
registers 2-14, and the PSW with values saved in
the state entry, except that it leaves the PER
mask unchanged and sets the condition code to
an unpredictable value. The use of BRANCH
AND STACK is discussed in “Branching Using the
Linkage Stack” on page 5-63.

BRANCH AND STACK can be used to perform a
calling linkage, or it can be used at or near the
entry point of the called program, depending on
whether the R� field of the instruction is zero or
nonzero, respectively. If the R� field is zero, bits
32-63 of the PSW saved in the state entry indicate
the current addressing mode (24-bit or 31-bit) and
the address of the next sequential instruction after
the BRANCH AND STACK instruction or an
EXECUTE instruction. If the R� field is nonzero,
bits 32-63 of the PSW saved in the state entry are
set with a value generated from the contents of
general register R�: bit 32 of the PSW is set equal
to bit 0 of the register, and bits 1-31 of the PSW
are set with an address generated from bits 1-31
of the register under the control of bit 0 of the reg-
ister. Bits 32-63 of the PSW saved in the state
entry are referred to in the following examples as
the return value.

The branch address for the instruction is gener-
ated from the contents of general register R�
under the control of the current addressing mode.
Bit 0 of general register R� does not affect the

operation. If the R� field of the instruction is zero,
the operation is performed without branching.

In addition to saving a complete PSW (except with
an unpredictable PER mask) in the state entry,
BRANCH AND STACK saves the new value of
bits 32-63 of the current PSW in the state entry.
Bits 32-63 are referred to in the following exam-
ples as the branch value.

The following examples contain cases in which bit
32 of the current PSW is either zero or one (24-bit
or 31-bit addressing) before BRANCH AND
STACK is executed and in which bit 0 of the
general register designated by a nonzero R� or R�
field is either zero or one.

BAKR Example 1
This example shows BAKR used in a calling
program. BAKR performs a branch, and the
return is to be to the next sequential instruction.

The format of the BAKR instruction is:

Machine Format
 Op Code R� R�
┌────────────────┬────────┬────┬────┐
│ B24� │ │ � │ 6 │
└────────────────┴────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────────────
 BAKR �,6

Assume four cases of initial values, as follows:

 PSW (32-63) Register 6

1. �� �� 1� D6 �2 46 8A CE
2. �� �� 1� D6 82 46 8A CE
3. 8� �� 1� D6 �2 46 8A CE
4. 8� �� 1� D6 82 46 8A CE

The results in the four cases are as follows:

 Return Branch Value
Value and PSW (32-63)

1. �� �� 1� DA �� 46 8A CE
2. �� �� 1� DA �� 46 8A CE
3. 8� �� 1� DA 82 46 8A CE
4. 8� �� 1� DA 82 46 8A CE

A-10 z/Architecture Principles of Operation

BAKR Example 2
This example shows BAKR used in a called
program. BAKR does not perform a branch, and
the return is to be as specified in general register
R�.

The format of the BAKR instruction is:

Machine Format
 Op Code R� R�
┌────────────────┬────────┬────┬────┐
│ B24� │ │ 5 │ � │
└────────────────┴────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────────────
 BAKR 5,�

Assume four cases of initial values, as follows:

 Register 5 PSW (32-63)

1. �4 �� 1� D6 �� 46 8A CE
2. �4 �� 1� D6 82 46 8A CE
3. 84 �� 1� D6 �� 46 8A CE
4. 84 �� 1� D6 82 46 8A CE

The results in the four cases are as follows:

 Return Branch Value
Value and PSW (32-63)

1. �� �� 1� D6 �� 46 8A D2
2. �� �� 1� D6 82 46 8A D2
3. 84 �� 1� D6 �� 46 8A D2
4. 84 �� 1� D6 82 46 8A D2

BAKR Example 3
This example shows BAKR used in a called
program. BAKR performs a branch, and the
return is to be as specified in general register R�.

The format of the BAKR instruction is:

Machine Format
 Op Code R� R�
┌────────────────┬────────┬────┬────┐
│ B24� │ │ 5 │ 6 │
└────────────────┴────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────────────
 BAKR 5,6

Assume eight cases of initial values, as follows:

 Register 5 Register 6 PSW (32-63)

1. �4 �� 1� D6 �6 99 99 �� �� 46 8A CE
2. �4 �� 1� D6 �6 99 99 �� 82 46 8A CE
3. �4 �� 1� D6 86 99 99 �� �� 46 8A CE
4. �4 �� 1� D6 86 99 99 �� 82 46 8A CE
5. 84 �� 1� D6 �6 99 99 �� �� 46 8A CE
6. 84 �� 1� D6 �6 99 99 �� 82 46 8A CE
7. 84 �� 1� D6 86 99 99 �� �� 46 8A CE
8. 84 �� 1� D6 86 99 99 �� 82 46 8A CE

The results in the eight cases are as follows:

 Return Branch Value
Value and PSW (32-63)

1. �� �� 1� D6 �� 99 99 ��
2. �� �� 1� D6 86 99 99 ��
3. �� �� 1� D6 �� 99 99 ��
4. �� �� 1� D6 86 99 99 ��
5. 84 �� 1� D6 �� 99 99 ��
6. 84 �� 1� D6 86 99 99 ��
7. 84 �� 1� D6 �� 99 99 ��
8. 84 �� 1� D6 86 99 99 ��

BRANCH ON CONDITION (BC,
BCR)

The BRANCH ON CONDITION instruction tests
the condition code to see whether a branch should
or should not occur. The branch occurs only if the
current condition code corresponds to a one bit in
a mask specified by the instruction.

For example, assume that an ADD (A or AR)
operation has been performed and that a branch
to address 6050 is desired if the sum is zero or
less (condition code is 0 or 1). Also assume:

Register 10 contains 00 00 50 00.

Register 11 contains 00 00 10 00.

The RX form of the instruction performs the
required test (and branch if necessary) when
written as:

Condition
Code

Instruction
(Mask) Bit Mask Value

0 8 8
1 9 4
2 10 2
3 11 1

 Appendix A. Number Representation and Instruction-Use Examples A-11

Machine Format
 Op Code M� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 47 │ C │ B │ A │ �5�│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code M�,D�(X�,B�)
───────────────────────
 BC 12,X'5�'(11,1�)

A mask of 12�@ means that there are ones in
instruction bits 8 and 9 and zeros in bits 10 and
11, so that branching takes place when the condi-
tion code is either 0 or 1.

A mask of 15 would indicate a branch on any con-
dition (an unconditional branch). A mask of zero
would indicate that no branch is to occur (a no-
operation).

(See also “Linkage Instructions (BAL, BALR, BAS,
BASR, BASSM, BSM)” on page A-8 for an
example of the BCR instruction.)

BRANCH ON COUNT (BCT,
BCTR)

The BRANCH ON COUNT instruction is often
used to execute a program loop for a specified
number of times. For example, assume that the
following represents some lines of coding in an
assembler-language program:

...
LUPE AR 8,1
...
BACK BCT 6,LUPE
...

where register 6 contains 00 00 00 03 and the
address of LUPE is 6826. Assume that, in order
to address this location, register 10 is used as a
base register and contains 00 00 68 00.

The format of the BCT instruction is:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 46 │ 6 │ � │ A │ �26│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
──────────────────────
 BCT 6,X'26'(�,1�)

The effect of the coding is to execute three times
the loop defined by the instructions labeled LUPE
through BACK, while register 6 is decremented
from three to zero.

BRANCH ON INDEX HIGH (BXH)

BXH Example 1
The BRANCH ON INDEX HIGH instruction is an
index-incrementing and loop-controlling instruction
that causes a branch whenever the sum of an
index value and an increment value is greater
than some compare value. For example, assume
that:

Register 4 contains 00 00 00 8A = 138�@ =
the index.

Register 6 contains 00 00 00 02 = 2�@ = the
increment.

Register 7 contains 00 00 00 AA = 170�@ =
the compare value.

Register 10 contains 00 00 71 30 = the
branch address.

The format of the BXH instruction is:

Machine Format
 Op Code R� R� B� D�
┌────────┬────┬────┬────┬────┐
│ 86 │ 4 │ 6 │ A │ ���│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,R�,D�(B�)
─────────────────────
 BXH 4,6,�(1�)

When the instruction is executed, first the contents
of register 6 are added to register 4, second the
sum is compared with the contents of register 7,
and third the decision whether to branch is made.
After execution:

Register 4 contains 00 00 00 8C = 140�@.

Registers 6 and 7 are unchanged.

Since the new value in register 4 is not yet greater
than the value in register 7, the branch to address
7130 is not taken. Repeated use of the instruction

A-12 z/Architecture Principles of Operation

will eventually cause the branch to be taken when
the value in register 4 reaches 172�@.

BXH Example 2
When the register used to contain the increment is
odd, that register also becomes the compare-
value register. The following assembler-language
subroutine illustrates how this may be used to
search a table.

┌───────────────────────────────┐
│ Table │
├───────────────┬───────────────┤
│ 2 Bytes │ 2 Bytes │
├───────────────┼───────────────┤
│ ARG1 │ FUNCT1 │
│ ARG2 │ FUNCT2 │
│ ARG3 │ FUNCT3 │
│ ARG4 │ FUNCT4 │
│ ARG5 │ FUNCT5 │
│ ARG6 │ FUNCT6 │
└───────────────┴───────────────┘

Assume that:

Register 8 contains the search argument.

Register 9 contains the width of the table in
bytes (00 00 00 04).

Register 10 contains the length of the table in
bytes (00 00 00 18).

Register 11 contains the starting address of
the table.

Register 14 contains the return address to the
main program.

As the following subroutine is executed, the argu-
ment in register 8 is successively compared with
the arguments in the table, starting with argument
6 and working backward to argument 1. If an
equality is found, the corresponding function
replaces the argument in register 8. If an equality
is not found, zero replaces the argument in reg-
ister 8.

 SEARCH LNR 9,9
NOTEQUAL BXH 1�,9,LOOP

 NOTFOUND SR 8,8
 BCR 15,14
 LOOP CH 8,�(1�,11)
 BC 7,NOTEQUAL
 LH 8,2(1�,11)
 BCR 15,14

The first instruction (LNR) causes the value in reg-
ister 9 to be made negative. After execution of
this instruction, register 9 contains FF FF FF FC =
-4�@. Considering the case when no equality is

found, the BXH instruction will be executed seven
times. Each time BXH is executed, a value of -4
is added to register 10, thus reducing the value in
register 10 by 4. The new value in register 10 is
compared with the -4 value in register 9. The
branch is taken each time until the value in reg-
ister 10 is -4. Then the branch is not taken, and
the SR instruction sets register 8 to zero.

BRANCH ON INDEX LOW OR
EQUAL (BXLE)

The BRANCH ON INDEX LOW OR EQUAL
instruction performs the same operation as
BRANCH ON INDEX HIGH, except that branching
occurs when the sum is lower than or equal to
(instead of higher than) the compare value. As
the instruction which increments and tests an
index value in a program loop, BXLE is useful at
the end of the loop and BXH at the beginning.
The following assembler-language routines illus-
trate loops with BXLE.

BXLE Example 1
Assume that a group of ten 32-bit signed binary
integers are stored at consecutive locations,
starting at location GROUP. The integers are to
be added together, and the sum is to be stored at
location SUM.

SR 5,5 Set sum to zero
LA 6,GROUP Load first address
SR 7,7 Set index to zero
LA 8,4 Load increment 4
LA 9,39 Load compare value

LOOP A 5,�(7,6) Add integer to sum
BXLE 7,8,LOOP Test end of loop

 ST 5,SUM Store sum

The two-instruction loop contains an ADD (A)
instruction which adds each integer to the con-
tents of general register 5. The ADD instruction
uses the contents of general register 7 as an
index value to modify the starting address
obtained from register 6. Next, BXLE increments
the index value by 4, the increment previously
loaded into register 8, and compares it with the
compare value in register 9, the odd register of
this even-odd pair. The compare value was previ-
ously set to 39, which is one less than the number
of bytes in the data area; this is also the address,
relative to the starting address, of the rightmost
byte of the last integer to be added. When the
last integer has been added, BXLE increments the
index value to the next relative address (40),

 Appendix A. Number Representation and Instruction-Use Examples A-13

which is found to be greater than the compare
value (39) so that no branching takes place.

BXLE Example 2
The technique illustrated in Example 1 is restricted
to loops containing instructions in the RX instruc-
tion format. That format allows both a base reg-
ister and an index register to be specified (double
indexing).

For instructions in other formats, where an index
register cannot be specified, the previous tech-
nique may be modified by having the address
itself serve as the index value in a BXLE instruc-
tion and by using as the compare value the
address of the last byte rather than its relative
address. The base register then provides the
address directly at each iteration of the loop, and
it is not necessary to specify a second register to
hold the index value (single indexing).

In the following example, an AND (NI) instruction
in the SI instruction format sets to zero the right-
most bit of each of the same group of integers as
in Example 1, thus making all of them even. The
I� field of the NI instruction contains the byte
X'FE', which consists of seven ones and a zero.
That byte is ANDed into byte 3, the rightmost
byte, of each of the integers in turn.

LA 6,GROUP Load first address
LA 8,4 Load increment 4
LA 9,GROUP+39 Load compare value

LOOP NI 3(6),X'FE' AND immediate
BXLE 6,8,LOOP Test end of loop

The technique shown in Example 2 does not work,
however, on an ESA/370 system when it is in the
31-bit addressing mode and the data is located at
the rightmost end of a 31-bit address space. In
this case, the compare value would be set to
2��-1, which is the largest possible 32-bit signed
binary value. The reason the technique does not
work is that the BXLE and BXH instructions treat
their operands as 32-bit signed binary integers.
When the address in general register 6 reaches
the value 2��-4, BXLE increments it to a value
that is interpreted as -2��, rather than 2��, and
the comparison remains low, which causes
looping to continue indefinitely.

This situation can be avoided by not allowing data
areas to extend to the rightmost location in a
31-bit address space or by using other techniques;
these may include double indexing when possible,

as in Example 1, or starting at the end and step-
ping downward through the data area with a nega-
tive increment.

COMPARE AND FORM
CODEWORD (CFC)

See “Sorting Instructions” on page A-51.

COMPARE HALFWORD (CH)

The COMPARE HALFWORD instruction compares
a 16-bit signed binary integer in storage with the
contents of a register. For example, assume that:

Register 4 contains FF FF 80 00 = -32,768�@.

Register 13 contains 00 01 60 50.

Storage locations 16080-16081 contain 8000
= -32,768�@.

When the instruction:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 49 │ 4 │ � │ D │ �3�│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
──────────────────────
 CH 4,X'3�'(�,13)

is executed, the contents of locations
16080-16081 are fetched, expanded to 32 bits
(the sign bit is propagated to the left), and com-
pared with the contents of register 4. Because the
two numbers are equal, condition code 0 is set.

COMPARE LOGICAL (CL, CLC,
CLI, CLR)

The COMPARE LOGICAL instruction differs from
the signed-binary comparison instructions (C, CH,
CR) in that all quantities are handled as unsigned
binary integers or as unstructured data.

 CLC Example
The COMPARE LOGICAL (CLC) instruction can
be used to perform the byte-by-byte comparison of
storage fields up to 256 bytes in length. For
example, assume that the following two fields of
data are in storage:

A-14 z/Architecture Principles of Operation

Field 1
1886 1891
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│D1│D6│C8│D5│E2│D6│D5│6B│C1│4B│C2│4B│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Field 2
19�� 19�B
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│D1│D6│C8│D5│E2│D6│D5│6B│C1│4B│C3│4B│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Also assume:

Register 9 contains 00 00 18 80.

Register 7 contains 00 00 19 00.

Execution of the instruction:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D5 │ �B │ 9 │ ��6│ 7 │ ���│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 CLC 6(12,9),�(7)

sets condition code 1, indicating that the contents
of field 1 are lower in value than the contents of
field 2.

Because the collating sequence of the EBCDIC
code is determined simply by a logical comparison
of the bits in the code, the CLC instruction can be
used to collate EBCDIC-coded fields. For
example, in EBCDIC, the above two data fields
are:

Field 1: JOHNSON,A.B.
Field 2: JOHNSON,A.C.

Condition code 1 indicates that JOHNSON,A.B.
should precede JOHNSON,A.C. for the fields to
be in alphabetic sequence.

 CLI Example
The COMPARE LOGICAL (CLI) instruction com-
pares a byte from the instruction stream with a
byte from storage. For example, assume that:

Register 10 contains 00 00 17 00.

Storage location 1703 contains 7E.

Execution of the instruction:

Machine Format
 Op Code I� B� D�
┌────────┬────┬────┬────┐
│ 95 │ AF │ A │ ��3│
└────────┴────┴────┴────┘

Assembler Format
Op Code D�(B�),I�
────────────────────
 CLI 3(1�),X'AF'

sets condition code 1, indicating that the first
operand (the quantity in main storage) is lower
than the second (immediate) operand.

 CLR Example
Assume that:

Register 4 contains 00 00 00 01 = 1.

Register 7 contains FF FF FF FF = 2�� - 1.

Execution of the instruction:

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ 15 │ 4 │ 7 │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 CLR 4,7

sets condition code 1. Condition code 1 indicates
that the first operand is lower than the second.

If, instead, the signed-binary comparison instruc-
tion COMPARE (CR) had been executed, the con-
tents of register 4 would have been interpreted as
+1 and the contents of register 7 as -1. Thus, the
first operand would have been higher, so that con-
dition code 2 would have been set.

 COMPARE LOGICAL
CHARACTERS UNDER MASK
(CLM)

The COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM) instruction provides a
means of comparing bytes selected from a
general register to a contiguous field of bytes in
storage. The M� field of the CLM instruction is a

 Appendix A. Number Representation and Instruction-Use Examples A-15

four-bit mask that selects zero to four bytes from a
general register, each mask bit corresponding, left
to right, to a register byte. In the comparison, the
register bytes corresponding to ones in the mask
are treated as a contiguous field. The operation
proceeds left to right. For example, assume that:

Storage locations 10200-10202 contain F0 BC
7B.

Register 12 contains 00 01 00 00.

Register 6 contains F0 BC 5C 7B.

Execution of the instruction:

Machine Format
 Op Code R� M� B� D�
┌────────┬────┬────┬────┬────┐
│ BD │ 6 │ D │ C │ 2��│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,M�,D�(B�)
─────────────────────────────
 CLM 6,B'11�1',X'2��'(12)

causes the following comparison:

Register 6: F� BC 5C 7B
Mask M�: 1 1 � 1

 -- -- --

 F� BC 7B
│ └────┐ │

Storage └────┐ │ │
locations ┌─┴──┬─┴──┬─┴──┐
1�2��-1�2�2: │ F� │ BC │ 7B │
 └────┴────┴────┘

Because the selected bytes are equal, condition
code 0 is set.

COMPARE LOGICAL LONG
(CLCL)

The COMPARE LOGICAL LONG instruction is
used to compare two operands in storage, byte by
byte. Each operand can be of any length. Two
even-odd pairs of general registers (four registers
in all) are used to locate the operands and to
control the execution of the CLCL instruction, as
illustrated in the following diagram. The first reg-
ister of each pair must be an even register, and it
contains the storage address of an operand. The
odd register of each pair contains the length of the

operand it covers, and the leftmost byte of the
second-operand odd register contains a padding
byte which is used to extend the shorter operand,
if any, to the same length as the longer operand.

The following illustrates the assignment of regis-
ters in the 24-bit addressing mode:

 ┌────────┬──────────────────────┐
R� │////////│First-Operand Address │
(even) └────────┴──────────────────────┘
 � 8 31

 ┌────────┬──────────────────────┐
R�+1 │////////│ First-Operand Length │
(odd) └────────┴──────────────────────┘
 � 8 31

 ┌────────┬──────────────────────┐
R� │////////│Second-Operand Address│
(even) └────────┴──────────────────────┘
 � 8 31

 ┌────────┬──────────────────────┐
R�+1 │Pad Byte│Second-Operand Length │
(odd) └────────┴──────────────────────┘
 � 8 31

In the 31-bit addressing mode, the operand
addresses would be in bit positions 1-31 of the
even registers shown above.

Since the CLCL instruction may be interrupted
during execution, the interrupting program must
preserve the contents of the four registers for use
when the instruction is resumed.

The following instructions set up two register pairs
to control a text-string comparison. For example,
assume:

 Operand 1
 Address: 2�8���^
 Length: 1���@

 Operand 2
 Address: 2�A���^
 Length: 132�@

 Padding Byte
 Address: 2���3�^
 Length: 1
 Value: 4��^

Register 12 contains 00 02 00 00.

The setup instructions are:

A-16 z/Architecture Principles of Operation

Register pair 4,5 defines the first operand. Bits
8-31 of register 4 contain the storage address of
the start of an EBCDIC text string, and bits 8-31 of
register 5 contain the length of the string, in this
case 100 bytes.

Register pair 8,9 defines the second operand, with
bits 8-31 of register 8 containing the starting
location of the second operand and bits 8-31 of
register 9 containing the length of the second
operand, in this case 132 bytes. Bits 0-7 of reg-
ister 9 contain an EBCDIC blank character
(X'40') to pad the shorter operand. In this
example, the padding byte is used in the first
operand, after the 100th byte, to compare with the
remaining bytes in the second operand.

With the register pairs thus set up, the format of
the CLCL instruction is:

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ �F │ 4 │ 8 │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 CLCL 4,8

When this instruction is executed, the comparison
starts at the left end of each operand and pro-
ceeds to the right. The operation ends as soon as
an inequality is detected or the end of the longer
operand is reached.

If this CLCL instruction is interrupted after 60
bytes have compared equal, the operand lengths
in registers 5 and 9 will have been decremented
to 40 and 72, respectively. The operand
addresses in registers 4 and 8 will have been

LA 4,X'800'(12) Set register 4 to start of
first operand

incremented to X'2083C' and X'20A3C'; the left-
most byte of registers 4 and 8 will have been set
to zero. The padding byte X'40' remains in reg-
ister 9. When the CLCL instruction is reexecuted
with these register contents, the comparison
resumes at the point of interruption.

Now, assume that the instruction is interrupted
after 110 bytes. That is, the first 100 bytes of the
second operand have compared equal to the first
operand, and the next 10 bytes of the second
operand have compared equal to the padding byte
(blank). The residual operand lengths in registers
5 and 9 are 0 and 22, respectively, and the
operand addresses in registers 4 and 8 are
X'20864' (the value when the first operand was
exhausted) and X'20A6E' (the current value for
the second operand).

When the comparison ends, the condition code is
set to 0, 1, or 2, depending on whether the first
operand is equal to, less than, or greater than the
second operand, respectively.

When the operands are unequal, the addresses in
registers 4 and 8 indicate the bytes that caused
the mismatch.

COMPARE LOGICAL STRING
(CLST)

The COMPARE LOGICAL STRING instruction is
used to compare a first operand designated by
general register R� and a second operand desig-
nated by general register R�. The comparison is
made left to right, byte by byte, until unequal bytes
are compared, an ending character specified in
general register 0 is encountered in either
operand, or a CPU-determined number of bytes
have been compared. The condition code is set
to 0 if the two operands are equal, to 1 if the first
operand is low, to 2 if the second operand is low,
or to 3 if a CPU-determined number of bytes have
been compared. If the ending character is found
in both operands simultaneously, the operands are
equal. If it is found in only one operand, that
operand is low.

When condition code 1 or 2 is set, the addresses
of the last bytes processed in the first and second
operands are placed in general registers R� and
R�, respectively. These are the addresses of
unequal bytes in the two operands, or they are the

LA 5,100 Set register 5 to length
of first operand

LA 8,X'A00'(12) Set register 8 to start of
second operand

LA 9,132 Set register 9 to length
of second operand

ICM 9,B'1000',3(12) Insert padding byte in
leftmost byte position of
register 9

 Appendix A. Number Representation and Instruction-Use Examples A-17

address of an ending character in one operand
and of the byte in the corresponding byte position
in the other operand. When condition code 3 is
set, the addresses of the next bytes to be proc-
essed are placed in the registers. When condition
code 0 is set, the contents of the registers remain
unchanged.

Following are examples of first and second oper-
ands beginning at decimal locations 1000 and
2000, respectively. The addresses in general reg-
isters R� and R� are 1000 and 2000, respectively.
The ending character in general register 0 is 00
hex (as in the C programming language). The
values of the operand bytes are shown in hex,
and the resulting condition code and final contents
of general registers R� and R� are shown.

Example 1
1��� 2���
C1 C2 C3 �� C1 C2 C3 ��

CC: �; (R�): 1���; (R�): 2���

Example 2
1��� 2���
4� 4� 4� C1 4� 4� 4� C2

CC: 1; (R�): 1��3; (R�): 2��3

Example 3
1��� 2���
4� 4� 4� C2 4� 4� 4� C1

CC: 2; (R�): 1��3; (R�): 2��3

Example 4
1��� 2���
C1 C2 C3 �� C1 C2 C3 C4

CC: 1; (R�): 1��3; (R�): 2��3

Example 5
1��� 2���
C1 C2 C3 C4 C1 C2 C3 ��

CC: 2; (R�): 1��3; (R�): 2��3

Example 6
Assuming that the CPU-determined number of
bytes compared is 256:

1��� 1256 2��� 2256
4� .. 4� �� 4� .. 4� ��

CC: 3; (R�): 1256; (R�): 2256

Example 7
1��� 2���
�� 4� 4� 4� 4� 4� 4� 4�

CC: 1; (R�): 1���; (R�): 2���

Example 8
1��� 2���
4� 4� 4� 4� �� 4� 4� 4�

CC: 2; (R�): 1���; (R�): 2���

Example 9
1��� 2���
�� 4� 4� 4� �� 4� 4� 4�

CC: �; (R�): 1���; (R�): 2���

CONVERT TO BINARY (CVB)

The CONVERT TO BINARY instruction converts
an eight-byte, packed-decimal number into a
signed binary integer and loads the result into a
general register. After the conversion operation is
completed, the number is in the proper form for
use as an operand in signed binary arithmetic.
For example, assume:

Storage locations 7608-760F contain a
decimal number in the packed format: 00 00
00 00 00 25 59 4C (+25,594).

The contents of register 7 are not significant.

Register 13 contains 00 00 76 00.

The format of the conversion instruction is:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 4F │ 7 │ � │ D │ ��8│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 CVB 7,8(�,13)

After the instruction is executed, register 7 con-
tains 00 00 63 FA.

CONVERT TO DECIMAL (CVD)

The CONVERT TO DECIMAL instruction is the
opposite of the CONVERT TO BINARY instruc-
tion. CVD converts a signed binary integer in a
register to packed decimal and stores the eight-
byte result. For example, assume:

Register 1 contains the signed binary integer:
00 00 0F 0F.

Register 13 contains 00 00 76 00.

A-18 z/Architecture Principles of Operation

The format of the instruction is:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 4E │ 1 │ � │ D │ ��8│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 CVD 1,8(�,13)

After the instruction is executed, storage locations
7608-760F contain 00 00 00 00 00 03 85 5C
(+3855).

The plus sign generated is the preferred plus sign,
1100�.

DIVIDE (D, DR)

The DIVIDE instruction divides the dividend in an
even-odd register pair by the divisor in a register
or in storage. Since the instruction assumes the
dividend to be 64 bits long, it is important first to
extend a 32-bit dividend on the left with bits equal
to the sign bit. For example, assume that:

Storage locations 3550-3553 contain 00 00 08
DE = 2270�@ (the dividend).

Storage locations 3554-3557 contain 00 00 00
32 = 50�@ (the divisor).

The initial contents of registers 6 and 7 are
not significant.

Register 8 contains 00 00 35 50.

The following assembler-language statements load
the registers properly and perform the divide oper-
ation:

┌─────────────┬────────────────────────────────┐
│ Statement │ Comments │
├─────────────┼────────────────────────────────┤
│L 6,�(�,8)│ Places �� �� �8 DE into reg- │
│ │ ister 6. │
│SRDA 6,32(�) │ Shifts �� �� �8 DE into reg- │
│ │ ister 7. Register 6 is │
│ │ filled with zeros (sign │
│ │ bits). │
│D 6,4(�,8)│ Performs the division. │
└─────────────┴────────────────────────────────┘

The machine format of the above DIVIDE instruc-
tion is:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 5D │ 6 │ � │ 8 │ ��4│
└────────┴────┴────┴────┴────┘

After the instructions listed above are executed:

Register 6 contains 00 00 00 14 = 20�@ = the
remainder.

Register 7 contains 00 00 00 2D = 45�@ = the
quotient.

Note that if the dividend had not been first placed
in register 6 and shifted into register 7, register 6
might not have been filled with the proper
dividend-sign bits (zeros in this example), and the
DIVIDE instruction might not have given the
expected results.

EXCLUSIVE OR (X, XC, XI, XR)

When the Boolean operator EXCLUSIVE OR is
applied to two bits, the result is one when either,
but not both, of the two bits is one; otherwise, the
result is zero. When two bytes are EXCLUSIVE
ORed, each pair of bits is handled separately;
there is no connection from one bit position to
another. The following is an example of the
EXCLUSIVE OR of two bytes:

First-operand byte: ��11 �1�1�
Second-operand byte: �1�1 11���
──────────────────────────────────
Result byte: �11� 1��1�

 XC Example
The EXCLUSIVE OR (XC) instruction can be used
to exchange the contents of two areas in storage
without the use of an intermediate storage area.
For example, assume two three-byte fields in
storage:

 359 35B
 ┌──┬──┬──┐
 Field 1 │��│17│9�│
 └──┴──┴──┘

 36� 362
 ┌──┬──┬──┐
 Field 2 │��│14│�1│
 └──┴──┴──┘

Execution of the instruction (assume that register
7 contains 00 00 03 58):

 Appendix A. Number Representation and Instruction-Use Examples A-19

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D7 │ �2 │ 7 │ ��1│ 7 │ ��8│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 XC 1(3,7),8(7)

Field 1 is EXCLUSIVE ORed with field 2 as
follows:

Field 1: �������� ���1�111 1��1����� = �� 17 9��^
Field 2: �������� ���1�1�� �������1� = �� 14 �1�^
──
Result: �������� ������11 1��1���1� = �� �3 91�^

The result replaces the former contents of field 1.
Condition code 1 is set to indicate a nonzero
result.

Now, execution of the instruction:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D7 │ �2 │ 7 │ ��8│ 7 │ ��1│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 XC 8(3,7),1(7)

produces the following result:

Field 1: �������� ������11 1��1���1� = �� �3 91�^
Field 2: �������� ���1�1�� �������1� = �� 14 �1�^
──
Result: �������� ���1�111 1��1����� = �� 17 9��^

The result of this operation replaces the former
contents of field 2. Field 2 now contains the ori-
ginal value of field 1. Condition code 1 is set to
indicate a nonzero result.

Lastly, execution of the instruction:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D7 │ �2 │ 7 │ ��1│ 7 │ ��8│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 XC 1(3,7),8(7)

produces the following result:

Field 1: �������� ������11 1��1���1� = �� �3 91�^
Field 2: �������� ���1�111 1��1����� = �� 17 9��^
──
Result: �������� ���1�1�� �������1� = �� 14 �1�^

The result of this operation replaces the former
contents of field 1. Field 1 now contains the ori-
ginal value of field 2. Condition code 1 is set to
indicate a nonzero result.

 XI Example
A frequent use of the EXCLUSIVE OR (XI)
instruction is to invert a bit (change a zero bit to a
one or a one bit to a zero). For example, assume
that storage location 8082 contains 0110 1001�.
To invert the leftmost and rightmost bits without
affecting any of the other bits, the following
instruction can be used (assume that register 9
contains 00 00 80 80):

Machine Format
 Op Code I� B� D�
┌────────┬────┬────┬────┐
│ 97 │ 81 │ 9 │ ��2│
└────────┴────┴────┴────┘

Assembler Format
Op Code D�(B�),I�
───────────────────
 XI 2(9),X'81'

When the instruction is executed, the byte in
storage is EXCLUSIVE ORed with the immediate
byte (the I� field of the instruction):

Location 8�82: �11� 1��1�
Immediate byte: 1��� ���1�
───────────────────────────
Result: 111� 1����

The resulting byte is stored back in location 8082.
Condition code 1 is set to indicate a nonzero
result.

Notes:

1. With the XC instruction, fields up to 256 bytes
in length can be exchanged.

2. With the XR instruction, the contents of two
registers can be exchanged.

3. Because the X instruction operates storage to

A-20 z/Architecture Principles of Operation

register only, an exchange cannot be made
solely by the use of X.

4. A field EXCLUSIVE ORed with itself is cleared
to zeros.

5. For additional examples of the use of EXCLU-
SIVE OR, see “Hexadecimal-Floating-Point-
Number Conversion” on page A-42.

 EXECUTE (EX)

The EXECUTE instruction causes one target
instruction in main storage to be executed out of
sequence without actually branching to the target
instruction. Unless the R� field of the EXECUTE
instruction is zero, bits 8-15 of the target instruc-
tion are ORed with bits 24-31 of the R� register
before the target instruction is executed. Thus,
EXECUTE may be used to supply the length field
for an SS instruction without modifying the SS
instruction in storage. For example, assume that
a MOVE (MVC) instruction is the target that is
located at address 3820, with a format as follows:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D2 │ �� │ C │ ��3│ D │ ���│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 MVC 3(1,12),�(13)

where register 12 contains 00 00 89 13 and reg-
ister 13 contains 00 00 90 A0.

Further assume that at storage address 5000, the
following EXECUTE instruction is located:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 44 │ 1 │ � │ A │ ���│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 EX 1,�(�,1�)

where register 10 contains 00 00 38 20 and reg-
ister 1 contains 00 0F F0 03.

When the instruction at 5000 is executed, the
rightmost byte of register 1 is ORed with the
second byte of the target instruction:

Instruction byte: ���� ����� = ��
Register byte: ���� ��11� = �3
───────────────────────────────────
Result: ���� ��11� = �3

causing the instruction at 3820 to be executed as
if it originally were:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D2 │ �3 │ C │ ��3│ D │ ���│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 MVC 3(4,12),�(13)

However, after execution:

Register 1 is unchanged.

The instruction at 3820 is unchanged.

The contents of the four bytes starting at
location 90A0 have been moved to the four
bytes starting at location 8916.

The CPU next executes the instruction at
address 5004 (PSW bits 40-63 contain 00 50
04).

INSERT CHARACTERS UNDER
MASK (ICM)

The INSERT CHARACTERS UNDER MASK
(ICM) instruction may be used to replace all or
selected bytes in a general register with bytes
from storage and to set the condition code to indi-
cate the value of the inserted field.

For example, if it is desired to insert a three-byte
address from FIELDA into register 5 and leave the
leftmost byte of the register unchanged, assume:

Machine Format
 Op Code R� M� S�
┌────────┬────┬────┬─────────┐
│ BF │ 5 │ 7 │ � � � � │
└────────┴────┴────┴─────────┘

 Appendix A. Number Representation and Instruction-Use Examples A-21

Assembler Format
Op Code R�,M�,S�
─────────────────────────
 ICM 5,B'�111',FIELDA

FIELDA: FE DC BA
Register 5 (before): 12 34 56 78
Register 5 (after): 12 FE DC BA
Condition code (after): 1 (leftmost bit of
 inserted field
 is one)

As another example:

Machine Format
 Op Code R� M� S�
┌────────┬────┬────┬─────────┐
│ BF │ 6 │ 9 │ � � � � │
└────────┴────┴────┴─────────┘

Assembler Format
Op Code R�,M�,S�
─────────────────────────
 ICM 6,B'1��1',FIELDB

FIELDB: 12 34
Register 6 (before): �� �� �� ��
Register 6 (after): 12 �� �� 34
Condition code (after): 2 (inserted field is

nonzero with left-
most zero bit)

When the mask field contains 1111, the ICM
instruction produces the same result as LOAD (L)
(provided that the indexing capability of the RX
format is not needed), except that ICM also sets
the condition code. The condition-code setting is
useful when an all-zero field (condition code 0) or
a leftmost one bit (condition code 1) is used as a
flag.

LOAD (L, LR)

The LOAD instruction takes four bytes from
storage or from a general register and place them
unchanged into a general register. For example,
assume that the four bytes starting with location
21003 are to be loaded into register 10. Initially:

Register 5 contains 00 02 00 00.

Register 6 contains 00 00 10 03.

The contents of register 10 are not significant.

Storage locations 21003-21006 contain 00 00
AB CD.

To load register 10, the RX form of the instruction
can be used:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 58 │ A │ 5 │ 6 │ ���│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 L 1�,�(5,6)

After the instruction is executed, register 10 con-
tains 00 00 AB CD.

LOAD ADDRESS (LA)

The LOAD ADDRESS instruction provides a con-
venient way to place a nonnegative binary integer
up to 4095�@ in a register without first defining a
constant and then using it as an operand. For
example, the following instruction places the
number 2048�@ in register 1:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 41 │ 1 │ � │ � │ 8��│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 LA 1,2�48(�,�)

The LOAD ADDRESS instruction can also be
used to increment a register by an amount up to
4095�@ specified in the D� field. Depending on
the addressing mode, only the rightmost 24 or 31
bits of the sum are retained, however. The left-
most bits of the 32-bit result are set to zeros. For
example, assume that register 5 contains 00 12
34 56.

The instruction:

A-22 z/Architecture Principles of Operation

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 41 │ 5 │ � │ 5 │ ��A│
└────────┴────┴────┴────┴────┘
Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 LA 5,1�(�,5)

adds 10 (decimal) to the contents of register 5 as
follows:

Register 5 (old): �� 12 34 56
D� field: �� �� �� �A
─────────────────────────────
Register 5 (new): �� 12 34 6�

The register may be specified as either B� or X�.
Thus, the instruction LA 5,10(5,0) produces the
same result.

As the most general example, the instruction LA
6,10(5,4) forms the sum of three values: the con-
tents of register 4, the contents of register 5, and
a displacement of 10 and places the 24-bit or
31-bit sum with zeros appended on the left in reg-
ister 6.

LOAD HALFWORD (LH)

The LOAD HALFWORD instruction places
unchanged a halfword from storage into the right
half of a register. The left half of the register is
loaded with zeros or ones according to the sign
(leftmost bit) of the halfword.

For example, assume that the two bytes in
storage locations 1803-1804 are to be loaded into
register 6. Also assume:

The contents of register 6 are not significant.

Register 14 contains 00 00 18 03.

Locations 1803-1804 contain 00 20.

The instruction required to load the register is:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 48 │ 6 │ � │ E │ ���│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 LH 6,�(�,14)

After the instruction is executed, register 6 con-
tains 00 00 00 20. If locations 1803-1804 had
contained a negative number, for example, A7 B6,
a minus sign would have been propagated to the
left, giving FF FF A7 B6 as the final result in reg-
ister 6.

MOVE (MVC, MVI)

 MVC Example
The MOVE (MVC) instruction can be used to
move data from one storage location to another.
For example, assume that the following two fields
are in storage:

 2�48 2�52
Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
 1 │C1│C2│C3│C4│C5│C6│C7│C8│C9│CA│CB│
 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 384� 3848
Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┐
 2 │F1│F2│F3│F4│F5│F6│F7│F8│F9│
 └──┴──┴──┴──┴──┴──┴──┴──┴──┘

Also assume:

Register 1 contains 00 00 20 48.

Register 2 contains 00 00 38 40.

With the following instruction, the first eight bytes
of field 2 replace the first eight bytes of field 1:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D2 │ �7 │ 1 │ ���│ 2 │ ���│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 MVC �(8,1),�(2)

After the instruction is executed, field 1 becomes:

 2�48 2�52
Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
 1 │F1│F2│F3│F4│F5│F6│F7│F8│C9│CA│CB│
 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Field 2 is unchanged.

MVC can also be used to propagate a byte
through a field by starting the first-operand field
one byte location to the right of the second-
operand field. For example, suppose that an area
in storage starting with address 358 contains the
following data:

 Appendix A. Number Representation and Instruction-Use Examples A-23

358 36�
┌──┬──┬──┬──┬──┬──┬──┬──┬──┐
│��│F1│F2│F3│F4│F5│F6│F7│F8│
└──┴──┴──┴──┴──┴──┴──┴──┴──┘

With the following MVC instruction, the zeros in
location 358 can be propagated throughout the
entire field (assume that register 11 contains 00
00 03 58):

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D2 │ �7 │ B │ ��1│ B │ ���│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 MVC 1(8,11),�(11)

Because MVC is executed as if one byte were
processed at a time, the above instruction, in
effect, takes the byte at address 358 and stores it
at 359 (359 now contains 00), takes the byte at
359 and stores it at 35A, and so on, until the
entire field is filled with zeros. Note that an MVI
instruction could have been used originally to
place the byte of zeros in location 358.

Notes:

1. Although the field occupying locations 358-360
contains nine bytes, the length coded in the
assembler format is equal to the number of
moves (one less than the field length).

2. The order of operands is important even
though only one field is involved.

 MVI Example
The MOVE (MVI) instruction places one byte of
information from the instruction stream into
storage. For example, the instruction:

Machine Format
 Op Code I� B� D�
┌────────┬────┬────┬────┐
│ 92 │ 5B │ 1 │ ���│
└────────┴────┴────┴────┘

Assembler Format
Op Code D�(B�),I�
──────────────────
 MVI �(1),C'$'

may be used, in conjunction with the instruction
EDIT AND MARK, to insert the EBCDIC code for
a dollar symbol at the storage address contained
in general register 1 (see also the example for
EDIT AND MARK).

MOVE INVERSE (MVCIN)

The MOVE INVERSE (MVCIN) instruction can be
used to move data from one storage location to
another while reversing the order of the bytes
within the field. For example, assume that the fol-
lowing two fields are in storage:

 2�48 2�52
Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
 1 │C1│C2│C3│C4│C5│C6│C7│C8│C9│CA│CB│
 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 384� 3848
Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┐
 2 │F1│F2│F3│F4│F5│F6│F7│F8│F9│
 └──┴──┴──┴──┴──┴──┴──┴──┴──┘

Also assume:

Register 1 contains 00 00 20 48.

Register 2 contains 00 00 38 40.

With the following instruction, the first eight bytes
of field 2 replace the first eight bytes of field 1:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ E8 │ �7 │ 1 │ ���│ 2 │ ��7│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 MVCIN �(8,1),7(2)

After the instruction is executed, field 1 becomes:

 2�48 2�52
Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
 1 │F8│F7│F6│F5│F4│F3│F2│F1│C9│CA│CB│
 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Field 2 is unchanged.

Note: This example uses the same general reg-
isters, storage locations, and original values as the
first example for MVC. For MVCIN, the second-
operand address must designate the rightmost
byte of the field to be moved, in this case location
3847. This is accomplished by means of the 7 in
the D� field of the instruction.

A-24 z/Architecture Principles of Operation

MOVE LONG (MVCL)

The MOVE LONG (MVCL) instruction can be used
for moving data in storage as in the first example
of the MVC instruction, provided that the two oper-
ands do not overlap. MVCL differs from MVC in
that the address and length of each operand are
specified in an even-odd pair of general registers.
Consequently, MVCL can be used to move more
than 256 bytes of data with one instruction. As an
example, assume:

Register 2 contains 00 0A 00 00.

Register 3 contains 00 00 08 00.

Register 8 contains 00 06 00 00.

Register 9 contains 00 00 08 00.

Execution of the instruction:

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ �E │ 8 │ 2 │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 MVCL 8,2

moves 2,048�@ bytes from locations A0000-A07FF
to locations 60000-607FF. Assuming that the
CPU is in the 24-bit addressing mode, bits 8-31 of
registers 2 and 8 are incremented by 800�^, and
bits 0-7 of registers 2 and 8 are set to zeros. Bits
8-31 of registers 3 and 9 are decremented to zero.
Condition code 0 is set to indicate that the
operand lengths are equal.

If register 3 had contained F0 00 04 00, only the
1,024�@ bytes from locations A0000-A03FF would
have been moved to locations 60000-603FF. The
remaining locations 60400-607FF of the first
operand would have been filled with 1,024 copies
of the padding byte X'F0', as specified by the
leftmost byte of register 3. Bits 8-31 of register 2
would have been incremented by 400�^, bits 8-31
of register 8 would have been incremented by
800�^, and bits 0-7 of registers 2 and 8 would
have been set to zeros. Bits 8-31 of registers 3
and 9 would still have been decremented to zero.

Condition code 2 would have been set to indicate
that the first operand was longer than the second.

The technique for setting a field to zeros that is
illustrated in the second example of MVC cannot
be used with MVCL. If the registers were set up
to attempt such an operation with MVCL, no data
movement would take place and condition code 3
would indicate destructive overlap.

Instead, MVCL may be used to clear a storage
area to zeros as follows. Assume register 8 and 9
are set up as before. Register 3 contains only
zeros, specifying zero length for the second
operand and a zero padding byte. Register 2 is
not used to access storage, and its contents are
not significant. Executing the instruction MVCL
8,2 causes locations 60000-607FF to be filled with
zeros. Bits 8-31 of register 8 are incremented by
800�^, and bits 0-7 of registers 2 and 8 are set to
zeros. Bits 8-31 of register 9 are decremented to
zero, and condition code 2 is set to indicate that
the first operand is longer than the second.

MOVE NUMERICS (MVN)

Two related instructions, MOVE NUMERICS and
MOVE ZONES, may be used with decimal data in
the zoned format to operate separately on the
rightmost four bits (the numeric bits) and the left-
most four bits (the zone bits) of each byte. Both
are similar to MOVE (MVC), except that MOVE
NUMERICS moves only the numeric bits and
MOVE ZONES moves only the zone bits.

To illustrate the operation of the MOVE
NUMERICS instruction, assume that the following
two fields are in storage:

 7�9� 7�93
 ┌──┬──┬──┬──┐
Field A │C6│C7│C8│C9│
 └──┴──┴──┴──┘

 7�41 7�46
 ┌──┬──┬──┬──┬──┬──┐
Field B │F�│F1│F2│F3│F4│F5│
 └──┴──┴──┴──┴──┴──┘

Also assume:

Register 14 contains 00 00 70 90.

Register 15 contains 00 00 70 40.

After the instruction:

 Appendix A. Number Representation and Instruction-Use Examples A-25

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D1 │ �3 │ F │ ��1│ E │ ���│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 MVN 1(4,15),�(14)

is executed, field B becomes:

7�41 7�46
┌──┬──┬──┬──┬──┬──┐
│F6│F7│F8│F9│F4│F5│
└──┴──┴──┴──┴──┴──┘

The numeric bits of the bytes at locations
7090-7093 have been stored in the numeric bits of
the bytes at locations 7041-7044. The contents of
locations 7090-7093 and 7045-7046 are
unchanged.

MOVE STRING (MVST)

The MOVE STRING instruction is used to move a
second operand designated by general register R�
to a first-operand location designated by general
register R�. The movement is made left to right
until an ending character specified in general reg-
ister 0 has been moved or a CPU-determined
number of bytes have been moved. The condition
code is set to 1 if the ending character was moved
or to 3 if a CPU-determined number of bytes were
moved.

When condition code 1 is set, the address of the
ending character in the first operand is placed in
general register R�, and the contents of general
register R� remain unchanged. When condition
code 3 is set, the address of the next byte to be
processed in the first and second operands is
placed in general registers R� and R�, respec-
tively.

Following is an example program that sets string
A equal to the concatenation of string B followed
by string C, where the length of each of strings B
and C is unknown, and the end of each of strings
B and C is indicated by an ending character of 00

hex (as in the C programming language). The
program is not written for execution in the access-
register mode.

 L 4,STRAADR
 L 5,STRBADR
 SR �,�
LOOP1 MVST 4,5
 BC 1,LOOP1
 L 5,STRCADR
LOOP2 MVST 4,5
 BC 1,LOOP2
 [Any instruction]

MOVE WITH OFFSET (MVO)

MOVE WITH OFFSET may be used to shift a
packed-decimal number an odd number of digit
positions or to concatenate a sign to an unsigned
packed-decimal number.

Assume that the three-byte unsigned packed-
decimal number in storage locations 4500-4502 is
to be moved to locations 5600-5603 and given the
sign of the packed-decimal number ending at
location 5603. Also assume:

Register 12 contains 00 00 56 00.

Register 15 contains 00 00 45 00.

Storage locations 5600-5603 contain 77 88 99
0C.

Storage locations 4500-4502 contain 12 34
56.

After the instruction:

Machine Format
 Op Code L� L� B� D� B� D�
┌────────┬────┬────┬────┬────┬────┬────┐
│ F1 │ 3 │ 2 │ C │ ���│ F │ ���│
└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L�,B�),D�(L�,B�)
────────────────────────────
 MVO �(4,12),�(3,15)

is executed, the storage locations 5600-5603
contain 01 23 45 6C. Note that the second
operand is extended on the left with one zero to
fill out the first-operand field.

A-26 z/Architecture Principles of Operation

MOVE ZONES (MVZ)

The MOVE ZONES instruction can operate on
overlapping or nonoverlapping fields, as can the
instructions MOVE (MVC) and MOVE NUMERICS.
When operating on nonoverlapping fields, MOVE
ZONES works like the MOVE NUMERICS instruc-
tion (see its example), except that MOVE ZONES
moves only the zone bits of each byte. To illus-
trate the use of MOVE ZONES with overlapping
fields, assume that the following data field is in
storage:

8�� 8�5
┌──┬──┬──┬──┬──┬──┐
│F1│C2│F3│C4│F5│C6│
└──┴──┴──┴──┴──┴──┘

Also assume that register 15 contains 00 00 08
00. The instruction:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ D3 │ �4 │ F │ ��1│ F │ ���│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 MVZ 1(5,15),�(15)

propagates the zone bits from the byte at address
800 through the entire field, so that the field
becomes:

8�� 8�5
┌──┬──┬──┬──┬──┬──┐
│F1│F2│F3│F4│F5│F6│
└──┴──┴──┴──┴──┴──┘

MULTIPLY (M, MR)

Assume that a number in register 5 is to be multi-
plied by the contents of a four-byte field at
address 3750. Initially:

The contents of register 4 are not significant.

Register 5 contains 00 00 00 9A = 154�@ =
the multiplicand.

Register 11 contains 00 00 06 00.

Register 12 contains 00 00 30 00.

Storage locations 3750-3753 contain 00 00 00
83 = 131�@ = the multiplier.

The instruction required for performing the multipli-
cation is:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 5C │ 4 │ B │ C │ 15�│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
────────────────────────
 M 4,X'15�'(11,12)

After the instruction is executed, the product is in
the register pair 4 and 5:

Register 4 contains 00 00 00 00.

Register 5 contains 00 00 4E CE = 20,174�@.

Storage locations 3750-3753 are unchanged.

The RR format of the instruction can be used to
square the number in a register. Assume that
register 7 contains 00 01 00 05. The contents of
register 6 are not significant. The instruction:

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ 1C │ 6 │ 7 │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 MR 6,7

multiplies the number in register 7 by itself and
places the result in the pair of registers 6 and 7:

Register 6 contains 00 00 00 01.

Register 7 contains 00 0A 00 19.

MULTIPLY HALFWORD (MH)

The MULTIPLY HALFWORD instruction is used to
multiply the contents of a register by a two-byte
field in storage. For example, assume that:

Register 11 contains 00 00 00 15 =21�@ = the
multiplicand.

Register 14 contains 00 00 01 00.

Register 15 contains 00 00 20 00.

 Appendix A. Number Representation and Instruction-Use Examples A-27

Storage locations 2102-2103 contain FF D9 =
-39�@ = the multiplier.

The instruction:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 4C │ B │ E │ F │ ��2│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 MH 11,2(14,15)

multiplies the two numbers. The product, FF FF
FC CD = -819�@, replaces the original contents of
register 11.

Only the rightmost 32 bits of a product are stored
in a register; any significant bits on the left are
lost. No program interruption occurs on overflow.

OR (O, OC, OI, OR)

When the Boolean operator OR is applied to two
bits, the result is one when either bit is one; other-
wise, the result is zero. When two bytes are
ORed, each pair of bits is handled separately;
there is no connection from one bit position to
another. The following is an example of ORing
two bytes:

First-operand byte: ��11 �1�1�
Second-operand byte: �1�1 11���
────────────────────────────────
Result byte: �111 11�1�

 OI Example
A frequent use of the OR instruction is to set a
particular bit to one. For example, assume that
storage location 4891 contains 0100 0010�. To
set the rightmost bit of this byte to one without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00
00 48 90):

Machine Format
 Op Code I� B� D�
┌────────┬────┬────┬────┐
│ 96 │ �1 │ 8 │ ��1│
└────────┴────┴────┴────┘

Assembler Format
Op Code D�(B�),I�
───────────────────
 OI 1(8),X'�1'

When this instruction is executed, the byte in
storage is ORed with the immediate byte (the I�
field of the instruction):

Location 4891: �1�� ��1��
Immediate byte: ���� ���1�
────────────────────────────
Result: �1�� ��11�

The resulting byte with bit 7 set to one is stored
back in location 4891. Condition code 1 is set.

 PACK (PACK)

Assume that storage locations 1000-1003 contain
the following zoned-decimal number that is to be
converted to a packed-decimal number and left in
the same location:

 1��� 1��3
 ┌──┬──┬──┬──┐
Zoned number │F1│F2│F3│C4│
 └──┴──┴──┴──┘

Also assume that register 12 contains 00 00 10
00. After the instruction:

Machine Format
 Op Code L� L� B� D� B� D�
┌────────┬────┬────┬────┬────┬────┬────┐
│ F2 │ 3 │ 3 │ C │ ���│ C │ ���│
└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L�,B�),D�(L�,B�)
────────────────────────────
 PACK �(4,12),�(4,12)

is executed, the result in locations 1000-1003 is in
the packed-decimal format:

 1��� 1��3
 ┌──┬──┬──┬──┐
Packed number │��│�1│23│4C│
 └──┴──┴──┴──┘

Notes:

1. This example illustrates the operation of
PACK when the first- and second-operand
fields overlap completely.

2. During the operation, the second operand was
extended on the left with zeros.

A-28 z/Architecture Principles of Operation

SEARCH STRING (SRST)

The SEARCH STRING instruction is used to
search a second operand designated by general
register R� for a character specified in general
register 0. The length of the second operand is
known — the address of the first byte after the
second operand is in general register R�.

When the specified character is found, condition
code 1 is set, the address of the character is
placed in general register R�, and the contents of
general register R� remain unchanged. When the
address of the next second-operand byte to be
examined equals the address in general register
R�, condition code 2 is set, and the contents of
general register R� and R� remain unchanged.
When a CPU-determined number of second-
operand bytes have been examined, condition
code 3 is set, the address of the next byte to be
processed in the second operand is placed in
general register R�, and the contents of general
register R� remain unchanged.

SRST Example 1
Following is an example program that determines
the end of string A, as indicated by an ending
character equal to 00 hex (as in the C program-
ming language), and then determines the address
of the first character equal to C1 hex in the string.
The program is based on the assumption that the
second operand does not begin at location 0 or
wrap around in storage, and, therefore, condition
code 2 will not be set by the first SEARCH
STRING instruction because of the address in
general register 0. The program is not written for
execution in the access-register mode.

 L 5,STRAADR
 SR �,�
LOOP1 SRST �,5
 BC 1,LOOP1
 L 5,STRAADR
 LR 4,�
 LA �,X'C1'
LOOP2 SRST 4,5
 BC 1,LOOP2
 BC 2,NOTFND
FOUND [Any instruction]
 ...
NOTFND [Any instruction]

SRST Example 2
Following is an example program that determines
the address of the first character equal to C1 hex
in the string A whose length is known. The
program is not written for execution in the access-
register mode.

 L 5,STRAADR
 L 4,STRALEN
 AR 4,5
 LA �,X'C1'
LOOP1 SRST 4,5
 BC 1,LOOP1
 BC 2,NOTFND
FOUND [Any instruction]
 ...
NOTFND [Any instruction]

In this example, the value in STRALEN may be a
length that either does or does not include an
ending character at the end of the string, provided
that the ending character is not the character for
which the search is made.

SHIFT LEFT DOUBLE (SLDA)

The SHIFT LEFT DOUBLE instruction shifts the
63 numeric bits of an even-odd register pair to the
left, leaving the sign bit unchanged. Thus, the
instruction performs an algebraic left shift of a
64-bit signed binary integer.

For example, if the contents of registers 2 and 3
are:

�� 7F �A 72 FE DC BA 98 =
�������� �1111111 ����1�1� �111��1�
1111111� 11�111�� 1�111�1� 1��11����

The instruction:

Machine Format
 Op Code R� B� D�
┌────────┬────┬────┬────┬────┐
│ 8F │ 2 │////│ � │ �1F│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(B�)
──────────────────
 SLDA 2,31(�)

results in registers 2 and 3 both being left-shifted
31 bit positions, so that their new contents are:

7F 6E 5D 4C �� �� �� �� =
�1111111 �11�111� �1�111�1 �1��11��
�������� �������� �������� ���������

 Appendix A. Number Representation and Instruction-Use Examples A-29

Because significant bits are shifted out of bit posi-
tion 1 of register 2, overflow is indicated by setting
condition code 3, and, if the fixed-point-overflow
mask bit in the PSW is one, a fixed-point-overflow
program interruption occurs.

SHIFT LEFT SINGLE (SLA)

The SHIFT LEFT SINGLE instruction is similar to
SHIFT LEFT DOUBLE, except that it shifts only
the 31 numeric bits of a single register. There-
fore, this instruction performs an algebraic left shift
of a 32-bit signed binary integer.

For example, if the contents of register 2 are:

�� 7F �A 72 = �������� �1111111 ����1�1� �111��1��

The instruction:

Machine Format
 Op Code R� B� D�
┌────────┬────┬────┬────┬────┐
│ 8B │ 2 │////│ � │ ��8│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(B�)
──────────────────
 SLA 2,8(�)

results in register 2 being shifted left eight bit posi-
tions so that its new contents are:

7F �A 72 �� = �1111111 ����1�1� �111��1� ���������

Condition code 2 is set to indicate that the result
is greater than zero.

If a left shift of nine places had been specified, a
significant bit would have been shifted out of bit
position 1. Condition code 3 would have been set
to indicate this overflow and, if the fixed-point-
overflow mask bit in the PSW were one, a fixed-
point overflow interruption would have occurred.

STORE CHARACTERS UNDER
MASK (STCM)

STORE CHARACTERS UNDER MASK (STCM)
may be used to place selected bytes from a reg-
ister into storage. For example, if it is desired to
store a three-byte address from general register 8
into location FIELD3, assume:

Machine Format
 Op Code R� M� S�
┌────────┬────┬────┬─────────┐
│ BE │ 8 │ 7 │ � � � � │
└────────┴────┴────┴─────────┘

Register Format
Op Code R�,M�,S�
─────────────────────────
 STCM 8,B'�111',FIELD3

Register 8: 12 34 56 78
FIELD3 (before): not significant
FIELD3 (after): 34 56 78

As another example:

Machine Format
 Op Code R� M� S�
┌────────┬────┬────┬─────────┐
│ BE │ 9 │ 5 │ � � � � │
└────────┴────┴────┴─────────┘

Register Format
Op Code R�,M�,S�
─────────────────────────
 STCM 9,B'�1�1',FIELD2

Register 9: �1 23 45 67
FIELD2 (before): not significant
FIELD2 (after): 23 67

STORE MULTIPLE (STM)

Assume that the contents of general registers 14,
15, 0, and 1 are to be stored in consecutive four-
byte fields starting with location 4050 and that:

Register 14 contains 00 00 25 63.

Register 15 contains 00 01 27 36.

Register 0 contains 12 43 00 62.

Register 1 contains 73 26 12 57.

Register 6 contains 00 00 40 00.

The initial contents of locations 4050-405F are
not significant.

The STORE MULTIPLE instruction allows the use
of just one instruction to store the contents of the
four registers:

Machine Format
 Op Code R� R� B� D�
┌────────┬────┬────┬────┬────┐
│ 9� │ E │ 1 │ 6 │ �5�│
└────────┴────┴────┴────┴────┘

A-30 z/Architecture Principles of Operation

Assembler Format
Op Code R�,R�,D�(B�)
──────────────────────
 STM 14,1,X'5�'(6)

After the instruction is executed:

Locations 4050-4053 contain 00 00 25 63.

Locations 4054-4057 contain 00 01 27 36.

Locations 4058-405B contain 12 43 00 62.

Locations 405C-405F contain 73 26 12 57.

TEST UNDER MASK (TM)

The TEST UNDER MASK instruction examines
selected bits of a byte and sets the condition code
accordingly. For example, assume that:

Storage location 9999 contains FB.

Register 7 contains 00 00 99 90.

Assume the instruction to be:

Machine Format
 Op Code I� B� D�
┌────────┬────┬────┬────┐
│ 91 │ C3 │ 7 │ ��9│
└────────┴────┴────┴────┘

Assembler Format
Op Code D�(B�),I�
─────────────────────────
 TM 9(7),B'11����11'

The instruction tests only those bits of the byte in
storage for which the mask bits are ones:

FB = 1111 1�11�
Mask = 11�� ��11�
─────────────────
Test = 11xx xx11�

Condition code 3 is set: all selected bits in the
test result are ones. (The bits marked “x” are
ignored.)

If location 9999 had contained B9, the test would
have been:

B9 = 1�11 1��1�
Mask = 11�� ��11�
─────────────────
Test = 1�xx xx�1�

Condition code 1 is set: the selected bits are both
zeros and ones.

If location 9999 had contained 3C, the test would
have been:

3C = ��11 11���
Mask = 11�� ��11�
─────────────────
Test = ��xx xx���

Condition code 0 is set: all selected bits are
zeros.

Note: Storage location 9999 remains unchanged.

 TRANSLATE (TR)

The TRANSLATE instruction can be used to trans-
late data from any character code to any other
desired code, provided that each character code
consists of eight bits or fewer. An appropriate
translation table is required in storage.

In the following example, EBCDIC code is trans-
lated to ASCII code. The first step is to create a
256-byte table in storage locations 1000-10FF.
This table contains the characters of the ASCII
code in the sequence of the binary representation
of the EBCDIC code; that is, the ASCII represen-
tation of a character is placed in storage at the
starting address of the table plus the binary value
of the EBCDIC representation of the same char-
acter.

For simplicity, the example shows only the part of
the table containing the decimal digits:

1�F� 1�F9
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│3�│31│32│33│34│35│36│37│38│39│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Assume that the four-byte field at storage location
2100 contains the EBCDIC code for the digits
1984:

Locations 2100-2103 contain F1 F9 F8 F4.

Register 12 contains 00 00 21 00.

Register 15 contains 00 00 10 00.

As the instruction:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ DC │ �3 │ C │ ���│ F │ ���│
└────────┴────┴────┴────┴────┴────┘

 Appendix A. Number Representation and Instruction-Use Examples A-31

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 TR �(4,12),�(15)

is executed, the binary value of each EBCDIC
byte is added to the starting address of the table,
and the resulting address is used to fetch an
ASCII byte:

Table starting address: 1���
First EBCDIC byte: F1
───────────────────────────────
Address of ASCII byte: 1�F1

After execution of the instruction:

Locations 2100-2103 contain 31 39 38 34.

Thus, the ASCII code for the digits 1984 has
replaced the EBCDIC code in the four-byte field at
storage location 2100.

TRANSLATE AND TEST (TRT)

The TRANSLATE AND TEST instruction can be
used to scan a data field for characters with a
special meaning. To indicate which characters
have a special meaning, a table similar to the one
used for the TRANSLATE instruction is set up,
except that zeros in the table indicate characters
without any special meaning and nonzero values
indicate characters with a special meaning.

Figure A-4 has been set up to distinguish alpha-
meric characters (A to Z and 0 to 9) from blanks,
certain special symbols, and all other characters
which are considered invalid. EBCDIC coding is
assumed. The 256-byte table is assumed stored
at locations 2000-20FF.

� 1 2 3 4 5 6 7 8 9 A B C D E F
 ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
2��_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�1_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�2_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�3_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�4_│�4│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│�8│4�│�C│1�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�5_│14│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│18│1C│2�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�6_│24│28│4�│4�│4�│4�│4�│4�│4�│4�│4�│2C│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�7_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│3�│34│38│3C│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�8_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�9_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�A_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�B_│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�C_│4�│��│��│��│��│��│��│��│��│��│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�D_│4�│��│��│��│��│��│��│��│��│��│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�E_│4�│4�│��│��│��│��│��│��│��│��│4�│4�│4�│4�│4�│4�│
 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
2�F_│��│��│��│��│��│��│��│��│��│��│4�│4�│4�│4�│4�│4�│
 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Note: If the character codes in the statement
being translated occupy a range smaller than 00
through FF�^, a table of fewer than 256 bytes can
be used.

Figure A-4. Translate and Test Table

The table entries for the alphameric characters in
EBCDIC are 00; thus, the letter A (code C1) corre-
sponds to byte location 20C1, which contains 00.

The 15 special symbols have nonzero entries from
04�^ to 3C�^ in increments of 4. Thus, the blank
(code 40) has the entry 04�^, the period (code 4B)
has the entry 08�^, and so on.

All other table positions have the entry 40�^ to
indicate an invalid character.

The table entries are chosen so that they may be
used to select one of a list of 16 words containing
addresses of different routines to be entered for
each special symbol or invalid character encount-
ered during the scan.

Assume that this list of 16 branch addresses is
stored at locations 3004-3043.

Starting at storage location CA80, there is the fol-
lowing sequence of 21�@ EBCDIC characters,
where “b” stands for a blank.

A-32 z/Architecture Principles of Operation

 Locations CA80-CA94:
 UNPKbPROUT(9),WORD(5)

Also assume:

Register 1 contains 00 00 CA 7F.

Register 2 contains 00 00 30 00.

Register 15 contains 00 00 20 00.

As the instruction:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ DD │ 14 │ 1 │ ��1│ F │ ���│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────
 TRT 1(21,1),�(15)

is executed, the value of the first source byte, the
EBCDIC code for the letter U, is added to the
starting address of the table to produce the
address of the table entry to be examined:

Table starting address 2���
First source byte (U) E4
────────────────────────────────
Address of table entry 2�E4

Because zeros were placed in storage location
20E4, no special action occurs. The operation
continues with the second and subsequent source
bytes until it reaches the blank in location CA84.
When this symbol is reached, its value is added to
the starting address of the table, as usual:

Table starting address 2���
Source byte (blank) 4�
─────────────────────────────────
Address of table entry 2�4�

Because location 2040 contains a nonzero value,
the following actions occur:

The address of the source byte, 00CA84, is
placed in the rightmost 24 bits of register 1.

The table entry, 04, is placed in the rightmost
eight bits of register 2, which now contains 00
00 30 04.

Condition code 1 is set (scan not completed).

The TRANSLATE AND TEST instruction may be
followed by instructions to branch to the routine at
the address found at location 3004, which corre-
sponds to the blank character encountered in the

scan. When this routine is completed, program
control may return to the TRANSLATE AND TEST
instruction to continue the scan, except that the
length must first be adjusted for the characters
already scanned.

For this purpose, the TRANSLATE AND TEST
may be executed by the use of an EXECUTE
instruction, which supplies the length specification
from a general register. In this way, a complete
statement scan can be performed with a single
TRANSLATE AND TEST instruction used repeat-
edly by means of EXECUTE, and without modi-
fying any instructions in storage. In the example,
after the first execution of TRANSLATE AND
TEST, register 1 contains the address of the last
source byte translated. It is then a simple matter
to subtract this address from the address of the
last source byte (CA94) to produce a length spec-
ification. This length minus one is placed in the
register that is referenced as the R� field of the
EXECUTE instruction. (Note that the length code
in the machine format is one less than the total
number of bytes in the field.) The second-
operand address of the EXECUTE instruction
points to the TRANSLATE AND TEST instruction,
which is the same as illustrated above, except for
the length (L) which is set to zero.

 UNPACK (UNPK)

Assume that storage locations 2501-2502 contain
a signed, packed-decimal number that is to be
unpacked and placed in storage locations
1000-1004. Also assume:

Register 12 contains 00 00 10 00.

Register 13 contains 00 00 25 00.

Storage locations 2501-2502 contain 12 3D.

The initial contents of storage locations
1000-1004 are not significant.

After the instruction:

Machine Format
 Op Code L� L� B� D� B� D�
┌────────┬────┬────┬────┬────┬────┬────┐
│ F3 │ 4 │ 1 │ C │ ���│ D │ ��1│
└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L�,B�),D�(L�,B�)
────────────────────────────
 UNPK �(5,12),1(2,13)

 Appendix A. Number Representation and Instruction-Use Examples A-33

is executed, the storage locations 1000-1004
contain F0 F0 F1 F2 D3.

UPDATE TREE (UPT)

See “Sorting Instructions” on page A-51.

 Decimal Instructions
(See Chapter 8, “Decimal Instructions” for a com-
plete description of the decimal instructions.)

ADD DECIMAL (AP)

Assume that the signed, packed-decimal number
at storage locations 500-503 is to be added to the
signed, packed-decimal number at locations
2000-2002. Also assume:

Register 12 contains 00 00 20 00.

Register 13 contains 00 00 05 00.

Storage locations 2000-2002 contain 38 46 0D
(a negative number).

Storage locations 500-503 contain 01 12 34
5C (a positive number).

After the instruction:

Machine Format
 Op Code L� L� B� D� B� D�
┌────────┬────┬────┬────┬────┬────┬────┐
│ FA │ 2 │ 3 │ C │ ���│ D │ ���│
└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L�,B�),D�(L�,B�)
────────────────────────────
 AP �(3,12),�(4,13)

is executed, the storage locations 2000-2002
contain 73 88 5C; condition code 2 is set to indi-
cate that the result is greater than zero. Note
that:

1. Because the two numbers had different signs,
they were in effect subtracted.

2. Although the second operand is longer than
the first operand, no overflow interruption
occurs because the result can be entirely con-
tained within the first operand.

COMPARE DECIMAL (CP)

Assume that the signed, packed-decimal contents
of storage locations 700-703 are to be algebra-
ically compared with the signed, packed-decimal
contents of locations 500-502. Also assume:

Register 12 contains 00 00 06 00.

Register 13 contains 00 00 03 00.

Storage locations 700-703 contain 17 25 35
6D.

Storage locations 500-502 contain 72 14 2D.

After the instruction:

Machine Format
 Op Code L� L� B� D� B� D�
┌────────┬────┬────┬────┬────┬────┬────┐
│ F9 │ 3 │ 2 │ C │ 1��│ D │ 2��│
└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L�,B�),D�(L�,B�)
────────────────────────────────
 CP X'1��'(4,12),X'2��'(3,13)

is executed, condition code 1 is set, indicating that
the first operand (the contents of locations
700-703) is less than the second.

DIVIDE DECIMAL (DP)

Assume that the signed, packed-decimal number
at storage locations 2000-2004 (the dividend) is to
be divided by the signed, packed-decimal number
at locations 3000-3001 (the divisor). Also
assume:

Register 12 contains 00 00 20 00.

Register 13 contains 00 00 30 00.

Storage locations 2000-2004 contain 01 23 45
67 8C.

Storage locations 3000-3001 contain 32 1D.

After the instruction:

Machine Format
 Op Code L� L� B� D� B� D�
┌────────┬────┬────┬────┬────┬────┬────┐
│ FD │ 4 │ 1 │ C │ ���│ D │ ���│
└────────┴────┴────┴────┴────┴────┴────┘

A-34 z/Architecture Principles of Operation

Assembler Format
Op Code D�(L�,B�),D�(L�,B�)
────────────────────────────
 DP �(5,12),�(2,13)

is executed, the dividend is entirely replaced by
the signed quotient and remainder, as follows:

 2��� 2��4
 ┌──┬──┬──┬──┬──┐
Locations 2���-2��4 │38│46│�D│�1│8C│
 └──┴──┴──┴──┴──┘

quotient │ remainder
 │

Notes:

1. Because the dividend and divisor have dif-
ferent signs, the quotient receives a negative
sign.

2. The remainder receives the sign of the divi-
dend and the length of the divisor.

3. If an attempt were made to divide the dividend
by the one-byte field at location 3001, the
quotient would be too long to fit within the four
bytes allotted to it. A decimal-divide exception
would exist, causing a program interruption.

 EDIT (ED)

Before decimal data in the packed format can be
used in a printed report, digits and signs must be
converted to printable characters. Moreover,
punctuation marks, such as commas and decimal
points, may have to be inserted in appropriate
places. The highly flexible EDIT instruction per-
forms these functions in a single instruction exe-
cution.

This example shows step-by-step one way that
the EDIT instruction can be used. The field to be
edited (the source) is four bytes long; it is edited
against a pattern 13 bytes long. The following
symbols are used:

┌──────────────────────┬───────────────────────┐
│ Symbol │ Meaning │
├──────────────────────┼───────────────────────┤
│ b (Hexadecimal 4�) │ Blank character │
│ ((Hexadecimal 21) │ Significance starter │
│ d (Hexadecimal 2�) │ Digit selector │
└──────────────────────┴───────────────────────┘

Assume that register 12 contains:

�� �� 1� ��

and that the source and pattern fields are:

Source
12�� 12�3
┌──┬──┬──┬──┐
│�2│57│42│6C│
└──┴──┴──┴──┘
 �
 │

└─── +

Pattern
1��� 1��C
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│4�│2�│2�│6B│2�│21│2�│4B│2�│2�│4�│C3│D9│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
 b d d , d (d . d d b C R

Execution of the instruction:

Machine Format
 Op Code L B� D� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ DE │ �C │ C │ ���│ C │ 2��│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L,B�),D�(B�)
────────────────────────────
 ED �(13,12),X'2��'(12)

alters the pattern field as follows:

┌───────┬─────┬────────────┬────────┬─────────────┐
│ │ │Significance│ │ │
│ │ │ Indicator │ │ │
│ │ │ (Before/ │ │ Location │
│Pattern│Digit│ After) │ Rule │ 1���-1��C │
├───────┼─────┼────────────┼────────┼─────────────┤
│ b │ │ off/off │leave(1)│bdd,d(d.ddbCR│
│ d │ � │ off/off │fill │bbd,d(d.ddbCR│
│ d │ 2 │ off/on(2) │digit │bb2,d(d.ddbCR│
│ , │ │ on/on │leave │same │
│ d │ 5 │ on/on │digit │bb2,5(d.ddbCR│
│ (│ 7 │ on/on │digit │bb2,57d.ddbCR│
│ d │ 4 │ on/on │digit │bb2,574.ddbCR│
│ . │ │ on/on │leave │same │
│ d │ 2 │ on/on │digit │bb2,574.2dbCR│
│ d │ 6+ │ on/off(3) │digit │bb2,574.26bCR│
│ b │ │ off/off │fill │same │
│ C │ │ off/off │fill │bb2,574.26bbR│
│ R │ │ off/off │fill │bb2,574.26bbb│
├───────┴─────┴────────────┴────────┴─────────────┤
│Notes: │
│ │
│1. This character is the fill byte. │
│ │
│2. First nonzero decimal source digit turns on │
│ significance indicator. │
│ │
│3. Plus sign in the four rightmost bits of the │
│ byte turns off significance indicator. │
└───┘

 Appendix A. Number Representation and Instruction-Use Examples A-35

Thus, after the instruction is executed, the pattern
field contains the result as follows:

Pattern
1��� 1��C
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│4�│4�│F2│6B│F5│F7│F4│4B│F2│F6│4�│4�│4�│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
 b b 2 , 5 7 4 . 2 6 b b b

This pattern field prints as:

 2,574.26

The source field remains unchanged. Condition
code 2 is set because the number was greater
than zero.

If the number in the source field is changed to the
negative number 00 00 02 6D and the original
pattern is used, the edited result this time is:

Pattern
1��� 1��C
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│4�│4�│4�│4�│4�│4�│F�│4B│F2│F6│4�│C3│D9│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
 b b b b b b � . 2 6 b C R

This pattern field prints as:

 �.26 CR

The significance starter forces the significance
indicator to the on state and hence causes a
leading zero and the decimal point to be pre-
served. Because the minus-sign code has no
effect on the significance indicator, the characters
CR are printed to show a negative (credit)
amount.

Condition code 1 is set (number less than zero).

EDIT AND MARK (EDMK)

The EDIT AND MARK instruction may be used, in
addition to the functions of EDIT, to insert a cur-
rency symbol, such as a dollar sign, at the appro-
priate position in the edited result. Assume the
same source in storage locations 1200-1203, the
same pattern in locations 1000-100C, and the
same contents of general register 12 as for the
EDIT instruction above. The previous contents of
general register 1 (GR1) are not significant; a
LOAD ADDRESS instruction is used to set up the

first digit position that is forced to print if no signif-
icant digits occur to the left.

The instructions:

produce the following results for the two examples
under EDIT:

Pattern
1��� 1��C
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│4�│5B│F2│6B│F5│F7│F4│4B│F2│F6│4�│4�│4�│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
 b $ 2 , 5 7 4 . 2 6 b b b

This pattern field prints as:

 $2,574.26

Condition code 2 is set to indicate that the number
edited was greater than zero.

Pattern
1��� 1��C
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│4�│4�│4�│4�│4�│5B│F�│4B│F2│F6│4�│C3│D9│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
 b b b b b $ � . 2 6 b C R

This pattern field prints as:

 $�.26 CR

Condition code 1 is set because the number is
less than zero.

MULTIPLY DECIMAL (MP)

Assume that the signed, packed-decimal number
in storage locations 1202-1204 (the multiplicand)
is to be multiplied by the signed, packed-decimal
number in locations 500-501 (the multiplier).

 12�2 12�4
 ┌──┬──┬──┐
Multiplicand │38│46│�D│
 └──┴──┴──┘

LA 1,6(0,12) Load address of
forced significant
digit into GR1

EDMK 0(13,12),X'200'(12) Leave address of
first significant digit
in GR1

BCTR 1,0 Subtract 1 from
address in GR1

MVI 0(1),C'$' Store dollar sign at
address in GR1

A-36 z/Architecture Principles of Operation

 5�� 5�1
 ┌──┬──┐
Multiplier │32│1D│
 └──┴──┘

The multiplicand must first be extended to have at
least two bytes of leftmost zeros, corresponding to
the multiplier length, so as to avoid a data excep-
tion during the multiplication. ZERO AND ADD
can be used to move the multiplicand into a longer
field. Assume:

Register 4 contains 00 00 12 00.

Register 6 contains 00 00 05 00.

Then execution of the instruction:

ZAP X'1��'(5,4),2(3,4)

sets up a new multiplicand in storage locations
1300-1304:

 13�� 13�4
 ┌──┬──┬──┬──┬──┐
Multiplicand (new) │��│��│38│46│�D│
 └──┴──┴──┴──┴──┘

Now, after the instruction:

Machine Format
 Op Code L� L� B� D� B� D�
┌────────┬────┬────┬────┬────┬────┬────┐
│ FC │ 4 │ 1 │ 4 │ 1��│ 6 │ ���│
└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L�,B�),D�(L�,B�)
────────────────────────────
 MP X'1��'(5,4),�(2,6)

is executed, storage locations 1300-1304 contain
the product: 01 23 45 66 0C.

SHIFT AND ROUND DECIMAL
(SRP)

The SHIFT AND ROUND DECIMAL (SRP)
instruction can be used for shifting decimal
numbers in storage to the left or right. When a
number is shifted right, rounding can also be
done.

Decimal Left Shift
In this example, the contents of storage location
FIELD1 are shifted three places to the left, effec-
tively multiplying the contents of FIELD1 by 1000.
FIELD1 is six bytes long. The following instruction
performs the operation:

Machine Format
 Op Code L� I� S� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ F� │ 5 │ � │����│ � │ ��3│
└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code S�(L�),S�,I�
─────────────────────
 SRP FIELD1(6),3,�

FIELD1 (before): �� �1 23 45 67 8C

FIELD1 (after): 12 34 56 78 �� �C

The second-operand address in this instruction
specifies the shift amount (three places). The
rounding digit, I�, is not used in a left shift, but it
must be a valid decimal digit. After execution,
condition code 2 is set to show that the result is
greater than zero.

Decimal Right Shift
In this example, the contents of storage location
FIELD2 are shifted one place to the right, effec-
tively dividing the contents of FIELD2 by 10 and
discarding the remainder. FIELD2 is five bytes in
length. The following instruction performs this
operation:

Machine Format
 Op Code L� I� S� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ F� │ 4 │ � │����│ � │�3F │
└────────┴────┴────┴────┴────┴─┬┬─┘
 ┌─┘│
 │ │
 ┌─┴┐┌┴─┐
 ��111111
 └──┬─┘
 │
 │
 6-bit two's
 complement
 for -1

Assembler Format
Op Code S�(L�),S�,I�
────────────────────────
 SRP FIELD2(5),64-1,�

FIELD 2 (before): �1 23 45 67 8C

FIELD 2 (after): �� 12 34 56 7C

 Appendix A. Number Representation and Instruction-Use Examples A-37

In the SRP instruction, shifts to the right are speci-
fied in the second-operand address by negative
shift values, which are represented as a six-bit
value in two's complement form.

The six-bit two's complement of a number, n, can
be specified as 64 - n. In this example, a right
shift of one is represented as 64 - 1.

Condition code 2 is set.

Decimal Right Shift and Round
In this example, the contents of storage location
FIELD3 are shifted three places to the right and
rounded, in effect dividing by 1000 and rounding
up. FIELD3 is four bytes in length.

Machine Format
 Op Code L� I� S� B� D�
┌────────┬────┬────┬────┬────┬────┐
│ F� │ 3 │ 5 │����│ � │�3D │
└────────┴────┴────┴────┴────┴─┬┬─┘
 ┌─┘│
 │ │
 ┌─┴┐┌┴─┐
 ��1111�1
 └──┬─┘
 │
 │
 6-bit two's
 complement
 for -3

Assembler Format
Op Code S�(L�),S�,I�
────────────────────────
 SRP FIELD3(4),64-3,5

FIELD 3 (before): 12 39 6� �D

FIELD 3 (after): �� �1 24 �D

The shift amount (three places) is specified in the
D� field. The I� field specifies a rounding digit of
5. The rounding digit is added to the last digit
shifted out (which is a 6), and the carry is propa-
gated to the left. The sign is ignored during the
addition.

Condition code 1 is set because the result is less
than zero.

Multiplying by a Variable Power of 10
Since the shift value specified by the SRP instruc-
tion specifies both the direction and amount of the
shift, the operation is equivalent to multiplying the
decimal first operand by 10 raised to the power
specified by the shift value.

If the shift value is to be variable, it may be speci-
fied by the B� field instead of the displacement D�
of the SRP instruction. The general register des-
ignated by B� should contain the shift value
(power of 10) as a signed binary integer.

A fixed scale factor modifying the variable power
of 10 may be specified by using both the B� field
(variable part in a general register) and the D�
field (fixed part in the displacement).

The SRP instruction uses only the rightmost six
bits of the effective address D�(B�) and interprets
them as a six-bit signed binary integer to control
the left or right shift as in the preceding shift
examples.

ZERO AND ADD (ZAP)

Assume that the signed, packed-decimal number
at storage locations 4500-4502 is to be moved to
locations 4000-4004 with four leading zeros in the
result field. Also assume:

Register 9 contains 00 00 40 00.

Storage locations 4000-4004 contain 12 34 56
78 90.

Storage locations 4500-4502 contain 38 46
0D.

After the instruction:

Machine Format
 Op Code L� L� B� D� B� D�
┌────────┬────┬────┬────┬────┬────┬────┐
│ F8 │ 4 │ 2 │ 9 │ ���│ 9 │ 5��│
└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D�(L�,B�),D�(L�,B�)
────────────────────────────
 ZAP �(5,9),X'5��'(3,9)

is executed, the storage locations 4000-4004
contain 00 00 38 46 0D; condition code 1 is set to
indicate a negative result without overflow.

A-38 z/Architecture Principles of Operation

Note that, because the first operand is not
checked for valid sign and digit codes, it may
contain any combination of hexadecimal digits
before the operation.

 Hexadecimal-Floating-Point
Instructions
(See Chapter 9, “Floating-Point Overview and
Support Instructions” for a complete description of
the hexadecimal-floating-point instructions.)

In this section, the abbreviations FPR0, FPR2,
FPR4, and FPR6 stand for floating-point registers
0, 2, 4, and 6 respectively.

ADD NORMALIZED (AD, ADR,
AE, AER, AXR)

The ADD NORMALIZED instruction performs the
addition of two HFP numbers and places the nor-
malized result in a floating-point register. Neither
of the two numbers to be added must necessarily
be in normalized form before addition occurs. For
example, assume that:

FPR6 contains the unnormalized number C3
08 21 00 00 00 00 00 = -82.1�^ = -130.06�@
approximately.

Storage locations 2000-2007 contain the nor-
malized number 41 12 34 56 00 00 00 00 =
+1.23456�^ = +1.14�@ approximately.

Register 13 contains 00 00 20 00.

The instruction:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 7A │ 6 │ � │ D │ ���│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 AE 6,�(�,13)

performs the short-precision addition of the two
operands, as follows.

The characteristics of the two numbers (43 and
41) are compared. Since the number in storage
has a characteristic that is smaller by 2, it is right-
shifted two hexadecimal digit positions. One
guard digit is retained on the right. The fractions
of the two numbers are then added algebraically:

 Fraction GD�
FPR6 -43 �8 21 ��
Shifted number from storage +43 �� 12 34 5
──
Intermediate sum -43 �8 �E CB B
Left-shifted sum -42 8� EC BB

� Guard digit

Because the intermediate sum is unnormalized, it
is left-shifted to form the normalized HFP number
-80.ECBB�^ = -128.92�@ approximately. Com-
bining the sign with the characteristic, the result is
C2 80 EC BB, which replaces the left half of
FPR6. The right half of FPR6 and the contents of
storage locations 2000-2007 are unchanged.
Condition code 1 is set to indicate a result less
than zero.

If the long-precision instruction AD were used, the
result in FPR6 would be C2 80 EC BA A0 00 00
00. Note that use of the long-precision instruction
would avoid a loss of precision in this example.

ADD UNNORMALIZED (AU, AUR,
AW, AWR)

The ADD UNNORMALIZED instruction operates
the same as the ADD NORMALIZED instruction,
except that the final result is not normalized. For
example, using the the same operands as in the
example for ADD NORMALIZED, when the short-
precision instruction:

Machine Format
 Op Code R� X� B� D�
┌────────┬────┬────┬────┬────┐
│ 7E │ 6 │ � │ D │ ���│
└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R�,D�(X�,B�)
─────────────────────
 AU 6,�(�,13)

is executed, the two numbers are added as
follows:

 Appendix A. Number Representation and Instruction-Use Examples A-39

 Fraction GD�
FPR6 -43 �8 21 ��
Shifted number from storage +43 �� 12 34 5
──
Intermediate sum -43 �8 �E CB B

� Guard digit

The guard digit participates in the addition but is
discarded. The unnormalized sum replaces the
left half of FPR6. Condition code 1 is set because
the result is less than zero.

The truncated result in FPR6 (C3 08 0E CB 00 00
00 00) shows a loss of a significant digit when
compared to the result of short-precision normal-
ized addition.

COMPARE (CD, CDR, CE, CER)

Assume that FPR4 contains 43 00 00 00 00 00 00
00 (zero), and FPR6 contains 35 12 34 56 78 9A
BC DE (a positive number). The contents of the
two registers are to be compared using a long-
precision COMPARE instruction.

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ 29 │ 4 │ 6 │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 CDR 4,6

The number with the smaller characteristic, which
is in register FPR6, is right-shifted 43 - 35 hex
(67 - 53 decimal) or 14 digit positions, so that the
two characteristics agree. The shifted number is
43 00 00 00 00 00 00 00, with a guard digit of
one. Therefore, when the two numbers are com-
pared, condition code 1 is set, indicating that
operand 1 in FPR4 is less than operand 2 in
FPR6.

If the example is changed to a second operand
with a characteristic of 34 instead of 35, so that

FPR6 contains 34 12 34 56 78 9A BC DE, the
operand is right-shifted 15 positions, leaving all
fraction digits and the guard digit as zeros. Condi-
tion code 0 is set, indicating equality. This
example shows that two HFP numbers with dif-
ferent characteristics or fractions may compare
equal if the numbers are unnormalized or zero.

As another example of comparing unnormalized
HFP numbers, 41 00 12 34 56 78 9A BC com-
pares equal to all numbers of the form 3F 12 34
56 78 9A BC 0X (X represents any hexadecimal
digit). When the COMPARE instruction is exe-
cuted, the two rightmost digits are shifted right two
places, the 0 becomes the guard digit, and the X
does not participate in the comparison.

However, when two normalized HFP numbers are
compared, the relationship between numbers that
compare equal is unique: each digit in one
number must be the same as the corresponding
digit in the other number.

DIVIDE (DD, DDR, DE, DER)

Assume that the first operand (the dividend) is in
FPR2 and the second operand (the divisor) in
FPR0. If the operands are in the short-precision
format, the resulting quotient is returned to FPR2
by the instruction:

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ 3D │ 2 │ � │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 DER 2,�

Several examples of short-precision HFP division,
with the dividend in FPR2 and the divisor in FPR0,
are shown below. For case A, the result, which
replaces the dividend, is obtained in the following
steps.

A-40 z/Architecture Principles of Operation

 7.2522F
 ┌─────────────
 .1234��│.821���
 7F6C��
 ───────
 2A4�� �
 2468� �
 ───────
 5D8� ��
 5B�4 ��
 ───────
 27C ���
 246 8��
 ───────
 35 8���
 24 68��
 ───────
 11 18���
 11 1�C��
 ────────
 74��

 FPR2 Before FPR� FPR2 After
Case (Dividend) (Divisor) (Quotient)

 A -43 �821�� +43 ��1234 -42 72522F
 B +42 1�1�1� +45 111111 +3D F�F�F�
 C +48 3����F +41 4����� +47 C���3C
 D +48 3����F +41 2����� +48 18���7
 E +48 18���7 +41 2����� +47 C���38

Case C shows a number being divided by 4.0.
Case D divides the same number by 2.0, and
case E divides the result of case D again by 2.0.
The results of cases C and E differ in the right-
most hexadecimal digit position, which illustrates
an effect of result truncation.

HALVE (HDR, HER)

HALVE produces the same result as HFP DIVIDE
with a divisor of 2.0. Assume FPR2 contains the
long-precision number +48 30 00 00 00 00 00 0F.
The following HALVE instruction produces the
result +48 18 00 00 00 00 00 07 in FPR2:

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ 24 │ 2 │ 2 │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 HDR 2,2

MULTIPLY (MD, MDR, MDE,
MDER, MXD, MXDR, MXR)

For this example, the following long-precision
operands are in FPR0 and FPR2:

 FPR�: -33 6�6�6� 6�6�6�6�
 FPR2: -5A 2����� 2�����2�

A long-precision product is generated by the
instruction:

Machine Format
 Op Code R� R�
┌────────┬────┬────┐
│ 2C │ � │ 2 │
└────────┴────┴────┘

Assembler Format
Op Code R�,R�
──────────────
 MDR �,2

If the operands were not already normalized, the
instruction would first normalize them. It then gen-
erates an intermediate result consisting of the full
28-digit hexadecimal product fraction obtained by
multiplying the 14-digit hexadecimal operand frac-
tions, together with the appropriate sign and a
characteristic that is the sum of the operand char-
acteristics less 64 (40 hex):

The fraction multiplication is performed as follows:

 .6�6�6�6�6�6�6�
 .2�����2�����2�
 ───────────────
 C�C�C�C�C�C�C��
 C�C�C�C�C�C�C�
 C�C�C�C�C�C�C�
 ─────────────────────────────
 .�C�C�C18181824181818�C�C�C��

Attaching the sign and characteristic to the fraction
gives:

+4D �C�C�C 18181824 181818�C �C�C��

Because this intermediate product has a leading
zero, it is then normalized. The truncated final
result placed in FPR0 is:

+4C C�C�C1 81818241

 Appendix A. Number Representation and Instruction-Use Examples A-41

 Hexadecimal-Floating-Point-Number
Conversion

The following examples illustrate one method of
converting between binary fixed-point numbers
(32-bit signed binary integers) and normalized
HFP numbers. Conversion must provide for the
different representations used with negative
numbers: the two's-complement form for signed
binary integers, and the signed-absolute-value
form for the fractions of HFP numbers.

Fixed Point to Hexadecimal Floating
Point
The method used here inverts the leftmost bit of
the 32-bit signed binary integer, which is equiv-
alent to adding 2�� to the number and considering
the result to be positive. This changes the
number from a signed integer in the range 2�� - 1
through -2�� to an unsigned integer in the range
2�� - 1 through 0. After conversion to the long
HFP format, the value 2�� is subtracted again.

Assume that general register 9 (GR9) contains the
integer -59 in two's-complement form:

 GR9: FF FF FF C5

Further, assume two eight-byte fields in storage:
TEMP, for use as temporary storage, and TWO31,
which contains the floating-point constant 2�� in
the following format:

TWO31: 4E �� �� �� 8� �� �� ��

This is an unnormalized long HFP number with
the characteristic 4E, which corresponds to a radix
point (hexadecimal point) to the right of the
number.

The following instruction sequence performs the
conversion:

The EXCLUSIVE OR (X) instruction inverts the
leftmost bit in general register 9, using the right
half of the constant as the source for a leftmost
one bit. The next two instructions assemble the
modified number in an unnormalized long HFP
format, using the left half of the constant as the
plus sign, the characteristic, and the leading zeros
of the fraction. LOAD (LD) places the number
unchanged in floating-point register 2. The SUB-
TRACT NORMALIZED (SD) instruction performs
the final two steps by subtracting 2�� in HFP form
and normalizing the result.

Hexadecimal Floating Point to Fixed
Point
The procedure described here consists basically in
reversing the steps of the previous procedure.
Two additional considerations must be taken into
account. First: the HFP number may not be an
exact integer. Truncating the excess hexadecimal
digits on the right requires shifting the number one
digit position farther to the right than desired for
the final result, so that the units digit occupies the
position of the guard digit. Second: the HFP
number may have to be tested as to whether it is
outside the range of numbers representable as a
32-bit signed binary integer.

Assume that floating-point register 6 contains the
number 59.25�@ = 3B.4�^ in normalized form:

 FPR6: 42 3B 4� �� �� �� �� ��

Further, assume three eight-byte fields in storage:
TEMP, for use as temporary storage, and the con-
stants 2�� (TWO32) and 2�� (TWO31R) in the fol-
lowing formats:

TWO32: 4E �� �� �1 �� �� �� ��
TWO31R: 4F �� �� �� �8 �� �� ��

The constant TWO31R is shifted right one more
position than the constant TWO31 of the previous
example, so as to force the units digit into the
guard-digit position.

The following instruction sequence performs the
integer truncation, range tests, and conversion to
a signed binary integer in general register 8
(GR8):

 Result
X 9,TWO31+4 GR9:

7FFF FFC5
ST 9,TEMP+4 TEMP:

xxxx xxxx 7FFF FFC5
MVC TEMP(4),TWO31 TEMP:

4E00 0000 7FFF FFC5
LD 2,TEMP FPR2:

4E00 0000 7FFF FFC5
SD 2,TWO31 FPR2:

C23B 0000 0000 0000

A-42 z/Architecture Principles of Operation

The SUBTRACT NORMALIZED (SD) instruction
shifts the fraction of the number to the right until it
lines up with TWO31R, which causes the fraction
digit 4 to fall to the right of the guard digit and be
lost; the result of subtracting 2�� from the
remaining digits is renormalized. The result
should be less than zero; if not, the original
number was too large in the positive direction.
The first BRANCH ON CONDITION (BC) performs
this test.

The ADD UNNORMALIZED (AW) instruction adds
2��: 2�� to correct for the previous subtraction
and another 2�� to change to an all-positive
range. The second BC tests for a result less than
zero, showing that the original number was too
large in the negative direction. The unnormalized
result is placed in temporary storage by the
STORE (STD) instruction. There the leftmost bit
of the binary integer is inverted by the EXCLU-
SIVE OR (XI) instruction to subtract 2�� and thus
convert the unsigned number to the signed format.
The final result is loaded into GR8.

 Multiprogramming and
Multiprocessing Examples
When two or more programs sharing common
storage locations are being executed concurrently
in a multiprogramming or multiprocessing environ-
ment, one program may, for example, set a flag

 Result bit in the common-storage area for testing by
another program. It should be noted that the
instructions AND (NI or NC), EXCLUSIVE OR (XI
or XC), and OR (OI or OC) could be used to set
flag bits in a multiprogramming environment; but
the same instructions may cause program logic
errors in a multiprocessing configuration where
two or more CPUs can fetch, modify, and store
data in the same storage locations simultaneously.

Example of a Program Failure
Using OR Immediate

Assume that two independent programs try to set
different bits to one in a common byte in storage.
The following example shows how the use of the
instruction OR immediate (OI) can fail to accom-
plish this, if the programs are executed simultane-
ously on two different CPUs. One of the possible
error situations is depicted.

┌────────────────┬─────────┬────────────────┐
│ Execution of │ │ Execution of │
│ instruction │ │ instruction │
│ OI FLAGS,X'�1' │ FLAGS │ OI FLAGS,X'8�' │
│ on CPU A │ │ on CPU B │
├────────────────┼─────────┼────────────────┤
│ │ X'��' │ Fetch │
│ │ │ FLAGS X'��' │
│ Fetch │ X'��' │ │
│ FLAGS X'��' │ │ │
│ │ X'��' │ OR X'8�' │
│ │ │ into X'��' │
│ OR X'�1' │ X'��' │ │
│ into X'��' │ │ │
│ │ X'8�' │ Store X'8�' │
│ │ │ into FLAGS │
│ Store X'�1' │ X'�1' │ │
│ into FLAGS │ │ │
├────────────────┴─────────┴────────────────┤
│ FLAGS should have value of X'81' follow- │
│ ing both updates. │
└───┘

The problem shown here is that the value stored
by the OI instruction executed on CPU A overlays
the value that was stored by CPU B. The X'80'
flag bit was erroneously turned off, and the data is
now invalid.

The COMPARE AND SWAP instruction has been
provided to overcome this and similar problems.

SD 6,TWO31R FPR6:
C87F FFFF C500 0000

BC 11,OVERFLOW Branch to overflow
routine if result is
greater than or equal to
zero

AW 6,TWO32 FPR6:
4E00 0000 8000 003B

BC 4,OVERFLOW Branch to overflow
routine if result is less
than zero

STD 6,TEMP TEMP:
4E00 0000 8000 003B

XI TEMP+4,X'80' TEMP:
4E00 0000 0000 003B

L 8,TEMP+4 GR8:
0000 003B

 Appendix A. Number Representation and Instruction-Use Examples A-43

 Conditional Swapping
Instructions (CS, CDS)

The COMPARE AND SWAP (CS) and COMPARE
DOUBLE AND SWAP (CDS) instructions can be
used in multiprogramming or multiprocessing envi-
ronments to serialize access to counters, flags,
control words, and other common storage areas.

The following examples of the use of the
COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP instructions illustrate the applications
for which the instructions are intended. It is
important to note that these are examples of func-
tions that can be performed by programs while the
CPU is enabled for interruption (multiprogram-
ming) or by programs that are being executed in a
multiprocessing configuration. That is, the routine
allows a program to modify the contents of a
storage location while the CPU is enabled, even
though the routine may be interrupted by another
program on the same CPU that will update the
location, and even though the possibility exists
that another CPU may simultaneously update the
same location.

The COMPARE AND SWAP instruction first
checks the value of a storage location and then
modifies it only if the value is what the program
expects; normally this would be a previously
fetched value. If the value in storage is not what
the program expects, then the location is not mod-
ified; instead, the current value of the location is
loaded into a general register, in preparation for
the program to loop back and try again. During
the execution of COMPARE AND SWAP, no other
CPU can perform a store access or interlocked-
update access at the specified location.

To ensure successful updating of a common
storage field by two or more CPUs, all updates
must be done by means of an interlocked-update
reference. See the programming notes of
COMPARE AND SWAP for an example of how
COMPARE AND SWAP can be unsuccessful due
to an OR IMMEDIATE instruction executed by
another CPU.

Setting a Single Bit
The following instruction sequence shows how the
COMPARE AND SWAP instruction can be used to
set a single bit in storage to one. Assume that the
first byte of a word in storage called “WORD” con-
tains eight flag bits.

LA 6,X'8�' Put bit to be ORed into GR6
SLL 6,24 Shift left 24 places to

align the byte to be ORed
with the location of the
flag bits within WORD

L 7,WORD Fetch current flag values
RETRY LR 8,7 Load flags into GR8

OR 8,6 Set bit to one
CS 7,8,WORD Store new flags if current

flags unchanged, or re-
fetch current flag values

 if changed
BC 4,RETRY If new flags are not stored,

 try again

The format of the COMPARE AND SWAP instruc-
tion is:

Machine Format
 Op Code R� R� S�
┌────────┬────┬────┬────┐
│ BA │ 7 │ 8 │����│
└────────┴────┴────┴────┘

Assembler Format
Op Code R�,R�,S�
─────────────────
 CS 7,8,WORD

The COMPARE AND SWAP instruction compares
the first operand (general register 7 containing the
current flag values) to the second operand in
storage (WORD) while no CPU other than the one
executing the COMPARE AND SWAP instruction
is permitted to perform a store access or
interlocked-update access at the specified storage
location.

If the comparison is successful, indicating that the
flag bits have not been changed since they were
fetched, the modified copy in general register 8 is
stored into WORD. If the flags have been
changed, the compare will not be successful, and
their new values are loaded into general register
7.

The conditional branch (BC) instruction tests the
condition code and reexecutes the flag-modifying
instructions if the COMPARE AND SWAP instruc-
tion indicated an unsuccessful comparison (condi-

A-44 z/Architecture Principles of Operation

tion code 1). When the COMPARE AND SWAP
instruction is successful (condition code 0), the
flags contain valid data, and the program exits
from the loop.

The branch to RETRY will be taken only if some
other program modifies the contents of WORD.
This type of a loop differs from the typical “bit-
spin” loop. In a bit-spin loop, the program con-
tinues to loop until the bit changes. In this
example, the program continues to loop only if the
value does change during each iteration. If a
number of CPUs simultaneously attempt to modify
a single location by using the sample instruction
sequence, one CPU will fall through on the first
try, another will loop once, and so on until all
CPUs have succeeded.

 Updating Counters
In this example, a 32-bit counter is updated by a
program using the COMPARE AND SWAP
instruction to ensure that the counter will be cor-
rectly updated. The original value of the counter
is obtained by loading the word containing the
counter into general register 7. This value is
moved into general register 8 to provide a modifi-
able copy, and general register 6 (containing an
increment to the counter) is added to the modifi-
able copy to provide the updated counter value.
The COMPARE AND SWAP instruction is used to
ensure valid storing of the counter.

The program updating the counter checks the
result by examining the condition code. The con-
dition code 0 indicates a successful update, and
the program can proceed. If the counter had been
changed between the time that the program
loaded its original value and the time that it exe-
cuted the COMPARE AND SWAP instruction, the
execution would have loaded the new counter
value into general register 7 and set the condition
code to 1, indicating an unsuccessful update. The
program must then repeat the update sequence
until the execution of the COMPARE AND SWAP
instruction results in a successful update.

The following instruction sequence performs the
above procedure:

LA 6,1 Put increment (1) into GR6
L 7,CNTR Put original counter value

 into GR7
LOOP LR 8,7 Set up copy in GR8 to modify
 AR 8,6 Increment copy

CS 7,8,CNTR Update counter in storage
BC 4,LOOP If original value had changed,

update new value

The following shows two CPUs, A and B, exe-
cuting this instruction sequence simultaneously:
both CPUs attempt to add one to CNTR.

 CPU A CPU B Comments
GR7 GR8 CNTR GR7 GR8

 16
16 16 CPU A loads GR7 and

GR8 from CNTR
16 16 CPU B loads GR7 and

GR8 from CNTR
17 CPU B adds one to GR8

17 CPU A adds one to GR8
17 CPU A executes CS;

 successful match,
 store

17 CPU B executes CS; no
match, GR7 changed
to CNTR value

18 CPU B loads GR8 from
GR7, adds one to GR8

18 CPU B executes CS;
 successful match,
 store

Bypassing Post and Wait

Bypass Post Routine
The following routine allows the SVC “POST” as
used in MVS/ESA to be bypassed whenever the
corresponding WAIT has not yet been executed,
provided that the supervisor WAIT and POST rou-
tines use COMPARE AND SWAP to manipulate
event control blocks (ECBs).

Initial Conditions:

GR0 contains the POST code.

GR1 contains the address of the ECB.

GR5 contains 40 00 00 00�^

 Appendix A. Number Representation and Instruction-Use Examples A-45

HSPOST OR �,5 Set bit 1 of GR� to
 one

L 3,�(1) GR3 = contents of ECB
LTR 3,3 ECB marked 'waiting'?
BC 4,PSVC Yes, execute post

 SVC
CS 3,�,�(1) No, store post code
BC 8,EXITHP Continue

PSVC POST (1),(�) ECB address is in GR1,
post code in GR�

EXITHP [Any instruction]

The following routine may be used in place of the
previous HSPOST routine if it is assumed that bit
1 of the contents of GR0 is already set to one and
if the ECB is assumed to contain zeros when it is
not marked “WAITING.”

HSPOST SR 3,3
 CS 3,�,�(1)
 BC 8,EXITHP
 POST (1),(�)
EXITHP [Any instruction]

Bypass Wait Routine
A BYPASS WAIT function, corresponding to the
BYPASS POST, does not use the CS instruction,
but the FIFO LOCK/UNLOCK routines which
follow assume its use.

HSWAIT TM �(1),X'4�'
BC 1,EXITHW If bit 1 is one, then

ECB is already posted;
branch to exit

 WAIT ECB=(1)
EXITHW [Any instruction]

 Lock/Unlock

When a common storage area larger than a
doubleword is to be updated, it is usually neces-
sary to provide special interlocks to ensure that a
single program at a time updates the common
area. Such an area is called a serially reusable
resource (SRR).

In general, updating a list, or even scanning a list,
cannot be safely accomplished without first
“freezing” the list. However, the COMPARE AND
SWAP and COMPARE DOUBLE AND SWAP
instructions can be used in certain restricted situ-
ations to perform queuing and list manipulation.
Of prime importance is the capability to perform
the lock/unlock functions and to provide sufficient
queuing to resolve contentions, either in a LIFO or
FIFO manner. The lock/unlock functions can then

be used as the interlock mechanism for updating
an SRR of any complexity.

The lock/unlock functions are based on the use of
a “header” associated with the SRR. The header
is the common starting point for determining the
states of the SRR, either free or in use, and also
is used for queuing requests when contentions
occur. Contentions are resolved using WAIT and
POST. The general programming technique
requires that the program that encounters a
“locked” SRR must “leave a mark on the wall” indi-
cating the address of an ECB on which it will
WAIT. The “unlocking” program sees the mark
and posts the ECB, thus permitting the waiting
program to continue. In the two examples given,
all programs using a particular SRR must use
either the LIFO queuing scheme or the FIFO
scheme; the two cannot be mixed. When more
complex queuing is required, it is suggested that
the queue for the SRR be locked using one of the
two methods shown.

Lock/Unlock with LIFO Queuing for
Contentions
The header consists of a word, that is, a four-byte
field aligned on a word boundary. The word can
contain zero, a positive value, or a negative value.

� A zero value indicates that the serially reus-
able resource (SRR) is free.

� A negative value indicates that the SRR is in
use but no additional programs are waiting for
the SRR.

� A positive value indicates that the SRR is in
use and that one or more additional programs
are waiting for the SRR. Each waiting
program is identified by an element in a
chained list. The positive value in the header
is the address of the element most recently
added to the list.

Each element consists of two words. The first
word is used as an ECB; the second word is used
as a pointer to the next element in the list. A neg-
ative value in a pointer indicates that the element
is the last element in the list. The element is
required only if the program finds the SRR locked
and desires to be placed in the list.

The following chart describes the action taken for
LIFO LOCK and LIFO UNLOCK routines. The
routines following the chart allow enabled code to
perform the actions described in the chart.

A-46 z/Architecture Principles of Operation

┌─────────────┬───┐
│ │ Action │
│ ├───────────────┬───────────────┬───────────────┤
│ │Header Contains│Header Contains│Header Contains│
│ Function │ Zero │Positive Value │Negative Value │
├─────────────┼───────────────┼───────────────┴───────────────┤
│LIFO LOCK │SRR is free. │SRR is in use. Store the │
│(the incoming│Set the header │contents of the header into │
│element is at│to a negative │location A+4. Store address A │
│location A) │value. Use the │into the header. WAIT; the ECB│
│ │SRR. │is at location A. │
├─────────────┼───────────────┼───────────────┬───────────────┤
│LIFO UNLOCK │Error │Some program is│The list is │
│ │ │waiting for the│empty. Store │
│ │ │SRR. Move the │zeros into the │
│ │ │pointer from │header. The SRR│
│ │ │the "last in" │is free. │
│ │ │element into │ │
│ │ │the header. │ │
│ │ │POST; the ECB │ │
│ │ │is in the "last│ │
│ │ │in" element. │ │
└─────────────┴───────────────┴───────────────┴───────────────┘

LIFO LOCK Routine:

Initial Conditions:

GR1 contains the address of the incoming
element.

GR2 contains the address of the header.

LLOCK SR 3,3 GR3 = �
ST 3,�(1) Initialize the ECB
LNR �,1 GR� = a negative value

TRYAGN CS 3,�,�(2) Set the header to a nega-
tive value if the header

 contains zeros
BC 8,USE Did the header contain

 zeros?
ST 3,4(1) No, store the value of the

header into the pointer
in the incoming element

CS 3,1,�(2) Store the address of the
incoming element into

 the header
LA 3,�(�) GR3 = �
BC 7,TRYAGN Did the header get up-

 dated?
WAIT ECB=(1) Yes, wait for the re-

source; the ECB is in
the incoming element

USE [Any instruction]

LIFO UNLOCK Routine:

Initial Conditions:

GR2 contains the address of the header.

LUNLK L 1,�(2) GR1 = the contents of the
 header
A LTR 1,1 Does the header contain a
 BC 4,B negative value?

L �,4(1) No, load the pointer from
CS 1,�,�(2) the "last in" element and

store it in the header
BC 7,A Did the header get updated?
POST (1) Yes, post the "last in"

 element
BC 15,EXIT Continue

B SR �,� The header contains a neg-
CS 1,�,�(2) ative value; free the
BC 7,A header and continue

EXIT [Any instruction]

Note that the LOAD instruction L 1,0(2) at location
LUNLK would have to be CS 1,1,0(2) if it were not
for the rule concerning storage-operand consist-
ency. This rule requires the LOAD instruction to
fetch a four-byte operand aligned on a word
boundary such that, if another CPU changes the
word being fetched by an operation which is also
at least word-consistent, either the entire new or
the entire old value of the word is obtained, and
not a combination of the two. (See “Storage-
Operand Consistency” on page 5-87.)

Lock/Unlock with FIFO Queuing for
Contentions
The header always contains the address of the
most recently entered element. The header is ori-
ginally initialized to contain the address of a
posted ECB. Each program using the serially
reusable resource (SRR) must provide an element
regardless of whether contention occurs. Each
program then enters the address of the element
which it has provided into the header, while simul-
taneously it removes the address previously con-
tained in the header. Thus, associated with any
particular program attempting to use the SRR are
two elements, called the “entered element” and
the “removed element.” The “entered element” of
one program becomes the “removed element” for
the immediately following program. Each program
then waits on the removed element, uses the
SRR, and then posts the entered element.

When no contention occurs, that is, when the
second program does not attempt to use the SRR
until after the first program is finished, then the
POST of the first program occurs before the WAIT
of the second program. In this case, the bypass-
post and bypass-wait routines described in the
preceding section are applicable. For simplicity,

 Appendix A. Number Representation and Instruction-Use Examples A-47

these two routines are shown only by name rather
than as individual instructions.

In the example, the element need be only a single
word, that is, an ECB. However, in actual prac-
tice, the element could be made larger to include
a pointer to the previous element, along with a
program identification. Such information would be
useful in an error situation to permit starting with
the header and chaining through the list of ele-
ments to find the program currently holding the
SRR.

It should be noted that the element provided by
the program remains pointed to by the header
until the next program attempts to lock. Thus, in
general, the entered element cannot be reused by
the program. However, the removed element is
available, so each program gives up one element
and gains a new one. It is expected that the
element removed by a particular program during
one use of the SRR would then be used by that
program as the entry element for the next request
to the SRR.

It should be noted that, since the elements are
exchanged from one program to the next, the ele-
ments cannot be allocated from storage that would
be freed and reused when the program ends. It is
expected that a program would obtain its first
element and release its last element by means of
the routines described in “Free-Pool Manipulation.”

The following chart describes the action taken for
FIFO LOCK and FIFO UNLOCK.

┌─────────────────┬────────────────────────────┐
│ Function │ Action │
├─────────────────┼────────────────────────────┤
│FIFO LOCK │Store address A into the │
│ │header. │
│(the incoming │WAIT; the ECB is at the │
│element is at │location addressed by the │
│location A) │old contents of the header. │
├─────────────────┼────────────────────────────┤
│FIFO UNLOCK │POST; the ECB is at loca- │
│ │tion A. │
└─────────────────┴────────────────────────────┘

The following routines allow enabled code to
perform the actions described in the previous
chart.

FIFO Lock Routine:

Initial conditions:

GR3 contains the address of the header.

GR4 contains the address, A, of the element
currently owned by this program. This
element becomes the entered element.

FLOCK LR 2,4 GR2 now contains address
of element to be

 entered
SR 1,1 GR1 = �
ST 1,�(2) Initialize the ECB
L 1,�(3) GR1 = contents of the

 header
TRYAGN CS 1,2,�(3) Enter address A into

header while remember-
BC 7,TRYAGN ing old contents of

header into GR1; GR1
now contains address
of removed element

LR 4,1 Removed element becomes
new currently owned

 element
 HSWAIT Perform bypass-wait

routine; if ECB al-
ready posted, con-
tinue; if not, wait;
GR1 contains the ad-
dress of the ECB

USE [Any instruction]

FIFO Unlock Routine:

Initial conditions:

GR2 contains the address of the removed
element, obtained during the FLOCK routine.

GR5 contains 40 00 00 00�^

FUNLK LR 1,2 Place address of entered
element in GR1; GR1 = ad-
dress of ECB to be posted

SR �,� GR� = �; GR� has a post code
 of zero

OR �,5 Set bit 1 of GR� to one
HSPOST Perform bypass-post routine;

if ECB has not been waited
on, then mark posted and
continue; if it has been
waited on, then post

CONTINUE [Any instruction]

 Free-Pool Manipulation

It is anticipated that a program will need to add
and delete items from a free list without using the
lock/unlock routines. This is especially likely since
the lock/unlock routines require storage elements
for queuing and may require working storage.
The lock/unlock routines discussed previously
allow simultaneous lock routines but permit only
one unlock routine at a time. In such a situation,
multiple additions and a single deletion to the list

A-48 z/Architecture Principles of Operation

may all occur simultaneously, but multiple
deletions cannot occur at the same time. In the
case of a chain of pointers containing free storage
buffers, multiple deletions along with additions can
occur simultaneously. In this case, the removal
cannot be done using the COMPARE AND SWAP
instruction without a certain degree of exposure.

Consider a chained list of the type used in the
LIFO lock/unlock example. Assume that the first
two elements are at locations A and B, respec-
tively. If one program attempted to remove the
first element and was interrupted between the
fourth and fifth instructions of the LUNLK routine,
the list could be changed so that elements A and
C are the first two elements when the interrupted
program resumes execution. The COMPARE
AND SWAP instruction would then succeed in
storing the value B into the header, thereby
destroying the list.

The probability of the occurrence of such list
destruction can be reduced to near zero by
appending to the header a counter that indicates
the number of times elements have been added to
the list. The use of a 32-bit counter guarantees
that the list will not be destroyed unless the fol-
lowing events occur, in the exact sequence:

1. An unlock routine is interrupted between the
fetch of the pointer from the first element and
the update of the header.

2. The list is manipulated, including the deletion
of the element referenced in 1, and exactly
2�� (or an integer multiple of 2��) additions to
the list are performed. Note that this takes on
the order of days to perform in any practical
situation.

3. The element referenced in 1 is added to the
list.

4. The unlock routine interrupted in 1 resumes
execution.

The following routines use such a counter in order
to allow multiple, simultaneous additions and
removals at the head of a chain of pointers.

The list consists of a doubleword header and a
chain of elements. The first word of the header
contains a pointer to the first element in the list.
The second word of the header contains a 32-bit
counter indicating the number of additions that
have been made to the list. Each element con-

tains a pointer to the next element in the list. A
zero value indicates the end of the list.

The following chart describes the free-pool-list
manipulation.
┌─────────────┬───┐
│ │ Action │
│ ├──────────────────┬────────────────────────┤
│ Function │ Header = �,Count │ Header = A,Count │
├─────────────┼──────────────────┴────────────────────────┤
│ADD TO LIST │Store the first word of the header into │
│(the incoming│location A. Store the address A into the │
│element is at│first word of the header. Decrement the │
│location A) │second word of the header by one. │
├─────────────┼──────────────────┬────────────────────────┤
│DELETE FROM │The list is empty.│Set the first word of │
│LIST │ │the header to the value │
│ │ │of the contents of loca-│
│ │ │tion A. Use element A. │
└─────────────┴──────────────────┴────────────────────────┘

The following routines allow enabled code to
perform the free-pool-list manipulation described in
the above chart.

ADD TO FREE LIST Routine:

Initial Conditions:

GR2 contains the address of the element to
be added.

GR4 contains the address of the header.

ADDQ LM �,1,�(4) GR�,GR1 = contents of the
 header
TRYAGN ST �,�(2) Point the new element to

the top of the list
LR 3,1 Move the count to GR3
BCTR 3,� Decrement the count
CDS �,2,�(4) Update the header

 BC 7,TRYAGN

DELETE FROM FREE LIST Routine:

Initial conditions:

GR4 contains the address of the header.

DELETQ LM 2,3,�(4) GR2,GR3 = contents of
 the header
TRYAGN LTR 2,2 Is the list empty?

BC 8,EMPTY Yes, get help
L �,�(2) No, GR� = the pointer

from the first ele-
 ment

LR 1,3 Move the count to GR1
CDS 2,�,�(4) Update the header

 BC 7,TRYAGN
USE [Any instruction] The address of the re-

moved element is in
 GR2

Note that the LM (LOAD MULTIPLE) instructions
at locations ADDQ and DELETQ would have to be
CDS (COMPARE DOUBLE AND SWAP)

 Appendix A. Number Representation and Instruction-Use Examples A-49

instructions if it were not for the rule concerning
storage-operand consistency. This rule requires
the LOAD MULTIPLE instructions to fetch an
eight-byte operand aligned on a doubleword
boundary such that, if another CPU changes the
doubleword being fetched by an operation which
is also at least doubleword-consistent, either the
entire new or the entire old value of the
doubleword is obtained, and not a combination of
the two. (See “Storage-Operand Consistency” on
page 5-87.)

PERFORM LOCKED OPERATION
(PLO)

The PERFORM LOCKED OPERATION instruction
can be used in a multiprogramming or multiproc-
essing environment to perform compare, load,
compare-and-swap, and store operations on two
or more discontiguous locations that can be words
or doublewords. The operations are performed as
an atomic set of operations under the control of a
lock that is held only for the duration of the exe-
cution of a single PERFORM LOCKED OPERA-
TION instruction, as opposed to across the exe-
cution of multiple instructions. Since lock con-
tention is resolved by the CPU and is very brief,
the program need not include a method for
dealing with the case when the lock to be used is
held by a program being executed by another
CPU. Also, there need be no concern that the
program may be interrupted while it holds a lock,
since PERFORM LOCKED OPERATION will com-
plete its operation and release its lock before an
interruption can occur.

PERFORM LOCKED OPERATION can be thought
of as performing concurrent interlocked updates of
multiple operands. However, the instruction does
not actually perform any interlocked update, and a
serially reusable resource cannot be updated pre-
dictably through the use of both PERFORM
LOCKED OPERATION and conditional-swapping
instructions (CS and CDS).

Following is an example of how PERFORM
LOCKED OPERATION can be used to add an
element at the beginning of a queue.

Assume the following variables associated with
the queue: S, which is a sequence number that is

incremented anytime the queue is changed; H (for
head), which is the address of the first element on
the queue; and C, which is a count of the number
of elements on the queue. Assume a queue
element contains a variable, F (for forward), which
is the address of the next element on the queue.
If a new element, N, is to be enqueued at the
head of the queue, that can be done by setting F
in N to H and then performing the following atomic
set of operations:

 S+1 ──� S
A(N) ──� H

 C+1 ──� C

where A(N) is the address of N.

The enqueueing of N can be done by means of
the following steps:

1. Obtain consistent values of S, H, and C,
meaning obtain S and obtain the H and C that
are consistent with that value of S.

2. Store H in N.F.

3. By means of PLO.csdst (PERFORM LOCKED
OPERATION performing compare and swap
and double store), with S as the swap variable
and H and C as the store variables, add one
to S, set H to A(N), and add one to C, pro-
vided that S still has the value obtained in
step 1. If S has already been changed, go
back to step 1.

Consistent values of S, H, and C cannot neces-
sarily be obtained simply by using three LOAD
instructions because a PERFORM LOCKED
OPERATION instruction being executed by
another CPU may have completed an update of S
but not yet of H or C. In this case, the three
LOAD instructions will obtain the new S but the
old H or C. However, as will be described, it may
be possible to use three LOAD instructions.

If S is obtained while holding the lock, meaning by
means of PERFORM LOCKED OPERATION, then
H and C can be obtained by LOAD instructions
since no other CPU can subsequently change H
or C without changing S, as observed when the
lock is held.

The parameter list used by the PLO.csdst is as
follows, assuming the access-register mode is not
used:

A-50 z/Architecture Principles of Operation

 ┌─────────────────────────────────┐
 � │ │
 ├─────────────────────────────────┤
 8 │ │
 / /
 48 │ │
 ├────────────────┬────────────────┤
 56 │ │ A(N) │
 ├────────────────┼────────────────┤
 64 │ │ │
 ├────────────────┼────────────────┤
 72 │ │ A(H) │
 ├────────────────┴────────────────┤
 8� │ │
 ├────────────────┬────────────────┤
 88 │ │ C+1 │
 ├────────────────┼────────────────┤
 96 │ │ │
 ├────────────────┼────────────────┤
1�4 │ │ A(C) │
 └────────────────┴────────────────┘

The program is as follows:

LA RT,H Initialize addresses in PL
(T = temp)

ST RT,PL+76 Op4 address (address of H)
 LA RT,C

ST RT,PL+1�8 Op6 address (address of C)
LA RN,N Address of N
ST RN,PL+6� Initialize op3 in PL

(address of N)
LA R1,S PLT address = address of S

--
 SR RS,RS Dummy S. CC1 will

probably be set
SR R�,R� Function code � (compare

 and load)
PLO RS,S,RS,S Obtain S while holding

 lock
--

LA R�,16 Function code 16 (csdst)
LOOP L RT,H Consistent H

ST RT,OFSTF(,RN) OFSTF = offset of F
 in N
 L RT,C Consistent C
 LA RT,1(,RT) C+1

ST RT,PL+92 Initialize op5 in PL (C+1)
LA RSP,1(,RS) RS/RSP = even/odd pair.

S+1 in RSP
 PLO RS,S,�,PL

BNZ LOOP Br if S changed (if CC not
 �)

Note the following about the first PERFORM
LOCKED OPERATION instruction (PLO.cl). If S is
not zero (which is probably true), S (the second
operand, op2) is loaded into RS (the first-operand
comparison value, op1c). If S is zero, S (the
fourth operand, op4) is loaded into RS (the third
operand, op3). Either of these loads occurs while

the lock is held. It is unnecessary to test the con-
dition code to determine which load occurred.

The above program may be a simplification. If the
queue has associated with it a variable, T (for tail),
that is the address of the last element on the
queue, and the queue is currently empty, T also
must be set when N is added to the queue. This
would require a different program using a
compare-and-swap-and-triple-store operation.

If the queue is added to, deleted from, and rear-
ranged by means of PERFORM LOCKED OPER-
ATION instructions in which the sequence
number, S, is always the second operand, then,
since the definition of PERFORM LOCKED
OPERATION specifies that the second operand is
always stored last, the first PERFORM LOCKED
OPERATION instruction in the above program can
be replaced by a LOAD instruction. The three
instructions within the dashed lines would be
replaced by L RS,S.

 Sorting Instructions

 Tree Format

Two instructions, COMPARE AND FORM
CODEWORD and UPDATE TREE, refer to a
tree — a data structure with a specific format. A
tree consists of some number (always odd) of
consecutively numbered nodes. Node 1 is the
root of the tree. Every node except the root has
one parent node in the same tree. Every parent
node has two son nodes. Every even-numbered
node is the leftson of its parent node, and every
odd-numbered node (except node 1) is the
rightson of its parent node. Division by two
(ignoring remainder) of the node number gives the
parent node number. Nodes with sons are also
called internal nodes, and nodes without sons are
called terminal nodes. Figure A-5 on page A-53
illustrates schematically a 21-node tree with
arrows drawn from each parent node to each son
node.

A tree is used for merging several sorted
sequences of records into a single merged
sequence of records. At each step in the merging
process, there exists the initial part of the merged
sequence and the remaining parts of each of the
sorted sequences that are being merged. Each

 Appendix A. Number Representation and Instruction-Use Examples A-51

step consists in selecting the lowest record (the
record with the lowest key when sorting in
ascending sequence) from all of the as yet
unmerged parts of the sorted sequences and
adding it to the merged sequence. Each terminal
node in the tree represents one of the sorted
sequences. The number of internal nodes in the
tree is one less than the number of sorted
sequences. Each internal node conceptually con-
tains one record from each of the sorted
sequences but one; these are the lowest records,
from all but one of the sorted sequences, that
have not yet been added to the merged sequence.
In addition, there is the lowest record from the one
remaining sorted sequence. This additional record
is compared and interchanged with nodes of the
tree to select the record to be added next to the
merged sequence. This processing begins with
the parent of the terminal node that represents the
one remaining sorted sequence, and it continues
from that node along the path to the root of the
tree. The selected record emerges from the root
of the tree.

The tree may perhaps be most easily explained by
considering each node to represent a comparison
operation in an “elimination tournament” to find the
lowest record. After the tournament has been
completed, each node has an associated “loser”
record which had a higher key in the comparison
represented by that node. Besides a loser record
at each node, there is one record (the “winner”)
which is not associated with any node since it
never compared high. The next step would be to
introduce a new record from the same sorted
sequence from which the winner record originated
and replay the tournament with the new record in
place of the former winner. It can be seen that it
is unnecessary to do all the comparisons repres-
ented by all the nodes in the tree — most of them
are unaffected by the new record replacing the
former winner. In fact, it is sufficient to redo only
those node comparisons in which the former
winner record participated. Each new record is
inserted into the tree at the terminal node that
represents the sorted sequence containing the
record. The use of the tree assumes that pro-
gramming provides a method of remembering at
which terminal node each winning record origi-
nated. The instruction UPDATE TREE allows for
a new record to be inserted at a terminal node
and the tree to be updated so that a new winner
record is left in the general registers.

Rather than comparing the actual keys of records,
much of the merge logic can be performed using
“codewords” to represent a record key rather than
referring to actual keys. The value of a codeword
at a node in the tree depends not only on the
record's key but also on the key of the winning
record in the last comparison at that node. The
codeword consists of two parts:

1. Bits 16-31 contain the one's complement of
the first halfword in which the record key
differs from that of the node's winning record.

2. Bits 0-15 specify the byte offset of the
halfword in this record's key just beyond the
halfword value (complemented) in bit positions
16-31.

When comparing records in the path of the last
winner record, if the new record is also repres-
ented by a codeword resulting from a comparison
with the last winner, all codewords in the update
path are with respect to the same winner. When
comparing such codewords, a high codeword
represents a low key and vice versa. Thus, when
codewords are unequal, a node entry with a high
codeword (representing a low actual key) should
move up the tree.

In the case of a tie value of codewords, it is nec-
essary to refer to the actual keys. This is done by
the instruction COMPARE AND FORM
CODEWORD, which resolves the ambiguity and
computes a new codeword for the high-key (loser)
record.

The eight bytes at each node of a tree consist of
(1) a codeword for this record, computed with
respect to the last record which compared low
against this record and (2) a parameter usable to
locate this record, for example, a direct or indirect
address.

The instruction UPDATE TREE is so defined that
tree updating stops after equal codewords are
detected and the tie-breaking instruction
COMPARE AND FORM CODEWORD can be
used, after which UPDATE TREE can resume tree
updating at the point where equal codewords were
previously found.

COMPARE AND FORM CODEWORD may alter-
natively be used for merging in descending
sequence. In that case, bits 16-31 of the
codeword at a node contain the true value of the
first halfword in which the record key differs from

A-52 z/Architecture Principles of Operation

that of the node's winning record. When the
descending option of COMPARE AND FORM
CODEWORD is used, the higher of two
codewords represents the higher key.

┌──┐
│ 1│
└┬┬┘
 ││
 │└──────────────────────────────┐
 │ │
 � �
┌──┐ ┌──┐
│ 2│ │ 3│
└┬┬┘ └┬┬┘
 ││ ││
 │└──────────────┐ │└──────────────┐
│ │ │ │
� � � �
┌──┐ ┌──┐ ┌──┐ ┌──┐
│ 4│ │ 5│ │ 6│ │ 7│
└┬┬┘ └┬┬┘ └┬┬┘ └┬┬┘
││ ││ ││ ││
│└──────┐ │└──────┐ │└──────┐ │└──────┐
│ │ │ │ │ │ │ │
� � � � � � � �
┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐
│ 8│ │ 9│ │1�│ │11│ │12│ │13│ │14│ │15│
└┬┬┘ └┬┬┘ └┬┬┘ └──┘ └──┘ └──┘ └──┘ └──┘
││ ││ ││
│└──┐ │└──┐ │└──┐
│ │ │ │ │ │
� � � � � �
┌──┐┌──┐┌──┐┌──┐┌──┐┌──┐
│16││17││18││19││2�││21│
└──┘└──┘└──┘└──┘└──┘└──┘

Figure A-5. Schematic Diagram of Merge Control Tree
with 21 Nodes

Example of Use of Sort
Instructions

An example illustrates how the instructions
UPDATE TREE and COMPARE AND FORM
CODEWORD may be used in the merge operation
within a sort program. A five-way merge requires
a tree data structure with four internal nodes and
five terminal-node positions. The schematic
diagram shown later in this section illustrates such
a tree, containing four internal nodes (not counting
the dummy node) and five input sequences for a
merge, one sequence at each terminal-node posi-
tion. Each record in an input sequence in the
diagram is indicated by its address. The actual
record contents are shown in Figure A-7 on
page A-57. Each record contains 16 bytes, con-
sisting of the following fields:

The merge process forms a single sorted
sequence from five input sequences, each of
which is in sorted order. This process can be
subdivided into three steps:

1. A priming step takes the first record from each
of the five input sequences and places them
in the tree data structure. For each record to
be introduced into the tree, first its codeword
value is computed with respect to the lowest
possible key value of all zeros. This
codeword, with a second word which contains
the address of the actual record, forms a
doubleword node value that can be placed at
the appropriate node. After priming, the node
values, one each from each of the five input
sequences, will have been placed in the tree
so that each of the four internal nodes con-
tains one node value and the node value for a
winner record has emerged from the root of
the tree.

2. After each winner emerges from the tree, the
main merge process is performed repeatedly.
Each iteration introduces the node value for
one new record into the tree and produces a
node value for a new winner record. The tree
plus the winner must at all times contain pre-
cisely one node value from each input
sequence being merged. Therefore, the new
node value that is introduced into the tree on
each iteration must come from the same input
sequence from which the winner node value in
the preceding iteration originated.

3. When the node value for the last record of an
input sequence emerges as a winner, there is
no successor record from that input sequence
to be introduced into the tree on the next iter-
ation. Hence, the order of the merge must be
reduced by one for each such occurrence.

Byte Offset
(hexadecimal) Field

0-5 Six-byte record key.
6-7 Halfword node index specifying

the input sequence of the next
record of this input sequence.

8-B Address of the next record in the
same input sequence.

C-F This chaining field is initially
zero. At the completion of the
merge, this field is to contain the
address of the next record in the
merged sequence.

 Appendix A. Number Representation and Instruction-Use Examples A-53

This runout process will consist of one or
more iterations for each of a four-way,
three-way, two-way, and one-way merge. The
onset of runout occurs in the example when it
is found that the next input record from a
sequence is lower than its predecessor (a
sequence break).

The priming process is discussed next, and the
state of the tree is shown after priming is com-
plete. Then, a short program that uses the
instructions UPDATE TREE and COMPARE AND
FORM CODEWORD to perform the main merge is
described. An abbreviated trace is then presented
to show the status of the tree and certain general
registers for 16 iterations of the main merge. The
runout process is not discussed in this example.

Priming begins by forming the node value for the
first record of each input sequence. The first word
of the node value is the codeword formed by exe-
cuting COMPARE AND FORM CODEWORD on a
record key containing all binary zeros. The
second word of the node value is the address of
the record represented by that node value. The
node values for the first record of each input
sequence are:

 Sequence Index Node Values

28 ���6 FFFC ���� 1�3�
3� ���6 FFFB ���� 1�4�
38 ���6 FFFA ���� 1�5�
4� ���4 FFFE ���� 1�8�
48 ���6 FFF� ���� 1�6�

In the example, the tree data structure is assumed
to have base address X'1000', which is kept in
general register 4 (to match the expected use in
UPDATE TREE). Similarly, internal-node index
values and input-sequence index values are
always used from general register 5.

Although the tree-priming program is not part of
this example, the UPDATE TREE instruction is
used in creating it as follows. First, the codeword
position for each internal node of the tree is initial-
ized to all ones (X'FFFF FFFF'). This artifice fills
the tree with dummy low records. Then, for each
record in the table, (1) the sequence index is
loaded into general register 5, (2) the node value
is loaded into general registers 0 and 1, and
(3) UPDATE TREE is executed. At the com-
pletion of this priming process, the tree-node con-
tents in the example are as shown on line 0 of
Figure A-9 on page A-59. The contents of the

general registers are as shown on the first line of
Figure A-8 on page A-58.

The figure illustrating the program for the main
merge is divided into three groups of columns,
containing the absolute program, the general-
register trace, and the symbolic program. The first
part of the program extends from symbolic
locations L1 through L2; it introduces a new
record into the tree and executes an UPDATE
TREE instruction. If no tied codewords are
encountered in UPDATE TREE, then the
BRANCH ON CONDITION instruction following
UPDATE TREE loops back to L1 to introduce the
next record into the tree. This BRANCH ON
CONDITION instruction is suitable for use when
UPDATE TREE operates in accordance with
either its method 1 (setting condition code 1) or its
method 2 (setting condition code 3). (The pre-
ceding sentence applies to 370-XA. In ESA/370
and ESA/390, UPDATE TREE operates in accord-
ance with only method 2, which is not to say that
it cannot set condition code 1. Method 2, but not
method 1, tests for the condition that sets condi-
tion code 3.)

If UPDATE TREE encounters tied codewords,
then the UPDATE TREE instruction is completed,
the subsequent BRANCH ON CONDITION
instruction does not branch, and control falls
through to the second part of the program, which
handles entries with tied codewords. This part
then branches back to UPDATE TREE at L2,
which resumes the tree updating. It is possible for
tied codewords to be encountered at any level in
the tree (or indeed at all levels), so that the tied-
codeword part of the program may be entered up
to three times for each record introduced.

The general-register trace for the first part of the
main merge shows the contents of the first seven
general registers after each instruction is executed
during the first iteration. Note that the merged-
chain field (at 1140) serves as the anchor for the
merged-chain address chain through the records.
The trace shows only the lower half of certain
general registers, whose upper half is always
zero.

Figure A-9 on page A-59 gives an abbreviated
trace of the entire main merge of 16 records. For
each record introduced into the tree, there are one
or more lines (always an odd number) given in the
figure to show the tree updating, which results

A-54 z/Architecture Principles of Operation

finally in a winner in GR0 and GR1. The first line
for each record shows the values of GR5, GR2,
and GR3 before the first or only execution of
UPDATE TREE. For the even-numbered lines,
the storage updating by UPDATE TREE of tree
nodes is shown (read left to right to follow the
order of swapping). For example, consider line 10
and the corresponding UPDATE TREE: since
GR5 contains 28, the first storage node examined
is 1010 (refer to the schematic diagram). Since
the codeword in GR0 is 0004 FFFE (same as for
GR2), which is less than that of the word at 1010
(0006 FFF0), the doubleword at 1010 is swapped
with that in GR0 and GR1. A second comparison
at 1008 in the same execution of UPDATE TREE
causes another register-storage doubleword swap,
which leaves the winner (record 1040) in GR1 at
the completion of UPDATE TREE (see the column
at the far right of Figure A-9 on page A-59).

When a codeword comparison is made which
does not result in a tie or a swap (that is, when
the storage-codeword value is low), an asterisk
appears in the trace for that storage entry.

When equal codewords are found, the execution
of UPDATE TREE is completed. The following
line in each such case shows the result of the
tied-codeword routine, which always stores a new
codeword and may also store a new record
address before branching back to L2 to execute
UPDATE TREE again. In this line, the notation

“loses” or “wins” means that the node loses or
wins, respectively.

The tie-break trace part of Figure A-8 on page
A-58 shows the treatment of the third record (that
is, the first record for which UPDATE TREE
encounters a tied codeword). This corresponds to
line 31 in Figure A-9 on page A-59.

The following is a summary of the steps that are
needed to use this example for verification pur-
poses:

1. Initialize storage as follows:

a. 1008 through 102F from line 0 of
Figure A-9 on page A-59

b. 1030 through 114F from Figure A-7 on
page A-57

c. 1150 through 1189 from Figure A-8 on
page A-58

2. Initialize GRs per first line in Figure A-8 and
trace first record per Figure A-8.

3. Trace to completion of each UPT or BC 15,L2
(once for each line of Figure A-9). A detailed
trace of the GRs for the tied-codeword part of
line 31 of Figure A-9 is given in the lower part
of Figure A-8.

4. Verify that addresses in the chain beginning at
103C and continuing through 114C are as
shown in the right-hand column of Figure A-7.

 Appendix A. Number Representation and Instruction-Use Examples A-55

 ┌──────────────┐
 �:│ Dummy Node │
 └──────┬───────┘
 │
 │
 ┌──────┴───────┐
 8:│ Root Node │
 └─┬──────────┬─┘
 │ └──────────────────┐
 │ │
 ┌─────────┴────┐ ┌───────┴──────┐

1�:│ Node │ 18:│ Node │
 └┬────────────┬┘ └┬────────────┬┘
 │ ' ' '
 │ ' ' '
 │ ' ' '
 │ 28:Input Seq. 3�:Input Seq. 38:Input Seq.
 │ 1�3� 1�4� 1�5�
 ┌─────────┴────┐ 1�7� 1�B� 1�9�
2�:│ Node │ 1�D� 1�C� 1�E�
 └┬────────────┬┘ 111� 114� 113�
 ' ' 114� [sequence break]
 ' ' 1�5�
 ' '
 ' '
4�:Input Seq. 48:Input Seq.
 1�8� 1�6�
 1�F� 1�A�
 112� 11��
 114� 114�
Note: Each node and input sequence is identified by a number which is the hexadecimal node index.
Each input sequence is given as a list of record addresses (also in hexadecimal).

Figure A-6. Schematic Diagram for Example of Merge to Be Performed

A-56 z/Architecture Principles of Operation

┌────────┬───────────────────────┬───────────────────────┬───────────────┐
│ │ │ Successor Record │ │
│ │ Record Key ├───────┬───────────────┤ Merged-Chain │
│ │ at Hex Byte Offset │ Index │ Location │ Address │
│ ├───┬───┬───┬───┬───┬───┼───┬───┼───┬───┬───┬───┼───┬───┬───┬───┤
│Location│ � │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ A │ B │ C │ D │ E │ F │
├────────┼───┴───┼───┴───┼───┴───┼───┴───┼───┴───┼───┴───┼───┴───┼───┴───┤
│ 1�3� │� � � �│� � � �│� � � 3│� � 2 8│� � � �│1 � 7 �│� � � �│1 � 4 �│
│ │ │ │ │ │ │ │ │ │
│ 1�4� │� � � �│� � � �│� � � 4│� � 3 �│� � � �│1 � B �│� � � �│1 � 5 �│
│ │ │ │ │ │ │ │ │ │
│ 1�5� │� � � �│� � � �│� � � 5│� � 3 8│� � � �│1 � 9 �│� � � �│1 � 6 �│
│ │ │ │ │ │ │ │ │ │
│ 1�6� │� � � �│� � � �│� � � F│� � 4 8│� � � �│1 � A �│� � � �│1 � 8 �│
│ │ │ │ │ │ │ │ │ │
│ 1�7� │� � � �│� � � 1│F F F F│� � 2 8│� � � �│1 � D �│� � � �│1 � 9 �│
│ │ │ │ │ │ │ │ │ │
│ 1�8� │� � � �│� � � 1│F F F F│� � 4 �│� � � �│1 � F �│� � � �│1 � 7 �│
│ │ │ │ │ │ │ │ │ │
│ 1�9� │� � � �│F F F F│� � � �│� � 3 8│� � � �│1 � E �│� � � �│1 � A �│
│ │ │ │ │ │ │ │ │ │
│ 1�A� │� � � �│F F F F│� � � 1│� � 4 8│� � � �│1 1 � �│� � � �│1 � B �│
│ │ │ │ │ │ │ │ │ │
│ 1�B� │� � � �│F F F F│� � � 2│� � 3 �│� � � �│1 � C �│� � � �│1 � C �│
│ │ │ │ │ │ │ │ │ │
│ 1�C� │� � � �│F F F F│� � � 2│� � 3 �│� � � �│1 1 4 �│� � � �│1 � D �│
│ │ │ │ │ │ │ │ │ │
│ 1�D� │� � � 1│� � � �│� � � �│� � 2 8│� � � �│1 1 1 �│� � � �│1 � E �│
│ │ │ │ │ │ │ │ │ │
│ 1�E� │� � 8 �│� � � �│� � � �│� � 3 8│� � � �│1 1 3 �│� � � �│1 � F �│
│ │ │ │ │ │ │ │ │ │
│ 1�F� │� � 8 �│� � � 2│� � 4 �│� � 4 �│� � � �│1 1 2 �│� � � �│1 1 � �│
│ │ │ │ │ │ │ │ │ │
│ 11�� │� � 8 �│� � � 2│� � 5 �│� � 4 8│� � � �│1 1 4 �│� � � �│1 1 1 �│
│ │ │ │ │ │ │ │ │ │
│ 111� │� � 8 �│� � � 3│� � � �│� � 2 8│� � � �│1 1 4 �│� � � �│1 1 2 �│
│ │ │ │ │ │ │ │ │ │
│ 112� │� � 9 �│� � � �│� � � �│� � 4 �│� � � �│1 1 4 �│� � � �│1 1 3 �│
│ │ │ │ │ │ │ │ │ │
│ 113� │F F F F│F F F F│F F F E│� � 3 8│� � � �│1 � 5 �│� � � �│� � � �│
│ │ │ │ │ │ │ │ │ │
│ 114� │F F F F│F F F F│F F F F│� � � �│� � � �│� � � �│� � � �│1 � 3 �│
└────────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┘

Figure A-7. Contents of Records to Be Merged

 Appendix A. Number Representation and Instruction-Use Examples A-57

┌─────────────┬──┬───┐
│ Absolute │ General-Register Trace │ Symbolic Program │
├────┬────────┼────────┬────┬────────┬────┬────┬────┬────┼────┬────────────────────────────────────┤
│Loc │ INSTR │ GR� │GR1 │ GR2 │GR3 │GR4 │GR5 │GR6 │Loc │ Instruction │
├────┼────────┼────────┼────┼────────┼────┼────┼────┼────┼────┼────────────────────────────────────┤
│ │ │���6FFFC│1�3�│ │����│1���│����│114�│ │ Using X'1���',4 │
│ │ │───┬────│─┬──│ │─┬──│─┬──│─┬──│─┬──│ │ │
│115�│5�1�6��C│ ' │ ' │ │ ' │ ' │ ' │ ' │ L1 │ST 1,12(,6) Store merged-chain │
│ │ │ ' │ ' │ │ ' │ ' │ � │ ' │ │ address │
│1154│485�1��6│ ' │ ' │ │ ' │ ' │��28│ ' │ │LH 5,6(,1) Load node index of │
│ │ │ ' │ ' │ │ ' │ ' │─┬──│ ' │ │ input sequence of │
│ │ │ ' │ ' │ │ � │ ' │ ' │ ' │ │ winner │
│1158│583�1��8│ ' │ ' │ │1�7�│ ' │ ' │ ' │ │L 3,8(,1) Load successor-record │
│ │ │ ' │ ' │ │─┬──│ ' │ ' │ � │ │ address │
│115C│1861 │ ' │ ' │ │ ' │ ' │ ' │1�3�│ │LR 6,1 Save old winner ad- │
│ │ │ ' │ ' │ │ ' │ ' │ ' │─┬──│ │ dress for next │
│ │ │ ' │ ' │ │ ' │ ' │ ' │ ' │ │ merged-chain store │
│1153│1B22 │ ' │ ' │��������│ ' │ ' │ ' │ ' │ │SR 2,2 Zero GR2 as initial │
│ │ │ ' │ ' │────────│ ' │ ' │ ' │ ' │ │ offset │
│116�│B21A���4│ ' │ ' │���4FFFE│ ' │ ' │ ' │ ' │ │CFC 4 Compute codeword of │
│ │ │ ' │ ' │───┬────│ ' │ ' │ ' │ ' │ │ new record based │
│ │ │ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │ on last winner │
│1164│472�418A│ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │BC 2,L3 Exit on CC=2 (sequence│
│ │ │ ' │ � │ ' │ ' │ ' │ ' │ ' │ │ ──┐ break │
│1168│1813 │ ' │1�7�│ ' │ ' │ ' │ ' │ ' │ │LR 1,3 │ │
│ │ │ � │─┬──│ ' │ ' │ ' │ ' │ ' │ │ > Move new record entry │
│116A│18�2 │���4FFFE│ ' │ ' │ ' │ ' │ ' │ ' │ │LR �,2 │ to GRs �-1 │
│ │ │────────│ � │ ' │ ' │ ' │ � │ ' │ │ ──┘ │
│116C│�1�2 │���6FFFB│1�4�│ ' │ ' │ ' │����│ ' │ L2 │UPT Update tree data │
│ │ │───┬────│─┬──│ ' │ ' │ ' │─┬──│ ' │ │ structure │
│116E│475�415�│ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │BC 5,L1 If no codeword tie │
│ │ │ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │ found, branch to │
│ │ │ � │ � │ � │ � │ ' │ � │ � │ │ next iteration │
├────┼────────┼────────┼────┼────────┼────┼────┼────┼────┼────┼────────────────────────────────────┤
│ │ │ │ │ │ │ ' │ │ │ � │Fall through on tied codewords │
│ │ │���4����│1�9�│���4����│1�B�│ ' │��18│1�5�│ � │�───GR values for tie-break trace │
│ │ │───┬────│─┬──│ │─┬──│ ' │─┬──│─┬──│ │ │
│1172│882���1�│ ' │ ' │�������4│ ' │ ' │ ' │ ' │ │SRL 2,16 Shift codeword offset │
│ │ │ ' │ ' │ │ ' │ ' │ ' │ ' │ │ to initial offset │
│ │ │ ' │ ' │ │ ' │ ' │ ' │ ' │ │ position for CFC │
│1176│B21A���4│ ' │ ' │���6FFFD│ ' │ ' │ ' │ ' │ │CFC 4 Compute loser codeword│
│117A│5�254���│ ' │ ' │ [CC=1] │ ' │ ' │ ' │ ' │ │ST 2,�(5,4) Store loser codeword │
│ │ │ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │ in current storage │
│ │ │ ' │ ' │ � │ ' │ ' │ ' │ ' │ │ node │
│117E│47C�416C│ � │ � │ branch │ � │ ' │ � │ � │ │BC 12,L2 Resume tree update if │
│ │ │ │ │ taken │ │ ' │ │ │ │ old storage-node │
│ │ │ │ │ │ │ ' │ │ │ │ entry is loser │
│1182│5�354��4│ │ │ │ │ ' │ │ │ │ST 3,4(5,4) Store loser record │
│ │ │ │ │ │ │ ' │ │ │ │ address │
│1186│47F�416C│ │ │ │ │ ' │ │ │ │BC 15,L2 Resume tree update │
│118A│... │ │ │ │ │ � │ │ │ L3 │... Control reaches here │
│ │ │ │ │ │ │ │ │ │ │ at end │
└────┴────────┴────────┴────┴────────┴────┴────┴────┴────┴────┴────────────────────────────────────┘

Figure A-8. Program for Main Merge

A-58 z/Architecture Principles of Operation

┌───┬────────────────────────┬───┬─────────────┐
│ │ General Regs │ │ │
│ │ after CFC at │ │General Regs │
│ │ Location 116� │ Storage Trace of Node Entries │after UPT │
│ ├──┬────────┬────┬───────┤ │or BC 15,L2 │
│ │GR│ │ │ ├─────────────┬─────────────┬─────────────┬─────────────┼────────┬────┤
│ L#│5 │ GR2 │GR3 │Comment│ 1�2� │ 1�18 │ 1�1� │ 1��8 │ GR� │GR1 │
├───┼──┼────────┼────┼───────┼────────┬────┼────────┬────┼────────┬────┼────────┬────┼────────┼────┤
│ ��│ │ │ │ │���4FFFE│1�8�│���6FFFA│1�5�│���6FFF�│1�6�│���6FFFB│1�4�│���6FFFC│1�3�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 1�│28│���4FFFE│1�7�│No tie │ │ │ │ │���4FFFE│1�7�│���6FFF�│1�6�│���6FFFB│1�4�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 2�│3�│���4����│1�B�│No tie │ │ │���4����│1�B�│ │ │� │ │���6FFFA│1�5�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 3�│38│���4����│1�9�│CC = � │ │ │ Tie │ │ │ │ │ │���4����│1�9�│
│ 31│ │ │ │Loses │ │ │���6FFFD│ │ │ │ │ │���4����│1�9�│
│ 32│ │ │ │No tie │ │ │ │ │ │ │���4����│1�9�│���6FFF�│1�6�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 4�│48│���4����│1�A�│CC = � │���4����│1�A�│ │ │ Tie │ │ │ │���4FFFE│1�8�│
│ 41│ │ │ │Equal │ │ │ │ │8���1�7�│ │ │ │���4FFFE│1�8�│
│ 42│ │ │ │No tie │ │ │ │ │ │ │� │ │���4FFFE│1�8�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 5�│4�│���2FF7F│1�F�│No tie │���2FF7F│1�F�│ │ │���4����│1�A�│�� │ │8���1�7�│1�7�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 6�│28│���2FFFE│1�D�│CC = � │ │ │ │ │���2FFFE│1�D�│ Tie │ │���4����│1�A�│
│ 61│ │ │ │Wins │ │ │ │ │ │ │���6FFFE│1�A�│���4����│1�9�│
│ 62│ │ │ │No comp│ │ │ │ │ │ │ │ │���4����│1�9�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 7�│38│���2FF7F│1�E�│No tie │ │ │���2FF7F│1�E�│ │ │���6FFFD│1�B�│���6FFFE│1�A�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 8�│48│���2FF7F│11��│CC = � │ Tie │ │ │ │ │ │ │ │���2FF7F│11��│
│ 81│ │ │ │Wins │���6FFAF│11��│ │ │ │ │ │ │���2FF7F│1�F�│
│ 82│ │ │ │No tie │ │ │ │ │���2FF7F│1�F�│���2FFFE│1�D�│���6FFFD│1�B�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│ 9�│3�│8���1�C�│1�C�│No tie │ │ │� │ │ │ │� │ │8���1�C�│1�C�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│1��│3�│���2����│114�│No tie │ │ │���2����│114�│ │ │���2FF7F│1�E�│���2FFFE│1�D�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│11�│28│���2FF7F│111�│CC = � │ │ │ │ │ Tie │ │ │ │���2FF7F│111�│
│111│ │ │ │Wins │ │ │ │ │���4FFFC│111�│ │ │���2FF7F│1�F�│
│112│ │ │ │CC = � │ │ │ │ │ │ │ Tie │ │���2FF7F│1�F�│
│113│ │ │ │Wins │ │ │ │ │ │ │���4FFFD│1�F�│���2FF7F│1�E�│
│114│ │ │ │No comp│ │ │ │ │ │ │ │ │���2FF7F│1�E�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│12�│38│���2����│113�│CC = � │ │ │ Tie │ │ │ │ │ │���2����│113�│
│121│ │ │ │Loses │ │ │���6����│ │ │ │ │ │���2����│113�│
│122│ │ │ │No tie │ │ │ │ │ │ │���2����│113�│���4FFFD│1�F�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│13�│4�│���2FF6F│112�│No tie │���2FF6F│112�│ │ │� │ │� │ │���6FFAF│11��│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│14�│48│���2����│114�│No tie │���2����│114�│ │ │���2FF6F│112�│� │ │���4FFFC│111�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│15�│28│���2����│114�│No tie │ │ │ │ │���2����│114�│� │ │���2FF6F│112�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│16�│4�│���2����│114�│CC = � │ Tie │ │ │ │ │ │ │ │���2����│114�│
│161│ │ │ │Equal │8���114�│ │ │ │ │ │ │ │���2����│114�│
│162│ │ │ │CC = � │ │ │ │ │ Tie │ │ │ │���2����│114�│
│163│ │ │ │Equal │ │ │ │ │8���114�│ │ │ │���2����│114�│
│164│ │ │ │CC = � │ │ │ │ │ │ │ Tie │ │���2����│114�│
│165│ │ │ │Wins │ │ │ │ │ │ │���6����│114�│���2����│113�│
│166│ │ │ │No comp│ │ │ │ │ │ │ │ │���2����│113�│
├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤
│17�│38│���2����│1�5�│Branch │ │ │ │ │ │ │ │ │ │ │
└───┴──┴────────┴────┴───────┴────────┴────┴────────┴────┴────────┴────┴────────┴────┴────────┴────┘

Figure A-9 (Part 1 of 2). Abbreviated Trace of Main Merge Processing

 Appendix A. Number Representation and Instruction-Use Examples A-59

┌──┐
│Explanation: │
│ │
│ � Line � shows the values in the tree after it is primed. │
│ │
│ � Means no swap. │
│ │
│ �� Means no swap if UPDATE TREE method 1 is used or no examination if │
│ UPDATE TREE method 2 is used. Only method 2 is included in ESA/37� │
│ and ESA/39�. │
│ │
│ CC = � UPDATE TREE finds a tie and sets condition code �. │
│ │
│ Loses The tied-codeword routine finds that the node loses. │
│ │
│ Wins The tied-codeword routine finds that the node wins. │
│ │
│ Equal The tied-codeword routine finds that the keys are equal. │
│ │
│ Branch Branches to terminate at 118A on sequence break. │
│ │
│ No comp No compare. │
└──┘

Figure A-9 (Part 2 of 2). Abbreviated Trace of Main Merge Processing

A-60 z/Architecture Principles of Operation

Appendix B. Lists of Instructions

The following figures list instructions by name,
mnemonic, and operation code. Some models
may offer instructions that do not appear in the
figures, such as those provided for assists or as
part of special or custom features.

The operation code for the interpretive execution
facility is not included in this appendix. See the
publication IBM System/370 Extended Architecture
Interpretive Execution, SA22-7095, for the opera-
tion code associated with that facility.

The operation code 00 hex with a two-byte
instruction format is allocated for use by the
program when an indication of an invalid operation
is required. It is improbable that this operation
code will ever be assigned to an instruction imple-
mented in the CPU.

Explanation of Symbols in “Characteristics”
and “Page” Columns:

¢ Causes serialization and checkpoint syn-
chronization.

¢� Causes serialization and checkpoint syn-
chronization when the M� and R� fields
contain all ones and all zeros, respec-
tively.

¢� Causes serialization and checkpoint syn-
chronization when the state entry to be
unstacked is a program-call state entry.

$ Causes serialization.
A Access exceptions for logical addresses.
A� Access exceptions; not all access

exceptions may occur; see instruction
description for details.

AI Access exceptions for instruction
address.

AS ASN-translation-specification and special-
operation exceptions.

AT ASN-translation-specification exception.
B PER branch event.
B� B� field designates an access register in

the access-register mode.
B� B� field designates an access register in

the access-register mode.
BP B� field designates an access register

when PSW bits 16 and 17 have the value
01.

C Condition code is set.

| CA CPU cryptographic assist.
Da AFP-register data exception.
Db BFP-instruction data exception.
Dd Decimal-operand data exception.

| DE DAT-enhancement facility.
DF Decimal-overflow exception.
DK Decimal-divide exception.
DM Depending on the model, DIAGNOSE

may generate various program
exceptions and may change the condition
code.

E E instruction format.
E2 Extended-translation facility 2.
EO HFP-exponent-overflow exception.
ES Expanded-storage facility.
EU HFP-exponent-underflow exception.
EX Execute exception.
FC Designation of access registers depends

on the function code of the instruction.
FK HFP-floating-point-divide exception.
G0 Instruction execution includes the implied

use of general register 0.
G1 Instruction execution includes the implied

use of general register 1.
G2 Instruction execution includes the implied

use of general register 2.
G4 Instruction execution includes the implied

use of general register 4.
GM Instruction execution includes the implied

use of multiple general registers.
GS Instruction execution includes the implied

use of general register 1 as the
subsystem-identification word.

| HM HFP-multiply-add/subtract facility.
IF Fixed-point-overflow exception.
II Interruptible instruction.
IK Fixed-point-divide exception.
IS Interruptible instruction and special-

operation exception.
I1 Access register 1 is implicitly designated

in the access-register mode.
I4 Access register 4 is implicitly designated

in the access-register mode.
L New condition code is loaded.

| LD Long-displacement facility.
LS HFP-significance exception.
MD Designation of access registers in the

access-register mode is model-
dependent.

MO Monitor event.

 Copyright IBM Corp. 1990-2003 B-1

N Instruction is new in z/Architecture as
compared to ESA/390.

N3 Instruction is new in z/Architecture and
has been added to ESA/390.

OP Operand exception.
P Privileged-operation exception.
Q Privileged-operation exception for semi-

privileged instructions.
R� R� field designates an access register in

the access-register mode.
R� R� field designates an access register in

the access-register mode.
RI RI instruction format.
RIE RIE instruction format.
RIL RIL instruction format.
RR RR instruction format.
RRE RRE instruction format.
RRF RRF instruction format.
RS RS instruction format.

| RSY RSY instruction format.
RX RX instruction format.
RXE RXE instruction format.
RXF RXF instruction format.

| RXY RXY instruction format.
S S instruction format.
SE Special operation, stack-empty, stack-

specification, and stack-type exceptions.
SF Special-operation, stack-full, and stack-

specification exceptions.
SI SI instruction format.

| SIY SIY instruction format.
SO Special-operation exception.
SP Specification exception.
SQ HFP-square-root exception.
SS SS instruction format.
SSE SSE instruction format.
ST PER storage-alteration event.
SU PER store-using-real-address event.
SW Special-operation exception and space-

switch event.

T Trace exceptions (which include trace
table, addressing, and low-address pro-
tection).

U Condition code is unpredictable.
U� R� field designates an access register

unconditionally.
U� R� field designates an access register

unconditionally.
UB R� and R� fields designate access regis-

ters unconditionally, and B� field desig-
nates an access register in the access-
register mode.

WE Space-switch event.
Xi IEEE invalid-operation condition.
Xo IEEE overflow condition.
Xu IEEE underflow condition.
Xx IEEE inexact condition.
Xz IEEE division-by-zero condition.
Z� Additional exceptions and events for

PROGRAM CALL (which include
ASX-translation, EX-translation,
LX-translation,
PC-translation-specification, special-
operation, stack-full, and stack-
specification exceptions and space-switch
event).

Z� Additional exceptions and events for
PROGRAM TRANSFER (which include
AFX-translation, ASX-translation, primary-
authority, and special-operation
exceptions and space-switch event).

Z� Additional exceptions for SET SEC-
ONDARY ASN (which include AFX trans-
lation, ASX translation, secondary
authority, and special operation).

Z� Additional exceptions and events for
PROGRAM RETURN (which include
AFX-translation, ASX-translation,
secondary-authority, special-operation,
stack-empty, stack-operation, stack-
specification, and stack-type exceptions
and space-switch event).

B-2 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│ADD (extended BFP) │AXBR │RRE C │ SP│Db Xi Xo Xu Xx│ │ │B34A│19-18 │
│ADD (long BFP) │ADBR │RRE C │ │Db Xi Xo Xu Xx│ │ │B31A│19-18 │
│ADD (long BFP) │ADB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED1A│19-18 │
│ADD (short BFP) │AEBR │RRE C │ │Db Xi Xo Xu Xx│ │ │B3�A│19-18 │
│ADD (short BFP) │AEB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED�A│19-18 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ADD (32) │AR │RR C │ │ IF │ │ │1A │7-18 │
│ADD (32) │A │RX C │ A │ IF │ │ B�│5A │7-18 │

| │ADD (32) │AY │RXY C LD│ A │ IF │ │ B�│E35A│7-18 │
│ADD (64<32) │AGFR │RRE C N │ │ IF │ │ │B918│7-18 │
│ADD (64<32) │AGF │RXY C N │ A │ IF │ │ B�│E318│7-18 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ADD (64) │AGR │RRE C N │ │ IF │ │ │B9�8│7-18 │
│ADD (64) │AG │RXY C N │ A │ IF │ │ B�│E3�8│7-18 │
│ADD DECIMAL │AP │SS C │ A │Dd DF │ ST│B� B�│FA │8-5 │
│ADD HALFWORD │AH │RX C │ A │ IF │ │ B�│4A │7-18 │

| │ADD HALFWORD │AHY │RXY C LD│ A │ IF │ │ B�│E37A│7-18 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ADD HALFWORD IMMEDIATE (32) │AHI │RI C │ │ IF │ │ │A7A │7-18 │
│ADD HALFWORD IMMEDIATE (64) │AGHI │RI C N │ │ IF │ │ │A7B │7-18 │
│ADD LOGICAL (32) │ALR │RR C │ │ │ │ │1E │7-19 │
│ADD LOGICAL (32) │AL │RX C │ A │ │ │ B�│5E │7-19 │

| │ADD LOGICAL (32) │ALY │RXY C LD│ A │ │ │ B�│E35E│7-19 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ADD LOGICAL (64<32) │ALGFR│RRE C N │ │ │ │ │B91A│7-19 │
│ADD LOGICAL (64<32) │ALGF │RXY C N │ A │ │ │ B�│E31A│7-19 │
│ADD LOGICAL (64) │ALGR │RRE C N │ │ │ │ │B9�A│7-19 │
│ADD LOGICAL (64) │ALG │RXY C N │ A │ │ │ B�│E3�A│7-19 │
│ADD LOGICAL WITH CARRY (32) │ALCR │RRE C N3│ │ │ │ │B998│7-2� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ADD LOGICAL WITH CARRY (32) │ALC │RXY C N3│ A │ │ │ B�│E398│7-2� │
│ADD LOGICAL WITH CARRY (64) │ALCGR│RRE C N │ │ │ │ │B988│7-2� │
│ADD LOGICAL WITH CARRY (64) │ALCG │RXY C N │ A │ │ │ B�│E388│7-2� │
│ADD NORMALIZED (extended HFP) │AXR │RR C │ SP│Da EU EO LS │ │ │36 │18-8 │
│ADD NORMALIZED (long HFP) │ADR │RR C │ │Da EU EO LS │ │ │2A │18-8 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ADD NORMALIZED (long HFP) │AD │RX C │ A │Da EU EO LS │ │ B�│6A │18-8 │
│ADD NORMALIZED (short HFP) │AER │RR C │ │Da EU EO LS │ │ │3A │18-8 │
│ADD NORMALIZED (short HFP) │AE │RX C │ A │Da EU EO LS │ │ B�│7A │18-8 │
│ADD UNNORMALIZED (long HFP) │AWR │RR C │ │Da EO LS │ │ │2E │18-1� │
│ADD UNNORMALIZED (long HFP) │AW │RX C │ A │Da EO LS │ │ B�│6E │18-1� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ADD UNNORMALIZED (short HFP) │AUR │RR C │ │Da EO LS │ │ │3E │18-1� │
│ADD UNNORMALIZED (short HFP) │AU │RX C │ A │Da EO LS │ │ B�│7E │18-1� │
│AND (character) │NC │SS C │ A │ │ ST│B� B�│D4 │7-21 │
│AND (immediate) │NI │SI C │ A │ │ ST│B� │94 │7-2� │

| │AND (immediate) │NIY │SIY C LD│ A │ │ ST│B� │EB54│7-21 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│AND (32) │NR │RR C │ │ │ │ │14 │7-2� │
│AND (32) │N │RX C │ A │ │ │ B�│54 │7-2� │

| │AND (32) │NY │RXY C LD│ A │ │ │ B�│E354│7-2� │
│AND (64) │NGR │RRE C N │ │ │ │ │B98�│7-2� │
│AND (64) │NG │RXY C N │ A │ │ │ B�│E38�│7-2� │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 1 of 14). Instructions Arranged by Name

 Appendix B. Lists of Instructions B-3

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│AND IMMEDIATE (high high) │NIHH │RI C N │ │ │ │ │A54 │7-21 │
│AND IMMEDIATE (high low) │NIHL │RI C N │ │ │ │ │A55 │7-21 │
│AND IMMEDIATE (low high) │NILH │RI C N │ │ │ │ │A56 │7-21 │
│AND IMMEDIATE (low low) │NILL │RI C N │ │ │ │ │A57 │7-21 │
│BRANCH AND LINK │BALR │RR │ │ T │B │ │�5 │7-22 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BRANCH AND LINK │BAL │RX │ │ │B │ │45 │7-22 │
│BRANCH AND SAVE │BASR │RR │ │ T │B │ │�D │7-23 │
│BRANCH AND SAVE │BAS │RX │ │ │B │ │4D │7-23 │
│BRANCH AND SAVE AND SET MODE │BASSM│RR │ │ T │B │ │�C │7-23 │
│BRANCH AND SET AUTHORITY │BSA │RRE │Q A� │SO T │B │ │B25A│1�-6 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BRANCH AND SET MODE │BSM │RR │ │ T │B │ │�B │7-24 │
│BRANCH AND STACK │BAKR │RRE │ A� │Z� T │B ST│ │B24�│1�-1� │
│BRANCH IN SUBSPACE GROUP │BSG │RRE │ A� │SO T │B │ R�│B258│1�-13 │
│BRANCH ON CONDITION │BCR │RR │ │ ¢� │B │ │�7 │7-25 │
│BRANCH ON CONDITION │BC │RX │ │ │B │ │47 │7-25 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BRANCH ON COUNT (32) │BCTR │RR │ │ │B │ │�6 │7-26 │
│BRANCH ON COUNT (32) │BCT │RX │ │ │B │ │46 │7-26 │
│BRANCH ON COUNT (64) │BCTGR│RRE N │ │ │B │ │B946│7-26 │
│BRANCH ON COUNT (64) │BCTG │RXY N │ │ │B │ │E346│7-26 │
│BRANCH ON INDEX HIGH (32) │BXH │RS │ │ │B │ │86 │7-27 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BRANCH ON INDEX HIGH (64) │BXHG │RSY N │ │ │B │ │EB44│7-27 │
│BRANCH ON INDEX LOW OR EQUAL (32) │BXLE │RS │ │ │B │ │87 │7-27 │
│BRANCH ON INDEX LOW OR EQUAL (64) │BXLEG│RSY N │ │ │B │ │EB45│7-27 │
│BRANCH RELATIVE AND SAVE │BRAS │RI │ │ │B │ │A75 │7-28 │
│BRANCH RELATIVE AND SAVE LONG │BRASL│RIL N3│ │ │B │ │C�5 │7-28 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BRANCH RELATIVE ON CONDITION │BRC │RI │ │ │B │ │A74 │7-29 │
│BRANCH RELATIVE ON CONDITION LONG │BRCL │RIL N3│ │ │B │ │C�4 │7-29 │
│BRANCH RELATIVE ON COUNT (32) │BRCT │RI │ │ │B │ │A76 │7-29 │
│BRANCH RELATIVE ON COUNT (64) │BRCTG│RI N │ │ │B │ │A77 │7-3� │
│BRANCH RELATIVE ON INDEX HIGH (32) │BRXH │RSI │ │ │B │ │84 │7-3� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BRANCH RELATIVE ON INDEX HIGH (64) │BRXHG│RIE N │ │ │B │ │EC44│7-3� │
│BRANCH RELATIVE ON INDEX L OR E (32)│BRXLE│RSI │ │ │B │ │85 │7-3� │
│BRANCH RELATIVE ON INDEX L OR E (64)│BRXLG│RIE N │ │ │B │ │EC45│7-3� │
│CHECKSUM │CKSM │RRE C │ A SP│ │ │ R�│B241│7-31 │

| │CIPHER MESSAGE │KM │RRE C MS│ A SP│ GM I1 │ ST│R� R�│B92E│7-35 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │CIPHER MESSAGE WITH CHAINING │KMC │RRE C MS│ A SP│ GM I1 │ ST│R� R�│B92F│7-35 │
│COMPARE (extended BFP) │CXBR │RRE C │ SP│Db Xi │ │ │B349│19-23 │
│COMPARE (extended HFP) │CXR │RRE C │ SP│Da │ │ │B369│18-1� │
│COMPARE (long BFP) │CDBR │RRE C │ │Db Xi │ │ │B319│19-23 │
│COMPARE (long BFP) │CDB │RXE C │ A │Db Xi │ │ B�│ED19│19-23 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COMPARE (long HFP) │CDR │RR C │ │Da │ │ │29 │18-1� │
│COMPARE (long HFP) │CD │RX C │ A │Da │ │ B�│69 │18-1� │
│COMPARE (short BFP) │CEBR │RRE C │ │Db Xi │ │ │B3�9│19-23 │
│COMPARE (short BFP) │CEB │RXE C │ A │Db Xi │ │ B�│ED�9│19-23 │
│COMPARE (short HFP) │CER │RR C │ │Da │ │ │39 │18-1� │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 2 of 14). Instructions Arranged by Name

B-4 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│COMPARE (short HFP) │CE │RX C │ A │Da │ │ B�│79 │18-1� │
│COMPARE (32) │CR │RR C │ │ │ │ │19 │7-45 │
│COMPARE (32) │C │RX C │ A │ │ │ B�│59 │7-46 │

| │COMPARE (32) │CY │RXY C LD│ A │ │ │ B�│E359│7-46 │
│COMPARE (64<32) │CGFR │RRE C N │ │ │ │ │B93�│7-45 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COMPARE (64<32) │CGF │RXY C N │ A │ │ │ B�│E33�│7-46 │
│COMPARE (64) │CGR │RRE C N │ │ │ │ │B92�│7-45 │
│COMPARE (64) │CG │RXY C N │ A │ │ │ B�│E32�│7-46 │
│COMPARE AND FORM CODEWORD │CFC │S C │ A SP│II GM │ │I1 │B21A│7-46 │
│COMPARE AND SIGNAL (extended BFP) │KXBR │RRE C │ SP│Db Xi │ │ │B348│19-24 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COMPARE AND SIGNAL (long BFP) │KDBR │RRE C │ │Db Xi │ │ │B318│19-24 │
│COMPARE AND SIGNAL (long BFP) │KDB │RXE C │ A │Db Xi │ │ B�│ED18│19-24 │
│COMPARE AND SIGNAL (short BFP) │KEBR │RRE C │ │Db Xi │ │ │B3�8│19-24 │
│COMPARE AND SIGNAL (short BFP) │KEB │RXE C │ A │Db Xi │ │ B�│ED�8│19-24 │
│COMPARE AND SWAP (32) │CS │RS C │ A SP│ $ │ ST│ B�│BA │7-53 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │COMPARE AND SWAP (32) │CSY │RSY C LD│ A SP│ $ │ ST│ B�│EB14│7-53 │
│COMPARE AND SWAP (64) │CSG │RSY C N │ A SP│ $ │ ST│ B�│EB3�│7-53 │
│COMPARE AND SWAP AND PURGE │CSP │RRE C │P A� SP│ $ │ ST│ R�│B25�│1�-18 │

| │COMPARE AND SWAP AND PURGE │CSPG │RRE C DE│P A� SP│ $ │ ST│ R�│B98A│1�-18 │
│COMPARE DECIMAL │CP │SS C │ A │Dd │ │B� B�│F9 │8-6 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COMPARE DOUBLE AND SWAP (32) │CDS │RS C │ A SP│ $ │ ST│ B�│BB │7-53 │

| │COMPARE DOUBLE AND SWAP (32) │CDSY │RSY C LD│ A SP│ $ │ ST│ B�│EB31│7-53 │
│COMPARE DOUBLE AND SWAP (64) │CDSG │RSY C N │ A SP│ $ │ ST│ B�│EB3E│7-53 │
│COMPARE HALFWORD │CH │RX C │ A │ │ │ B�│49 │7-55 │

| │COMPARE HALFWORD │CHY │RXY C LD│ A │ │ │ B�│E379│7-55 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COMPARE HALFWORD IMMEDIATE (32) │CHI │RI C │ │ │ │ │A7E │7-55 │
│COMPARE HALFWORD IMMEDIATE (64) │CGHI │RI C N │ │ │ │ │A7F │7-55 │
│COMPARE LOGICAL (character) │CLC │SS C │ A │ │ │B� B�│D5 │7-56 │
│COMPARE LOGICAL (immediate) │CLI │SI C │ A │ │ │B� │95 │7-56 │

| │COMPARE LOGICAL (immediate) │CLIY │SIY C LD│ A │ │ │B� │EB55│7-56 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COMPARE LOGICAL (32) │CLR │RR C │ │ │ │ │15 │7-56 │
│COMPARE LOGICAL (32) │CL │RX C │ A │ │ │ B�│55 │7-56 │

| │COMPARE LOGICAL (32) │CLY │RXY C LD│ A │ │ │ B�│E355│7-56 │
│COMPARE LOGICAL (64<32) │CLGFR│RRE C N │ │ │ │ │B931│7-56 │
│COMPARE LOGICAL (64<32) │CLGF │RXY C N │ A │ │ │ B�│E331│7-56 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COMPARE LOGICAL (64) │CLGR │RRE C N │ │ │ │ │B921│7-56 │
│COMPARE LOGICAL (64) │CLG │RXY C N │ A │ │ │ B�│E321│7-56 │
│COMPARE LOGICAL C. UNDER MASK (high)│CLMH │RSY C N │ A │ │ │ B�│EB2�│7-57 │
│COMPARE LOGICAL C. UNDER MASK (low) │CLM │RS C │ A │ │ │ B�│BD │7-57 │

| │COMPARE LOGICAL C. UNDER MASK (low) │CLMY │RSY C LD│ A │ │ │ B�│EB21│7-57 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COMPARE LOGICAL LONG │CLCL │RR C │ A SP│II │ │R� R�│�F │7-58 │
│COMPARE LOGICAL LONG EXTENDED │CLCLE│RS C │ A SP│ │ │R� R�│A9 │7-6� │
│COMPARE LOGICAL LONG UNICODE │CLCLU│RSY C E2│ A SP│ │ │R� R�│EB8F│7-64 │
│COMPARE LOGICAL STRING │CLST │RRE C │ A SP│ G� │ │R� R�│B25D│7-67 │
│COMPARE UNTIL SUBSTRING EQUAL │CUSE │RRE C │ A SP│II GM │ │R� R�│B257│7-68 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 3 of 14). Instructions Arranged by Name

 Appendix B. Lists of Instructions B-5

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│COMPRESSION CALL │CMPSC│RRE C │ A SP│II Dd GM │ ST│R� R�│B263│7-72 │

| │COMPUTE INTERMEDIATE MESSAGE DIGEST │KIMD │RRE C MS│ A SP│ GM I1 │ ST│ R�│B93E│7-84 │
| │COMPUTE LAST MESSAGE DIGEST │KLMD │RRE C MS│ A SP│ GM I1 │ ST│ R�│B93F│7-84 │
| │COMPUTE MESSAGE AUTHENTICATION CODE │KMAC │RRE C MS│ A SP│ GM I1 │ ST│ R�│B91E│7-91 │

│CONVERT BFP TO HFP (long) │THDR │RRE C │ │Da │ │ │B359│9-8 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CONVERT BFP TO HFP (short to long) │THDER│RRE C │ │Da │ │ │B358│9-8 │
│CONVERT FROM FIXED (32 to ext. BFP) │CXFBR│RRE │ SP│Db │ │ │B396│19-26 │
│CONVERT FROM FIXED (32 to ext. HFP) │CXFR │RRE │ SP│Da │ │ │B3B6│18-11 │
│CONVERT FROM FIXED (32 to long BFP) │CDFBR│RRE │ │Db │ │ │B395│19-26 │
│CONVERT FROM FIXED (32 to long HFP) │CDFR │RRE │ │Da │ │ │B3B5│18-11 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CONVERT FROM FIXED (32 to short BFP)│CEFBR│RRE │ │Db Xx│ │ │B394│19-26 │
│CONVERT FROM FIXED (32 to short HFP)│CEFR │RRE │ │Da │ │ │B3B4│18-11 │
│CONVERT FROM FIXED (64 to ext. BFP) │CXGBR│RRE N │ SP│Db │ │ │B3A6│19-26 │
│CONVERT FROM FIXED (64 to ext. HFP) │CXGR │RRE N │ SP│Da │ │ │B3C6│18-11 │
│CONVERT FROM FIXED (64 to long BFP) │CDGBR│RRE N │ │Db Xx│ │ │B3A5│19-26 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CONVERT FROM FIXED (64 to long HFP) │CDGR │RRE N │ │Da │ │ │B3C5│18-11 │
│CONVERT FROM FIXED (64 to short BFP)│CEGBR│RRE N │ │Db Xx│ │ │B3A4│19-26 │
│CONVERT FROM FIXED (64 to short HFP)│CEGR │RRE N │ │Da │ │ │B3C4│18-11 │
│CONVERT HFP TO BFP (long to short) │TBEDR│RRF C │ SP│Da │ │ │B35�│9-9 │
│CONVERT HFP TO BFP (long) │TBDR │RRF C │ SP│Da │ │ │B351│9-9 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CONVERT TO BINARY (32) │CVB │RX │ A │Dd IK │ │ B�│4F │7-97 │

| │CONVERT TO BINARY (32) │CVBY │RXY LD│ A │Dd IK │ │ B�│E3�6│7-97 │
│CONVERT TO BINARY (64) │CVBG │RXY N │ A │Dd IK │ │ B�│E3�E│7-97 │
│CONVERT TO DECIMAL (32) │CVD │RX │ A │ │ ST│ B�│4E │7-98 │

| │CONVERT TO DECIMAL (32) │CVDY │RXY LD│ A │ │ ST│ B�│E326│7-98 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CONVERT TO DECIMAL (64) │CVDG │RXY N │ A │ │ ST│ B�│E32E│7-98 │
│CONVERT TO FIXED (ext. BFP to 32) │CFXBR│RRF C │ SP│Db Xi Xx│ │ │B39A│19-26 │
│CONVERT TO FIXED (ext. BFP to 64) │CGXBR│RRF C N │ SP│Db Xi Xx│ │ │B3AA│19-26 │
│CONVERT TO FIXED (ext. HFP to 32) │CFXR │RRF C │ SP│Da │ │ │B3BA│18-11 │
│CONVERT TO FIXED (ext. HFP to 64) │CGXR │RRF C N │ SP│Da │ │ │B3CA│18-11 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CONVERT TO FIXED (long BFP to 32) │CFDBR│RRF C │ SP│Db Xi Xx│ │ │B399│19-26 │
│CONVERT TO FIXED (long BFP to 64) │CGDBR│RRF C N │ SP│Db Xi Xx│ │ │B3A9│19-26 │
│CONVERT TO FIXED (long HFP to 32) │CFDR │RRF C │ SP│Da │ │ │B3B9│18-11 │
│CONVERT TO FIXED (long HFP to 64) │CGDR │RRF C N │ SP│Da │ │ │B3C9│18-11 │
│CONVERT TO FIXED (short BFP to 32) │CFEBR│RRF C │ SP│Db Xi Xx│ │ │B398│19-26 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CONVERT TO FIXED (short BFP to 64) │CGEBR│RRF C N │ SP│Db Xi Xx│ │ │B3A8│19-26 │
│CONVERT TO FIXED (short HFP to 32) │CFER │RRF C │ SP│Da │ │ │B3B8│18-11 │
│CONVERT TO FIXED (short HFP to 64) │CGER │RRF C N │ SP│Da │ │ │B3C8│18-11 │
│CONVERT UNICODE TO UTF-8 │CUUTF│RRE C │ A SP│ │ ST│R� R�│B2A6│7-98 │
│CONVERT UTF-8 TO UNICODE │CUTFU│RRE C │ A SP│ │ ST│R� R�│B2A7│7-1�1 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│COPY ACCESS │CPYA │RRE │ │ │ │U� U�│B24D│7-1�4 │
│DIAGNOSE │ │ DM │P DM │ │ │ MD│83 │1�-19 │
│DIVIDE (extended BFP) │DXBR │RRE │ SP│Db Xi Xz Xo Xu Xx│ │ │B34D│19-29 │
│DIVIDE (extended HFP) │DXR │RRE │ SP│Da EU EO FK │ │ │B22D│18-12 │
│DIVIDE (long BFP) │DDBR │RRE │ │Db Xi Xz Xo Xu Xx│ │ │B31D│19-29 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 4 of 14). Instructions Arranged by Name

B-6 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│DIVIDE (long BFP) │DDB │RXE │ A │Db Xi Xz Xo Xu Xx│ │ B�│ED1D│19-29 │
│DIVIDE (long HFP) │DDR │RR │ │Da EU EO FK │ │ │2D │18-12 │
│DIVIDE (long HFP) │DD │RX │ A │Da EU EO FK │ │ B�│6D │18-12 │
│DIVIDE (short BFP) │DEBR │RRE │ │Db Xi Xz Xo Xu Xx│ │ │B3�D│19-29 │
│DIVIDE (short BFP) │DEB │RXE │ A │Db Xi Xz Xo Xu Xx│ │ B�│ED�D│19-29 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│DIVIDE (short HFP) │DER │RR │ │Da EU EO FK │ │ │3D │18-12 │
│DIVIDE (short HFP) │DE │RX │ A │Da EU EO FK │ │ B�│7D │18-12 │
│DIVIDE (32<64) │DR │RR │ SP│ IK │ │ │1D │7-1�4 │
│DIVIDE (32<64) │D │RX │ A SP│ IK │ │ B�│5D │7-1�4 │
│DIVIDE DECIMAL │DP │SS │ A SP│Dd DK │ ST│B� B�│FD │8-6 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│DIVIDE LOGICAL (32<64) │DLR │RRE N3│ SP│ IK │ │ │B997│7-1�5 │
│DIVIDE LOGICAL (32<64) │DL │RXY N3│ A SP│ IK │ │ B�│E397│7-1�5 │
│DIVIDE LOGICAL (64<128) │DLGR │RRE N │ SP│ IK │ │ │B987│7-1�5 │
│DIVIDE LOGICAL (64<128) │DLG │RXY N │ A SP│ IK │ │ B�│E387│7-1�5 │
│DIVIDE SINGLE (64<32) │DSGFR│RRE N │ SP│ IK │ │ │B91D│7-1�6 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│DIVIDE SINGLE (64<32) │DSGF │RXY N │ A SP│ IK │ │ B�│E31D│7-1�6 │
│DIVIDE SINGLE (64) │DSGR │RRE N │ SP│ IK │ │ │B9�D│7-1�6 │
│DIVIDE SINGLE (64) │DSG │RXY N │ A SP│ IK │ │ B�│E3�D│7-1�6 │
│DIVIDE TO INTEGER (long BFP) │DIDBR│RRF C │ SP│Db Xi Xu Xx│ │ │B35B│19-29 │
│DIVIDE TO INTEGER (short BFP) │DIEBR│RRF C │ SP│Db Xi Xu Xx│ │ │B353│19-29 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│EDIT │ED │SS C │ A │Dd │ ST│B� B�│DE │8-7 │
│EDIT AND MARK │EDMK │SS C │ A │Dd G1 │ ST│B� B�│DF │8-9 │
│EXCLUSIVE OR (character) │XC │SS C │ A │ │ ST│B� B�│D7 │7-1�7 │
│EXCLUSIVE OR (immediate) │XI │SI C │ A │ │ ST│B� │97 │7-1�7 │

| │EXCLUSIVE OR (immediate) │XIY │SIY C LD│ A │ │ ST│B� │EB57│7-1�7 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│EXCLUSIVE OR (32) │XR │RR C │ │ │ │ │17 │7-1�6 │
│EXCLUSIVE OR (32) │X │RX C │ A │ │ │ B�│57 │7-1�6 │

| │EXCLUSIVE OR (32) │XY │RXY C LD│ A │ │ │ B�│E357│7-1�6 │
│EXCLUSIVE OR (64) │XGR │RRE C N │ │ │ │ │B982│7-1�6 │
│EXCLUSIVE OR (64) │XG │RXY C N │ A │ │ │ B�│E382│7-1�7 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│EXECUTE │EX │RX │ AI SP│ EX │ │ │44 │7-1�7 │
│EXTRACT ACCESS │EAR │RRE │ │ │ │ U�│B24F│7-1�8 │
│EXTRACT AND SET EXTENDED AUTHORITY │ESEA │RRE N │P │ │ │ │B99D│1�-21 │
│EXTRACT FPC │EFPC │RRE │ │Db │ │ │B38C│19-33 │
│EXTRACT PRIMARY ASN │EPAR │RRE │Q │SO │ │ │B226│1�-21 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│EXTRACT PSW │EPSW │RRE N3│ │ │ │ │B98D│7-1�9 │
│EXTRACT SECONDARY ASN │ESAR │RRE │Q │SO │ │ │B227│1�-21 │
│EXTRACT STACKED REGISTERS (32) │EREG │RRE │ A� │SE │ │U� U�│B249│1�-22 │
│EXTRACT STACKED REGISTERS (64) │EREGG│RRE N │ A� │SE │ │U� U�│B9�E│1�-22 │
│EXTRACT STACKED STATE │ESTA │RRE C │ A� SP│SE │ │ │B24A│1�-23 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│HALVE (long HFP) │HDR │RR │ │Da EU │ │ │24 │18-13 │
│HALVE (short HFP) │HER │RR │ │Da EU │ │ │34 │18-13 │
│INSERT ADDRESS SPACE CONTROL │IAC │RRE C │Q │SO │ │ │B224│1�-26 │
│INSERT CHARACTER │IC │RX │ A │ │ │ B�│43 │7-1�9 │

| │INSERT CHARACTER │ICY │RXY LD│ A │ │ │ B�│E373│7-1�9 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 5 of 14). Instructions Arranged by Name

 Appendix B. Lists of Instructions B-7

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│INSERT CHARACTERS UNDER MASK (high) │ICMH │RSY C N │ A │ │ │ B�│EB8�│7-1�9 │
│INSERT CHARACTERS UNDER MASK (low) │ICM │RS C │ A │ │ │ B�│BF │7-1�9 │

| │INSERT CHARACTERS UNDER MASK (low) │ICMY │RSY C LD│ A │ │ │ B�│EB81│7-1�9 │
│INSERT IMMEDIATE (high high) │IIHH │RI N │ │ │ │ │A5� │7-11� │
│INSERT IMMEDIATE (high low) │IIHL │RI N │ │ │ │ │A51 │7-11� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│INSERT IMMEDIATE (low high) │IILH │RI N │ │ │ │ │A52 │7-11� │
│INSERT IMMEDIATE (low low) │IILL │RI N │ │ │ │ │A53 │7-11� │
│INSERT PROGRAM MASK │IPM │RRE │ │ │ │ │B222│7-111 │
│INSERT PSW KEY │IPK │S │Q │ G2 │ │ │B2�B│1�-27 │
│INSERT STORAGE KEY EXTENDED │ISKE │RRE │P A� │ │ │ │B229│1�-27 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│INSERT VIRTUAL STORAGE KEY │IVSK │RRE │Q A� │SO │ │ R�│B223│1�-28 │

| │INVALIDATE DAT TABLE ENTRY │IDTE │RRF DE│P A� │ $ │ │ │B98E│1�-29 │
│INVALIDATE PAGE TABLE ENTRY │IPTE │RRE │P A� │ $ │ │ │B221│1�-33 │
│LOAD (extended) │LXR │RRE │ SP│Da │ │ │B365│9-1� │
│LOAD (long) │LDR │RR │ │Da │ │ │28 │9-1� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD (long) │LD │RX │ A │Da │ │ B�│68 │9-1� │

| │LOAD (long) │LDY │RXY LD│ A │Da │ │ B�│ED65│9-11 │
│LOAD (short) │LER │RR │ │Da │ │ │38 │9-1� │
│LOAD (short) │LE │RX │ A │Da │ │ B�│78 │9-1� │

| │LOAD (short) │LEY │RXY LD│ A │Da │ │ B�│ED64│9-11 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD (32) │LR │RR │ │ │ │ │18 │7-111 │
│LOAD (32) │L │RX │ A │ │ │ B�│58 │7-111 │

| │LOAD (32) │LY │RXY LD│ A │ │ │ B�│E358│7-111 │
│LOAD (64<32) │LGFR │RRE N │ │ │ │ │B914│7-111 │
│LOAD (64<32) │LGF │RXY N │ A │ │ │ B�│E314│7-111 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD (64) │LGR │RRE N │ │ │ │ │B9�4│7-111 │
│LOAD (64) │LG │RXY N │ A │ │ │ B�│E3�4│7-111 │
│LOAD ACCESS MULTIPLE │LAM │RS │ A SP│ │ │ UB│9A │7-111 │

| │LOAD ACCESS MULTIPLE │LAMY │RSY LD│ A SP│ │ │ UB│EB9A│7-111 │
│LOAD ADDRESS │LA │RX │ │ │ │ │41 │7-112 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │LOAD ADDRESS │LAY │RXY LD│ │ │ │ │E371│7-112 │
│LOAD ADDRESS EXTENDED │LAE │RX │ │ │ │U� BP│51 │7-112 │
│LOAD ADDRESS RELATIVE LONG │LARL │RIL N3│ │ │ │ │C�� │7-113 │
│LOAD ADDRESS SPACE PARAMETERS │LASP │SSE C │P A� SP│SO │ │B� │E5��│1�-35 │
│LOAD AND TEST (extended BFP) │LTXBR│RRE C │ SP│Db Xi │ │ │B342│19-34 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD AND TEST (extended HFP) │LTXR │RRE C │ SP│Da │ │ │B362│18-14 │
│LOAD AND TEST (long BFP) │LTDBR│RRE C │ │Db Xi │ │ │B312│19-34 │
│LOAD AND TEST (long HFP) │LTDR │RR C │ │Da │ │ │22 │18-14 │
│LOAD AND TEST (short BFP) │LTEBR│RRE C │ │Db Xi │ │ │B3�2│19-34 │
│LOAD AND TEST (short HFP) │LTER │RR C │ │Da │ │ │32 │18-14 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD AND TEST (32) │LTR │RR C │ │ │ │ │12 │7-114 │
│LOAD AND TEST (64<32) │LTGFR│RRE C N │ │ │ │ │B912│7-114 │
│LOAD AND TEST (64) │LTGR │RRE C N │ │ │ │ │B9�2│7-114 │

| │LOAD BYTE (32) │LB │RXY LD│ A │ │ │ │E376│7-114 │
| │LOAD BYTE (64) │LGB │RXY LD│ A │ │ │ │E377│7-114 │

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 6 of 14). Instructions Arranged by Name

B-8 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│LOAD COMPLEMENT (extended BFP) │LCXBR│RRE C │ SP│Db │ │ │B343│19-34 │
│LOAD COMPLEMENT (extended HFP) │LCXR │RRE C │ SP│Da │ │ │B363│18-14 │
│LOAD COMPLEMENT (long BFP) │LCDBR│RRE C │ │Db │ │ │B313│19-34 │
│LOAD COMPLEMENT (long HFP) │LCDR │RR C │ │Da │ │ │23 │18-14 │
│LOAD COMPLEMENT (short BFP) │LCEBR│RRE C │ │Db │ │ │B3�3│19-34 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD COMPLEMENT (short HFP) │LCER │RR C │ │Da │ │ │33 │18-14 │
│LOAD COMPLEMENT (32) │LCR │RR C │ │ IF │ │ │13 │7-114 │
│LOAD COMPLEMENT (64<32) │LCGFR│RRE C N │ │ IF │ │ │B913│7-115 │
│LOAD COMPLEMENT (64) │LCGR │RRE C N │ │ IF │ │ │B9�3│7-115 │
│LOAD CONTROL (32) │LCTL │RS │P A SP│ │ │ B�│B7 │1�-44 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD CONTROL (64) │LCTLG│RSY N │P A SP│ │ │ B�│EB2F│1�-44 │
│LOAD FP INTEGER (extended BFP) │FIXBR│RRF │ SP│Db Xi Xx│ │ │B347│19-35 │
│LOAD FP INTEGER (extended HFP) │FIXR │RRE │ SP│Da │ │ │B367│18-15 │
│LOAD FP INTEGER (long BFP) │FIDBR│RRF │ SP│Db Xi Xx│ │ │B35F│19-35 │
│LOAD FP INTEGER (long HFP) │FIDR │RRE │ │Da │ │ │B37F│18-15 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD FP INTEGER (short BFP) │FIEBR│RRF │ SP│Db Xi Xx│ │ │B357│19-35 │
│LOAD FP INTEGER (short HFP) │FIER │RRE │ │Da │ │ │B377│18-15 │
│LOAD FPC │LFPC │S │ A SP│Db │ │ B�│B29D│19-36 │
│LOAD HALFWORD (32) │LH │RX │ A │ │ │ B�│48 │7-115 │

| │LOAD HALFWORD (32) │LHY │RXY LD│ A │ │ │ B�│E378│7-115 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD HALFWORD (64) │LGH │RXY N │ A │ │ │ B�│E315│7-115 │
│LOAD HALFWORD IMMEDIATE (32) │LHI │RI │ │ │ │ │A78 │7-115 │
│LOAD HALFWORD IMMEDIATE (64) │LGHI │RI N │ │ │ │ │A79 │7-115 │
│LOAD LENGTHENED (long to ext. BFP) │LXDBR│RRE │ SP│Db Xi │ │ │B3�5│19-37 │
│LOAD LENGTHENED (long to ext. BFP) │LXDB │RXE │ A SP│Db Xi │ │ B�│ED�5│19-37 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD LENGTHENED (long to ext. HFP) │LXDR │RRE │ SP│Da │ │ │B325│18-15 │
│LOAD LENGTHENED (long to ext. HFP) │LXD │RXE │ A SP│Da │ │ B�│ED25│18-15 │
│LOAD LENGTHENED (short to ext. BFP) │LXEBR│RRE │ SP│Db Xi │ │ │B3�6│19-37 │
│LOAD LENGTHENED (short to ext. BFP) │LXEB │RXE │ A SP│Db Xi │ │ B�│ED�6│19-37 │
│LOAD LENGTHENED (short to ext. HFP) │LXER │RRE │ SP│Da │ │ │B326│18-15 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD LENGTHENED (short to ext. HFP) │LXE │RXE │ A SP│Da │ │ B�│ED26│18-15 │
│LOAD LENGTHENED (short to long BFP) │LDEBR│RRE │ │Db Xi │ │ │B3�4│19-37 │
│LOAD LENGTHENED (short to long BFP) │LDEB │RXE │ A │Db Xi │ │ B�│ED�4│19-37 │
│LOAD LENGTHENED (short to long HFP) │LDER │RRE │ │Da │ │ │B324│18-15 │
│LOAD LENGTHENED (short to long HFP) │LDE │RXE │ A │Da │ │ B�│ED24│18-15 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD LOGICAL (64<32) │LLGFR│RRE N │ │ │ │ │B916│7-116 │
│LOAD LOGICAL (64<32) │LLGF │RXY N │ A │ │ │ B�│E316│7-116 │
│LOAD LOGICAL CHARACTER │LLGC │RXY N │ A │ │ │ B�│E39�│7-116 │
│LOAD LOGICAL HALFWORD │LLGH │RXY N │ A │ │ │ B�│E391│7-116 │
│LOAD LOGICAL IMMEDIATE (high high) │LLIHH│RI N │ │ │ │ │A5C │7-116 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD LOGICAL IMMEDIATE (high low) │LLIHL│RI N │ │ │ │ │A5D │7-116 │
│LOAD LOGICAL IMMEDIATE (low high) │LLILH│RI N │ │ │ │ │A5E │7-116 │
│LOAD LOGICAL IMMEDIATE (low high) │LLILH│RI N │ │ │ │ │A5E │7-116 │
│LOAD LOGICAL IMMEDIATE (low low) │LLILL│RI N │ │ │ │ │A5F │7-116 │
│LOAD LOGICAL IMMEDIATE (low low) │LLILL│RI N │ │ │ │ │A5F │7-116 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 7 of 14). Instructions Arranged by Name

 Appendix B. Lists of Instructions B-9

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│LOAD LOGICAL THIRTY ONE BITS │LLGTR│RRE N │ │ │ │ │B917│7-117 │
│LOAD LOGICAL THIRTY ONE BITS │LLGTR│RRE N │ │ │ │ │B917│7-117 │
│LOAD LOGICAL THIRTY ONE BITS │LLGT │RXY N │ A │ │ │ B�│E317│7-117 │
│LOAD LOGICAL THIRTY ONE BITS │LLGT │RXY N │ A │ │ │ B�│E317│7-117 │
│LOAD MULTIPLE (32) │LM │RS │ A │ │ │ B�│98 │7-117 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │LOAD MULTIPLE (32) │LMY │RSY LD│ A │ │ │ B�│EB98│7-117 │
│LOAD MULTIPLE (64) │LMG │RSY N │ A │ │ │ B�│EB�4│7-117 │
│LOAD MULTIPLE DISJOINT │LMD │SS N │ A │ │ │B� B"│EF │7-118 │
│LOAD MULTIPLE HIGH │LMH │RSY N │ A │ │ │ B�│EB96│7-118 │
│LOAD NEGATIVE (extended BFP) │LNXBR│RRE C │ SP│Db │ │ │B341│19-37 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD NEGATIVE (extended HFP) │LNXR │RRE C │ SP│Da │ │ │B361│18-16 │
│LOAD NEGATIVE (long BFP) │LNDBR│RRE C │ │Db │ │ │B311│19-37 │
│LOAD NEGATIVE (long HFP) │LNDR │RR C │ │Da │ │ │21 │18-16 │
│LOAD NEGATIVE (short BFP) │LNEBR│RRE C │ │Db │ │ │B3�1│19-37 │
│LOAD NEGATIVE (short HFP) │LNER │RR C │ │Da │ │ │31 │18-16 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD NEGATIVE (32) │LNR │RR C │ │ │ │ │11 │7-118 │
│LOAD NEGATIVE (64<32) │LNGFR│RRE C N │ │ │ │ │B911│7-119 │
│LOAD NEGATIVE (64) │LNGR │RRE C N │ │ │ │ │B9�1│7-119 │
│LOAD PAIR FROM QUADWORD │LPQ │RXY N │ A SP│ │ │ B�│E38F│7-119 │
│LOAD POSITIVE (extended BFP) │LPXBR│RRE C │ SP│Db │ │ │B34�│19-38 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD POSITIVE (extended HFP) │LPXR │RRE C │ SP│Da │ │ │B36�│18-16 │
│LOAD POSITIVE (long BFP) │LPDBR│RRE C │ │Db │ │ │B31�│19-38 │
│LOAD POSITIVE (long HFP) │LPDR │RR C │ │Da │ │ │2� │18-16 │
│LOAD POSITIVE (short BFP) │LPEBR│RRE C │ │Db │ │ │B3��│19-38 │
│LOAD POSITIVE (short HFP) │LPER │RR C │ │Da │ │ │3� │18-16 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD POSITIVE (32) │LPR │RR C │ │ IF │ │ │1� │7-119 │
│LOAD POSITIVE (64<32) │LPGFR│RRE C N │ │ IF │ │ │B91�│7-119 │
│LOAD POSITIVE (64) │LPGR │RRE C N │ │ IF │ │ │B9��│7-119 │
│LOAD PSW │LPSW │S L │P A SP│ ¢ │ │ B�│82 │1�-44 │
│LOAD PSW EXTENDED │LPSWE│S L N │P A SP│ ¢ │ │ B�│B2B2│1�-45 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD REAL ADDRESS (32) │LRA │RX C │P A� │SO │ │ BP│B1 │1�-46 │

| │LOAD REAL ADDRESS (32) │LRAY │RXY C LD│P A� │SO │ │ BP│E313│1�-46 │
│LOAD REAL ADDRESS (64) │LRAG │RXY C N │P A� │ │ │ BP│E3�3│1�-46 │
│LOAD REVERSED (16) │LRVH │RXY N3│ A │ │ │ B�│E31F│7-12� │
│LOAD REVERSED (32) │LRVR │RRE N3│ │ │ │ │B91F│7-12� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD REVERSED (32) │LRV │RXY N3│ A │ │ │ B�│E31E│7-12� │
│LOAD REVERSED (64) │LRVGR│RRE N │ │ │ │ │B9�F│7-12� │
│LOAD REVERSED (64) │LRVG │RXY N │ A │ │ │ B�│E3�F│7-12� │
│LOAD ROUNDED (extended to long BFP) │LDXBR│RRE │ SP│Db Xi Xo Xu Xx│ │ │B345│19-38 │
│LOAD ROUNDED (extended to long HFP) │LDXR │RR │ SP│Da EO │ │ │25 │18-17 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD ROUNDED (extended to long HFP) │LRDR │RR │ SP│Da EO │ │ │25 │18-17 │
│LOAD ROUNDED (extended to short BFP)│LEXBR│RRE │ SP│Db Xi Xo Xu Xx│ │ │B346│19-38 │
│LOAD ROUNDED (extended to short HFP)│LEXR │RRE │ SP│Da EO │ │ │B366│18-17 │
│LOAD ROUNDED (long to short BFP) │LEDBR│RRE │ │Db Xi Xo Xu Xx│ │ │B344│19-38 │
│LOAD ROUNDED (long to short HFP) │LEDR │RR │ │Da EO │ │ │35 │18-17 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 8 of 14). Instructions Arranged by Name

B-10 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│LOAD ROUNDED (long to short HFP) │LRER │RR │ │Da EO │ │ │35 │18-17 │
│LOAD USING REAL ADDRESS (32) │LURA │RRE │P A� SP│ │ │ │B24B│1�-51 │
│LOAD USING REAL ADDRESS (64) │LURAG│RRE N │P A� SP│ │ │ │B9�5│1�-51 │
│LOAD ZERO (extended) │LZXR │RRE │ SP│Da │ │ │B376│9-11 │
│LOAD ZERO (long) │LZDR │RRE │ │Da │ │ │B375│9-11 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LOAD ZERO (short) │LZER │RRE │ │Da │ │ │B374│9-11 │
│MODIFY STACKED STATE │MSTA │RRE │ A� SP│SE │ ST│ │B247│1�-51 │
│MONITOR CALL │MC │SI │ SP│ MO │ │ │AF │7-121 │
│MOVE (character) │MVC │SS │ A │ │ ST│B� B�│D2 │7-122 │
│MOVE (immediate) │MVI │SI │ A │ │ ST│B� │92 │7-121 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │MOVE (immediate) │MVIY │SIY LD│ A │ │ ST│B� │EB52│7-121 │
│MOVE INVERSE │MVCIN│SS │ A │ │ ST│B� B�│E8 │7-122 │
│MOVE LONG │MVCL │RR C │ A SP│II │ ST│R� R�│�E │7-123 │
│MOVE LONG EXTENDED │MVCLE│RS C │ A SP│ │ ST│R� R�│A8 │7-127 │
│MOVE LONG UNICODE │MVCLU│RSY C E2│ A SP│ │ ST│R� R�│EB8E│7-13� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MOVE NUMERICS │MVN │SS │ A │ │ ST│B� B�│D1 │7-134 │
│MOVE PAGE │MVPG │RRE C │Q A SP│ G� │ ST│R� R�│B254│1�-53 │
│MOVE STRING │MVST │RRE C │ A SP│ G� │ ST│R� R�│B255│7-134 │
│MOVE TO PRIMARY │MVCP │SS C │Q A │SO ¢ │ ST│ │DA │1�-55 │
│MOVE TO SECONDARY │MVCS │SS C │Q A │SO ¢ │ ST│ │DB │1�-55 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MOVE WITH DESTINATION KEY │MVCDK│SSE │Q A │ GM │ ST│B� B�│E5�F│1�-57 │
│MOVE WITH KEY │MVCK │SS C │Q A │ │ ST│B� B�│D9 │1�-58 │
│MOVE WITH OFFSET │MVO │SS │ A │ │ ST│B� B�│F1 │7-135 │
│MOVE WITH SOURCE KEY │MVCSK│SSE │Q A │ GM │ ST│B� B�│E5�E│1�-59 │
│MOVE ZONES │MVZ │SS │ A │ │ ST│B� B�│D3 │7-136 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY (extended BFP) │MXBR │RRE │ SP│Db Xi Xo Xu Xx│ │ │B34C│19-39 │
│MULTIPLY (extended HFP) │MXR │RR │ SP│Da EU EO │ │ │26 │18-18 │
│MULTIPLY (long to extended BFP) │MXDBR│RRE │ SP│Db Xi │ │ │B3�7│19-39 │
│MULTIPLY (long to extended BFP) │MXDB │RXE │ A SP│Db Xi │ │ B�│ED�7│19-39 │
│MULTIPLY (long to extended HFP) │MXDR │RR │ SP│Da EU EO │ │ │27 │18-18 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY (long to extended HFP) │MXD │RX │ A SP│Da EU EO │ │ B�│67 │18-18 │
│MULTIPLY (long BFP) │MDBR │RRE │ │Db Xi Xo Xu Xx│ │ │B31C│19-39 │
│MULTIPLY (long BFP) │MDB │RXE │ A │Db Xi Xo Xu Xx│ │ B�│ED1C│19-39 │
│MULTIPLY (long HFP) │MDR │RR │ │Da EU EO │ │ │2C │18-18 │
│MULTIPLY (long HFP) │MD │RX │ A │Da EU EO │ │ B�│6C │18-18 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY (short to long BFP) │MDEBR│RRE │ │Db Xi │ │ │B3�C│19-39 │
│MULTIPLY (short to long BFP) │MDEB │RXE │ A │Db Xi │ │ B�│ED�C│19-39 │
│MULTIPLY (short to long HFP) │MDER │RR │ │Da EU EO │ │ │3C │18-18 │
│MULTIPLY (short to long HFP) │MER │RR │ │Da EU EO │ │ │3C │18-18 │
│MULTIPLY (short to long HFP) │MDE │RX │ A │Da EU EO │ │ B�│7C │18-18 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY (short to long HFP) │ME │RX │ A │Da EU EO │ │ B�│7C │18-18 │
│MULTIPLY (short BFP) │MEEBR│RRE │ │Db Xi Xo Xu Xx│ │ │B317│19-39 │
│MULTIPLY (short BFP) │MEEB │RXE │ A │Db Xi Xo Xu Xx│ │ B�│ED17│19-39 │
│MULTIPLY (short HFP) │MEER │RRE │ │Da EU EO │ │ │B337│18-18 │
│MULTIPLY (short HFP) │MEE │RXE │ A │Da EU EO │ │ B�│ED37│18-18 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 9 of 14). Instructions Arranged by Name

 Appendix B. Lists of Instructions B-11

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│MULTIPLY (64<32) │MR │RR │ SP│ │ │ │1C │7-136 │
│MULTIPLY (64<32) │M │RX │ A SP│ │ │ B�│5C │7-136 │
│MULTIPLY AND ADD (long BFP) │MADBR│RRF │ │Db Xi Xo Xu Xx│ │ │B31E│19-41 │
│MULTIPLY AND ADD (long BFP) │MADB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED1E│19-41 │

| │MULTIPLY AND ADD (long HFP) │MADR │RRF HM│ │Da EU EO │ │ │B33E│18-19 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │MULTIPLY AND ADD (long HFP) │MAD │RXF HM│ A │Da EU EO │ │ B�│ED3E│18-19 │
│MULTIPLY AND ADD (short BFP) │MAEBR│RRF │ │Db Xi Xo Xu Xx│ │ │B3�E│19-41 │
│MULTIPLY AND ADD (short BFP) │MAEB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED�E│19-41 │

| │MULTIPLY AND ADD (short HFP) │MAER │RRF HM│ │Da EU EO │ │ │B32E│18-19 │
| │MULTIPLY AND ADD (short HFP) │MAE │RXF HM│ A │Da EU EO │ │ B�│ED2E│18-19 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY AND SUBTRACT (long BFP) │MSDBR│RRF │ │Db Xi Xo Xu Xx│ │ │B31F│19-41 │
│MULTIPLY AND SUBTRACT (long BFP) │MSDB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED1F│19-41 │

| │MULTIPLY AND SUBTRACT (long HFP) │MSDR │RRF HM│ │Da EU EO │ │ │B33F│18-2� │
| │MULTIPLY AND SUBTRACT (long HFP) │MSD │RXF HM│ A │Da EU EO │ │ B�│ED3F│18-2� │

│MULTIPLY AND SUBTRACT (short BFP) │MSEBR│RRF │ │Db Xi Xo Xu Xx│ │ │B3�F│19-41 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY AND SUBTRACT (short BFP) │MSEB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED�F│19-41 │

| │MULTIPLY AND SUBTRACT (short HFP) │MSER │RRF HM│ │Da EU EO │ │ │B32F│18-2� │
| │MULTIPLY AND SUBTRACT (short HFP) │MSE │RXF HM│ A │Da EU EO │ │ B�│ED2F│18-2� │

│MULTIPLY DECIMAL │MP │SS │ A SP│Dd │ ST│B� B�│FC │8-11 │
│MULTIPLY HALFWORD (32) │MH │RX │ A │ │ │ B�│4C │7-137 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY HALFWORD IMMEDIATE (32) │MHI │RI │ │ │ │ │A7C │7-137 │
│MULTIPLY HALFWORD IMMEDIATE (64) │MGHI │RI N │ │ │ │ │A7D │7-137 │
│MULTIPLY LOGICAL (128<64) │MLGR │RRE N │ SP│ │ │ │B986│7-138 │
│MULTIPLY LOGICAL (128<64) │MLG │RXY N │ A SP│ │ │ B�│E386│7-138 │
│MULTIPLY LOGICAL (64<32) │MLR │RRE N3│ SP│ │ │ │B996│7-138 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY LOGICAL (64<32) │ML │RXY N3│ A SP│ │ │ B�│E396│7-138 │
│MULTIPLY SINGLE (32) │MSR │RRE │ │ │ │ │B252│7-138 │
│MULTIPLY SINGLE (32) │MS │RX │ A │ │ │ B�│71 │7-139 │

| │MULTIPLY SINGLE (32) │MSY │RXY LD│ A │ │ │ B�│E351│7-139 │
│MULTIPLY SINGLE (64<32) │MSGFR│RRE N │ │ │ │ │B91C│7-139 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MULTIPLY SINGLE (64<32) │MSGF │RXY N │ A │ │ │ B�│E31C│7-139 │
│MULTIPLY SINGLE (64) │MSGR │RRE N │ │ │ │ │B9�C│7-139 │
│MULTIPLY SINGLE (64) │MSG │RXY N │ A │ │ │ B�│E3�C│7-139 │
│OR (character) │OC │SS C │ A │ │ ST│B� B�│D6 │7-14� │
│OR (immediate) │OI │SI C │ A │ │ ST│B� │96 │7-14� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │OR (immediate) │OIY │SIY C LD│ A │ │ ST│B� │EB56│7-14� │
│OR (32) │OR │RR C │ │ │ │ │16 │7-139 │
│OR (32) │O │RX C │ A │ │ │ B�│56 │7-139 │

| │OR (32) │OY │RXY C LD│ A │ │ │ B�│E356│7-14� │
│OR (64) │OGR │RRE C N │ │ │ │ │B981│7-139 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│OR (64) │OG │RXY C N │ A │ │ │ B�│E381│7-14� │
│OR IMMEDIATE (high high) │OIHH │RI C N │ │ │ │ │A58 │7-14� │
│OR IMMEDIATE (high low) │OIHL │RI C N │ │ │ │ │A59 │7-14� │
│OR IMMEDIATE (low high) │OILH │RI C N │ │ │ │ │A5A │7-141 │
│OR IMMEDIATE (low low) │OILL │RI C N │ │ │ │ │A5B │7-141 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 10 of 14). Instructions Arranged by Name

B-12 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│PACK │PACK │SS │ A │ │ ST│B� B�│F2 │7-141 │
│PACK ASCII │PKA │SS E2│ A SP│ │ ST│B� B�│E9 │7-142 │
│PACK UNICODE │PKU │SS E2│ A SP│ │ ST│B� B�│E1 │7-143 │
│PAGE IN │PGIN │RRE C ES│P A� │ ¢ │ │ │B22E│1�-6� │
│PAGE OUT │PGOUT│RRE C ES│P A� │ ¢ │ │ │B22F│1�-61 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│PERFORM LOCKED OPERATION │PLO │SS C │ A SP│ $ GM │ ST│ FC│EE │7-144 │
│PROGRAM CALL │PC │S │Q A� │Z� T ¢ GM │B ST│ │B218│1�-62 │
│PROGRAM RETURN │PR │E L │Q A� SP│Z� T ¢� │B ST│ │�1�1│1�-75 │
│PROGRAM TRANSFER │PT │RRE │Q A� SP│Z� T ¢ │B │ │B228│1�-79 │
│PURGE ALB │PALB │RRE │P │ $ │ │ │B248│1�-85 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│PURGE TLB │PTLB │S │P │ $ │ │ │B2�D│1�-85 │
│RESET REFERENCE BIT EXTENDED │RRBE │RRE C │P A� │ │ │ │B22A│1�-85 │
│RESUME PROGRAM │RP │S L │Q A SP│WE T │B │ B�│B277│1�-86 │
│ROTATE LEFT SINGLE LOGICAL (32) │RLL │RSY N3│ │ │ │ │EB1D│7-159 │
│ROTATE LEFT SINGLE LOGICAL (64) │RLLG │RSY N │ │ │ │ │EB1C│7-159 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SEARCH STRING │SRST │RRE C │ A SP│ G� │ │ R�│B25E│7-16� │
│SET ACCESS │SAR │RRE │ │ │ │U� │B24E│7-161 │
│SET ADDRESS SPACE CONTROL │SAC │S │Q SP│SW ¢ │ │ │B219│1�-89 │
│SET ADDRESS SPACE CONTROL FAST │SACF │S │Q SP│SW │ │ │B279│1�-89 │
│SET ADDRESSING MODE (24) │SAM24│E N3│ SP│ T │ │ │�1�C│7-161 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SET ADDRESSING MODE (31) │SAM31│E N3│ SP│ T │ │ │�1�D│7-161 │
│SET ADDRESSING MODE (64) │SAM64│E N │ │ T │ │ │�1�E│7-161 │
│SET CLOCK │SCK │S C │P A SP│ │ │ B�│B2�4│1�-9� │
│SET CLOCK COMPARATOR │SCKC │S │P A SP│ │ │ B�│B2�6│1�-91 │
│SET CLOCK PROGRAMMABLE FIELD │SCKPF│E │P SP│ G� │ │ │�1�7│1�-91 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SET CPU TIMER │SPT │S │P A SP│ │ │ B�│B2�8│1�-92 │
│SET FPC │SFPC │RRE │ SP│Db │ │ │B384│19-43 │
│SET PREFIX │SPX │S │P A SP│ $ │ │ B�│B21�│1�-92 │
│SET PROGRAM MASK │SPM │RR L │ │ │ │ │�4 │7-162 │
│SET PSW KEY FROM ADDRESS │SPKA │S │Q │ │ │ │B2�A│1�-93 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SET ROUNDING MODE │SRNM │S │ │Db │ │ │B299│19-43 │
│SET SECONDARY ASN │SSAR │RRE │ A� │Z� T ¢ │ │ │B225│1�-93 │
│SET STORAGE KEY EXTENDED │SSKE │RRE │P A� │ ¢ │ │ │B22B│1�-97 │
│SET SYSTEM MASK │SSM │S │P A SP│SO │ │ B�│8� │1�-97 │
│SHIFT AND ROUND DECIMAL │SRP │SS C │ A │Dd DF │ ST│B� │F� │8-11 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SHIFT LEFT DOUBLE │SLDA │RS C │ SP│ IF │ │ │8F │7-162 │
│SHIFT LEFT DOUBLE LOGICAL │SLDL │RS │ SP│ │ │ │8D │7-163 │
│SHIFT LEFT SINGLE (32) │SLA │RS C │ │ IF │ │ │8B │7-163 │
│SHIFT LEFT SINGLE (64) │SLAG │RSY C N │ │ IF │ │ │EB�B│7-163 │
│SHIFT LEFT SINGLE LOGICAL (32) │SLL │RS │ │ │ │ │89 │7-164 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SHIFT LEFT SINGLE LOGICAL (64) │SLLG │RSY N │ │ │ │ │EB�D│7-164 │
│SHIFT RIGHT DOUBLE │SRDA │RS C │ SP│ │ │ │8E │7-165 │
│SHIFT RIGHT DOUBLE LOGICAL │SRDL │RS │ SP│ │ │ │8C │7-165 │
│SHIFT RIGHT SINGLE (32) │SRA │RS C │ │ │ │ │8A │7-166 │
│SHIFT RIGHT SINGLE (64) │SRAG │RSY C N │ │ │ │ │EB�A│7-166 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 11 of 14). Instructions Arranged by Name

 Appendix B. Lists of Instructions B-13

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│SHIFT RIGHT SINGLE LOGICAL (32) │SRL │RS │ │ │ │ │88 │7-166 │
│SHIFT RIGHT SINGLE LOGICAL (64) │SRLG │RSY N │ │ │ │ │EB�C│7-166 │
│SIGNAL PROCESSOR │SIGP │RS C │P │ $ │ │ │AE │1�-98 │
│SQUARE ROOT (extended BFP) │SQXBR│RRE │ SP│Db Xi Xx│ │ │B316│19-44 │
│SQUARE ROOT (extended HFP) │SQXR │RRE │ SP│Da SQ │ │ │B336│18-21 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SQUARE ROOT (long BFP) │SQDBR│RRE │ │Db Xi Xx│ │ │B315│19-44 │
│SQUARE ROOT (long BFP) │SQDB │RXE │ A │Db Xi Xx│ │ B�│ED15│19-44 │
│SQUARE ROOT (long HFP) │SQDR │RRE │ │Da SQ │ │ │B244│18-21 │
│SQUARE ROOT (long HFP) │SQD │RXE │ A │Da SQ │ │ B�│ED35│18-21 │
│SQUARE ROOT (short BFP) │SQEBR│RRE │ │Db Xi Xx│ │ │B314│19-44 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SQUARE ROOT (short BFP) │SQEB │RXE │ A │Db Xi Xx│ │ B�│ED14│19-44 │
│SQUARE ROOT (short HFP) │SQER │RRE │ │Da SQ │ │ │B245│18-21 │
│SQUARE ROOT (short HFP) │SQE │RXE │ A │Da SQ │ │ B�│ED34│18-21 │
│STORE (long) │STD │RX │ A │Da │ ST│ B�│6� │9-11 │

| │STORE (long) │STDY │RXY LD│ A │Da │ ST│ B�│ED67│9-11 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STORE (short) │STE │RX │ A │Da │ ST│ B�│7� │9-11 │

| │STORE (short) │STEY │RXY LD│ A │Da │ ST│ B�│ED66│9-11 │
│STORE (32) │ST │RX │ A │ │ ST│ B�│5� │7-167 │

| │STORE (32) │STY │RXY LD│ A │ │ ST│ B�│E35�│7-167 │
│STORE (64) │STG │RXY N │ A │ │ ST│ B�│E324│7-167 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STORE ACCESS MULTIPLE │STAM │RS │ A SP│ │ ST│ UB│9B │7-167 │

| │STORE ACCESS MULTIPLE │STAMY│RSY LD│ A SP│ │ ST│ UB│EB9B│7-167 │
│STORE CHARACTER │STC │RX │ A │ │ ST│ B�│42 │7-168 │

| │STORE CHARACTER │STCY │RXY LD│ A │ │ ST│ B�│E372│7-168 │
│STORE CHARACTERS UNDER MASK (high) │STCMH│RSY N │ A │ │ ST│ B�│EB2C│7-168 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STORE CHARACTERS UNDER MASK (low) │STCM │RS │ A │ │ ST│ B�│BE │7-168 │

| │STORE CHARACTERS UNDER MASK (low) │STCMY│RSY LD│ A │ │ ST│ B�│EB2D│7-168 │
│STORE CLOCK │STCK │S C │ A │ $ │ ST│ B�│B2�5│7-169 │
│STORE CLOCK COMPARATOR │STCKC│S │P A SP│ │ ST│ B�│B2�7│1�-99 │
│STORE CLOCK EXTENDED │STCKE│S C │ A │ $ │ ST│ B�│B278│7-17� │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STORE CONTROL (32) │STCTL│RS │P A SP│ │ ST│ B�│B6 │1�-99 │
│STORE CONTROL (64) │STCTG│RSY N │P A SP│ │ ST│ B�│EB25│1�-99 │
│STORE CPU ADDRESS │STAP │S │P A SP│ │ ST│ B�│B212│1�-1�� │
│STORE CPU ID │STIDP│S │P A SP│ │ ST│ B�│B2�2│1�-1�� │
│STORE CPU TIMER │STPT │S │P A SP│ │ ST│ B�│B2�9│1�-1�1 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STORE FACILITY LIST │STFL │S N3│P │ │ │ │B2B1│1�-1�2 │
│STORE FPC │STFPC│S │ A │Db │ ST│ B�│B29C│19-44 │
│STORE HALFWORD │STH │RX │ A │ │ ST│ B�│4� │7-172 │

| │STORE HALFWORD │STHY │RXY LD│ A │ │ ST│ B�│E37�│7-172 │
│STORE MULTIPLE (32) │STM │RS │ A │ │ ST│ B�│9� │7-172 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │STORE MULTIPLE (32) │STMY │RSY LD│ A │ │ ST│ B�│EB9�│7-172 │
│STORE MULTIPLE (64) │STMG │RSY N │ A │ │ ST│ B�│EB24│7-172 │
│STORE MULTIPLE HIGH │STMH │RSY N │ A │ │ ST│ B�│EB26│7-172 │
│STORE PAIR TO QUADWORD │STPQ │RXY N │ A SP│ │ ST│ B�│E38E│7-173 │
│STORE PREFIX │STPX │S │P A SP│ │ ST│ B�│B211│1�-1�2 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 12 of 14). Instructions Arranged by Name

B-14 z/Architecture Principles of Operation

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│STORE REAL ADDRESS │STRAG│SSE N │P A� │ │ ST│B� BP│E5�2│1�-1�3 │
│STORE REVERSED (16) │STRVH│RXY N3│ A │ │ ST│ B�│E33F│7-173 │
│STORE REVERSED (32) │STRV │RXY N3│ A │ │ ST│ B�│E33E│7-173 │
│STORE REVERSED (64) │STRVG│RXY N │ A │ │ ST│ B�│E32F│7-173 │
│STORE SYSTEM INFORMATION │STSI │S C │P A SP│ GM │ ST│ B�│B27D│1�-1�4 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STORE THEN AND SYSTEM MASK │STNSM│SI │P A │ │ ST│B� │AC │1�-115 │
│STORE THEN OR SYSTEM MASK │STOSM│SI │P A SP│ │ ST│B� │AD │1�-115 │
│STORE USING REAL ADDRESS (32) │STURA│RRE │P A� SP│ │ SU│ │B246│1�-115 │
│STORE USING REAL ADDRESS (64) │STURG│RRE N │P A� SP│ │ SU│ │B925│1�-115 │
│SUBTRACT (extended BFP) │SXBR │RRE C │ SP│Db Xi Xo Xu Xx│ │ │B34B│19-44 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SUBTRACT (long BFP) │SDBR │RRE C │ │Db Xi Xo Xu Xx│ │ │B31B│19-44 │
│SUBTRACT (long BFP) │SDB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED1B│19-44 │
│SUBTRACT (short BFP) │SEBR │RRE C │ │Db Xi Xo Xu Xx│ │ │B3�B│19-44 │
│SUBTRACT (short BFP) │SEB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED�B│19-44 │
│SUBTRACT (32) │SR │RR C │ │ IF │ │ │1B │7-174 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SUBTRACT (32) │S │RX C │ A │ IF │ │ B�│5B │7-174 │

| │SUBTRACT (32) │SY │RXY C LD│ A │ IF │ │ B�│E35B│7-174 │
│SUBTRACT (64<32) │SGFR │RRE C N │ │ IF │ │ │B919│7-174 │
│SUBTRACT (64<32) │SGF │RXY C N │ A │ IF │ │ B�│E319│7-174 │
│SUBTRACT (64) │SGR │RRE C N │ │ IF │ │ │B9�9│7-174 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SUBTRACT (64) │SG │RXY C N │ A │ IF │ │ B�│E3�9│7-174 │
│SUBTRACT DECIMAL │SP │SS C │ A │Dd DF │ ST│B� B�│FB │8-12 │
│SUBTRACT HALFWORD │SH │RX C │ A │ IF │ │ B�│4B │7-174 │

| │SUBTRACT HALFWORD │SHY │RXY C LD│ A │ IF │ │ B�│E37B│7-174 │
│SUBTRACT LOGICAL (32) │SLR │RR C │ │ │ │ │1F │7-175 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SUBTRACT LOGICAL (32) │SL │RX C │ A │ │ │ B�│5F │7-175 │

| │SUBTRACT LOGICAL (32) │SLY │RXY C LD│ A │ │ │ B�│E35F│7-175 │
│SUBTRACT LOGICAL (64<32) │SLGFR│RRE C N │ │ │ │ │B91B│7-175 │
│SUBTRACT LOGICAL (64<32) │SLGF │RXY C N │ A │ │ │ B�│E31B│7-175 │
│SUBTRACT LOGICAL (64) │SLGR │RRE C N │ │ │ │ │B9�B│7-175 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SUBTRACT LOGICAL (64) │SLG │RXY C N │ A │ │ │ B�│E3�B│7-175 │
│SUBTRACT LOGICAL WITH BORROW (32) │SLBR │RRE C N3│ │ │ │ │B999│7-176 │
│SUBTRACT LOGICAL WITH BORROW (32) │SLB │RXY C N3│ A │ │ │ B�│E399│7-176 │
│SUBTRACT LOGICAL WITH BORROW (64) │SLBGR│RRE C N │ │ │ │ │B989│7-176 │
│SUBTRACT LOGICAL WITH BORROW (64) │SLBG │RXY C N │ A │ │ │ B�│E389│7-176 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SUBTRACT NORMALIZED (extended HFP) │SXR │RR C │ SP│Da EU EO LS │ │ │37 │18-22 │
│SUBTRACT NORMALIZED (long HFP) │SDR │RR C │ │Da EU EO LS │ │ │2B │18-22 │
│SUBTRACT NORMALIZED (long HFP) │SD │RX C │ A │Da EU EO LS │ │ B�│6B │18-22 │
│SUBTRACT NORMALIZED (short HFP) │SER │RR C │ │Da EU EO LS │ │ │3B │18-22 │
│SUBTRACT NORMALIZED (short HFP) │SE │RX C │ A │Da EU EO LS │ │ B�│7B │18-22 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SUBTRACT UNNORMALIZED (long HFP) │SWR │RR C │ │Da EO LS │ │ │2F │18-22 │
│SUBTRACT UNNORMALIZED (long HFP) │SW │RX C │ A │Da EO LS │ │ B�│6F │18-22 │
│SUBTRACT UNNORMALIZED (short HFP) │SUR │RR C │ │Da EO LS │ │ │3F │18-22 │
│SUBTRACT UNNORMALIZED (short HFP) │SU │RX C │ A │Da EO LS │ │ B�│7F │18-22 │
│SUPERVISOR CALL │SVC │RR │ │ ¢ │ │ │�A │7-177 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 13 of 14). Instructions Arranged by Name

 Appendix B. Lists of Instructions B-15

┌────────────────────────────────────┬─────┬──┬────┬───────┐
│ │Mne- │ │Op │ Page │
│ Name │monic│ Characteristics │Code│ No. │
├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│TEST ACCESS │TAR │RRE C │ A� │ │ │U� │B24C│1�-116 │
│TEST ADDRESSING MODE │TAM │E C N3│ │ │ │ │�1�B│7-177 │
│TEST AND SET │TS │S C │ A │ $ │ ST│ B�│93 │7-177 │
│TEST BLOCK │TB │RRE C │P A� │II $ G� │ │ │B22C│1�-118 │
│TEST DATA CLASS (extended BFP) │TCXB │RXE C │ SP│Db │ │ │ED12│19-45 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│TEST DATA CLASS (long BFP) │TCDB │RXE C │ │Db │ │ │ED11│19-45 │
│TEST DATA CLASS (short BFP) │TCEB │RXE C │ │Db │ │ │ED1�│19-45 │
│TEST DECIMAL │TP │RSL C E2│ A │ │ │B� │EBC�│8-13 │
│TEST PROTECTION │TPROT│SSE C │P A� │ │ │B� │E5�1│1�-12� │
│TEST UNDER MASK │TM │SI C │ A │ │ │B� │91 │7-178 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │TEST UNDER MASK │TMY │SIY C LD│ A │ │ │B� │EB51│7-178 │
│TEST UNDER MASK (high high) │TMHH │RI C N │ │ │ │ │A72 │7-178 │
│TEST UNDER MASK (high low) │TMHL │RI C N │ │ │ │ │A73 │7-178 │
│TEST UNDER MASK (low high) │TMLH │RI C N │ │ │ │ │A7� │7-178 │
│TEST UNDER MASK (low low) │TMLL │RI C N │ │ │ │ │A71 │7-178 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│TEST UNDER MASK HIGH │TMH │RI C │ │ │ │ │A7� │7-178 │
│TEST UNDER MASK LOW │TML │RI C │ │ │ │ │A71 │7-178 │
│TRACE (32) │TRACE│RS │P A SP│ T ¢ │ │ B�│99 │1�-123 │
│TRACE (64) │TRACG│RSY N │P A SP│ T ¢ │ │ B�│EB�F│1�-123 │
│TRANSLATE │TR │SS │ A │ │ ST│B� B�│DC │7-179 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│TRANSLATE AND TEST │TRT │SS C │ A │ GM │ │B� B�│DD │7-18� │
│TRANSLATE EXTENDED │TRE │RRE C │ A SP│ │ ST│R� R�│B2A5│7-181 │
│TRANSLATE ONE TO ONE │TROO │RRE C E2│ A SP│ GM │ ST│RM R�│B993│7-183 │
│TRANSLATE ONE TO TWO │TROT │RRE C E2│ A SP│ GM │ ST│RM R�│B992│7-183 │
│TRANSLATE TWO TO ONE │TRTO │RRE C E2│ A SP│ GM │ ST│RM R�│B991│7-183 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│TRANSLATE TWO TO TWO │TRTT │RRE C E2│ A SP│ GM │ ST│RM R�│B99�│7-183 │
│TRAP │TRAP2│E │ A │SO T │B ST│ │�1FF│1�-124 │
│TRAP │TRAP4│S │ A │SO T │B ST│ │B2FF│1�-124 │
│UNPACK │UNPK │SS │ A │ │ ST│B� B�│F3 │7-188 │
│UNPACK ASCII │UNPKA│SS C E2│ A SP│ │ ST│B� B�│EA │7-189 │
├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│UNPACK UNICODE │UNPKU│SS C E2│ A SP│ │ ST│B� B�│E2 │7-19� │
│UPDATE TREE │UPT │E C │ A SP│II GM │ ST│I4 │�1�2│7-191 │
│ZERO AND ADD │ZAP │SS C │ A │Dd DF │ ST│B� B�│F8 │8-13 │
└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 14 of 14). Instructions Arranged by Name

B-16 z/Architecture Principles of Operation

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│ │DIAGNOSE │ DM │P DM │ │ │ MD│83 │1�-19 │
│A │ADD (32) │RX C │ A │ IF │ │ B�│5A │7-18 │
│AD │ADD NORMALIZED (long HFP) │RX C │ A │Da EU EO LS │ │ B�│6A │18-8 │
│ADB │ADD (long BFP) │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED1A│19-18 │
│ADBR │ADD (long BFP) │RRE C │ │Db Xi Xo Xu Xx│ │ │B31A│19-18 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ADR │ADD NORMALIZED (long HFP) │RR C │ │Da EU EO LS │ │ │2A │18-8 │
│AE │ADD NORMALIZED (short HFP) │RX C │ A │Da EU EO LS │ │ B�│7A │18-8 │
│AEB │ADD (short BFP) │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED�A│19-18 │
│AEBR │ADD (short BFP) │RRE C │ │Db Xi Xo Xu Xx│ │ │B3�A│19-18 │
│AER │ADD NORMALIZED (short HFP) │RR C │ │Da EU EO LS │ │ │3A │18-8 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│AG │ADD (64) │RXY C N │ A │ IF │ │ B�│E3�8│7-18 │
│AGF │ADD (64<32) │RXY C N │ A │ IF │ │ B�│E318│7-18 │
│AGFR │ADD (64<32) │RRE C N │ │ IF │ │ │B918│7-18 │
│AGHI │ADD HALFWORD IMMEDIATE (64) │RI C N │ │ IF │ │ │A7B │7-18 │
│AGR │ADD (64) │RRE C N │ │ IF │ │ │B9�8│7-18 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│AH │ADD HALFWORD │RX C │ A │ IF │ │ B�│4A │7-18 │
│AHI │ADD HALFWORD IMMEDIATE (32) │RI C │ │ IF │ │ │A7A │7-18 │

| │AHY │ADD HALFWORD │RXY C LD│ A │ IF │ │ B�│E37A│7-18 │
│AL │ADD LOGICAL (32) │RX C │ A │ │ │ B�│5E │7-19 │
│ALC │ADD LOGICAL WITH CARRY (32) │RXY C N3│ A │ │ │ B�│E398│7-2� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ALCG │ADD LOGICAL WITH CARRY (64) │RXY C N │ A │ │ │ B�│E388│7-2� │
│ALCGR│ADD LOGICAL WITH CARRY (64) │RRE C N │ │ │ │ │B988│7-2� │
│ALCR │ADD LOGICAL WITH CARRY (32) │RRE C N3│ │ │ │ │B998│7-2� │
│ALG │ADD LOGICAL (64) │RXY C N │ A │ │ │ B�│E3�A│7-19 │
│ALGF │ADD LOGICAL (64<32) │RXY C N │ A │ │ │ B�│E31A│7-19 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ALGFR│ADD LOGICAL (64<32) │RRE C N │ │ │ │ │B91A│7-19 │
│ALGR │ADD LOGICAL (64) │RRE C N │ │ │ │ │B9�A│7-19 │
│ALR │ADD LOGICAL (32) │RR C │ │ │ │ │1E │7-19 │

| │ALY │ADD LOGICAL (32) │RXY C LD│ A │ │ │ B�│E35E│7-19 │
│AP │ADD DECIMAL │SS C │ A │Dd DF │ ST│B� B�│FA │8-5 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│AR │ADD (32) │RR C │ │ IF │ │ │1A │7-18 │
│AU │ADD UNNORMALIZED (short HFP) │RX C │ A │Da EO LS │ │ B�│7E │18-1� │
│AUR │ADD UNNORMALIZED (short HFP) │RR C │ │Da EO LS │ │ │3E │18-1� │
│AW │ADD UNNORMALIZED (long HFP) │RX C │ A │Da EO LS │ │ B�│6E │18-1� │
│AWR │ADD UNNORMALIZED (long HFP) │RR C │ │Da EO LS │ │ │2E │18-1� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│AXBR │ADD (extended BFP) │RRE C │ SP│Db Xi Xo Xu Xx│ │ │B34A│19-18 │
│AXR │ADD NORMALIZED (extended HFP) │RR C │ SP│Da EU EO LS │ │ │36 │18-8 │

| │AY │ADD (32) │RXY C LD│ A │ IF │ │ B�│E35A│7-18 │
│BAKR │BRANCH AND STACK │RRE │ A� │Z� T │B ST│ │B24�│1�-1� │
│BAL │BRANCH AND LINK │RX │ │ │B │ │45 │7-22 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BALR │BRANCH AND LINK │RR │ │ T │B │ │�5 │7-22 │
│BAS │BRANCH AND SAVE │RX │ │ │B │ │4D │7-23 │
│BASR │BRANCH AND SAVE │RR │ │ T │B │ │�D │7-23 │
│BASSM│BRANCH AND SAVE AND SET MODE │RR │ │ T │B │ │�C │7-23 │
│BC │BRANCH ON CONDITION │RX │ │ │B │ │47 │7-25 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 1 of 14). Instructions Arranged by Mnemonic

 Appendix B. Lists of Instructions B-17

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│BCR │BRANCH ON CONDITION │RR │ │ ¢� │B │ │�7 │7-25 │
│BCT │BRANCH ON COUNT (32) │RX │ │ │B │ │46 │7-26 │
│BCTG │BRANCH ON COUNT (64) │RXY N │ │ │B │ │E346│7-26 │
│BCTGR│BRANCH ON COUNT (64) │RRE N │ │ │B │ │B946│7-26 │
│BCTR │BRANCH ON COUNT (32) │RR │ │ │B │ │�6 │7-26 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BRAS │BRANCH RELATIVE AND SAVE │RI │ │ │B │ │A75 │7-28 │
│BRASL│BRANCH RELATIVE AND SAVE LONG │RIL N3│ │ │B │ │C�5 │7-28 │
│BRC │BRANCH RELATIVE ON CONDITION │RI │ │ │B │ │A74 │7-29 │
│BRCL │BRANCH RELATIVE ON CONDITION LONG │RIL N3│ │ │B │ │C�4 │7-29 │
│BRCT │BRANCH RELATIVE ON COUNT (32) │RI │ │ │B │ │A76 │7-29 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BRCTG│BRANCH RELATIVE ON COUNT (64) │RI N │ │ │B │ │A77 │7-3� │
│BRXH │BRANCH RELATIVE ON INDEX HIGH (32) │RSI │ │ │B │ │84 │7-3� │
│BRXHG│BRANCH RELATIVE ON INDEX HIGH (64) │RIE N │ │ │B │ │EC44│7-3� │
│BRXLE│BRANCH RELATIVE ON INDEX L OR E (32)│RSI │ │ │B │ │85 │7-3� │
│BRXLG│BRANCH RELATIVE ON INDEX L OR E (64)│RIE N │ │ │B │ │EC45│7-3� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BSA │BRANCH AND SET AUTHORITY │RRE │Q A� │SO T │B │ │B25A│1�-6 │
│BSG │BRANCH IN SUBSPACE GROUP │RRE │ A� │SO T │B │ R�│B258│1�-13 │
│BSM │BRANCH AND SET MODE │RR │ │ T │B │ │�B │7-24 │
│BXH │BRANCH ON INDEX HIGH (32) │RS │ │ │B │ │86 │7-27 │
│BXHG │BRANCH ON INDEX HIGH (64) │RSY N │ │ │B │ │EB44│7-27 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│BXLE │BRANCH ON INDEX LOW OR EQUAL (32) │RS │ │ │B │ │87 │7-27 │
│BXLEG│BRANCH ON INDEX LOW OR EQUAL (64) │RSY N │ │ │B │ │EB45│7-27 │
│C │COMPARE (32) │RX C │ A │ │ │ B�│59 │7-46 │
│CD │COMPARE (long HFP) │RX C │ A │Da │ │ B�│69 │18-1� │
│CDB │COMPARE (long BFP) │RXE C │ A │Db Xi │ │ B�│ED19│19-23 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CDBR │COMPARE (long BFP) │RRE C │ │Db Xi │ │ │B319│19-23 │
│CDFBR│CONVERT FROM FIXED (32 to long BFP) │RRE │ │Db │ │ │B395│19-26 │
│CDFR │CONVERT FROM FIXED (32 to long HFP) │RRE │ │Da │ │ │B3B5│18-11 │
│CDGBR│CONVERT FROM FIXED (64 to long BFP) │RRE N │ │Db Xx│ │ │B3A5│19-26 │
│CDGR │CONVERT FROM FIXED (64 to long HFP) │RRE N │ │Da │ │ │B3C5│18-11 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CDR │COMPARE (long HFP) │RR C │ │Da │ │ │29 │18-1� │
│CDS │COMPARE DOUBLE AND SWAP (32) │RS C │ A SP│ $ │ ST│ B�│BB │7-53 │
│CDSG │COMPARE DOUBLE AND SWAP (64) │RSY C N │ A SP│ $ │ ST│ B�│EB3E│7-53 │

| │CDSY │COMPARE DOUBLE AND SWAP (32) │RSY C LD│ A SP│ $ │ ST│ B�│EB31│7-53 │
│CE │COMPARE (short HFP) │RX C │ A │Da │ │ B�│79 │18-1� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CEB │COMPARE (short BFP) │RXE C │ A │Db Xi │ │ B�│ED�9│19-23 │
│CEBR │COMPARE (short BFP) │RRE C │ │Db Xi │ │ │B3�9│19-23 │
│CEFBR│CONVERT FROM FIXED (32 to short BFP)│RRE │ │Db Xx│ │ │B394│19-26 │
│CEFR │CONVERT FROM FIXED (32 to short HFP)│RRE │ │Da │ │ │B3B4│18-11 │
│CEGBR│CONVERT FROM FIXED (64 to short BFP)│RRE N │ │Db Xx│ │ │B3A4│19-26 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CEGR │CONVERT FROM FIXED (64 to short HFP)│RRE N │ │Da │ │ │B3C4│18-11 │
│CER │COMPARE (short HFP) │RR C │ │Da │ │ │39 │18-1� │
│CFC │COMPARE AND FORM CODEWORD │S C │ A SP│II GM │ │I1 │B21A│7-46 │
│CFDBR│CONVERT TO FIXED (long BFP to 32) │RRF C │ SP│Db Xi Xx│ │ │B399│19-26 │
│CFDR │CONVERT TO FIXED (long HFP to 32) │RRF C │ SP│Da │ │ │B3B9│18-11 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 2 of 14). Instructions Arranged by Mnemonic

B-18 z/Architecture Principles of Operation

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│CFEBR│CONVERT TO FIXED (short BFP to 32) │RRF C │ SP│Db Xi Xx│ │ │B398│19-26 │
│CFER │CONVERT TO FIXED (short HFP to 32) │RRF C │ SP│Da │ │ │B3B8│18-11 │
│CFXBR│CONVERT TO FIXED (ext. BFP to 32) │RRF C │ SP│Db Xi Xx│ │ │B39A│19-26 │
│CFXR │CONVERT TO FIXED (ext. HFP to 32) │RRF C │ SP│Da │ │ │B3BA│18-11 │
│CG │COMPARE (64) │RXY C N │ A │ │ │ B�│E32�│7-46 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CGDBR│CONVERT TO FIXED (long BFP to 64) │RRF C N │ SP│Db Xi Xx│ │ │B3A9│19-26 │
│CGDR │CONVERT TO FIXED (long HFP to 64) │RRF C N │ SP│Da │ │ │B3C9│18-11 │
│CGEBR│CONVERT TO FIXED (short BFP to 64) │RRF C N │ SP│Db Xi Xx│ │ │B3A8│19-26 │
│CGER │CONVERT TO FIXED (short HFP to 64) │RRF C N │ SP│Da │ │ │B3C8│18-11 │
│CGF │COMPARE (64<32) │RXY C N │ A │ │ │ B�│E33�│7-46 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CGFR │COMPARE (64<32) │RRE C N │ │ │ │ │B93�│7-45 │
│CGHI │COMPARE HALFWORD IMMEDIATE (64) │RI C N │ │ │ │ │A7F │7-55 │
│CGR │COMPARE (64) │RRE C N │ │ │ │ │B92�│7-45 │
│CGXBR│CONVERT TO FIXED (ext. BFP to 64) │RRF C N │ SP│Db Xi Xx│ │ │B3AA│19-26 │
│CGXR │CONVERT TO FIXED (ext. HFP to 64) │RRF C N │ SP│Da │ │ │B3CA│18-11 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CH │COMPARE HALFWORD │RX C │ A │ │ │ B�│49 │7-55 │
│CHI │COMPARE HALFWORD IMMEDIATE (32) │RI C │ │ │ │ │A7E │7-55 │

| │CHY │COMPARE HALFWORD │RXY C LD│ A │ │ │ B�│E379│7-55 │
│CKSM │CHECKSUM │RRE C │ A SP│ │ │ R�│B241│7-31 │
│CL │COMPARE LOGICAL (32) │RX C │ A │ │ │ B�│55 │7-56 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CLC │COMPARE LOGICAL (character) │SS C │ A │ │ │B� B�│D5 │7-56 │
│CLCL │COMPARE LOGICAL LONG │RR C │ A SP│II │ │R� R�│�F │7-58 │
│CLCLE│COMPARE LOGICAL LONG EXTENDED │RS C │ A SP│ │ │R� R�│A9 │7-6� │
│CLCLU│COMPARE LOGICAL LONG UNICODE │RSY C E2│ A SP│ │ │R� R�│EB8F│7-64 │
│CLG │COMPARE LOGICAL (64) │RXY C N │ A │ │ │ B�│E321│7-56 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CLGF │COMPARE LOGICAL (64<32) │RXY C N │ A │ │ │ B�│E331│7-56 │
│CLGFR│COMPARE LOGICAL (64<32) │RRE C N │ │ │ │ │B931│7-56 │
│CLGR │COMPARE LOGICAL (64) │RRE C N │ │ │ │ │B921│7-56 │
│CLI │COMPARE LOGICAL (immediate) │SI C │ A │ │ │B� │95 │7-56 │

| │CLIY │COMPARE LOGICAL (immediate) │SIY C LD│ A │ │ │B� │EB55│7-56 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CLM │COMPARE LOGICAL C. UNDER MASK (low) │RS C │ A │ │ │ B�│BD │7-57 │
│CLMH │COMPARE LOGICAL C. UNDER MASK (high)│RSY C N │ A │ │ │ B�│EB2�│7-57 │

| │CLMY │COMPARE LOGICAL C. UNDER MASK (low) │RSY C LD│ A │ │ │ B�│EB21│7-57 │
│CLR │COMPARE LOGICAL (32) │RR C │ │ │ │ │15 │7-56 │
│CLST │COMPARE LOGICAL STRING │RRE C │ A SP│ G� │ │R� R�│B25D│7-67 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │CLY │COMPARE LOGICAL (32) │RXY C LD│ A │ │ │ B�│E355│7-56 │
│CMPSC│COMPRESSION CALL │RRE C │ A SP│II Dd GM │ ST│R� R�│B263│7-72 │
│CP │COMPARE DECIMAL │SS C │ A │Dd │ │B� B�│F9 │8-6 │
│CPYA │COPY ACCESS │RRE │ │ │ │U� U�│B24D│7-1�4 │
│CR │COMPARE (32) │RR C │ │ │ │ │19 │7-45 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CS │COMPARE AND SWAP (32) │RS C │ A SP│ $ │ ST│ B�│BA │7-53 │
│CSG │COMPARE AND SWAP (64) │RSY C N │ A SP│ $ │ ST│ B�│EB3�│7-53 │
│CSP │COMPARE AND SWAP AND PURGE │RRE C │P A� SP│ $ │ ST│ R�│B25�│1�-18 │

| │CSPG │COMPARE AND SWAP AND PURGE │RRE C DE│P A� SP│ $ │ ST│ R�│B98A│1�-18 │
| │CSY │COMPARE AND SWAP (32) │RSY C LD│ A SP│ $ │ ST│ B�│EB14│7-53 │

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 3 of 14). Instructions Arranged by Mnemonic

 Appendix B. Lists of Instructions B-19

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│CUSE │COMPARE UNTIL SUBSTRING EQUAL │RRE C │ A SP│II GM │ │R� R�│B257│7-68 │
│CUTFU│CONVERT UTF-8 TO UNICODE │RRE C │ A SP│ │ ST│R� R�│B2A7│7-1�1 │
│CUUTF│CONVERT UNICODE TO UTF-8 │RRE C │ A SP│ │ ST│R� R�│B2A6│7-98 │
│CVB │CONVERT TO BINARY (32) │RX │ A │Dd IK │ │ B�│4F │7-97 │
│CVBG │CONVERT TO BINARY (64) │RXY N │ A │Dd IK │ │ B�│E3�E│7-97 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │CVBY │CONVERT TO BINARY (32) │RXY LD│ A │Dd IK │ │ B�│E3�6│7-97 │
│CVD │CONVERT TO DECIMAL (32) │RX │ A │ │ ST│ B�│4E │7-98 │
│CVDG │CONVERT TO DECIMAL (64) │RXY N │ A │ │ ST│ B�│E32E│7-98 │

| │CVDY │CONVERT TO DECIMAL (32) │RXY LD│ A │ │ ST│ B�│E326│7-98 │
│CXBR │COMPARE (extended BFP) │RRE C │ SP│Db Xi │ │ │B349│19-23 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│CXFBR│CONVERT FROM FIXED (32 to ext. BFP) │RRE │ SP│Db │ │ │B396│19-26 │
│CXFR │CONVERT FROM FIXED (32 to ext. HFP) │RRE │ SP│Da │ │ │B3B6│18-11 │
│CXGBR│CONVERT FROM FIXED (64 to ext. BFP) │RRE N │ SP│Db │ │ │B3A6│19-26 │
│CXGR │CONVERT FROM FIXED (64 to ext. HFP) │RRE N │ SP│Da │ │ │B3C6│18-11 │
│CXR │COMPARE (extended HFP) │RRE C │ SP│Da │ │ │B369│18-1� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │CY │COMPARE (32) │RXY C LD│ A │ │ │ B�│E359│7-46 │
│D │DIVIDE (32<64) │RX │ A SP│ IK │ │ B�│5D │7-1�4 │
│DD │DIVIDE (long HFP) │RX │ A │Da EU EO FK │ │ B�│6D │18-12 │
│DDB │DIVIDE (long BFP) │RXE │ A │Db Xi Xz Xo Xu Xx│ │ B�│ED1D│19-29 │
│DDBR │DIVIDE (long BFP) │RRE │ │Db Xi Xz Xo Xu Xx│ │ │B31D│19-29 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│DDR │DIVIDE (long HFP) │RR │ │Da EU EO FK │ │ │2D │18-12 │
│DE │DIVIDE (short HFP) │RX │ A │Da EU EO FK │ │ B�│7D │18-12 │
│DEB │DIVIDE (short BFP) │RXE │ A │Db Xi Xz Xo Xu Xx│ │ B�│ED�D│19-29 │
│DEBR │DIVIDE (short BFP) │RRE │ │Db Xi Xz Xo Xu Xx│ │ │B3�D│19-29 │
│DER │DIVIDE (short HFP) │RR │ │Da EU EO FK │ │ │3D │18-12 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│DIDBR│DIVIDE TO INTEGER (long BFP) │RRF C │ SP│Db Xi Xu Xx│ │ │B35B│19-29 │
│DIEBR│DIVIDE TO INTEGER (short BFP) │RRF C │ SP│Db Xi Xu Xx│ │ │B353│19-29 │
│DL │DIVIDE LOGICAL (32<64) │RXY N3│ A SP│ IK │ │ B�│E397│7-1�5 │
│DLG │DIVIDE LOGICAL (64<128) │RXY N │ A SP│ IK │ │ B�│E387│7-1�5 │
│DLGR │DIVIDE LOGICAL (64<128) │RRE N │ SP│ IK │ │ │B987│7-1�5 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│DLR │DIVIDE LOGICAL (32<64) │RRE N3│ SP│ IK │ │ │B997│7-1�5 │
│DP │DIVIDE DECIMAL │SS │ A SP│Dd DK │ ST│B� B�│FD │8-6 │
│DR │DIVIDE (32<64) │RR │ SP│ IK │ │ │1D │7-1�4 │
│DSG │DIVIDE SINGLE (64) │RXY N │ A SP│ IK │ │ B�│E3�D│7-1�6 │
│DSGF │DIVIDE SINGLE (64<32) │RXY N │ A SP│ IK │ │ B�│E31D│7-1�6 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│DSGFR│DIVIDE SINGLE (64<32) │RRE N │ SP│ IK │ │ │B91D│7-1�6 │
│DSGR │DIVIDE SINGLE (64) │RRE N │ SP│ IK │ │ │B9�D│7-1�6 │
│DXBR │DIVIDE (extended BFP) │RRE │ SP│Db Xi Xz Xo Xu Xx│ │ │B34D│19-29 │
│DXR │DIVIDE (extended HFP) │RRE │ SP│Da EU EO FK │ │ │B22D│18-12 │
│EAR │EXTRACT ACCESS │RRE │ │ │ │ U�│B24F│7-1�8 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│ED │EDIT │SS C │ A │Dd │ ST│B� B�│DE │8-7 │
│EDMK │EDIT AND MARK │SS C │ A │Dd G1 │ ST│B� B�│DF │8-9 │
│EFPC │EXTRACT FPC │RRE │ │Db │ │ │B38C│19-33 │
│EPAR │EXTRACT PRIMARY ASN │RRE │Q │SO │ │ │B226│1�-21 │
│EPSW │EXTRACT PSW │RRE N3│ │ │ │ │B98D│7-1�9 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 4 of 14). Instructions Arranged by Mnemonic

B-20 z/Architecture Principles of Operation

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│EREG │EXTRACT STACKED REGISTERS (32) │RRE │ A� │SE │ │U� U�│B249│1�-22 │
│EREGG│EXTRACT STACKED REGISTERS (64) │RRE N │ A� │SE │ │U� U�│B9�E│1�-22 │
│ESAR │EXTRACT SECONDARY ASN │RRE │Q │SO │ │ │B227│1�-21 │
│ESEA │EXTRACT AND SET EXTENDED AUTHORITY │RRE N │P │ │ │ │B99D│1�-21 │
│ESTA │EXTRACT STACKED STATE │RRE C │ A� SP│SE │ │ │B24A│1�-23 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│EX │EXECUTE │RX │ AI SP│ EX │ │ │44 │7-1�7 │
│FIDBR│LOAD FP INTEGER (long BFP) │RRF │ SP│Db Xi Xx│ │ │B35F│19-35 │
│FIDR │LOAD FP INTEGER (long HFP) │RRE │ │Da │ │ │B37F│18-15 │
│FIEBR│LOAD FP INTEGER (short BFP) │RRF │ SP│Db Xi Xx│ │ │B357│19-35 │
│FIER │LOAD FP INTEGER (short HFP) │RRE │ │Da │ │ │B377│18-15 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│FIXBR│LOAD FP INTEGER (extended BFP) │RRF │ SP│Db Xi Xx│ │ │B347│19-35 │
│FIXR │LOAD FP INTEGER (extended HFP) │RRE │ SP│Da │ │ │B367│18-15 │
│HDR │HALVE (long HFP) │RR │ │Da EU │ │ │24 │18-13 │
│HER │HALVE (short HFP) │RR │ │Da EU │ │ │34 │18-13 │
│IAC │INSERT ADDRESS SPACE CONTROL │RRE C │Q │SO │ │ │B224│1�-26 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│IC │INSERT CHARACTER │RX │ A │ │ │ B�│43 │7-1�9 │
│ICM │INSERT CHARACTERS UNDER MASK (low) │RS C │ A │ │ │ B�│BF │7-1�9 │
│ICMH │INSERT CHARACTERS UNDER MASK (high) │RSY C N │ A │ │ │ B�│EB8�│7-1�9 │

| │ICMY │INSERT CHARACTERS UNDER MASK (low) │RSY C LD│ A │ │ │ B�│EB81│7-1�9 │
| │ICY │INSERT CHARACTER │RXY LD│ A │ │ │ B�│E373│7-1�9 │

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
| │IDTE │INVALIDATE DAT TABLE ENTRY │RRF DE│P A� │ $ │ │ │B98E│1�-29 │

│IIHH │INSERT IMMEDIATE (high high) │RI N │ │ │ │ │A5� │7-11� │
│IIHL │INSERT IMMEDIATE (high low) │RI N │ │ │ │ │A51 │7-11� │
│IILH │INSERT IMMEDIATE (low high) │RI N │ │ │ │ │A52 │7-11� │
│IILL │INSERT IMMEDIATE (low low) │RI N │ │ │ │ │A53 │7-11� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│IPK │INSERT PSW KEY │S │Q │ G2 │ │ │B2�B│1�-27 │
│IPM │INSERT PROGRAM MASK │RRE │ │ │ │ │B222│7-111 │
│IPTE │INVALIDATE PAGE TABLE ENTRY │RRE │P A� │ $ │ │ │B221│1�-33 │
│ISKE │INSERT STORAGE KEY EXTENDED │RRE │P A� │ │ │ │B229│1�-27 │
│IVSK │INSERT VIRTUAL STORAGE KEY │RRE │Q A� │SO │ │ R�│B223│1�-28 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│KDB │COMPARE AND SIGNAL (long BFP) │RXE C │ A │Db Xi │ │ B�│ED18│19-24 │
│KDBR │COMPARE AND SIGNAL (long BFP) │RRE C │ │Db Xi │ │ │B318│19-24 │
│KEB │COMPARE AND SIGNAL (short BFP) │RXE C │ A │Db Xi │ │ B�│ED�8│19-24 │
│KEBR │COMPARE AND SIGNAL (short BFP) │RRE C │ │Db Xi │ │ │B3�8│19-24 │

| │KIMD │COMPUTE INTERMEDIATE MESSAGE DIGEST │RRE C MS│ A SP│ GM I1 │ ST│ R�│B93E│7-84 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │KLMD │COMPUTE LAST MESSAGE DIGEST │RRE C MS│ A SP│ GM I1 │ ST│ R�│B93F│7-84 │
| │KM │CIPHER MESSAGE │RRE C MS│ A SP│ GM I1 │ ST│R� R�│B92E│7-35 │
| │KMAC │COMPUTE MESSAGE AUTHENTICATION CODE │RRE C MS│ A SP│ GM I1 │ ST│ R�│B91E│7-91 │
| │KMC │CIPHER MESSAGE WITH CHAINING │RRE C MS│ A SP│ GM I1 │ ST│R� R�│B92F│7-35 │

│KXBR │COMPARE AND SIGNAL (extended BFP) │RRE C │ SP│Db Xi │ │ │B348│19-24 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│L │LOAD (32) │RX │ A │ │ │ B�│58 │7-111 │
│LA │LOAD ADDRESS │RX │ │ │ │ │41 │7-112 │
│LAE │LOAD ADDRESS EXTENDED │RX │ │ │ │U� BP│51 │7-112 │
│LAM │LOAD ACCESS MULTIPLE │RS │ A SP│ │ │ UB│9A │7-111 │

| │LAMY │LOAD ACCESS MULTIPLE │RSY LD│ A SP│ │ │ UB│EB9A│7-111 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 5 of 14). Instructions Arranged by Mnemonic

 Appendix B. Lists of Instructions B-21

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│LARL │LOAD ADDRESS RELATIVE LONG │RIL N3│ │ │ │ │C�� │7-113 │
│LASP │LOAD ADDRESS SPACE PARAMETERS │SSE C │P A� SP│SO │ │B� │E5��│1�-35 │

| │LAY │LOAD ADDRESS │RXY LD│ │ │ │ │E371│7-112 │
| │LB │LOAD BYTE (32) │RXY LD│ A │ │ │ │E376│7-114 │

│LCDBR│LOAD COMPLEMENT (long BFP) │RRE C │ │Db │ │ │B313│19-34 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LCDR │LOAD COMPLEMENT (long HFP) │RR C │ │Da │ │ │23 │18-14 │
│LCEBR│LOAD COMPLEMENT (short BFP) │RRE C │ │Db │ │ │B3�3│19-34 │
│LCER │LOAD COMPLEMENT (short HFP) │RR C │ │Da │ │ │33 │18-14 │
│LCGFR│LOAD COMPLEMENT (64<32) │RRE C N │ │ IF │ │ │B913│7-115 │
│LCGR │LOAD COMPLEMENT (64) │RRE C N │ │ IF │ │ │B9�3│7-115 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LCR │LOAD COMPLEMENT (32) │RR C │ │ IF │ │ │13 │7-114 │
│LCTL │LOAD CONTROL (32) │RS │P A SP│ │ │ B�│B7 │1�-44 │
│LCTLG│LOAD CONTROL (64) │RSY N │P A SP│ │ │ B�│EB2F│1�-44 │
│LCXBR│LOAD COMPLEMENT (extended BFP) │RRE C │ SP│Db │ │ │B343│19-34 │
│LCXR │LOAD COMPLEMENT (extended HFP) │RRE C │ SP│Da │ │ │B363│18-14 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LD │LOAD (long) │RX │ A │Da │ │ B�│68 │9-1� │
│LDE │LOAD LENGTHENED (short to long HFP) │RXE │ A │Da │ │ B�│ED24│18-15 │
│LDEB │LOAD LENGTHENED (short to long BFP) │RXE │ A │Db Xi │ │ B�│ED�4│19-37 │
│LDEBR│LOAD LENGTHENED (short to long BFP) │RRE │ │Db Xi │ │ │B3�4│19-37 │
│LDER │LOAD LENGTHENED (short to long HFP) │RRE │ │Da │ │ │B324│18-15 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LDR │LOAD (long) │RR │ │Da │ │ │28 │9-1� │
│LDXBR│LOAD ROUNDED (extended to long BFP) │RRE │ SP│Db Xi Xo Xu Xx│ │ │B345│19-38 │
│LDXR │LOAD ROUNDED (extended to long HFP) │RR │ SP│Da EO │ │ │25 │18-17 │

| │LDY │LOAD (long) │RXY LD│ A │Da │ │ B�│ED65│9-11 │
│LE │LOAD (short) │RX │ A │Da │ │ B�│78 │9-1� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LEDBR│LOAD ROUNDED (long to short BFP) │RRE │ │Db Xi Xo Xu Xx│ │ │B344│19-38 │
│LEDR │LOAD ROUNDED (long to short HFP) │RR │ │Da EO │ │ │35 │18-17 │
│LER │LOAD (short) │RR │ │Da │ │ │38 │9-1� │
│LEXBR│LOAD ROUNDED (extended to short BFP)│RRE │ SP│Db Xi Xo Xu Xx│ │ │B346│19-38 │
│LEXR │LOAD ROUNDED (extended to short HFP)│RRE │ SP│Da EO │ │ │B366│18-17 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │LEY │LOAD (short) │RXY LD│ A │Da │ │ B�│ED64│9-11 │
│LFPC │LOAD FPC │S │ A SP│Db │ │ B�│B29D│19-36 │
│LG │LOAD (64) │RXY N │ A │ │ │ B�│E3�4│7-111 │

| │LGB │LOAD BYTE (64) │RXY LD│ A │ │ │ │E377│7-114 │
│LGF │LOAD (64<32) │RXY N │ A │ │ │ B�│E314│7-111 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LGFR │LOAD (64<32) │RRE N │ │ │ │ │B914│7-111 │
│LGH │LOAD HALFWORD (64) │RXY N │ A │ │ │ B�│E315│7-115 │
│LGHI │LOAD HALFWORD IMMEDIATE (64) │RI N │ │ │ │ │A79 │7-115 │
│LGR │LOAD (64) │RRE N │ │ │ │ │B9�4│7-111 │
│LH │LOAD HALFWORD (32) │RX │ A │ │ │ B�│48 │7-115 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LHI │LOAD HALFWORD IMMEDIATE (32) │RI │ │ │ │ │A78 │7-115 │

| │LHY │LOAD HALFWORD (32) │RXY LD│ A │ │ │ B�│E378│7-115 │
│LLGC │LOAD LOGICAL CHARACTER │RXY N │ A │ │ │ B�│E39�│7-116 │
│LLGF │LOAD LOGICAL (64<32) │RXY N │ A │ │ │ B�│E316│7-116 │
│LLGFR│LOAD LOGICAL (64<32) │RRE N │ │ │ │ │B916│7-116 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 6 of 14). Instructions Arranged by Mnemonic

B-22 z/Architecture Principles of Operation

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│LLGH │LOAD LOGICAL HALFWORD │RXY N │ A │ │ │ B�│E391│7-116 │
│LLGT │LOAD LOGICAL THIRTY ONE BITS │RXY N │ A │ │ │ B�│E317│7-117 │
│LLGT │LOAD LOGICAL THIRTY ONE BITS │RXY N │ A │ │ │ B�│E317│7-117 │
│LLGTR│LOAD LOGICAL THIRTY ONE BITS │RRE N │ │ │ │ │B917│7-117 │
│LLGTR│LOAD LOGICAL THIRTY ONE BITS │RRE N │ │ │ │ │B917│7-117 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LLIHH│LOAD LOGICAL IMMEDIATE (high high) │RI N │ │ │ │ │A5C │7-116 │
│LLIHL│LOAD LOGICAL IMMEDIATE (high low) │RI N │ │ │ │ │A5D │7-116 │
│LLILH│LOAD LOGICAL IMMEDIATE (low high) │RI N │ │ │ │ │A5E │7-116 │
│LLILH│LOAD LOGICAL IMMEDIATE (low high) │RI N │ │ │ │ │A5E │7-116 │
│LLILL│LOAD LOGICAL IMMEDIATE (low low) │RI N │ │ │ │ │A5F │7-116 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LLILL│LOAD LOGICAL IMMEDIATE (low low) │RI N │ │ │ │ │A5F │7-116 │
│LM │LOAD MULTIPLE (32) │RS │ A │ │ │ B�│98 │7-117 │
│LMD │LOAD MULTIPLE DISJOINT │SS N │ A │ │ │B� B"│EF │7-118 │
│LMG │LOAD MULTIPLE (64) │RSY N │ A │ │ │ B�│EB�4│7-117 │
│LMH │LOAD MULTIPLE HIGH │RSY N │ A │ │ │ B�│EB96│7-118 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │LMY │LOAD MULTIPLE (32) │RSY LD│ A │ │ │ B�│EB98│7-117 │
│LNDBR│LOAD NEGATIVE (long BFP) │RRE C │ │Db │ │ │B311│19-37 │
│LNDR │LOAD NEGATIVE (long HFP) │RR C │ │Da │ │ │21 │18-16 │
│LNEBR│LOAD NEGATIVE (short BFP) │RRE C │ │Db │ │ │B3�1│19-37 │
│LNER │LOAD NEGATIVE (short HFP) │RR C │ │Da │ │ │31 │18-16 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LNGFR│LOAD NEGATIVE (64<32) │RRE C N │ │ │ │ │B911│7-119 │
│LNGR │LOAD NEGATIVE (64) │RRE C N │ │ │ │ │B9�1│7-119 │
│LNR │LOAD NEGATIVE (32) │RR C │ │ │ │ │11 │7-118 │
│LNXBR│LOAD NEGATIVE (extended BFP) │RRE C │ SP│Db │ │ │B341│19-37 │
│LNXR │LOAD NEGATIVE (extended HFP) │RRE C │ SP│Da │ │ │B361│18-16 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LPDBR│LOAD POSITIVE (long BFP) │RRE C │ │Db │ │ │B31�│19-38 │
│LPDR │LOAD POSITIVE (long HFP) │RR C │ │Da │ │ │2� │18-16 │
│LPEBR│LOAD POSITIVE (short BFP) │RRE C │ │Db │ │ │B3��│19-38 │
│LPER │LOAD POSITIVE (short HFP) │RR C │ │Da │ │ │3� │18-16 │
│LPGFR│LOAD POSITIVE (64<32) │RRE C N │ │ IF │ │ │B91�│7-119 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LPGR │LOAD POSITIVE (64) │RRE C N │ │ IF │ │ │B9��│7-119 │
│LPQ │LOAD PAIR FROM QUADWORD │RXY N │ A SP│ │ │ B�│E38F│7-119 │
│LPR │LOAD POSITIVE (32) │RR C │ │ IF │ │ │1� │7-119 │
│LPSW │LOAD PSW │S L │P A SP│ ¢ │ │ B�│82 │1�-44 │
│LPSWE│LOAD PSW EXTENDED │S L N │P A SP│ ¢ │ │ B�│B2B2│1�-45 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LPXBR│LOAD POSITIVE (extended BFP) │RRE C │ SP│Db │ │ │B34�│19-38 │
│LPXR │LOAD POSITIVE (extended HFP) │RRE C │ SP│Da │ │ │B36�│18-16 │
│LR │LOAD (32) │RR │ │ │ │ │18 │7-111 │
│LRA │LOAD REAL ADDRESS (32) │RX C │P A� │SO │ │ BP│B1 │1�-46 │
│LRAG │LOAD REAL ADDRESS (64) │RXY C N │P A� │ │ │ BP│E3�3│1�-46 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │LRAY │LOAD REAL ADDRESS (32) │RXY C LD│P A� │SO │ │ BP│E313│1�-46 │
│LRDR │LOAD ROUNDED (extended to long HFP) │RR │ SP│Da EO │ │ │25 │18-17 │
│LRER │LOAD ROUNDED (long to short HFP) │RR │ │Da EO │ │ │35 │18-17 │
│LRV │LOAD REVERSED (32) │RXY N3│ A │ │ │ B�│E31E│7-12� │
│LRVG │LOAD REVERSED (64) │RXY N │ A │ │ │ B�│E3�F│7-12� │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 7 of 14). Instructions Arranged by Mnemonic

 Appendix B. Lists of Instructions B-23

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│LRVGR│LOAD REVERSED (64) │RRE N │ │ │ │ │B9�F│7-12� │
│LRVH │LOAD REVERSED (16) │RXY N3│ A │ │ │ B�│E31F│7-12� │
│LRVR │LOAD REVERSED (32) │RRE N3│ │ │ │ │B91F│7-12� │
│LTDBR│LOAD AND TEST (long BFP) │RRE C │ │Db Xi │ │ │B312│19-34 │
│LTDR │LOAD AND TEST (long HFP) │RR C │ │Da │ │ │22 │18-14 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LTEBR│LOAD AND TEST (short BFP) │RRE C │ │Db Xi │ │ │B3�2│19-34 │
│LTER │LOAD AND TEST (short HFP) │RR C │ │Da │ │ │32 │18-14 │
│LTGFR│LOAD AND TEST (64<32) │RRE C N │ │ │ │ │B912│7-114 │
│LTGR │LOAD AND TEST (64) │RRE C N │ │ │ │ │B9�2│7-114 │
│LTR │LOAD AND TEST (32) │RR C │ │ │ │ │12 │7-114 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LTXBR│LOAD AND TEST (extended BFP) │RRE C │ SP│Db Xi │ │ │B342│19-34 │
│LTXR │LOAD AND TEST (extended HFP) │RRE C │ SP│Da │ │ │B362│18-14 │
│LURA │LOAD USING REAL ADDRESS (32) │RRE │P A� SP│ │ │ │B24B│1�-51 │
│LURAG│LOAD USING REAL ADDRESS (64) │RRE N │P A� SP│ │ │ │B9�5│1�-51 │
│LXD │LOAD LENGTHENED (long to ext. HFP) │RXE │ A SP│Da │ │ B�│ED25│18-15 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LXDB │LOAD LENGTHENED (long to ext. BFP) │RXE │ A SP│Db Xi │ │ B�│ED�5│19-37 │
│LXDBR│LOAD LENGTHENED (long to ext. BFP) │RRE │ SP│Db Xi │ │ │B3�5│19-37 │
│LXDR │LOAD LENGTHENED (long to ext. HFP) │RRE │ SP│Da │ │ │B325│18-15 │
│LXE │LOAD LENGTHENED (short to ext. HFP) │RXE │ A SP│Da │ │ B�│ED26│18-15 │
│LXEB │LOAD LENGTHENED (short to ext. BFP) │RXE │ A SP│Db Xi │ │ B�│ED�6│19-37 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LXEBR│LOAD LENGTHENED (short to ext. BFP) │RRE │ SP│Db Xi │ │ │B3�6│19-37 │
│LXER │LOAD LENGTHENED (short to ext. HFP) │RRE │ SP│Da │ │ │B326│18-15 │
│LXR │LOAD (extended) │RRE │ SP│Da │ │ │B365│9-1� │

| │LY │LOAD (32) │RXY LD│ A │ │ │ B�│E358│7-111 │
│LZDR │LOAD ZERO (long) │RRE │ │Da │ │ │B375│9-11 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│LZER │LOAD ZERO (short) │RRE │ │Da │ │ │B374│9-11 │
│LZXR │LOAD ZERO (extended) │RRE │ SP│Da │ │ │B376│9-11 │
│M │MULTIPLY (64<32) │RX │ A SP│ │ │ B�│5C │7-136 │

| │MAD │MULTIPLY AND ADD (long HFP) │RXF HM│ A │Da EU EO │ │ B�│ED3E│18-19 │
│MADB │MULTIPLY AND ADD (long BFP) │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED1E│19-41 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MADBR│MULTIPLY AND ADD (long BFP) │RRF │ │Db Xi Xo Xu Xx│ │ │B31E│19-41 │

| │MADR │MULTIPLY AND ADD (long HFP) │RRF HM│ │Da EU EO │ │ │B33E│18-19 │
| │MAE │MULTIPLY AND ADD (short HFP) │RXF HM│ A │Da EU EO │ │ B�│ED2E│18-19 │

│MAEB │MULTIPLY AND ADD (short BFP) │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED�E│19-41 │
│MAEBR│MULTIPLY AND ADD (short BFP) │RRF │ │Db Xi Xo Xu Xx│ │ │B3�E│19-41 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │MAER │MULTIPLY AND ADD (short HFP) │RRF HM│ │Da EU EO │ │ │B32E│18-19 │
│MC │MONITOR CALL │SI │ SP│ MO │ │ │AF │7-121 │
│MD │MULTIPLY (long HFP) │RX │ A │Da EU EO │ │ B�│6C │18-18 │
│MDB │MULTIPLY (long BFP) │RXE │ A │Db Xi Xo Xu Xx│ │ B�│ED1C│19-39 │
│MDBR │MULTIPLY (long BFP) │RRE │ │Db Xi Xo Xu Xx│ │ │B31C│19-39 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MDE │MULTIPLY (short to long HFP) │RX │ A │Da EU EO │ │ B�│7C │18-18 │
│MDEB │MULTIPLY (short to long BFP) │RXE │ A │Db Xi │ │ B�│ED�C│19-39 │
│MDEBR│MULTIPLY (short to long BFP) │RRE │ │Db Xi │ │ │B3�C│19-39 │
│MDER │MULTIPLY (short to long HFP) │RR │ │Da EU EO │ │ │3C │18-18 │
│MDR │MULTIPLY (long HFP) │RR │ │Da EU EO │ │ │2C │18-18 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 8 of 14). Instructions Arranged by Mnemonic

B-24 z/Architecture Principles of Operation

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│ME │MULTIPLY (short to long HFP) │RX │ A │Da EU EO │ │ B�│7C │18-18 │
│MEE │MULTIPLY (short HFP) │RXE │ A │Da EU EO │ │ B�│ED37│18-18 │
│MEEB │MULTIPLY (short BFP) │RXE │ A │Db Xi Xo Xu Xx│ │ B�│ED17│19-39 │
│MEEBR│MULTIPLY (short BFP) │RRE │ │Db Xi Xo Xu Xx│ │ │B317│19-39 │
│MEER │MULTIPLY (short HFP) │RRE │ │Da EU EO │ │ │B337│18-18 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MER │MULTIPLY (short to long HFP) │RR │ │Da EU EO │ │ │3C │18-18 │
│MGHI │MULTIPLY HALFWORD IMMEDIATE (64) │RI N │ │ │ │ │A7D │7-137 │
│MH │MULTIPLY HALFWORD (32) │RX │ A │ │ │ B�│4C │7-137 │
│MHI │MULTIPLY HALFWORD IMMEDIATE (32) │RI │ │ │ │ │A7C │7-137 │
│ML │MULTIPLY LOGICAL (64<32) │RXY N3│ A SP│ │ │ B�│E396│7-138 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MLG │MULTIPLY LOGICAL (128<64) │RXY N │ A SP│ │ │ B�│E386│7-138 │
│MLGR │MULTIPLY LOGICAL (128<64) │RRE N │ SP│ │ │ │B986│7-138 │
│MLR │MULTIPLY LOGICAL (64<32) │RRE N3│ SP│ │ │ │B996│7-138 │
│MP │MULTIPLY DECIMAL │SS │ A SP│Dd │ ST│B� B�│FC │8-11 │
│MR │MULTIPLY (64<32) │RR │ SP│ │ │ │1C │7-136 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MS │MULTIPLY SINGLE (32) │RX │ A │ │ │ B�│71 │7-139 │

| │MSD │MULTIPLY AND SUBTRACT (long HFP) │RXF HM│ A │Da EU EO │ │ B�│ED3F│18-2� │
│MSDB │MULTIPLY AND SUBTRACT (long BFP) │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED1F│19-41 │
│MSDBR│MULTIPLY AND SUBTRACT (long BFP) │RRF │ │Db Xi Xo Xu Xx│ │ │B31F│19-41 │

| │MSDR │MULTIPLY AND SUBTRACT (long HFP) │RRF HM│ │Da EU EO │ │ │B33F│18-2� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │MSE │MULTIPLY AND SUBTRACT (short HFP) │RXF HM│ A │Da EU EO │ │ B�│ED2F│18-2� │
│MSEB │MULTIPLY AND SUBTRACT (short BFP) │RXF │ A │Db Xi Xo Xu Xx│ │ B�│ED�F│19-41 │
│MSEBR│MULTIPLY AND SUBTRACT (short BFP) │RRF │ │Db Xi Xo Xu Xx│ │ │B3�F│19-41 │

| │MSER │MULTIPLY AND SUBTRACT (short HFP) │RRF HM│ │Da EU EO │ │ │B32F│18-2� │
│MSG │MULTIPLY SINGLE (64) │RXY N │ A │ │ │ B�│E3�C│7-139 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MSGF │MULTIPLY SINGLE (64<32) │RXY N │ A │ │ │ B�│E31C│7-139 │
│MSGFR│MULTIPLY SINGLE (64<32) │RRE N │ │ │ │ │B91C│7-139 │
│MSGR │MULTIPLY SINGLE (64) │RRE N │ │ │ │ │B9�C│7-139 │
│MSR │MULTIPLY SINGLE (32) │RRE │ │ │ │ │B252│7-138 │
│MSTA │MODIFY STACKED STATE │RRE │ A� SP│SE │ ST│ │B247│1�-51 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │MSY │MULTIPLY SINGLE (32) │RXY LD│ A │ │ │ B�│E351│7-139 │
│MVC │MOVE (character) │SS │ A │ │ ST│B� B�│D2 │7-122 │
│MVCDK│MOVE WITH DESTINATION KEY │SSE │Q A │ GM │ ST│B� B�│E5�F│1�-57 │
│MVCIN│MOVE INVERSE │SS │ A │ │ ST│B� B�│E8 │7-122 │
│MVCK │MOVE WITH KEY │SS C │Q A │ │ ST│B� B�│D9 │1�-58 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MVCL │MOVE LONG │RR C │ A SP│II │ ST│R� R�│�E │7-123 │
│MVCLE│MOVE LONG EXTENDED │RS C │ A SP│ │ ST│R� R�│A8 │7-127 │
│MVCLU│MOVE LONG UNICODE │RSY C E2│ A SP│ │ ST│R� R�│EB8E│7-13� │
│MVCP │MOVE TO PRIMARY │SS C │Q A │SO ¢ │ ST│ │DA │1�-55 │
│MVCS │MOVE TO SECONDARY │SS C │Q A │SO ¢ │ ST│ │DB │1�-55 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MVCSK│MOVE WITH SOURCE KEY │SSE │Q A │ GM │ ST│B� B�│E5�E│1�-59 │
│MVI │MOVE (immediate) │SI │ A │ │ ST│B� │92 │7-121 │

| │MVIY │MOVE (immediate) │SIY LD│ A │ │ ST│B� │EB52│7-121 │
│MVN │MOVE NUMERICS │SS │ A │ │ ST│B� B�│D1 │7-134 │
│MVO │MOVE WITH OFFSET │SS │ A │ │ ST│B� B�│F1 │7-135 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 9 of 14). Instructions Arranged by Mnemonic

 Appendix B. Lists of Instructions B-25

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│MVPG │MOVE PAGE │RRE C │Q A SP│ G� │ ST│R� R�│B254│1�-53 │
│MVST │MOVE STRING │RRE C │ A SP│ G� │ ST│R� R�│B255│7-134 │
│MVZ │MOVE ZONES │SS │ A │ │ ST│B� B�│D3 │7-136 │
│MXBR │MULTIPLY (extended BFP) │RRE │ SP│Db Xi Xo Xu Xx│ │ │B34C│19-39 │
│MXD │MULTIPLY (long to extended HFP) │RX │ A SP│Da EU EO │ │ B�│67 │18-18 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│MXDB │MULTIPLY (long to extended BFP) │RXE │ A SP│Db Xi │ │ B�│ED�7│19-39 │
│MXDBR│MULTIPLY (long to extended BFP) │RRE │ SP│Db Xi │ │ │B3�7│19-39 │
│MXDR │MULTIPLY (long to extended HFP) │RR │ SP│Da EU EO │ │ │27 │18-18 │
│MXR │MULTIPLY (extended HFP) │RR │ SP│Da EU EO │ │ │26 │18-18 │
│N │AND (32) │RX C │ A │ │ │ B�│54 │7-2� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│NC │AND (character) │SS C │ A │ │ ST│B� B�│D4 │7-21 │
│NG │AND (64) │RXY C N │ A │ │ │ B�│E38�│7-2� │
│NGR │AND (64) │RRE C N │ │ │ │ │B98�│7-2� │
│NI │AND (immediate) │SI C │ A │ │ ST│B� │94 │7-2� │
│NIHH │AND IMMEDIATE (high high) │RI C N │ │ │ │ │A54 │7-21 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│NIHL │AND IMMEDIATE (high low) │RI C N │ │ │ │ │A55 │7-21 │
│NILH │AND IMMEDIATE (low high) │RI C N │ │ │ │ │A56 │7-21 │
│NILL │AND IMMEDIATE (low low) │RI C N │ │ │ │ │A57 │7-21 │

| │NIY │AND (immediate) │SIY C LD│ A │ │ ST│B� │EB54│7-21 │
│NR │AND (32) │RR C │ │ │ │ │14 │7-2� │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │NY │AND (32) │RXY C LD│ A │ │ │ B�│E354│7-2� │
│O │OR (32) │RX C │ A │ │ │ B�│56 │7-139 │
│OC │OR (character) │SS C │ A │ │ ST│B� B�│D6 │7-14� │
│OG │OR (64) │RXY C N │ A │ │ │ B�│E381│7-14� │
│OGR │OR (64) │RRE C N │ │ │ │ │B981│7-139 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│OI │OR (immediate) │SI C │ A │ │ ST│B� │96 │7-14� │
│OIHH │OR IMMEDIATE (high high) │RI C N │ │ │ │ │A58 │7-14� │
│OIHL │OR IMMEDIATE (high low) │RI C N │ │ │ │ │A59 │7-14� │
│OILH │OR IMMEDIATE (low high) │RI C N │ │ │ │ │A5A │7-141 │
│OILL │OR IMMEDIATE (low low) │RI C N │ │ │ │ │A5B │7-141 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │OIY │OR (immediate) │SIY C LD│ A │ │ ST│B� │EB56│7-14� │
│OR │OR (32) │RR C │ │ │ │ │16 │7-139 │

| │OY │OR (32) │RXY C LD│ A │ │ │ B�│E356│7-14� │
│PACK │PACK │SS │ A │ │ ST│B� B�│F2 │7-141 │
│PALB │PURGE ALB │RRE │P │ $ │ │ │B248│1�-85 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│PC │PROGRAM CALL │S │Q A� │Z� T ¢ GM │B ST│ │B218│1�-62 │
│PGIN │PAGE IN │RRE C ES│P A� │ ¢ │ │ │B22E│1�-6� │
│PGOUT│PAGE OUT │RRE C ES│P A� │ ¢ │ │ │B22F│1�-61 │
│PKA │PACK ASCII │SS E2│ A SP│ │ ST│B� B�│E9 │7-142 │
│PKU │PACK UNICODE │SS E2│ A SP│ │ ST│B� B�│E1 │7-143 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│PLO │PERFORM LOCKED OPERATION │SS C │ A SP│ $ GM │ ST│ FC│EE │7-144 │
│PR │PROGRAM RETURN │E L │Q A� SP│Z� T ¢� │B ST│ │�1�1│1�-75 │
│PT │PROGRAM TRANSFER │RRE │Q A� SP│Z� T ¢ │B │ │B228│1�-79 │
│PTLB │PURGE TLB │S │P │ $ │ │ │B2�D│1�-85 │
│RLL │ROTATE LEFT SINGLE LOGICAL (32) │RSY N3│ │ │ │ │EB1D│7-159 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 10 of 14). Instructions Arranged by Mnemonic

B-26 z/Architecture Principles of Operation

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│RLLG │ROTATE LEFT SINGLE LOGICAL (64) │RSY N │ │ │ │ │EB1C│7-159 │
│RP │RESUME PROGRAM │S L │Q A SP│WE T │B │ B�│B277│1�-86 │
│RRBE │RESET REFERENCE BIT EXTENDED │RRE C │P A� │ │ │ │B22A│1�-85 │
│S │SUBTRACT (32) │RX C │ A │ IF │ │ B�│5B │7-174 │
│SAC │SET ADDRESS SPACE CONTROL │S │Q SP│SW ¢ │ │ │B219│1�-89 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SACF │SET ADDRESS SPACE CONTROL FAST │S │Q SP│SW │ │ │B279│1�-89 │
│SAM24│SET ADDRESSING MODE (24) │E N3│ SP│ T │ │ │�1�C│7-161 │
│SAM31│SET ADDRESSING MODE (31) │E N3│ SP│ T │ │ │�1�D│7-161 │
│SAM64│SET ADDRESSING MODE (64) │E N │ │ T │ │ │�1�E│7-161 │
│SAR │SET ACCESS │RRE │ │ │ │U� │B24E│7-161 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SCK │SET CLOCK │S C │P A SP│ │ │ B�│B2�4│1�-9� │
│SCKC │SET CLOCK COMPARATOR │S │P A SP│ │ │ B�│B2�6│1�-91 │
│SCKPF│SET CLOCK PROGRAMMABLE FIELD │E │P SP│ G� │ │ │�1�7│1�-91 │
│SD │SUBTRACT NORMALIZED (long HFP) │RX C │ A │Da EU EO LS │ │ B�│6B │18-22 │
│SDB │SUBTRACT (long BFP) │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED1B│19-44 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SDBR │SUBTRACT (long BFP) │RRE C │ │Db Xi Xo Xu Xx│ │ │B31B│19-44 │
│SDR │SUBTRACT NORMALIZED (long HFP) │RR C │ │Da EU EO LS │ │ │2B │18-22 │
│SE │SUBTRACT NORMALIZED (short HFP) │RX C │ A │Da EU EO LS │ │ B�│7B │18-22 │
│SEB │SUBTRACT (short BFP) │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│ED�B│19-44 │
│SEBR │SUBTRACT (short BFP) │RRE C │ │Db Xi Xo Xu Xx│ │ │B3�B│19-44 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SER │SUBTRACT NORMALIZED (short HFP) │RR C │ │Da EU EO LS │ │ │3B │18-22 │
│SFPC │SET FPC │RRE │ SP│Db │ │ │B384│19-43 │
│SG │SUBTRACT (64) │RXY C N │ A │ IF │ │ B�│E3�9│7-174 │
│SGF │SUBTRACT (64<32) │RXY C N │ A │ IF │ │ B�│E319│7-174 │
│SGFR │SUBTRACT (64<32) │RRE C N │ │ IF │ │ │B919│7-174 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SGR │SUBTRACT (64) │RRE C N │ │ IF │ │ │B9�9│7-174 │
│SH │SUBTRACT HALFWORD │RX C │ A │ IF │ │ B�│4B │7-174 │

| │SHY │SUBTRACT HALFWORD │RXY C LD│ A │ IF │ │ B�│E37B│7-174 │
│SIGP │SIGNAL PROCESSOR │RS C │P │ $ │ │ │AE │1�-98 │
│SL │SUBTRACT LOGICAL (32) │RX C │ A │ │ │ B�│5F │7-175 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SLA │SHIFT LEFT SINGLE (32) │RS C │ │ IF │ │ │8B │7-163 │
│SLAG │SHIFT LEFT SINGLE (64) │RSY C N │ │ IF │ │ │EB�B│7-163 │
│SLB │SUBTRACT LOGICAL WITH BORROW (32) │RXY C N3│ A │ │ │ B�│E399│7-176 │
│SLBG │SUBTRACT LOGICAL WITH BORROW (64) │RXY C N │ A │ │ │ B�│E389│7-176 │
│SLBGR│SUBTRACT LOGICAL WITH BORROW (64) │RRE C N │ │ │ │ │B989│7-176 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SLBR │SUBTRACT LOGICAL WITH BORROW (32) │RRE C N3│ │ │ │ │B999│7-176 │
│SLDA │SHIFT LEFT DOUBLE │RS C │ SP│ IF │ │ │8F │7-162 │
│SLDL │SHIFT LEFT DOUBLE LOGICAL │RS │ SP│ │ │ │8D │7-163 │
│SLG │SUBTRACT LOGICAL (64) │RXY C N │ A │ │ │ B�│E3�B│7-175 │
│SLGF │SUBTRACT LOGICAL (64<32) │RXY C N │ A │ │ │ B�│E31B│7-175 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SLGFR│SUBTRACT LOGICAL (64<32) │RRE C N │ │ │ │ │B91B│7-175 │
│SLGR │SUBTRACT LOGICAL (64) │RRE C N │ │ │ │ │B9�B│7-175 │
│SLL │SHIFT LEFT SINGLE LOGICAL (32) │RS │ │ │ │ │89 │7-164 │
│SLLG │SHIFT LEFT SINGLE LOGICAL (64) │RSY N │ │ │ │ │EB�D│7-164 │
│SLR │SUBTRACT LOGICAL (32) │RR C │ │ │ │ │1F │7-175 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 11 of 14). Instructions Arranged by Mnemonic

 Appendix B. Lists of Instructions B-27

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

| │SLY │SUBTRACT LOGICAL (32) │RXY C LD│ A │ │ │ B�│E35F│7-175 │
│SP │SUBTRACT DECIMAL │SS C │ A │Dd DF │ ST│B� B�│FB │8-12 │
│SPKA │SET PSW KEY FROM ADDRESS │S │Q │ │ │ │B2�A│1�-93 │
│SPM │SET PROGRAM MASK │RR L │ │ │ │ │�4 │7-162 │
│SPT │SET CPU TIMER │S │P A SP│ │ │ B�│B2�8│1�-92 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SPX │SET PREFIX │S │P A SP│ $ │ │ B�│B21�│1�-92 │
│SQD │SQUARE ROOT (long HFP) │RXE │ A │Da SQ │ │ B�│ED35│18-21 │
│SQDB │SQUARE ROOT (long BFP) │RXE │ A │Db Xi Xx│ │ B�│ED15│19-44 │
│SQDBR│SQUARE ROOT (long BFP) │RRE │ │Db Xi Xx│ │ │B315│19-44 │
│SQDR │SQUARE ROOT (long HFP) │RRE │ │Da SQ │ │ │B244│18-21 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SQE │SQUARE ROOT (short HFP) │RXE │ A │Da SQ │ │ B�│ED34│18-21 │
│SQEB │SQUARE ROOT (short BFP) │RXE │ A │Db Xi Xx│ │ B�│ED14│19-44 │
│SQEBR│SQUARE ROOT (short BFP) │RRE │ │Db Xi Xx│ │ │B314│19-44 │
│SQER │SQUARE ROOT (short HFP) │RRE │ │Da SQ │ │ │B245│18-21 │
│SQXBR│SQUARE ROOT (extended BFP) │RRE │ SP│Db Xi Xx│ │ │B316│19-44 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SQXR │SQUARE ROOT (extended HFP) │RRE │ SP│Da SQ │ │ │B336│18-21 │
│SR │SUBTRACT (32) │RR C │ │ IF │ │ │1B │7-174 │
│SRA │SHIFT RIGHT SINGLE (32) │RS C │ │ │ │ │8A │7-166 │
│SRAG │SHIFT RIGHT SINGLE (64) │RSY C N │ │ │ │ │EB�A│7-166 │
│SRDA │SHIFT RIGHT DOUBLE │RS C │ SP│ │ │ │8E │7-165 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SRDL │SHIFT RIGHT DOUBLE LOGICAL │RS │ SP│ │ │ │8C │7-165 │
│SRL │SHIFT RIGHT SINGLE LOGICAL (32) │RS │ │ │ │ │88 │7-166 │
│SRLG │SHIFT RIGHT SINGLE LOGICAL (64) │RSY N │ │ │ │ │EB�C│7-166 │
│SRNM │SET ROUNDING MODE │S │ │Db │ │ │B299│19-43 │
│SRP │SHIFT AND ROUND DECIMAL │SS C │ A │Dd DF │ ST│B� │F� │8-11 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SRST │SEARCH STRING │RRE C │ A SP│ G� │ │ R�│B25E│7-16� │
│SSAR │SET SECONDARY ASN │RRE │ A� │Z� T ¢ │ │ │B225│1�-93 │
│SSKE │SET STORAGE KEY EXTENDED │RRE │P A� │ ¢ │ │ │B22B│1�-97 │
│SSM │SET SYSTEM MASK │S │P A SP│SO │ │ B�│8� │1�-97 │
│ST │STORE (32) │RX │ A │ │ ST│ B�│5� │7-167 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STAM │STORE ACCESS MULTIPLE │RS │ A SP│ │ ST│ UB│9B │7-167 │

| │STAMY│STORE ACCESS MULTIPLE │RSY LD│ A SP│ │ ST│ UB│EB9B│7-167 │
│STAP │STORE CPU ADDRESS │S │P A SP│ │ ST│ B�│B212│1�-1�� │
│STC │STORE CHARACTER │RX │ A │ │ ST│ B�│42 │7-168 │
│STCK │STORE CLOCK │S C │ A │ $ │ ST│ B�│B2�5│7-169 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STCKC│STORE CLOCK COMPARATOR │S │P A SP│ │ ST│ B�│B2�7│1�-99 │
│STCKE│STORE CLOCK EXTENDED │S C │ A │ $ │ ST│ B�│B278│7-17� │
│STCM │STORE CHARACTERS UNDER MASK (low) │RS │ A │ │ ST│ B�│BE │7-168 │
│STCMH│STORE CHARACTERS UNDER MASK (high) │RSY N │ A │ │ ST│ B�│EB2C│7-168 │

| │STCMY│STORE CHARACTERS UNDER MASK (low) │RSY LD│ A │ │ ST│ B�│EB2D│7-168 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STCTG│STORE CONTROL (64) │RSY N │P A SP│ │ ST│ B�│EB25│1�-99 │
│STCTL│STORE CONTROL (32) │RS │P A SP│ │ ST│ B�│B6 │1�-99 │

| │STCY │STORE CHARACTER │RXY LD│ A │ │ ST│ B�│E372│7-168 │
│STD │STORE (long) │RX │ A │Da │ ST│ B�│6� │9-11 │

| │STDY │STORE (long) │RXY LD│ A │Da │ ST│ B�│ED67│9-11 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 12 of 14). Instructions Arranged by Mnemonic

B-28 z/Architecture Principles of Operation

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│STE │STORE (short) │RX │ A │Da │ ST│ B�│7� │9-11 │

| │STEY │STORE (short) │RXY LD│ A │Da │ ST│ B�│ED66│9-11 │
│STFL │STORE FACILITY LIST │S N3│P │ │ │ │B2B1│1�-1�2 │
│STFPC│STORE FPC │S │ A │Db │ ST│ B�│B29C│19-44 │
│STG │STORE (64) │RXY N │ A │ │ ST│ B�│E324│7-167 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STH │STORE HALFWORD │RX │ A │ │ ST│ B�│4� │7-172 │

| │STHY │STORE HALFWORD │RXY LD│ A │ │ ST│ B�│E37�│7-172 │
│STIDP│STORE CPU ID │S │P A SP│ │ ST│ B�│B2�2│1�-1�� │
│STM │STORE MULTIPLE (32) │RS │ A │ │ ST│ B�│9� │7-172 │
│STMG │STORE MULTIPLE (64) │RSY N │ A │ │ ST│ B�│EB24│7-172 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STMH │STORE MULTIPLE HIGH │RSY N │ A │ │ ST│ B�│EB26│7-172 │

| │STMY │STORE MULTIPLE (32) │RSY LD│ A │ │ ST│ B�│EB9�│7-172 │
│STNSM│STORE THEN AND SYSTEM MASK │SI │P A │ │ ST│B� │AC │1�-115 │
│STOSM│STORE THEN OR SYSTEM MASK │SI │P A SP│ │ ST│B� │AD │1�-115 │
│STPQ │STORE PAIR TO QUADWORD │RXY N │ A SP│ │ ST│ B�│E38E│7-173 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STPT │STORE CPU TIMER │S │P A SP│ │ ST│ B�│B2�9│1�-1�1 │
│STPX │STORE PREFIX │S │P A SP│ │ ST│ B�│B211│1�-1�2 │
│STRAG│STORE REAL ADDRESS │SSE N │P A� │ │ ST│B� BP│E5�2│1�-1�3 │
│STRV │STORE REVERSED (32) │RXY N3│ A │ │ ST│ B�│E33E│7-173 │
│STRVG│STORE REVERSED (64) │RXY N │ A │ │ ST│ B�│E32F│7-173 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│STRVH│STORE REVERSED (16) │RXY N3│ A │ │ ST│ B�│E33F│7-173 │
│STSI │STORE SYSTEM INFORMATION │S C │P A SP│ GM │ ST│ B�│B27D│1�-1�4 │
│STURA│STORE USING REAL ADDRESS (32) │RRE │P A� SP│ │ SU│ │B246│1�-115 │
│STURG│STORE USING REAL ADDRESS (64) │RRE N │P A� SP│ │ SU│ │B925│1�-115 │

| │STY │STORE (32) │RXY LD│ A │ │ ST│ B�│E35�│7-167 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SU │SUBTRACT UNNORMALIZED (short HFP) │RX C │ A │Da EO LS │ │ B�│7F │18-22 │
│SUR │SUBTRACT UNNORMALIZED (short HFP) │RR C │ │Da EO LS │ │ │3F │18-22 │
│SVC │SUPERVISOR CALL │RR │ │ ¢ │ │ │�A │7-177 │
│SW │SUBTRACT UNNORMALIZED (long HFP) │RX C │ A │Da EO LS │ │ B�│6F │18-22 │
│SWR │SUBTRACT UNNORMALIZED (long HFP) │RR C │ │Da EO LS │ │ │2F │18-22 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│SXBR │SUBTRACT (extended BFP) │RRE C │ SP│Db Xi Xo Xu Xx│ │ │B34B│19-44 │
│SXR │SUBTRACT NORMALIZED (extended HFP) │RR C │ SP│Da EU EO LS │ │ │37 │18-22 │

| │SY │SUBTRACT (32) │RXY C LD│ A │ IF │ │ B�│E35B│7-174 │
│TAM │TEST ADDRESSING MODE │E C N3│ │ │ │ │�1�B│7-177 │
│TAR │TEST ACCESS │RRE C │ A� │ │ │U� │B24C│1�-116 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│TB │TEST BLOCK │RRE C │P A� │II $ G� │ │ │B22C│1�-118 │
│TBDR │CONVERT HFP TO BFP (long) │RRF C │ SP│Da │ │ │B351│9-9 │
│TBEDR│CONVERT HFP TO BFP (long to short) │RRF C │ SP│Da │ │ │B35�│9-9 │
│TCDB │TEST DATA CLASS (long BFP) │RXE C │ │Db │ │ │ED11│19-45 │
│TCEB │TEST DATA CLASS (short BFP) │RXE C │ │Db │ │ │ED1�│19-45 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│TCXB │TEST DATA CLASS (extended BFP) │RXE C │ SP│Db │ │ │ED12│19-45 │
│THDER│CONVERT BFP TO HFP (short to long) │RRE C │ │Da │ │ │B358│9-8 │
│THDR │CONVERT BFP TO HFP (long) │RRE C │ │Da │ │ │B359│9-8 │
│TM │TEST UNDER MASK │SI C │ A │ │ │B� │91 │7-178 │
│TMH │TEST UNDER MASK HIGH │RI C │ │ │ │ │A7� │7-178 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 13 of 14). Instructions Arranged by Mnemonic

 Appendix B. Lists of Instructions B-29

┌─────┬────────────────────────────────────┬──┬────┬───────┐
│Mne- │ │ │Op │ Page │
│monic│ Name │ Characteristics │Code│ No. │
├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤
│TMHH │TEST UNDER MASK (high high) │RI C N │ │ │ │ │A72 │7-178 │
│TMHL │TEST UNDER MASK (high low) │RI C N │ │ │ │ │A73 │7-178 │
│TML │TEST UNDER MASK LOW │RI C │ │ │ │ │A71 │7-178 │
│TMLH │TEST UNDER MASK (low high) │RI C N │ │ │ │ │A7� │7-178 │
│TMLL │TEST UNDER MASK (low low) │RI C N │ │ │ │ │A71 │7-178 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │TMY │TEST UNDER MASK │SIY C LD│ A │ │ │B� │EB51│7-178 │
│TP │TEST DECIMAL │RSL C E2│ A │ │ │B� │EBC�│8-13 │
│TPROT│TEST PROTECTION │SSE C │P A� │ │ │B� │E5�1│1�-12� │
│TR │TRANSLATE │SS │ A │ │ ST│B� B�│DC │7-179 │
│TRACE│TRACE (32) │RS │P A SP│ T ¢ │ │ B�│99 │1�-123 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│TRACG│TRACE (64) │RSY N │P A SP│ T ¢ │ │ B�│EB�F│1�-123 │
│TRAP2│TRAP │E │ A │SO T │B ST│ │�1FF│1�-124 │
│TRAP4│TRAP │S │ A │SO T │B ST│ │B2FF│1�-124 │
│TRE │TRANSLATE EXTENDED │RRE C │ A SP│ │ ST│R� R�│B2A5│7-181 │
│TROO │TRANSLATE ONE TO ONE │RRE C E2│ A SP│ GM │ ST│RM R�│B993│7-183 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│TROT │TRANSLATE ONE TO TWO │RRE C E2│ A SP│ GM │ ST│RM R�│B992│7-183 │
│TRT │TRANSLATE AND TEST │SS C │ A │ GM │ │B� B�│DD │7-18� │
│TRTO │TRANSLATE TWO TO ONE │RRE C E2│ A SP│ GM │ ST│RM R�│B991│7-183 │
│TRTT │TRANSLATE TWO TO TWO │RRE C E2│ A SP│ GM │ ST│RM R�│B99�│7-183 │
│TS │TEST AND SET │S C │ A │ $ │ ST│ B�│93 │7-177 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│UNPK │UNPACK │SS │ A │ │ ST│B� B�│F3 │7-188 │
│UNPKA│UNPACK ASCII │SS C E2│ A SP│ │ ST│B� B�│EA │7-189 │
│UNPKU│UNPACK UNICODE │SS C E2│ A SP│ │ ST│B� B�│E2 │7-19� │
│UPT │UPDATE TREE │E C │ A SP│II GM │ ST│I4 │�1�2│7-191 │
│X │EXCLUSIVE OR (32) │RX C │ A │ │ │ B�│57 │7-1�6 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│XC │EXCLUSIVE OR (character) │SS C │ A │ │ ST│B� B�│D7 │7-1�7 │
│XG │EXCLUSIVE OR (64) │RXY C N │ A │ │ │ B�│E382│7-1�7 │
│XGR │EXCLUSIVE OR (64) │RRE C N │ │ │ │ │B982│7-1�6 │
│XI │EXCLUSIVE OR (immediate) │SI C │ A │ │ ST│B� │97 │7-1�7 │

| │XIY │EXCLUSIVE OR (immediate) │SIY C LD│ A │ │ ST│B� │EB57│7-1�7 │
├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤
│XR │EXCLUSIVE OR (32) │RR C │ │ │ │ │17 │7-1�6 │

| │XY │EXCLUSIVE OR (32) │RXY C LD│ A │ │ │ B�│E357│7-1�6 │
│ZAP │ZERO AND ADD │SS C │ A │Dd DF │ ST│B� B�│F8 │8-13 │
└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 14 of 14). Instructions Arranged by Mnemonic

B-30 z/Architecture Principles of Operation

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│�1�1│PROGRAM RETURN │PR │E L │Q A� SP│Z� T ¢� │B ST│ │1�-75 │
│�1�2│UPDATE TREE │UPT │E C │ A SP│II GM │ ST│I4 │7-191 │
│�1�7│SET CLOCK PROGRAMMABLE FIELD │SCKPF│E │P SP│ G� │ │ │1�-91 │
│�1�B│TEST ADDRESSING MODE │TAM │E C N3│ │ │ │ │7-177 │
│�1�C│SET ADDRESSING MODE (24) │SAM24│E N3│ SP│ T │ │ │7-161 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│�1�D│SET ADDRESSING MODE (31) │SAM31│E N3│ SP│ T │ │ │7-161 │
│�1�E│SET ADDRESSING MODE (64) │SAM64│E N │ │ T │ │ │7-161 │
│�1FF│TRAP │TRAP2│E │ A │SO T │B ST│ │1�-124 │
│�4 │SET PROGRAM MASK │SPM │RR L │ │ │ │ │7-162 │
│�5 │BRANCH AND LINK │BALR │RR │ │ T │B │ │7-22 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│�6 │BRANCH ON COUNT (32) │BCTR │RR │ │ │B │ │7-26 │
│�7 │BRANCH ON CONDITION │BCR │RR │ │ ¢� │B │ │7-25 │
│�A │SUPERVISOR CALL │SVC │RR │ │ ¢ │ │ │7-177 │
│�B │BRANCH AND SET MODE │BSM │RR │ │ T │B │ │7-24 │
│�C │BRANCH AND SAVE AND SET MODE │BASSM│RR │ │ T │B │ │7-23 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│�D │BRANCH AND SAVE │BASR │RR │ │ T │B │ │7-23 │
│�E │MOVE LONG │MVCL │RR C │ A SP│II │ ST│R� R�│7-123 │
│�F │COMPARE LOGICAL LONG │CLCL │RR C │ A SP│II │ │R� R�│7-58 │
│1� │LOAD POSITIVE (32) │LPR │RR C │ │ IF │ │ │7-119 │
│11 │LOAD NEGATIVE (32) │LNR │RR C │ │ │ │ │7-118 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│12 │LOAD AND TEST (32) │LTR │RR C │ │ │ │ │7-114 │
│13 │LOAD COMPLEMENT (32) │LCR │RR C │ │ IF │ │ │7-114 │
│14 │AND (32) │NR │RR C │ │ │ │ │7-2� │
│15 │COMPARE LOGICAL (32) │CLR │RR C │ │ │ │ │7-56 │
│16 │OR (32) │OR │RR C │ │ │ │ │7-139 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│17 │EXCLUSIVE OR (32) │XR │RR C │ │ │ │ │7-1�6 │
│18 │LOAD (32) │LR │RR │ │ │ │ │7-111 │
│19 │COMPARE (32) │CR │RR C │ │ │ │ │7-45 │
│1A │ADD (32) │AR │RR C │ │ IF │ │ │7-18 │
│1B │SUBTRACT (32) │SR │RR C │ │ IF │ │ │7-174 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│1C │MULTIPLY (64<32) │MR │RR │ SP│ │ │ │7-136 │
│1D │DIVIDE (32<64) │DR │RR │ SP│ IK │ │ │7-1�4 │
│1E │ADD LOGICAL (32) │ALR │RR C │ │ │ │ │7-19 │
│1F │SUBTRACT LOGICAL (32) │SLR │RR C │ │ │ │ │7-175 │
│2� │LOAD POSITIVE (long HFP) │LPDR │RR C │ │Da │ │ │18-16 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│21 │LOAD NEGATIVE (long HFP) │LNDR │RR C │ │Da │ │ │18-16 │
│22 │LOAD AND TEST (long HFP) │LTDR │RR C │ │Da │ │ │18-14 │
│23 │LOAD COMPLEMENT (long HFP) │LCDR │RR C │ │Da │ │ │18-14 │
│24 │HALVE (long HFP) │HDR │RR │ │Da EU │ │ │18-13 │
│25 │LOAD ROUNDED (extended to long HFP) │LDXR │RR │ SP│Da EO │ │ │18-17 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│25 │LOAD ROUNDED (extended to long HFP) │LRDR │RR │ SP│Da EO │ │ │18-17 │
│26 │MULTIPLY (extended HFP) │MXR │RR │ SP│Da EU EO │ │ │18-18 │
│27 │MULTIPLY (long to extended HFP) │MXDR │RR │ SP│Da EU EO │ │ │18-18 │
│28 │LOAD (long) │LDR │RR │ │Da │ │ │9-1� │
│29 │COMPARE (long HFP) │CDR │RR C │ │Da │ │ │18-1� │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 1 of 14). Instructions Arranged by Operation Code

 Appendix B. Lists of Instructions B-31

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│2A │ADD NORMALIZED (long HFP) │ADR │RR C │ │Da EU EO LS │ │ │18-8 │
│2B │SUBTRACT NORMALIZED (long HFP) │SDR │RR C │ │Da EU EO LS │ │ │18-22 │
│2C │MULTIPLY (long HFP) │MDR │RR │ │Da EU EO │ │ │18-18 │
│2D │DIVIDE (long HFP) │DDR │RR │ │Da EU EO FK │ │ │18-12 │
│2E │ADD UNNORMALIZED (long HFP) │AWR │RR C │ │Da EO LS │ │ │18-1� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│2F │SUBTRACT UNNORMALIZED (long HFP) │SWR │RR C │ │Da EO LS │ │ │18-22 │
│3� │LOAD POSITIVE (short HFP) │LPER │RR C │ │Da │ │ │18-16 │
│31 │LOAD NEGATIVE (short HFP) │LNER │RR C │ │Da │ │ │18-16 │
│32 │LOAD AND TEST (short HFP) │LTER │RR C │ │Da │ │ │18-14 │
│33 │LOAD COMPLEMENT (short HFP) │LCER │RR C │ │Da │ │ │18-14 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│34 │HALVE (short HFP) │HER │RR │ │Da EU │ │ │18-13 │
│35 │LOAD ROUNDED (long to short HFP) │LEDR │RR │ │Da EO │ │ │18-17 │
│35 │LOAD ROUNDED (long to short HFP) │LRER │RR │ │Da EO │ │ │18-17 │
│36 │ADD NORMALIZED (extended HFP) │AXR │RR C │ SP│Da EU EO LS │ │ │18-8 │
│37 │SUBTRACT NORMALIZED (extended HFP) │SXR │RR C │ SP│Da EU EO LS │ │ │18-22 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│38 │LOAD (short) │LER │RR │ │Da │ │ │9-1� │
│39 │COMPARE (short HFP) │CER │RR C │ │Da │ │ │18-1� │
│3A │ADD NORMALIZED (short HFP) │AER │RR C │ │Da EU EO LS │ │ │18-8 │
│3B │SUBTRACT NORMALIZED (short HFP) │SER │RR C │ │Da EU EO LS │ │ │18-22 │
│3C │MULTIPLY (short to long HFP) │MDER │RR │ │Da EU EO │ │ │18-18 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│3C │MULTIPLY (short to long HFP) │MER │RR │ │Da EU EO │ │ │18-18 │
│3D │DIVIDE (short HFP) │DER │RR │ │Da EU EO FK │ │ │18-12 │
│3E │ADD UNNORMALIZED (short HFP) │AUR │RR C │ │Da EO LS │ │ │18-1� │
│3F │SUBTRACT UNNORMALIZED (short HFP) │SUR │RR C │ │Da EO LS │ │ │18-22 │
│4� │STORE HALFWORD │STH │RX │ A │ │ ST│ B�│7-172 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│41 │LOAD ADDRESS │LA │RX │ │ │ │ │7-112 │
│42 │STORE CHARACTER │STC │RX │ A │ │ ST│ B�│7-168 │
│43 │INSERT CHARACTER │IC │RX │ A │ │ │ B�│7-1�9 │
│44 │EXECUTE │EX │RX │ AI SP│ EX │ │ │7-1�7 │
│45 │BRANCH AND LINK │BAL │RX │ │ │B │ │7-22 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│46 │BRANCH ON COUNT (32) │BCT │RX │ │ │B │ │7-26 │
│47 │BRANCH ON CONDITION │BC │RX │ │ │B │ │7-25 │
│48 │LOAD HALFWORD (32) │LH │RX │ A │ │ │ B�│7-115 │
│49 │COMPARE HALFWORD │CH │RX C │ A │ │ │ B�│7-55 │
│4A │ADD HALFWORD │AH │RX C │ A │ IF │ │ B�│7-18 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│4B │SUBTRACT HALFWORD │SH │RX C │ A │ IF │ │ B�│7-174 │
│4C │MULTIPLY HALFWORD (32) │MH │RX │ A │ │ │ B�│7-137 │
│4D │BRANCH AND SAVE │BAS │RX │ │ │B │ │7-23 │
│4E │CONVERT TO DECIMAL (32) │CVD │RX │ A │ │ ST│ B�│7-98 │
│4F │CONVERT TO BINARY (32) │CVB │RX │ A │Dd IK │ │ B�│7-97 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│5� │STORE (32) │ST │RX │ A │ │ ST│ B�│7-167 │
│51 │LOAD ADDRESS EXTENDED │LAE │RX │ │ │ │U� BP│7-112 │
│54 │AND (32) │N │RX C │ A │ │ │ B�│7-2� │
│55 │COMPARE LOGICAL (32) │CL │RX C │ A │ │ │ B�│7-56 │
│56 │OR (32) │O │RX C │ A │ │ │ B�│7-139 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 2 of 14). Instructions Arranged by Operation Code

B-32 z/Architecture Principles of Operation

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│57 │EXCLUSIVE OR (32) │X │RX C │ A │ │ │ B�│7-1�6 │
│58 │LOAD (32) │L │RX │ A │ │ │ B�│7-111 │
│59 │COMPARE (32) │C │RX C │ A │ │ │ B�│7-46 │
│5A │ADD (32) │A │RX C │ A │ IF │ │ B�│7-18 │
│5B │SUBTRACT (32) │S │RX C │ A │ IF │ │ B�│7-174 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│5C │MULTIPLY (64<32) │M │RX │ A SP│ │ │ B�│7-136 │
│5D │DIVIDE (32<64) │D │RX │ A SP│ IK │ │ B�│7-1�4 │
│5E │ADD LOGICAL (32) │AL │RX C │ A │ │ │ B�│7-19 │
│5F │SUBTRACT LOGICAL (32) │SL │RX C │ A │ │ │ B�│7-175 │
│6� │STORE (long) │STD │RX │ A │Da │ ST│ B�│9-11 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│67 │MULTIPLY (long to extended HFP) │MXD │RX │ A SP│Da EU EO │ │ B�│18-18 │
│68 │LOAD (long) │LD │RX │ A │Da │ │ B�│9-1� │
│69 │COMPARE (long HFP) │CD │RX C │ A │Da │ │ B�│18-1� │
│6A │ADD NORMALIZED (long HFP) │AD │RX C │ A │Da EU EO LS │ │ B�│18-8 │
│6B │SUBTRACT NORMALIZED (long HFP) │SD │RX C │ A │Da EU EO LS │ │ B�│18-22 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│6C │MULTIPLY (long HFP) │MD │RX │ A │Da EU EO │ │ B�│18-18 │
│6D │DIVIDE (long HFP) │DD │RX │ A │Da EU EO FK │ │ B�│18-12 │
│6E │ADD UNNORMALIZED (long HFP) │AW │RX C │ A │Da EO LS │ │ B�│18-1� │
│6F │SUBTRACT UNNORMALIZED (long HFP) │SW │RX C │ A │Da EO LS │ │ B�│18-22 │
│7� │STORE (short) │STE │RX │ A │Da │ ST│ B�│9-11 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│71 │MULTIPLY SINGLE (32) │MS │RX │ A │ │ │ B�│7-139 │
│78 │LOAD (short) │LE │RX │ A │Da │ │ B�│9-1� │
│79 │COMPARE (short HFP) │CE │RX C │ A │Da │ │ B�│18-1� │
│7A │ADD NORMALIZED (short HFP) │AE │RX C │ A │Da EU EO LS │ │ B�│18-8 │
│7B │SUBTRACT NORMALIZED (short HFP) │SE │RX C │ A │Da EU EO LS │ │ B�│18-22 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│7C │MULTIPLY (short to long HFP) │MDE │RX │ A │Da EU EO │ │ B�│18-18 │
│7C │MULTIPLY (short to long HFP) │ME │RX │ A │Da EU EO │ │ B�│18-18 │
│7D │DIVIDE (short HFP) │DE │RX │ A │Da EU EO FK │ │ B�│18-12 │
│7E │ADD UNNORMALIZED (short HFP) │AU │RX C │ A │Da EO LS │ │ B�│18-1� │
│7F │SUBTRACT UNNORMALIZED (short HFP) │SU │RX C │ A │Da EO LS │ │ B�│18-22 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│8� │SET SYSTEM MASK │SSM │S │P A SP│SO │ │ B�│1�-97 │
│82 │LOAD PSW │LPSW │S L │P A SP│ ¢ │ │ B�│1�-44 │
│83 │DIAGNOSE │ │ DM │P DM │ │ │ MD│1�-19 │
│84 │BRANCH RELATIVE ON INDEX HIGH (32) │BRXH │RSI │ │ │B │ │7-3� │
│85 │BRANCH RELATIVE ON INDEX L OR E (32)│BRXLE│RSI │ │ │B │ │7-3� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│86 │BRANCH ON INDEX HIGH (32) │BXH │RS │ │ │B │ │7-27 │
│87 │BRANCH ON INDEX LOW OR EQUAL (32) │BXLE │RS │ │ │B │ │7-27 │
│88 │SHIFT RIGHT SINGLE LOGICAL (32) │SRL │RS │ │ │ │ │7-166 │
│89 │SHIFT LEFT SINGLE LOGICAL (32) │SLL │RS │ │ │ │ │7-164 │
│8A │SHIFT RIGHT SINGLE (32) │SRA │RS C │ │ │ │ │7-166 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│8B │SHIFT LEFT SINGLE (32) │SLA │RS C │ │ IF │ │ │7-163 │
│8C │SHIFT RIGHT DOUBLE LOGICAL │SRDL │RS │ SP│ │ │ │7-165 │
│8D │SHIFT LEFT DOUBLE LOGICAL │SLDL │RS │ SP│ │ │ │7-163 │
│8E │SHIFT RIGHT DOUBLE │SRDA │RS C │ SP│ │ │ │7-165 │
│8F │SHIFT LEFT DOUBLE │SLDA │RS C │ SP│ IF │ │ │7-162 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 3 of 14). Instructions Arranged by Operation Code

 Appendix B. Lists of Instructions B-33

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│9� │STORE MULTIPLE (32) │STM │RS │ A │ │ ST│ B�│7-172 │
│91 │TEST UNDER MASK │TM │SI C │ A │ │ │B� │7-178 │
│92 │MOVE (immediate) │MVI │SI │ A │ │ ST│B� │7-121 │
│93 │TEST AND SET │TS │S C │ A │ $ │ ST│ B�│7-177 │
│94 │AND (immediate) │NI │SI C │ A │ │ ST│B� │7-2� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│95 │COMPARE LOGICAL (immediate) │CLI │SI C │ A │ │ │B� │7-56 │
│96 │OR (immediate) │OI │SI C │ A │ │ ST│B� │7-14� │
│97 │EXCLUSIVE OR (immediate) │XI │SI C │ A │ │ ST│B� │7-1�7 │
│98 │LOAD MULTIPLE (32) │LM │RS │ A │ │ │ B�│7-117 │
│99 │TRACE (32) │TRACE│RS │P A SP│ T ¢ │ │ B�│1�-123 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│9A │LOAD ACCESS MULTIPLE │LAM │RS │ A SP│ │ │ UB│7-111 │
│9B │STORE ACCESS MULTIPLE │STAM │RS │ A SP│ │ ST│ UB│7-167 │
│A5� │INSERT IMMEDIATE (high high) │IIHH │RI N │ │ │ │ │7-11� │
│A51 │INSERT IMMEDIATE (high low) │IIHL │RI N │ │ │ │ │7-11� │
│A52 │INSERT IMMEDIATE (low high) │IILH │RI N │ │ │ │ │7-11� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│A53 │INSERT IMMEDIATE (low low) │IILL │RI N │ │ │ │ │7-11� │
│A54 │AND IMMEDIATE (high high) │NIHH │RI C N │ │ │ │ │7-21 │
│A55 │AND IMMEDIATE (high low) │NIHL │RI C N │ │ │ │ │7-21 │
│A56 │AND IMMEDIATE (low high) │NILH │RI C N │ │ │ │ │7-21 │
│A57 │AND IMMEDIATE (low low) │NILL │RI C N │ │ │ │ │7-21 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│A58 │OR IMMEDIATE (high high) │OIHH │RI C N │ │ │ │ │7-14� │
│A59 │OR IMMEDIATE (high low) │OIHL │RI C N │ │ │ │ │7-14� │
│A5A │OR IMMEDIATE (low high) │OILH │RI C N │ │ │ │ │7-141 │
│A5B │OR IMMEDIATE (low low) │OILL │RI C N │ │ │ │ │7-141 │
│A5C │LOAD LOGICAL IMMEDIATE (high high) │LLIHH│RI N │ │ │ │ │7-116 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│A5D │LOAD LOGICAL IMMEDIATE (high low) │LLIHL│RI N │ │ │ │ │7-116 │
│A5E │LOAD LOGICAL IMMEDIATE (low high) │LLILH│RI N │ │ │ │ │7-116 │
│A5E │LOAD LOGICAL IMMEDIATE (low high) │LLILH│RI N │ │ │ │ │7-116 │
│A5F │LOAD LOGICAL IMMEDIATE (low low) │LLILL│RI N │ │ │ │ │7-116 │
│A5F │LOAD LOGICAL IMMEDIATE (low low) │LLILL│RI N │ │ │ │ │7-116 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│A7� │TEST UNDER MASK (low high) │TMLH │RI C N │ │ │ │ │7-178 │
│A7� │TEST UNDER MASK HIGH │TMH │RI C │ │ │ │ │7-178 │
│A71 │TEST UNDER MASK (low low) │TMLL │RI C N │ │ │ │ │7-178 │
│A71 │TEST UNDER MASK LOW │TML │RI C │ │ │ │ │7-178 │
│A72 │TEST UNDER MASK (high high) │TMHH │RI C N │ │ │ │ │7-178 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│A73 │TEST UNDER MASK (high low) │TMHL │RI C N │ │ │ │ │7-178 │
│A74 │BRANCH RELATIVE ON CONDITION │BRC │RI │ │ │B │ │7-29 │
│A75 │BRANCH RELATIVE AND SAVE │BRAS │RI │ │ │B │ │7-28 │
│A76 │BRANCH RELATIVE ON COUNT (32) │BRCT │RI │ │ │B │ │7-29 │
│A77 │BRANCH RELATIVE ON COUNT (64) │BRCTG│RI N │ │ │B │ │7-3� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│A78 │LOAD HALFWORD IMMEDIATE (32) │LHI │RI │ │ │ │ │7-115 │
│A79 │LOAD HALFWORD IMMEDIATE (64) │LGHI │RI N │ │ │ │ │7-115 │
│A7A │ADD HALFWORD IMMEDIATE (32) │AHI │RI C │ │ IF │ │ │7-18 │
│A7B │ADD HALFWORD IMMEDIATE (64) │AGHI │RI C N │ │ IF │ │ │7-18 │
│A7C │MULTIPLY HALFWORD IMMEDIATE (32) │MHI │RI │ │ │ │ │7-137 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 4 of 14). Instructions Arranged by Operation Code

B-34 z/Architecture Principles of Operation

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│A7D │MULTIPLY HALFWORD IMMEDIATE (64) │MGHI │RI N │ │ │ │ │7-137 │
│A7E │COMPARE HALFWORD IMMEDIATE (32) │CHI │RI C │ │ │ │ │7-55 │
│A7F │COMPARE HALFWORD IMMEDIATE (64) │CGHI │RI C N │ │ │ │ │7-55 │
│A8 │MOVE LONG EXTENDED │MVCLE│RS C │ A SP│ │ ST│R� R�│7-127 │
│A9 │COMPARE LOGICAL LONG EXTENDED │CLCLE│RS C │ A SP│ │ │R� R�│7-6� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│AC │STORE THEN AND SYSTEM MASK │STNSM│SI │P A │ │ ST│B� │1�-115 │
│AD │STORE THEN OR SYSTEM MASK │STOSM│SI │P A SP│ │ ST│B� │1�-115 │
│AE │SIGNAL PROCESSOR │SIGP │RS C │P │ $ │ │ │1�-98 │
│AF │MONITOR CALL │MC │SI │ SP│ MO │ │ │7-121 │
│B1 │LOAD REAL ADDRESS (32) │LRA │RX C │P A� │SO │ │ BP│1�-46 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B2�2│STORE CPU ID │STIDP│S │P A SP│ │ ST│ B�│1�-1�� │
│B2�4│SET CLOCK │SCK │S C │P A SP│ │ │ B�│1�-9� │
│B2�5│STORE CLOCK │STCK │S C │ A │ $ │ ST│ B�│7-169 │
│B2�6│SET CLOCK COMPARATOR │SCKC │S │P A SP│ │ │ B�│1�-91 │
│B2�7│STORE CLOCK COMPARATOR │STCKC│S │P A SP│ │ ST│ B�│1�-99 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B2�8│SET CPU TIMER │SPT │S │P A SP│ │ │ B�│1�-92 │
│B2�9│STORE CPU TIMER │STPT │S │P A SP│ │ ST│ B�│1�-1�1 │
│B2�A│SET PSW KEY FROM ADDRESS │SPKA │S │Q │ │ │ │1�-93 │
│B2�B│INSERT PSW KEY │IPK │S │Q │ G2 │ │ │1�-27 │
│B2�D│PURGE TLB │PTLB │S │P │ $ │ │ │1�-85 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B21�│SET PREFIX │SPX │S │P A SP│ $ │ │ B�│1�-92 │
│B211│STORE PREFIX │STPX │S │P A SP│ │ ST│ B�│1�-1�2 │
│B212│STORE CPU ADDRESS │STAP │S │P A SP│ │ ST│ B�│1�-1�� │
│B218│PROGRAM CALL │PC │S │Q A� │Z� T ¢ GM │B ST│ │1�-62 │
│B219│SET ADDRESS SPACE CONTROL │SAC │S │Q SP│SW ¢ │ │ │1�-89 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B21A│COMPARE AND FORM CODEWORD │CFC │S C │ A SP│II GM │ │I1 │7-46 │
│B221│INVALIDATE PAGE TABLE ENTRY │IPTE │RRE │P A� │ $ │ │ │1�-33 │
│B222│INSERT PROGRAM MASK │IPM │RRE │ │ │ │ │7-111 │
│B223│INSERT VIRTUAL STORAGE KEY │IVSK │RRE │Q A� │SO │ │ R�│1�-28 │
│B224│INSERT ADDRESS SPACE CONTROL │IAC │RRE C │Q │SO │ │ │1�-26 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B225│SET SECONDARY ASN │SSAR │RRE │ A� │Z� T ¢ │ │ │1�-93 │
│B226│EXTRACT PRIMARY ASN │EPAR │RRE │Q │SO │ │ │1�-21 │
│B227│EXTRACT SECONDARY ASN │ESAR │RRE │Q │SO │ │ │1�-21 │
│B228│PROGRAM TRANSFER │PT │RRE │Q A� SP│Z� T ¢ │B │ │1�-79 │
│B229│INSERT STORAGE KEY EXTENDED │ISKE │RRE │P A� │ │ │ │1�-27 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B22A│RESET REFERENCE BIT EXTENDED │RRBE │RRE C │P A� │ │ │ │1�-85 │
│B22B│SET STORAGE KEY EXTENDED │SSKE │RRE │P A� │ ¢ │ │ │1�-97 │
│B22C│TEST BLOCK │TB │RRE C │P A� │II $ G� │ │ │1�-118 │
│B22D│DIVIDE (extended HFP) │DXR │RRE │ SP│Da EU EO FK │ │ │18-12 │
│B22E│PAGE IN │PGIN │RRE C ES│P A� │ ¢ │ │ │1�-6� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B22F│PAGE OUT │PGOUT│RRE C ES│P A� │ ¢ │ │ │1�-61 │
│B24�│BRANCH AND STACK │BAKR │RRE │ A� │Z� T │B ST│ │1�-1� │
│B241│CHECKSUM │CKSM │RRE C │ A SP│ │ │ R�│7-31 │
│B244│SQUARE ROOT (long HFP) │SQDR │RRE │ │Da SQ │ │ │18-21 │
│B245│SQUARE ROOT (short HFP) │SQER │RRE │ │Da SQ │ │ │18-21 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 5 of 14). Instructions Arranged by Operation Code

 Appendix B. Lists of Instructions B-35

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│B246│STORE USING REAL ADDRESS (32) │STURA│RRE │P A� SP│ │ SU│ │1�-115 │
│B247│MODIFY STACKED STATE │MSTA │RRE │ A� SP│SE │ ST│ │1�-51 │
│B248│PURGE ALB │PALB │RRE │P │ $ │ │ │1�-85 │
│B249│EXTRACT STACKED REGISTERS (32) │EREG │RRE │ A� │SE │ │U� U�│1�-22 │
│B24A│EXTRACT STACKED STATE │ESTA │RRE C │ A� SP│SE │ │ │1�-23 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B24B│LOAD USING REAL ADDRESS (32) │LURA │RRE │P A� SP│ │ │ │1�-51 │
│B24C│TEST ACCESS │TAR │RRE C │ A� │ │ │U� │1�-116 │
│B24D│COPY ACCESS │CPYA │RRE │ │ │ │U� U�│7-1�4 │
│B24E│SET ACCESS │SAR │RRE │ │ │ │U� │7-161 │
│B24F│EXTRACT ACCESS │EAR │RRE │ │ │ │ U�│7-1�8 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B25�│COMPARE AND SWAP AND PURGE │CSP │RRE C │P A� SP│ $ │ ST│ R�│1�-18 │
│B252│MULTIPLY SINGLE (32) │MSR │RRE │ │ │ │ │7-138 │
│B254│MOVE PAGE │MVPG │RRE C │Q A SP│ G� │ ST│R� R�│1�-53 │
│B255│MOVE STRING │MVST │RRE C │ A SP│ G� │ ST│R� R�│7-134 │
│B257│COMPARE UNTIL SUBSTRING EQUAL │CUSE │RRE C │ A SP│II GM │ │R� R�│7-68 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B258│BRANCH IN SUBSPACE GROUP │BSG │RRE │ A� │SO T │B │ R�│1�-13 │
│B25A│BRANCH AND SET AUTHORITY │BSA │RRE │Q A� │SO T │B │ │1�-6 │
│B25D│COMPARE LOGICAL STRING │CLST │RRE C │ A SP│ G� │ │R� R�│7-67 │
│B25E│SEARCH STRING │SRST │RRE C │ A SP│ G� │ │ R�│7-16� │
│B263│COMPRESSION CALL │CMPSC│RRE C │ A SP│II Dd GM │ ST│R� R�│7-72 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B277│RESUME PROGRAM │RP │S L │Q A SP│WE T │B │ B�│1�-86 │
│B278│STORE CLOCK EXTENDED │STCKE│S C │ A │ $ │ ST│ B�│7-17� │
│B279│SET ADDRESS SPACE CONTROL FAST │SACF │S │Q SP│SW │ │ │1�-89 │
│B27D│STORE SYSTEM INFORMATION │STSI │S C │P A SP│ GM │ ST│ B�│1�-1�4 │
│B299│SET ROUNDING MODE │SRNM │S │ │Db │ │ │19-43 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B29C│STORE FPC │STFPC│S │ A │Db │ ST│ B�│19-44 │
│B29D│LOAD FPC │LFPC │S │ A SP│Db │ │ B�│19-36 │
│B2A5│TRANSLATE EXTENDED │TRE │RRE C │ A SP│ │ ST│R� R�│7-181 │
│B2A6│CONVERT UNICODE TO UTF-8 │CUUTF│RRE C │ A SP│ │ ST│R� R�│7-98 │
│B2A7│CONVERT UTF-8 TO UNICODE │CUTFU│RRE C │ A SP│ │ ST│R� R�│7-1�1 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B2B1│STORE FACILITY LIST │STFL │S N3│P │ │ │ │1�-1�2 │
│B2B2│LOAD PSW EXTENDED │LPSWE│S L N │P A SP│ ¢ │ │ B�│1�-45 │
│B2FF│TRAP │TRAP4│S │ A │SO T │B ST│ │1�-124 │
│B3��│LOAD POSITIVE (short BFP) │LPEBR│RRE C │ │Db │ │ │19-38 │
│B3�1│LOAD NEGATIVE (short BFP) │LNEBR│RRE C │ │Db │ │ │19-37 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B3�2│LOAD AND TEST (short BFP) │LTEBR│RRE C │ │Db Xi │ │ │19-34 │
│B3�3│LOAD COMPLEMENT (short BFP) │LCEBR│RRE C │ │Db │ │ │19-34 │
│B3�4│LOAD LENGTHENED (short to long BFP) │LDEBR│RRE │ │Db Xi │ │ │19-37 │
│B3�5│LOAD LENGTHENED (long to ext. BFP) │LXDBR│RRE │ SP│Db Xi │ │ │19-37 │
│B3�6│LOAD LENGTHENED (short to ext. BFP) │LXEBR│RRE │ SP│Db Xi │ │ │19-37 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B3�7│MULTIPLY (long to extended BFP) │MXDBR│RRE │ SP│Db Xi │ │ │19-39 │
│B3�8│COMPARE AND SIGNAL (short BFP) │KEBR │RRE C │ │Db Xi │ │ │19-24 │
│B3�9│COMPARE (short BFP) │CEBR │RRE C │ │Db Xi │ │ │19-23 │
│B3�A│ADD (short BFP) │AEBR │RRE C │ │Db Xi Xo Xu Xx│ │ │19-18 │
│B3�B│SUBTRACT (short BFP) │SEBR │RRE C │ │Db Xi Xo Xu Xx│ │ │19-44 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 6 of 14). Instructions Arranged by Operation Code

B-36 z/Architecture Principles of Operation

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│B3�C│MULTIPLY (short to long BFP) │MDEBR│RRE │ │Db Xi │ │ │19-39 │
│B3�D│DIVIDE (short BFP) │DEBR │RRE │ │Db Xi Xz Xo Xu Xx│ │ │19-29 │
│B3�E│MULTIPLY AND ADD (short BFP) │MAEBR│RRF │ │Db Xi Xo Xu Xx│ │ │19-41 │
│B3�F│MULTIPLY AND SUBTRACT (short BFP) │MSEBR│RRF │ │Db Xi Xo Xu Xx│ │ │19-41 │
│B31�│LOAD POSITIVE (long BFP) │LPDBR│RRE C │ │Db │ │ │19-38 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B311│LOAD NEGATIVE (long BFP) │LNDBR│RRE C │ │Db │ │ │19-37 │
│B312│LOAD AND TEST (long BFP) │LTDBR│RRE C │ │Db Xi │ │ │19-34 │
│B313│LOAD COMPLEMENT (long BFP) │LCDBR│RRE C │ │Db │ │ │19-34 │
│B314│SQUARE ROOT (short BFP) │SQEBR│RRE │ │Db Xi Xx│ │ │19-44 │
│B315│SQUARE ROOT (long BFP) │SQDBR│RRE │ │Db Xi Xx│ │ │19-44 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B316│SQUARE ROOT (extended BFP) │SQXBR│RRE │ SP│Db Xi Xx│ │ │19-44 │
│B317│MULTIPLY (short BFP) │MEEBR│RRE │ │Db Xi Xo Xu Xx│ │ │19-39 │
│B318│COMPARE AND SIGNAL (long BFP) │KDBR │RRE C │ │Db Xi │ │ │19-24 │
│B319│COMPARE (long BFP) │CDBR │RRE C │ │Db Xi │ │ │19-23 │
│B31A│ADD (long BFP) │ADBR │RRE C │ │Db Xi Xo Xu Xx│ │ │19-18 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B31B│SUBTRACT (long BFP) │SDBR │RRE C │ │Db Xi Xo Xu Xx│ │ │19-44 │
│B31C│MULTIPLY (long BFP) │MDBR │RRE │ │Db Xi Xo Xu Xx│ │ │19-39 │
│B31D│DIVIDE (long BFP) │DDBR │RRE │ │Db Xi Xz Xo Xu Xx│ │ │19-29 │
│B31E│MULTIPLY AND ADD (long BFP) │MADBR│RRF │ │Db Xi Xo Xu Xx│ │ │19-41 │
│B31F│MULTIPLY AND SUBTRACT (long BFP) │MSDBR│RRF │ │Db Xi Xo Xu Xx│ │ │19-41 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B324│LOAD LENGTHENED (short to long HFP) │LDER │RRE │ │Da │ │ │18-15 │
│B325│LOAD LENGTHENED (long to ext. HFP) │LXDR │RRE │ SP│Da │ │ │18-15 │
│B326│LOAD LENGTHENED (short to ext. HFP) │LXER │RRE │ SP│Da │ │ │18-15 │

| │B32E│MULTIPLY AND ADD (short HFP) │MAER │RRF HM│ │Da EU EO │ │ │18-19 │
| │B32F│MULTIPLY AND SUBTRACT (short HFP) │MSER │RRF HM│ │Da EU EO │ │ │18-2� │

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B336│SQUARE ROOT (extended HFP) │SQXR │RRE │ SP│Da SQ │ │ │18-21 │
│B337│MULTIPLY (short HFP) │MEER │RRE │ │Da EU EO │ │ │18-18 │

| │B33E│MULTIPLY AND ADD (long HFP) │MADR │RRF HM│ │Da EU EO │ │ │18-19 │
| │B33F│MULTIPLY AND SUBTRACT (long HFP) │MSDR │RRF HM│ │Da EU EO │ │ │18-2� │

│B34�│LOAD POSITIVE (extended BFP) │LPXBR│RRE C │ SP│Db │ │ │19-38 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B341│LOAD NEGATIVE (extended BFP) │LNXBR│RRE C │ SP│Db │ │ │19-37 │
│B342│LOAD AND TEST (extended BFP) │LTXBR│RRE C │ SP│Db Xi │ │ │19-34 │
│B343│LOAD COMPLEMENT (extended BFP) │LCXBR│RRE C │ SP│Db │ │ │19-34 │
│B344│LOAD ROUNDED (long to short BFP) │LEDBR│RRE │ │Db Xi Xo Xu Xx│ │ │19-38 │
│B345│LOAD ROUNDED (extended to long BFP) │LDXBR│RRE │ SP│Db Xi Xo Xu Xx│ │ │19-38 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B346│LOAD ROUNDED (extended to short BFP)│LEXBR│RRE │ SP│Db Xi Xo Xu Xx│ │ │19-38 │
│B347│LOAD FP INTEGER (extended BFP) │FIXBR│RRF │ SP│Db Xi Xx│ │ │19-35 │
│B348│COMPARE AND SIGNAL (extended BFP) │KXBR │RRE C │ SP│Db Xi │ │ │19-24 │
│B349│COMPARE (extended BFP) │CXBR │RRE C │ SP│Db Xi │ │ │19-23 │
│B34A│ADD (extended BFP) │AXBR │RRE C │ SP│Db Xi Xo Xu Xx│ │ │19-18 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B34B│SUBTRACT (extended BFP) │SXBR │RRE C │ SP│Db Xi Xo Xu Xx│ │ │19-44 │
│B34C│MULTIPLY (extended BFP) │MXBR │RRE │ SP│Db Xi Xo Xu Xx│ │ │19-39 │
│B34D│DIVIDE (extended BFP) │DXBR │RRE │ SP│Db Xi Xz Xo Xu Xx│ │ │19-29 │
│B35�│CONVERT HFP TO BFP (long to short) │TBEDR│RRF C │ SP│Da │ │ │9-9 │
│B351│CONVERT HFP TO BFP (long) │TBDR │RRF C │ SP│Da │ │ │9-9 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 7 of 14). Instructions Arranged by Operation Code

 Appendix B. Lists of Instructions B-37

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│B353│DIVIDE TO INTEGER (short BFP) │DIEBR│RRF C │ SP│Db Xi Xu Xx│ │ │19-29 │
│B357│LOAD FP INTEGER (short BFP) │FIEBR│RRF │ SP│Db Xi Xx│ │ │19-35 │
│B358│CONVERT BFP TO HFP (short to long) │THDER│RRE C │ │Da │ │ │9-8 │
│B359│CONVERT BFP TO HFP (long) │THDR │RRE C │ │Da │ │ │9-8 │
│B35B│DIVIDE TO INTEGER (long BFP) │DIDBR│RRF C │ SP│Db Xi Xu Xx│ │ │19-29 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B35F│LOAD FP INTEGER (long BFP) │FIDBR│RRF │ SP│Db Xi Xx│ │ │19-35 │
│B36�│LOAD POSITIVE (extended HFP) │LPXR │RRE C │ SP│Da │ │ │18-16 │
│B361│LOAD NEGATIVE (extended HFP) │LNXR │RRE C │ SP│Da │ │ │18-16 │
│B362│LOAD AND TEST (extended HFP) │LTXR │RRE C │ SP│Da │ │ │18-14 │
│B363│LOAD COMPLEMENT (extended HFP) │LCXR │RRE C │ SP│Da │ │ │18-14 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B365│LOAD (extended) │LXR │RRE │ SP│Da │ │ │9-1� │
│B366│LOAD ROUNDED (extended to short HFP)│LEXR │RRE │ SP│Da EO │ │ │18-17 │
│B367│LOAD FP INTEGER (extended HFP) │FIXR │RRE │ SP│Da │ │ │18-15 │
│B369│COMPARE (extended HFP) │CXR │RRE C │ SP│Da │ │ │18-1� │
│B374│LOAD ZERO (short) │LZER │RRE │ │Da │ │ │9-11 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B375│LOAD ZERO (long) │LZDR │RRE │ │Da │ │ │9-11 │
│B376│LOAD ZERO (extended) │LZXR │RRE │ SP│Da │ │ │9-11 │
│B377│LOAD FP INTEGER (short HFP) │FIER │RRE │ │Da │ │ │18-15 │
│B37F│LOAD FP INTEGER (long HFP) │FIDR │RRE │ │Da │ │ │18-15 │
│B384│SET FPC │SFPC │RRE │ SP│Db │ │ │19-43 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B38C│EXTRACT FPC │EFPC │RRE │ │Db │ │ │19-33 │
│B394│CONVERT FROM FIXED (32 to short BFP)│CEFBR│RRE │ │Db Xx│ │ │19-26 │
│B395│CONVERT FROM FIXED (32 to long BFP) │CDFBR│RRE │ │Db │ │ │19-26 │
│B396│CONVERT FROM FIXED (32 to ext. BFP) │CXFBR│RRE │ SP│Db │ │ │19-26 │
│B398│CONVERT TO FIXED (short BFP to 32) │CFEBR│RRF C │ SP│Db Xi Xx│ │ │19-26 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B399│CONVERT TO FIXED (long BFP to 32) │CFDBR│RRF C │ SP│Db Xi Xx│ │ │19-26 │
│B39A│CONVERT TO FIXED (ext. BFP to 32) │CFXBR│RRF C │ SP│Db Xi Xx│ │ │19-26 │
│B3A4│CONVERT FROM FIXED (64 to short BFP)│CEGBR│RRE N │ │Db Xx│ │ │19-26 │
│B3A5│CONVERT FROM FIXED (64 to long BFP) │CDGBR│RRE N │ │Db Xx│ │ │19-26 │
│B3A6│CONVERT FROM FIXED (64 to ext. BFP) │CXGBR│RRE N │ SP│Db │ │ │19-26 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B3A8│CONVERT TO FIXED (short BFP to 64) │CGEBR│RRF C N │ SP│Db Xi Xx│ │ │19-26 │
│B3A9│CONVERT TO FIXED (long BFP to 64) │CGDBR│RRF C N │ SP│Db Xi Xx│ │ │19-26 │
│B3AA│CONVERT TO FIXED (ext. BFP to 64) │CGXBR│RRF C N │ SP│Db Xi Xx│ │ │19-26 │
│B3B4│CONVERT FROM FIXED (32 to short HFP)│CEFR │RRE │ │Da │ │ │18-11 │
│B3B5│CONVERT FROM FIXED (32 to long HFP) │CDFR │RRE │ │Da │ │ │18-11 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B3B6│CONVERT FROM FIXED (32 to ext. HFP) │CXFR │RRE │ SP│Da │ │ │18-11 │
│B3B8│CONVERT TO FIXED (short HFP to 32) │CFER │RRF C │ SP│Da │ │ │18-11 │
│B3B9│CONVERT TO FIXED (long HFP to 32) │CFDR │RRF C │ SP│Da │ │ │18-11 │
│B3BA│CONVERT TO FIXED (ext. HFP to 32) │CFXR │RRF C │ SP│Da │ │ │18-11 │
│B3C4│CONVERT FROM FIXED (64 to short HFP)│CEGR │RRE N │ │Da │ │ │18-11 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B3C5│CONVERT FROM FIXED (64 to long HFP) │CDGR │RRE N │ │Da │ │ │18-11 │
│B3C6│CONVERT FROM FIXED (64 to ext. HFP) │CXGR │RRE N │ SP│Da │ │ │18-11 │
│B3C8│CONVERT TO FIXED (short HFP to 64) │CGER │RRF C N │ SP│Da │ │ │18-11 │
│B3C9│CONVERT TO FIXED (long HFP to 64) │CGDR │RRF C N │ SP│Da │ │ │18-11 │
│B3CA│CONVERT TO FIXED (ext. HFP to 64) │CGXR │RRF C N │ SP│Da │ │ │18-11 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 8 of 14). Instructions Arranged by Operation Code

B-38 z/Architecture Principles of Operation

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│B6 │STORE CONTROL (32) │STCTL│RS │P A SP│ │ ST│ B�│1�-99 │
│B7 │LOAD CONTROL (32) │LCTL │RS │P A SP│ │ │ B�│1�-44 │
│B9��│LOAD POSITIVE (64) │LPGR │RRE C N │ │ IF │ │ │7-119 │
│B9�1│LOAD NEGATIVE (64) │LNGR │RRE C N │ │ │ │ │7-119 │
│B9�2│LOAD AND TEST (64) │LTGR │RRE C N │ │ │ │ │7-114 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B9�3│LOAD COMPLEMENT (64) │LCGR │RRE C N │ │ IF │ │ │7-115 │
│B9�4│LOAD (64) │LGR │RRE N │ │ │ │ │7-111 │
│B9�5│LOAD USING REAL ADDRESS (64) │LURAG│RRE N │P A� SP│ │ │ │1�-51 │
│B9�8│ADD (64) │AGR │RRE C N │ │ IF │ │ │7-18 │
│B9�9│SUBTRACT (64) │SGR │RRE C N │ │ IF │ │ │7-174 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B9�A│ADD LOGICAL (64) │ALGR │RRE C N │ │ │ │ │7-19 │
│B9�B│SUBTRACT LOGICAL (64) │SLGR │RRE C N │ │ │ │ │7-175 │
│B9�C│MULTIPLY SINGLE (64) │MSGR │RRE N │ │ │ │ │7-139 │
│B9�D│DIVIDE SINGLE (64) │DSGR │RRE N │ SP│ IK │ │ │7-1�6 │
│B9�E│EXTRACT STACKED REGISTERS (64) │EREGG│RRE N │ A� │SE │ │U� U�│1�-22 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B9�F│LOAD REVERSED (64) │LRVGR│RRE N │ │ │ │ │7-12� │
│B91�│LOAD POSITIVE (64<32) │LPGFR│RRE C N │ │ IF │ │ │7-119 │
│B911│LOAD NEGATIVE (64<32) │LNGFR│RRE C N │ │ │ │ │7-119 │
│B912│LOAD AND TEST (64<32) │LTGFR│RRE C N │ │ │ │ │7-114 │
│B913│LOAD COMPLEMENT (64<32) │LCGFR│RRE C N │ │ IF │ │ │7-115 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B914│LOAD (64<32) │LGFR │RRE N │ │ │ │ │7-111 │
│B916│LOAD LOGICAL (64<32) │LLGFR│RRE N │ │ │ │ │7-116 │
│B917│LOAD LOGICAL THIRTY ONE BITS │LLGTR│RRE N │ │ │ │ │7-117 │
│B917│LOAD LOGICAL THIRTY ONE BITS │LLGTR│RRE N │ │ │ │ │7-117 │
│B918│ADD (64<32) │AGFR │RRE C N │ │ IF │ │ │7-18 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B919│SUBTRACT (64<32) │SGFR │RRE C N │ │ IF │ │ │7-174 │
│B91A│ADD LOGICAL (64<32) │ALGFR│RRE C N │ │ │ │ │7-19 │
│B91B│SUBTRACT LOGICAL (64<32) │SLGFR│RRE C N │ │ │ │ │7-175 │
│B91C│MULTIPLY SINGLE (64<32) │MSGFR│RRE N │ │ │ │ │7-139 │
│B91D│DIVIDE SINGLE (64<32) │DSGFR│RRE N │ SP│ IK │ │ │7-1�6 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

| │B91E│COMPUTE MESSAGE AUTHENTICATION CODE │KMAC │RRE C MS│ A SP│ GM I1 │ ST│ R�│7-91 │
│B91F│LOAD REVERSED (32) │LRVR │RRE N3│ │ │ │ │7-12� │
│B92�│COMPARE (64) │CGR │RRE C N │ │ │ │ │7-45 │
│B921│COMPARE LOGICAL (64) │CLGR │RRE C N │ │ │ │ │7-56 │
│B925│STORE USING REAL ADDRESS (64) │STURG│RRE N │P A� SP│ │ SU│ │1�-115 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

| │B92E│CIPHER MESSAGE │KM │RRE C MS│ A SP│ GM I1 │ ST│R� R�│7-35 │
| │B92F│CIPHER MESSAGE WITH CHAINING │KMC │RRE C MS│ A SP│ GM I1 │ ST│R� R�│7-35 │

│B93�│COMPARE (64<32) │CGFR │RRE C N │ │ │ │ │7-45 │
│B931│COMPARE LOGICAL (64<32) │CLGFR│RRE C N │ │ │ │ │7-56 │

| │B93E│COMPUTE INTERMEDIATE MESSAGE DIGEST │KIMD │RRE C MS│ A SP│ GM I1 │ ST│ R�│7-84 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

| │B93F│COMPUTE LAST MESSAGE DIGEST │KLMD │RRE C MS│ A SP│ GM I1 │ ST│ R�│7-84 │
│B946│BRANCH ON COUNT (64) │BCTGR│RRE N │ │ │B │ │7-26 │
│B98�│AND (64) │NGR │RRE C N │ │ │ │ │7-2� │
│B981│OR (64) │OGR │RRE C N │ │ │ │ │7-139 │
│B982│EXCLUSIVE OR (64) │XGR │RRE C N │ │ │ │ │7-1�6 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 9 of 14). Instructions Arranged by Operation Code

 Appendix B. Lists of Instructions B-39

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│B986│MULTIPLY LOGICAL (128<64) │MLGR │RRE N │ SP│ │ │ │7-138 │
│B987│DIVIDE LOGICAL (64<128) │DLGR │RRE N │ SP│ IK │ │ │7-1�5 │
│B988│ADD LOGICAL WITH CARRY (64) │ALCGR│RRE C N │ │ │ │ │7-2� │
│B989│SUBTRACT LOGICAL WITH BORROW (64) │SLBGR│RRE C N │ │ │ │ │7-176 │

| │B98A│COMPARE AND SWAP AND PURGE │CSPG │RRE C DE│P A� SP│ $ │ ST│ R�│1�-18 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B98D│EXTRACT PSW │EPSW │RRE N3│ │ │ │ │7-1�9 │

| │B98E│INVALIDATE DAT TABLE ENTRY │IDTE │RRF DE│P A� │ $ │ │ │1�-29 │
│B99�│TRANSLATE TWO TO TWO │TRTT │RRE C E2│ A SP│ GM │ ST│RM R�│7-183 │
│B991│TRANSLATE TWO TO ONE │TRTO │RRE C E2│ A SP│ GM │ ST│RM R�│7-183 │
│B992│TRANSLATE ONE TO TWO │TROT │RRE C E2│ A SP│ GM │ ST│RM R�│7-183 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B993│TRANSLATE ONE TO ONE │TROO │RRE C E2│ A SP│ GM │ ST│RM R�│7-183 │
│B996│MULTIPLY LOGICAL (64<32) │MLR │RRE N3│ SP│ │ │ │7-138 │
│B997│DIVIDE LOGICAL (32<64) │DLR │RRE N3│ SP│ IK │ │ │7-1�5 │
│B998│ADD LOGICAL WITH CARRY (32) │ALCR │RRE C N3│ │ │ │ │7-2� │
│B999│SUBTRACT LOGICAL WITH BORROW (32) │SLBR │RRE C N3│ │ │ │ │7-176 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│B99D│EXTRACT AND SET EXTENDED AUTHORITY │ESEA │RRE N │P │ │ │ │1�-21 │
│BA │COMPARE AND SWAP (32) │CS │RS C │ A SP│ $ │ ST│ B�│7-53 │
│BB │COMPARE DOUBLE AND SWAP (32) │CDS │RS C │ A SP│ $ │ ST│ B�│7-53 │
│BD │COMPARE LOGICAL C. UNDER MASK (low) │CLM │RS C │ A │ │ │ B�│7-57 │
│BE │STORE CHARACTERS UNDER MASK (low) │STCM │RS │ A │ │ ST│ B�│7-168 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│BF │INSERT CHARACTERS UNDER MASK (low) │ICM │RS C │ A │ │ │ B�│7-1�9 │
│C�� │LOAD ADDRESS RELATIVE LONG │LARL │RIL N3│ │ │ │ │7-113 │
│C�4 │BRANCH RELATIVE ON CONDITION LONG │BRCL │RIL N3│ │ │B │ │7-29 │
│C�5 │BRANCH RELATIVE AND SAVE LONG │BRASL│RIL N3│ │ │B │ │7-28 │
│D1 │MOVE NUMERICS │MVN │SS │ A │ │ ST│B� B�│7-134 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│D2 │MOVE (character) │MVC │SS │ A │ │ ST│B� B�│7-122 │
│D3 │MOVE ZONES │MVZ │SS │ A │ │ ST│B� B�│7-136 │
│D4 │AND (character) │NC │SS C │ A │ │ ST│B� B�│7-21 │
│D5 │COMPARE LOGICAL (character) │CLC │SS C │ A │ │ │B� B�│7-56 │
│D6 │OR (character) │OC │SS C │ A │ │ ST│B� B�│7-14� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│D7 │EXCLUSIVE OR (character) │XC │SS C │ A │ │ ST│B� B�│7-1�7 │
│D9 │MOVE WITH KEY │MVCK │SS C │Q A │ │ ST│B� B�│1�-58 │
│DA │MOVE TO PRIMARY │MVCP │SS C │Q A │SO ¢ │ ST│ │1�-55 │
│DB │MOVE TO SECONDARY │MVCS │SS C │Q A │SO ¢ │ ST│ │1�-55 │
│DC │TRANSLATE │TR │SS │ A │ │ ST│B� B�│7-179 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│DD │TRANSLATE AND TEST │TRT │SS C │ A │ GM │ │B� B�│7-18� │
│DE │EDIT │ED │SS C │ A │Dd │ ST│B� B�│8-7 │
│DF │EDIT AND MARK │EDMK │SS C │ A │Dd G1 │ ST│B� B�│8-9 │
│E1 │PACK UNICODE │PKU │SS E2│ A SP│ │ ST│B� B�│7-143 │
│E2 │UNPACK UNICODE │UNPKU│SS C E2│ A SP│ │ ST│B� B�│7-19� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E3�3│LOAD REAL ADDRESS (64) │LRAG │RXY C N │P A� │ │ │ BP│1�-46 │
│E3�4│LOAD (64) │LG │RXY N │ A │ │ │ B�│7-111 │

| │E3�6│CONVERT TO BINARY (32) │CVBY │RXY LD│ A │Dd IK │ │ B�│7-97 │
│E3�8│ADD (64) │AG │RXY C N │ A │ IF │ │ B�│7-18 │
│E3�9│SUBTRACT (64) │SG │RXY C N │ A │ IF │ │ B�│7-174 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 10 of 14). Instructions Arranged by Operation Code

B-40 z/Architecture Principles of Operation

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│E3�A│ADD LOGICAL (64) │ALG │RXY C N │ A │ │ │ B�│7-19 │
│E3�B│SUBTRACT LOGICAL (64) │SLG │RXY C N │ A │ │ │ B�│7-175 │
│E3�C│MULTIPLY SINGLE (64) │MSG │RXY N │ A │ │ │ B�│7-139 │
│E3�D│DIVIDE SINGLE (64) │DSG │RXY N │ A SP│ IK │ │ B�│7-1�6 │
│E3�E│CONVERT TO BINARY (64) │CVBG │RXY N │ A │Dd IK │ │ B�│7-97 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E3�F│LOAD REVERSED (64) │LRVG │RXY N │ A │ │ │ B�│7-12� │

| │E313│LOAD REAL ADDRESS (32) │LRAY │RXY C LD│P A� │SO │ │ BP│1�-46 │
│E314│LOAD (64<32) │LGF │RXY N │ A │ │ │ B�│7-111 │
│E315│LOAD HALFWORD (64) │LGH │RXY N │ A │ │ │ B�│7-115 │
│E316│LOAD LOGICAL (64<32) │LLGF │RXY N │ A │ │ │ B�│7-116 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E317│LOAD LOGICAL THIRTY ONE BITS │LLGT │RXY N │ A │ │ │ B�│7-117 │
│E317│LOAD LOGICAL THIRTY ONE BITS │LLGT │RXY N │ A │ │ │ B�│7-117 │
│E318│ADD (64<32) │AGF │RXY C N │ A │ IF │ │ B�│7-18 │
│E319│SUBTRACT (64<32) │SGF │RXY C N │ A │ IF │ │ B�│7-174 │
│E31A│ADD LOGICAL (64<32) │ALGF │RXY C N │ A │ │ │ B�│7-19 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E31B│SUBTRACT LOGICAL (64<32) │SLGF │RXY C N │ A │ │ │ B�│7-175 │
│E31C│MULTIPLY SINGLE (64<32) │MSGF │RXY N │ A │ │ │ B�│7-139 │
│E31D│DIVIDE SINGLE (64<32) │DSGF │RXY N │ A SP│ IK │ │ B�│7-1�6 │
│E31E│LOAD REVERSED (32) │LRV │RXY N3│ A │ │ │ B�│7-12� │
│E31F│LOAD REVERSED (16) │LRVH │RXY N3│ A │ │ │ B�│7-12� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E32�│COMPARE (64) │CG │RXY C N │ A │ │ │ B�│7-46 │
│E321│COMPARE LOGICAL (64) │CLG │RXY C N │ A │ │ │ B�│7-56 │
│E324│STORE (64) │STG │RXY N │ A │ │ ST│ B�│7-167 │

| │E326│CONVERT TO DECIMAL (32) │CVDY │RXY LD│ A │ │ ST│ B�│7-98 │
│E32E│CONVERT TO DECIMAL (64) │CVDG │RXY N │ A │ │ ST│ B�│7-98 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E32F│STORE REVERSED (64) │STRVG│RXY N │ A │ │ ST│ B�│7-173 │
│E33�│COMPARE (64<32) │CGF │RXY C N │ A │ │ │ B�│7-46 │
│E331│COMPARE LOGICAL (64<32) │CLGF │RXY C N │ A │ │ │ B�│7-56 │
│E33E│STORE REVERSED (32) │STRV │RXY N3│ A │ │ ST│ B�│7-173 │
│E33F│STORE REVERSED (16) │STRVH│RXY N3│ A │ │ ST│ B�│7-173 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E346│BRANCH ON COUNT (64) │BCTG │RXY N │ │ │B │ │7-26 │

| │E35�│STORE (32) │STY │RXY LD│ A │ │ ST│ B�│7-167 │
| │E351│MULTIPLY SINGLE (32) │MSY │RXY LD│ A │ │ │ B�│7-139 │
| │E354│AND (32) │NY │RXY C LD│ A │ │ │ B�│7-2� │
| │E355│COMPARE LOGICAL (32) │CLY │RXY C LD│ A │ │ │ B�│7-56 │

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
| │E356│OR (32) │OY │RXY C LD│ A │ │ │ B�│7-14� │
| │E357│EXCLUSIVE OR (32) │XY │RXY C LD│ A │ │ │ B�│7-1�6 │
| │E358│LOAD (32) │LY │RXY LD│ A │ │ │ B�│7-111 │
| │E359│COMPARE (32) │CY │RXY C LD│ A │ │ │ B�│7-46 │
| │E35A│ADD (32) │AY │RXY C LD│ A │ IF │ │ B�│7-18 │

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
| │E35B│SUBTRACT (32) │SY │RXY C LD│ A │ IF │ │ B�│7-174 │
| │E35E│ADD LOGICAL (32) │ALY │RXY C LD│ A │ │ │ B�│7-19 │
| │E35F│SUBTRACT LOGICAL (32) │SLY │RXY C LD│ A │ │ │ B�│7-175 │
| │E37�│STORE HALFWORD │STHY │RXY LD│ A │ │ ST│ B�│7-172 │
| │E371│LOAD ADDRESS │LAY │RXY LD│ │ │ │ │7-112 │

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 11 of 14). Instructions Arranged by Operation Code

 Appendix B. Lists of Instructions B-41

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

| │E372│STORE CHARACTER │STCY │RXY LD│ A │ │ ST│ B�│7-168 │
| │E373│INSERT CHARACTER │ICY │RXY LD│ A │ │ │ B�│7-1�9 │
| │E376│LOAD BYTE (32) │LB │RXY LD│ A │ │ │ │7-114 │
| │E377│LOAD BYTE (64) │LGB │RXY LD│ A │ │ │ │7-114 │
| │E378│LOAD HALFWORD (32) │LHY │RXY LD│ A │ │ │ B�│7-115 │

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
| │E379│COMPARE HALFWORD │CHY │RXY C LD│ A │ │ │ B�│7-55 │
| │E37A│ADD HALFWORD │AHY │RXY C LD│ A │ IF │ │ B�│7-18 │
| │E37B│SUBTRACT HALFWORD │SHY │RXY C LD│ A │ IF │ │ B�│7-174 │

│E38�│AND (64) │NG │RXY C N │ A │ │ │ B�│7-2� │
│E381│OR (64) │OG │RXY C N │ A │ │ │ B�│7-14� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E382│EXCLUSIVE OR (64) │XG │RXY C N │ A │ │ │ B�│7-1�7 │
│E386│MULTIPLY LOGICAL (128<64) │MLG │RXY N │ A SP│ │ │ B�│7-138 │
│E387│DIVIDE LOGICAL (64<128) │DLG │RXY N │ A SP│ IK │ │ B�│7-1�5 │
│E388│ADD LOGICAL WITH CARRY (64) │ALCG │RXY C N │ A │ │ │ B�│7-2� │
│E389│SUBTRACT LOGICAL WITH BORROW (64) │SLBG │RXY C N │ A │ │ │ B�│7-176 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E38E│STORE PAIR TO QUADWORD │STPQ │RXY N │ A SP│ │ ST│ B�│7-173 │
│E38F│LOAD PAIR FROM QUADWORD │LPQ │RXY N │ A SP│ │ │ B�│7-119 │
│E39�│LOAD LOGICAL CHARACTER │LLGC │RXY N │ A │ │ │ B�│7-116 │
│E391│LOAD LOGICAL HALFWORD │LLGH │RXY N │ A │ │ │ B�│7-116 │
│E396│MULTIPLY LOGICAL (64<32) │ML │RXY N3│ A SP│ │ │ B�│7-138 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E397│DIVIDE LOGICAL (32<64) │DL │RXY N3│ A SP│ IK │ │ B�│7-1�5 │
│E398│ADD LOGICAL WITH CARRY (32) │ALC │RXY C N3│ A │ │ │ B�│7-2� │
│E399│SUBTRACT LOGICAL WITH BORROW (32) │SLB │RXY C N3│ A │ │ │ B�│7-176 │
│E5��│LOAD ADDRESS SPACE PARAMETERS │LASP │SSE C │P A� SP│SO │ │B� │1�-35 │
│E5�1│TEST PROTECTION │TPROT│SSE C │P A� │ │ │B� │1�-12� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│E5�2│STORE REAL ADDRESS │STRAG│SSE N │P A� │ │ ST│B� BP│1�-1�3 │
│E5�E│MOVE WITH SOURCE KEY │MVCSK│SSE │Q A │ GM │ ST│B� B�│1�-59 │
│E5�F│MOVE WITH DESTINATION KEY │MVCDK│SSE │Q A │ GM │ ST│B� B�│1�-57 │
│E8 │MOVE INVERSE │MVCIN│SS │ A │ │ ST│B� B�│7-122 │
│E9 │PACK ASCII │PKA │SS E2│ A SP│ │ ST│B� B�│7-142 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│EA │UNPACK ASCII │UNPKA│SS C E2│ A SP│ │ ST│B� B�│7-189 │
│EB�4│LOAD MULTIPLE (64) │LMG │RSY N │ A │ │ │ B�│7-117 │
│EB�A│SHIFT RIGHT SINGLE (64) │SRAG │RSY C N │ │ │ │ │7-166 │
│EB�B│SHIFT LEFT SINGLE (64) │SLAG │RSY C N │ │ IF │ │ │7-163 │
│EB�C│SHIFT RIGHT SINGLE LOGICAL (64) │SRLG │RSY N │ │ │ │ │7-166 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│EB�D│SHIFT LEFT SINGLE LOGICAL (64) │SLLG │RSY N │ │ │ │ │7-164 │
│EB�F│TRACE (64) │TRACG│RSY N │P A SP│ T ¢ │ │ B�│1�-123 │

| │EB14│COMPARE AND SWAP (32) │CSY │RSY C LD│ A SP│ $ │ ST│ B�│7-53 │
│EB1C│ROTATE LEFT SINGLE LOGICAL (64) │RLLG │RSY N │ │ │ │ │7-159 │
│EB1D│ROTATE LEFT SINGLE LOGICAL (32) │RLL │RSY N3│ │ │ │ │7-159 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│EB2�│COMPARE LOGICAL C. UNDER MASK (high)│CLMH │RSY C N │ A │ │ │ B�│7-57 │

| │EB21│COMPARE LOGICAL C. UNDER MASK (low) │CLMY │RSY C LD│ A │ │ │ B�│7-57 │
│EB24│STORE MULTIPLE (64) │STMG │RSY N │ A │ │ ST│ B�│7-172 │
│EB25│STORE CONTROL (64) │STCTG│RSY N │P A SP│ │ ST│ B�│1�-99 │
│EB26│STORE MULTIPLE HIGH │STMH │RSY N │ A │ │ ST│ B�│7-172 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 12 of 14). Instructions Arranged by Operation Code

B-42 z/Architecture Principles of Operation

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│EB2C│STORE CHARACTERS UNDER MASK (high) │STCMH│RSY N │ A │ │ ST│ B�│7-168 │

| │EB2D│STORE CHARACTERS UNDER MASK (low) │STCMY│RSY LD│ A │ │ ST│ B�│7-168 │
│EB2F│LOAD CONTROL (64) │LCTLG│RSY N │P A SP│ │ │ B�│1�-44 │
│EB3�│COMPARE AND SWAP (64) │CSG │RSY C N │ A SP│ $ │ ST│ B�│7-53 │

| │EB31│COMPARE DOUBLE AND SWAP (32) │CDSY │RSY C LD│ A SP│ $ │ ST│ B�│7-53 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│EB3E│COMPARE DOUBLE AND SWAP (64) │CDSG │RSY C N │ A SP│ $ │ ST│ B�│7-53 │
│EB44│BRANCH ON INDEX HIGH (64) │BXHG │RSY N │ │ │B │ │7-27 │
│EB45│BRANCH ON INDEX LOW OR EQUAL (64) │BXLEG│RSY N │ │ │B │ │7-27 │

| │EB51│TEST UNDER MASK │TMY │SIY C LD│ A │ │ │B� │7-178 │
| │EB52│MOVE (immediate) │MVIY │SIY LD│ A │ │ ST│B� │7-121 │

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
| │EB54│AND (immediate) │NIY │SIY C LD│ A │ │ ST│B� │7-21 │
| │EB55│COMPARE LOGICAL (immediate) │CLIY │SIY C LD│ A │ │ │B� │7-56 │
| │EB56│OR (immediate) │OIY │SIY C LD│ A │ │ ST│B� │7-14� │
| │EB57│EXCLUSIVE OR (immediate) │XIY │SIY C LD│ A │ │ ST│B� │7-1�7 │

│EB8�│INSERT CHARACTERS UNDER MASK (high) │ICMH │RSY C N │ A │ │ │ B�│7-1�9 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

| │EB81│INSERT CHARACTERS UNDER MASK (low) │ICMY │RSY C LD│ A │ │ │ B�│7-1�9 │
│EB8E│MOVE LONG UNICODE │MVCLU│RSY C E2│ A SP│ │ ST│R� R�│7-13� │
│EB8F│COMPARE LOGICAL LONG UNICODE │CLCLU│RSY C E2│ A SP│ │ │R� R�│7-64 │

| │EB9�│STORE MULTIPLE (32) │STMY │RSY LD│ A │ │ ST│ B�│7-172 │
│EB96│LOAD MULTIPLE HIGH │LMH │RSY N │ A │ │ │ B�│7-118 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

| │EB98│LOAD MULTIPLE (32) │LMY │RSY LD│ A │ │ │ B�│7-117 │
| │EB9A│LOAD ACCESS MULTIPLE │LAMY │RSY LD│ A SP│ │ │ UB│7-111 │
| │EB9B│STORE ACCESS MULTIPLE │STAMY│RSY LD│ A SP│ │ ST│ UB│7-167 │

│EBC�│TEST DECIMAL │TP │RSL C E2│ A │ │ │B� │8-13 │
│EC44│BRANCH RELATIVE ON INDEX HIGH (64) │BRXHG│RIE N │ │ │B │ │7-3� │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│EC45│BRANCH RELATIVE ON INDEX L OR E (64)│BRXLG│RIE N │ │ │B │ │7-3� │
│ED�4│LOAD LENGTHENED (short to long BFP) │LDEB │RXE │ A │Db Xi │ │ B�│19-37 │
│ED�5│LOAD LENGTHENED (long to ext. BFP) │LXDB │RXE │ A SP│Db Xi │ │ B�│19-37 │
│ED�6│LOAD LENGTHENED (short to ext. BFP) │LXEB │RXE │ A SP│Db Xi │ │ B�│19-37 │
│ED�7│MULTIPLY (long to extended BFP) │MXDB │RXE │ A SP│Db Xi │ │ B�│19-39 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│ED�8│COMPARE AND SIGNAL (short BFP) │KEB │RXE C │ A │Db Xi │ │ B�│19-24 │
│ED�9│COMPARE (short BFP) │CEB │RXE C │ A │Db Xi │ │ B�│19-23 │
│ED�A│ADD (short BFP) │AEB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│19-18 │
│ED�B│SUBTRACT (short BFP) │SEB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│19-44 │
│ED�C│MULTIPLY (short to long BFP) │MDEB │RXE │ A │Db Xi │ │ B�│19-39 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│ED�D│DIVIDE (short BFP) │DEB │RXE │ A │Db Xi Xz Xo Xu Xx│ │ B�│19-29 │
│ED�E│MULTIPLY AND ADD (short BFP) │MAEB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│19-41 │
│ED�F│MULTIPLY AND SUBTRACT (short BFP) │MSEB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│19-41 │
│ED1�│TEST DATA CLASS (short BFP) │TCEB │RXE C │ │Db │ │ │19-45 │
│ED11│TEST DATA CLASS (long BFP) │TCDB │RXE C │ │Db │ │ │19-45 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│ED12│TEST DATA CLASS (extended BFP) │TCXB │RXE C │ SP│Db │ │ │19-45 │
│ED14│SQUARE ROOT (short BFP) │SQEB │RXE │ A │Db Xi Xx│ │ B�│19-44 │
│ED15│SQUARE ROOT (long BFP) │SQDB │RXE │ A │Db Xi Xx│ │ B�│19-44 │
│ED17│MULTIPLY (short BFP) │MEEB │RXE │ A │Db Xi Xo Xu Xx│ │ B�│19-39 │
│ED18│COMPARE AND SIGNAL (long BFP) │KDB │RXE C │ A │Db Xi │ │ B�│19-24 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 13 of 14). Instructions Arranged by Operation Code

 Appendix B. Lists of Instructions B-43

┌────┬────────────────────────────────────┬─────┬──┬───────┐
│Op │ │Mne- │ │ Page │
│Code│ Name │monic│ Characteristics │ No. │
├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤
│ED19│COMPARE (long BFP) │CDB │RXE C │ A │Db Xi │ │ B�│19-23 │
│ED1A│ADD (long BFP) │ADB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│19-18 │
│ED1B│SUBTRACT (long BFP) │SDB │RXE C │ A │Db Xi Xo Xu Xx│ │ B�│19-44 │
│ED1C│MULTIPLY (long BFP) │MDB │RXE │ A │Db Xi Xo Xu Xx│ │ B�│19-39 │
│ED1D│DIVIDE (long BFP) │DDB │RXE │ A │Db Xi Xz Xo Xu Xx│ │ B�│19-29 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│ED1E│MULTIPLY AND ADD (long BFP) │MADB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│19-41 │
│ED1F│MULTIPLY AND SUBTRACT (long BFP) │MSDB │RXF │ A │Db Xi Xo Xu Xx│ │ B�│19-41 │
│ED24│LOAD LENGTHENED (short to long HFP) │LDE │RXE │ A │Da │ │ B�│18-15 │
│ED25│LOAD LENGTHENED (long to ext. HFP) │LXD │RXE │ A SP│Da │ │ B�│18-15 │
│ED26│LOAD LENGTHENED (short to ext. HFP) │LXE │RXE │ A SP│Da │ │ B�│18-15 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

| │ED2E│MULTIPLY AND ADD (short HFP) │MAE │RXF HM│ A │Da EU EO │ │ B�│18-19 │
| │ED2F│MULTIPLY AND SUBTRACT (short HFP) │MSE │RXF HM│ A │Da EU EO │ │ B�│18-2� │

│ED34│SQUARE ROOT (short HFP) │SQE │RXE │ A │Da SQ │ │ B�│18-21 │
│ED35│SQUARE ROOT (long HFP) │SQD │RXE │ A │Da SQ │ │ B�│18-21 │
│ED37│MULTIPLY (short HFP) │MEE │RXE │ A │Da EU EO │ │ B�│18-18 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

| │ED3E│MULTIPLY AND ADD (long HFP) │MAD │RXF HM│ A │Da EU EO │ │ B�│18-19 │
| │ED3F│MULTIPLY AND SUBTRACT (long HFP) │MSD │RXF HM│ A │Da EU EO │ │ B�│18-2� │
| │ED64│LOAD (short) │LEY │RXY LD│ A │Da │ │ B�│9-11 │
| │ED65│LOAD (long) │LDY │RXY LD│ A │Da │ │ B�│9-11 │
| │ED66│STORE (short) │STEY │RXY LD│ A │Da │ ST│ B�│9-11 │

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
| │ED67│STORE (long) │STDY │RXY LD│ A │Da │ ST│ B�│9-11 │

│EE │PERFORM LOCKED OPERATION │PLO │SS C │ A SP│ $ GM │ ST│ FC│7-144 │
│EF │LOAD MULTIPLE DISJOINT │LMD │SS N │ A │ │ │B� B"│7-118 │
│F� │SHIFT AND ROUND DECIMAL │SRP │SS C │ A │Dd DF │ ST│B� │8-11 │
│F1 │MOVE WITH OFFSET │MVO │SS │ A │ │ ST│B� B�│7-135 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│F2 │PACK │PACK │SS │ A │ │ ST│B� B�│7-141 │
│F3 │UNPACK │UNPK │SS │ A │ │ ST│B� B�│7-188 │
│F8 │ZERO AND ADD │ZAP │SS C │ A │Dd DF │ ST│B� B�│8-13 │
│F9 │COMPARE DECIMAL │CP │SS C │ A │Dd │ │B� B�│8-6 │
│FA │ADD DECIMAL │AP │SS C │ A │Dd DF │ ST│B� B�│8-5 │
├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤
│FB │SUBTRACT DECIMAL │SP │SS C │ A │Dd DF │ ST│B� B�│8-12 │
│FC │MULTIPLY DECIMAL │MP │SS │ A SP│Dd │ ST│B� B�│8-11 │
│FD │DIVIDE DECIMAL │DP │SS │ A SP│Dd DK │ ST│B� B�│8-6 │
└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 14 of 14). Instructions Arranged by Operation Code

B-44 z/Architecture Principles of Operation

 Appendix C. Condition-Code Settings

This appendix lists the condition-code setting for
| instructions in z/Architecture which set the condi-

tion code. In addition to those instructions listed
which set the condition code, the condition code
may be changed by DIAGNOSE and the target of
EXECUTE. The condition code is loaded by
LOAD PSW, LOAD PSW EXTENDED,
PROGRAM RETURN, RESUME PROGRAM, and

SET PROGRAM MASK and by an interruption.
The condition code is set to zero by initial CPU
reset and is loaded by the successful conclusion
of the initial-program-loading sequence.

Some models may offer instructions which set the
condition code and do not appear in this docu-
ment, such as those provided for assists or as
part of special or custom features.

┌────────────────────────────┬───┐
│ │ Condition Code │
│ ├───────────────┬───────────────┬───────────────┬───────────────┤
│ Instruction │ � │ 1 │ 2 │ 3 │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│ADD (gen) │Zero │< zero │> zero │Overflow │
│ADD (BFP) │Zero │< zero │> zero │NaN │
│ADD DECIMAL │Zero │< zero │> zero │Overflow │
│ADD HALFWORD │Zero │< zero │> zero │Overflow │
│ADD HALFWORD IMMEDIATE │Zero │< zero │> zero │Overflow │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│ADD LOGICAL │Zero, │Not zero, │Zero, │Not zero, │
│ │ no carry │ no carry │ carry │ carry │
│ADD LOGICAL WITH CARRY │Zero, │Not zero, │Zero, │Not zero, │
│ │ no carry │ no carry │ carry │ carry │
│ADD NORMALIZED │Zero │< zero │> zero │-- │
│ADD UNNORMALIZED │Zero │< zero │> zero │-- │
│AND │Zero │Not zero │-- │-- │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│CANCEL SUBCHANNEL │Function │-- │-- │Not operational│
│ │ initiated │ │ │ │
│CHECKSUM │Checksum │-- │-- │CPU-determined │
│ │ complete │ │ │ completion │

| │CIPHER MESSAGE │Normal │-- │-- │Partial │
| │ │ completion │ │ │ completion │
| │CIPHER MESSAGE WITH CHAINING│Normal │-- │-- │Partial │
| │ │ completion │ │ │ completion │

│CLEAR SUBCHANNEL │Function │-- │-- │Not operational│
│ │ initiated │ │ │ │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│COMPARE (gen, HFP) │Equal │Low │High │-- │
│COMPARE (BFP) │Equal │Low │High │Unordered │
│COMPARE AND FORM CODEWORD │Equal │OCB=�: low │OCB=�: high │-- │
│ │ │OCB=1: high │OCB=1: low │ │
│COMPARE AND SIGNAL │Equal │Low │High │Unordered │
│COMPARE AND SWAP │Equal │Not equal │-- │-- │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│COMPARE AND SWAP AND PURGE │Equal │Not equal │-- │-- │
│COMPARE DECIMAL │Equal │Low │High │-- │
│COMPARE DOUBLE AND SWAP │Equal │Not equal │-- │-- │
│COMPARE HALFWORD │Equal │Low │High │-- │
│COMPARE HALFWORD IMMEDIATE │Equal │Low │High │-- │
└────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

Figure C-1 (Part 1 of 6). Summary of Condition-Code Settings

 Copyright IBM Corp. 1990-2003 C-1

┌────────────────────────────┬───┐
│ │ Condition Code │
│ ├───────────────┬───────────────┬───────────────┬───────────────┤
│ Instruction │ � │ 1 │ 2 │ 3 │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│COMPARE LOGICAL │Equal │Low │High │-- │
│COMPARE LOGICAL CHARACTERS │Equal │Low │High │-- │
│ UNDER MASK │ │ │ │ │
│COMPARE LOGICAL LONG │Equal │Low │High │-- │
│COMPARE LOGICAL LONG │Equal │Low │High │CPU-determined │
│ EXTENDED │ │ │ │ completion │
│COMPARE LOGICAL LONG UNICODE│Equal │Low │High │CPU-determined │
│ │ │ │ │ completion │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│COMPARE LOGICAL STRING │Equal │Low │High │CPU-determined │
│ │ │ │ │ completion │
│COMPARE UNTIL SUBSTRING │Equal │Last bytes │Last bytes │CPU-determined │
│ EQUAL │ substrings │ equal │ unequal │ completion │
│COMPRESSION CALL │Op2 processed │Op1 full and │-- │CPU-determined │
│ │ │ op2 not │ │ completion │
│ │ │ processed │ │ │

| │COMPUTE INTERMEDIATE │Normal │-- │-- │Partial │
| │ MESSAGE DIGEST │ completion │ │ │ completion │
| │COMPUTE LAST MESSAGE │Normal │-- │-- │Partial │
| │ DIGEST │ completion │ │ │ completion │
| ├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
| │COMPUTE MESSAGE │Normal │-- │-- │Partial │
| │ AUTHENTICATION CODE │ completion │ │ │ completion │

│CONVERT BFP TO HFP │Zero │< zero │> zero │Special case │
│CONVERT HFP TO BFP │Zero │< zero │> zero │Special case │
│CONVERT TO FIXED │Zero │< zero │> zero │Special case │
│CONVERT UNICODE TO UTF-8 │Data processed │Op1 full │-- │CPU-determined │
│ │ │ │ │ completion │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│CONVERT UTF-8 TO UNICODE │Data processed │Op1 full │-- │CPU-determined │
│ │ │ │ │ completion │
│DIVIDE TO INTEGER │Remainder │Remainder │Remainder │Remainder │
│ │ complete; │ complete; │ incomplete; │ incomplete; │
│ │ normal │ quotient │ normal │ quotient │
│ │ quotient │ overflow or │ quotient │ overflow or │
│ │ │ NaN │ │ NaN │
│EDIT │Zero │< zero │> zero │-- │
│EDIT AND MARK │Zero │< zero │> zero │-- │
│EXCLUSIVE OR │Zero │Not zero │-- │-- │
└────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

Figure C-1 (Part 2 of 6). Summary of Condition-Code Settings

C-2 z/Architecture Principles of Operation

┌────────────────────────────┬───┐
│ │ Condition Code │
│ ├───────────────┬───────────────┬───────────────┬───────────────┤
│ Instruction │ � │ 1 │ 2 │ 3 │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│EXTRACT STACKED STATE │Branch state │Program-call │-- │-- │
│ │ entry │ state entry │ │ │
│HALT SUBCHANNEL │Function │Status-pending │Busy │Not operational│
│ │ initiated │ with other │ │ │
│ │ │ than interme-│ │ │
│ │ │ diate status │ │ │
│INSERT ADDRESS SPACE CONTROL│Primary-space │Secondary-space│Access-register│Home-space mode│
│ │ mode │ mode │ mode │ │
│INSERT CHARACTERS UNDER MASK│All zeros │First bit one │First bit zero │-- │
│LOAD ADDRESS SPACE │Parameters │Primary ASN │Secondary ASN │Space-switch │
│ PARAMETERS │ loaded │ not available│ not available│ event │
│ │ │ │ or not │ │
│ │ │ │ authorized │ │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│LOAD AND TEST (gen, HFP) │Zero │< zero │> zero │-- │
│LOAD AND TEST (BFP) │Zero │< zero │> zero │NaN │
│LOAD COMPLEMENT (gen) │Zero │< zero │> zero │Overflow │
│LOAD COMPLEMENT (BFP) │Zero │< zero │> zero │NaN │
│LOAD COMPLEMENT (HFP) │Zero │< zero │> zero │-- │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│LOAD NEGATIVE (gen, HFP) │Zero │< zero │-- │-- │
│LOAD NEGATIVE (BFP) │Zero │< zero │-- │NaN │
│LOAD POSITIVE (gen) │Zero │-- │> zero │Overflow │
│ │ available │ invalid │ invalid │ not available│
│ │ │ │ │ or length │
│ │ │ │ │ violation │
│LOAD POSITIVE (BFP) │Zero │-- │> zero │NaN │
│LOAD POSITIVE (HFP) │Zero │-- │> zero │-- │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│LOAD REAL ADDRESS │Translation │ST entry │PT entry │ASCE or entry │
│ │ │ invalid │ invalid │ not available│
│MODIFY SUBCHANNEL │SCHIB informa- │Status-pending │Busy │Not operational│
│ │ tion placed │ │ │ │
│ │ in subchannel│ │ │ │
│MOVE LONG │Length equal │Length low │Length high │Destructive │
│ │ │ │ │ overlap │
│MOVE LONG EXTENDED │Length equal │Length low │Length high │CPU-determined │
│ │ │ │ │ completion │
│MOVE LONG UNICODE │Length equal │Length low │Length high │CPU-determined │
│ │ │ │ │ completion │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│MOVE PAGE │Data moved │Operand 1 │Operand 2 │-- │
│ │ │ invalid, both│ invalid │ │
│ │ │ valid in ES, │ │ │
│ │ │ locked, or │ │ │
│ │ │ ES error │ │ │
│MOVE STRING │-- │Data moved │-- │CPU-determined │
│ │ │ │ │ completion │
│MOVE TO PRIMARY │Length =< 256 │-- │-- │Length > 256 │
│MOVE TO SECONDARY │Length =< 256 │-- │-- │Length > 256 │
│MOVE WITH KEY │Length =< 256 │-- │-- │Length > 256 │
└────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

Figure C-1 (Part 3 of 6). Summary of Condition-Code Settings

 Appendix C. Condition-Code Settings C-3

┌────────────────────────────┬───┐
│ │ Condition Code │
│ ├───────────────┬───────────────┬───────────────┬───────────────┤
│ Instruction │ � │ 1 │ 2 │ 3 │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│OR │Zero │Not zero │-- │-- │
│PAGE IN │Page-in │Expanded- │-- │Expanded- │
│ │ operation │ storage data │ │ storage block│
│ │ completed │ error │ │ not available│
│PAGE OUT │Page-out │Expanded- │-- │Expanded- │
│ │ operation │ storage data │ │ storage block│
│ │ completed │ error │ │ not available│
│PERFORM LOCKED OPERATION if │Equal │Op1 not equal │Op1 equal, op3 │-- │
│ test bit zero │ │ │ not equal │ │
│ │ │ │ (dcs only) │ │
│PERFORM LOCKED OPERATION if │Function code │-- │-- │Function code │
│ test bit one │ valid │ │ │ invalid │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│RESET CHANNEL PATH │Function │-- │Busy │Not operational│
│ │ initiated │ │ │ │
│RESET REFERENCE BIT │R bit zero, │R bit zero, │R bit one, │R bit one, │
│ EXTENDED │ C bit zero │ C bit one │ C bit zero │ C bit one │
│RESUME SUBCHANNEL │Function │Status pending │Function not │Not operational│
│ │ initiated │ │ applicable │ │
│SEARCH STRING │-- │Found │Not found │CPU-determined │
│ │ │ │ │ completion │
│SET CLOCK │Set │Secure │-- │Not operational│
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│SHIFT AND ROUND DECIMAL │Zero │< zero │> zero │Overflow │
│SHIFT LEFT (DOUBLE/SINGLE) │Zero │< zero │> zero │Overflow │
│SHIFT RIGHT (DOUBLE/SINGLE) │Zero │< zero │> zero │-- │
│SIGNAL PROCESSOR │Order accepted │Status stored │Busy │Not operational│
│START SUBCHANNEL │Function │Status-pending │Busy │Not operational│
│ │ initiated │ │ │ │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│STORE CHANNEL REPORT WORD │CRW stored │Zeros stored │-- │-- │
│STORE CLOCK │Set │Not set │Error │Stopped or not │
│ │ │ │ │ operational │
│STORE CLOCK EXTENDED │Set │Not set │Error │Stopped or not │
│ │ │ │ │ operational │
│STORE SUBCHANNEL │SCHIB stored │-- │-- │Not operational│
│STORE SYSTEM INFORMATION │Information │-- │-- │Information not│
│ │ provided │ │ │ available │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│SUBTRACT (gen) │Zero │< zero │> zero │Overflow │
│SUBTRACT (BFP) │Zero │< zero │> zero │NaN │
│SUBTRACT DECIMAL │Zero │< zero │> zero │Overflow │
│SUBTRACT HALFWORD │Zero │< zero │> zero │Overflow │
│SUBTRACT LOGICAL │-- │Not zero, │Zero, │Not zero, │
└────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

Figure C-1 (Part 4 of 6). Summary of Condition-Code Settings

C-4 z/Architecture Principles of Operation

┌────────────────────────────┬───┐
│ │ Condition Code │
│ ├───────────────┬───────────────┬───────────────┬───────────────┤
│ Instruction │ � │ 1 │ 2 │ 3 │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│ │ │ borrow │ no borrow │ no borrow │
│SUBTRACT LOGICAL WITH │Zero, │Not zero, │Zero, │Not zero, │
│ BORROW │ borrow │ borrow │ no borrow │ no borrow │
│SUBTRACT NORMALIZED (HFP) │Zero │< zero │> zero │-- │
│SUBTRACT UNNORMALIZED (HFP) │Zero │< zero │> zero │-- │
│TEST ACCESS │ALET � │DU access list,│PS access list,│ALET 1 or │
│ │ │ no exceptions│ no exceptions│ exceptions │
│TEST ADDRESSING MODE │Twenty-four bit│Thirty-one bit │-- │Sixty-four bit │
│ │ mode │ mode │ │ mode │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│TEST AND SET │Left bit zero │Left bit one │-- │-- │
│TEST BLOCK │Usable │Not usable │-- │-- │
│TEST DATA CLASS │Zero (no match)│One (match) │-- │-- │
│TEST DECIMAL │Digits and sign│Sign invalid │Digit invalid │Sign and digit │
│ │ valid │ │ │ invalid │
│TEST PENDING INTERRUPTION │Interruption │Interruption │-- │-- │
│ │ code not │ code stored │ │ │
│ │ stored │ │ │ │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│TEST PROTECTION │Can fetch, │Can fetch, │Cannot fetch, │Translation not│
│ │ can store │ cannot store │ cannot store │ available │
│TEST SUBCHANNEL │IRB stored; │IRB stored; │-- │Not operational│
│ │ subchannel │ subchannel │ │ │
│ │ status- │ not status- │ │ │
│ │ pending │ pending │ │ │
│TEST UNDER MASK │All zeros │Mixed │-- │All ones │
│TEST UNDER MASK (HIGH/LOW) │All zeros │Mixed, left bit│Mixed, left bit│All ones │
│ │ │ zero │ one │ │
│TRANSLATE AND TEST │All zeros │Incomplete │Complete │-- │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│TRANSLATE EXTENDED │Data processed │Op1 byte equal │-- │CPU-determined │
│ │ │ test byte │ │ completion │
│TRANSLATE ONE TO ONE, ONE TO│Character equal│Character equal│-- │CPU-determined │
│ TWO, TWO TO ONE, TWO TO │ test charac- │ test charac- │ │ completion │
│ TWO │ ter not found│ ter found │ │ │
│UNPACK ASCII │Sign plus │Sign minus │-- │Sign invalid │
│UNPACK UNICODE │Sign plus │Sign minus │-- │Sign invalid │
│UPDATE TREE │Equal │Not equal or │-- │GR5 nonzero, │
│ │ │ no comparison│ │ GR� negative │
├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤
│ZERO AND ADD │Zero │< zero │> zero │Overflow │
└────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

Figure C-1 (Part 5 of 6). Summary of Condition-Code Settings

 Appendix C. Condition-Code Settings C-5

┌──┐
│Explanation: │
│ │
│ > zero Result greater than zero. │
│ < zero Result less than zero. │
│ =< 256 Equal to, or less than, 256. │
│ > 256 Greater than 256. │
│ gen General instruction. │
│ BFP Binary-floating-point instruction. │
│ High First operand high. │
│ HFP Hexadecimal-floating-point instruction. │
│ Low First operand low. │
│ Length Length of first operand. │
│ NaN Not-a-number. │
│ OCB Operand-control bit. │
└──┘

Figure C-1 (Part 6 of 6). Summary of Condition-Code Settings

C-6 z/Architecture Principles of Operation

Appendix G. Table of Powers of 2

 PLUS MINUS
1 O 1.
2 1 O.5
4 2 O.25
8 3 O.125

16 4 O.O625
32 5 O.O3125
64 6 O.O1562 5
128 7 O.OO781 25

256 8 O.OO39O 625
512 9 O.OO195 3125

 1,O24 1O O.OOO97 65625
2,O48 11 O.OOO48 82812 5

4,O96 12 O.OOO24 414O6 25
8,192 13 O.OOO12 2O7O3 125
16,384 14 O.OOOO6 1O351 5625
32,768 15 O.OOOO3 O5175 78125

65,536 16 O.OOOO1 52587 89O62 5
131,O72 17 O.OOOOO 76293 94531 25
262,144 18 O.OOOOO 38146 97265 625
524,288 19 O.OOOOO 19O73 48632 8125

1,O48,576 2O O.OOOOO O9536 74316 4O625
2,O97,152 21 O.OOOOO O4768 37158 2O312 5
4,194,3O4 22 O.OOOOO O2384 18579 1O156 25
8,388,6O8 23 O.OOOOO O1192 O9289 55O78 125

16,777,216 24 O.OOOOO OO596 O4644 77539 O625
33,554,432 25 O.OOOOO OO298 O2322 38769 53125
67,1O8,864 26 O.OOOOO OO149 O1161 19384 76562 5
134,217,728 27 O.OOOOO OOO74 5O58O 59692 38281 25

268,435,456 28 O.OOOOO OOO37 2529O 29846 1914O 625
536,87O,912 29 O.OOOOO OOO18 62645 14923 O957O 3125

1,O73,741,824 3O O.OOOOO OOOO9 31322 57461 54785 15625
2,147,483,648 31 O.OOOOO OOOO4 65661 2873O 77392 57812 5

4,294,967,296 32 O.OOOOO OOOO2 3283O 64365 38696 289O6 25
8,589,934,592 33 O.OOOOO OOOO1 16415 32182 69348 14453 125
17,179,869,184 34 O.OOOOO OOOOO 582O7 66O91 34674 O7226 5625
34,359,738,368 35 O.OOOOO OOOOO 291O3 83O45 67337 O3613 28125

68,719,476,736 36 O.OOOOO OOOOO 14551 91522 83668 518O6 64O62 5
137,438,953,472 37 O.OOOOO OOOOO O7275 95761 41834 259O3 32O31 25
274,877,9O6,944 38 O.OOOOO OOOOO O3637 9788O 7O917 12951 66O15 625
549,755,813,888 39 O.OOOOO OOOOO O1818 9894O 35458 56475 83OO7 8125

1,O99,511,627,776 4O O.OOOOO OOOOO OO9O9 4947O 17729 28237 915O3 9O625
2,199,O23,255,552 41 O.OOOOO OOOOO OO454 74735 O8864 64118 95751 95312 5
4,398,O46,511,1O4 42 O.OOOOO OOOOO OO227 37367 54432 32O59 47875 97656 25
8,796,O93,O22,2O8 43 O.OOOOO OOOOO OO113 68683 77216 16O29 73937 98828 125

17,592,186,O44,416 44 O.OOOOO OOOOO OOO56 84341 886O8 O8O14 86968 99414 O625
35,184,372,O88,832 45 O.OOOOO OOOOO OOO28 4217O 943O4 O4OO7 43484 497O7 O3125
7O,368,744,177,664 46 O.OOOOO OOOOO OOO14 21O85 47152 O2OO3 71742 24853 51562 5
14O,737,488,355,328 47 O.OOOOO OOOOO OOOO7 1O542 73576 O1OO1 85871 12426 75781 25

281,474,976,71O,656 48 O.OOOOO OOOOO OOOO3 55271 36788 OO5OO 92935 56213 3789O 625
562,949,953,421,312 49 O.OOOOO OOOOO OOOO1 77635 68394 OO25O 46467 781O6 68945 3125

1,125,899,9O6,842,624 5O O.OOOOO OOOOO OOOOO 88817 84197 OO125 23233 89O53 34472 65625
2,251,799,813,685,248 51 O.OOOOO OOOOO OOOOO 444O8 92O98 5OO62 61616 94526 67236 32812 5

4,5O3,599,627,37O,496 52 O.OOOOO OOOOO OOOOO 222O4 46O49 25O31 3O8O8 47263 33618 164O6 25
9,OO7,199,254,74O,992 53 O.OOOOO OOOOO OOOOO 111O2 23O24 62515 654O4 23631 668O9 O82O3 125
18,O14,398,5O9,481,984 54 O.OOOOO OOOOO OOOOO O5551 11512 31257 827O2 11815 834O4 541O1 5625
36,O28,797,O18,963,968 55 O.OOOOO OOOOO OOOOO O2775 55756 15628 91351 O59O7 917O2 27O5O 78125

72,O57,594,O37,927,936 56 O.OOOOO OOOOO OOOOO O1387 77878 O7814 45675 52953 95851 13525 39O62 5
 144,115,188,O75,855,872 57 O.OOOOO OOOOO OOOOO OO693 88939 O39O7 22837 76476 97925 56762 69531 25
 288,23O,376,151,711,744 58 O.OOOOO OOOOO OOOOO OO346 94469 51953 61418 88238 48962 78381 34765 625
 576,46O,752,3O3,423,488 59 O.OOOOO OOOOO OOOOO OO173 47234 75976 8O7O9 44119 24481 3919O 67382 8125

 1,152,921,5O4,6O6,846,976 6O O.OOOOO OOOOO OOOOO OOO86 73617 37988 4O354 72O59 6224O 69595 33691 4O625
 2,3O5,843,OO9,213,693,952 61 O.OOOOO OOOOO OOOOO OOO43 368O8 68994 2O177 36O29 8112O 34797 66845 7O312 5
 4,611,686,O18,427,387,9O4 62 O.OOOOO OOOOO OOOOO OOO21 684O4 34497 1OO88 68O14 9O56O 17398 83422 85156 25
 9,223,372,O36,854,775,8O8 63 O.OOOOO OOOOO OOOOO OOO1O 842O2 17248 55O44 34OO7 4528O O8699 41711 42578 125

18,446,744,O73,7O9,551,616 64 O.OOOOO OOOOO OOOOO OOOO5 421O1 O8624 27522 17OO3 7264O O4349 7O855 71289 O625

Figure G-1 (Part 1 of 2). Powers of 2

 Copyright IBM Corp. 1990-2003 G-1

 18,446,744,O73,7O9,551,616 64
 36,893,488,147,419,1O3,232 65
 73,786,976,294,838,2O6,464 66
 147,573,952,589,676,412,928 67

 295,147,9O5,179,352,825,856 68
 59O,295,81O,358,7O5,651,712 69
 1,18O,591,62O,717,411,3O3,424 7O
 2,361,183,241,434,822,6O6,848 71

 4,722,366,482,869,645,213,696 72
 9,444,732,965,739,29O,427,392 73
 18,889,465,931,478,58O,854,784 74
 37,778,931,862,957,161,7O9,568 75

 75,557,863,725,914,323,419,136 76
 151,115,727,451,828,646,838,272 77
 3O2,231,454,9O3,657,293,676,544 78
 6O4,462,9O9,8O7,314,587,353,O88 79

 1,2O8,925,819,614,629,174,7O6,176 8O
 2,417,851,639,229,258,349,412,352 81
 4,835,7O3,278,458,516,698,824,7O4 82
 9,671,4O6,556,917,O33,397,649,4O8 83

 19,342,813,113,834,O66,795,298,816 84
 38,685,626,227,668,133,59O,597,632 85
 77,371,252,455,336,267,181,195,264 86
 154,742,5O4,91O,672,534,362,39O,528 87

 3O9,485,OO9,821,345,O68,724,781,O56 88
 618,97O,O19,642,69O,137,449,562,112 89
 1,237,94O,O39,285,38O,274,899,124,224 9O
 2,475,88O,O78,57O,76O,549,798,248,448 91

 4,951,76O,157,141,521,O99,596,496,896 92
 9,9O3,52O,314,283,O42,199,192,993,792 93
 19,8O7,O4O,628,566,O84,398,385,987,584 94
 39,614,O81,257,132,168,796,771,975,168 95

 79,228,162,514,264,337,593,543,95O,336 96
 158,456,325,O28,528,675,187,O87,9OO,672 97
 316,912,65O,O57,O57,35O,374,175,8O1,344 98
 633,825,3OO,114,114,7OO,748,351,6O2,688 99

 1,267,65O,6OO,228,229,4O1,496,7O3,2O5,376 1OO
 2,535,3O1,2OO,456,458,8O2,993,4O6,41O,752 1O1
 5,O7O,6O2,4OO,912,917,6O5,986,812,821,5O4 1O2
 1O,141,2O4,8O1,825,835,211,973,625,643,OO8 1O3

 2O,282,4O9,6O3,651,67O,423,947,251,286,O16 1O4
 4O,564,819,2O7,3O3,34O,847,894,5O2,572,O32 1O5
 81,129,638,414,6O6,681,695,789,OO5,144,O64 1O6
 162,259,276,829,213,363,391,578,O1O,288,128 1O7

 324,518,553,658,426,726,783,156,O2O,576,256 1O8
 649,O37,1O7,316,853,453,566,312,O41,152,512 1O9
 1,298,O74,214,633,7O6,9O7,132,624,O82,3O5,O24 11O
 2,596,148,429,267,413,814,265,248,164,61O,O48 111

 5,192,296,858,534,827,628,53O,496,329,22O,O96 112
 1O,384,593,717,O69,655,257,O6O,992,658,44O,192 113
 2O,769,187,434,139,31O,514,121,985,316,88O,384 114
 41,538,374,868,278,621,O28,243,97O,633,76O,768 115

 83,O76,749,736,557,242,O56,487,941,267,521,536 116
 166,153,499,473,114,484,112,975,882,535,O43,O72 117
 332,3O6,998,946,228,968,225,951,765,O7O,O86,144 118
 664,613,997,892,457,936,451,9O3,53O,14O,172,288 119

 1,329,227,995,784,915,872,9O3,8O7,O6O,28O,344,576 12O
 2,658,455,991,569,831,745,8O7,614,12O,56O,689,152 121
 5,316,911,983,139,663,491,615,228,241,121,378,3O4 122
 1O,633,823,966,279,326,983,23O,456,482,242,756,6O8 123

 21,267,647,932,558,653,966,46O,912,964,485,513,216 124
 42,535,295,865,117,3O7,932,921,825,928,971,O26,432 125
 85,O7O,591,73O,234,615,865,843,651,857,942,O52,864 126
17O,141,183,46O,469,231,731,687,3O3,715,884,1O5,728 127

34O,282,366,92O,938,463,463,374,6O7,431,768,211,456 128

Figure G-1 (Part 2 of 2). Powers of 2

G-2 z/Architecture Principles of Operation

 Appendix H. Hexadecimal Tables

The following tables aid in converting hexadecimal
values to decimal values, or the reverse.

Direct Conversion Table

This table provides direct conversion of decimal
and hexadecimal numbers in these ranges:

 Hexadecimal Decimal
��� to FFF ���� to 4�95

To convert numbers outside these ranges, and to
convert fractions, use the hexadecimal and
decimal conversion tables that follow the direct
conversion table in this appendix.

 Copyright IBM Corp. 1990-2003 H-1

│ � 1 2 3 4 5 6 7 8 9 A B C D E F │
────────┼──┤

��_ │ ���� ���1 ���2 ���3 ���4 ���5 ���6 ���7 ���8 ���9 ��1� ��11 ��12 ��13 ��14 ��15 │
�1_ │ ��16 ��17 ��18 ��19 ��2� ��21 ��22 ��23 ��24 ��25 ��26 ��27 ��28 ��29 ��3� ��31 │
�2_ │ ��32 ��33 ��34 ��35 ��36 ��37 ��38 ��39 ��4� ��41 ��42 ��43 ��44 ��45 ��46 ��47 │
�3_ │ ��48 ��49 ��5� ��51 ��52 ��53 ��54 ��55 ��56 ��57 ��58 ��59 ��6� ��61 ��62 ��63 │
�4_ │ ��64 ��65 ��66 ��67 ��68 ��69 ��7� ��71 ��72 ��73 ��74 ��75 ��76 ��77 ��78 ��79 │
�5_ │ ��8� ��81 ��82 ��83 ��84 ��85 ��86 ��87 ��88 ��89 ��9� ��91 ��92 ��93 ��94 ��95 │
�6_ │ ��96 ��97 ��98 ��99 �1�� �1�1 �1�2 �1�3 �1�4 �1�5 �1�6 �1�7 �1�8 �1�9 �11� �111 │
�7_ │ �112 �113 �114 �115 �116 �117 �118 �119 �12� �121 �122 �123 �124 �125 �126 �127 │

 │ │
�8_ │ �128 �129 �13� �131 �132 �133 �134 �135 �136 �137 �138 �139 �14� �141 �142 �143 │
�9_ │ �144 �145 �146 �147 �148 �149 �15� �151 �152 �153 �154 �155 �156 �157 �158 �159 │
�A_ │ �16� �161 �162 �163 �164 �165 �166 �167 �168 �169 �17� �171 �172 �173 �174 �175 │
�B_ │ �176 �177 �178 �179 �18� �181 �182 �183 �184 �185 �186 �187 �188 �189 �19� �191 │
�C_ │ �192 �193 �194 �195 �196 �197 �198 �199 �2�� �2�1 �2�2 �2�3 �2�4 �2�5 �2�6 �2�7 │
�D_ │ �2�8 �2�9 �21� �211 �212 �213 �214 �215 �216 �217 �218 �219 �22� �221 �222 �223 │
�E_ │ �224 �225 �226 �227 �228 �229 �23� �231 �232 �233 �234 �235 �236 �237 �238 �239 │
�F_ │ �24� �241 �242 �243 �244 �245 �246 �247 �248 �249 �25� �251 �252 �253 �254 �255 │

 │ │
1�_ │ �256 �257 �258 �259 �26� �261 �262 �263 �264 �265 �266 �267 �268 �269 �27� �271 │
11_ │ �272 �273 �274 �275 �276 �277 �278 �279 �28� �281 �282 �283 �284 �285 �286 �287 │
12_ │ �288 �289 �29� �291 �292 �293 �294 �295 �296 �297 �298 �299 �3�� �3�1 �3�2 �3�3 │
13_ │ �3�4 �3�5 �3�6 �3�7 �3�8 �3�9 �31� �311 �312 �313 �314 �315 �316 �317 �318 �319 │
14_ │ �32� �321 �322 �323 �324 �325 �326 �327 �328 �329 �33� �331 �332 �333 �334 �335 │
15_ │ �336 �337 �338 �339 �34� �341 �342 �343 �344 �345 �346 �347 �348 �349 �35� �351 │
16_ │ �352 �353 �354 �355 �356 �357 �358 �359 �36� �361 �362 �363 �364 �365 �366 �367 │
17_ │ �368 �369 �37� �371 �372 �373 �374 �375 �376 �377 �378 �379 �38� �381 �382 �383 │

 │ │
18_ │ �384 �385 �386 �387 �388 �389 �39� �391 �392 �393 �394 �395 �396 �397 �398 �399 │
19_ │ �4�� �4�1 �4�2 �4�3 �4�4 �4�5 �4�6 �4�7 �4�8 �4�9 �41� �411 �412 �413 �414 �415 │
1A_ │ �416 �417 �418 �419 �42� �421 �422 �423 �424 �425 �426 �427 �428 �429 �43� �431 │
1B_ │ �432 �433 �434 �435 �436 �437 �438 �439 �44� �441 �442 �443 �444 �445 �446 �447 │
1C_ │ �448 �449 �45� �451 �452 �453 �454 �455 �456 �457 �458 �459 �46� �461 �462 �463 │
1D_ │ �464 �465 �466 �467 �468 �469 �47� �471 �472 �473 �474 �475 �476 �477 �478 �479 │
1E_ │ �48� �481 �482 �483 �484 �485 �486 �487 �488 �489 �49� �491 �492 �493 �494 �495 │
1F_ │ �496 �497 �498 �499 �5�� �5�1 �5�2 �5�3 �5�4 �5�5 �5�6 �5�7 �5�8 �5�9 �51� �511 │

────────┼──┤
2�_ │ �512 �513 �514 �515 �516 �517 �518 �519 �52� �521 �522 �523 �524 �525 �526 �527 │
21_ │ �528 �529 �53� �531 �532 �533 �534 �535 �536 �537 �538 �539 �54� �541 �542 �543 │
22_ │ �544 �545 �546 �547 �548 �549 �55� �551 �552 �553 �554 �555 �556 �557 �558 �559 │
23_ │ �56� �561 �562 �563 �564 �565 �566 �567 �568 �569 �57� �571 �572 �573 �574 �575 │
24_ │ �576 �577 �578 �579 �58� �581 �582 �583 �584 �585 �586 �587 �588 �589 �59� �591 │
25_ │ �592 �593 �594 �595 �596 �597 �598 �599 �6�� �6�1 �6�2 �6�3 �6�4 �6�5 �6�6 �6�7 │
26_ │ �6�8 �6�9 �61� �611 �612 �613 �614 �615 �616 �617 �618 �619 �62� �621 �622 �623 │
27_ │ �624 �625 �626 �627 �628 �629 �63� �631 �632 �633 �634 �635 �636 �637 �638 �639 │

 │ │
28_ │ �64� �641 �642 �643 �644 �645 �646 �647 �648 �649 �65� �651 �652 �653 �654 �655 │
29_ │ �656 �657 �658 �659 �66� �661 �662 �663 �664 �665 �666 �667 �668 �669 �67� �671 │
2A_ │ �672 �673 �674 �675 �676 �677 �678 �679 �68� �681 �682 �683 �684 �685 �686 �687 │
2B_ │ �688 �689 �69� �691 �692 �693 �694 �695 �696 �697 �698 �699 �7�� �7�1 �7�2 �7�3 │
2C_ │ �7�4 �7�5 �7�6 �7�7 �7�8 �7�9 �71� �711 �712 �713 �714 �715 �716 �717 �718 �719 │
2D_ │ �72� �721 �722 �723 �724 �725 �726 �727 �728 �729 �73� �731 �732 �733 �734 �735 │
2E_ │ �736 �737 �738 �739 �74� �741 �742 �743 �744 �745 �746 �747 �748 �749 �75� �751 │
2F_ │ �752 �753 �754 �755 �756 �757 �758 �759 �76� �761 �762 �763 �764 �765 �766 �767 │

 │ │
3�_ │ �768 �769 �77� �771 �772 �773 �774 �775 �776 �777 �778 �779 �78� �781 �782 �783 │
31_ │ �784 �785 �786 �787 �788 �789 �79� �791 �792 �793 �794 �795 �796 �797 �798 �799 │
32_ │ �8�� �8�1 �8�2 �8�3 �8�4 �8�5 �8�6 �8�7 �8�8 �8�9 �81� �811 �812 �813 �814 �815 │
33_ │ �816 �817 �818 �819 �82� �821 �822 �823 �824 �825 �826 �827 �828 �829 �83� �831 │
34_ │ �832 �833 �834 �835 �836 �837 �838 �839 �84� �841 �842 �843 �844 �845 �846 �847 │
35_ │ �848 �849 �85� �851 �852 �853 �854 �855 �856 �857 �858 �859 �86� �861 �862 �863 │
36_ │ �864 �865 �866 �867 �868 �869 �87� �871 �872 �873 �874 �875 �876 �877 �878 �879 │
37_ │ �88� �881 �882 �883 �884 �885 �886 �887 �888 �889 �89� �891 �892 �893 �894 �895 │

 │ │
38_ │ �896 �897 �898 �899 �9�� �9�1 �9�2 �9�3 �9�4 �9�5 �9�6 �9�7 �9�8 �9�9 �91� �911 │
39_ │ �912 �913 �914 �915 �916 �917 �918 �919 �92� �921 �922 �923 �924 �925 �926 �927 │
3A_ │ �928 �929 �93� �931 �932 �933 �934 �935 �936 �937 �938 �939 �94� �941 �942 �943 │
3B_ │ �944 �945 �946 �947 �948 �949 �95� �951 �952 �953 �954 �955 �956 �957 �958 �959 │
3C_ │ �96� �961 �962 �963 �964 �965 �966 �967 �968 �969 �97� �971 �972 �973 �974 �975 │
3D_ │ �976 �977 �978 �979 �98� �981 �982 �983 �984 �985 �986 �987 �988 �989 �99� �991 │
3E_ │ �992 �993 �994 �995 �996 �997 �998 �999 1��� 1��1 1��2 1��3 1��4 1��5 1��6 1��7 │
3F_ │ 1��8 1��9 1�1� 1�11 1�12 1�13 1�14 1�15 1�16 1�17 1�18 1�19 1�2� 1�21 1�22 1�23 │

────────┴──┘

H-2 z/Architecture Principles of Operation

│ � 1 2 3 4 5 6 7 8 9 A B C D E F │
────────┼──┤

4�_ │ 1�24 1�25 1�26 1�27 1�28 1�29 1�3� 1�31 1�32 1�33 1�34 1�35 1�36 1�37 1�38 1�39 │
41_ │ 1�4� 1�41 1�42 1�43 1�44 1�45 1�46 1�47 1�48 1�49 1�5� 1�51 1�52 1�53 1�54 1�55 │
42_ │ 1�56 1�57 1�58 1�59 1�6� 1�61 1�62 1�63 1�64 1�65 1�66 1�67 1�68 1�69 1�7� 1�71 │
43_ │ 1�72 1�73 1�74 1�75 1�76 1�77 1�78 1�79 1�8� 1�81 1�82 1�83 1�84 1�85 1�86 1�87 │
44_ │ 1�88 1�89 1�9� 1�91 1�92 1�93 1�94 1�95 1�96 1�97 1�98 1�99 11�� 11�1 11�2 11�3 │
45_ │ 11�4 11�5 11�6 11�7 11�8 11�9 111� 1111 1112 1113 1114 1115 1116 1117 1118 1119 │
46_ │ 112� 1121 1122 1123 1124 1125 1126 1127 1128 1129 113� 1131 1132 1133 1134 1135 │
47_ │ 1136 1137 1138 1139 114� 1141 1142 1143 1144 1145 1146 1147 1148 1149 115� 1151 │

 │ │
48_ │ 1152 1153 1154 1155 1156 1157 1158 1159 116� 1161 1162 1163 1164 1165 1166 1167 │
49_ │ 1168 1169 117� 1171 1172 1173 1174 1175 1176 1177 1178 1179 118� 1181 1182 1183 │
4A_ │ 1184 1185 1186 1187 1188 1189 119� 1191 1192 1193 1194 1195 1196 1197 1198 1199 │
4B_ │ 12�� 12�1 12�2 12�3 12�4 12�5 12�6 12�7 12�8 12�9 121� 1211 1212 1213 1214 1215 │
4C_ │ 1216 1217 1218 1219 122� 1221 1222 1223 1224 1225 1226 1227 1228 1229 123� 1231 │
4D_ │ 1232 1233 1234 1235 1236 1237 1238 1239 124� 1241 1242 1243 1244 1245 1246 1247 │
4E_ │ 1248 1249 125� 1251 1252 1253 1254 1255 1256 1257 1258 1259 126� 1261 1262 1263 │
4F_ │ 1264 1265 1266 1267 1268 1269 127� 1271 1272 1273 1274 1275 1276 1277 1278 1279 │

 │ │
5�_ │ 128� 1281 1282 1283 1284 1285 1286 1287 1288 1289 129� 1291 1292 1293 1294 1295 │
51_ │ 1296 1297 1298 1299 13�� 13�1 13�2 13�3 13�4 13�5 13�6 13�7 13�8 13�9 131� 1311 │
52_ │ 1312 1313 1314 1315 1316 1317 1318 1319 132� 1321 1322 1323 1324 1325 1326 1327 │
53_ │ 1328 1329 133� 1331 1332 1333 1334 1335 1336 1337 1338 1339 134� 1341 1342 1343 │
54_ │ 1344 1345 1346 1347 1348 1349 135� 1351 1352 1353 1354 1355 1356 1357 1358 1359 │
55_ │ 136� 1361 1362 1363 1364 1365 1366 1367 1368 1369 137� 1371 1372 1373 1374 1375 │
56_ │ 1376 1377 1378 1379 138� 1381 1382 1383 1384 1385 1386 1387 1388 1389 139� 1391 │
57_ │ 1392 1393 1394 1395 1396 1397 1398 1399 14�� 14�1 14�2 14�3 14�4 14�5 14�6 14�7 │

 │ │
58_ │ 14�8 14�9 141� 1411 1412 1413 1414 1415 1416 1417 1418 1419 142� 1421 1422 1423 │
59_ │ 1424 1425 1426 1427 1428 1429 143� 1431 1432 1433 1434 1435 1436 1437 1438 1439 │
5A_ │ 144� 1441 1442 1443 1444 1445 1446 1447 1448 1449 145� 1451 1452 1453 1454 1455 │
5B_ │ 1456 1457 1458 1459 146� 1461 1462 1463 1464 1465 1466 1467 1468 1469 147� 1471 │
5C_ │ 1472 1473 1474 1475 1476 1477 1478 1479 148� 1481 1482 1483 1484 1485 1486 1487 │
5D_ │ 1488 1489 149� 1491 1492 1493 1494 1495 1496 1497 1498 1499 15�� 15�1 15�2 15�3 │
5E_ │ 15�4 15�5 15�6 15�7 15�8 15�9 151� 1511 1512 1513 1514 1515 1516 1517 1518 1519 │
5F_ │ 152� 1521 1522 1523 1524 1525 1526 1527 1528 1529 153� 1531 1532 1533 1534 1535 │

────────┼──┤
6�_ │ 1536 1537 1538 1539 154� 1541 1542 1543 1544 1545 1546 1547 1548 1549 155� 1551 │
61_ │ 1552 1553 1554 1555 1556 1557 1558 1559 156� 1561 1562 1563 1564 1565 1566 1567 │
62_ │ 1568 1569 157� 1571 1572 1573 1574 1575 1576 1577 1578 1579 158� 1581 1582 1583 │
63_ │ 1584 1585 1586 1587 1588 1589 159� 1591 1592 1593 1594 1595 1596 1597 1598 1599 │
64_ │ 16�� 16�1 16�2 16�3 16�4 16�5 16�6 16�7 16�8 16�9 161� 1611 1612 1613 1614 1615 │
65_ │ 1616 1617 1618 1619 162� 1621 1622 1623 1624 1625 1626 1627 1628 1629 163� 1631 │
66_ │ 1632 1633 1634 1635 1636 1637 1638 1639 164� 1641 1642 1643 1644 1645 1646 1647 │
67_ │ 1648 1649 165� 1651 1652 1653 1654 1655 1656 1657 1658 1659 166� 1661 1662 1663 │

 │ │
68_ │ 1664 1665 1666 1667 1668 1669 167� 1671 1672 1673 1674 1675 1676 1677 1678 1679 │
69_ │ 168� 1681 1682 1683 1684 1685 1686 1687 1688 1689 169� 1691 1692 1693 1694 1695 │
6A_ │ 1696 1697 1698 1699 17�� 17�1 17�2 17�3 17�4 17�5 17�6 17�7 17�8 17�9 171� 1711 │
6B_ │ 1712 1713 1714 1715 1716 1717 1718 1719 172� 1721 1722 1723 1724 1725 1726 1727 │
6C_ │ 1728 1729 173� 1731 1732 1733 1734 1735 1736 1737 1738 1739 174� 1741 1742 1743 │
6D_ │ 1744 1745 1746 1747 1748 1749 175� 1751 1752 1753 1754 1755 1756 1757 1758 1759 │
6E_ │ 176� 1761 1762 1763 1764 1765 1766 1767 1768 1769 177� 1771 1772 1773 1774 1775 │
6F_ │ 1776 1777 1778 1779 178� 1781 1782 1783 1784 1785 1786 1787 1788 1789 179� 1791 │

 │ │
7�_ │ 1792 1793 1794 1795 1796 1797 1798 1799 18�� 18�1 18�2 18�3 18�4 18�5 18�6 18�7 │
71_ │ 18�8 18�9 181� 1811 1812 1813 1814 1815 1816 1817 1818 1819 182� 1821 1822 1823 │
72_ │ 1824 1825 1826 1827 1828 1829 183� 1831 1832 1833 1834 1835 1836 1837 1838 1839 │
73_ │ 184� 1841 1842 1843 1844 1845 1846 1847 1848 1849 185� 1851 1852 1853 1854 1855 │
74_ │ 1856 1857 1858 1859 186� 1861 1862 1863 1864 1865 1866 1867 1868 1869 187� 1871 │
75_ │ 1872 1873 1874 1875 1876 1877 1878 1879 188� 1881 1882 1883 1884 1885 1886 1887 │
76_ │ 1888 1889 189� 1891 1892 1893 1894 1895 1896 1897 1898 1899 19�� 19�1 19�2 19�3 │
77_ │ 19�4 19�5 19�6 19�7 19�8 19�9 191� 1911 1912 1913 1914 1915 1916 1917 1918 1919 │

 │ │
78_ │ 192� 1921 1922 1923 1924 1925 1926 1927 1928 1929 193� 1931 1932 1933 1934 1935 │
79_ │ 1936 1937 1938 1939 194� 1941 1942 1943 1944 1945 1946 1947 1948 1949 195� 1951 │
7A_ │ 1952 1953 1954 1955 1956 1957 1958 1959 196� 1961 1962 1963 1964 1965 1966 1967 │
7B_ │ 1968 1969 197� 1971 1972 1973 1974 1975 1976 1977 1978 1979 198� 1981 1982 1983 │
7C_ │ 1984 1985 1986 1987 1988 1989 199� 1991 1992 1993 1994 1995 1996 1997 1998 1999 │
7D_ │ 2��� 2��1 2��2 2��3 2��4 2��5 2��6 2��7 2��8 2��9 2�1� 2�11 2�12 2�13 2�14 2�15 │
7E_ │ 2�16 2�17 2�18 2�19 2�2� 2�21 2�22 2�23 2�24 2�25 2�26 2�27 2�28 2�29 2�3� 2�31 │
7F_ │ 2�32 2�33 2�34 2�35 2�36 2�37 2�38 2�39 2�4� 2�41 2�42 2�43 2�44 2�45 2�46 2�47 │

────────┴──┘

 Appendix H. Hexadecimal Tables H-3

│ � 1 2 3 4 5 6 7 8 9 A B C D E F │
────────┼──┤

8�_ │ 2�48 2�49 2�5� 2�51 2�52 2�53 2�54 2�55 2�56 2�57 2�58 2�59 2�6� 2�61 2�62 2�63 │
81_ │ 2�64 2�65 2�66 2�67 2�68 2�69 2�7� 2�71 2�72 2�73 2�74 2�75 2�76 2�77 2�78 2�79 │
82_ │ 2�8� 2�81 2�82 2�83 2�84 2�85 2�86 2�87 2�88 2�89 2�9� 2�91 2�92 2�93 2�94 2�95 │
83_ │ 2�96 2�97 2�98 2�99 21�� 21�1 21�2 21�3 21�4 21�5 21�6 21�7 21�8 21�9 211� 2111 │
84_ │ 2112 2113 2114 2115 2116 2117 2118 2119 212� 2121 2122 2123 2124 2125 2126 2127 │
85_ │ 2128 2129 213� 2131 2132 2133 2134 2135 2136 2137 2138 2139 214� 2141 2142 2143 │
86_ │ 2144 2145 2146 2147 2148 2149 215� 2151 2152 2153 2154 2155 2156 2157 2158 2159 │
87_ │ 216� 2161 2162 2163 2164 2165 2166 2167 2168 2169 217� 2171 2172 2173 2174 2175 │

 │ │
88_ │ 2176 2177 2178 2179 218� 2181 2182 2183 2184 2185 2186 2187 2188 2189 219� 2191 │
89_ │ 2192 2193 2194 2195 2196 2197 2198 2199 22�� 22�1 22�2 22�3 22�4 22�5 22�6 22�7 │
8A_ │ 22�8 22�9 221� 2211 2212 2213 2214 2215 2216 2217 2218 2219 222� 2221 2222 2223 │
8B_ │ 2224 2225 2226 2227 2228 2229 223� 2231 2232 2233 2234 2235 2236 2237 2238 2239 │
8C_ │ 224� 2241 2242 2243 2244 2245 2246 2247 2248 2249 225� 2251 2252 2253 2254 2255 │
8D_ │ 2256 2257 2258 2259 226� 2261 2262 2263 2264 2265 2266 2267 2268 2269 227� 2271 │
8E_ │ 2272 2273 2274 2275 2276 2277 2278 2279 228� 2281 2282 2283 2284 2285 2286 2287 │
8F_ │ 2288 2289 229� 2291 2292 2293 2294 2295 2296 2297 2298 2299 23�� 23�1 23�2 23�3 │

 │ │
9�_ │ 23�4 23�5 23�6 23�7 23�8 23�9 231� 2311 2312 2313 2314 2315 2316 2317 2318 2319 │
91_ │ 232� 2321 2322 2323 2324 2325 2326 2327 2328 2329 233� 2331 2332 2333 2334 2335 │
92_ │ 2336 2337 2338 2339 234� 2341 2342 2343 2344 2345 2346 2347 2348 2349 235� 2351 │
93_ │ 2352 2353 2354 2355 2356 2357 2358 2359 236� 2361 2362 2363 2364 2365 2366 2367 │
94_ │ 2368 2369 237� 2371 2372 2373 2374 2375 2376 2377 2378 2379 238� 2381 2382 2383 │
95_ │ 2384 2385 2386 2387 2388 2389 239� 2391 2392 2393 2394 2395 2396 2397 2398 2399 │
96_ │ 24�� 24�1 24�2 24�3 24�4 24�5 24�6 24�7 24�8 24�9 241� 2411 2412 2413 2414 2415 │
97_ │ 2416 2417 2418 2419 242� 2421 2422 2423 2424 2425 2426 2427 2428 2429 243� 2431 │

 │ │
98_ │ 2432 2433 2434 2435 2436 2437 2438 2439 244� 2441 2442 2443 2444 2445 2446 2447 │
99_ │ 2448 2449 245� 2451 2452 2453 2454 2455 2456 2457 2458 2459 246� 2461 2462 2463 │
9A_ │ 2464 2465 2466 2467 2468 2469 247� 2471 2472 2473 2474 2475 2476 2477 2478 2479 │
9B_ │ 248� 2481 2482 2483 2484 2485 2486 2487 2488 2489 249� 2491 2492 2493 2494 2495 │
9C_ │ 2496 2497 2498 2499 25�� 25�1 25�2 25�3 25�4 25�5 25�6 25�7 25�8 25�9 251� 2511 │
9D_ │ 2512 2513 2514 2515 2516 2517 2518 2519 252� 2521 2522 2523 2524 2525 2526 2527 │
9E_ │ 2528 2529 253� 2531 2532 2533 2534 2535 2536 2537 2538 2539 254� 2541 2542 2543 │
9F_ │ 2544 2545 2546 2547 2548 2549 255� 2551 2552 2553 2554 2555 2556 2557 2558 2559 │

────────┼──┤
A�_ │ 256� 2561 2562 2563 2564 2565 2566 2567 2568 2569 257� 2571 2572 2573 2574 2575 │
A1_ │ 2576 2577 2578 2579 258� 2581 2582 2583 2584 2585 2586 2587 2588 2589 259� 2591 │
A2_ │ 2592 2593 2594 2595 2596 2597 2598 2599 26�� 26�1 26�2 26�3 26�4 26�5 26�6 26�7 │
A3_ │ 26�8 26�9 261� 2611 2612 2613 2614 2615 2616 2617 2618 2619 262� 2621 2622 2623 │
A4_ │ 2624 2625 2626 2627 2628 2629 263� 2631 2632 2633 2634 2635 2636 2637 2638 2639 │
A5_ │ 264� 2641 2642 2643 2644 2645 2646 2647 2648 2649 265� 2651 2652 2653 2654 2655 │
A6_ │ 2656 2657 2658 2659 266� 2661 2662 2663 2664 2665 2666 2667 2668 2669 267� 2671 │
A7_ │ 2672 2673 2674 2675 2676 2677 2678 2679 268� 2681 2682 2683 2684 2685 2686 2687 │

 │ │
A8_ │ 2688 2689 269� 2691 2692 2693 2694 2695 2696 2697 2698 2699 27�� 27�1 27�2 27�3 │
A9_ │ 27�4 27�5 27�6 27�7 27�8 27�9 271� 2711 2712 2713 2714 2715 2716 2717 2718 2719 │
AA_ │ 272� 2721 2722 2723 2724 2725 2726 2727 2728 2729 273� 2731 2732 2733 2734 2735 │
AB_ │ 2736 2737 2738 2739 274� 2741 2742 2743 2744 2745 2746 2747 2748 2749 275� 2751 │
AC_ │ 2752 2753 2754 2755 2756 2757 2758 2759 276� 2761 2762 2763 2764 2765 2766 2767 │
AD_ │ 2768 2769 277� 2771 2772 2773 2774 2775 2776 2777 2778 2779 278� 2781 2782 2783 │
AE_ │ 2784 2785 2786 2787 2788 2789 279� 2791 2792 2793 2794 2795 2796 2797 2798 2799 │
AF_ │ 28�� 28�1 28�2 28�3 28�4 28�5 28�6 28�7 28�8 28�9 281� 2811 2812 2813 2814 2815 │

 │ │
B�_ │ 2816 2817 2818 2819 282� 2821 2822 2823 2824 2825 2826 2827 2828 2829 283� 2831 │
B1_ │ 2832 2833 2834 2835 2836 2837 2838 2839 284� 2841 2842 2843 2844 2845 2846 2847 │
B2_ │ 2848 2849 285� 2851 2852 2853 2854 2855 2856 2857 2858 2859 286� 2861 2862 2863 │
B3_ │ 2864 2865 2866 2867 2868 2869 287� 2871 2872 2873 2874 2875 2876 2877 2878 2879 │
B4_ │ 288� 2881 2882 2883 2884 2885 2886 2887 2888 2889 289� 2891 2892 2893 2894 2895 │
B5_ │ 2896 2897 2898 2899 29�� 29�1 29�2 29�3 29�4 29�5 29�6 29�7 29�8 29�9 291� 2911 │
B6_ │ 2912 2913 2914 2915 2916 2917 2918 2919 292� 2921 2922 2923 2924 2925 2926 2927 │
B7_ │ 2928 2929 293� 2931 2932 2933 2934 2935 2936 2937 2938 2939 294� 2941 2942 2943 │

 │ │
B8_ │ 2944 2945 2946 2947 2948 2949 295� 2951 2952 2953 2954 2955 2956 2957 2958 2959 │
B9_ │ 296� 2961 2962 2963 2964 2965 2966 2967 2968 2969 297� 2971 2972 2973 2974 2975 │
BA_ │ 2976 2977 2978 2979 298� 2981 2982 2983 2984 2985 2986 2987 2988 2989 299� 2991 │
BB_ │ 2992 2993 2994 2995 2996 2997 2998 2999 3��� 3��1 3��2 3��3 3��4 3��5 3��6 3��7 │
BC_ │ 3��8 3��9 3�1� 3�11 3�12 3�13 3�14 3�15 3�16 3�17 3�18 3�19 3�2� 3�21 3�22 3�23 │
BD_ │ 3�24 3�25 3�26 3�27 3�28 3�29 3�3� 3�31 3�32 3�33 3�34 3�35 3�36 3�37 3�38 3�39 │
BE_ │ 3�4� 3�41 3�42 3�43 3�44 3�45 3�46 3�47 3�48 3�49 3�5� 3�51 3�52 3�53 3�54 3�55 │
BF_ │ 3�56 3�57 3�58 3�59 3�6� 3�61 3�62 3�63 3�64 3�65 3�66 3�67 3�68 3�69 3�7� 3�71 │

────────┴──┘

H-4 z/Architecture Principles of Operation

│ � 1 2 3 4 5 6 7 8 9 A B C D E F │
────────┼──┤

C�_ │ 3�72 3�73 3�74 3�75 3�76 3�77 3�78 3�79 3�8� 3�81 3�82 3�83 3�84 3�85 3�86 3�87 │
C1_ │ 3�88 3�89 3�9� 3�91 3�92 3�93 3�94 3�95 3�96 3�97 3�98 3�99 31�� 31�1 31�2 31�3 │
C2_ │ 31�4 31�5 31�6 31�7 31�8 31�9 311� 3111 3112 3113 3114 3115 3116 3117 3118 3119 │
C3_ │ 312� 3121 3122 3123 3124 3125 3126 3127 3128 3129 313� 3131 3132 3133 3134 3135 │
C4_ │ 3136 3137 3138 3139 314� 3141 3142 3143 3144 3145 3146 3147 3148 3149 315� 3151 │
C5_ │ 3152 3153 3154 3155 3156 3157 3158 3159 316� 3161 3162 3163 3164 3165 3166 3167 │
C6_ │ 3168 3169 317� 3171 3172 3173 3174 3175 3176 3177 3178 3179 318� 3181 3182 3183 │
C7_ │ 3184 3185 3186 3187 3188 3189 319� 3191 3192 3193 3194 3195 3196 3197 3198 3199 │

 │ │
C8_ │ 32�� 32�1 32�2 32�3 32�4 32�5 32�6 32�7 32�8 32�9 321� 3211 3212 3213 3214 3215 │
C9_ │ 3216 3217 3218 3219 322� 3221 3222 3223 3224 3225 3226 3227 3228 3229 323� 3231 │
CA_ │ 3232 3233 3234 3235 3236 3237 3238 3239 324� 3241 3242 3243 3244 3245 3246 3247 │
CB_ │ 3248 3249 325� 3251 3252 3253 3254 3255 3256 3257 3258 3259 326� 3261 3262 3263 │
CC_ │ 3264 3265 3266 3267 3268 3269 327� 3271 3272 3273 3274 3275 3276 3277 3278 3279 │
CD_ │ 328� 3281 3282 3283 3284 3285 3286 3287 3288 3289 329� 3291 3292 3293 3294 3295 │
CE_ │ 3296 3297 3298 3299 33�� 33�1 33�2 33�3 33�4 33�5 33�6 33�7 33�8 33�9 331� 3311 │
CF_ │ 3312 3313 3314 3315 3316 3317 3318 3319 332� 3321 3322 3323 3324 3325 3326 3327 │

 │ │
D�_ │ 3328 3329 333� 3331 3332 3333 3334 3335 3336 3337 3338 3339 334� 3341 3342 3343 │
D1_ │ 3344 3345 3346 3347 3348 3349 335� 3351 3352 3353 3354 3355 3356 3357 3358 3359 │
D2_ │ 336� 3361 3362 3363 3364 3365 3366 3367 3368 3369 337� 3371 3372 3373 3374 3375 │
D3_ │ 3376 3377 3378 3379 338� 3381 3382 3383 3384 3385 3386 3387 3388 3389 339� 3391 │
D4_ │ 3392 3393 3394 3395 3396 3397 3398 3399 34�� 34�1 34�2 34�3 34�4 34�5 34�6 34�7 │
D5_ │ 34�8 34�9 341� 3411 3412 3413 3414 3415 3416 3417 3418 3419 342� 3421 3422 3423 │
D6_ │ 3424 3425 3426 3427 3428 3429 343� 3431 3432 3433 3434 3435 3436 3437 3438 3439 │
D7_ │ 344� 3441 3442 3443 3444 3445 3446 3447 3448 3449 345� 3451 3452 3453 3454 3455 │

 │ │
D8_ │ 3456 3457 3458 3459 346� 3461 3462 3463 3464 3465 3466 3467 3468 3469 347� 3471 │
D9_ │ 3472 3473 3474 3475 3476 3477 3478 3479 348� 3481 3482 3483 3484 3485 3486 3487 │
DA_ │ 3488 3489 349� 3491 3492 3493 3494 3495 3496 3497 3498 3499 35�� 35�1 35�2 35�3 │
DB_ │ 35�4 35�5 35�6 35�7 35�8 35�9 351� 3511 3512 3513 3514 3515 3516 3517 3518 3519 │
DC_ │ 352� 3521 3522 3523 3524 3525 3526 3527 3528 3529 353� 3531 3532 3533 3534 3535 │
DD_ │ 3536 3537 3538 3539 354� 3541 3542 3543 3544 3545 3546 3547 3548 3549 355� 3551 │
DE_ │ 3552 3553 3554 3555 3556 3557 3558 3559 356� 3561 3562 3563 3564 3565 3566 3567 │
DF_ │ 3568 3569 357� 3571 3572 3573 3574 3575 3576 3577 3578 3579 358� 3581 3582 3583 │

────────┼──┤
E�_ │ 3584 3585 3586 3587 3588 3589 359� 3591 3592 3593 3594 3595 3596 3597 3598 3599 │
E1_ │ 36�� 36�1 36�2 36�3 36�4 36�5 36�6 36�7 36�8 36�9 361� 3611 3612 3613 3614 3615 │
E2_ │ 3616 3617 3618 3619 362� 3621 3622 3623 3624 3625 3626 3627 3628 3629 363� 3631 │
E3_ │ 3632 3633 3634 3635 3636 3637 3638 3639 364� 3641 3642 3643 3644 3645 3646 3647 │
E4_ │ 3648 3649 365� 3651 3652 3653 3654 3655 3656 3657 3658 3659 366� 3661 3662 3663 │
E5_ │ 3664 3665 3666 3667 3668 3669 367� 3671 3672 3673 3674 3675 3676 3677 3678 3679 │
E6_ │ 368� 3681 3682 3683 3684 3685 3686 3687 3688 3689 369� 3691 3692 3693 3694 3695 │
E7_ │ 3696 3697 3698 3699 37�� 37�1 37�2 37�3 37�4 37�5 37�6 37�7 37�8 37�9 371� 3711 │

 │ │
E8_ │ 3712 3713 3714 3715 3716 3717 3718 3719 372� 3721 3722 3723 3724 3725 3726 3727 │
E9_ │ 3728 3729 373� 3731 3732 3733 3734 3735 3736 3737 3738 3739 374� 3741 3742 3743 │
EA_ │ 3744 3745 3746 3747 3748 3749 375� 3751 3752 3753 3754 3755 3756 3757 3758 3759 │
EB_ │ 376� 3761 3762 3763 3764 3765 3766 3767 3768 3769 377� 3771 3772 3773 3774 3775 │
EC_ │ 3776 3777 3778 3779 378� 3781 3782 3783 3784 3785 3786 3787 3788 3789 379� 3791 │
ED_ │ 3792 3793 3794 3795 3796 3797 3798 3799 38�� 38�1 38�2 38�3 38�4 38�5 38�6 38�7 │
EE_ │ 38�8 38�9 381� 3811 3812 3813 3814 3815 3816 3817 3818 3819 382� 3821 3822 3823 │
EF_ │ 3824 3825 3826 3827 3828 3829 383� 3831 3832 3833 3834 3835 3836 3837 3838 3839 │

 │ │
F�_ │ 384� 3841 3842 3843 3844 3845 3846 3847 3848 3849 385� 3851 3852 3853 3854 3855 │
F1_ │ 3856 3857 3858 3859 386� 3861 3862 3863 3864 3865 3866 3867 3868 3869 387� 3871 │
F2_ │ 3872 3873 3874 3875 3876 3877 3878 3879 388� 3881 3882 3883 3884 3885 3886 3887 │
F3_ │ 3888 3889 389� 3891 3892 3893 3894 3895 3896 3897 3898 3899 39�� 39�1 39�2 39�3 │
F4_ │ 39�4 39�5 39�6 39�7 39�8 39�9 391� 3911 3912 3913 3914 3915 3916 3917 3918 3919 │
F5_ │ 392� 3921 3922 3923 3924 3925 3926 3927 3928 3929 393� 3931 3932 3933 3934 3935 │
F6_ │ 3936 3937 3938 3939 394� 3941 3942 3943 3944 3945 3946 3947 3948 3949 395� 3951 │
F7_ │ 3952 3953 3954 3955 3956 3957 3958 3959 396� 3961 3962 3963 3964 3965 3966 3967 │

 │ │
F8_ │ 3968 3969 397� 3971 3972 3973 3974 3975 3976 3977 3978 3979 398� 3981 3982 3983 │
F9_ │ 3984 3985 3986 3987 3988 3989 399� 3991 3992 3993 3994 3995 3996 3997 3998 3999 │
FA_ │ 4��� 4��1 4��2 4��3 4��4 4��5 4��6 4��7 4��8 4��9 4�1� 4�11 4�12 4�13 4�14 4�15 │
FB_ │ 4�16 4�17 4�18 4�19 4�2� 4�21 4�22 4�23 4�24 4�25 4�26 4�27 4�28 4�29 4�3� 4�31 │
FC_ │ 4�32 4�33 4�34 4�35 4�36 4�37 4�38 4�39 4�4� 4�41 4�42 4�43 4�44 4�45 4�46 4�47 │
FD_ │ 4�48 4�49 4�5� 4�51 4�52 4�53 4�54 4�55 4�56 4�57 4�58 4�59 4�6� 4�61 4�62 4�63 │
FE_ │ 4�64 4�65 4�66 4�67 4�68 4�69 4�7� 4�71 4�72 4�73 4�74 4�75 4�76 4�77 4�78 4�79 │
FF_ │ 4�8� 4�81 4�82 4�83 4�84 4�85 4�86 4�87 4�88 4�89 4�9� 4�91 4�92 4�93 4�94 4�95 │

────────┴──┘

 Appendix H. Hexadecimal Tables H-5

Conversion Table: Hexadecimal and Decimal Integers
┌─────┬───────────────┬─────┬─────────────┬─────┬────────────┬─────┬─────────┬─────┬─────────┬─────┬─────────┬─────┬─────────┬─────┬─────────┐
│ Hex │ Decimal │ Hex │ Decimal │ Hex │ Decimal │ Hex │ Decimal │ Hex │ Decimal │ Hex │ Decimal │ Hex │ Decimal │ Hex │ Decimal │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ � │ � │ � │ � │ � │ � │ � │ � │ � │ � │ � │ � │ � │ � │ � │ � │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 1 │ 268,435,456 │ 1 │ 16,777,216 │ 1 │ 1,�48,576 │ 1 │ 65,536 │ 1 │ 4,�96 │ 1 │ 256 │ 1 │ 16 │ 1 │ 1 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 2 │ 536,87�,912 │ 2 │ 33,554,432 │ 2 │ 2,�97,152 │ 2 │ 131,�72 │ 2 │ 8,192 │ 2 │ 512 │ 2 │ 32 │ 2 │ 2 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 3 │ 8�5,3�6,368 │ 3 │ 5�,331,648 │ 3 │ 3,145,728 │ 3 │ 196,6�8 │ 3 │ 12,288 │ 3 │ 768 │ 3 │ 48 │ 3 │ 3 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 4 │ 1,�73,741,824 │ 4 │ 67,1�8,864 │ 4 │ 4,194,3�4 │ 4 │ 262,144 │ 4 │ 16,384 │ 4 │ 1,�24 │ 4 │ 64 │ 4 │ 4 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 5 │ 1,342,177,28� │ 5 │ 83,886,�8� │ 5 │ 5,242,88� │ 5 │ 327,68� │ 5 │ 2�,48� │ 5 │ 1,28� │ 5 │ 8� │ 5 │ 5 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 6 │ 1,61�,612,736 │ 6 │ 1��,663,296 │ 6 │ 6,291,456 │ 6 │ 393,216 │ 6 │ 24,576 │ 6 │ 1,536 │ 6 │ 96 │ 6 │ 6 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 7 │ 1,879,�48,192 │ 7 │ 117,44�,512 │ 7 │ 7,34�,�32 │ 7 │ 458,752 │ 7 │ 28,672 │ 7 │ 1,792 │ 7 │ 112 │ 7 │ 7 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 8 │ 2,147,483,648 │ 8 │ 134,217,728 │ 8 │ 8,388,6�8 │ 8 │ 524,288 │ 8 │ 32,768 │ 8 │ 2,�48 │ 8 │ 128 │ 8 │ 8 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ 9 │ 2,415,919,1�4 │ 9 │ 15�,994,944 │ 9 │ 9,437,184 │ 9 │ 589,824 │ 9 │ 36,864 │ 9 │ 2,3�4 │ 9 │ 144 │ 9 │ 9 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ A │ 2,684,354,56� │ A │ 167,772,16� │ A │ 1�,485,76� │ A │ 655,36� │ A │ 4�,96� │ A │ 2,56� │ A │ 16� │ A │ 1� │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ B │ 2,952,79�,�16 │ B │ 184,549,376 │ B │ 11,534,336 │ B │ 72�,896 │ B │ 45,�56 │ B │ 2,816 │ B │ 176 │ B │ 11 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ C │ 3,221,225,472 │ C │ 2�1,326,592 │ C │ 12,582,912 │ C │ 786,432 │ C │ 49,152 │ C │ 3,�72 │ C │ 192 │ C │ 12 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ D │ 3,489,66�,928 │ D │ 218,1�3,8�8 │ D │ 13,631,488 │ D │ 851,968 │ D │ 53,248 │ D │ 3,328 │ D │ 2�8 │ D │ 13 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ E │ 3,758,�96,384 │ E │ 234,881,�24 │ E │ 14,68�,�64 │ E │ 917,5�4 │ E │ 57,344 │ E │ 3,584 │ E │ 224 │ E │ 14 │
├─────┼───────────────┼─────┼─────────────┼─────┼────────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┼─────┼─────────┤
│ F │ 4,�26,531,84� │ F │ 251,658,24� │ F │ 15,728,64� │ F │ 983,�4� │ F │ 61,44� │ F │ 3,84� │ F │ 24� │ F │ 15 │
├─────┴───────────────┼─────┴─────────────┼─────┴────────────┼─────┴─────────┼─────┴─────────┼─────┴─────────┼─────┴─────────┼─────┴─────────┤
│ 8 │ 7 │ 6 │ 5 │ 4 │ 3 │ 2 │ 1 │
└─────────────────────┴───────────────────┴──────────────────┴───────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

TO CONVERT HEXADECIMAL TO DECIMAL ┌──────────────────────────┐ To convert integer numbers greater than the capacity
│ EXAMPLE │ of the table, use the techniques below:

1. Locate the column of the decimal numbers corresponding │ │
to the left-most digit or letter of the hexadecimal; │ Conversion of │ HEXADECIMAL TO DECIMAL
select from this column and record the number │ Hexadecimal Value D34 │
corresponds to the position of the hexadecimal digit │ │ Successive cumulative multiplication from left to
or letter. │ 1. D 3328 │ right, adding units position.

 │ │
2. Repeat step 1 for the next (second from the left) │ 2. 3 48 │ Example: D34�^ = 338��@ D = 13
 position. │ │ x16
 │ 3. 4 + 4 │ 2�8
3. Repeat step 1 for the units (third from the left) │ │ 3 = +3
 position. │ 4. Decimal 338� │ 211
 └──────────────────────────┘ x16
4. Add the numbers selected from the table to form the 3376

decimal number. 4 = +4
 338�

TO CONVERT DECIMAL TO HEXADECIMAL ┌──────────────────────────┐
 │ EXAMPLE │
1. (a) Select from the table the highest decimal number │ │

that is equal to or less than the number to be │ Conversion of │ DECIMAL TO HEXADECIMAL
converted. │ Decimal Value 338� │
(b) Record the hexadecimal of the column containing │ │ Divide and collect the remainder in reverse order
the selected number. │ 1. D -3328 │
(c) Subtract the selected decimal from the number to │ 52 │ Example: 338��@ = X�^

 be converted. │ │ remainder
 │ 2. 3 -48 │ �
2. Using the remainder from step 1(c) repeat all of │ 4 │ 16 │ 338� ────� 4 │

step 1 to develop the second position of the │ │ └────── │
hexadecimal (and a remainder) │ 3. 4 -4 │ │

│ │ 16 │ 211 ────� 3 │
3. Using the remainder from step 2, repeat all of step 1 │ 4. Hexadecimal D34 │ └────── │

to develop the units position of the hexadecimal. └──────────────────────────┘ │
16 │ 13 ────� D │

4. Combine the terms to form the hexadecimal number. └────── 338��@ = D34�^

POWERS OF 16 TABLE
Example: 268,435,456�@ = (2.68435456 x 1�
)�@ = 1��� �����^ = (1�%)�^

 16` │ n
───────────────────────────┼────────
 1 │ �
 16 │ 1
 256 │ 2

4 �96 │ 3
65 536 │ 4

1 �48 576 │ 5
16 777 216 │ 6
268 435 456 │ 7

4 294 967 296 │ 8
68 719 476 736 │ 9

1 �99 511 627 776 │ 1� = A
17 592 186 �44 416 │ 11 = B
281 474 976 71� 656 │ 12 = C

4 5�3 599 627 37� 496 │ 13 = D
72 �57 594 �37 927 936 │ 14 = E

 1 152 921 5�4 6�6 846 976 │ 15 = F
└───────────────┬──────────────┘
 Decimal Values

H-6 z/Architecture Principles of Operation

Conversion Table: Hexadecimal and Decimal Fractions

┌───┐
│ HALFWORD │
├──┬──┤
│ BYTE │ BYTE │
├────────────────┬─────────────────────────┼──────────────────────────────────┬───┤
│ Bits �123 │ 4567 │ �123 │ 4567 │
├──────┬─────────┼───────┬─────────────────┼────────┬─────────────────────────┼─────────┬─────────────────────────────────┤
│ Hex │ Decimal │ Hex │ Decimal │ Hex │ Decimal │ Hex │ Decimal Equivalent │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .� │ .���� │ .�� │ .���� ���� │ .��� │ .���� ���� ���� │ .���� │ .���� ���� ���� ���� │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .1 │ .�625 │ .�1 │ .��39 �625 │ .��1 │ .���2 4414 �625 │ .���1 │ .���� 1525 8789 �625 │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .2 │ .125� │ .�2 │ .��78 125� │ .��2 │ .���4 8828 125� │ .���2 │ .���� 3�51 7578 125� │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .3 │ .1875 │ .�3 │ .�117 1875 │ .��3 │ .���7 3242 1875 │ .���3 │ .���� 4577 6367 1875 │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .4 │ .25�� │ .�4 │ .�156 25�� │ .��4 │ .���9 7656 25�� │ .���4 │ .���� 61�3 5156 25�� │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .5 │ .3125 │ .�5 │ .�195 3125 │ .��5 │ .��12 2�7� 3125 │ .���5 │ .���� 7629 3945 3125 │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .6 │ .375� │ .�6 │ .�234 375� │ .��6 │ .��14 6484 375� │ .���6 │ .���� 9155 2734 375� │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .7 │ .4375 │ .�7 │ .�273 4375 │ .��7 │ .��17 �898 4375 │ .���7 │ .���1 �681 1523 4375 │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .8 │ .5��� │ .�8 │ .�312 5��� │ .��8 │ .��19 5312 5��� │ .���8 │ .���1 22�7 �312 5��� │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .9 │ .5625 │ .�9 │ .�351 5625 │ .��9 │ .��21 9726 5625 │ .���9 │ .���1 3732 91�1 5625 │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .A │ .625� │ .�A │ .�39� 625� │ .��A │ .��24 414� 625� │ .���A │ .���1 5258 789� 625� │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .B │ .6875 │ .�B │ .�429 6875 │ .��B │ .��26 8554 6875 │ .���B │ .���1 6784 6679 6875 │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .C │ .75�� │ .�C │ .�468 75�� │ .��C │ .��29 2968 75�� │ .���C │ .���1 831� 5468 75�� │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .D │ .8125 │ .�D │ .�5�7 8125 │ .��D │ .��31 7382 8125 │ .���D │ .���1 9836 4257 8125 │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .E │ .875� │ .�E │ .�546 875� │ .��E │ .��34 1796 875� │ .���E │ .���2 1362 3�46 875� │
├──────┼─────────┼───────┼─────────────────┼────────┼─────────────────────────┼─────────┼─────────────────────────────────┤
│ .F │ .9375 │ .�F │ .�585 9375 │ .��F │ .��36 621� 9375 │ .���F │ .���2 2888 1835 9375 │
├──────┴─────────┼───────┴─────────────────┼────────┴─────────────────────────┼─────────┴─────────────────────────────────┤
│ 1 │ 2 │ 3 │ 4 │
└────────────────┴─────────────────────────┴──────────────────────────────────┴───┘

TO CONVERT .ABC HEXADECIMAL TO DECIMAL To convert fractions beyond the capacity of the
table, use techniques below:

Find .A in position 1 .625� HEXADECIMAL TO FRACTION DECIMAL

Find .�B in position 2 .�429 6825 Convert the hexadecimal fraction to its decimal
equivalent using the same technique as for integer

Find .��C in position 3 +.��29 2968 75�� numbers. Divide the results by 16` (n is the
number of fraction positions).

.ABC is equal to .67�8 9843 75��
Example: .8A7 = .54�771�@

TO CONVERT .13 DECIMAL TO HEXADECIMAL 8A7�^ = 2215�@ .54�771
 ┌────────────
1. Find .125� next lowest to .13�� 16� = 4�96 4�96 │ 2215.������

subtract - .125� = .2 Hex

2. Find .��39 �625 next lowest to .��5� ���� DECIMAL FRACTION TO HEXADECIMAL
- .��39 �625 = .�1

Collect integer parts of product in the order of
3. Find .���9 7656 25�� .��1� 9375 ���� calculation.

- .���9 7656 25�� = .��4
Example: .54�8�@ = .8A7�^

4. Find .���1 �681 1523 4375 .���1 1718 75�� ����
- .���1 �681 1523 4375 = .���7 .54�8

.���� 1�37 5976 5625 = .2147 Hex │ ┌──┐ x16
� │ 8 �─── │ 8│ .6528

5. .13 Decimal is approximately equal to ──────────────────────┘ │ └──┘
 │ ┌──┐ x16

│ A �─── │1�│ .4448
 │ └──┘
 │ ┌──┐ x16

│ 7 �─── │ 7│ .1168
 � └──┘

 Appendix H. Hexadecimal Tables H-7

Hexadecimal Addition and Subtraction Table

Example: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 = 2

 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ A │ B │ C │ D │ E │ F │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 1 │ �2 │ �3 │ �4 │ �5 │ �6 │ �7 │ �8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 2 │ �3 │ �4 │ �5 │ �6 │ �7 │ �8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 3 │ �4 │ �5 │ �6 │ �7 │ �8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 4 │ �5 │ �6 │ �7 │ �8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 5 │ �6 │ �7 │ �8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 6 │ �7 │ �8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 7 │ �8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 9 │ �A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 A │ �B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │ 19 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 B │ �C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │ 19 │ 1A │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 C │ �D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │ 19 │ 1A │ 1B │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 D │ �E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │ 19 │ 1A │ 1B │ 1C │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 E │ �F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │ 19 │ 1A │ 1B │ 1C │ 1D │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 F │ 1� │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │ 19 │ 1A │ 1B │ 1C │ 1D │ 1E │
─────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┘

Hexadecimal Multiplication Table

Example: 2 x 4 = �8, F x 2 = 1E

 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ A │ B │ C │ D │ E │ F │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 1 │ �1 │ �2 │ �3 │ �4 │ �5 │ �6 │ �7 │ �8 │ �9 │ �A │ �B │ �C │ �D │ �E │ �F │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 2 │ �2 │ �4 │ �6 │ �8 │ �A │ �C │ �E │ 1� │ 12 │ 14 │ 16 │ 18 │ 1A │ 1C │ 1E │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 3 │ �3 │ �6 │ �9 │ �C │ �F │ 12 │ 15 │ 18 │ 1B │ 1E │ 21 │ 24 │ 27 │ 2A │ 2D │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 4 │ �4 │ �8 │ �C │ 1� │ 14 │ 18 │ 1C │ 2� │ 24 │ 28 │ 2C │ 3� │ 34 │ 38 │ 3C │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 5 │ �5 │ �A │ �F │ 14 │ 19 │ 1E │ 23 │ 28 │ 2D │ 32 │ 37 │ 3C │ 41 │ 46 │ 4B │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 6 │ �6 │ �C │ 12 │ 18 │ 1E │ 24 │ 2A │ 3� │ 36 │ 3C │ 42 │ 48 │ 4E │ 54 │ 5A │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 7 │ �7 │ �E │ 15 │ 1C │ 23 │ 2A │ 31 │ 38 │ 3F │ 46 │ 4D │ 54 │ 5B │ 62 │ 69 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 8 │ �8 │ 1� │ 18 │ 2� │ 28 │ 3� │ 38 │ 4� │ 48 │ 5� │ 58 │ 6� │ 68 │ 7� │ 78 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 9 │ �9 │ 12 │ 1B │ 24 │ 2D │ 36 │ 3F │ 48 │ 51 │ 5A │ 63 │ 6C │ 75 │ 7E │ 87 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 A │ �A │ 14 │ 1E │ 28 │ 32 │ 3C │ 46 │ 5� │ 5A │ 64 │ 6E │ 78 │ 82 │ 8C │ 96 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 B │ �B │ 16 │ 21 │ 2C │ 37 │ 42 │ 4D │ 58 │ 63 │ 6E │ 79 │ 84 │ 8F │ 9A │ A5 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 C │ �C │ 18 │ 24 │ 3� │ 3C │ 48 │ 54 │ 6� │ 6C │ 78 │ 84 │ 9� │ 9C │ A8 │ B4 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 D │ �D │ 1A │ 27 │ 34 │ 41 │ 4E │ 5B │ 68 │ 75 │ 82 │ 8F │ 9C │ A9 │ B6 │ C3 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 E │ �E │ 1C │ 2A │ 38 │ 46 │ 54 │ 62 │ 7� │ 7E │ 8C │ 9A │ A8 │ B6 │ C4 │ D2 │
─────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┤
 F │ �F │ 1E │ 2D │ 3C │ 4B │ 5A │ 69 │ 78 │ 87 │ 96 │ A5 │ B4 │ C3 │ D2 │ E1 │
─────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┘

H-8 z/Architecture Principles of Operation

Appendix I. EBCDIC and Other Codes

The following table shows the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC) and

┌───┬───┬────────────────┬───────────────┬──────────────────
│ │ │ │ AS- ISO (1) │BookMaster
│Dec│Hex│ EBCDIC │ CII -8 IBM-PC│Symbol Names(2)
├───┼───┼────────────────┼───────────────┼──────────────────
│ �│�� │ NUL │ NUL NUL NUL │
│ 1│�1 │ SOH │ SOH SOH SOH { │face
│ 2│�2 │ STX │ STX STX STX } │FACE
│ 3│�3 │ ETX │ ETX ETX ETX ♥ │HEART
├───┼───┼────────────────┼───────────────┼──────────────────
│ 4│�4 │ SEL │ EOT EOT EOT ♦ │DIAMOND
│ 5│�5 │ HT │ ENQ ENQ ENQ ♣ │CLUB
│ 6│�6 │ RNL │ ACK ACK ACK ♠ │SPADE
│ 7│�7 │ DEL │ BEL BEL BEL � │bullet
├───┼───┼────────────────┼───────────────┼──────────────────
│ 8│�8 │ GE │ BS BS BS � │revbul
│ 9│�9 │ SPS │ HT HT HT � │circle
│ 1�│�A │ RPT │ LF LF LF � │revcir
│ 11│�B │ VT │ VT VT VT ♂ │male
├───┼───┼────────────────┼───────────────┼──────────────────
│ 12│�C │ FF │ FF FF FF ♀ │female
│ 13│�D │ CR │ CR CR CR ♪ │note18
│ 14│�E │ SO │ SO SO SO ♫ │note1616
│ 15│�F │ SI │ SI SI SI � │sun
├───┼───┼────────────────┼───────────────┼──────────────────
│ 16│1� │ DLE │ DLE DLE DLE � │rahead
│ 17│11 │ DC1 │ DC1 DC1 DC1 � │lahead
│ 18│12 │ DC2 │ DC2 DC2 DC2 � │udarrow
│ 19│13 │ DC3 │ DC3 DC3 DC3 ‼ │dblxclam
├───┼───┼────────────────┼───────────────┼──────────────────
│ 2�│14 │ RES/ENP │ DC4 DC4 DC4 ¶ │par
│ 21│15 │ NL │ NAK NAK NAK § │section
│ 22│16 │ BS │ SYN SYN SYN ¯ │overline
│ 23│17 │ POC │ ETB ETB ETB � │udarrowus
├───┼───┼────────────────┼───────────────┼──────────────────
│ 24│18 │ CAN │ CAN CAN CAN ↑ │uarrow
│ 25│19 │ EM │ EM EM EM ↓ │darrow
│ 26│1A │ UBS │ SUB SUB IFS → │rarrow
│ 27│1B │ CU1 │ ESC ESC ESC ← │larrow
├───┼───┼────────────────┼───────────────┼──────────────────
│ 28│1C │ IFS │ FS IFS DEL � │lnotusd
│ 29│1D │ IGS │ GS IGS GS ↔ │lrarrow
│ 3�│1E │ IRS │ RS IRS RS � │uahead
│ 31│1F │ ITB/IUS │ US IUS US � │dahead
└───┴───┴────────────────┴───────────────┴──────────────────

other codes. Details may be found in the notes
on page I-4.

┌───┬───┬────────────────┬───────────────┬────────────────────
│ │ │ │ AS- ISO (1) │BookMaster
│Dec│Hex│ EBCDIC │ CII -8 IBM-PC│Symbol Names(2)
├───┼───┼────────────────┼───────────────┼────────────────────
│ 32│2� │ DS │ SP SP SP │
│ 33│21 │ SOS │ ! ! ! │xclam
│ 34│22 │ FS │ " " " │sdq
│ 35│23 │ WUS │ # # # │numsign
├───┼───┼────────────────┼───────────────┼────────────────────
│ 36│24 │ BYP/INP │ $ $ $ │dollar
│ 37│25 │ LF │ % % % │percent
│ 38│26 │ ETB │ & & & │amp
│ 39│27 │ ESC │ ' ' ' │ssq(3)
├───┼───┼────────────────┼───────────────┼────────────────────
│ 4�│28 │ SA │ (((│lpar
│ 41│29 │ SFE │))) │rpar
│ 42│2A │ SM/SW │ � � � │asterisk
│ 43│2B │ CSP │ + + + │plus
├───┼───┼────────────────┼───────────────┼────────────────────
│ 44│2C │ MFA │ , , , │comma
│ 45│2D │ ENQ │ – – – │hyphen or minus
│ 46│2E │ ACK │ . . . │period
│ 47│2F │ BEL │ / / / │divslash or slash
├───┼───┼────────────────┼───────────────┼────────────────────
│ 48│3� │ │ � � � │
│ 49│31 │ │ 1 1 1 │
│ 5�│32 │ SYN │ 2 2 2 │
│ 51│33 │ IR │ 3 3 3 │
├───┼───┼────────────────┼───────────────┼────────────────────
│ 52│34 │ PP │ 4 4 4 │
│ 53│35 │ TRN │ 5 5 5 │
│ 54│36 │ NBS │ 6 6 6 │
│ 55│37 │ EOT │ 7 7 7 │
├───┼───┼────────────────┼───────────────┼────────────────────
│ 56│38 │ SBS │ 8 8 8 │
│ 57│39 │ IT │ 9 9 9 │
│ 58│3A │ RFF │ : : : │colon
│ 59│3B │ CU3 │ ; ; ; │semi
├───┼───┼────────────────┼───────────────┼────────────────────
│ 6�│3C │ DC4 │ < < < │lt
│ 61│3D │ NAK │ ═ ═ ═ │eq
│ 62│3E │ │ > > > │gt
│ 63│3F │ SUB │ ? ? ? │quest
└───┴───┴────────────────┴───────────────┴────────────────────

Control-Character Representations
ACK Acknowledge ENP Enable Presentation ITB Intermediate Transmission SBS Subscript
BEL Bell ENQ Enquiry Block SEL Select
BS Backspace EO Eight Ones IUS International Unit Separator SFE Start Field Extended
BYP Bypass EOT End of Transmission LF Line Feed SI Shift In
CAN Cancel ESC Escape MFA Modify Field Attribute SM Set Mode
CR Carriage Return ETB End of Transmission Block NAK Negative Acknowledge SO Shift Out
CSP Control Sequence Prefix ETX End of Text NBS Numeric Backspace SOH Start of Heading
CU1 Customer Use 1 FF Form Feed NL New Line SOS Start of Significance
CU3 Customer Use 3 FS Field Separator NUL Null SPS Superscript
DC1 Device Control 1 GE Graphic Escape POC Program-Operator STX Start of Text
DC2 Device Control 2 HT Horizontal Tab Communication SUB Substitute
DC3 Device Control 3 IFS Interchange File Separator PP Presentation Position SW Switch
DC4 Device Control 4 IGS Interchange Group Separator RES Restore SYN Synchronous Idle
DEL Delete INP Inhibit Presentation RFF Required Form Feed TRN Transparent
DLE Data Link Escape IR Index Return RNL Required New Line UBS Unit Backspace
DS Digit Select IRS Interchange Record Separator RPT Repeat VT Vertical Tab
EM End of Medium IT Indent Tab SA Set Attribute WUS Word Underscore

Formatting-Character Representations
NSP Numeric Space SP Space RSP Required Space SHY Syllable Hyphen

 Copyright IBM Corp. 1990-2003 I-1

┌───┬───┬────────────────────┬───────────┬──────────────────
│ │ │ EBCDIC(4) │AS- ISO IBM│BookMaster
│Dec│Hex│81C 94C �37 5�� 1�47│CII -8 -PC│Symbol Names(2)
├───┼───┼────────────────────┼───────────┼──────────────────
│ 64│4� │SP SP SP SP SP │ @ @ @ │atsign
│ 65│41 │RSP RSP RSP RSP RSP │ A A A │
│ 66│42 │ â â â │ B B B │ac
│ 67│43 │ ä ä ä │ C C C │ae
├───┼───┼────────────────────┼───────────┼──────────────────
│ 68│44 │ à à à │ D D D │ag
│ 69│45 │ á á á │ E E E │aa
│ 7�│46 │ ã ã ã │ F F F │at
│ 71│47 │ å å å │ G G G │ao
├───┼───┼────────────────────┼───────────┼──────────────────
│ 72│48 │ ç ç ç │ H H H │cc
│ 73│49 │ ñ ñ ñ │ I I I │nt
│ 74│4A │ ¢ ¢ [¢ │ J J J │cent, lbrk
│ 75│4B │ │ K K K │period
├───┼───┼────────────────────┼───────────┼──────────────────
│ 76│4C │ < < < < < │ L L L │lt
│ 77│4D │ (((((│ M M M │lpar
│ 78│4E │ + + + + + │ N N N │plus
│ 79│4F │ | | ! | │ O O O │vbar, xclam
├───┼───┼────────────────────┼───────────┼──────────────────
│ 8�│5� │ & & & & & │ P P P │amp
│ 81│51 │ é é é │ Q Q Q │ea
│ 82│52 │ ê ê ê │ R R R │ec
│ 83│53 │ ë ë ë │ S S S │ee
├───┼───┼────────────────────┼───────────┼──────────────────
│ 84│54 │ è è è │ T T T │eg
│ 85│55 │ í í í │ U U U │ia
│ 86│56 │ î î î │ V V V │ic
│ 87│57 │ ï ï ï │ W W W │ie
├───┼───┼────────────────────┼───────────┼──────────────────
│ 88│58 │ ì ì ì │ X X X │ig
│ 89│59 │ ß ß ß │ Y Y Y │ss
│ 9�│5A │ ! !] ! │ Z Z Z │xclam, rbrk
│ 91│5B │ $ $ $ $ │ [[[│dollar, lbrk
├───┼───┼────────────────────┼───────────┼──────────────────
│ 92│5C │ � � � � � │ \ \ \ │asterisk, bslash
│ 93│5D │))))) │]]] │rpar, rbrk
│ 94│5E │ ; ; ; ; ; │ ^ ^ ^ │semi, hat
│ 95│5F │ ¬ ¬ ^ ^ │ _ _ _ │lnot, hat, us
└───┴───┴────────────────────┴───────────┴──────────────────

┌───┬───┬────────────────────┬───────────┬────────────────────
│ │ │ EBCDIC(4) │AS- ISO IBM│BookMaster
│Dec│Hex│81C 94C �37 5�� 1�47│CII -8 -PC│Symbol Names(2)
├───┼───┼────────────────────┼───────────┼────────────────────
│ 96│6� │ - - - - - │ ` ` ` │hyphen or minus,
│ │ │ │ │grave
│ 97│61 │ / / / / / │ a a a │divslash or slash
│ 98│62 │ Â Â Â │ b b b │Ac
│ 99│63 │ Ä Ä Ä │ c c c │Ae
├───┼───┼────────────────────┼───────────┼────────────────────
│1��│64 │ À À À │ d d d │Ag
│1�1│65 │ Á Á Á │ e e e │Aa
│1�2│66 │ Ã Ã Ã │ f f f │At
│1�3│67 │ Å Å Å │ g g g │Ao
├───┼───┼────────────────────┼───────────┼────────────────────
│1�4│68 │ Ç Ç Ç │ h h h │Cc
│1�5│69 │ Ñ Ñ Ñ │ i i i │Nt
│1�6│6A │ ¦ ¦ ¦ ¦ │ j j j │splitvbar
│1�7│6B │ , , , , , │ k k k │comma
├───┼───┼────────────────────┼───────────┼────────────────────
│1�8│6C │ % % % % % │ l l l │percent
│1�9│6D │ _ _ _ _ _ │ m m m │us
│11�│6E │ > > > > > │ n n n │gt
│111│6F │ ? ? ? ? ? │ o o o │quest
├───┼───┼────────────────────┼───────────┼────────────────────
│112│7� │ ø ø ø │ p p p │os
│113│71 │ É É É │ q q q │Ea
│114│72 │ Ê Ê Ê │ r r r │Ec
│115│73 │ Ë Ë Ë │ s s s │Ee
├───┼───┼────────────────────┼───────────┼────────────────────
│116│74 │ È È È │ t t t │Eg
│117│75 │ Í Í Í │ u u u │Ia
│118│76 │ Î Î Î │ v v v │Ic
│119│77 │ Ï Ï Ï │ w w w │Ie
├───┼───┼────────────────────┼───────────┼────────────────────
│12�│78 │ Ì Ì Ì │ x x x │Ig
│121│79 │ ` ` ` │ y y y │grave
│122│7A │ : : : : : │ z z z │colon
│123│7B │ # # # # │ { { { │numsign, lbrc
├───┼───┼────────────────────┼───────────┼────────────────────
│124│7C │ @ @ @ @ │ | | | │atsign, vbar
│125│7D │ ' ' ' ' ' │ } } } │ssq(3), rbrc
│126│7E │ ═ ═ ═ ═ ═ │ ∼ ∼ ∼ │eq, eqv
│127│7F │ " " " " " │DEL £ £ │sdq, house
└───┴───┴────────────────────┴───────────┴────────────────────

BookMaster Symbols for Character Set 0697 (See Note (4))
Symbol Sym- Symbol Sym- Symbol Sym- Symbol Sym-
Name bol Description Name bol Description Name bol Description Name bol Description
aa á a acute Dstroke Ð D stroke lpar (left parenthesis rpar) right parenthesis
Aa Á A acute ea é e acute Lsterling £ pound sterling sdq " straight double quote
ac â a circumflex Ea É E acute lt < less than section § section
acute ´ accent acute ec ê e circumflex minus − minus operation semi ; semicolon
Ac Â A circumflex Ec Ê E circumflex mu µ mu slash / slash right
ae ä a umlaut ee ë e umlaut mult × multiply smultdot � mult. dot small
aelig æ ae ligature Ee Ë E umlaut nt ñ n tilde splitvbar ¦ split vertical bar
Ae Ä A umlaut eg è e grave Nt Ñ N tilde ss ß German es-zet
AElig Æ AE ligature Eg È E grave numsign # number sign ssq ' straight single quote
ag à a grave eq = equals oa ó o acute sup1 � superscript 1
Ag À A grave eth ð eth, Icelandic small Oa Ó O acute sup2 � superscript 2
amp & ampersand Eth Ð Eth, Icelandic capital oc ô o circumflex sup3 � superscript 3
ao å a overcircle frac12 ½ one half Oc Ô O circumflex thorn þ thorn, Icelandic small
Ao Å A overcircle frac14 ¼ one quarter odqf « French open dbl. quote Thorn Þ Thorn, Icelandic capital
asterisk * asterisk frac34 ¾ three quarters oe ö o umlaut tilde ˜ tilde
at ã a tilde grave ` accent grave Oe Ö O umlaut ua ú u acute
atsign @ at sign gt > greater than og ò o grave Ua Ú U acute
At Ã A tilde hat ∧ hat Og Ò O grave uc û u circumflex
bslash \ back slash hyphen - hyphen os ø o slash Uc Û U circumflex
cc ç c cedilla ia í i acute Os Ø O slash ue ü u umlaut
Cc Ç C cedilla Ia Í I acute ot õ o tilde Ue Ü U umlaut
cdqf » French close dbl. quote ic î i circumflex Ot Õ O tilde ug ù u grave
cedilla ¸ cedilla Ic Î I circumflex overline ¯ overline Ug Ù U grave
cent ¢ cent ie ï i umlaut par ¶ paragraph umlaut ¨ umlaut
colon : colon Ie Ï I umlaut percent % percent us _ underscore
comma , comma ig ì i grave period . period vbar | vertical bar
copyr  copyright Ig Ì I grave plus + plus xclam ! exclamation point
currency ¤ currency international inve ¡ inverted ! pm ± plus-minus ya ý y acute
degree ° degree invq ¿ inverted ? quest ? question mark Ya Ý Y acute
div ÷ divide lbrc { left brace rbrc } right brace ye ÿ y umlaut
divslash / division slash lbrk [left bracket rbrk] right bracket yen ¥ yen
dollar $ dollar lnot ¬ logical not regtm  registered trademark

I-2 z/Architecture Principles of Operation

┌───┬───┬────────────────────┬───────────┬──────────────────
│ │ │ EBCDIC(4) │ISO IBM-PC │BookMaster
│Dec│Hex│81C 94C �37 5�� 1�47│-8 437 85�│Symbol Names(2)
├───┼───┼────────────────────┼───────────┼──────────────────
│128│8� │ Ø Ø Ø │ Ç Ç │Os, Cc
│129│81 │ a a a a a │ ü ü │ue
│13�│82 │ b b b b b │ BPH é é │ea
│131│83 │ c c c c c │ NBH â â │ac
├───┼───┼────────────────────┼───────────┼──────────────────
│132│84 │ d d d d d │ IND ä ä │ae
│133│85 │ e e e e e │ NEL à à │ag
│134│86 │ f f f f f │ SSA å å │ao
│135│87 │ g g g g g │ ESA ç ç │cc
├───┼───┼────────────────────┼───────────┼──────────────────
│136│88 │ h h h h h │ HTS ê ê │ec
│137│89 │ i i i i i │ HTJ ë ë │ee
│138│8A │ « « « │ VTS è è │odqf, eg

| │139│8B │ » » » │ PLD ï ï │cdqf, ie
├───┼───┼────────────────────┼───────────┼──────────────────
│14�│8C │ ð ð ð │ PLU î î │eth, ic
│141│8D │ ý ý ý │ RI ì ì │ya, ig
│142│8E │ þ þ þ │ SS2 Ä Ä │thorn, Ae
│143│8F │ ± ± ± │ SS3 Å Å │pm, Ao
├───┼───┼────────────────────┼───────────┼──────────────────
│144│9� │ ° ° ° │ DCS É É │degree, Ea
│145│91 │ j j j j j │ PU1 æ æ │aelig
│146│92 │ k k k k k │ PU2 Æ Æ │AElig
│147│93 │ l l l l l │ STS ô ô │oc
├───┼───┼────────────────────┼───────────┼──────────────────
│148│94 │ m m m m m │ CCH ö ö │oe
│149│95 │ n n n n n │ MW ò ò │og
│15�│96 │ o o o o o │ SPA û û │uc
│151│97 │ p p p p p │ EPA ù ù │ug
├───┼───┼────────────────────┼───────────┼──────────────────
│152│98 │ q q q q q │ SOS ÿ ÿ │ye
│153│99 │ r r r r r │ Ö Ö │Oe
│154│9A │ ª ª ª │ SCI Ü Ü │aus, Ue
│155│9B │ º º º │ CSI ¢ ø │ous, cent, os
├───┼───┼────────────────────┼───────────┼──────────────────
│156│9C │ æ æ æ │ ST £ £ │aelig, Lsterling
│157│9D │ ¸ ¸ ¸ │ OSC ¥ Ø │cedilla, yen, Os
│158│9E │ Æ Æ Æ │ PM ­ × │AElig, peseta,
│ │ │ │ │mult
│159│9F │ ¤ ¤ ¤ │ ACP ƒ ƒ │currency, fnof(5)
└───┴───┴────────────────────┴───────────┴──────────────────

┌───┬───┬────────────────────┬───────────┬────────────────────
│ │ │ EBCDIC(4) │ISO IBM-PC │BookMaster
│Dec│Hex│81C 94C �37 5�� 1�47│-8 437 85�│Symbol Names(2)
├───┼───┼────────────────────┼───────────┼────────────────────
│16�│A� │ µ µ µ │ RSP á á │mu(6), aa
│161│A1 │ ˜ ˜ ˜ │ ¡ í í │tilde, inve, ia
│162│A2 │ s s s s s │ ¢ ó ó │cent, oa
│163│A3 │ t t t t t │ £ ú ú │Lsterling, ua
├───┼───┼────────────────────┼───────────┼────────────────────
│164│A4 │ u u u u u │ ¤ ñ ñ │currency, nt
│165│A5 │ v v v v v │ ¥ Ñ Ñ │yen, Nt
│166│A6 │ w w w w w │ ¦ ª ª │splitvbar, aus
│167│A7 │ x x x x x │ § º º │section, ous
├───┼───┼────────────────────┼───────────┼────────────────────
│168│A8 │ y y y y y │ ¨ ¿ ¿ │umlaut, invq
│169│A9 │ z z z z z │ © ³ ® │copyr, lnotrev,
│ │ │ │ │regtm
│17�│AA │ ¡ ¡ ¡ │ ª ¬ ¬ │inve, aus, lnot
│171│AB │ ¿ ¿ ¿ │ « ½ ½ │invq, odqf, frac12
├───┼───┼────────────────────┼───────────┼────────────────────
│172│AC │ Ð Ð Ð │ ¬ ¼ ¼ │Dstroke or Eth,
│ │ │ │ │lnot, frac14
│173│AD │ Ý Ý [│SHY ¡ ¡ |Ya, lbrk, inve
│174│AE │ Þ Þ Þ │ ® « « │Thorn, regtm, odqf
│175│AF │ ® ® ® │ ¯ » » │regtm, overline,
│ │ │ │ │cdqf
├───┼───┼────────────────────┼───────────┼────────────────────
│176│B� │ ^ ¢ ¬ │ ° ¹ ¹ │hat, cent, lnot,
│ │ │ │ │degree, box14
│177│B1 │ £ £ £ │ ± ¾ ¾ │Lsterling, pm, box12
│178│B2 │ ¥ ¥ ¥ │ � Ò Ò │yen, sup2, box34
│179│B3 │ � � � │ � │ │ │smultdot, sup3, bxv
├───┼───┼────────────────────┼───────────┼────────────────────
│18�│B4 │ © © © │ ´ ┤ ┤ │copyr, acute, bxrj
│181│B5 │ § § § │ µ ╡ Á │section, mu(6),
│ │ │ │ │bx1�12, Aa
│182│B6 │ ¶ ¶ ¶ │ ¶ ╢ Â │par, bx2�21, Ac
│183│B7 │ ¼ ¼ ¼ │ � ╖ À │frac14, smultdot,
│ │ │ │ │bx��21, Ag
├───┼───┼────────────────────┼───────────┼────────────────────
│184│B8 │ ½ ½ ½ │ ¸ ╕ © │frac12, cedilla,
│ │ │ │ │bx��12, copyr
│185│B9 │ ¾ ¾ ¾ │ � ╣ ╣ │frac34, sup1, bx2�22
│186│BA │ [¬ Ý │ º ║ ║ │lbrk, lnot, Ya, ous,
│ │ │ │ │bx2�2�
│187│BB │] | ¨ │ » ╗ ╗ │rbrk, vbar, umlaut,
│ │ │ │ │cdqf, bx��22
├───┼───┼────────────────────┼───────────┼────────────────────
│188│BC │ ¯ ¯ ¯ │ ¼ ╝ ╝ │overline, frac14,
│ │ │ │ │bx2��2
│189│BD │ ¨ ¨] │ ½ ╜ ¢ │umlaut, rbrk,
│ │ │ │ │frac12, bx2��1,
│ │ │ │ │cent
│19�│BE │ ´ ´ ´ │ ¾ ╛ ¥ │acute, frac34,
│ │ │ │ │bx1��2, yen
│191│BF │ × × × │ ¿ ┐ ┐ │mult, invq, bxur
└───┴───┴────────────────────┴───────────┴────────────────────

Additional ISO-8 Control-Character Representations
APC Application Program HTS Character Tabulation Set PLU Partial Line Up SS3 Single Shift Three

Command IFS Information Separator Four PM Privacy Message ST String Terminator
BPH Break Permitted Here IGS Information Separator Three PU1 Private Use One STS Set Transmit State
CCH Cancel Character IND Index PU2 Private Use Two US Information Separator One
CSI Control Sequence Introducer IRS Information Separator Two RI Reverse Line Feed (or Index) VTS Line Tabulation Set
DCS Device Control String MW Message Waiting SCI Single Character Introducer
EPA End of Guarded Area NBH No Break Here SOS Start of String
ESA End of Selected Area NEL Next Line SPA Start of Guarded Area
HTJ Character Tabulation with OSC Operating System Command SSA Start of Selected Area

Justification PLD Partial Line Down SS2 Single Shift Two

 Appendix I. EBCDIC and Other Codes I-3

┌───┬───┬────────────────────┬───────────┬──────────────────
│ │ │ EBCDIC(4) │ISO IBM-PC │BookMaster
│Dec│Hex│81C 94C �37 5�� 1�47│-8 437 85�│Symbol Names(2)
├───┼───┼────────────────────┼───────────┼──────────────────
│192│C� │ { { { │ À └ └ │lbrc, Ag, bxll
│193│C1 │ A A A A A │ Á ┴ ┴ │Aa, bxbj
│194│C2 │ B B B B B │ Â ┬ ┬ │Ac, bxtj
│195│C3 │ C C C C C │ Ã ├ ├ │At, bxlj
├───┼───┼────────────────────┼───────────┼──────────────────
│196│C4 │ D D D D D │ Ä ─ ─ │Ae, bxh
│197│C5 │ E E E E E │ Å ┼ ┼ │Ao, bxcj
│198│C6 │ F F F F F │ Æ ╞ ã │AElig, bx121�, at
│199│C7 │ G G G G G │ Ç ╟ Ã │Cc, bx212�, At
├───┼───┼────────────────────┼───────────┼──────────────────

| │2��│C8 │ H H H H H │ È ╚ ╚ |Eg, bx22��
│2�1│C9 │ I I I I I │ É ╔ ╔ │Ea, bx�22�
│2�2│CA │SHY SHY SHY SHY SHY │ Ê ╩ ╩ │Ec, bx22�2
│2�3│CB │ ô ô ô │ Ë ╦ ╦ │oc, Ee, bx�222
├───┼───┼────────────────────┼───────────┼──────────────────
│2�4│CC │ ö ö ö │ Ì ╠ ╠ │oe, Ig, bx222�
│2�5│CD │ ò ò ò │ Í ═ ═ │og, Ia, bx�2�2
│2�6│CE │ ó ó ó │ Î ╬ ╬ │oa, Ic, bx2222
│2�7│CF │ õ õ õ │ Ï ╧ ¤ │ot, Ie, bx12�2,
│ │ │ │ │currency
├───┼───┼────────────────────┼───────────┼──────────────────
│2�8│D� │ } } } │ Ð ╨ ð │rbrc, Dstroke or
│ │ │ │ │Eth, bx21�1, eth
│2�9│D1 │ J J J J J │ Ñ ╤ Ð │Nt, bx�212,
│ │ │ │ │Dstroke or Eth
│21�│D2 │ K K K K K │ Ò ╥ Ê │Og, bx�121, Ec
│211│D3 │ L L L L L │ Ó ╙ Ë │Oa, bx21��, Ee
├───┼───┼────────────────────┼───────────┼──────────────────
│212│D4 │ M M M M M │ Ô ╘ È │Oc, bx12��, Eg
│213│D5 │ N N N N N │ Õ ╒ ı │Ot, bx�21�,
│ │ │ │ │idotless
│214│D6 │ O O O O O │ Ö ╓ Í │Oe, bx�12�, Ia
│215│D7 │ P P P P P │ × ╫ Î │mult, bx2121, Ic
├───┼───┼────────────────────┼───────────┼──────────────────
│216│D8 │ Q Q Q Q Q │ Ø ╪ Ï │Os, bx1212, Ie
│217│D9 │ R R R R R │ Ù ┘ ┘ │Ug, bxlr
│218│DA │ � � � │ Ú ┌ ┌ │sup1, Ua, bxul
│219│DB │ û û û │ Û � � │uc, Uc, BOX
├───┼───┼────────────────────┼───────────┼──────────────────
│22�│DC │ ü ü ü │ Ü � � │ue, Ue, BOXBOT
│221│DD │ ù ù ù │ Ý � ¦ │ug, Ya, BOXLEFT,
│ │ │ │ │splitvbar
│222│DE │ ú ú ú │ þ � Ì │ua, thorn,
│ │ │ │ │BOXRIGHT, Ig
│223│DF │ ÿ ÿ ÿ │ ß � � │ye, ss, BOXTOP
└───┴───┴────────────────────┴───────────┴──────────────────

┌───┬───┬────────────────────┬───────────┬────────────────────
│ │ │ EBCDIC(4) │ISO IBM-PC │BookMaster
│Dec│Hex│81C 94C �37 5�� 1�47│-8 437 85�│Symbol Names(2)
├───┼───┼────────────────────┼───────────┼────────────────────
│224│E� │ \ \ \ │ à α Ó │bslash, ag, alpha,
│ │ │ │ │Oa
│225│E1 │ NSP ÷ ÷ ÷ │ á ß ß │div, aa, ss
│226│E2 │ S S S S S │ â ┌ Ô │ac, Gamma, Oc
│227│E3 │ T T T T T │ ã π Ò │at, pi, Og
├───┼───┼────────────────────┼───────────┼────────────────────
│228│E4 │ U U U U U │ ä Σ õ │ae, Sigma, ot
│229│E5 │ V V V V V │ å σ Õ │ao, sigma, Ot
│23�│E6 │ W W W W W │ æ µ µ │aelig, mu(6)
│231│E7 │ X X X X X │ ç τ þ │cc, tau, thorn
├───┼───┼────────────────────┼───────────┼────────────────────
│232│E8 │ Y Y Y Y Y │ è Φ Þ │eg, Phi, Thorn
│233│E9 │ Z Z Z Z Z │ é Θ Ú │ea, Theta(5), Ua
│234│EA │ � � � │ ê Ω Û │sup2, ec, Omega, Uc
│235│EB │ Ô Ô Ô │ ë δ Ù │Oc, ee, delta, Ug
├───┼───┼────────────────────┼───────────┼────────────────────
│236│EC │ Ö Ö Ö │ ì ∞ ý │Oe, ig, infinity, ya
│237│ED │ Ò Ò Ò │ í φ Ý │Og, ia, phi, Ya
│238│EE │ Ó Ó Ó │ î ε ¯ │Oa, ic, epsilon,
│ │ │ │ │overline
│239│EF │ Õ Õ Õ │ ï ∩ ´ │Ot, ie, intersect,
│ │ │ │ │acute
├───┼───┼────────────────────┼───────────┼────────────────────
│24�│F� │ � � � � � │ ð ≡ SHY│eth, identical
│241│F1 │ 1 1 1 1 1 │ ñ ± ± │nt, pm
│242│F2 │ 2 2 2 2 2 │ ò ≥ ═ │og, ge, eq
│243│F3 │ 3 3 3 3 3 │ ó ≤ ¾ │oa, le, frac34
├───┼───┼────────────────────┼───────────┼────────────────────
│244│F4 │ 4 4 4 4 4 │ ô) ¶ │oc, inttop, par
│245│F5 │ 5 5 5 5 5 │ õ * § │ot, intbot, section
│246│F6 │ 6 6 6 6 6 │ ö ÷ ÷ │oe, div
│247│F7 │ 7 7 7 7 7 │ ÷ ≈ ¸ │div, nearly(5),
│ │ │ │ │cedilla
├───┼───┼────────────────────┼───────────┼────────────────────
│248│F8 │ 8 8 8 8 8 │ ø ° ° │os, degree
│249│F9 │ 9 9 9 9 9 │ ù � ¨ │ug, lmultdot, umlaut
│25�│FA │ � � � │ ú � � │sup3, ua, smultdot
│251│FB │ Û Û Û │ û √ � │Uc, uc, sqrt, sup1
├───┼───┼────────────────────┼───────────┼────────────────────
│252│FC │ Ü Ü Ü │ ü ` � │Ue, ue, supn, sup3
│253│FD │ Ù Ù Ù │ ý � � │Ug, ya, sup2
│254│FE │ Ú Ú Ú │ þ ■ ■ │Ua, thorn, sqbul
│255│FF │EO EO EO EO EO │ ÿ RSP RSP│ye
└───┴───┴────────────────────┴───────────┴────────────────────

Notes:

(1) The ASCII controls and graphics are from ANSI X3.4. The ISO-8 controls are from ISO 6429, and the graphics
are from ISO 8859-1. The ISO-8 graphics are code page 00819, named ISO/ANSI Multilingual. IBM-PC controls
and graphics are shown. The graphics are common to code page 00437, named Personal Computer, and code
page 00850, named Personal Computer - Multilingual Page. Code pages 00437 and 00850 are shown separately
beginning at X'80', after which they diverge in content.

(2) The symbol names shown are to be preceded by an ampersand (&) and followed by a period (.) to form a symbol.
Source: IBM BookMaster User's Guide Release 4.0, SC34-5009.

(3) ASCII, ISO-8, and IBM-PC X'27' and EBCDIC X'7D' are an apostophe having the appearance of a straight
single quote. The BookMaster “apos” produces a character having the appearance of an accent acute.

(4) Five columns of EBCDIC graphics are shown. The first is the 81-character character set 0640, called the syntactic
character set, that is mapped the same on all EBCDIC code pages. The second is the standard IBM 94-character
character set mapped on code page 00037. The third is code page 00037, named USA/Canada - CECP (Country
Extended Code Page). The fourth is code page 00500, named International #5. The fifth is code page 01047,
named Latin 1/Open Systems. Code pages 00037, 00500, 01047, and 00819 (ISO-8) all map the 189-character
character set 0697. Source: National Language Support Reference Manual Volume 2, SE09-8002.

(5) ƒ, ≈, and Θ are of nonstandard width.
(6) EBCDIC X'A0' and ISO-8 X'B5' are micro but resemble mu. The BookMaster “usec” produces a character of

nonstandard width.

I-4 z/Architecture Principles of Operation

 Index

Numerics
2K-IDAW control 15-25
370-XA architecture 1-14

A
A (ADD) binary instruction 7-18
absolute address 3-3
absolute storage 3-3
access-control bits in storage key 3-8
access exceptions 6-36, 6-43

priority of 6-43
recognition of 6-36

access key 3-9
for channel-program execution 3-9, 15-22
for channel-subsystem monitoring 3-9
for CPU 3-9

access list 5-47
See also access-list entry
accessing capability, revocation of 5-42
allocation and invalidation of entries in 5-39
authorizing the use of entries in 5-40
concepts 5-37
designation (ALD) 5-46
length (ALL) 5-47
origin (ALO) 5-46

access-list-controlled protection 3-11
exception for 6-27

access-list designation 5-46
access-list entry (ALE) 5-47

authorization index (ALEAX) 5-47
number

See ALEN
sequence exception 6-19

as an access exception 6-36
sequence number (ALESN)

in ALE 5-47
in ALET 5-45

token
See ALET

access-register mode 3-28
access-register translation (ART) 5-44

as part of LOAD REAL ADDRESS, STORE REAL
ADDRESS, TEST ACCESS, and TEST PRO-
TECTION 5-49

introduction to 5-37
lookaside buffer

See ALB
sequence of table fetches 5-84

access-register-translation (ART) tables 5-45

access registers 2-4
designation of 5-37
functions of 5-36
instructions for use of 5-43
save areas for 3-56
validity bit for 11-22

access to storage 5-78
See also reference

active
device 16-15
subchannel 16-15

active allegiance 15-12
active communication 15-12
activity-control field (SCSW) 16-13

following TEST SUBCHANNEL 14-20
AD (ADD NORMALIZED) HFP instruction 18-8

example A-39
adaptive dictionary 7-80
ADB (ADD) BFP instruction 19-18
ADBR (ADD) BFP instruction 19-18
ADD BFP instructions 19-18
ADD binary instructions 7-18
ADD DECIMAL instruction 8-5

example A-34
ADD HALFWORD IMMEDIATE instruction 7-18
ADD HALFWORD instruction

example A-7
ADD HALFWORD instructions 7-18
ADD LOGICAL instructions 7-19
ADD LOGICAL WITH CARRY instructions 7-20
ADD NORMALIZED HFP instructions 18-8

example A-39
ADD UNNORMALIZED HFP instructions 18-10

example A-39
additional floating-point (AFP) registers 9-2
address 3-2

24-bit, 31-bit, and 64-bit 3-5
in branch-address generation 5-10
in operand address generation 5-9

absolute 3-3
arithmetic 3-5, 5-8

unsigned binary 7-4
backward stack-entry 5-70
base

See base address
branch

See branch address
channel-program

See channel-program address
comparison 12-1

controls for 12-1
effect on CPU state 4-2

 Copyright IBM Corp. 1990-2003 X-1

address (continued)
CPU

See CPU address
data (I/O)

See data address
effective

See effective address
failing-storage

See failing-storage address
format 3-2
forward-section-header 5-70
generation 5-7

for storage addressing 3-6
I/O 13-5
instruction

See instruction address
invalid 6-15
logical

See logical address
numbering of for byte locations 3-2
PER

See PER address
prefixing

See prefix
primary virtual

See primary virtual address
real 3-4
secondary virtual

See secondary virtual address
size of 3-5

controlled by addressing mode 5-7
storage 3-2
summary information 3-48
translation

See dynamic address translation, prefix
types 3-3
virtual 3-4
wraparound

See wraparound
address-limit checking (I/O) 17-20

effect of I/O-system reset on 17-16
limit mode (bits in PMCW) 15-2

address-limit-checking control (I/O) 15-24, 16-11
used for IPL 17-18

address space 3-16
AR-specified 5-36
changing of 3-17
control bits

control bit 5-66
in PSW 4-6
use in address translation 3-28

created by DAT 3-26
number

See ASN
address-space-control element (ASCE) 3-29

effective 3-34

address-space-control element (ASCE) (continued)
home 3-31
in AST entry 3-20

used for access-register translation 5-49
used for subspace groups 5-59

primary 3-29
secondary 3-30
type exception 6-19

address-and-translation-mode identification
(ATMID) 4-26

addressing exception 6-15
as an access exception 6-36, 6-43

addressing mode 5-7
bit in linkage-stack state entry 5-72
bit in PSW 4-6
effect on address size 3-6
effect on operand-address generation 5-9
effect on sequential instruction-address

generation 5-8
effect on wraparound 3-6
in branch-address generation 5-10
in examples A-7
in operand address generation 5-9
set by BRANCH AND SAVE AND SET MODE

instruction 7-23
set by BRANCH AND SET MODE instruction 7-24
set by SET ADDRESSING MODE instruction 7-161
use of 5-18

ADR (ADD NORMALIZED) HFP instruction 18-8
AE (ADD NORMALIZED) HFP instruction 18-8

example A-39
AEB (ADD) BFP instruction 19-18
AEBR (ADD) BFP instruction 19-18
AER (ADD NORMALIZED) HFP instruction 18-8
AFP (additional floating-point) registers 9-2
AFP-register data exception 6-21
AFT (ASN first table) 3-19
AFTE (ASN-first-table entry) 3-19
AFTO (ASN-first-table origin) 3-19
AFX (ASN-first-table index) 3-18

invalid bit 3-19
translation exception 6-19

AG (ADD) binary instruction 7-18
AGF (ADD) binary instruction 7-18
AGFR (ADD) binary instruction 7-18
AGHI (ADD HALFWORD IMMEDIATE)

instruction 7-18
AGR (ADD) binary instruction 7-18
AH (ADD HALFWORD) instruction 7-18

example A-7
AHI (ADD HALFWORD IMMEDIATE) instruction 7-18
AHY (ADD HALFWORD) instruction 7-18
AKM (authorization key mask) 5-32
AL (ADD LOGICAL) instruction 7-19
ALB (ART-lookaside buffer) 5-54

entry
clearing of 5-56

X-2 z/Architecture Principles of Operation

ALB (ART-lookaside buffer) (continued)
entry (continued)

effect of translation changes on 5-56
usable state 5-55

ALC (ADD LOGICAL WITH CARRY) instruction 7-20
ALCG (ADD LOGICAL WITH CARRY) instruction 7-20
ALCGR (ADD LOGICAL WITH CARRY)

instruction 7-20
ALCR (ADD LOGICAL WITH CARRY) instruction 7-20
ALD (access-list designation) 5-46
ALE

See access-list entry
ALEAX (access-list-entry authorization index) 5-47
ALEN (access-list-entry number) 5-45

invalid bit 5-47
translation exception 6-19

as an access exception 6-36
alert (class of machine-check condition) 11-12
alert interruption condition (I/O) 16-4
alert-status bit (I/O) 16-16
ALESN (access-list-entry sequence number)

in ALE 5-47
in ALET 5-45

ALET (access-list-entry token) 5-39, 5-45
specification exception 6-19

as an access exception 6-36
ALG (ADD LOGICAL) instruction 7-19
ALGF (ADD LOGICAL) instruction 7-19
ALGFR (ADD LOGICAL) instruction 7-19
ALGR (ADD LOGICAL) instruction 7-19
alignment 3-3
ALL (access-list length) 5-47
allegiance

active 15-12
channel-path 15-11
dedicated 15-12
effect on CLEAR SUBCHANNEL of 15-11
working 15-12

allowed interruptions 6-6
ALO (access-list origin) 5-46
ALR (ADD LOGICAL) instruction 7-19
alter-and-display controls 12-2
alteration

storage (PER event) 4-31
ALY (ADD LOGICAL) instruction 7-19
ancillary-report bit

in channel-report word 17-24
in machine-check-interruption code 11-18
in subchannel logout 16-34

AND IMMEDIATE instructions 7-21
AND instructions 7-20

examples A-8
AP (ADD DECIMAL) instruction 8-5

example A-34
AR (ADD) binary instruction 7-18

AR-specified (access-register-specified) 3-5, 3-16
address space 3-16, 5-36
virtual address 3-5

AR-specified (access-register-specified) virtual address
effective address-space-control element for 3-34

architectural mode
identification 3-53
indication of 12-2
selection of by IML controls 12-3
selection of by manual controls 12-2
selection of by signal-processor order 4-54

architecture
compatibility 1-16

arithmetic
address

See address arithmetic
binary 7-4

examples A-2
decimal 8-2

examples A-4, A-34
floating-point 9-1

examples A-5, A-39
logical (unsigned binary) 7-4

examples A-3
ART

See access-register translation
art-lookaside buffer

See ALB
ASCE

See address-space-control element
ASCE (address-space-control element)

type exception 6-19
ASCII character code

handled by architecture xxi
ASF-control bit

See address-space-function-control bit
ASN (address-space number) 3-17

authorization 3-23
first table (AFT) 3-19
first-table (AFT) origin (AFTO) 3-19
first-table index

See AFX
first table origin (AFTO) 3-19
in entry-table entry 5-32
second table (AST) 3-19
second-table (AST) origin (ASTO) 3-19
second-table address in ETE 5-32
second-table entry (ASTE)

for subspace groups 5-58
origin, in ALE 5-47
primary (PASTE) 5-30
pseudo 3-18
sequence exception 6-20
sequence exception as an access

exception 6-36
sequence number (ASTESN), in ALE 5-48
sequence number (ASTESN), in ASTE 5-49

 Index X-3

ASN (address-space number) (continued)
second-table entry (ASTE) (continued)

validity exception 6-20
validity exception as an access exception 6-36

second-table index
See ASX

trace-control bit 4-13
translation 3-18

exceptions 6-46
translation-control bit 3-18, 5-26

assembler language A-7
instruction formats in

See instruction lists and page numbers in
Appendix B

assigned storage locations 3-51
AST (ASN second table) 3-19
AST entry 5-48

See also ASN-second-table entry
ASTE

See ASN-second-table entry
ASTESN (AST-entry sequence number)

in ALE 5-48
in ASTE 5-49

ASTO (ASN-second-table origin) 3-19
ASX (ASN-second-table index) 3-18

invalid bit 3-19
use in ART 5-48

translation exception 6-21
AT

See authority table
ATL (authority-table length) 3-20

use in ART 5-49
ATMID (addressing-and-translation-mode

identification) 4-26
ATO (authority-table origin) 3-20

use in ART 5-48
attached ART-table entry 5-55
attached region-table, segment-table, or page-table

entry 3-43
attachment of I/O devices 13-2
AU (ADD UNNORMALIZED) HFP instruction 18-10

example A-39
AUR (ADD UNNORMALIZED) HFP instruction 18-10
authority table (AT) 5-26

designation 3-20, 5-48
length 3-20, 5-49
origin 3-20, 5-48

authorization
ASN 3-23
index (AX) 3-23, 5-26
key mask (AKM) 5-32
mechanisms 5-24

summary of 5-28
testing of 5-64

authorization check 16-36

automatic reconfiguration 1-13
auxiliary storage 3-1, 3-26
availability (characteristic of a system) 1-17
AW (ADD UNNORMALIZED) HFP instruction 18-10
AWR (ADD UNNORMALIZED) HFP instruction 18-10
AX (authorization index) 3-23, 5-26
AXBR (ADD) BFP instruction 19-18
AXR (ADD NORMALIZED) HFP instruction 18-8
AY (ADD) binary instruction 7-18

B
B field of instruction 5-8
backed-up bit (machine-check condition) 11-18
backup

processing (synchronous machine-check
condition) 11-18

backward stack-entry address 5-70
backward stack-entry validity bit 5-70
BAKR (BRANCH AND STACK) instruction 10-10

examples A-10
BAL (BRANCH AND LINK) instruction 7-22

examples A-8
BALR (BRANCH AND LINK) instruction 7-22

examples A-8
BAS (BRANCH AND SAVE) instruction 7-23

example A-8
base address 5-8

register for 2-3
base-AST-entry origin (BASTEO) 5-57
base space 5-15
base-space bit 5-59
base-authority state 10-7
basic addressing mode

bit in entry-table entry 5-31
basic I/O functions 15-1
basic operator facilities 12-1
basic PROGRAM CALL 5-62, 10-64
BASR (BRANCH AND SAVE) instruction 7-23

example A-8
BASSM (BRANCH AND SAVE AND SET MODE)

instruction 7-23
example A-8

BASTEO (base-AST-entry origin) 5-57
BC (BRANCH ON CONDITION) instruction 7-25

example A-11
BCR (BRANCH ON CONDITION) instruction 7-25
BCT (BRANCH ON COUNT) instruction 7-26

example A-12
BCTG (BRANCH ON COUNT) instruction 7-26
BCTGR (BRANCH ON COUNT) instruction 7-26
BCTR (BRANCH ON COUNT) instruction 7-26

example A-12
BFP

data class
testing of 19-45

X-4 z/Architecture Principles of Operation

BFP (binary floating point) 9-1
BFP data 19-4

conversion of 9-8
BFP facility 19-1
BFP-instruction data exception 6-21
bias for exponent 19-4
big endian 7-120
bimodal addressing

See addressing mode
binary

See also fixed point
arithmetic 7-4

examples A-2
negative zero 7-3
number representation 7-3

examples A-2
overflow 7-4

example A-2
sign bit 7-3

binary floating point (BFP) 9-1
binary integer

conversion from floating point 18-11, 19-26
conversion to floating point 18-11, 19-26

binary-to-decimal conversion 7-98
example A-18

bit 3-2
numbering of within a group of bytes 3-2

bits to left of compressed data 7-76
bits to right of compressed data 7-76
block-concurrent storage references 5-89
block number

expanded storage 2-2
block of I/O data 15-22
block of storage 3-3

See also page
testing for usability of 10-118

borrow 7-176
boundary alignment 3-3

for instructions 5-3
branch address 5-9

control bit 4-24
in linkage-stack state entry 5-72
in trace entry 4-20

BRANCH AND LINK instructions 7-22
examples A-8

BRANCH AND SAVE AND SET MODE
instruction 7-23

examples A-8
BRANCH AND SAVE instructions 7-23

examples A-8
BRANCH AND SET AUTHORITY instruction 10-6
BRANCH AND SET MODE instruction 7-24

examples A-8
BRANCH AND STACK instruction 10-10

examples A-10

BRANCH IN SUBSPACE GROUP instruction 10-13
BRANCH ON CONDITION instructions 7-25

example A-11
BRANCH ON COUNT instructions 7-26

example A-12
BRANCH ON INDEX HIGH instruction 7-27

examples A-12
BRANCH ON INDEX LOW OR EQUAL

instruction 7-27
examples A-13

BRANCH RELATIVE AND SAVE instruction 7-28
BRANCH RELATIVE AND SAVE LONG

instruction 7-28
BRANCH RELATIVE ON CONDITION instruction 7-29
BRANCH RELATIVE ON CONDITION LONG

instruction 7-29
BRANCH RELATIVE ON COUNT instruction 7-29
BRANCH RELATIVE ON INDEX HIGH

instruction 7-30
BRANCH RELATIVE ON INDEX LOW OR EQUAL

instruction 7-30
branch state entry 5-71, 10-10
branch-trace-control bit 4-13
branching

branch-address generation 5-9
in a channel program 15-41
relative 5-9
to perform decision making, loop control, and sub-

routine linkage 5-10
using the linkage stack 5-63

BRAS (BRANCH RELATIVE AND SAVE)
instruction 7-28

BRASL (BRANCH RELATIVE AND SAVE LONG)
instruction 7-28

BRC (BRANCH RELATIVE ON CONDITION)
instruction 7-29

BRCL (BRANCH RELATIVE ON CONDITION LONG)
instruction 7-29

BRCT (BRANCH RELATIVE ON COUNT)
instruction 7-29

BRCTG (BRANCH RELATIVE ON COUNT)
instruction 7-30

broadcasted-purging facility 1-9
BRXH (BRANCH RELATIVE ON INDEX HIGH) instruc-

tion 7-30
BRXHG (BRANCH RELATIVE ON INDEX HIGH)

instruction 7-30
BRXLE (BRANCH RELATIVE ON INDEX LOW OR

EQUAL) instruction 7-30
BRXLG (BRANCH RELATIVE ON INDEX LOW OR

EQUAL) instruction 7-30
BSA (BRANCH AND SET AUTHORITY)

instruction 10-6
BSG (BRANCH IN SUBSPACE GROUP)

instruction 10-13

 Index X-5

BSM (BRANCH AND SET MODE) instruction 7-24
example A-8

buffer storage (cache) 3-2
burst mode (channel-path operation) 13-3
busy

in I/O operations 13-7
in SIGNAL PROCESSOR 4-56

BXH (BRANCH ON INDEX HIGH) instruction 7-27
examples A-12

BXHG (BRANCH ON INDEX HIGH) instruction 7-27
BXLE (BRANCH ON INDEX LOW OR EQUAL) instruc-

tion 7-27
examples A-13

BXLEG (BRANCH ON INDEX LOW OR EQUAL)
instruction 7-27

bypassing POST and WAIT A-45
byte 3-2

numbering of in storage 3-2
byte index (BX) 3-27
byte-multiplex mode (channel-path operation) 13-3

C
C (COMPARE) binary instruction 7-46
cache 3-2
called-space identification 5-73
cancel-I/O facility 1-9
CANCEL SUBCHANNEL instruction 14-4
capability list 5-41
carry 7-3
CBC (checking-block code) 11-2

invalid 11-2
in registers 11-10
in storage 11-6
in storage keys 11-7

near-valid 11-2
valid 11-2

CBN (compressed-data bit number) 7-73
example of 7-79

CCC (channel-control check) 16-27
CCW (channel-command word) 15-27

address of 16-18
byte count in 15-28
chaining 15-31
check (in subchannel logout) 16-33
command codes

See commands
contents of 15-27
current 15-27
designation of storage area in 15-28, 15-29
format-0 and format-1 15-27
format control 16-10

used for IPL 17-18
IDA flag in 15-28
indirect data addressing used in 13-7, 15-36
invalid format of 16-25

CCW (channel-command word) (continued)
invalid specification of 16-24
PCI flag in 15-28
prefetch control in 16-10

used for IPL 17-18
prefetching 15-33
retry of

See command retry
role in I/O operations of 13-6
skip flag in 15-28
suspend flag in 15-28

CD (COMPARE) HFP instruction 18-10
CDB (COMPARE) BFP instruction 19-23
CDBR (COMPARE) BFP instruction 19-23
CDFBR (CONVERT FROM FIXED) BFP

instruction 19-26
CDFR (CONVERT FROM FIXED) HFP

instruction 18-11
CDGBR (CONVERT FROM FIXED) BFP

instruction 19-26
CDGR (CONVERT FROM FIXED) HFP

instruction 18-11
CDR (COMPARE) HFP instruction 18-10

examples A-40
CDS (COMPARE DOUBLE AND SWAP)

instruction 7-53
examples A-44

CDSG (COMPARE DOUBLE AND SWAP)
instruction 7-53

CDSS (compressed-data symbol size) 7-74
CDSY (COMPARE DOUBLE AND SWAP)

instruction 7-53
CE (COMPARE) HFP instruction 18-10
CEB (COMPARE) BFP instruction 19-23
CEBR (COMPARE) BFP instruction 19-23
CEFBR (CONVERT FROM FIXED) BFP

instruction 19-26
CEFR (CONVERT FROM FIXED) HFP

instruction 18-11
CEGBR (CONVERT FROM FIXED) BFP

instruction 19-26
CEGR (CONVERT FROM FIXED) HFP

instruction 18-11
central processing unit

See CPU
CER (COMPARE) HFP instruction 18-10
CFC (COMPARE AND FORM CODEWORD)

instruction 7-46
example A-51

CFDBR (CONVERT TO FIXED) BFP instruction 19-26
CFDR (CONVERT TO FIXED) HFP instruction 18-11
CFEBR (CONVERT TO FIXED) BFP instruction 19-26
CFER (CONVERT TO FIXED) HFP instruction 18-11
CFXBR (CONVERT TO FIXED) BFP instruction 19-26
CFXR (CONVERT TO FIXED) HFP instruction 18-11

X-6 z/Architecture Principles of Operation

CG (COMPARE) binary instruction 7-46
CGDBR (CONVERT TO FIXED) BFP instruction 19-26
CGDR (CONVERT TO FIXED) HFP instruction 18-11
CGEBR (CONVERT TO FIXED) BFP instruction 19-26
CGER (CONVERT TO FIXED) HFP instruction 18-11
CGF (COMPARE) binary instruction 7-46
CGFR (COMPARE) binary instruction 7-45
CGHI (COMPARE HALFWORD IMMEDIATE) instruc-

tion 7-55
CGR (COMPARE) binary instruction 7-45
CGXBR (CONVERT TO FIXED) BFP instruction 19-26
CGXR (CONVERT TO FIXED) HFP instruction 18-11
CH (COMPARE HALFWORD) instruction 7-55

example A-14
chaining check (subchannel status) 16-29
chaining of CCWs 15-31

command
See command chaining of CCWs

data
See data chaining of CCWs

chaining of CRWs 17-23, 17-24
change bit in storage key 3-8
change recording 3-14
channel-command word

See CCW
channel commands

See commands (I/O)
channel-control check (subchannel status) 16-27
channel-data check (subchannel status) 16-26
channel path 13-2

active allegiance for 15-12
available for selection 15-13
dedicated allegiance for 15-12
effect of I/O-system reset on 17-15
masks in SCHIB

See LPM, LPUM, PAM, PIM, PNOM, POM
multipath mode of 15-3, 15-21
not operational 16-12
parallel-I/O-interface type 13-3
serial-I/O-interface type 13-2
storing of status for 14-16
type of 13-2, 13-5
working allegiance for 15-12

channel-path identifier
See CHPID

channel-path reset 17-13
effect of I/O-system reset on 17-15

channel-path-reset function 15-45
completion of 15-45
initiation by RESET CHANNEL PATH 14-8
reset signal issued as part of 17-13
signaling for 15-45

channel-path-status word 14-16
channel-path timeout

indicator for (in ERW) 16-37

channel program 15-27
2K-IDAW control for 15-25
branching in

See TIC
execution of 13-6, 15-21

resumption of 14-11
suspension of 13-8, 15-38

format-2-IDAW control for 15-25
modification control for 15-23
serialization 5-93
streaming-mode control for 15-23
suspend control for 15-22
synchronization control for 15-24

channel-program address 16-18
field-validity flag for in IRB 16-34
used for IPL 17-18

channel report 17-22
generated as a result of RCHP 14-9

channel report pending 11-17, 17-22
effect of I/O-system reset on 17-16
subclass-mask bit for 11-24

channel-report word
See CRW

channel subsystem 2-6, 13-1
addressing used in 13-5
damage 11-18
effect of I/O-system reset on 17-14
effect of power-on reset on 4-49
isolated state of 16-36

channel-subsystem-call facility 1-13
channel-subsystem monitoring 17-1

effect of I/O-system reset on 17-16
channel-subsystem recovery 11-4, 17-21
channel-subsystem timer 17-2

effect of I/O-system reset on 17-16
channel-subsystem timing 17-2
channel-subsystem timing-facility bit (in PMCW) 15-4
characteristic (of HFP number) 18-1

See also exponent
characters

represented by eight-bit code xxi
check bits 3-2, 11-2
check stop 4-3, 11-11

as signal-processor status 4-58
during manual operation 12-1
effect on CPU timer 4-42
entering of 11-13
indicator 12-3
malfunction alert for 6-13
system 11-11

checking block 11-2
checking-block code

See CBC
checkpoint 11-2
checkpoint synchronization 11-3

action 11-4

 Index X-7

checkpoint synchronization (continued)
operations 11-3

CHECKSUM instruction 7-31
CHI (COMPARE HALFWORD IMMEDIATE)

instruction 7-55
CHPID (channel-path identifier) 13-5

in PMCW 15-7
used in RESET CHANNEL PATH 14-8

CHY (COMPARE HALFWORD) instruction 7-55
CIPHER MESSAGE instruction 7-35
CIPHER MESSAGE WITH CHAINING instruction 7-35
CKSM (CHECKSUM) instruction 7-31
CL (COMPARE LOGICAL) instruction 7-56
class

of BFP data 19-5
testing of 19-45

CLC (COMPARE LOGICAL) instruction 7-56
example A-14

CLCL (COMPARE LOGICAL LONG) instruction 7-58
example A-16

CLCLE (COMPARE LOGICAL LONG EXTENDED)
instruction 7-60

CLCLU (COMPARE LOGICAL LONG UNICODE)
instruction 7-64

clear function 15-14
bit in SCSW for 16-13
completion of 15-15
initiated by CLEAR SUBCHANNEL 14-4
path management for 15-14
pending 16-15
signaling for 15-15
subchannel modification by 15-14

clear reset 4-48
clear signal 17-12

issued as part of clear function 15-15
CLEAR SUBCHANNEL instruction 14-4

See also clear function
effect on device status of 15-15
function initiated by 15-14
use of after RESET CHANNEL PATH 14-9

clearing operation
by clear-reset function 4-48
by load-clear key 12-3
by system-reset-clear key 12-5
by TEST BLOCK instruction 10-118

CLG (COMPARE LOGICAL) binary instruction 7-56
CLGF (COMPARE LOGICAL) binary instruction 7-56
CLGFR (COMPARE LOGICAL) binary instruction 7-56
CLGR (COMPARE LOGICAL) binary instruction 7-56
CLI (COMPARE LOGICAL) instruction 7-56

example A-15
CLIY (COMPARE LOGICAL) instruction 7-56
CLM (COMPARE LOGICAL CHARACTERS UNDER

MASK) instruction 7-57
example A-15

CLMH (COMPARE LOGICAL CHARACTERS UNDER
MASK) instruction 7-57

CLMY (COMPARE LOGICAL CHARACTERS UNDER
MASK) instruction 7-57

clock
See TOD clock

clock comparator 4-41
external interruption 6-11
save areas for 3-56
validity bit for 11-22

clock unit 4-40, 7-171
CLR (COMPARE LOGICAL) instruction 7-56

example A-15
CLST (COMPARE LOGICAL STRING) instruction 7-67

examples A-17
CLY (COMPARE LOGICAL) instruction 7-56
CMPSC (COMPRESSION CALL) instruction 7-72
code

ASCII
handled by architecture xxi

checking-block
See CBC

command (in CCW)
See command code in CCW

condition
See condition code

data-exception (DXC) 6-15
decimal digit and sign 8-2
deferred condition (I/O) 16-8
EBCDIC

handled by architecture xxi
table for I-1

eight-bit
handled by architecture xxi

error-recovery (I/O) 17-24
external-damage 11-23

validity bit for 11-21
I/O-interruption subclass 15-2
instruction-length

See ILC
interruption

See interruption code
linkage-stack-entry type 5-69
monitor

See monitor code
operation 5-2
PER

See PER code
reporting-source (I/O) 17-24
storage-access (in subchannel logout) 16-34
version 10-100

codeword (for sorting operations) 7-46
example A-52

command chaining of CCWs 15-34
effect of status modifier on 15-35
flag in CCW for 15-28

X-8 z/Architecture Principles of Operation

command chaining of CCWs (continued)
overview of 13-8

command code in CCW 15-29
See also commands
See also common I/O-device commands
applicable flags 15-40
invalid 16-24

command codes
See command code in CCW

command retry 15-42
effect on PCI of 15-36

commands (I/O) 15-29
See also common I/O-device commands
transfer in channel 15-41

common I/O-device commands
publication referenced xxi

common-segment bit 3-33
COMPARE AND FORM CODEWORD instruction 7-46

example A-51
COMPARE AND SIGNAL BFP instructions 19-24
COMPARE AND SWAP instructions 7-53
COMPARE AND SWAP AND PURGE

instruction 10-18
COMPARE AND SWAP instruction

examples A-44
COMPARE BFP instructions 19-23
COMPARE binary instructions 7-45
COMPARE DECIMAL instruction 8-6

example A-34
COMPARE DOUBLE AND SWAP instruction

examples A-44
COMPARE DOUBLE AND SWAP instructions 7-53
COMPARE HALFWORD IMMEDIATE

instructions 7-55
COMPARE HALFWORD instruction

example A-14
COMPARE HALFWORD instructions 7-55
COMPARE HFP instructions 18-10

examples A-40
COMPARE LOGICAL instructions 7-56
COMPARE LOGICAL CHARACTERS UNDER MASK

instruction
example A-15

COMPARE LOGICAL CHARACTERS UNDER MASK
instructions 7-57

COMPARE LOGICAL instructions
examples A-14

COMPARE LOGICAL LONG EXTENDED
instruction 7-60

COMPARE LOGICAL LONG instruction 7-58
example A-16

COMPARE LOGICAL LONG UNICODE
instruction 7-64

COMPARE LOGICAL STRING instruction 7-67
examples A-17

COMPARE UNTIL SUBSTRING EQUAL
instruction 7-68

comparison
address

See address comparison
decimal 8-6

example A-34
hexadecimal-floating-point

examples A-40
logical 7-5

examples A-14
of BFP data 19-8
signed-binary 7-5
TOD-clock 4-41

compatibility 1-16
among systems implementing different

architectures 1-16
among systems implementing same

architecture 1-16
control-program 1-16
problem-state 1-16

completion of I/O functions
by channel-path-reset function 15-45
by clear function 15-15
by halt function 15-16
during data transfer 15-43
during initiation 15-42
for immediate commands 15-43
start and resume 15-42

completion of instruction execution 5-20
completion of unit of operation 5-22
compressed-data bit number (CBN) 7-73

example of 7-79
compressed-data symbol size (CDSS) 7-74
COMPRESSION CALL instruction 7-72

restriction related to
on leftmost bits in symbol-translation-table

entry 7-77
on length of chain of compression-dictionary

entries 7-78
on length of chain of expansion-dictionary

entries 7-78
on length of character symbol during

compression 7-78
on length of character symbol during

expansion 7-78
on number of children 7-78, 7-80
on offset to symbol-translation table 7-75
on symbol translation with format-1 sibling

descriptors 7-76
compression dictionary

size of with symbol translation 7-75
compression facility

publication referenced xxi
compression process

flowchart of 7-81

 Index X-9

COMPUTE INTERMEDIATE MESSAGE DIGEST
instruction 7-84

COMPUTE LAST MESSAGE DIGEST instruction 7-84
COMPUTE MESSAGE AUTHENTICATION CODE

instruction 7-91
conceptual sequence 5-78

as related to storage-operand accesses 5-90
conclusion of I/O operations 13-8, 16-1

during data transfer 15-43
during initiation 15-42
for immediate commands 15-43
prior to initiation 15-42

conclusion of instruction execution 5-20
concurrency of access for storage references 5-89
concurrent sense

in ECW 16-40
indicator for (in ERW) 16-37

concurrent-sense count (in ERW) 16-37
concurrent-sense facility 17-21
condition code 4-6

deferred 16-8
for BFP instructions 19-9
in PSW 4-6
summary C-1
tested by BRANCH ON CONDITION

instruction 7-25
used for decision making 5-10
validity bit for 11-21

conditional-swapping instructions
See COMPARE AND SWAP instruction, COMPARE

DOUBLE AND SWAP instruction
conditions for interruption

See interruption conditions
configuration 2-1

of storage 3-3
configuration-alert facility (I/O) 17-21
connective

See logical connective
consistency (storage operand) 5-88

examples A-47, A-49
console device 12-1
console integration 1-13
control 4-1

instructions 10-1
manual

See manual operation
control-program compatibility 1-16
control register 2-4, 4-7

save areas for 3-56
validity bit 11-21

control-register assignment 4-8
(CRx.y indicates control register x, bit position y)
CR0.33:

SSM-suppression-control bit 6-31, 10-97
CR0.34:

TOD-clock-sync-control bit 4-36, 4-40

control-register assignment (continued)
CR0.35:

low-address-protection-control bit 3-12
CR0.36:

extraction-authority-control bit 5-25
CR0.37:

secondary-space-control bit 3-29, 5-26
CR0.38:

fetch-protection-override-control bit 3-11
CR0.39:

storage-protection-override-control bit 3-10
CR0.45:

AFP-register-control bit 9-2
CR0.48:

malfunction-alert subclass-mask bit 6-13
CR0.49:

emergency-signal subclass-mask bit 6-12
CR0.50:

external-call subclass-mask bit 6-12
CR0.52:

clock-comparator subclass-mask bit 6-11
CR0.53:

CPU-timer subclass-mask bit 6-11
CR0.54:

service-signal subclass-mask bit 6-13
CR0.57:

interrupt-key subclass-mask bit 6-12
CR0.59:

ETR subclass-mask bit 6-12
CR0.61:

crypto-control bit 6-21
CR1:

primary address-space-control element
(PASCE) 3-29

CR1.0-51:
primary real-space token origin (PRSKTO) 3-30

CR1.0-51:
primary region-table origin (PRTO) 3-29
primary segment-table origin (PSTO) 3-29

CR1.54:
primary subspace-group-control bit 3-29

CR1.55:
primary private-space-control bit 3-29

CR1.56:
primary storage-alteration-event-control bit 3-29

CR1.57:
primary space-switch-event-control bit 3-29, 6-30

CR1.58:
primary real-space-control bit 3-30

CR1.60-61:
primary designation-type-control bits 3-30

CR1.62-63:
primary region-table length (PRTL) 3-30
primary segment-table length (PSTL) 3-30

CR2.33-57:
dispatchable-unit-control-table origin

(DUCTO) 5-44

X-10 z/Architecture Principles of Operation

control-register assignment (continued)
CR3.32-47:

PSW-key mask (PKM) 5-25
CR3.48-63:

secondary ASN (SASN) 3-17
CR4.32-47:

authorization index (AX) 3-23, 5-26
CR4.48-63:

primary ASN (PASN) 3-17
CR5.33-57:

primary-AST-entry origin (PASTEO) 5-30, 5-44
CR6.32-39:

I/O-interruption subclass mask 6-13
CR7:

secondary address-space-control element
(SASCE) 3-30

CR7.0-51:
secondary real-space token origin

(SRSTKO) 3-30
secondary region-table origin (SRTO) 3-30
secondary segment-table origin (SSTO) 3-30

CR7.54:
secondary subspace-group-control bit 3-30

CR7.55:
secondary private-space-control bit 3-30

CR7.56:
secondary storage-alteration-event-control

bit 3-30
CR7.58:

secondary real-space-control bit 3-30
CR7.60-61:

secondary designation-type-control bits 3-30
CR7.62-63:

secondary region-table length (SRTL) 3-30
secondary segment-table length (SSTL) 3-30

CR8.32-47:
extended authorization index (EAX) 5-44

CR8.48-63:
monitor-mask bits 6-24

CR9.36:
PER store-using-real-address-event-mask

bit 4-24
CR9.40:

PER branch-address-control bit 4-24
CR9.32:

PER successful-branching-event-mask bit 4-24
CR9.33:

PER instruction-fetching-event-mask bit 4-24
CR9.34:

PER storage-alteration-event-mask bit 4-24
CR9.42:

PER storage-alteration-space-control bit 4-24
CR10.0-63:

PER starting address 4-24
CR11.0-63:

PER ending address 4-24

control-register assignment (continued)
CR12.0:

branch-trace-control bit 4-13
CR12.1-61:

trace-entry address 4-13
CR12.1:

mode-trace-control bit 4-13
CR12.62:

ASN-trace-control bit 4-13
CR12.63:

explicit-trace-control bit 4-13
CR13:

home address-space-control element
(HASCE) 3-31

CR13.0-51:
home real-space token origin (HRSTKO) 3-31
home region-table origin (HRTO) 3-31
home segment-table origin (HSTO) 3-31

CR13.55:
home private-space-control bit 3-31

CR13.56:
home storage-alteration-event-control bit 3-31

CR13.57:
home space-switch-event-control bit 3-31, 6-30

CR13.58:
home real-space-control bit 3-31

CR13.60-61:
home designation-type-control bits 3-31

CR13.62-63:
home region-table length (HRTL) 3-31
home segment-table length (HSTL) 3-31

CR14.35:
channel-report-pending subclass-mask bit 11-24

CR14.36:
degradation subclass-mask bit 11-25
recovery subclass-mask bit 11-25

CR14.38:
external-damage subclass-mask bit 11-25

CR14.39:
warning subclass-mask bit 11-25

CR14.42:
TOD-clock-control-override control 4-36

CR14.44:
ASN-translation-control bit 3-18, 5-26

CR14.45-63:
ASN-first-table origin (AFTO) 3-19

CR15.0-60:
linkage-stack-entry address 5-68

control unit 2-7, 13-4
effect of I/O-system reset on 17-14
sharing of 13-4
type of 15-13

control unit defer time (I/O) 17-9
control unit defer time interval (in measurement

block) 17-7

 Index X-11

control-unit-defer time(I/O)
control-unit-queuing measurement (I/O) 17-9
control-unit-queuing-time interval (in measurement

block) 17-6
conversion

between HFP and BFP data 9-8
binary-to-decimal 7-98

example A-18
decimal-to-binary 7-97

example A-18
hexadecimal-floating-point-number

basic example A-6
examples with instructions A-42

of floating-point format 19-7
CONVERT BFP TO HFP floating-point instructions 9-8
CONVERT FROM FIXED BFP instructions 19-26
CONVERT FROM FIXED HFP instructions 18-11
CONVERT HFP TO BFP floating-point instructions 9-9
CONVERT TO BINARY instruction

example A-18
CONVERT TO BINARY instructions 7-97
CONVERT TO DECIMAL instruction

example A-18
CONVERT TO DECIMAL instructions 7-98
CONVERT TO FIXED BFP instructions 19-26
CONVERT TO FIXED HFP instructions 18-11
CONVERT UNICODE TO UTF-8 instruction 7-98
CONVERT UTF-8 TO UNICODE instruction 7-101
Coordinated Universal Time (UTC) used in TOD

epoch 4-38
COPY ACCESS instruction 7-104
count field

in CCW 15-28
invalid 16-24

in SCSW 16-29
counter updating (example) A-45
counting operations 7-26
coupling facility 1-14
CP (COMPARE DECIMAL) instruction 8-6

example A-34
CPA

See channel-program address
CPU (central processing unit) 2-2

address 4-51
assigned storage locations for 3-51
when stored during external interruptions 6-10

checkpoint 11-2
effect of power-on reset on 4-49
hangup due to string of interruptions 4-3
identification (ID) 10-100
machine-type number 10-100
model number 10-100
registers 2-3

save areas for 3-56
reset 4-47

signal-processor order 4-53

CPU (central processing unit) (continued)
retry 11-2
serialization 5-91
signaling 4-52
state 4-1

check-stop 4-3
load 4-2
no effect on TOD clock 4-36
operating 4-2
stopped 4-2

version code 10-100
CPU timer 4-42

external interruption 6-11
save areas for 3-56
validity bit for 11-22

CPYA (COPY ACCESS) instruction 7-104
CR

See control register
CR (COMPARE) binary instruction 7-45
CRW (channel-report word) 17-23

chaining of 17-23, 17-24
error-recovery code (ERC) in 17-24
overflow in 17-24
reporting-source code (RSC) in 17-24
reporting-source ID (RSID) in 17-25
solicited 17-23
storing of 14-16

crypto-operation exception 6-21
cryptographic facility 1-12, 2-6
CS (COMPARE AND SWAP) instruction 7-53

examples A-44
CSCH (CLEAR SUBCHANNEL) instruction 14-4
CSG (COMPARE AND SWAP) instruction 7-53
CSP (COMPARE AND SWAP AND PURGE)

instruction 10-18
CSPG (COMPARE AND SWAP AND PURGE) instruc-

tion 10-18
CSY (COMPARE AND SWAP) instruction 7-53
current CCW 15-27

See also CCW
current PSW 4-3, 5-10

See also PSW
stored during interruption 6-2

CUSE (COMPARE UNTIL SUBSTRING EQUAL)
instruction 7-68

CUTFU (CONVERT UTF-8 TO UNICODE)
instruction 7-101

CUUTF (CONVERT UNICODE TO UTF-8)
instruction 7-98

CVB (CONVERT TO BINARY) instruction 7-97
example A-18

CVBG (CONVERT TO BINARY) instruction 7-97
CVBY (CONVERT TO BINARY) instruction 7-97
CVD (CONVERT TO DECIMAL) instruction 7-98

example A-18

X-12 z/Architecture Principles of Operation

CVDG (CONVERT TO DECIMAL) instruction 7-98
CVDY (CONVERT TO DECIMAL) instruction 7-98
CXBR (COMPARE) BFP instruction 19-23
CXFBR (CONVERT FROM FIXED) BFP

instruction 19-26
CXFR (CONVERT FROM FIXED) HFP

instruction 18-11
CXGBR (CONVERT FROM FIXED) BFP

instruction 19-26
CXGR (CONVERT FROM FIXED) HFP

instruction 18-11
CXR (COMPARE) HFP instruction 18-10
CY (COMPARE) binary instruction 7-46

D
D (DIVIDE) binary instruction 7-104

example A-19
D field of instruction 5-8
damage

channel-subsystem 11-18
code (external) 11-23

validity bit for 11-21
external 11-17

subclass-mask bit for 11-25
instruction-processing 11-16
processing 11-19
service-processor 11-18
system 11-16
timing-facility 11-16

DAT
See dynamic address translation

DAT mode (bit in PSW) 4-5
use in address translation 3-28

DAT-table format error 6-35
data

blocking of (I/O) 15-22
format for

binary-floating-point instructions 19-4
decimal instructions 8-1
general instructions 7-2
hexadecimal-floating-point instructions 18-3

indirect addressing of (I/O) 13-7, 15-36
measurement (I/O)

See measurement data
prefetching of for I/O operation 15-30

data address (I/O) 15-29
invalid 16-25
invalid specification of 16-25

data chaining of CCWs 15-33
flag in CCW for 15-28
overview of 13-8

data check
measurement-block 16-33

data exception 6-21
AFP-register 6-21

data exception (continued)
BFP-instruction 6-21
decimal-operand 6-21, 8-4
IEEE-exception-condition 6-21, 19-10
priority of program interruptions for 6-15

data-exception code
See DXC

data-exception code (DXC) 6-15
data streaming (I/O) 13-3

effect of CCW count on 15-34
DCTI (device-connect-time interval)

in ESW 16-39
in extended-measurement word 16-41
in measurement block 17-5

DD (DIVIDE) HFP instruction 18-12
DDB (DIVIDE) BFP instruction 19-29
DDBR (DIVIDE) BFP instruction 19-29
DDR (DIVIDE) HFP instruction 18-12
DE (DIVIDE) HFP instruction 18-12
DEB (DIVIDE) BFP instruction 19-29
DEBR (DIVIDE) BFP instruction 19-29
decimal

arithmetic 8-2
comparison 8-6
digit codes 8-2
divide exception 6-22
instructions 8-1

examples A-34
number representation 8-1

examples A-4
operand overlap 8-3
overflow

exception 6-22
mask in PSW 4-6

sign codes 8-2
decimal-operand data exception 6-21, 8-4
decimal-to-binary conversion 7-97

example A-18
dedicated allegiance 15-12
default QNaN 19-6
deferred condition code 16-8
degradation (machine-check condition) 11-17

subclass-mask bit for 11-25
degradation, storage (machine-check condition) 11-20
delay in storing 5-86
delayed access exception (machine-check

condition) 11-18
deletion of malfunctioning unit 11-4
denormalized numbers 19-8
DER (DIVIDE) HFP instruction 18-12

examples A-40
designation

authority-table 3-20
entry-table 5-30
home real-space 3-31
home region-table 3-31

 Index X-13

designation (continued)
home segment-table 3-31
linkage-table 5-30
of storage area for data (I/O) 15-29
page-table 3-33
primary real-space 3-29
primary region-table 3-29
primary segment-table 3-29
real-space 3-29

in AST entry 3-20
used for access-register translation 5-49
used for subspace groups 5-59

region-table 3-29
in AST entry 3-20
used for access-register translation 5-49
used for subspace groups 5-59

secondary real-space 3-30
secondary region-table 3-30
secondary segment-table 3-30
segment-table 3-29

in AST entry 3-20
used for access-register translation 5-49
used for subspace groups 5-59

designation (origin and length)
access-list 5-46

designation-type-control bits
home 3-31
primary 3-30
secondary 3-30

destructive overlap 5-90, 7-123, 7-127, 7-132
in the access-register mode 5-81

device 2-7, 13-4
console 12-1
effect of I/O-system reset on 17-14

device-active bit 16-15
device-active-only measurement (I/O) 17-9
device-active-only-time interval (in measurement

block) 17-6
device address 13-5
device-busy time (in extended measurement

word) 16-42
device-busy time (in measurement block) 17-6
device-connect-time interval

See DCTI
device-connect-time measurement 17-10

effect of suspension on 15-40
enable 15-3

device-disconnect-time interval (in measurement
block) 17-5

device identifier 13-5
device number 13-5

assignment of 13-5
in PMCW 15-4

device-number valid (bit in PMCW) 15-4
device status 16-23

field-validity flag for (in subchannel logout) 16-28,
16-34

device status (continued)
with inappropriate bit combination 16-35

device status check 16-35
DIAGNOSE instruction 10-19
dictionary

adaptive 7-80
DIDBR (DIVIDE TO INTEGER) BFP instruction 19-29
DIEBR (DIVIDE TO INTEGER) BFP instruction 19-29
digit codes (decimal) 8-2
digit selector (in EDIT) 8-7
direct-access storage 3-1
disabling for interruptions 6-6
disallowed interruptions 6-6
dispatchable unit (DU) 5-38

access-list designation (DUALD) 5-46
control table (DUCT) 5-46

origin (DUCTO) 5-44
when subspace-group facility installed 5-56
when trap facility installed 10-124

displacement (in relative addressing) 5-8
display (manual controls) 12-2
DIVIDE BFP instructions 19-29
DIVIDE binary instructions 7-104

example A-19
DIVIDE DECIMAL instruction 8-6

example A-34
divide exception

decimal 6-22
fixed-point 6-23
HFP 6-23

DIVIDE HFP instructions 18-12
examples A-40

DIVIDE LOGICAL instructions 7-105
DIVIDE SINGLE binary instructions 7-106
DIVIDE TO INTEGER BFP instructions 19-29

remainder result of 19-9
divisible instruction execution 5-79
DL (DIVIDE LOGICAL) instruction 7-105
DLG (DIVIDE LOGICAL) binary instruction 7-105
DLGR (DIVIDE LOGICAL) binary instruction 7-105
DLR (DIVIDE LOGICAL) instruction 7-105
doubleword 3-3
doubleword-concurrent storage references 5-89
DP (DIVIDE DECIMAL) instruction 8-6

example A-34
DR (DIVIDE) binary instruction 7-104
DSG (DIVIDE SINGLE) binary instruction 7-106
DSGF (DIVIDE SINGLE) binary instruction 7-106
DSGFR (DIVIDE SINGLE) binary instruction 7-106
DSGR (DIVIDE SINGLE) binary instruction 7-106
DU (dispatchable unit) 5-38
DUALD (dispatchable-unit access-list

designation) 5-46
DUCT (dispatchable-unit control table) 5-46, 5-56
DUCTO (dispatchable-unit-control-table origin) 5-44

X-14 z/Architecture Principles of Operation

dump (standalone) 12-5
DXBR (DIVIDE) BFP instruction 19-29
DXC (data-exception code) 6-15, 19-14

summary figure 19-14
summary figure for IEEE 19-14

DXR (DIVIDE) HFP instruction 18-12
dynamic address translation (DAT) 3-26

by LOAD REAL ADDRESS instruction 10-46
by STORE REAL ADDRESS instruction 10-103
control of 3-28
explicit and implicit 3-34
mode bit in PSW 4-5

use in address translation 3-28
sequence of table fetches 5-84

dynamic-reconnection feature 13-2

E
E (exa) xx
E instruction format 5-5
EAR (EXTRACT ACCESS) instruction 7-108
early exception recognition 6-9
EAX

See extended authorization index
EBCDIC (Extended Binary-Coded-Decimal Interchange

Code)
architecture designed for xxi
character code

table for I-1
ECC (error checking and correction) 11-2
ECW (extended-control word) 16-40

indication in SCSW 16-11
ED (EDIT) instruction 8-7

examples A-35
EDIT AND MARK instruction 8-9

example A-36
EDIT instruction 8-7

examples A-35
editing instructions 8-3

See also ED instruction, EDMK instruction
EDMK (EDIT AND MARK) instruction 8-9

example A-36
effective access-list designation 5-46
effective address 3-5

controlled by addressing mode 5-7
generation 5-7
used for storage interlocks 5-80

effective address-space-control element 3-34
EFPC (EXTRACT FPC) instruction 19-33
EKM (entry key mask) 5-32
emergency signal (external interruption) 6-12

signal-processor order 4-52
EMIF (ESCON-multiple-image facility) 1-14
EMW (extended-measurement word) 16-40

in IRB 16-40

enabled (bit for TRAP) 10-125
enabled (bit in PMCW) 15-2
enabling for interruptions 6-6

subchannel 16-5
enabling of subchannel 15-2, 16-5
endian 7-120
ending of instruction execution 5-20
Enterprise Systems Connection Architecture (ESCON)

I/O interface
publication referenced xxi

entry
extended authorization index 5-66
key 5-66

entry (for tracing) 4-13
entry descriptor 5-68
entry index (EX) 5-30
entry key mask (EKM) 5-32
entry table (ET)

designation 5-30
length (ETL) 5-31
origin (ETO) 5-31

entry table entry 5-31
entry-table entry (ETE) 5-65
entry-type code 5-69
EPAR (EXTRACT PRIMARY ASN) instruction 10-21
epoch (for TOD clock) 4-38
EPSW (EXTRACT PSW) instruction 7-109
equipment check

in signal-processor status 4-57
ERC (error-recovery code) 17-24

See also CRW
EREG (EXTRACT STACKED REGISTERS)

instruction 10-22
EREGG (EXTRACT STACKED REGISTERS) instruc-

tion 10-22
error

checking and correction 11-2
from DIAGNOSE instruction 10-20
I/O-error alert 16-35
indirect storage 11-20
intermittent 11-5
PSW-format 6-9
secondary (I/O) 16-35
solid 11-5
state of TOD clock 4-37
storage 11-19
storage-key 11-20

error-recovery code (ERC) 17-24
See also CRW

ERW (extended-report word) 16-32, 16-36
as result of channel-control check 16-27
as result of channel-data check 16-27

ESA/370 architecture 1-14
ESA/390

compatibility with z/Architecture 1-16

 Index X-15

ESA/390 architecture
architectural-mode controls 12-2

ESAR (EXTRACT SECONDARY ASN)
instruction 10-21

ESCON (Enterprise Systems Connection
Architecture) 13-2

ESCON (Enterprise Systems Connection Architecture)
I/O interface

publication referenced xxi
ESCON channel-to-channel adapter

publication referenced xxi
ESCON-multiple-image facility (EMIF) 1-14
ESEA (EXTRACT AND SET EXTENDED AUTHORITY)

instruction 10-21
ESTA (EXTRACT STACKED STATE)

instruction 10-23
ESW (extended-status word) 16-32

See also extended status
ESW format bit (in SCSW) 16-8
ET

See entry table
ETE

See entry-table entry
ETL (entry-table length) 5-31
ETO (entry-table origin) 5-31
ETR

external interruption 6-12
ETR (external time reference) 2-6
ETR (external time reference) facility 1-12
ETR sync check (machine-check condition) 11-23
event 6-14

monitor 7-121
PER 4-24
space-switch 6-30

EX (entry index) 5-30
translation exception 6-22

EX (EXECUTE)
See EXECUTE instruction

exception access identification 3-52
exceptions 6-14

access (collective program-interruption name) 6-36,
6-43

addressing 6-15
AFX-translation 6-19
ALE-sequence 6-19
ALEN-translation 6-19
ALET-specification 6-19
ASCE-type 6-19
ASN-translation (collective program-interruption

name) 6-46
associated with

ART 5-54
stacking process 5-75
unstacking process 5-78

ASTE-sequence 6-20
ASTE-validity 6-20

exceptions (continued)
ASX-translation 6-21
crypto-operation 6-21
data 6-21
decimal-divide 6-22
decimal-overflow 6-22
delayed access (machine-check condition) 11-18
during translation 3-42
EX-translation 6-22
execute 6-22
extended-authority 6-22
fixed-point-divide 6-23
fixed-point-overflow 6-23
HFP-divide 6-23
HFP-exponent-overflow 6-23
HFP-exponent-underflow 6-23
HFP-significance 6-24
HFP-square-root 6-24
IEEE 19-10
LX-translation 6-24
operand (of I/O instruction) 6-25
operation 6-25
page-translation 6-26
PC-translation-specification 6-26
primary-authority 6-26
privileged-operation 6-27
protection 6-27
PSW-related 6-9
recognition of

early and late 6-9
region-first-translation 6-28
region-second-translation 6-28
region-third-translation 6-29
region translation 6-28
secondary-authority 6-29
segment-translation 6-30
special-operation 6-31
specification 6-32
stack-empty 6-34
stack-full 6-34
stack-operation 6-34
stack-specification 6-34
stack-type 6-35
subspace-replacement (collective program-

interruption name) 6-47
trace (collective program-interruption name) 6-47
trace-table 6-35
translation-specification 6-35

EXCLUSIVE OR instructions 7-106
examples A-19

execute exception 6-22
EXECUTE instruction 7-107

effect of address comparison on 12-1
example A-21
exceptions while fetching target of 6-8
PER event for target of 4-31

X-16 z/Architecture Principles of Operation

exigent machine-check conditions 11-11
expanded storage 2-2

block number 2-2
expansion dictionary

location of during compression 7-76
expansion process

flowchart of 7-83
expansion-operation bit 7-73
explicit address translation 3-34
explicit-trace-control bit 4-13
exponent 18-1

See also characteristic, floating point
See also floating point
overflow

HFP 18-1
underflow

HFP 18-1
mask in PSW 4-6

exponent bias 19-4
extended addressing mode

bit in entry-table entry 5-32
extended-authority exception 6-22

as an access exception 6-36
extended authorization 5-53
extended authorization index (EAX) 5-44

control bit 5-66
in entry-table entry 5-66
in linkage-stack state entry 5-72

extended binary-floating-point number 19-4
extended control (bit in SCSW) 16-11
extended-control word 16-40

See also ECW
extended hexadecimal-floating-point number 18-3
extended-measurement-word 17-11
extended measurement word (I/O)

update enable 15-8
extended-measurement-word enable (I/O)
extended measurement word mode enable (I/O) 15-8
extended-report word

See ERW
extended-sorting facility 1-13
extended status

See also ESW
flags in subchannel logout for 16-32
format-0 16-32
format-1 16-38
format-2 16-38
format-3 16-39
secondary-CCW address 16-38

extended-status word 16-32
See also extended status

extended-status-word-format bit 16-8
external call

external interruption 6-12
pending (signal-processor status) 4-58
signal-processor order 4-52

external damage 11-17
subclass-mask bit for 11-25

external-damage code 11-23
assigned storage locations for 3-54
validity bit for 11-21

external interruption 6-10
clock-comparator 4-41, 6-11
CPU-timer 4-42, 6-11
direct conditions 6-10
emergency-signal 6-12
ETR 6-12
external-call 6-12
interrupt-key 6-12
malfunction-alert 6-13
mask in PSW 4-5
parameter 6-10

assigned storage locations for 3-51
pending conditions 6-10
priority of conditions 6-11
service-signal 6-13

external time reference (ETR) 2-6
external-time-reference (ETR) facility 1-12
externally initiated functions 4-43

I/O 17-17
EXTRACT ACCESS instruction 7-108
EXTRACT AND SET EXTENDED AUTHORITY instruc-

tion 10-21
EXTRACT FPC instruction 19-33
EXTRACT PRIMARY ASN instruction 10-21
EXTRACT PSW instruction 7-109
EXTRACT SECONDARY ASN instruction 10-21
EXTRACT STACKED REGISTERS instruction 10-22
EXTRACT STACKED STATE instruction 10-23
extraction-authority-control bit 5-25

F
failing-storage address 11-23

assigned storage locations for 3-54
in ESW 16-32, 16-37

as result of channel-control check 16-27
as result of channel-data check 16-27

validity bit for 11-21
validity flag for (in ERW) 16-37

failing-storage-address format
indicator for (in ERW) 16-37

fetch-only bit 5-47
fetch protection 3-9

bit in storage key 3-8
override-control bit 3-11

fetch reference 5-86
access exceptions for 6-39

fetching
handling of invalid CBC in storage keys during 11-8
of ART-table and DAT-table entries 5-84
of instructions 5-82

 Index X-17

fetching (continued)
of PSWs during interruptions 5-91
of storage operands 5-86

FICON I/O interface
publication referenced xxi

FIDBR (LOAD FP INTEGER) BFP instruction 19-35
FIDR (LOAD FP INTEGER) HFP instruction 18-15
FIEBR (LOAD FP INTEGER) BFP instruction 19-35
field 3-2
field separator (in EDIT) 8-7
field-validity flags (in subchannel logout) 16-34

relation to channel-control check of 16-28
FIER (LOAD FP INTEGER) HFP instruction 18-15
FIFO (first in first out) queuing

example for lock and unlock A-47
fill byte (in EDIT) 8-7
FIXBR (LOAD FP INTEGER) BFP instruction 19-35
fixed-length field 3-2
fixed logout

assigned storage locations for 3-55
machine-check 11-25

fixed point
See also binary
divide exception 6-23
overflow exception 6-23

mask in PSW 4-6
FIXR (LOAD FP INTEGER) HFP instruction 18-15
flags

for BFP arithmetic exceptions 19-3
for floating-point arithmetic exceptions 19-3
for IEEE exception conditions 19-3

floating interruption conditions 6-7, 11-23
clearing of 4-48

floating point
See also exponent
binary (BFP) 9-1
binary data format 19-4
conversion

between formats 19-7
conversion from binary integer 18-11, 19-26
conversion to binary integer 18-11, 19-26
data

lengthening format of 18-15, 19-37
shortening format of 18-17, 19-38

data class 19-5
hexadecimal (HFP) 9-1
hexadecimal data format 18-3
instructions 9-1
numbers 19-4
registers 2-3, 9-2

clearing of 9-11
save areas for 3-55
validity bit for 11-21

shifting
See normalization

floating-point-control (FPC) register 19-2
validity bit for 11-22

floating-point control register
save areas for 3-56

format
address 3-2
binary-floating-point data 19-4
CCW

See CCW format control
decimal data 8-1
error

in DAT-table entry 6-35
in PSW 6-9

general data 7-2
hexadecimal-floating-point data 18-3
information 3-2
instruction 5-3
PSW 4-5

format-0 and format-1 CCWs 15-27
format-2-IDAW control 15-25
format control 15-24
format-1-sibling-descriptor bit 7-75
forward-section-header address 5-70
forward-section validity bit 5-70
FPC (floating-point-control) register 19-2
fraction 18-1
free-pool manipulation

programming example A-48
freeze 7-80
fullword

See word
function control (I/O) 16-12
function-pending time 17-3

in extended measurement word 16-41
in measurement block 17-5

G
G (giga) xx
general instructions 7-2

examples A-7
general register

save areas 3-55
general registers 2-3

validity bit for 11-21
glue module 5-19
GMT (Greenwich Mean Time) obsolete term for

UTC 4-38
Greenwich Mean Time (GMT) obsolete term for Coordi-

nated Universal Time 4-38
guard digit 18-4

H
halfword 3-3

X-18 z/Architecture Principles of Operation

halfword-concurrent storage references 5-89
halt function 15-15

bit in SCSW for 16-12
completion of 15-16
initiated by HALT SUBCHANNEL 14-5
path management for 15-15
pending 16-15
signaling for 15-16

halt signal 17-12
issued as part of halt function 15-16

HALT SUBCHANNEL instruction 14-5
See also halt function
effect on SCSW count field 15-18
function initiated by 15-15
use of after RESET CHANNEL PATH 14-9

HALVE HFP instructions 18-13
example A-41

HASCE (home address-space-control element) 3-31
HDR (HALVE) HFP instruction 18-13

example A-41
header entry 5-69
HER (HALVE) HFP instruction 18-13
hex

See hexadecimal
hexadecimal (hex) representation 5-6
hexadecimal floating point

conversion
examples with instructions A-42

instructions
examples A-39

hexadecimal floating point (HFP) 9-1
conversion

basic example A-6
hexadecimal-floating-point number

examples A-5
HFP (hexadecimal floating point) 9-1
HFP data 18-3

conversion of 9-8
HFP exponent

overflow
exception 6-23

underflow
exception 6-23

HFP significance
exception 6-24

HFP square root
exception 6-24

high-speed data transfer (I/O) 13-3
home address space 3-16, 5-35

facilities 5-35
home designation-type-control bits 3-31
home private-space-control bit 3-31
home real-space-control bit 3-31
home real-space token origin (HRSTKO) 3-31
home region table

designation (HRTD) 3-31

home region table (continued)
length (HRTL) 3-31
origin (HRTO) 3-31

home segment table
designation (HSTD) 3-31
length (HSTL) 3-31
origin (HSTO) 3-31

home-space mode 3-28
home space-switch-event-control bit 3-31
home storage-alteration-event-control bit 3-31
home virtual address 3-5

effective address-space-control element for 3-34
HRSD (home real-space designation) 3-31
HRTD (home region-table designation) 3-31
HRTL (home region-table length) 3-31
HRTO (home region-table origin) 3-31
HSCH (HALT SUBCHANNEL) instruction 14-5
HSTD (home segment-table designation) 3-31
HSTL (home segment-table length) 3-31
HSTO (home segment-table origin) 3-31

I
I field of instruction 5-6
I instruction format 5-5
I/O (input/output) 2-6

basic functions of 15-1
blocking of data for 15-22
effect on CPU timer 4-42
sense data

See sense data
support functions of 17-1

I/O addressing 13-5
I/O commands

See also commands
publication referenced xxi

I/O device
See device

I/O-error alert (in subchannel logout) 16-35
I/O instructions 14-1, 14-2

deferred condition code for 16-8
operand access by 14-1
role of in I/O operations 13-6

I/O interface
ESCON publication referenced xxi
OEMI publication referenced xxi

I/O interruption 6-13, 16-1
See also interruption
action for 16-5
masking of 13-9
priority of 16-4
program-controlled interruption

See PCI
I/O-interruption code 6-13
I/O-interruption condition 13-9, 16-2

alert 16-4

 Index X-19

I/O-interruption condition (continued)
intermediate 16-4
primary 13-8, 16-4
secondary 13-8, 16-4
solicited 16-3
unsolicited 16-3

I/O-interruption-identification word
assigned storage locations for 3-54

I/O-interruption parameter
assigned storage locations for 3-54
in ORB 15-22
in PMCW 15-2
used for IPL 17-18

I/O-interruption request
clearing of 13-9
from subchannels 16-5

I/O-interruption subclass 13-9
I/O-interruption subclass mask 6-13, 16-5

relation to priority 16-4
I/O mask in PSW 4-5
I/O operations 13-6

conclusion of
See conclusion of I/O operations

immediate 15-43
initiated indication for 16-11
termination of

See conclusion of I/O operations
I/O-system reset 17-13

as part of subsystem reset 4-48
I/O-interruption code 14-19

interruption-identification word in 14-19
stored by TPI 14-19

I/O-interruption parameter
in I/O-interruption code 14-19

I/O-interruption-identification word 14-19
IAC (INSERT ADDRESS SPACE CONTROL) instruc-

tion 10-26
IC (INSERT CHARACTER) instruction 7-109
IC (instruction counter)

See instruction address
ICM (INSERT CHARACTERS UNDER MASK) instruc-

tion 7-109
examples A-21

ICMH (INSERT CHARACTERS UNDER MASK) instruc-
tion 7-109

ICMY (INSERT CHARACTERS UNDER MASK) instruc-
tion 7-109

ICY (INSERT CHARACTER) instruction 7-109
ID

See CPU identification, sense ID
IDA (indirect-data address) 15-36

flag in CCW 15-28
IDAW (indirect-data-address word) 15-36

check (in subchannel logout) 16-33
invalid address of 16-24
invalid address specification in 16-24

IDAW (indirect-data-address word) (continued)
invalid address specification of 16-25

idle state for subchannel 16-13
IDTE (INVALIDATE DAT TABLE ENTRY)

instruction 10-29
IEEE-exception-condition data exception 6-21, 19-10
IEEE exception conditions 19-15

summary figure 19-15
IEEE standard 1-11
IFCC (interface-control check) 16-28
IIHH (INSERT IMMEDIATE) instruction 7-110
IIHL (INSERT IMMEDIATE) instruction 7-110
IILH (INSERT IMMEDIATE) instruction 7-110
IILL (INSERT IMMEDIATE) instruction 7-110
ILC (instruction-length code) 6-7

assigned storage locations for 3-51
for program interruptions 6-14
for supervisor-call interruption 6-47

IML (initial machine loading) controls 12-3
immediate operand 5-6
immediate operation

SLI flag in CCW for 15-31
immediate operation (I/O) 15-43
implicit address translation 3-34
incorrect length (subchannel status) 16-23

for immediate operations 15-31
incorrect-length-indication mode 15-25
incorrect-length-indication-suppression facility 17-21

effect on immediate operation 15-31
incorrect-length-suppression mode 15-25
incorrect state (signal-processor status) 4-57
index

for address generation 5-8
instructions for branching on 7-27
into access list 5-45
into ASN first and second tables 3-18
into authority table 5-26
into entry and linkage tables 5-30
register for 2-3

indicator
check-stop 12-3
load 12-3
manual 12-3
mode 12-2
test 12-5
wait 12-6

indirect-data address
See IDA

indirect-data-address word
See IDAW

indirect storage error 11-20
infinities 19-6
information format 3-2
initial-command-response measurement (I/O) 17-10
initial-command-response time (in measurement

block) 17-6

X-20 z/Architecture Principles of Operation

initial CPU reset 4-48
signal-processor order 4-53

initial-machine-loading (IML) controls 12-3
initial program loading

See IPL
initial-status-interruption control 15-24, 16-11

relation to Z bit 16-11
used for IPL 17-18

inoperative (signal-processor status) 4-58
input/output

See I/O
INSERT ADDRESS SPACE CONTROL

instruction 10-26
INSERT CHARACTER instructions 7-109
INSERT CHARACTERS UNDER MASK instruction

examples A-21
INSERT CHARACTERS UNDER MASK

instructions 7-109
INSERT IMMEDIATE instructions 7-110
INSERT PROGRAM MASK instruction 7-111
INSERT PSW KEY instruction 10-27
INSERT STORAGE KEY EXTENDED

instruction 10-27
INSERT VIRTUAL STORAGE KEY instruction 10-28
installation 2-1
instruction address

as a type of address 3-5
handling by DAT 3-28
in entry-table entry 5-31
in PSW 4-7
validity bit for 11-21

instruction-length code
See ILC

instruction-processing damage 11-16
resulting in processing backup 11-18
resulting in processing damage 11-19

instructions
See also instruction lists and page numbers in

Appendix B
backing up of 11-18
classes of 2-2
control 10-1
damage to 11-16, 11-19
decimal 8-1

examples A-34
divisible execution of 5-79
ending of 5-20
examples of use A-6
execution of 5-10
fetching of 5-82

access exception for 6-39
PER event for 4-31
PER-event mask for 4-24

floating-point 9-1
format of 5-3
general 7-2

examples A-7

instructions (continued)
hexadecimal-floating-point

examples A-39
I/O

See I/O instructions
interruptible

See interruptible instructions
length of 5-5
list of B-1
modification by EXECUTE instruction 7-108
prefetching of 5-82
privileged 4-6

for control 10-1
semiprivileged 4-6, 10-1
sequence of execution of 5-2
stepping of (rate control) 12-4

effect on CPU state 4-2
effect on CPU timer 4-42

unprivileged 4-6, 7-2
integer

binary 7-3
address as 5-8
conversion from floating point 18-11, 19-26
conversion to floating point 18-11, 19-26
examples A-2

decimal 8-2
integer quotient 19-29
integral boundary 3-3
interface

ESCON I/O
publication referenced xxi

parallel-I/O
OEMI publication referenced xxi

serial-I/O
publication referenced xxi

interface-control check (subchannel status) 16-28
interlocked-update storage reference 5-86
interlocks for virtual storage references 5-80
intermediate interruption condition (I/O) 16-4
intermediate-status bit (I/O) 16-17
intermittent errors 11-5
International Atomic Time (TAI) related to Coordinated

Universal Time 4-38
interpretive execution

publication referenced xxii
interpretive-execution facility 1-14
interrupt key 12-3

external interruption 6-12
interruptible instructions 5-21

COMPARE AND FORM CODEWORD 7-46
COMPARE LOGICAL LONG 7-59
COMPARE UNTIL SUBSTRING EQUAL 7-71
MOVE LONG 7-123
PER event affecting the ending of 4-29
stopping of 4-2
TEST BLOCK 10-119

 Index X-21

interruptible instructions (continued)
UPDATE TREE 7-191

interruption 6-1
See also masks
action 6-2

I/O 16-5
machine-check 11-12

classes of 6-5
effect on instruction sequence 5-20
external

See external interruption
I/O

See I/O interruption
machine-check

See machine-check interruption
masking of 6-6
pending 6-6

external 6-10
machine-check 11-13
relation to CPU state 4-2

priority of
See priority

program
See program interruption

program-controlled (I/O)
See PCI

restart 6-47
string

See string of interruptions
supervisor-call 6-47

interruption code 6-5
external 6-10
I/O

See I/O-interruption code
machine-check (MCIC) 3-54, 11-15
program 6-14
summary of 6-2
supervisor-call 6-47

interruption conditions 6-1
clearing of 4-47
floating 6-7, 11-23
I/O

See I/O-interruption condition
interruption parameter

external (assigned storage locations) 3-51
I/O

See I/O-interruption parameter
interruption-response block

See IRB
interruption subclass

See I/O-interruption subclass
invalid

access-list entry 5-47
address 6-15
bit in ASN-first-table entry 3-19
bit in ASN-second-table entry 3-19

invalid (continued)
bit in linkage-table entry 5-30
bit in page-table entry 3-33
bit in region-table entry 3-32
bit in segment-table entry 3-33
CBC 11-2

in registers 11-10
in storage 11-6
in storage keys 11-7

operation code 6-25
order (signal-processor status) 4-58
parameter (signal-processor status) 4-58
translation address 3-42
translation format

exception recognition 3-42
invalid address specification

in channel-program address 16-24
in IDAW 16-25
of data in CCW 16-25
of IDAW 16-24
of TIC CCW 16-24

invalid CCW field
command code 16-24
count 16-24
data address 16-25
suspend flag 16-25

invalid format
of CCW 16-25
of ORB 16-26

invalid sequence of CCWs 16-26
INVALIDATE DAT TABLE ENTRY instruction 10-29
INVALIDATE PAGE TABLE ENTRY instruction 10-33

effect of when CPU is stopped 4-2
inverse move

See MOVE INVERSE instruction, move-inverse
facility

IPK (INSERT PSW KEY) instruction 10-27
IPL (initial program loading) 4-50, 17-17

effect on CPU state 4-2
IPM (INSERT PROGRAM MASK) instruction 7-111
IPTE (INVALIDATE PAGE TABLE ENTRY)

instruction 10-33
IRB (interruption-response block) 16-6

See also ECW, ERW, ESW, SCSW
storage requirements for 16-11

ISC (I/O-interruption-subclass code) 15-2
ISC (I/O-interruption-subclass code)

enhanced 14-19
ISKE (INSERT STORAGE KEY EXTENDED)

instruction 10-27
isolated state 16-36
IVSK (INSERT VIRTUAL STORAGE KEY)

instruction 10-28

X-22 z/Architecture Principles of Operation

K
K (kilo) xx
KDB (COMPARE AND SIGNAL) BFP instruction 19-24
KDBR (COMPARE AND SIGNAL) BFP

instruction 19-24
KEB (COMPARE AND SIGNAL) BFP instruction 19-24
KEBR (COMPARE AND SIGNAL) BFP

instruction 19-24
key

access
See access key

manual
See manual operation

PSW
See PSW key

storage
See storage key

subchannel
See subchannel key

key check (in subchannel logout) 16-32
key-controlled protection 3-9

exception for 6-27
key mask

authorization 5-32
entry 5-32
PSW (PKM) 5-25

KIMD (COMPUTE INTERMEDIATE MESSAGE
DIGEST) instruction 7-84

KLMD (COMPUTE LAST MESSAGE DIGEST) instruc-
tion 7-84

KM (CIPHER MESSAGE) instruction 7-35
KMAC (COMPUTE MESSAGE AUTHENTICATION

CODE) instruction 7-91
KMC (CIPHER MESSAGE WITH CHAINING)

instruction 7-35
KXBR (COMPARE AND SIGNAL) BFP

instruction 19-24

L
L (LOAD) binary instruction 7-111

example A-22
L fields of instruction 5-7
LA (LOAD ADDRESS) instruction 7-112

examples A-22
LAE (LOAD ADDRESS EXTENDED) instruction 7-112
LAM (LOAD ACCESS MULTIPLE) instruction 7-111
LAMY (LOAD ACCESS MULTIPLE) instruction 7-111
LARL (LOAD ADDRESS RELATIVE LONG)

instruction 7-113
LASP (LOAD ADDRESS SPACE PARAMETERS)

instruction 10-35
last-path-used mask

See LPUM

late exception recognition 6-10
LAY (LOAD ADDRESS) instruction 7-112
LB (LOAD BYTE) instruction 7-114
LCDBR (LOAD COMPLEMENT) BFP instruction 19-34
LCDR (LOAD COMPLEMENT) HFP instruction 18-14
LCEBR (LOAD COMPLEMENT) BFP instruction 19-34
LCER (LOAD COMPLEMENT) HFP instruction 18-14
LCGFR (LOAD COMPLEMENT) binary

instruction 7-115
LCGR (LOAD COMPLEMENT) binary

instruction 7-115
LCR (LOAD COMPLEMENT) binary instruction 7-114
LCTL (LOAD CONTROL) instruction 10-44
LCTLG (LOAD CONTROL) instruction 10-44
LCXBR (LOAD COMPLEMENT) BFP instruction 19-34
LCXR (LOAD COMPLEMENT) HFP instruction 18-14
LD (LOAD) floating-point instruction 9-10
LDE (LOAD LENGTHENED) HFP instruction 18-15
LDEB (LOAD LENGTHENED) BFP instruction 19-37
LDEBR (LOAD LENGTHENED) BFP instruction 19-37
LDER (LOAD LENGTHENED) HFP instruction 18-15
LDR (LOAD) floating-point instruction 9-10
LDXBR (LOAD ROUNDED) BFP instruction 19-38
LDXR (LOAD ROUNDED) HFP instruction 18-17
LDY (LOAD) floating point instruction 9-11
LE (LOAD) floating-point instruction 9-10
LEDBR (LOAD ROUNDED) BFP instruction 19-38
LEDR (LOAD ROUNDED) HFP instruction 18-17
left-to-right addressing 3-2
length

field 3-2
instruction 5-5
of BFP data

decreasing 19-38
increasing 19-37

of HFP data
decreasing 18-17
increasing 18-15

register-operand 5-6
second operand same as first 5-6
variable (storage operand) 5-7

LER (LOAD) floating-point instruction 9-10
LEXBR (LOAD ROUNDED) BFP instruction 19-38
LEXR (LOAD ROUNDED) HFP instruction 18-17
LEY (LOAD) floating point instruction 9-11
LFPC (LOAD FPC) instruction 19-36
LG (LOAD) binary instruction 7-111
LGB (LOAD BYTE) instruction 7-114
LGF (LOAD) binary instruction 7-111
LGFR (LOAD) binary instruction 7-111
LGH (LOAD HALFWORD) instruction 7-115
LGHI (LOAD HALFWORD IMMEDIATE)

instruction 7-115
LGR (LOAD) binary instruction 7-111
LH (LOAD HALFWORD) instruction 7-115

examples A-23

 Index X-23

LHI (LOAD HALFWORD IMMEDIATE)
instruction 7-115

LHY (LOAD HALFWORD) instruction 7-115
LIFO (last in first out) queuing

example for lock and unlock A-46
light

See indicator
limit mode (I/O) 15-2
link information

for BRANCH AND LINK instruction 7-22
for BRANCH AND SAVE AND SET MODE instruc-

tion 7-23
for BRANCH AND SAVE instruction 7-23

linkage for subroutines 5-11
linkage index (LX) 5-30
linkage stack 5-61, 5-68

associated PER events 5-65
associated trace entries 5-65
branch state entry 10-10
entry address 5-68
entry descriptor 5-68
entry-type code 5-69
handling of information in 5-64
header entry 5-69
instructions 5-61
introduction 5-66
next-entry size 5-69
operations 5-66

control 5-68
program-call state entry 10-65
remaining free space 5-69
section 5-66

identification 5-69
state entry 5-71
trailer entry 5-70

linkage-stack functions 5-61
linkage table (LT) 5-30

designation (LTD) 5-30
length (LTL) 5-30
origin (LTO) 5-30

little endian 7-120
LLGC (LOAD LOGICAL CHARACTER)

instruction 7-116
LLGF (LOAD LOGICAL) instruction 7-116
LLGFR (LOAD LOGICAL) instruction 7-116
LLGH (LOAD LOGICAL HALFWORD)

instruction 7-116
LLGT (LOAD LOGICAL THIRTY ONE BITS)

instruction 7-117
LLGTR (LOAD LOGICAL THIRTY ONE BITS) instruc-

tion 7-117
LLIHH (LOAD LOGICAL IMMEDIATE)

instruction 7-116
LLIHL (LOAD LOGICAL IMMEDIATE)

instruction 7-116

LLILH (LOAD LOGICAL IMMEDIATE)
instruction 7-116

LLILL (LOAD LOGICAL IMMEDIATE) instruction 7-116
LM (LOAD MULTIPLE) instruction 7-117
LMD (LOAD MULTIPLE DISJOINT) instruction 7-118
LMG (LOAD MULTIPLE) instruction 7-117
LMH (LOAD MULTIPLE HIGH) instruction 7-118
LMY (LOAD MULTIPLE) instruction 7-117
LNDBR (LOAD NEGATIVE) BFP instruction 19-37
LNDR (LOAD NEGATIVE) HFP instruction 18-16
LNEBR (LOAD NEGATIVE) BFP instruction 19-37
LNER (LOAD NEGATIVE) HFP instruction 18-16
LNGFR (LOAD NEGATIVE) binary instruction 7-119
LNGR (LOAD NEGATIVE) binary instruction 7-119
LNR (LOAD NEGATIVE) binary instruction 7-118
LNXBR (LOAD NEGATIVE) BFP instruction 19-37
LNXR (LOAD NEGATIVE) HFP instruction 18-16
LOAD ACCESS MULTIPLE instructions 7-111
LOAD ADDRESS EXTENDED instruction 7-112
LOAD ADDRESS instruction

examples A-22
LOAD ADDRESS instructions 7-112
LOAD ADDRESS RELATIVE LONG instruction 7-113
LOAD ADDRESS SPACE PARAMETERS

instruction 10-35
LOAD AND TEST BFP instructions 19-34
LOAD AND TEST binary instruction 7-114
LOAD AND TEST HFP instructions 18-14
LOAD binary instructions 7-111

example A-22
LOAD BYTE instructions 7-114
load-clear key 12-3
LOAD COMPLEMENT BFP instructions 19-34
LOAD COMPLEMENT binary instruction 7-114
LOAD COMPLEMENT HFP instructions 18-14
LOAD CONTROL instruction 10-44
LOAD floating-point instructions 9-10
LOAD FP INTEGER BFP instructions 19-35
LOAD FP INTEGER HFP instructions 18-15
LOAD FPC instruction 19-36
LOAD HALFWORD IMMEDIATE instruction 7-115
LOAD HALFWORD instruction

examples A-23
LOAD HALFWORD instructions 7-115
load indicator 12-3
LOAD LENGTHENED BFP instructions 19-37
LOAD LENGTHENED HFP instructions 18-15
LOAD LOGICAL CHARACTER instruction 7-116
LOAD LOGICAL HALFWORD instruction 7-116
LOAD LOGICAL IMMEDIATE instructions 7-116
LOAD LOGICAL instructions 7-116
LOAD LOGICAL THIRTY ONE BITS

instructions 7-117
LOAD MULTIPLE DISJOINT instruction 7-118
LOAD MULTIPLE HIGH instruction 7-118

X-24 z/Architecture Principles of Operation

LOAD MULTIPLE instructions 7-117
LOAD NEGATIVE BFP instructions 19-37
LOAD NEGATIVE binary instruction 7-118
LOAD NEGATIVE HFP instructions 18-16
load-normal key 12-3
LOAD PAIR FROM QUADWORD instruction 7-119
LOAD POSITIVE BFP instructions 19-38
LOAD POSITIVE binary instruction 7-119
LOAD POSITIVE HFP instructions 18-16
LOAD PSW EXTENDED instruction 10-45
LOAD PSW instruction 10-44
LOAD REAL ADDRESS instructions 10-46
LOAD REVERSED instructions 7-120
LOAD ROUNDED BFP instructions 19-38
LOAD ROUNDED HFP instructions 18-17
load state 4-1, 4-2

during IPL 4-50
load-unit-address controls 12-3
LOAD USING REAL ADDRESS instruction 10-51
LOAD ZERO floating-point instructions 9-11
loading, initial

See IML, IPL
location 3-2

See also address
not available in configuration 6-15

lock A-46
example with FIFO queuing A-48
example with LIFO queuing A-47

lock used by PERFORM LOCKED OPERATION instruc-
tion 7-155

logical
arithmetic (unsigned binary) 7-4
comparison 7-5
connective

AND 7-21, 7-22
EXCLUSIVE OR 7-107
OR 7-140, 7-141

data 7-2
logical address 3-5

handling by DAT 3-28
logical-path mask

See LPM
I/O-interruption

See I/O-interruption subclass mask
logical string assist 1-9
logically partitioned (LPAR) mode 1-14, 1-15
logout

fixed
assigned storage locations for 3-55
machine-check 11-25

subchannel (I/O) 16-32
long binary-floating-point number 19-4
long hexadecimal-floating-point number 18-3
long I/O block 16-23
loop control 5-11

loop of interruptions
See string of interruptions

low-address protection 3-12
control bit 3-12
exception for 6-27

LPAR (logically partitioned) mode 1-14, 1-15
LPDBR (LOAD POSITIVE) BFP instruction 19-38
LPDR (LOAD POSITIVE) HFP instruction 18-16
LPEBR (LOAD POSITIVE) BFP instruction 19-38
LPER (LOAD POSITIVE) HFP instruction 18-16
LPGFR (LOAD POSITIVE) binary instruction 7-119
LPGR (LOAD POSITIVE) binary instruction 7-119
LPM (logical-path mask) 15-4, 15-25

effect on system performance of 15-11
used for IPL 17-18

LPQ (LOAD PAIR FROM QUADWORD)
instruction 7-119

LPR (LOAD POSITIVE) binary instruction 7-119
LPSW (LOAD PSW) instruction 10-44
LPSWE (LOAD PSW EXTENDED) instruction 10-45
LPUM (last-path-used mask) 15-5

field-validity flag for (in subchannel logout) 16-34
in ESW 16-34

LPXBR (LOAD POSITIVE) BFP instruction 19-38
LPXR (LOAD POSITIVE) HFP instruction 18-16
LR (LOAD) binary instruction 7-111
LRA (LOAD REAL ADDRESS) instruction 10-46
LRAG (LOAD REAL ADDRESS) instruction 10-46
LRAY (LOAD REAL ADDRESS) instruction 10-46
LRDR (LOAD ROUNDED) HFP instruction 18-17
LRER (LOAD ROUNDED) HFP instruction 18-17
LRV (LOAD REVERSED) instruction 7-120
LRVG (LOAD REVERSED) instruction 7-120
LRVGR (LOAD REVERSED) instruction 7-120
LRVH (LOAD REVERSED) instruction 7-120
LRVR (LOAD REVERSED) instruction 7-120
LT (linkage table) 5-30
LTD (linkage-table designation) 5-30
LTDBR (LOAD AND TEST) BFP instruction 19-34
LTDR (LOAD AND TEST) HFP instruction 18-14
LTEBR (LOAD AND TEST) BFP instruction 19-34
LTER (LOAD AND TEST) HFP instruction 18-14
LTGFR (LOAD AND TEST) binary instruction 7-114
LTGR (LOAD AND TEST) binary instruction 7-114
LTL (linkage-table length) 5-30
LTO (linkage-table origin) 5-30
LTR (LOAD AND TEST) binary instruction 7-114
LTXBR (LOAD AND TEST) BFP instruction 19-34
LTXR (LOAD AND TEST) HFP instruction 18-14
LURA (LOAD USING REAL ADDRESS)

instruction 10-51
LURAG (LOAD USING REAL ADDRESS)

instruction 10-51
LX (linkage index) 5-30

invalid bit 5-30
translation exception 6-24

 Index X-25

LXD (LOAD LENGTHENED) HFP instruction 18-15
LXDB (LOAD LENGTHENED) BFP instruction 19-37
LXDBR (LOAD LENGTHENED) BFP instruction 19-37
LXDR (LOAD LENGTHENED) HFP instruction 18-15
LXE (LOAD LENGTHENED) HFP instruction 18-15
LXEB (LOAD LENGTHENED) BFP instruction 19-37
LXEBR (LOAD LENGTHENED) BFP instruction 19-37
LXER (LOAD LENGTHENED) HFP instruction 18-15
LXR (LOAD) floating-point instruction 9-10
LY (LOAD) binary instruction 7-111
LZDR (LOAD ZERO) floating-point instruction 9-11
LZER (LOAD ZERO) floating-point instruction 9-11
LZXR (LOAD ZERO) floating-point instruction 9-11

M
M (mega) xx
M (MULTIPLY) binary instruction 7-136

example A-27
machine check 11-1

See also malfunction
handling of malfunction detected as part of I/O 11-5
interruption 6-14, 11-11

action 11-12
code (MCIC) 3-54, 11-15
floating conditions 11-24
machine check interruption 11-24
mask in PSW 4-6
subclass masks in control register 11-24

logout 11-25
mask

in PSW 4-6
machine-check architectural-mode identification 3-53
machine-type number (in CPU ID) 10-100
MAD (MULTIPLY AND ADD) HFP instruction 18-19
MADB (MULTIPLY AND ADD) BFP instruction 19-41
MADBR (MULTIPLY AND ADD) BFP instruction 19-41
MADR (MULTIPLY AND ADD) HFP instruction 18-19
MAE (MULTIPLY AND ADD) HFP instruction 18-19
MAEB (MULTIPLY AND ADD) BFP instruction 19-41
MAEBR (MULTIPLY AND ADD) BFP instruction 19-41
MAER (MULTIPLY AND ADD) HFP instruction 18-19
main storage 3-1

See also storage
effect of power-on reset on 4-49
shared (in multiprocessing) 4-51

malfunction 11-1
at channel subsystem 16-27
at I/O device 16-28
correction of 11-2
effect on manual operation 12-1
from DIAGNOSE instruction 10-20
indication of 11-5
machine-check handling for when detected as part of

I/O 11-5

malfunction alert (external interruption) 6-13
when entering check-stop state 11-11

manual indicator 12-3
See also stopped state

manual operation 12-1
controls

address-compare 12-1
alter-and-display 12-2
IML 12-3
load-unit-address 12-3
power 12-4
rate 12-4
TOD-clock 12-5

effect on CPU signaling 4-56
keys

interrupt 12-3
load-clear 12-3
load-normal 12-3
restart 12-4
start 12-4
stop 12-4
store-status 12-5
system-reset-clear 12-5
system-reset-normal 12-5

masks 6-6
See also I/O interruption, interruption
for BFP arithmetic exceptions 19-3
for IEEE exception conditions 19-3
in BRANCH ON CONDITION instruction 7-25
in BRANCH RELATIVE ON CONDITION

instruction 7-29
in COMPARE LOGICAL CHARACTERS UNDER

MASK instruction 7-57
in INSERT CHARACTERS UNDER MASK

instruction 7-109
in PSW 4-5
in STORE CHARACTERS UNDER MASK

instruction 7-168
in TEST UNDER MASK instruction 7-178
monitor 6-24
path-management 15-2, 15-25
PER-event 4-24
program-interruption 6-14
subclass

See subclass-mask bits
maximum negative number 7-3
MBA (measurement-block address) 15-8
MC (MONITOR CALL) instruction 7-121
MCIC (machine-check-interruption code) 3-54, 11-15
MD (MULTIPLY) HFP instruction 18-18
MDB (MULTIPLY) BFP instruction 19-39
MDBR (MULTIPLY) BFP instruction 19-39
MDE (MULTIPLY) HFP instruction 18-18
MDEB (MULTIPLY) BFP instruction 19-39
MDEBR (MULTIPLY) BFP instruction 19-39

X-26 z/Architecture Principles of Operation

MDER (MULTIPLY) HFP instruction 18-18
MDR (MULTIPLY) HFP instruction 18-18

example A-41
ME (MULTIPLY) HFP instruction 18-18
measurement

block (I/O)
address 17-8
format 17-7
origin 17-7

device-connect-time 17-10
extended-measurement-word 17-11
measurement-block update (I/O) 17-3

measurement block (I/O) 17-3
data check 16-33
index 15-6
key (MBK)

used as access key 3-9
multiple use of 15-11
program check 16-33
protection check 16-33
update enable 15-3

measurement-block-format control (I/O) 15-7
measurement data (I/O)

accumulated 17-3
effect of CSCH on 14-5
effect of HSCH on 14-6

measurement-mode control (I/O) 15-3
MEE (MULTIPLY) HFP instruction 18-18
MEEB (MULTIPLY) BFP instruction 19-39
MEEBR (MULTIPLY) BFP instruction 19-39
MEER (MULTIPLY) HFP instruction 18-18
MER (MULTIPLY) HFP instruction 18-18
message byte (in EDIT) 8-7
MGHI (MULTIPLY HALFWORD IMMEDIATE) instruc-

tion 7-137
MH (MULTIPLY HALFWORD) instruction 7-137

example A-27
MHI (MULTIPLY HALFWORD IMMEDIATE)

instruction 7-137
ML (MULTIPLY LOGICAL) instruction 7-138
MLG (MULTIPLY LOGICAL) instruction 7-138
MLGR (MULTIPLY LOGICAL) instruction 7-138
MLR (MULTIPLY LOGICAL) instruction 7-138
mode

access-register 3-28
addressing

See addressing mode
architectural

See architectural mode
burst (channel-path operation) 13-3
byte-multiplex (channel-path operation) 13-3
home-space 3-28
incorrect-length-indication 15-25
incorrect-length-suppression 15-25
indicator

architectural 12-2

mode (continued)
multipath

See multipath mode
primary-space 3-28
real 3-28
requirements for semiprivileged instructions 5-25
rounding 19-7
secondary-space 3-28
single-path 15-3, 15-21
translation 3-28

mode-trace-control bit 4-13
model number (in CPU ID) 10-100
modifiable area (in linkage-stack state entry) 5-73
modification control 15-23
MODIFY STACKED STATE instruction 10-51
MODIFY SUBCHANNEL instruction 14-7
MONITOR CALL instruction 7-121
monitor-class number 6-24

assigned storage locations for 3-52
monitor code 6-24

assigned storage locations for 3-54
monitor event 6-24
monitor masks 6-24
monitoring

See also measurement
channel-subsystem 17-1
for PER events

See PER
with MONITOR CALL 6-24, 7-121

MOVE instructions 7-121
examples A-21, A-23

move-inverse facility 7-122
MOVE INVERSE instruction 7-122

example A-24
MOVE LONG EXTENDED instruction 7-127
MOVE LONG instruction 7-123

examples A-25
MOVE LONG UNICODE instruction 7-130
MOVE NUMERICS instruction 7-134

example A-25
MOVE PAGE instruction 10-53
MOVE STRING instruction 7-134

example A-26
MOVE TO PRIMARY instruction 10-55
MOVE TO SECONDARY instruction 10-55
MOVE WITH DESTINATION KEY instruction 10-57
MOVE WITH KEY instruction 10-58
MOVE WITH OFFSET instruction 7-135

example A-26
MOVE WITH SOURCE KEY instruction 10-59
MOVE ZONES instruction 7-136

example A-27
MP (MULTIPLY DECIMAL) instruction 8-11

example A-36
MR (MULTIPLY) binary instruction 7-136

example A-27

 Index X-27

MS (MULTIPLY SINGLE) instruction 7-139
MSCH (MODIFY SUBCHANNEL) instruction 14-7
MSD (MULTIPLY AND SUBTRACT) HFP

instruction 18-20
MSDB (MULTIPLY AND SUBTRACT) BFP

instruction 19-41
MSDBR (MULTIPLY AND SUBTRACT) BFP

instruction 19-41
MSDR (MULTIPLY AND SUBTRACT) HFP

instruction 18-20
MSE (MULTIPLY AND SUBTRACT) HFP

instruction 18-20
MSEB (MULTIPLY AND SUBTRACT) BFP

instruction 19-41
MSEBR (MULTIPLY AND SUBTRACT) BFP

instruction 19-41
MSER (MULTIPLY AND SUBTRACT) HFP

instruction 18-20
MSG (MULTIPLY SINGLE) instruction 7-139
MSGF (MULTIPLY SINGLE) instruction 7-139
MSGFR (MULTIPLY SINGLE) instruction 7-139
MSGR (MULTIPLY SINGLE) instruction 7-139
MSR (MULTIPLY SINGLE) instruction 7-138
MSTA (MODIFY STACKED STATE) instruction 10-51
MSY (MULTIPLY SINGLE) instruction 7-139
multipath mode 15-3

entering 15-21
multiple-access storage references 5-88
MULTIPLY AND ADD BFP instructions 19-41
MULTIPLY AND ADD HFP instructions 18-19
MULTIPLY AND SUBTRACT BFP instructions 19-41
MULTIPLY AND SUBTRACT HFP instructions 18-20
MULTIPLY BFP instructions 19-39
MULTIPLY binary instructions 7-136

examples A-27
MULTIPLY DECIMAL instruction 8-11

example A-36
MULTIPLY HALFWORD IMMEDIATE instruction 7-137
MULTIPLY HALFWORD instruction 7-137

example A-27
MULTIPLY HFP instructions 18-18

example A-41
MULTIPLY LOGICAL instructions 7-138
MULTIPLY SINGLE instructions 7-138
multiprocessing 4-51

manual operations for 12-6
programming considerations for 8-3, A-43
programming examples A-43
timing-facility interruptions for 4-40
TOD clock for 4-36

multiprogramming examples A-43
MVC (MOVE) instruction 7-122

examples A-21, A-23
MVCDK (MOVE WITH DESTINATION KEY)

instruction 10-57

MVCIN (MOVE INVERSE) instruction 7-122
example A-24

MVCK (MOVE WITH KEY) instruction 10-58
MVCL (MOVE LONG) instruction 7-123

examples A-25
MVCLE (MOVE LONG EXTENDED) instruction 7-127
MVCLU (MOVE LONG UNICODE) instruction 7-130
MVCP (MOVE TO PRIMARY) instruction 10-55
MVCS (MOVE TO SECONDARY) instruction 10-55
MVCSK (MOVE WITH SOURCE KEY)

instruction 10-59
MVI (MOVE) instruction 7-121

example A-24
MVIY (MOVE) instruction 7-121
MVN (MOVE NUMERICS) instruction 7-134

example A-25
MVO (MOVE WITH OFFSET) instruction 7-135

example A-26
MVPG (MOVE PAGE) instruction 10-53
MVST (MOVE STRING) instruction 7-134

example A-26
MVZ (MOVE ZONES) instruction 7-136

example A-27
MXBR (MULTIPLY) BFP instruction 19-39
MXD (MULTIPLY) HFP instruction 18-18
MXDB (MULTIPLY) BFP instruction 19-39
MXDBR (MULTIPLY) BFP instruction 19-39
MXDR (MULTIPLY) HFP instruction 18-18
MXR (MULTIPLY) HFP instruction 18-18

N
N (AND) instruction 7-20
N condition (I/O) 16-12
NaN (not-a-number) 19-6
NC (AND) instruction 7-21
near-valid CBC 11-2

in storage 11-5
negative zero

binary 7-3
decimal 8-2

example A-5
new PSW 4-3

assigned storage locations for 3-54
fetched during interruption 6-2

next-entry size (in linkage stack) 5-69
NG (AND) instruction 7-20
NGR (AND) instruction 7-20
NI (AND) instruction 7-20

example A-8
NIHH (AND IMMEDIATE) instruction 7-21
NIHL (AND IMMEDIATE) instruction 7-21
NILH (AND IMMEDIATE) instruction 7-21
NILL (AND IMMEDIATE) instruction 7-21
NIY (AND) instruction 7-21

X-28 z/Architecture Principles of Operation

no-operation
instruction (BRANCH ON CONDITION) 7-26
instruction (BRANCH RELATIVE ON

CONDITION) 7-29
node (of tree structure) 7-191
noninterlocked-update storage reference 5-86
nonnumeric entities

binary 19-6
nonvolatile storage 3-2
normalization

of BFP numbers 19-8
of HFP numbers 18-3

not-a-number (NaN) 19-6
not operational

as channel-path state 16-12
See also path-not-operational bit

as CPU state 4-56
as TOD-clock state 4-37

not set (TOD-clock state) 4-36
NR (AND) instruction 7-20
nullification

exceptions to 5-23
for exigent machine-check conditions 11-11
of instruction execution 5-21
of unit of operation 5-22

numbering
of addresses (byte locations) 3-2
of bits 3-2

numbers
binary 7-3

examples A-2
binary-floating-point 19-4
CPU-model 10-100
decimal 8-1

examples A-4
device 13-5
hexadecimal 5-6
hexadecimal-floating-point 18-3
hexadecimal-floating-point

examples A-5
machine-type 10-100

numeric bits 8-1
moving of 7-134

NY (AND) instruction 7-20

O
O (OR) instruction 7-139
OC (OR) instruction 7-140
OEMI (original equipment manufacturers information) for

I/O interface xxi
publication referenced xxi

offset of symbol-translation table 7-73
OG (OR) instruction 7-140
OGR (OR) instruction 7-139

OI (OR) instruction 7-140
example A-28
example of problem with A-43

OIHH (OR IMMEDIATE) instruction 7-140
OIHL (OR IMMEDIATE) instruction 7-140
OILH (OR IMMEDIATE) instruction 7-141
OILL (OR IMMEDIATE) instruction 7-141
OIY (OR) instruction 7-140
old PSW 6-2

assigned storage locations for 3-54
one's complement binary notation 7-3

used for SUBTRACT LOGICAL instruction 7-176
used for SUBTRACT LOGICAL WITH BORROW

instruction 7-176
op code

See operation code
operand 5-2

access identification 3-52
access of 5-85

for I/O instructions 14-1
address generation for 5-8
exception 6-25
immediate 5-6
length of 5-3
overlap of

for decimal instructions 8-3
for general instructions 7-2

register for 5-6
sequence of references for 5-85
storage 5-7
types of (fetch, store, update) 5-85
used for result 5-3

operating state 4-1, 4-2
operation

I/O
See I/O operations

unit of 5-21
operation code (op code) 5-2

invalid 6-25
operation exception 6-25
operation-request block

See ORB
operator facilities 2-7, 12-1

basic 12-1
operator intervening (signal-processor status) 4-58
OR (OR) instruction 7-139
OR IMMEDIATE instructions 7-140
OR instructions 7-139

example of problem with OR immediate A-43
examples A-28

ORB (operation-request block) 15-22
CSS priority 15-26
extension control in 15-25
interruption parameter in 15-22
invalid 16-26
logical-path mask (LPM) in 15-25

 Index X-29

orders (I/O) 13-6, 15-29
orders (signal-processor) 4-52

conditions precluding response to 4-55
CPU reset 4-53
emergency signal 4-52
external call 4-52
initial CPU reset 4-53
restart 4-52
sense 4-52
set architecture 4-54
set prefix 4-53
start 4-52
stop 4-52
stop and store status 4-53
store status at address 4-53

overflow
binary 7-4

example A-2
decimal 6-22
exponent

See exponent overflow
fixed-point 6-23, 7-4
in CRW 17-24

overlap
destructive 7-123, 7-127, 7-132
operand 5-81

for decimal instructions 8-3
for general instructions 7-2

operation 5-79
OY (OR) instruction 7-140

P
P (peta) xx
PACK ASCII instruction 7-142
PACK instruction 7-141

example A-28
PACK UNICODE instruction 7-143
packed decimal numbers 8-1

conversion of to zoned format 7-188
conversion to from zoned format 7-141
examples A-4

padding byte
for COMPARE LOGICAL LONG EXTENDED instruc-

tion 7-61
for COMPARE LOGICAL LONG instruction 7-58
for MOVE LONG EXTENDED instruction 7-127
for MOVE LONG instruction 7-123

page 3-27
page-frame real address (PFRA) 3-33
PAGE IN instruction 10-60
page index (PX) 3-27
page-invalid bit (in page-table entry) 3-33
PAGE OUT instruction 10-61
page protection 3-11

bit for in page-table entry 3-34

page protection (continued)
bit for in segment-table entry 3-33
exception for 6-27

page swapping 3-26
page table 3-33

designation 3-33
lookup 3-42
origin (PTO) 3-33

page-translation exception 6-26
as an access exception 6-36, 6-43

PALB (PURGE ALB) instruction 10-85
PAM (path-available mask) 15-7

effect of reconfiguration on 15-11
effect of resetting on 15-11
effect on allegiance of 15-11

parallel-I/O channel-to-channel adapter
publication referenced xxi

parallel-I/O interface 13-3
OEMI publication referenced xxi

parameter
external-interruption 6-10

assigned storage locations for 3-51
I/O-interruption

See I/O-interruption parameter
register for SIGNAL PROCESSOR 4-53, 10-98
translation 3-28

parity bit 11-2
partial completion of instruction execution 5-21
PASCE (primary address-space-control element) 3-29
PASN (primary address-space number) 3-17

in trace entry 4-22
PASTE (primary AST entry) 5-30
PASTEO (primary-AST-entry origin) 5-30, 5-44
path

See channel path
path available for selection 15-13
path management 13-6

for clear function 15-14
for halt function 15-15
for start function and resume function 15-18

path-management-control word
See PMCW

path-management masks
last-path-used mask

See LPUM
logical-path mask

See LPM
path-available mask

See PAM
path-installed mask

See PIM
path-not-operational mask

See PNOM
path-operational mask

See POM

X-30 z/Architecture Principles of Operation

path-not-operational bit (N) in SCSW 16-12
path-not-operational condition 15-4
path verification required

indicator for (in ERW) 16-37
pattern (in EDIT) 8-7
PC (PROGRAM CALL) instruction 10-62
PC-cp (PROGRAM CALL instruction, to current

primary) 10-66
PC number 10-63

in linkage-stack state entry 5-73
in trace entry 4-22
translation 5-30

PC-ss (PROGRAM CALL instruction, with space
switching) 10-66

PC-translation-specification exception 6-26
PC-type bit 5-32
PCI (program-controlled interruption) 15-35

as flag in CCW 15-28
intermediate interruption condition for 16-17
subchannel status for 16-23

pending channel reports (effect of I/O-system reset
on) 17-16

pending interruption
See interruption pending

PER (program-event recording) 4-24
access identification 3-52, 4-27
address 4-27

assigned storage locations for 3-52
address-space-control element (ASCE)

identification 4-27
ASCE (address-space-control element)

identification 4-27
ATMID (addressing-and-translation-mode identifica-

tion) 4-26
code 4-26

assigned storage locations for 3-52
events 4-24
extensions 1-13
instruction-fetching event 4-31
masks

bit in PSW 4-5
PER-event 4-24

priority of indication 4-28
program-interruption condition 6-26
storage-alteration event 4-31
storage-area designation 4-30

ending address 4-25
starting address 4-25
wraparound 4-30

store-using-real-address event 4-32
successful-branching event 4-30

PERFORM LOCKED OPERATION instruction 7-144
example A-50

PFRA (page-frame real address) 3-33
PGIN (PAGE IN) instruction 10-60

PGOUT (PAGE OUT) instruction 10-61
piecemeal steps of instruction execution 5-79
PIM (path-installed mask) 15-6
PKA (PACK ASCII) instruction 7-142
PKM (PSW-key mask) 5-25
PKU (PACK UNICODE) instruction 7-143
PLO (PERFORM LOCKED OPERATION)

instruction 7-144
example A-50

PMCW (path-management-control word) 15-2
channel-path identifiers (CHPID) in 15-7

PNOM (path-not-operational mask) 15-4
effect on POM of 15-11
indicated in SCSW 16-12

point of damage 11-14
point of interruption 5-21

for machine check 11-14
POM (path-operational mask) 15-6

effect on PNOM of 15-11
POST (SVC)

example of routine to bypass A-45
postnormalization 18-3
power controls 12-4
power-on reset 4-49
powers of 2

table of G-1
PR (PROGRAM RETURN) instruction 10-75
PR-cp (PROGRAM RETURN instruction, to current

primary) 10-75
PR-ss (PROGRAM RETURN instruction, with space

switching) 10-75
PR/SM (Processor Resource/Systems Manager) 1-14,

1-15
precision (floating-point) 9-1
preferred sign codes 8-2
prefetch control 15-24
prefetching

See also CCW prefetch control
access exceptions not recognized for 6-39
channel-control check during 16-27
channel-data check during 16-27
handling of invalid CBC in storage keys during 11-8
of ART-table and DAT-table entries 5-84
of data for I/O 15-30
of instructions 5-82
of operands 5-86

prefix 3-15
set by signal-processor order 4-53
store-status save area for 3-55

prefix area 3-15
prenormalization 18-3
primary address space 3-16
primary ASN (PASN) 3-17

in linkage-stack state entry 5-72
primary AST entry (PASTE)

origin (PASTEO) 5-30, 5-44

 Index X-31

primary authority 3-24
exception 6-26

primary designation-type-control bits 3-30
primary interruption condition (I/O) 16-4
primary-list bit 5-45
primary private-space-control bit 3-29
primary real-space-control bit 3-30
primary real-space token origin (PRSTKO) 3-30
primary region table

designation (PRTD) 3-29
length (PRTL) 3-30
origin (PRTO) 3-29

primary segment table
designation (PSTD) 3-29
length (PSTL) 3-30
origin (PSTO) 3-29

primary-space access-list designation (PSALD) 5-46
primary-space mode 3-28
primary space-switch-event-control bit 3-29
primary-status bit (I/O) 16-18
primary storage-alteration-event-control bit 3-29
primary subspace-group-control bit 3-29
primary virtual address 3-4

effective address-space-control element for 3-34
priority

of access exceptions 6-43
of ASN-translation exceptions 6-46
of data exceptions 6-15
of external-interruption conditions 6-11
of I/O interruptions 16-4
of interruptions (CPU) 6-48
of PER events 4-28
of program-interruption conditions 6-39

for arithmetic exceptions 6-15
of subspace-replacement exceptions 6-47
of trace exceptions 6-47

private bit 5-47
private-space control

effect on
fetch-protection override 3-11
low-address protection 3-12
use of common segments 3-33

private-space-control bit 3-29
home 3-31
primary 3-29
secondary 3-30

privileged instructions 4-6
control 10-1
I/O 14-1

privileged-operation exception 6-27
problem state 4-6

bit in entry-table entry 5-32
bit in PSW 4-6
compatibility 1-16

processing backup (synchronous machine-check condi-
tion) 11-18

processing damage (synchronous machine-check condi-
tion) 11-19

processor
See CPU

processor-availability facility 1-13
Processor Resource/Systems Manager (PR/SM) 1-14,

1-15
program 5-38

channel
See channel program

exceptions 6-14
execution of 5-2
fields of SCHIB modifiable by 15-9
initial loading of 4-50, 17-17
interruption 6-14

priority of 6-15, 6-39
mask (in PSW) 4-6

PROGRAM CALL instruction 10-62
trace entry for 4-22
type of 5-32

program-call state entry 5-71, 10-65
program check

as subchannel status 16-24
measurement-block 16-33

program-controlled interruption (I/O)
See PCI

program-event recording
See PER

program events
See PER events

program mask
validity bit for 11-21

PROGRAM RETURN instruction 10-75
program-status word

See PSW
PROGRAM TRANSFER instruction 10-79

trace entry for 4-22
programmable field of TOD clock 4-38
protection (storage) 3-9

access-list-controlled
See access-list-controlled protection

during tracing 4-23
fetch

See fetch protection
key-controlled

See key-controlled protection
low-address

See low-address protection
page

See page protection
protection check

as subchannel status 16-26
measurement-block 16-33

protection exception 6-27
as an access exception 6-36, 6-43

X-32 z/Architecture Principles of Operation

PRSD (primary real-space designation) 3-29
PRSTKO (primary real-space token origin) 3-30
PRTD (primary region-table designation) 3-29
PRTL (primary region-table length) 3-30
PRTO (primary region-table origin) 3-29
PSALD (primary-space access-list designation) 5-46
pseudo AST entry 3-18
PSTD (primary segment-table designation) 3-29
PSTL (primary segment-table length) 3-30
PSTO (primary segment-table origin) 3-29
PSW (program-status word) 2-3, 4-3

current 4-3, 5-10
stored during interruption 6-2

exceptions associated with 6-9
format error 6-9
in linkage-stack state entry 5-72
in program execution 5-10
saved 4-47
store-status save area for 3-55
validity bits for 11-21

PSW key 4-5
control bit 5-65
in entry-table entry 5-66
in trace entry 4-22
used as access key 3-9
validity bit for 11-21

PSW-key mask (PKM) 5-25
control bit 5-65
in linkage-stack state entry 5-72

PT (PROGRAM TRANSFER) instruction 10-79
PT-cp (PROGRAM TRANSFER instruction, to current

primary) 10-80
PT-ss (PROGRAM TRANSFER instruction, with space

switching) 10-80
PTLB (PURGE TLB) instruction 10-85
PTO (page-table origin) 3-33
publications

other related documents xxi
PURGE ALB instruction 10-85
PURGE TLB instruction 10-85
PX (page index) 3-27

Q
QNaN (quiet NaN) 19-6
quadword-concurrent storage references 5-89
queuing

FIFO
example for lock and unlock A-47

LIFO
example for lock and unlock A-46

quiet NaN (QNaN) 19-6

R
R field of instruction 5-6
radix

binary 9-1
hexadecimal 9-1

rate control 12-4
RCHP (RESET CHANNEL PATH) instruction 14-8
real address 3-4
real mode 3-28
real space

token origin (RSTKO) 3-29
real-space-control bit 3-31

home 3-31
primary 3-30
secondary 3-30

real-space designation (RSD)
home 3-31
primary 3-29
secondary 3-30

real storage 3-4
receiver check (signal-processor status) 4-58
reconfiguration of I/O system 17-20
recovery

as class of machine-check condition 11-12
channel-subsystem 17-21
system 11-16

subclass-mask bit for 11-25
reduced-authority state 10-7
redundancy 11-2
reference

bit in storage key 3-8
multiple-access 5-88
recording 3-14
sequence for storage 5-78

See also sequence
single-access 5-88

region 3-27
region first index (RFX) 3-27
region-first-translation exception 6-28

as an access exception 6-43
region index (RX)

in virtual address 3-27
region-invalid bit (in region-table entry) 3-32
region second index (RSX) 3-27
region-second-translation exception 6-28

as an access exception 6-43
region table

origin (RTO) 3-29
region-table designation (RTD) 3-29

home 3-31
primary 3-29
secondary 3-30

region-table entry (RTE) 3-32
region third index (RTX) 3-27

 Index X-33

region-third-translation exception 6-29
as an access exception 6-43

region-translation exception 6-28
register

access 2-4
base-address 2-3
control 2-4
designation of 5-6
floating-point 2-3, 9-2
floating-point-control 19-2
general 2-3
index 2-3
prefix 3-15
save areas for 3-56, 11-22
validation of 11-10
validity bits for 11-21

relative branching 5-9
remainder 19-9

result of DIVIDE TO INTEGER 19-29
remaining free space (in linkage stack) 5-69
remote operating stations 12-1
reporting-source code (RSC) 17-24
reporting-source ID (RSID) 17-25
repressible machine-check conditions 11-12
reset 4-43, 17-13

channel-path 17-13
clear 4-48
CPU 4-47
effect on CPU state 4-2
effect on TOD clock 4-36
I/O-system 17-13

as part of subsystem reset 4-48
initial CPU 4-48
power on 4-49
subsystem 4-48
summary of functions 4-45
summary of functions performed by manual initiation

of 4-44
system-reset-clear key 12-5
system-reset-normal key 12-5

RESET CHANNEL PATH instruction 14-8
See also channel-path-reset function
function initiated by 15-45

RESET REFERENCE BIT EXTENDED
instruction 10-85

reset signal (I/O) 17-13
in channel-path reset 17-13
in I/O-system reset 17-14, 17-15
issued as part of RCHP 15-45

resetting event
See path verification required

resolution
of clock comparator 4-41
of CPU timer 4-42
of TOD clock 4-36

restart
interruption 6-47
key 12-4
signal-processor order 4-52

result operand 5-3
resume function 13-8, 15-18

See also start function
initiated by RESUME SUBCHANNEL 14-10
path management for 15-19
pending 16-13

RESUME PROGRAM instruction 10-86
RESUME SUBCHANNEL instruction 14-10

See also resume function
channel-program requirements for 14-11
count of in measurement block 17-4
function initiated by 15-18

retry
CPU 11-2
I/O command

See command retry
RFX (region first index) 3-27
RI instruction format 5-5
RIE instruction format 5-5
RIL instruction format 5-5
RLL (ROTATE LEFT SINGLE LOGICAL)

instruction 7-159
RLLG (ROTATE LEFT SINGLE LOGICAL)

instruction 7-159
ROTATE LEFT SINGLE LOGICAL instruction 7-159
rounding (decimal) 8-11

example A-38
rounding (floating-point)

of BFP result 19-7
of HFP result 18-17

rounding action
summary of 9-3

RP (RESUME PROGRAM) instruction 10-86
RR instruction format 5-5
RRBE (RESET REFERENCE BIT EXTENDED) instruc-

tion 10-85
RRE instruction format 5-5
RRF instruction format 5-5
RS instruction format 5-5
RSC (reporting-source code) 17-24
RSCH (RESUME SUBCHANNEL) instruction 14-10
RSI instruction format 5-5
RSID (reporting-source ID) 17-25
RSL instruction format 5-5
RSTKO (real-space token origin) 3-29
RSX (region second index) 3-27
RSY instruction format 5-5
RTE (region-table entry) 3-32
RTO (region-table origin) 3-29
RTX (region third index) 3-27
running (state of TOD clock) 4-36

X-34 z/Architecture Principles of Operation

RX (region index) 3-27
RX instruction format 5-5
RXE instruction format 5-5
RXF instruction format 5-5
RXY instruction format 5-5

S
S (SUBTRACT) binary instruction 7-174
S instruction format 5-5
SAC (SET ADDRESS SPACE CONTROL)

instruction 10-89
SACF (SET ADDRESS SPACE CONTROL FAST)

instruction 10-89
SAL (SET ADDRESS LIMIT) instruction 14-11
SAM24 (SET ADDRESSING MODE) instruction 7-161
SAM31 (SET ADDRESSING MODE) instruction 7-161
SAM64 (SET ADDRESSING MODE) instruction 7-161
sample count (in ESW) 17-4
SAR (SET ACCESS) instruction 7-161
SASCE (secondary address-space-control

element) 3-30
SASN (secondary address-space number) 3-17

in trace entry 4-22
save areas for registers 3-56, 11-22
saved PSW 4-47
SCHIB (subchannel-information block) 15-1

as operand of
MODIFY SUBCHANNEL 14-7
STORE SUBCHANNEL 14-17

Measurement-Block Address (MBA) in 15-8
model-dependent area in 15-8
path-management-control word (PMCW) in 15-2
subchannel-status word (SCSW) in 15-8
summary of modifiable fields in 15-9

SCHM (SET CHANNEL MONITOR) instruction 14-12
SCK (SET CLOCK) instruction 10-90
SCKC (SET CLOCK COMPARATOR)

instruction 10-91
SCKPF (SET CLOCK PROGRAMMABLE FIELD)

instruction 10-91
SCP-initiated reset 1-13
SCSW (subchannel-status word) 16-6

activity-control field in 16-13
CCW address in 16-18
count in 16-29
device-status field in 16-23
function-control field in 16-12
in IRB 16-6
in SCHIB 15-8
status-control field in 16-16
subchannel-control field in 16-11
subchannel-status field in 16-23

SD (SUBTRACT NORMALIZED) HFP
instruction 18-22

SDB (SUBTRACT) BFP instruction 19-44
SDBR (SUBTRACT) BFP instruction 19-44
SDR (SUBTRACT NORMALIZED) HFP

instruction 18-22
SE (SUBTRACT NORMALIZED) HFP

instruction 18-22
SEARCH STRING instruction 7-160

examples A-29
SEB (SUBTRACT) BFP instruction 19-44
SEBR (SUBTRACT) BFP instruction 19-44
secondary address space 3-16
secondary ASN (SASN) 3-17

control bit 5-66
in linkage-stack state entry 5-72

secondary authority 3-24
exception 6-29

secondary-CCW address validity (in ERW) 16-37
secondary designation-type-control bits 3-30
secondary error (in subchannel logout) 16-35
secondary interruption condition (I/O) 16-4
secondary private-space-control bit 3-30
secondary real-space-control bit 3-30
secondary real-space token origin (SRSTKO) 3-30
secondary region table

designation (SRTD) 3-30
length (SRTL) 3-30
origin (SRTO) 3-30

secondary segment table
designation (SSTD) 3-30
length (SSTL) 3-30
origin (SSTO) 3-30

secondary-space-control bit 3-29, 5-26
secondary-space mode 3-28
secondary-status bit (I/O) 16-18
secondary storage-alteration-event-control bit 3-30
secondary subspace-group-control bit 3-30
secondary virtual address 3-4

effective address-space-control element for 3-34
segment 3-27
segment index (SX) 3-27
segment-invalid bit (in segment-table entry) 3-33
segment table 3-33

length (STL) 3-29
origin (STO) 3-29

segment-table designation (STD)
home 3-31
obtaining of in access-register translation 5-37
primary 3-29
secondary 3-30

segment-translation exception 6-30
as an access exception 6-36, 6-43

self-describing block of I/O data 15-34
semiprivileged

instructions 4-6
descriptions of 10-1

program authorization 5-24
summary of 5-28

 Index X-35

semiprivileged (continued)
programs 4-6, 5-24

sense
as signal-processor order 4-52

sequence
conceptual 5-78
instruction-execution 5-2
of CCWs that is invalid 16-26
of storage references 5-78

ART-table and DAT-table entries 5-84
for floating-point data 9-2
instructions 5-82
operands 5-85
storage keys 5-84

sequence code (in subchannel logout) 16-35
field-validity flag for 16-34

SER (SUBTRACT NORMALIZED) HFP
instruction 18-22

serial-I/O channel-to-channel adapter
publication referenced xxi

serial-I/O interface 13-2
publication referenced xxi

serialization 5-91
caused by I/O instructions 14-1
channel-program 5-93
CPU 5-91
in completion of store operations 5-86

service-call-logical-processor (SCLP) facility 1-14
service-processor damage 11-18
service processor inoperative (signal-processor

status) 4-58
service-signal external interruption 6-13

subclass-mask bit for 6-13
SET ACCESS instruction 7-161
SET ADDRESS LIMIT instruction 14-11
SET ADDRESS SPACE CONTROL FAST

instruction 10-89
SET ADDRESS SPACE CONTROL instruction 10-89
SET ADDRESSING MODE instruction 7-161
SET ADDRESSING MODE instructions 7-161
set architecture

signal-processor order 4-54
SET CHANNEL MONITOR instruction 14-12

effect on measurement modes of 17-1
SET CLOCK COMPARATOR instruction 10-91
SET CLOCK instruction 10-90
SET CLOCK PROGRAMMABLE FIELD

instruction 10-91
SET CPU TIMER instruction 10-92
SET FPC instruction 19-43
set prefix (signal-processor order) 4-53
SET PREFIX instruction 10-92
SET PROGRAM MASK instruction 7-162
SET PSW KEY FROM ADDRESS instruction 10-93
SET ROUNDING MODE (SRNM) 19-43

SET SECONDARY ASN instruction 10-93
access registers 5-42

set state (of TOD clock) 4-36
SET STORAGE KEY EXTENDED instruction 10-97
SET SYSTEM MASK instruction 10-97
SFPC (SET FPC) instruction 19-43
SG (SUBTRACT) binary instruction 7-174
SGF (SUBTRACT) binary instruction 7-174
SGFR (SUBTRACT) binary instruction 7-174
SGR (SUBTRACT) binary instruction 7-174
SH (SUBTRACT HALFWORD) instruction 7-174
shared storage

See storage sharing
shared TOD clock 4-36
SHIFT AND ROUND DECIMAL instruction 8-11

examples A-37
SHIFT LEFT DOUBLE instruction 7-162

example A-29
SHIFT LEFT DOUBLE LOGICAL instruction 7-163
SHIFT LEFT SINGLE instruction 7-163

example A-30
SHIFT LEFT SINGLE LOGICAL instruction 7-164
SHIFT RIGHT DOUBLE instruction 7-165
SHIFT RIGHT DOUBLE LOGICAL instruction 7-165
SHIFT RIGHT SINGLE instruction 7-166
SHIFT RIGHT SINGLE LOGICAL instruction 7-166
shifting

floating-point
See normalization

short binary-floating-point number 19-4
short hexadecimal-floating-point number 18-3
short I/O block 16-23
SHY (SUBTRACT HALFWORD) instruction 7-174
SI instruction format 5-5
SID

See subsystem-identification word
sign bit

binary 7-3
floating-point 18-1

sign codes (decimal) 8-2
signal (I/O) 17-12

clear
See clear signal

halt
See halt signal

reset
See reset signal

SIGNAL PROCESSOR instruction 10-98
orders 4-52
status 4-56

signaling NaN (SNaN) 19-6
signed binary

arithmetic 7-4
comparison 7-5
integer 7-3

examples A-2

X-36 z/Architecture Principles of Operation

significance
loss 18-1

in HFP addition 18-9
mask (in PSW) 4-6
starter (in EDIT) 8-7

significand 19-4
SIGP

See SIGNAL PROCESSOR instruction
SIGP (SIGNAL PROCESSOR) instruction 10-98
single-access reference 5-88
single-path mode 15-3, 15-21
SIY instruction format 5-5
size notation xx
size of address 3-5

controlled by addressing mode 5-7
in CCW 15-28

skip flag in CCW 15-28
effect on data transfer of 15-35

SL (SUBTRACT LOGICAL) instruction 7-175
SLA (SHIFT LEFT SINGLE) instruction 7-163

example A-30
SLAG (SHIFT LEFT SINGLE) instruction 7-163
SLB (SUBTRACT LOGICAL WITH BORROW) instruc-

tion 7-176
SLBG (SUBTRACT LOGICAL WITH BORROW) instruc-

tion 7-176
SLBGR (SUBTRACT LOGICAL WITH BORROW)

instruction 7-176
SLBR (SUBTRACT LOGICAL WITH BORROW) instruc-

tion 7-176
SLDA (SHIFT LEFT DOUBLE) instruction 7-162

example A-29
SLDL (SHIFT LEFT DOUBLE LOGICAL)

instruction 7-163
SLGR (SUBTRACT LOGICAL) instruction 7-175
SLI (suppress-length-indication) flag in CCW 15-28

for immediate operations 15-31
SLL (SHIFT LEFT SINGLE LOGICAL)

instruction 7-164
SLLG (SHIFT LEFT SINGLE LOGICAL)

instruction 7-164
SLR (SUBTRACT LOGICAL) instruction 7-175
SLY (SUBTRACT LOGICAL) instruction 7-175
SNaN (signaling NaN) 19-6
solicited interruption condition (I/O) 16-3
solid errors 11-5
sorting

extended 1-13
sorting instructions

See also COMPARE AND FORM CODEWORD
instruction, UPDATE TREE instruction

example A-51
source of interruption

identified by interruption code 6-5
SP (SUBTRACT DECIMAL) instruction 8-12

space-switch event 6-30
control bit

in ASTE 3-20
space-switch-event-control bit

home 3-31
primary 3-29

special-operation exception 6-31
special QNaN 19-6
specification exception 6-32
SPKA (SET PSW KEY FROM ADDRESS)

instruction 10-93
SPM (SET PROGRAM MASK) instruction 7-162
SPT (SET CPU TIMER) instruction 10-92
SPX (SET PREFIX) instruction 10-92
SQD (SQUARE ROOT) HFP instruction 18-21
SQDB (SQUARE ROOT) BFP instruction 19-44
SQDBR (SQUARE ROOT) BFP instruction 19-44
SQDR (SQUARE ROOT) HFP instruction 18-21
SQE (SQUARE ROOT) HFP instruction 18-21
SQEB (SQUARE ROOT) BFP instruction 19-44
SQEBR (SQUARE ROOT) BFP instruction 19-44
SQER (SQUARE ROOT) HFP instruction 18-21
SQUARE ROOT BFP instructions 19-44
SQUARE ROOT HFP instructions 18-21
SQXBR (SQUARE ROOT) BFP instruction 19-44
SQXR (SQUARE ROOT) HFP instruction 18-21
SR (SUBTRACT) binary instruction 7-174
SRA (SHIFT RIGHT SINGLE) instruction 7-166
SRAG (SHIFT RIGHT SINGLE) instruction 7-166
SRDA (SHIFT RIGHT DOUBLE) instruction 7-165
SRDL (SHIFT RIGHT DOUBLE LOGICAL)

instruction 7-165
SRL (SHIFT RIGHT SINGLE LOGICAL)

instruction 7-166
SRLG (SHIFT RIGHT SINGLE LOGICAL)

instruction 7-166
SRNM (SET ROUNDING MODE) 19-43
SRP (SHIFT AND ROUND DECIMAL) instruction 8-11

examples A-37
SRSD (secondary real-space designation) 3-30
SRST (SEARCH STRING) instruction 7-160

examples A-29
SRTD (secondary region-table designation) 3-30
SRTL (secondary region-table length) 3-30
SRTO (secondary region-table origin) 3-30
SS instruction format 5-5
SSAR (SET SECONDARY ASN) instruction 10-93

access registers 5-42
SSAR-cp (SET SECONDARY ASN instruction, to

current primary) 10-93
SSAR-ss (SET SECONDARY ASN instruction, with

space switching) 10-93
SSASTEO (subspace-AST-entry origin) 5-57
SSASTESN (subspace-AST-entry sequence

number) 5-58

 Index X-37

SSCH (START SUBCHANNEL) instruction 14-14
SSE instruction format 5-5
SSKE (SET STORAGE KEY EXTENDED)

instruction 10-97
SSM (SET SYSTEM MASK) instruction 10-97
SSM-suppression-control bit 6-31, 10-97
SSTD (secondary segment-table designation) 3-30
SSTL (secondary segment-table length) 3-30
SSTO (secondary segment-table origin) 3-30
ST (STORE) binary instruction 7-167
stack-empty exception 6-34
stack-full exception 6-34
stack-operation exception 6-34
stack-specification exception 6-34
stack-type exception 6-35
stacking process 5-73
stacking PROGRAM CALL 5-62
STAM (STORE ACCESS MULTIPLE)

instruction 7-167
STAMY (STORE ACCESS MULTIPLE)

instruction 7-167
standalone dump 12-5
standard epoch (for TOD clock) 4-38
STAP (STORE CPU ADDRESS) instruction 10-100
start (CPU)

function 4-2
key 12-4
signal-processor order 4-52

start function (I/O) 13-6, 15-18
bit in SCSW for 16-12
initiated by START SUBCHANNEL 14-14
path management for 15-19
pending 16-14

START SUBCHANNEL instruction 14-14
See also start function for I/O
count of in measurement block 17-4
deferred condition code for (in SCSW) 16-8
function initiated by 15-18
operation-request block (ORB) used by 15-22

state
CPU

See CPU state
TOD-clock 4-36

state entry 5-71
status

alert 16-16
device 16-23

effect of clear function on 15-15
field-validity flag for (in subchannel logout) 16-34
with inappropriate bit combination 16-35

device-status check 16-35
for SIGNAL PROCESSOR 4-52, 10-98
initial-status interruption

See initial-status-interruption control
intermediate 16-17
primary 16-18

status (continued)
program

See PSW
resulting from signal-processor orders 4-56
secondary 16-18
storing of 4-50

manual key for 12-5
subchannel 16-23

status-control field (in SCSW) 16-16
status modifier (device status)

effect of in command chaining 15-35
status pending 16-18
status-verification facility 17-20
STC (STORE CHARACTER) instruction 7-168
STCK (STORE CLOCK) instruction 7-169
STCKC (STORE CLOCK COMPARATOR)

instruction 10-99
STCKE (STORE CLOCK EXTENDED)

instruction 7-170
STCM (STORE CHARACTERS UNDER MASK) instruc-

tion 7-168
examples A-30

STCMH (STORE CHARACTERS UNDER MASK)
instruction 7-168

STCMY (STORE CHARACTERS UNDER MASK)
instruction 7-168

STCPS (STORE CHANNEL PATH STATUS)
instruction 14-16

STCRW (STORE CHANNEL REPORT WORD) instruc-
tion 14-16

STCTG (STORE CONTROL) instruction 10-99
STCTL (STORE CONTROL) instruction 10-99
STCY (STORE CHARACTER) instruction 7-168
STD

See segment-table designation
STD (STORE) floating-point instruction 9-11
STDY (STORE) floating point instruction 9-11
STE (STORE) floating-point instruction 9-11
STEY (STORE) floating point instruction 9-11
STFL (STORE FACILITY LIST) instruction 10-102
STFL facility list 3-54
STFPC (STORE FPC) instruction 19-44
STG (STORE) binary instruction 7-167
STH (STORE HALFWORD) instruction 7-172
STHY (STORE HALFWORD) instruction 7-172
STIDP (STORE CPU ID) instruction 10-100
STL (segment-table length) 3-29
STM (STORE MULTIPLE) instruction 7-172

example A-30
STMG (STORE MULTIPLE) instruction 7-172
STMH (STORE MULTIPLE HIGH) instruction 7-172
STMY (STORE MULTIPLE) instruction 7-172
STNSM (STORE THEN AND SYSTEM MASK) instruc-

tion 10-115
STO (segment-table origin) 3-29

X-38 z/Architecture Principles of Operation

stop
function 4-2
key 12-4
signal-processor order 4-52

stop and store status (signal-processor order) 4-53
stopped (signal-processor status) 4-58
stopped state

of CPU 4-1
effect on completion of store operations 5-86

of TOD clock 4-36
storage 3-1, 3-29

absolute 3-3
address wraparound

See wraparound
addressing 3-2

See also address
alteration

space-control bit 4-24
alteration manual controls 12-2
alteration PER event 3-29, 4-31

bits for 3-29
mask for 4-24

assigned locations in 3-51
auxiliary 3-1, 3-26
block 3-3

testing for usability of 10-118
buffer (cache) 3-2
clearing of

See clearing operation
concurrency of access for references to 5-89
configuration of 3-3
direct-access 3-1
display 12-2
error 11-19

indirect 11-20
expanded 2-2
failing address in

See failing-storage address
interlocked update 5-86
interlocks for virtual references 5-80
main 3-1
noninterlocked update of 5-86
nonvolatile 3-2
operand 5-7

reference to (fetch, store, update) 5-86
update reference 5-86

operand consistency 5-88
examples A-47, A-49

prefixing for 3-15
real 3-4
sequence of references to 5-78

for floating-point data 9-2
size

notation for xx
validation of 11-6
virtual 3-26

storage (continued)
volatile 3-2

effect of power-on reset on 4-49
storage-access code (in subchannel logout) 16-34
storage-alteration-event bit 4-25
storage-alteration-event-control bit 3-29

home 3-31
primary 3-29
secondary 3-30

storage-area designation
for I/O operations 15-29
for PER events 4-30

storage degradation (machine-check condition) 11-20
storage key 3-8

error in 11-20
sequence of references to 5-84
testing for usability of 10-118
validation of 11-7

storage-key function 1-13
storage-logical-validity bit 11-22
storage protection 3-9

during tracing 4-23
storage-protection-override-control bit 3-10
storage reconfiguration 1-13
storage sharing

by address spaces 3-26
by CPUs and the channel subsystem 3-3
examples A-43
in multiprocessing 4-51

STORE ACCESS MULTIPLE instructions 7-167
STORE binary instructions 7-167
STORE CHANNEL PATH STATUS instruction 14-16
STORE CHANNEL REPORT WORD instruction 14-16

channel-report word (CRW) stored by 17-23
STORE CHARACTER instructions 7-168
STORE CHARACTERS UNDER MASK instruction

examples A-30
STORE CHARACTERS UNDER MASK

instructions 7-168
STORE CLOCK COMPARATOR instruction 10-99
STORE CLOCK EXTENDED instruction 7-170
STORE CLOCK instruction 7-169
STORE CONTROL instruction 10-99
STORE CPU ADDRESS instruction 10-100
STORE CPU ID instruction 10-100
STORE CPU TIMER instruction 10-101
STORE FACILITY LIST instruction 10-102
STORE floating-point instructions 9-11
STORE FPC instruction 19-44
STORE HALFWORD instructions 7-172
STORE MULTIPLE HIGH instruction 7-172
STORE MULTIPLE instruction

example A-30
STORE MULTIPLE instructions 7-172
STORE PAIR TO QUADWORD instruction 7-173

 Index X-39

STORE PREFIX instruction 10-102
STORE REAL ADDRESS instruction 10-103
store reference 5-86

access exceptions for 6-39
STORE REVERSED instructions 7-173
store status 4-50

key 12-5
signal-processor order for 4-53

store-status architectural-mode identification 3-53
store status at address (signal-processor order) 4-53
STORE SUBCHANNEL instruction 14-17
STORE SYSTEM INFORMATION instruction 10-104
STORE THEN AND SYSTEM MASK

instruction 10-115
STORE THEN OR SYSTEM MASK instruction 10-115
store using real address (PER event) 4-32
store-using-real-address-event mask 4-24
STORE USING REAL ADDRESS instruction 10-115
STOSM (STORE THEN OR SYSTEM MASK) instruc-

tion 10-115
STPQ (STORE PAIR TO QUADWORD)

instruction 7-173
STPT (STORE CPU TIMER) instruction 10-101
STPX (STORE PREFIX) instruction 10-102
STRAG (STORE REAL ADDRESS) instruction 10-103
streaming-mode control 15-23
string of interruptions 4-3, 6-48

caused by clock comparator 4-41
caused by CPU timer 4-43

STRV (STORE REVERSED) instruction 7-173
STRVG (STORE REVERSED) instruction 7-173
STRVH (STORE REVERSED) instruction 7-173
STSCH (STORE SUBCHANNEL) instruction 14-17
STSI (STORE SYSTEM INFORMATION)

instruction 10-104
STURA (STORE USING REAL ADDRESS)

instruction 10-115
STURG (STORE USING REAL ADDRESS)

instruction 10-115
STY (STORE) binary instruction 7-167
SU (SUBTRACT UNNORMALIZED) HFP

instruction 18-22
subchannel 13-2

active allegiance for 15-12
dedicated allegiance for 15-12
effect of I/O-system reset on 17-15
idle 16-13
working allegiance for 15-12

subchannel-active bit 16-15
subchannel addressing 13-5
subchannel control information in SCSW 16-11
subchannel enabled bit in PMCW 15-2
subchannel-information block

See SCHIB
subchannel key 15-22, 16-8

used as access key 3-9

subchannel key (continued)
used for IPL 17-18

subchannel key check (in subchannel logout) 16-32
subchannel logout 16-32
subchannel number 13-5
subchannel status 16-23
subchannel-status word

See SCSW
subclass-mask bits

external-interruption 6-11
I/O-interruption

See I/O-interruption subclass mask
machine-check 11-24

subroutine linkage 5-11
subspace-active bit 5-57
subspace-AST-entry origin (SSASTEO) 5-57
subspace-AST-entry sequence number

(SSASTESN) 5-58
subspace-group control 3-29
subspace-group-control bit

primary 3-29
secondary 3-30

subspace groups 5-56
introduction to 5-15

subspace-replacement
exceptions 6-47
operations 5-60

subsystem-identification word (SID)
subsystem-identification word (SID)

assigned storage locations for 3-54
subsystem-linkage-control bit 5-26, 5-30
subsystem reset 4-48
subsystem-identification word (SID) 14-1
SUBTRACT BFP instructions 19-44
SUBTRACT binary instructions 7-174
SUBTRACT DECIMAL instruction 8-12
SUBTRACT HALFWORD instructions 7-174
SUBTRACT LOGICAL instructions 7-175
SUBTRACT LOGICAL WITH BORROW

instructions 7-176
SUBTRACT NORMALIZED

See SUBTRACT BFP instructions
SUBTRACT NORMALIZED HFP instructions 18-22
SUBTRACT UNNORMALIZED HFP instructions 18-22
successful-branching PER event 4-30

mask for 4-24
SUPERVISOR CALL instruction 7-177
supervisor-call interruption 6-47
supervisor state 4-6
support functions (I/O) 17-1
suppress-length-indication flag in CCW

See SLI
suppress-suspended-interruption control (I/O) 15-25,

16-11
used for IPL 17-18

X-40 z/Architecture Principles of Operation

suppression
exceptions to 5-23
of instruction execution 5-20
of unit of operation 5-22

suppression on protection 3-12
SUR (SUBTRACT UNNORMALIZED) HFP

instruction 18-22
suspend control 15-22
suspend-control bit 16-8

used for IPL 17-18
suspend flag in CCW 15-28

invalid 16-25
suspend function 13-8
suspended bit (in SCSW) 16-16
suspension of channel-program execution 15-38

effect on DCTI of 15-40
intermediate interruption condition for 16-17

SVC (SUPERVISOR CALL) instruction 7-177
SW (SUBTRACT UNNORMALIZED) HFP

instruction 18-22
swapping

by COMPARE (DOUBLE) AND SWAP
instructions 7-53

by EXCLUSIVE OR instruction 7-107
SWR (SUBTRACT UNNORMALIZED) HFP

instruction 18-22
SX (segment index) 3-27
SXBR (SUBTRACT) BFP instruction 19-44
SXR (SUBTRACT NORMALIZED) HFP

instruction 18-22
SY (SUBTRACT) binary instruction 7-174
symbol translation

use by VTAM 7-80
symbol-translation-option bit 7-73
synchronization

checkpoint 11-3
of CPU timer with TOD clock 4-42
of TOD clocks 4-36, 4-40

synchronization control 15-24
synchronous machine-check-interruption

conditions 11-18
system

manual control of 12-1
organization of 2-1

system check stop 11-11
system damage 11-16
system mask (in PSW) 4-3

validity bit for 11-21
system recovery 11-16
system reset

See reset
I/O

See I/O-system reset
system-reset-clear key 12-5
system-reset-normal key 12-5

System/360 and System/370 I/O interface
See parallel-I/O interface

T
T (tera) xx
table of powers of 2 G-1
table-type bits 3-32, 3-33

in region-table entry 3-32
in segment-table entry 3-33

tables
ASN

See ASN first table, ASN second table
authority

See authority table
DAT

See page table, segment table, region table
entry

See entry table
linkage

See linkage table
page

See page table
region

See region table
segment

See segment table
trace 4-10
translation 3-31

TAI (International Atomic Time) related to UTC 4-38
TAM (TEST ADDRESSING MODE) instruction 7-177
TAR (TEST ACCESS) instruction 10-116
target instruction 7-108
TB (TEST BLOCK) instruction 10-118
TBDER (CONVERT HFP TO BFP) floating-point instruc-

tion
TBDR (CONVERT HFP TO BFP) floating-point instruc-

tion 9-9
TBEDR (CONVERT HFP TO BFP) floating point instruc-

tion 9-9
TCDB (TEST DATA CLASS) BFP instruction 19-45
TCEB (TEST DATA CLASS) BFP instruction 19-45
TCXB (TEST DATA CLASS) BFP instruction 19-45
termination

of I/O operations
See conclusion of I/O operations

of instruction execution 5-21
for exigent machine-check conditions 11-11

of unit of operation 5-22
for exigent machine-check conditions 11-11

termination code (in subchannel logout) 16-34
field-validity flag for 16-34

TEST ACCESS instruction 10-116
TEST ADDRESSING MODE instruction 7-177
TEST AND SET instruction 7-177

 Index X-41

TEST BLOCK instruction 10-118
TEST DATA CLASS BFP instructions 19-45
TEST DECIMAL instruction 8-13
test indicator 12-5
TEST PENDING INTERRUPTION instruction 14-18,

14-19
TEST PROTECTION instruction 10-120
TEST SUBCHANNEL instruction 14-20

interruption-response block (IRB)used by 16-6
TEST UNDER MASK HIGH instruction 7-178
TEST UNDER MASK instruction

examples A-31
TEST UNDER MASK instructions 7-178
TEST UNDER MASK LOW instruction 7-178
testing for storage-block and storage-key

usability 10-118
THDER (CONVERT BFP TO HFP) floating-point

instruction 9-8
THDR (CONVERT BFP TO HFP) floating-point instruc-

tion 9-8
TIC (transfer in channel) 15-41

invalid sequence of 16-26
time-of-day clock

See TOD clock
timer

See CPU timer
timing

channel-subsystem 17-2
timing facilities 4-36
timing-facility bit (in PMCW) 15-4
timing-facility damage 11-16

for TOD clock 4-37
TLB (translation-lookaside buffer) 3-43

entries 3-43
attachment of 3-43
clearing of 3-46
effect of translation changes on 3-45
usable state 3-44

TM (TEST UNDER MASK) instruction 7-178
examples A-31

TMH (TEST UNDER MASK HIGH) instruction 7-178
TMHH (TEST UNDER MASK) instruction 7-178
TMHL (TEST UNDER MASK) instruction 7-178
TML (TEST UNDER MASK LOW) instruction 7-178
TMLH (TEST UNDER MASK) instruction 7-178
TMLL (TEST UNDER MASK) instruction 7-178
TMY (TEST UNDER MASK) instruction 7-178
TOD clock 4-36

effect of power-on reset on 4-49
effect on clock-comparator interruption 6-11
effect on CPU-timer decrementing 4-42
effect on CPU-timer interruption 6-11
manual control of 4-36, 12-5
unique values of 4-37
validation of 11-10
value in trace entry 4-22

TOD-clock-control-override control 4-36
TOD-clock programmable field 4-38
TOD-clock programmable register 4-38

save areas for 3-56
validity bit for 11-22

TOD-clock-sync-control bit 4-36, 4-40
TOD-clock-synchronization facility 4-40
TP (TEST DECIMAL) instruction 8-13
TPI (TEST PENDING INTERRUPTION)

instruction 14-18, 14-19
interruption code stored by 14-19

TPROT (TEST PROTECTION) instruction 10-120
TR (TRANSLATE) instruction 7-179

example A-31
trace 4-10

entries 4-13
entry address 4-13
exceptions 6-47
table exception 6-35

TRACE instruction 10-123
trace entry for 4-22

TRACG (TRACE) instruction 10-123
trailer entry 5-70
transfer in channel

See TIC
transferring program control 5-61
TRANSLATE AND TEST instruction 7-180

example A-32
TRANSLATE EXTENDED instruction 7-181
TRANSLATE instruction 7-179

example A-31
TRANSLATE ONE TO ONE instruction 7-183
TRANSLATE ONE TO TWO instruction 7-183
TRANSLATE TWO TO ONE instruction 7-183
TRANSLATE TWO TO TWO instruction 7-183
translation

address 3-26
See also dynamic address translation

exception identification 3-53
lookaside buffer

See TLB
PC-number 5-30
specification exception 6-35
tables for 3-31

translation modes 3-28
translation parameters 3-28
translation path 3-44
trap control block 10-125
TRAP instruction 10-124
trap save area 10-126
TRAP2 (TRAP) instruction 10-124
TRAP4 (TRAP) instruction 10-124
TRE (TRANSLATE EXTENDED) instruction 7-181
tree structure for sorting 7-191

example A-51

X-42 z/Architecture Principles of Operation

trial execution
for editing instructions and TRANSLATE

instruction 5-24
for PER 4-26

trimodal addressing 5-7
TROO (TRANSLATE ONE TO ONE) instruction 7-183
TROT (TRANSLATE ONE TO TWO) instruction 7-183
TRT (TRANSLATE AND TEST) instruction 7-180

example A-32
TRTO (TRANSLATE TWO TO ONE) instruction 7-183
TRTT (TRANSLATE TWO TO TWO) instruction 7-183
true zero (HFP number) 18-1
TS (TEST AND SET) instruction 7-177
TSCH (TEST SUBCHANNEL) instruction 14-20
two's complement binary notation 7-3

examples A-2
type of PROGRAM CALL 5-32

U
ulp (unit in the last place) 19-4
underflow

See exponent underflow
unit check (device status)

in establishing dedicated allegiance 15-12
unit of operation 5-21
unlock A-46

example with FIFO queuing A-48
example with LIFO queuing A-47

unnormalized floating-point number 18-3
HFP data only 9-1

unordered (comparison to a NaN) 19-8
unordered comparison 19-23
UNPACK ASCII instruction 7-189
UNPACK instruction 7-188

example A-33
UNPACK UNICODE instruction 7-190
UNPK (UNPACK) instruction 7-188

example A-33
UNPKA (PACK ASCII) instruction 7-189
UNPKU (PACK UNICODE) instruction 7-190
unprivileged instructions 4-6, 7-2
unsigned binary

arithmetic 7-4
integer 7-3

examples A-3
in address generation 5-8

unsolicited interruption condition (I/O) 16-3
unstack-suppression bit 5-68
unstacking process 5-76
update reference 5-86
UPDATE TREE instruction 7-191

example A-51
UPT (UPDATE TREE) instruction 7-191

example A-51

usable ALB entry 5-55
usable TLB entry 3-44
UTC (Coordinated Universal Time) used in TOD

epoch 4-38

V
valid ART-table entry 5-55
valid CBC 11-2
valid floating-point-register numbers 9-2
valid region-table, segment-table, or page-table

entry 3-43
validation 11-5

of registers 11-10
of storage 11-6
of storage key 11-7
of TOD clock 11-10

validity bit for backward stack-entry address 5-70
validity bit for forward-section-header address 5-70
validity bits

in machine-check-interruption code 11-21
in subchannel logout 16-34

variable-length field 3-3
version code 10-100
virtual address 3-4
virtual machine

extensions for 1-13
virtual storage 3-26
VM-data-space facility 1-13
volatile storage 3-2

effect of power-on reset on 4-49
VTAM use of symbol translation 7-80

W
WAIT (SVC)

example of routine to bypass A-46
wait indicator 12-6
wait-state bit

in PSW 4-6
warning (machine-check condition) 11-17

subclass-mask bit for 11-25
word 3-3
word-concurrent storage references 5-89
working allegiance (I/O) 15-12
wraparound

of instruction addresses 5-8
of PER addresses 4-30
of register numbers

for LOAD MULTIPLE instruction 7-117
for STORE MULTIPLE instruction 7-172

of storage addresses 3-6
controlled by addressing mode 3-6
for MOVE INVERSE instruction 7-122
for MOVE LONG EXTENDED instruction 7-127
for MOVE LONG instruction 7-123
for MOVE LONG UNICODE instruction 7-132

 Index X-43

wraparound (continued)
of TOD clock 4-36

X
X (EXCLUSIVE OR) instruction 7-106
X field of instruction 5-8
XA (extended architecture)

See 370-XA architecture
XC (EXCLUSIVE OR) instruction 7-107

examples A-19
XG (EXCLUSIVE OR) instruction 7-107
XGR (EXCLUSIVE OR) instruction 7-106
XI (EXCLUSIVE OR) instruction 7-107

example A-20
XIY (EXCLUSIVE OR) instruction 7-107
XR (EXCLUSIVE OR) instruction 7-106
XSCH (CANCEL SUBCHANNEL) instruction 14-4
XY (EXCLUSIVE OR) instruction 7-106

Z
Z bit (zero condition-code bit) 16-11

as cause of intermediate interruption
condition 16-17

z/Architecture architecture
additions to 1-1, 1-6
original highlights of 1-1

ZAP (ZERO AND ADD) instruction 8-13
example A-38

zero
instruction-length code 6-7
negative

See negative zero
normal meaning for byte value xxi
setting floating-point register to 9-11
true (HFP number) 18-1

ZERO AND ADD instruction 8-13
example A-38

zero condition code (Z bit in SCSW) 16-11
zone bits 8-1

moving of 7-136
zoned decimal numbers 8-1

examples A-4

X-44 z/Architecture Principles of Operation

Communicating Your Comments to IBM

z/Architecture
Principles of Operation

Publication No. SA22-7832-02

If you especially like or dislike anything about this book, please use one of the methods listed below to send your
comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number
if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this
book. However, the comments you send should pertain to only the information in this manual and the way in which
the information is presented. To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way
it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United States, you can give the RCF
to the local IBM branch office or IBM representative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+845+432-9405

� If you prefer to send comments electronically, use one of these network IDs:

– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.ibm.com/s390/os390/webqs.html

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your comments by phone.

Reader's Comments — We'd Like to Hear from You

z/Architecture
Principles of Operation

Publication No. SA22-7832-02

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
SA22-7832-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SA22-7832-02

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7832-�2

	Contents
	Notices
	Trademarks

	Preface
	Size and Number Notation
	Bytes, Characters, and Codes
	Other Publications
	Summary of Changes in Third Edition
	Summary of Changes in Second Edition

	Chapter 1. Introduction
	Highlights of Original z/Architecture
	General Instructions for 64-Bit Integers
	Other New General Instructions
	Floating-Point Instructions
	Control Instructions
	Trimodal Addressing
	Modal Instructions
	Effects on Bits 0-31 of a General Register

	Input/Output

	Additions to z/Architecture
	Extended-Translation Facility 2
	HFP Multiply-and-Add/Subtract Facility
	Message-Security Assist
	Long-Displacement Facility
	Extended-I/O-Measurement-Block Facility
	Extended-I/O-Measurement-Word Facility

	The ESA/390 Base
	The ESA/370 and 370-XA Base

	System Program
	Compatibility
	Compatibility among z/Architecture Systems
	Compatibility between z/Architecture and ESA/390
	Control-Program Compatibility
	Problem-State Compatibility

	Availability

	Chapter 2. Organization
	Main Storage
	Expanded Storage
	CPU
	PSW
	General Registers
	Floating-Point Registers
	Floating-Point-Control Register
	Control Registers
	Access Registers
	Cryptographic Facility

	External Time Reference
	I/O
	Channel Subsystem
	Channel Paths
	I/O Devices and Control Units

	Operator Facilities

	Chapter 3. Storage
	Storage Addressing
	Information Formats
	Integral Boundaries

	Address Types and Formats
	Address Types
	Absolute Address
	Real Address
	Virtual Address
	Primary Virtual Address
	Secondary Virtual Address
	AR-Specified Virtual Address
	Home Virtual Address
	Logical Address
	Instruction Address
	Effective Address

	Address Size and Wraparound
	Address Wraparound

	Storage Key
	Protection
	Key-Controlled Protection
	Storage-Protection-Override Control
	Fetch-Protection-Override Control

	Access-List-Controlled Protection
	Page Protection
	Low-Address Protection
	Suppression on Protection

	Reference Recording
	Change Recording
	Prefixing
	Address Spaces
	Changing to Different Address Spaces
	Address-Space Number

	ASN Translation
	ASN-Translation Controls
	Control Register 14

	ASN-Translation Tables
	ASN-First-Table Entries
	ASN-Second-Table Entries

	ASN-Translation Process
	ASN-First-Table Lookup
	ASN-Second-Table Lookup
	Recognition of Exceptions during ASN Translation

	ASN Authorization
	ASN-Authorization Controls
	Control Register 4
	ASN-Second-Table Entry

	Authority-Table Entries
	ASN-Authorization Process
	Authority-Table Lookup
	Recognition of Exceptions during ASN Authorization

	Dynamic Address Translation
	Translation Control
	Translation Modes
	Control Register 0
	Control Register 1
	Control Register 7
	Control Register 13

	Translation Tables
	Region-Table Entries
	Segment-Table Entries
	Page-Table Entries

	Translation Process
	Inspection of Real-Space Control
	Inspection of Designation-Type Control
	Lookup in a Table Designated by an Address-Space-Control Element
	Lookup in a Table Designated by a Region-Table Entry
	Page-Table Lookup
	Formation of the Real Address
	Recognition of Exceptions during Translation

	Translation-Lookaside Buffer
	TLB Structure
	Formation of TLB Entries
	Use of TLB Entries
	Modification of Translation Tables

	Address Summary
	Addresses Translated
	Handling of Addresses

	Assigned Storage Locations

	Chapter 4. Control
	Stopped, Operating, Load, and Check-Stop States
	Stopped State
	Operating State
	Load State
	Check-Stop State

	Program-Status Word
	Program-Status-Word Format

	Control Registers
	Tracing
	Control-Register Allocation
	Trace Entries
	Operation

	Program-Event Recording
	Control-Register Allocation and Address-Space-Control Element
	Operation
	Identification of Cause
	Priority of Indication

	Storage-Area Designation
	PER Events
	Successful Branching
	Instruction Fetching
	Storage Alteration
	Store Using Real Address

	Indication of PER Events Concurrently with Other Interruption Conditions

	Timing
	Time-of-Day Clock
	Format
	States
	Changes in Clock State
	Setting and Inspecting the Clock
	TOD Programmable Register

	TOD-Clock Synchronization
	Clock Comparator
	CPU Timer

	Externally Initiated Functions
	Resets
	CPU Reset
	Initial CPU Reset
	Subsystem Reset
	Clear Reset
	Power-On Reset

	Initial Program Loading
	Store Status

	Multiprocessing
	Shared Main Storage
	CPU-Address Identification

	CPU Signaling and Response
	Signal-Processor Orders
	Conditions Determining Response
	Conditions Precluding Interpretation of the Order Code
	Status Bits

	Chapter 5. Program Execution
	Instructions
	Operands
	Instruction Formats
	Register Operands
	Immediate Operands
	Storage Operands

	Address Generation
	Trimodal Addressing
	Sequential Instruction-Address Generation
	Operand-Address Generation
	Formation of the Intermediate Value
	Formation of the Operand Address

	Branch-Address Generation
	Formation of the Intermediate Value
	Formation of the Branch Address

	Instruction Execution and Sequencing
	Decision Making
	Loop Control
	Subroutine Linkage without the Linkage Stack
	Simple Branch Instructions
	Other Linkage Instructions

	Interruptions
	Types of Instruction Ending
	Completion
	Suppression
	Nullification
	Termination

	Interruptible Instructions
	Point of Interruption
	Unit of Operation
	Execution of Interruptible Instructions
	Condition-Code Alternative to Interruptibility

	Exceptions to Nullification and Suppression
	Storage Change and Restoration for DAT-Associated Access Exceptions
	Modification of DAT-Table Entries
	Trial Execution for Editing Instructions and Translate Instruction

	Authorization Mechanisms
	Mode Requirements
	Extraction-Authority Control
	PSW-Key Mask
	Secondary-Space Control
	Subsystem-Linkage Control
	ASN-Translation Control
	Authorization Index

	PC-Number Translation
	PC-Number Translation Control
	Control Register 5

	PC-Number Translation Tables
	Linkage-Table Entries
	Entry-Table Entries

	PC-Number-Translation Process
	Obtaining the Linkage-Table Designation
	Linkage-Table Lookup
	Entry-Table Lookup
	Recognition of Exceptions during PC-Number Translation

	Home Address Space
	Access-Register Introduction
	Summary
	Access-Register Functions
	Access-Register-Specified Address Spaces
	Access-Register Instructions

	Access-Register Translation
	Access-Register-Translation Control
	Control Register 2
	Control Register 5
	Control Register 8

	Access Registers
	Access-Register-Translation Tables
	Dispatchable-Unit Control Table and Access-List Designations
	Access-List Entries
	ASN-Second-Table Entries

	Access-Register-Translation Process
	Selecting the Access-List-Entry Token
	Obtaining the Primary or Secondary Address-Space-Control Element
	Checking the First Byte of the ALET
	Obtaining the Effective Access-List Designation
	Access-List Lookup
	Locating the ASN-Second-Table Entry
	Authorizing the Use of the Access-List Entry
	Checking for Access-List-Controlled Protection
	Obtaining the Address-Space-Control Element from the ASN-Second-Table Entry
	Recognition of Exceptions during Access-Register Translation

	ART-Lookaside Buffer
	ALB Structure
	Formation of ALB Entries
	Use of ALB Entries
	Modification of ART Tables

	Subspace Groups
	Subspace-Group Tables
	Subspace-Group Dispatchable-Unit Control Table
	Subspace-Group ASN-Second-Table Entries

	Subspace-Replacement Operations

	Linkage-Stack Introduction
	Summary
	Linkage-Stack Functions
	Transferring Program Control
	Branching Using the Linkage Stack
	Adding and Retrieving Information
	Testing Authorization
	Program-Problem Analysis

	Linkage-Stack Entry-Table Entries
	Linkage-Stack Operations
	Linkage-Stack-Operations Control
	Control Register 15

	Linkage Stack
	Entry Descriptors
	Header Entries
	Trailer Entries
	State Entries

	Stacking Process
	Locating Space for a New Entry
	Forming the New Entry
	Updating the Current Entry
	Updating Control Register 15
	Recognition of Exceptions during the Stacking Process

	Unstacking Process
	Locating the Current Entry and Processing a Header Entry
	Checking for a State Entry
	Restoring Information
	Updating the Preceding Entry
	Updating Control Register 15
	Recognition of Exceptions during the Unstacking Process

	Sequence of Storage References
	Conceptual Sequence
	Overlapped Operation of Instruction Execution
	Divisible Instruction Execution
	Interlocks for Virtual-Storage References
	Interlocks between Instructions
	Interlocks within a Single Instruction

	Instruction Fetching
	ART-Table and DAT-Table Fetches
	Storage-Key Accesses
	Storage-Operand References
	Storage-Operand Fetch References
	Storage-Operand Store References
	Storage-Operand Update References

	Storage-Operand Consistency
	Single-Access References
	Multiple-Access References
	Block-Concurrent References
	Consistency Specification

	Relation between Operand Accesses
	Other Storage References
	Relation between Storage-Key Accesses

	Serialization
	CPU Serialization
	Channel-Program Serialization

	Chapter 6. Interruptions
	Interruption Action
	Interruption Code
	Enabling and Disabling
	Handling of Floating Interruption Conditions
	Instruction-Length Code
	Zero ILC
	ILC on Instruction-Fetching Exceptions

	Exceptions Associated with the PSW
	Early Exception Recognition
	Late Exception Recognition

	External Interruption
	Clock Comparator
	CPU Timer
	Emergency Signal
	ETR
	External Call
	Interrupt Key
	Malfunction Alert
	Service Signal

	I/O Interruption
	Machine-Check Interruption
	Program Interruption
	Data-Exception Code (DXC)
	Priority of Program Interruptions for Data Exceptions

	Program-Interruption Conditions
	Addressing Exception
	AFX-Translation Exception
	ALEN-Translation Exception
	ALE-Sequence Exception
	ALET-Specification Exception
	ASCE-Type Exception
	ASTE-Sequence Exception
	ASTE-Validity Exception
	ASX-Translation Exception
	Crypto-Operation Exception
	Data Exception
	Decimal-Divide Exception
	Decimal-Overflow Exception
	Execute Exception
	EX-Translation Exception
	Extended-Authority Exception
	Fixed-Point-Divide Exception
	Fixed-Point-Overflow Exception
	HFP-Divide Exception
	HFP-Exponent-Overflow Exception
	HFP-Exponent-Underflow Exception
	HFP-Significance Exception
	HFP-Square-Root Exception
	LX-Translation Exception
	Monitor Event
	Operand Exception
	Operation Exception
	Page-Translation Exception
	PC-Translation-Specification Exception
	PER Event
	Primary-Authority Exception
	Privileged-Operation Exception
	Protection Exception
	Region-First-Translation Exception
	Region-Second-Translation Exception
	Region-Third-Translation Exception
	Secondary-Authority Exception
	Segment-Translation Exception
	Space-Switch Event
	Special-Operation Exception
	Specification Exception
	Stack-Empty Exception
	Stack-Full Exception
	Stack-Operation Exception
	Stack-Specification Exception
	Stack-Type Exception
	Trace-Table Exception
	Translation-Specification Exception

	Collective Program-Interruption Names
	Recognition of Access Exceptions
	Multiple Program-Interruption Conditions
	Access Exceptions
	ASN-Translation Exceptions
	Subspace-Replacement Exceptions
	Trace Exceptions

	Restart Interruption
	Supervisor-Call Interruption
	Priority of Interruptions

	Chapter 7. General Instructions
	Data Format
	Binary-Integer Representation
	Binary Arithmetic
	Signed Binary Arithmetic
	Addition and Subtraction
	Fixed-Point Overflow

	Unsigned Binary Arithmetic

	Signed and Logical Comparison
	Instructions
	ADD
	ADD HALFWORD
	ADD HALFWORD IMMEDIATE
	ADD LOGICAL
	ADD LOGICAL WITH CARRY
	AND
	AND IMMEDIATE
	BRANCH AND LINK
	BRANCH AND SAVE
	BRANCH AND SAVE AND SET MODE
	BRANCH AND SET MODE
	BRANCH ON CONDITION
	BRANCH ON COUNT
	BRANCH ON INDEX HIGH
	BRANCH ON INDEX LOW OR EQUAL
	BRANCH RELATIVE AND SAVE
	BRANCH RELATIVE AND SAVE LONG
	BRANCH RELATIVE ON CONDITION
	BRANCH RELATIVE ON CONDITION LONG
	BRANCH RELATIVE ON COUNT
	BRANCH RELATIVE ON INDEX HIGH
	BRANCH RELATIVE ON INDEX LOW OR EQUAL
	CHECKSUM
	CIPHER MESSAGE (KM)
	CIPHER MESSAGE WITH CHAINING (KMC)
	COMPARE
	COMPARE AND FORM CODEWORD
	COMPARE AND SWAP
	COMPARE DOUBLE AND SWAP
	COMPARE HALFWORD
	COMPARE HALFWORD IMMEDIATE
	COMPARE LOGICAL
	COMPARE LOGICAL CHARACTERS UNDER MASK
	COMPARE LOGICAL LONG
	COMPARE LOGICAL LONG EXTENDED
	COMPARE LOGICAL LONG UNICODE
	COMPARE LOGICAL STRING
	COMPARE UNTIL SUBSTRING EQUAL
	COMPRESSION CALL
	COMPUTE INTERMEDIATE MESSAGE DIGEST (KIMD)
	COMPUTE LAST MESSAGE DIGEST (KLMD)
	COMPUTE MESSAGE AUTHENTICATION CODE (KMAC)
	CONVERT TO BINARY
	CONVERT TO DECIMAL
	CONVERT UNICODE TO UTF-8
	CONVERT UTF-8 TO UNICODE
	COPY ACCESS
	DIVIDE
	DIVIDE LOGICAL
	DIVIDE SINGLE
	EXCLUSIVE OR
	EXECUTE
	EXTRACT ACCESS
	EXTRACT PSW
	INSERT CHARACTER
	INSERT CHARACTERS UNDER MASK
	INSERT IMMEDIATE
	INSERT PROGRAM MASK
	LOAD
	LOAD ACCESS MULTIPLE
	LOAD ADDRESS
	LOAD ADDRESS EXTENDED
	LOAD ADDRESS RELATIVE LONG
	LOAD AND TEST
	LOAD BYTE
	LOAD COMPLEMENT
	LOAD HALFWORD
	LOAD HALFWORD IMMEDIATE
	LOAD LOGICAL
	LOAD LOGICAL CHARACTER
	LOAD LOGICAL HALFWORD
	LOAD LOGICAL IMMEDIATE
	LOAD LOGICAL THIRTY ONE BITS
	LOAD MULTIPLE
	LOAD MULTIPLE DISJOINT
	LOAD MULTIPLE HIGH
	LOAD NEGATIVE
	LOAD PAIR FROM QUADWORD
	LOAD POSITIVE
	LOAD REVERSED
	MONITOR CALL
	MOVE
	MOVE INVERSE
	MOVE LONG
	MOVE LONG EXTENDED
	MOVE LONG UNICODE
	MOVE NUMERICS
	MOVE STRING
	MOVE WITH OFFSET
	MOVE ZONES
	MULTIPLY
	MULTIPLY HALFWORD
	MULTIPLY HALFWORD IMMEDIATE
	MULTIPLY LOGICAL
	MULTIPLY SINGLE
	OR
	OR IMMEDIATE
	PACK
	PACK ASCII
	PACK UNICODE
	PERFORM LOCKED OPERATION
	ROTATE LEFT SINGLE LOGICAL
	SEARCH STRING
	SET ACCESS
	SET ADDRESSING MODE
	SET PROGRAM MASK
	SHIFT LEFT DOUBLE
	SHIFT LEFT DOUBLE LOGICAL
	SHIFT LEFT SINGLE
	SHIFT LEFT SINGLE LOGICAL
	SHIFT RIGHT DOUBLE
	SHIFT RIGHT DOUBLE LOGICAL
	SHIFT RIGHT SINGLE
	SHIFT RIGHT SINGLE LOGICAL
	STORE
	STORE ACCESS MULTIPLE
	STORE CHARACTER
	STORE CHARACTERS UNDER MASK
	STORE CLOCK
	STORE CLOCK EXTENDED
	STORE HALFWORD
	STORE MULTIPLE
	STORE MULTIPLE HIGH
	STORE PAIR TO QUADWORD
	STORE REVERSED
	SUBTRACT
	SUBTRACT HALFWORD
	SUBTRACT LOGICAL
	SUBTRACT LOGICAL WITH BORROW
	SUPERVISOR CALL
	TEST ADDRESSING MODE
	TEST AND SET
	TEST UNDER MASK (TEST UNDER MASK HIGH, TEST UNDER MASK LOW)
	TRANSLATE
	TRANSLATE AND TEST
	TRANSLATE EXTENDED
	TRANSLATE ONE TO ONE
	TRANSLATE ONE TO TWO
	TRANSLATE TWO TO ONE
	TRANSLATE TWO TO TWO
	UNPACK
	UNPACK ASCII
	UNPACK UNICODE
	UPDATE TREE

	Chapter 8. Decimal Instructions
	Decimal-Number Formats
	Zoned Format
	Packed Format
	Decimal Codes

	Decimal Operations
	Decimal-Arithmetic Instructions
	Editing Instructions
	Execution of Decimal Instructions
	Other Instructions for Decimal Operands
	Decimal-Operand Data Exception

	Instructions
	ADD DECIMAL
	COMPARE DECIMAL
	DIVIDE DECIMAL
	EDIT
	EDIT AND MARK
	MULTIPLY DECIMAL
	SHIFT AND ROUND DECIMAL
	SUBTRACT DECIMAL
	TEST DECIMAL
	ZERO AND ADD

	Chapter 9. Floating-Point Overview and Support Instructions
	Registers And Controls
	Floating-Point Registers
	Additional Floating-Point (AFP) Registers
	Valid Floating-Point-Register Designations

	Floating-Point-Control (FPC) Register
	AFP-Register-Control Bit
	Explicit Rounding Methods
	Summary of Rounding Action

	Comparison of BFP and HFP Number Representations
	BFP and HFP Number Ranges
	Equivalent BFP and HFP Number Representations

	Instructions
	CONVERT BFP TO HFP
	CONVERT HFP TO BFP
	LOAD
	LOAD ZERO
	STORE

	Summary of All Floating-Point Instructions

	Chapter 10. Control Instructions
	BRANCH AND SET AUTHORITY
	BRANCH AND STACK
	BRANCH IN SUBSPACE GROUP
	COMPARE AND SWAP AND PURGE
	DIAGNOSE
	EXTRACT AND SET EXTENDED AUTHORITY
	EXTRACT PRIMARY ASN
	EXTRACT SECONDARY ASN
	EXTRACT STACKED REGISTERS
	EXTRACT STACKED STATE
	INSERT ADDRESS SPACE CONTROL
	INSERT PSW KEY
	INSERT STORAGE KEY EXTENDED
	INSERT VIRTUAL STORAGE KEY
	INVALIDATE DAT TABLE ENTRY
	INVALIDATE PAGE TABLE ENTRY
	LOAD ADDRESS SPACE PARAMETERS
	LOAD CONTROL
	LOAD PSW
	LOAD PSW EXTENDED
	LOAD REAL ADDRESS
	LOAD USING REAL ADDRESS
	MODIFY STACKED STATE
	MOVE PAGE
	MOVE TO PRIMARY
	MOVE TO SECONDARY
	MOVE WITH DESTINATION KEY
	MOVE WITH KEY
	MOVE WITH SOURCE KEY
	PAGE IN
	PAGE OUT
	PROGRAM CALL
	PROGRAM RETURN
	PROGRAM TRANSFER
	PURGE ALB
	PURGE TLB
	RESET REFERENCE BIT EXTENDED
	RESUME PROGRAM
	SET ADDRESS SPACE CONTROL
	SET ADDRESS SPACE CONTROL FAST
	SET CLOCK
	SET CLOCK COMPARATOR
	SET CLOCK PROGRAMMABLE FIELD
	SET CPU TIMER
	SET PREFIX
	SET PSW KEY FROM ADDRESS
	SET SECONDARY ASN
	SET STORAGE KEY EXTENDED
	SET SYSTEM MASK
	SIGNAL PROCESSOR
	STORE CLOCK COMPARATOR
	STORE CONTROL
	STORE CPU ADDRESS
	STORE CPU ID
	STORE CPU TIMER
	STORE FACILITY LIST
	STORE PREFIX
	STORE REAL ADDRESS
	STORE SYSTEM INFORMATION
	STORE THEN AND SYSTEM MASK
	STORE THEN OR SYSTEM MASK
	STORE USING REAL ADDRESS
	TEST ACCESS
	TEST BLOCK
	TEST PROTECTION
	TRACE
	TRAP

	Chapter 11. Machine-Check Handling
	Machine-Check Detection
	Correction of Machine Malfunctions
	Error Checking and Correction
	CPU Retry
	Effects of CPU Retry
	Checkpoint Synchronization
	Handling of Machine Checks during Checkpoint Synchronization
	Checkpoint-Synchronization Operations
	Checkpoint-Synchronization Action

	Channel-Subsystem Recovery
	Unit Deletion

	Handling of Machine Checks
	Validation
	Invalid CBC in Storage
	Programmed Validation of Storage

	Invalid CBC in Storage Keys
	Invalid CBC in Registers

	Check-Stop State
	System Check Stop

	Machine-Check Interruption
	Exigent Conditions
	Repressible Conditions
	Interruption Action
	Point of Interruption

	Machine-Check-Interruption Code
	Subclass
	System Damage
	Instruction-Processing Damage
	System Recovery
	Timing-Facility Damage
	External Damage
	Degradation
	Warning
	Channel Report Pending
	Service-Processor Damage
	Channel-Subsystem Damage

	Subclass Modifiers
	Backed Up
	Delayed Access Exception
	Ancillary Report

	Synchronous Machine-Check-Interruption Conditions
	Processing Backup
	Processing Damage

	Storage Errors
	Storage Error Uncorrected
	Storage Error Corrected
	Storage-Key Error Uncorrected
	Storage Degradation
	Indirect Storage Error

	Machine-Check Interruption-Code Validity Bits
	PSW-MWP Validity
	PSW Mask and Key Validity
	PSW Program-Mask and Condition-Code Validity
	PSW-Instruction-Address Validity
	Failing-Storage-Address Validity
	External-Damage-Code Validity
	Floating-Point-Register Validity
	General-Register Validity
	Control-Register Validity
	Storage Logical Validity
	Access-Register Validity
	TOD-Programmable-Register Validity
	Floating-Point-Control-Register Validity
	CPU-Timer Validity
	Clock-Comparator Validity

	Machine-Check Extended Interruption Information
	Register-Save Areas
	External-Damage Code
	Failing-Storage Address

	Handling of Machine-Check Conditions
	Floating Interruption Conditions
	Floating Machine-Check-Interruption Conditions
	Floating I/O Interruptions

	Machine-Check Masking
	Channel-Report-Pending Subclass Mask
	Recovery Subclass Mask
	Degradation Subclass Mask
	External-Damage Subclass Mask
	Warning Subclass Mask

	Machine-Check Logout
	Summary of Machine-Check Masking

	Chapter 12. Operator Facilities
	Manual Operation
	Basic Operator Facilities
	Address-Compare Controls
	Alter-and-Display Controls
	Architectural-Mode Indicator
	Architectural-Mode-Selection Controls
	Check-Stop Indicator
	IML Controls
	Interrupt Key
	Load Indicator
	Load-Clear Key
	Load-Normal Key
	Load-Unit-Address Controls
	Manual Indicator
	Power Controls
	Rate Control
	Restart Key
	Start Key
	Stop Key
	Store-Status Key
	System-Reset-Clear Key
	System-Reset-Normal Key
	Test Indicator
	TOD-Clock Control
	Wait Indicator

	Multiprocessing Configurations

	Chapter 13. I/O Overview
	Input/Output (I/O)
	The Channel Subsystem
	Subchannels

	Attachment of Input/Output Devices
	Channel Paths
	Control Units
	I/O Devices

	I/O Addressing
	Channel-Path Identifier
	Subchannel Number
	Device Number
	Device Identifier

	Execution of I/O Operations
	Start-Function Initiation
	Path Management
	Channel-Program Execution
	Conclusion of I/O Operations
	I/O Interruptions

	Chapter 14. I/O Instructions
	I/O-Instruction Formats
	I/O-Instruction Execution
	Serialization
	Operand Access
	Condition Code
	Program Exceptions

	Instructions
	CANCEL SUBCHANNEL
	CLEAR SUBCHANNEL
	HALT SUBCHANNEL
	MODIFY SUBCHANNEL
	RESET CHANNEL PATH
	RESUME SUBCHANNEL
	SET ADDRESS LIMIT
	SET CHANNEL MONITOR
	START SUBCHANNEL
	STORE CHANNEL PATH STATUS
	STORE CHANNEL REPORT WORD
	STORE SUBCHANNEL
	TEST PENDING INTERRUPTION
	TEST SUBCHANNEL

	Chapter 15. Basic I/O Functions
	Control of Basic I/O Functions
	Subchannel-Information Block
	Path-Management-Control Word
	Subchannel-Status Word
	Model-Dependent Area/Measurement Block Address
	Summary of Modifiable Fields

	Channel-Path Allegiance
	Working Allegiance
	Active Allegiance
	Dedicated Allegiance
	Channel-Path Availability
	Control-Unit Type

	Clear Function
	Clear-Function Path Management
	Clear-Function Subchannel Modification
	Clear-Function Signaling and Completion

	Halt Function
	Halt-Function Path Management
	Halt-Function Signaling and Completion

	Start Function and Resume Function
	Start-Function and Resume-Function Path Management

	Execution of I/O Operations
	Blocking of Data
	Operation-Request Block
	Channel-Command Word
	Command Code
	Designation of Storage Area
	Chaining
	Data Chaining
	Command Chaining

	Skipping
	Program-Controlled Interruption
	CCW Indirect Data Addressing
	Suspension of Channel-Program Execution
	Commands and Flags
	Branching in Channel Programs
	Transfer in Channel

	Command Retry

	Concluding I/O Operations before Initiation
	Concluding I/O Operations during Initiation
	Immediate Conclusion of I/O Operations
	Concluding I/O Operations during Data Transfer
	Channel-Path-Reset Function
	Channel-Path-Reset-Function Signaling
	Channel-Path-Reset-Function- Completion Signaling

	Chapter 16. I/O Interruptions
	Interruption Conditions
	Intermediate Interruption Condition
	Primary Interruption Condition
	Secondary Interruption Condition
	Alert Interruption Condition

	Priority of Interruptions
	Interruption Action
	Interruption-Response Block
	Subchannel-Status Word
	Subchannel Key
	Suspend Control (S)
	Extended-Status-Word Format (L)
	Deferred Condition Code (CC)
	Format (F)
	Prefetch (P)
	Initial-Status-Interruption Control (I)
	Address-Limit-Checking Control (A)
	Suppress-Suspended Interruption (U)
	Subchannel-Control Field
	Zero Condition Code (Z)
	Extended Control (E)
	Path Not Operational (N)
	Function Control (FC)
	Activity Control (AC)
	Status Control (SC)

	CCW-Address Field
	Device-Status Field
	Subchannel-Status Field
	Program-Controlled Interruption
	Incorrect Length
	Program Check
	Protection Check
	Channel-Data Check
	Channel-Control Check
	Interface-Control Check
	Chaining Check

	Count Field

	Extended-Status Word
	Extended-Status Format 0
	Subchannel Logout
	Extended-Report Word
	Failing-Storage Address
	Secondary-CCW Address

	Extended-Status Format 1
	Extended-Status Format 2
	Extended-Status Format 3

	Extended-Control Word
	Extended-Measurement Word

	Chapter 17. I/O Support Functions
	Channel-Subsystem Monitoring
	Channel-Subsystem Timing
	Channel-Subsystem Timer

	Measurement-Block Update
	Measurement Block
	Measurement-Block Format
	Measurement-Block Origin
	Measurement-Block Address
	Measurement-Block Key
	Measurement-Block Index
	Measurement-Block-Update Mode
	Measurement-Block-Format Control
	Measurement-Block-Update Enable
	Control-Unit-Queuing Measurement
	Control-Unit-Defer Time
	Device-Active-Only Measurement
	Initial-Command-Response Measurement
	Time-Interval-Measurement Accuracy

	Device-Connect-Time Measurement
	Device-Connect-Time-Measurement Mode
	Device-Connect-Time-Measurement Enable

	Extended Measurement Word
	Extended-Measurement-Word Enable

	Signals and Resets
	Signals
	Halt Signal
	Clear Signal
	Reset Signal

	Resets
	Channel-Path Reset
	I/O-System Reset

	Externally Initiated Functions
	Initial Program Loading
	Reconfiguration of the I/O System

	Status Verification
	Address-Limit Checking
	Configuration Alert
	Incorrect-Length-Indication Suppression
	Concurrent Sense
	Channel-Subsystem Recovery
	Channel Report
	Channel-Report Word

	Channel-Subsystem-I/O-Priority Facility
	Number of Channel-Subsystem-Priority Levels

	Chapter 18. Hexadecimal-Floating-Point Instructions
	HFP Arithmetic
	HFP Number Representation
	Normalization
	HFP Data Format

	Instructions
	ADD NORMALIZED
	ADD UNNORMALIZED
	COMPARE
	CONVERT FROM FIXED
	CONVERT TO FIXED
	DIVIDE
	HALVE
	LOAD AND TEST
	LOAD COMPLEMENT
	LOAD FP INTEGER
	LOAD LENGTHENED
	LOAD NEGATIVE
	LOAD POSITIVE
	LOAD ROUNDED
	MULTIPLY
	MULTIPLY AND ADD
	MULTIPLY AND SUBTRACT
	SQUARE ROOT
	SUBTRACT NORMALIZED
	SUBTRACT UNNORMALIZED

	Chapter 19. Binary-Floating-Point Instructions
	Binary-Floating-Point Facility
	Floating-Point-Control (FPC) Register
	IEEE Masks and Flags
	FPC DXC Byte
	Operations on the FPC Register

	BFP Arithmetic
	BFP Data Formats
	BFP Short Format
	BFP Long Format
	BFP Extended Format
	Biased Exponent
	Significand
	Values of Nonzero Numbers

	Classes of BFP Data
	Zeros
	Denormalized Numbers
	Normalized Numbers
	Infinities
	Signaling and Quiet NaNs

	BFP-Format Conversion
	BFP Rounding
	Rounding Mode

	Normalization and Denormalization
	BFP Comparison
	Condition Codes for BFP Instructions
	Remainder
	IEEE Exception Conditions
	IEEE Invalid Operation
	IEEE Division-By-Zero
	IEEE Overflow
	IEEE Underflow
	IEEE Inexact

	Result Figures
	Data-Exception Codes (DXC) and Abbreviations

	Instructions
	ADD
	COMPARE
	COMPARE AND SIGNAL
	CONVERT FROM FIXED
	CONVERT TO FIXED
	DIVIDE
	DIVIDE TO INTEGER
	EXTRACT FPC
	LOAD AND TEST
	LOAD COMPLEMENT
	LOAD FP INTEGER
	LOAD FPC
	LOAD LENGTHENED
	LOAD NEGATIVE
	LOAD POSITIVE
	LOAD ROUNDED
	MULTIPLY
	MULTIPLY AND ADD
	MULTIPLY AND SUBTRACT
	SET FPC
	SET ROUNDING MODE
	SQUARE ROOT
	STORE FPC
	SUBTRACT
	TEST DATA CLASS

	Appendix A. Number Representation and Instruction-Use Examples
	Number Representation
	Binary Integers
	Signed Binary Integers
	Unsigned Binary Integers

	Decimal Integers
	Hexadecimal-Floating-Point Numbers
	Conversion Example

	Instruction-Use Examples
	Machine Format
	Assembler-Language Format
	Addressing Mode in Examples

	General Instructions
	ADD HALFWORD (AH)
	AND (N, NC, NI, NR)
	NI Example

	Linkage Instructions (BAL, BALR, BAS, BASR, BASSM, BSM)
	Other BALR and BASR Examples

	BRANCH AND STACK (BAKR)
	BAKR Example 1
	BAKR Example 2
	BAKR Example 3

	BRANCH ON CONDITION (BC, BCR)
	BRANCH ON COUNT (BCT, BCTR)
	BRANCH ON INDEX HIGH (BXH)
	BXH Example 1
	BXH Example 2

	BRANCH ON INDEX LOW OR EQUAL (BXLE)
	BXLE Example 1
	BXLE Example 2

	COMPARE AND FORM CODEWORD (CFC)
	COMPARE HALFWORD (CH)
	COMPARE LOGICAL (CL, CLC, CLI, CLR)
	CLC Example
	CLI Example
	CLR Example

	COMPARE LOGICAL CHARACTERS UNDER MASK (CLM)
	COMPARE LOGICAL LONG (CLCL)
	COMPARE LOGICAL STRING (CLST)
	CONVERT TO BINARY (CVB)
	CONVERT TO DECIMAL (CVD)
	DIVIDE (D, DR)
	EXCLUSIVE OR (X, XC, XI, XR)
	XC Example
	XI Example

	EXECUTE (EX)
	INSERT CHARACTERS UNDER MASK (ICM)
	LOAD (L, LR)
	LOAD ADDRESS (LA)
	LOAD HALFWORD (LH)
	MOVE (MVC, MVI)
	MVC Example
	MVI Example

	MOVE INVERSE (MVCIN)
	MOVE LONG (MVCL)
	MOVE NUMERICS (MVN)
	MOVE STRING (MVST)
	MOVE WITH OFFSET (MVO)
	MOVE ZONES (MVZ)
	MULTIPLY (M, MR)
	MULTIPLY HALFWORD (MH)
	OR (O, OC, OI, OR)
	OI Example

	PACK (PACK)
	SEARCH STRING (SRST)
	SRST Example 1
	SRST Example 2

	SHIFT LEFT DOUBLE (SLDA)
	SHIFT LEFT SINGLE (SLA)
	STORE CHARACTERS UNDER MASK (STCM)
	STORE MULTIPLE (STM)
	TEST UNDER MASK (TM)
	TRANSLATE (TR)
	TRANSLATE AND TEST (TRT)
	UNPACK (UNPK)
	UPDATE TREE (UPT)

	Decimal Instructions
	ADD DECIMAL (AP)
	COMPARE DECIMAL (CP)
	DIVIDE DECIMAL (DP)
	EDIT (ED)
	EDIT AND MARK (EDMK)
	MULTIPLY DECIMAL (MP)
	SHIFT AND ROUND DECIMAL (SRP)
	Decimal Left Shift
	Decimal Right Shift
	Decimal Right Shift and Round
	Multiplying by a Variable Power of 10

	ZERO AND ADD (ZAP)

	Hexadecimal-Floating-Point Instructions
	ADD NORMALIZED (AD, ADR, AE, AER, AXR)
	ADD UNNORMALIZED (AU, AUR, AW, AWR)
	COMPARE (CD, CDR, CE, CER)
	DIVIDE (DD, DDR, DE, DER)
	HALVE (HDR, HER)
	MULTIPLY (MD, MDR, MDE, MDER, MXD, MXDR, MXR)
	Hexadecimal-Floating-Point-Number Conversion
	Fixed Point to Hexadecimal Floating Point
	Hexadecimal Floating Point to Fixed Point

	Multiprogramming and Multiprocessing Examples
	Example of a Program Failure Using OR Immediate
	Conditional Swapping Instructions (CS, CDS)
	Setting a Single Bit
	Updating Counters

	Bypassing Post and Wait
	Bypass Post Routine
	Bypass Wait Routine

	Lock/Unlock
	Lock/Unlock with LIFO Queuing for Contentions
	Lock/Unlock with FIFO Queuing for Contentions

	Free-Pool Manipulation
	PERFORM LOCKED OPERATION (PLO)

	Sorting Instructions
	Tree Format
	Example of Use of Sort Instructions

	Appendix B. Lists of Instructions
	Appendix C. Condition-Code Settings
	Appendix G. Table of Powers of 2
	Appendix H. Hexadecimal Tables
	Appendix I. EBCDIC and Other Codes
	Index

