mirror of
				https://github.com/thunderbrewhq/thunderbrew
				synced 2025-10-31 08:16:03 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1038 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1038 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //-------------------------------------------------------------------------------------
 | |
| // DirectXMathAVX2.h -- AVX2 extensions for SIMD C++ Math library
 | |
| //
 | |
| // Copyright (c) Microsoft Corporation.
 | |
| // Licensed under the MIT License.
 | |
| //
 | |
| // http://go.microsoft.com/fwlink/?LinkID=615560
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #if defined(_M_ARM) || defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || __arm__ || __aarch64__
 | |
| #error AVX2 not supported on ARM platform
 | |
| #endif
 | |
| 
 | |
| #include <DirectXMath.h>
 | |
| #include <DirectXPackedVector.h>
 | |
| 
 | |
| namespace DirectX
 | |
| {
 | |
| 
 | |
| namespace AVX2
 | |
| {
 | |
| 
 | |
| inline bool XMVerifyAVX2Support()
 | |
| {
 | |
|     // Should return true for AMD "Excavator", Intel "Haswell" or later processors
 | |
|     // with OS support for AVX (Windows 7 Service Pack 1, Windows Server 2008 R2 Service Pack 1, Windows 8, Windows Server 2012)
 | |
| 
 | |
|     // See http://msdn.microsoft.com/en-us/library/hskdteyh.aspx
 | |
|     int CPUInfo[4] = {-1};
 | |
| #if (defined(__clang__) || defined(__GNUC__)) && defined(__cpuid)
 | |
|     __cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
 | |
| #else
 | |
|     __cpuid(CPUInfo, 0);
 | |
| #endif
 | |
| 
 | |
|     if ( CPUInfo[0] < 7  )
 | |
|         return false;
 | |
| 
 | |
| #if (defined(__clang__) || defined(__GNUC__)) && defined(__cpuid)
 | |
|     __cpuid(1, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
 | |
| #else
 | |
|     __cpuid(CPUInfo, 1);
 | |
| #endif
 | |
| 
 | |
|     // We check for F16C, FMA3, AVX, OSXSAVE, SSSE4.1, and SSE3
 | |
|     if ( (CPUInfo[2] & 0x38081001) != 0x38081001 )
 | |
|         return false;
 | |
| 
 | |
| #if defined(__clang__) || defined(__GNUC__)
 | |
|     __cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
 | |
| #else
 | |
|     __cpuidex(CPUInfo, 7, 0);
 | |
| #endif
 | |
| 
 | |
|     return ( (CPUInfo[1] & 0x20 ) == 0x20 );
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Vector
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorReplicatePtr( _In_  const float *pValue )
 | |
| {
 | |
|     return _mm_broadcast_ss( pValue );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorSplatX( FXMVECTOR V )
 | |
| {
 | |
|     return _mm_broadcastss_ps( V );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorSplatY( FXMVECTOR V )
 | |
| {
 | |
|     return _mm_permute_ps( V, _MM_SHUFFLE(1, 1, 1, 1) );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorSplatZ( FXMVECTOR V )
 | |
| {
 | |
|     return _mm_permute_ps( V, _MM_SHUFFLE(2, 2, 2, 2) );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorSplatW( FXMVECTOR V )
 | |
| {
 | |
|     return _mm_permute_ps( V, _MM_SHUFFLE(3, 3, 3, 3) );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorMultiplyAdd
 | |
| (
 | |
|     FXMVECTOR V1, 
 | |
|     FXMVECTOR V2, 
 | |
|     FXMVECTOR V3
 | |
| )
 | |
| {
 | |
|     return _mm_fmadd_ps( V1, V2, V3 );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorNegativeMultiplySubtract
 | |
| (
 | |
|     FXMVECTOR V1, 
 | |
|     FXMVECTOR V2, 
 | |
|     FXMVECTOR V3
 | |
| )
 | |
| {
 | |
|     return _mm_fnmadd_ps( V1, V2, V3 );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorSwizzle( FXMVECTOR V, uint32_t E0, uint32_t E1, uint32_t E2, uint32_t E3 )
 | |
| {
 | |
|     assert( (E0 < 4) && (E1 < 4) && (E2 < 4) && (E3 < 4) );
 | |
|     _Analysis_assume_( (E0 < 4) && (E1 < 4) && (E2 < 4) && (E3 < 4) );
 | |
| 
 | |
|     unsigned int elem[4] = { E0, E1, E2, E3 };
 | |
|     __m128i vControl = _mm_loadu_si128( reinterpret_cast<const __m128i *>(&elem[0]) );
 | |
|     return _mm_permutevar_ps( V, vControl );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorPermute( FXMVECTOR V1, FXMVECTOR V2, uint32_t PermuteX, uint32_t PermuteY, uint32_t PermuteZ, uint32_t PermuteW )
 | |
| {
 | |
|     assert( PermuteX <= 7 && PermuteY <= 7 && PermuteZ <= 7 && PermuteW <= 7 );
 | |
|     _Analysis_assume_( PermuteX <= 7 && PermuteY <= 7 && PermuteZ <= 7 && PermuteW <= 7 );
 | |
| 
 | |
|     static const XMVECTORU32 three = { { { 3, 3, 3, 3 } } };
 | |
| 
 | |
|     XM_ALIGNED_DATA(16) unsigned int elem[4] = { PermuteX, PermuteY, PermuteZ, PermuteW };
 | |
|     __m128i vControl = _mm_load_si128( reinterpret_cast<const __m128i *>(&elem[0]) );
 | |
|     
 | |
|     __m128i vSelect = _mm_cmpgt_epi32( vControl, three );
 | |
|     vControl = _mm_castps_si128( _mm_and_ps( _mm_castsi128_ps( vControl ), three ) );
 | |
| 
 | |
|     __m128 shuffled1 = _mm_permutevar_ps( V1, vControl );
 | |
|     __m128 shuffled2 = _mm_permutevar_ps( V2, vControl );
 | |
| 
 | |
|     __m128 masked1 = _mm_andnot_ps( _mm_castsi128_ps( vSelect ), shuffled1 );
 | |
|     __m128 masked2 = _mm_and_ps( _mm_castsi128_ps( vSelect ), shuffled2 );
 | |
| 
 | |
|     return _mm_or_ps( masked1, masked2 );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorShiftLeft(FXMVECTOR V1, FXMVECTOR V2, uint32_t Elements)
 | |
| {
 | |
|     assert( Elements < 4 );
 | |
|     _Analysis_assume_( Elements < 4 );
 | |
|     return AVX2::XMVectorPermute(V1, V2, Elements, ((Elements) + 1), ((Elements) + 2), ((Elements) + 3));
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorRotateLeft(FXMVECTOR V, uint32_t Elements)
 | |
| {
 | |
|     assert( Elements < 4 );
 | |
|     _Analysis_assume_( Elements < 4 );
 | |
|     return AVX2::XMVectorSwizzle( V, Elements & 3, (Elements + 1) & 3, (Elements + 2) & 3, (Elements + 3) & 3 );
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVectorRotateRight(FXMVECTOR V, uint32_t Elements)
 | |
| {
 | |
|     assert( Elements < 4 );
 | |
|     _Analysis_assume_( Elements < 4 );
 | |
|     return AVX2::XMVectorSwizzle( V, (4 - (Elements)) & 3, (5 - (Elements)) & 3, (6 - (Elements)) & 3, (7 - (Elements)) & 3 );
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Vector2
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector2Transform
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     CXMMATRIX M
 | |
| )
 | |
| {
 | |
|     XMVECTOR vResult = _mm_permute_ps(V,_MM_SHUFFLE(1,1,1,1)); // Y
 | |
|     vResult = _mm_fmadd_ps( vResult, M.r[1], M.r[3] );
 | |
|     XMVECTOR vTemp = _mm_broadcastss_ps(V); // X
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[0], vResult );
 | |
|     return vResult;
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector2TransformCoord
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     CXMMATRIX M
 | |
| )
 | |
| {
 | |
|     XMVECTOR vResult = _mm_permute_ps(V,_MM_SHUFFLE(1,1,1,1)); // Y
 | |
|     vResult = _mm_fmadd_ps( vResult, M.r[1], M.r[3] );
 | |
|     XMVECTOR vTemp = _mm_broadcastss_ps(V); // X
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[0], vResult );
 | |
|     XMVECTOR W = _mm_permute_ps(vResult,_MM_SHUFFLE(3,3,3,3));
 | |
|     vResult = _mm_div_ps( vResult, W );
 | |
|     return vResult;
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector2TransformNormal
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     CXMMATRIX M
 | |
| )
 | |
| {
 | |
|     XMVECTOR vResult = _mm_permute_ps(V,_MM_SHUFFLE(1,1,1,1)); // Y
 | |
|     vResult = _mm_mul_ps( vResult, M.r[1] );
 | |
|     XMVECTOR vTemp = _mm_broadcastss_ps(V); // X
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[0], vResult );
 | |
|     return vResult;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Vector3
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector3Transform
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     CXMMATRIX M
 | |
| )
 | |
| {
 | |
|     XMVECTOR vResult = _mm_permute_ps(V,_MM_SHUFFLE(2,2,2,2)); // Z
 | |
|     vResult = _mm_fmadd_ps( vResult, M.r[2], M.r[3] );
 | |
|     XMVECTOR vTemp = _mm_permute_ps(V,_MM_SHUFFLE(1,1,1,1)); // Y
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[1], vResult );
 | |
|     vTemp = _mm_broadcastss_ps(V); // X
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[0], vResult );
 | |
|     return vResult;
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector3TransformCoord
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     CXMMATRIX M
 | |
| )
 | |
| {
 | |
|     XMVECTOR vResult = _mm_permute_ps(V,_MM_SHUFFLE(2,2,2,2)); // Z
 | |
|     vResult = _mm_fmadd_ps( vResult, M.r[2], M.r[3] );
 | |
|     XMVECTOR vTemp = _mm_permute_ps(V,_MM_SHUFFLE(1,1,1,1)); // Y
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[1], vResult );
 | |
|     vTemp = _mm_broadcastss_ps(V); // X
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[0], vResult );
 | |
|     XMVECTOR W = _mm_permute_ps(vResult,_MM_SHUFFLE(3,3,3,3));
 | |
|     vResult = _mm_div_ps( vResult, W );
 | |
|     return vResult;
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector3TransformNormal
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     CXMMATRIX M
 | |
| )
 | |
| {
 | |
|     XMVECTOR vResult = _mm_permute_ps(V,_MM_SHUFFLE(2,2,2,2)); // Z
 | |
|     vResult = _mm_mul_ps( vResult, M.r[2] );
 | |
|     XMVECTOR vTemp = _mm_permute_ps(V,_MM_SHUFFLE(1,1,1,1)); // Y
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[1], vResult );
 | |
|     vTemp = _mm_broadcastss_ps(V); // X
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[0], vResult );
 | |
|     return vResult;
 | |
| }
 | |
| 
 | |
| XMMATRIX XM_CALLCONV XMMatrixMultiply(CXMMATRIX M1, CXMMATRIX M2);
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector3Project
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     float    ViewportX, 
 | |
|     float    ViewportY, 
 | |
|     float    ViewportWidth, 
 | |
|     float    ViewportHeight, 
 | |
|     float    ViewportMinZ, 
 | |
|     float    ViewportMaxZ, 
 | |
|     CXMMATRIX Projection, 
 | |
|     CXMMATRIX View, 
 | |
|     CXMMATRIX World
 | |
| )
 | |
| {
 | |
|     const float HalfViewportWidth = ViewportWidth * 0.5f;
 | |
|     const float HalfViewportHeight = ViewportHeight * 0.5f;
 | |
| 
 | |
|     XMVECTOR Scale = XMVectorSet(HalfViewportWidth, -HalfViewportHeight, ViewportMaxZ - ViewportMinZ, 0.0f);
 | |
|     XMVECTOR Offset = XMVectorSet(ViewportX + HalfViewportWidth, ViewportY + HalfViewportHeight, ViewportMinZ, 0.0f);
 | |
| 
 | |
|     XMMATRIX Transform = AVX2::XMMatrixMultiply(World, View);
 | |
|     Transform = AVX2::XMMatrixMultiply(Transform, Projection);
 | |
| 
 | |
|     XMVECTOR Result = AVX2::XMVector3TransformCoord(V, Transform);
 | |
| 
 | |
|     Result = AVX2::XMVectorMultiplyAdd(Result, Scale, Offset);
 | |
| 
 | |
|     return Result;
 | |
| }
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector3Unproject
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     float     ViewportX, 
 | |
|     float     ViewportY, 
 | |
|     float     ViewportWidth, 
 | |
|     float     ViewportHeight, 
 | |
|     float     ViewportMinZ, 
 | |
|     float     ViewportMaxZ, 
 | |
|     CXMMATRIX Projection, 
 | |
|     CXMMATRIX View, 
 | |
|     CXMMATRIX World
 | |
| )
 | |
| {
 | |
|     static const XMVECTORF32 D = { { { -1.0f, 1.0f, 0.0f, 0.0f } } };
 | |
| 
 | |
|     XMVECTOR Scale = XMVectorSet(ViewportWidth * 0.5f, -ViewportHeight * 0.5f, ViewportMaxZ - ViewportMinZ, 1.0f);
 | |
|     Scale = XMVectorReciprocal(Scale);
 | |
| 
 | |
|     XMVECTOR Offset = XMVectorSet(-ViewportX, -ViewportY, -ViewportMinZ, 0.0f);
 | |
|     Offset = AVX2::XMVectorMultiplyAdd(Scale, Offset, D.v);
 | |
| 
 | |
|     XMMATRIX Transform = AVX2::XMMatrixMultiply(World, View);
 | |
|     Transform = AVX2::XMMatrixMultiply(Transform, Projection);
 | |
|     Transform = XMMatrixInverse(nullptr, Transform);
 | |
| 
 | |
|     XMVECTOR Result = AVX2::XMVectorMultiplyAdd(V, Scale, Offset);
 | |
| 
 | |
|     return AVX2::XMVector3TransformCoord(Result, Transform);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Vector4
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMVector4Transform
 | |
| (
 | |
|     FXMVECTOR V, 
 | |
|     CXMMATRIX M
 | |
| )
 | |
| {
 | |
|     XMVECTOR vResult = _mm_permute_ps(V,_MM_SHUFFLE(3,3,3,3)); // W
 | |
|     vResult = _mm_mul_ps( vResult, M.r[3] );
 | |
|     XMVECTOR vTemp = _mm_permute_ps(V,_MM_SHUFFLE(2,2,2,2)); // Z
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[2], vResult );
 | |
|     vTemp = _mm_permute_ps(V,_MM_SHUFFLE(1,1,1,1)); // Y
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[1], vResult );
 | |
|     vTemp = _mm_broadcastss_ps(V); // X
 | |
|     vResult = _mm_fmadd_ps( vTemp, M.r[0], vResult );
 | |
|     return vResult;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Matrix
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixMultiply
 | |
| (
 | |
|     CXMMATRIX M1, 
 | |
|     CXMMATRIX M2
 | |
| )
 | |
| {
 | |
|     XMMATRIX mResult;
 | |
|     // Use vW to hold the original row
 | |
|     XMVECTOR vW = M1.r[0];
 | |
|     // Splat the component X,Y,Z then W
 | |
|     XMVECTOR vX = _mm_broadcastss_ps(vW);
 | |
|     XMVECTOR vY = _mm_permute_ps(vW,_MM_SHUFFLE(1,1,1,1));
 | |
|     XMVECTOR vZ = _mm_permute_ps(vW,_MM_SHUFFLE(2,2,2,2));
 | |
|     vW = _mm_permute_ps(vW,_MM_SHUFFLE(3,3,3,3));
 | |
|     // Perform the operation on the first row
 | |
|     vX = _mm_mul_ps(vX,M2.r[0]);
 | |
|     vX = _mm_fmadd_ps(vY,M2.r[1],vX);
 | |
|     vX = _mm_fmadd_ps(vZ,M2.r[2],vX);
 | |
|     vX = _mm_fmadd_ps(vW,M2.r[3],vX);
 | |
|     mResult.r[0] = vX;
 | |
|     // Repeat for the other 3 rows
 | |
|     vW = M1.r[1];
 | |
|     vX = _mm_broadcastss_ps(vW);
 | |
|     vY = _mm_permute_ps(vW,_MM_SHUFFLE(1,1,1,1));
 | |
|     vZ = _mm_permute_ps(vW,_MM_SHUFFLE(2,2,2,2));
 | |
|     vW = _mm_permute_ps(vW,_MM_SHUFFLE(3,3,3,3));
 | |
|     vX = _mm_mul_ps(vX,M2.r[0]);
 | |
|     vX = _mm_fmadd_ps(vY,M2.r[1],vX);
 | |
|     vX = _mm_fmadd_ps(vZ,M2.r[2],vX);
 | |
|     vX = _mm_fmadd_ps(vW,M2.r[3],vX);
 | |
|     mResult.r[1] = vX;
 | |
|     vW = M1.r[2];
 | |
|     vX = _mm_broadcastss_ps(vW);
 | |
|     vY = _mm_permute_ps(vW,_MM_SHUFFLE(1,1,1,1));
 | |
|     vZ = _mm_permute_ps(vW,_MM_SHUFFLE(2,2,2,2));
 | |
|     vW = _mm_permute_ps(vW,_MM_SHUFFLE(3,3,3,3));
 | |
|     vX = _mm_mul_ps(vX,M2.r[0]);
 | |
|     vX = _mm_fmadd_ps(vY,M2.r[1],vX);
 | |
|     vX = _mm_fmadd_ps(vZ,M2.r[2],vX);
 | |
|     vX = _mm_fmadd_ps(vW,M2.r[3],vX);
 | |
|     mResult.r[2] = vX;
 | |
|     vW = M1.r[3];
 | |
|     vX = _mm_broadcastss_ps(vW);
 | |
|     vY = _mm_permute_ps(vW,_MM_SHUFFLE(1,1,1,1));
 | |
|     vZ = _mm_permute_ps(vW,_MM_SHUFFLE(2,2,2,2));
 | |
|     vW = _mm_permute_ps(vW,_MM_SHUFFLE(3,3,3,3));
 | |
|     vX = _mm_mul_ps(vX,M2.r[0]);
 | |
|     vX = _mm_fmadd_ps(vY,M2.r[1],vX);
 | |
|     vX = _mm_fmadd_ps(vZ,M2.r[2],vX);
 | |
|     vX = _mm_fmadd_ps(vW,M2.r[3],vX);
 | |
|     mResult.r[3] = vX;
 | |
|     return mResult;
 | |
| }
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixMultiplyTranspose
 | |
| (
 | |
|     FXMMATRIX M1, 
 | |
|     CXMMATRIX M2
 | |
| )
 | |
| {
 | |
|     // Use vW to hold the original row
 | |
|     XMVECTOR vW = M1.r[0];
 | |
|     // Splat the component X,Y,Z then W
 | |
|     XMVECTOR vX = _mm_broadcastss_ps(vW);
 | |
|     XMVECTOR vY = _mm_permute_ps(vW,_MM_SHUFFLE(1,1,1,1));
 | |
|     XMVECTOR vZ = _mm_permute_ps(vW,_MM_SHUFFLE(2,2,2,2));
 | |
|     vW = _mm_permute_ps(vW,_MM_SHUFFLE(3,3,3,3));
 | |
|     // Perform the operation on the first row
 | |
|     vX = _mm_mul_ps(vX,M2.r[0]);
 | |
|     vX = _mm_fmadd_ps(vY,M2.r[1],vX);
 | |
|     vX = _mm_fmadd_ps(vZ,M2.r[2],vX);
 | |
|     vX = _mm_fmadd_ps(vW,M2.r[3],vX);
 | |
|     __m128 r0 = vX;
 | |
|     // Repeat for the other 3 rows
 | |
|     vW = M1.r[1];
 | |
|     vX = _mm_broadcastss_ps(vW);
 | |
|     vY = _mm_permute_ps(vW,_MM_SHUFFLE(1,1,1,1));
 | |
|     vZ = _mm_permute_ps(vW,_MM_SHUFFLE(2,2,2,2));
 | |
|     vW = _mm_permute_ps(vW,_MM_SHUFFLE(3,3,3,3));
 | |
|     vX = _mm_mul_ps(vX,M2.r[0]);
 | |
|     vX = _mm_fmadd_ps(vY,M2.r[1],vX);
 | |
|     vX = _mm_fmadd_ps(vZ,M2.r[2],vX);
 | |
|     vX = _mm_fmadd_ps(vW,M2.r[3],vX);
 | |
|     __m128 r1 = vX;
 | |
|     vW = M1.r[2];
 | |
|     vX = _mm_broadcastss_ps(vW);
 | |
|     vY = _mm_permute_ps(vW,_MM_SHUFFLE(1,1,1,1));
 | |
|     vZ = _mm_permute_ps(vW,_MM_SHUFFLE(2,2,2,2));
 | |
|     vW = _mm_permute_ps(vW,_MM_SHUFFLE(3,3,3,3));
 | |
|     vX = _mm_mul_ps(vX,M2.r[0]);
 | |
|     vX = _mm_fmadd_ps(vY,M2.r[1],vX);
 | |
|     vX = _mm_fmadd_ps(vZ,M2.r[2],vX);
 | |
|     vX = _mm_fmadd_ps(vW,M2.r[3],vX);
 | |
|     __m128 r2 = vX;
 | |
|     vW = M1.r[3];
 | |
|     vX = _mm_broadcastss_ps(vW);
 | |
|     vY = _mm_permute_ps(vW,_MM_SHUFFLE(1,1,1,1));
 | |
|     vZ = _mm_permute_ps(vW,_MM_SHUFFLE(2,2,2,2));
 | |
|     vW = _mm_permute_ps(vW,_MM_SHUFFLE(3,3,3,3));
 | |
|     vX = _mm_mul_ps(vX,M2.r[0]);
 | |
|     vX = _mm_fmadd_ps(vY,M2.r[1],vX);
 | |
|     vX = _mm_fmadd_ps(vZ,M2.r[2],vX);
 | |
|     vX = _mm_fmadd_ps(vW,M2.r[3],vX);
 | |
|     __m128 r3 = vX;
 | |
| 
 | |
|     // x.x,x.y,y.x,y.y
 | |
|     XMVECTOR vTemp1 = _mm_shuffle_ps(r0,r1,_MM_SHUFFLE(1,0,1,0));
 | |
|     // x.z,x.w,y.z,y.w
 | |
|     XMVECTOR vTemp3 = _mm_shuffle_ps(r0,r1,_MM_SHUFFLE(3,2,3,2));
 | |
|     // z.x,z.y,w.x,w.y
 | |
|     XMVECTOR vTemp2 = _mm_shuffle_ps(r2,r3,_MM_SHUFFLE(1,0,1,0));
 | |
|     // z.z,z.w,w.z,w.w
 | |
|     XMVECTOR vTemp4 = _mm_shuffle_ps(r2,r3,_MM_SHUFFLE(3,2,3,2));
 | |
| 
 | |
|     XMMATRIX mResult;
 | |
|     // x.x,y.x,z.x,w.x
 | |
|     mResult.r[0] = _mm_shuffle_ps(vTemp1, vTemp2,_MM_SHUFFLE(2,0,2,0));
 | |
|     // x.y,y.y,z.y,w.y
 | |
|     mResult.r[1] = _mm_shuffle_ps(vTemp1, vTemp2,_MM_SHUFFLE(3,1,3,1));
 | |
|     // x.z,y.z,z.z,w.z
 | |
|     mResult.r[2] = _mm_shuffle_ps(vTemp3, vTemp4,_MM_SHUFFLE(2,0,2,0));
 | |
|     // x.w,y.w,z.w,w.w
 | |
|     mResult.r[3] = _mm_shuffle_ps(vTemp3, vTemp4,_MM_SHUFFLE(3,1,3,1));
 | |
|     return mResult;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Permute Templates
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| namespace Internal
 | |
| {
 | |
|     // Slow path fallback for permutes that do not map to a single SSE opcode.
 | |
|     template<uint32_t Shuffle, bool WhichX, bool WhichY, bool WhichZ, bool WhichW> struct PermuteHelper
 | |
|     {
 | |
|         static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2)
 | |
|         {
 | |
|             static const XMVECTORU32 selectMask =
 | |
|             { { {
 | |
|                 WhichX ? 0xFFFFFFFF : 0,
 | |
|                 WhichY ? 0xFFFFFFFF : 0,
 | |
|                 WhichZ ? 0xFFFFFFFF : 0,
 | |
|                 WhichW ? 0xFFFFFFFF : 0,
 | |
|             } } };
 | |
| 
 | |
|             XMVECTOR shuffled1 = _mm_permute_ps(v1, Shuffle);
 | |
|             XMVECTOR shuffled2 = _mm_permute_ps(v2, Shuffle);
 | |
| 
 | |
|             XMVECTOR masked1 = _mm_andnot_ps(selectMask, shuffled1);
 | |
|             XMVECTOR masked2 = _mm_and_ps(selectMask, shuffled2);
 | |
| 
 | |
|             return _mm_or_ps(masked1, masked2);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // Fast path for permutes that only read from the first vector.
 | |
|     template<uint32_t Shuffle> struct PermuteHelper<Shuffle, false, false, false, false>
 | |
|     {
 | |
|         static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2) { (v2); return _mm_permute_ps(v1, Shuffle); }
 | |
|     };
 | |
| 
 | |
|     // Fast path for permutes that only read from the second vector.
 | |
|     template<uint32_t Shuffle> struct PermuteHelper<Shuffle, true, true, true, true>
 | |
|     {
 | |
|         static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2){ (v1); return _mm_permute_ps(v2, Shuffle); }
 | |
|     };
 | |
| 
 | |
|     // Fast path for permutes that read XY from the first vector, ZW from the second.
 | |
|     template<uint32_t Shuffle> struct PermuteHelper<Shuffle, false, false, true, true>
 | |
|     {
 | |
|         static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2) { return _mm_shuffle_ps(v1, v2, Shuffle); }
 | |
|     };
 | |
| 
 | |
|     // Fast path for permutes that read XY from the second vector, ZW from the first.
 | |
|     template<uint32_t Shuffle> struct PermuteHelper<Shuffle, true, true, false, false>
 | |
|     {
 | |
|         static XMVECTOR XM_CALLCONV Permute(FXMVECTOR v1, FXMVECTOR v2) { return _mm_shuffle_ps(v2, v1, Shuffle); }
 | |
|     };
 | |
| };
 | |
| 
 | |
| // General permute template
 | |
| template<uint32_t PermuteX, uint32_t PermuteY, uint32_t PermuteZ, uint32_t PermuteW>
 | |
|     inline XMVECTOR XM_CALLCONV XMVectorPermute(FXMVECTOR V1, FXMVECTOR V2)
 | |
| {
 | |
|     static_assert(PermuteX <= 7, "PermuteX template parameter out of range");
 | |
|     static_assert(PermuteY <= 7, "PermuteY template parameter out of range");
 | |
|     static_assert(PermuteZ <= 7, "PermuteZ template parameter out of range");
 | |
|     static_assert(PermuteW <= 7, "PermuteW template parameter out of range");
 | |
| 
 | |
|     const uint32_t Shuffle = _MM_SHUFFLE(PermuteW & 3, PermuteZ & 3, PermuteY & 3, PermuteX & 3);
 | |
| 
 | |
|     const bool WhichX = PermuteX > 3;
 | |
|     const bool WhichY = PermuteY > 3;
 | |
|     const bool WhichZ = PermuteZ > 3;
 | |
|     const bool WhichW = PermuteW > 3;
 | |
| 
 | |
|     return AVX2::Internal::PermuteHelper<Shuffle, WhichX, WhichY, WhichZ, WhichW>::Permute(V1, V2);
 | |
| }
 | |
| 
 | |
| // Special-case permute templates
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,1,2,3>(FXMVECTOR V1, FXMVECTOR) { return V1; }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,5,6,7>(FXMVECTOR, FXMVECTOR V2) { return V2; }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,1,2,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x1); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,5,2,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x2); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,5,2,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x3); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,1,6,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x4); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,1,6,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x5); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,5,6,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x6); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,5,6,3>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x7); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,1,2,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x8); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,1,2,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0x9); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,5,2,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xA); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,5,2,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xB); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,1,6,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xC); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<4,1,6,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xD); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorPermute<0,5,6,7>(FXMVECTOR V1, FXMVECTOR V2) { return _mm_blend_ps(V1,V2,0xE); }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Swizzle Templates
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| // General swizzle template
 | |
| template<uint32_t SwizzleX, uint32_t SwizzleY, uint32_t SwizzleZ, uint32_t SwizzleW>
 | |
|     inline XMVECTOR XM_CALLCONV XMVectorSwizzle(FXMVECTOR V)
 | |
| {
 | |
|     static_assert(SwizzleX <= 3, "SwizzleX template parameter out of range");
 | |
|     static_assert(SwizzleY <= 3, "SwizzleY template parameter out of range");
 | |
|     static_assert(SwizzleZ <= 3, "SwizzleZ template parameter out of range");
 | |
|     static_assert(SwizzleW <= 3, "SwizzleW template parameter out of range");
 | |
| 
 | |
|     return _mm_permute_ps( V, _MM_SHUFFLE( SwizzleW, SwizzleZ, SwizzleY, SwizzleX ) );
 | |
| }
 | |
| 
 | |
| // Specialized swizzles
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorSwizzle<0,1,2,3>(FXMVECTOR V) { return V; }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorSwizzle<0,0,0,0>(FXMVECTOR V) { return _mm_broadcastss_ps(V); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorSwizzle<0,0,2,2>(FXMVECTOR V) { return _mm_moveldup_ps(V); }
 | |
| template<> inline XMVECTOR XM_CALLCONV XMVectorSwizzle<1,1,3,3>(FXMVECTOR V) { return _mm_movehdup_ps(V); }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Other Templates
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| template<uint32_t Elements>
 | |
|     inline XMVECTOR XM_CALLCONV XMVectorShiftLeft(FXMVECTOR V1, FXMVECTOR V2)
 | |
| {
 | |
|     static_assert( Elements < 4, "Elements template parameter out of range" );
 | |
|     return AVX2::XMVectorPermute<Elements, (Elements + 1), (Elements + 2), (Elements + 3)>(V1, V2);
 | |
| }
 | |
| 
 | |
| template<uint32_t Elements>
 | |
|     inline XMVECTOR XM_CALLCONV XMVectorRotateLeft(FXMVECTOR V)
 | |
| {
 | |
|     static_assert( Elements < 4, "Elements template parameter out of range" );
 | |
|     return AVX2::XMVectorSwizzle<Elements & 3, (Elements + 1) & 3, (Elements + 2) & 3, (Elements + 3) & 3>(V);
 | |
| }
 | |
| 
 | |
| template<uint32_t Elements>
 | |
|     inline XMVECTOR XM_CALLCONV XMVectorRotateRight(FXMVECTOR V)
 | |
| {
 | |
|     static_assert( Elements < 4, "Elements template parameter out of range" );
 | |
|     return AVX2::XMVectorSwizzle<(4 - Elements) & 3, (5 - Elements) & 3, (6 - Elements) & 3, (7 - Elements) & 3>(V);
 | |
| }
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Data conversion
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| inline float XMConvertHalfToFloat( PackedVector::HALF Value )
 | |
| {
 | |
|     __m128i V1 = _mm_cvtsi32_si128( static_cast<int>(Value) );
 | |
|     __m128 V2 = _mm_cvtph_ps( V1 );
 | |
|     return _mm_cvtss_f32( V2 );
 | |
| }
 | |
| 
 | |
| inline PackedVector::HALF XMConvertFloatToHalf( float Value )
 | |
| {
 | |
|     __m128 V1 = _mm_set_ss( Value );
 | |
|     __m128i V2 = _mm_cvtps_ph( V1, 0 );
 | |
|     return static_cast<PackedVector::HALF>( _mm_cvtsi128_si32(V2) );
 | |
| }
 | |
| 
 | |
| inline float* XMConvertHalfToFloatStream
 | |
| (
 | |
|     _Out_writes_bytes_(sizeof(float)+OutputStride*(HalfCount-1)) float* pOutputStream, 
 | |
|      _In_ size_t      OutputStride, 
 | |
|     _In_reads_bytes_(2+InputStride*(HalfCount-1)) const PackedVector::HALF* pInputStream, 
 | |
|     _In_ size_t      InputStride, 
 | |
|     _In_ size_t      HalfCount
 | |
| )
 | |
| {
 | |
|     using namespace PackedVector;
 | |
| 
 | |
|     assert(pOutputStream);
 | |
|     assert(pInputStream);
 | |
| 
 | |
|     assert(InputStride >= sizeof(HALF));
 | |
|     assert(OutputStride >= sizeof(float));
 | |
| 
 | |
|     auto pHalf = reinterpret_cast<const uint8_t*>(pInputStream);
 | |
|     auto pFloat = reinterpret_cast<uint8_t*>(pOutputStream);
 | |
| 
 | |
|     size_t i = 0;
 | |
|     size_t four = HalfCount >> 2;
 | |
|     if (four > 0)
 | |
|     {
 | |
|         if (InputStride == sizeof(HALF))
 | |
|         {
 | |
|             if (OutputStride == sizeof(float))
 | |
|             {
 | |
|                 if ((reinterpret_cast<uintptr_t>(pFloat) & 0xF) == 0)
 | |
|                 {
 | |
|                     // Packed input, aligned & packed output
 | |
|                     for (size_t j = 0; j < four; ++j)
 | |
|                     {
 | |
|                         __m128i HV = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pHalf));
 | |
|                         pHalf += InputStride * 4;
 | |
| 
 | |
|                         __m128 FV = _mm_cvtph_ps(HV);
 | |
| 
 | |
|                         _mm_stream_ps(reinterpret_cast<float*>(pFloat), FV);
 | |
|                         pFloat += OutputStride * 4;
 | |
|                         i += 4;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Packed input, packed output
 | |
|                     for (size_t j = 0; j < four; ++j)
 | |
|                     {
 | |
|                         __m128i HV = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pHalf));
 | |
|                         pHalf += InputStride * 4;
 | |
| 
 | |
|                         __m128 FV = _mm_cvtph_ps(HV);
 | |
| 
 | |
|                         _mm_storeu_ps(reinterpret_cast<float*>(pFloat), FV);
 | |
|                         pFloat += OutputStride * 4;
 | |
|                         i += 4;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Packed input, scattered output
 | |
|                 for (size_t j = 0; j < four; ++j)
 | |
|                 {
 | |
|                     __m128i HV = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pHalf));
 | |
|                     pHalf += InputStride * 4;
 | |
| 
 | |
|                     __m128 FV = _mm_cvtph_ps(HV);
 | |
| 
 | |
|                     _mm_store_ss(reinterpret_cast<float*>(pFloat), FV);
 | |
|                     pFloat += OutputStride;
 | |
|                     *reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 1);
 | |
|                     pFloat += OutputStride;
 | |
|                     *reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 2);
 | |
|                     pFloat += OutputStride;
 | |
|                     *reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 3);
 | |
|                     pFloat += OutputStride;
 | |
|                     i += 4;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else if (OutputStride == sizeof(float))
 | |
|         {
 | |
|             if ((reinterpret_cast<uintptr_t>(pFloat) & 0xF) == 0)
 | |
|             {
 | |
|                 // Scattered input, aligned & packed output
 | |
|                 for (size_t j = 0; j < four; ++j)
 | |
|                 {
 | |
|                     uint16_t H1 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                     pHalf += InputStride;
 | |
|                     uint16_t H2 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                     pHalf += InputStride;
 | |
|                     uint16_t H3 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                     pHalf += InputStride;
 | |
|                     uint16_t H4 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                     pHalf += InputStride;
 | |
| 
 | |
|                     __m128i HV = _mm_setzero_si128();
 | |
|                     HV = _mm_insert_epi16(HV, H1, 0);
 | |
|                     HV = _mm_insert_epi16(HV, H2, 1);
 | |
|                     HV = _mm_insert_epi16(HV, H3, 2);
 | |
|                     HV = _mm_insert_epi16(HV, H4, 3);
 | |
|                     __m128 FV = _mm_cvtph_ps(HV);
 | |
| 
 | |
|                     _mm_stream_ps(reinterpret_cast<float*>(pFloat), FV);
 | |
|                     pFloat += OutputStride * 4;
 | |
|                     i += 4;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Scattered input, packed output
 | |
|                 for (size_t j = 0; j < four; ++j)
 | |
|                 {
 | |
|                     uint16_t H1 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                     pHalf += InputStride;
 | |
|                     uint16_t H2 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                     pHalf += InputStride;
 | |
|                     uint16_t H3 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                     pHalf += InputStride;
 | |
|                     uint16_t H4 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                     pHalf += InputStride;
 | |
| 
 | |
|                     __m128i HV = _mm_setzero_si128();
 | |
|                     HV = _mm_insert_epi16(HV, H1, 0);
 | |
|                     HV = _mm_insert_epi16(HV, H2, 1);
 | |
|                     HV = _mm_insert_epi16(HV, H3, 2);
 | |
|                     HV = _mm_insert_epi16(HV, H4, 3);
 | |
|                     __m128 FV = _mm_cvtph_ps(HV);
 | |
| 
 | |
|                     _mm_storeu_ps(reinterpret_cast<float*>(pFloat), FV);
 | |
|                     pFloat += OutputStride * 4;
 | |
|                     i += 4;
 | |
|                 }
 | |
| 
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Scattered input, scattered output
 | |
|             for (size_t j = 0; j < four; ++j)
 | |
|             {
 | |
|                 uint16_t H1 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                 pHalf += InputStride;
 | |
|                 uint16_t H2 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                 pHalf += InputStride;
 | |
|                 uint16_t H3 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                 pHalf += InputStride;
 | |
|                 uint16_t H4 = *reinterpret_cast<const HALF*>(pHalf);
 | |
|                 pHalf += InputStride;
 | |
| 
 | |
|                 __m128i HV = _mm_setzero_si128();
 | |
|                 HV = _mm_insert_epi16(HV, H1, 0);
 | |
|                 HV = _mm_insert_epi16(HV, H2, 1);
 | |
|                 HV = _mm_insert_epi16(HV, H3, 2);
 | |
|                 HV = _mm_insert_epi16(HV, H4, 3);
 | |
|                 __m128 FV = _mm_cvtph_ps(HV);
 | |
| 
 | |
|                 _mm_store_ss(reinterpret_cast<float*>(pFloat), FV);
 | |
|                 pFloat += OutputStride;
 | |
|                 *reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 1);
 | |
|                 pFloat += OutputStride;
 | |
|                 *reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 2);
 | |
|                 pFloat += OutputStride;
 | |
|                 *reinterpret_cast<int*>(pFloat) = _mm_extract_ps(FV, 3);
 | |
|                 pFloat += OutputStride;
 | |
|                 i += 4;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (; i < HalfCount; ++i)
 | |
|     {
 | |
|         *reinterpret_cast<float*>(pFloat) = XMConvertHalfToFloat(reinterpret_cast<const HALF*>(pHalf)[0]);
 | |
|         pHalf += InputStride;
 | |
|         pFloat += OutputStride; 
 | |
|     }
 | |
| 
 | |
|     return pOutputStream;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline PackedVector::HALF* XMConvertFloatToHalfStream
 | |
| (
 | |
|     _Out_writes_bytes_(2+OutputStride*(FloatCount-1)) PackedVector::HALF* pOutputStream, 
 | |
|     _In_ size_t       OutputStride, 
 | |
|     _In_reads_bytes_(sizeof(float)+InputStride*(FloatCount-1)) const float* pInputStream, 
 | |
|     _In_ size_t       InputStride, 
 | |
|     _In_ size_t       FloatCount
 | |
| )
 | |
| {
 | |
|     using namespace PackedVector;
 | |
| 
 | |
|     assert(pOutputStream);
 | |
|     assert(pInputStream);
 | |
| 
 | |
|     assert(InputStride >= sizeof(float));
 | |
|     assert(OutputStride >= sizeof(HALF));
 | |
| 
 | |
|     auto pFloat = reinterpret_cast<const uint8_t*>(pInputStream);
 | |
|     auto pHalf = reinterpret_cast<uint8_t*>(pOutputStream);
 | |
| 
 | |
|     size_t i = 0;
 | |
|     size_t four = FloatCount >> 2;
 | |
|     if (four > 0)
 | |
|     {
 | |
|         if (InputStride == sizeof(float))
 | |
|         {
 | |
|             if (OutputStride == sizeof(HALF))
 | |
|             {
 | |
|                 if ((reinterpret_cast<uintptr_t>(pFloat) & 0xF) == 0)
 | |
|                 {
 | |
|                     // Aligned and packed input, packed output
 | |
|                     for (size_t j = 0; j < four; ++j)
 | |
|                     {
 | |
|                         __m128 FV = _mm_load_ps(reinterpret_cast<const float*>(pFloat));
 | |
|                         pFloat += InputStride * 4;
 | |
| 
 | |
|                         __m128i HV = _mm_cvtps_ph(FV, 0);
 | |
| 
 | |
|                         _mm_storel_epi64(reinterpret_cast<__m128i*>(pHalf), HV);
 | |
|                         pHalf += OutputStride * 4;
 | |
|                         i += 4;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Packed input, packed output
 | |
|                     for (size_t j = 0; j < four; ++j)
 | |
|                     {
 | |
|                         __m128 FV = _mm_loadu_ps(reinterpret_cast<const float*>(pFloat));
 | |
|                         pFloat += InputStride * 4;
 | |
| 
 | |
|                         __m128i HV = _mm_cvtps_ph(FV, 0);
 | |
| 
 | |
|                         _mm_storel_epi64(reinterpret_cast<__m128i*>(pHalf), HV);
 | |
|                         pHalf += OutputStride * 4;
 | |
|                         i += 4;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 if ((reinterpret_cast<uintptr_t>(pFloat) & 0xF) == 0)
 | |
|                 {
 | |
|                     // Aligned & packed input, scattered output
 | |
|                     for (size_t j = 0; j < four; ++j)
 | |
|                     {
 | |
|                         __m128 FV = _mm_load_ps(reinterpret_cast<const float*>(pFloat));
 | |
|                         pFloat += InputStride * 4;
 | |
| 
 | |
|                         __m128i HV = _mm_cvtps_ph(FV, 0);
 | |
| 
 | |
|                         *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 0));
 | |
|                         pHalf += OutputStride;
 | |
|                         *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 1));
 | |
|                         pHalf += OutputStride;
 | |
|                         *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 2));
 | |
|                         pHalf += OutputStride;
 | |
|                         *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 3));
 | |
|                         pHalf += OutputStride;
 | |
|                         i += 4;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Packed input, scattered output
 | |
|                     for (size_t j = 0; j < four; ++j)
 | |
|                     {
 | |
|                         __m128 FV = _mm_loadu_ps(reinterpret_cast<const float*>(pFloat));
 | |
|                         pFloat += InputStride * 4;
 | |
| 
 | |
|                         __m128i HV = _mm_cvtps_ph(FV, 0);
 | |
| 
 | |
|                         *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 0));
 | |
|                         pHalf += OutputStride;
 | |
|                         *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 1));
 | |
|                         pHalf += OutputStride;
 | |
|                         *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 2));
 | |
|                         pHalf += OutputStride;
 | |
|                         *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 3));
 | |
|                         pHalf += OutputStride;
 | |
|                         i += 4;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else if (OutputStride == sizeof(HALF))
 | |
|         {
 | |
|             // Scattered input, packed output
 | |
|             for (size_t j = 0; j < four; ++j)
 | |
|             {
 | |
|                 __m128 FV1 = _mm_load_ss(reinterpret_cast<const float*>(pFloat));
 | |
|                 pFloat += InputStride;
 | |
| 
 | |
|                 __m128 FV2 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
 | |
|                 pFloat += InputStride;
 | |
| 
 | |
|                 __m128 FV3 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
 | |
|                 pFloat += InputStride;
 | |
| 
 | |
|                 __m128 FV4 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
 | |
|                 pFloat += InputStride;
 | |
| 
 | |
|                 __m128 FV = _mm_blend_ps(FV1, FV2, 0x2);
 | |
|                 __m128 FT = _mm_blend_ps(FV3, FV4, 0x8);
 | |
|                 FV = _mm_blend_ps(FV, FT, 0xC);
 | |
| 
 | |
|                 __m128i HV = _mm_cvtps_ph(FV, 0);
 | |
| 
 | |
|                 _mm_storel_epi64(reinterpret_cast<__m128i*>(pHalf), HV);
 | |
|                 pHalf += OutputStride * 4;
 | |
|                 i += 4;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Scattered input, scattered output
 | |
|             for (size_t j = 0; j < four; ++j)
 | |
|             {
 | |
|                 __m128 FV1 = _mm_load_ss(reinterpret_cast<const float*>(pFloat));
 | |
|                 pFloat += InputStride;
 | |
| 
 | |
|                 __m128 FV2 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
 | |
|                 pFloat += InputStride;
 | |
| 
 | |
|                 __m128 FV3 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
 | |
|                 pFloat += InputStride;
 | |
| 
 | |
|                 __m128 FV4 = _mm_broadcast_ss(reinterpret_cast<const float*>(pFloat));
 | |
|                 pFloat += InputStride;
 | |
| 
 | |
|                 __m128 FV = _mm_blend_ps(FV1, FV2, 0x2);
 | |
|                 __m128 FT = _mm_blend_ps(FV3, FV4, 0x8);
 | |
|                 FV = _mm_blend_ps(FV, FT, 0xC);
 | |
| 
 | |
|                 __m128i HV = _mm_cvtps_ph(FV, 0);
 | |
| 
 | |
|                 *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 0));
 | |
|                 pHalf += OutputStride;
 | |
|                 *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 1));
 | |
|                 pHalf += OutputStride;
 | |
|                 *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 2));
 | |
|                 pHalf += OutputStride;
 | |
|                 *reinterpret_cast<HALF*>(pHalf) = static_cast<HALF>(_mm_extract_epi16(HV, 3));
 | |
|                 pHalf += OutputStride;
 | |
|                 i += 4;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (; i < FloatCount; ++i)
 | |
|     {
 | |
|         *reinterpret_cast<HALF*>(pHalf) = XMConvertFloatToHalf(reinterpret_cast<const float*>(pFloat)[0]);
 | |
|         pFloat += InputStride; 
 | |
|         pHalf += OutputStride;
 | |
|     }
 | |
| 
 | |
|     return pOutputStream;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Half2
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMLoadHalf2( _In_ const PackedVector::XMHALF2* pSource )
 | |
| {
 | |
|     assert(pSource);
 | |
|     __m128 V = _mm_load_ss( reinterpret_cast<const float*>(pSource) );
 | |
|     return _mm_cvtph_ps( _mm_castps_si128( V ) );
 | |
| }
 | |
| 
 | |
| inline void XM_CALLCONV XMStoreHalf2( _Out_ PackedVector::XMHALF2* pDestination, _In_ FXMVECTOR V )
 | |
| {
 | |
|     assert(pDestination);
 | |
|     __m128i V1 = _mm_cvtps_ph( V, 0 );
 | |
|     _mm_store_ss( reinterpret_cast<float*>(pDestination), _mm_castsi128_ps(V1) );
 | |
| }
 | |
| 
 | |
| 
 | |
| //-------------------------------------------------------------------------------------
 | |
| // Half4
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMLoadHalf4( _In_ const PackedVector::XMHALF4* pSource )
 | |
| {
 | |
|     assert(pSource);
 | |
|     __m128i V = _mm_loadl_epi64( reinterpret_cast<const __m128i*>(pSource) );
 | |
|     return _mm_cvtph_ps( V );
 | |
| }
 | |
| 
 | |
| inline void XM_CALLCONV XMStoreHalf4( _Out_ PackedVector::XMHALF4* pDestination, _In_ FXMVECTOR V )
 | |
| {
 | |
|     assert(pDestination);
 | |
|     __m128i V1 = _mm_cvtps_ph( V, 0 );
 | |
|     _mm_storel_epi64( reinterpret_cast<__m128i*>(pDestination), V1 );
 | |
| }
 | |
| 
 | |
| } // namespace AVX2
 | |
| 
 | |
| } // namespace DirectX;
 | 
