mirror of
				https://github.com/thunderbrewhq/thunderbrew
				synced 2025-10-28 14:56:06 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			4817 lines
		
	
	
		
			190 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4817 lines
		
	
	
		
			190 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //-------------------------------------------------------------------------------------
 | |
| // DirectXCollision.inl -- C++ Collision Math library
 | |
| //
 | |
| // Copyright (c) Microsoft Corporation.
 | |
| // Licensed under the MIT License.
 | |
| //
 | |
| // http://go.microsoft.com/fwlink/?LinkID=615560
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| XMGLOBALCONST XMVECTORF32 g_BoxOffset[8] =
 | |
| {
 | |
|     { { { -1.0f, -1.0f,  1.0f, 0.0f } } },
 | |
|     { { {  1.0f, -1.0f,  1.0f, 0.0f } } },
 | |
|     { { {  1.0f,  1.0f,  1.0f, 0.0f } } },
 | |
|     { { { -1.0f,  1.0f,  1.0f, 0.0f } } },
 | |
|     { { { -1.0f, -1.0f, -1.0f, 0.0f } } },
 | |
|     { { {  1.0f, -1.0f, -1.0f, 0.0f } } },
 | |
|     { { {  1.0f,  1.0f, -1.0f, 0.0f } } },
 | |
|     { { { -1.0f,  1.0f, -1.0f, 0.0f } } },
 | |
| };
 | |
| 
 | |
| XMGLOBALCONST XMVECTORF32 g_RayEpsilon = { { { 1e-20f, 1e-20f, 1e-20f, 1e-20f } } };
 | |
| XMGLOBALCONST XMVECTORF32 g_RayNegEpsilon = { { { -1e-20f, -1e-20f, -1e-20f, -1e-20f } } };
 | |
| XMGLOBALCONST XMVECTORF32 g_FltMin = { { { -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX } } };
 | |
| XMGLOBALCONST XMVECTORF32 g_FltMax = { { { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX } } };
 | |
| 
 | |
| namespace Internal
 | |
| {
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Return true if any of the elements of a 3 vector are equal to 0xffffffff.
 | |
|     // Slightly more efficient than using XMVector3EqualInt.
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline bool XMVector3AnyTrue(_In_ FXMVECTOR V) noexcept
 | |
|     {
 | |
|         // Duplicate the fourth element from the first element.
 | |
|         XMVECTOR C = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X>(V);
 | |
| 
 | |
|         return XMComparisonAnyTrue(XMVector4EqualIntR(C, XMVectorTrueInt()));
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Return true if all of the elements of a 3 vector are equal to 0xffffffff.
 | |
|     // Slightly more efficient than using XMVector3EqualInt.
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline bool XMVector3AllTrue(_In_ FXMVECTOR V) noexcept
 | |
|     {
 | |
|         // Duplicate the fourth element from the first element.
 | |
|         XMVECTOR C = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X>(V);
 | |
| 
 | |
|         return XMComparisonAllTrue(XMVector4EqualIntR(C, XMVectorTrueInt()));
 | |
|     }
 | |
| 
 | |
| #if defined(_PREFAST_) || !defined(NDEBUG)
 | |
| 
 | |
|     XMGLOBALCONST XMVECTORF32 g_UnitVectorEpsilon = { { { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f } } };
 | |
|     XMGLOBALCONST XMVECTORF32 g_UnitQuaternionEpsilon = { { { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f } } };
 | |
|     XMGLOBALCONST XMVECTORF32 g_UnitPlaneEpsilon = { { { 1.0e-4f, 1.0e-4f, 1.0e-4f, 1.0e-4f } } };
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Return true if the vector is a unit vector (length == 1).
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline bool XMVector3IsUnit(_In_ FXMVECTOR V) noexcept
 | |
|     {
 | |
|         XMVECTOR Difference = XMVectorSubtract(XMVector3Length(V), XMVectorSplatOne());
 | |
|         return XMVector4Less(XMVectorAbs(Difference), g_UnitVectorEpsilon);
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Return true if the quaterion is a unit quaternion.
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline bool XMQuaternionIsUnit(_In_ FXMVECTOR Q) noexcept
 | |
|     {
 | |
|         XMVECTOR Difference = XMVectorSubtract(XMVector4Length(Q), XMVectorSplatOne());
 | |
|         return XMVector4Less(XMVectorAbs(Difference), g_UnitQuaternionEpsilon);
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Return true if the plane is a unit plane.
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline bool XMPlaneIsUnit(_In_ FXMVECTOR Plane) noexcept
 | |
|     {
 | |
|         XMVECTOR Difference = XMVectorSubtract(XMVector3Length(Plane), XMVectorSplatOne());
 | |
|         return XMVector4Less(XMVectorAbs(Difference), g_UnitPlaneEpsilon);
 | |
|     }
 | |
| 
 | |
| #endif // _PREFAST_ || !NDEBUG
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline XMVECTOR XMPlaneTransform(_In_ FXMVECTOR Plane, _In_ FXMVECTOR Rotation, _In_ FXMVECTOR Translation) noexcept
 | |
|     {
 | |
|         XMVECTOR vNormal = XMVector3Rotate(Plane, Rotation);
 | |
|         XMVECTOR vD = XMVectorSubtract(XMVectorSplatW(Plane), XMVector3Dot(vNormal, Translation));
 | |
| 
 | |
|         return XMVectorInsert<0, 0, 0, 0, 1>(vNormal, vD);
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Return the point on the line segement (S1, S2) nearest the point P.
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline XMVECTOR PointOnLineSegmentNearestPoint(_In_ FXMVECTOR S1, _In_ FXMVECTOR S2, _In_ FXMVECTOR P) noexcept
 | |
|     {
 | |
|         XMVECTOR Dir = XMVectorSubtract(S2, S1);
 | |
|         XMVECTOR Projection = XMVectorSubtract(XMVector3Dot(P, Dir), XMVector3Dot(S1, Dir));
 | |
|         XMVECTOR LengthSq = XMVector3Dot(Dir, Dir);
 | |
| 
 | |
|         XMVECTOR t = XMVectorMultiply(Projection, XMVectorReciprocal(LengthSq));
 | |
|         XMVECTOR Point = XMVectorMultiplyAdd(t, Dir, S1);
 | |
| 
 | |
|         // t < 0
 | |
|         XMVECTOR SelectS1 = XMVectorLess(Projection, XMVectorZero());
 | |
|         Point = XMVectorSelect(Point, S1, SelectS1);
 | |
| 
 | |
|         // t > 1
 | |
|         XMVECTOR SelectS2 = XMVectorGreater(Projection, LengthSq);
 | |
|         Point = XMVectorSelect(Point, S2, SelectS2);
 | |
| 
 | |
|         return Point;
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Test if the point (P) on the plane of the triangle is inside the triangle
 | |
|     // (V0, V1, V2).
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline XMVECTOR XM_CALLCONV PointOnPlaneInsideTriangle(_In_ FXMVECTOR P, _In_ FXMVECTOR V0, _In_ FXMVECTOR V1, _In_ GXMVECTOR V2) noexcept
 | |
|     {
 | |
|         // Compute the triangle normal.
 | |
|         XMVECTOR N = XMVector3Cross(XMVectorSubtract(V2, V0), XMVectorSubtract(V1, V0));
 | |
| 
 | |
|         // Compute the cross products of the vector from the base of each edge to
 | |
|         // the point with each edge vector.
 | |
|         XMVECTOR C0 = XMVector3Cross(XMVectorSubtract(P, V0), XMVectorSubtract(V1, V0));
 | |
|         XMVECTOR C1 = XMVector3Cross(XMVectorSubtract(P, V1), XMVectorSubtract(V2, V1));
 | |
|         XMVECTOR C2 = XMVector3Cross(XMVectorSubtract(P, V2), XMVectorSubtract(V0, V2));
 | |
| 
 | |
|         // If the cross product points in the same direction as the normal the the
 | |
|         // point is inside the edge (it is zero if is on the edge).
 | |
|         XMVECTOR Zero = XMVectorZero();
 | |
|         XMVECTOR Inside0 = XMVectorGreaterOrEqual(XMVector3Dot(C0, N), Zero);
 | |
|         XMVECTOR Inside1 = XMVectorGreaterOrEqual(XMVector3Dot(C1, N), Zero);
 | |
|         XMVECTOR Inside2 = XMVectorGreaterOrEqual(XMVector3Dot(C2, N), Zero);
 | |
| 
 | |
|         // If the point inside all of the edges it is inside.
 | |
|         return XMVectorAndInt(XMVectorAndInt(Inside0, Inside1), Inside2);
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline bool SolveCubic(_In_ float e, _In_ float f, _In_ float g, _Out_ float* t, _Out_ float* u, _Out_ float* v) noexcept
 | |
|     {
 | |
|         float p, q, h, rc, d, theta, costh3, sinth3;
 | |
| 
 | |
|         p = f - e * e / 3.0f;
 | |
|         q = g - e * f / 3.0f + e * e * e * 2.0f / 27.0f;
 | |
|         h = q * q / 4.0f + p * p * p / 27.0f;
 | |
| 
 | |
|         if (h > 0)
 | |
|         {
 | |
|             *t = *u = *v = 0.f;
 | |
|             return false; // only one real root
 | |
|         }
 | |
| 
 | |
|         if ((h == 0) && (q == 0)) // all the same root
 | |
|         {
 | |
|             *t = -e / 3;
 | |
|             *u = -e / 3;
 | |
|             *v = -e / 3;
 | |
| 
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         d = sqrtf(q * q / 4.0f - h);
 | |
|         if (d < 0)
 | |
|             rc = -powf(-d, 1.0f / 3.0f);
 | |
|         else
 | |
|             rc = powf(d, 1.0f / 3.0f);
 | |
| 
 | |
|         theta = XMScalarACos(-q / (2.0f * d));
 | |
|         costh3 = XMScalarCos(theta / 3.0f);
 | |
|         sinth3 = sqrtf(3.0f) * XMScalarSin(theta / 3.0f);
 | |
|         *t = 2.0f * rc * costh3 - e / 3.0f;
 | |
|         *u = -rc * (costh3 + sinth3) - e / 3.0f;
 | |
|         *v = -rc * (costh3 - sinth3) - e / 3.0f;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline XMVECTOR CalculateEigenVector(_In_ float m11, _In_ float m12, _In_ float m13,
 | |
|         _In_ float m22, _In_ float m23, _In_ float m33, _In_ float e) noexcept
 | |
|     {
 | |
|         float fTmp[3];
 | |
|         fTmp[0] = m12 * m23 - m13 * (m22 - e);
 | |
|         fTmp[1] = m13 * m12 - m23 * (m11 - e);
 | |
|         fTmp[2] = (m11 - e) * (m22 - e) - m12 * m12;
 | |
| 
 | |
|         XMVECTOR vTmp = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(fTmp));
 | |
| 
 | |
|         if (XMVector3Equal(vTmp, XMVectorZero())) // planar or linear
 | |
|         {
 | |
|             float f1, f2, f3;
 | |
| 
 | |
|             // we only have one equation - find a valid one
 | |
|             if ((m11 - e != 0) || (m12 != 0) || (m13 != 0))
 | |
|             {
 | |
|                 f1 = m11 - e; f2 = m12; f3 = m13;
 | |
|             }
 | |
|             else if ((m12 != 0) || (m22 - e != 0) || (m23 != 0))
 | |
|             {
 | |
|                 f1 = m12; f2 = m22 - e; f3 = m23;
 | |
|             }
 | |
|             else if ((m13 != 0) || (m23 != 0) || (m33 - e != 0))
 | |
|             {
 | |
|                 f1 = m13; f2 = m23; f3 = m33 - e;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // error, we'll just make something up - we have NO context
 | |
|                 f1 = 1.0f; f2 = 0.0f; f3 = 0.0f;
 | |
|             }
 | |
| 
 | |
|             if (f1 == 0)
 | |
|                 vTmp = XMVectorSetX(vTmp, 0.0f);
 | |
|             else
 | |
|                 vTmp = XMVectorSetX(vTmp, 1.0f);
 | |
| 
 | |
|             if (f2 == 0)
 | |
|                 vTmp = XMVectorSetY(vTmp, 0.0f);
 | |
|             else
 | |
|                 vTmp = XMVectorSetY(vTmp, 1.0f);
 | |
| 
 | |
|             if (f3 == 0)
 | |
|             {
 | |
|                 vTmp = XMVectorSetZ(vTmp, 0.0f);
 | |
|                 // recalculate y to make equation work
 | |
|                 if (m12 != 0)
 | |
|                     vTmp = XMVectorSetY(vTmp, -f1 / f2);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 vTmp = XMVectorSetZ(vTmp, (f2 - f1) / f3);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (XMVectorGetX(XMVector3LengthSq(vTmp)) > 1e-5f)
 | |
|         {
 | |
|             return XMVector3Normalize(vTmp);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Multiply by a value large enough to make the vector non-zero.
 | |
|             vTmp = XMVectorScale(vTmp, 1e5f);
 | |
|             return XMVector3Normalize(vTmp);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline bool CalculateEigenVectors(_In_ float m11, _In_ float m12, _In_ float m13,
 | |
|         _In_ float m22, _In_ float m23, _In_ float m33,
 | |
|         _In_ float e1, _In_ float e2, _In_ float e3,
 | |
|         _Out_ XMVECTOR* pV1, _Out_ XMVECTOR* pV2, _Out_ XMVECTOR* pV3) noexcept
 | |
|     {
 | |
|         *pV1 = DirectX::Internal::CalculateEigenVector(m11, m12, m13, m22, m23, m33, e1);
 | |
|         *pV2 = DirectX::Internal::CalculateEigenVector(m11, m12, m13, m22, m23, m33, e2);
 | |
|         *pV3 = DirectX::Internal::CalculateEigenVector(m11, m12, m13, m22, m23, m33, e3);
 | |
| 
 | |
|         bool v1z = false;
 | |
|         bool v2z = false;
 | |
|         bool v3z = false;
 | |
| 
 | |
|         XMVECTOR Zero = XMVectorZero();
 | |
| 
 | |
|         if (XMVector3Equal(*pV1, Zero))
 | |
|             v1z = true;
 | |
| 
 | |
|         if (XMVector3Equal(*pV2, Zero))
 | |
|             v2z = true;
 | |
| 
 | |
|         if (XMVector3Equal(*pV3, Zero))
 | |
|             v3z = true;
 | |
| 
 | |
|         bool e12 = (fabsf(XMVectorGetX(XMVector3Dot(*pV1, *pV2))) > 0.1f); // check for non-orthogonal vectors
 | |
|         bool e13 = (fabsf(XMVectorGetX(XMVector3Dot(*pV1, *pV3))) > 0.1f);
 | |
|         bool e23 = (fabsf(XMVectorGetX(XMVector3Dot(*pV2, *pV3))) > 0.1f);
 | |
| 
 | |
|         if ((v1z && v2z && v3z) || (e12 && e13 && e23) ||
 | |
|             (e12 && v3z) || (e13 && v2z) || (e23 && v1z)) // all eigenvectors are 0- any basis set
 | |
|         {
 | |
|             *pV1 = g_XMIdentityR0.v;
 | |
|             *pV2 = g_XMIdentityR1.v;
 | |
|             *pV3 = g_XMIdentityR2.v;
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if (v1z && v2z)
 | |
|         {
 | |
|             XMVECTOR vTmp = XMVector3Cross(g_XMIdentityR1, *pV3);
 | |
|             if (XMVectorGetX(XMVector3LengthSq(vTmp)) < 1e-5f)
 | |
|             {
 | |
|                 vTmp = XMVector3Cross(g_XMIdentityR0, *pV3);
 | |
|             }
 | |
|             *pV1 = XMVector3Normalize(vTmp);
 | |
|             *pV2 = XMVector3Cross(*pV3, *pV1);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if (v3z && v1z)
 | |
|         {
 | |
|             XMVECTOR vTmp = XMVector3Cross(g_XMIdentityR1, *pV2);
 | |
|             if (XMVectorGetX(XMVector3LengthSq(vTmp)) < 1e-5f)
 | |
|             {
 | |
|                 vTmp = XMVector3Cross(g_XMIdentityR0, *pV2);
 | |
|             }
 | |
|             *pV3 = XMVector3Normalize(vTmp);
 | |
|             *pV1 = XMVector3Cross(*pV2, *pV3);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if (v2z && v3z)
 | |
|         {
 | |
|             XMVECTOR vTmp = XMVector3Cross(g_XMIdentityR1, *pV1);
 | |
|             if (XMVectorGetX(XMVector3LengthSq(vTmp)) < 1e-5f)
 | |
|             {
 | |
|                 vTmp = XMVector3Cross(g_XMIdentityR0, *pV1);
 | |
|             }
 | |
|             *pV2 = XMVector3Normalize(vTmp);
 | |
|             *pV3 = XMVector3Cross(*pV1, *pV2);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if ((v1z) || e12)
 | |
|         {
 | |
|             *pV1 = XMVector3Cross(*pV2, *pV3);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if ((v2z) || e23)
 | |
|         {
 | |
|             *pV2 = XMVector3Cross(*pV3, *pV1);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if ((v3z) || e13)
 | |
|         {
 | |
|             *pV3 = XMVector3Cross(*pV1, *pV2);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline bool CalculateEigenVectorsFromCovarianceMatrix(_In_ float Cxx, _In_ float Cyy, _In_ float Czz,
 | |
|         _In_ float Cxy, _In_ float Cxz, _In_ float Cyz,
 | |
|         _Out_ XMVECTOR* pV1, _Out_ XMVECTOR* pV2, _Out_ XMVECTOR* pV3) noexcept
 | |
|     {
 | |
|         // Calculate the eigenvalues by solving a cubic equation.
 | |
|         float e = -(Cxx + Cyy + Czz);
 | |
|         float f = Cxx * Cyy + Cyy * Czz + Czz * Cxx - Cxy * Cxy - Cxz * Cxz - Cyz * Cyz;
 | |
|         float g = Cxy * Cxy * Czz + Cxz * Cxz * Cyy + Cyz * Cyz * Cxx - Cxy * Cyz * Cxz * 2.0f - Cxx * Cyy * Czz;
 | |
| 
 | |
|         float ev1, ev2, ev3;
 | |
|         if (!DirectX::Internal::SolveCubic(e, f, g, &ev1, &ev2, &ev3))
 | |
|         {
 | |
|             // set them to arbitrary orthonormal basis set
 | |
|             *pV1 = g_XMIdentityR0.v;
 | |
|             *pV2 = g_XMIdentityR1.v;
 | |
|             *pV3 = g_XMIdentityR2.v;
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         return DirectX::Internal::CalculateEigenVectors(Cxx, Cxy, Cxz, Cyy, Cyz, Czz, ev1, ev2, ev3, pV1, pV2, pV3);
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline void XM_CALLCONV FastIntersectTrianglePlane(
 | |
|         FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2,
 | |
|         GXMVECTOR Plane,
 | |
|         XMVECTOR& Outside, XMVECTOR& Inside) noexcept
 | |
|     {
 | |
|         // Plane0
 | |
|         XMVECTOR Dist0 = XMVector4Dot(V0, Plane);
 | |
|         XMVECTOR Dist1 = XMVector4Dot(V1, Plane);
 | |
|         XMVECTOR Dist2 = XMVector4Dot(V2, Plane);
 | |
| 
 | |
|         XMVECTOR MinDist = XMVectorMin(Dist0, Dist1);
 | |
|         MinDist = XMVectorMin(MinDist, Dist2);
 | |
| 
 | |
|         XMVECTOR MaxDist = XMVectorMax(Dist0, Dist1);
 | |
|         MaxDist = XMVectorMax(MaxDist, Dist2);
 | |
| 
 | |
|         XMVECTOR Zero = XMVectorZero();
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorGreater(MinDist, Zero);
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         Inside = XMVectorLess(MaxDist, Zero);
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline void FastIntersectSpherePlane(_In_ FXMVECTOR Center, _In_ FXMVECTOR Radius, _In_ FXMVECTOR Plane,
 | |
|         _Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside) noexcept
 | |
|     {
 | |
|         XMVECTOR Dist = XMVector4Dot(Center, Plane);
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorGreater(Dist, Radius);
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         Inside = XMVectorLess(Dist, XMVectorNegate(Radius));
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline void FastIntersectAxisAlignedBoxPlane(_In_ FXMVECTOR Center, _In_ FXMVECTOR Extents, _In_ FXMVECTOR Plane,
 | |
|         _Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside) noexcept
 | |
|     {
 | |
|         // Compute the distance to the center of the box.
 | |
|         XMVECTOR Dist = XMVector4Dot(Center, Plane);
 | |
| 
 | |
|         // Project the axes of the box onto the normal of the plane.  Half the
 | |
|         // length of the projection (sometime called the "radius") is equal to
 | |
|         // h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
 | |
|         // where h(i) are extents of the box, n is the plane normal, and b(i) are the
 | |
|         // axes of the box. In this case b(i) = [(1,0,0), (0,1,0), (0,0,1)].
 | |
|         XMVECTOR Radius = XMVector3Dot(Extents, XMVectorAbs(Plane));
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorGreater(Dist, Radius);
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         Inside = XMVectorLess(Dist, XMVectorNegate(Radius));
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline void XM_CALLCONV FastIntersectOrientedBoxPlane(
 | |
|         _In_ FXMVECTOR Center, _In_ FXMVECTOR Extents, _In_ FXMVECTOR Axis0,
 | |
|         _In_ GXMVECTOR Axis1,
 | |
|         _In_ HXMVECTOR Axis2, _In_ HXMVECTOR Plane,
 | |
|         _Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside) noexcept
 | |
|     {
 | |
|         // Compute the distance to the center of the box.
 | |
|         XMVECTOR Dist = XMVector4Dot(Center, Plane);
 | |
| 
 | |
|         // Project the axes of the box onto the normal of the plane.  Half the
 | |
|         // length of the projection (sometime called the "radius") is equal to
 | |
|         // h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
 | |
|         // where h(i) are extents of the box, n is the plane normal, and b(i) are the
 | |
|         // axes of the box.
 | |
|         XMVECTOR Radius = XMVector3Dot(Plane, Axis0);
 | |
|         Radius = XMVectorInsert<0, 0, 1, 0, 0>(Radius, XMVector3Dot(Plane, Axis1));
 | |
|         Radius = XMVectorInsert<0, 0, 0, 1, 0>(Radius, XMVector3Dot(Plane, Axis2));
 | |
|         Radius = XMVector3Dot(Extents, XMVectorAbs(Radius));
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorGreater(Dist, Radius);
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         Inside = XMVectorLess(Dist, XMVectorNegate(Radius));
 | |
|     }
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     inline void XM_CALLCONV FastIntersectFrustumPlane(
 | |
|         _In_ FXMVECTOR Point0, _In_ FXMVECTOR Point1, _In_ FXMVECTOR Point2,
 | |
|         _In_ GXMVECTOR Point3,
 | |
|         _In_ HXMVECTOR Point4, _In_ HXMVECTOR Point5,
 | |
|         _In_ CXMVECTOR Point6, _In_ CXMVECTOR Point7, _In_ CXMVECTOR Plane,
 | |
|         _Out_ XMVECTOR& Outside, _Out_ XMVECTOR& Inside) noexcept
 | |
|     {
 | |
|         // Find the min/max projection of the frustum onto the plane normal.
 | |
|         XMVECTOR Min, Max, Dist;
 | |
| 
 | |
|         Min = Max = XMVector3Dot(Plane, Point0);
 | |
| 
 | |
|         Dist = XMVector3Dot(Plane, Point1);
 | |
|         Min = XMVectorMin(Min, Dist);
 | |
|         Max = XMVectorMax(Max, Dist);
 | |
| 
 | |
|         Dist = XMVector3Dot(Plane, Point2);
 | |
|         Min = XMVectorMin(Min, Dist);
 | |
|         Max = XMVectorMax(Max, Dist);
 | |
| 
 | |
|         Dist = XMVector3Dot(Plane, Point3);
 | |
|         Min = XMVectorMin(Min, Dist);
 | |
|         Max = XMVectorMax(Max, Dist);
 | |
| 
 | |
|         Dist = XMVector3Dot(Plane, Point4);
 | |
|         Min = XMVectorMin(Min, Dist);
 | |
|         Max = XMVectorMax(Max, Dist);
 | |
| 
 | |
|         Dist = XMVector3Dot(Plane, Point5);
 | |
|         Min = XMVectorMin(Min, Dist);
 | |
|         Max = XMVectorMax(Max, Dist);
 | |
| 
 | |
|         Dist = XMVector3Dot(Plane, Point6);
 | |
|         Min = XMVectorMin(Min, Dist);
 | |
|         Max = XMVectorMax(Max, Dist);
 | |
| 
 | |
|         Dist = XMVector3Dot(Plane, Point7);
 | |
|         Min = XMVectorMin(Min, Dist);
 | |
|         Max = XMVectorMax(Max, Dist);
 | |
| 
 | |
|         XMVECTOR PlaneDist = XMVectorNegate(XMVectorSplatW(Plane));
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorGreater(Min, PlaneDist);
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         Inside = XMVectorLess(Max, PlaneDist);
 | |
|     }
 | |
| 
 | |
| } // namespace Internal
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * BoundingSphere
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
|  //-----------------------------------------------------------------------------
 | |
|  // Transform a sphere by an angle preserving transform.
 | |
|  //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingSphere::Transform(BoundingSphere& Out, FXMMATRIX M) const noexcept
 | |
| {
 | |
|     // Load the center of the sphere.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
| 
 | |
|     // Transform the center of the sphere.
 | |
|     XMVECTOR C = XMVector3Transform(vCenter, M);
 | |
| 
 | |
|     XMVECTOR dX = XMVector3Dot(M.r[0], M.r[0]);
 | |
|     XMVECTOR dY = XMVector3Dot(M.r[1], M.r[1]);
 | |
|     XMVECTOR dZ = XMVector3Dot(M.r[2], M.r[2]);
 | |
| 
 | |
|     XMVECTOR d = XMVectorMax(dX, XMVectorMax(dY, dZ));
 | |
| 
 | |
|     // Store the center sphere.
 | |
|     XMStoreFloat3(&Out.Center, C);
 | |
| 
 | |
|     // Scale the radius of the pshere.
 | |
|     float Scale = sqrtf(XMVectorGetX(d));
 | |
|     Out.Radius = Radius * Scale;
 | |
| }
 | |
| 
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingSphere::Transform(BoundingSphere& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation) const noexcept
 | |
| {
 | |
|     // Load the center of the sphere.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
| 
 | |
|     // Transform the center of the sphere.
 | |
|     vCenter = XMVectorAdd(XMVector3Rotate(XMVectorScale(vCenter, Scale), Rotation), Translation);
 | |
| 
 | |
|     // Store the center sphere.
 | |
|     XMStoreFloat3(&Out.Center, vCenter);
 | |
| 
 | |
|     // Scale the radius of the pshere.
 | |
|     Out.Radius = Radius * Scale;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Point in sphere test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingSphere::Contains(FXMVECTOR Point) const noexcept
 | |
| {
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
| 
 | |
|     XMVECTOR DistanceSquared = XMVector3LengthSq(XMVectorSubtract(Point, vCenter));
 | |
|     XMVECTOR RadiusSquared = XMVectorMultiply(vRadius, vRadius);
 | |
| 
 | |
|     return XMVector3LessOrEqual(DistanceSquared, RadiusSquared) ? CONTAINS : DISJOINT;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Triangle in sphere test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingSphere::Contains(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
 | |
| {
 | |
|     if (!Intersects(V0, V1, V2))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
|     XMVECTOR RadiusSquared = XMVectorMultiply(vRadius, vRadius);
 | |
| 
 | |
|     XMVECTOR DistanceSquared = XMVector3LengthSq(XMVectorSubtract(V0, vCenter));
 | |
|     XMVECTOR Inside = XMVectorLessOrEqual(DistanceSquared, RadiusSquared);
 | |
| 
 | |
|     DistanceSquared = XMVector3LengthSq(XMVectorSubtract(V1, vCenter));
 | |
|     Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(DistanceSquared, RadiusSquared));
 | |
| 
 | |
|     DistanceSquared = XMVector3LengthSq(XMVectorSubtract(V2, vCenter));
 | |
|     Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(DistanceSquared, RadiusSquared));
 | |
| 
 | |
|     return (XMVector3EqualInt(Inside, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Sphere in sphere test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingSphere::Contains(const BoundingSphere& sh) const noexcept
 | |
| {
 | |
|     XMVECTOR Center1 = XMLoadFloat3(&Center);
 | |
|     float r1 = Radius;
 | |
| 
 | |
|     XMVECTOR Center2 = XMLoadFloat3(&sh.Center);
 | |
|     float r2 = sh.Radius;
 | |
| 
 | |
|     XMVECTOR V = XMVectorSubtract(Center2, Center1);
 | |
| 
 | |
|     XMVECTOR Dist = XMVector3Length(V);
 | |
| 
 | |
|     float d = XMVectorGetX(Dist);
 | |
| 
 | |
|     return (r1 + r2 >= d) ? ((r1 - r2 >= d) ? CONTAINS : INTERSECTS) : DISJOINT;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Axis-aligned box in sphere test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingSphere::Contains(const BoundingBox& box) const noexcept
 | |
| {
 | |
|     if (!box.Intersects(*this))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
|     XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
 | |
| 
 | |
|     XMVECTOR boxCenter = XMLoadFloat3(&box.Center);
 | |
|     XMVECTOR boxExtents = XMLoadFloat3(&box.Extents);
 | |
| 
 | |
|     XMVECTOR InsideAll = XMVectorTrueInt();
 | |
| 
 | |
|     XMVECTOR offset = XMVectorSubtract(boxCenter, vCenter);
 | |
| 
 | |
|     for (size_t i = 0; i < BoundingBox::CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR C = XMVectorMultiplyAdd(boxExtents, g_BoxOffset[i], offset);
 | |
|         XMVECTOR d = XMVector3LengthSq(C);
 | |
|         InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(d, RadiusSq));
 | |
|     }
 | |
| 
 | |
|     return (XMVector3EqualInt(InsideAll, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Oriented box in sphere test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingSphere::Contains(const BoundingOrientedBox& box) const noexcept
 | |
| {
 | |
|     if (!box.Intersects(*this))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
|     XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
 | |
| 
 | |
|     XMVECTOR boxCenter = XMLoadFloat3(&box.Center);
 | |
|     XMVECTOR boxExtents = XMLoadFloat3(&box.Extents);
 | |
|     XMVECTOR boxOrientation = XMLoadFloat4(&box.Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(boxOrientation));
 | |
| 
 | |
|     XMVECTOR InsideAll = XMVectorTrueInt();
 | |
| 
 | |
|     for (size_t i = 0; i < BoundingOrientedBox::CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR C = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(boxExtents, g_BoxOffset[i]), boxOrientation), boxCenter);
 | |
|         XMVECTOR d = XMVector3LengthSq(XMVectorSubtract(vCenter, C));
 | |
|         InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(d, RadiusSq));
 | |
|     }
 | |
| 
 | |
|     return (XMVector3EqualInt(InsideAll, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Frustum in sphere test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingSphere::Contains(const BoundingFrustum& fr) const noexcept
 | |
| {
 | |
|     if (!fr.Intersects(*this))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
|     XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
 | |
| 
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&fr.Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&fr.Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Build the corners of the frustum.
 | |
|     XMVECTOR vRightTop = XMVectorSet(fr.RightSlope, fr.TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vRightBottom = XMVectorSet(fr.RightSlope, fr.BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftTop = XMVectorSet(fr.LeftSlope, fr.TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftBottom = XMVectorSet(fr.LeftSlope, fr.BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vNear = XMVectorReplicatePtr(&fr.Near);
 | |
|     XMVECTOR vFar = XMVectorReplicatePtr(&fr.Far);
 | |
| 
 | |
|     XMVECTOR Corners[BoundingFrustum::CORNER_COUNT];
 | |
|     Corners[0] = XMVectorMultiply(vRightTop, vNear);
 | |
|     Corners[1] = XMVectorMultiply(vRightBottom, vNear);
 | |
|     Corners[2] = XMVectorMultiply(vLeftTop, vNear);
 | |
|     Corners[3] = XMVectorMultiply(vLeftBottom, vNear);
 | |
|     Corners[4] = XMVectorMultiply(vRightTop, vFar);
 | |
|     Corners[5] = XMVectorMultiply(vRightBottom, vFar);
 | |
|     Corners[6] = XMVectorMultiply(vLeftTop, vFar);
 | |
|     Corners[7] = XMVectorMultiply(vLeftBottom, vFar);
 | |
| 
 | |
|     XMVECTOR InsideAll = XMVectorTrueInt();
 | |
|     for (size_t i = 0; i < BoundingFrustum::CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR C = XMVectorAdd(XMVector3Rotate(Corners[i], vOrientation), vOrigin);
 | |
|         XMVECTOR d = XMVector3LengthSq(XMVectorSubtract(vCenter, C));
 | |
|         InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(d, RadiusSq));
 | |
|     }
 | |
| 
 | |
|     return (XMVector3EqualInt(InsideAll, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Sphere vs. sphere test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingSphere::Intersects(const BoundingSphere& sh) const noexcept
 | |
| {
 | |
|     // Load A.
 | |
|     XMVECTOR vCenterA = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadiusA = XMVectorReplicatePtr(&Radius);
 | |
| 
 | |
|     // Load B.
 | |
|     XMVECTOR vCenterB = XMLoadFloat3(&sh.Center);
 | |
|     XMVECTOR vRadiusB = XMVectorReplicatePtr(&sh.Radius);
 | |
| 
 | |
|     // Distance squared between centers.
 | |
|     XMVECTOR Delta = XMVectorSubtract(vCenterB, vCenterA);
 | |
|     XMVECTOR DistanceSquared = XMVector3LengthSq(Delta);
 | |
| 
 | |
|     // Sum of the radii squared.
 | |
|     XMVECTOR RadiusSquared = XMVectorAdd(vRadiusA, vRadiusB);
 | |
|     RadiusSquared = XMVectorMultiply(RadiusSquared, RadiusSquared);
 | |
| 
 | |
|     return XMVector3LessOrEqual(DistanceSquared, RadiusSquared);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Box vs. sphere test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingSphere::Intersects(const BoundingBox& box) const noexcept
 | |
| {
 | |
|     return box.Intersects(*this);
 | |
| }
 | |
| 
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingSphere::Intersects(const BoundingOrientedBox& box) const noexcept
 | |
| {
 | |
|     return box.Intersects(*this);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Frustum vs. sphere test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingSphere::Intersects(const BoundingFrustum& fr) const noexcept
 | |
| {
 | |
|     return fr.Intersects(*this);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Triangle vs sphere test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV BoundingSphere::Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
 | |
| {
 | |
|     // Load the sphere.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
| 
 | |
|     // Compute the plane of the triangle (has to be normalized).
 | |
|     XMVECTOR N = XMVector3Normalize(XMVector3Cross(XMVectorSubtract(V1, V0), XMVectorSubtract(V2, V0)));
 | |
| 
 | |
|     // Assert that the triangle is not degenerate.
 | |
|     assert(!XMVector3Equal(N, XMVectorZero()));
 | |
| 
 | |
|     // Find the nearest feature on the triangle to the sphere.
 | |
|     XMVECTOR Dist = XMVector3Dot(XMVectorSubtract(vCenter, V0), N);
 | |
| 
 | |
|     // If the center of the sphere is farther from the plane of the triangle than
 | |
|     // the radius of the sphere, then there cannot be an intersection.
 | |
|     XMVECTOR NoIntersection = XMVectorLess(Dist, XMVectorNegate(vRadius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Dist, vRadius));
 | |
| 
 | |
|     // Project the center of the sphere onto the plane of the triangle.
 | |
|     XMVECTOR Point = XMVectorNegativeMultiplySubtract(N, Dist, vCenter);
 | |
| 
 | |
|     // Is it inside all the edges? If so we intersect because the distance
 | |
|     // to the plane is less than the radius.
 | |
|     XMVECTOR Intersection = DirectX::Internal::PointOnPlaneInsideTriangle(Point, V0, V1, V2);
 | |
| 
 | |
|     // Find the nearest point on each edge.
 | |
|     XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
 | |
| 
 | |
|     // Edge 0,1
 | |
|     Point = DirectX::Internal::PointOnLineSegmentNearestPoint(V0, V1, vCenter);
 | |
| 
 | |
|     // If the distance to the center of the sphere to the point is less than
 | |
|     // the radius of the sphere then it must intersect.
 | |
|     Intersection = XMVectorOrInt(Intersection, XMVectorLessOrEqual(XMVector3LengthSq(XMVectorSubtract(vCenter, Point)), RadiusSq));
 | |
| 
 | |
|     // Edge 1,2
 | |
|     Point = DirectX::Internal::PointOnLineSegmentNearestPoint(V1, V2, vCenter);
 | |
| 
 | |
|     // If the distance to the center of the sphere to the point is less than
 | |
|     // the radius of the sphere then it must intersect.
 | |
|     Intersection = XMVectorOrInt(Intersection, XMVectorLessOrEqual(XMVector3LengthSq(XMVectorSubtract(vCenter, Point)), RadiusSq));
 | |
| 
 | |
|     // Edge 2,0
 | |
|     Point = DirectX::Internal::PointOnLineSegmentNearestPoint(V2, V0, vCenter);
 | |
| 
 | |
|     // If the distance to the center of the sphere to the point is less than
 | |
|     // the radius of the sphere then it must intersect.
 | |
|     Intersection = XMVectorOrInt(Intersection, XMVectorLessOrEqual(XMVector3LengthSq(XMVectorSubtract(vCenter, Point)), RadiusSq));
 | |
| 
 | |
|     return XMVector4EqualInt(XMVectorAndCInt(Intersection, NoIntersection), XMVectorTrueInt());
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Sphere-plane intersection
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline PlaneIntersectionType XM_CALLCONV BoundingSphere::Intersects(FXMVECTOR Plane) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMPlaneIsUnit(Plane));
 | |
| 
 | |
|     // Load the sphere.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
| 
 | |
|     // Set w of the center to one so we can dot4 with a plane.
 | |
|     vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
 | |
| 
 | |
|     XMVECTOR Outside, Inside;
 | |
|     DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane, Outside, Inside);
 | |
| 
 | |
|     // If the sphere is outside any plane it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return FRONT;
 | |
| 
 | |
|     // If the sphere is inside all planes it is inside.
 | |
|     if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
 | |
|         return BACK;
 | |
| 
 | |
|     // The sphere is not inside all planes or outside a plane it intersects.
 | |
|     return INTERSECTING;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Compute the intersection of a ray (Origin, Direction) with a sphere.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV BoundingSphere::Intersects(FXMVECTOR Origin, FXMVECTOR Direction, float& Dist) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMVector3IsUnit(Direction));
 | |
| 
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
| 
 | |
|     // l is the vector from the ray origin to the center of the sphere.
 | |
|     XMVECTOR l = XMVectorSubtract(vCenter, Origin);
 | |
| 
 | |
|     // s is the projection of the l onto the ray direction.
 | |
|     XMVECTOR s = XMVector3Dot(l, Direction);
 | |
| 
 | |
|     XMVECTOR l2 = XMVector3Dot(l, l);
 | |
| 
 | |
|     XMVECTOR r2 = XMVectorMultiply(vRadius, vRadius);
 | |
| 
 | |
|     // m2 is squared distance from the center of the sphere to the projection.
 | |
|     XMVECTOR m2 = XMVectorNegativeMultiplySubtract(s, s, l2);
 | |
| 
 | |
|     XMVECTOR NoIntersection;
 | |
| 
 | |
|     // If the ray origin is outside the sphere and the center of the sphere is
 | |
|     // behind the ray origin there is no intersection.
 | |
|     NoIntersection = XMVectorAndInt(XMVectorLess(s, XMVectorZero()), XMVectorGreater(l2, r2));
 | |
| 
 | |
|     // If the squared distance from the center of the sphere to the projection
 | |
|     // is greater than the radius squared the ray will miss the sphere.
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(m2, r2));
 | |
| 
 | |
|     // The ray hits the sphere, compute the nearest intersection point.
 | |
|     XMVECTOR q = XMVectorSqrt(XMVectorSubtract(r2, m2));
 | |
|     XMVECTOR t1 = XMVectorSubtract(s, q);
 | |
|     XMVECTOR t2 = XMVectorAdd(s, q);
 | |
| 
 | |
|     XMVECTOR OriginInside = XMVectorLessOrEqual(l2, r2);
 | |
|     XMVECTOR t = XMVectorSelect(t1, t2, OriginInside);
 | |
| 
 | |
|     if (XMVector4NotEqualInt(NoIntersection, XMVectorTrueInt()))
 | |
|     {
 | |
|         // Store the x-component to *pDist.
 | |
|         XMStoreFloat(&Dist, t);
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     Dist = 0.f;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Test a sphere vs 6 planes (typically forming a frustum).
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingSphere::ContainedBy(
 | |
|     FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
 | |
|     GXMVECTOR Plane3,
 | |
|     HXMVECTOR Plane4, HXMVECTOR Plane5) const noexcept
 | |
| {
 | |
|     // Load the sphere.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&Radius);
 | |
| 
 | |
|     // Set w of the center to one so we can dot4 with a plane.
 | |
|     vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
 | |
| 
 | |
|     XMVECTOR Outside, Inside;
 | |
| 
 | |
|     // Test against each plane.
 | |
|     DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane0, Outside, Inside);
 | |
| 
 | |
|     XMVECTOR AnyOutside = Outside;
 | |
|     XMVECTOR AllInside = Inside;
 | |
| 
 | |
|     DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane1, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane2, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane3, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane4, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectSpherePlane(vCenter, vRadius, Plane5, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     // If the sphere is outside any plane it is outside.
 | |
|     if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     // If the sphere is inside all planes it is inside.
 | |
|     if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
 | |
|         return CONTAINS;
 | |
| 
 | |
|     // The sphere is not inside all planes or outside a plane, it may intersect.
 | |
|     return INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Creates a bounding sphere that contains two other bounding spheres
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingSphere::CreateMerged(BoundingSphere& Out, const BoundingSphere& S1, const BoundingSphere& S2) noexcept
 | |
| {
 | |
|     XMVECTOR Center1 = XMLoadFloat3(&S1.Center);
 | |
|     float r1 = S1.Radius;
 | |
| 
 | |
|     XMVECTOR Center2 = XMLoadFloat3(&S2.Center);
 | |
|     float r2 = S2.Radius;
 | |
| 
 | |
|     XMVECTOR V = XMVectorSubtract(Center2, Center1);
 | |
| 
 | |
|     XMVECTOR Dist = XMVector3Length(V);
 | |
| 
 | |
|     float d = XMVectorGetX(Dist);
 | |
| 
 | |
|     if (r1 + r2 >= d)
 | |
|     {
 | |
|         if (r1 - r2 >= d)
 | |
|         {
 | |
|             Out = S1;
 | |
|             return;
 | |
|         }
 | |
|         else if (r2 - r1 >= d)
 | |
|         {
 | |
|             Out = S2;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     XMVECTOR N = XMVectorDivide(V, Dist);
 | |
| 
 | |
|     float t1 = XMMin(-r1, d - r2);
 | |
|     float t2 = XMMax(r1, d + r2);
 | |
|     float t_5 = (t2 - t1) * 0.5f;
 | |
| 
 | |
|     XMVECTOR NCenter = XMVectorAdd(Center1, XMVectorMultiply(N, XMVectorReplicate(t_5 + t1)));
 | |
| 
 | |
|     XMStoreFloat3(&Out.Center, NCenter);
 | |
|     Out.Radius = t_5;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Create sphere enscribing bounding box
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingSphere::CreateFromBoundingBox(BoundingSphere& Out, const BoundingBox& box) noexcept
 | |
| {
 | |
|     Out.Center = box.Center;
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&box.Extents);
 | |
|     Out.Radius = XMVectorGetX(XMVector3Length(vExtents));
 | |
| }
 | |
| 
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingSphere::CreateFromBoundingBox(BoundingSphere& Out, const BoundingOrientedBox& box) noexcept
 | |
| {
 | |
|     // Bounding box orientation is irrelevant because a sphere is rotationally invariant
 | |
|     Out.Center = box.Center;
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&box.Extents);
 | |
|     Out.Radius = XMVectorGetX(XMVector3Length(vExtents));
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Find the approximate smallest enclosing bounding sphere for a set of
 | |
| // points. Exact computation of the smallest enclosing bounding sphere is
 | |
| // possible but is slower and requires a more complex algorithm.
 | |
| // The algorithm is based on  Jack Ritter, "An Efficient Bounding Sphere",
 | |
| // Graphics Gems.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingSphere::CreateFromPoints(BoundingSphere& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride) noexcept
 | |
| {
 | |
|     assert(Count > 0);
 | |
|     assert(pPoints);
 | |
| 
 | |
|     // Find the points with minimum and maximum x, y, and z
 | |
|     XMVECTOR MinX, MaxX, MinY, MaxY, MinZ, MaxZ;
 | |
| 
 | |
|     MinX = MaxX = MinY = MaxY = MinZ = MaxZ = XMLoadFloat3(pPoints);
 | |
| 
 | |
|     for (size_t i = 1; i < Count; ++i)
 | |
|     {
 | |
|         XMVECTOR Point = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride));
 | |
| 
 | |
|         float px = XMVectorGetX(Point);
 | |
|         float py = XMVectorGetY(Point);
 | |
|         float pz = XMVectorGetZ(Point);
 | |
| 
 | |
|         if (px < XMVectorGetX(MinX))
 | |
|             MinX = Point;
 | |
| 
 | |
|         if (px > XMVectorGetX(MaxX))
 | |
|             MaxX = Point;
 | |
| 
 | |
|         if (py < XMVectorGetY(MinY))
 | |
|             MinY = Point;
 | |
| 
 | |
|         if (py > XMVectorGetY(MaxY))
 | |
|             MaxY = Point;
 | |
| 
 | |
|         if (pz < XMVectorGetZ(MinZ))
 | |
|             MinZ = Point;
 | |
| 
 | |
|         if (pz > XMVectorGetZ(MaxZ))
 | |
|             MaxZ = Point;
 | |
|     }
 | |
| 
 | |
|     // Use the min/max pair that are farthest apart to form the initial sphere.
 | |
|     XMVECTOR DeltaX = XMVectorSubtract(MaxX, MinX);
 | |
|     XMVECTOR DistX = XMVector3Length(DeltaX);
 | |
| 
 | |
|     XMVECTOR DeltaY = XMVectorSubtract(MaxY, MinY);
 | |
|     XMVECTOR DistY = XMVector3Length(DeltaY);
 | |
| 
 | |
|     XMVECTOR DeltaZ = XMVectorSubtract(MaxZ, MinZ);
 | |
|     XMVECTOR DistZ = XMVector3Length(DeltaZ);
 | |
| 
 | |
|     XMVECTOR vCenter;
 | |
|     XMVECTOR vRadius;
 | |
| 
 | |
|     if (XMVector3Greater(DistX, DistY))
 | |
|     {
 | |
|         if (XMVector3Greater(DistX, DistZ))
 | |
|         {
 | |
|             // Use min/max x.
 | |
|             vCenter = XMVectorLerp(MaxX, MinX, 0.5f);
 | |
|             vRadius = XMVectorScale(DistX, 0.5f);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Use min/max z.
 | |
|             vCenter = XMVectorLerp(MaxZ, MinZ, 0.5f);
 | |
|             vRadius = XMVectorScale(DistZ, 0.5f);
 | |
|         }
 | |
|     }
 | |
|     else // Y >= X
 | |
|     {
 | |
|         if (XMVector3Greater(DistY, DistZ))
 | |
|         {
 | |
|             // Use min/max y.
 | |
|             vCenter = XMVectorLerp(MaxY, MinY, 0.5f);
 | |
|             vRadius = XMVectorScale(DistY, 0.5f);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Use min/max z.
 | |
|             vCenter = XMVectorLerp(MaxZ, MinZ, 0.5f);
 | |
|             vRadius = XMVectorScale(DistZ, 0.5f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Add any points not inside the sphere.
 | |
|     for (size_t i = 0; i < Count; ++i)
 | |
|     {
 | |
|         XMVECTOR Point = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride));
 | |
| 
 | |
|         XMVECTOR Delta = XMVectorSubtract(Point, vCenter);
 | |
| 
 | |
|         XMVECTOR Dist = XMVector3Length(Delta);
 | |
| 
 | |
|         if (XMVector3Greater(Dist, vRadius))
 | |
|         {
 | |
|             // Adjust sphere to include the new point.
 | |
|             vRadius = XMVectorScale(XMVectorAdd(vRadius, Dist), 0.5f);
 | |
|             vCenter = XMVectorAdd(vCenter, XMVectorMultiply(XMVectorSubtract(XMVectorReplicate(1.0f), XMVectorDivide(vRadius, Dist)), Delta));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     XMStoreFloat3(&Out.Center, vCenter);
 | |
|     XMStoreFloat(&Out.Radius, vRadius);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Create sphere containing frustum
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingSphere::CreateFromFrustum(BoundingSphere& Out, const BoundingFrustum& fr) noexcept
 | |
| {
 | |
|     XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
 | |
|     fr.GetCorners(Corners);
 | |
|     CreateFromPoints(Out, BoundingFrustum::CORNER_COUNT, Corners, sizeof(XMFLOAT3));
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * BoundingBox
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
|  //-----------------------------------------------------------------------------
 | |
|  // Transform an axis aligned box by an angle preserving transform.
 | |
|  //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingBox::Transform(BoundingBox& Out, FXMMATRIX M) const noexcept
 | |
| {
 | |
|     // Load center and extents.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     // Compute and transform the corners and find new min/max bounds.
 | |
|     XMVECTOR Corner = XMVectorMultiplyAdd(vExtents, g_BoxOffset[0], vCenter);
 | |
|     Corner = XMVector3Transform(Corner, M);
 | |
| 
 | |
|     XMVECTOR Min, Max;
 | |
|     Min = Max = Corner;
 | |
| 
 | |
|     for (size_t i = 1; i < CORNER_COUNT; ++i)
 | |
|     {
 | |
|         Corner = XMVectorMultiplyAdd(vExtents, g_BoxOffset[i], vCenter);
 | |
|         Corner = XMVector3Transform(Corner, M);
 | |
| 
 | |
|         Min = XMVectorMin(Min, Corner);
 | |
|         Max = XMVectorMax(Max, Corner);
 | |
|     }
 | |
| 
 | |
|     // Store center and extents.
 | |
|     XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
 | |
|     XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
 | |
| }
 | |
| 
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingBox::Transform(BoundingBox& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(Rotation));
 | |
| 
 | |
|     // Load center and extents.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     XMVECTOR VectorScale = XMVectorReplicate(Scale);
 | |
| 
 | |
|     // Compute and transform the corners and find new min/max bounds.
 | |
|     XMVECTOR Corner = XMVectorMultiplyAdd(vExtents, g_BoxOffset[0], vCenter);
 | |
|     Corner = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(Corner, VectorScale), Rotation), Translation);
 | |
| 
 | |
|     XMVECTOR Min, Max;
 | |
|     Min = Max = Corner;
 | |
| 
 | |
|     for (size_t i = 1; i < CORNER_COUNT; ++i)
 | |
|     {
 | |
|         Corner = XMVectorMultiplyAdd(vExtents, g_BoxOffset[i], vCenter);
 | |
|         Corner = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(Corner, VectorScale), Rotation), Translation);
 | |
| 
 | |
|         Min = XMVectorMin(Min, Corner);
 | |
|         Max = XMVectorMax(Max, Corner);
 | |
|     }
 | |
| 
 | |
|     // Store center and extents.
 | |
|     XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
 | |
|     XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Get the corner points of the box
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingBox::GetCorners(XMFLOAT3* Corners) const noexcept
 | |
| {
 | |
|     assert(Corners != nullptr);
 | |
| 
 | |
|     // Load the box
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     for (size_t i = 0; i < CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR C = XMVectorMultiplyAdd(vExtents, g_BoxOffset[i], vCenter);
 | |
|         XMStoreFloat3(&Corners[i], C);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Point in axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingBox::Contains(FXMVECTOR Point) const noexcept
 | |
| {
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     return XMVector3InBounds(XMVectorSubtract(Point, vCenter), vExtents) ? CONTAINS : DISJOINT;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Triangle in axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingBox::Contains(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
 | |
| {
 | |
|     if (!Intersects(V0, V1, V2))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     XMVECTOR d = XMVectorAbs(XMVectorSubtract(V0, vCenter));
 | |
|     XMVECTOR Inside = XMVectorLessOrEqual(d, vExtents);
 | |
| 
 | |
|     d = XMVectorAbs(XMVectorSubtract(V1, vCenter));
 | |
|     Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(d, vExtents));
 | |
| 
 | |
|     d = XMVectorAbs(XMVectorSubtract(V2, vCenter));
 | |
|     Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(d, vExtents));
 | |
| 
 | |
|     return (XMVector3EqualInt(Inside, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Sphere in axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingBox::Contains(const BoundingSphere& sh) const noexcept
 | |
| {
 | |
|     XMVECTOR SphereCenter = XMLoadFloat3(&sh.Center);
 | |
|     XMVECTOR SphereRadius = XMVectorReplicatePtr(&sh.Radius);
 | |
| 
 | |
|     XMVECTOR BoxCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR BoxExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     XMVECTOR BoxMin = XMVectorSubtract(BoxCenter, BoxExtents);
 | |
|     XMVECTOR BoxMax = XMVectorAdd(BoxCenter, BoxExtents);
 | |
| 
 | |
|     // Find the distance to the nearest point on the box.
 | |
|     // for each i in (x, y, z)
 | |
|     // if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
 | |
|     // else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
 | |
| 
 | |
|     XMVECTOR d = XMVectorZero();
 | |
| 
 | |
|     // Compute d for each dimension.
 | |
|     XMVECTOR LessThanMin = XMVectorLess(SphereCenter, BoxMin);
 | |
|     XMVECTOR GreaterThanMax = XMVectorGreater(SphereCenter, BoxMax);
 | |
| 
 | |
|     XMVECTOR MinDelta = XMVectorSubtract(SphereCenter, BoxMin);
 | |
|     XMVECTOR MaxDelta = XMVectorSubtract(SphereCenter, BoxMax);
 | |
| 
 | |
|     // Choose value for each dimension based on the comparison.
 | |
|     d = XMVectorSelect(d, MinDelta, LessThanMin);
 | |
|     d = XMVectorSelect(d, MaxDelta, GreaterThanMax);
 | |
| 
 | |
|     // Use a dot-product to square them and sum them together.
 | |
|     XMVECTOR d2 = XMVector3Dot(d, d);
 | |
| 
 | |
|     if (XMVector3Greater(d2, XMVectorMultiply(SphereRadius, SphereRadius)))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMVECTOR InsideAll = XMVectorLessOrEqual(XMVectorAdd(BoxMin, SphereRadius), SphereCenter);
 | |
|     InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(SphereCenter, XMVectorSubtract(BoxMax, SphereRadius)));
 | |
|     InsideAll = XMVectorAndInt(InsideAll, XMVectorGreater(XMVectorSubtract(BoxMax, BoxMin), SphereRadius));
 | |
| 
 | |
|     return (XMVector3EqualInt(InsideAll, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Axis-aligned box in axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingBox::Contains(const BoundingBox& box) const noexcept
 | |
| {
 | |
|     XMVECTOR CenterA = XMLoadFloat3(&Center);
 | |
|     XMVECTOR ExtentsA = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     XMVECTOR CenterB = XMLoadFloat3(&box.Center);
 | |
|     XMVECTOR ExtentsB = XMLoadFloat3(&box.Extents);
 | |
| 
 | |
|     XMVECTOR MinA = XMVectorSubtract(CenterA, ExtentsA);
 | |
|     XMVECTOR MaxA = XMVectorAdd(CenterA, ExtentsA);
 | |
| 
 | |
|     XMVECTOR MinB = XMVectorSubtract(CenterB, ExtentsB);
 | |
|     XMVECTOR MaxB = XMVectorAdd(CenterB, ExtentsB);
 | |
| 
 | |
|     // for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then return false
 | |
|     XMVECTOR Disjoint = XMVectorOrInt(XMVectorGreater(MinA, MaxB), XMVectorGreater(MinB, MaxA));
 | |
| 
 | |
|     if (DirectX::Internal::XMVector3AnyTrue(Disjoint))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     // for each i in (x, y, z) if a_min(i) <= b_min(i) and b_max(i) <= a_max(i) then A contains B
 | |
|     XMVECTOR Inside = XMVectorAndInt(XMVectorLessOrEqual(MinA, MinB), XMVectorLessOrEqual(MaxB, MaxA));
 | |
| 
 | |
|     return DirectX::Internal::XMVector3AllTrue(Inside) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Oriented box in axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingBox::Contains(const BoundingOrientedBox& box) const noexcept
 | |
| {
 | |
|     if (!box.Intersects(*this))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     // Subtract off the AABB center to remove a subtract below
 | |
|     XMVECTOR oCenter = XMVectorSubtract(XMLoadFloat3(&box.Center), vCenter);
 | |
| 
 | |
|     XMVECTOR oExtents = XMLoadFloat3(&box.Extents);
 | |
|     XMVECTOR oOrientation = XMLoadFloat4(&box.Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(oOrientation));
 | |
| 
 | |
|     XMVECTOR Inside = XMVectorTrueInt();
 | |
| 
 | |
|     for (size_t i = 0; i < BoundingOrientedBox::CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR C = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(oExtents, g_BoxOffset[i]), oOrientation), oCenter);
 | |
|         XMVECTOR d = XMVectorAbs(C);
 | |
|         Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(d, vExtents));
 | |
|     }
 | |
| 
 | |
|     return (XMVector3EqualInt(Inside, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Frustum in axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingBox::Contains(const BoundingFrustum& fr) const noexcept
 | |
| {
 | |
|     if (!fr.Intersects(*this))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
 | |
|     fr.GetCorners(Corners);
 | |
| 
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     XMVECTOR Inside = XMVectorTrueInt();
 | |
| 
 | |
|     for (size_t i = 0; i < BoundingFrustum::CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR Point = XMLoadFloat3(&Corners[i]);
 | |
|         XMVECTOR d = XMVectorAbs(XMVectorSubtract(Point, vCenter));
 | |
|         Inside = XMVectorAndInt(Inside, XMVectorLessOrEqual(d, vExtents));
 | |
|     }
 | |
| 
 | |
|     return (XMVector3EqualInt(Inside, XMVectorTrueInt())) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Sphere vs axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingBox::Intersects(const BoundingSphere& sh) const noexcept
 | |
| {
 | |
|     XMVECTOR SphereCenter = XMLoadFloat3(&sh.Center);
 | |
|     XMVECTOR SphereRadius = XMVectorReplicatePtr(&sh.Radius);
 | |
| 
 | |
|     XMVECTOR BoxCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR BoxExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     XMVECTOR BoxMin = XMVectorSubtract(BoxCenter, BoxExtents);
 | |
|     XMVECTOR BoxMax = XMVectorAdd(BoxCenter, BoxExtents);
 | |
| 
 | |
|     // Find the distance to the nearest point on the box.
 | |
|     // for each i in (x, y, z)
 | |
|     // if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
 | |
|     // else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
 | |
| 
 | |
|     XMVECTOR d = XMVectorZero();
 | |
| 
 | |
|     // Compute d for each dimension.
 | |
|     XMVECTOR LessThanMin = XMVectorLess(SphereCenter, BoxMin);
 | |
|     XMVECTOR GreaterThanMax = XMVectorGreater(SphereCenter, BoxMax);
 | |
| 
 | |
|     XMVECTOR MinDelta = XMVectorSubtract(SphereCenter, BoxMin);
 | |
|     XMVECTOR MaxDelta = XMVectorSubtract(SphereCenter, BoxMax);
 | |
| 
 | |
|     // Choose value for each dimension based on the comparison.
 | |
|     d = XMVectorSelect(d, MinDelta, LessThanMin);
 | |
|     d = XMVectorSelect(d, MaxDelta, GreaterThanMax);
 | |
| 
 | |
|     // Use a dot-product to square them and sum them together.
 | |
|     XMVECTOR d2 = XMVector3Dot(d, d);
 | |
| 
 | |
|     return XMVector3LessOrEqual(d2, XMVectorMultiply(SphereRadius, SphereRadius));
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Axis-aligned box vs. axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingBox::Intersects(const BoundingBox& box) const noexcept
 | |
| {
 | |
|     XMVECTOR CenterA = XMLoadFloat3(&Center);
 | |
|     XMVECTOR ExtentsA = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     XMVECTOR CenterB = XMLoadFloat3(&box.Center);
 | |
|     XMVECTOR ExtentsB = XMLoadFloat3(&box.Extents);
 | |
| 
 | |
|     XMVECTOR MinA = XMVectorSubtract(CenterA, ExtentsA);
 | |
|     XMVECTOR MaxA = XMVectorAdd(CenterA, ExtentsA);
 | |
| 
 | |
|     XMVECTOR MinB = XMVectorSubtract(CenterB, ExtentsB);
 | |
|     XMVECTOR MaxB = XMVectorAdd(CenterB, ExtentsB);
 | |
| 
 | |
|     // for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then return false
 | |
|     XMVECTOR Disjoint = XMVectorOrInt(XMVectorGreater(MinA, MaxB), XMVectorGreater(MinB, MaxA));
 | |
| 
 | |
|     return !DirectX::Internal::XMVector3AnyTrue(Disjoint);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Oriented box vs. axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingBox::Intersects(const BoundingOrientedBox& box) const noexcept
 | |
| {
 | |
|     return box.Intersects(*this);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Frustum vs. axis-aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingBox::Intersects(const BoundingFrustum& fr) const noexcept
 | |
| {
 | |
|     return fr.Intersects(*this);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Triangle vs. axis aligned box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV BoundingBox::Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
 | |
| {
 | |
|     XMVECTOR Zero = XMVectorZero();
 | |
| 
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     XMVECTOR BoxMin = XMVectorSubtract(vCenter, vExtents);
 | |
|     XMVECTOR BoxMax = XMVectorAdd(vCenter, vExtents);
 | |
| 
 | |
|     // Test the axes of the box (in effect test the AAB against the minimal AAB
 | |
|     // around the triangle).
 | |
|     XMVECTOR TriMin = XMVectorMin(XMVectorMin(V0, V1), V2);
 | |
|     XMVECTOR TriMax = XMVectorMax(XMVectorMax(V0, V1), V2);
 | |
| 
 | |
|     // for each i in (x, y, z) if a_min(i) > b_max(i) or b_min(i) > a_max(i) then disjoint
 | |
|     XMVECTOR Disjoint = XMVectorOrInt(XMVectorGreater(TriMin, BoxMax), XMVectorGreater(BoxMin, TriMax));
 | |
|     if (DirectX::Internal::XMVector3AnyTrue(Disjoint))
 | |
|         return false;
 | |
| 
 | |
|     // Test the plane of the triangle.
 | |
|     XMVECTOR Normal = XMVector3Cross(XMVectorSubtract(V1, V0), XMVectorSubtract(V2, V0));
 | |
|     XMVECTOR Dist = XMVector3Dot(Normal, V0);
 | |
| 
 | |
|     // Assert that the triangle is not degenerate.
 | |
|     assert(!XMVector3Equal(Normal, Zero));
 | |
| 
 | |
|     // for each i in (x, y, z) if n(i) >= 0 then v_min(i)=b_min(i), v_max(i)=b_max(i)
 | |
|     // else v_min(i)=b_max(i), v_max(i)=b_min(i)
 | |
|     XMVECTOR NormalSelect = XMVectorGreater(Normal, Zero);
 | |
|     XMVECTOR V_Min = XMVectorSelect(BoxMax, BoxMin, NormalSelect);
 | |
|     XMVECTOR V_Max = XMVectorSelect(BoxMin, BoxMax, NormalSelect);
 | |
| 
 | |
|     // if n dot v_min + d > 0 || n dot v_max + d < 0 then disjoint
 | |
|     XMVECTOR MinDist = XMVector3Dot(V_Min, Normal);
 | |
|     XMVECTOR MaxDist = XMVector3Dot(V_Max, Normal);
 | |
| 
 | |
|     XMVECTOR NoIntersection = XMVectorGreater(MinDist, Dist);
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(MaxDist, Dist));
 | |
| 
 | |
|     // Move the box center to zero to simplify the following tests.
 | |
|     XMVECTOR TV0 = XMVectorSubtract(V0, vCenter);
 | |
|     XMVECTOR TV1 = XMVectorSubtract(V1, vCenter);
 | |
|     XMVECTOR TV2 = XMVectorSubtract(V2, vCenter);
 | |
| 
 | |
|     // Test the edge/edge axes (3*3).
 | |
|     XMVECTOR e0 = XMVectorSubtract(TV1, TV0);
 | |
|     XMVECTOR e1 = XMVectorSubtract(TV2, TV1);
 | |
|     XMVECTOR e2 = XMVectorSubtract(TV0, TV2);
 | |
| 
 | |
|     // Make w zero.
 | |
|     e0 = XMVectorInsert<0, 0, 0, 0, 1>(e0, Zero);
 | |
|     e1 = XMVectorInsert<0, 0, 0, 0, 1>(e1, Zero);
 | |
|     e2 = XMVectorInsert<0, 0, 0, 0, 1>(e2, Zero);
 | |
| 
 | |
|     XMVECTOR Axis;
 | |
|     XMVECTOR p0, p1, p2;
 | |
|     XMVECTOR Min, Max;
 | |
|     XMVECTOR Radius;
 | |
| 
 | |
|     // Axis == (1,0,0) x e0 = (0, -e0.z, e0.y)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(e0, XMVectorNegate(e0));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     // p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
 | |
|     p2 = XMVector3Dot(TV2, Axis);
 | |
|     Min = XMVectorMin(p0, p2);
 | |
|     Max = XMVectorMax(p0, p2);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     // Axis == (1,0,0) x e1 = (0, -e1.z, e1.y)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(e1, XMVectorNegate(e1));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     p1 = XMVector3Dot(TV1, Axis);
 | |
|     // p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
 | |
|     Min = XMVectorMin(p0, p1);
 | |
|     Max = XMVectorMax(p0, p1);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     // Axis == (1,0,0) x e2 = (0, -e2.z, e2.y)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(e2, XMVectorNegate(e2));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     p1 = XMVector3Dot(TV1, Axis);
 | |
|     // p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
 | |
|     Min = XMVectorMin(p0, p1);
 | |
|     Max = XMVectorMax(p0, p1);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     // Axis == (0,1,0) x e0 = (e0.z, 0, -e0.x)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(e0, XMVectorNegate(e0));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     // p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
 | |
|     p2 = XMVector3Dot(TV2, Axis);
 | |
|     Min = XMVectorMin(p0, p2);
 | |
|     Max = XMVectorMax(p0, p2);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     // Axis == (0,1,0) x e1 = (e1.z, 0, -e1.x)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(e1, XMVectorNegate(e1));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     p1 = XMVector3Dot(TV1, Axis);
 | |
|     // p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
 | |
|     Min = XMVectorMin(p0, p1);
 | |
|     Max = XMVectorMax(p0, p1);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     // Axis == (0,0,1) x e2 = (e2.z, 0, -e2.x)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(e2, XMVectorNegate(e2));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     p1 = XMVector3Dot(TV1, Axis);
 | |
|     // p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
 | |
|     Min = XMVectorMin(p0, p1);
 | |
|     Max = XMVectorMax(p0, p1);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     // Axis == (0,0,1) x e0 = (-e0.y, e0.x, 0)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(e0, XMVectorNegate(e0));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     // p1 = XMVector3Dot( V1, Axis ); // p1 = p0;
 | |
|     p2 = XMVector3Dot(TV2, Axis);
 | |
|     Min = XMVectorMin(p0, p2);
 | |
|     Max = XMVectorMax(p0, p2);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     // Axis == (0,0,1) x e1 = (-e1.y, e1.x, 0)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(e1, XMVectorNegate(e1));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     p1 = XMVector3Dot(TV1, Axis);
 | |
|     // p2 = XMVector3Dot( V2, Axis ); // p2 = p1;
 | |
|     Min = XMVectorMin(p0, p1);
 | |
|     Max = XMVectorMax(p0, p1);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     // Axis == (0,0,1) x e2 = (-e2.y, e2.x, 0)
 | |
|     Axis = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(e2, XMVectorNegate(e2));
 | |
|     p0 = XMVector3Dot(TV0, Axis);
 | |
|     p1 = XMVector3Dot(TV1, Axis);
 | |
|     // p2 = XMVector3Dot( V2, Axis ); // p2 = p0;
 | |
|     Min = XMVectorMin(p0, p1);
 | |
|     Max = XMVectorMax(p0, p1);
 | |
|     Radius = XMVector3Dot(vExtents, XMVectorAbs(Axis));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(Min, Radius));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(Max, XMVectorNegate(Radius)));
 | |
| 
 | |
|     return XMVector4NotEqualInt(NoIntersection, XMVectorTrueInt());
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline PlaneIntersectionType XM_CALLCONV BoundingBox::Intersects(FXMVECTOR Plane) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMPlaneIsUnit(Plane));
 | |
| 
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     // Set w of the center to one so we can dot4 with a plane.
 | |
|     vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
 | |
| 
 | |
|     XMVECTOR Outside, Inside;
 | |
|     DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane, Outside, Inside);
 | |
| 
 | |
|     // If the box is outside any plane it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return FRONT;
 | |
| 
 | |
|     // If the box is inside all planes it is inside.
 | |
|     if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
 | |
|         return BACK;
 | |
| 
 | |
|     // The box is not inside all planes or outside a plane it intersects.
 | |
|     return INTERSECTING;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Compute the intersection of a ray (Origin, Direction) with an axis aligned
 | |
| // box using the slabs method.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV BoundingBox::Intersects(FXMVECTOR Origin, FXMVECTOR Direction, float& Dist) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMVector3IsUnit(Direction));
 | |
| 
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     // Adjust ray origin to be relative to center of the box.
 | |
|     XMVECTOR TOrigin = XMVectorSubtract(vCenter, Origin);
 | |
| 
 | |
|     // Compute the dot product againt each axis of the box.
 | |
|     // Since the axii are (1,0,0), (0,1,0), (0,0,1) no computation is necessary.
 | |
|     XMVECTOR AxisDotOrigin = TOrigin;
 | |
|     XMVECTOR AxisDotDirection = Direction;
 | |
| 
 | |
|     // if (fabs(AxisDotDirection) <= Epsilon) the ray is nearly parallel to the slab.
 | |
|     XMVECTOR IsParallel = XMVectorLessOrEqual(XMVectorAbs(AxisDotDirection), g_RayEpsilon);
 | |
| 
 | |
|     // Test against all three axii simultaneously.
 | |
|     XMVECTOR InverseAxisDotDirection = XMVectorReciprocal(AxisDotDirection);
 | |
|     XMVECTOR t1 = XMVectorMultiply(XMVectorSubtract(AxisDotOrigin, vExtents), InverseAxisDotDirection);
 | |
|     XMVECTOR t2 = XMVectorMultiply(XMVectorAdd(AxisDotOrigin, vExtents), InverseAxisDotDirection);
 | |
| 
 | |
|     // Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
 | |
|     // use the results from any directions parallel to the slab.
 | |
|     XMVECTOR t_min = XMVectorSelect(XMVectorMin(t1, t2), g_FltMin, IsParallel);
 | |
|     XMVECTOR t_max = XMVectorSelect(XMVectorMax(t1, t2), g_FltMax, IsParallel);
 | |
| 
 | |
|     // t_min.x = maximum( t_min.x, t_min.y, t_min.z );
 | |
|     // t_max.x = minimum( t_max.x, t_max.y, t_max.z );
 | |
|     t_min = XMVectorMax(t_min, XMVectorSplatY(t_min));  // x = max(x,y)
 | |
|     t_min = XMVectorMax(t_min, XMVectorSplatZ(t_min));  // x = max(max(x,y),z)
 | |
|     t_max = XMVectorMin(t_max, XMVectorSplatY(t_max));  // x = min(x,y)
 | |
|     t_max = XMVectorMin(t_max, XMVectorSplatZ(t_max));  // x = min(min(x,y),z)
 | |
| 
 | |
|     // if ( t_min > t_max ) return false;
 | |
|     XMVECTOR NoIntersection = XMVectorGreater(XMVectorSplatX(t_min), XMVectorSplatX(t_max));
 | |
| 
 | |
|     // if ( t_max < 0.0f ) return false;
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(XMVectorSplatX(t_max), XMVectorZero()));
 | |
| 
 | |
|     // if (IsParallel && (-Extents > AxisDotOrigin || Extents < AxisDotOrigin)) return false;
 | |
|     XMVECTOR ParallelOverlap = XMVectorInBounds(AxisDotOrigin, vExtents);
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorAndCInt(IsParallel, ParallelOverlap));
 | |
| 
 | |
|     if (!DirectX::Internal::XMVector3AnyTrue(NoIntersection))
 | |
|     {
 | |
|         // Store the x-component to *pDist
 | |
|         XMStoreFloat(&Dist, t_min);
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     Dist = 0.f;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Test an axis alinged box vs 6 planes (typically forming a frustum).
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingBox::ContainedBy(
 | |
|     FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
 | |
|     GXMVECTOR Plane3,
 | |
|     HXMVECTOR Plane4, HXMVECTOR Plane5) const noexcept
 | |
| {
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
| 
 | |
|     // Set w of the center to one so we can dot4 with a plane.
 | |
|     vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
 | |
| 
 | |
|     XMVECTOR Outside, Inside;
 | |
| 
 | |
|     // Test against each plane.
 | |
|     DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane0, Outside, Inside);
 | |
| 
 | |
|     XMVECTOR AnyOutside = Outside;
 | |
|     XMVECTOR AllInside = Inside;
 | |
| 
 | |
|     DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane1, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane2, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane3, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane4, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectAxisAlignedBoxPlane(vCenter, vExtents, Plane5, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     // If the box is outside any plane it is outside.
 | |
|     if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     // If the box is inside all planes it is inside.
 | |
|     if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
 | |
|         return CONTAINS;
 | |
| 
 | |
|     // The box is not inside all planes or outside a plane, it may intersect.
 | |
|     return INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Create axis-aligned box that contains two other bounding boxes
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingBox::CreateMerged(BoundingBox& Out, const BoundingBox& b1, const BoundingBox& b2) noexcept
 | |
| {
 | |
|     XMVECTOR b1Center = XMLoadFloat3(&b1.Center);
 | |
|     XMVECTOR b1Extents = XMLoadFloat3(&b1.Extents);
 | |
| 
 | |
|     XMVECTOR b2Center = XMLoadFloat3(&b2.Center);
 | |
|     XMVECTOR b2Extents = XMLoadFloat3(&b2.Extents);
 | |
| 
 | |
|     XMVECTOR Min = XMVectorSubtract(b1Center, b1Extents);
 | |
|     Min = XMVectorMin(Min, XMVectorSubtract(b2Center, b2Extents));
 | |
| 
 | |
|     XMVECTOR Max = XMVectorAdd(b1Center, b1Extents);
 | |
|     Max = XMVectorMax(Max, XMVectorAdd(b2Center, b2Extents));
 | |
| 
 | |
|     assert(XMVector3LessOrEqual(Min, Max));
 | |
| 
 | |
|     XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
 | |
|     XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Create axis-aligned box that contains a bounding sphere
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingBox::CreateFromSphere(BoundingBox& Out, const BoundingSphere& sh) noexcept
 | |
| {
 | |
|     XMVECTOR spCenter = XMLoadFloat3(&sh.Center);
 | |
|     XMVECTOR shRadius = XMVectorReplicatePtr(&sh.Radius);
 | |
| 
 | |
|     XMVECTOR Min = XMVectorSubtract(spCenter, shRadius);
 | |
|     XMVECTOR Max = XMVectorAdd(spCenter, shRadius);
 | |
| 
 | |
|     assert(XMVector3LessOrEqual(Min, Max));
 | |
| 
 | |
|     XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
 | |
|     XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Create axis-aligned box from min/max points
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingBox::CreateFromPoints(BoundingBox& Out, FXMVECTOR pt1, FXMVECTOR pt2) noexcept
 | |
| {
 | |
|     XMVECTOR Min = XMVectorMin(pt1, pt2);
 | |
|     XMVECTOR Max = XMVectorMax(pt1, pt2);
 | |
| 
 | |
|     // Store center and extents.
 | |
|     XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(Min, Max), 0.5f));
 | |
|     XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(Max, Min), 0.5f));
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Find the minimum axis aligned bounding box containing a set of points.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingBox::CreateFromPoints(BoundingBox& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride) noexcept
 | |
| {
 | |
|     assert(Count > 0);
 | |
|     assert(pPoints);
 | |
| 
 | |
|     // Find the minimum and maximum x, y, and z
 | |
|     XMVECTOR vMin, vMax;
 | |
| 
 | |
|     vMin = vMax = XMLoadFloat3(pPoints);
 | |
| 
 | |
|     for (size_t i = 1; i < Count; ++i)
 | |
|     {
 | |
|         XMVECTOR Point = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride));
 | |
| 
 | |
|         vMin = XMVectorMin(vMin, Point);
 | |
|         vMax = XMVectorMax(vMax, Point);
 | |
|     }
 | |
| 
 | |
|     // Store center and extents.
 | |
|     XMStoreFloat3(&Out.Center, XMVectorScale(XMVectorAdd(vMin, vMax), 0.5f));
 | |
|     XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(vMax, vMin), 0.5f));
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * BoundingOrientedBox
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
|  //-----------------------------------------------------------------------------
 | |
|  // Transform an oriented box by an angle preserving transform.
 | |
|  //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingOrientedBox::Transform(BoundingOrientedBox& Out, FXMMATRIX M) const noexcept
 | |
| {
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Composite the box rotation and the transform rotation.
 | |
|     XMMATRIX nM;
 | |
|     nM.r[0] = XMVector3Normalize(M.r[0]);
 | |
|     nM.r[1] = XMVector3Normalize(M.r[1]);
 | |
|     nM.r[2] = XMVector3Normalize(M.r[2]);
 | |
|     nM.r[3] = g_XMIdentityR3;
 | |
|     XMVECTOR Rotation = XMQuaternionRotationMatrix(nM);
 | |
|     vOrientation = XMQuaternionMultiply(vOrientation, Rotation);
 | |
| 
 | |
|     // Transform the center.
 | |
|     vCenter = XMVector3Transform(vCenter, M);
 | |
| 
 | |
|     // Scale the box extents.
 | |
|     XMVECTOR dX = XMVector3Length(M.r[0]);
 | |
|     XMVECTOR dY = XMVector3Length(M.r[1]);
 | |
|     XMVECTOR dZ = XMVector3Length(M.r[2]);
 | |
| 
 | |
|     XMVECTOR VectorScale = XMVectorSelect(dY, dX, g_XMSelect1000);
 | |
|     VectorScale = XMVectorSelect(dZ, VectorScale, g_XMSelect1100);
 | |
|     vExtents = XMVectorMultiply(vExtents, VectorScale);
 | |
| 
 | |
|     // Store the box.
 | |
|     XMStoreFloat3(&Out.Center, vCenter);
 | |
|     XMStoreFloat3(&Out.Extents, vExtents);
 | |
|     XMStoreFloat4(&Out.Orientation, vOrientation);
 | |
| }
 | |
| 
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingOrientedBox::Transform(BoundingOrientedBox& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(Rotation));
 | |
| 
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Composite the box rotation and the transform rotation.
 | |
|     vOrientation = XMQuaternionMultiply(vOrientation, Rotation);
 | |
| 
 | |
|     // Transform the center.
 | |
|     XMVECTOR VectorScale = XMVectorReplicate(Scale);
 | |
|     vCenter = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(vCenter, VectorScale), Rotation), Translation);
 | |
| 
 | |
|     // Scale the box extents.
 | |
|     vExtents = XMVectorMultiply(vExtents, VectorScale);
 | |
| 
 | |
|     // Store the box.
 | |
|     XMStoreFloat3(&Out.Center, vCenter);
 | |
|     XMStoreFloat3(&Out.Extents, vExtents);
 | |
|     XMStoreFloat4(&Out.Orientation, vOrientation);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Get the corner points of the box
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingOrientedBox::GetCorners(XMFLOAT3* Corners) const noexcept
 | |
| {
 | |
|     assert(Corners != nullptr);
 | |
| 
 | |
|     // Load the box
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     for (size_t i = 0; i < CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR C = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(vExtents, g_BoxOffset[i]), vOrientation), vCenter);
 | |
|         XMStoreFloat3(&Corners[i], C);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Point in oriented box test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingOrientedBox::Contains(FXMVECTOR Point) const noexcept
 | |
| {
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // Transform the point to be local to the box.
 | |
|     XMVECTOR TPoint = XMVector3InverseRotate(XMVectorSubtract(Point, vCenter), vOrientation);
 | |
| 
 | |
|     return XMVector3InBounds(TPoint, vExtents) ? CONTAINS : DISJOINT;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Triangle in oriented bounding box
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingOrientedBox::Contains(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
 | |
| {
 | |
|     // Load the box center & orientation.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // Transform the triangle vertices into the space of the box.
 | |
|     XMVECTOR TV0 = XMVector3InverseRotate(XMVectorSubtract(V0, vCenter), vOrientation);
 | |
|     XMVECTOR TV1 = XMVector3InverseRotate(XMVectorSubtract(V1, vCenter), vOrientation);
 | |
|     XMVECTOR TV2 = XMVector3InverseRotate(XMVectorSubtract(V2, vCenter), vOrientation);
 | |
| 
 | |
|     BoundingBox box;
 | |
|     box.Center = XMFLOAT3(0.0f, 0.0f, 0.0f);
 | |
|     box.Extents = Extents;
 | |
| 
 | |
|     // Use the triangle vs axis aligned box intersection routine.
 | |
|     return box.Contains(TV0, TV1, TV2);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Sphere in oriented bounding box
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingOrientedBox::Contains(const BoundingSphere& sh) const noexcept
 | |
| {
 | |
|     XMVECTOR SphereCenter = XMLoadFloat3(&sh.Center);
 | |
|     XMVECTOR SphereRadius = XMVectorReplicatePtr(&sh.Radius);
 | |
| 
 | |
|     XMVECTOR BoxCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR BoxExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR BoxOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
 | |
| 
 | |
|     // Transform the center of the sphere to be local to the box.
 | |
|     // BoxMin = -BoxExtents
 | |
|     // BoxMax = +BoxExtents
 | |
|     SphereCenter = XMVector3InverseRotate(XMVectorSubtract(SphereCenter, BoxCenter), BoxOrientation);
 | |
| 
 | |
|     // Find the distance to the nearest point on the box.
 | |
|     // for each i in (x, y, z)
 | |
|     // if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
 | |
|     // else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
 | |
| 
 | |
|     XMVECTOR d = XMVectorZero();
 | |
| 
 | |
|     // Compute d for each dimension.
 | |
|     XMVECTOR LessThanMin = XMVectorLess(SphereCenter, XMVectorNegate(BoxExtents));
 | |
|     XMVECTOR GreaterThanMax = XMVectorGreater(SphereCenter, BoxExtents);
 | |
| 
 | |
|     XMVECTOR MinDelta = XMVectorAdd(SphereCenter, BoxExtents);
 | |
|     XMVECTOR MaxDelta = XMVectorSubtract(SphereCenter, BoxExtents);
 | |
| 
 | |
|     // Choose value for each dimension based on the comparison.
 | |
|     d = XMVectorSelect(d, MinDelta, LessThanMin);
 | |
|     d = XMVectorSelect(d, MaxDelta, GreaterThanMax);
 | |
| 
 | |
|     // Use a dot-product to square them and sum them together.
 | |
|     XMVECTOR d2 = XMVector3Dot(d, d);
 | |
|     XMVECTOR SphereRadiusSq = XMVectorMultiply(SphereRadius, SphereRadius);
 | |
| 
 | |
|     if (XMVector4Greater(d2, SphereRadiusSq))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     // See if we are completely inside the box
 | |
|     XMVECTOR SMin = XMVectorSubtract(SphereCenter, SphereRadius);
 | |
|     XMVECTOR SMax = XMVectorAdd(SphereCenter, SphereRadius);
 | |
| 
 | |
|     return (XMVector3InBounds(SMin, BoxExtents) && XMVector3InBounds(SMax, BoxExtents)) ? CONTAINS : INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Axis aligned box vs. oriented box. Constructs an oriented box and uses
 | |
| // the oriented box vs. oriented box test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingOrientedBox::Contains(const BoundingBox& box) const noexcept
 | |
| {
 | |
|     // Make the axis aligned box oriented and do an OBB vs OBB test.
 | |
|     BoundingOrientedBox obox(box.Center, box.Extents, XMFLOAT4(0.f, 0.f, 0.f, 1.f));
 | |
|     return Contains(obox);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Oriented bounding box in oriented bounding box
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingOrientedBox::Contains(const BoundingOrientedBox& box) const noexcept
 | |
| {
 | |
|     if (!Intersects(box))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     // Load the boxes
 | |
|     XMVECTOR aCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR aExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR aOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(aOrientation));
 | |
| 
 | |
|     XMVECTOR bCenter = XMLoadFloat3(&box.Center);
 | |
|     XMVECTOR bExtents = XMLoadFloat3(&box.Extents);
 | |
|     XMVECTOR bOrientation = XMLoadFloat4(&box.Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(bOrientation));
 | |
| 
 | |
|     XMVECTOR offset = XMVectorSubtract(bCenter, aCenter);
 | |
| 
 | |
|     for (size_t i = 0; i < CORNER_COUNT; ++i)
 | |
|     {
 | |
|         // Cb = rotate( bExtents * corneroffset[i], bOrientation ) + bcenter
 | |
|         // Ca = invrotate( Cb - aCenter, aOrientation )
 | |
| 
 | |
|         XMVECTOR C = XMVectorAdd(XMVector3Rotate(XMVectorMultiply(bExtents, g_BoxOffset[i]), bOrientation), offset);
 | |
|         C = XMVector3InverseRotate(C, aOrientation);
 | |
| 
 | |
|         if (!XMVector3InBounds(C, aExtents))
 | |
|             return INTERSECTS;
 | |
|     }
 | |
| 
 | |
|     return CONTAINS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Frustum in oriented bounding box
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingOrientedBox::Contains(const BoundingFrustum& fr) const noexcept
 | |
| {
 | |
|     if (!fr.Intersects(*this))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     XMFLOAT3 Corners[BoundingFrustum::CORNER_COUNT];
 | |
|     fr.GetCorners(Corners);
 | |
| 
 | |
|     // Load the box
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     for (size_t i = 0; i < BoundingFrustum::CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR C = XMVector3InverseRotate(XMVectorSubtract(XMLoadFloat3(&Corners[i]), vCenter), vOrientation);
 | |
| 
 | |
|         if (!XMVector3InBounds(C, vExtents))
 | |
|             return INTERSECTS;
 | |
|     }
 | |
| 
 | |
|     return CONTAINS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Sphere vs. oriented box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingOrientedBox::Intersects(const BoundingSphere& sh) const noexcept
 | |
| {
 | |
|     XMVECTOR SphereCenter = XMLoadFloat3(&sh.Center);
 | |
|     XMVECTOR SphereRadius = XMVectorReplicatePtr(&sh.Radius);
 | |
| 
 | |
|     XMVECTOR BoxCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR BoxExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR BoxOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
 | |
| 
 | |
|     // Transform the center of the sphere to be local to the box.
 | |
|     // BoxMin = -BoxExtents
 | |
|     // BoxMax = +BoxExtents
 | |
|     SphereCenter = XMVector3InverseRotate(XMVectorSubtract(SphereCenter, BoxCenter), BoxOrientation);
 | |
| 
 | |
|     // Find the distance to the nearest point on the box.
 | |
|     // for each i in (x, y, z)
 | |
|     // if (SphereCenter(i) < BoxMin(i)) d2 += (SphereCenter(i) - BoxMin(i)) ^ 2
 | |
|     // else if (SphereCenter(i) > BoxMax(i)) d2 += (SphereCenter(i) - BoxMax(i)) ^ 2
 | |
| 
 | |
|     XMVECTOR d = XMVectorZero();
 | |
| 
 | |
|     // Compute d for each dimension.
 | |
|     XMVECTOR LessThanMin = XMVectorLess(SphereCenter, XMVectorNegate(BoxExtents));
 | |
|     XMVECTOR GreaterThanMax = XMVectorGreater(SphereCenter, BoxExtents);
 | |
| 
 | |
|     XMVECTOR MinDelta = XMVectorAdd(SphereCenter, BoxExtents);
 | |
|     XMVECTOR MaxDelta = XMVectorSubtract(SphereCenter, BoxExtents);
 | |
| 
 | |
|     // Choose value for each dimension based on the comparison.
 | |
|     d = XMVectorSelect(d, MinDelta, LessThanMin);
 | |
|     d = XMVectorSelect(d, MaxDelta, GreaterThanMax);
 | |
| 
 | |
|     // Use a dot-product to square them and sum them together.
 | |
|     XMVECTOR d2 = XMVector3Dot(d, d);
 | |
| 
 | |
|     return XMVector4LessOrEqual(d2, XMVectorMultiply(SphereRadius, SphereRadius)) ? true : false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Axis aligned box vs. oriented box. Constructs an oriented box and uses
 | |
| // the oriented box vs. oriented box test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingOrientedBox::Intersects(const BoundingBox& box) const noexcept
 | |
| {
 | |
|     // Make the axis aligned box oriented and do an OBB vs OBB test.
 | |
|     BoundingOrientedBox obox(box.Center, box.Extents, XMFLOAT4(0.f, 0.f, 0.f, 1.f));
 | |
|     return Intersects(obox);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Fast oriented box / oriented box intersection test using the separating axis
 | |
| // theorem.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingOrientedBox::Intersects(const BoundingOrientedBox& box) const noexcept
 | |
| {
 | |
|     // Build the 3x3 rotation matrix that defines the orientation of B relative to A.
 | |
|     XMVECTOR A_quat = XMLoadFloat4(&Orientation);
 | |
|     XMVECTOR B_quat = XMLoadFloat4(&box.Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(A_quat));
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(B_quat));
 | |
| 
 | |
|     XMVECTOR Q = XMQuaternionMultiply(A_quat, XMQuaternionConjugate(B_quat));
 | |
|     XMMATRIX R = XMMatrixRotationQuaternion(Q);
 | |
| 
 | |
|     // Compute the translation of B relative to A.
 | |
|     XMVECTOR A_cent = XMLoadFloat3(&Center);
 | |
|     XMVECTOR B_cent = XMLoadFloat3(&box.Center);
 | |
|     XMVECTOR t = XMVector3InverseRotate(XMVectorSubtract(B_cent, A_cent), A_quat);
 | |
| 
 | |
|     //
 | |
|     // h(A) = extents of A.
 | |
|     // h(B) = extents of B.
 | |
|     //
 | |
|     // a(u) = axes of A = (1,0,0), (0,1,0), (0,0,1)
 | |
|     // b(u) = axes of B relative to A = (r00,r10,r20), (r01,r11,r21), (r02,r12,r22)
 | |
|     //
 | |
|     // For each possible separating axis l:
 | |
|     //   d(A) = sum (for i = u,v,w) h(A)(i) * abs( a(i) dot l )
 | |
|     //   d(B) = sum (for i = u,v,w) h(B)(i) * abs( b(i) dot l )
 | |
|     //   if abs( t dot l ) > d(A) + d(B) then disjoint
 | |
|     //
 | |
| 
 | |
|     // Load extents of A and B.
 | |
|     XMVECTOR h_A = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR h_B = XMLoadFloat3(&box.Extents);
 | |
| 
 | |
|     // Rows. Note R[0,1,2]X.w = 0.
 | |
|     XMVECTOR R0X = R.r[0];
 | |
|     XMVECTOR R1X = R.r[1];
 | |
|     XMVECTOR R2X = R.r[2];
 | |
| 
 | |
|     R = XMMatrixTranspose(R);
 | |
| 
 | |
|     // Columns. Note RX[0,1,2].w = 0.
 | |
|     XMVECTOR RX0 = R.r[0];
 | |
|     XMVECTOR RX1 = R.r[1];
 | |
|     XMVECTOR RX2 = R.r[2];
 | |
| 
 | |
|     // Absolute value of rows.
 | |
|     XMVECTOR AR0X = XMVectorAbs(R0X);
 | |
|     XMVECTOR AR1X = XMVectorAbs(R1X);
 | |
|     XMVECTOR AR2X = XMVectorAbs(R2X);
 | |
| 
 | |
|     // Absolute value of columns.
 | |
|     XMVECTOR ARX0 = XMVectorAbs(RX0);
 | |
|     XMVECTOR ARX1 = XMVectorAbs(RX1);
 | |
|     XMVECTOR ARX2 = XMVectorAbs(RX2);
 | |
| 
 | |
|     // Test each of the 15 possible seperating axii.
 | |
|     XMVECTOR d, d_A, d_B;
 | |
| 
 | |
|     // l = a(u) = (1, 0, 0)
 | |
|     // t dot l = t.x
 | |
|     // d(A) = h(A).x
 | |
|     // d(B) = h(B) dot abs(r00, r01, r02)
 | |
|     d = XMVectorSplatX(t);
 | |
|     d_A = XMVectorSplatX(h_A);
 | |
|     d_B = XMVector3Dot(h_B, AR0X);
 | |
|     XMVECTOR NoIntersection = XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B));
 | |
| 
 | |
|     // l = a(v) = (0, 1, 0)
 | |
|     // t dot l = t.y
 | |
|     // d(A) = h(A).y
 | |
|     // d(B) = h(B) dot abs(r10, r11, r12)
 | |
|     d = XMVectorSplatY(t);
 | |
|     d_A = XMVectorSplatY(h_A);
 | |
|     d_B = XMVector3Dot(h_B, AR1X);
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(w) = (0, 0, 1)
 | |
|     // t dot l = t.z
 | |
|     // d(A) = h(A).z
 | |
|     // d(B) = h(B) dot abs(r20, r21, r22)
 | |
|     d = XMVectorSplatZ(t);
 | |
|     d_A = XMVectorSplatZ(h_A);
 | |
|     d_B = XMVector3Dot(h_B, AR2X);
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = b(u) = (r00, r10, r20)
 | |
|     // d(A) = h(A) dot abs(r00, r10, r20)
 | |
|     // d(B) = h(B).x
 | |
|     d = XMVector3Dot(t, RX0);
 | |
|     d_A = XMVector3Dot(h_A, ARX0);
 | |
|     d_B = XMVectorSplatX(h_B);
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = b(v) = (r01, r11, r21)
 | |
|     // d(A) = h(A) dot abs(r01, r11, r21)
 | |
|     // d(B) = h(B).y
 | |
|     d = XMVector3Dot(t, RX1);
 | |
|     d_A = XMVector3Dot(h_A, ARX1);
 | |
|     d_B = XMVectorSplatY(h_B);
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = b(w) = (r02, r12, r22)
 | |
|     // d(A) = h(A) dot abs(r02, r12, r22)
 | |
|     // d(B) = h(B).z
 | |
|     d = XMVector3Dot(t, RX2);
 | |
|     d_A = XMVector3Dot(h_A, ARX2);
 | |
|     d_B = XMVectorSplatZ(h_B);
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(u) x b(u) = (0, -r20, r10)
 | |
|     // d(A) = h(A) dot abs(0, r20, r10)
 | |
|     // d(B) = h(B) dot abs(0, r02, r01)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(RX0, XMVectorNegate(RX0)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(ARX0));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(AR0X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(u) x b(v) = (0, -r21, r11)
 | |
|     // d(A) = h(A) dot abs(0, r21, r11)
 | |
|     // d(B) = h(B) dot abs(r02, 0, r00)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(RX1, XMVectorNegate(RX1)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(ARX1));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(AR0X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(u) x b(w) = (0, -r22, r12)
 | |
|     // d(A) = h(A) dot abs(0, r22, r12)
 | |
|     // d(B) = h(B) dot abs(r01, r00, 0)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_0X>(RX2, XMVectorNegate(RX2)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(ARX2));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(AR0X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(v) x b(u) = (r20, 0, -r00)
 | |
|     // d(A) = h(A) dot abs(r20, 0, r00)
 | |
|     // d(B) = h(B) dot abs(0, r12, r11)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(RX0, XMVectorNegate(RX0)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(ARX0));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(AR1X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(v) x b(v) = (r21, 0, -r01)
 | |
|     // d(A) = h(A) dot abs(r21, 0, r01)
 | |
|     // d(B) = h(B) dot abs(r12, 0, r10)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(RX1, XMVectorNegate(RX1)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(ARX1));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(AR1X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(v) x b(w) = (r22, 0, -r02)
 | |
|     // d(A) = h(A) dot abs(r22, 0, r02)
 | |
|     // d(B) = h(B) dot abs(r11, r10, 0)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_1X, XM_PERMUTE_0Y>(RX2, XMVectorNegate(RX2)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(ARX2));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(AR1X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(w) x b(u) = (-r10, r00, 0)
 | |
|     // d(A) = h(A) dot abs(r10, r00, 0)
 | |
|     // d(B) = h(B) dot abs(0, r22, r21)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(RX0, XMVectorNegate(RX0)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(ARX0));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_X>(AR2X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(w) x b(v) = (-r11, r01, 0)
 | |
|     // d(A) = h(A) dot abs(r11, r01, 0)
 | |
|     // d(B) = h(B) dot abs(r22, 0, r20)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(RX1, XMVectorNegate(RX1)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(ARX1));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Y>(AR2X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // l = a(w) x b(w) = (-r12, r02, 0)
 | |
|     // d(A) = h(A) dot abs(r12, r02, 0)
 | |
|     // d(B) = h(B) dot abs(r21, r20, 0)
 | |
|     d = XMVector3Dot(t, XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0Z>(RX2, XMVectorNegate(RX2)));
 | |
|     d_A = XMVector3Dot(h_A, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(ARX2));
 | |
|     d_B = XMVector3Dot(h_B, XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_Z>(AR2X));
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection,
 | |
|         XMVectorGreater(XMVectorAbs(d), XMVectorAdd(d_A, d_B)));
 | |
| 
 | |
|     // No seperating axis found, boxes must intersect.
 | |
|     return XMVector4NotEqualInt(NoIntersection, XMVectorTrueInt()) ? true : false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Frustum vs. oriented box test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingOrientedBox::Intersects(const BoundingFrustum& fr) const noexcept
 | |
| {
 | |
|     return fr.Intersects(*this);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Triangle vs. oriented box test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV BoundingOrientedBox::Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
 | |
| {
 | |
|     // Load the box center & orientation.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // Transform the triangle vertices into the space of the box.
 | |
|     XMVECTOR TV0 = XMVector3InverseRotate(XMVectorSubtract(V0, vCenter), vOrientation);
 | |
|     XMVECTOR TV1 = XMVector3InverseRotate(XMVectorSubtract(V1, vCenter), vOrientation);
 | |
|     XMVECTOR TV2 = XMVector3InverseRotate(XMVectorSubtract(V2, vCenter), vOrientation);
 | |
| 
 | |
|     BoundingBox box;
 | |
|     box.Center = XMFLOAT3(0.0f, 0.0f, 0.0f);
 | |
|     box.Extents = Extents;
 | |
| 
 | |
|     // Use the triangle vs axis aligned box intersection routine.
 | |
|     return box.Intersects(TV0, TV1, TV2);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline PlaneIntersectionType XM_CALLCONV BoundingOrientedBox::Intersects(FXMVECTOR Plane) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMPlaneIsUnit(Plane));
 | |
| 
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR BoxOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
 | |
| 
 | |
|     // Set w of the center to one so we can dot4 with a plane.
 | |
|     vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
 | |
| 
 | |
|     // Build the 3x3 rotation matrix that defines the box axes.
 | |
|     XMMATRIX R = XMMatrixRotationQuaternion(BoxOrientation);
 | |
| 
 | |
|     XMVECTOR Outside, Inside;
 | |
|     DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane, Outside, Inside);
 | |
| 
 | |
|     // If the box is outside any plane it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return FRONT;
 | |
| 
 | |
|     // If the box is inside all planes it is inside.
 | |
|     if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
 | |
|         return BACK;
 | |
| 
 | |
|     // The box is not inside all planes or outside a plane it intersects.
 | |
|     return INTERSECTING;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Compute the intersection of a ray (Origin, Direction) with an oriented box
 | |
| // using the slabs method.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV BoundingOrientedBox::Intersects(FXMVECTOR Origin, FXMVECTOR Direction, float& Dist) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMVector3IsUnit(Direction));
 | |
| 
 | |
|     static const XMVECTORU32 SelectY = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0 } } };
 | |
|     static const XMVECTORU32 SelectZ = { { { XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0 } } };
 | |
| 
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Get the boxes normalized side directions.
 | |
|     XMMATRIX R = XMMatrixRotationQuaternion(vOrientation);
 | |
| 
 | |
|     // Adjust ray origin to be relative to center of the box.
 | |
|     XMVECTOR TOrigin = XMVectorSubtract(vCenter, Origin);
 | |
| 
 | |
|     // Compute the dot product againt each axis of the box.
 | |
|     XMVECTOR AxisDotOrigin = XMVector3Dot(R.r[0], TOrigin);
 | |
|     AxisDotOrigin = XMVectorSelect(AxisDotOrigin, XMVector3Dot(R.r[1], TOrigin), SelectY);
 | |
|     AxisDotOrigin = XMVectorSelect(AxisDotOrigin, XMVector3Dot(R.r[2], TOrigin), SelectZ);
 | |
| 
 | |
|     XMVECTOR AxisDotDirection = XMVector3Dot(R.r[0], Direction);
 | |
|     AxisDotDirection = XMVectorSelect(AxisDotDirection, XMVector3Dot(R.r[1], Direction), SelectY);
 | |
|     AxisDotDirection = XMVectorSelect(AxisDotDirection, XMVector3Dot(R.r[2], Direction), SelectZ);
 | |
| 
 | |
|     // if (fabs(AxisDotDirection) <= Epsilon) the ray is nearly parallel to the slab.
 | |
|     XMVECTOR IsParallel = XMVectorLessOrEqual(XMVectorAbs(AxisDotDirection), g_RayEpsilon);
 | |
| 
 | |
|     // Test against all three axes simultaneously.
 | |
|     XMVECTOR InverseAxisDotDirection = XMVectorReciprocal(AxisDotDirection);
 | |
|     XMVECTOR t1 = XMVectorMultiply(XMVectorSubtract(AxisDotOrigin, vExtents), InverseAxisDotDirection);
 | |
|     XMVECTOR t2 = XMVectorMultiply(XMVectorAdd(AxisDotOrigin, vExtents), InverseAxisDotDirection);
 | |
| 
 | |
|     // Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
 | |
|     // use the results from any directions parallel to the slab.
 | |
|     XMVECTOR t_min = XMVectorSelect(XMVectorMin(t1, t2), g_FltMin, IsParallel);
 | |
|     XMVECTOR t_max = XMVectorSelect(XMVectorMax(t1, t2), g_FltMax, IsParallel);
 | |
| 
 | |
|     // t_min.x = maximum( t_min.x, t_min.y, t_min.z );
 | |
|     // t_max.x = minimum( t_max.x, t_max.y, t_max.z );
 | |
|     t_min = XMVectorMax(t_min, XMVectorSplatY(t_min));  // x = max(x,y)
 | |
|     t_min = XMVectorMax(t_min, XMVectorSplatZ(t_min));  // x = max(max(x,y),z)
 | |
|     t_max = XMVectorMin(t_max, XMVectorSplatY(t_max));  // x = min(x,y)
 | |
|     t_max = XMVectorMin(t_max, XMVectorSplatZ(t_max));  // x = min(min(x,y),z)
 | |
| 
 | |
|     // if ( t_min > t_max ) return false;
 | |
|     XMVECTOR NoIntersection = XMVectorGreater(XMVectorSplatX(t_min), XMVectorSplatX(t_max));
 | |
| 
 | |
|     // if ( t_max < 0.0f ) return false;
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(XMVectorSplatX(t_max), XMVectorZero()));
 | |
| 
 | |
|     // if (IsParallel && (-Extents > AxisDotOrigin || Extents < AxisDotOrigin)) return false;
 | |
|     XMVECTOR ParallelOverlap = XMVectorInBounds(AxisDotOrigin, vExtents);
 | |
|     NoIntersection = XMVectorOrInt(NoIntersection, XMVectorAndCInt(IsParallel, ParallelOverlap));
 | |
| 
 | |
|     if (!DirectX::Internal::XMVector3AnyTrue(NoIntersection))
 | |
|     {
 | |
|         // Store the x-component to *pDist
 | |
|         XMStoreFloat(&Dist, t_min);
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     Dist = 0.f;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Test an oriented box vs 6 planes (typically forming a frustum).
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingOrientedBox::ContainedBy(
 | |
|     FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
 | |
|     GXMVECTOR Plane3,
 | |
|     HXMVECTOR Plane4, HXMVECTOR Plane5) const noexcept
 | |
| {
 | |
|     // Load the box.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&Center);
 | |
|     XMVECTOR vExtents = XMLoadFloat3(&Extents);
 | |
|     XMVECTOR BoxOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
 | |
| 
 | |
|     // Set w of the center to one so we can dot4 with a plane.
 | |
|     vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
 | |
| 
 | |
|     // Build the 3x3 rotation matrix that defines the box axes.
 | |
|     XMMATRIX R = XMMatrixRotationQuaternion(BoxOrientation);
 | |
| 
 | |
|     XMVECTOR Outside, Inside;
 | |
| 
 | |
|     // Test against each plane.
 | |
|     DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane0, Outside, Inside);
 | |
| 
 | |
|     XMVECTOR AnyOutside = Outside;
 | |
|     XMVECTOR AllInside = Inside;
 | |
| 
 | |
|     DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane1, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane2, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane3, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane4, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectOrientedBoxPlane(vCenter, vExtents, R.r[0], R.r[1], R.r[2], Plane5, Outside, Inside);
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     // If the box is outside any plane it is outside.
 | |
|     if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     // If the box is inside all planes it is inside.
 | |
|     if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
 | |
|         return CONTAINS;
 | |
| 
 | |
|     // The box is not inside all planes or outside a plane, it may intersect.
 | |
|     return INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Create oriented bounding box from axis-aligned bounding box
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingOrientedBox::CreateFromBoundingBox(BoundingOrientedBox& Out, const BoundingBox& box) noexcept
 | |
| {
 | |
|     Out.Center = box.Center;
 | |
|     Out.Extents = box.Extents;
 | |
|     Out.Orientation = XMFLOAT4(0.f, 0.f, 0.f, 1.f);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Find the approximate minimum oriented bounding box containing a set of
 | |
| // points.  Exact computation of minimum oriented bounding box is possible but
 | |
| // is slower and requires a more complex algorithm.
 | |
| // The algorithm works by computing the inertia tensor of the points and then
 | |
| // using the eigenvectors of the intertia tensor as the axes of the box.
 | |
| // Computing the intertia tensor of the convex hull of the points will usually
 | |
| // result in better bounding box but the computation is more complex.
 | |
| // Exact computation of the minimum oriented bounding box is possible but the
 | |
| // best know algorithm is O(N^3) and is significanly more complex to implement.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingOrientedBox::CreateFromPoints(BoundingOrientedBox& Out, size_t Count, const XMFLOAT3* pPoints, size_t Stride) noexcept
 | |
| {
 | |
|     assert(Count > 0);
 | |
|     assert(pPoints != nullptr);
 | |
| 
 | |
|     XMVECTOR CenterOfMass = XMVectorZero();
 | |
| 
 | |
|     // Compute the center of mass and inertia tensor of the points.
 | |
|     for (size_t i = 0; i < Count; ++i)
 | |
|     {
 | |
|         XMVECTOR Point = XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride));
 | |
| 
 | |
|         CenterOfMass = XMVectorAdd(CenterOfMass, Point);
 | |
|     }
 | |
| 
 | |
|     CenterOfMass = XMVectorMultiply(CenterOfMass, XMVectorReciprocal(XMVectorReplicate(float(Count))));
 | |
| 
 | |
|     // Compute the inertia tensor of the points around the center of mass.
 | |
|     // Using the center of mass is not strictly necessary, but will hopefully
 | |
|     // improve the stability of finding the eigenvectors.
 | |
|     XMVECTOR XX_YY_ZZ = XMVectorZero();
 | |
|     XMVECTOR XY_XZ_YZ = XMVectorZero();
 | |
| 
 | |
|     for (size_t i = 0; i < Count; ++i)
 | |
|     {
 | |
|         XMVECTOR Point = XMVectorSubtract(XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride)), CenterOfMass);
 | |
| 
 | |
|         XX_YY_ZZ = XMVectorAdd(XX_YY_ZZ, XMVectorMultiply(Point, Point));
 | |
| 
 | |
|         XMVECTOR XXY = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_W>(Point);
 | |
|         XMVECTOR YZZ = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_W>(Point);
 | |
| 
 | |
|         XY_XZ_YZ = XMVectorAdd(XY_XZ_YZ, XMVectorMultiply(XXY, YZZ));
 | |
|     }
 | |
| 
 | |
|     XMVECTOR v1, v2, v3;
 | |
| 
 | |
|     // Compute the eigenvectors of the inertia tensor.
 | |
|     DirectX::Internal::CalculateEigenVectorsFromCovarianceMatrix(XMVectorGetX(XX_YY_ZZ), XMVectorGetY(XX_YY_ZZ),
 | |
|         XMVectorGetZ(XX_YY_ZZ),
 | |
|         XMVectorGetX(XY_XZ_YZ), XMVectorGetY(XY_XZ_YZ),
 | |
|         XMVectorGetZ(XY_XZ_YZ),
 | |
|         &v1, &v2, &v3);
 | |
| 
 | |
|     // Put them in a matrix.
 | |
|     XMMATRIX R;
 | |
| 
 | |
|     R.r[0] = XMVectorSetW(v1, 0.f);
 | |
|     R.r[1] = XMVectorSetW(v2, 0.f);
 | |
|     R.r[2] = XMVectorSetW(v3, 0.f);
 | |
|     R.r[3] = g_XMIdentityR3.v;
 | |
| 
 | |
|     // Multiply by -1 to convert the matrix into a right handed coordinate
 | |
|     // system (Det ~= 1) in case the eigenvectors form a left handed
 | |
|     // coordinate system (Det ~= -1) because XMQuaternionRotationMatrix only
 | |
|     // works on right handed matrices.
 | |
|     XMVECTOR Det = XMMatrixDeterminant(R);
 | |
| 
 | |
|     if (XMVector4Less(Det, XMVectorZero()))
 | |
|     {
 | |
|         R.r[0] = XMVectorMultiply(R.r[0], g_XMNegativeOne.v);
 | |
|         R.r[1] = XMVectorMultiply(R.r[1], g_XMNegativeOne.v);
 | |
|         R.r[2] = XMVectorMultiply(R.r[2], g_XMNegativeOne.v);
 | |
|     }
 | |
| 
 | |
|     // Get the rotation quaternion from the matrix.
 | |
|     XMVECTOR vOrientation = XMQuaternionRotationMatrix(R);
 | |
| 
 | |
|     // Make sure it is normal (in case the vectors are slightly non-orthogonal).
 | |
|     vOrientation = XMQuaternionNormalize(vOrientation);
 | |
| 
 | |
|     // Rebuild the rotation matrix from the quaternion.
 | |
|     R = XMMatrixRotationQuaternion(vOrientation);
 | |
| 
 | |
|     // Build the rotation into the rotated space.
 | |
|     XMMATRIX InverseR = XMMatrixTranspose(R);
 | |
| 
 | |
|     // Find the minimum OBB using the eigenvectors as the axes.
 | |
|     XMVECTOR vMin, vMax;
 | |
| 
 | |
|     vMin = vMax = XMVector3TransformNormal(XMLoadFloat3(pPoints), InverseR);
 | |
| 
 | |
|     for (size_t i = 1; i < Count; ++i)
 | |
|     {
 | |
|         XMVECTOR Point = XMVector3TransformNormal(XMLoadFloat3(reinterpret_cast<const XMFLOAT3*>(reinterpret_cast<const uint8_t*>(pPoints) + i * Stride)),
 | |
|             InverseR);
 | |
| 
 | |
|         vMin = XMVectorMin(vMin, Point);
 | |
|         vMax = XMVectorMax(vMax, Point);
 | |
|     }
 | |
| 
 | |
|     // Rotate the center into world space.
 | |
|     XMVECTOR vCenter = XMVectorScale(XMVectorAdd(vMin, vMax), 0.5f);
 | |
|     vCenter = XMVector3TransformNormal(vCenter, R);
 | |
| 
 | |
|     // Store center, extents, and orientation.
 | |
|     XMStoreFloat3(&Out.Center, vCenter);
 | |
|     XMStoreFloat3(&Out.Extents, XMVectorScale(XMVectorSubtract(vMax, vMin), 0.5f));
 | |
|     XMStoreFloat4(&Out.Orientation, vOrientation);
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * BoundingFrustum
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
| _Use_decl_annotations_
 | |
| inline BoundingFrustum::BoundingFrustum(CXMMATRIX Projection, bool rhcoords) noexcept
 | |
| {
 | |
|     CreateFromMatrix(*this, Projection, rhcoords);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Transform a frustum by an angle preserving transform.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingFrustum::Transform(BoundingFrustum& Out, FXMMATRIX M) const noexcept
 | |
| {
 | |
|     // Load the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Composite the frustum rotation and the transform rotation
 | |
|     XMMATRIX nM;
 | |
|     nM.r[0] = XMVector3Normalize(M.r[0]);
 | |
|     nM.r[1] = XMVector3Normalize(M.r[1]);
 | |
|     nM.r[2] = XMVector3Normalize(M.r[2]);
 | |
|     nM.r[3] = g_XMIdentityR3;
 | |
|     XMVECTOR Rotation = XMQuaternionRotationMatrix(nM);
 | |
|     vOrientation = XMQuaternionMultiply(vOrientation, Rotation);
 | |
| 
 | |
|     // Transform the center.
 | |
|     vOrigin = XMVector3Transform(vOrigin, M);
 | |
| 
 | |
|     // Store the frustum.
 | |
|     XMStoreFloat3(&Out.Origin, vOrigin);
 | |
|     XMStoreFloat4(&Out.Orientation, vOrientation);
 | |
| 
 | |
|     // Scale the near and far distances (the slopes remain the same).
 | |
|     XMVECTOR dX = XMVector3Dot(M.r[0], M.r[0]);
 | |
|     XMVECTOR dY = XMVector3Dot(M.r[1], M.r[1]);
 | |
|     XMVECTOR dZ = XMVector3Dot(M.r[2], M.r[2]);
 | |
| 
 | |
|     XMVECTOR d = XMVectorMax(dX, XMVectorMax(dY, dZ));
 | |
|     float Scale = sqrtf(XMVectorGetX(d));
 | |
| 
 | |
|     Out.Near = Near * Scale;
 | |
|     Out.Far = Far * Scale;
 | |
| 
 | |
|     // Copy the slopes.
 | |
|     Out.RightSlope = RightSlope;
 | |
|     Out.LeftSlope = LeftSlope;
 | |
|     Out.TopSlope = TopSlope;
 | |
|     Out.BottomSlope = BottomSlope;
 | |
| }
 | |
| 
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingFrustum::Transform(BoundingFrustum& Out, float Scale, FXMVECTOR Rotation, FXMVECTOR Translation) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(Rotation));
 | |
| 
 | |
|     // Load the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Composite the frustum rotation and the transform rotation.
 | |
|     vOrientation = XMQuaternionMultiply(vOrientation, Rotation);
 | |
| 
 | |
|     // Transform the origin.
 | |
|     vOrigin = XMVectorAdd(XMVector3Rotate(XMVectorScale(vOrigin, Scale), Rotation), Translation);
 | |
| 
 | |
|     // Store the frustum.
 | |
|     XMStoreFloat3(&Out.Origin, vOrigin);
 | |
|     XMStoreFloat4(&Out.Orientation, vOrientation);
 | |
| 
 | |
|     // Scale the near and far distances (the slopes remain the same).
 | |
|     Out.Near = Near * Scale;
 | |
|     Out.Far = Far * Scale;
 | |
| 
 | |
|     // Copy the slopes.
 | |
|     Out.RightSlope = RightSlope;
 | |
|     Out.LeftSlope = LeftSlope;
 | |
|     Out.TopSlope = TopSlope;
 | |
|     Out.BottomSlope = BottomSlope;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Get the corner points of the frustum
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingFrustum::GetCorners(XMFLOAT3* Corners) const noexcept
 | |
| {
 | |
|     assert(Corners != nullptr);
 | |
| 
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Build the corners of the frustum.
 | |
|     XMVECTOR vRightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vRightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vNear = XMVectorReplicatePtr(&Near);
 | |
|     XMVECTOR vFar = XMVectorReplicatePtr(&Far);
 | |
| 
 | |
|     // Returns 8 corners position of bounding frustum.
 | |
|     //     Near    Far
 | |
|     //    0----1  4----5
 | |
|     //    |    |  |    |
 | |
|     //    |    |  |    |
 | |
|     //    3----2  7----6
 | |
| 
 | |
|     XMVECTOR vCorners[CORNER_COUNT];
 | |
|     vCorners[0] = XMVectorMultiply(vLeftTop, vNear);
 | |
|     vCorners[1] = XMVectorMultiply(vRightTop, vNear);
 | |
|     vCorners[2] = XMVectorMultiply(vRightBottom, vNear);
 | |
|     vCorners[3] = XMVectorMultiply(vLeftBottom, vNear);
 | |
|     vCorners[4] = XMVectorMultiply(vLeftTop, vFar);
 | |
|     vCorners[5] = XMVectorMultiply(vRightTop, vFar);
 | |
|     vCorners[6] = XMVectorMultiply(vRightBottom, vFar);
 | |
|     vCorners[7] = XMVectorMultiply(vLeftBottom, vFar);
 | |
| 
 | |
|     for (size_t i = 0; i < CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR C = XMVectorAdd(XMVector3Rotate(vCorners[i], vOrientation), vOrigin);
 | |
|         XMStoreFloat3(&Corners[i], C);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Point in frustum test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingFrustum::Contains(FXMVECTOR Point) const noexcept
 | |
| {
 | |
|     // Build frustum planes.
 | |
|     XMVECTOR Planes[6];
 | |
|     Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
| 
 | |
|     // Load origin and orientation.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Transform point into local space of frustum.
 | |
|     XMVECTOR TPoint = XMVector3InverseRotate(XMVectorSubtract(Point, vOrigin), vOrientation);
 | |
| 
 | |
|     // Set w to one.
 | |
|     TPoint = XMVectorInsert<0, 0, 0, 0, 1>(TPoint, XMVectorSplatOne());
 | |
| 
 | |
|     XMVECTOR Zero = XMVectorZero();
 | |
|     XMVECTOR Outside = Zero;
 | |
| 
 | |
|     // Test point against each plane of the frustum.
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         XMVECTOR Dot = XMVector4Dot(TPoint, Planes[i]);
 | |
|         Outside = XMVectorOrInt(Outside, XMVectorGreater(Dot, Zero));
 | |
|     }
 | |
| 
 | |
|     return XMVector4NotEqualInt(Outside, XMVectorTrueInt()) ? CONTAINS : DISJOINT;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Triangle vs frustum test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingFrustum::Contains(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
 | |
| {
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // Create 6 planes (do it inline to encourage use of registers)
 | |
|     XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
 | |
|     NearPlane = XMPlaneNormalize(NearPlane);
 | |
| 
 | |
|     XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
 | |
|     FarPlane = XMPlaneNormalize(FarPlane);
 | |
| 
 | |
|     XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
 | |
|     RightPlane = XMPlaneNormalize(RightPlane);
 | |
| 
 | |
|     XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
 | |
|     LeftPlane = XMPlaneNormalize(LeftPlane);
 | |
| 
 | |
|     XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
 | |
|     TopPlane = XMPlaneNormalize(TopPlane);
 | |
| 
 | |
|     XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
|     BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
 | |
|     BottomPlane = XMPlaneNormalize(BottomPlane);
 | |
| 
 | |
|     return TriangleTests::ContainedBy(V0, V1, V2, NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingFrustum::Contains(const BoundingSphere& sh) const noexcept
 | |
| {
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // Create 6 planes (do it inline to encourage use of registers)
 | |
|     XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
 | |
|     NearPlane = XMPlaneNormalize(NearPlane);
 | |
| 
 | |
|     XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
 | |
|     FarPlane = XMPlaneNormalize(FarPlane);
 | |
| 
 | |
|     XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
 | |
|     RightPlane = XMPlaneNormalize(RightPlane);
 | |
| 
 | |
|     XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
 | |
|     LeftPlane = XMPlaneNormalize(LeftPlane);
 | |
| 
 | |
|     XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
 | |
|     TopPlane = XMPlaneNormalize(TopPlane);
 | |
| 
 | |
|     XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
|     BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
 | |
|     BottomPlane = XMPlaneNormalize(BottomPlane);
 | |
| 
 | |
|     return sh.ContainedBy(NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingFrustum::Contains(const BoundingBox& box) const noexcept
 | |
| {
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // Create 6 planes (do it inline to encourage use of registers)
 | |
|     XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
 | |
|     NearPlane = XMPlaneNormalize(NearPlane);
 | |
| 
 | |
|     XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
 | |
|     FarPlane = XMPlaneNormalize(FarPlane);
 | |
| 
 | |
|     XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
 | |
|     RightPlane = XMPlaneNormalize(RightPlane);
 | |
| 
 | |
|     XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
 | |
|     LeftPlane = XMPlaneNormalize(LeftPlane);
 | |
| 
 | |
|     XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
 | |
|     TopPlane = XMPlaneNormalize(TopPlane);
 | |
| 
 | |
|     XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
|     BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
 | |
|     BottomPlane = XMPlaneNormalize(BottomPlane);
 | |
| 
 | |
|     return box.ContainedBy(NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingFrustum::Contains(const BoundingOrientedBox& box) const noexcept
 | |
| {
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // Create 6 planes (do it inline to encourage use of registers)
 | |
|     XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
 | |
|     NearPlane = XMPlaneNormalize(NearPlane);
 | |
| 
 | |
|     XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
 | |
|     FarPlane = XMPlaneNormalize(FarPlane);
 | |
| 
 | |
|     XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
 | |
|     RightPlane = XMPlaneNormalize(RightPlane);
 | |
| 
 | |
|     XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
 | |
|     LeftPlane = XMPlaneNormalize(LeftPlane);
 | |
| 
 | |
|     XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
 | |
|     TopPlane = XMPlaneNormalize(TopPlane);
 | |
| 
 | |
|     XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
|     BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
 | |
|     BottomPlane = XMPlaneNormalize(BottomPlane);
 | |
| 
 | |
|     return box.ContainedBy(NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType BoundingFrustum::Contains(const BoundingFrustum& fr) const noexcept
 | |
| {
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // Create 6 planes (do it inline to encourage use of registers)
 | |
|     XMVECTOR NearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     NearPlane = DirectX::Internal::XMPlaneTransform(NearPlane, vOrientation, vOrigin);
 | |
|     NearPlane = XMPlaneNormalize(NearPlane);
 | |
| 
 | |
|     XMVECTOR FarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     FarPlane = DirectX::Internal::XMPlaneTransform(FarPlane, vOrientation, vOrigin);
 | |
|     FarPlane = XMPlaneNormalize(FarPlane);
 | |
| 
 | |
|     XMVECTOR RightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     RightPlane = DirectX::Internal::XMPlaneTransform(RightPlane, vOrientation, vOrigin);
 | |
|     RightPlane = XMPlaneNormalize(RightPlane);
 | |
| 
 | |
|     XMVECTOR LeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     LeftPlane = DirectX::Internal::XMPlaneTransform(LeftPlane, vOrientation, vOrigin);
 | |
|     LeftPlane = XMPlaneNormalize(LeftPlane);
 | |
| 
 | |
|     XMVECTOR TopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     TopPlane = DirectX::Internal::XMPlaneTransform(TopPlane, vOrientation, vOrigin);
 | |
|     TopPlane = XMPlaneNormalize(TopPlane);
 | |
| 
 | |
|     XMVECTOR BottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
|     BottomPlane = DirectX::Internal::XMPlaneTransform(BottomPlane, vOrientation, vOrigin);
 | |
|     BottomPlane = XMPlaneNormalize(BottomPlane);
 | |
| 
 | |
|     return fr.ContainedBy(NearPlane, FarPlane, RightPlane, LeftPlane, TopPlane, BottomPlane);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Exact sphere vs frustum test.  The algorithm first checks the sphere against
 | |
| // the planes of the frustum, then if the plane checks were indeterminate finds
 | |
| // the nearest feature (plane, line, point) on the frustum to the center of the
 | |
| // sphere and compares the distance to the nearest feature to the radius of the
 | |
| // sphere
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingFrustum::Intersects(const BoundingSphere& sh) const noexcept
 | |
| {
 | |
|     XMVECTOR Zero = XMVectorZero();
 | |
| 
 | |
|     // Build the frustum planes.
 | |
|     XMVECTOR Planes[6];
 | |
|     Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
| 
 | |
|     // Normalize the planes so we can compare to the sphere radius.
 | |
|     Planes[2] = XMVector3Normalize(Planes[2]);
 | |
|     Planes[3] = XMVector3Normalize(Planes[3]);
 | |
|     Planes[4] = XMVector3Normalize(Planes[4]);
 | |
|     Planes[5] = XMVector3Normalize(Planes[5]);
 | |
| 
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Load the sphere.
 | |
|     XMVECTOR vCenter = XMLoadFloat3(&sh.Center);
 | |
|     XMVECTOR vRadius = XMVectorReplicatePtr(&sh.Radius);
 | |
| 
 | |
|     // Transform the center of the sphere into the local space of frustum.
 | |
|     vCenter = XMVector3InverseRotate(XMVectorSubtract(vCenter, vOrigin), vOrientation);
 | |
| 
 | |
|     // Set w of the center to one so we can dot4 with the plane.
 | |
|     vCenter = XMVectorInsert<0, 0, 0, 0, 1>(vCenter, XMVectorSplatOne());
 | |
| 
 | |
|     // Check against each plane of the frustum.
 | |
|     XMVECTOR Outside = XMVectorFalseInt();
 | |
|     XMVECTOR InsideAll = XMVectorTrueInt();
 | |
|     XMVECTOR CenterInsideAll = XMVectorTrueInt();
 | |
| 
 | |
|     XMVECTOR Dist[6];
 | |
| 
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         Dist[i] = XMVector4Dot(vCenter, Planes[i]);
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorOrInt(Outside, XMVectorGreater(Dist[i], vRadius));
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(Dist[i], XMVectorNegate(vRadius)));
 | |
| 
 | |
|         // Check if the center is inside the plane.
 | |
|         CenterInsideAll = XMVectorAndInt(CenterInsideAll, XMVectorLessOrEqual(Dist[i], Zero));
 | |
|     }
 | |
| 
 | |
|     // If the sphere is outside any of the planes it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // If the sphere is inside all planes it is fully inside.
 | |
|     if (XMVector4EqualInt(InsideAll, XMVectorTrueInt()))
 | |
|         return true;
 | |
| 
 | |
|     // If the center of the sphere is inside all planes and the sphere intersects
 | |
|     // one or more planes then it must intersect.
 | |
|     if (XMVector4EqualInt(CenterInsideAll, XMVectorTrueInt()))
 | |
|         return true;
 | |
| 
 | |
|     // The sphere may be outside the frustum or intersecting the frustum.
 | |
|     // Find the nearest feature (face, edge, or corner) on the frustum
 | |
|     // to the sphere.
 | |
| 
 | |
|     // The faces adjacent to each face are:
 | |
|     static const size_t adjacent_faces[6][4] =
 | |
|     {
 | |
|         { 2, 3, 4, 5 },    // 0
 | |
|         { 2, 3, 4, 5 },    // 1
 | |
|         { 0, 1, 4, 5 },    // 2
 | |
|         { 0, 1, 4, 5 },    // 3
 | |
|         { 0, 1, 2, 3 },    // 4
 | |
|         { 0, 1, 2, 3 }
 | |
|     };  // 5
 | |
| 
 | |
|     XMVECTOR Intersects = XMVectorFalseInt();
 | |
| 
 | |
|     // Check to see if the nearest feature is one of the planes.
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         // Find the nearest point on the plane to the center of the sphere.
 | |
|         XMVECTOR Point = XMVectorNegativeMultiplySubtract(Planes[i], Dist[i], vCenter);
 | |
| 
 | |
|         // Set w of the point to one.
 | |
|         Point = XMVectorInsert<0, 0, 0, 0, 1>(Point, XMVectorSplatOne());
 | |
| 
 | |
|         // If the point is inside the face (inside the adjacent planes) then
 | |
|         // this plane is the nearest feature.
 | |
|         XMVECTOR InsideFace = XMVectorTrueInt();
 | |
| 
 | |
|         for (size_t j = 0; j < 4; j++)
 | |
|         {
 | |
|             size_t plane_index = adjacent_faces[i][j];
 | |
| 
 | |
|             InsideFace = XMVectorAndInt(InsideFace,
 | |
|                 XMVectorLessOrEqual(XMVector4Dot(Point, Planes[plane_index]), Zero));
 | |
|         }
 | |
| 
 | |
|         // Since we have already checked distance from the plane we know that the
 | |
|         // sphere must intersect if this plane is the nearest feature.
 | |
|         Intersects = XMVectorOrInt(Intersects,
 | |
|             XMVectorAndInt(XMVectorGreater(Dist[i], Zero), InsideFace));
 | |
|     }
 | |
| 
 | |
|     if (XMVector4EqualInt(Intersects, XMVectorTrueInt()))
 | |
|         return true;
 | |
| 
 | |
|     // Build the corners of the frustum.
 | |
|     XMVECTOR vRightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vRightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vNear = XMVectorReplicatePtr(&Near);
 | |
|     XMVECTOR vFar = XMVectorReplicatePtr(&Far);
 | |
| 
 | |
|     XMVECTOR Corners[CORNER_COUNT];
 | |
|     Corners[0] = XMVectorMultiply(vRightTop, vNear);
 | |
|     Corners[1] = XMVectorMultiply(vRightBottom, vNear);
 | |
|     Corners[2] = XMVectorMultiply(vLeftTop, vNear);
 | |
|     Corners[3] = XMVectorMultiply(vLeftBottom, vNear);
 | |
|     Corners[4] = XMVectorMultiply(vRightTop, vFar);
 | |
|     Corners[5] = XMVectorMultiply(vRightBottom, vFar);
 | |
|     Corners[6] = XMVectorMultiply(vLeftTop, vFar);
 | |
|     Corners[7] = XMVectorMultiply(vLeftBottom, vFar);
 | |
| 
 | |
|     // The Edges are:
 | |
|     static const size_t edges[12][2] =
 | |
|     {
 | |
|         { 0, 1 }, { 2, 3 }, { 0, 2 }, { 1, 3 },    // Near plane
 | |
|         { 4, 5 }, { 6, 7 }, { 4, 6 }, { 5, 7 },    // Far plane
 | |
|         { 0, 4 }, { 1, 5 }, { 2, 6 }, { 3, 7 },
 | |
|     }; // Near to far
 | |
| 
 | |
|     XMVECTOR RadiusSq = XMVectorMultiply(vRadius, vRadius);
 | |
| 
 | |
|     // Check to see if the nearest feature is one of the edges (or corners).
 | |
|     for (size_t i = 0; i < 12; ++i)
 | |
|     {
 | |
|         size_t ei0 = edges[i][0];
 | |
|         size_t ei1 = edges[i][1];
 | |
| 
 | |
|         // Find the nearest point on the edge to the center of the sphere.
 | |
|         // The corners of the frustum are included as the endpoints of the edges.
 | |
|         XMVECTOR Point = DirectX::Internal::PointOnLineSegmentNearestPoint(Corners[ei0], Corners[ei1], vCenter);
 | |
| 
 | |
|         XMVECTOR Delta = XMVectorSubtract(vCenter, Point);
 | |
| 
 | |
|         XMVECTOR DistSq = XMVector3Dot(Delta, Delta);
 | |
| 
 | |
|         // If the distance to the center of the sphere to the point is less than
 | |
|         // the radius of the sphere then it must intersect.
 | |
|         Intersects = XMVectorOrInt(Intersects, XMVectorLessOrEqual(DistSq, RadiusSq));
 | |
|     }
 | |
| 
 | |
|     if (XMVector4EqualInt(Intersects, XMVectorTrueInt()))
 | |
|         return true;
 | |
| 
 | |
|     // The sphere must be outside the frustum.
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Exact axis aligned box vs frustum test.  Constructs an oriented box and uses
 | |
| // the oriented box vs frustum test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingFrustum::Intersects(const BoundingBox& box) const noexcept
 | |
| {
 | |
|     // Make the axis aligned box oriented and do an OBB vs frustum test.
 | |
|     BoundingOrientedBox obox(box.Center, box.Extents, XMFLOAT4(0.f, 0.f, 0.f, 1.f));
 | |
|     return Intersects(obox);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Exact oriented box vs frustum test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingFrustum::Intersects(const BoundingOrientedBox& box) const noexcept
 | |
| {
 | |
|     static const XMVECTORU32 SelectY = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0 } } };
 | |
|     static const XMVECTORU32 SelectZ = { { { XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0 } } };
 | |
| 
 | |
|     XMVECTOR Zero = XMVectorZero();
 | |
| 
 | |
|     // Build the frustum planes.
 | |
|     XMVECTOR Planes[6];
 | |
|     Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
| 
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR FrustumOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(FrustumOrientation));
 | |
| 
 | |
|     // Load the box.
 | |
|     XMVECTOR Center = XMLoadFloat3(&box.Center);
 | |
|     XMVECTOR Extents = XMLoadFloat3(&box.Extents);
 | |
|     XMVECTOR BoxOrientation = XMLoadFloat4(&box.Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(BoxOrientation));
 | |
| 
 | |
|     // Transform the oriented box into the space of the frustum in order to
 | |
|     // minimize the number of transforms we have to do.
 | |
|     Center = XMVector3InverseRotate(XMVectorSubtract(Center, vOrigin), FrustumOrientation);
 | |
|     BoxOrientation = XMQuaternionMultiply(BoxOrientation, XMQuaternionConjugate(FrustumOrientation));
 | |
| 
 | |
|     // Set w of the center to one so we can dot4 with the plane.
 | |
|     Center = XMVectorInsert<0, 0, 0, 0, 1>(Center, XMVectorSplatOne());
 | |
| 
 | |
|     // Build the 3x3 rotation matrix that defines the box axes.
 | |
|     XMMATRIX R = XMMatrixRotationQuaternion(BoxOrientation);
 | |
| 
 | |
|     // Check against each plane of the frustum.
 | |
|     XMVECTOR Outside = XMVectorFalseInt();
 | |
|     XMVECTOR InsideAll = XMVectorTrueInt();
 | |
|     XMVECTOR CenterInsideAll = XMVectorTrueInt();
 | |
| 
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         // Compute the distance to the center of the box.
 | |
|         XMVECTOR Dist = XMVector4Dot(Center, Planes[i]);
 | |
| 
 | |
|         // Project the axes of the box onto the normal of the plane.  Half the
 | |
|         // length of the projection (sometime called the "radius") is equal to
 | |
|         // h(u) * abs(n dot b(u))) + h(v) * abs(n dot b(v)) + h(w) * abs(n dot b(w))
 | |
|         // where h(i) are extents of the box, n is the plane normal, and b(i) are the
 | |
|         // axes of the box.
 | |
|         XMVECTOR Radius = XMVector3Dot(Planes[i], R.r[0]);
 | |
|         Radius = XMVectorSelect(Radius, XMVector3Dot(Planes[i], R.r[1]), SelectY);
 | |
|         Radius = XMVectorSelect(Radius, XMVector3Dot(Planes[i], R.r[2]), SelectZ);
 | |
|         Radius = XMVector3Dot(Extents, XMVectorAbs(Radius));
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorOrInt(Outside, XMVectorGreater(Dist, Radius));
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(Dist, XMVectorNegate(Radius)));
 | |
| 
 | |
|         // Check if the center is inside the plane.
 | |
|         CenterInsideAll = XMVectorAndInt(CenterInsideAll, XMVectorLessOrEqual(Dist, Zero));
 | |
|     }
 | |
| 
 | |
|     // If the box is outside any of the planes it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // If the box is inside all planes it is fully inside.
 | |
|     if (XMVector4EqualInt(InsideAll, XMVectorTrueInt()))
 | |
|         return true;
 | |
| 
 | |
|     // If the center of the box is inside all planes and the box intersects
 | |
|     // one or more planes then it must intersect.
 | |
|     if (XMVector4EqualInt(CenterInsideAll, XMVectorTrueInt()))
 | |
|         return true;
 | |
| 
 | |
|     // Build the corners of the frustum.
 | |
|     XMVECTOR vRightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vRightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vNear = XMVectorReplicatePtr(&Near);
 | |
|     XMVECTOR vFar = XMVectorReplicatePtr(&Far);
 | |
| 
 | |
|     XMVECTOR Corners[CORNER_COUNT];
 | |
|     Corners[0] = XMVectorMultiply(vRightTop, vNear);
 | |
|     Corners[1] = XMVectorMultiply(vRightBottom, vNear);
 | |
|     Corners[2] = XMVectorMultiply(vLeftTop, vNear);
 | |
|     Corners[3] = XMVectorMultiply(vLeftBottom, vNear);
 | |
|     Corners[4] = XMVectorMultiply(vRightTop, vFar);
 | |
|     Corners[5] = XMVectorMultiply(vRightBottom, vFar);
 | |
|     Corners[6] = XMVectorMultiply(vLeftTop, vFar);
 | |
|     Corners[7] = XMVectorMultiply(vLeftBottom, vFar);
 | |
| 
 | |
|     // Test against box axes (3)
 | |
|     {
 | |
|         // Find the min/max values of the projection of the frustum onto each axis.
 | |
|         XMVECTOR FrustumMin, FrustumMax;
 | |
| 
 | |
|         FrustumMin = XMVector3Dot(Corners[0], R.r[0]);
 | |
|         FrustumMin = XMVectorSelect(FrustumMin, XMVector3Dot(Corners[0], R.r[1]), SelectY);
 | |
|         FrustumMin = XMVectorSelect(FrustumMin, XMVector3Dot(Corners[0], R.r[2]), SelectZ);
 | |
|         FrustumMax = FrustumMin;
 | |
| 
 | |
|         for (size_t i = 1; i < BoundingOrientedBox::CORNER_COUNT; ++i)
 | |
|         {
 | |
|             XMVECTOR Temp = XMVector3Dot(Corners[i], R.r[0]);
 | |
|             Temp = XMVectorSelect(Temp, XMVector3Dot(Corners[i], R.r[1]), SelectY);
 | |
|             Temp = XMVectorSelect(Temp, XMVector3Dot(Corners[i], R.r[2]), SelectZ);
 | |
| 
 | |
|             FrustumMin = XMVectorMin(FrustumMin, Temp);
 | |
|             FrustumMax = XMVectorMax(FrustumMax, Temp);
 | |
|         }
 | |
| 
 | |
|         // Project the center of the box onto the axes.
 | |
|         XMVECTOR BoxDist = XMVector3Dot(Center, R.r[0]);
 | |
|         BoxDist = XMVectorSelect(BoxDist, XMVector3Dot(Center, R.r[1]), SelectY);
 | |
|         BoxDist = XMVectorSelect(BoxDist, XMVector3Dot(Center, R.r[2]), SelectZ);
 | |
| 
 | |
|         // The projection of the box onto the axis is just its Center and Extents.
 | |
|         // if (min > box_max || max < box_min) reject;
 | |
|         XMVECTOR Result = XMVectorOrInt(XMVectorGreater(FrustumMin, XMVectorAdd(BoxDist, Extents)),
 | |
|             XMVectorLess(FrustumMax, XMVectorSubtract(BoxDist, Extents)));
 | |
| 
 | |
|         if (DirectX::Internal::XMVector3AnyTrue(Result))
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     // Test against edge/edge axes (3*6).
 | |
|     XMVECTOR FrustumEdgeAxis[6];
 | |
| 
 | |
|     FrustumEdgeAxis[0] = vRightTop;
 | |
|     FrustumEdgeAxis[1] = vRightBottom;
 | |
|     FrustumEdgeAxis[2] = vLeftTop;
 | |
|     FrustumEdgeAxis[3] = vLeftBottom;
 | |
|     FrustumEdgeAxis[4] = XMVectorSubtract(vRightTop, vLeftTop);
 | |
|     FrustumEdgeAxis[5] = XMVectorSubtract(vLeftBottom, vLeftTop);
 | |
| 
 | |
|     for (size_t i = 0; i < 3; ++i)
 | |
|     {
 | |
|         for (size_t j = 0; j < 6; j++)
 | |
|         {
 | |
|             // Compute the axis we are going to test.
 | |
|             XMVECTOR Axis = XMVector3Cross(R.r[i], FrustumEdgeAxis[j]);
 | |
| 
 | |
|             // Find the min/max values of the projection of the frustum onto the axis.
 | |
|             XMVECTOR FrustumMin, FrustumMax;
 | |
| 
 | |
|             FrustumMin = FrustumMax = XMVector3Dot(Axis, Corners[0]);
 | |
| 
 | |
|             for (size_t k = 1; k < CORNER_COUNT; k++)
 | |
|             {
 | |
|                 XMVECTOR Temp = XMVector3Dot(Axis, Corners[k]);
 | |
|                 FrustumMin = XMVectorMin(FrustumMin, Temp);
 | |
|                 FrustumMax = XMVectorMax(FrustumMax, Temp);
 | |
|             }
 | |
| 
 | |
|             // Project the center of the box onto the axis.
 | |
|             XMVECTOR Dist = XMVector3Dot(Center, Axis);
 | |
| 
 | |
|             // Project the axes of the box onto the axis to find the "radius" of the box.
 | |
|             XMVECTOR Radius = XMVector3Dot(Axis, R.r[0]);
 | |
|             Radius = XMVectorSelect(Radius, XMVector3Dot(Axis, R.r[1]), SelectY);
 | |
|             Radius = XMVectorSelect(Radius, XMVector3Dot(Axis, R.r[2]), SelectZ);
 | |
|             Radius = XMVector3Dot(Extents, XMVectorAbs(Radius));
 | |
| 
 | |
|             // if (center > max + radius || center < min - radius) reject;
 | |
|             Outside = XMVectorOrInt(Outside, XMVectorGreater(Dist, XMVectorAdd(FrustumMax, Radius)));
 | |
|             Outside = XMVectorOrInt(Outside, XMVectorLess(Dist, XMVectorSubtract(FrustumMin, Radius)));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // If we did not find a separating plane then the box must intersect the frustum.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Exact frustum vs frustum test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool BoundingFrustum::Intersects(const BoundingFrustum& fr) const noexcept
 | |
| {
 | |
|     // Load origin and orientation of frustum B.
 | |
|     XMVECTOR OriginB = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR OrientationB = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(OrientationB));
 | |
| 
 | |
|     // Build the planes of frustum B.
 | |
|     XMVECTOR AxisB[6];
 | |
|     AxisB[0] = XMVectorSet(0.0f, 0.0f, -1.0f, 0.0f);
 | |
|     AxisB[1] = XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f);
 | |
|     AxisB[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     AxisB[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     AxisB[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     AxisB[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
| 
 | |
|     XMVECTOR PlaneDistB[6];
 | |
|     PlaneDistB[0] = XMVectorNegate(XMVectorReplicatePtr(&Near));
 | |
|     PlaneDistB[1] = XMVectorReplicatePtr(&Far);
 | |
|     PlaneDistB[2] = XMVectorZero();
 | |
|     PlaneDistB[3] = XMVectorZero();
 | |
|     PlaneDistB[4] = XMVectorZero();
 | |
|     PlaneDistB[5] = XMVectorZero();
 | |
| 
 | |
|     // Load origin and orientation of frustum A.
 | |
|     XMVECTOR OriginA = XMLoadFloat3(&fr.Origin);
 | |
|     XMVECTOR OrientationA = XMLoadFloat4(&fr.Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(OrientationA));
 | |
| 
 | |
|     // Transform frustum A into the space of the frustum B in order to
 | |
|     // minimize the number of transforms we have to do.
 | |
|     OriginA = XMVector3InverseRotate(XMVectorSubtract(OriginA, OriginB), OrientationB);
 | |
|     OrientationA = XMQuaternionMultiply(OrientationA, XMQuaternionConjugate(OrientationB));
 | |
| 
 | |
|     // Build the corners of frustum A (in the local space of B).
 | |
|     XMVECTOR RightTopA = XMVectorSet(fr.RightSlope, fr.TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR RightBottomA = XMVectorSet(fr.RightSlope, fr.BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR LeftTopA = XMVectorSet(fr.LeftSlope, fr.TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR LeftBottomA = XMVectorSet(fr.LeftSlope, fr.BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR NearA = XMVectorReplicatePtr(&fr.Near);
 | |
|     XMVECTOR FarA = XMVectorReplicatePtr(&fr.Far);
 | |
| 
 | |
|     RightTopA = XMVector3Rotate(RightTopA, OrientationA);
 | |
|     RightBottomA = XMVector3Rotate(RightBottomA, OrientationA);
 | |
|     LeftTopA = XMVector3Rotate(LeftTopA, OrientationA);
 | |
|     LeftBottomA = XMVector3Rotate(LeftBottomA, OrientationA);
 | |
| 
 | |
|     XMVECTOR CornersA[CORNER_COUNT];
 | |
|     CornersA[0] = XMVectorMultiplyAdd(RightTopA, NearA, OriginA);
 | |
|     CornersA[1] = XMVectorMultiplyAdd(RightBottomA, NearA, OriginA);
 | |
|     CornersA[2] = XMVectorMultiplyAdd(LeftTopA, NearA, OriginA);
 | |
|     CornersA[3] = XMVectorMultiplyAdd(LeftBottomA, NearA, OriginA);
 | |
|     CornersA[4] = XMVectorMultiplyAdd(RightTopA, FarA, OriginA);
 | |
|     CornersA[5] = XMVectorMultiplyAdd(RightBottomA, FarA, OriginA);
 | |
|     CornersA[6] = XMVectorMultiplyAdd(LeftTopA, FarA, OriginA);
 | |
|     CornersA[7] = XMVectorMultiplyAdd(LeftBottomA, FarA, OriginA);
 | |
| 
 | |
|     // Check frustum A against each plane of frustum B.
 | |
|     XMVECTOR Outside = XMVectorFalseInt();
 | |
|     XMVECTOR InsideAll = XMVectorTrueInt();
 | |
| 
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         // Find the min/max projection of the frustum onto the plane normal.
 | |
|         XMVECTOR Min, Max;
 | |
| 
 | |
|         Min = Max = XMVector3Dot(AxisB[i], CornersA[0]);
 | |
| 
 | |
|         for (size_t j = 1; j < CORNER_COUNT; j++)
 | |
|         {
 | |
|             XMVECTOR Temp = XMVector3Dot(AxisB[i], CornersA[j]);
 | |
|             Min = XMVectorMin(Min, Temp);
 | |
|             Max = XMVectorMax(Max, Temp);
 | |
|         }
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorOrInt(Outside, XMVectorGreater(Min, PlaneDistB[i]));
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(Max, PlaneDistB[i]));
 | |
|     }
 | |
| 
 | |
|     // If the frustum A is outside any of the planes of frustum B it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // If frustum A is inside all planes of frustum B it is fully inside.
 | |
|     if (XMVector4EqualInt(InsideAll, XMVectorTrueInt()))
 | |
|         return true;
 | |
| 
 | |
|     // Build the corners of frustum B.
 | |
|     XMVECTOR RightTopB = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR RightBottomB = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR LeftTopB = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR LeftBottomB = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR NearB = XMVectorReplicatePtr(&Near);
 | |
|     XMVECTOR FarB = XMVectorReplicatePtr(&Far);
 | |
| 
 | |
|     XMVECTOR CornersB[BoundingFrustum::CORNER_COUNT];
 | |
|     CornersB[0] = XMVectorMultiply(RightTopB, NearB);
 | |
|     CornersB[1] = XMVectorMultiply(RightBottomB, NearB);
 | |
|     CornersB[2] = XMVectorMultiply(LeftTopB, NearB);
 | |
|     CornersB[3] = XMVectorMultiply(LeftBottomB, NearB);
 | |
|     CornersB[4] = XMVectorMultiply(RightTopB, FarB);
 | |
|     CornersB[5] = XMVectorMultiply(RightBottomB, FarB);
 | |
|     CornersB[6] = XMVectorMultiply(LeftTopB, FarB);
 | |
|     CornersB[7] = XMVectorMultiply(LeftBottomB, FarB);
 | |
| 
 | |
|     // Build the planes of frustum A (in the local space of B).
 | |
|     XMVECTOR AxisA[6];
 | |
|     XMVECTOR PlaneDistA[6];
 | |
| 
 | |
|     AxisA[0] = XMVectorSet(0.0f, 0.0f, -1.0f, 0.0f);
 | |
|     AxisA[1] = XMVectorSet(0.0f, 0.0f, 1.0f, 0.0f);
 | |
|     AxisA[2] = XMVectorSet(1.0f, 0.0f, -fr.RightSlope, 0.0f);
 | |
|     AxisA[3] = XMVectorSet(-1.0f, 0.0f, fr.LeftSlope, 0.0f);
 | |
|     AxisA[4] = XMVectorSet(0.0f, 1.0f, -fr.TopSlope, 0.0f);
 | |
|     AxisA[5] = XMVectorSet(0.0f, -1.0f, fr.BottomSlope, 0.0f);
 | |
| 
 | |
|     AxisA[0] = XMVector3Rotate(AxisA[0], OrientationA);
 | |
|     AxisA[1] = XMVectorNegate(AxisA[0]);
 | |
|     AxisA[2] = XMVector3Rotate(AxisA[2], OrientationA);
 | |
|     AxisA[3] = XMVector3Rotate(AxisA[3], OrientationA);
 | |
|     AxisA[4] = XMVector3Rotate(AxisA[4], OrientationA);
 | |
|     AxisA[5] = XMVector3Rotate(AxisA[5], OrientationA);
 | |
| 
 | |
|     PlaneDistA[0] = XMVector3Dot(AxisA[0], CornersA[0]);  // Re-use corner on near plane.
 | |
|     PlaneDistA[1] = XMVector3Dot(AxisA[1], CornersA[4]);  // Re-use corner on far plane.
 | |
|     PlaneDistA[2] = XMVector3Dot(AxisA[2], OriginA);
 | |
|     PlaneDistA[3] = XMVector3Dot(AxisA[3], OriginA);
 | |
|     PlaneDistA[4] = XMVector3Dot(AxisA[4], OriginA);
 | |
|     PlaneDistA[5] = XMVector3Dot(AxisA[5], OriginA);
 | |
| 
 | |
|     // Check each axis of frustum A for a seperating plane (5).
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         // Find the minimum projection of the frustum onto the plane normal.
 | |
|         XMVECTOR Min;
 | |
| 
 | |
|         Min = XMVector3Dot(AxisA[i], CornersB[0]);
 | |
| 
 | |
|         for (size_t j = 1; j < CORNER_COUNT; j++)
 | |
|         {
 | |
|             XMVECTOR Temp = XMVector3Dot(AxisA[i], CornersB[j]);
 | |
|             Min = XMVectorMin(Min, Temp);
 | |
|         }
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorOrInt(Outside, XMVectorGreater(Min, PlaneDistA[i]));
 | |
|     }
 | |
| 
 | |
|     // If the frustum B is outside any of the planes of frustum A it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // Check edge/edge axes (6 * 6).
 | |
|     XMVECTOR FrustumEdgeAxisA[6];
 | |
|     FrustumEdgeAxisA[0] = RightTopA;
 | |
|     FrustumEdgeAxisA[1] = RightBottomA;
 | |
|     FrustumEdgeAxisA[2] = LeftTopA;
 | |
|     FrustumEdgeAxisA[3] = LeftBottomA;
 | |
|     FrustumEdgeAxisA[4] = XMVectorSubtract(RightTopA, LeftTopA);
 | |
|     FrustumEdgeAxisA[5] = XMVectorSubtract(LeftBottomA, LeftTopA);
 | |
| 
 | |
|     XMVECTOR FrustumEdgeAxisB[6];
 | |
|     FrustumEdgeAxisB[0] = RightTopB;
 | |
|     FrustumEdgeAxisB[1] = RightBottomB;
 | |
|     FrustumEdgeAxisB[2] = LeftTopB;
 | |
|     FrustumEdgeAxisB[3] = LeftBottomB;
 | |
|     FrustumEdgeAxisB[4] = XMVectorSubtract(RightTopB, LeftTopB);
 | |
|     FrustumEdgeAxisB[5] = XMVectorSubtract(LeftBottomB, LeftTopB);
 | |
| 
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         for (size_t j = 0; j < 6; j++)
 | |
|         {
 | |
|             // Compute the axis we are going to test.
 | |
|             XMVECTOR Axis = XMVector3Cross(FrustumEdgeAxisA[i], FrustumEdgeAxisB[j]);
 | |
| 
 | |
|             // Find the min/max values of the projection of both frustums onto the axis.
 | |
|             XMVECTOR MinA, MaxA;
 | |
|             XMVECTOR MinB, MaxB;
 | |
| 
 | |
|             MinA = MaxA = XMVector3Dot(Axis, CornersA[0]);
 | |
|             MinB = MaxB = XMVector3Dot(Axis, CornersB[0]);
 | |
| 
 | |
|             for (size_t k = 1; k < CORNER_COUNT; k++)
 | |
|             {
 | |
|                 XMVECTOR TempA = XMVector3Dot(Axis, CornersA[k]);
 | |
|                 MinA = XMVectorMin(MinA, TempA);
 | |
|                 MaxA = XMVectorMax(MaxA, TempA);
 | |
| 
 | |
|                 XMVECTOR TempB = XMVector3Dot(Axis, CornersB[k]);
 | |
|                 MinB = XMVectorMin(MinB, TempB);
 | |
|                 MaxB = XMVectorMax(MaxB, TempB);
 | |
|             }
 | |
| 
 | |
|             // if (MinA > MaxB || MinB > MaxA) reject
 | |
|             Outside = XMVectorOrInt(Outside, XMVectorGreater(MinA, MaxB));
 | |
|             Outside = XMVectorOrInt(Outside, XMVectorGreater(MinB, MaxA));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If there is a seperating plane, then the frustums do not intersect.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // If we did not find a separating plane then the frustums intersect.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Triangle vs frustum test.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV BoundingFrustum::Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2) const noexcept
 | |
| {
 | |
|     // Build the frustum planes (NOTE: D is negated from the usual).
 | |
|     XMVECTOR Planes[6];
 | |
|     Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, -Near);
 | |
|     Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, Far);
 | |
|     Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
| 
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Transform triangle into the local space of frustum.
 | |
|     XMVECTOR TV0 = XMVector3InverseRotate(XMVectorSubtract(V0, vOrigin), vOrientation);
 | |
|     XMVECTOR TV1 = XMVector3InverseRotate(XMVectorSubtract(V1, vOrigin), vOrientation);
 | |
|     XMVECTOR TV2 = XMVector3InverseRotate(XMVectorSubtract(V2, vOrigin), vOrientation);
 | |
| 
 | |
|     // Test each vertex of the triangle against the frustum planes.
 | |
|     XMVECTOR Outside = XMVectorFalseInt();
 | |
|     XMVECTOR InsideAll = XMVectorTrueInt();
 | |
| 
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         XMVECTOR Dist0 = XMVector3Dot(TV0, Planes[i]);
 | |
|         XMVECTOR Dist1 = XMVector3Dot(TV1, Planes[i]);
 | |
|         XMVECTOR Dist2 = XMVector3Dot(TV2, Planes[i]);
 | |
| 
 | |
|         XMVECTOR MinDist = XMVectorMin(Dist0, Dist1);
 | |
|         MinDist = XMVectorMin(MinDist, Dist2);
 | |
|         XMVECTOR MaxDist = XMVectorMax(Dist0, Dist1);
 | |
|         MaxDist = XMVectorMax(MaxDist, Dist2);
 | |
| 
 | |
|         XMVECTOR PlaneDist = XMVectorSplatW(Planes[i]);
 | |
| 
 | |
|         // Outside the plane?
 | |
|         Outside = XMVectorOrInt(Outside, XMVectorGreater(MinDist, PlaneDist));
 | |
| 
 | |
|         // Fully inside the plane?
 | |
|         InsideAll = XMVectorAndInt(InsideAll, XMVectorLessOrEqual(MaxDist, PlaneDist));
 | |
|     }
 | |
| 
 | |
|     // If the triangle is outside any of the planes it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // If the triangle is inside all planes it is fully inside.
 | |
|     if (XMVector4EqualInt(InsideAll, XMVectorTrueInt()))
 | |
|         return true;
 | |
| 
 | |
|     // Build the corners of the frustum.
 | |
|     XMVECTOR vRightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vRightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vLeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vNear = XMVectorReplicatePtr(&Near);
 | |
|     XMVECTOR vFar = XMVectorReplicatePtr(&Far);
 | |
| 
 | |
|     XMVECTOR Corners[CORNER_COUNT];
 | |
|     Corners[0] = XMVectorMultiply(vRightTop, vNear);
 | |
|     Corners[1] = XMVectorMultiply(vRightBottom, vNear);
 | |
|     Corners[2] = XMVectorMultiply(vLeftTop, vNear);
 | |
|     Corners[3] = XMVectorMultiply(vLeftBottom, vNear);
 | |
|     Corners[4] = XMVectorMultiply(vRightTop, vFar);
 | |
|     Corners[5] = XMVectorMultiply(vRightBottom, vFar);
 | |
|     Corners[6] = XMVectorMultiply(vLeftTop, vFar);
 | |
|     Corners[7] = XMVectorMultiply(vLeftBottom, vFar);
 | |
| 
 | |
|     // Test the plane of the triangle.
 | |
|     XMVECTOR Normal = XMVector3Cross(XMVectorSubtract(V1, V0), XMVectorSubtract(V2, V0));
 | |
|     XMVECTOR Dist = XMVector3Dot(Normal, V0);
 | |
| 
 | |
|     XMVECTOR MinDist, MaxDist;
 | |
|     MinDist = MaxDist = XMVector3Dot(Corners[0], Normal);
 | |
|     for (size_t i = 1; i < CORNER_COUNT; ++i)
 | |
|     {
 | |
|         XMVECTOR Temp = XMVector3Dot(Corners[i], Normal);
 | |
|         MinDist = XMVectorMin(MinDist, Temp);
 | |
|         MaxDist = XMVectorMax(MaxDist, Temp);
 | |
|     }
 | |
| 
 | |
|     Outside = XMVectorOrInt(XMVectorGreater(MinDist, Dist), XMVectorLess(MaxDist, Dist));
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // Check the edge/edge axes (3*6).
 | |
|     XMVECTOR TriangleEdgeAxis[3];
 | |
|     TriangleEdgeAxis[0] = XMVectorSubtract(V1, V0);
 | |
|     TriangleEdgeAxis[1] = XMVectorSubtract(V2, V1);
 | |
|     TriangleEdgeAxis[2] = XMVectorSubtract(V0, V2);
 | |
| 
 | |
|     XMVECTOR FrustumEdgeAxis[6];
 | |
|     FrustumEdgeAxis[0] = vRightTop;
 | |
|     FrustumEdgeAxis[1] = vRightBottom;
 | |
|     FrustumEdgeAxis[2] = vLeftTop;
 | |
|     FrustumEdgeAxis[3] = vLeftBottom;
 | |
|     FrustumEdgeAxis[4] = XMVectorSubtract(vRightTop, vLeftTop);
 | |
|     FrustumEdgeAxis[5] = XMVectorSubtract(vLeftBottom, vLeftTop);
 | |
| 
 | |
|     for (size_t i = 0; i < 3; ++i)
 | |
|     {
 | |
|         for (size_t j = 0; j < 6; j++)
 | |
|         {
 | |
|             // Compute the axis we are going to test.
 | |
|             XMVECTOR Axis = XMVector3Cross(TriangleEdgeAxis[i], FrustumEdgeAxis[j]);
 | |
| 
 | |
|             // Find the min/max of the projection of the triangle onto the axis.
 | |
|             XMVECTOR MinA, MaxA;
 | |
| 
 | |
|             XMVECTOR Dist0 = XMVector3Dot(V0, Axis);
 | |
|             XMVECTOR Dist1 = XMVector3Dot(V1, Axis);
 | |
|             XMVECTOR Dist2 = XMVector3Dot(V2, Axis);
 | |
| 
 | |
|             MinA = XMVectorMin(Dist0, Dist1);
 | |
|             MinA = XMVectorMin(MinA, Dist2);
 | |
|             MaxA = XMVectorMax(Dist0, Dist1);
 | |
|             MaxA = XMVectorMax(MaxA, Dist2);
 | |
| 
 | |
|             // Find the min/max of the projection of the frustum onto the axis.
 | |
|             XMVECTOR MinB, MaxB;
 | |
| 
 | |
|             MinB = MaxB = XMVector3Dot(Axis, Corners[0]);
 | |
| 
 | |
|             for (size_t k = 1; k < CORNER_COUNT; k++)
 | |
|             {
 | |
|                 XMVECTOR Temp = XMVector3Dot(Axis, Corners[k]);
 | |
|                 MinB = XMVectorMin(MinB, Temp);
 | |
|                 MaxB = XMVectorMax(MaxB, Temp);
 | |
|             }
 | |
| 
 | |
|             // if (MinA > MaxB || MinB > MaxA) reject;
 | |
|             Outside = XMVectorOrInt(Outside, XMVectorGreater(MinA, MaxB));
 | |
|             Outside = XMVectorOrInt(Outside, XMVectorGreater(MinB, MaxA));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return false;
 | |
| 
 | |
|     // If we did not find a separating plane then the triangle must intersect the frustum.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline PlaneIntersectionType XM_CALLCONV BoundingFrustum::Intersects(FXMVECTOR Plane) const noexcept
 | |
| {
 | |
|     assert(DirectX::Internal::XMPlaneIsUnit(Plane));
 | |
| 
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Set w of the origin to one so we can dot4 with a plane.
 | |
|     vOrigin = XMVectorInsert<0, 0, 0, 0, 1>(vOrigin, XMVectorSplatOne());
 | |
| 
 | |
|     // Build the corners of the frustum (in world space).
 | |
|     XMVECTOR RightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR RightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR LeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR LeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vNear = XMVectorReplicatePtr(&Near);
 | |
|     XMVECTOR vFar = XMVectorReplicatePtr(&Far);
 | |
| 
 | |
|     RightTop = XMVector3Rotate(RightTop, vOrientation);
 | |
|     RightBottom = XMVector3Rotate(RightBottom, vOrientation);
 | |
|     LeftTop = XMVector3Rotate(LeftTop, vOrientation);
 | |
|     LeftBottom = XMVector3Rotate(LeftBottom, vOrientation);
 | |
| 
 | |
|     XMVECTOR Corners0 = XMVectorMultiplyAdd(RightTop, vNear, vOrigin);
 | |
|     XMVECTOR Corners1 = XMVectorMultiplyAdd(RightBottom, vNear, vOrigin);
 | |
|     XMVECTOR Corners2 = XMVectorMultiplyAdd(LeftTop, vNear, vOrigin);
 | |
|     XMVECTOR Corners3 = XMVectorMultiplyAdd(LeftBottom, vNear, vOrigin);
 | |
|     XMVECTOR Corners4 = XMVectorMultiplyAdd(RightTop, vFar, vOrigin);
 | |
|     XMVECTOR Corners5 = XMVectorMultiplyAdd(RightBottom, vFar, vOrigin);
 | |
|     XMVECTOR Corners6 = XMVectorMultiplyAdd(LeftTop, vFar, vOrigin);
 | |
|     XMVECTOR Corners7 = XMVectorMultiplyAdd(LeftBottom, vFar, vOrigin);
 | |
| 
 | |
|     XMVECTOR Outside, Inside;
 | |
|     DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
 | |
|         Corners4, Corners5, Corners6, Corners7,
 | |
|         Plane, Outside, Inside);
 | |
| 
 | |
|     // If the frustum is outside any plane it is outside.
 | |
|     if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|         return FRONT;
 | |
| 
 | |
|     // If the frustum is inside all planes it is inside.
 | |
|     if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
 | |
|         return BACK;
 | |
| 
 | |
|     // The frustum is not inside all planes or outside a plane it intersects.
 | |
|     return INTERSECTING;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Ray vs. frustum test
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV BoundingFrustum::Intersects(FXMVECTOR rayOrigin, FXMVECTOR Direction, float& Dist) const noexcept
 | |
| {
 | |
|     // If ray starts inside the frustum, return a distance of 0 for the hit
 | |
|     if (Contains(rayOrigin) == CONTAINS)
 | |
|     {
 | |
|         Dist = 0.0f;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Build the frustum planes.
 | |
|     XMVECTOR Planes[6];
 | |
|     Planes[0] = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|     Planes[1] = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|     Planes[2] = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|     Planes[3] = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|     Planes[4] = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|     Planes[5] = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
| 
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR frOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR frOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     // This algorithm based on "Fast Ray-Convex Polyhedron Intersectin," in James Arvo, ed., Graphics Gems II pp. 247-250
 | |
|     float tnear = -FLT_MAX;
 | |
|     float tfar = FLT_MAX;
 | |
| 
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         XMVECTOR Plane = DirectX::Internal::XMPlaneTransform(Planes[i], frOrientation, frOrigin);
 | |
|         Plane = XMPlaneNormalize(Plane);
 | |
| 
 | |
|         XMVECTOR AxisDotOrigin = XMPlaneDotCoord(Plane, rayOrigin);
 | |
|         XMVECTOR AxisDotDirection = XMVector3Dot(Plane, Direction);
 | |
| 
 | |
|         if (XMVector3LessOrEqual(XMVectorAbs(AxisDotDirection), g_RayEpsilon))
 | |
|         {
 | |
|             // Ray is parallel to plane - check if ray origin is inside plane's
 | |
|             if (XMVector3Greater(AxisDotOrigin, g_XMZero))
 | |
|             {
 | |
|                 // Ray origin is outside half-space.
 | |
|                 Dist = 0.f;
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Ray not parallel - get distance to plane.
 | |
|             float vd = XMVectorGetX(AxisDotDirection);
 | |
|             float vn = XMVectorGetX(AxisDotOrigin);
 | |
|             float t = -vn / vd;
 | |
|             if (vd < 0.0f)
 | |
|             {
 | |
|                 // Front face - T is a near point.
 | |
|                 if (t > tfar)
 | |
|                 {
 | |
|                     Dist = 0.f;
 | |
|                     return false;
 | |
|                 }
 | |
|                 if (t > tnear)
 | |
|                 {
 | |
|                     // Hit near face.
 | |
|                     tnear = t;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // back face - T is far point.
 | |
|                 if (t < tnear)
 | |
|                 {
 | |
|                     Dist = 0.f;
 | |
|                     return false;
 | |
|                 }
 | |
|                 if (t < tfar)
 | |
|                 {
 | |
|                     // Hit far face.
 | |
|                     tfar = t;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Survived all tests.
 | |
|     // Note: if ray originates on polyhedron, may want to change 0.0f to some
 | |
|     // epsilon to avoid intersecting the originating face.
 | |
|     float distance = (tnear >= 0.0f) ? tnear : tfar;
 | |
|     if (distance >= 0.0f)
 | |
|     {
 | |
|         Dist = distance;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     Dist = 0.f;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Test a frustum vs 6 planes (typically forming another frustum).
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline ContainmentType XM_CALLCONV BoundingFrustum::ContainedBy(
 | |
|     FXMVECTOR Plane0, FXMVECTOR Plane1, FXMVECTOR Plane2,
 | |
|     GXMVECTOR Plane3,
 | |
|     HXMVECTOR Plane4, HXMVECTOR Plane5) const noexcept
 | |
| {
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     assert(DirectX::Internal::XMQuaternionIsUnit(vOrientation));
 | |
| 
 | |
|     // Set w of the origin to one so we can dot4 with a plane.
 | |
|     vOrigin = XMVectorInsert<0, 0, 0, 0, 1>(vOrigin, XMVectorSplatOne());
 | |
| 
 | |
|     // Build the corners of the frustum (in world space).
 | |
|     XMVECTOR RightTop = XMVectorSet(RightSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR RightBottom = XMVectorSet(RightSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR LeftTop = XMVectorSet(LeftSlope, TopSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR LeftBottom = XMVectorSet(LeftSlope, BottomSlope, 1.0f, 0.0f);
 | |
|     XMVECTOR vNear = XMVectorReplicatePtr(&Near);
 | |
|     XMVECTOR vFar = XMVectorReplicatePtr(&Far);
 | |
| 
 | |
|     RightTop = XMVector3Rotate(RightTop, vOrientation);
 | |
|     RightBottom = XMVector3Rotate(RightBottom, vOrientation);
 | |
|     LeftTop = XMVector3Rotate(LeftTop, vOrientation);
 | |
|     LeftBottom = XMVector3Rotate(LeftBottom, vOrientation);
 | |
| 
 | |
|     XMVECTOR Corners0 = XMVectorMultiplyAdd(RightTop, vNear, vOrigin);
 | |
|     XMVECTOR Corners1 = XMVectorMultiplyAdd(RightBottom, vNear, vOrigin);
 | |
|     XMVECTOR Corners2 = XMVectorMultiplyAdd(LeftTop, vNear, vOrigin);
 | |
|     XMVECTOR Corners3 = XMVectorMultiplyAdd(LeftBottom, vNear, vOrigin);
 | |
|     XMVECTOR Corners4 = XMVectorMultiplyAdd(RightTop, vFar, vOrigin);
 | |
|     XMVECTOR Corners5 = XMVectorMultiplyAdd(RightBottom, vFar, vOrigin);
 | |
|     XMVECTOR Corners6 = XMVectorMultiplyAdd(LeftTop, vFar, vOrigin);
 | |
|     XMVECTOR Corners7 = XMVectorMultiplyAdd(LeftBottom, vFar, vOrigin);
 | |
| 
 | |
|     XMVECTOR Outside, Inside;
 | |
| 
 | |
|     // Test against each plane.
 | |
|     DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
 | |
|         Corners4, Corners5, Corners6, Corners7,
 | |
|         Plane0, Outside, Inside);
 | |
| 
 | |
|     XMVECTOR AnyOutside = Outside;
 | |
|     XMVECTOR AllInside = Inside;
 | |
| 
 | |
|     DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
 | |
|         Corners4, Corners5, Corners6, Corners7,
 | |
|         Plane1, Outside, Inside);
 | |
| 
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
 | |
|         Corners4, Corners5, Corners6, Corners7,
 | |
|         Plane2, Outside, Inside);
 | |
| 
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
 | |
|         Corners4, Corners5, Corners6, Corners7,
 | |
|         Plane3, Outside, Inside);
 | |
| 
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
 | |
|         Corners4, Corners5, Corners6, Corners7,
 | |
|         Plane4, Outside, Inside);
 | |
| 
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     DirectX::Internal::FastIntersectFrustumPlane(Corners0, Corners1, Corners2, Corners3,
 | |
|         Corners4, Corners5, Corners6, Corners7,
 | |
|         Plane5, Outside, Inside);
 | |
| 
 | |
|     AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|     AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|     // If the frustum is outside any plane it is outside.
 | |
|     if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
 | |
|         return DISJOINT;
 | |
| 
 | |
|     // If the frustum is inside all planes it is inside.
 | |
|     if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
 | |
|         return CONTAINS;
 | |
| 
 | |
|     // The frustum is not inside all planes or outside a plane, it may intersect.
 | |
|     return INTERSECTS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Build the 6 frustum planes from a frustum.
 | |
| //
 | |
| // The intended use for these routines is for fast culling to a view frustum.
 | |
| // When the volume being tested against a view frustum is small relative to the
 | |
| // view frustum it is usually either inside all six planes of the frustum
 | |
| // (CONTAINS) or outside one of the planes of the frustum (DISJOINT). If neither
 | |
| // of these cases is true then it may or may not be intersecting the frustum
 | |
| // (INTERSECTS)
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void BoundingFrustum::GetPlanes(XMVECTOR* NearPlane, XMVECTOR* FarPlane, XMVECTOR* RightPlane,
 | |
|     XMVECTOR* LeftPlane, XMVECTOR* TopPlane, XMVECTOR* BottomPlane) const noexcept
 | |
| {
 | |
|     // Load origin and orientation of the frustum.
 | |
|     XMVECTOR vOrigin = XMLoadFloat3(&Origin);
 | |
|     XMVECTOR vOrientation = XMLoadFloat4(&Orientation);
 | |
| 
 | |
|     if (NearPlane)
 | |
|     {
 | |
|         XMVECTOR vNearPlane = XMVectorSet(0.0f, 0.0f, -1.0f, Near);
 | |
|         vNearPlane = DirectX::Internal::XMPlaneTransform(vNearPlane, vOrientation, vOrigin);
 | |
|         *NearPlane = XMPlaneNormalize(vNearPlane);
 | |
|     }
 | |
| 
 | |
|     if (FarPlane)
 | |
|     {
 | |
|         XMVECTOR vFarPlane = XMVectorSet(0.0f, 0.0f, 1.0f, -Far);
 | |
|         vFarPlane = DirectX::Internal::XMPlaneTransform(vFarPlane, vOrientation, vOrigin);
 | |
|         *FarPlane = XMPlaneNormalize(vFarPlane);
 | |
|     }
 | |
| 
 | |
|     if (RightPlane)
 | |
|     {
 | |
|         XMVECTOR vRightPlane = XMVectorSet(1.0f, 0.0f, -RightSlope, 0.0f);
 | |
|         vRightPlane = DirectX::Internal::XMPlaneTransform(vRightPlane, vOrientation, vOrigin);
 | |
|         *RightPlane = XMPlaneNormalize(vRightPlane);
 | |
|     }
 | |
| 
 | |
|     if (LeftPlane)
 | |
|     {
 | |
|         XMVECTOR vLeftPlane = XMVectorSet(-1.0f, 0.0f, LeftSlope, 0.0f);
 | |
|         vLeftPlane = DirectX::Internal::XMPlaneTransform(vLeftPlane, vOrientation, vOrigin);
 | |
|         *LeftPlane = XMPlaneNormalize(vLeftPlane);
 | |
|     }
 | |
| 
 | |
|     if (TopPlane)
 | |
|     {
 | |
|         XMVECTOR vTopPlane = XMVectorSet(0.0f, 1.0f, -TopSlope, 0.0f);
 | |
|         vTopPlane = DirectX::Internal::XMPlaneTransform(vTopPlane, vOrientation, vOrigin);
 | |
|         *TopPlane = XMPlaneNormalize(vTopPlane);
 | |
|     }
 | |
| 
 | |
|     if (BottomPlane)
 | |
|     {
 | |
|         XMVECTOR vBottomPlane = XMVectorSet(0.0f, -1.0f, BottomSlope, 0.0f);
 | |
|         vBottomPlane = DirectX::Internal::XMPlaneTransform(vBottomPlane, vOrientation, vOrigin);
 | |
|         *BottomPlane = XMPlaneNormalize(vBottomPlane);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Build a frustum from a persepective projection matrix.  The matrix may only
 | |
| // contain a projection; any rotation, translation or scale will cause the
 | |
| // constructed frustum to be incorrect.
 | |
| //-----------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline void XM_CALLCONV BoundingFrustum::CreateFromMatrix(BoundingFrustum& Out, FXMMATRIX Projection, bool rhcoords) noexcept
 | |
| {
 | |
|     // Corners of the projection frustum in NDC space.
 | |
|     static XMVECTORF32 NDCPoints[6] =
 | |
|     {
 | |
|         { { {  1.0f,  0.0f, 1.0f, 1.0f } } },   // right (at far plane)
 | |
|         { { { -1.0f,  0.0f, 1.0f, 1.0f } } },   // left
 | |
|         { { {  0.0f,  1.0f, 1.0f, 1.0f } } },   // top
 | |
|         { { {  0.0f, -1.0f, 1.0f, 1.0f } } },   // bottom
 | |
| 
 | |
|         { { { 0.0f, 0.0f, 0.0f, 1.0f } } },     // near
 | |
|         { { { 0.0f, 0.0f, 1.0f, 1.0f } } }      // far
 | |
|     };
 | |
| 
 | |
|     XMVECTOR Determinant;
 | |
|     XMMATRIX matInverse = XMMatrixInverse(&Determinant, Projection);
 | |
| 
 | |
|     // Compute the frustum corners in world space.
 | |
|     XMVECTOR Points[6];
 | |
| 
 | |
|     for (size_t i = 0; i < 6; ++i)
 | |
|     {
 | |
|         // Transform point.
 | |
|         Points[i] = XMVector4Transform(NDCPoints[i], matInverse);
 | |
|     }
 | |
| 
 | |
|     Out.Origin = XMFLOAT3(0.0f, 0.0f, 0.0f);
 | |
|     Out.Orientation = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
 | |
| 
 | |
|     // Compute the slopes.
 | |
|     Points[0] = XMVectorMultiply(Points[0], XMVectorReciprocal(XMVectorSplatZ(Points[0])));
 | |
|     Points[1] = XMVectorMultiply(Points[1], XMVectorReciprocal(XMVectorSplatZ(Points[1])));
 | |
|     Points[2] = XMVectorMultiply(Points[2], XMVectorReciprocal(XMVectorSplatZ(Points[2])));
 | |
|     Points[3] = XMVectorMultiply(Points[3], XMVectorReciprocal(XMVectorSplatZ(Points[3])));
 | |
| 
 | |
|     Out.RightSlope = XMVectorGetX(Points[0]);
 | |
|     Out.LeftSlope = XMVectorGetX(Points[1]);
 | |
|     Out.TopSlope = XMVectorGetY(Points[2]);
 | |
|     Out.BottomSlope = XMVectorGetY(Points[3]);
 | |
| 
 | |
|     // Compute near and far.
 | |
|     Points[4] = XMVectorMultiply(Points[4], XMVectorReciprocal(XMVectorSplatW(Points[4])));
 | |
|     Points[5] = XMVectorMultiply(Points[5], XMVectorReciprocal(XMVectorSplatW(Points[5])));
 | |
| 
 | |
|     if (rhcoords)
 | |
|     {
 | |
|         Out.Near = XMVectorGetZ(Points[5]);
 | |
|         Out.Far = XMVectorGetZ(Points[4]);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Out.Near = XMVectorGetZ(Points[4]);
 | |
|         Out.Far = XMVectorGetZ(Points[5]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * TriangleTests
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
| namespace TriangleTests
 | |
| {
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Compute the intersection of a ray (Origin, Direction) with a triangle
 | |
|     // (V0, V1, V2).  Return true if there is an intersection and also set *pDist
 | |
|     // to the distance along the ray to the intersection.
 | |
|     //
 | |
|     // The algorithm is based on Moller, Tomas and Trumbore, "Fast, Minimum Storage
 | |
|     // Ray-Triangle Intersection", Journal of Graphics Tools, vol. 2, no. 1,
 | |
|     // pp 21-28, 1997.
 | |
|     //-----------------------------------------------------------------------------
 | |
|     _Use_decl_annotations_
 | |
|         inline bool XM_CALLCONV Intersects(
 | |
|             FXMVECTOR Origin, FXMVECTOR Direction, FXMVECTOR V0,
 | |
|             GXMVECTOR V1,
 | |
|             HXMVECTOR V2, float& Dist) noexcept
 | |
|     {
 | |
|         assert(DirectX::Internal::XMVector3IsUnit(Direction));
 | |
| 
 | |
|         XMVECTOR Zero = XMVectorZero();
 | |
| 
 | |
|         XMVECTOR e1 = XMVectorSubtract(V1, V0);
 | |
|         XMVECTOR e2 = XMVectorSubtract(V2, V0);
 | |
| 
 | |
|         // p = Direction ^ e2;
 | |
|         XMVECTOR p = XMVector3Cross(Direction, e2);
 | |
| 
 | |
|         // det = e1 * p;
 | |
|         XMVECTOR det = XMVector3Dot(e1, p);
 | |
| 
 | |
|         XMVECTOR u, v, t;
 | |
| 
 | |
|         if (XMVector3GreaterOrEqual(det, g_RayEpsilon))
 | |
|         {
 | |
|             // Determinate is positive (front side of the triangle).
 | |
|             XMVECTOR s = XMVectorSubtract(Origin, V0);
 | |
| 
 | |
|             // u = s * p;
 | |
|             u = XMVector3Dot(s, p);
 | |
| 
 | |
|             XMVECTOR NoIntersection = XMVectorLess(u, Zero);
 | |
|             NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(u, det));
 | |
| 
 | |
|             // q = s ^ e1;
 | |
|             XMVECTOR q = XMVector3Cross(s, e1);
 | |
| 
 | |
|             // v = Direction * q;
 | |
|             v = XMVector3Dot(Direction, q);
 | |
| 
 | |
|             NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(v, Zero));
 | |
|             NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(XMVectorAdd(u, v), det));
 | |
| 
 | |
|             // t = e2 * q;
 | |
|             t = XMVector3Dot(e2, q);
 | |
| 
 | |
|             NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(t, Zero));
 | |
| 
 | |
|             if (XMVector4EqualInt(NoIntersection, XMVectorTrueInt()))
 | |
|             {
 | |
|                 Dist = 0.f;
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         else if (XMVector3LessOrEqual(det, g_RayNegEpsilon))
 | |
|         {
 | |
|             // Determinate is negative (back side of the triangle).
 | |
|             XMVECTOR s = XMVectorSubtract(Origin, V0);
 | |
| 
 | |
|             // u = s * p;
 | |
|             u = XMVector3Dot(s, p);
 | |
| 
 | |
|             XMVECTOR NoIntersection = XMVectorGreater(u, Zero);
 | |
|             NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(u, det));
 | |
| 
 | |
|             // q = s ^ e1;
 | |
|             XMVECTOR q = XMVector3Cross(s, e1);
 | |
| 
 | |
|             // v = Direction * q;
 | |
|             v = XMVector3Dot(Direction, q);
 | |
| 
 | |
|             NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(v, Zero));
 | |
|             NoIntersection = XMVectorOrInt(NoIntersection, XMVectorLess(XMVectorAdd(u, v), det));
 | |
| 
 | |
|             // t = e2 * q;
 | |
|             t = XMVector3Dot(e2, q);
 | |
| 
 | |
|             NoIntersection = XMVectorOrInt(NoIntersection, XMVectorGreater(t, Zero));
 | |
| 
 | |
|             if (XMVector4EqualInt(NoIntersection, XMVectorTrueInt()))
 | |
|             {
 | |
|                 Dist = 0.f;
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Parallel ray.
 | |
|             Dist = 0.f;
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         t = XMVectorDivide(t, det);
 | |
| 
 | |
|         // (u / det) and (v / dev) are the barycentric cooridinates of the intersection.
 | |
| 
 | |
|         // Store the x-component to *pDist
 | |
|         XMStoreFloat(&Dist, t);
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Test if two triangles intersect.
 | |
|     //
 | |
|     // The final test of algorithm is based on Shen, Heng, and Tang, "A Fast
 | |
|     // Triangle-Triangle Overlap Test Using Signed Distances", Journal of Graphics
 | |
|     // Tools, vol. 8, no. 1, pp 17-23, 2003 and Guigue and Devillers, "Fast and
 | |
|     // Robust Triangle-Triangle Overlap Test Using Orientation Predicates", Journal
 | |
|     // of Graphics Tools, vol. 8, no. 1, pp 25-32, 2003.
 | |
|     //
 | |
|     // The final test could be considered an edge-edge separating plane test with
 | |
|     // the 9 possible cases narrowed down to the only two pairs of edges that can
 | |
|     // actaully result in a seperation.
 | |
|     //-----------------------------------------------------------------------------
 | |
|     _Use_decl_annotations_
 | |
|         inline bool XM_CALLCONV Intersects(FXMVECTOR A0, FXMVECTOR A1, FXMVECTOR A2, GXMVECTOR B0, HXMVECTOR B1, HXMVECTOR B2) noexcept
 | |
|     {
 | |
|         static const XMVECTORU32 SelectY = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_0, XM_SELECT_0 } } };
 | |
|         static const XMVECTORU32 SelectZ = { { { XM_SELECT_0, XM_SELECT_0, XM_SELECT_1, XM_SELECT_0 } } };
 | |
|         static const XMVECTORU32 Select0111 = { { { XM_SELECT_0, XM_SELECT_1, XM_SELECT_1, XM_SELECT_1 } } };
 | |
|         static const XMVECTORU32 Select1011 = { { { XM_SELECT_1, XM_SELECT_0, XM_SELECT_1, XM_SELECT_1 } } };
 | |
|         static const XMVECTORU32 Select1101 = { { { XM_SELECT_1, XM_SELECT_1, XM_SELECT_0, XM_SELECT_1 } } };
 | |
| 
 | |
|         XMVECTOR Zero = XMVectorZero();
 | |
| 
 | |
|         // Compute the normal of triangle A.
 | |
|         XMVECTOR N1 = XMVector3Cross(XMVectorSubtract(A1, A0), XMVectorSubtract(A2, A0));
 | |
| 
 | |
|         // Assert that the triangle is not degenerate.
 | |
|         assert(!XMVector3Equal(N1, Zero));
 | |
| 
 | |
|         // Test points of B against the plane of A.
 | |
|         XMVECTOR BDist = XMVector3Dot(N1, XMVectorSubtract(B0, A0));
 | |
|         BDist = XMVectorSelect(BDist, XMVector3Dot(N1, XMVectorSubtract(B1, A0)), SelectY);
 | |
|         BDist = XMVectorSelect(BDist, XMVector3Dot(N1, XMVectorSubtract(B2, A0)), SelectZ);
 | |
| 
 | |
|         // Ensure robustness with co-planar triangles by zeroing small distances.
 | |
|         uint32_t BDistIsZeroCR;
 | |
|         XMVECTOR BDistIsZero = XMVectorGreaterR(&BDistIsZeroCR, g_RayEpsilon, XMVectorAbs(BDist));
 | |
|         BDist = XMVectorSelect(BDist, Zero, BDistIsZero);
 | |
| 
 | |
|         uint32_t BDistIsLessCR;
 | |
|         XMVECTOR BDistIsLess = XMVectorGreaterR(&BDistIsLessCR, Zero, BDist);
 | |
| 
 | |
|         uint32_t BDistIsGreaterCR;
 | |
|         XMVECTOR BDistIsGreater = XMVectorGreaterR(&BDistIsGreaterCR, BDist, Zero);
 | |
| 
 | |
|         // If all the points are on the same side we don't intersect.
 | |
|         if (XMComparisonAllTrue(BDistIsLessCR) || XMComparisonAllTrue(BDistIsGreaterCR))
 | |
|             return false;
 | |
| 
 | |
|         // Compute the normal of triangle B.
 | |
|         XMVECTOR N2 = XMVector3Cross(XMVectorSubtract(B1, B0), XMVectorSubtract(B2, B0));
 | |
| 
 | |
|         // Assert that the triangle is not degenerate.
 | |
|         assert(!XMVector3Equal(N2, Zero));
 | |
| 
 | |
|         // Test points of A against the plane of B.
 | |
|         XMVECTOR ADist = XMVector3Dot(N2, XMVectorSubtract(A0, B0));
 | |
|         ADist = XMVectorSelect(ADist, XMVector3Dot(N2, XMVectorSubtract(A1, B0)), SelectY);
 | |
|         ADist = XMVectorSelect(ADist, XMVector3Dot(N2, XMVectorSubtract(A2, B0)), SelectZ);
 | |
| 
 | |
|         // Ensure robustness with co-planar triangles by zeroing small distances.
 | |
|         uint32_t ADistIsZeroCR;
 | |
|         XMVECTOR ADistIsZero = XMVectorGreaterR(&ADistIsZeroCR, g_RayEpsilon, XMVectorAbs(BDist));
 | |
|         ADist = XMVectorSelect(ADist, Zero, ADistIsZero);
 | |
| 
 | |
|         uint32_t ADistIsLessCR;
 | |
|         XMVECTOR ADistIsLess = XMVectorGreaterR(&ADistIsLessCR, Zero, ADist);
 | |
| 
 | |
|         uint32_t ADistIsGreaterCR;
 | |
|         XMVECTOR ADistIsGreater = XMVectorGreaterR(&ADistIsGreaterCR, ADist, Zero);
 | |
| 
 | |
|         // If all the points are on the same side we don't intersect.
 | |
|         if (XMComparisonAllTrue(ADistIsLessCR) || XMComparisonAllTrue(ADistIsGreaterCR))
 | |
|             return false;
 | |
| 
 | |
|         // Special case for co-planar triangles.
 | |
|         if (XMComparisonAllTrue(ADistIsZeroCR) || XMComparisonAllTrue(BDistIsZeroCR))
 | |
|         {
 | |
|             XMVECTOR Axis, Dist, MinDist;
 | |
| 
 | |
|             // Compute an axis perpindicular to the edge (points out).
 | |
|             Axis = XMVector3Cross(N1, XMVectorSubtract(A1, A0));
 | |
|             Dist = XMVector3Dot(Axis, A0);
 | |
| 
 | |
|             // Test points of B against the axis.
 | |
|             MinDist = XMVector3Dot(B0, Axis);
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(B1, Axis));
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(B2, Axis));
 | |
|             if (XMVector4GreaterOrEqual(MinDist, Dist))
 | |
|                 return false;
 | |
| 
 | |
|             // Edge (A1, A2)
 | |
|             Axis = XMVector3Cross(N1, XMVectorSubtract(A2, A1));
 | |
|             Dist = XMVector3Dot(Axis, A1);
 | |
| 
 | |
|             MinDist = XMVector3Dot(B0, Axis);
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(B1, Axis));
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(B2, Axis));
 | |
|             if (XMVector4GreaterOrEqual(MinDist, Dist))
 | |
|                 return false;
 | |
| 
 | |
|             // Edge (A2, A0)
 | |
|             Axis = XMVector3Cross(N1, XMVectorSubtract(A0, A2));
 | |
|             Dist = XMVector3Dot(Axis, A2);
 | |
| 
 | |
|             MinDist = XMVector3Dot(B0, Axis);
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(B1, Axis));
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(B2, Axis));
 | |
|             if (XMVector4GreaterOrEqual(MinDist, Dist))
 | |
|                 return false;
 | |
| 
 | |
|             // Edge (B0, B1)
 | |
|             Axis = XMVector3Cross(N2, XMVectorSubtract(B1, B0));
 | |
|             Dist = XMVector3Dot(Axis, B0);
 | |
| 
 | |
|             MinDist = XMVector3Dot(A0, Axis);
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(A1, Axis));
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(A2, Axis));
 | |
|             if (XMVector4GreaterOrEqual(MinDist, Dist))
 | |
|                 return false;
 | |
| 
 | |
|             // Edge (B1, B2)
 | |
|             Axis = XMVector3Cross(N2, XMVectorSubtract(B2, B1));
 | |
|             Dist = XMVector3Dot(Axis, B1);
 | |
| 
 | |
|             MinDist = XMVector3Dot(A0, Axis);
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(A1, Axis));
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(A2, Axis));
 | |
|             if (XMVector4GreaterOrEqual(MinDist, Dist))
 | |
|                 return false;
 | |
| 
 | |
|             // Edge (B2,B0)
 | |
|             Axis = XMVector3Cross(N2, XMVectorSubtract(B0, B2));
 | |
|             Dist = XMVector3Dot(Axis, B2);
 | |
| 
 | |
|             MinDist = XMVector3Dot(A0, Axis);
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(A1, Axis));
 | |
|             MinDist = XMVectorMin(MinDist, XMVector3Dot(A2, Axis));
 | |
|             if (XMVector4GreaterOrEqual(MinDist, Dist))
 | |
|                 return false;
 | |
| 
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         //
 | |
|         // Find the single vertex of A and B (ie the vertex on the opposite side
 | |
|         // of the plane from the other two) and reorder the edges so we can compute
 | |
|         // the signed edge/edge distances.
 | |
|         //
 | |
|         // if ( (V0 >= 0 && V1 <  0 && V2 <  0) ||
 | |
|         //      (V0 >  0 && V1 <= 0 && V2 <= 0) ||
 | |
|         //      (V0 <= 0 && V1 >  0 && V2 >  0) ||
 | |
|         //      (V0 <  0 && V1 >= 0 && V2 >= 0) ) then V0 is singular;
 | |
|         //
 | |
|         // If our singular vertex is not on the positive side of the plane we reverse
 | |
|         // the triangle winding so that the overlap comparisons will compare the
 | |
|         // correct edges with the correct signs.
 | |
|         //
 | |
|         XMVECTOR ADistIsLessEqual = XMVectorOrInt(ADistIsLess, ADistIsZero);
 | |
|         XMVECTOR ADistIsGreaterEqual = XMVectorOrInt(ADistIsGreater, ADistIsZero);
 | |
| 
 | |
|         XMVECTOR AA0, AA1, AA2;
 | |
|         bool bPositiveA;
 | |
| 
 | |
|         if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreaterEqual, ADistIsLess, Select0111)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreater, ADistIsLessEqual, Select0111)))
 | |
|         {
 | |
|             // A0 is singular, crossing from positive to negative.
 | |
|             AA0 = A0; AA1 = A1; AA2 = A2;
 | |
|             bPositiveA = true;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLessEqual, ADistIsGreater, Select0111)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLess, ADistIsGreaterEqual, Select0111)))
 | |
|         {
 | |
|             // A0 is singular, crossing from negative to positive.
 | |
|             AA0 = A0; AA1 = A2; AA2 = A1;
 | |
|             bPositiveA = false;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreaterEqual, ADistIsLess, Select1011)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreater, ADistIsLessEqual, Select1011)))
 | |
|         {
 | |
|             // A1 is singular, crossing from positive to negative.
 | |
|             AA0 = A1; AA1 = A2; AA2 = A0;
 | |
|             bPositiveA = true;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLessEqual, ADistIsGreater, Select1011)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLess, ADistIsGreaterEqual, Select1011)))
 | |
|         {
 | |
|             // A1 is singular, crossing from negative to positive.
 | |
|             AA0 = A1; AA1 = A0; AA2 = A2;
 | |
|             bPositiveA = false;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreaterEqual, ADistIsLess, Select1101)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsGreater, ADistIsLessEqual, Select1101)))
 | |
|         {
 | |
|             // A2 is singular, crossing from positive to negative.
 | |
|             AA0 = A2; AA1 = A0; AA2 = A1;
 | |
|             bPositiveA = true;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLessEqual, ADistIsGreater, Select1101)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(ADistIsLess, ADistIsGreaterEqual, Select1101)))
 | |
|         {
 | |
|             // A2 is singular, crossing from negative to positive.
 | |
|             AA0 = A2; AA1 = A1; AA2 = A0;
 | |
|             bPositiveA = false;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             assert(false);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         XMVECTOR BDistIsLessEqual = XMVectorOrInt(BDistIsLess, BDistIsZero);
 | |
|         XMVECTOR BDistIsGreaterEqual = XMVectorOrInt(BDistIsGreater, BDistIsZero);
 | |
| 
 | |
|         XMVECTOR BB0, BB1, BB2;
 | |
|         bool bPositiveB;
 | |
| 
 | |
|         if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreaterEqual, BDistIsLess, Select0111)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreater, BDistIsLessEqual, Select0111)))
 | |
|         {
 | |
|             // B0 is singular, crossing from positive to negative.
 | |
|             BB0 = B0; BB1 = B1; BB2 = B2;
 | |
|             bPositiveB = true;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLessEqual, BDistIsGreater, Select0111)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLess, BDistIsGreaterEqual, Select0111)))
 | |
|         {
 | |
|             // B0 is singular, crossing from negative to positive.
 | |
|             BB0 = B0; BB1 = B2; BB2 = B1;
 | |
|             bPositiveB = false;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreaterEqual, BDistIsLess, Select1011)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreater, BDistIsLessEqual, Select1011)))
 | |
|         {
 | |
|             // B1 is singular, crossing from positive to negative.
 | |
|             BB0 = B1; BB1 = B2; BB2 = B0;
 | |
|             bPositiveB = true;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLessEqual, BDistIsGreater, Select1011)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLess, BDistIsGreaterEqual, Select1011)))
 | |
|         {
 | |
|             // B1 is singular, crossing from negative to positive.
 | |
|             BB0 = B1; BB1 = B0; BB2 = B2;
 | |
|             bPositiveB = false;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreaterEqual, BDistIsLess, Select1101)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsGreater, BDistIsLessEqual, Select1101)))
 | |
|         {
 | |
|             // B2 is singular, crossing from positive to negative.
 | |
|             BB0 = B2; BB1 = B0; BB2 = B1;
 | |
|             bPositiveB = true;
 | |
|         }
 | |
|         else if (DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLessEqual, BDistIsGreater, Select1101)) ||
 | |
|             DirectX::Internal::XMVector3AllTrue(XMVectorSelect(BDistIsLess, BDistIsGreaterEqual, Select1101)))
 | |
|         {
 | |
|             // B2 is singular, crossing from negative to positive.
 | |
|             BB0 = B2; BB1 = B1; BB2 = B0;
 | |
|             bPositiveB = false;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             assert(false);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         XMVECTOR Delta0, Delta1;
 | |
| 
 | |
|         // Reverse the direction of the test depending on whether the singular vertices are
 | |
|         // the same sign or different signs.
 | |
|         if (bPositiveA ^ bPositiveB)
 | |
|         {
 | |
|             Delta0 = XMVectorSubtract(BB0, AA0);
 | |
|             Delta1 = XMVectorSubtract(AA0, BB0);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             Delta0 = XMVectorSubtract(AA0, BB0);
 | |
|             Delta1 = XMVectorSubtract(BB0, AA0);
 | |
|         }
 | |
| 
 | |
|         // Check if the triangles overlap on the line of intersection between the
 | |
|         // planes of the two triangles by finding the signed line distances.
 | |
|         XMVECTOR Dist0 = XMVector3Dot(Delta0, XMVector3Cross(XMVectorSubtract(BB2, BB0), XMVectorSubtract(AA2, AA0)));
 | |
|         if (XMVector4Greater(Dist0, Zero))
 | |
|             return false;
 | |
| 
 | |
|         XMVECTOR Dist1 = XMVector3Dot(Delta1, XMVector3Cross(XMVectorSubtract(BB1, BB0), XMVectorSubtract(AA1, AA0)));
 | |
|         if (XMVector4Greater(Dist1, Zero))
 | |
|             return false;
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Ray-triangle test
 | |
|     //-----------------------------------------------------------------------------
 | |
|     _Use_decl_annotations_
 | |
|         inline PlaneIntersectionType XM_CALLCONV Intersects(FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2, GXMVECTOR Plane) noexcept
 | |
|     {
 | |
|         XMVECTOR One = XMVectorSplatOne();
 | |
| 
 | |
|         assert(DirectX::Internal::XMPlaneIsUnit(Plane));
 | |
| 
 | |
|         // Set w of the points to one so we can dot4 with a plane.
 | |
|         XMVECTOR TV0 = XMVectorInsert<0, 0, 0, 0, 1>(V0, One);
 | |
|         XMVECTOR TV1 = XMVectorInsert<0, 0, 0, 0, 1>(V1, One);
 | |
|         XMVECTOR TV2 = XMVectorInsert<0, 0, 0, 0, 1>(V2, One);
 | |
| 
 | |
|         XMVECTOR Outside, Inside;
 | |
|         DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane, Outside, Inside);
 | |
| 
 | |
|         // If the triangle is outside any plane it is outside.
 | |
|         if (XMVector4EqualInt(Outside, XMVectorTrueInt()))
 | |
|             return FRONT;
 | |
| 
 | |
|         // If the triangle is inside all planes it is inside.
 | |
|         if (XMVector4EqualInt(Inside, XMVectorTrueInt()))
 | |
|             return BACK;
 | |
| 
 | |
|         // The triangle is not inside all planes or outside a plane it intersects.
 | |
|         return INTERSECTING;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //-----------------------------------------------------------------------------
 | |
|     // Test a triangle vs 6 planes (typically forming a frustum).
 | |
|     //-----------------------------------------------------------------------------
 | |
|     _Use_decl_annotations_
 | |
|         inline ContainmentType XM_CALLCONV ContainedBy(
 | |
|             FXMVECTOR V0, FXMVECTOR V1, FXMVECTOR V2,
 | |
|             GXMVECTOR Plane0,
 | |
|             HXMVECTOR Plane1, HXMVECTOR Plane2,
 | |
|             CXMVECTOR Plane3, CXMVECTOR Plane4, CXMVECTOR Plane5) noexcept
 | |
|     {
 | |
|         XMVECTOR One = XMVectorSplatOne();
 | |
| 
 | |
|         // Set w of the points to one so we can dot4 with a plane.
 | |
|         XMVECTOR TV0 = XMVectorInsert<0, 0, 0, 0, 1>(V0, One);
 | |
|         XMVECTOR TV1 = XMVectorInsert<0, 0, 0, 0, 1>(V1, One);
 | |
|         XMVECTOR TV2 = XMVectorInsert<0, 0, 0, 0, 1>(V2, One);
 | |
| 
 | |
|         XMVECTOR Outside, Inside;
 | |
| 
 | |
|         // Test against each plane.
 | |
|         DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane0, Outside, Inside);
 | |
| 
 | |
|         XMVECTOR AnyOutside = Outside;
 | |
|         XMVECTOR AllInside = Inside;
 | |
| 
 | |
|         DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane1, Outside, Inside);
 | |
|         AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|         AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|         DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane2, Outside, Inside);
 | |
|         AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|         AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|         DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane3, Outside, Inside);
 | |
|         AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|         AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|         DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane4, Outside, Inside);
 | |
|         AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|         AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|         DirectX::Internal::FastIntersectTrianglePlane(TV0, TV1, TV2, Plane5, Outside, Inside);
 | |
|         AnyOutside = XMVectorOrInt(AnyOutside, Outside);
 | |
|         AllInside = XMVectorAndInt(AllInside, Inside);
 | |
| 
 | |
|         // If the triangle is outside any plane it is outside.
 | |
|         if (XMVector4EqualInt(AnyOutside, XMVectorTrueInt()))
 | |
|             return DISJOINT;
 | |
| 
 | |
|         // If the triangle is inside all planes it is inside.
 | |
|         if (XMVector4EqualInt(AllInside, XMVectorTrueInt()))
 | |
|             return CONTAINS;
 | |
| 
 | |
|         // The triangle is not inside all planes or outside a plane, it may intersect.
 | |
|         return INTERSECTS;
 | |
|     }
 | |
| 
 | |
| } // namespace TriangleTests
 | |
| 
 | 
