mirror of
				https://github.com/thunderbrewhq/thunderbrew
				synced 2025-10-28 14:56:06 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			3551 lines
		
	
	
		
			116 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3551 lines
		
	
	
		
			116 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //-------------------------------------------------------------------------------------
 | |
| // DirectXMathMatrix.inl -- SIMD C++ Math library
 | |
| //
 | |
| // Copyright (c) Microsoft Corporation.
 | |
| // Licensed under the MIT License.
 | |
| //
 | |
| // http://go.microsoft.com/fwlink/?LinkID=615560
 | |
| //-------------------------------------------------------------------------------------
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * Matrix
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
|  //------------------------------------------------------------------------------
 | |
|  // Comparison operations
 | |
|  //------------------------------------------------------------------------------
 | |
| 
 | |
|  //------------------------------------------------------------------------------
 | |
| 
 | |
| #if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__INTEL_COMPILER)
 | |
| #pragma float_control(push)
 | |
| #pragma float_control(precise, on)
 | |
| #endif
 | |
| 
 | |
| // Return true if any entry in the matrix is NaN
 | |
| inline bool XM_CALLCONV XMMatrixIsNaN(FXMMATRIX M) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     size_t i = 16;
 | |
|     auto pWork = reinterpret_cast<const uint32_t*>(&M.m[0][0]);
 | |
|     do {
 | |
|         // Fetch value into integer unit
 | |
|         uint32_t uTest = pWork[0];
 | |
|         // Remove sign
 | |
|         uTest &= 0x7FFFFFFFU;
 | |
|         // NaN is 0x7F800001 through 0x7FFFFFFF inclusive
 | |
|         uTest -= 0x7F800001U;
 | |
|         if (uTest < 0x007FFFFFU)
 | |
|         {
 | |
|             break;      // NaN found
 | |
|         }
 | |
|         ++pWork;        // Next entry
 | |
|     } while (--i);
 | |
|     return (i != 0);      // i == 0 if nothing matched
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     // Load in registers
 | |
|     float32x4_t vX = M.r[0];
 | |
|     float32x4_t vY = M.r[1];
 | |
|     float32x4_t vZ = M.r[2];
 | |
|     float32x4_t vW = M.r[3];
 | |
|     // Test themselves to check for NaN
 | |
|     uint32x4_t xmask = vmvnq_u32(vceqq_f32(vX, vX));
 | |
|     uint32x4_t ymask = vmvnq_u32(vceqq_f32(vY, vY));
 | |
|     uint32x4_t zmask = vmvnq_u32(vceqq_f32(vZ, vZ));
 | |
|     uint32x4_t wmask = vmvnq_u32(vceqq_f32(vW, vW));
 | |
|     // Or all the results
 | |
|     xmask = vorrq_u32(xmask, zmask);
 | |
|     ymask = vorrq_u32(ymask, wmask);
 | |
|     xmask = vorrq_u32(xmask, ymask);
 | |
|     // If any tested true, return true
 | |
|     uint8x8x2_t vTemp = vzip_u8(
 | |
|         vget_low_u8(vreinterpretq_u8_u32(xmask)),
 | |
|         vget_high_u8(vreinterpretq_u8_u32(xmask)));
 | |
|     uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
 | |
|     uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
 | |
|     return (r != 0);
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     // Load in registers
 | |
|     XMVECTOR vX = M.r[0];
 | |
|     XMVECTOR vY = M.r[1];
 | |
|     XMVECTOR vZ = M.r[2];
 | |
|     XMVECTOR vW = M.r[3];
 | |
|     // Test themselves to check for NaN
 | |
|     vX = _mm_cmpneq_ps(vX, vX);
 | |
|     vY = _mm_cmpneq_ps(vY, vY);
 | |
|     vZ = _mm_cmpneq_ps(vZ, vZ);
 | |
|     vW = _mm_cmpneq_ps(vW, vW);
 | |
|     // Or all the results
 | |
|     vX = _mm_or_ps(vX, vZ);
 | |
|     vY = _mm_or_ps(vY, vW);
 | |
|     vX = _mm_or_ps(vX, vY);
 | |
|     // If any tested true, return true
 | |
|     return (_mm_movemask_ps(vX) != 0);
 | |
| #else
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if !defined(_XM_NO_INTRINSICS_) && defined(_MSC_VER) && !defined(__INTEL_COMPILER)
 | |
| #pragma float_control(pop)
 | |
| #endif
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| // Return true if any entry in the matrix is +/-INF
 | |
| inline bool XM_CALLCONV XMMatrixIsInfinite(FXMMATRIX M) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     size_t i = 16;
 | |
|     auto pWork = reinterpret_cast<const uint32_t*>(&M.m[0][0]);
 | |
|     do {
 | |
|         // Fetch value into integer unit
 | |
|         uint32_t uTest = pWork[0];
 | |
|         // Remove sign
 | |
|         uTest &= 0x7FFFFFFFU;
 | |
|         // INF is 0x7F800000
 | |
|         if (uTest == 0x7F800000U)
 | |
|         {
 | |
|             break;      // INF found
 | |
|         }
 | |
|         ++pWork;        // Next entry
 | |
|     } while (--i);
 | |
|     return (i != 0);      // i == 0 if nothing matched
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     // Load in registers
 | |
|     float32x4_t vX = M.r[0];
 | |
|     float32x4_t vY = M.r[1];
 | |
|     float32x4_t vZ = M.r[2];
 | |
|     float32x4_t vW = M.r[3];
 | |
|     // Mask off the sign bits
 | |
|     vX = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(vX), g_XMAbsMask));
 | |
|     vY = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(vY), g_XMAbsMask));
 | |
|     vZ = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(vZ), g_XMAbsMask));
 | |
|     vW = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(vW), g_XMAbsMask));
 | |
|     // Compare to infinity
 | |
|     uint32x4_t xmask = vceqq_f32(vX, g_XMInfinity);
 | |
|     uint32x4_t ymask = vceqq_f32(vY, g_XMInfinity);
 | |
|     uint32x4_t zmask = vceqq_f32(vZ, g_XMInfinity);
 | |
|     uint32x4_t wmask = vceqq_f32(vW, g_XMInfinity);
 | |
|     // Or the answers together
 | |
|     xmask = vorrq_u32(xmask, zmask);
 | |
|     ymask = vorrq_u32(ymask, wmask);
 | |
|     xmask = vorrq_u32(xmask, ymask);
 | |
|     // If any tested true, return true
 | |
|     uint8x8x2_t vTemp = vzip_u8(
 | |
|         vget_low_u8(vreinterpretq_u8_u32(xmask)),
 | |
|         vget_high_u8(vreinterpretq_u8_u32(xmask)));
 | |
|     uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
 | |
|     uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
 | |
|     return (r != 0);
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     // Mask off the sign bits
 | |
|     XMVECTOR vTemp1 = _mm_and_ps(M.r[0], g_XMAbsMask);
 | |
|     XMVECTOR vTemp2 = _mm_and_ps(M.r[1], g_XMAbsMask);
 | |
|     XMVECTOR vTemp3 = _mm_and_ps(M.r[2], g_XMAbsMask);
 | |
|     XMVECTOR vTemp4 = _mm_and_ps(M.r[3], g_XMAbsMask);
 | |
|     // Compare to infinity
 | |
|     vTemp1 = _mm_cmpeq_ps(vTemp1, g_XMInfinity);
 | |
|     vTemp2 = _mm_cmpeq_ps(vTemp2, g_XMInfinity);
 | |
|     vTemp3 = _mm_cmpeq_ps(vTemp3, g_XMInfinity);
 | |
|     vTemp4 = _mm_cmpeq_ps(vTemp4, g_XMInfinity);
 | |
|     // Or the answers together
 | |
|     vTemp1 = _mm_or_ps(vTemp1, vTemp2);
 | |
|     vTemp3 = _mm_or_ps(vTemp3, vTemp4);
 | |
|     vTemp1 = _mm_or_ps(vTemp1, vTemp3);
 | |
|     // If any are infinity, the signs are true.
 | |
|     return (_mm_movemask_ps(vTemp1) != 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| // Return true if the XMMatrix is equal to identity
 | |
| inline bool XM_CALLCONV XMMatrixIsIdentity(FXMMATRIX M) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     // Use the integer pipeline to reduce branching to a minimum
 | |
|     auto pWork = reinterpret_cast<const uint32_t*>(&M.m[0][0]);
 | |
|     // Convert 1.0f to zero and or them together
 | |
|     uint32_t uOne = pWork[0] ^ 0x3F800000U;
 | |
|     // Or all the 0.0f entries together
 | |
|     uint32_t uZero = pWork[1];
 | |
|     uZero |= pWork[2];
 | |
|     uZero |= pWork[3];
 | |
|     // 2nd row
 | |
|     uZero |= pWork[4];
 | |
|     uOne |= pWork[5] ^ 0x3F800000U;
 | |
|     uZero |= pWork[6];
 | |
|     uZero |= pWork[7];
 | |
|     // 3rd row
 | |
|     uZero |= pWork[8];
 | |
|     uZero |= pWork[9];
 | |
|     uOne |= pWork[10] ^ 0x3F800000U;
 | |
|     uZero |= pWork[11];
 | |
|     // 4th row
 | |
|     uZero |= pWork[12];
 | |
|     uZero |= pWork[13];
 | |
|     uZero |= pWork[14];
 | |
|     uOne |= pWork[15] ^ 0x3F800000U;
 | |
|     // If all zero entries are zero, the uZero==0
 | |
|     uZero &= 0x7FFFFFFF;    // Allow -0.0f
 | |
|     // If all 1.0f entries are 1.0f, then uOne==0
 | |
|     uOne |= uZero;
 | |
|     return (uOne == 0);
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     uint32x4_t xmask = vceqq_f32(M.r[0], g_XMIdentityR0);
 | |
|     uint32x4_t ymask = vceqq_f32(M.r[1], g_XMIdentityR1);
 | |
|     uint32x4_t zmask = vceqq_f32(M.r[2], g_XMIdentityR2);
 | |
|     uint32x4_t wmask = vceqq_f32(M.r[3], g_XMIdentityR3);
 | |
|     xmask = vandq_u32(xmask, zmask);
 | |
|     ymask = vandq_u32(ymask, wmask);
 | |
|     xmask = vandq_u32(xmask, ymask);
 | |
|     uint8x8x2_t vTemp = vzip_u8(vget_low_u8(vreinterpretq_u8_u32(xmask)), vget_high_u8(vreinterpretq_u8_u32(xmask)));
 | |
|     uint16x4x2_t vTemp2 = vzip_u16(vreinterpret_u16_u8(vTemp.val[0]), vreinterpret_u16_u8(vTemp.val[1]));
 | |
|     uint32_t r = vget_lane_u32(vreinterpret_u32_u16(vTemp2.val[1]), 1);
 | |
|     return (r == 0xFFFFFFFFU);
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMVECTOR vTemp1 = _mm_cmpeq_ps(M.r[0], g_XMIdentityR0);
 | |
|     XMVECTOR vTemp2 = _mm_cmpeq_ps(M.r[1], g_XMIdentityR1);
 | |
|     XMVECTOR vTemp3 = _mm_cmpeq_ps(M.r[2], g_XMIdentityR2);
 | |
|     XMVECTOR vTemp4 = _mm_cmpeq_ps(M.r[3], g_XMIdentityR3);
 | |
|     vTemp1 = _mm_and_ps(vTemp1, vTemp2);
 | |
|     vTemp3 = _mm_and_ps(vTemp3, vTemp4);
 | |
|     vTemp1 = _mm_and_ps(vTemp1, vTemp3);
 | |
|     return (_mm_movemask_ps(vTemp1) == 0x0f);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Computation operations
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Perform a 4x4 matrix multiply by a 4x4 matrix
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixMultiply
 | |
| (
 | |
|     FXMMATRIX M1,
 | |
|     CXMMATRIX M2
 | |
| ) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     XMMATRIX mResult;
 | |
|     // Cache the invariants in registers
 | |
|     float x = M1.m[0][0];
 | |
|     float y = M1.m[0][1];
 | |
|     float z = M1.m[0][2];
 | |
|     float w = M1.m[0][3];
 | |
|     // Perform the operation on the first row
 | |
|     mResult.m[0][0] = (M2.m[0][0] * x) + (M2.m[1][0] * y) + (M2.m[2][0] * z) + (M2.m[3][0] * w);
 | |
|     mResult.m[0][1] = (M2.m[0][1] * x) + (M2.m[1][1] * y) + (M2.m[2][1] * z) + (M2.m[3][1] * w);
 | |
|     mResult.m[0][2] = (M2.m[0][2] * x) + (M2.m[1][2] * y) + (M2.m[2][2] * z) + (M2.m[3][2] * w);
 | |
|     mResult.m[0][3] = (M2.m[0][3] * x) + (M2.m[1][3] * y) + (M2.m[2][3] * z) + (M2.m[3][3] * w);
 | |
|     // Repeat for all the other rows
 | |
|     x = M1.m[1][0];
 | |
|     y = M1.m[1][1];
 | |
|     z = M1.m[1][2];
 | |
|     w = M1.m[1][3];
 | |
|     mResult.m[1][0] = (M2.m[0][0] * x) + (M2.m[1][0] * y) + (M2.m[2][0] * z) + (M2.m[3][0] * w);
 | |
|     mResult.m[1][1] = (M2.m[0][1] * x) + (M2.m[1][1] * y) + (M2.m[2][1] * z) + (M2.m[3][1] * w);
 | |
|     mResult.m[1][2] = (M2.m[0][2] * x) + (M2.m[1][2] * y) + (M2.m[2][2] * z) + (M2.m[3][2] * w);
 | |
|     mResult.m[1][3] = (M2.m[0][3] * x) + (M2.m[1][3] * y) + (M2.m[2][3] * z) + (M2.m[3][3] * w);
 | |
|     x = M1.m[2][0];
 | |
|     y = M1.m[2][1];
 | |
|     z = M1.m[2][2];
 | |
|     w = M1.m[2][3];
 | |
|     mResult.m[2][0] = (M2.m[0][0] * x) + (M2.m[1][0] * y) + (M2.m[2][0] * z) + (M2.m[3][0] * w);
 | |
|     mResult.m[2][1] = (M2.m[0][1] * x) + (M2.m[1][1] * y) + (M2.m[2][1] * z) + (M2.m[3][1] * w);
 | |
|     mResult.m[2][2] = (M2.m[0][2] * x) + (M2.m[1][2] * y) + (M2.m[2][2] * z) + (M2.m[3][2] * w);
 | |
|     mResult.m[2][3] = (M2.m[0][3] * x) + (M2.m[1][3] * y) + (M2.m[2][3] * z) + (M2.m[3][3] * w);
 | |
|     x = M1.m[3][0];
 | |
|     y = M1.m[3][1];
 | |
|     z = M1.m[3][2];
 | |
|     w = M1.m[3][3];
 | |
|     mResult.m[3][0] = (M2.m[0][0] * x) + (M2.m[1][0] * y) + (M2.m[2][0] * z) + (M2.m[3][0] * w);
 | |
|     mResult.m[3][1] = (M2.m[0][1] * x) + (M2.m[1][1] * y) + (M2.m[2][1] * z) + (M2.m[3][1] * w);
 | |
|     mResult.m[3][2] = (M2.m[0][2] * x) + (M2.m[1][2] * y) + (M2.m[2][2] * z) + (M2.m[3][2] * w);
 | |
|     mResult.m[3][3] = (M2.m[0][3] * x) + (M2.m[1][3] * y) + (M2.m[2][3] * z) + (M2.m[3][3] * w);
 | |
|     return mResult;
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     XMMATRIX mResult;
 | |
|     float32x2_t VL = vget_low_f32(M1.r[0]);
 | |
|     float32x2_t VH = vget_high_f32(M1.r[0]);
 | |
|     // Perform the operation on the first row
 | |
|     float32x4_t vX = vmulq_lane_f32(M2.r[0], VL, 0);
 | |
|     float32x4_t vY = vmulq_lane_f32(M2.r[1], VL, 1);
 | |
|     float32x4_t vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
 | |
|     float32x4_t vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
 | |
|     mResult.r[0] = vaddq_f32(vZ, vW);
 | |
|     // Repeat for the other 3 rows
 | |
|     VL = vget_low_f32(M1.r[1]);
 | |
|     VH = vget_high_f32(M1.r[1]);
 | |
|     vX = vmulq_lane_f32(M2.r[0], VL, 0);
 | |
|     vY = vmulq_lane_f32(M2.r[1], VL, 1);
 | |
|     vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
 | |
|     vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
 | |
|     mResult.r[1] = vaddq_f32(vZ, vW);
 | |
|     VL = vget_low_f32(M1.r[2]);
 | |
|     VH = vget_high_f32(M1.r[2]);
 | |
|     vX = vmulq_lane_f32(M2.r[0], VL, 0);
 | |
|     vY = vmulq_lane_f32(M2.r[1], VL, 1);
 | |
|     vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
 | |
|     vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
 | |
|     mResult.r[2] = vaddq_f32(vZ, vW);
 | |
|     VL = vget_low_f32(M1.r[3]);
 | |
|     VH = vget_high_f32(M1.r[3]);
 | |
|     vX = vmulq_lane_f32(M2.r[0], VL, 0);
 | |
|     vY = vmulq_lane_f32(M2.r[1], VL, 1);
 | |
|     vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
 | |
|     vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
 | |
|     mResult.r[3] = vaddq_f32(vZ, vW);
 | |
|     return mResult;
 | |
| #elif defined(_XM_AVX2_INTRINSICS_)
 | |
|     __m256 t0 = _mm256_castps128_ps256(M1.r[0]);
 | |
|     t0 = _mm256_insertf128_ps(t0, M1.r[1], 1);
 | |
|     __m256 t1 = _mm256_castps128_ps256(M1.r[2]);
 | |
|     t1 = _mm256_insertf128_ps(t1, M1.r[3], 1);
 | |
| 
 | |
|     __m256 u0 = _mm256_castps128_ps256(M2.r[0]);
 | |
|     u0 = _mm256_insertf128_ps(u0, M2.r[1], 1);
 | |
|     __m256 u1 = _mm256_castps128_ps256(M2.r[2]);
 | |
|     u1 = _mm256_insertf128_ps(u1, M2.r[3], 1);
 | |
| 
 | |
|     __m256 a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     __m256 a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     __m256 b0 = _mm256_permute2f128_ps(u0, u0, 0x00);
 | |
|     __m256 c0 = _mm256_mul_ps(a0, b0);
 | |
|     __m256 c1 = _mm256_mul_ps(a1, b0);
 | |
| 
 | |
|     a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     b0 = _mm256_permute2f128_ps(u0, u0, 0x11);
 | |
|     __m256 c2 = _mm256_fmadd_ps(a0, b0, c0);
 | |
|     __m256 c3 = _mm256_fmadd_ps(a1, b0, c1);
 | |
| 
 | |
|     a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     __m256 b1 = _mm256_permute2f128_ps(u1, u1, 0x00);
 | |
|     __m256 c4 = _mm256_mul_ps(a0, b1);
 | |
|     __m256 c5 = _mm256_mul_ps(a1, b1);
 | |
| 
 | |
|     a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(3, 3, 3, 3));
 | |
|     a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(3, 3, 3, 3));
 | |
|     b1 = _mm256_permute2f128_ps(u1, u1, 0x11);
 | |
|     __m256 c6 = _mm256_fmadd_ps(a0, b1, c4);
 | |
|     __m256 c7 = _mm256_fmadd_ps(a1, b1, c5);
 | |
| 
 | |
|     t0 = _mm256_add_ps(c2, c6);
 | |
|     t1 = _mm256_add_ps(c3, c7);
 | |
| 
 | |
|     XMMATRIX mResult;
 | |
|     mResult.r[0] = _mm256_castps256_ps128(t0);
 | |
|     mResult.r[1] = _mm256_extractf128_ps(t0, 1);
 | |
|     mResult.r[2] = _mm256_castps256_ps128(t1);
 | |
|     mResult.r[3] = _mm256_extractf128_ps(t1, 1);
 | |
|     return mResult;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX mResult;
 | |
|     // Splat the component X,Y,Z then W
 | |
| #if defined(_XM_AVX_INTRINSICS_)
 | |
|     XMVECTOR vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[0]) + 0);
 | |
|     XMVECTOR vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[0]) + 1);
 | |
|     XMVECTOR vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[0]) + 2);
 | |
|     XMVECTOR vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[0]) + 3);
 | |
| #else
 | |
|     // Use vW to hold the original row
 | |
|     XMVECTOR vW = M1.r[0];
 | |
|     XMVECTOR vX = XM_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     XMVECTOR vY = XM_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     XMVECTOR vZ = XM_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     vW = XM_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
 | |
| #endif
 | |
|     // Perform the operation on the first row
 | |
|     vX = _mm_mul_ps(vX, M2.r[0]);
 | |
|     vY = _mm_mul_ps(vY, M2.r[1]);
 | |
|     vZ = _mm_mul_ps(vZ, M2.r[2]);
 | |
|     vW = _mm_mul_ps(vW, M2.r[3]);
 | |
|     // Perform a binary add to reduce cumulative errors
 | |
|     vX = _mm_add_ps(vX, vZ);
 | |
|     vY = _mm_add_ps(vY, vW);
 | |
|     vX = _mm_add_ps(vX, vY);
 | |
|     mResult.r[0] = vX;
 | |
|     // Repeat for the other 3 rows
 | |
| #if defined(_XM_AVX_INTRINSICS_)
 | |
|     vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[1]) + 0);
 | |
|     vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[1]) + 1);
 | |
|     vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[1]) + 2);
 | |
|     vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[1]) + 3);
 | |
| #else
 | |
|     vW = M1.r[1];
 | |
|     vX = XM_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     vY = XM_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     vZ = XM_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     vW = XM_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
 | |
| #endif
 | |
|     vX = _mm_mul_ps(vX, M2.r[0]);
 | |
|     vY = _mm_mul_ps(vY, M2.r[1]);
 | |
|     vZ = _mm_mul_ps(vZ, M2.r[2]);
 | |
|     vW = _mm_mul_ps(vW, M2.r[3]);
 | |
|     vX = _mm_add_ps(vX, vZ);
 | |
|     vY = _mm_add_ps(vY, vW);
 | |
|     vX = _mm_add_ps(vX, vY);
 | |
|     mResult.r[1] = vX;
 | |
| #if defined(_XM_AVX_INTRINSICS_)
 | |
|     vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[2]) + 0);
 | |
|     vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[2]) + 1);
 | |
|     vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[2]) + 2);
 | |
|     vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[2]) + 3);
 | |
| #else
 | |
|     vW = M1.r[2];
 | |
|     vX = XM_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     vY = XM_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     vZ = XM_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     vW = XM_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
 | |
| #endif
 | |
|     vX = _mm_mul_ps(vX, M2.r[0]);
 | |
|     vY = _mm_mul_ps(vY, M2.r[1]);
 | |
|     vZ = _mm_mul_ps(vZ, M2.r[2]);
 | |
|     vW = _mm_mul_ps(vW, M2.r[3]);
 | |
|     vX = _mm_add_ps(vX, vZ);
 | |
|     vY = _mm_add_ps(vY, vW);
 | |
|     vX = _mm_add_ps(vX, vY);
 | |
|     mResult.r[2] = vX;
 | |
| #if defined(_XM_AVX_INTRINSICS_)
 | |
|     vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[3]) + 0);
 | |
|     vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[3]) + 1);
 | |
|     vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[3]) + 2);
 | |
|     vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[3]) + 3);
 | |
| #else
 | |
|     vW = M1.r[3];
 | |
|     vX = XM_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     vY = XM_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     vZ = XM_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     vW = XM_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
 | |
| #endif
 | |
|     vX = _mm_mul_ps(vX, M2.r[0]);
 | |
|     vY = _mm_mul_ps(vY, M2.r[1]);
 | |
|     vZ = _mm_mul_ps(vZ, M2.r[2]);
 | |
|     vW = _mm_mul_ps(vW, M2.r[3]);
 | |
|     vX = _mm_add_ps(vX, vZ);
 | |
|     vY = _mm_add_ps(vY, vW);
 | |
|     vX = _mm_add_ps(vX, vY);
 | |
|     mResult.r[3] = vX;
 | |
|     return mResult;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixMultiplyTranspose
 | |
| (
 | |
|     FXMMATRIX M1,
 | |
|     CXMMATRIX M2
 | |
| ) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     XMMATRIX mResult;
 | |
|     // Cache the invariants in registers
 | |
|     float x = M2.m[0][0];
 | |
|     float y = M2.m[1][0];
 | |
|     float z = M2.m[2][0];
 | |
|     float w = M2.m[3][0];
 | |
|     // Perform the operation on the first row
 | |
|     mResult.m[0][0] = (M1.m[0][0] * x) + (M1.m[0][1] * y) + (M1.m[0][2] * z) + (M1.m[0][3] * w);
 | |
|     mResult.m[0][1] = (M1.m[1][0] * x) + (M1.m[1][1] * y) + (M1.m[1][2] * z) + (M1.m[1][3] * w);
 | |
|     mResult.m[0][2] = (M1.m[2][0] * x) + (M1.m[2][1] * y) + (M1.m[2][2] * z) + (M1.m[2][3] * w);
 | |
|     mResult.m[0][3] = (M1.m[3][0] * x) + (M1.m[3][1] * y) + (M1.m[3][2] * z) + (M1.m[3][3] * w);
 | |
|     // Repeat for all the other rows
 | |
|     x = M2.m[0][1];
 | |
|     y = M2.m[1][1];
 | |
|     z = M2.m[2][1];
 | |
|     w = M2.m[3][1];
 | |
|     mResult.m[1][0] = (M1.m[0][0] * x) + (M1.m[0][1] * y) + (M1.m[0][2] * z) + (M1.m[0][3] * w);
 | |
|     mResult.m[1][1] = (M1.m[1][0] * x) + (M1.m[1][1] * y) + (M1.m[1][2] * z) + (M1.m[1][3] * w);
 | |
|     mResult.m[1][2] = (M1.m[2][0] * x) + (M1.m[2][1] * y) + (M1.m[2][2] * z) + (M1.m[2][3] * w);
 | |
|     mResult.m[1][3] = (M1.m[3][0] * x) + (M1.m[3][1] * y) + (M1.m[3][2] * z) + (M1.m[3][3] * w);
 | |
|     x = M2.m[0][2];
 | |
|     y = M2.m[1][2];
 | |
|     z = M2.m[2][2];
 | |
|     w = M2.m[3][2];
 | |
|     mResult.m[2][0] = (M1.m[0][0] * x) + (M1.m[0][1] * y) + (M1.m[0][2] * z) + (M1.m[0][3] * w);
 | |
|     mResult.m[2][1] = (M1.m[1][0] * x) + (M1.m[1][1] * y) + (M1.m[1][2] * z) + (M1.m[1][3] * w);
 | |
|     mResult.m[2][2] = (M1.m[2][0] * x) + (M1.m[2][1] * y) + (M1.m[2][2] * z) + (M1.m[2][3] * w);
 | |
|     mResult.m[2][3] = (M1.m[3][0] * x) + (M1.m[3][1] * y) + (M1.m[3][2] * z) + (M1.m[3][3] * w);
 | |
|     x = M2.m[0][3];
 | |
|     y = M2.m[1][3];
 | |
|     z = M2.m[2][3];
 | |
|     w = M2.m[3][3];
 | |
|     mResult.m[3][0] = (M1.m[0][0] * x) + (M1.m[0][1] * y) + (M1.m[0][2] * z) + (M1.m[0][3] * w);
 | |
|     mResult.m[3][1] = (M1.m[1][0] * x) + (M1.m[1][1] * y) + (M1.m[1][2] * z) + (M1.m[1][3] * w);
 | |
|     mResult.m[3][2] = (M1.m[2][0] * x) + (M1.m[2][1] * y) + (M1.m[2][2] * z) + (M1.m[2][3] * w);
 | |
|     mResult.m[3][3] = (M1.m[3][0] * x) + (M1.m[3][1] * y) + (M1.m[3][2] * z) + (M1.m[3][3] * w);
 | |
|     return mResult;
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float32x2_t VL = vget_low_f32(M1.r[0]);
 | |
|     float32x2_t VH = vget_high_f32(M1.r[0]);
 | |
|     // Perform the operation on the first row
 | |
|     float32x4_t vX = vmulq_lane_f32(M2.r[0], VL, 0);
 | |
|     float32x4_t vY = vmulq_lane_f32(M2.r[1], VL, 1);
 | |
|     float32x4_t vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
 | |
|     float32x4_t vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
 | |
|     float32x4_t r0 = vaddq_f32(vZ, vW);
 | |
|     // Repeat for the other 3 rows
 | |
|     VL = vget_low_f32(M1.r[1]);
 | |
|     VH = vget_high_f32(M1.r[1]);
 | |
|     vX = vmulq_lane_f32(M2.r[0], VL, 0);
 | |
|     vY = vmulq_lane_f32(M2.r[1], VL, 1);
 | |
|     vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
 | |
|     vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
 | |
|     float32x4_t r1 = vaddq_f32(vZ, vW);
 | |
|     VL = vget_low_f32(M1.r[2]);
 | |
|     VH = vget_high_f32(M1.r[2]);
 | |
|     vX = vmulq_lane_f32(M2.r[0], VL, 0);
 | |
|     vY = vmulq_lane_f32(M2.r[1], VL, 1);
 | |
|     vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
 | |
|     vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
 | |
|     float32x4_t r2 = vaddq_f32(vZ, vW);
 | |
|     VL = vget_low_f32(M1.r[3]);
 | |
|     VH = vget_high_f32(M1.r[3]);
 | |
|     vX = vmulq_lane_f32(M2.r[0], VL, 0);
 | |
|     vY = vmulq_lane_f32(M2.r[1], VL, 1);
 | |
|     vZ = vmlaq_lane_f32(vX, M2.r[2], VH, 0);
 | |
|     vW = vmlaq_lane_f32(vY, M2.r[3], VH, 1);
 | |
|     float32x4_t r3 = vaddq_f32(vZ, vW);
 | |
| 
 | |
|     // Transpose result
 | |
|     float32x4x2_t P0 = vzipq_f32(r0, r2);
 | |
|     float32x4x2_t P1 = vzipq_f32(r1, r3);
 | |
| 
 | |
|     float32x4x2_t T0 = vzipq_f32(P0.val[0], P1.val[0]);
 | |
|     float32x4x2_t T1 = vzipq_f32(P0.val[1], P1.val[1]);
 | |
| 
 | |
|     XMMATRIX mResult;
 | |
|     mResult.r[0] = T0.val[0];
 | |
|     mResult.r[1] = T0.val[1];
 | |
|     mResult.r[2] = T1.val[0];
 | |
|     mResult.r[3] = T1.val[1];
 | |
|     return mResult;
 | |
| #elif defined(_XM_AVX2_INTRINSICS_)
 | |
|     __m256 t0 = _mm256_castps128_ps256(M1.r[0]);
 | |
|     t0 = _mm256_insertf128_ps(t0, M1.r[1], 1);
 | |
|     __m256 t1 = _mm256_castps128_ps256(M1.r[2]);
 | |
|     t1 = _mm256_insertf128_ps(t1, M1.r[3], 1);
 | |
| 
 | |
|     __m256 u0 = _mm256_castps128_ps256(M2.r[0]);
 | |
|     u0 = _mm256_insertf128_ps(u0, M2.r[1], 1);
 | |
|     __m256 u1 = _mm256_castps128_ps256(M2.r[2]);
 | |
|     u1 = _mm256_insertf128_ps(u1, M2.r[3], 1);
 | |
| 
 | |
|     __m256 a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     __m256 a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     __m256 b0 = _mm256_permute2f128_ps(u0, u0, 0x00);
 | |
|     __m256 c0 = _mm256_mul_ps(a0, b0);
 | |
|     __m256 c1 = _mm256_mul_ps(a1, b0);
 | |
| 
 | |
|     a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     b0 = _mm256_permute2f128_ps(u0, u0, 0x11);
 | |
|     __m256 c2 = _mm256_fmadd_ps(a0, b0, c0);
 | |
|     __m256 c3 = _mm256_fmadd_ps(a1, b0, c1);
 | |
| 
 | |
|     a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     __m256 b1 = _mm256_permute2f128_ps(u1, u1, 0x00);
 | |
|     __m256 c4 = _mm256_mul_ps(a0, b1);
 | |
|     __m256 c5 = _mm256_mul_ps(a1, b1);
 | |
| 
 | |
|     a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(3, 3, 3, 3));
 | |
|     a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(3, 3, 3, 3));
 | |
|     b1 = _mm256_permute2f128_ps(u1, u1, 0x11);
 | |
|     __m256 c6 = _mm256_fmadd_ps(a0, b1, c4);
 | |
|     __m256 c7 = _mm256_fmadd_ps(a1, b1, c5);
 | |
| 
 | |
|     t0 = _mm256_add_ps(c2, c6);
 | |
|     t1 = _mm256_add_ps(c3, c7);
 | |
| 
 | |
|     // Transpose result
 | |
|     __m256 vTemp = _mm256_unpacklo_ps(t0, t1);
 | |
|     __m256 vTemp2 = _mm256_unpackhi_ps(t0, t1);
 | |
|     __m256 vTemp3 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x20);
 | |
|     __m256 vTemp4 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x31);
 | |
|     vTemp = _mm256_unpacklo_ps(vTemp3, vTemp4);
 | |
|     vTemp2 = _mm256_unpackhi_ps(vTemp3, vTemp4);
 | |
|     t0 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x20);
 | |
|     t1 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x31);
 | |
| 
 | |
|     XMMATRIX mResult;
 | |
|     mResult.r[0] = _mm256_castps256_ps128(t0);
 | |
|     mResult.r[1] = _mm256_extractf128_ps(t0, 1);
 | |
|     mResult.r[2] = _mm256_castps256_ps128(t1);
 | |
|     mResult.r[3] = _mm256_extractf128_ps(t1, 1);
 | |
|     return mResult;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     // Splat the component X,Y,Z then W
 | |
| #if defined(_XM_AVX_INTRINSICS_)
 | |
|     XMVECTOR vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[0]) + 0);
 | |
|     XMVECTOR vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[0]) + 1);
 | |
|     XMVECTOR vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[0]) + 2);
 | |
|     XMVECTOR vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[0]) + 3);
 | |
| #else
 | |
|     // Use vW to hold the original row
 | |
|     XMVECTOR vW = M1.r[0];
 | |
|     XMVECTOR vX = XM_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     XMVECTOR vY = XM_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     XMVECTOR vZ = XM_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     vW = XM_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
 | |
| #endif
 | |
|     // Perform the operation on the first row
 | |
|     vX = _mm_mul_ps(vX, M2.r[0]);
 | |
|     vY = _mm_mul_ps(vY, M2.r[1]);
 | |
|     vZ = _mm_mul_ps(vZ, M2.r[2]);
 | |
|     vW = _mm_mul_ps(vW, M2.r[3]);
 | |
|     // Perform a binary add to reduce cumulative errors
 | |
|     vX = _mm_add_ps(vX, vZ);
 | |
|     vY = _mm_add_ps(vY, vW);
 | |
|     vX = _mm_add_ps(vX, vY);
 | |
|     XMVECTOR r0 = vX;
 | |
|     // Repeat for the other 3 rows
 | |
| #if defined(_XM_AVX_INTRINSICS_)
 | |
|     vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[1]) + 0);
 | |
|     vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[1]) + 1);
 | |
|     vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[1]) + 2);
 | |
|     vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[1]) + 3);
 | |
| #else
 | |
|     vW = M1.r[1];
 | |
|     vX = XM_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     vY = XM_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     vZ = XM_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     vW = XM_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
 | |
| #endif
 | |
|     vX = _mm_mul_ps(vX, M2.r[0]);
 | |
|     vY = _mm_mul_ps(vY, M2.r[1]);
 | |
|     vZ = _mm_mul_ps(vZ, M2.r[2]);
 | |
|     vW = _mm_mul_ps(vW, M2.r[3]);
 | |
|     vX = _mm_add_ps(vX, vZ);
 | |
|     vY = _mm_add_ps(vY, vW);
 | |
|     vX = _mm_add_ps(vX, vY);
 | |
|     XMVECTOR r1 = vX;
 | |
| #if defined(_XM_AVX_INTRINSICS_)
 | |
|     vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[2]) + 0);
 | |
|     vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[2]) + 1);
 | |
|     vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[2]) + 2);
 | |
|     vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[2]) + 3);
 | |
| #else
 | |
|     vW = M1.r[2];
 | |
|     vX = XM_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     vY = XM_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     vZ = XM_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     vW = XM_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
 | |
| #endif
 | |
|     vX = _mm_mul_ps(vX, M2.r[0]);
 | |
|     vY = _mm_mul_ps(vY, M2.r[1]);
 | |
|     vZ = _mm_mul_ps(vZ, M2.r[2]);
 | |
|     vW = _mm_mul_ps(vW, M2.r[3]);
 | |
|     vX = _mm_add_ps(vX, vZ);
 | |
|     vY = _mm_add_ps(vY, vW);
 | |
|     vX = _mm_add_ps(vX, vY);
 | |
|     XMVECTOR r2 = vX;
 | |
| #if defined(_XM_AVX_INTRINSICS_)
 | |
|     vX = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[3]) + 0);
 | |
|     vY = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[3]) + 1);
 | |
|     vZ = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[3]) + 2);
 | |
|     vW = _mm_broadcast_ss(reinterpret_cast<const float*>(&M1.r[3]) + 3);
 | |
| #else
 | |
|     vW = M1.r[3];
 | |
|     vX = XM_PERMUTE_PS(vW, _MM_SHUFFLE(0, 0, 0, 0));
 | |
|     vY = XM_PERMUTE_PS(vW, _MM_SHUFFLE(1, 1, 1, 1));
 | |
|     vZ = XM_PERMUTE_PS(vW, _MM_SHUFFLE(2, 2, 2, 2));
 | |
|     vW = XM_PERMUTE_PS(vW, _MM_SHUFFLE(3, 3, 3, 3));
 | |
| #endif
 | |
|     vX = _mm_mul_ps(vX, M2.r[0]);
 | |
|     vY = _mm_mul_ps(vY, M2.r[1]);
 | |
|     vZ = _mm_mul_ps(vZ, M2.r[2]);
 | |
|     vW = _mm_mul_ps(vW, M2.r[3]);
 | |
|     vX = _mm_add_ps(vX, vZ);
 | |
|     vY = _mm_add_ps(vY, vW);
 | |
|     vX = _mm_add_ps(vX, vY);
 | |
|     XMVECTOR r3 = vX;
 | |
| 
 | |
|     // Transpose result
 | |
|     // x.x,x.y,y.x,y.y
 | |
|     XMVECTOR vTemp1 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(1, 0, 1, 0));
 | |
|     // x.z,x.w,y.z,y.w
 | |
|     XMVECTOR vTemp3 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     // z.x,z.y,w.x,w.y
 | |
|     XMVECTOR vTemp2 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(1, 0, 1, 0));
 | |
|     // z.z,z.w,w.z,w.w
 | |
|     XMVECTOR vTemp4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2));
 | |
| 
 | |
|     XMMATRIX mResult;
 | |
|     // x.x,y.x,z.x,w.x
 | |
|     mResult.r[0] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(2, 0, 2, 0));
 | |
|     // x.y,y.y,z.y,w.y
 | |
|     mResult.r[1] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(3, 1, 3, 1));
 | |
|     // x.z,y.z,z.z,w.z
 | |
|     mResult.r[2] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 0, 2, 0));
 | |
|     // x.w,y.w,z.w,w.w
 | |
|     mResult.r[3] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(3, 1, 3, 1));
 | |
|     return mResult;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixTranspose(FXMMATRIX M) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     // Original matrix:
 | |
|     //
 | |
|     //     m00m01m02m03
 | |
|     //     m10m11m12m13
 | |
|     //     m20m21m22m23
 | |
|     //     m30m31m32m33
 | |
| 
 | |
|     XMMATRIX P;
 | |
|     P.r[0] = XMVectorMergeXY(M.r[0], M.r[2]); // m00m20m01m21
 | |
|     P.r[1] = XMVectorMergeXY(M.r[1], M.r[3]); // m10m30m11m31
 | |
|     P.r[2] = XMVectorMergeZW(M.r[0], M.r[2]); // m02m22m03m23
 | |
|     P.r[3] = XMVectorMergeZW(M.r[1], M.r[3]); // m12m32m13m33
 | |
| 
 | |
|     XMMATRIX MT;
 | |
|     MT.r[0] = XMVectorMergeXY(P.r[0], P.r[1]); // m00m10m20m30
 | |
|     MT.r[1] = XMVectorMergeZW(P.r[0], P.r[1]); // m01m11m21m31
 | |
|     MT.r[2] = XMVectorMergeXY(P.r[2], P.r[3]); // m02m12m22m32
 | |
|     MT.r[3] = XMVectorMergeZW(P.r[2], P.r[3]); // m03m13m23m33
 | |
|     return MT;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float32x4x2_t P0 = vzipq_f32(M.r[0], M.r[2]);
 | |
|     float32x4x2_t P1 = vzipq_f32(M.r[1], M.r[3]);
 | |
| 
 | |
|     float32x4x2_t T0 = vzipq_f32(P0.val[0], P1.val[0]);
 | |
|     float32x4x2_t T1 = vzipq_f32(P0.val[1], P1.val[1]);
 | |
| 
 | |
|     XMMATRIX mResult;
 | |
|     mResult.r[0] = T0.val[0];
 | |
|     mResult.r[1] = T0.val[1];
 | |
|     mResult.r[2] = T1.val[0];
 | |
|     mResult.r[3] = T1.val[1];
 | |
|     return mResult;
 | |
| #elif defined(_XM_AVX2_INTRINSICS_)
 | |
|     __m256 t0 = _mm256_castps128_ps256(M.r[0]);
 | |
|     t0 = _mm256_insertf128_ps(t0, M.r[1], 1);
 | |
|     __m256 t1 = _mm256_castps128_ps256(M.r[2]);
 | |
|     t1 = _mm256_insertf128_ps(t1, M.r[3], 1);
 | |
| 
 | |
|     __m256 vTemp = _mm256_unpacklo_ps(t0, t1);
 | |
|     __m256 vTemp2 = _mm256_unpackhi_ps(t0, t1);
 | |
|     __m256 vTemp3 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x20);
 | |
|     __m256 vTemp4 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x31);
 | |
|     vTemp = _mm256_unpacklo_ps(vTemp3, vTemp4);
 | |
|     vTemp2 = _mm256_unpackhi_ps(vTemp3, vTemp4);
 | |
|     t0 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x20);
 | |
|     t1 = _mm256_permute2f128_ps(vTemp, vTemp2, 0x31);
 | |
| 
 | |
|     XMMATRIX mResult;
 | |
|     mResult.r[0] = _mm256_castps256_ps128(t0);
 | |
|     mResult.r[1] = _mm256_extractf128_ps(t0, 1);
 | |
|     mResult.r[2] = _mm256_castps256_ps128(t1);
 | |
|     mResult.r[3] = _mm256_extractf128_ps(t1, 1);
 | |
|     return mResult;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     // x.x,x.y,y.x,y.y
 | |
|     XMVECTOR vTemp1 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(1, 0, 1, 0));
 | |
|     // x.z,x.w,y.z,y.w
 | |
|     XMVECTOR vTemp3 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     // z.x,z.y,w.x,w.y
 | |
|     XMVECTOR vTemp2 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(1, 0, 1, 0));
 | |
|     // z.z,z.w,w.z,w.w
 | |
|     XMVECTOR vTemp4 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(3, 2, 3, 2));
 | |
| 
 | |
|     XMMATRIX mResult;
 | |
|     // x.x,y.x,z.x,w.x
 | |
|     mResult.r[0] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(2, 0, 2, 0));
 | |
|     // x.y,y.y,z.y,w.y
 | |
|     mResult.r[1] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(3, 1, 3, 1));
 | |
|     // x.z,y.z,z.z,w.z
 | |
|     mResult.r[2] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 0, 2, 0));
 | |
|     // x.w,y.w,z.w,w.w
 | |
|     mResult.r[3] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(3, 1, 3, 1));
 | |
|     return mResult;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Return the inverse and the determinant of a 4x4 matrix
 | |
| _Use_decl_annotations_
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixInverse
 | |
| (
 | |
|     XMVECTOR* pDeterminant,
 | |
|     FXMMATRIX  M
 | |
| ) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
 | |
| 
 | |
|     XMMATRIX MT = XMMatrixTranspose(M);
 | |
| 
 | |
|     XMVECTOR V0[4], V1[4];
 | |
|     V0[0] = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(MT.r[2]);
 | |
|     V1[0] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W>(MT.r[3]);
 | |
|     V0[1] = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(MT.r[0]);
 | |
|     V1[1] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W>(MT.r[1]);
 | |
|     V0[2] = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_0Z, XM_PERMUTE_1X, XM_PERMUTE_1Z>(MT.r[2], MT.r[0]);
 | |
|     V1[2] = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_1Y, XM_PERMUTE_1W>(MT.r[3], MT.r[1]);
 | |
| 
 | |
|     XMVECTOR D0 = XMVectorMultiply(V0[0], V1[0]);
 | |
|     XMVECTOR D1 = XMVectorMultiply(V0[1], V1[1]);
 | |
|     XMVECTOR D2 = XMVectorMultiply(V0[2], V1[2]);
 | |
| 
 | |
|     V0[0] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W>(MT.r[2]);
 | |
|     V1[0] = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(MT.r[3]);
 | |
|     V0[1] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W>(MT.r[0]);
 | |
|     V1[1] = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(MT.r[1]);
 | |
|     V0[2] = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_1Y, XM_PERMUTE_1W>(MT.r[2], MT.r[0]);
 | |
|     V1[2] = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_0Z, XM_PERMUTE_1X, XM_PERMUTE_1Z>(MT.r[3], MT.r[1]);
 | |
| 
 | |
|     D0 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], D0);
 | |
|     D1 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], D1);
 | |
|     D2 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], D2);
 | |
| 
 | |
|     V0[0] = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y>(MT.r[1]);
 | |
|     V1[0] = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_0X>(D0, D2);
 | |
|     V0[1] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_X>(MT.r[0]);
 | |
|     V1[1] = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_0Z>(D0, D2);
 | |
|     V0[2] = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y>(MT.r[3]);
 | |
|     V1[2] = XMVectorPermute<XM_PERMUTE_1W, XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_0X>(D1, D2);
 | |
|     V0[3] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_X>(MT.r[2]);
 | |
|     V1[3] = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_1W, XM_PERMUTE_0Y, XM_PERMUTE_0Z>(D1, D2);
 | |
| 
 | |
|     XMVECTOR C0 = XMVectorMultiply(V0[0], V1[0]);
 | |
|     XMVECTOR C2 = XMVectorMultiply(V0[1], V1[1]);
 | |
|     XMVECTOR C4 = XMVectorMultiply(V0[2], V1[2]);
 | |
|     XMVECTOR C6 = XMVectorMultiply(V0[3], V1[3]);
 | |
| 
 | |
|     V0[0] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Y, XM_SWIZZLE_Z>(MT.r[1]);
 | |
|     V1[0] = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_1X>(D0, D2);
 | |
|     V0[1] = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Y>(MT.r[0]);
 | |
|     V1[1] = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_0X>(D0, D2);
 | |
|     V0[2] = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Y, XM_SWIZZLE_Z>(MT.r[3]);
 | |
|     V1[2] = XMVectorPermute<XM_PERMUTE_0W, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_1Z>(D1, D2);
 | |
|     V0[3] = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_Z, XM_SWIZZLE_W, XM_SWIZZLE_Y>(MT.r[2]);
 | |
|     V1[3] = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1Z, XM_PERMUTE_0X>(D1, D2);
 | |
| 
 | |
|     C0 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], C0);
 | |
|     C2 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], C2);
 | |
|     C4 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], C4);
 | |
|     C6 = XMVectorNegativeMultiplySubtract(V0[3], V1[3], C6);
 | |
| 
 | |
|     V0[0] = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_X>(MT.r[1]);
 | |
|     V1[0] = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_1Y, XM_PERMUTE_1X, XM_PERMUTE_0Z>(D0, D2);
 | |
|     V0[1] = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Z>(MT.r[0]);
 | |
|     V1[1] = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_1X>(D0, D2);
 | |
|     V0[2] = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_W, XM_SWIZZLE_X>(MT.r[3]);
 | |
|     V1[2] = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_1W, XM_PERMUTE_1Z, XM_PERMUTE_0Z>(D1, D2);
 | |
|     V0[3] = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_W, XM_SWIZZLE_X, XM_SWIZZLE_Z>(MT.r[2]);
 | |
|     V1[3] = XMVectorPermute<XM_PERMUTE_1W, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_1Z>(D1, D2);
 | |
| 
 | |
|     XMVECTOR C1 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], C0);
 | |
|     C0 = XMVectorMultiplyAdd(V0[0], V1[0], C0);
 | |
|     XMVECTOR C3 = XMVectorMultiplyAdd(V0[1], V1[1], C2);
 | |
|     C2 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], C2);
 | |
|     XMVECTOR C5 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], C4);
 | |
|     C4 = XMVectorMultiplyAdd(V0[2], V1[2], C4);
 | |
|     XMVECTOR C7 = XMVectorMultiplyAdd(V0[3], V1[3], C6);
 | |
|     C6 = XMVectorNegativeMultiplySubtract(V0[3], V1[3], C6);
 | |
| 
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = XMVectorSelect(C0, C1, g_XMSelect0101.v);
 | |
|     R.r[1] = XMVectorSelect(C2, C3, g_XMSelect0101.v);
 | |
|     R.r[2] = XMVectorSelect(C4, C5, g_XMSelect0101.v);
 | |
|     R.r[3] = XMVectorSelect(C6, C7, g_XMSelect0101.v);
 | |
| 
 | |
|     XMVECTOR Determinant = XMVector4Dot(R.r[0], MT.r[0]);
 | |
| 
 | |
|     if (pDeterminant != nullptr)
 | |
|         *pDeterminant = Determinant;
 | |
| 
 | |
|     XMVECTOR Reciprocal = XMVectorReciprocal(Determinant);
 | |
| 
 | |
|     XMMATRIX Result;
 | |
|     Result.r[0] = XMVectorMultiply(R.r[0], Reciprocal);
 | |
|     Result.r[1] = XMVectorMultiply(R.r[1], Reciprocal);
 | |
|     Result.r[2] = XMVectorMultiply(R.r[2], Reciprocal);
 | |
|     Result.r[3] = XMVectorMultiply(R.r[3], Reciprocal);
 | |
|     return Result;
 | |
| 
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     // Transpose matrix
 | |
|     XMVECTOR vTemp1 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(1, 0, 1, 0));
 | |
|     XMVECTOR vTemp3 = _mm_shuffle_ps(M.r[0], M.r[1], _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     XMVECTOR vTemp2 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(1, 0, 1, 0));
 | |
|     XMVECTOR vTemp4 = _mm_shuffle_ps(M.r[2], M.r[3], _MM_SHUFFLE(3, 2, 3, 2));
 | |
| 
 | |
|     XMMATRIX MT;
 | |
|     MT.r[0] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(2, 0, 2, 0));
 | |
|     MT.r[1] = _mm_shuffle_ps(vTemp1, vTemp2, _MM_SHUFFLE(3, 1, 3, 1));
 | |
|     MT.r[2] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(2, 0, 2, 0));
 | |
|     MT.r[3] = _mm_shuffle_ps(vTemp3, vTemp4, _MM_SHUFFLE(3, 1, 3, 1));
 | |
| 
 | |
|     XMVECTOR V00 = XM_PERMUTE_PS(MT.r[2], _MM_SHUFFLE(1, 1, 0, 0));
 | |
|     XMVECTOR V10 = XM_PERMUTE_PS(MT.r[3], _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     XMVECTOR V01 = XM_PERMUTE_PS(MT.r[0], _MM_SHUFFLE(1, 1, 0, 0));
 | |
|     XMVECTOR V11 = XM_PERMUTE_PS(MT.r[1], _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     XMVECTOR V02 = _mm_shuffle_ps(MT.r[2], MT.r[0], _MM_SHUFFLE(2, 0, 2, 0));
 | |
|     XMVECTOR V12 = _mm_shuffle_ps(MT.r[3], MT.r[1], _MM_SHUFFLE(3, 1, 3, 1));
 | |
| 
 | |
|     XMVECTOR D0 = _mm_mul_ps(V00, V10);
 | |
|     XMVECTOR D1 = _mm_mul_ps(V01, V11);
 | |
|     XMVECTOR D2 = _mm_mul_ps(V02, V12);
 | |
| 
 | |
|     V00 = XM_PERMUTE_PS(MT.r[2], _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     V10 = XM_PERMUTE_PS(MT.r[3], _MM_SHUFFLE(1, 1, 0, 0));
 | |
|     V01 = XM_PERMUTE_PS(MT.r[0], _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     V11 = XM_PERMUTE_PS(MT.r[1], _MM_SHUFFLE(1, 1, 0, 0));
 | |
|     V02 = _mm_shuffle_ps(MT.r[2], MT.r[0], _MM_SHUFFLE(3, 1, 3, 1));
 | |
|     V12 = _mm_shuffle_ps(MT.r[3], MT.r[1], _MM_SHUFFLE(2, 0, 2, 0));
 | |
| 
 | |
|     D0 = XM_FNMADD_PS(V00, V10, D0);
 | |
|     D1 = XM_FNMADD_PS(V01, V11, D1);
 | |
|     D2 = XM_FNMADD_PS(V02, V12, D2);
 | |
|     // V11 = D0Y,D0W,D2Y,D2Y
 | |
|     V11 = _mm_shuffle_ps(D0, D2, _MM_SHUFFLE(1, 1, 3, 1));
 | |
|     V00 = XM_PERMUTE_PS(MT.r[1], _MM_SHUFFLE(1, 0, 2, 1));
 | |
|     V10 = _mm_shuffle_ps(V11, D0, _MM_SHUFFLE(0, 3, 0, 2));
 | |
|     V01 = XM_PERMUTE_PS(MT.r[0], _MM_SHUFFLE(0, 1, 0, 2));
 | |
|     V11 = _mm_shuffle_ps(V11, D0, _MM_SHUFFLE(2, 1, 2, 1));
 | |
|     // V13 = D1Y,D1W,D2W,D2W
 | |
|     XMVECTOR V13 = _mm_shuffle_ps(D1, D2, _MM_SHUFFLE(3, 3, 3, 1));
 | |
|     V02 = XM_PERMUTE_PS(MT.r[3], _MM_SHUFFLE(1, 0, 2, 1));
 | |
|     V12 = _mm_shuffle_ps(V13, D1, _MM_SHUFFLE(0, 3, 0, 2));
 | |
|     XMVECTOR V03 = XM_PERMUTE_PS(MT.r[2], _MM_SHUFFLE(0, 1, 0, 2));
 | |
|     V13 = _mm_shuffle_ps(V13, D1, _MM_SHUFFLE(2, 1, 2, 1));
 | |
| 
 | |
|     XMVECTOR C0 = _mm_mul_ps(V00, V10);
 | |
|     XMVECTOR C2 = _mm_mul_ps(V01, V11);
 | |
|     XMVECTOR C4 = _mm_mul_ps(V02, V12);
 | |
|     XMVECTOR C6 = _mm_mul_ps(V03, V13);
 | |
| 
 | |
|     // V11 = D0X,D0Y,D2X,D2X
 | |
|     V11 = _mm_shuffle_ps(D0, D2, _MM_SHUFFLE(0, 0, 1, 0));
 | |
|     V00 = XM_PERMUTE_PS(MT.r[1], _MM_SHUFFLE(2, 1, 3, 2));
 | |
|     V10 = _mm_shuffle_ps(D0, V11, _MM_SHUFFLE(2, 1, 0, 3));
 | |
|     V01 = XM_PERMUTE_PS(MT.r[0], _MM_SHUFFLE(1, 3, 2, 3));
 | |
|     V11 = _mm_shuffle_ps(D0, V11, _MM_SHUFFLE(0, 2, 1, 2));
 | |
|     // V13 = D1X,D1Y,D2Z,D2Z
 | |
|     V13 = _mm_shuffle_ps(D1, D2, _MM_SHUFFLE(2, 2, 1, 0));
 | |
|     V02 = XM_PERMUTE_PS(MT.r[3], _MM_SHUFFLE(2, 1, 3, 2));
 | |
|     V12 = _mm_shuffle_ps(D1, V13, _MM_SHUFFLE(2, 1, 0, 3));
 | |
|     V03 = XM_PERMUTE_PS(MT.r[2], _MM_SHUFFLE(1, 3, 2, 3));
 | |
|     V13 = _mm_shuffle_ps(D1, V13, _MM_SHUFFLE(0, 2, 1, 2));
 | |
| 
 | |
|     C0 = XM_FNMADD_PS(V00, V10, C0);
 | |
|     C2 = XM_FNMADD_PS(V01, V11, C2);
 | |
|     C4 = XM_FNMADD_PS(V02, V12, C4);
 | |
|     C6 = XM_FNMADD_PS(V03, V13, C6);
 | |
| 
 | |
|     V00 = XM_PERMUTE_PS(MT.r[1], _MM_SHUFFLE(0, 3, 0, 3));
 | |
|     // V10 = D0Z,D0Z,D2X,D2Y
 | |
|     V10 = _mm_shuffle_ps(D0, D2, _MM_SHUFFLE(1, 0, 2, 2));
 | |
|     V10 = XM_PERMUTE_PS(V10, _MM_SHUFFLE(0, 2, 3, 0));
 | |
|     V01 = XM_PERMUTE_PS(MT.r[0], _MM_SHUFFLE(2, 0, 3, 1));
 | |
|     // V11 = D0X,D0W,D2X,D2Y
 | |
|     V11 = _mm_shuffle_ps(D0, D2, _MM_SHUFFLE(1, 0, 3, 0));
 | |
|     V11 = XM_PERMUTE_PS(V11, _MM_SHUFFLE(2, 1, 0, 3));
 | |
|     V02 = XM_PERMUTE_PS(MT.r[3], _MM_SHUFFLE(0, 3, 0, 3));
 | |
|     // V12 = D1Z,D1Z,D2Z,D2W
 | |
|     V12 = _mm_shuffle_ps(D1, D2, _MM_SHUFFLE(3, 2, 2, 2));
 | |
|     V12 = XM_PERMUTE_PS(V12, _MM_SHUFFLE(0, 2, 3, 0));
 | |
|     V03 = XM_PERMUTE_PS(MT.r[2], _MM_SHUFFLE(2, 0, 3, 1));
 | |
|     // V13 = D1X,D1W,D2Z,D2W
 | |
|     V13 = _mm_shuffle_ps(D1, D2, _MM_SHUFFLE(3, 2, 3, 0));
 | |
|     V13 = XM_PERMUTE_PS(V13, _MM_SHUFFLE(2, 1, 0, 3));
 | |
| 
 | |
|     V00 = _mm_mul_ps(V00, V10);
 | |
|     V01 = _mm_mul_ps(V01, V11);
 | |
|     V02 = _mm_mul_ps(V02, V12);
 | |
|     V03 = _mm_mul_ps(V03, V13);
 | |
|     XMVECTOR C1 = _mm_sub_ps(C0, V00);
 | |
|     C0 = _mm_add_ps(C0, V00);
 | |
|     XMVECTOR C3 = _mm_add_ps(C2, V01);
 | |
|     C2 = _mm_sub_ps(C2, V01);
 | |
|     XMVECTOR C5 = _mm_sub_ps(C4, V02);
 | |
|     C4 = _mm_add_ps(C4, V02);
 | |
|     XMVECTOR C7 = _mm_add_ps(C6, V03);
 | |
|     C6 = _mm_sub_ps(C6, V03);
 | |
| 
 | |
|     C0 = _mm_shuffle_ps(C0, C1, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     C2 = _mm_shuffle_ps(C2, C3, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     C4 = _mm_shuffle_ps(C4, C5, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     C6 = _mm_shuffle_ps(C6, C7, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     C0 = XM_PERMUTE_PS(C0, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     C2 = XM_PERMUTE_PS(C2, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     C4 = XM_PERMUTE_PS(C4, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     C6 = XM_PERMUTE_PS(C6, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     // Get the determinant
 | |
|     XMVECTOR vTemp = XMVector4Dot(C0, MT.r[0]);
 | |
|     if (pDeterminant != nullptr)
 | |
|         *pDeterminant = vTemp;
 | |
|     vTemp = _mm_div_ps(g_XMOne, vTemp);
 | |
|     XMMATRIX mResult;
 | |
|     mResult.r[0] = _mm_mul_ps(C0, vTemp);
 | |
|     mResult.r[1] = _mm_mul_ps(C2, vTemp);
 | |
|     mResult.r[2] = _mm_mul_ps(C4, vTemp);
 | |
|     mResult.r[3] = _mm_mul_ps(C6, vTemp);
 | |
|     return mResult;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixVectorTensorProduct
 | |
| (
 | |
|     FXMVECTOR V1,
 | |
|     FXMVECTOR V2
 | |
| ) noexcept
 | |
| {
 | |
|     XMMATRIX mResult;
 | |
|     mResult.r[0] = XMVectorMultiply(XMVectorSwizzle<0, 0, 0, 0>(V1), V2);
 | |
|     mResult.r[1] = XMVectorMultiply(XMVectorSwizzle<1, 1, 1, 1>(V1), V2);
 | |
|     mResult.r[2] = XMVectorMultiply(XMVectorSwizzle<2, 2, 2, 2>(V1), V2);
 | |
|     mResult.r[3] = XMVectorMultiply(XMVectorSwizzle<3, 3, 3, 3>(V1), V2);
 | |
|     return mResult;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMVECTOR XM_CALLCONV XMMatrixDeterminant(FXMMATRIX M) noexcept
 | |
| {
 | |
|     static const XMVECTORF32 Sign = { { { 1.0f, -1.0f, 1.0f, -1.0f } } };
 | |
| 
 | |
|     XMVECTOR V0 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[2]);
 | |
|     XMVECTOR V1 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[3]);
 | |
|     XMVECTOR V2 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[2]);
 | |
|     XMVECTOR V3 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[3]);
 | |
|     XMVECTOR V4 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[2]);
 | |
|     XMVECTOR V5 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[3]);
 | |
| 
 | |
|     XMVECTOR P0 = XMVectorMultiply(V0, V1);
 | |
|     XMVECTOR P1 = XMVectorMultiply(V2, V3);
 | |
|     XMVECTOR P2 = XMVectorMultiply(V4, V5);
 | |
| 
 | |
|     V0 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[2]);
 | |
|     V1 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[3]);
 | |
|     V2 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[2]);
 | |
|     V3 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[3]);
 | |
|     V4 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[2]);
 | |
|     V5 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[3]);
 | |
| 
 | |
|     P0 = XMVectorNegativeMultiplySubtract(V0, V1, P0);
 | |
|     P1 = XMVectorNegativeMultiplySubtract(V2, V3, P1);
 | |
|     P2 = XMVectorNegativeMultiplySubtract(V4, V5, P2);
 | |
| 
 | |
|     V0 = XMVectorSwizzle<XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_W, XM_SWIZZLE_Z>(M.r[1]);
 | |
|     V1 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Y>(M.r[1]);
 | |
|     V2 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_X>(M.r[1]);
 | |
| 
 | |
|     XMVECTOR S = XMVectorMultiply(M.r[0], Sign.v);
 | |
|     XMVECTOR R = XMVectorMultiply(V0, P0);
 | |
|     R = XMVectorNegativeMultiplySubtract(V1, P1, R);
 | |
|     R = XMVectorMultiplyAdd(V2, P2, R);
 | |
| 
 | |
|     return XMVector4Dot(S, R);
 | |
| }
 | |
| 
 | |
| #define XM3RANKDECOMPOSE(a, b, c, x, y, z)      \
 | |
|     if((x) < (y))                   \
 | |
|     {                               \
 | |
|         if((y) < (z))               \
 | |
|         {                           \
 | |
|             (a) = 2;                \
 | |
|             (b) = 1;                \
 | |
|             (c) = 0;                \
 | |
|         }                           \
 | |
|         else                        \
 | |
|         {                           \
 | |
|             (a) = 1;                \
 | |
|                                     \
 | |
|             if((x) < (z))           \
 | |
|             {                       \
 | |
|                 (b) = 2;            \
 | |
|                 (c) = 0;            \
 | |
|             }                       \
 | |
|             else                    \
 | |
|             {                       \
 | |
|                 (b) = 0;            \
 | |
|                 (c) = 2;            \
 | |
|             }                       \
 | |
|         }                           \
 | |
|     }                               \
 | |
|     else                            \
 | |
|     {                               \
 | |
|         if((x) < (z))               \
 | |
|         {                           \
 | |
|             (a) = 2;                \
 | |
|             (b) = 0;                \
 | |
|             (c) = 1;                \
 | |
|         }                           \
 | |
|         else                        \
 | |
|         {                           \
 | |
|             (a) = 0;                \
 | |
|                                     \
 | |
|             if((y) < (z))           \
 | |
|             {                       \
 | |
|                 (b) = 2;            \
 | |
|                 (c) = 1;            \
 | |
|             }                       \
 | |
|             else                    \
 | |
|             {                       \
 | |
|                 (b) = 1;            \
 | |
|                 (c) = 2;            \
 | |
|             }                       \
 | |
|         }                           \
 | |
|     }
 | |
| 
 | |
| #define XM3_DECOMP_EPSILON 0.0001f
 | |
| 
 | |
| _Use_decl_annotations_
 | |
| inline bool XM_CALLCONV XMMatrixDecompose
 | |
| (
 | |
|     XMVECTOR* outScale,
 | |
|     XMVECTOR* outRotQuat,
 | |
|     XMVECTOR* outTrans,
 | |
|     FXMMATRIX M
 | |
| ) noexcept
 | |
| {
 | |
|     static const XMVECTOR* pvCanonicalBasis[3] = {
 | |
|         &g_XMIdentityR0.v,
 | |
|         &g_XMIdentityR1.v,
 | |
|         &g_XMIdentityR2.v
 | |
|     };
 | |
| 
 | |
|     assert(outScale != nullptr);
 | |
|     assert(outRotQuat != nullptr);
 | |
|     assert(outTrans != nullptr);
 | |
| 
 | |
|     // Get the translation
 | |
|     outTrans[0] = M.r[3];
 | |
| 
 | |
|     XMVECTOR* ppvBasis[3];
 | |
|     XMMATRIX matTemp;
 | |
|     ppvBasis[0] = &matTemp.r[0];
 | |
|     ppvBasis[1] = &matTemp.r[1];
 | |
|     ppvBasis[2] = &matTemp.r[2];
 | |
| 
 | |
|     matTemp.r[0] = M.r[0];
 | |
|     matTemp.r[1] = M.r[1];
 | |
|     matTemp.r[2] = M.r[2];
 | |
|     matTemp.r[3] = g_XMIdentityR3.v;
 | |
| 
 | |
|     auto pfScales = reinterpret_cast<float*>(outScale);
 | |
| 
 | |
|     size_t a, b, c;
 | |
|     XMVectorGetXPtr(&pfScales[0], XMVector3Length(ppvBasis[0][0]));
 | |
|     XMVectorGetXPtr(&pfScales[1], XMVector3Length(ppvBasis[1][0]));
 | |
|     XMVectorGetXPtr(&pfScales[2], XMVector3Length(ppvBasis[2][0]));
 | |
|     pfScales[3] = 0.f;
 | |
| 
 | |
|     XM3RANKDECOMPOSE(a, b, c, pfScales[0], pfScales[1], pfScales[2])
 | |
| 
 | |
|         if (pfScales[a] < XM3_DECOMP_EPSILON)
 | |
|         {
 | |
|             ppvBasis[a][0] = pvCanonicalBasis[a][0];
 | |
|         }
 | |
|     ppvBasis[a][0] = XMVector3Normalize(ppvBasis[a][0]);
 | |
| 
 | |
|     if (pfScales[b] < XM3_DECOMP_EPSILON)
 | |
|     {
 | |
|         size_t aa, bb, cc;
 | |
|         float fAbsX, fAbsY, fAbsZ;
 | |
| 
 | |
|         fAbsX = fabsf(XMVectorGetX(ppvBasis[a][0]));
 | |
|         fAbsY = fabsf(XMVectorGetY(ppvBasis[a][0]));
 | |
|         fAbsZ = fabsf(XMVectorGetZ(ppvBasis[a][0]));
 | |
| 
 | |
|         XM3RANKDECOMPOSE(aa, bb, cc, fAbsX, fAbsY, fAbsZ)
 | |
| 
 | |
|             ppvBasis[b][0] = XMVector3Cross(ppvBasis[a][0], pvCanonicalBasis[cc][0]);
 | |
|     }
 | |
| 
 | |
|     ppvBasis[b][0] = XMVector3Normalize(ppvBasis[b][0]);
 | |
| 
 | |
|     if (pfScales[c] < XM3_DECOMP_EPSILON)
 | |
|     {
 | |
|         ppvBasis[c][0] = XMVector3Cross(ppvBasis[a][0], ppvBasis[b][0]);
 | |
|     }
 | |
| 
 | |
|     ppvBasis[c][0] = XMVector3Normalize(ppvBasis[c][0]);
 | |
| 
 | |
|     float fDet = XMVectorGetX(XMMatrixDeterminant(matTemp));
 | |
| 
 | |
|     // use Kramer's rule to check for handedness of coordinate system
 | |
|     if (fDet < 0.0f)
 | |
|     {
 | |
|         // switch coordinate system by negating the scale and inverting the basis vector on the x-axis
 | |
|         pfScales[a] = -pfScales[a];
 | |
|         ppvBasis[a][0] = XMVectorNegate(ppvBasis[a][0]);
 | |
| 
 | |
|         fDet = -fDet;
 | |
|     }
 | |
| 
 | |
|     fDet -= 1.0f;
 | |
|     fDet *= fDet;
 | |
| 
 | |
|     if (XM3_DECOMP_EPSILON < fDet)
 | |
|     {
 | |
|         // Non-SRT matrix encountered
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // generate the quaternion from the matrix
 | |
|     outRotQuat[0] = XMQuaternionRotationMatrix(matTemp);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #undef XM3_DECOMP_EPSILON
 | |
| #undef XM3RANKDECOMPOSE
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Transformation operations
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixIdentity() noexcept
 | |
| {
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = g_XMIdentityR0.v;
 | |
|     M.r[1] = g_XMIdentityR1.v;
 | |
|     M.r[2] = g_XMIdentityR2.v;
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixSet
 | |
| (
 | |
|     float m00, float m01, float m02, float m03,
 | |
|     float m10, float m11, float m12, float m13,
 | |
|     float m20, float m21, float m22, float m23,
 | |
|     float m30, float m31, float m32, float m33
 | |
| ) noexcept
 | |
| {
 | |
|     XMMATRIX M;
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     M.m[0][0] = m00; M.m[0][1] = m01; M.m[0][2] = m02; M.m[0][3] = m03;
 | |
|     M.m[1][0] = m10; M.m[1][1] = m11; M.m[1][2] = m12; M.m[1][3] = m13;
 | |
|     M.m[2][0] = m20; M.m[2][1] = m21; M.m[2][2] = m22; M.m[2][3] = m23;
 | |
|     M.m[3][0] = m30; M.m[3][1] = m31; M.m[3][2] = m32; M.m[3][3] = m33;
 | |
| #else
 | |
|     M.r[0] = XMVectorSet(m00, m01, m02, m03);
 | |
|     M.r[1] = XMVectorSet(m10, m11, m12, m13);
 | |
|     M.r[2] = XMVectorSet(m20, m21, m22, m23);
 | |
|     M.r[3] = XMVectorSet(m30, m31, m32, m33);
 | |
| #endif
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixTranslation
 | |
| (
 | |
|     float OffsetX,
 | |
|     float OffsetY,
 | |
|     float OffsetZ
 | |
| ) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = 1.0f;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = 1.0f;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = 1.0f;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = OffsetX;
 | |
|     M.m[3][1] = OffsetY;
 | |
|     M.m[3][2] = OffsetZ;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_SSE_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = g_XMIdentityR0.v;
 | |
|     M.r[1] = g_XMIdentityR1.v;
 | |
|     M.r[2] = g_XMIdentityR2.v;
 | |
|     M.r[3] = XMVectorSet(OffsetX, OffsetY, OffsetZ, 1.f);
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixTranslationFromVector(FXMVECTOR Offset) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = 1.0f;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = 1.0f;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = 1.0f;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = Offset.vector4_f32[0];
 | |
|     M.m[3][1] = Offset.vector4_f32[1];
 | |
|     M.m[3][2] = Offset.vector4_f32[2];
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_SSE_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = g_XMIdentityR0.v;
 | |
|     M.r[1] = g_XMIdentityR1.v;
 | |
|     M.r[2] = g_XMIdentityR2.v;
 | |
|     M.r[3] = XMVectorSelect(g_XMIdentityR3.v, Offset, g_XMSelect1110.v);
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixScaling
 | |
| (
 | |
|     float ScaleX,
 | |
|     float ScaleY,
 | |
|     float ScaleZ
 | |
| ) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = ScaleX;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = ScaleY;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = ScaleZ;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = 0.0f;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     const XMVECTOR Zero = vdupq_n_f32(0);
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(ScaleX, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(ScaleY, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(ScaleZ, Zero, 2);
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = _mm_set_ps(0, 0, 0, ScaleX);
 | |
|     M.r[1] = _mm_set_ps(0, 0, ScaleY, 0);
 | |
|     M.r[2] = _mm_set_ps(0, ScaleZ, 0, 0);
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixScalingFromVector(FXMVECTOR Scale) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = Scale.vector4_f32[0];
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = Scale.vector4_f32[1];
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = Scale.vector4_f32[2];
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = 0.0f;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(Scale), g_XMMaskX));
 | |
|     M.r[1] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(Scale), g_XMMaskY));
 | |
|     M.r[2] = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(Scale), g_XMMaskZ));
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = _mm_and_ps(Scale, g_XMMaskX);
 | |
|     M.r[1] = _mm_and_ps(Scale, g_XMMaskY);
 | |
|     M.r[2] = _mm_and_ps(Scale, g_XMMaskZ);
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixRotationX(float Angle) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float    fSinAngle;
 | |
|     float    fCosAngle;
 | |
|     XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = 1.0f;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = fCosAngle;
 | |
|     M.m[1][2] = fSinAngle;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = -fSinAngle;
 | |
|     M.m[2][2] = fCosAngle;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = 0.0f;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float    fSinAngle;
 | |
|     float    fCosAngle;
 | |
|     XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
 | |
| 
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
| 
 | |
|     float32x4_t T1 = vsetq_lane_f32(fCosAngle, Zero, 1);
 | |
|     T1 = vsetq_lane_f32(fSinAngle, T1, 2);
 | |
| 
 | |
|     float32x4_t T2 = vsetq_lane_f32(-fSinAngle, Zero, 1);
 | |
|     T2 = vsetq_lane_f32(fCosAngle, T2, 2);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = g_XMIdentityR0.v;
 | |
|     M.r[1] = T1;
 | |
|     M.r[2] = T2;
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     float    SinAngle;
 | |
|     float    CosAngle;
 | |
|     XMScalarSinCos(&SinAngle, &CosAngle, Angle);
 | |
| 
 | |
|     XMVECTOR vSin = _mm_set_ss(SinAngle);
 | |
|     XMVECTOR vCos = _mm_set_ss(CosAngle);
 | |
|     // x = 0,y = cos,z = sin, w = 0
 | |
|     vCos = _mm_shuffle_ps(vCos, vSin, _MM_SHUFFLE(3, 0, 0, 3));
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = g_XMIdentityR0;
 | |
|     M.r[1] = vCos;
 | |
|     // x = 0,y = sin,z = cos, w = 0
 | |
|     vCos = XM_PERMUTE_PS(vCos, _MM_SHUFFLE(3, 1, 2, 0));
 | |
|     // x = 0,y = -sin,z = cos, w = 0
 | |
|     vCos = _mm_mul_ps(vCos, g_XMNegateY);
 | |
|     M.r[2] = vCos;
 | |
|     M.r[3] = g_XMIdentityR3;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixRotationY(float Angle) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float    fSinAngle;
 | |
|     float    fCosAngle;
 | |
|     XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = fCosAngle;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = -fSinAngle;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = 1.0f;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = fSinAngle;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fCosAngle;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = 0.0f;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float    fSinAngle;
 | |
|     float    fCosAngle;
 | |
|     XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
 | |
| 
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
| 
 | |
|     float32x4_t T0 = vsetq_lane_f32(fCosAngle, Zero, 0);
 | |
|     T0 = vsetq_lane_f32(-fSinAngle, T0, 2);
 | |
| 
 | |
|     float32x4_t T2 = vsetq_lane_f32(fSinAngle, Zero, 0);
 | |
|     T2 = vsetq_lane_f32(fCosAngle, T2, 2);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = T0;
 | |
|     M.r[1] = g_XMIdentityR1.v;
 | |
|     M.r[2] = T2;
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     float    SinAngle;
 | |
|     float    CosAngle;
 | |
|     XMScalarSinCos(&SinAngle, &CosAngle, Angle);
 | |
| 
 | |
|     XMVECTOR vSin = _mm_set_ss(SinAngle);
 | |
|     XMVECTOR vCos = _mm_set_ss(CosAngle);
 | |
|     // x = sin,y = 0,z = cos, w = 0
 | |
|     vSin = _mm_shuffle_ps(vSin, vCos, _MM_SHUFFLE(3, 0, 3, 0));
 | |
|     XMMATRIX M;
 | |
|     M.r[2] = vSin;
 | |
|     M.r[1] = g_XMIdentityR1;
 | |
|     // x = cos,y = 0,z = sin, w = 0
 | |
|     vSin = XM_PERMUTE_PS(vSin, _MM_SHUFFLE(3, 0, 1, 2));
 | |
|     // x = cos,y = 0,z = -sin, w = 0
 | |
|     vSin = _mm_mul_ps(vSin, g_XMNegateZ);
 | |
|     M.r[0] = vSin;
 | |
|     M.r[3] = g_XMIdentityR3;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixRotationZ(float Angle) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float    fSinAngle;
 | |
|     float    fCosAngle;
 | |
|     XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = fCosAngle;
 | |
|     M.m[0][1] = fSinAngle;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = -fSinAngle;
 | |
|     M.m[1][1] = fCosAngle;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = 1.0f;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = 0.0f;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float    fSinAngle;
 | |
|     float    fCosAngle;
 | |
|     XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
 | |
| 
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
| 
 | |
|     float32x4_t T0 = vsetq_lane_f32(fCosAngle, Zero, 0);
 | |
|     T0 = vsetq_lane_f32(fSinAngle, T0, 1);
 | |
| 
 | |
|     float32x4_t T1 = vsetq_lane_f32(-fSinAngle, Zero, 0);
 | |
|     T1 = vsetq_lane_f32(fCosAngle, T1, 1);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = T0;
 | |
|     M.r[1] = T1;
 | |
|     M.r[2] = g_XMIdentityR2.v;
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     float    SinAngle;
 | |
|     float    CosAngle;
 | |
|     XMScalarSinCos(&SinAngle, &CosAngle, Angle);
 | |
| 
 | |
|     XMVECTOR vSin = _mm_set_ss(SinAngle);
 | |
|     XMVECTOR vCos = _mm_set_ss(CosAngle);
 | |
|     // x = cos,y = sin,z = 0, w = 0
 | |
|     vCos = _mm_unpacklo_ps(vCos, vSin);
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vCos;
 | |
|     // x = sin,y = cos,z = 0, w = 0
 | |
|     vCos = XM_PERMUTE_PS(vCos, _MM_SHUFFLE(3, 2, 0, 1));
 | |
|     // x = cos,y = -sin,z = 0, w = 0
 | |
|     vCos = _mm_mul_ps(vCos, g_XMNegateX);
 | |
|     M.r[1] = vCos;
 | |
|     M.r[2] = g_XMIdentityR2;
 | |
|     M.r[3] = g_XMIdentityR3;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixRotationRollPitchYaw
 | |
| (
 | |
|     float Pitch,
 | |
|     float Yaw,
 | |
|     float Roll
 | |
| ) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     float cp = cosf(Pitch);
 | |
|     float sp = sinf(Pitch);
 | |
| 
 | |
|     float cy = cosf(Yaw);
 | |
|     float sy = sinf(Yaw);
 | |
| 
 | |
|     float cr = cosf(Roll);
 | |
|     float sr = sinf(Roll);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = cr * cy + sr * sp * sy;
 | |
|     M.m[0][1] = sr * cp;
 | |
|     M.m[0][2] = sr * sp * cy - cr * sy;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = cr * sp * sy - sr * cy;
 | |
|     M.m[1][1] = cr * cp;
 | |
|     M.m[1][2] = sr * sy + cr * sp * cy;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = cp * sy;
 | |
|     M.m[2][1] = -sp;
 | |
|     M.m[2][2] = cp * cy;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = 0.0f;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| #else
 | |
|     XMVECTOR Angles = XMVectorSet(Pitch, Yaw, Roll, 0.0f);
 | |
|     return XMMatrixRotationRollPitchYawFromVector(Angles);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixRotationRollPitchYawFromVector
 | |
| (
 | |
|     FXMVECTOR Angles // <Pitch, Yaw, Roll, undefined>
 | |
| ) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     float cp = cosf(Angles.vector4_f32[0]);
 | |
|     float sp = sinf(Angles.vector4_f32[0]);
 | |
| 
 | |
|     float cy = cosf(Angles.vector4_f32[1]);
 | |
|     float sy = sinf(Angles.vector4_f32[1]);
 | |
| 
 | |
|     float cr = cosf(Angles.vector4_f32[2]);
 | |
|     float sr = sinf(Angles.vector4_f32[2]);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = cr * cy + sr * sp * sy;
 | |
|     M.m[0][1] = sr * cp;
 | |
|     M.m[0][2] = sr * sp * cy - cr * sy;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = cr * sp * sy - sr * cy;
 | |
|     M.m[1][1] = cr * cp;
 | |
|     M.m[1][2] = sr * sy + cr * sp * cy;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = cp * sy;
 | |
|     M.m[2][1] = -sp;
 | |
|     M.m[2][2] = cp * cy;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = 0.0f;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| #else
 | |
|     static const XMVECTORF32  Sign = { { { 1.0f, -1.0f, -1.0f, 1.0f } } };
 | |
| 
 | |
|     XMVECTOR SinAngles, CosAngles;
 | |
|     XMVectorSinCos(&SinAngles, &CosAngles, Angles);
 | |
| 
 | |
|     XMVECTOR P0 = XMVectorPermute<XM_PERMUTE_1X, XM_PERMUTE_0Z, XM_PERMUTE_1Z, XM_PERMUTE_1X>(SinAngles, CosAngles);
 | |
|     XMVECTOR Y0 = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_1X, XM_PERMUTE_1Y>(SinAngles, CosAngles);
 | |
|     XMVECTOR P1 = XMVectorPermute<XM_PERMUTE_1Z, XM_PERMUTE_0Z, XM_PERMUTE_1Z, XM_PERMUTE_0Z>(SinAngles, CosAngles);
 | |
|     XMVECTOR Y1 = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_0Y>(SinAngles, CosAngles);
 | |
|     XMVECTOR P2 = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_1Z, XM_PERMUTE_0Z, XM_PERMUTE_1Z>(SinAngles, CosAngles);
 | |
|     XMVECTOR P3 = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_0Y, XM_PERMUTE_1Y, XM_PERMUTE_1Y>(SinAngles, CosAngles);
 | |
|     XMVECTOR Y2 = XMVectorSplatX(SinAngles);
 | |
|     XMVECTOR NS = XMVectorNegate(SinAngles);
 | |
| 
 | |
|     XMVECTOR Q0 = XMVectorMultiply(P0, Y0);
 | |
|     XMVECTOR Q1 = XMVectorMultiply(P1, Sign.v);
 | |
|     Q1 = XMVectorMultiply(Q1, Y1);
 | |
|     XMVECTOR Q2 = XMVectorMultiply(P2, Y2);
 | |
|     Q2 = XMVectorMultiplyAdd(Q2, P3, Q1);
 | |
| 
 | |
|     XMVECTOR V0 = XMVectorPermute<XM_PERMUTE_1X, XM_PERMUTE_0Y, XM_PERMUTE_1Z, XM_PERMUTE_0W>(Q0, Q2);
 | |
|     XMVECTOR V1 = XMVectorPermute<XM_PERMUTE_1Y, XM_PERMUTE_0Z, XM_PERMUTE_1W, XM_PERMUTE_0W>(Q0, Q2);
 | |
|     XMVECTOR V2 = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_0W, XM_PERMUTE_0W>(Q0, NS);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = XMVectorSelect(g_XMZero, V0, g_XMSelect1110.v);
 | |
|     M.r[1] = XMVectorSelect(g_XMZero, V1, g_XMSelect1110.v);
 | |
|     M.r[2] = XMVectorSelect(g_XMZero, V2, g_XMSelect1110.v);
 | |
|     M.r[3] = g_XMIdentityR3;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixRotationNormal
 | |
| (
 | |
|     FXMVECTOR NormalAxis,
 | |
|     float     Angle
 | |
| ) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_) || defined(_XM_ARM_NEON_INTRINSICS_)
 | |
| 
 | |
|     float    fSinAngle;
 | |
|     float    fCosAngle;
 | |
|     XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
 | |
| 
 | |
|     XMVECTOR A = XMVectorSet(fSinAngle, fCosAngle, 1.0f - fCosAngle, 0.0f);
 | |
| 
 | |
|     XMVECTOR C2 = XMVectorSplatZ(A);
 | |
|     XMVECTOR C1 = XMVectorSplatY(A);
 | |
|     XMVECTOR C0 = XMVectorSplatX(A);
 | |
| 
 | |
|     XMVECTOR N0 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_W>(NormalAxis);
 | |
|     XMVECTOR N1 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_W>(NormalAxis);
 | |
| 
 | |
|     XMVECTOR V0 = XMVectorMultiply(C2, N0);
 | |
|     V0 = XMVectorMultiply(V0, N1);
 | |
| 
 | |
|     XMVECTOR R0 = XMVectorMultiply(C2, NormalAxis);
 | |
|     R0 = XMVectorMultiplyAdd(R0, NormalAxis, C1);
 | |
| 
 | |
|     XMVECTOR R1 = XMVectorMultiplyAdd(C0, NormalAxis, V0);
 | |
|     XMVECTOR R2 = XMVectorNegativeMultiplySubtract(C0, NormalAxis, V0);
 | |
| 
 | |
|     V0 = XMVectorSelect(A, R0, g_XMSelect1110.v);
 | |
|     XMVECTOR V1 = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_1Y, XM_PERMUTE_1Z, XM_PERMUTE_0X>(R1, R2);
 | |
|     XMVECTOR V2 = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_0Y, XM_PERMUTE_1X>(R1, R2);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0W>(V0, V1);
 | |
|     M.r[1] = XMVectorPermute<XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_1W, XM_PERMUTE_0W>(V0, V1);
 | |
|     M.r[2] = XMVectorPermute<XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z, XM_PERMUTE_0W>(V0, V2);
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     float    fSinAngle;
 | |
|     float    fCosAngle;
 | |
|     XMScalarSinCos(&fSinAngle, &fCosAngle, Angle);
 | |
| 
 | |
|     XMVECTOR C2 = _mm_set_ps1(1.0f - fCosAngle);
 | |
|     XMVECTOR C1 = _mm_set_ps1(fCosAngle);
 | |
|     XMVECTOR C0 = _mm_set_ps1(fSinAngle);
 | |
| 
 | |
|     XMVECTOR N0 = XM_PERMUTE_PS(NormalAxis, _MM_SHUFFLE(3, 0, 2, 1));
 | |
|     XMVECTOR N1 = XM_PERMUTE_PS(NormalAxis, _MM_SHUFFLE(3, 1, 0, 2));
 | |
| 
 | |
|     XMVECTOR V0 = _mm_mul_ps(C2, N0);
 | |
|     V0 = _mm_mul_ps(V0, N1);
 | |
| 
 | |
|     XMVECTOR R0 = _mm_mul_ps(C2, NormalAxis);
 | |
|     R0 = _mm_mul_ps(R0, NormalAxis);
 | |
|     R0 = _mm_add_ps(R0, C1);
 | |
| 
 | |
|     XMVECTOR R1 = _mm_mul_ps(C0, NormalAxis);
 | |
|     R1 = _mm_add_ps(R1, V0);
 | |
|     XMVECTOR R2 = _mm_mul_ps(C0, NormalAxis);
 | |
|     R2 = _mm_sub_ps(V0, R2);
 | |
| 
 | |
|     V0 = _mm_and_ps(R0, g_XMMask3);
 | |
|     XMVECTOR V1 = _mm_shuffle_ps(R1, R2, _MM_SHUFFLE(2, 1, 2, 0));
 | |
|     V1 = XM_PERMUTE_PS(V1, _MM_SHUFFLE(0, 3, 2, 1));
 | |
|     XMVECTOR V2 = _mm_shuffle_ps(R1, R2, _MM_SHUFFLE(0, 0, 1, 1));
 | |
|     V2 = XM_PERMUTE_PS(V2, _MM_SHUFFLE(2, 0, 2, 0));
 | |
| 
 | |
|     R2 = _mm_shuffle_ps(V0, V1, _MM_SHUFFLE(1, 0, 3, 0));
 | |
|     R2 = XM_PERMUTE_PS(R2, _MM_SHUFFLE(1, 3, 2, 0));
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = R2;
 | |
| 
 | |
|     R2 = _mm_shuffle_ps(V0, V1, _MM_SHUFFLE(3, 2, 3, 1));
 | |
|     R2 = XM_PERMUTE_PS(R2, _MM_SHUFFLE(1, 3, 0, 2));
 | |
|     M.r[1] = R2;
 | |
| 
 | |
|     V2 = _mm_shuffle_ps(V2, V0, _MM_SHUFFLE(3, 2, 1, 0));
 | |
|     M.r[2] = V2;
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixRotationAxis
 | |
| (
 | |
|     FXMVECTOR Axis,
 | |
|     float     Angle
 | |
| ) noexcept
 | |
| {
 | |
|     assert(!XMVector3Equal(Axis, XMVectorZero()));
 | |
|     assert(!XMVector3IsInfinite(Axis));
 | |
| 
 | |
|     XMVECTOR Normal = XMVector3Normalize(Axis);
 | |
|     return XMMatrixRotationNormal(Normal, Angle);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixRotationQuaternion(FXMVECTOR Quaternion) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float qx = Quaternion.vector4_f32[0];
 | |
|     float qxx = qx * qx;
 | |
| 
 | |
|     float qy = Quaternion.vector4_f32[1];
 | |
|     float qyy = qy * qy;
 | |
| 
 | |
|     float qz = Quaternion.vector4_f32[2];
 | |
|     float qzz = qz * qz;
 | |
| 
 | |
|     float qw = Quaternion.vector4_f32[3];
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = 1.f - 2.f * qyy - 2.f * qzz;
 | |
|     M.m[0][1] = 2.f * qx * qy + 2.f * qz * qw;
 | |
|     M.m[0][2] = 2.f * qx * qz - 2.f * qy * qw;
 | |
|     M.m[0][3] = 0.f;
 | |
| 
 | |
|     M.m[1][0] = 2.f * qx * qy - 2.f * qz * qw;
 | |
|     M.m[1][1] = 1.f - 2.f * qxx - 2.f * qzz;
 | |
|     M.m[1][2] = 2.f * qy * qz + 2.f * qx * qw;
 | |
|     M.m[1][3] = 0.f;
 | |
| 
 | |
|     M.m[2][0] = 2.f * qx * qz + 2.f * qy * qw;
 | |
|     M.m[2][1] = 2.f * qy * qz - 2.f * qx * qw;
 | |
|     M.m[2][2] = 1.f - 2.f * qxx - 2.f * qyy;
 | |
|     M.m[2][3] = 0.f;
 | |
| 
 | |
|     M.m[3][0] = 0.f;
 | |
|     M.m[3][1] = 0.f;
 | |
|     M.m[3][2] = 0.f;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     static const XMVECTORF32 Constant1110 = { { { 1.0f, 1.0f, 1.0f, 0.0f } } };
 | |
| 
 | |
|     XMVECTOR Q0 = XMVectorAdd(Quaternion, Quaternion);
 | |
|     XMVECTOR Q1 = XMVectorMultiply(Quaternion, Q0);
 | |
| 
 | |
|     XMVECTOR V0 = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_1W>(Q1, Constant1110.v);
 | |
|     XMVECTOR V1 = XMVectorPermute<XM_PERMUTE_0Z, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1W>(Q1, Constant1110.v);
 | |
|     XMVECTOR R0 = XMVectorSubtract(Constant1110, V0);
 | |
|     R0 = XMVectorSubtract(R0, V1);
 | |
| 
 | |
|     V0 = XMVectorSwizzle<XM_SWIZZLE_X, XM_SWIZZLE_X, XM_SWIZZLE_Y, XM_SWIZZLE_W>(Quaternion);
 | |
|     V1 = XMVectorSwizzle<XM_SWIZZLE_Z, XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_W>(Q0);
 | |
|     V0 = XMVectorMultiply(V0, V1);
 | |
| 
 | |
|     V1 = XMVectorSplatW(Quaternion);
 | |
|     XMVECTOR V2 = XMVectorSwizzle<XM_SWIZZLE_Y, XM_SWIZZLE_Z, XM_SWIZZLE_X, XM_SWIZZLE_W>(Q0);
 | |
|     V1 = XMVectorMultiply(V1, V2);
 | |
| 
 | |
|     XMVECTOR R1 = XMVectorAdd(V0, V1);
 | |
|     XMVECTOR R2 = XMVectorSubtract(V0, V1);
 | |
| 
 | |
|     V0 = XMVectorPermute<XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z>(R1, R2);
 | |
|     V1 = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1Z, XM_PERMUTE_0X, XM_PERMUTE_1Z>(R1, R2);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = XMVectorPermute<XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0W>(R0, V0);
 | |
|     M.r[1] = XMVectorPermute<XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_1W, XM_PERMUTE_0W>(R0, V0);
 | |
|     M.r[2] = XMVectorPermute<XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z, XM_PERMUTE_0W>(R0, V1);
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     static const XMVECTORF32  Constant1110 = { { { 1.0f, 1.0f, 1.0f, 0.0f } } };
 | |
| 
 | |
|     XMVECTOR Q0 = _mm_add_ps(Quaternion, Quaternion);
 | |
|     XMVECTOR Q1 = _mm_mul_ps(Quaternion, Q0);
 | |
| 
 | |
|     XMVECTOR V0 = XM_PERMUTE_PS(Q1, _MM_SHUFFLE(3, 0, 0, 1));
 | |
|     V0 = _mm_and_ps(V0, g_XMMask3);
 | |
|     XMVECTOR V1 = XM_PERMUTE_PS(Q1, _MM_SHUFFLE(3, 1, 2, 2));
 | |
|     V1 = _mm_and_ps(V1, g_XMMask3);
 | |
|     XMVECTOR R0 = _mm_sub_ps(Constant1110, V0);
 | |
|     R0 = _mm_sub_ps(R0, V1);
 | |
| 
 | |
|     V0 = XM_PERMUTE_PS(Quaternion, _MM_SHUFFLE(3, 1, 0, 0));
 | |
|     V1 = XM_PERMUTE_PS(Q0, _MM_SHUFFLE(3, 2, 1, 2));
 | |
|     V0 = _mm_mul_ps(V0, V1);
 | |
| 
 | |
|     V1 = XM_PERMUTE_PS(Quaternion, _MM_SHUFFLE(3, 3, 3, 3));
 | |
|     XMVECTOR V2 = XM_PERMUTE_PS(Q0, _MM_SHUFFLE(3, 0, 2, 1));
 | |
|     V1 = _mm_mul_ps(V1, V2);
 | |
| 
 | |
|     XMVECTOR R1 = _mm_add_ps(V0, V1);
 | |
|     XMVECTOR R2 = _mm_sub_ps(V0, V1);
 | |
| 
 | |
|     V0 = _mm_shuffle_ps(R1, R2, _MM_SHUFFLE(1, 0, 2, 1));
 | |
|     V0 = XM_PERMUTE_PS(V0, _MM_SHUFFLE(1, 3, 2, 0));
 | |
|     V1 = _mm_shuffle_ps(R1, R2, _MM_SHUFFLE(2, 2, 0, 0));
 | |
|     V1 = XM_PERMUTE_PS(V1, _MM_SHUFFLE(2, 0, 2, 0));
 | |
| 
 | |
|     Q1 = _mm_shuffle_ps(R0, V0, _MM_SHUFFLE(1, 0, 3, 0));
 | |
|     Q1 = XM_PERMUTE_PS(Q1, _MM_SHUFFLE(1, 3, 2, 0));
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = Q1;
 | |
| 
 | |
|     Q1 = _mm_shuffle_ps(R0, V0, _MM_SHUFFLE(3, 2, 3, 1));
 | |
|     Q1 = XM_PERMUTE_PS(Q1, _MM_SHUFFLE(1, 3, 0, 2));
 | |
|     M.r[1] = Q1;
 | |
| 
 | |
|     Q1 = _mm_shuffle_ps(V1, R0, _MM_SHUFFLE(3, 2, 1, 0));
 | |
|     M.r[2] = Q1;
 | |
|     M.r[3] = g_XMIdentityR3;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixTransformation2D
 | |
| (
 | |
|     FXMVECTOR ScalingOrigin,
 | |
|     float     ScalingOrientation,
 | |
|     FXMVECTOR Scaling,
 | |
|     FXMVECTOR RotationOrigin,
 | |
|     float     Rotation,
 | |
|     GXMVECTOR Translation
 | |
| ) noexcept
 | |
| {
 | |
|     // M = Inverse(MScalingOrigin) * Transpose(MScalingOrientation) * MScaling * MScalingOrientation *
 | |
|     //         MScalingOrigin * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation;
 | |
| 
 | |
|     XMVECTOR VScalingOrigin = XMVectorSelect(g_XMSelect1100.v, ScalingOrigin, g_XMSelect1100.v);
 | |
|     XMVECTOR NegScalingOrigin = XMVectorNegate(VScalingOrigin);
 | |
| 
 | |
|     XMMATRIX MScalingOriginI = XMMatrixTranslationFromVector(NegScalingOrigin);
 | |
|     XMMATRIX MScalingOrientation = XMMatrixRotationZ(ScalingOrientation);
 | |
|     XMMATRIX MScalingOrientationT = XMMatrixTranspose(MScalingOrientation);
 | |
|     XMVECTOR VScaling = XMVectorSelect(g_XMOne.v, Scaling, g_XMSelect1100.v);
 | |
|     XMMATRIX MScaling = XMMatrixScalingFromVector(VScaling);
 | |
|     XMVECTOR VRotationOrigin = XMVectorSelect(g_XMSelect1100.v, RotationOrigin, g_XMSelect1100.v);
 | |
|     XMMATRIX MRotation = XMMatrixRotationZ(Rotation);
 | |
|     XMVECTOR VTranslation = XMVectorSelect(g_XMSelect1100.v, Translation, g_XMSelect1100.v);
 | |
| 
 | |
|     XMMATRIX M = XMMatrixMultiply(MScalingOriginI, MScalingOrientationT);
 | |
|     M = XMMatrixMultiply(M, MScaling);
 | |
|     M = XMMatrixMultiply(M, MScalingOrientation);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VScalingOrigin);
 | |
|     M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin);
 | |
|     M = XMMatrixMultiply(M, MRotation);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VTranslation);
 | |
| 
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixTransformation
 | |
| (
 | |
|     FXMVECTOR ScalingOrigin,
 | |
|     FXMVECTOR ScalingOrientationQuaternion,
 | |
|     FXMVECTOR Scaling,
 | |
|     GXMVECTOR RotationOrigin,
 | |
|     HXMVECTOR RotationQuaternion,
 | |
|     HXMVECTOR Translation
 | |
| ) noexcept
 | |
| {
 | |
|     // M = Inverse(MScalingOrigin) * Transpose(MScalingOrientation) * MScaling * MScalingOrientation *
 | |
|     //         MScalingOrigin * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation;
 | |
| 
 | |
|     XMVECTOR VScalingOrigin = XMVectorSelect(g_XMSelect1110.v, ScalingOrigin, g_XMSelect1110.v);
 | |
|     XMVECTOR NegScalingOrigin = XMVectorNegate(ScalingOrigin);
 | |
| 
 | |
|     XMMATRIX MScalingOriginI = XMMatrixTranslationFromVector(NegScalingOrigin);
 | |
|     XMMATRIX MScalingOrientation = XMMatrixRotationQuaternion(ScalingOrientationQuaternion);
 | |
|     XMMATRIX MScalingOrientationT = XMMatrixTranspose(MScalingOrientation);
 | |
|     XMMATRIX MScaling = XMMatrixScalingFromVector(Scaling);
 | |
|     XMVECTOR VRotationOrigin = XMVectorSelect(g_XMSelect1110.v, RotationOrigin, g_XMSelect1110.v);
 | |
|     XMMATRIX MRotation = XMMatrixRotationQuaternion(RotationQuaternion);
 | |
|     XMVECTOR VTranslation = XMVectorSelect(g_XMSelect1110.v, Translation, g_XMSelect1110.v);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M = XMMatrixMultiply(MScalingOriginI, MScalingOrientationT);
 | |
|     M = XMMatrixMultiply(M, MScaling);
 | |
|     M = XMMatrixMultiply(M, MScalingOrientation);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VScalingOrigin);
 | |
|     M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin);
 | |
|     M = XMMatrixMultiply(M, MRotation);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VTranslation);
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixAffineTransformation2D
 | |
| (
 | |
|     FXMVECTOR Scaling,
 | |
|     FXMVECTOR RotationOrigin,
 | |
|     float     Rotation,
 | |
|     FXMVECTOR Translation
 | |
| ) noexcept
 | |
| {
 | |
|     // M = MScaling * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation;
 | |
| 
 | |
|     XMVECTOR VScaling = XMVectorSelect(g_XMOne.v, Scaling, g_XMSelect1100.v);
 | |
|     XMMATRIX MScaling = XMMatrixScalingFromVector(VScaling);
 | |
|     XMVECTOR VRotationOrigin = XMVectorSelect(g_XMSelect1100.v, RotationOrigin, g_XMSelect1100.v);
 | |
|     XMMATRIX MRotation = XMMatrixRotationZ(Rotation);
 | |
|     XMVECTOR VTranslation = XMVectorSelect(g_XMSelect1100.v, Translation, g_XMSelect1100.v);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M = MScaling;
 | |
|     M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin);
 | |
|     M = XMMatrixMultiply(M, MRotation);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VTranslation);
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixAffineTransformation
 | |
| (
 | |
|     FXMVECTOR Scaling,
 | |
|     FXMVECTOR RotationOrigin,
 | |
|     FXMVECTOR RotationQuaternion,
 | |
|     GXMVECTOR Translation
 | |
| ) noexcept
 | |
| {
 | |
|     // M = MScaling * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation;
 | |
| 
 | |
|     XMMATRIX MScaling = XMMatrixScalingFromVector(Scaling);
 | |
|     XMVECTOR VRotationOrigin = XMVectorSelect(g_XMSelect1110.v, RotationOrigin, g_XMSelect1110.v);
 | |
|     XMMATRIX MRotation = XMMatrixRotationQuaternion(RotationQuaternion);
 | |
|     XMVECTOR VTranslation = XMVectorSelect(g_XMSelect1110.v, Translation, g_XMSelect1110.v);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M = MScaling;
 | |
|     M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin);
 | |
|     M = XMMatrixMultiply(M, MRotation);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin);
 | |
|     M.r[3] = XMVectorAdd(M.r[3], VTranslation);
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixReflect(FXMVECTOR ReflectionPlane) noexcept
 | |
| {
 | |
|     assert(!XMVector3Equal(ReflectionPlane, XMVectorZero()));
 | |
|     assert(!XMPlaneIsInfinite(ReflectionPlane));
 | |
| 
 | |
|     static const XMVECTORF32 NegativeTwo = { { { -2.0f, -2.0f, -2.0f, 0.0f } } };
 | |
| 
 | |
|     XMVECTOR P = XMPlaneNormalize(ReflectionPlane);
 | |
|     XMVECTOR S = XMVectorMultiply(P, NegativeTwo);
 | |
| 
 | |
|     XMVECTOR A = XMVectorSplatX(P);
 | |
|     XMVECTOR B = XMVectorSplatY(P);
 | |
|     XMVECTOR C = XMVectorSplatZ(P);
 | |
|     XMVECTOR D = XMVectorSplatW(P);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = XMVectorMultiplyAdd(A, S, g_XMIdentityR0.v);
 | |
|     M.r[1] = XMVectorMultiplyAdd(B, S, g_XMIdentityR1.v);
 | |
|     M.r[2] = XMVectorMultiplyAdd(C, S, g_XMIdentityR2.v);
 | |
|     M.r[3] = XMVectorMultiplyAdd(D, S, g_XMIdentityR3.v);
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixShadow
 | |
| (
 | |
|     FXMVECTOR ShadowPlane,
 | |
|     FXMVECTOR LightPosition
 | |
| ) noexcept
 | |
| {
 | |
|     static const XMVECTORU32 Select0001 = { { { XM_SELECT_0, XM_SELECT_0, XM_SELECT_0, XM_SELECT_1 } } };
 | |
| 
 | |
|     assert(!XMVector3Equal(ShadowPlane, XMVectorZero()));
 | |
|     assert(!XMPlaneIsInfinite(ShadowPlane));
 | |
| 
 | |
|     XMVECTOR P = XMPlaneNormalize(ShadowPlane);
 | |
|     XMVECTOR Dot = XMPlaneDot(P, LightPosition);
 | |
|     P = XMVectorNegate(P);
 | |
|     XMVECTOR D = XMVectorSplatW(P);
 | |
|     XMVECTOR C = XMVectorSplatZ(P);
 | |
|     XMVECTOR B = XMVectorSplatY(P);
 | |
|     XMVECTOR A = XMVectorSplatX(P);
 | |
|     Dot = XMVectorSelect(Select0001.v, Dot, Select0001.v);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[3] = XMVectorMultiplyAdd(D, LightPosition, Dot);
 | |
|     Dot = XMVectorRotateLeft(Dot, 1);
 | |
|     M.r[2] = XMVectorMultiplyAdd(C, LightPosition, Dot);
 | |
|     Dot = XMVectorRotateLeft(Dot, 1);
 | |
|     M.r[1] = XMVectorMultiplyAdd(B, LightPosition, Dot);
 | |
|     Dot = XMVectorRotateLeft(Dot, 1);
 | |
|     M.r[0] = XMVectorMultiplyAdd(A, LightPosition, Dot);
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // View and projection initialization operations
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixLookAtLH
 | |
| (
 | |
|     FXMVECTOR EyePosition,
 | |
|     FXMVECTOR FocusPosition,
 | |
|     FXMVECTOR UpDirection
 | |
| ) noexcept
 | |
| {
 | |
|     XMVECTOR EyeDirection = XMVectorSubtract(FocusPosition, EyePosition);
 | |
|     return XMMatrixLookToLH(EyePosition, EyeDirection, UpDirection);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixLookAtRH
 | |
| (
 | |
|     FXMVECTOR EyePosition,
 | |
|     FXMVECTOR FocusPosition,
 | |
|     FXMVECTOR UpDirection
 | |
| ) noexcept
 | |
| {
 | |
|     XMVECTOR NegEyeDirection = XMVectorSubtract(EyePosition, FocusPosition);
 | |
|     return XMMatrixLookToLH(EyePosition, NegEyeDirection, UpDirection);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixLookToLH
 | |
| (
 | |
|     FXMVECTOR EyePosition,
 | |
|     FXMVECTOR EyeDirection,
 | |
|     FXMVECTOR UpDirection
 | |
| ) noexcept
 | |
| {
 | |
|     assert(!XMVector3Equal(EyeDirection, XMVectorZero()));
 | |
|     assert(!XMVector3IsInfinite(EyeDirection));
 | |
|     assert(!XMVector3Equal(UpDirection, XMVectorZero()));
 | |
|     assert(!XMVector3IsInfinite(UpDirection));
 | |
| 
 | |
|     XMVECTOR R2 = XMVector3Normalize(EyeDirection);
 | |
| 
 | |
|     XMVECTOR R0 = XMVector3Cross(UpDirection, R2);
 | |
|     R0 = XMVector3Normalize(R0);
 | |
| 
 | |
|     XMVECTOR R1 = XMVector3Cross(R2, R0);
 | |
| 
 | |
|     XMVECTOR NegEyePosition = XMVectorNegate(EyePosition);
 | |
| 
 | |
|     XMVECTOR D0 = XMVector3Dot(R0, NegEyePosition);
 | |
|     XMVECTOR D1 = XMVector3Dot(R1, NegEyePosition);
 | |
|     XMVECTOR D2 = XMVector3Dot(R2, NegEyePosition);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = XMVectorSelect(D0, R0, g_XMSelect1110.v);
 | |
|     M.r[1] = XMVectorSelect(D1, R1, g_XMSelect1110.v);
 | |
|     M.r[2] = XMVectorSelect(D2, R2, g_XMSelect1110.v);
 | |
|     M.r[3] = g_XMIdentityR3.v;
 | |
| 
 | |
|     M = XMMatrixTranspose(M);
 | |
| 
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixLookToRH
 | |
| (
 | |
|     FXMVECTOR EyePosition,
 | |
|     FXMVECTOR EyeDirection,
 | |
|     FXMVECTOR UpDirection
 | |
| ) noexcept
 | |
| {
 | |
|     XMVECTOR NegEyeDirection = XMVectorNegate(EyeDirection);
 | |
|     return XMMatrixLookToLH(EyePosition, NegEyeDirection, UpDirection);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| #ifdef _PREFAST_
 | |
| #pragma prefast(push)
 | |
| #pragma prefast(disable:28931, "PREfast noise: Esp:1266")
 | |
| #endif
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveLH
 | |
| (
 | |
|     float ViewWidth,
 | |
|     float ViewHeight,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(NearZ > 0.f && FarZ > 0.f);
 | |
|     assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = TwoNearZ / ViewWidth;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = TwoNearZ / ViewHeight;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = 1.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = -fRange * NearZ;
 | |
|     M.m[3][3] = 0.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(TwoNearZ / ViewWidth, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(TwoNearZ / ViewHeight, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(fRange, g_XMIdentityR3.v, 2);
 | |
|     M.r[3] = vsetq_lane_f32(-fRange * NearZ, Zero, 2);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     XMVECTOR rMem = {
 | |
|         TwoNearZ / ViewWidth,
 | |
|         TwoNearZ / ViewHeight,
 | |
|         fRange,
 | |
|         -fRange * NearZ
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // TwoNearZ / ViewWidth,0,0,0
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,TwoNearZ / ViewHeight,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     M.r[1] = vTemp;
 | |
|     // x=fRange,y=-fRange * NearZ,0,1.0f
 | |
|     vValues = _mm_shuffle_ps(vValues, g_XMIdentityR3, _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     // 0,0,fRange,1.0f
 | |
|     vTemp = _mm_setzero_ps();
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(3, 0, 0, 0));
 | |
|     M.r[2] = vTemp;
 | |
|     // 0,0,-fRange * NearZ,0
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(2, 1, 0, 0));
 | |
|     M.r[3] = vTemp;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveRH
 | |
| (
 | |
|     float ViewWidth,
 | |
|     float ViewHeight,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(NearZ > 0.f && FarZ > 0.f);
 | |
|     assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = TwoNearZ / ViewWidth;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = TwoNearZ / ViewHeight;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = -1.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = fRange * NearZ;
 | |
|     M.m[3][3] = 0.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(TwoNearZ / ViewWidth, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(TwoNearZ / ViewHeight, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(fRange, g_XMNegIdentityR3.v, 2);
 | |
|     M.r[3] = vsetq_lane_f32(fRange * NearZ, Zero, 2);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     XMVECTOR rMem = {
 | |
|         TwoNearZ / ViewWidth,
 | |
|         TwoNearZ / ViewHeight,
 | |
|         fRange,
 | |
|         fRange * NearZ
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // TwoNearZ / ViewWidth,0,0,0
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,TwoNearZ / ViewHeight,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     M.r[1] = vTemp;
 | |
|     // x=fRange,y=-fRange * NearZ,0,-1.0f
 | |
|     vValues = _mm_shuffle_ps(vValues, g_XMNegIdentityR3, _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     // 0,0,fRange,-1.0f
 | |
|     vTemp = _mm_setzero_ps();
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(3, 0, 0, 0));
 | |
|     M.r[2] = vTemp;
 | |
|     // 0,0,-fRange * NearZ,0
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(2, 1, 0, 0));
 | |
|     M.r[3] = vTemp;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveFovLH
 | |
| (
 | |
|     float FovAngleY,
 | |
|     float AspectRatio,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(NearZ > 0.f && FarZ > 0.f);
 | |
|     assert(!XMScalarNearEqual(FovAngleY, 0.0f, 0.00001f * 2.0f));
 | |
|     assert(!XMScalarNearEqual(AspectRatio, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float    SinFov;
 | |
|     float    CosFov;
 | |
|     XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
 | |
| 
 | |
|     float Height = CosFov / SinFov;
 | |
|     float Width = Height / AspectRatio;
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = Width;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = Height;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = 1.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = -fRange * NearZ;
 | |
|     M.m[3][3] = 0.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float    SinFov;
 | |
|     float    CosFov;
 | |
|     XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
 | |
| 
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
|     float Height = CosFov / SinFov;
 | |
|     float Width = Height / AspectRatio;
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(Width, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(Height, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(fRange, g_XMIdentityR3.v, 2);
 | |
|     M.r[3] = vsetq_lane_f32(-fRange * NearZ, Zero, 2);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     float    SinFov;
 | |
|     float    CosFov;
 | |
|     XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
 | |
| 
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     float Height = CosFov / SinFov;
 | |
|     XMVECTOR rMem = {
 | |
|         Height / AspectRatio,
 | |
|         Height,
 | |
|         fRange,
 | |
|         -fRange * NearZ
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // Height / AspectRatio,0,0,0
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,Height,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     M.r[1] = vTemp;
 | |
|     // x=fRange,y=-fRange * NearZ,0,1.0f
 | |
|     vTemp = _mm_setzero_ps();
 | |
|     vValues = _mm_shuffle_ps(vValues, g_XMIdentityR3, _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     // 0,0,fRange,1.0f
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(3, 0, 0, 0));
 | |
|     M.r[2] = vTemp;
 | |
|     // 0,0,-fRange * NearZ,0.0f
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(2, 1, 0, 0));
 | |
|     M.r[3] = vTemp;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveFovRH
 | |
| (
 | |
|     float FovAngleY,
 | |
|     float AspectRatio,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(NearZ > 0.f && FarZ > 0.f);
 | |
|     assert(!XMScalarNearEqual(FovAngleY, 0.0f, 0.00001f * 2.0f));
 | |
|     assert(!XMScalarNearEqual(AspectRatio, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float    SinFov;
 | |
|     float    CosFov;
 | |
|     XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
 | |
| 
 | |
|     float Height = CosFov / SinFov;
 | |
|     float Width = Height / AspectRatio;
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = Width;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = Height;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = -1.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = fRange * NearZ;
 | |
|     M.m[3][3] = 0.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float    SinFov;
 | |
|     float    CosFov;
 | |
|     XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
|     float Height = CosFov / SinFov;
 | |
|     float Width = Height / AspectRatio;
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(Width, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(Height, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(fRange, g_XMNegIdentityR3.v, 2);
 | |
|     M.r[3] = vsetq_lane_f32(fRange * NearZ, Zero, 2);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     float    SinFov;
 | |
|     float    CosFov;
 | |
|     XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY);
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     float Height = CosFov / SinFov;
 | |
|     XMVECTOR rMem = {
 | |
|         Height / AspectRatio,
 | |
|         Height,
 | |
|         fRange,
 | |
|         fRange * NearZ
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // Height / AspectRatio,0,0,0
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,Height,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     M.r[1] = vTemp;
 | |
|     // x=fRange,y=-fRange * NearZ,0,-1.0f
 | |
|     vTemp = _mm_setzero_ps();
 | |
|     vValues = _mm_shuffle_ps(vValues, g_XMNegIdentityR3, _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     // 0,0,fRange,-1.0f
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(3, 0, 0, 0));
 | |
|     M.r[2] = vTemp;
 | |
|     // 0,0,fRange * NearZ,0.0f
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(2, 1, 0, 0));
 | |
|     M.r[3] = vTemp;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveOffCenterLH
 | |
| (
 | |
|     float ViewLeft,
 | |
|     float ViewRight,
 | |
|     float ViewBottom,
 | |
|     float ViewTop,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(NearZ > 0.f && FarZ > 0.f);
 | |
|     assert(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = TwoNearZ * ReciprocalWidth;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = TwoNearZ * ReciprocalHeight;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = -(ViewLeft + ViewRight) * ReciprocalWidth;
 | |
|     M.m[2][1] = -(ViewTop + ViewBottom) * ReciprocalHeight;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = 1.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = -fRange * NearZ;
 | |
|     M.m[3][3] = 0.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(TwoNearZ * ReciprocalWidth, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(TwoNearZ * ReciprocalHeight, Zero, 1);
 | |
|     M.r[2] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
 | |
|         -(ViewTop + ViewBottom) * ReciprocalHeight,
 | |
|         fRange,
 | |
|         1.0f);
 | |
|     M.r[3] = vsetq_lane_f32(-fRange * NearZ, Zero, 2);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = FarZ / (FarZ - NearZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     XMVECTOR rMem = {
 | |
|         TwoNearZ * ReciprocalWidth,
 | |
|         TwoNearZ * ReciprocalHeight,
 | |
|         -fRange * NearZ,
 | |
|         0
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // TwoNearZ*ReciprocalWidth,0,0,0
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,TwoNearZ*ReciprocalHeight,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     M.r[1] = vTemp;
 | |
|     // 0,0,fRange,1.0f
 | |
|     M.r[2] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
 | |
|         -(ViewTop + ViewBottom) * ReciprocalHeight,
 | |
|         fRange,
 | |
|         1.0f);
 | |
|     // 0,0,-fRange * NearZ,0.0f
 | |
|     vValues = _mm_and_ps(vValues, g_XMMaskZ);
 | |
|     M.r[3] = vValues;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixPerspectiveOffCenterRH
 | |
| (
 | |
|     float ViewLeft,
 | |
|     float ViewRight,
 | |
|     float ViewBottom,
 | |
|     float ViewTop,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(NearZ > 0.f && FarZ > 0.f);
 | |
|     assert(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = TwoNearZ * ReciprocalWidth;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = TwoNearZ * ReciprocalHeight;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = (ViewLeft + ViewRight) * ReciprocalWidth;
 | |
|     M.m[2][1] = (ViewTop + ViewBottom) * ReciprocalHeight;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = -1.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = fRange * NearZ;
 | |
|     M.m[3][3] = 0.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(TwoNearZ * ReciprocalWidth, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(TwoNearZ * ReciprocalHeight, Zero, 1);
 | |
|     M.r[2] = XMVectorSet((ViewLeft + ViewRight) * ReciprocalWidth,
 | |
|         (ViewTop + ViewBottom) * ReciprocalHeight,
 | |
|         fRange,
 | |
|         -1.0f);
 | |
|     M.r[3] = vsetq_lane_f32(fRange * NearZ, Zero, 2);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     float TwoNearZ = NearZ + NearZ;
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = FarZ / (NearZ - FarZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     XMVECTOR rMem = {
 | |
|         TwoNearZ * ReciprocalWidth,
 | |
|         TwoNearZ * ReciprocalHeight,
 | |
|         fRange * NearZ,
 | |
|         0
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // TwoNearZ*ReciprocalWidth,0,0,0
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,TwoNearZ*ReciprocalHeight,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     M.r[1] = vTemp;
 | |
|     // 0,0,fRange,1.0f
 | |
|     M.r[2] = XMVectorSet((ViewLeft + ViewRight) * ReciprocalWidth,
 | |
|         (ViewTop + ViewBottom) * ReciprocalHeight,
 | |
|         fRange,
 | |
|         -1.0f);
 | |
|     // 0,0,-fRange * NearZ,0.0f
 | |
|     vValues = _mm_and_ps(vValues, g_XMMaskZ);
 | |
|     M.r[3] = vValues;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixOrthographicLH
 | |
| (
 | |
|     float ViewWidth,
 | |
|     float ViewHeight,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float fRange = 1.0f / (FarZ - NearZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = 2.0f / ViewWidth;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = 2.0f / ViewHeight;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = -fRange * NearZ;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float fRange = 1.0f / (FarZ - NearZ);
 | |
| 
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(2.0f / ViewWidth, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(2.0f / ViewHeight, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(fRange, Zero, 2);
 | |
|     M.r[3] = vsetq_lane_f32(-fRange * NearZ, g_XMIdentityR3.v, 2);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     float fRange = 1.0f / (FarZ - NearZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     XMVECTOR rMem = {
 | |
|         2.0f / ViewWidth,
 | |
|         2.0f / ViewHeight,
 | |
|         fRange,
 | |
|         -fRange * NearZ
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // 2.0f / ViewWidth,0,0,0
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,2.0f / ViewHeight,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     M.r[1] = vTemp;
 | |
|     // x=fRange,y=-fRange * NearZ,0,1.0f
 | |
|     vTemp = _mm_setzero_ps();
 | |
|     vValues = _mm_shuffle_ps(vValues, g_XMIdentityR3, _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     // 0,0,fRange,0.0f
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(2, 0, 0, 0));
 | |
|     M.r[2] = vTemp;
 | |
|     // 0,0,-fRange * NearZ,1.0f
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(3, 1, 0, 0));
 | |
|     M.r[3] = vTemp;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixOrthographicRH
 | |
| (
 | |
|     float ViewWidth,
 | |
|     float ViewHeight,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float fRange = 1.0f / (NearZ - FarZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = 2.0f / ViewWidth;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = 2.0f / ViewHeight;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = 0.0f;
 | |
|     M.m[3][1] = 0.0f;
 | |
|     M.m[3][2] = fRange * NearZ;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float fRange = 1.0f / (NearZ - FarZ);
 | |
| 
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(2.0f / ViewWidth, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(2.0f / ViewHeight, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(fRange, Zero, 2);
 | |
|     M.r[3] = vsetq_lane_f32(fRange * NearZ, g_XMIdentityR3.v, 2);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     float fRange = 1.0f / (NearZ - FarZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     XMVECTOR rMem = {
 | |
|         2.0f / ViewWidth,
 | |
|         2.0f / ViewHeight,
 | |
|         fRange,
 | |
|         fRange * NearZ
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // 2.0f / ViewWidth,0,0,0
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,2.0f / ViewHeight,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     M.r[1] = vTemp;
 | |
|     // x=fRange,y=fRange * NearZ,0,1.0f
 | |
|     vTemp = _mm_setzero_ps();
 | |
|     vValues = _mm_shuffle_ps(vValues, g_XMIdentityR3, _MM_SHUFFLE(3, 2, 3, 2));
 | |
|     // 0,0,fRange,0.0f
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(2, 0, 0, 0));
 | |
|     M.r[2] = vTemp;
 | |
|     // 0,0,fRange * NearZ,1.0f
 | |
|     vTemp = _mm_shuffle_ps(vTemp, vValues, _MM_SHUFFLE(3, 1, 0, 0));
 | |
|     M.r[3] = vTemp;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixOrthographicOffCenterLH
 | |
| (
 | |
|     float ViewLeft,
 | |
|     float ViewRight,
 | |
|     float ViewBottom,
 | |
|     float ViewTop,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = 1.0f / (FarZ - NearZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = ReciprocalWidth + ReciprocalWidth;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = ReciprocalHeight + ReciprocalHeight;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.m[3][0] = -(ViewLeft + ViewRight) * ReciprocalWidth;
 | |
|     M.m[3][1] = -(ViewTop + ViewBottom) * ReciprocalHeight;
 | |
|     M.m[3][2] = -fRange * NearZ;
 | |
|     M.m[3][3] = 1.0f;
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = 1.0f / (FarZ - NearZ);
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(ReciprocalWidth + ReciprocalWidth, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(ReciprocalHeight + ReciprocalHeight, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(fRange, Zero, 2);
 | |
|     M.r[3] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
 | |
|         -(ViewTop + ViewBottom) * ReciprocalHeight,
 | |
|         -fRange * NearZ,
 | |
|         1.0f);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     float fReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float fReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = 1.0f / (FarZ - NearZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     XMVECTOR rMem = {
 | |
|         fReciprocalWidth,
 | |
|         fReciprocalHeight,
 | |
|         fRange,
 | |
|         1.0f
 | |
|     };
 | |
|     XMVECTOR rMem2 = {
 | |
|         -(ViewLeft + ViewRight),
 | |
|         -(ViewTop + ViewBottom),
 | |
|         -NearZ,
 | |
|         1.0f
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // fReciprocalWidth*2,0,0,0
 | |
|     vTemp = _mm_add_ss(vTemp, vTemp);
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,fReciprocalHeight*2,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     vTemp = _mm_add_ps(vTemp, vTemp);
 | |
|     M.r[1] = vTemp;
 | |
|     // 0,0,fRange,0.0f
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskZ);
 | |
|     M.r[2] = vTemp;
 | |
|     // -(ViewLeft + ViewRight)*fReciprocalWidth,-(ViewTop + ViewBottom)*fReciprocalHeight,fRange*-NearZ,1.0f
 | |
|     vValues = _mm_mul_ps(vValues, rMem2);
 | |
|     M.r[3] = vValues;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMatrixOrthographicOffCenterRH
 | |
| (
 | |
|     float ViewLeft,
 | |
|     float ViewRight,
 | |
|     float ViewBottom,
 | |
|     float ViewTop,
 | |
|     float NearZ,
 | |
|     float FarZ
 | |
| ) noexcept
 | |
| {
 | |
|     assert(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f));
 | |
|     assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
 | |
| 
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
| 
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = 1.0f / (NearZ - FarZ);
 | |
| 
 | |
|     XMMATRIX M;
 | |
|     M.m[0][0] = ReciprocalWidth + ReciprocalWidth;
 | |
|     M.m[0][1] = 0.0f;
 | |
|     M.m[0][2] = 0.0f;
 | |
|     M.m[0][3] = 0.0f;
 | |
| 
 | |
|     M.m[1][0] = 0.0f;
 | |
|     M.m[1][1] = ReciprocalHeight + ReciprocalHeight;
 | |
|     M.m[1][2] = 0.0f;
 | |
|     M.m[1][3] = 0.0f;
 | |
| 
 | |
|     M.m[2][0] = 0.0f;
 | |
|     M.m[2][1] = 0.0f;
 | |
|     M.m[2][2] = fRange;
 | |
|     M.m[2][3] = 0.0f;
 | |
| 
 | |
|     M.r[3] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
 | |
|         -(ViewTop + ViewBottom) * ReciprocalHeight,
 | |
|         fRange * NearZ,
 | |
|         1.0f);
 | |
|     return M;
 | |
| 
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
|     float ReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float ReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = 1.0f / (NearZ - FarZ);
 | |
|     const float32x4_t Zero = vdupq_n_f32(0);
 | |
|     XMMATRIX M;
 | |
|     M.r[0] = vsetq_lane_f32(ReciprocalWidth + ReciprocalWidth, Zero, 0);
 | |
|     M.r[1] = vsetq_lane_f32(ReciprocalHeight + ReciprocalHeight, Zero, 1);
 | |
|     M.r[2] = vsetq_lane_f32(fRange, Zero, 2);
 | |
|     M.r[3] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth,
 | |
|         -(ViewTop + ViewBottom) * ReciprocalHeight,
 | |
|         fRange * NearZ,
 | |
|         1.0f);
 | |
|     return M;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     XMMATRIX M;
 | |
|     float fReciprocalWidth = 1.0f / (ViewRight - ViewLeft);
 | |
|     float fReciprocalHeight = 1.0f / (ViewTop - ViewBottom);
 | |
|     float fRange = 1.0f / (NearZ - FarZ);
 | |
|     // Note: This is recorded on the stack
 | |
|     XMVECTOR rMem = {
 | |
|         fReciprocalWidth,
 | |
|         fReciprocalHeight,
 | |
|         fRange,
 | |
|         1.0f
 | |
|     };
 | |
|     XMVECTOR rMem2 = {
 | |
|         -(ViewLeft + ViewRight),
 | |
|         -(ViewTop + ViewBottom),
 | |
|         NearZ,
 | |
|         1.0f
 | |
|     };
 | |
|     // Copy from memory to SSE register
 | |
|     XMVECTOR vValues = rMem;
 | |
|     XMVECTOR vTemp = _mm_setzero_ps();
 | |
|     // Copy x only
 | |
|     vTemp = _mm_move_ss(vTemp, vValues);
 | |
|     // fReciprocalWidth*2,0,0,0
 | |
|     vTemp = _mm_add_ss(vTemp, vTemp);
 | |
|     M.r[0] = vTemp;
 | |
|     // 0,fReciprocalHeight*2,0,0
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskY);
 | |
|     vTemp = _mm_add_ps(vTemp, vTemp);
 | |
|     M.r[1] = vTemp;
 | |
|     // 0,0,fRange,0.0f
 | |
|     vTemp = vValues;
 | |
|     vTemp = _mm_and_ps(vTemp, g_XMMaskZ);
 | |
|     M.r[2] = vTemp;
 | |
|     // -(ViewLeft + ViewRight)*fReciprocalWidth,-(ViewTop + ViewBottom)*fReciprocalHeight,fRange*-NearZ,1.0f
 | |
|     vValues = _mm_mul_ps(vValues, rMem2);
 | |
|     M.r[3] = vValues;
 | |
|     return M;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef _PREFAST_
 | |
| #pragma prefast(pop)
 | |
| #endif
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * XMMATRIX operators and methods
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
|  //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX::XMMATRIX
 | |
| (
 | |
|     float m00, float m01, float m02, float m03,
 | |
|     float m10, float m11, float m12, float m13,
 | |
|     float m20, float m21, float m22, float m23,
 | |
|     float m30, float m31, float m32, float m33
 | |
| ) noexcept
 | |
| {
 | |
|     r[0] = XMVectorSet(m00, m01, m02, m03);
 | |
|     r[1] = XMVectorSet(m10, m11, m12, m13);
 | |
|     r[2] = XMVectorSet(m20, m21, m22, m23);
 | |
|     r[3] = XMVectorSet(m30, m31, m32, m33);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline XMMATRIX::XMMATRIX(const float* pArray) noexcept
 | |
| {
 | |
|     assert(pArray != nullptr);
 | |
|     r[0] = XMLoadFloat4(reinterpret_cast<const XMFLOAT4*>(pArray));
 | |
|     r[1] = XMLoadFloat4(reinterpret_cast<const XMFLOAT4*>(pArray + 4));
 | |
|     r[2] = XMLoadFloat4(reinterpret_cast<const XMFLOAT4*>(pArray + 8));
 | |
|     r[3] = XMLoadFloat4(reinterpret_cast<const XMFLOAT4*>(pArray + 12));
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XMMATRIX::operator- () const noexcept
 | |
| {
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = XMVectorNegate(r[0]);
 | |
|     R.r[1] = XMVectorNegate(r[1]);
 | |
|     R.r[2] = XMVectorNegate(r[2]);
 | |
|     R.r[3] = XMVectorNegate(r[3]);
 | |
|     return R;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX& XM_CALLCONV XMMATRIX::operator+= (FXMMATRIX M) noexcept
 | |
| {
 | |
|     r[0] = XMVectorAdd(r[0], M.r[0]);
 | |
|     r[1] = XMVectorAdd(r[1], M.r[1]);
 | |
|     r[2] = XMVectorAdd(r[2], M.r[2]);
 | |
|     r[3] = XMVectorAdd(r[3], M.r[3]);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX& XM_CALLCONV XMMATRIX::operator-= (FXMMATRIX M) noexcept
 | |
| {
 | |
|     r[0] = XMVectorSubtract(r[0], M.r[0]);
 | |
|     r[1] = XMVectorSubtract(r[1], M.r[1]);
 | |
|     r[2] = XMVectorSubtract(r[2], M.r[2]);
 | |
|     r[3] = XMVectorSubtract(r[3], M.r[3]);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX& XM_CALLCONV XMMATRIX::operator*=(FXMMATRIX M) noexcept
 | |
| {
 | |
|     *this = XMMatrixMultiply(*this, M);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX& XMMATRIX::operator*= (float S) noexcept
 | |
| {
 | |
|     r[0] = XMVectorScale(r[0], S);
 | |
|     r[1] = XMVectorScale(r[1], S);
 | |
|     r[2] = XMVectorScale(r[2], S);
 | |
|     r[3] = XMVectorScale(r[3], S);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX& XMMATRIX::operator/= (float S) noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     XMVECTOR vS = XMVectorReplicate(S);
 | |
|     r[0] = XMVectorDivide(r[0], vS);
 | |
|     r[1] = XMVectorDivide(r[1], vS);
 | |
|     r[2] = XMVectorDivide(r[2], vS);
 | |
|     r[3] = XMVectorDivide(r[3], vS);
 | |
|     return *this;
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
| #if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || defined(_M_ARM64EC) || __aarch64__
 | |
|     float32x4_t vS = vdupq_n_f32(S);
 | |
|     r[0] = vdivq_f32(r[0], vS);
 | |
|     r[1] = vdivq_f32(r[1], vS);
 | |
|     r[2] = vdivq_f32(r[2], vS);
 | |
|     r[3] = vdivq_f32(r[3], vS);
 | |
| #else
 | |
|     // 2 iterations of Newton-Raphson refinement of reciprocal
 | |
|     float32x2_t vS = vdup_n_f32(S);
 | |
|     float32x2_t R0 = vrecpe_f32(vS);
 | |
|     float32x2_t S0 = vrecps_f32(R0, vS);
 | |
|     R0 = vmul_f32(S0, R0);
 | |
|     S0 = vrecps_f32(R0, vS);
 | |
|     R0 = vmul_f32(S0, R0);
 | |
|     float32x4_t Reciprocal = vcombine_f32(R0, R0);
 | |
|     r[0] = vmulq_f32(r[0], Reciprocal);
 | |
|     r[1] = vmulq_f32(r[1], Reciprocal);
 | |
|     r[2] = vmulq_f32(r[2], Reciprocal);
 | |
|     r[3] = vmulq_f32(r[3], Reciprocal);
 | |
| #endif
 | |
|     return *this;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     __m128 vS = _mm_set_ps1(S);
 | |
|     r[0] = _mm_div_ps(r[0], vS);
 | |
|     r[1] = _mm_div_ps(r[1], vS);
 | |
|     r[2] = _mm_div_ps(r[2], vS);
 | |
|     r[3] = _mm_div_ps(r[3], vS);
 | |
|     return *this;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMATRIX::operator+ (FXMMATRIX M) const noexcept
 | |
| {
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = XMVectorAdd(r[0], M.r[0]);
 | |
|     R.r[1] = XMVectorAdd(r[1], M.r[1]);
 | |
|     R.r[2] = XMVectorAdd(r[2], M.r[2]);
 | |
|     R.r[3] = XMVectorAdd(r[3], M.r[3]);
 | |
|     return R;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMATRIX::operator- (FXMMATRIX M) const noexcept
 | |
| {
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = XMVectorSubtract(r[0], M.r[0]);
 | |
|     R.r[1] = XMVectorSubtract(r[1], M.r[1]);
 | |
|     R.r[2] = XMVectorSubtract(r[2], M.r[2]);
 | |
|     R.r[3] = XMVectorSubtract(r[3], M.r[3]);
 | |
|     return R;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV XMMATRIX::operator*(FXMMATRIX M) const noexcept
 | |
| {
 | |
|     return XMMatrixMultiply(*this, M);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XMMATRIX::operator* (float S) const noexcept
 | |
| {
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = XMVectorScale(r[0], S);
 | |
|     R.r[1] = XMVectorScale(r[1], S);
 | |
|     R.r[2] = XMVectorScale(r[2], S);
 | |
|     R.r[3] = XMVectorScale(r[3], S);
 | |
|     return R;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XMMATRIX::operator/ (float S) const noexcept
 | |
| {
 | |
| #if defined(_XM_NO_INTRINSICS_)
 | |
|     XMVECTOR vS = XMVectorReplicate(S);
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = XMVectorDivide(r[0], vS);
 | |
|     R.r[1] = XMVectorDivide(r[1], vS);
 | |
|     R.r[2] = XMVectorDivide(r[2], vS);
 | |
|     R.r[3] = XMVectorDivide(r[3], vS);
 | |
|     return R;
 | |
| #elif defined(_XM_ARM_NEON_INTRINSICS_)
 | |
| #if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || defined(_M_ARM64EC) || __aarch64__
 | |
|     float32x4_t vS = vdupq_n_f32(S);
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = vdivq_f32(r[0], vS);
 | |
|     R.r[1] = vdivq_f32(r[1], vS);
 | |
|     R.r[2] = vdivq_f32(r[2], vS);
 | |
|     R.r[3] = vdivq_f32(r[3], vS);
 | |
| #else
 | |
|     // 2 iterations of Newton-Raphson refinement of reciprocal
 | |
|     float32x2_t vS = vdup_n_f32(S);
 | |
|     float32x2_t R0 = vrecpe_f32(vS);
 | |
|     float32x2_t S0 = vrecps_f32(R0, vS);
 | |
|     R0 = vmul_f32(S0, R0);
 | |
|     S0 = vrecps_f32(R0, vS);
 | |
|     R0 = vmul_f32(S0, R0);
 | |
|     float32x4_t Reciprocal = vcombine_f32(R0, R0);
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = vmulq_f32(r[0], Reciprocal);
 | |
|     R.r[1] = vmulq_f32(r[1], Reciprocal);
 | |
|     R.r[2] = vmulq_f32(r[2], Reciprocal);
 | |
|     R.r[3] = vmulq_f32(r[3], Reciprocal);
 | |
| #endif
 | |
|     return R;
 | |
| #elif defined(_XM_SSE_INTRINSICS_)
 | |
|     __m128 vS = _mm_set_ps1(S);
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = _mm_div_ps(r[0], vS);
 | |
|     R.r[1] = _mm_div_ps(r[1], vS);
 | |
|     R.r[2] = _mm_div_ps(r[2], vS);
 | |
|     R.r[3] = _mm_div_ps(r[3], vS);
 | |
|     return R;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| inline XMMATRIX XM_CALLCONV operator*
 | |
| (
 | |
|     float S,
 | |
|     FXMMATRIX M
 | |
| ) noexcept
 | |
| {
 | |
|     XMMATRIX R;
 | |
|     R.r[0] = XMVectorScale(M.r[0], S);
 | |
|     R.r[1] = XMVectorScale(M.r[1], S);
 | |
|     R.r[2] = XMVectorScale(M.r[2], S);
 | |
|     R.r[3] = XMVectorScale(M.r[3], S);
 | |
|     return R;
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * XMFLOAT3X3 operators
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
|  //------------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline XMFLOAT3X3::XMFLOAT3X3(const float* pArray) noexcept
 | |
| {
 | |
|     assert(pArray != nullptr);
 | |
|     for (size_t Row = 0; Row < 3; Row++)
 | |
|     {
 | |
|         for (size_t Column = 0; Column < 3; Column++)
 | |
|         {
 | |
|             m[Row][Column] = pArray[Row * 3 + Column];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * XMFLOAT4X3 operators
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
|  //------------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline XMFLOAT4X3::XMFLOAT4X3(const float* pArray) noexcept
 | |
| {
 | |
|     assert(pArray != nullptr);
 | |
| 
 | |
|     m[0][0] = pArray[0];
 | |
|     m[0][1] = pArray[1];
 | |
|     m[0][2] = pArray[2];
 | |
| 
 | |
|     m[1][0] = pArray[3];
 | |
|     m[1][1] = pArray[4];
 | |
|     m[1][2] = pArray[5];
 | |
| 
 | |
|     m[2][0] = pArray[6];
 | |
|     m[2][1] = pArray[7];
 | |
|     m[2][2] = pArray[8];
 | |
| 
 | |
|     m[3][0] = pArray[9];
 | |
|     m[3][1] = pArray[10];
 | |
|     m[3][2] = pArray[11];
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
| *
 | |
| * XMFLOAT3X4 operators
 | |
| *
 | |
| ****************************************************************************/
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline XMFLOAT3X4::XMFLOAT3X4(const float* pArray) noexcept
 | |
| {
 | |
|     assert(pArray != nullptr);
 | |
| 
 | |
|     m[0][0] = pArray[0];
 | |
|     m[0][1] = pArray[1];
 | |
|     m[0][2] = pArray[2];
 | |
|     m[0][3] = pArray[3];
 | |
| 
 | |
|     m[1][0] = pArray[4];
 | |
|     m[1][1] = pArray[5];
 | |
|     m[1][2] = pArray[6];
 | |
|     m[1][3] = pArray[7];
 | |
| 
 | |
|     m[2][0] = pArray[8];
 | |
|     m[2][1] = pArray[9];
 | |
|     m[2][2] = pArray[10];
 | |
|     m[2][3] = pArray[11];
 | |
| }
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * XMFLOAT4X4 operators
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
|  //------------------------------------------------------------------------------
 | |
| _Use_decl_annotations_
 | |
| inline XMFLOAT4X4::XMFLOAT4X4(const float* pArray) noexcept
 | |
| {
 | |
|     assert(pArray != nullptr);
 | |
| 
 | |
|     m[0][0] = pArray[0];
 | |
|     m[0][1] = pArray[1];
 | |
|     m[0][2] = pArray[2];
 | |
|     m[0][3] = pArray[3];
 | |
| 
 | |
|     m[1][0] = pArray[4];
 | |
|     m[1][1] = pArray[5];
 | |
|     m[1][2] = pArray[6];
 | |
|     m[1][3] = pArray[7];
 | |
| 
 | |
|     m[2][0] = pArray[8];
 | |
|     m[2][1] = pArray[9];
 | |
|     m[2][2] = pArray[10];
 | |
|     m[2][3] = pArray[11];
 | |
| 
 | |
|     m[3][0] = pArray[12];
 | |
|     m[3][1] = pArray[13];
 | |
|     m[3][2] = pArray[14];
 | |
|     m[3][3] = pArray[15];
 | |
| }
 | |
| 
 | 
