More cleanups for the discrete subsystem. No whatsnew.

This commit is contained in:
Couriersud 2011-01-16 00:38:44 +00:00
parent b85af379a8
commit 02cd248fef
12 changed files with 327 additions and 425 deletions

View File

@ -20,22 +20,13 @@
#define DISCRETE_CLASS_NAME(_name) discrete_ ## _name ## _node
#if 0
#define DISCRETE_CLASS_CONSTRUCTOR(_name, _base, _ctxsize) \
DISCRETE_CLASS_NAME(_name)(discrete_device * pdev, const discrete_sound_block *block) \
: DISCRETE_CLASS_NAME(_base)(pdev, block) { m_context_size = _ctxsize; }
#else
#define DISCRETE_CLASS_CONSTRUCTOR(_name, _base) \
DISCRETE_CLASS_NAME(_name)() \
#define DISCRETE_CLASS_CONSTRUCTOR(_name, _base) \
DISCRETE_CLASS_NAME(_name)() \
: DISCRETE_CLASS_NAME(_base)() { }
#endif
#if 1
#define DISCRETE_CLASS_DESTRUCTOR(_name) \
public: \
virtual ~ DISCRETE_CLASS_NAME(_name)(void) { }
#else
#define DISCRETE_CLASS_DESTRUCTOR(_name)
#endif
#define DISCRETE_CLASS_STEP_RESETA(_name, _maxout, _priv) \
class DISCRETE_CLASS_NAME(_name): public discrete_base_node, public discrete_step_interface \
@ -50,7 +41,7 @@ private: \
_priv \
}
#define DISCRETE_CLASS_STEPA(_name, _maxout, _priv) \
#define DISCRETE_CLASS_STEPA(_name, _maxout, _priv) \
class DISCRETE_CLASS_NAME(_name): public discrete_base_node, public discrete_step_interface \
{ \
public: \
@ -63,7 +54,7 @@ private: \
_priv \
}
#define DISCRETE_CLASS_RESET(_name, _maxout) \
#define DISCRETE_CLASS_RESET(_name, _maxout) \
class DISCRETE_CLASS_NAME(_name): public discrete_base_node \
{ \
public: \
@ -104,12 +95,6 @@ public:
DISCRETE_CLASS_DESTRUCTOR(unimplemented)
};
struct dst_size_context
{
// int size;
};
/*************************************
*
* disc_sys.c

View File

@ -284,8 +284,6 @@ DISCRETE_RESET(dsd_555_astbl)
{
DISCRETE_DECLARE_INFO(discrete_555_desc)
discrete_base_node *v_charge_node;
m_use_ctrlv = (this->input_is_node() >> 4) & 1;
m_output_type = info->options & DISC_555_OUT_MASK;
@ -293,13 +291,10 @@ DISCRETE_RESET(dsd_555_astbl)
m_v_out_high = (info->v_out_high == DEFAULT_555_HIGH) ? info->v_pos - 1.2 : info->v_out_high;
/* setup v_charge or node */
v_charge_node = this->device->discrete_find_node(info->v_charge);
if (v_charge_node)
m_v_charge_node = &(v_charge_node->output[NODE_CHILD_NODE_NUM(info->v_charge)]);
else
m_v_charge_node = m_device->node_output_ptr(info->v_charge);
if (m_v_charge_node == NULL)
{
m_v_charge = (info->v_charge == DEFAULT_555_CHARGE) ? info->v_pos : info->v_charge;
m_v_charge_node = NULL;
if (info->options & DISC_555_ASTABLE_HAS_FAST_CHARGE_DIODE) m_v_charge -= 0.5;
}
@ -504,7 +499,7 @@ DISCRETE_RESET(dsd_555_mstbl)
m_output_type = info->options & DISC_555_OUT_MASK;
if ((m_output_type == DISC_555_OUT_COUNT_F) || (m_output_type == DISC_555_OUT_COUNT_R))
{
this->device->discrete_log("Invalid Output type in NODE_%d.\n", this->index());
m_device->discrete_log("Invalid Output type in NODE_%d.\n", this->index());
m_output_type = DISC_555_OUT_SQW;
}

View File

@ -32,7 +32,7 @@ DISCRETE_CLASS_STEP_RESETA(dsd_555_astbl, 1,
double m_trigger;
double m_v_out_high; /* Logic 1 voltage level */
double m_v_charge;
double *m_v_charge_node; /* point to output of node */
const double *m_v_charge_node; /* point to output of node */
int m_has_rc_nodes;
double m_exp_bleed;
double m_exp_charge;

View File

@ -110,7 +110,8 @@ static void calculate_filter1_coefficients(discrete_base_node *node, double fc,
}
else
{
node->device->discrete_log("calculate_filter1_coefficients() - Invalid filter type for 1st order filter.");
/* FIXME: reenable */
//node->m_device->discrete_log("calculate_filter1_coefficients() - Invalid filter type for 1st order filter.");
}
}
@ -191,7 +192,8 @@ static void calculate_filter2_coefficients(discrete_base_node *node,
}
else
{
node->device->discrete_log("calculate_filter2_coefficients() - Invalid filter type for 2nd order filter.");
/* FIXME: reenable */
//node->device->discrete_log("calculate_filter2_coefficients() - Invalid filter type for 2nd order filter.");
}
}
@ -723,17 +725,17 @@ DISCRETE_RESET( dst_rcdisc4)
/* some error checking. */
if (DST_RCDISC4__R1 <= 0 || DST_RCDISC4__R2 <= 0 || DST_RCDISC4__C1 <= 0 || (DST_RCDISC4__R3 <= 0 && m_type == 1))
{
this->device->discrete_log("Invalid component values in NODE_%d.\n", this->index());
m_device->discrete_log("Invalid component values in NODE_%d.\n", this->index());
return;
}
if (DST_RCDISC4__VP < 3)
{
this->device->discrete_log("vP must be >= 3V in NODE_%d.\n", this->index());
m_device->discrete_log("vP must be >= 3V in NODE_%d.\n", this->index());
return;
}
if (DST_RCDISC4__TYPE < 1 || DST_RCDISC4__TYPE > 3)
{
this->device->discrete_log("Invalid circuit type in NODE_%d.\n", this->index());
m_device->discrete_log("Invalid circuit type in NODE_%d.\n", this->index());
return;
}
@ -1296,8 +1298,8 @@ DISCRETE_RESET(dst_rcfilterN)
/* !!!!!!!!!!!!!! CAN'T CHEAT LIKE THIS !!!!!!!!!!!!!!!! */
/* Put this stuff in a context */
this->input[2] = f;
this->input[3] = DISC_FILTER_LOWPASS;
this->m_input[2] = f;
this->m_input[3] = DISC_FILTER_LOWPASS;
/* Use first order filter */
dst_filter1_reset(node);
@ -1329,8 +1331,8 @@ DISCRETE_RESET(dst_rcdiscN)
/* !!!!!!!!!!!!!! CAN'T CHEAT LIKE THIS !!!!!!!!!!!!!!!! */
/* Put this stuff in a context */
this->input[2] = f;
this->input[3] = DISC_FILTER_LOWPASS;
this->m_input[2] = f;
this->m_input[3] = DISC_FILTER_LOWPASS;
/* Use first order filter */
dst_filter1_reset(node);

View File

@ -75,7 +75,7 @@ DISCRETE_RESET(dss_adjustment)
{
double min, max;
m_port = device->machine->m_portlist.find((const char *)this->custom_data());
m_port = m_device->machine->m_portlist.find((const char *)this->custom_data());
if (m_port == NULL)
fatalerror("DISCRETE_ADJUSTMENT - NODE_%d has invalid tag", this->index());
@ -148,7 +148,7 @@ void DISCRETE_CLASS_FUNC(dss_input_data, input_write)(int sub_node, UINT8 data )
if (m_data != new_data)
{
/* Bring the system up to now */
device->update();
m_device->update();
m_data = new_data;
@ -175,7 +175,7 @@ void DISCRETE_CLASS_FUNC(dss_input_logic, input_write)(int sub_node, UINT8 data
if (m_data != new_data)
{
/* Bring the system up to now */
device->update();
m_device->update();
m_data = new_data;
@ -202,7 +202,7 @@ void DISCRETE_CLASS_FUNC(dss_input_not, input_write)(int sub_node, UINT8 data )
if (m_data != new_data)
{
/* Bring the system up to now */
device->update();
m_device->update();
m_data = new_data;
@ -235,7 +235,7 @@ void DISCRETE_CLASS_FUNC(dss_input_pulse, input_write)(int sub_node, UINT8 data
if (m_data != new_data)
{
/* Bring the system up to now */
device->update();
m_device->update();
m_data = new_data;
}
}
@ -302,7 +302,7 @@ void DISCRETE_CLASS_FUNC(dss_input_stream, input_write)(int sub_node, UINT8 data
else
{
/* Bring the system up to now */
device->update();
m_device->update();
m_data = new_data;
@ -316,7 +316,7 @@ DISCRETE_START(dss_input_stream)
{
discrete_base_node::start();
assert(DSS_INPUT_STREAM__STREAM < this->device->m_input_stream_list.count());
assert(DSS_INPUT_STREAM__STREAM < m_device->m_input_stream_list.count());
/* Stream out number is set during start */
m_stream_in_number = DSS_INPUT_STREAM__STREAM;
@ -327,9 +327,9 @@ DISCRETE_START(dss_input_stream)
m_is_buffered = is_buffered();
if (m_is_buffered)
{
m_buffer_stream = stream_create(this->device, 0, 1, this->sample_rate(), this, static_stream_generate);
m_buffer_stream = stream_create(m_device, 0, 1, this->sample_rate(), this, static_stream_generate);
stream_set_input(device->m_stream, m_stream_in_number,
stream_set_input(m_device->m_stream, m_stream_in_number,
m_buffer_stream, 0, 1.0);
}
else

View File

@ -233,11 +233,11 @@ DISCRETE_RESET(dst_dac_r1)
if (ladderLength < 2 && info->rBias == 0 && info->rGnd == 0)
{
/* You need at least 2 resistors for a ladder */
this->device->discrete_log("dst_dac_r1_reset - Ladder length too small");
m_device->discrete_log("dst_dac_r1_reset - Ladder length too small");
}
if (ladderLength > DISC_LADDER_MAXRES )
{
this->device->discrete_log("dst_dac_r1_reset - Ladder length exceeds DISC_LADDER_MAXRES");
m_device->discrete_log("dst_dac_r1_reset - Ladder length exceeds DISC_LADDER_MAXRES");
}
/*
@ -363,7 +363,7 @@ DISCRETE_STEP(dst_divide)
if(DST_DIVIDE__DIV == 0)
{
this->output[0 ]= DBL_MAX; /* Max out but don't break */
this->device->discrete_log("dst_divider_step() - Divide by Zero attempted in NODE_%02d.\n",this->index());
m_device->discrete_log("dst_divider_step() - Divide by Zero attempted in NODE_%02d.\n",this->index());
}
else
{
@ -1152,8 +1152,6 @@ DISCRETE_RESET(dst_mixer)
{
DISCRETE_DECLARE_INFO(discrete_mixer_desc)
discrete_base_node *r_node;
int bit;
double rTemp = 0;
@ -1161,14 +1159,11 @@ DISCRETE_RESET(dst_mixer)
m_r_node_bit_flag = 0;
for (bit = 0; bit < 8; bit++)
{
r_node = this->device->discrete_find_node(info->r_node[bit]);
if (r_node != NULL)
m_r_node[bit] = m_device->node_output_ptr(info->r_node[bit]);
if (m_r_node[bit] != NULL)
{
m_r_node[bit] = &(r_node->output[NODE_CHILD_NODE_NUM(info->r_node[bit])]);
m_r_node_bit_flag |= 1 << bit;
}
else
m_r_node[bit] = NULL;
/* flag any caps */
if (info->c[bit] != 0)
@ -1282,7 +1277,7 @@ DISCRETE_STEP(dst_multiplex)
else
{
/* Bad address. We will leave the output alone. */
this->device->discrete_log("NODE_%02d - Address = %d. Out of bounds\n", this->index(), addr);
m_device->discrete_log("NODE_%02d - Address = %d. Out of bounds\n", this->index(), addr);
}
}
@ -1469,7 +1464,7 @@ DISCRETE_STEP(dst_samphold)
if (DST_SAMPHOLD__CLOCK == 0) this->output[0] = DST_SAMPHOLD__IN0;
break;
default:
this->device->discrete_log("dst_samphold_step - Invalid clocktype passed");
m_device->discrete_log("dst_samphold_step - Invalid clocktype passed");
break;
}
/* Save the last value */
@ -1653,7 +1648,7 @@ DISCRETE_STEP(dst_transform)
top = (int)number1 ^ (int)top;
break;
default:
this->device->discrete_log("dst_transform_step - Invalid function type/variable passed: %s",(const char *)this->custom_data());
m_device->discrete_log("dst_transform_step - Invalid function type/variable passed: %s",(const char *)this->custom_data());
/* that is enough to fatalerror */
fatalerror("dst_transform_step - Invalid function type/variable passed: %s", (const char *)this->custom_data());
break;

View File

@ -131,7 +131,7 @@ DISCRETE_CLASS_STEP_RESETA(dst_mixer, 1,
int m_r_node_bit_flag;
int m_c_bit_flag;
double m_r_total;
double *m_r_node[DISC_MIXER_MAX_INPS]; /* Either pointer to resistance node output OR NULL */
const double *m_r_node[DISC_MIXER_MAX_INPS]; /* Either pointer to resistance node output OR NULL */
double m_r_last[DISC_MIXER_MAX_INPS];
double m_exponent_rc[DISC_MIXER_MAX_INPS]; /* For high pass filtering cause by cIn */
double m_v_cap[DISC_MIXER_MAX_INPS]; /* cap voltage of each input */

View File

@ -30,10 +30,10 @@ DISCRETE_START( dso_csvlog )
{
int log_num, node_num;
log_num = device->same_module_index(*this);
log_num = m_device->same_module_index(*this);
m_sample_num = 0;
sprintf(m_name, "discrete_%s_%d.csv", device->tag(), log_num);
sprintf(m_name, "discrete_%s_%d.csv", m_device->tag(), log_num);
m_csv_file = fopen(m_name, "w");
/* Output some header info */
fprintf(m_csv_file, "\"MAME Discrete System Node Log\"\n");
@ -63,7 +63,7 @@ DISCRETE_STEP( dso_csvlog )
fprintf(m_csv_file, "%" I64FMT "d", ++m_sample_num);
for (nodenum = 0; nodenum < this->active_inputs(); nodenum++)
{
fprintf(m_csv_file, ", %f", *this->input[nodenum]);
fprintf(m_csv_file, ", %f", *this->m_input[nodenum]);
}
fprintf(m_csv_file, "\n");
}
@ -78,8 +78,8 @@ DISCRETE_START( dso_wavlog )
{
int log_num;
log_num = device->same_module_index(*this);
sprintf(m_name, "discrete_%s_%d.wav", device->tag(), log_num);
log_num = m_device->same_module_index(*this);
sprintf(m_name, "discrete_%s_%d.wav", m_device->tag(), log_num);
m_wavfile = wav_open(m_name, sample_rate(), active_inputs()/2);
}

View File

@ -332,22 +332,22 @@ DISCRETE_STEP(dss_lfsr_noise)
fbresult = (m_lfsr_reg >> info->bitlength) & 0x01;
/* Stage 2 feedback combine fbresultNew with infeed bit */
fbresult = dss_lfsr_function(this->device, info->feedback_function1, fbresult, noise_feed, 0x01);
fbresult = dss_lfsr_function(m_device, info->feedback_function1, fbresult, noise_feed, 0x01);
/* Stage 3 first we setup where the bit is going to be shifted into */
fbresult = fbresult * info->feedback_function2_mask;
/* Then we left shift the register, */
m_lfsr_reg = m_lfsr_reg << 1;
/* Now move the fbresult into the shift register and mask it to the bitlength */
m_lfsr_reg = dss_lfsr_function(this->device, info->feedback_function2, fbresult, m_lfsr_reg, (1 << info->bitlength) - 1 );
m_lfsr_reg = dss_lfsr_function(m_device, info->feedback_function2, fbresult, m_lfsr_reg, (1 << info->bitlength) - 1 );
/* Now get and store the new feedback result */
/* Fetch the feedback bits */
fb0 = (m_lfsr_reg >> info->feedback_bitsel0) & 0x01;
fb1 = (m_lfsr_reg >> info->feedback_bitsel1) & 0x01;
/* Now do the combo on them */
fbresult = dss_lfsr_function(this->device, info->feedback_function0, fb0, fb1, 0x01);
m_lfsr_reg = dss_lfsr_function(this->device, DISC_LFSR_REPLACE, m_lfsr_reg, fbresult << info->bitlength, (2 << info->bitlength) - 1);
fbresult = dss_lfsr_function(m_device, info->feedback_function0, fb0, fb1, 0x01);
m_lfsr_reg = dss_lfsr_function(m_device, DISC_LFSR_REPLACE, m_lfsr_reg, fbresult << info->bitlength, (2 << info->bitlength) - 1);
}
/* Now select the output bit */
@ -387,7 +387,7 @@ DISCRETE_RESET(dss_lfsr_noise)
m_out_lfsr_reg = (info->flags & DISC_LFSR_FLAG_OUTPUT_SR_SN1) ? 1 : 0;
if ((info->clock_type < DISC_CLK_ON_F_EDGE) || (info->clock_type > DISC_CLK_IS_FREQ))
this->device->discrete_log("Invalid clock type passed in NODE_%d\n", this->index());
m_device->discrete_log("Invalid clock type passed in NODE_%d\n", this->index());
m_last = (DSS_COUNTER__CLOCK != 0);
if (info->clock_type == DISC_CLK_IS_FREQ) m_t_clock = 1.0 / DSS_LFSR_NOISE__CLOCK;
@ -400,8 +400,8 @@ DISCRETE_RESET(dss_lfsr_noise)
fb0 = (m_lfsr_reg >> info->feedback_bitsel0) & 0x01;
fb1=(m_lfsr_reg >> info->feedback_bitsel1) & 0x01;
/* Now do the combo on them */
fbresult = dss_lfsr_function(this->device, info->feedback_function0, fb0, fb1, 0x01);
m_lfsr_reg=dss_lfsr_function(this->device, DISC_LFSR_REPLACE, m_lfsr_reg, fbresult << info->bitlength, (2<< info->bitlength ) - 1);
fbresult = dss_lfsr_function(m_device, info->feedback_function0, fb0, fb1, 0x01);
m_lfsr_reg=dss_lfsr_function(m_device, DISC_LFSR_REPLACE, m_lfsr_reg, fbresult << info->bitlength, (2<< info->bitlength ) - 1);
/* Now select and setup the output bit */
this->output[0] = (m_lfsr_reg >> info->output_bit) & 0x01;
@ -439,7 +439,7 @@ DISCRETE_STEP(dss_noise)
if(m_phase > (2.0 * M_PI))
{
/* GCC's rand returns a RAND_MAX value of 0x7fff */
int newval = (this->device->machine->rand() & 0x7fff) - 16384;
int newval = (m_device->machine->rand() & 0x7fff) - 16384;
/* make sure the peak to peak values are the amplitude */
this->output[0] = DSS_NOISE__AMP / 2;
@ -663,14 +663,14 @@ DISCRETE_STEP(dss_op_amp_osc)
enable = 1;
}
/* Work out the charge rates. */
charge[0] = DSS_OP_AMP_OSC_NORTON_VP_IN / *m_r1 - i;
charge[1] = (m_v_out_high - OP_AMP_NORTON_VBE) / *m_r2 - charge[0];
charge[0] = DSS_OP_AMP_OSC_NORTON_VP_IN / *m_r[1-1] - i;
charge[1] = (m_v_out_high - OP_AMP_NORTON_VBE) / *m_r[2-1] - charge[0];
/* Work out the Inverting Schmitt thresholds. */
i1 = DSS_OP_AMP_OSC_NORTON_VP_IN / *m_r5;
i2 = (0.0 - OP_AMP_NORTON_VBE) / *m_r4;
m_threshold_low = (i1 + i2) * *m_r3 + OP_AMP_NORTON_VBE;
i2 = (m_v_out_high - OP_AMP_NORTON_VBE) / *m_r4;
m_threshold_high = (i1 + i2) * *m_r3 + OP_AMP_NORTON_VBE;
i1 = DSS_OP_AMP_OSC_NORTON_VP_IN / *m_r[5-1];
i2 = (0.0 - OP_AMP_NORTON_VBE) / *m_r[4-1];
m_threshold_low = (i1 + i2) * *m_r[3-1] + OP_AMP_NORTON_VBE;
i2 = (m_v_out_high - OP_AMP_NORTON_VBE) / *m_r[4-1];
m_threshold_high = (i1 + i2) * *m_r[3-1] + OP_AMP_NORTON_VBE;
break;
}
@ -884,27 +884,19 @@ DISCRETE_RESET(dss_op_amp_osc)
DISCRETE_DECLARE_INFO(discrete_op_amp_osc_info)
const double *r_info_ptr;
const double **r_context_ptr;
int loop;
discrete_base_node *r_node;
double i1 = 0; /* inverting input current */
double i2 = 0; /* non-inverting input current */
/* link to resistor static or node values */
r_info_ptr = &info->r1;
r_context_ptr = &m_r1;
for (loop = 0; loop < 8; loop ++)
{
if IS_VALUE_A_NODE(*r_info_ptr)
{
r_node = this->device->discrete_find_node(*r_info_ptr);
*r_context_ptr = &(r_node->output[NODE_CHILD_NODE_NUM((int)*r_info_ptr)]);
}
else
*r_context_ptr = r_info_ptr;
m_r[loop] = m_device->node_output_ptr(*r_info_ptr);
if (m_r[loop] == NULL)
m_r[loop] = r_info_ptr;
r_info_ptr++;
r_context_ptr++;
}
m_is_linear_charge = 1;

View File

@ -120,14 +120,7 @@ private:
};
DISCRETE_CLASS_STEP_RESETA(dss_op_amp_osc, 1,
const double *m_r1; /* pointers to resistor values */
const double *m_r2;
const double *m_r3;
const double *m_r4;
const double *m_r5;
const double *m_r6;
const double *m_r7;
const double *m_r8;
const double *m_r[8]; /* pointers to resistor values */
int m_type;
UINT8 m_flip_flop; /* flip/flop output state */
UINT8 m_flip_flop_xor; /* flip_flop ^ flip_flop_xor, 0 = discharge, 1 = charge */

View File

@ -65,7 +65,7 @@
*
*************************************/
#define DISCRETE_DEBUGLOG (0)
#define DISCRETE_DEBUGLOG (1)
/*************************************
@ -89,7 +89,7 @@ typedef struct
int output_node;
double buffer;
} discrete_source_node;
typedef linked_list_t<discrete_source_node *> source_node_list_t;
typedef dynamic_array_t<discrete_source_node *> source_node_list_t;
class discrete_task
{
@ -121,8 +121,8 @@ protected:
discrete_task(discrete_device *pdev)
: device(pdev), task_group(0), m_threadid(-1), m_numbuffered(0)
{
source_list.reset();
step_list.reset();
source_list.clear();
step_list.clear();
}
static void *task_callback(void *param, int threadid);
@ -139,7 +139,7 @@ private:
volatile int m_samples;
const double *m_source[DISCRETE_MAX_TASK_OUTPUTS];
discrete_base_node *m_nodes[DISCRETE_MAX_TASK_OUTPUTS];
const discrete_base_node *m_nodes[DISCRETE_MAX_TASK_OUTPUTS];
};
@ -162,44 +162,7 @@ private:
*
*************************************/
INLINE void linked_list_tail_add(const discrete_device *info, linked_list_entry ***list_tail_ptr, const void *ptr)
{
**list_tail_ptr = auto_alloc(info->machine, linked_list_entry);
(**list_tail_ptr)->ptr = ptr;
(**list_tail_ptr)->next = NULL;
*list_tail_ptr = &((**list_tail_ptr)->next);
}
INLINE int linked_list_count(const linked_list_entry *list)
{
int cnt = 0;
const linked_list_entry *entry;
for (entry = list; entry != NULL; entry = entry->next)
cnt++;
return cnt;
}
INLINE void linked_list_add(const discrete_device *info, linked_list_entry **list, const void *ptr)
{
linked_list_entry *entry;
if (*list == NULL)
{
*list = auto_alloc(info->machine, linked_list_entry);
(*list)->ptr = ptr;
(*list)->next = NULL;
}
else
{
for (entry = *list; entry != NULL && entry->next != NULL; entry = entry->next)
;
entry->next = auto_alloc(info->machine, linked_list_entry);
entry->next->ptr = ptr;
entry->next->next = NULL;
}
}
/*************************************
*
@ -210,26 +173,26 @@ INLINE void linked_list_add(const discrete_device *info, linked_list_entry **lis
inline void discrete_task::step_nodes(void)
{
for_each(discrete_source_node *, sn, &source_list)
for_each(discrete_source_node **, sn, &source_list)
{
sn.item()->buffer = *sn.item()->ptr++;
(*sn)->buffer = *(*sn)->ptr++;
}
if (EXPECTED(!device->profiling()))
{
for_each(discrete_step_interface *, entry, &step_list)
for_each(discrete_step_interface **, entry, &step_list)
{
/* Now step the node */
entry.item()->step();
(*entry)->step();
}
}
else
{
osd_ticks_t last = get_profile_ticks();
for_each(discrete_step_interface *, entry, &step_list)
for_each(discrete_step_interface **, entry, &step_list)
{
discrete_step_interface *node = entry.item();
discrete_step_interface *node = *entry;
node->run_time -= last;
node->step();
@ -247,14 +210,14 @@ void *discrete_task::task_callback(void *param, int threadid)
task_list_t *list = (task_list_t *) param;
do
{
for_each(discrete_task *, task, list)
for_each(discrete_task **, task, list)
{
/* try to lock */
if (task.item()->lock_threadid(threadid))
if ((*task)->lock_threadid(threadid))
{
if (!task.item()->process())
if (!(*task)->process())
return NULL;
task.item()->unlock();
(*task)->unlock();
}
}
} while (1);
@ -267,11 +230,11 @@ bool discrete_task::process(void)
int samples = MIN(m_samples, MAX_SAMPLES_PER_TASK_SLICE);
/* check dependencies */
for_each(discrete_source_node *, sn, &source_list)
for_each(discrete_source_node **, sn, &source_list)
{
int avail;
avail = sn.item()->task->m_ptr[sn.item()->output_node] - sn.item()->ptr;
avail = (*sn)->task->m_ptr[(*sn)->output_node] - (*sn)->ptr;
assert_always(avail >= 0, "task_callback: available samples are negative");
if (avail < samples)
samples = avail;
@ -301,9 +264,9 @@ void discrete_task::prepare_for_queue(int samples)
m_ptr[i] = m_node_buf[i];
/* initialize sources */
for_each(discrete_source_node *, sn, &source_list)
for_each(discrete_source_node **, sn, &source_list)
{
sn.item()->ptr = sn.item()->task->m_node_buf[sn.item()->output_node];
(*sn)->ptr = (*sn)->task->m_node_buf[(*sn)->output_node];
}
}
@ -314,14 +277,14 @@ void discrete_task::check(discrete_task *dest_task)
/* Determine, which nodes in the task are referenced by nodes in dest_task
* and add them to the list of nodes to be buffered for further processing
*/
for_each(discrete_step_interface *, node_entry, &step_list)
for_each(discrete_step_interface **, node_entry, &step_list)
{
discrete_base_node *task_node = node_entry.item()->self;
discrete_base_node *task_node = (*node_entry)->self;
for_each(discrete_step_interface *, step_entry, &dest_task->step_list)
for_each(discrete_step_interface **, step_entry, &dest_task->step_list)
{
discrete_base_node *dest_node = step_entry.item()->self;
discrete_base_node *dest_node = (*step_entry)->self;
/* loop over all active inputs */
for (inputnum = 0; inputnum < dest_node->active_inputs(); inputnum++)
@ -346,23 +309,23 @@ void discrete_task::check(discrete_task *dest_task)
if (m_numbuffered >= DISCRETE_MAX_TASK_OUTPUTS)
fatalerror("dso_task_start - Number of maximum buffered nodes exceeded");
m_node_buf[m_numbuffered] = auto_alloc_array(task_node->device->machine, double,
m_node_buf[m_numbuffered] = auto_alloc_array(device->machine, double,
((task_node->sample_rate() + STREAMS_UPDATE_FREQUENCY) / STREAMS_UPDATE_FREQUENCY));
m_source[m_numbuffered] = (double *) dest_node->input[inputnum];
m_nodes[m_numbuffered] = task_node->device->discrete_find_node(inputnode);
m_source[m_numbuffered] = (double *) dest_node->m_input[inputnum];
m_nodes[m_numbuffered] = device->discrete_find_node(inputnode);
i = m_numbuffered;
m_numbuffered++;
}
device->discrete_log("dso_task_start - buffering %d(%d) in task %p group %d referenced by %d group %d", NODE_INDEX(inputnode), NODE_CHILD_NODE_NUM(inputnode), this, task_group, dest_node->index(), dest_task->task_group);
/* register into source list */
source = auto_alloc(dest_node->device->machine, discrete_source_node);
dest_task->source_list.add_tail(source);
source = auto_alloc(device->machine, discrete_source_node);
dest_task->source_list.add(source);
source->task = this;
source->output_node = i;
/* point the input to a buffered location */
dest_node->input[inputnum] = &source->buffer;
dest_node->m_input[inputnum] = &source->buffer;
}
}
@ -392,7 +355,7 @@ discrete_base_node::~discrete_base_node(void)
void discrete_base_node::init(discrete_device * pdev, const discrete_sound_block *xblock)
{
device = pdev;
m_device = pdev;
m_block = xblock;
m_custom = m_block->custom;
@ -409,28 +372,19 @@ void discrete_base_node::init(discrete_device * pdev, const discrete_sound_block
}
}
void discrete_base_node::start(void)
{
}
int discrete_base_node::index(void)
{
return NODE_INDEX(m_block->node);
}
void discrete_base_node::save_state(device_t *device)
void discrete_base_node::save_state(void)
{
if (m_block->node != NODE_SPECIAL)
state_save_register_device_item_array(device, m_block->node, output);
state_save_register_device_item_array(m_device, m_block->node, output);
}
discrete_base_node *discrete_device::discrete_find_node(int node)
const discrete_base_node *discrete_device::discrete_find_node(int node)
{
if (node < NODE_START || node > NODE_END) return NULL;
return m_indexed_node[NODE_INDEX(node)];
}
void discrete_base_node::find_input_nodes(void)
void discrete_base_node::resolve_input_nodes(void)
{
int inputnum;
@ -442,14 +396,14 @@ void discrete_base_node::find_input_nodes(void)
/* if this input is node-based, find the node in the indexed list */
if IS_VALUE_A_NODE(inputnode)
{
discrete_base_node *node_ref = device->m_indexed_node[NODE_INDEX(inputnode)];
discrete_base_node *node_ref = m_device->m_indexed_node[NODE_INDEX(inputnode)];
if (!node_ref)
fatalerror("discrete_start - NODE_%02d referenced a non existent node NODE_%02d", index(), NODE_INDEX(inputnode));
if ((NODE_CHILD_NODE_NUM(inputnode) >= node_ref->max_output()) /*&& (node_ref->module_type() != DST_CUSTOM)*/)
fatalerror("discrete_start - NODE_%02d referenced non existent output %d on node NODE_%02d", index(), NODE_CHILD_NODE_NUM(inputnode), NODE_INDEX(inputnode));
input[inputnum] = &(node_ref->output[NODE_CHILD_NODE_NUM(inputnode)]); /* Link referenced node out to input */
m_input[inputnum] = &(node_ref->output[NODE_CHILD_NODE_NUM(inputnode)]); /* Link referenced node out to input */
m_input_is_node |= 1 << inputnum; /* Bit flag if input is node */
}
else
@ -457,23 +411,36 @@ void discrete_base_node::find_input_nodes(void)
/* warn if trying to use a node for an input that can only be static */
if IS_VALUE_A_NODE(m_block->initial[inputnum])
{
device->discrete_log("Warning - discrete_start - NODE_%02d trying to use a node on static input %d", index(), inputnum);
m_device->discrete_log("Warning - discrete_start - NODE_%02d trying to use a node on static input %d", index(), inputnum);
/* also report it in the error log so it is not missed */
logerror("Warning - discrete_start - NODE_%02d trying to use a node on static input %d", index(), inputnum);
}
else
{
input[inputnum] = &(m_block->initial[inputnum]);
m_input[inputnum] = &(m_block->initial[inputnum]);
}
}
}
for (inputnum = m_active_inputs; inputnum < DISCRETE_MAX_INPUTS; inputnum++)
{
/* FIXME: Check that no nodes follow ! */
input[inputnum] = &(m_block->initial[inputnum]);
m_input[inputnum] = &(m_block->initial[inputnum]);
}
}
const double *discrete_device::node_output_ptr(int onode)
{
const discrete_base_node *node;
node = discrete_find_node(onode);
if (node != NULL)
{
return &(node->output[NODE_CHILD_NODE_NUM(onode)]);
}
else
return NULL;
}
/*************************************
*
* Device implementation
@ -507,7 +474,7 @@ void CLIB_DECL ATTR_PRINTF(2,3) discrete_device::discrete_log(const char *text,
// discrete_build_list: Build import list
//-------------------------------------------------
void discrete_device::discrete_build_list(const discrete_sound_block *intf, linked_list_entry ***current)
void discrete_device::discrete_build_list(const discrete_sound_block *intf, sound_block_list_t &block_list)
{
int node_count = 0;
@ -517,57 +484,55 @@ void discrete_device::discrete_build_list(const discrete_sound_block *intf, link
if (intf[node_count].type == DSO_IMPORT)
{
discrete_log("discrete_build_list() - DISCRETE_IMPORT @ NODE_%02d", NODE_INDEX(intf[node_count].node) );
discrete_build_list((discrete_sound_block *) intf[node_count].custom, current);
discrete_build_list((discrete_sound_block *) intf[node_count].custom, block_list);
}
else if (intf[node_count].type == DSO_REPLACE)
{
linked_list_entry *entry;
bool found = false;
node_count++;
if (intf[node_count].type == DSS_NULL)
fatalerror("discrete_build_list: DISCRETE_REPLACE at end of node_list");
for (entry = m_block_list; entry != NULL; entry = entry->next)
for (int i=0; i < block_list.count(); i++)
{
discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
const discrete_sound_block *block = block_list[i];
if (block->type != NODE_SPECIAL )
if (block->node == intf[node_count].node)
{
entry->ptr = (void *) &intf[node_count];
block_list[i] = &intf[node_count];
discrete_log("discrete_build_list() - DISCRETE_REPLACE @ NODE_%02d", NODE_INDEX(intf[node_count].node) );
found = true;
break;
}
}
if (entry == NULL)
if (!found)
fatalerror("discrete_build_list: DISCRETE_REPLACE did not found node %d", NODE_INDEX(intf[node_count].node));
}
else if (intf[node_count].type == DSO_DELETE)
{
linked_list_entry *entry, *last;
dynamic_array_t<int> deletethem;
last = NULL;
for (entry = m_block_list; entry != NULL; last = entry, entry = entry->next)
for (int i=0; i<block_list.count(); i++)
{
discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
const discrete_sound_block *block = block_list[i];
if ((block->node >= intf[node_count].input_node[0]) &&
(block->node <= intf[node_count].input_node[1]))
{
discrete_log("discrete_build_list() - DISCRETE_DELETE deleted NODE_%02d", NODE_INDEX(block->node) );
if (last != NULL)
last->next = entry->next;
else
m_block_list = entry->next;
deletethem.add(i);
}
}
for_each (int *, i, &deletethem)
block_list.delete(*i);
}
else
{
discrete_log("discrete_build_list() - adding node %d (*current %p)\n", node_count, *current);
linked_list_tail_add(this, current, &intf[node_count]);
discrete_log("discrete_build_list() - adding node %d\n", node_count);
block_list.add(&intf[node_count]);
}
node_count++;
@ -578,15 +543,14 @@ void discrete_device::discrete_build_list(const discrete_sound_block *intf, link
// discrete_sanity_check: Sanity check list
//-------------------------------------------------
void discrete_device::discrete_sanity_check(void)
void discrete_device::discrete_sanity_check(const sound_block_list_t &block_list)
{
const linked_list_entry *entry;
int node_count = 0;
discrete_log("discrete_start() - Doing node list sanity check");
for (entry = m_block_list; entry != NULL; entry = entry->next)
for (int i=0; i < block_list.count(); i++)
{
discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
const discrete_sound_block *block = block_list[i];
/* make sure we don't have too many nodes overall */
if (node_count > DISCRETE_MAX_NODES)
@ -631,10 +595,10 @@ static UINT64 list_run_time(const node_list_t &list)
{
UINT64 total = 0;
for_each(discrete_base_node *, node, &list)
for_each(discrete_base_node **, node, &list)
{
discrete_step_interface *step;
if (node.item()->interface(step))
if ((*node)->interface(step))
total += step->run_time;
}
return total;
@ -644,9 +608,9 @@ static UINT64 step_list_run_time(const node_step_list_t &list)
{
UINT64 total = 0;
for_each(discrete_step_interface *, node, &list)
for_each(discrete_step_interface **, node, &list)
{
total += node.item()->run_time;
total += (*node)->run_time;
}
return total;
}
@ -665,43 +629,26 @@ void discrete_device::display_profiling(void)
printf("Total Samples : %16" I64FMT "d\n", m_total_samples);
tresh = total / count;
printf("Threshold (mean): %16" I64FMT "d\n", tresh / m_total_samples );
for_each(discrete_base_node *, node, &m_node_list)
for_each(discrete_base_node **, node, &m_node_list)
{
discrete_step_interface *step;
if (node.item()->interface(step))
if ((*node)->interface(step))
if (step->run_time > tresh)
printf("%3d: %20s %8.2f %10.2f\n", node.item()->index(), node.item()->module_name(), (float) step->run_time / (float) total * 100.0, ((float) step->run_time) / (float) m_total_samples);
printf("%3d: %20s %8.2f %10.2f\n", (*node)->index(), (*node)->module_name(), (float) step->run_time / (float) total * 100.0, ((float) step->run_time) / (float) m_total_samples);
}
/* Task information */
for_each(discrete_task *, task, &task_list)
for_each(discrete_task **, task, &task_list)
{
tt = step_list_run_time(task.item()->step_list);
tt = step_list_run_time((*task)->step_list);
printf("Task(%d): %8.2f %15.2f\n", task.item()->task_group, tt / (double) total * 100.0, tt / (double) m_total_samples);
printf("Task(%d): %8.2f %15.2f\n", (*task)->task_group, tt / (double) total * 100.0, tt / (double) m_total_samples);
}
printf("Average samples/stream_update: %8.2f\n", (double) m_total_samples / (double) m_total_stream_updates);
}
/*************************************
*
* Master reset of all nodes
*
*************************************/
/*************************************
*
* Stream update functions
*
*************************************/
/*************************************
*
* First pass init of nodes
@ -709,18 +656,16 @@ void discrete_device::display_profiling(void)
*************************************/
void discrete_device::init_nodes(const linked_list_entry *block_list)
void discrete_device::init_nodes(const sound_block_list_t &block_list)
{
const linked_list_entry *entry;
discrete_task *task = NULL;
/* list tail pointers */
int has_tasks = 0;
/* check whether we have tasks ... */
for (entry = block_list; entry != NULL; entry = entry->next)
for (int i = 0; i < block_list.count(); i++)
{
const discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
if (block->type == DSO_TASK_START)
if (block_list[i]->type == DSO_TASK_START)
has_tasks = 1;
}
@ -730,14 +675,13 @@ void discrete_device::init_nodes(const linked_list_entry *block_list)
* No need to create a node since there are no dependencies.
*/
task = auto_alloc_clear(machine, discrete_task(this));
task_list.add_tail(task);
task_list.add(task);
}
/* loop over all nodes */
for (entry = block_list; entry != NULL; entry = entry->next)
for (int i = 0; i < block_list.count(); i++)
{
const discrete_sound_block *block = (discrete_sound_block *) entry->ptr;
//int modulenum;
const discrete_sound_block *block = block_list[i];
discrete_base_node *node = block->factory->Create(this, block);
/* keep track of special nodes */
@ -767,7 +711,7 @@ void discrete_device::init_nodes(const linked_list_entry *block_list)
if (task->task_group < 0 || task->task_group >= DISCRETE_MAX_TASK_GROUPS)
fatalerror("discrete_dso_task: illegal task_group %d", task->task_group);
//printf("task group %d\n", task->task_group);
task_list.add_tail(task);
task_list.add(task);
break;
case DSO_TASK_END:
@ -792,11 +736,11 @@ void discrete_device::init_nodes(const linked_list_entry *block_list)
discrete_dss_input_stream_node *input_stream = dynamic_cast<discrete_dss_input_stream_node *>(node);
if (input_stream != NULL)
{
m_input_stream_list.add_tail(input_stream);
m_input_stream_list.add(input_stream);
}
/* add to node list */
m_node_list.add_tail(node);
m_node_list.add(node);
/* our running order just follows the order specified */
/* does the node step ? */
@ -807,13 +751,13 @@ void discrete_device::init_nodes(const linked_list_entry *block_list)
if (task == NULL)
fatalerror("init_nodes() - found node outside of task: %s", node->module_name() );
else
task->step_list.add_tail(step);
task->step_list.add(step);
}
/* if this is an output interface, add it the output list */
discrete_output_interface *out;
if (node->interface(out))
m_output_list.add_tail(out);
m_output_list.add(out);
if (block->type == DSO_TASK_END)
@ -822,7 +766,7 @@ void discrete_device::init_nodes(const linked_list_entry *block_list)
}
/* and register save state */
node->save_state(this);
node->save_state();
}
if (!has_tasks)
@ -842,15 +786,15 @@ void discrete_device::init_nodes(const linked_list_entry *block_list)
*************************************/
int discrete_device::same_module_index(discrete_base_node &node)
int discrete_device::same_module_index(const discrete_base_node &node)
{
int index = 0;
for_each(discrete_base_node *, n, &m_node_list)
for_each(discrete_base_node **, n, &m_node_list)
{
if (n.item() == &node)
if (*n == &node)
return index;
if (n.item()->module_type() == node.module_type())
if ((*n)->module_type() == node.module_type())
index++;
}
return -1;
@ -934,9 +878,9 @@ discrete_device::~discrete_device(void)
/* Process nodes which have a stop func */
for_each(discrete_base_node *, node, &m_node_list)
for_each(discrete_base_node **, node, &m_node_list)
{
node.item()->stop();
(*node)->stop();
}
if (DISCRETE_DEBUGLOG)
@ -957,7 +901,6 @@ void discrete_device::device_start()
// create the stream
//m_stream = stream_create(this, 0, 2, 22257, this, static_stream_generate);
linked_list_entry **intf;
const discrete_sound_block *intf_start = (m_config.m_intf != NULL) ? m_config.m_intf : (discrete_sound_block *) baseconfig().static_config();
char name[32];
@ -983,28 +926,27 @@ void discrete_device::device_start()
m_profiling = atoi(getenv("DISCRETE_PROFILING"));
/* Build the final block list */
m_block_list = NULL;
intf = &m_block_list;
discrete_build_list(intf_start, &intf);
sound_block_list_t block_list;
discrete_build_list(intf_start, block_list);
/* first pass through the nodes: sanity check, fill in the indexed_nodes, and make a total count */
discrete_sanity_check();
discrete_sanity_check(block_list);
/* Start with empty lists */
m_node_list.reset();
m_output_list.reset();
m_input_stream_list.reset();
m_node_list.clear();
m_output_list.clear();
m_input_stream_list.clear();
/* allocate memory to hold pointers to nodes by index */
m_indexed_node = auto_alloc_array_clear(this->machine, discrete_base_node *, DISCRETE_MAX_NODES);
/* initialize the node data */
init_nodes(m_block_list);
init_nodes(block_list);
/* now go back and find pointers to all input nodes */
for_each(discrete_base_node *, node, &m_node_list)
for_each(discrete_base_node **, node, &m_node_list)
{
node.item()->find_input_nodes();
(*node)->resolve_input_nodes();
}
/* initialize the stream(s) */
@ -1016,19 +958,19 @@ void discrete_device::device_start()
/* Process nodes which have a start func */
for_each(discrete_base_node *, node, &m_node_list)
for_each(discrete_base_node **, node, &m_node_list)
{
node.item()->start();
(*node)->start();
}
/* Now set up tasks */
for_each(discrete_task *, task, &task_list)
for_each(discrete_task **, task, &task_list)
{
for_each(discrete_task *, dest_task, &task_list)
for_each(discrete_task **, dest_task, &task_list)
{
if (task.item()->task_group > dest_task.item()->task_group)
dest_task.item()->check(task.item());
if ((*task)->task_group > (*dest_task)->task_group)
(*dest_task)->check((*task));
}
}
}
@ -1044,11 +986,12 @@ void discrete_device::device_reset()
update();
/* loop over all nodes */
for_each (discrete_base_node *, node, &m_node_list)
for_each (discrete_base_node **, node, &m_node_list)
{
node.item()->output[0] = 0;
/* Fimxe : node_level */
(*node)->output[0] = 0;
node.item()->reset();
(*node)->reset();
}
}
@ -1071,28 +1014,28 @@ void discrete_device::stream_generate(stream_sample_t **inputs, stream_sample_t
return;
/* Setup any output streams */
outputnum = 0;
for_each(discrete_output_interface *, node, &m_output_list)
for_each(discrete_output_interface **, node, &m_output_list)
{
node.item()->set_output(outputs[outputnum]);
(*node)->set_output(outputs[outputnum]);
outputnum++;
}
/* Setup any input streams */
for_each(discrete_dss_input_stream_node *, node, &m_input_stream_list)
for_each(discrete_dss_input_stream_node **, node, &m_input_stream_list)
{
node.item()->m_ptr = (stream_sample_t *) inputs[node.item()->m_stream_in_number];
(*node)->m_ptr = (stream_sample_t *) inputs[(*node)->m_stream_in_number];
}
/* Setup tasks */
for_each(discrete_task *, task, &task_list)
for_each(discrete_task **, task, &task_list)
{
/* unlock the thread */
task.item()->unlock();
(*task)->unlock();
task.item()->prepare_for_queue(samples);
(*task)->prepare_for_queue(samples);
}
for_each(discrete_task *, task, &task_list)
for_each(discrete_task **, task, &task_list)
{
/* Fire a work item for each task */
osd_work_item_queue(m_queue, discrete_task::task_callback, (void *) &task_list, WORK_ITEM_FLAG_AUTO_RELEASE);
@ -1112,7 +1055,7 @@ void discrete_device::stream_generate(stream_sample_t **inputs, stream_sample_t
READ8_MEMBER( discrete_device::read )
{
discrete_base_node *node = discrete_find_node(offset);
const discrete_base_node *node = discrete_find_node(offset);
UINT8 data = 0;
@ -1136,7 +1079,7 @@ READ8_MEMBER( discrete_device::read )
WRITE8_MEMBER( discrete_device::write )
{
discrete_base_node *node = discrete_find_node(offset);
const discrete_base_node *node = discrete_find_node(offset);
/* Update the node input value if it's a proper input node */
if (node)

View File

@ -3508,7 +3508,7 @@
#define DISCRETE_DECLARE_CONTEXT(_name) struct _name##_context *context = (struct _name##_context *)this->m_context;
#define DISCRETE_DECLARE_INFO(_name) const _name *info = (const _name *)this->custom_data();
#define DISCRETE_INPUT(_num) (*(this->input[_num]))
#define DISCRETE_INPUT(_num) (*(this->m_input[_num]))
/*************************************
*
@ -3750,94 +3750,84 @@ enum
*
*************************************/
typedef struct _linked_list_entry linked_list_entry;
struct _linked_list_entry
{
linked_list_entry *next;
const void *ptr;
};
#define for_each(_T, _e, _l) for (_T _e = (_l)->begin_ptr() ; _e <= (_l)->end_ptr(); _e++)
template<class T> class enumerator_t
/*
* add and delete may be slow - the focus is on access!
*/
template<class T> class dynamic_array_t
{
public:
enumerator_t(linked_list_entry *first, resource_pool &pool = global_resource_pool) : m_cur(first) { }
virtual ~enumerator_t() { }
dynamic_array_t(int initial) {
m_count = 0;
m_allocated = initial;
m_arr = global_alloc_array_clear(T, m_allocated);
}
dynamic_array_t() {
m_count = 0;
m_allocated = 16;
m_arr = global_alloc_array_clear(T, m_allocated);
}
~dynamic_array_t() {
global_free(m_arr);
}
T& operator [] (unsigned int index) const // get array item
{
return m_arr[index];
}
//inline void set_first(linked_list_entry *first) { m_cur = first; }
inline T item(void) { return (T) m_cur->ptr; }
inline void next(void) { m_cur = m_cur->next; }
inline bool has_item(void) { return (m_cur != NULL); }
protected:
dynamic_array_t(const dynamic_array_t &a) // copy constructor
{
m_allocated = a.count();
if (m_allocated < 16)
m_allocated = 16;
m_count = a.count();
m_arr = global_alloc_array_clear(T, m_allocated);
for (int i=0; i < m_count; i++)
m_arr[i] = a[i];
}
dynamic_array_t& operator = (const dynamic_array_t &a) // assignment operator
{
if (this == &a) return *this;
m_allocated = a.count();
if (m_allocated < 16)
m_allocated = 16;
m_count = a.count();
m_arr = global_alloc_array_clear(T, m_allocated);
for (int i=0; i < m_count; i++)
m_arr[i] = a[i];
return *this;
}
inline void add(T object)
{
if (m_count >= m_allocated)
{
m_allocated *= 2;
T *newarr = global_alloc_array_clear(T, m_allocated);
for (int i=0; i < m_count; i++)
newarr[i] = m_arr[i];
global_free(m_arr);
m_arr = newarr;
}
m_arr[m_count] = object;
m_count++;
}
inline void delete(int index)
{
for (int i=index+1; i < m_count; i++)
m_arr[i-1] = m_arr[i];
m_count--;
}
inline void clear(void) { m_count = 0; }
inline int count(void) const { return m_count; }
inline T *begin_ptr(void) const { return m_arr; }
inline T *end_ptr(void) const { return m_arr + (m_count - 1); }
private:
linked_list_entry *m_cur;
};
#define for_each(_T, _e, _l) for (enumerator_t<_T> _e = (_l)->enumerator() ; _e.has_item(); _e.next())
template<class T> class linked_list_t
{
public:
linked_list_t() { m_first = NULL; m_last = NULL; }
~linked_list_t() { reset(); }
void add_tail(T object)
{
linked_list_entry *n = global_alloc(linked_list_entry);
n->ptr = (void *) object;
n->next = NULL;
if (m_last == NULL)
{
m_last = n;
m_first = n;
}
else
{
m_last->next = n;
m_last = n;
}
}
void add_head(T object)
{
linked_list_entry *n = global_alloc(linked_list_entry);
n->ptr = (void *) object;
n->next = NULL;
if (m_last == NULL)
{
m_last = n;
m_first = n;
}
else
{
n->next = m_first;
m_first = n;
}
}
void reset(void)
{
linked_list_entry *e = m_first;
while (e != NULL)
{
linked_list_entry *o = e;
e = e->next;
global_free(o);
}
m_first = NULL; m_last = NULL;
}
inline int count(void) const
{
int cnt = 0;
linked_list_entry *e = m_first;
while (e != NULL)
{
e = e->next;
cnt++;
}
return cnt;
}
inline enumerator_t<T> enumerator(void) const { enumerator_t<T> r(m_first); return r; }
private:
linked_list_entry *m_first;
linked_list_entry *m_last;
T *m_arr;
int m_count;
int m_allocated;
};
/*************************************
@ -4241,9 +4231,9 @@ class discrete_task;
class discrete_base_node;
class discrete_dss_input_stream_node;
class discrete_device;
typedef linked_list_t<discrete_base_node *> node_list_t;
typedef linked_list_t<discrete_dss_input_stream_node *> input_stream_node_list_t;
typedef linked_list_t<discrete_task *> task_list_t;
typedef dynamic_array_t<discrete_base_node *> node_list_t;
typedef dynamic_array_t<discrete_dss_input_stream_node *> istream_node_list_t;
typedef dynamic_array_t<discrete_task *> task_list_t;
/*************************************
@ -4272,6 +4262,7 @@ struct _discrete_sound_block
const char * name; /* Node Name */
const char * mod_name; /* Module / class name */
};
typedef dynamic_array_t<const discrete_sound_block *> sound_block_list_t;
/*************************************
*
@ -4288,7 +4279,7 @@ public:
osd_ticks_t run_time;
discrete_base_node * self;
};
typedef linked_list_t<discrete_step_interface *> node_step_list_t;
typedef dynamic_array_t<discrete_step_interface *> node_step_list_t;
class discrete_input_interface
{
@ -4361,7 +4352,7 @@ protected:
};
class discrete_output_interface;
typedef linked_list_t<discrete_output_interface *> node_output_list_t;
typedef dynamic_array_t<discrete_output_interface *> node_output_list_t;
// ======================> discrete_device
@ -4370,6 +4361,7 @@ class discrete_device : public device_t, public device_sound_interface
{
friend class discrete_device_config;
friend class discrete_base_node;
friend class discrete_task;
friend class discrete_dss_input_stream_node;
// construction/destruction
@ -4378,23 +4370,21 @@ class discrete_device : public device_t, public device_sound_interface
public:
DECLARE_READ8_MEMBER(read);
DECLARE_WRITE8_MEMBER(write);
//sound_stream *m_stream;
virtual ~discrete_device(void);
/* --------------------------------- */
void CLIB_DECL ATTR_PRINTF(2,3) discrete_log(const char *text, ...) const;
discrete_base_node *discrete_find_node(int node);
const double *node_output_ptr(int onode);
/* FIXME: this is used by csv and wav logs - going forward, identifiers should be explicitly passed */
int same_module_index(discrete_base_node &node);
int same_module_index(const discrete_base_node &node);
inline int profiling(void) { return m_profiling; }
void update(void) { stream_update(m_stream); }
void update(void) const { stream_update(m_stream); }
/* FIXME: theses should be protected */
/* tasks */
task_list_t task_list; /* discrete_task_context * */
/* the input streams */
input_stream_node_list_t m_input_stream_list;
protected:
@ -4406,6 +4396,8 @@ protected:
static STREAM_UPDATE( static_stream_generate );
virtual void stream_generate(stream_sample_t **inputs, stream_sample_t **outputs, int samples);
const discrete_base_node *discrete_find_node(int node);
// internal state
const discrete_device_config &m_config;
@ -4421,34 +4413,36 @@ protected:
private:
void discrete_build_list(const discrete_sound_block *intf, linked_list_entry ***current);
void discrete_sanity_check(void);
void discrete_build_list(const discrete_sound_block *intf, sound_block_list_t &block_list);
void discrete_sanity_check(const sound_block_list_t &block_list);
void display_profiling(void);
void init_nodes(const linked_list_entry *block_list);
void init_nodes(const sound_block_list_t &block_list);
/* internal node tracking */
discrete_base_node **m_indexed_node;
discrete_base_node ** m_indexed_node;
/* list of all nodes */
node_list_t m_node_list; /* node_description * */
node_list_t m_node_list; /* node_description * */
/* list of discrete blocks after prescan (IMPORT, DELETE, REPLACE) */
linked_list_entry *m_block_list; /* discrete_sound_block * */
/* tasks */
task_list_t task_list; /* discrete_task_context * */
/* the input streams */
istream_node_list_t m_input_stream_list;
/* output node tracking */
node_output_list_t m_output_list;
node_output_list_t m_output_list;
/* debugging statistics */
FILE *m_disclogfile;
FILE * m_disclogfile;
/* parallel tasks */
osd_work_queue *m_queue;
osd_work_queue * m_queue;
/* profiling */
int m_profiling;
UINT64 m_total_samples;
UINT64 m_total_stream_updates;
int m_profiling;
UINT64 m_total_samples;
UINT64 m_total_stream_updates;
};
// device type definition
@ -4469,63 +4463,66 @@ class discrete_base_node
public:
virtual void reset(void) { }
virtual void start(void);
virtual void start(void) { }
virtual void stop(void) { }
virtual void save_state(void);
inline bool interface(discrete_step_interface *&intf) { intf = m_step_intf; return (intf != NULL); }
inline bool interface(discrete_input_interface *&intf) { intf = m_input_intf; return (intf != NULL); }
inline bool interface(discrete_output_interface *&intf) { intf = m_output_intf; return (intf != NULL); }
inline bool interface(discrete_step_interface *&intf) const { intf = m_step_intf; return (intf != NULL); }
inline bool interface(discrete_input_interface *&intf) const { intf = m_input_intf; return (intf != NULL); }
inline bool interface(discrete_output_interface *&intf) const { intf = m_output_intf; return (intf != NULL); }
virtual int max_output(void) { return 1; };
/* Return the node index, i.e. X from NODE(X) */
int index(void);
inline int index(void) { return NODE_INDEX(m_block->node); }
/* Return the node number, i.e. NODE(X) */
inline int block_node(void) { return m_block->node; }
inline int block_node(void) const { return m_block->node; }
/* Custom function specific initialisation data */
inline const void *custom_data(void) { return m_custom; }
void find_input_nodes(void);
void save_state(device_t *device);
inline int input_node(int inputnum) { return m_block->input_node[inputnum]; }
/* The node's last output value */
double output[DISCRETE_MAX_OUTPUTS];
const double * input[DISCRETE_MAX_INPUTS]; /* Addresses of Input values */
/* Number of active inputs on this node type */
inline int active_inputs(void) { return m_active_inputs; }
/* Bit Flags. 1 in bit location means input_is_node */
inline int input_is_node(void) { return m_input_is_node; };
inline double sample_time(void) { return device->m_sample_time; }
inline int sample_rate(void) { return device->m_sample_rate; }
inline double sample_time(void) { return m_device->m_sample_time; }
inline int sample_rate(void) { return m_device->m_sample_rate; }
const char * module_name(void) { return m_block->mod_name; }
inline int module_type(void) { return m_block->type; }
discrete_device *device; /* Points to the parent */
inline int module_type(void) const { return m_block->type; }
protected:
discrete_base_node();
virtual ~discrete_base_node();
/* finish node setup after allocation is complete */
void init(discrete_device * pdev, const discrete_sound_block *block);
void resolve_input_nodes(void);
discrete_device * m_device; /* Points to the parent */
double output[DISCRETE_MAX_OUTPUTS]; /* The node's last output value */
const double * m_input[DISCRETE_MAX_INPUTS]; /* Addresses of Input values */
private:
const discrete_sound_block *m_block; /* Points to the node's setup block. */
int m_active_inputs; /* Number of active inputs on this node type */
/* Custom function specific initialisation data */
const void * m_custom;
int m_input_is_node;
discrete_step_interface *m_step_intf;
discrete_input_interface *m_input_intf;
discrete_output_interface *m_output_intf;
const discrete_sound_block * m_block; /* Points to the node's setup block. */
int m_active_inputs; /* Number of active inputs on this node type */
const void * m_custom; /* Custom function specific initialisation data */
int m_input_is_node;
discrete_step_interface * m_step_intf;
discrete_input_interface * m_input_intf;
discrete_output_interface * m_output_intf;
};
class discrete_node_base_factory