68340: simplified code by making the timer module implementation a device and created two independent instanses, as it should be

This commit is contained in:
Joakim Larsson Edstrom 2017-09-09 22:55:22 +02:00
parent 9100c4e0d7
commit 08d77828bf
4 changed files with 236 additions and 366 deletions

View File

@ -9,7 +9,6 @@
DEFINE_DEVICE_TYPE(M68340, m68340_cpu_device, "mc68340", "MC68340")
int m68340_cpu_device::calc_cs(offs_t address) const
{
if ( !(m68340SIM->m_ba[0] & 1) ) return 1;
@ -88,9 +87,12 @@ WRITE32_MEMBER( m68340_cpu_device::m68340_internal_base_w )
internal->install_readwrite_handler(base + 0x040, base + 0x05f,
read32_delegate(FUNC(m68340_cpu_device::m68340_internal_sim_cs_r),this),
write32_delegate(FUNC(m68340_cpu_device::m68340_internal_sim_cs_w),this));
internal->install_readwrite_handler(base + 0x600, base + 0x67f,
read16_delegate(FUNC(m68340_cpu_device::m68340_internal_timer_r),this),
write16_delegate(FUNC(m68340_cpu_device::m68340_internal_timer_w),this),0xffffffff);
internal->install_readwrite_handler(base + 0x600, base + 0x63f,
READ16_DEVICE_DELEGATE(m_timer1, mc68340_timer_module_device, read),
WRITE16_DEVICE_DELEGATE(m_timer1, mc68340_timer_module_device, write),0xffffffff);
internal->install_readwrite_handler(base + 0x640, base + 0x67f,
READ16_DEVICE_DELEGATE(m_timer2, mc68340_timer_module_device, read),
WRITE16_DEVICE_DELEGATE(m_timer2, mc68340_timer_module_device, write),0xffffffff);
internal->install_readwrite_handler(base + 0x700, base + 0x723,
READ8_DEVICE_DELEGATE(m_serial, mc68340_serial_module_device, read),
WRITE8_DEVICE_DELEGATE(m_serial, mc68340_serial_module_device, write),0xffffffff);
@ -121,6 +123,8 @@ ADDRESS_MAP_END
MACHINE_CONFIG_MEMBER( m68340_cpu_device::device_add_mconfig )
MCFG_DEVICE_ADD("serial", MC68340_SERIAL_MODULE, 0)
MCFG_MC68340SER_IRQ_CALLBACK(DEVWRITELINE("serial", mc68340_serial_module_device, irq_w))
MCFG_DEVICE_ADD("timer1", MC68340_TIMER_MODULE, 0)
MCFG_DEVICE_ADD("timer2", MC68340_TIMER_MODULE, 0)
MACHINE_CONFIG_END
@ -131,6 +135,8 @@ MACHINE_CONFIG_END
m68340_cpu_device::m68340_cpu_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: fscpu32_device(mconfig, tag, owner, clock, M68340, 32,32, ADDRESS_MAP_NAME(m68340_internal_map))
, m_serial(*this, "serial")
, m_timer1(*this, "timer1")
, m_timer2(*this, "timer2")
, m_clock_mode(0)
, m_crystal(0)
, m_extal(0)
@ -138,24 +144,12 @@ m68340_cpu_device::m68340_cpu_device(const machine_config &mconfig, const char *
, m_pa_in_cb(*this)
, m_pb_out_cb(*this)
, m_pb_in_cb(*this)
, m_tout1_out_cb(*this)
, m_tin1_in_cb(*this)
, m_tgate1_in_cb(*this)
, m_tout2_out_cb(*this)
, m_tin2_in_cb(*this)
, m_tgate2_in_cb(*this)
{
m68340SIM = nullptr;
m68340DMA = nullptr;
m68340TIMER = nullptr;
m68340_base = 0;
}
void m68340_cpu_device::device_reset()
{
fscpu32_device::device_reset();
@ -176,14 +170,11 @@ void m68340_cpu_device::device_start()
m68340SIM = new m68340_sim();
m68340DMA = new m68340_dma();
m68340TIMER = new m68340_timer();
m68340SIM->reset();
m68340DMA->reset();
m68340TIMER->reset();
start_68340_sim();
start_68340_timer();
m68340_base = 0x00000000;

View File

@ -52,6 +52,7 @@
class m68340_cpu_device : public fscpu32_device
{
friend class mc68340_serial_module_device;
friend class mc68340_timer_module_device;
public:
m68340_cpu_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock);
@ -61,12 +62,12 @@ public:
template <class Object> static devcb_base &set_pb_in_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_pb_in_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_pb_out_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_pb_out_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tout1_out_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_tout1_out_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tin1_in_callback (device_t &device, Object &&cb) { return downcast<m68340_cpu_device &>(device).m_tin1_in_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tgate1_in_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_tgate1_in_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tout2_out_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_tout2_out_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tin2_in_callback (device_t &device, Object &&cb) { return downcast<m68340_cpu_device &>(device).m_tin2_in_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tgate2_in_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_tgate2_in_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tout1_out_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_timer1->m_tout_out_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tin1_in_callback (device_t &device, Object &&cb) { return downcast<m68340_cpu_device &>(device).m_timer1->m_tin_in_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tgate1_in_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_timer1->m_tgate_in_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tout2_out_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_timer2->m_tout_out_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tin2_in_callback (device_t &device, Object &&cb) { return downcast<m68340_cpu_device &>(device).m_timer2->m_tin_in_cb.set_callback (std::forward<Object>(cb)); }
template <class Object> static devcb_base &set_tgate2_in_callback (device_t &device, Object &&cb){ return downcast<m68340_cpu_device &>(device).m_timer2->m_tgate_in_cb.set_callback (std::forward<Object>(cb)); }
uint16_t get_cs(offs_t address);
@ -88,18 +89,16 @@ public:
WRITE16_MEMBER( m68340_internal_sim_w );
WRITE8_MEMBER( m68340_internal_sim_ports_w );
WRITE32_MEMBER( m68340_internal_sim_cs_w );
READ16_MEMBER( m68340_internal_timer_r );
WRITE16_MEMBER( m68340_internal_timer_w );
// Clock/VCO setting TODO: support external clock with PLL and Limp mode
DECLARE_WRITE_LINE_MEMBER( set_modck );
DECLARE_WRITE_LINE_MEMBER( extal_w );
// Timer input methods, can be used instead of the corresponding polling MCFG callbacks
DECLARE_WRITE_LINE_MEMBER( tin1_w );
DECLARE_WRITE_LINE_MEMBER( tgate1_w );
DECLARE_WRITE_LINE_MEMBER( tin2_w );
DECLARE_WRITE_LINE_MEMBER( tgate2_w );
DECLARE_WRITE_LINE_MEMBER( tin1_w ) { m_timer1->tin_w(state); }
DECLARE_WRITE_LINE_MEMBER( tgate1_w ){ m_timer1->tgate_w(state); }
DECLARE_WRITE_LINE_MEMBER( tin2_w ) { m_timer2->tin_w(state); }
DECLARE_WRITE_LINE_MEMBER( tgate2_w ){ m_timer2->tgate_w(state); }
protected:
virtual void device_start() override;
@ -107,19 +106,17 @@ protected:
virtual void device_add_mconfig(machine_config &config) override;
required_device<mc68340_serial_module_device> m_serial;
required_device<mc68340_timer_module_device> m_timer1;
required_device<mc68340_timer_module_device> m_timer2;
TIMER_CALLBACK_MEMBER(periodic_interrupt_timer_callback);
TIMER_CALLBACK_MEMBER(timer1_callback);
TIMER_CALLBACK_MEMBER(timer2_callback);
void start_68340_sim();
void start_68340_timer();
void do_pit_irq();
void do_tick_pit();
void do_timer_irq(int id);
void do_timer_tick(int id);
int calc_cs(offs_t address) const;
int get_timer_index(mc68340_timer_module_device *timer) { return (timer == m_timer1) ? 0 : 1; }
int m_currentcs;
uint32_t m_clock_mode;
@ -130,7 +127,6 @@ protected:
/* 68340 peripheral modules */
m68340_sim* m68340SIM;
m68340_dma* m68340DMA;
m68340_timer* m68340TIMER;
uint32_t m68340_base;
@ -140,12 +136,6 @@ protected:
devcb_read8 m_pa_in_cb;
devcb_write8 m_pb_out_cb;
devcb_read8 m_pb_in_cb;
devcb_write_line m_tout1_out_cb;
devcb_write_line m_tin1_in_cb;
devcb_write_line m_tgate1_in_cb;
devcb_write_line m_tout2_out_cb;
devcb_write_line m_tin2_in_cb;
devcb_write_line m_tgate2_in_cb;
};
DECLARE_DEVICE_TYPE(M68340, m68340_cpu_device)

View File

@ -4,7 +4,6 @@
/*
* TODO:
* - Make the timer a device and instantiate two from 68340.cpp
* - implement all timer modes, only "Input Capture/Output Compare" mode is verified to work
*/
@ -38,60 +37,56 @@
#define FUNCNAME __PRETTY_FUNCTION__
#endif
READ16_MEMBER( m68340_cpu_device::m68340_internal_timer_r )
READ16_MEMBER( mc68340_timer_module_device::read )
{
LOGSETUP("%s\n", FUNCNAME);
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
int val = 0;
int pc = space.device().safe_pc();
LOGR("%08x m68340_internal_timer_r %08x, (%08x)\n", pc, offset * 2, mem_mask);
int id = (offset * 2) < 0x40 ? 0 : 1; // Timer1 or Timer2
/*Setting the STP bit stops all clocks within the timer module except for the clock
from the IMB. The clock from the IMB remains active to allow the CPU32 access to the MCR.
Accesses to timer module registers while in stop mode produce a bus error. */
if ( (timer.m_mcr[id] & m68340_timer::REG_MCR_STP) && ((offset * 2) % 0x40) != m68340_timer::REG_MCR)
if ( (m_mcr & REG_MCR_STP) && (offset * 2) != REG_MCR)
{
logerror("Attempt to access timer registers while timer clocks are stopped, STP bit in MCR is set!");
return val; // TODO: Should cause BUSERROR
}
switch ((offset * 2) % 0x40)
switch (offset * 2)
{
case m68340_timer::REG_MCR:
val = timer.m_mcr[id];
case REG_MCR:
val = m_mcr;
LOGTIMER("- %08x %s %04x, %04x (%04x) (MCR - Module Configuration Register)\n", pc, FUNCNAME, offset * 2, val, mem_mask);
break;
case m68340_timer::REG_IR:
val = timer.m_ir[id];
case REG_IR:
val = m_ir;
LOGTIMER("- %08x %s %04x, %04x (%04x) (IR - Interrupt Register)\n", pc, FUNCNAME, offset * 2, val, mem_mask);
break;
case m68340_timer::REG_CR:
val = timer.m_cr[id];
case REG_CR:
val = m_cr;
LOGTIMER("- %08x %s %04x, %04x (%04x) (CR - Control Register)\n", pc, FUNCNAME, offset * 2, val, mem_mask);
break;
case m68340_timer::REG_SR:
val = timer.m_sr[id];
case REG_SR:
val = m_sr;
LOGTIMER("- %08x %s %04x, %04x (%04x) (SR - Status/Prescaler Register)\n", pc, FUNCNAME, offset * 2, val, mem_mask);
break;
case m68340_timer::REG_CNTR:
val = timer.m_cntr_reg[id];
case REG_CNTR:
val = m_cntr_reg;
LOGTIMER("- %08x %s %04x, %04x (%04x) (CNTR - Counter Register)\n", pc, FUNCNAME, offset * 2, val, mem_mask);
break;
case m68340_timer::REG_PREL1:
val = timer.m_prel1[id];
case REG_PREL1:
val = m_prel1;
LOGTIMER("- %08x %s %04x, %04x (%04x) (PREL1 - Preload 1 Register)\n", pc, FUNCNAME, offset * 2, val, mem_mask);
break;
case m68340_timer::REG_PREL2:
val = timer.m_prel2[id];
case REG_PREL2:
val = m_prel2;
LOGTIMER("- %08x %s %04x, %04x (%04x) (PREL2 - Preload 2 Register)\n", pc, FUNCNAME, offset * 2, val, mem_mask);
break;
case m68340_timer::REG_COM:
val = timer.m_com[id];
case REG_COM:
val = m_com;
LOGTIMER("- %08x %s %04x, %04x (%04x) (COM - Compare Register)\n", pc, FUNCNAME, offset * 2, val, mem_mask);
break;
default:
@ -99,62 +94,59 @@ READ16_MEMBER( m68340_cpu_device::m68340_internal_timer_r )
logerror("%08x m68340_internal_timer_r %08x, %08x (%08x)\n", pc, offset * 2, val, mem_mask);
break;
}
LOGR(" * Timer%d Reg %02x [%02x] -> %02x - %s\n", id + 1, offset * 2 % 0x40, offset, val, ((offset * 2) % 0x40) > 0x12 ? "reserved" : std::array<char const *, 9> {{"MCR", "reserved", "IR", "CR", "SR", "CNTR", "PREL1", "PREL2", "COM"}}[offset % 0x20]);
LOGR(" * Timer%d Reg %02x [%02x] -> %02x - %s\n", m_cpu->get_timer_index(this) + 1, offset * 2, offset, val, (offset * 2) > 0x12 ? "reserved" : std::array<char const *, 9> {{"MCR", "reserved", "IR", "CR", "SR", "CNTR", "PREL1", "PREL2", "COM"}}[offset % 0x20]);
return val;
}
WRITE16_MEMBER( m68340_cpu_device::m68340_internal_timer_w )
WRITE16_MEMBER( mc68340_timer_module_device::write )
{
int id = (offset * 2) < 0x40 ? 0 : 1; // Timer1 or Timer2
int pc = space.device().safe_pc();
LOGSETUP("\n%s\n", FUNCNAME);
LOGSETUP(" * Timer%d Reg %02x [%02x] <- %02x - %s\n", id + 1, (offset * 2) % 0x40, offset, data,
((offset * 2) % 0x40) > 0x12 ? "reserved" : std::array<char const *, 9>
LOGSETUP(" * Timer%d Reg %02x [%02x] <- %02x - %s\n", m_cpu->get_timer_index(this) + 1, (offset * 2), offset, data,
(offset * 2) > 0x12 ? "reserved" : std::array<char const *, 9>
{{"MCR", "reserved", "IR", "CR", "SR", "CNTR", "PREL1", "PREL2", "COM"}}[offset % 0x20]);
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
/*Setting the STP bit stops all clocks within the timer module except for the clock
from the IMB. The clock from the IMB remains active to allow the CPU32 access to the MCR.
Accesses to timer module registers while in stop mode produce a bus error. */
if ( (timer.m_mcr[id] & m68340_timer::REG_MCR_STP) && ((offset * 2) % 0x40) != m68340_timer::REG_MCR)
if ( (m_mcr & REG_MCR_STP) && (offset * 2) != REG_MCR)
{
logerror("Attempt to access timer registers while timer clocks are stopped, STP bit in MCR is set!");
return; // TODO: Should cause BUSERROR
}
switch ((offset * 2) % 0x40)
switch (offset * 2)
{
case m68340_timer::REG_MCR:
COMBINE_DATA(&timer.m_mcr[id]);
case REG_MCR:
COMBINE_DATA(&m_mcr);
LOGTIMER("PC: %08x %s %04x, %04x (%04x) (MCR - Module Configuration Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
LOGTIMER("- Clocks are %s\n", data & m68340_timer::REG_MCR_STP ? "stopped" : "running");
LOGTIMER("- Freeze signal %s - not implemented\n", data & m68340_timer::REG_MCR_FRZ1 ? "stops execution" : "is ignored");
LOGTIMER("- Supervisor registers %s - not implemented\n", data & m68340_timer::REG_MCR_SUPV ? "requries supervisor privileges" : "can be accessed by user privileged software");
LOGTIMER("- Interrupt Arbitration level: %02x - not implemented\n", data & m68340_timer::REG_MCR_ARBLV);
LOGTIMER("- Clocks are %s\n", data & REG_MCR_STP ? "stopped" : "running");
LOGTIMER("- Freeze signal %s - not implemented\n", data & REG_MCR_FRZ1 ? "stops execution" : "is ignored");
LOGTIMER("- Supervisor registers %s - not implemented\n", data & REG_MCR_SUPV ? "requries supervisor privileges" : "can be accessed by user privileged software");
LOGTIMER("- Interrupt Arbitration level: %02x - not implemented\n", data & REG_MCR_ARBLV);
break;
case m68340_timer::REG_IR:
COMBINE_DATA(&timer.m_ir[id]);
case REG_IR:
COMBINE_DATA(&m_ir);
LOGTIMER("PC: %08x %s %04x, %04x (%04x) (IR - Interrupt Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
LOGTIMER("- Interrupt level : %02x\n", (data & m68340_timer::REG_IR_INTLEV) >> 8);
LOGTIMER("- Interrupt vector: %02x\n", (data & m68340_timer::REG_IR_INTVEC));
LOGTIMER("- Interrupt level : %02x\n", (data & REG_IR_INTLEV) >> 8);
LOGTIMER("- Interrupt vector: %02x\n", (data & REG_IR_INTVEC));
break;
case m68340_timer::REG_CR:
COMBINE_DATA(&timer.m_cr[id]);
case REG_CR:
COMBINE_DATA(&m_cr);
LOGTIMER("PC %08x %s %04x, %04x (%04x) (CR - Module Control Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
LOGTIMER("- Software reset: %s\n", (data & m68340_timer::REG_CR_SWR) ? "inactive" : "active" );
LOGTIMER("- Software reset: %s\n", (data & REG_CR_SWR) ? "inactive" : "active" );
LOGTIMER("- Enabled interrupts: %02x TO:%d TG:%d TC:%d\n",
data & m68340_timer::REG_CR_INTMSK,
(data & m68340_timer::REG_CR_IE0) ? 1 : 0,
(data & m68340_timer::REG_CR_IE1) ? 1 : 0,
(data & m68340_timer::REG_CR_IE2) ? 1 : 0);
LOGTIMER("- TGE signal, TGATE%d is %s\n", id + 1, (data & m68340_timer::REG_CR_TGE) ? "enabled" : "disabled");
LOGTIMER("- PCLK: Counter uses %s\n", (data & m68340_timer::REG_CR_PCLK) ? "prescaler" : "clock");
LOGTIMER("- CPE: Counter is %s\n", (data & m68340_timer::REG_CR_CPE) ? "enabled" : "disabled");
LOGTIMER("- CLK: Clock is %s\n", (data & m68340_timer::REG_CR_CLK) ? "TIN (external)" : "system clock / 2");
LOGTIMER("- Prescaler: Divide by %d\n", (data & m68340_timer::REG_CR_POT_MASK) ? ( 1 << ((data & m68340_timer::REG_CR_POT_MASK) >> 5)) : 256);
LOGTIMER("- Prescaler: Divide by %d\n", (0x101 << ((data & m68340_timer::REG_CR_POT_MASK) >> 5) & 0x1fe));
data & REG_CR_INTMSK,
(data & REG_CR_IE0) ? 1 : 0,
(data & REG_CR_IE1) ? 1 : 0,
(data & REG_CR_IE2) ? 1 : 0);
LOGTIMER("- TGE signal, TGATE%d is %s\n", m_cpu->get_timer_index(this) + 1, (data & REG_CR_TGE) ? "enabled" : "disabled");
LOGTIMER("- PCLK: Counter uses %s\n", (data & REG_CR_PCLK) ? "prescaler" : "clock");
LOGTIMER("- CPE: Counter is %s\n", (data & REG_CR_CPE) ? "enabled" : "disabled");
LOGTIMER("- CLK: Clock is %s\n", (data & REG_CR_CLK) ? "TIN (external)" : "system clock / 2");
LOGTIMER("- Prescaler: Divide by %d\n", (data & REG_CR_POT_MASK) ? ( 1 << ((data & REG_CR_POT_MASK) >> 5)) : 256);
LOGTIMER("- Prescaler: Divide by %d\n", (0x101 << ((data & REG_CR_POT_MASK) >> 5) & 0x1fe));
LOGTIMER("- MODE: %s\n", std::array<char const *, 8>
{{ "Input Capture/Output Compare",
"Square-Wave Generator - not implemented",
@ -164,89 +156,89 @@ WRITE16_MEMBER( m68340_cpu_device::m68340_internal_timer_w )
"Period Measurement - not implemented",
"Event Count - not implemented",
"Timer Bypass (Simple Test Method) - not implemented"
}}[data & m68340_timer::REG_CR_MODE_MASK]);
}}[data & REG_CR_MODE_MASK]);
LOGTIMER("- OC: %s mode\n", std::array<char const *, 4>{{"Disabled", "Toggle", "Zero", "One"}}[data & m68340_timer::REG_CR_OC_MASK]);
LOGTIMER("- OC: %s mode\n", std::array<char const *, 4>{{"Disabled", "Toggle", "Zero", "One"}}[data & REG_CR_OC_MASK]);
/* The timer is enabled when the counter prescaler enable (CPE) and SWRx bits in the CR
are set. Once enabled, the counter enable (ON) bit in the SR is set, and the next falling
edge of the counter clock causes the counter to be loaded with the value in the preload 1
register (PREL1). TODO: make sure of the intial load of PREL1 on first falling flank */
if (timer.m_cr[id] & m68340_timer::REG_CR_SWR)
if (m_cr & REG_CR_SWR)
{
if (timer.m_cr[id] & m68340_timer::REG_CR_CPE)
if (m_cr & REG_CR_CPE)
{
timer.m_sr[id] |= m68340_timer::REG_SR_ON; // Starts the counter
LOGTIMER("Starts counter %d\n", id);
if ((timer.m_cr[id] & m68340_timer::REG_CR_CLK) == 0)
m_sr |= REG_SR_ON; // Starts the counter
LOGTIMER("Starts counter %d\n", m_cpu->get_timer_index(this));
if ((m_cr & REG_CR_CLK) == 0)
{
LOGTIMER("- Using system clock/2\n");
timer.m_timer[id]->adjust(cycles_to_attotime( (clock() / 2) / (0x101 << ((timer.m_cr[id] & m68340_timer::REG_CR_POT_MASK) >> 5) & 0x1fe) * 2));
m_timer->adjust(m_cpu->cycles_to_attotime( (m_cpu->clock() / 2) / (0x101 << ((m_cr & REG_CR_POT_MASK) >> 5) & 0x1fe) * 2) );
}
else
{
LOGTIMER("- Using TIN%d\n", id);
LOGTIMER("- Using TIN%d\n", m_cpu->get_timer_index(this));
}
}
else
{
timer.m_sr[id] &= ~m68340_timer::REG_SR_ON; // Stops the counter
LOGTIMER("Stops counter %d\n", id);
timer.m_timer[id]->adjust(attotime::never);
m_sr &= ~REG_SR_ON; // Stops the counter
LOGTIMER("Stops counter %d\n", m_cpu->get_timer_index(this));
m_timer->adjust(attotime::never);
}
}
else
{ // TODO: Detect Disable mode setting line to three state
if ((timer.m_cr[id] & m68340_timer::REG_CR_OC_MASK) == m68340_timer::REG_CR_OC_ONE)
if ((m_cr & REG_CR_OC_MASK) == REG_CR_OC_ONE)
{
id == 0 ? m_tout1_out_cb(ASSERT_LINE) : m_tout2_out_cb(ASSERT_LINE);
m_tout_out_cb(ASSERT_LINE);
}
else
{
id == 0 ? m_tout1_out_cb(CLEAR_LINE) : m_tout2_out_cb(CLEAR_LINE);
m_tout_out_cb(CLEAR_LINE);
}
}
break;
case m68340_timer::REG_SR:
case REG_SR:
LOGTIMER("PC %08x %s %04x, %04x (%04x) (SR - Status/Prescaler Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
/* IRQ - Interrupt Request bit
1 = An interrupt condition has occurred. This bit is the logical OR of the enabled TO, TG, and TC interrupt bits.
0 = The bit(s) that caused the interrupt condition has been cleared. If an IRQ signal has been asserted, it is negated when this bit is cleared. */
data = (timer.m_sr[id] & ~(data & (m68340_timer::REG_SR_TO | m68340_timer::REG_SR_TG | m68340_timer::REG_SR_TC))); // Clear only the set interrupt bits
if ((data & (m68340_timer::REG_SR_TO | m68340_timer::REG_SR_TG | m68340_timer::REG_SR_TC)) == 0)
data = (m_sr & ~(data & (REG_SR_TO | REG_SR_TG | REG_SR_TC))); // Clear only the set interrupt bits
if ((data & (REG_SR_TO | REG_SR_TG | REG_SR_TC)) == 0)
{
data &= ~m68340_timer::REG_SR_IRQ;
data &= ~REG_SR_IRQ;
// TODO: clear IRQ line
}
COMBINE_DATA(&timer.m_sr[id]);
COMBINE_DATA(&m_sr);
LOGTIMER("PC %08x %s %04x, %04x (%04x) (SR - Status/Prescaler Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
LOGTIMER("- IRQ: %s\n", (data & m68340_timer::REG_SR_IRQ) ? "Yes" : "None");
LOGTIMER("- TO TimeOut int : %s\n", (data & m68340_timer::REG_SR_TO) ? "Asserted" : "Cleared");
LOGTIMER("- TG Timer Gate int : %s\n", (data & m68340_timer::REG_SR_TG) ? "Asserted" : "Cleared");
LOGTIMER("- TC Timer Counter int: %s\n", (data & m68340_timer::REG_SR_TC) ? "Asserted" : "Cleared");
LOGTIMER("- TGL: %s\n", (data & m68340_timer::REG_SR_TGL) ? "Negated" : "Asserted");
LOGTIMER("- ON Counter is: %s\n", (data & m68340_timer::REG_SR_ON) ? "Enabled" : "Disabled");
LOGTIMER("- OUT: Tout is %s\n", (data & m68340_timer::REG_SR_OUT) ? "1" : "0 or three-stated");
LOGTIMER("- COM: Compare is %s\n", (data & m68340_timer::REG_SR_COM) ? "Match" : "Cleared");
LOGTIMER("- PO7-PO0: %02x\n", (data & m68340_timer::REG_SR_PSC_OUT));
LOGTIMER("- IRQ: %s\n", (data & REG_SR_IRQ) ? "Yes" : "None");
LOGTIMER("- TO TimeOut int : %s\n", (data & REG_SR_TO) ? "Asserted" : "Cleared");
LOGTIMER("- TG Timer Gate int : %s\n", (data & REG_SR_TG) ? "Asserted" : "Cleared");
LOGTIMER("- TC Timer Counter int: %s\n", (data & REG_SR_TC) ? "Asserted" : "Cleared");
LOGTIMER("- TGL: %s\n", (data & REG_SR_TGL) ? "Negated" : "Asserted");
LOGTIMER("- ON Counter is: %s\n", (data & REG_SR_ON) ? "Enabled" : "Disabled");
LOGTIMER("- OUT: Tout is %s\n", (data & REG_SR_OUT) ? "1" : "0 or three-stated");
LOGTIMER("- COM: Compare is %s\n", (data & REG_SR_COM) ? "Match" : "Cleared");
LOGTIMER("- PO7-PO0: %02x\n", (data & REG_SR_PSC_OUT));
break;
case m68340_timer::REG_CNTR:
COMBINE_DATA(&timer.m_cntr_reg[id]);
case REG_CNTR:
COMBINE_DATA(&m_cntr_reg);
LOGTIMER("- %08x %s %04x, %04x (%04x) (CNTR - Counter Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
break;
case m68340_timer::REG_PREL1:
COMBINE_DATA(&timer.m_prel1[id]);
case REG_PREL1:
COMBINE_DATA(&m_prel1);
LOGTIMER("PC %08x %s %04x, %04x (%04x) (PREL1 - Preload 1 Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
LOGTIMER("- PR1-15 to PR1-0: %04x\n", (data & 0xffff));
break;
case m68340_timer::REG_PREL2:
COMBINE_DATA(&timer.m_prel2[id]);
case REG_PREL2:
COMBINE_DATA(&m_prel2);
LOGTIMER("PC %08x %s %04x, %04x (%04x) (PREL2 - Preload 2 Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
LOGTIMER("- PR2-15 to PR2-0: %04x\n", (data & 0xffff));
break;
case m68340_timer::REG_COM:
COMBINE_DATA(&timer.m_com[id]);
case REG_COM:
COMBINE_DATA(&m_com);
LOGTIMER("PC %08x %s %04x, %04x (%04x) (COM - Compare Register)\n", pc, FUNCNAME, offset * 2, data, mem_mask);
LOGTIMER("- COM15-COM0: %04x\n", (data & 0xfff));
break;
@ -256,150 +248,72 @@ WRITE16_MEMBER( m68340_cpu_device::m68340_internal_timer_w )
break;
}
int pc = space.device().safe_pc();
LOG("%08x m68340_internal_timer_w %08x, %08x (%08x)\n", pc, offset * 2, data, mem_mask);
}
void m68340_timer::reset()
{
LOGSETUP("%s\n", FUNCNAME);
}
WRITE_LINE_MEMBER( m68340_cpu_device::tin1_w)
WRITE_LINE_MEMBER( mc68340_timer_module_device::tin_w)
{
LOGTIMER("%s\n", FUNCNAME);
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
timer.m_tin[0] = state;
m_tin = state;
}
WRITE_LINE_MEMBER( m68340_cpu_device::tgate1_w)
WRITE_LINE_MEMBER( mc68340_timer_module_device::tgate_w)
{
LOGTIMER("%s\n", FUNCNAME);
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
timer.m_tgate[0] = state;
m_tgate = state;
if (state == ASSERT_LINE)
{
if (timer.m_cr[0] & m68340_timer::REG_CR_TGE)
if (m_cr & REG_CR_TGE)
{
timer.m_sr[0] |= m68340_timer::REG_SR_TG;
if (timer.m_cr[0] & m68340_timer::REG_CR_IE1)
m_sr |= REG_SR_TG;
if (m_cr & REG_CR_IE1)
{
LOGTIMER(" - TG interrupt");
do_timer_irq(0);
timer.m_sr[0] |= m68340_timer::REG_SR_IRQ;
do_timer_irq();
m_sr |= REG_SR_IRQ;
}
}
timer.m_sr[0] |= m68340_timer::REG_SR_TGL;
m_sr |= REG_SR_TGL;
}
else
{
timer.m_sr[0] &= ~m68340_timer::REG_SR_TGL;
m_sr &= ~REG_SR_TGL;
}
}
WRITE_LINE_MEMBER( m68340_cpu_device::tin2_w)
TIMER_CALLBACK_MEMBER(mc68340_timer_module_device::timer_callback)
{
LOGTIMER("%s\n", FUNCNAME);
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
timer.m_tin[1] = state;
}
WRITE_LINE_MEMBER( m68340_cpu_device::tgate2_w)
{
LOGTIMER("%s\n", FUNCNAME);
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
timer.m_tgate[1] = state;
if (state == ASSERT_LINE)
do_timer_tick();
if ((m_sr & REG_SR_ON) != 0)
{
if (timer.m_cr[1] & m68340_timer::REG_CR_TGE)
{
timer.m_sr[1] |= m68340_timer::REG_SR_TG;
if (timer.m_cr[1] & m68340_timer::REG_CR_IE1)
{
LOGTIMER(" - TG interrupt");
do_timer_irq(1);
timer.m_sr[1] |= m68340_timer::REG_SR_IRQ;
}
}
timer.m_sr[1] |= m68340_timer::REG_SR_TGL;
}
else
{
timer.m_sr[1] &= ~m68340_timer::REG_SR_TGL;
LOGTIMER("Re-arming timer %d using system clock/2 as base: %d Hz\n", m_cpu->get_timer_index(this) + 1, (m_cpu->clock() / 2) / (0x101 << ((m_cr & REG_CR_POT_MASK) >> 5) & 0x1fe));
m_timer->adjust(m_cpu->cycles_to_attotime( (m_cpu->clock() / 2) / (0x101 << ((m_cr & REG_CR_POT_MASK) >> 5) & 0x1fe) * 2));
}
}
TIMER_CALLBACK_MEMBER(m68340_cpu_device::timer1_callback)
{
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
do_timer_tick(0);
if ((timer.m_sr[0] & m68340_timer::REG_SR_ON) != 0)
{
LOGTIMER("Re-arming timer 1 using system clock/2 as base %d Hz\n", (clock() / 2) / (0x101 << ((timer.m_cr[0] & m68340_timer::REG_CR_POT_MASK) >> 5) & 0x1fe));
timer.m_timer[0]->adjust(cycles_to_attotime( (clock() / 2) / (0x101 << ((timer.m_cr[0] & m68340_timer::REG_CR_POT_MASK) >> 5) & 0x1fe) * 2));
}
}
TIMER_CALLBACK_MEMBER(m68340_cpu_device::timer2_callback)
{
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
do_timer_tick(1);
if ((timer.m_sr[1] & m68340_timer::REG_SR_ON) != 0)
{
LOGTIMER("Re-arming timer 2 using system clock/2 as base: %d Hz\n", (clock() / 2) / (0x101 << ((timer.m_cr[1] & m68340_timer::REG_CR_POT_MASK) >> 5) & 0x1fe));
timer.m_timer[1]->adjust(cycles_to_attotime( (clock() / 2) / (0x101 << ((timer.m_cr[1] & m68340_timer::REG_CR_POT_MASK) >> 5) & 0x1fe) * 2));
}
}
void m68340_cpu_device::start_68340_timer()
void mc68340_timer_module_device::device_start()
{
LOGSETUP("%s\n", FUNCNAME);
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
m_cpu = downcast<m68340_cpu_device *>(owner());
timer.m_timer[0] = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(m68340_cpu_device::timer1_callback),this));
timer.m_timer[1] = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(m68340_cpu_device::timer2_callback),this));
// resolve callbacks Port A
m_pa_out_cb.resolve_safe();
m_pa_in_cb.resolve();
m_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(timer_callback),this));
// Resolve Timer callbacks
m_tout1_out_cb.resolve_safe();
m_tgate1_in_cb.resolve_safe();
m_tin1_in_cb.resolve_safe();
m_tout2_out_cb.resolve_safe();
m_tgate2_in_cb.resolve_safe();
m_tin2_in_cb.resolve_safe();
m_tout_out_cb.resolve_safe();
m_tgate_in_cb.resolve_safe();
m_tin_in_cb.resolve_safe();
}
void m68340_cpu_device::do_timer_irq(int id)
void mc68340_timer_module_device::do_timer_irq()
{
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
assert(m68340SIM);
m68340_sim &sim = *m68340SIM;
int timer_irq_level = (timer.m_ir[id] & 0x0700) >> 8;
int timer_irq_vector = (timer.m_ir[id] & 0x00ff) >> 0;
m68340_sim &sim = *m_cpu->m68340SIM;
int timer_irq_level = (m_ir & 0x0700) >> 8;
int timer_irq_vector = (m_ir & 0x00ff) >> 0;
if (timer_irq_level) // 0 is irq disabled
{
@ -410,35 +324,32 @@ void m68340_cpu_device::do_timer_irq(int id)
if (use_autovector)
{
//logerror("irq with autovector\n");
set_input_line(timer_irq_level, HOLD_LINE);
m_cpu->set_input_line(timer_irq_level, HOLD_LINE);
}
else
{
//logerror("irq without autovector\n");
set_input_line_and_vector(timer_irq_level, HOLD_LINE, timer_irq_vector);
m_cpu->set_input_line_and_vector(timer_irq_level, HOLD_LINE, timer_irq_vector);
}
}
}
/* do_timer_tick works on flanks, thus half clock cycles, to capture both rising and falling clock flanks */
void m68340_cpu_device::do_timer_tick( int id )
void mc68340_timer_module_device::do_timer_tick()
{
assert(m68340TIMER);
m68340_timer &timer = *m68340TIMER;
timer.m_timer_counter[id]--; // Count flanks, least significant bit is state of the clock line
if ( (timer.m_mcr[id] & m68340_timer::REG_MCR_STP) == 0)
m_timer_counter--; // Count flanks, least significant bit is state of the clock line
if ( (m_mcr & REG_MCR_STP) == 0)
{
if (timer.m_timer_counter[id] & 1) // Raising flank, copy shadow to register
if (m_timer_counter & 1) // Raising flank, copy shadow to register
{
// Shadow the counter only if we are NOT in the ICOC mode WHILE the TG bit is set
if (!((timer.m_cr[id] & m68340_timer::REG_CR_MODE_MASK) == m68340_timer::REG_CR_MODE_ICOC &&
(timer.m_sr[id] & m68340_timer::REG_SR_TG) != 0))
timer.m_cntr_reg[id] = timer.m_cntr[id];
if (!((m_cr & REG_CR_MODE_MASK) == REG_CR_MODE_ICOC &&
(m_sr & REG_SR_TG) != 0))
m_cntr_reg = m_cntr;
}
else // Falling flank
{
timer.m_cntr[id]--;
m_cntr--;
/* TC - Timer Compare Interrupt
1 = This bit is set when the counter transitions (off a clock/event falling edge) to the
@ -448,22 +359,22 @@ void m68340_cpu_device::do_timer_tick( int id )
IMB, regardless of the mode of operation. This bit may also be cleared by writing
a one to it. Writing a zero to this bit does not alter its contents. This bit is not
affected by disabling the timer (SWR = 0).*/
if (timer.m_cntr[id] == timer.m_com[id]) // Check COM register
if (m_cntr == m_com) // Check COM register
{
timer.m_sr[id] |= (m68340_timer::REG_SR_TC | m68340_timer::REG_SR_COM);
m_sr |= (REG_SR_TC | REG_SR_COM);
}
}
LOGINT("%s reached\n", timer.m_cntr_reg[id] == 0 ? "Timeout" : "COM value");
LOGINT("%s reached\n", m_cntr_reg == 0 ? "Timeout" : "COM value");
/* OC1/OC0 - Output Control
These bits select the conditions under which TOUTx changes These
bits may have a different effect when in the input capture/output compare mode.*/
switch (timer.m_cr[id] & m68340_timer::REG_CR_OC_MASK)
switch (m_cr & REG_CR_OC_MASK)
{
case m68340_timer::REG_CR_OC_DISABLED:
case REG_CR_OC_DISABLED:
/* Disabled - TOUTx is disabled and three-stated TODO: support three-stated level */
break;
case m68340_timer::REG_CR_OC_TOGGLE:
case REG_CR_OC_TOGGLE:
/* Toggle Mode - If the timer is disabled (SWR = 0) when this encoding is programmed,
TOUTx is immediately set to zero. If the timer is enabled (SWR = 1), timeout events
(counter reaches $0000) toggle TOUTx.
@ -472,36 +383,22 @@ void m68340_cpu_device::do_timer_tick( int id )
TOUTx is immediately set to zero if the timer is disabled (SWR = 0). If the timer is
enabled (SWR = 1), timer compare events toggle TOUTx. (Timer compare events occur
when the counter reaches the value stored in the COM.)*/
if ((timer.m_cr[id] & m68340_timer::REG_CR_MODE_MASK) == m68340_timer::REG_CR_MODE_ICOC) // Detect Input Capture/Output Compare mode
if ((m_cr & REG_CR_MODE_MASK) == REG_CR_MODE_ICOC) // Detect Input Capture/Output Compare mode
{
if ((timer.m_sr[id] & m68340_timer::REG_SR_COM) != 0) // timer reached compare value?
if ((m_sr & REG_SR_COM) != 0) // timer reached compare value?
{
if (id == 0)
{
m_tout1_out_cb((timer.m_tout[0]++ & 1) != 0 ? ASSERT_LINE : CLEAR_LINE);
}
else
{
m_tout2_out_cb((timer.m_tout[1]++ & 1) != 0 ? ASSERT_LINE : CLEAR_LINE);
}
m_tout_out_cb((m_tout++ & 1) != 0 ? ASSERT_LINE : CLEAR_LINE);
}
}
else // Any oher mode
{
if (timer.m_cntr_reg[id] == 0) // Counter reached timeout?
if (m_cntr_reg == 0) // Counter reached timeout?
{
if (id == 0)
{
m_tout1_out_cb((timer.m_tout[0]++ & 1) != 0 ? ASSERT_LINE : CLEAR_LINE);
}
else
{
m_tout2_out_cb((timer.m_tout[1]++ & 1) != 0 ? ASSERT_LINE : CLEAR_LINE);
}
m_tout_out_cb((m_tout++ & 1) != 0 ? ASSERT_LINE : CLEAR_LINE);
}
}
break;
case m68340_timer::REG_CR_OC_ZERO:
case REG_CR_OC_ZERO:
/* Zero Mode - If the timer is disabled (SWR = 0) when this encoding is programmed,
TOUTx is immediately set to zero. If the timer is enabled (SWR = 1), TOUTx will be set
to zero at the next timeout.
@ -510,47 +407,26 @@ void m68340_cpu_device::do_timer_tick( int id )
immediately set to zero if the timer is disabled (SWR = 0). If the timer is enabled (SWR
= 1), TOUTx will be set to zero at timeouts and set to one at timer compare events. If
the COM is $0000, TOUTx will be set to zero at the timeout/timer compare event.*/
if ((timer.m_cr[id] & m68340_timer::REG_CR_MODE_MASK) == m68340_timer::REG_CR_MODE_ICOC) // Detect Input Capture/Output Compare mode
if ((m_cr & REG_CR_MODE_MASK) == REG_CR_MODE_ICOC) // Detect Input Capture/Output Compare mode
{
if ((timer.m_sr[id] & m68340_timer::REG_SR_COM) != 0) // timer reached compare value?
if ((m_sr & REG_SR_COM) != 0) // timer reached compare value?
{
if (id == 0)
{
m_tout1_out_cb(ASSERT_LINE);
}
else
{
m_tout2_out_cb(ASSERT_LINE);
}
m_tout_out_cb(ASSERT_LINE);
}
if (timer.m_cntr_reg[id] == 0) // timer reached timeout value?
if (m_cntr_reg == 0) // timer reached timeout value?
{
if (id == 0)
{
m_tout1_out_cb(CLEAR_LINE);
}
else
{
m_tout2_out_cb(CLEAR_LINE);
}
m_tout_out_cb(CLEAR_LINE);
}
}
else
{
if (timer.m_cntr_reg[id] == 0) // timer reached timeout value?
if (m_cntr_reg == 0) // timer reached timeout value?
{
if (id == 0)
{
m_tout1_out_cb(CLEAR_LINE);
}
else
{
m_tout2_out_cb(CLEAR_LINE);
}
m_tout_out_cb(CLEAR_LINE);
}
}
break;
case m68340_timer::REG_CR_OC_ONE:
case REG_CR_OC_ONE:
/* One Mode - If the timer is disabled (SWR = 0) when this encoding is programmed,
TOUTx is immediately set to one. If the timer is enabled (SWR = 1), TOUTx will be set
to one at the next timeout.
@ -559,43 +435,22 @@ void m68340_cpu_device::do_timer_tick( int id )
immediately set to one if the timer is disabled (SWR = 0). If the timer is enabled (SWR =
1), TOUTx will be set to one at timeouts and set to zero at timer compare events. If the
COM is $0000, TOUTx will be set to one at the timeout/timer compare event.*/
if ((timer.m_cr[id] & m68340_timer::REG_CR_MODE_MASK) == m68340_timer::REG_CR_MODE_ICOC) // Detect Input Capture/Output Compare mode
if ((m_cr & REG_CR_MODE_MASK) == REG_CR_MODE_ICOC) // Detect Input Capture/Output Compare mode
{
if ((timer.m_sr[id] & m68340_timer::REG_SR_COM) != 0) // timer reached compare value?
if ((m_sr & REG_SR_COM) != 0) // timer reached compare value?
{
if (id == 0)
{
m_tout1_out_cb(CLEAR_LINE);
}
else
{
m_tout2_out_cb(CLEAR_LINE);
}
m_tout_out_cb(CLEAR_LINE);
}
if (timer.m_cntr_reg[id] == 0) // timer reached timeout value?
if (m_cntr_reg == 0) // timer reached timeout value?
{
if (id == 0)
{
m_tout1_out_cb(ASSERT_LINE);
}
else
{
m_tout2_out_cb(ASSERT_LINE);
}
m_tout_out_cb(ASSERT_LINE);
}
}
else
{
if (timer.m_cntr_reg[id] == 0) // timer reached timeout value?
if (m_cntr_reg == 0) // timer reached timeout value?
{
if (id == 0)
{
m_tout1_out_cb(ASSERT_LINE);
}
else
{
m_tout2_out_cb(ASSERT_LINE);
}
m_tout_out_cb(ASSERT_LINE);
}
}
break;
@ -603,25 +458,35 @@ void m68340_cpu_device::do_timer_tick( int id )
LOGTIMER("Wrong TOUT mode, fix the code!\n");
}
if (timer.m_cntr_reg[id] == 0) // timer reached timeout value?
if (m_cntr_reg == 0) // timer reached timeout value?
{
timer.m_cntr[id] = timer.m_prel1[id]; // TODO: Support prel2 for certain modes
if (timer.m_cr[id] & m68340_timer::REG_CR_IE2)
m_cntr = m_prel1; // TODO: Support prel2 for certain modes
if (m_cr & REG_CR_IE2)
{
LOGTIMER(" - TO interrupt");
do_timer_irq(id);
timer.m_sr[id] |= m68340_timer::REG_SR_IRQ;
do_timer_irq();
m_sr |= REG_SR_IRQ;
}
}
if ((timer.m_sr[id] & m68340_timer::REG_SR_COM) != 0) // timer reached compare value? )
if ((m_sr & REG_SR_COM) != 0) // timer reached compare value? )
{
if (timer.m_cr[id] & m68340_timer::REG_CR_IE0)
if (m_cr & REG_CR_IE0)
{
LOGTIMER(" - TC interrupt");
do_timer_irq(id);
timer.m_sr[id] |= m68340_timer::REG_SR_IRQ;
do_timer_irq();
m_sr |= REG_SR_IRQ;
}
}
}
}
mc68340_timer_module_device::mc68340_timer_module_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: device_t(mconfig, MC68340_TIMER_MODULE, tag, owner, clock)
, m_tout_out_cb(*this)
, m_tin_in_cb(*this)
, m_tgate_in_cb(*this)
{
}
DEFINE_DEVICE_TYPE(MC68340_TIMER_MODULE, mc68340_timer_module_device, "mc68340timmod", "MC68340 Timer Module")

View File

@ -1,30 +1,52 @@
// license:BSD-3-Clause
// copyright-holders:David Haywood
// copyright-holders:David Haywood, Joakim Larsson Edstrom
#ifndef MAME_MACHINE_68340TMU_H
#define MAME_MACHINE_68340TMU_H
#pragma once
class m68340_timer
{
public:
// Registers for timer 1 and timer 2
uint16_t m_mcr[2];
uint16_t m_ir[2];
uint16_t m_cr[2];
uint16_t m_sr[2];
uint16_t m_cntr[2];
uint16_t m_cntr_reg[2];
uint16_t m_prel1[2];
uint16_t m_prel2[2];
uint16_t m_com[2];
uint16_t m_timer_counter[2];
uint32_t m_tin[2];
uint32_t m_tgate[2];
uint32_t m_tout[2];
emu_timer *m_timer[2];
class m68340_cpu_device;
void reset();
class mc68340_timer_module_device : public device_t
{
friend class m68340_cpu_device;
public:
mc68340_timer_module_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock);
// device-level overrides
virtual void device_start() override;
READ16_MEMBER( read );
WRITE16_MEMBER( write );
DECLARE_WRITE_LINE_MEMBER( tin_w );
DECLARE_WRITE_LINE_MEMBER( tgate_w );
protected:
m68340_cpu_device *m_cpu;
uint16_t m_mcr;
uint16_t m_ir;
uint16_t m_cr;
uint16_t m_sr;
uint16_t m_cntr;
uint16_t m_cntr_reg;
uint16_t m_prel1;
uint16_t m_prel2;
uint16_t m_com;
uint16_t m_timer_counter;
uint32_t m_tin;
uint32_t m_tgate;
uint32_t m_tout;
emu_timer *m_timer;
devcb_write_line m_tout_out_cb;
devcb_write_line m_tin_in_cb;
devcb_write_line m_tgate_in_cb;
void do_timer_irq();
void do_timer_tick();
TIMER_CALLBACK_MEMBER(timer_callback);
enum {
REG_MCR = 0x00,
@ -91,4 +113,6 @@ public:
};
DECLARE_DEVICE_TYPE(MC68340_TIMER_MODULE, mc68340_timer_module_device)
#endif // MAME_MACHINE_68340TMU_H