Solver model simplification.

This commit is contained in:
couriersud 2016-04-09 20:06:25 +02:00
parent db1e7f6b07
commit 0d1e57cc40
7 changed files with 153 additions and 414 deletions

View File

@ -11,6 +11,7 @@
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include "plib/pstring.h"
#include "plib/plists.h"
@ -40,26 +41,31 @@ private:
nl_math() {};
public:
ATTR_HOT inline static float exp(const float x) { return std::exp(x); }
ATTR_HOT inline static double abs(const double x) { return std::fabs(x); }
ATTR_HOT inline static float abs(const float x) { return std::fabs(x); }
ATTR_HOT inline static double log(const double x) { return std::log(x); }
ATTR_HOT inline static float log(const float x) { return std::log(x); }
ATTR_HOT inline static float exp(const float &x) { return std::exp(x); }
ATTR_HOT inline static double abs(const double &x) { return std::abs(x); }
ATTR_HOT inline static float abs(const float &x) { return std::abs(x); }
ATTR_HOT inline static double max(const double &x, const double &y) { return std::max(x, y); }
ATTR_HOT inline static float max(const float &x, const float &y) { return std::max(x, y); }
ATTR_HOT inline static double log(const double &x) { return std::log(x); }
ATTR_HOT inline static float log(const float &x) { return std::log(x); }
#if defined(_MSC_VER) && _MSC_VER < 1800
ATTR_HOT inline static double e_log1p(const double x) { return nl_math::log(1.0 + x); }
ATTR_HOT inline static float e_log1p(const float x) { return nl_math::log(1.0 + x); }
ATTR_HOT inline static double e_log1p(const double &x) { return nl_math::log(1.0 + x); }
ATTR_HOT inline static float e_log1p(const float &x) { return nl_math::log(1.0 + x); }
#else
ATTR_HOT inline static double e_log1p(const double x) { return log1p(x); }
ATTR_HOT inline static float e_log1p(const float x) { return log1pf(x); }
ATTR_HOT inline static double e_log1p(const double &x) { return log1p(x); }
ATTR_HOT inline static float e_log1p(const float &x) { return log1pf(x); }
#endif
ATTR_HOT inline static double sqrt(const double x) { return std::sqrt(x); }
ATTR_HOT inline static float sqrt(const float x) { return std::sqrt(x); }
ATTR_HOT inline static double sqrt(const double &x) { return std::sqrt(x); }
ATTR_HOT inline static float sqrt(const float &x) { return std::sqrt(x); }
// this one has an accuracy of better than 5%. That's enough for our purpose
// add c3 and it'll be better than 1%
#if 0
inline static double fastexp_h(const double x)
inline static double fastexp_h(const double &x)
{
/* static */ const double ln2r = 1.442695040888963387;
/* static */ const double ln2 = 0.693147180559945286;
@ -79,7 +85,7 @@ public:
return pow(2.0, t)*e;
}
ATTR_HOT inline static double exp(const double x)
ATTR_HOT inline static double exp(const double &x)
{
if (x<0)
return 1.0 / fastexp_h(-x);
@ -87,7 +93,7 @@ public:
return fastexp_h(x);
}
#else
ATTR_HOT inline static double exp(const double x) { return std::exp(x); }
ATTR_HOT inline static double exp(const double &x) { return std::exp(x); }
#endif
};

View File

@ -16,8 +16,8 @@ class terms_t
{
P_PREVENT_COPYING(terms_t)
public:
ATTR_COLD terms_t() : m_railstart(0)
public:
ATTR_COLD terms_t() : m_railstart(0), m_last_V(0)
{}
ATTR_COLD void clear()
@ -48,6 +48,10 @@ class terms_t
pvector_t<unsigned> m_nz; /* all non zero for multiplication */
pvector_t<unsigned> m_nzrd; /* non zero right of the diagonal for elimination, may include RHS element */
pvector_t<unsigned> m_nzbd; /* non zero below of the diagonal for elimination */
/* state */
nl_double m_last_V;
private:
pvector_t<terminal_t *> m_term;
pvector_t<int> m_net_other;
@ -55,6 +59,7 @@ private:
pvector_t<nl_double> m_gt;
pvector_t<nl_double> m_Idr;
pvector_t<nl_double *> m_other_curanalog;
};
class matrix_solver_t : public device_t
@ -104,14 +109,23 @@ protected:
ATTR_COLD void setup_base(analog_net_t::list_t &nets);
void update_dynamic();
virtual void add_term(int net_idx, terminal_t *term) = 0;
virtual void vsetup(analog_net_t::list_t &nets) = 0;
virtual int vsolve_non_dynamic(const bool newton_raphson) = 0;
virtual netlist_time compute_next_timestep() = 0;
/* virtual */ netlist_time compute_next_timestep();
/* virtual */ void add_term(int net_idx, terminal_t *term);
template <typename T>
void store(const T * RESTRICT V);
template <typename T>
T delta(const T * RESTRICT V);
pvector_t<terms_t *> m_terms;
pvector_t<analog_net_t *> m_nets;
pvector_t<analog_output_t *> m_inps;
pvector_t<terms_t *> m_rails_temp;
int m_stat_calculations;
int m_stat_newton_raphson;
int m_stat_vsolver_calls;
@ -138,6 +152,28 @@ private:
const eSolverType m_type;
};
template <typename T>
T matrix_solver_t::delta(const T * RESTRICT V)
{
/* FIXME: Ideally we should also include currents (RHS) here. This would
* need a revaluation of the right hand side after voltages have been updated
* and thus belong into a different calculation. This applies to all solvers.
*/
const unsigned iN = this->m_terms.size();
T cerr = 0;
for (unsigned i = 0; i < iN; i++)
cerr = nl_math::max(cerr, nl_math::abs(V[i] - (T) this->m_nets[i]->m_cur_Analog));
return cerr;
}
template <typename T>
void matrix_solver_t::store(const T * RESTRICT V)
{
for (unsigned i = 0, iN=m_terms.size(); i < iN; i++)
this->m_nets[i]->m_cur_Analog = V[i];
}
NETLIB_NAMESPACE_DEVICES_END()

View File

@ -129,7 +129,6 @@ public:
virtual void reset() override { matrix_solver_t::reset(); }
protected:
virtual void add_term(int net_idx, terminal_t *term) override;
virtual int vsolve_non_dynamic(const bool newton_raphson) override;
int solve_non_dynamic(const bool newton_raphson);
@ -142,14 +141,6 @@ protected:
template <typename T>
void LE_back_subst(T * RESTRICT x);
template <typename T>
T delta(const T * RESTRICT V);
template <typename T>
void store(const T * RESTRICT V);
virtual netlist_time compute_next_timestep() override;
#if TEST_PARALLEL
int x_i[10];
int x_start[10];
@ -169,10 +160,6 @@ protected:
inline nl_ext_double &RHS(const T1 &r) { return m_A[r][N()]; }
#endif
ATTR_ALIGN nl_double m_last_RHS[_storage_N]; // right hand side - contains currents
ATTR_ALIGN nl_double m_last_V[_storage_N];
terms_t * m_terms[_storage_N];
terms_t *m_rails_temp;
private:
static const std::size_t m_pitch = (((_storage_N + 1) + 7) / 8) * 8;
@ -196,109 +183,36 @@ private:
template <unsigned m_N, unsigned _storage_N>
matrix_solver_direct_t<m_N, _storage_N>::~matrix_solver_direct_t()
{
for (unsigned k = 0; k < N(); k++)
{
pfree(m_terms[k]);
}
pfree_array(m_rails_temp);
#if (NL_USE_DYNAMIC_ALLOCATION)
pfree_array(m_A);
#endif
#if TEST_PARALLEL
thr_dispose();
#endif
}
template <unsigned m_N, unsigned _storage_N>
netlist_time matrix_solver_direct_t<m_N, _storage_N>::compute_next_timestep()
{
nl_double new_solver_timestep = m_params.m_max_timestep;
if (m_params.m_dynamic)
{
/*
* FIXME: We should extend the logic to use either all nets or
* only output nets.
*/
for (unsigned k = 0, iN=N(); k < iN; k++)
{
analog_net_t *n = m_nets[k];
const nl_double DD_n = (n->Q_Analog() - m_last_V[k]);
const nl_double hn = current_timestep();
nl_double DD2 = (DD_n / hn - n->m_DD_n_m_1 / n->m_h_n_m_1) / (hn + n->m_h_n_m_1);
nl_double new_net_timestep;
n->m_h_n_m_1 = hn;
n->m_DD_n_m_1 = DD_n;
if (nl_math::abs(DD2) > NL_FCONST(1e-30)) // avoid div-by-zero
new_net_timestep = nl_math::sqrt(m_params.m_lte / nl_math::abs(NL_FCONST(0.5)*DD2));
else
new_net_timestep = m_params.m_max_timestep;
if (new_net_timestep < new_solver_timestep)
new_solver_timestep = new_net_timestep;
m_last_V[k] = n->Q_Analog();
}
if (new_solver_timestep < m_params.m_min_timestep)
new_solver_timestep = m_params.m_min_timestep;
}
//if (new_solver_timestep > 10.0 * hn)
// new_solver_timestep = 10.0 * hn;
return netlist_time::from_double(new_solver_timestep);
}
template <unsigned m_N, unsigned _storage_N>
ATTR_COLD void matrix_solver_direct_t<m_N, _storage_N>::add_term(int k, terminal_t *term)
{
if (term->m_otherterm->net().isRailNet())
{
m_rails_temp[k].add(term, -1, false);
}
else
{
int ot = get_net_idx(&term->m_otherterm->net());
if (ot>=0)
{
m_terms[k]->add(term, ot, true);
}
/* Should this be allowed ? */
else // if (ot<0)
{
m_rails_temp[k].add(term, ot, true);
log().fatal("found term with missing othernet {1}\n", term->name());
}
}
}
template <unsigned m_N, unsigned _storage_N>
ATTR_COLD void matrix_solver_direct_t<m_N, _storage_N>::vsetup(analog_net_t::list_t &nets)
{
if (m_dim < nets.size())
log().fatal("Dimension {1} less than {2}", m_dim, nets.size());
for (unsigned k = 0; k < N(); k++)
{
m_terms[k]->clear();
m_rails_temp[k].clear();
}
matrix_solver_t::setup_base(nets);
for (unsigned k = 0; k < N(); k++)
{
m_terms[k]->m_railstart = m_terms[k]->count();
for (unsigned i = 0; i < m_rails_temp[k].count(); i++)
this->m_terms[k]->add(m_rails_temp[k].terms()[i], m_rails_temp[k].net_other()[i], false);
for (unsigned i = 0; i < m_rails_temp[k]->count(); i++)
this->m_terms[k]->add(m_rails_temp[k]->terms()[i], m_rails_temp[k]->net_other()[i], false);
m_rails_temp[k].clear(); // no longer needed
m_rails_temp[k]->clear(); // no longer needed
m_terms[k]->set_pointers();
}
for (unsigned k = 0; k < N(); k++)
pfree(m_rails_temp[k]); // no longer needed
m_rails_temp.clear();
#if 1
/* Sort in descending order by number of connected matrix voltages.
@ -430,13 +344,13 @@ ATTR_COLD void matrix_solver_direct_t<m_N, _storage_N>::vsetup(analog_net_t::lis
* save states
*/
save(NLNAME(m_last_RHS));
save(NLNAME(m_last_V));
for (unsigned k = 0; k < N(); k++)
{
pstring num = pfmt("{1}")(k);
save(RHS(k), "RHS" + num);
save(m_terms[k]->m_last_V, "lastV" + num);
save(m_terms[k]->go(),"GO" + num, m_terms[k]->count());
save(m_terms[k]->gt(),"GT" + num, m_terms[k]->count());
@ -682,35 +596,6 @@ void matrix_solver_direct_t<m_N, _storage_N>::LE_back_subst(
}
template <unsigned m_N, unsigned _storage_N>
template <typename T>
T matrix_solver_direct_t<m_N, _storage_N>::delta(
const T * RESTRICT V)
{
/* FIXME: Ideally we should also include currents (RHS) here. This would
* need a revaluation of the right hand side after voltages have been updated
* and thus belong into a different calculation. This applies to all solvers.
*/
const unsigned iN = this->N();
T cerr = 0;
for (unsigned i = 0; i < iN; i++)
cerr = std::fmax(cerr, nl_math::abs(V[i] - (T) this->m_nets[i]->m_cur_Analog));
return cerr;
}
template <unsigned m_N, unsigned _storage_N>
template <typename T>
void matrix_solver_direct_t<m_N, _storage_N>::store(
const T * RESTRICT V)
{
for (unsigned i = 0, iN=N(); i < iN; i++)
{
this->m_nets[i]->m_cur_Analog = V[i];
}
}
template <unsigned m_N, unsigned _storage_N>
int matrix_solver_direct_t<m_N, _storage_N>::solve_non_dynamic(ATTR_UNUSED const bool newton_raphson)
{
@ -752,15 +637,12 @@ matrix_solver_direct_t<m_N, _storage_N>::matrix_solver_direct_t(const solver_par
: matrix_solver_t(GAUSSIAN_ELIMINATION, params)
, m_dim(size)
{
m_rails_temp = palloc_array(terms_t, N());
#if (NL_USE_DYNAMIC_ALLOCATION)
m_A = palloc_array(nl_ext_double, N() * m_pitch);
#endif
for (unsigned k = 0; k < N(); k++)
{
m_terms[k] = palloc(terms_t);
m_last_RHS[k] = 0.0;
m_last_V[k] = 0.0;
}
#if TEST_PARALLEL
thr_initialize();
@ -772,15 +654,12 @@ matrix_solver_direct_t<m_N, _storage_N>::matrix_solver_direct_t(const eSolverTyp
: matrix_solver_t(type, params)
, m_dim(size)
{
m_rails_temp = palloc_array(terms_t, N());
#if (NL_USE_DYNAMIC_ALLOCATION)
m_A = palloc_array(nl_ext_double, N() * m_pitch);
#endif
for (unsigned k = 0; k < N(); k++)
{
m_terms[k] = palloc(terms_t);
m_last_RHS[k] = 0.0;
m_last_V[k] = 0.0;
}
#if TEST_PARALLEL
thr_initialize();

View File

@ -144,7 +144,6 @@ protected:
ATTR_ALIGN nl_double m_last_RHS[_storage_N]; // right hand side - contains currents
ATTR_ALIGN nl_double m_last_V[_storage_N];
terms_t **m_terms;
terms_t *m_rails_temp;
private:
@ -161,11 +160,6 @@ private:
template <unsigned m_N, unsigned _storage_N>
matrix_solver_direct_t<m_N, _storage_N>::~matrix_solver_direct_t()
{
for (unsigned k = 0; k < N(); k++)
{
pfree(m_terms[k]);
}
pfree_array(m_terms);
pfree_array(m_rails_temp);
}
@ -608,14 +602,11 @@ matrix_solver_direct_t<m_N, _storage_N>::matrix_solver_direct_t(const solver_par
, m_dim(size)
, m_lp_fact(0)
{
m_terms = palloc_array(terms_t *, N());
m_rails_temp = palloc_array(terms_t, N());
for (unsigned k = 0; k < N(); k++)
{
m_terms[k] = palloc(terms_t);
m_last_RHS[k] = 0.0;
m_last_V[k] = 0.0;
}
}
@ -625,14 +616,12 @@ matrix_solver_direct_t<m_N, _storage_N>::matrix_solver_direct_t(const eSolverTyp
, m_dim(size)
, m_lp_fact(0)
{
m_terms = palloc_array(terms_t *, N());
m_rails_temp = palloc_array(terms_t, N());
for (unsigned k = 0; k < N(); k++)
{
m_terms[k] = palloc(terms_t);
m_last_RHS[k] = 0.0;
m_last_V[k] = 0.0;
}
}

View File

@ -59,7 +59,6 @@ public:
virtual void reset() override { matrix_solver_t::reset(); }
protected:
virtual void add_term(int net_idx, terminal_t *term) override;
virtual int vsolve_non_dynamic(const bool newton_raphson) override;
int solve_non_dynamic(const bool newton_raphson);
@ -72,13 +71,6 @@ protected:
template <typename T>
void LE_compute_x(T * RESTRICT x);
template <typename T>
T delta(const T * RESTRICT V);
template <typename T>
void store(const T * RESTRICT V);
virtual netlist_time compute_next_timestep() override;
template <typename T1, typename T2>
inline nl_ext_double &A(const T1 &r, const T2 &c) { return m_A[r][c]; }
@ -96,10 +88,6 @@ protected:
inline nl_ext_double &lAinv(const T1 &r, const T2 &c) { return m_lAinv[r][c]; }
ATTR_ALIGN nl_double m_last_RHS[_storage_N]; // right hand side - contains currents
ATTR_ALIGN nl_double m_last_V[_storage_N];
terms_t * m_terms[_storage_N];
terms_t *m_rails_temp;
private:
static const std::size_t m_pitch = ((( _storage_N) + 7) / 8) * 8;
@ -124,102 +112,26 @@ private:
template <unsigned m_N, unsigned _storage_N>
matrix_solver_sm_t<m_N, _storage_N>::~matrix_solver_sm_t()
{
for (unsigned k = 0; k < N(); k++)
{
pfree(m_terms[k]);
}
pfree_array(m_rails_temp);
#if (NL_USE_DYNAMIC_ALLOCATION)
pfree_array(m_A);
#endif
}
template <unsigned m_N, unsigned _storage_N>
netlist_time matrix_solver_sm_t<m_N, _storage_N>::compute_next_timestep()
{
nl_double new_solver_timestep = m_params.m_max_timestep;
if (m_params.m_dynamic)
{
/*
* FIXME: We should extend the logic to use either all nets or
* only output nets.
*/
for (unsigned k = 0, iN=N(); k < iN; k++)
{
analog_net_t *n = m_nets[k];
const nl_double DD_n = (n->Q_Analog() - m_last_V[k]);
const nl_double hn = current_timestep();
nl_double DD2 = (DD_n / hn - n->m_DD_n_m_1 / n->m_h_n_m_1) / (hn + n->m_h_n_m_1);
nl_double new_net_timestep;
n->m_h_n_m_1 = hn;
n->m_DD_n_m_1 = DD_n;
if (nl_math::abs(DD2) > NL_FCONST(1e-30)) // avoid div-by-zero
new_net_timestep = nl_math::sqrt(m_params.m_lte / nl_math::abs(NL_FCONST(0.5)*DD2));
else
new_net_timestep = m_params.m_max_timestep;
if (new_net_timestep < new_solver_timestep)
new_solver_timestep = new_net_timestep;
m_last_V[k] = n->Q_Analog();
}
if (new_solver_timestep < m_params.m_min_timestep)
new_solver_timestep = m_params.m_min_timestep;
}
//if (new_solver_timestep > 10.0 * hn)
// new_solver_timestep = 10.0 * hn;
return netlist_time::from_double(new_solver_timestep);
}
template <unsigned m_N, unsigned _storage_N>
ATTR_COLD void matrix_solver_sm_t<m_N, _storage_N>::add_term(int k, terminal_t *term)
{
if (term->m_otherterm->net().isRailNet())
{
m_rails_temp[k].add(term, -1, false);
}
else
{
int ot = get_net_idx(&term->m_otherterm->net());
if (ot>=0)
{
m_terms[k]->add(term, ot, true);
}
/* Should this be allowed ? */
else // if (ot<0)
{
m_rails_temp[k].add(term, ot, true);
log().fatal("found term with missing othernet {1}\n", term->name());
}
}
}
template <unsigned m_N, unsigned _storage_N>
ATTR_COLD void matrix_solver_sm_t<m_N, _storage_N>::vsetup(analog_net_t::list_t &nets)
{
if (m_dim < nets.size())
log().fatal("Dimension {1} less than {2}", m_dim, nets.size());
for (unsigned k = 0; k < N(); k++)
{
m_terms[k]->clear();
m_rails_temp[k].clear();
}
matrix_solver_t::setup_base(nets);
for (unsigned k = 0; k < N(); k++)
{
m_terms[k]->m_railstart = m_terms[k]->count();
for (unsigned i = 0; i < m_rails_temp[k].count(); i++)
this->m_terms[k]->add(m_rails_temp[k].terms()[i], m_rails_temp[k].net_other()[i], false);
for (unsigned i = 0; i < m_rails_temp[k]->count(); i++)
this->m_terms[k]->add(m_rails_temp[k]->terms()[i], m_rails_temp[k]->net_other()[i], false);
m_rails_temp[k].clear(); // no longer needed
m_rails_temp[k]->clear(); // no longer needed
m_terms[k]->set_pointers();
}
@ -315,13 +227,13 @@ ATTR_COLD void matrix_solver_sm_t<m_N, _storage_N>::vsetup(analog_net_t::list_t
* save states
*/
save(NLNAME(m_last_RHS));
save(NLNAME(m_last_V));
for (unsigned k = 0; k < N(); k++)
{
pstring num = pfmt("{1}")(k);
save(RHS(k), "RHS" + num);
save(m_terms[k]->m_last_V, "lastV" + num);
save(m_terms[k]->go(),"GO" + num, m_terms[k]->count());
save(m_terms[k]->gt(),"GT" + num, m_terms[k]->count());
@ -468,35 +380,6 @@ void matrix_solver_sm_t<m_N, _storage_N>::LE_compute_x(
}
template <unsigned m_N, unsigned _storage_N>
template <typename T>
T matrix_solver_sm_t<m_N, _storage_N>::delta(
const T * RESTRICT V)
{
/* FIXME: Ideally we should also include currents (RHS) here. This would
* need a revaluation of the right hand side after voltages have been updated
* and thus belong into a different calculation. This applies to all solvers.
*/
const unsigned iN = this->N();
T cerr = 0;
for (unsigned i = 0; i < iN; i++)
cerr = std::fmax(cerr, nl_math::abs(V[i] - (T) this->m_nets[i]->m_cur_Analog));
return cerr;
}
template <unsigned m_N, unsigned _storage_N>
template <typename T>
void matrix_solver_sm_t<m_N, _storage_N>::store(
const T * RESTRICT V)
{
for (unsigned i = 0, iN=N(); i < iN; i++)
{
this->m_nets[i]->m_cur_Analog = V[i];
}
}
template <unsigned m_N, unsigned _storage_N>
int matrix_solver_sm_t<m_N, _storage_N>::solve_non_dynamic(ATTR_UNUSED const bool newton_raphson)
{
@ -605,15 +488,12 @@ matrix_solver_sm_t<m_N, _storage_N>::matrix_solver_sm_t(const solver_parameters_
: matrix_solver_t(GAUSSIAN_ELIMINATION, params)
, m_dim(size)
{
m_rails_temp = palloc_array(terms_t, N());
#if (NL_USE_DYNAMIC_ALLOCATION)
m_A = palloc_array(nl_ext_double, N() * m_pitch);
#endif
for (unsigned k = 0; k < N(); k++)
{
m_terms[k] = palloc(terms_t);
m_last_RHS[k] = 0.0;
m_last_V[k] = 0.0;
}
}
@ -622,15 +502,12 @@ matrix_solver_sm_t<m_N, _storage_N>::matrix_solver_sm_t(const eSolverType type,
: matrix_solver_t(type, params)
, m_dim(size)
{
m_rails_temp = palloc_array(terms_t, N());
#if (NL_USE_DYNAMIC_ALLOCATION)
m_A = palloc_array(nl_ext_double, N() * m_pitch);
#endif
for (unsigned k = 0; k < N(); k++)
{
m_terms[k] = palloc(terms_t);
m_last_RHS[k] = 0.0;
m_last_V[k] = 0.0;
}
}

View File

@ -66,7 +66,6 @@ public:
virtual void reset() override { matrix_solver_t::reset(); }
protected:
virtual void add_term(int net_idx, terminal_t *term) override;
virtual int vsolve_non_dynamic(const bool newton_raphson) override;
int solve_non_dynamic(const bool newton_raphson);
@ -79,13 +78,6 @@ protected:
template <typename T>
void LE_compute_x(T * RESTRICT x);
template <typename T>
T delta(const T * RESTRICT V);
template <typename T>
void store(const T * RESTRICT V);
virtual netlist_time compute_next_timestep() override;
template <typename T1, typename T2>
inline nl_ext_double &A(const T1 &r, const T2 &c) { return m_A[r][c]; }
@ -103,10 +95,6 @@ protected:
inline nl_ext_double &lA(const T1 &r, const T2 &c) { return m_lA[r][c]; }
ATTR_ALIGN nl_double m_last_RHS[_storage_N]; // right hand side - contains currents
ATTR_ALIGN nl_double m_last_V[_storage_N];
terms_t * m_terms[_storage_N];
terms_t *m_rails_temp;
private:
static const std::size_t m_pitch = ((( _storage_N) + 7) / 8) * 8;
@ -138,102 +126,26 @@ private:
template <unsigned m_N, unsigned _storage_N>
matrix_solver_w_t<m_N, _storage_N>::~matrix_solver_w_t()
{
for (unsigned k = 0; k < N(); k++)
{
pfree(m_terms[k]);
}
pfree_array(m_rails_temp);
#if (NL_USE_DYNAMIC_ALLOCATION)
pfree_array(m_A);
#endif
}
template <unsigned m_N, unsigned _storage_N>
netlist_time matrix_solver_w_t<m_N, _storage_N>::compute_next_timestep()
{
nl_double new_solver_timestep = m_params.m_max_timestep;
if (m_params.m_dynamic)
{
/*
* FIXME: We should extend the logic to use either all nets or
* only output nets.
*/
for (unsigned k = 0, iN=N(); k < iN; k++)
{
analog_net_t *n = m_nets[k];
const nl_double DD_n = (n->Q_Analog() - m_last_V[k]);
const nl_double hn = current_timestep();
nl_double DD2 = (DD_n / hn - n->m_DD_n_m_1 / n->m_h_n_m_1) / (hn + n->m_h_n_m_1);
nl_double new_net_timestep;
n->m_h_n_m_1 = hn;
n->m_DD_n_m_1 = DD_n;
if (nl_math::abs(DD2) > NL_FCONST(1e-30)) // avoid div-by-zero
new_net_timestep = nl_math::sqrt(m_params.m_lte / nl_math::abs(NL_FCONST(0.5)*DD2));
else
new_net_timestep = m_params.m_max_timestep;
if (new_net_timestep < new_solver_timestep)
new_solver_timestep = new_net_timestep;
m_last_V[k] = n->Q_Analog();
}
if (new_solver_timestep < m_params.m_min_timestep)
new_solver_timestep = m_params.m_min_timestep;
}
//if (new_solver_timestep > 10.0 * hn)
// new_solver_timestep = 10.0 * hn;
return netlist_time::from_double(new_solver_timestep);
}
template <unsigned m_N, unsigned _storage_N>
ATTR_COLD void matrix_solver_w_t<m_N, _storage_N>::add_term(int k, terminal_t *term)
{
if (term->m_otherterm->net().isRailNet())
{
m_rails_temp[k].add(term, -1, false);
}
else
{
int ot = get_net_idx(&term->m_otherterm->net());
if (ot>=0)
{
m_terms[k]->add(term, ot, true);
}
/* Should this be allowed ? */
else // if (ot<0)
{
m_rails_temp[k].add(term, ot, true);
log().fatal("found term with missing othernet {1}\n", term->name());
}
}
}
template <unsigned m_N, unsigned _storage_N>
ATTR_COLD void matrix_solver_w_t<m_N, _storage_N>::vsetup(analog_net_t::list_t &nets)
{
if (m_dim < nets.size())
log().fatal("Dimension {1} less than {2}", m_dim, nets.size());
for (unsigned k = 0; k < N(); k++)
{
m_terms[k]->clear();
m_rails_temp[k].clear();
}
matrix_solver_t::setup_base(nets);
for (unsigned k = 0; k < N(); k++)
{
m_terms[k]->m_railstart = m_terms[k]->count();
for (unsigned i = 0; i < m_rails_temp[k].count(); i++)
this->m_terms[k]->add(m_rails_temp[k].terms()[i], m_rails_temp[k].net_other()[i], false);
for (unsigned i = 0; i < m_rails_temp[k]->count(); i++)
this->m_terms[k]->add(m_rails_temp[k]->terms()[i], m_rails_temp[k]->net_other()[i], false);
m_rails_temp[k].clear(); // no longer needed
m_rails_temp[k]->clear(); // no longer needed
m_terms[k]->set_pointers();
}
@ -329,13 +241,13 @@ ATTR_COLD void matrix_solver_w_t<m_N, _storage_N>::vsetup(analog_net_t::list_t &
* save states
*/
save(NLNAME(m_last_RHS));
save(NLNAME(m_last_V));
for (unsigned k = 0; k < N(); k++)
{
pstring num = pfmt("{1}")(k);
save(RHS(k), "RHS" + num);
save(m_terms[k]->m_last_V, "lastV" + num);
save(m_terms[k]->go(),"GO" + num, m_terms[k]->count());
save(m_terms[k]->gt(),"GT" + num, m_terms[k]->count());
@ -383,15 +295,15 @@ void matrix_solver_w_t<m_N, _storage_N>::build_LE_RHS()
nl_double rhsk_a = 0.0;
nl_double rhsk_b = 0.0;
const int terms_count = m_terms[k]->count();
const unsigned terms_count = m_terms[k]->count();
const nl_double * RESTRICT go = m_terms[k]->go();
const nl_double * RESTRICT Idr = m_terms[k]->Idr();
const nl_double * const * RESTRICT other_cur_analog = m_terms[k]->other_curanalog();
for (int i = 0; i < terms_count; i++)
for (unsigned i = 0; i < terms_count; i++)
rhsk_a = rhsk_a + Idr[i];
for (int i = m_terms[k]->m_railstart; i < terms_count; i++)
for (unsigned i = m_terms[k]->m_railstart; i < terms_count; i++)
//rhsk = rhsk + go[i] * terms[i]->m_otherterm->net().as_analog().Q_Analog();
rhsk_b = rhsk_b + go[i] * *other_cur_analog[i];
@ -481,34 +393,6 @@ void matrix_solver_w_t<m_N, _storage_N>::LE_compute_x(
}
template <unsigned m_N, unsigned _storage_N>
template <typename T>
T matrix_solver_w_t<m_N, _storage_N>::delta(
const T * RESTRICT V)
{
/* FIXME: Ideally we should also include currents (RHS) here. This would
* need a revaluation of the right hand side after voltages have been updated
* and thus belong into a different calculation. This applies to all solvers.
*/
const unsigned iN = this->N();
T cerr = 0;
for (unsigned i = 0; i < iN; i++)
cerr = std::fmax(cerr, nl_math::abs(V[i] - (T) this->m_nets[i]->m_cur_Analog));
return cerr;
}
template <unsigned m_N, unsigned _storage_N>
template <typename T>
void matrix_solver_w_t<m_N, _storage_N>::store(
const T * RESTRICT V)
{
for (unsigned i = 0, iN=N(); i < iN; i++)
{
this->m_nets[i]->m_cur_Analog = V[i];
}
}
template <unsigned m_N, unsigned _storage_N>
int matrix_solver_w_t<m_N, _storage_N>::solve_non_dynamic(ATTR_UNUSED const bool newton_raphson)
{
@ -668,15 +552,12 @@ matrix_solver_w_t<m_N, _storage_N>::matrix_solver_w_t(const solver_parameters_t
,m_cnt(0)
, m_dim(size)
{
m_rails_temp = palloc_array(terms_t, N());
#if (NL_USE_DYNAMIC_ALLOCATION)
m_A = palloc_array(nl_ext_double, N() * m_pitch);
#endif
for (unsigned k = 0; k < N(); k++)
{
m_terms[k] = palloc(terms_t);
m_last_RHS[k] = 0.0;
m_last_V[k] = 0.0;
}
}
@ -686,12 +567,9 @@ matrix_solver_w_t<m_N, _storage_N>::matrix_solver_w_t(const eSolverType type, co
,m_cnt(0)
, m_dim(size)
{
m_rails_temp = palloc_array(terms_t, N());
for (unsigned k = 0; k < N(); k++)
{
m_terms[k] = palloc(terms_t);
m_last_RHS[k] = 0.0;
m_last_V[k] = 0.0;
}
}

View File

@ -108,6 +108,11 @@ ATTR_COLD matrix_solver_t::matrix_solver_t(const eSolverType type, const solver_
ATTR_COLD matrix_solver_t::~matrix_solver_t()
{
m_inps.clear_and_free();
for (unsigned k = 0; k < m_terms.size(); k++)
{
pfree(m_terms[k]);
}
}
ATTR_COLD void matrix_solver_t::setup_base(analog_net_t::list_t &nets)
@ -115,9 +120,14 @@ ATTR_COLD void matrix_solver_t::setup_base(analog_net_t::list_t &nets)
log().debug("New solver setup\n");
m_nets.clear();
m_terms.clear();
for (auto & net : nets)
{
m_nets.push_back(net);
m_terms.push_back(palloc(terms_t));
m_rails_temp.push_back(palloc(terms_t));
}
for (std::size_t k = 0; k < nets.size(); k++)
{
@ -308,6 +318,70 @@ ATTR_COLD int matrix_solver_t::get_net_idx(net_t *net)
return -1;
}
ATTR_COLD void matrix_solver_t::add_term(int k, terminal_t *term)
{
if (term->m_otherterm->net().isRailNet())
{
m_rails_temp[k]->add(term, -1, false);
}
else
{
int ot = get_net_idx(&term->m_otherterm->net());
if (ot>=0)
{
m_terms[k]->add(term, ot, true);
}
/* Should this be allowed ? */
else // if (ot<0)
{
m_rails_temp[k]->add(term, ot, true);
log().fatal("found term with missing othernet {1}\n", term->name());
}
}
}
netlist_time matrix_solver_t::compute_next_timestep()
{
nl_double new_solver_timestep = m_params.m_max_timestep;
if (m_params.m_dynamic)
{
/*
* FIXME: We should extend the logic to use either all nets or
* only output nets.
*/
for (unsigned k = 0, iN=m_terms.size(); k < iN; k++)
{
analog_net_t *n = m_nets[k];
const nl_double DD_n = (n->Q_Analog() - m_terms[k]->m_last_V);
const nl_double hn = current_timestep();
nl_double DD2 = (DD_n / hn - n->m_DD_n_m_1 / n->m_h_n_m_1) / (hn + n->m_h_n_m_1);
nl_double new_net_timestep;
n->m_h_n_m_1 = hn;
n->m_DD_n_m_1 = DD_n;
if (nl_math::abs(DD2) > NL_FCONST(1e-30)) // avoid div-by-zero
new_net_timestep = nl_math::sqrt(m_params.m_lte / nl_math::abs(NL_FCONST(0.5)*DD2));
else
new_net_timestep = m_params.m_max_timestep;
if (new_net_timestep < new_solver_timestep)
new_solver_timestep = new_net_timestep;
m_terms[k]->m_last_V = n->Q_Analog();
}
if (new_solver_timestep < m_params.m_min_timestep)
new_solver_timestep = m_params.m_min_timestep;
}
//if (new_solver_timestep > 10.0 * hn)
// new_solver_timestep = 10.0 * hn;
return netlist_time::from_double(new_solver_timestep);
}
void matrix_solver_t::log_stats()
{
if (this->m_stat_calculations != 0 && this->m_stat_vsolver_calls && this->m_params.m_log_stats)