spi_sdcard: add CMD18 - CMD_READ_MULTIPLE_BLOCK (#8913)

* spi_sdcard: add CMD18 - CMD_READ_MULTIPLE_BLOCK and clean up state changes
This commit is contained in:
holub 2021-12-01 18:49:48 -05:00 committed by GitHub
parent bbb9aba9a3
commit 12b260e200
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 280 additions and 186 deletions

1
.gitignore vendored
View File

@ -42,6 +42,7 @@
!/*.bdf !/*.bdf
!/LICENSE !/LICENSE
/.idea /.idea
.vscode
docs/build docs/build
docs/source/_build docs/source/_build
regtests/chdman/temp regtests/chdman/temp

View File

@ -18,6 +18,8 @@
Refrences: Refrences:
https://www.sdcard.org/downloads/pls/ (Physical Layer Simplified Specification) https://www.sdcard.org/downloads/pls/ (Physical Layer Simplified Specification)
REF: tags are refering to the spec form above. 'Physical Layer Simplified Specification v8.00'
http://www.dejazzer.com/ee379/lecture_notes/lec12_sd_card.pdf http://www.dejazzer.com/ee379/lecture_notes/lec12_sd_card.pdf
https://embdev.net/attachment/39390/TOSHIBA_SD_Card_Specification.pdf https://embdev.net/attachment/39390/TOSHIBA_SD_Card_Specification.pdf
http://elm-chan.org/docs/mmc/mmc_e.html http://elm-chan.org/docs/mmc/mmc_e.html
@ -46,9 +48,12 @@ spi_sdcard_device::spi_sdcard_device(const machine_config &mconfig, device_type
device_t(mconfig, type, tag, owner, clock), device_t(mconfig, type, tag, owner, clock),
write_miso(*this), write_miso(*this),
m_image(*this, "image"), m_image(*this, "image"),
m_state(SD_STATE_IDLE),
m_harddisk(nullptr), m_harddisk(nullptr),
m_in_latch(0), m_out_latch(0), m_cmd_ptr(0), m_state(0), m_out_ptr(0), m_out_count(0), m_ss(0), m_in_bit(0), m_ss(0), m_in_bit(0),
m_cur_bit(0), m_write_ptr(0), m_blksize(512), m_bACMD(false) m_in_latch(0), m_out_latch(0xff), m_cur_bit(0),
m_out_count(0), m_out_ptr(0), m_write_ptr(0), m_blksize(512), m_blknext(0),
m_bACMD(false)
{ {
} }
@ -64,13 +69,15 @@ spi_sdcard_sdhc_device::spi_sdcard_sdhc_device(const machine_config &mconfig, co
m_type = SD_TYPE_HC; m_type = SD_TYPE_HC;
} }
ALLOW_SAVE_TYPE(spi_sdcard_device::sd_state);
ALLOW_SAVE_TYPE(spi_sdcard_device::sd_type);
void spi_sdcard_device::device_start() void spi_sdcard_device::device_start()
{ {
write_miso.resolve_safe(); write_miso.resolve_safe();
save_item(NAME(m_state));
save_item(NAME(m_in_latch)); save_item(NAME(m_in_latch));
save_item(NAME(m_out_latch)); save_item(NAME(m_out_latch));
save_item(NAME(m_cmd_ptr));
save_item(NAME(m_state));
save_item(NAME(m_out_ptr)); save_item(NAME(m_out_ptr));
save_item(NAME(m_out_count)); save_item(NAME(m_out_count));
save_item(NAME(m_ss)); save_item(NAME(m_ss));
@ -78,6 +85,7 @@ void spi_sdcard_device::device_start()
save_item(NAME(m_cur_bit)); save_item(NAME(m_cur_bit));
save_item(NAME(m_write_ptr)); save_item(NAME(m_write_ptr));
save_item(NAME(m_blksize)); save_item(NAME(m_blksize));
save_item(NAME(m_blknext));
save_item(NAME(m_type)); save_item(NAME(m_type));
save_item(NAME(m_cmd)); save_item(NAME(m_cmd));
save_item(NAME(m_data)); save_item(NAME(m_data));
@ -94,10 +102,11 @@ void spi_sdcard_device::device_add_mconfig(machine_config &config)
HARDDISK(config, m_image).set_interface("spi_sdcard"); HARDDISK(config, m_image).set_interface("spi_sdcard");
} }
void spi_sdcard_device::send_data(int count) void spi_sdcard_device::send_data(u16 count, sd_state new_state)
{ {
m_out_ptr = 0; m_out_ptr = 0;
m_out_count = count; m_out_count = count;
change_state(new_state);
} }
void spi_sdcard_device::spi_clock_w(int state) void spi_sdcard_device::spi_clock_w(int state)
@ -121,56 +130,73 @@ void spi_sdcard_device::spi_clock_w(int state)
if (m_cur_bit == 8) if (m_cur_bit == 8)
{ {
LOGMASKED(LOG_SPI, "SDCARD: got %02x\n", m_in_latch); LOGMASKED(LOG_SPI, "SDCARD: got %02x\n", m_in_latch);
for (u8 i = 0; i < 5; i++)
{
m_cmd[i] = m_cmd[i + 1];
}
m_cmd[5] = m_in_latch;
switch (m_state) switch (m_state)
{ {
case SD_STATE_IDLE: case SD_STATE_IDLE:
for (int i = 0; i < 5; i++) do_command();
break;
case SD_STATE_WRITE_WAITFE:
if (m_in_latch == 0xfe)
{
m_state = SD_STATE_WRITE_DATA;
m_out_latch = 0xff;
m_write_ptr = 0;
change_state(SD_STATE_RCV);
}
break;
case SD_STATE_WRITE_DATA:
m_data[m_write_ptr++] = m_in_latch;
if (m_write_ptr == (m_blksize + 2))
{
u32 blk = (u32(m_cmd[1]) << 24) | (u32(m_cmd[2]) << 16) | (u32(m_cmd[3]) << 8) | u32(m_cmd[4]);
if (m_type == SD_TYPE_V2)
{ {
m_cmd[i] = m_cmd[i + 1]; blk /= m_blksize;
} }
m_cmd[5] = m_in_latch;
if ((((m_cmd[0] & 0xc0) == 0x40) && (m_cmd[5] & 1)) && (m_out_count == 0)) LOGMASKED(LOG_GENERAL, "writing LBA %x, data %02x %02x %02x %02x\n", blk, m_data[0], m_data[1], m_data[2], m_data[3]);
if (hard_disk_write(m_harddisk, blk, &m_data[0]))
{ {
do_command(); m_data[0] = DATA_RESPONSE_OK;
} }
break; else
case SD_STATE_WRITE_WAITFE:
if (m_in_latch == 0xfe)
{ {
m_state = SD_STATE_WRITE_DATA; m_data[0] = DATA_RESPONSE_IO_ERROR;
m_out_latch = 0xff;
m_write_ptr = 0;
} }
break; m_data[1] = 0x01;
case SD_STATE_WRITE_DATA: send_data(2, SD_STATE_IDLE);
m_data[m_write_ptr++] = m_in_latch; }
if (m_write_ptr == (m_blksize + 2)) break;
{
u32 blk = (m_cmd[1] << 24) | (m_cmd[2] << 16) | (m_cmd[3] << 8) | m_cmd[4];
if (m_type == SD_TYPE_V2)
{
blk /= m_blksize;
}
LOGMASKED(LOG_GENERAL, "writing LBA %x, data %02x %02x %02x %02x\n", blk, m_data[0], m_data[1], m_data[2], m_data[3]); case SD_STATE_DATA_MULTI:
if (hard_disk_write(m_harddisk, blk, &m_data[0])) do_command();
{ if (m_state == SD_STATE_DATA_MULTI && m_out_count == 0)
m_data[0] = DATA_RESPONSE_OK; {
} m_data[0] = 0xfe; // data token
else hard_disk_read(m_harddisk, m_blknext++, &m_data[1]);
{ util::crc16_t crc16 = util::crc16_creator::simple(
m_data[0] = DATA_RESPONSE_IO_ERROR; &m_data[1], m_blksize);
} m_data[m_blksize + 1] = (crc16 >> 8) & 0xff;
m_data[1] = 0x01; m_data[m_blksize + 2] = (crc16 & 0xff);
send_data(1 + m_blksize + 2, SD_STATE_DATA_MULTI);
}
break;
m_state = SD_STATE_IDLE; default:
send_data(2); if (((m_cmd[0] & 0x70) == 0x40) || (m_out_count == 0)) // CMD0 - GO_IDLE_STATE
} {
break; do_command();
}
break;
} }
} }
} }
@ -178,12 +204,11 @@ void spi_sdcard_device::spi_clock_w(int state)
{ {
m_in_latch <<= 1; m_in_latch <<= 1;
m_out_latch <<= 1; m_out_latch <<= 1;
LOGMASKED(LOG_SPI, "\tsdcard: S %02x %02x (%d)\n", m_in_latch, m_out_latch, m_cur_bit); m_out_latch |= 1;
if (m_cur_bit == 8) LOGMASKED(LOG_SPI, "\tsdcard: S %02x %02x (%d)\n", m_in_latch,
{ m_out_latch, m_cur_bit);
m_cur_bit = 0;
}
m_cur_bit &= 0x07;
if (m_cur_bit == 0) if (m_cur_bit == 0)
{ {
if (m_out_count > 0) if (m_out_count > 0)
@ -193,163 +218,214 @@ void spi_sdcard_device::spi_clock_w(int state)
m_out_count--; m_out_count--;
} }
} }
write_miso(BIT(m_out_latch, 7));
write_miso(BIT(m_out_latch, 7) ? ASSERT_LINE : CLEAR_LINE);
} }
} }
} }
void spi_sdcard_device::do_command() void spi_sdcard_device::do_command()
{ {
LOGMASKED(LOG_COMMAND, "SDCARD: cmd %02d %02x %02x %02x %02x %02x\n", m_cmd[0] & 0x3f, m_cmd[1], m_cmd[2], m_cmd[3], m_cmd[4], m_cmd[5]); if (((m_cmd[0] & 0xc0) == 0x40) && (m_cmd[5] & 1))
switch (m_cmd[0] & 0x3f)
{ {
case 0: // CMD0 - GO_IDLE_STATE LOGMASKED(LOG_COMMAND, "SDCARD: cmd %02d %02x %02x %02x %02x %02x\n", m_cmd[0] & 0x3f, m_cmd[1], m_cmd[2], m_cmd[3], m_cmd[4], m_cmd[5]);
if (m_harddisk) bool clean_cmd = true;
switch (m_cmd[0] & 0x3f)
{ {
m_data[0] = 0x01; case 0: // CMD0 - GO_IDLE_STATE
} if (m_harddisk)
else {
{ m_data[0] = 0x01;
m_data[0] = 0x00; send_data(1, SD_STATE_IDLE);
} }
send_data(1); else
break; {
m_data[0] = 0x00;
send_data(1, SD_STATE_INA);
}
break;
case 8: // CMD8 - SEND_IF_COND (SD v2 only) case 8: // CMD8 - SEND_IF_COND (SD v2 only)
m_data[0] = 0x01; m_data[0] = 0; // 0x01;
m_data[1] = 0; m_data[1] = m_cmd[1]; // 0;
m_data[2] = 0; m_data[2] = m_cmd[2]; // 0;
m_data[3] = 0; m_data[3] = m_cmd[3]; // 0x01;
m_data[4] = 0xaa; m_data[4] = m_cmd[4]; // 0xaa;
send_data(5); send_data(5, SD_STATE_IDLE);
break; break;
case 10: // CMD10 - SEND_CID case 10: // CMD10 - SEND_CID
m_data[0] = 0x01; // initial R1 response m_data[0] = 0x01; // initial R1 response
m_data[1] = 0x00; // throwaway byte before data transfer m_data[1] = 0x00; // throwaway byte before data transfer
m_data[2] = 0xfe; // data token
m_data[3] = 'M'; // Manufacturer ID - we'll use M for MAME
m_data[4] = 'M'; // OEM ID - MD for MAMEdev
m_data[5] = 'D';
m_data[6] = 'M'; // Product Name - "MCARD"
m_data[7] = 'C';
m_data[8] = 'A';
m_data[9] = 'R';
m_data[10] = 'D';
m_data[11] = 0x10; // Product Revision in BCD (1.0)
{
u32 uSerial = 0x12345678;
m_data[12] = (uSerial>>24) & 0xff; // PSN - Product Serial Number
m_data[13] = (uSerial>>16) & 0xff;
m_data[14] = (uSerial>>8) & 0xff;
m_data[15] = (uSerial & 0xff);
}
m_data[16] = 0x01; // MDT - Manufacturing Date
m_data[17] = 0x59; // 0x15 9 = 2021, September
m_data[18] = 0x00; // CRC7, bit 0 is always 0
{
util::crc16_t crc16 = util::crc16_creator::simple(&m_data[3], 16);
m_data[19] = (crc16 >> 8) & 0xff;
m_data[20] = (crc16 & 0xff);
}
send_data(3 + 16 + 2);
break;
case 16: // CMD16 - SET_BLOCKLEN
m_blksize = (m_cmd[3] << 8) | m_cmd[4];
if (hard_disk_set_block_size(m_harddisk, m_blksize))
{
m_data[0] = 0;
}
else
{
m_data[0] = 0xff; // indicate an error
// if false was returned, it means the hard disk is a CHD file, and we can't resize the
// blocks on CHD files.
logerror("spi_sdcard: Couldn't change block size to %d, wrong CHD file?", m_blksize);
}
send_data(1);
break;
case 17: // CMD17 - READ_SINGLE_BLOCK
if (m_harddisk)
{
m_data[0] = 0x00; // initial R1 response
// data token occurs some time after the R1 response. A2SD expects at least 1
// byte of space between R1 and the data packet.
m_data[2] = 0xfe; // data token m_data[2] = 0xfe; // data token
u32 blk = (m_cmd[1] << 24) | (m_cmd[2] << 16) | (m_cmd[3] << 8) | m_cmd[4]; m_data[3] = 'M'; // Manufacturer ID - we'll use M for MAME
if (m_type == SD_TYPE_V2) m_data[4] = 'M'; // OEM ID - MD for MAMEdev
m_data[5] = 'D';
m_data[6] = 'M'; // Product Name - "MCARD"
m_data[7] = 'C';
m_data[8] = 'A';
m_data[9] = 'R';
m_data[10] = 'D';
m_data[11] = 0x10; // Product Revision in BCD (1.0)
{ {
blk /= m_blksize; u32 uSerial = 0x12345678;
m_data[12] = (uSerial >> 24) & 0xff; // PSN - Product Serial Number
m_data[13] = (uSerial >> 16) & 0xff;
m_data[14] = (uSerial >> 8) & 0xff;
m_data[15] = (uSerial & 0xff);
} }
LOGMASKED(LOG_GENERAL, "reading LBA %x\n", blk); m_data[16] = 0x01; // MDT - Manufacturing Date
hard_disk_read(m_harddisk, blk, &m_data[3]); m_data[17] = 0x59; // 0x15 9 = 2021, September
m_data[18] = 0x00; // CRC7, bit 0 is always 0
{ {
util::crc16_t crc16 = util::crc16_creator::simple(&m_data[3], m_blksize); util::crc16_t crc16 = util::crc16_creator::simple(&m_data[3], 16);
m_data[m_blksize + 3] = (crc16 >> 8) & 0xff; m_data[19] = (crc16 >> 8) & 0xff;
m_data[m_blksize + 4] = (crc16 & 0xff); m_data[20] = (crc16 & 0xff);
} }
send_data(3 + m_blksize + 2); send_data(3 + 16 + 2, SD_STATE_STBY);
} break;
else
{
m_data[0] = 0xff; // show an error
send_data(1);
}
break;
case 24: // CMD24 - WRITE_BLOCK case 12: // CMD12 - STOP_TRANSMISSION
m_data[0] = 0;
send_data(1);
m_state = SD_STATE_WRITE_WAITFE;
break;
case 41:
if (m_bACMD) // ACMD41 - SD_SEND_OP_COND
{
m_data[0] = 0; m_data[0] = 0;
} send_data(1,
else // CMD41 - illegal m_state == SD_STATE_RCV ? SD_STATE_PRG : SD_STATE_TRAN);
{ break;
m_data[0] = 0xff;
}
send_data(1);
break;
case 55: // CMD55 - APP_CMD case 16: // CMD16 - SET_BLOCKLEN
m_data[0] = 0x01; m_blksize = (u16(m_cmd[3]) << 8) | u16(m_cmd[4]);
send_data(1); if (hard_disk_set_block_size(m_harddisk, m_blksize))
break; {
m_data[0] = 0;
}
else
{
m_data[0] = 0xff; // indicate an error
// if false was returned, it means the hard disk is a CHD file, and we can't resize the
// blocks on CHD files.
logerror("spi_sdcard: Couldn't change block size to %d, wrong "
"CHD file?",
m_blksize);
}
send_data(1, SD_STATE_TRAN);
break;
case 58: // CMD58 - READ_OCR case 17: // CMD17 - READ_SINGLE_BLOCK
m_data[0] = 0; if (m_harddisk)
if (m_type == SD_TYPE_HC) {
m_data[0] = 0x00; // initial R1 response
// data token occurs some time after the R1 response. A2SD expects at least 1
// byte of space between R1 and the data packet.
m_data[1] = 0xff;
m_data[2] = 0xfe; // data token
u32 blk = (u32(m_cmd[1]) << 24) | (u32(m_cmd[2]) << 16) | (u32(m_cmd[3]) << 8) | u32(m_cmd[4]);
if (m_type == SD_TYPE_V2)
{
blk /= m_blksize;
}
LOGMASKED(LOG_GENERAL, "reading LBA %x\n", blk);
hard_disk_read(m_harddisk, blk, &m_data[3]);
{
util::crc16_t crc16 = util::crc16_creator::simple(&m_data[3], m_blksize);
m_data[m_blksize + 3] = (crc16 >> 8) & 0xff;
m_data[m_blksize + 4] = (crc16 & 0xff);
}
send_data(3 + m_blksize + 2, SD_STATE_DATA);
}
else
{
m_data[0] = 0xff; // show an error
send_data(1, SD_STATE_DATA);
}
break;
case 18: // CMD18 - CMD_READ_MULTIPLE_BLOCK
if (m_harddisk)
{
m_data[0] = 0x00; // initial R1 response
// data token occurs some time after the R1 response. A2SD
// expects at least 1 byte of space between R1 and the data
// packet.
m_blknext = (u32(m_cmd[1]) << 24) | (u32(m_cmd[2]) << 16) | (u32(m_cmd[3]) << 8) | u32(m_cmd[4]);
if (m_type == SD_TYPE_V2)
{
m_blknext /= m_blksize;
}
}
else
{
m_data[0] = 0xff; // show an error
}
send_data(1, SD_STATE_DATA_MULTI);
break;
case 24: // CMD24 - WRITE_BLOCK
m_data[0] = 0;
send_data(1, SD_STATE_RCV);
break;
case 41:
if (m_bACMD) // ACMD41 - SD_SEND_OP_COND
{
m_data[0] = 0;
send_data(1, SD_STATE_READY); // + SD_STATE_IDLE
}
else // CMD41 - illegal
{
m_data[0] = 0xff;
send_data(1, SD_STATE_INA);
}
break;
case 55: // CMD55 - APP_CMD
m_data[0] = 0x01;
send_data(1, SD_STATE_IDLE);
break;
case 58: // CMD58 - READ_OCR
m_data[0] = 0;
if (m_type == SD_TYPE_HC)
{
m_data[1] = 0x40; // indicate SDHC support
}
else
{
m_data[1] = 0;
}
m_data[2] = 0;
m_data[3] = 0;
m_data[4] = 0;
send_data(5, SD_STATE_DATA);
break;
default:
LOGMASKED(LOG_COMMAND, "SDCARD: Unsupported %02x\n", m_cmd[0] & 0x3f);
clean_cmd = false;
break;
}
// if this is command 55, that's a prefix indicating the next command is an "app command" or "ACMD"
if ((m_cmd[0] & 0x3f) == 55)
{ {
m_data[1] = 0x40; // indicate SDHC support m_bACMD = true;
} }
else else
{ {
m_data[1] = 0; m_bACMD = false;
} }
m_data[2] = 0;
m_data[3] = 0;
m_data[4] = 0;
send_data(5);
break;
default: if (clean_cmd)
break; {
} for (u8 i = 0; i < 6; i++)
{
// if this is command 55, that's a prefix indicating the next command is an "app command" or "ACMD" m_cmd[i] = 0xff;
if ((m_cmd[0] & 0x3f) == 55) }
{ }
m_bACMD = true;
}
else
{
m_bACMD = false;
} }
} }
void spi_sdcard_device::change_state(sd_state new_state)
{
// TODO validate if transition is valid using refs below.
// REF Figure 4-13:SD Memory Card State Diagram (Transition Mode)
// REF Table 4-35:Card State Transition Table
m_state = new_state;
}

View File

@ -21,7 +21,7 @@ public:
devcb_write_line write_miso; devcb_write_line write_miso;
protected: protected:
enum enum sd_type : u8
{ {
SD_TYPE_V2 = 0, SD_TYPE_V2 = 0,
SD_TYPE_HC SD_TYPE_HC
@ -35,24 +35,41 @@ protected:
required_device<harddisk_image_device> m_image; required_device<harddisk_image_device> m_image;
int m_type; sd_type m_type;
private: private:
enum enum sd_state : u8
{ {
//REF Table 4-1:Overview of Card States vs. Operation Mode
SD_STATE_IDLE = 0, SD_STATE_IDLE = 0,
SD_STATE_READY,
SD_STATE_IDENT,
SD_STATE_STBY,
SD_STATE_TRAN,
SD_STATE_DATA,
SD_STATE_DATA_MULTI, // synthetical state for this implementation
SD_STATE_RCV,
SD_STATE_PRG,
SD_STATE_DIS,
SD_STATE_INA,
//FIXME Existing states wich must be revisited
SD_STATE_WRITE_WAITFE, SD_STATE_WRITE_WAITFE,
SD_STATE_WRITE_DATA SD_STATE_WRITE_DATA
}; };
sd_state m_state;
void send_data(int count); void send_data(u16 count, sd_state new_state);
void do_command(); void do_command();
void change_state(sd_state new_state);
u8 m_data[520], m_cmd[6]; u8 m_data[520], m_cmd[6];
hard_disk_file *m_harddisk; hard_disk_file *m_harddisk;
u8 m_in_latch, m_out_latch; int m_ss, m_in_bit;
int m_cmd_ptr, m_state, m_out_ptr, m_out_count, m_ss, m_in_bit, m_cur_bit, m_write_ptr, m_blksize; u8 m_in_latch, m_out_latch, m_cur_bit;
u16 m_out_count, m_out_ptr, m_write_ptr, m_blksize;
u32 m_blknext;
bool m_bACMD; bool m_bACMD;
}; };