clean up (nw)

This commit is contained in:
Vas Crabb 2016-06-15 18:29:26 +10:00
parent f945016811
commit 241c32eae4

View File

@ -3,7 +3,7 @@
/*************************************************************************
atarixga.cpp
Atari XGA encryption FPGA
**************************************************************************
@ -15,7 +15,7 @@
? Road Riot's Revenge
136094-0004A Primal Rage
? T-Mek
*************************************************************************/
#include "emu.h"
@ -26,9 +26,9 @@ extern const device_type ATARI_XGA = &device_creator<atari_xga_device>;
atari_xga_device::atari_xga_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: device_t(mconfig, ATARI_XGA, "Atari XGA", tag, owner, clock, "xga", __FILE__),
m_mode(FPGA_RESET),
m_address(0),
m_ciphertext(0)
m_mode(FPGA_RESET),
m_address(0),
m_ciphertext(0)
{
}
@ -42,19 +42,19 @@ atari_xga_device::atari_xga_device(const machine_config &mconfig, const char *ta
void atari_xga_device::device_start()
{
m_ram = std::make_unique<UINT16[]>(RAM_WORDS);
save_pointer(NAME(m_ram.get()), RAM_WORDS * sizeof(UINT16));
save_item(NAME(m_address));
save_item(NAME(m_ciphertext));
m_ram = std::make_unique<UINT16[]>(RAM_WORDS);
save_pointer(NAME(m_ram.get()), RAM_WORDS * sizeof(UINT16));
save_item(NAME(m_address));
save_item(NAME(m_ciphertext));
}
void atari_xga_device::device_reset()
{
memset(m_ram.get(), 0, RAM_WORDS * sizeof(UINT16));
m_mode = FPGA_RESET;
m_address = 0;
m_ciphertext = 0;
memset(m_ram.get(), 0, RAM_WORDS * sizeof(UINT16));
m_mode = FPGA_RESET;
m_address = 0;
m_ciphertext = 0;
}
@ -71,22 +71,22 @@ void atari_xga_device::device_reset()
/* key 0x10 is special, it has 15 "identical twins". */
static const UINT8 kmap[128] =
{
0x6B,0x11,0x1B,0x19,0x4B,0x50,0x17,0x09,
0x5D,0x69,0x43,0x33,0x0F,0x0C,0x28,0x3F,
0x00,0x20,0x15,0x3C,0x57,0x38,0x00,0x07,
0x49,0x25,0x61,0x2F,0x2B,0x4E,0x64,0x00,
0x45,0x41,0x6D,0x52,0x31,0x66,0x22,0x59,
0x00,0x70,0x6F,0x5B,0x46,0x6E,0x67,0x5A,
0x26,0x30,0x2C,0x65,0x21,0x3D,0x58,0x00,
0x5E,0x44,0x0D,0x40,0x6C,0x1C,0x51,0x0A,
0x35,0x2A,0x13,0x4D,0x63,0x00,0x00,0x3A,
0x00,0x48,0x54,0x24,0x60,0x1E,0x2E,0x01,
0x56,0x03,0x37,0x00,0x04,0x00,0x05,0x06,
0x00,0x55,0x1F,0x02,0x36,0x14,0x00,0x3B,
0x5F,0x0E,0x1D,0x0B,0x27,0x2D,0x3E,0x00,
0x00,0x5C,0x47,0x68,0x42,0x53,0x32,0x23,
0x4A,0x62,0x4F,0x00,0x00,0x16,0x39,0x08,
0x6A,0x34,0x10,0x29,0x12,0x1A,0x4C,0x18
0x6B,0x11,0x1B,0x19,0x4B,0x50,0x17,0x09,
0x5D,0x69,0x43,0x33,0x0F,0x0C,0x28,0x3F,
0x00,0x20,0x15,0x3C,0x57,0x38,0x00,0x07,
0x49,0x25,0x61,0x2F,0x2B,0x4E,0x64,0x00,
0x45,0x41,0x6D,0x52,0x31,0x66,0x22,0x59,
0x00,0x70,0x6F,0x5B,0x46,0x6E,0x67,0x5A,
0x26,0x30,0x2C,0x65,0x21,0x3D,0x58,0x00,
0x5E,0x44,0x0D,0x40,0x6C,0x1C,0x51,0x0A,
0x35,0x2A,0x13,0x4D,0x63,0x00,0x00,0x3A,
0x00,0x48,0x54,0x24,0x60,0x1E,0x2E,0x01,
0x56,0x03,0x37,0x00,0x04,0x00,0x05,0x06,
0x00,0x55,0x1F,0x02,0x36,0x14,0x00,0x3B,
0x5F,0x0E,0x1D,0x0B,0x27,0x2D,0x3E,0x00,
0x00,0x5C,0x47,0x68,0x42,0x53,0x32,0x23,
0x4A,0x62,0x4F,0x00,0x00,0x16,0x39,0x08,
0x6A,0x34,0x10,0x29,0x12,0x1A,0x4C,0x18
};
@ -99,106 +99,101 @@ static const UINT8 kmap[128] =
UINT16 atari_xga_device::ctz(UINT16 x)
{
UINT16 n = 0;
if (x == 0) return 16;
if (!(x & 0x00FF)) n += 8, x >>= 8;
if (!(x & 0x000F)) n += 4, x >>= 4;
if (!(x & 0x0003)) n += 2, x >>= 2;
if (!(x & 0x0001)) n += 1, x >>= 1;
return n;
UINT16 n = 0;
if (x == 0) return 16;
if (!(x & 0x00FF)) n += 8, x >>= 8;
if (!(x & 0x000F)) n += 4, x >>= 4;
if (!(x & 0x0003)) n += 2, x >>= 2;
if (!(x & 0x0001)) n += 1, x >>= 1;
return n;
}
size_t atari_xga_device::popcount(UINT16 x)
{
size_t count = 0;
while (x != 0)
{
count += 1;
x &= x - 1;
}
return count;
size_t count = 0;
while (x != 0)
{
count += 1;
x &= x - 1;
}
return count;
}
UINT16 atari_xga_device::parity(UINT16 x)
{
return popcount(x) & 1;
return popcount(x) & 1;
}
UINT16 atari_xga_device::lfsr1(UINT16 x)
{
UINT16 bit = parity(x & 0x8016);
return (x << 1) | bit;
const UINT16 bit = parity(x & 0x8016);
return (x << 1) | bit;
}
UINT16 atari_xga_device::lfsr2(UINT16 x)
{
UINT16 bit = parity(x & 0x002D);
return (x >> 1) | (bit << 15);
UINT16 bit = parity(x & 0x002D);
return (x >> 1) | (bit << 15);
}
UINT16 atari_xga_device::powers2(UINT8 k, UINT16 x)
{
static const UINT16 L[16] =
{
0x5E85,0xBD0B,0x2493,0x17A3,
0x2F47,0x0005,0x000B,0x0017,
0x002F,0x005E,0x00BD,0x017A,
0x02F4,0x05E8,0x0BD0,0x17A1
};
static const UINT16 L[16] = {
0x5E85,0xBD0B,0x2493,0x17A3,
0x2F47,0x0005,0x000B,0x0017,
0x002F,0x005E,0x00BD,0x017A,
0x02F4,0x05E8,0x0BD0,0x17A1
};
UINT16 t = (x == 16) ? (L[4] ^ L[5]) : L[x];
UINT16 t = (x == 16) ? (L[4] ^ L[5]) : L[x];
for (size_t i = 0; i < k; ++i)
{
t = lfsr1(t);
}
return t;
for (size_t i = 0; i < k; ++i)
t = lfsr1(t);
return t;
}
UINT16 atari_xga_device::decipher(UINT8 k, UINT16 c)
{
UINT16 bit, i, p = 0;
UINT16 p = 0;
/* Only 128 keys internally, if high bit set,
then find the 7-bit "twin" by xor 0xA8. */
if (k & 0x80)
k ^= 0xA8;
/* Only 128 keys internally, if high bit set,
then find the 7-bit "twin" by xor 0xA8. */
if (k & 0x80)
k ^= 0xA8;
k = kmap[k];
k = kmap[k];
if ((c & (c - 1)) == 0)
{
return powers2(k, ctz(c));
}
if ((c & (c - 1)) == 0)
return powers2(k, ctz(c));
for (bit = 0; bit < 5; ++bit)
{
if ((c >> bit) & 1)
{
p ^= powers2(k, bit);
}
}
for (UINT16 bit = 0; bit < 5; ++bit)
{
if ((c >> bit) & 1)
{
p ^= powers2(k, bit);
}
}
for (bit = 5; bit < 16; ++bit)
{
if ((c >> bit) & 1)
{
p ^= powers2(k, bit + 1);
}
}
for (UINT16 bit = 5; bit < 16; ++bit)
{
if ((c >> bit) & 1)
{
p ^= powers2(k, bit + 1);
}
}
UINT16 x = 0x8010;
for (i = 0; i < k + 3; ++i)
{
if (x == c)
{
return (p == 1) ? 0 : lfsr2(p);
}
x = lfsr2(x);
}
UINT16 x = 0x8010;
for (UINT16 i = 0; i < k + 3; ++i)
{
if (x == c)
{
return (p == 1) ? 0 : lfsr2(p);
}
x = lfsr2(x);
}
return p;
return p;
}
@ -211,90 +206,86 @@ UINT16 atari_xga_device::decipher(UINT8 k, UINT16 c)
WRITE32_MEMBER(atari_xga_device::write)
{
switch (m_mode)
{
case FPGA_RESET:
return;
switch (m_mode)
{
case FPGA_RESET:
return;
case FPGA_SETKEY:
/* Write table to FPGA SRAM. */
if (ACCESSING_BITS_16_31)
m_ram[offset << 1] = UINT16 (data >> 16);
if (ACCESSING_BITS_0_15)
m_ram[(offset << 1) + 1] = UINT16(data & 0xFFFF);
break;
case FPGA_SETKEY:
/* Write table to FPGA SRAM. */
if (ACCESSING_BITS_16_31)
m_ram[offset << 1] = UINT16 (data >> 16);
if (ACCESSING_BITS_0_15)
m_ram[(offset << 1) + 1] = UINT16(data & 0xFFFF);
break;
case FPGA_DECIPHER:
/* Send Ciphertext to FPGA for decryption. */
if (ACCESSING_BITS_16_31)
{
m_address = offset << 2;
m_ciphertext = UINT16(data >> 16);
}
if (ACCESSING_BITS_0_15)
{
m_address = (offset << 2) + 2;
m_ciphertext = UINT16(data & 0xFFFF);
}
break;
}
case FPGA_DECIPHER:
/* Send Ciphertext to FPGA for decryption. */
if (ACCESSING_BITS_16_31)
{
m_address = offset << 2;
m_ciphertext = UINT16(data >> 16);
}
if (ACCESSING_BITS_0_15)
{
m_address = (offset << 2) + 2;
m_ciphertext = UINT16(data & 0xFFFF);
}
break;
}
}
READ32_MEMBER(atari_xga_device::read)
{
UINT32 plaintext = 0;
switch (offset << 2)
{
case 0x0FC0:
m_mode = FPGA_RESET;
break;
case 0x0010:
m_mode = FPGA_SETKEY;
break;
case 0x0020:
m_mode = FPGA_DECIPHER;
break;
}
switch (offset << 2)
{
case 0x0FC0:
m_mode = FPGA_RESET;
break;
case 0x0010:
m_mode = FPGA_SETKEY;
break;
case 0x0020:
m_mode = FPGA_DECIPHER;
break;
}
if (m_mode == FPGA_RESET)
return 0;
if (m_mode == FPGA_RESET)
{
return 0;
}
UINT32 plaintext = 0;
if (m_mode == FPGA_DECIPHER)
{
UINT16 address = (offset << 2) - 0x400;
if (m_mode == FPGA_DECIPHER)
{
UINT16 address = (offset << 2) - 0x400;
if (ACCESSING_BITS_0_15)
address += 2;
if (ACCESSING_BITS_0_15)
address += 2;
/* Reply with decrypted plaintext */
if (address == m_address)
{
UINT16 key_offset, key_byte;
/* Reply with decrypted plaintext */
if (address == m_address)
{
UINT16 key_offset, key_byte;
/* Algorithm to select key byte based on offset. */
key_offset = ((((address >> 4) & 1) ^ 1) << 0)
^ ((((address >> 2) & 1) ^ 0) << 1)
^ ((((address >> 8) & 1) ^ 0) << 2)
^ ((((address >> 3) & 1) ^ 1) << 3)
^ ((((address >> 1) & 1) ^ 1) << 4)
^ ((((address >> 6) & 1) ^ 0) << 5)
^ ((((address >> 7) & 1) ^ 0) << 6)
^ ((((address >> 5) & 1) ^ 1) << 7)
^ ((((address >> 9) & 1) ^ 0) << 8)
^ ((((address >> 10) & 1) ^ 0) << 9);
key_byte = m_ram[key_offset];
/* Algorithm to select key byte based on offset. */
key_offset = ((((address >> 4) & 1) ^ 1) << 0)
^ ((((address >> 2) & 1) ^ 0) << 1)
^ ((((address >> 8) & 1) ^ 0) << 2)
^ ((((address >> 3) & 1) ^ 1) << 3)
^ ((((address >> 1) & 1) ^ 1) << 4)
^ ((((address >> 6) & 1) ^ 0) << 5)
^ ((((address >> 7) & 1) ^ 0) << 6)
^ ((((address >> 5) & 1) ^ 1) << 7)
^ ((((address >> 9) & 1) ^ 0) << 8)
^ ((((address >> 10) & 1) ^ 0) << 9);
key_byte = m_ram[key_offset];
/* And now for the full magic. */
plaintext = decipher(key_byte, m_ciphertext);
/* And now for the full magic. */
plaintext = decipher(key_byte, m_ciphertext);
if (ACCESSING_BITS_16_31)
plaintext <<= 16;
}
}
if (ACCESSING_BITS_16_31)
plaintext <<= 16;
}
}
return plaintext;
return plaintext;
}