Removed legacy_cpu_device. [Wilbert Pol]

This commit is contained in:
Wilbert Pol 2014-09-12 20:21:56 +00:00
parent f11344542e
commit 32fd138b53
4 changed files with 3 additions and 742 deletions

View File

@ -1299,7 +1299,7 @@ void mcs48_cpu_device::state_string_export(const device_state_entry &entry, astr
{
switch (entry.index())
{
case CPUINFO_STR_FLAGS:
case STATE_GENFLAGS:
string.printf("%c%c %c%c%c%c%c%c%c%c",
m_irq_state ? 'I':'.',
m_a11 ? 'M':'.',

View File

@ -178,7 +178,7 @@ void mn10200_device::state_string_export(const device_state_entry &entry, astrin
{
switch (entry.index())
{
case CPUINFO_STR_FLAGS:
case STATE_GENFLAGS:
string.printf( "S=%d irq=%s im=%d %c%c%c%c %c%c%c%c",
(m_psw >> 12) & 3,
m_psw & FLAG_IE ? "on " : "off",

View File

@ -39,419 +39,3 @@ cpu_device::~cpu_device()
{
}
//-------------------------------------------------
// legacy_cpu_device - constructor
//-------------------------------------------------
legacy_cpu_device::legacy_cpu_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, UINT32 clock, cpu_get_info_func get_info)
: cpu_device(mconfig, type, "CPU", tag, owner, clock, "", ""),
m_get_info(get_info),
m_token(NULL),
m_set_info(reinterpret_cast<cpu_set_info_func>(get_legacy_fct(CPUINFO_FCT_SET_INFO))),
m_execute(reinterpret_cast<cpu_execute_func>(get_legacy_fct(CPUINFO_FCT_EXECUTE))),
m_burn(reinterpret_cast<cpu_burn_func>(get_legacy_fct(CPUINFO_FCT_BURN))),
m_translate(reinterpret_cast<cpu_translate_func>(get_legacy_fct(CPUINFO_FCT_TRANSLATE))),
m_read(reinterpret_cast<cpu_read_func>(get_legacy_fct(CPUINFO_FCT_READ))),
m_write(reinterpret_cast<cpu_write_func>(get_legacy_fct(CPUINFO_FCT_WRITE))),
m_readop(reinterpret_cast<cpu_readop_func>(get_legacy_fct(CPUINFO_FCT_READOP))),
m_disassemble(reinterpret_cast<cpu_disassemble_func>(get_legacy_fct(CPUINFO_FCT_DISASSEMBLE))),
m_state_import(reinterpret_cast<cpu_state_io_func>(get_legacy_fct(CPUINFO_FCT_IMPORT_STATE))),
m_state_export(reinterpret_cast<cpu_state_io_func>(get_legacy_fct(CPUINFO_FCT_EXPORT_STATE))),
m_string_export(reinterpret_cast<cpu_string_io_func>(get_legacy_fct(CPUINFO_FCT_EXPORT_STRING))),
m_exit(reinterpret_cast<cpu_exit_func>(get_legacy_fct(CPUINFO_FCT_EXIT))),
m_using_legacy_state(false),
m_inited(false)
{
// build up our address spaces; legacy devices don't have logical spaces
memset(m_space_config, 0, sizeof(m_space_config));
for (address_spacenum spacenum = AS_0; spacenum < ARRAY_LENGTH(m_space_config); spacenum++)
{
m_space_config[spacenum].m_name = (spacenum == 1) ? "data" : (spacenum == 2) ? "i/o" : "program";
m_space_config[spacenum].m_endianness = static_cast<endianness_t>(get_legacy_int(CPUINFO_INT_ENDIANNESS));
m_space_config[spacenum].m_databus_width = get_legacy_int(CPUINFO_INT_DATABUS_WIDTH + spacenum);
m_space_config[spacenum].m_addrbus_width = get_legacy_int(CPUINFO_INT_ADDRBUS_WIDTH + spacenum);
m_space_config[spacenum].m_addrbus_shift = get_legacy_int(CPUINFO_INT_ADDRBUS_SHIFT + spacenum);
m_space_config[spacenum].m_logaddr_width = get_legacy_int(CPUINFO_INT_LOGADDR_WIDTH + spacenum);
if (m_space_config[spacenum].m_logaddr_width == 0)
m_space_config[spacenum].m_logaddr_width = m_space_config[spacenum].m_addrbus_width;
m_space_config[spacenum].m_page_shift = get_legacy_int(CPUINFO_INT_PAGE_SHIFT + spacenum);
m_space_config[spacenum].m_internal_map = reinterpret_cast<address_map_constructor>(get_legacy_fct(CPUINFO_PTR_INTERNAL_MEMORY_MAP + spacenum));
m_space_config[spacenum].m_default_map = reinterpret_cast<address_map_constructor>(get_legacy_fct(CPUINFO_PTR_DEFAULT_MEMORY_MAP + spacenum));
}
// set the real name
m_name = get_legacy_string(CPUINFO_STR_NAME);
m_shortname = get_legacy_string(CPUINFO_STR_SHORTNAME);
m_source = get_legacy_string(CPUINFO_STR_SOURCE_FILE);
m_searchpath = m_shortname;
int tokenbytes = get_legacy_int(CPUINFO_INT_CONTEXT_SIZE);
if (tokenbytes == 0)
throw emu_fatalerror("Device %s specifies a 0 context size!\n", tag);
// allocate memory for the token
m_token = global_alloc_array_clear(UINT8, tokenbytes);
// set hex or octal output
m_is_octal = get_legacy_int(CPUINFO_IS_OCTAL);
}
//-------------------------------------------------
// legacy_cpu_device - destructor
//-------------------------------------------------
legacy_cpu_device::~legacy_cpu_device()
{
global_free_array((UINT8 *)m_token);
}
//-------------------------------------------------
// device_start - start up the device
//-------------------------------------------------
void legacy_cpu_device::device_start()
{
// standard init
cpu_init_func init = reinterpret_cast<cpu_init_func>(get_legacy_fct(CPUINFO_FCT_INIT));
(*init)(this, device_irq_acknowledge_delegate(FUNC(legacy_cpu_device::standard_irq_callback_member), this));
m_inited = true;
// fetch information about the CPU states
if (m_state_list.count() == 0)
{
m_using_legacy_state = true;
for (int index = 0; index < MAX_REGS; index++)
{
const char *string = get_legacy_string(CPUINFO_STR_REGISTER + index);
if (strchr(string, ':') != NULL)
{
astring tempstr(string);
bool noshow = (tempstr.chr(0, '~') == 0);
if (noshow)
tempstr.substr(1, -1);
int colon = tempstr.chr(0, ':');
int length = tempstr.len() - colon - 1;
tempstr.substr(0, colon).trimspace();
astring formatstr;
formatstr.printf("%%%ds", length);
device_state_entry &entry = state_add(index, tempstr, m_state_io).callimport().callexport().formatstr(formatstr);
if (noshow)
entry.noshow();
}
}
state_add(STATE_GENPC, "curpc", m_state_io).callimport().callexport().formatstr("%8s").noshow();
state_add(STATE_GENPCBASE, "curpcbase", m_state_io).callimport().callexport().formatstr("%8s").noshow();
const char *string = get_legacy_string(CPUINFO_STR_FLAGS);
if (string != NULL && string[0] != 0)
{
astring flagstr;
flagstr.printf("%%%"SIZETFMT"s", strlen(string));
state_add(STATE_GENFLAGS, "GENFLAGS", m_state_io).callimport().callexport().formatstr(flagstr).noshow();
}
}
// get our icount pointer
m_icountptr = reinterpret_cast<int *>(get_legacy_ptr(CPUINFO_PTR_INSTRUCTION_COUNTER));
assert(m_icountptr != 0);
*m_icountptr = 0;
}
//-------------------------------------------------
// device_reset - reset up the device
//-------------------------------------------------
void legacy_cpu_device::device_reset()
{
cpu_reset_func reset = reinterpret_cast<cpu_reset_func>(get_legacy_fct(CPUINFO_FCT_RESET));
if (reset != NULL)
(*reset)(this);
}
//-------------------------------------------------
// device_stop - clean up before the machine goes
// away
//-------------------------------------------------
void legacy_cpu_device::device_stop()
{
// call the CPU's exit function if present
if (m_inited && m_exit != NULL)
(*m_exit)(this);
}
//-------------------------------------------------
// execute_clocks_to_cycles - convert the raw
// clock into cycles per second
//-------------------------------------------------
UINT64 legacy_cpu_device::execute_clocks_to_cycles(UINT64 clocks) const
{
UINT32 multiplier = get_legacy_int(CPUINFO_INT_CLOCK_MULTIPLIER);
UINT32 divider = get_legacy_int(CPUINFO_INT_CLOCK_DIVIDER);
if (multiplier == 0) multiplier = 1;
if (divider == 0) divider = 1;
return (clocks * multiplier + divider - 1) / divider;
}
//-------------------------------------------------
// execute_cycles_to_clocks - convert a cycle
// count back to raw clocks
//-------------------------------------------------
UINT64 legacy_cpu_device::execute_cycles_to_clocks(UINT64 cycles) const
{
UINT32 multiplier = get_legacy_int(CPUINFO_INT_CLOCK_MULTIPLIER);
UINT32 divider = get_legacy_int(CPUINFO_INT_CLOCK_DIVIDER);
if (multiplier == 0) multiplier = 1;
if (divider == 0) divider = 1;
return (cycles * divider + multiplier - 1) / multiplier;
}
//-------------------------------------------------
// execute_run - execute for the provided number
// of cycles
//-------------------------------------------------
void legacy_cpu_device::execute_run()
{
(*m_execute)(this);
}
//-------------------------------------------------
// execute_burn - burn the requested number of cycles
//-------------------------------------------------
void legacy_cpu_device::execute_burn(INT32 cycles)
{
if (m_burn != NULL)
(*m_burn)(this, cycles);
}
//-------------------------------------------------
// memory_translate - perform address translation
// on the provided address
//-------------------------------------------------
bool legacy_cpu_device::memory_translate(address_spacenum spacenum, int intention, offs_t &address)
{
if (m_translate != NULL)
return (*m_translate)(this, spacenum, intention, &address) ? true : false;
return true;
}
//-------------------------------------------------
// memory_read - read device memory, allowing for
// device specific overrides
//-------------------------------------------------
bool legacy_cpu_device::memory_read(address_spacenum spacenum, offs_t offset, int size, UINT64 &value)
{
if (m_read != NULL)
return (*m_read)(this, spacenum, offset, size, &value) ? true : false;
return false;
}
//-------------------------------------------------
// memory_write - write device memory, allowing
// for device specific overrides
//-------------------------------------------------
bool legacy_cpu_device::memory_write(address_spacenum spacenum, offs_t offset, int size, UINT64 value)
{
if (m_write != NULL)
return (*m_write)(this, spacenum, offset, size, value) ? true : false;
return false;
}
//-------------------------------------------------
// memory_read - read device opcode memory,
// allowing for device specific overrides
//-------------------------------------------------
bool legacy_cpu_device::memory_readop(offs_t offset, int size, UINT64 &value)
{
if (m_readop != NULL)
return (*m_readop)(this, offset, size, &value) ? true : false;
return false;
}
//-------------------------------------------------
// debug_setup - set up any device-specific
// debugging commands or state
//-------------------------------------------------
void legacy_cpu_device::device_debug_setup()
{
cpu_debug_init_func init = reinterpret_cast<cpu_debug_init_func>(get_legacy_fct(CPUINFO_FCT_DEBUG_INIT));
if (init != NULL)
(*init)(this);
}
//-------------------------------------------------
// disassemble - disassemble the provided opcode
// data to a buffer
//-------------------------------------------------
offs_t legacy_cpu_device::disasm_disassemble(char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, UINT32 options)
{
// if we have a callback, just use that
if (m_disassemble != NULL)
return (*m_disassemble)(this, buffer, pc, oprom, opram, options);
// if not, just output vanilla bytes
int width = min_opcode_bytes();
switch (width)
{
case 1:
default:
sprintf(buffer, "$%02X", *(UINT8 *)oprom);
break;
case 2:
sprintf(buffer, "$%04X", *(UINT16 *)oprom);
break;
case 4:
sprintf(buffer, "$%08X", *(UINT32 *)oprom);
break;
case 8:
sprintf(buffer, "$%08X%08X", (UINT32)(*(UINT64 *)oprom >> 32), (UINT32)(*(UINT64 *)oprom >> 0));
break;
}
return width;
}
//-------------------------------------------------
// get_legacy_int - return a legacy integer value
//-------------------------------------------------
INT64 legacy_cpu_device::get_legacy_int(UINT32 state) const
{
cpuinfo info = { 0 };
(*m_get_info)(const_cast<legacy_cpu_device *>(this), state, &info);
return info.i;
}
//-------------------------------------------------
// get_legacy_ptr - return a legacy pointer value
//-------------------------------------------------
void *legacy_cpu_device::get_legacy_ptr(UINT32 state) const
{
cpuinfo info = { 0 };
(*m_get_info)(const_cast<legacy_cpu_device *>(this), state, &info);
return info.p;
}
//-------------------------------------------------
// get_legacy_fct - return a legacy function value
//-------------------------------------------------
genf *legacy_cpu_device::get_legacy_fct(UINT32 state) const
{
cpuinfo info = { 0 };
(*m_get_info)(const_cast<legacy_cpu_device *>(this), state, &info);
return info.f;
}
//-------------------------------------------------
// get_legacy_string - return a legacy
// string value
//-------------------------------------------------
extern char *get_temp_string_buffer(void);
const char *legacy_cpu_device::get_legacy_string(UINT32 state) const
{
cpuinfo info;
info.s = get_temp_string_buffer();
(*m_get_info)(const_cast<legacy_cpu_device *>(this), state, &info);
return info.s;
}
//-------------------------------------------------
// set_legacy_int - call the get info function
// to set an integer value
//-------------------------------------------------
void legacy_cpu_device::set_legacy_int(UINT32 state, INT64 value)
{
cpuinfo info = { 0 };
info.i = value;
(*m_set_info)(this, state, &info);
}
void legacy_cpu_device::state_import(const device_state_entry &entry)
{
if (m_using_legacy_state)
{
if (entry.index() == STATE_GENFLAGS)
; // do nothing
else
set_legacy_int(CPUINFO_INT_REGISTER + entry.index(), m_state_io);
}
else if (m_state_import != NULL)
(*m_state_import)(this, entry);
}
void legacy_cpu_device::state_export(const device_state_entry &entry)
{
if (m_using_legacy_state)
{
if (entry.index() == STATE_GENFLAGS)
{
const char *temp = get_legacy_string(CPUINFO_STR_FLAGS);
m_state_io = 0;
while (*temp != 0)
m_state_io = ((m_state_io << 5) | (m_state_io >> (64-5))) ^ *temp++;
}
else
m_state_io = get_legacy_int(CPUINFO_INT_REGISTER + entry.index());
}
else if (m_state_export != NULL)
(*m_state_export)(this, entry);
}
void legacy_cpu_device::state_string_export(const device_state_entry &entry, astring &string)
{
if (m_using_legacy_state)
{
if (entry.index() == STATE_GENFLAGS)
string.cpy(get_legacy_string(CPUINFO_STR_FLAGS));
else
string.cpy(strchr(get_legacy_string(CPUINFO_STR_REGISTER + entry.index()), ':') + 1);
}
else if (m_string_export != NULL)
(*m_string_export)(this, entry, string);
}

View File

@ -29,76 +29,11 @@ enum
{
// --- the following bits of info are returned as 64-bit signed integers ---
CPUINFO_INT_FIRST = 0x00000,
CPUINFO_INT_ENDIANNESS = CPUINFO_INT_FIRST, // R/O: either ENDIANNESS_BIG or ENDIANNESS_LITTLE
CPUINFO_INT_DATABUS_WIDTH, // R/O: data bus size for each address space (8,16,32,64)
CPUINFO_INT_DATABUS_WIDTH_0 = CPUINFO_INT_DATABUS_WIDTH + 0,
CPUINFO_INT_DATABUS_WIDTH_1 = CPUINFO_INT_DATABUS_WIDTH + 1,
CPUINFO_INT_DATABUS_WIDTH_2 = CPUINFO_INT_DATABUS_WIDTH + 2,
CPUINFO_INT_DATABUS_WIDTH_3 = CPUINFO_INT_DATABUS_WIDTH + 3,
CPUINFO_INT_DATABUS_WIDTH_LAST = CPUINFO_INT_DATABUS_WIDTH + ADDRESS_SPACES - 1,
CPUINFO_INT_ADDRBUS_WIDTH, // R/O: address bus size for each address space (12-32)
CPUINFO_INT_ADDRBUS_WIDTH_0 = CPUINFO_INT_ADDRBUS_WIDTH + 0,
CPUINFO_INT_ADDRBUS_WIDTH_1 = CPUINFO_INT_ADDRBUS_WIDTH + 1,
CPUINFO_INT_ADDRBUS_WIDTH_2 = CPUINFO_INT_ADDRBUS_WIDTH + 2,
CPUINFO_INT_ADDRBUS_WIDTH_3 = CPUINFO_INT_ADDRBUS_WIDTH + 3,
CPUINFO_INT_ADDRBUS_WIDTH_LAST = CPUINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACES - 1,
CPUINFO_INT_ADDRBUS_SHIFT, // R/O: shift applied to addresses each address space (+3 means >>3, -1 means <<1)
CPUINFO_INT_ADDRBUS_SHIFT_0 = CPUINFO_INT_ADDRBUS_SHIFT + 0,
CPUINFO_INT_ADDRBUS_SHIFT_1 = CPUINFO_INT_ADDRBUS_SHIFT + 1,
CPUINFO_INT_ADDRBUS_SHIFT_2 = CPUINFO_INT_ADDRBUS_SHIFT + 2,
CPUINFO_INT_ADDRBUS_SHIFT_3 = CPUINFO_INT_ADDRBUS_SHIFT + 3,
CPUINFO_INT_ADDRBUS_SHIFT_LAST = CPUINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACES - 1,
// CPU-specific additionsg
CPUINFO_INT_CONTEXT_SIZE = 0x04000, // R/O: size of CPU context in bytes
CPUINFO_INT_INPUT_LINES, // R/O: number of input lines
CPUINFO_INT_DEFAULT_IRQ_VECTOR, // R/O: default IRQ vector
CPUINFO_INT_CLOCK_MULTIPLIER, // R/O: internal clock multiplier
CPUINFO_INT_CLOCK_DIVIDER, // R/O: internal clock divider
CPUINFO_INT_MIN_INSTRUCTION_BYTES, // R/O: minimum bytes per instruction
CPUINFO_INT_MAX_INSTRUCTION_BYTES, // R/O: maximum bytes per instruction
CPUINFO_INT_MIN_CYCLES, // R/O: minimum cycles for a single instruction
CPUINFO_INT_MAX_CYCLES, // R/O: maximum cycles for a single instruction
CPUINFO_INT_LOGADDR_WIDTH, // R/O: address bus size for logical accesses in each space (0=same as physical)
CPUINFO_INT_LOGADDR_WIDTH_PROGRAM = CPUINFO_INT_LOGADDR_WIDTH + AS_PROGRAM,
CPUINFO_INT_LOGADDR_WIDTH_DATA = CPUINFO_INT_LOGADDR_WIDTH + AS_DATA,
CPUINFO_INT_LOGADDR_WIDTH_IO = CPUINFO_INT_LOGADDR_WIDTH + AS_IO,
CPUINFO_INT_LOGADDR_WIDTH_LAST = CPUINFO_INT_LOGADDR_WIDTH + ADDRESS_SPACES - 1,
CPUINFO_INT_PAGE_SHIFT, // R/O: size of a page log 2 (i.e., 12=4096), or 0 if paging not supported
CPUINFO_INT_PAGE_SHIFT_PROGRAM = CPUINFO_INT_PAGE_SHIFT + AS_PROGRAM,
CPUINFO_INT_PAGE_SHIFT_DATA = CPUINFO_INT_PAGE_SHIFT + AS_DATA,
CPUINFO_INT_PAGE_SHIFT_IO = CPUINFO_INT_PAGE_SHIFT + AS_IO,
CPUINFO_INT_PAGE_SHIFT_LAST = CPUINFO_INT_PAGE_SHIFT + ADDRESS_SPACES - 1,
CPUINFO_INT_INPUT_STATE, // R/W: states for each input line
CPUINFO_INT_INPUT_STATE_LAST = CPUINFO_INT_INPUT_STATE + MAX_INPUT_LINES - 1,
CPUINFO_INT_REGISTER = CPUINFO_INT_INPUT_STATE_LAST + 10, // R/W: values of up to MAX_REGs registers
CPUINFO_INT_SP = CPUINFO_INT_REGISTER + STATE_GENSP, // R/W: the current stack pointer value
CPUINFO_INT_PC = CPUINFO_INT_REGISTER + STATE_GENPC, // R/W: the current PC value
CPUINFO_INT_PREVIOUSPC = CPUINFO_INT_REGISTER + STATE_GENPCBASE, // R/W: the previous PC value
CPUINFO_IS_OCTAL = CPUINFO_INT_REGISTER + MAX_REGS - 2, // R/O: determine if default is octal or hexadecimal
CPUINFO_INT_REGISTER_LAST = CPUINFO_INT_REGISTER + MAX_REGS - 1,
CPUINFO_INT_CPU_SPECIFIC = 0x08000, // R/W: CPU-specific values start here
// --- the following bits of info are returned as pointers to data or functions ---
CPUINFO_PTR_FIRST = 0x10000,
CPUINFO_PTR_INTERNAL_MEMORY_MAP = CPUINFO_PTR_FIRST, // R/O: address_map_constructor map
CPUINFO_PTR_INTERNAL_MEMORY_MAP_0 = CPUINFO_PTR_INTERNAL_MEMORY_MAP + 0,
CPUINFO_PTR_INTERNAL_MEMORY_MAP_1 = CPUINFO_PTR_INTERNAL_MEMORY_MAP + 1,
CPUINFO_PTR_INTERNAL_MEMORY_MAP_2 = CPUINFO_PTR_INTERNAL_MEMORY_MAP + 2,
CPUINFO_PTR_INTERNAL_MEMORY_MAP_3 = CPUINFO_PTR_INTERNAL_MEMORY_MAP + 3,
CPUINFO_PTR_INTERNAL_MEMORY_MAP_LAST = CPUINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACES - 1,
CPUINFO_PTR_DEFAULT_MEMORY_MAP, // R/O: address_map_constructor map
CPUINFO_PTR_DEFAULT_MEMORY_MAP_0 = CPUINFO_PTR_DEFAULT_MEMORY_MAP + 0,
CPUINFO_PTR_DEFAULT_MEMORY_MAP_1 = CPUINFO_PTR_DEFAULT_MEMORY_MAP + 1,
CPUINFO_PTR_DEFAULT_MEMORY_MAP_2 = CPUINFO_PTR_DEFAULT_MEMORY_MAP + 2,
CPUINFO_PTR_DEFAULT_MEMORY_MAP_3 = CPUINFO_PTR_DEFAULT_MEMORY_MAP + 3,
CPUINFO_PTR_DEFAULT_MEMORY_MAP_LAST = CPUINFO_PTR_DEFAULT_MEMORY_MAP + ADDRESS_SPACES - 1,
// CPU-specific additions
CPUINFO_PTR_INSTRUCTION_COUNTER = 0x14000,
@ -109,38 +44,10 @@ enum
// --- the following bits of info are returned as pointers to functions ---
CPUINFO_FCT_FIRST = 0x20000,
// CPU-specific additions
CPUINFO_FCT_SET_INFO = 0x24000, // R/O: void (*set_info)(legacy_cpu_device *device, UINT32 state, INT64 data, void *ptr)
CPUINFO_FCT_INIT, // R/O: void (*init)(legacy_cpu_device *device, int index, int clock, int (*irqcallback)(legacy_cpu_device *device, int))
CPUINFO_FCT_RESET, // R/O: void (*reset)(legacy_cpu_device *device)
CPUINFO_FCT_EXIT, // R/O: void (*exit)(legacy_cpu_device *device)
CPUINFO_FCT_EXECUTE, // R/O: int (*execute)(legacy_cpu_device *device, int cycles)
CPUINFO_FCT_BURN, // R/O: void (*burn)(legacy_cpu_device *device, int cycles)
CPUINFO_FCT_DISASSEMBLE, // R/O: offs_t (*disassemble)(cpu_device *device, char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, int options)
CPUINFO_FCT_TRANSLATE, // R/O: int (*translate)(legacy_cpu_device *device, address_spacenum space, int intention, offs_t *address)
CPUINFO_FCT_READ, // R/O: int (*read)(legacy_cpu_device *device, address_spacenum space, UINT32 offset, int size, UINT64 *value)
CPUINFO_FCT_WRITE, // R/O: int (*write)(legacy_cpu_device *device, address_spacenum space, UINT32 offset, int size, UINT64 value)
CPUINFO_FCT_READOP, // R/O: int (*readop)(legacy_cpu_device *device, UINT32 offset, int size, UINT64 *value)
CPUINFO_FCT_DEBUG_INIT, // R/O: void (*debug_init)(legacy_cpu_device *device)
CPUINFO_FCT_IMPORT_STATE, // R/O: void (*import_state)(legacy_cpu_device *device, const device_state_entry &entry)
CPUINFO_FCT_EXPORT_STATE, // R/O: void (*export_state)(legacy_cpu_device *device, const device_state_entry &entry)
CPUINFO_FCT_IMPORT_STRING, // R/O: void (*import_string)(legacy_cpu_device *device, const device_state_entry &entry, astring &string)
CPUINFO_FCT_EXPORT_STRING, // R/O: void (*export_string)(legacy_cpu_device *device, const device_state_entry &entry, astring &string)
CPUINFO_FCT_CPU_SPECIFIC = 0x28000, // R/W: CPU-specific values start here
// --- the following bits of info are returned as NULL-terminated strings ---
CPUINFO_STR_FIRST = 0x30000,
CPUINFO_STR_NAME = CPUINFO_STR_FIRST, // R/O: name of the device
CPUINFO_STR_SHORTNAME, // R/O: search path of device, used for media loading
CPUINFO_STR_FAMILY, // R/O: family of the device
CPUINFO_STR_VERSION, // R/O: version of the device
CPUINFO_STR_SOURCE_FILE, // R/O: file containing the device implementation
CPUINFO_STR_CREDITS, // R/O: credits for the device implementation
// CPU-specific additions
CPUINFO_STR_REGISTER = 0x34000 + 10, // R/O: string representation of up to MAX_REGs registers
CPUINFO_STR_FLAGS = CPUINFO_STR_REGISTER + STATE_GENFLAGS, // R/O: string representation of the main flags value
CPUINFO_STR_REGISTER_LAST = CPUINFO_STR_REGISTER + MAX_REGS - 1,
CPUINFO_STR_CPU_SPECIFIC = 0x38000 // R/W: CPU-specific values start here
};
@ -176,166 +83,15 @@ enum
// MACROS
//**************************************************************************
// macro for defining the implementation needed for configuration and device classes
#define DEFINE_LEGACY_CPU_DEVICE(name, basename) \
\
basename##_device::basename##_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, UINT32 clock) \
: legacy_cpu_device(mconfig, type, tag, owner, clock, CPU_GET_INFO_NAME(basename)) \
{ \
} \
\
const device_type name = &legacy_device_creator<basename##_device>
// CPU interface functions
#define CPU_GET_INFO_NAME(name) cpu_get_info_##name
#define CPU_GET_INFO(name) void CPU_GET_INFO_NAME(name)(legacy_cpu_device *device, UINT32 state, cpuinfo *info)
#define CPU_GET_INFO_CALL(name) CPU_GET_INFO_NAME(name)(device, state, info)
#define CPU_SET_INFO_NAME(name) cpu_set_info_##name
#define CPU_SET_INFO(name) void CPU_SET_INFO_NAME(name)(legacy_cpu_device *device, UINT32 state, cpuinfo *info)
#define CPU_SET_INFO_CALL(name) CPU_SET_INFO_NAME(name)(device, state, info)
#define CPU_INIT_NAME(name) cpu_init_##name
#define CPU_INIT(name) void CPU_INIT_NAME(name)(legacy_cpu_device *device, device_irq_acknowledge_delegate irqcallback)
#define CPU_INIT_CALL(name) CPU_INIT_NAME(name)(device, irqcallback)
#define CPU_RESET_NAME(name) cpu_reset_##name
#define CPU_RESET(name) void CPU_RESET_NAME(name)(legacy_cpu_device *device)
#define CPU_RESET_CALL(name) CPU_RESET_NAME(name)(device)
#define CPU_EXIT_NAME(name) cpu_exit_##name
#define CPU_EXIT(name) void CPU_EXIT_NAME(name)(legacy_cpu_device *device)
#define CPU_EXIT_CALL(name) CPU_EXIT_NAME(name)(device)
#define CPU_EXECUTE_NAME(name) cpu_execute_##name
#define CPU_EXECUTE(name) void CPU_EXECUTE_NAME(name)(legacy_cpu_device *device)
#define CPU_EXECUTE_CALL(name) CPU_EXECUTE_NAME(name)(device, cycles)
#define CPU_BURN_NAME(name) cpu_burn_##name
#define CPU_BURN(name) void CPU_BURN_NAME(name)(legacy_cpu_device *device, int cycles)
#define CPU_BURN_CALL(name) CPU_BURN_NAME(name)(device, cycles)
#define CPU_TRANSLATE_NAME(name) cpu_translate_##name
#define CPU_TRANSLATE(name) int CPU_TRANSLATE_NAME(name)(legacy_cpu_device *device, address_spacenum space, int intention, offs_t *address)
#define CPU_TRANSLATE_CALL(name) CPU_TRANSLATE_NAME(name)(device, space, intention, address)
#define CPU_READ_NAME(name) cpu_read_##name
#define CPU_READ(name) int CPU_READ_NAME(name)(legacy_cpu_device *device, address_spacenum space, UINT32 offset, int size, UINT64 *value)
#define CPU_READ_CALL(name) CPU_READ_NAME(name)(device, space, offset, size, value)
#define CPU_WRITE_NAME(name) cpu_write_##name
#define CPU_WRITE(name) int CPU_WRITE_NAME(name)(legacy_cpu_device *device, address_spacenum space, UINT32 offset, int size, UINT64 value)
#define CPU_WRITE_CALL(name) CPU_WRITE_NAME(name)(device, space, offset, size, value)
#define CPU_READOP_NAME(name) cpu_readop_##name
#define CPU_READOP(name) int CPU_READOP_NAME(name)(legacy_cpu_device *device, UINT32 offset, int size, UINT64 *value)
#define CPU_READOP_CALL(name) CPU_READOP_NAME(name)(device, offset, size, value)
#define CPU_DEBUG_INIT_NAME(name) cpu_debug_init_##name
#define CPU_DEBUG_INIT(name) void CPU_DEBUG_INIT_NAME(name)(legacy_cpu_device *device)
#define CPU_DEBUG_INIT_CALL(name) CPU_DEBUG_INIT_NAME(name)(device)
#define CPU_DISASSEMBLE_NAME(name) cpu_disassemble_##name
#define CPU_DISASSEMBLE(name) offs_t CPU_DISASSEMBLE_NAME(name)(cpu_device *device, char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, int options)
#define CPU_DISASSEMBLE_CALL(name) CPU_DISASSEMBLE_NAME(name)(device, buffer, pc, oprom, opram, options)
#define CPU_IMPORT_STATE_NAME(name) cpu_state_import_##name
#define CPU_IMPORT_STATE(name) void CPU_IMPORT_STATE_NAME(name)(legacy_cpu_device *device, const device_state_entry &entry)
#define CPU_IMPORT_STATE_CALL(name) CPU_IMPORT_STATE_NAME(name)(device, entry)
#define CPU_EXPORT_STATE_NAME(name) cpu_state_export_##name
#define CPU_EXPORT_STATE(name) void CPU_EXPORT_STATE_NAME(name)(legacy_cpu_device *device, const device_state_entry &entry)
#define CPU_EXPORT_STATE_CALL(name) CPU_EXPORT_STATE_NAME(name)(device, entry)
#define CPU_EXPORT_STRING_NAME(name) cpu_string_export_##name
#define CPU_EXPORT_STRING(name) void CPU_EXPORT_STRING_NAME(name)(legacy_cpu_device *device, const device_state_entry &entry, astring &string)
#define CPU_EXPORT_STRING_CALL(name) CPU_EXPORT_STRING_NAME(name)(device, entry, string)
// this template function creates a stub which constructs a device
template<class _DeviceClass>
device_t *legacy_device_creator(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
{
return global_alloc(_DeviceClass(mconfig, &legacy_device_creator<_DeviceClass>, tag, owner, clock));
}
// this template function creates a stub which constructs a device
template<class _DeviceClass1,class _DeviceClass2>
device_t *legacy_device_creator_drc(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
{
if (mconfig.options().drc())
return global_alloc(_DeviceClass2(mconfig, &legacy_device_creator<_DeviceClass2>, tag, owner, clock));
else
return global_alloc(_DeviceClass1(mconfig, &legacy_device_creator<_DeviceClass1>, tag, owner, clock));
}
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
// forward declaration of types
union cpuinfo;
class cpu_device;
class legacy_cpu_device;
// CPU interface functions
typedef void (*cpu_get_info_func)(legacy_cpu_device *device, UINT32 state, cpuinfo *info);
typedef void (*cpu_set_info_func)(legacy_cpu_device *device, UINT32 state, cpuinfo *info);
typedef void (*cpu_init_func)(legacy_cpu_device *device, device_irq_acknowledge_delegate irqcallback);
typedef void (*cpu_reset_func)(legacy_cpu_device *device);
typedef void (*cpu_exit_func)(legacy_cpu_device *device);
typedef void (*cpu_execute_func)(legacy_cpu_device *device);
typedef void (*cpu_burn_func)(legacy_cpu_device *device, int cycles);
typedef int (*cpu_translate_func)(legacy_cpu_device *device, address_spacenum space, int intention, offs_t *address);
typedef int (*cpu_read_func)(legacy_cpu_device *device, address_spacenum space, UINT32 offset, int size, UINT64 *value);
typedef int (*cpu_write_func)(legacy_cpu_device *device, address_spacenum space, UINT32 offset, int size, UINT64 value);
typedef int (*cpu_readop_func)(legacy_cpu_device *device, UINT32 offset, int size, UINT64 *value);
typedef void (*cpu_debug_init_func)(legacy_cpu_device *device);
typedef offs_t (*cpu_disassemble_func)(cpu_device *device, char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, int options);
typedef void (*cpu_state_io_func)(legacy_cpu_device *device, const device_state_entry &entry);
typedef void (*cpu_string_io_func)(legacy_cpu_device *device, const device_state_entry &entry, astring &string);
// cpuinfo union used to pass data to/from the get_info/set_info functions
union cpuinfo
{
INT64 i; // generic integers
void * p; // generic pointers
genf * f; // generic function pointers
char * s; // generic strings
cpu_set_info_func setinfo; // CPUINFO_FCT_SET_INFO
cpu_init_func init; // CPUINFO_FCT_INIT
cpu_reset_func reset; // CPUINFO_FCT_RESET
cpu_exit_func exit; // CPUINFO_FCT_EXIT
cpu_execute_func execute; // CPUINFO_FCT_EXECUTE
cpu_burn_func burn; // CPUINFO_FCT_BURN
cpu_translate_func translate; // CPUINFO_FCT_TRANSLATE
cpu_read_func read; // CPUINFO_FCT_READ
cpu_write_func write; // CPUINFO_FCT_WRITE
cpu_readop_func readop; // CPUINFO_FCT_READOP
cpu_debug_init_func debug_init; // CPUINFO_FCT_DEBUG_INIT
cpu_disassemble_func disassemble; // CPUINFO_FCT_DISASSEMBLE
cpu_state_io_func import_state; // CPUINFO_FCT_IMPORT_STATE
cpu_state_io_func export_state; // CPUINFO_FCT_EXPORT_STATE
cpu_string_io_func import_string; // CPUINFO_FCT_IMPORT_STRING
cpu_string_io_func export_string; // CPUINFO_FCT_EXPORT_STRING
int * icount; // CPUINFO_PTR_INSTRUCTION_COUNTER
address_map_constructor internal_map8; // CPUINFO_PTR_INTERNAL_MEMORY_MAP
address_map_constructor internal_map16; // CPUINFO_PTR_INTERNAL_MEMORY_MAP
address_map_constructor internal_map32; // CPUINFO_PTR_INTERNAL_MEMORY_MAP
address_map_constructor internal_map64; // CPUINFO_PTR_INTERNAL_MEMORY_MAP
address_map_constructor default_map8; // CPUINFO_PTR_DEFAULT_MEMORY_MAP
address_map_constructor default_map16; // CPUINFO_PTR_DEFAULT_MEMORY_MAP
address_map_constructor default_map32; // CPUINFO_PTR_DEFAULT_MEMORY_MAP
address_map_constructor default_map64; // CPUINFO_PTR_DEFAULT_MEMORY_MAP
};
// ======================> cpu_device
class cpu_device : public device_t,
@ -353,86 +109,7 @@ protected:
};
// ======================> legacy_cpu_device
class legacy_cpu_device : public cpu_device
{
friend resource_pool_object<legacy_cpu_device>::~resource_pool_object();
protected:
// construction/destruction
legacy_cpu_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, UINT32 clock, cpu_get_info_func info);
virtual ~legacy_cpu_device();
public:
void *token() const { return m_token; }
protected:
// device-level overrides
virtual void device_start();
virtual void device_reset();
virtual void device_stop();
virtual void device_debug_setup();
// device_execute_interface overrides
virtual UINT64 execute_clocks_to_cycles(UINT64 clocks) const;
virtual UINT64 execute_cycles_to_clocks(UINT64 cycles) const;
virtual UINT32 execute_min_cycles() const { return get_legacy_int(CPUINFO_INT_MIN_CYCLES); }
virtual UINT32 execute_max_cycles() const { return get_legacy_int(CPUINFO_INT_MAX_CYCLES); }
virtual UINT32 execute_input_lines() const { return get_legacy_int(CPUINFO_INT_INPUT_LINES); }
virtual UINT32 execute_default_irq_vector() const { return get_legacy_int(CPUINFO_INT_DEFAULT_IRQ_VECTOR); }
virtual void execute_run();
virtual void execute_burn(INT32 cycles);
virtual void execute_set_input(int inputnum, int state) { set_legacy_int(CPUINFO_INT_INPUT_STATE + inputnum, state); }
// device_memory_interface overrides
virtual const address_space_config *memory_space_config(address_spacenum spacenum = AS_0) const { return (spacenum < ARRAY_LENGTH(m_space_config) && m_space_config[spacenum].m_addrbus_width != 0) ? &m_space_config[spacenum] : NULL; }
virtual bool memory_translate(address_spacenum spacenum, int intention, offs_t &address);
virtual bool memory_read(address_spacenum spacenum, offs_t offset, int size, UINT64 &value);
virtual bool memory_write(address_spacenum spacenum, offs_t offset, int size, UINT64 value);
virtual bool memory_readop(offs_t offset, int size, UINT64 &value);
// device_state_interface overrides
virtual void state_import(const device_state_entry &entry);
virtual void state_export(const device_state_entry &entry);
virtual void state_string_export(const device_state_entry &entry, astring &string);
// device_disasm_interface overrides
virtual UINT32 disasm_min_opcode_bytes() const { return get_legacy_int(CPUINFO_INT_MIN_INSTRUCTION_BYTES); }
virtual UINT32 disasm_max_opcode_bytes() const { return get_legacy_int(CPUINFO_INT_MAX_INSTRUCTION_BYTES); }
virtual offs_t disasm_disassemble(char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, UINT32 options);
// helpers to access data via the legacy get_info functions
INT64 get_legacy_int(UINT32 state) const;
void *get_legacy_ptr(UINT32 state) const;
genf *get_legacy_fct(UINT32 state) const;
const char *get_legacy_string(UINT32 state) const;
void set_legacy_int(UINT32 state, INT64 value);
protected:
// internal state
cpu_get_info_func m_get_info;
address_space_config m_space_config[3]; // array of address space configs
void * m_token; // pointer to our state
cpu_set_info_func m_set_info; // extracted legacy function pointers
cpu_execute_func m_execute; //
cpu_burn_func m_burn; //
cpu_translate_func m_translate; //
cpu_read_func m_read; //
cpu_write_func m_write; //
cpu_readop_func m_readop; //
cpu_disassemble_func m_disassemble; //
cpu_state_io_func m_state_import; //
cpu_state_io_func m_state_export; //
cpu_string_io_func m_string_export; //
cpu_exit_func m_exit; //
UINT64 m_state_io; // temporary buffer for state I/O
bool m_using_legacy_state; // true if we are using the old-style state access
bool m_inited;
};
typedef offs_t (*cpu_disassemble_func)(cpu_device *device, char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, int options);
#endif /* __CPUINTRF_H__ */