pcf8583: Reimplemented I2C protocol, and added clock and alarm modes.

This commit is contained in:
Nigel Barnes 2020-12-24 17:54:16 +00:00
parent 174630bc70
commit 359bd05152
2 changed files with 339 additions and 142 deletions

View File

@ -1,76 +1,86 @@
// license:BSD-3-Clause
// copyright-holders:Tim Schuerewegen, Ryan Holtz
// copyright-holders:Nigel Barnes
/*********************************************************************
Philips PCF8583 Clock and Calendar with 240 x 8-bit RAM
TODO:
- Alarm mode
- Event-counter mode
- Clock select
- Clock output
- Interrupts
- Event-counter mode
*********************************************************************/
#include "emu.h"
#include "pcf8583.h"
#define LOG_DATA (1 << 1)
#define LOG_LINE (1 << 2)
#define VERBOSE (0)
#include "logmacro.h"
DEFINE_DEVICE_TYPE(PCF8583, pcf8583_device, "pcf8583", "PCF8583 RTC with 240x8 RAM")
//**************************************************************************
// LIVE DEVICE
//**************************************************************************
//-------------------------------------------------
// pcf8583_device - constructor
//-------------------------------------------------
pcf8583_device::pcf8583_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: device_t(mconfig, PCF8583, tag, owner, clock)
, device_rtc_interface(mconfig, *this)
, device_nvram_interface(mconfig, *this)
, m_irq_callback(*this)
, m_region(*this, DEVICE_SELF)
, m_irq_cb(*this)
, m_slave_address(PCF8583_SLAVE_ADDRESS)
, m_scl(0)
, m_sdaw(0)
, m_sdar(1)
, m_state(STATE_IDLE)
, m_bits(0)
, m_shift(0)
, m_devsel(0)
, m_register(0)
, m_timer(nullptr)
{
}
//-------------------------------------------------
// device_start - device-specific startup
//-------------------------------------------------
void pcf8583_device::device_start()
{
std::fill(std::begin(m_register), std::end(m_register), 0);
m_timer = timer_alloc(TIMER_TICK);
m_timer->adjust(attotime::from_hz(100), 0, attotime::from_hz(100));
save_item(NAME(m_scl));
save_item(NAME(m_sda));
save_item(NAME(m_inp));
save_item(NAME(m_transfer_active));
save_item(NAME(m_bit_index));
save_item(NAME(m_sdaw));
save_item(NAME(m_sdar));
save_item(NAME(m_state));
save_item(NAME(m_bits));
save_item(NAME(m_shift));
save_item(NAME(m_devsel));
save_item(NAME(m_register));
save_item(NAME(m_irq));
save_item(NAME(m_data_recv_index));
save_item(NAME(m_data_recv));
save_item(NAME(m_mode));
save_item(NAME(m_pos));
save_item(NAME(m_write_address));
save_item(NAME(m_read_address));
save_item(NAME(m_data));
save_item(NAME(m_slave_address));
m_irq_callback.resolve_safe();
}
void pcf8583_device::device_reset()
{
m_scl = 1;
m_sda = 1;
m_transfer_active = false;
m_inp = 0;
m_mode = RTC_MODE_RECV;
m_bit_index = 0;
m_irq = false;
m_pos = 0;
clear_rx_buffer();
set_time(true, get_date_year(), get_date_month(), get_date_day(), 0, get_time_hour(), get_time_minute(), get_time_second());
m_irq_cb.resolve_safe();
}
void pcf8583_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
switch(id)
switch (id)
{
case TIMER_TICK:
if (!BIT(m_data[REG_CONTROL], CONTROL_STOP_BIT))
advance_hundredths();
break;
case TIMER_TICK:
if (!BIT(m_data[REG_CONTROL], CONTROL_STOP_BIT))
advance_hundredths();
break;
}
}
@ -83,8 +93,8 @@ void pcf8583_device::advance_hundredths()
hundredths = 0;
advance_seconds();
m_irq = !m_irq;
printf("Toggling IRQ: %d\n", m_irq ? 1 : 0);
m_irq_callback(m_irq);
m_irq_cb(m_irq);
}
m_data[REG_HUNDREDTHS] = convert_to_bcd(hundredths);
}
@ -98,138 +108,314 @@ void pcf8583_device::rtc_clock_updated(int year, int month, int day, int day_of_
set_date_day(day);
set_date_month(month);
set_date_year(year);
if (BIT(m_data[REG_HOURS], 7)) // 12h format
{
// update AM/PM flag
m_data[REG_HOURS] = (m_data[REG_HOURS] & 0xbf) | (bcd_to_integer(m_data[REG_HOURS] & 0x3f) >= 12 ? 0x40 : 0x00);
// convert from 24h to 12h
m_data[REG_HOURS] = (m_data[REG_HOURS] & 0xc0) | convert_to_bcd(bcd_to_integer((m_data[REG_HOURS] & 0x3f) % 12));
}
if (BIT(m_data[REG_CONTROL], 2)) // alarm enabled
{
switch (m_data[REG_ALARM_CONTROL] & 0x30)
{
case 0x00: // no alarm
break;
case 0x10: // daily alarm
if (m_data[REG_HUNDREDTHS] == m_data[REG_ALARM_HUNDREDTHS] && m_data[REG_SECONDS] == m_data[REG_ALARM_SECONDS] &&
m_data[REG_MINUTES] == m_data[REG_ALARM_MINUTES] && m_data[REG_HOURS] == m_data[REG_ALARM_HOURS])
{
m_data[REG_ALARM_CONTROL] |= 0x80;
}
break;
case 0x20: // weekday alarm
if (BIT(m_data[REG_ALARM_MONTH], m_data[REG_MONTH_DAY] >> 5)) // weekday enabled
{
if (m_data[REG_HUNDREDTHS] == m_data[REG_ALARM_HUNDREDTHS] && m_data[REG_SECONDS] == m_data[REG_ALARM_SECONDS] &&
m_data[REG_MINUTES] == m_data[REG_ALARM_MINUTES] && m_data[REG_HOURS] == m_data[REG_ALARM_HOURS])
{
m_data[REG_ALARM_CONTROL] |= 0x80;
}
}
break;
case 0x30: // dated alarm
if (m_data[REG_HUNDREDTHS] == m_data[REG_ALARM_HUNDREDTHS] && m_data[REG_SECONDS] == m_data[REG_ALARM_SECONDS] &&
m_data[REG_MINUTES] == m_data[REG_ALARM_MINUTES] && m_data[REG_HOURS] == m_data[REG_ALARM_HOURS] &&
(m_data[REG_YEAR_DATE] & 0x3f) == m_data[REG_ALARM_DATE] && (m_data[REG_MONTH_DAY] & 0x1f) == m_data[REG_ALARM_MONTH])
{
m_data[REG_ALARM_CONTROL] |= 0x80;
}
break;
}
// alarm interrupt enable
m_irq_cb(BIT(m_data[REG_ALARM_CONTROL], 7));
}
}
//-------------------------------------------------
// nvram_default - called to initialize NVRAM to
// its default state
//-------------------------------------------------
void pcf8583_device::nvram_default()
{
std::fill(std::begin(m_data), std::end(m_data), 0);
// populate from a memory region if present
if (m_region.found())
{
if (m_region->bytes() != 0x100)
{
fatalerror("pcf8583 region '%s' wrong size (expected size = 0x100)\n", tag());
}
std::copy_n(m_region->base(), m_region->bytes(), &m_data[0]);
}
else
{
std::fill(std::begin(m_data), std::end(m_data), 0);
}
}
//-------------------------------------------------
// nvram_read - called to read NVRAM from the
// .nv file
//-------------------------------------------------
void pcf8583_device::nvram_read(emu_file &file)
{
file.read(m_data, sizeof(m_data));
}
//-------------------------------------------------
// nvram_write - called to write NVRAM to the
// .nv file
//-------------------------------------------------
void pcf8583_device::nvram_write(emu_file &file)
{
file.write(m_data, sizeof(m_data));
}
void pcf8583_device::write_register(uint8_t offset, uint8_t data)
//**************************************************************************
// READ/WRITE HANDLERS
//**************************************************************************
WRITE_LINE_MEMBER(pcf8583_device::a0_w)
{
logerror("%s: write_register: address %02x = %02x\n", machine().describe_context(), offset, data);
m_data[offset] = data;
state &= 1;
if (BIT(m_slave_address, 1) != state)
{
LOGMASKED(LOG_LINE, "set a0 %d\n", state );
m_slave_address = (m_slave_address & 0xfd) | (state << 1);
}
}
WRITE_LINE_MEMBER(pcf8583_device::scl_w)
{
if (m_transfer_active && !m_scl && state)
if (m_scl != state)
{
switch (m_mode)
{
case RTC_MODE_RECV:
{
logerror("%s: scl_w: Receiving bit %d in receive mode\n", machine().describe_context(), m_sda ? 1 : 0);
if (m_sda)
m_data_recv |= (0x80 >> m_bit_index);
m_bit_index++;
m_scl = state;
LOGMASKED(LOG_LINE, "set_scl_line %d\n", m_scl);
if (m_bit_index > 8) // ignore ACK bit
switch (m_state)
{
case STATE_DEVSEL:
case STATE_REGISTER:
case STATE_DATAIN:
if (m_bits < 8)
{
if (m_scl)
{
if (m_data_recv_index == 0)
m_shift = ((m_shift << 1) | m_sdaw) & 0xff;
m_bits++;
}
}
else
{
if (m_scl)
{
switch (m_state)
{
if (m_data_recv == m_read_address)
case STATE_DEVSEL:
m_devsel = m_shift;
if ((m_devsel & 0xfe) != m_slave_address)
{
logerror("%s: scl_w: Received byte 0 (%02x), matches read address, entering read/send mode\n", machine().describe_context(), m_data_recv);
m_mode = RTC_MODE_SEND;
LOGMASKED(LOG_DATA, "devsel %02x: not this device\n", m_devsel);
m_state = STATE_IDLE;
}
else if (m_data_recv == m_write_address)
else if ((m_devsel & 1) == 0)
{
logerror("%s: scl_w: Received byte 0 (%02x), matches write address, entering read/send mode\n", machine().describe_context(), m_data_recv);
m_mode = RTC_MODE_RECV;
LOGMASKED(LOG_DATA, "devsel %02x: write\n", m_devsel);
m_state = STATE_REGISTER;
}
else
{
logerror("%s: scl_w: Received byte 0 (%02x), unknown address, going idle\n", machine().describe_context(), m_data_recv);
m_mode = RTC_MODE_NONE;
LOGMASKED(LOG_DATA, "devsel %02x: read\n", m_devsel);
m_state = STATE_DATAOUT;
}
}
else if (m_data_recv_index == 1)
{
logerror("%s: scl_w: Received byte 1 (%02x), setting current read/write pos\n", machine().describe_context(), m_data_recv);
m_pos = m_data_recv;
}
else if (m_data_recv_index >= 2)
{
logerror("%s: scl_w: Received byte 2+ (%d: %02x), storing to memory\n", machine().describe_context(), m_data_recv_index, m_data_recv);
write_register(m_pos, m_data_recv);
m_pos++;
break;
case STATE_REGISTER:
m_register = m_shift;
LOGMASKED(LOG_DATA, "register %02x\n", m_register);
m_state = STATE_DATAIN;
break;
case STATE_DATAIN:
LOGMASKED(LOG_DATA, "data[ %02x ] <- %02x\n", m_register, m_shift);
m_data[m_register] = m_shift;
switch (m_register)
{
case REG_CONTROL:
if ((m_shift & 0x24) == 0x04)
logerror("Timer not implemented");
break;
case REG_SECONDS:
set_clock_register(RTC_SECOND, bcd_to_integer(m_data[REG_SECONDS]));
break;
case REG_MINUTES:
set_clock_register(RTC_MINUTE, bcd_to_integer(m_data[REG_MINUTES]));
break;
case REG_HOURS:
set_clock_register(RTC_HOUR, bcd_to_integer(m_data[REG_HOURS]));
break;
case REG_YEAR_DATE:
set_clock_register(RTC_DAY, bcd_to_integer(m_data[REG_YEAR_DATE] & 0x3f));
set_clock_register(RTC_YEAR, bcd_to_integer(m_data[REG_YEAR_DATE] >> 6));
break;
case REG_MONTH_DAY:
set_clock_register(RTC_MONTH, bcd_to_integer(m_data[REG_MONTH_DAY] & 0x1f));
set_clock_register(RTC_DAY_OF_WEEK, bcd_to_integer((m_data[REG_MONTH_DAY] >> 5) + 1));
break;
case REG_ALARM_CONTROL:
m_irq_cb(m_data[REG_ALARM_CONTROL] & 0x88 ? 1 : 0);
break;
}
m_register++;
break;
}
m_bit_index = 0;
m_data_recv = 0;
m_data_recv_index++;
m_bits++;
}
else
{
if (m_bits == 8)
{
m_sdar = 0;
}
else
{
m_bits = 0;
m_sdar = 1;
}
}
}
break;
case RTC_MODE_SEND:
case STATE_DATAOUT:
if (m_bits < 8)
{
if (m_bit_index < 8)
if (m_scl)
{
m_inp = BIT(m_data[m_pos], 7 - m_bit_index);
logerror("%s: scl_w: In send mode, reading bit %d from ram[0x%02x]=%02x (%d)\n", machine().describe_context(), m_bit_index, m_pos, m_data[m_pos], m_inp);
}
m_bit_index++;
if (m_bits == 0)
{
m_shift = m_data[m_register];
if (m_bit_index > 8)
switch (m_register)
{
case 0x05:
if (BIT(m_data[0x00], 3)) // mask flag
m_shift &= 0x3f;
break;
case 0x06:
if (BIT(m_data[0x00], 3)) // mask flag
m_shift &= 0x1f;
break;
}
LOGMASKED(LOG_DATA, "data[ %02x ] -> %02x\n", m_register, m_shift);
m_register++;
}
m_sdar = (m_shift >> 7) & 1;
m_shift = (m_shift << 1) & 0xff;
m_bits++;
}
}
else
{
if (m_scl)
{
m_bit_index = 0;
m_pos++;
if (m_sdaw)
{
LOGMASKED(LOG_DATA, "nack\n");
m_state = STATE_IDLE;
}
m_bits++;
}
else
{
if (m_bits == 8)
{
m_sdar = 1;
}
else
{
m_bits = 0;
}
}
}
break;
}
}
m_scl = state;
}
WRITE_LINE_MEMBER(pcf8583_device::sda_w)
{
if (m_scl)
state &= 1;
if (m_sdaw != state)
{
if (!state && m_sda)
LOGMASKED(LOG_LINE, "set sda %d\n", state);
m_sdaw = state;
if (m_scl)
{
// start condition (high to low when clock is high)
m_transfer_active = true;
m_bit_index = 0;
m_data_recv_index = 0;
clear_rx_buffer();
}
else if (state && !m_sda)
{
// stop condition (low to high when clock is high)
m_transfer_active = false;
if (m_sdaw)
{
LOGMASKED(LOG_DATA, "stop\n");
m_state = STATE_IDLE;
}
else
{
LOGMASKED(LOG_DATA, "start\n");
m_state = STATE_DEVSEL;
m_bits = 0;
}
m_sdar = 1;
}
}
m_sda = state;
}
READ_LINE_MEMBER(pcf8583_device::sda_r)
{
return m_inp;
}
int res = m_sdar & 1;
void pcf8583_device::clear_rx_buffer()
{
m_data_recv = 0;
m_data_recv_index = 0;
}
LOGMASKED(LOG_LINE, "read sda %d\n", res);
void pcf8583_device::set_a0(uint8_t a0)
{
m_read_address = READ_ADDRESS_BASE | (a0 << 1);
m_write_address = WRITE_ADDRESS_BASE | (a0 << 1);
return res;
}

View File

@ -1,5 +1,5 @@
// license:BSD-3-Clause
// copyright-holders:Tim Schuerewegen, Ryan Holtz
// copyright-holders:Nigel Barnes
/*********************************************************************
Philips PCF8583 Clock and Calendar with 240 x 8-bit RAM
@ -62,17 +62,32 @@
#include "dirtc.h"
class pcf8583_device : public device_t,
public device_rtc_interface,
public device_nvram_interface
//**************************************************************************
// CONSTANTS
//**************************************************************************
#define PCF8583_SLAVE_ADDRESS ( 0xa0 )
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
// ======================> pcf8583_device
class pcf8583_device :
public device_t,
public device_rtc_interface,
public device_nvram_interface
{
public:
pcf8583_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 32'768);
pcf8583_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock);
auto irq() { return m_irq_callback.bind(); }
auto irq() { return m_irq_cb.bind(); }
void set_a0(uint8_t a0);
void set_a0(int a0) { m_slave_address = (m_slave_address & 0xfd) | (a0 << 1); }
DECLARE_WRITE_LINE_MEMBER(a0_w);
DECLARE_WRITE_LINE_MEMBER(scl_w);
DECLARE_WRITE_LINE_MEMBER(sda_w);
DECLARE_READ_LINE_MEMBER(sda_r);
@ -80,11 +95,11 @@ public:
protected:
// device-level overrides
virtual void device_start() override;
virtual void device_reset() override;
virtual void device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr) override;
// device_rtc_interface overrides
virtual bool rtc_feature_y2k() const override { return true; }
virtual bool rtc_feature_leap_year() const override { return true; }
virtual void rtc_clock_updated(int year, int month, int day, int day_of_week, int hour, int minute, int second) override;
// device_nvram_interface overrides
@ -115,7 +130,7 @@ private:
enum
{
CONTROL_STOP_BIT = 0x80
CONTROL_STOP_BIT = 7
};
static const device_timer_id TIMER_TICK = 0;
@ -136,31 +151,27 @@ private:
uint8_t get_time_second() { return bcd_to_integer(m_data[REG_SECONDS]); }
void set_time_second(uint8_t second){ m_data[REG_SECONDS] = convert_to_bcd(second); }
void write_register(uint8_t offset, uint8_t data);
void advance_hundredths();
void clear_rx_buffer();
devcb_write_line m_irq_callback;
optional_memory_region m_region;
devcb_write_line m_irq_cb;
// internal state
uint8_t m_data[256];
int m_scl;
int m_sda;
int m_inp;
bool m_transfer_active;
int m_bit_index;
bool m_irq;
uint8_t m_data_recv_index;
uint8_t m_data_recv;
uint8_t m_mode;
uint8_t m_pos;
uint8_t m_write_address;
uint8_t m_read_address;
uint8_t m_data[256];
int m_slave_address;
int m_scl;
int m_sdaw;
int m_sdar;
int m_state;
int m_bits;
int m_shift;
int m_devsel;
int m_register;
bool m_irq;
emu_timer * m_timer;
enum { RTC_MODE_NONE, RTC_MODE_SEND, RTC_MODE_RECV };
static constexpr uint8_t WRITE_ADDRESS_BASE = 0xa0;
static constexpr uint8_t READ_ADDRESS_BASE = 0xa1;
enum { STATE_IDLE, STATE_DEVSEL, STATE_REGISTER, STATE_DATAIN, STATE_DATAOUT };
};
// device type definition