add Roland PCM sound emulation for CM-32P

This commit is contained in:
Valley Bell 2020-03-15 18:58:38 +01:00
parent 0626189f0f
commit 539598fab4
5 changed files with 507 additions and 12 deletions

View File

@ -1542,6 +1542,18 @@ if (SOUNDS["SWP30"]~=null) then
}
end
---------------------------------------------------
-- Roland sample players
--@src/devices/sound/rolandpcm.h,SOUNDS["ROLANDPCM"] = true
---------------------------------------------------
if (SOUNDS["ROLANDPCM"]~=null) then
files {
MAME_DIR .. "src/devices/sound/rolandpcm.cpp",
MAME_DIR .. "src/devices/sound/rolandpcm.h",
}
end
---------------------------------------------------
--
--@src/devices/sound/vgm_visualizer.h,SOUNDS["VGMVIZ"] = true

View File

@ -303,6 +303,7 @@ SOUNDS["IOPSPU"] = true
SOUNDS["SWP00"] = true
SOUNDS["SWP20"] = true
SOUNDS["SWP30"] = true
SOUNDS["ROLANDPCM"] = true
--------------------------------------------------
-- specify available video cores

View File

@ -0,0 +1,376 @@
// license:BSD-3-Clause
// copyright-holders:Valley Bell
// register write:
// 00/01 - ??
// 02/03 - ROM bank (bits 10-13) / loop mode (bits 14-15)
// 04/05 - frequency (2.14 fixed point, 0x4000 = 32000 Hz)
// 06/07 - volume
// 08/09 - sample start address, fraction (2.14 fixed point, i.e. 1 byte = 0x4000)
// 0A/0B - sample start address (high word, i.e. address bits 2..17)
// 0C/0D - sample end address (high word)
// 0E/0F - sample loop address (high word)
// 10/12 - ?? (sometimes value 1F is written)
// 11/13/15/17 - voice enable mask (11 = least significant 8 bits, 17 = most significant 8 bits)
// 19/1B/1D - ?? (written at init time)
// 1A - ??
// 1F - voice select
//
// register read:
// 01 - last sample data (used by main CPU to read sample table from PCM ROM)
// 02/03 - ?? (read after writing to 10/12)
#include "emu.h"
#include "rolandpcm.h"
constexpr int clamp16(int16_t val, int16_t min, int16_t max) { return std::min(max, std::max(min, val)); }
DEFINE_DEVICE_TYPE(ROLANDPCM, rolandpcm_device, "rolandpcm", "Roland PCM")
rolandpcm_device::rolandpcm_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: device_t(mconfig, ROLANDPCM, tag, owner, clock)
, device_sound_interface(mconfig, *this)
, device_rom_interface(mconfig, *this, 22)
, m_clock(0)
, m_rate(0)
, m_stream(nullptr)
, m_sel_chn(0)
{
}
//-------------------------------------------------
// device_start - device-specific startup
//-------------------------------------------------
void rolandpcm_device::device_start()
{
m_clock = clock();
m_rate = m_clock / 512; // usually 32 KHz
m_stream = machine().sound().stream_alloc(*this, 0, 2, m_rate);
logerror("Roland PCM: Clock %u, Rate %u\n", m_clock, m_rate);
}
//-------------------------------------------------
// rom_bank_updated - the rom bank has changed
//-------------------------------------------------
void rolandpcm_device::rom_bank_updated()
{
// unused right now
m_stream->update();
}
u8 rolandpcm_device::read(offs_t offset)
{
// Note: only offset 0x01 is verified, the rest is probably all wrong
if (offset != 0x01)
logerror("Reading Reg %02X\n", offset);
if (offset < 0x10)
{
pcm_channel& chn = m_chns[m_sel_chn];
switch(offset)
{
case 0x00:
return (chn.mode >> 0) & 0xFF;
case 0x01:
m_stream->update();
{
offs_t addr = (chn.addr >> 14) | ((chn.bank & 0x3C00) << 8);
return read_byte(addr); // return sample data
}
case 0x02: // ROM bank LSB
return (chn.bank >> 0) & 0xFF;
case 0x03: // ROM bank MSB
return (chn.bank >> 8) & 0xFF;
case 0x04: // sample step LSB
return (chn.step >> 0) & 0xFF;
case 0x05: // sample step LSB
return (chn.step >> 8) & 0xFF;
case 0x06: // volume LSB
return (chn.volume >> 0) & 0xFF;
case 0x07: // volume MSB
return (chn.volume >> 8) & 0xFF;
case 0x08: // current address, fraction LSB
return (chn.start >> 0) & 0xFF;
case 0x09: // current address, fraction MSB
return (chn.start >> 8) & 0xFF;
case 0x0A: // current address LSB
return (chn.start >> 16) & 0xFF;
case 0x0B: // current address MSB
return (chn.start >> 24) & 0xFF;
case 0x0C: // sample end address LSB
return (chn.end >> 0) & 0xFF;
case 0x0D: // sample end address MSB
return (chn.end >> 8) & 0xFF;
case 0x0E: // sample loop address LSB
return (chn.loop >> 0) & 0xFF;
case 0x0F: // sample loop address MSB
return (chn.loop >> 8) & 0xFF;
}
}
else
{
switch(offset)
{
case 0x11:
case 0x13:
case 0x15:
case 0x17:
m_stream->update();
{
uint8_t basechn = ((offset >> 1) & 0x03) * 8;
uint8_t result = 0x00;
for (uint8_t ch_id = 0; ch_id < 8; ch_id ++)
result |= (m_chns[basechn + ch_id].enable << ch_id);
return result;
}
break;
case 0x1F:
return m_sel_chn;
}
}
return 0x00;
}
void rolandpcm_device::write(offs_t offset, u8 data)
{
logerror("Reg %02X = %02X\n", offset, data);
if (offset < 0x10)
{
pcm_channel& chn = m_chns[m_sel_chn];
switch(offset)
{
case 0x00:
chn.mode = (chn.mode & 0xFF00) | (data << 0);
break;
case 0x01:
chn.mode = (chn.mode & 0x00FF) | (data << 8);
break;
case 0x02: // ROM bank LSB
chn.bank = (chn.bank & 0xFF00) | (data << 0);
break;
case 0x03: // ROM bank MSB / loop mode
chn.bank = (chn.bank & 0x00FF) | (data << 8);
break;
case 0x04: // sample step LSB
chn.step = (chn.step & 0xFF00) | (data << 0);
break;
case 0x05: // sample step LSB
chn.step = (chn.step & 0x00FF) | (data << 8);
break;
case 0x06: // volume LSB
chn.volume = (chn.volume & 0xFF00) | (data << 0);
break;
case 0x07: // volume MSB
chn.volume = (chn.volume & 0x00FF) | (data << 8);
break;
case 0x08: // current address, fraction LSB
chn.start = (chn.start & 0xFFFFFF00) | (data << 0);
if (chn.enable)
logerror("Roland PCM, channel %u: changing start address while playing!\n", m_sel_chn);
break;
case 0x09: // current address, fraction MSB
chn.start = (chn.start & 0xFFFF00FF) | (data << 8);
if (chn.enable)
logerror("Roland PCM, channel %u: changing start address while playing!\n", m_sel_chn);
break;
case 0x0A: // current address LSB
chn.start = (chn.start & 0xFF00FFFF) | (data << 16);
if (chn.enable)
logerror("Roland PCM, channel %u: changing start address while playing!\n", m_sel_chn);
break;
case 0x0B: // current address MSB
chn.start = (chn.start & 0x00FFFFFF) | (data << 24);
if (chn.enable)
logerror("Roland PCM, channel %u: changing start address while playing!\n", m_sel_chn);
break;
case 0x0C: // sample end address, LSB
chn.end = (chn.end & 0xFF00) | (data << 0);
break;
case 0x0D: // sample end address MSB
chn.end = (chn.end & 0x00FF) | (data << 8);
break;
case 0x0E: // sample loop address LSB
chn.loop = (chn.loop & 0xFF00) | (data << 0);
break;
case 0x0F: // sample loop address MSB
chn.loop = (chn.loop & 0x00FF) | (data << 8);
break;
}
}
else
{
switch(offset)
{
case 0x11:
case 0x13:
case 0x15:
case 0x17:
{
uint8_t basechn = ((offset >> 1) & 0x03) * 8;
for (uint8_t ch_id = 0; ch_id < 8; ch_id ++)
{
pcm_channel& chn = m_chns[basechn + ch_id];
bool play = static_cast<bool>((data >> ch_id) & 1);
if (play && ! chn.enable)
{
chn.addr = chn.start;
offs_t addr = (chn.addr >> 14) | ((chn.bank & 0x3C00) << 8);
chn.smpl_cur = 0;
chn.smpl_nxt = decode_sample((int8_t)read_byte(addr));
chn.play_dir = +1;
logerror("Starting channel %u, bank 0x%04X, addr 0x%05X.%03X\n",
basechn + ch_id, chn.bank, chn.start >> 14, (chn.start & 0x3FFF) << 2);
logerror("Smpl End Ofs: 0x%04X, Loop Ofs 0x%04X, Step 0x%04X, Volume %04X\n",
chn.end << 2, chn.loop << 2, chn.step, chn.volume);
}
chn.enable = play;
}
}
break;
case 0x1F:
m_sel_chn = data;
break;
default:
logerror("Writing unknown reg %02X = %02X\n", offset, data);
break;
}
}
}
//-------------------------------------------------
// sound_stream_update - handle a stream update
//-------------------------------------------------
void rolandpcm_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples)
{
memset(outputs[0], 0, samples * sizeof(stream_sample_t));
memset(outputs[1], 0, samples * sizeof(stream_sample_t));
for (auto& chn : m_chns)
{
if (! chn.enable || chn.play_dir == 0)
continue;
for (int smpl = 0; smpl < samples; smpl ++)
{
stream_sample_t smp_data;
if (chn.play_dir > 0)
smp_data = sample_interpolate(chn.smpl_cur, chn.smpl_nxt, chn.addr & 0x3FFF);
else
smp_data = sample_interpolate(chn.smpl_nxt, chn.smpl_cur, chn.addr & 0x3FFF);
smp_data = (smp_data * chn.volume) >> 14; // >>14 results in a good overall volume
outputs[0][smpl] += smp_data;
outputs[1][smpl] += smp_data;
uint32_t old_addr = chn.addr;
if (chn.play_dir > 0)
chn.addr += chn.step;
else if (chn.play_dir < 0)
chn.addr -= chn.step;
// Note: The sample data is read after incrementing the address, but before handling loop points.
// Reading the sample data after loop point handling breaks the test mode square wave.
// (Sample 0xA7 on the CM-32P.)
if ((chn.addr >> 14) != (old_addr >> 14))
{
offs_t addr = (chn.addr >> 14) | ((chn.bank & 0x3C00) << 8);
//logerror("Chn %u: sample addr 0x%05X.%03X\n", &chn - &m_chns[0], chn.addr >> 14, (chn.addr & 0x3FFF) << 2);
chn.smpl_cur = chn.smpl_nxt;
chn.smpl_nxt += decode_sample((int8_t)read_byte(addr)); // This was verified to be independent from play_dir.
// until the decoding is fixed, we prevent overflow bugs (due to DC offsets when looping) this way
chn.smpl_nxt = clamp16(chn.smpl_nxt, -0x7FF, +0x7FF);
}
bool reachedEnd = false;
if (chn.play_dir > 0)
{
// This works well with the test mode sine/square wave samples.
if ((chn.addr >> 16) >= chn.end)
reachedEnd = true;
}
else if (chn.play_dir < 0)
{
if ((chn.addr >> 16) < chn.loop)
reachedEnd = true;
}
if (reachedEnd)
{
offs_t oldAddr = chn.addr;
logerror("Chn %u: Sample End at addr 0x%05X.%03X. (Dir %d, Loop Mode %u)\n",
&chn - &m_chns[0], chn.addr >> 14, (chn.addr & 0x3FFF) << 2,
chn.play_dir, chn.bank >> 14);
switch(chn.bank >> 14)
{
case 0: // normal loop
chn.addr = chn.addr + ((chn.loop - chn.end) << 16);
logerror("addr 0x%05X.%03X -> addr 0x%05X.%03X\n",
oldAddr >> 14, (oldAddr & 0x3FFF) << 2,
chn.addr >> 14, (chn.addr & 0x3FFF) << 2);
break;
case 1: // no loop
case 3: // invalid, assume "no loop"
chn.play_dir = 0;
break;
case 2: // ping-pong
// CM-32P samples with ping-pong loop mode:
// 0x00 (low piano note), 0x58..0x67, 0x69..0x6C (choir/strings), 0x9F..0xA4 (brass)
// Note: These formulae are probably incorrect, as they cause some DC offset in most samples.
// Reference sample rate for C5 @ Sample 9F: 34290 Hz.
if (chn.play_dir > 0)
chn.addr = (chn.end << 16) - chn.addr + (chn.end << 16);
else if (chn.play_dir < 0)
chn.addr = (chn.loop << 16) - chn.addr + (chn.loop << 16);
chn.play_dir = -chn.play_dir;
break;
}
if (chn.play_dir == 0)
break;
}
}
}
return;
}
int16_t rolandpcm_device::decode_sample(int8_t data)
{
int16_t val;
int16_t sign;
uint8_t shift;
int16_t result;
if (data < 0)
{
sign = -1;
val = -data;
}
else
{
sign = +1;
val = data;
}
// thanks to Sarayan for figuring out the decoding formula
shift = val >> 4;
val &= 0x0F;
if (! shift)
result = val;
else
result = (0x10 + val) << (shift - 1);
return result * sign;
}
int16_t rolandpcm_device::sample_interpolate(int16_t smp1, int16_t smp2, uint16_t frac)
{
int32_t smpfrac0 = (int32_t)smp1 * (0x4000 - frac);
int32_t smpfrac1 = (int32_t)smp2 * frac;
return (int16_t)((smpfrac0 + smpfrac1) >> 14);
}

View File

@ -0,0 +1,61 @@
// license:BSD-3-Clause
// copyright-holders:Valley Bell
#ifndef MAME_SOUND_ROLANDPCM_H
#define MAME_SOUND_ROLANDPCM_H
#pragma once
class rolandpcm_device : public device_t, public device_sound_interface, public device_rom_interface
{
public:
rolandpcm_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock);
u8 read(offs_t offset);
void write(offs_t offset, u8 data);
protected:
// device-level overrides
virtual void device_start() override;
// sound stream update overrides
virtual void sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples) override;
// device_rom_interface overrides
virtual void rom_bank_updated() override;
static int16_t decode_sample(int8_t data);
static int16_t sample_interpolate(int16_t smp1, int16_t smp2, uint16_t frac);
private:
static constexpr unsigned NUM_CHANNELS = 32;
struct pcm_channel
{
pcm_channel() { }
// registers
uint16_t mode = 0;
uint16_t bank = 0;
uint16_t step = 0; // 2.14 fixed point (0x4000 equals 32000 Hz)
uint16_t volume = 0;
uint32_t start = 0; // start address (18.14 fixed point)
uint16_t end = 0; // end offset (high word)
uint16_t loop = 0; // loop offset (high word)
// work variables
bool enable = false;
int8_t play_dir = 0; // playing direction, -1 [backwards] / 0 [stopped] / +1 [forwards]
uint32_t addr = 0; // current address
int16_t smpl_cur = 0; // current sample
int16_t smpl_nxt = 0; // next sample
};
uint32_t m_clock; // clock
uint32_t m_rate; // sample rate (usually 32000 Hz)
sound_stream* m_stream; // stream handle
pcm_channel m_chns[NUM_CHANNELS]; // channel memory
uint8_t m_sel_chn; // selected channel
};
DECLARE_DEVICE_TYPE(ROLANDPCM, rolandpcm_device)
#endif // MAME_SOUND_ROLANDPCM_H

View File

@ -33,10 +33,12 @@ Notes:
The additional PCM ROMs are mapped to 0x100000 .. 0x17FFFF (IC19) and 0x200000 .. 0x27FFFF according to the sample table in IC18.
- The sound chip has 32 voices. Voice 0 is reserved by the firmware for reading data from the PCM ROM.
The firmware allocates voices from back to front, i.e. voice 31 first.
- The "PCM sound chip" itself doesn't seem to support panning.
Maybe it just has 6 outputs (one for each part, like the U-110) and an additional DSP does the rest.
TODO:
- actual sound emulation
- figure out how "freeing a voice" works - right now the firmware gets stuck when playing the 32th note.
- add PCM card support
@ -227,9 +229,11 @@ Some routine locations
#include "cpu/mcs96/i8x9x.h"
#include "machine/ram.h"
#include "machine/timer.h"
#include "sound/rolandpcm.h"
#include "video/msm6222b.h"
#include "emupal.h"
#include "screen.h"
#include "speaker.h"
// unscramble address: ROM dump offset -> proper (descrambled) offset
@ -250,6 +254,7 @@ static INPUT_PORTS_START( cm32p )
PORT_START("SERVICE") // connected to Port 0 of the P8098 CPU.
PORT_BIT(0x80, IP_ACTIVE_LOW, IPT_OTHER) PORT_NAME("Test Switch") PORT_TOGGLE PORT_CODE(KEYCODE_F2) // SW A (checked during boot)
PORT_BIT(0x40, IP_ACTIVE_LOW, IPT_OTHER) PORT_NAME("Test: Check/Tune") PORT_CODE(KEYCODE_B) // SW B
PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_OTHER) PORT_NAME("PCM card inserted") PORT_TOGGLE PORT_CODE(KEYCODE_C)
PORT_START("SW") // test switches, accessed by reading from address 0x1300
PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_OTHER) PORT_NAME("Test: MSB Adj.") PORT_CODE(KEYCODE_1) // SW 1
@ -269,12 +274,15 @@ public:
void cm32p(machine_config &config);
void init_cm32p();
protected:
virtual void machine_start() override;
virtual void machine_reset() override;
private:
required_device<i8x9x_device> cpu;
required_device<rolandpcm_device> pcm;
required_device<msm6222b_device> lcd;
required_device<timer_device> midi_timer;
required_device<ram_device> some_ram;
@ -305,7 +313,6 @@ private:
u8 midi;
int midi_pos;
u8 port0;
u8 sound_io_buffer[0x100];
u8 dsp_io_buffer[0x80];
};
@ -313,6 +320,7 @@ private:
cm32p_state::cm32p_state(const machine_config &mconfig, device_type type, const char *tag)
: driver_device(mconfig, type, tag)
, cpu(*this, "maincpu")
, pcm(*this, "pcm")
, lcd(*this, "lcd")
, midi_timer(*this, "midi_timer")
, some_ram(*this, "some_ram")
@ -370,7 +378,6 @@ void cm32p_state::machine_reset()
{
midi_timer->adjust(attotime::from_hz(1));
midi_pos = 0;
port0 = 0;
}
WRITE8_MEMBER(cm32p_state::lcd_ctrl_w)
@ -408,14 +415,13 @@ TIMER_DEVICE_CALLBACK_MEMBER(cm32p_state::midi_timer_cb)
READ16_MEMBER(cm32p_state::port0_r)
{
return port0 | service_port->read();
return service_port->read();
}
READ8_MEMBER(cm32p_state::pcmrom_r)
{
offs_t romOfs = SCRAMBLE_ADDRESS(offset);
const u8* pcm_rom = memregion("pcm32")->base();
return UNSCRAMBLE_DATA(pcm_rom[romOfs]);
const u8* pcm_rom = memregion("pcm")->base();
return pcm_rom[offset];
}
READ8_MEMBER(cm32p_state::dsp_io_r)
@ -455,6 +461,19 @@ WRITE8_MEMBER(cm32p_state::dsp_io_w)
READ8_MEMBER(cm32p_state::snd_io_r)
{
// lots of offset modification magic to achieve the following:
// - offsets 00..1F are "sound chip read"
// - offsets 20..3F are a readback of what was written to registers 00..1F
// - This behaviour is reversed for offset 01/21, which is used for reading the PCM sample tables.
// All this is just for making debugging easier, as it allows one to check the
// register state using the Memory Viewer.
if (offset == 0x01 || offset == 0x21)
offset ^= 0x20; // remove when PCM data readback via sound chip is confirmed to work
if (offset < 0x20)
return pcm->read(offset);
if (offset < 0x40)
offset -= 0x20;
if (offset == 0x01)
{
// code for reading from the PCM sample table is at 0xB027
@ -490,6 +509,8 @@ WRITE8_MEMBER(cm32p_state::snd_io_w)
// 11/13/15/17 - voice enable mask (11 = least significant 8 bits, 17 = most significant 8 bits)
// 1A - ??
// 1F - voice select
if (offset < 0x20)
pcm->write(offset, data);
sound_io_buffer[offset] = data;
}
@ -500,7 +521,7 @@ READ8_MEMBER(cm32p_state::test_sw_r)
TIMER_DEVICE_CALLBACK_MEMBER(cm32p_state::samples_timer_cb)
{
port0 ^= 0x10;
// TODO: does this trigger something?
}
void cm32p_state::mt32_palette(palette_device &palette) const
@ -518,8 +539,7 @@ void cm32p_state::cm32p_map(address_map &map)
map(0x1400, 0x14ff).rw(FUNC(cm32p_state::snd_io_r), FUNC(cm32p_state::snd_io_w)); // sound chip area
map(0x2000, 0x20ff).rom().region("maincpu", 0x2000); // init vector @ 2080
map(0x2100, 0x3fff).ram(); // main RAM
map(0x4000, 0xbfff).rom().region("maincpu", 0x4000);
map(0xc000, 0xffff).r(FUNC(cm32p_state::pcmrom_r)); // show descrambled PCM ROM (for debugging)
map(0x4000, 0xffff).rom().region("maincpu", 0x4000);
}
void cm32p_state::cm32p(machine_config &config)
@ -530,6 +550,13 @@ void cm32p_state::cm32p(machine_config &config)
maincpu.serial_tx_cb().set(FUNC(cm32p_state::midi_w));
maincpu.in_p0_cb().set(FUNC(cm32p_state::port0_r));
SPEAKER(config, "lspeaker").front_left();
SPEAKER(config, "rspeaker").front_right();
ROLANDPCM(config, pcm, 16.384_MHz_XTAL);
pcm->add_route(0, "lspeaker", 1.0);
pcm->add_route(1, "rspeaker", 1.0);
RAM(config, some_ram).set_default_size("8K");
screen_device &screen(SCREEN(config, "screen", SCREEN_TYPE_LCD));
@ -548,15 +575,33 @@ void cm32p_state::cm32p(machine_config &config)
TIMER(config, "samples_timer").configure_periodic(FUNC(cm32p_state::samples_timer_cb), attotime::from_hz(32000*2));
}
void cm32p_state::init_cm32p()
{
// Roland did a fair amount of scrambling on the address and data lines.
// Only the first 0x20 bytes of the ROMs are readable text in a raw dump.
uint8_t* src = static_cast<uint8_t*>(memregion("pcmorg")->base());
uint8_t* dst = static_cast<uint8_t*>(memregion("pcm")->base());
for (offs_t bank_ofs = 0x00; bank_ofs < 0x400000; bank_ofs += 0x080000)
{
offs_t dstpos;
for (offs_t srcpos = 0x00; srcpos < 0x80000; srcpos ++)
{
dstpos = UNSCRAMBLE_ADDRESS(srcpos);
dst[bank_ofs + dstpos] = UNSCRAMBLE_DATA(src[bank_ofs + srcpos]);
}
}
}
ROM_START( cm32p )
ROM_REGION( 0x10000, "maincpu", 0 )
ROM_LOAD( "cm-32_p__1.0.0.am27c512.7d.ic9", 0x000000, 0x10000, CRC(6f2f6dfd) SHA1(689f77c1d56f923ef1dab7d993a124c47736bc56) ) // "CM-32 P // 1 0 0 <filled bubbles in red marker>" sticker on an AM27C512-150DC eprom @ IC9
ROM_REGION( 0x400000, "pcm32", 0 )
ROM_REGION( 0x400000, "pcmorg", 0 ) // ROMs before descrambling
ROM_LOAD( "roland__r15179970__mb834000a-20__3b1_aa__8917_r00.45f.ic18", 0x000000, 0x80000, CRC(8e53b2a3) SHA1(4872530870d5079776e80e477febe425dc0ec1df) ) // markings under chip footprint are "MB834000A-20P-G-3B1"
// 0x080000 .. 0x0FFFFF is reserved for the PCM card
ROM_LOAD( "roland__r15179971__mb834000a-20__3b2_aa__8919_r02.34f.ic19", 0x100000, 0x80000, CRC(c8220761) SHA1(49e55fa672020f95fd9c858ceaae94d6db93df7d) ) // markings under chip footprint are "MB834000A20P-G-3B2" (including the missing dash, which is a typo on the board silkscreen)
ROM_LOAD( "roland__r15179972__hn62304bpe98__9d1_japan.3f.ic20", 0x200000, 0x80000, CRC(733c4054) SHA1(9b6b59ab74e5bf838702abb087c408aaa85b7b1f) ) // markings under chip footprint are "HN62304BPE98"
ROM_REGION( 0x400000, "pcm", ROMREGION_ERASEFF ) // ROMs after descrambling
ROM_END
CONS( 1989, cm32p, 0, 0, cm32p, cm32p, cm32p_state, empty_init, "Roland", "CM-32P", MACHINE_NOT_WORKING | MACHINE_NO_SOUND )
CONS( 1989, cm32p, 0, 0, cm32p, cm32p, cm32p_state, init_cm32p, "Roland", "CM-32P", MACHINE_NOT_WORKING | MACHINE_NO_SOUND )