Merge pull request #2025 from fulivi/hp9845_dev9

HP9895 floppy drive
This commit is contained in:
R. Belmont 2017-01-27 11:41:47 -05:00 committed by GitHub
commit 5b0d4772a3
5 changed files with 826 additions and 32 deletions

View File

@ -2,12 +2,55 @@
// copyright-holders: F. Ulivi
/*********************************************************************
hp9895.cpp
hp9895.cpp
HP9895 floppy disk drive
HP9895 floppy disk drive
Reference manual:
HP 09895-90030, feb 81, 9895A Flexible Disc Memory Service Manual
Phew, this one was tough!
This is a dual 8" floppy disk drive that interfaces through
HPIB/IEEE-488 bus. It implements the so-called "Amigo" command
set.
Its main components are:
* A Z80A CPU @ 4 MHz with 8 kB of firmware ROM and 1 kB of
static RAM
* A HP PHI chip that interfaces CPU to HPIB bus
* A disk controller implemented with a lot of discrete TTLs
* 2 MPI 8" disk drives
Data I/O with the disk is carried out through 2 shift registers,
one for data bits (@ 0x60 address) and one for clock bits (@ 0x61
address). CPU is stalled by setting WAIT/ to 0 whenever it accesses
the data register and the hw is not ready for the byte. Once
the next byte boundary is reached (the SDOK signal activates) the
CPU is released and either the data byte is read from shift register
or written into it. At the same time clock shift register is
copied into clock register when reading or viceversa when writing.
The 9895 drive can operate in 2 modes: HP/High density or IBM/low
density. This table summarizes the differences between the modes.
See also page 2-12 of service manual.
| Characteristic | HP mode | IBM mode |
|----------------+----------+-----------|
| Bit cell size | 2 µs | 4 µs |
| Modulation | MMFM | FM |
| Bit order | LS first | MS first |
| Sync bytes | 4x FF | 6x 00 |
| Formatted size | 1155 kB | 250.25 kB |
Reference manual:
HP 09895-90030, feb 81, 9895A Flexible Disc Memory Service Manual
Reference manual for the floppy drives:
Magnetic Peripherals, inc., feb 83, 9406-4 Flexible Disk Drive
Hardware Maintenance Manual
TODO/Issues:
* floppy_image_device sometimes reports the wrong state for ready &
wpt signals
* IBM mode hasn't been tested yet
*********************************************************************/
@ -16,31 +59,338 @@
// Debugging
#define VERBOSE 1
#define LOG(x) do { if (VERBOSE) logerror x; } while (0)
#define VERBOSE_0 0
#define LOG_0(x) do { if (VERBOSE_0) logerror x; } while (0)
// Macros to clear/set single bits
#define BIT_MASK(n) (1U << (n))
#define BIT_CLR(w , n) ((w) &= ~BIT_MASK(n))
#define BIT_SET(w , n) ((w) |= BIT_MASK(n))
// Bits in RESET register
#define REG_RESET_TIMEOUT_START_BIT 0 // Start TIMEOUT oneshot (1)
#define REG_RESET_OVERUN_CLEAR_BIT 1 // Clear OVERUN (sic) (1)
#define REG_RESET_PROGRES_BIT 3 // PROGRES (1)
// Bits in CNTL register
#define REG_CNTL_READON_BIT 1 // Enable reading (1)
#define REG_CNTL_WRITON_BIT 2 // Enable writing (1)
#define REG_CNTL_WRITDRV_BIT 3 // Enable writing to floppy (1)
#define REG_CNTL_CRCOUT_BIT 4 // Enable output of CRC word (1)
#define REG_CNTL_CRCON_BIT 5 // Enable updating of CRC word (1) or preset CRC to 0xffff (0)
// Bits in DRV register
#define REG_DRV_STEP_BIT 0 // Step pulse to drive (1)
#define REG_DRV_MOVEIN_BIT 1 // Move heads inward (1)
#define REG_DRV_MGNENA_BIT 2 // Enable checking of bit cell margins (1)
#define REG_DRV_IN_USE_BIT 3 // "In use" signal to drive (1)
#define REG_DRV_LOWCURR_BIT 4 // Reduce write current in inner tracks (1)
#define REG_DRV_HEADSEL_BIT 7 // Head selection (1 = Head 1)
// Bits in XV register
#define REG_XV_DRIVE3_BIT 0 // Select drive #3 (1)
#define REG_XV_DRIVE2_BIT 1 // Select drive #2 (1)
#define REG_XV_DRIVE1_BIT 2 // Select drive #1 (1)
#define REG_XV_DRIVE0_BIT 3 // Select drive #0 (1)
#define REG_XV_HIDEN_BIT 4 // Select HP/High density mode (1) or IBM/Low density mode (0)
#define REG_XV_PRECMP_BIT 5 // Enable pre-compensation
// Bits in DRIVSTAT register
#define REG_DRIVSTAT_INDEX_BIT 0 // Index pulse from drive (1)
#define REG_DRIVSTAT_DISCHNG_BIT 1 // Disk changed (1)
#define REG_DRIVSTAT_TRACK0_BIT 2 // Heads on track #0 (1)
#define REG_DRIVSTAT_WRPROT_BIT 3 // Disk is write-protected (1)
#define REG_DRIVSTAT_READY_BIT 4 // Disk is ready (1)
#define REG_DRIVSTAT_CRCERR_BIT 5 // Error in CRC (1)
#define REG_DRIVSTAT_OVERUN_BIT 6 // I/O overrun between disk and CPU (1)
#define REG_DRIVSTAT_TWOSIDE_BIT 7 // 2-sided disk (1)
// Bits in SWITCHES(2) registers
#define REG_SWITCHES_HPIB_ADDR_SHIFT 0 // LSB of HPIB address
#define REG_SWITCHES_HPIB_ADDR_MASK 7 // Mask of HPIB address
#define REG_SWITCHES_W_TEST_BIT 3 // "W" test push-button (1)
#define REG_SWITCHES_S_TEST_BIT 4 // "S" test push-button (1)
#define REG_SWITCHES_LOOP_BIT 5 // Test loop option (1)
#define REG_SWITCHES_TIMEOUT_BIT 6 // TIMEOUT (1)
#define REG_SWITCHES_AMDT_BIT 7 // Address mark detected (1)
// Timers
enum {
TIMEOUT_TMR_ID,
BYTE_TMR_ID,
HALF_BIT_TMR_ID
};
// Timings
#define TIMEOUT_MSEC 450 // Timeout duration (ms)
#define HPMODE_BIT_FREQ 500000 // HP-mode bit frequency (Hz)
#define IBMMODE_BIT_FREQ 250000 // IBM-mode bit frequency (Hz)
#define MIN_SYNC_BITS 29 // Number of bits to synchronize
// device type definition
const device_type HP9895 = &device_creator<hp9895_device>;
// Masks of drive selectors in XV register
static const uint8_t xv_drive_masks[] = {
BIT_MASK(REG_XV_DRIVE0_BIT),
BIT_MASK(REG_XV_DRIVE1_BIT)
};
hp9895_device::hp9895_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: device_t(mconfig, HP9895, "HP9895", tag, owner, clock, "HP9895", __FILE__),
device_ieee488_interface(mconfig, *this),
m_cpu(*this , "cpu"),
m_phi(*this , "phi")
m_phi(*this , "phi"),
m_drives{{*this , "floppy0"} , {*this , "floppy1"}},
m_switches{*this , "switches"}
{
}
#if 0
static INPUT_PORTS_START(hp9895_port)
PORT_START("switches")
PORT_CONFNAME(REG_SWITCHES_HPIB_ADDR_MASK << REG_SWITCHES_HPIB_ADDR_SHIFT , 0x00 , "HPIB address")
PORT_CONFSETTING(0 << REG_SWITCHES_HPIB_ADDR_SHIFT , "0")
PORT_CONFSETTING(1 << REG_SWITCHES_HPIB_ADDR_SHIFT , "1")
PORT_CONFSETTING(2 << REG_SWITCHES_HPIB_ADDR_SHIFT , "2")
PORT_CONFSETTING(3 << REG_SWITCHES_HPIB_ADDR_SHIFT , "3")
PORT_CONFSETTING(4 << REG_SWITCHES_HPIB_ADDR_SHIFT , "4")
PORT_CONFSETTING(5 << REG_SWITCHES_HPIB_ADDR_SHIFT , "5")
PORT_CONFSETTING(6 << REG_SWITCHES_HPIB_ADDR_SHIFT , "6")
PORT_CONFSETTING(7 << REG_SWITCHES_HPIB_ADDR_SHIFT , "7")
PORT_CONFNAME(BIT_MASK(REG_SWITCHES_W_TEST_BIT) , 0x00 , "W Test")
PORT_CONFSETTING(0x00 , DEF_STR(Off))
PORT_CONFSETTING(BIT_MASK(REG_SWITCHES_W_TEST_BIT) , DEF_STR(On))
PORT_CONFNAME(BIT_MASK(REG_SWITCHES_S_TEST_BIT) , 0x00 , "S Test")
PORT_CONFSETTING(0x00 , DEF_STR(Off))
PORT_CONFSETTING(BIT_MASK(REG_SWITCHES_S_TEST_BIT) , DEF_STR(On))
PORT_CONFNAME(BIT_MASK(REG_SWITCHES_LOOP_BIT) , 0x00 , "Loop")
PORT_CONFSETTING(0x00 , DEF_STR(Off))
PORT_CONFSETTING(BIT_MASK(REG_SWITCHES_LOOP_BIT) , DEF_STR(On))
INPUT_PORTS_END
ioport_constructor hp9895_device::device_input_ports() const
{
// TODO: inputs=HPIB address, "S" & "W" switches, "loop" pin
return INPUT_PORTS_NAME(hp9895_port);
}
#endif
void hp9895_device::device_start()
{
save_item(NAME(m_cpu_irq));
save_item(NAME(m_current_drive_idx));
save_item(NAME(m_dskchg));
save_item(NAME(m_crc));
save_item(NAME(m_crcerr_syn));
save_item(NAME(m_overrun));
save_item(NAME(m_accdata));
save_item(NAME(m_timeout));
save_item(NAME(m_cntl_reg));
save_item(NAME(m_clock_sr));
save_item(NAME(m_clock_reg));
save_item(NAME(m_data_sr));
save_item(NAME(m_wr_context));
save_item(NAME(m_had_transition));
save_item(NAME(m_lckup));
save_item(NAME(m_amdt));
save_item(NAME(m_sync_cnt));
save_item(NAME(m_hiden));
save_item(NAME(m_mgnena));
m_timeout_timer = timer_alloc(TIMEOUT_TMR_ID);
m_byte_timer = timer_alloc(BYTE_TMR_ID);
m_half_bit_timer = timer_alloc(HALF_BIT_TMR_ID);
for (auto& d : m_drives) {
d->get_device()->setup_ready_cb(floppy_image_device::ready_cb(&hp9895_device::floppy_ready_cb , this));
}
}
void hp9895_device::device_reset()
{
m_cpu_irq = false;
m_current_drive = nullptr;
m_current_drive_idx = ~0;
for (auto& d : m_dskchg) {
d = true;
}
preset_crc();
m_crcerr_syn = false;
m_overrun = false;
m_accdata = false;
m_timeout = true;
m_cntl_reg = 0;
m_clock_sr = 0;
m_clock_reg = 0;
m_data_sr = 0;
m_wr_context = 0;
m_had_transition = false;
m_lckup = true; // Because READON = 0
m_amdt = false;
m_sync_cnt = 0;
m_hiden = false;
m_mgnena = false;
m_timeout_timer->reset();
m_byte_timer->reset();
m_half_bit_timer->reset();
#if 0
// DEBUG DEBUG DEBUG DEBUG
for (auto& r : m_ready) r = 2;
#endif
}
void hp9895_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
switch (id) {
case TIMEOUT_TMR_ID:
LOG(("Timeout!\n"));
m_timeout = true;
if (m_mgnena) {
// CPU is resumed by timeout if MGNENA=1
m_cpu->trigger(1);
}
break;
case BYTE_TMR_ID:
{
if (m_accdata) {
// Resume CPU when it's waiting for SDOK
m_cpu->trigger(1);
} else {
// No access to data register by CPU
LOG(("Data overrun!\n"));
m_overrun = true;
}
m_accdata = false;
m_crcerr_syn = m_crc != 0;
if (!BIT(m_cntl_reg , REG_CNTL_CRCON_BIT)) {
// CRC not enabled, keep it in preset state (all ones)
preset_crc();
}
attotime sdok_time{machine().time()};
LOG_0(("SDOK @ %.06f\n" , sdok_time.as_double()));
bool do_crc_upd = true;
if (BIT(m_cntl_reg , REG_CNTL_WRITON_BIT)) {
// Writing
m_pll.commit(get_write_device() , sdok_time);
m_pll.ctime = sdok_time;
// Check for AMDT when in loopback mode
if (!m_lckup && !m_amdt && BIT(m_cntl_reg , REG_CNTL_READON_BIT)) {
if (m_hiden) {
m_amdt = m_data_sr != 0xff;
} else {
m_amdt = m_data_sr != 0;
}
}
LOG_0(("WR D=%02x/C=%02x\n" , m_data_sr , m_clock_sr));
do_crc_upd = false;
for (unsigned i = 0; i < 8; i++) {
bool clock_bit;
bool data_bit;
clock_bit = shift_sr(m_clock_sr, false);
data_bit = shift_sr(m_data_sr, true);
if (BIT(m_cntl_reg , REG_CNTL_CRCOUT_BIT)) {
// Substitute data bits from DSR with those from CRC when CRCOUT=1
data_bit = BIT(m_crc , 15);
m_crc <<= 1;
} else if (BIT(m_cntl_reg , REG_CNTL_CRCON_BIT)) {
// Update CRC
update_crc(data_bit);
}
write_bit(data_bit, clock_bit);
}
// When shifting is done DSR is filled with 1s and CSR with 0s
}
if (BIT(m_cntl_reg , REG_CNTL_READON_BIT)) {
// Reading
m_pll.ctime = sdok_time;
for (unsigned i = 0; i < 8; i++) {
read_bit(do_crc_upd);
}
LOG_0(("RD D=%02x/C=%02x\n" , m_data_sr , m_clock_sr));
}
LOG_0(("next SDOK @ %.06f\n" , m_pll.ctime.as_double()));
timer.adjust(m_pll.ctime - sdok_time);
}
break;
case HALF_BIT_TMR_ID:
{
m_pll.ctime = machine().time();
if (m_lckup) {
// Trying to lock on synchronization bytes
attotime edge;
attotime tm;
get_next_transition(m_pll.ctime, edge);
bool half_bit0 = m_pll.feed_read_data(tm , edge , attotime::never);
get_next_transition(m_pll.ctime, edge);
bool half_bit1 = m_pll.feed_read_data(tm , edge , attotime::never);
if (half_bit0 == half_bit1) {
// If half bits are equal, no synch
LOG_0(("Reset sync_cnt\n"));
m_sync_cnt = 0;
} else if (++m_sync_cnt >= MIN_SYNC_BITS) {
// Synchronized, now wait for AM
LOG_0(("Synchronized @ %.6f\n" , machine().time().as_double()));
m_lckup = false;
if (BIT(m_cntl_reg , REG_CNTL_WRITON_BIT)) {
// When loopback is active, leave AM detection to byte timer as
// byte boundary is already synchronized
timer.reset();
return;
} else {
// Align with bit cell
// Synchronization bits in HP mode: 32x 1s -> C/D bits = 01010101...
// Synchronization bits in IBM mode: 32x 0s -> C/D bits = 10101010...
if (m_hiden != half_bit1) {
// Discard 1/2 bit cell if synchronization achieved in the clock part
get_next_transition(m_pll.ctime, edge);
m_pll.feed_read_data(tm , edge , attotime::never);
}
// Load CSR & DSR as they are after synchronization bits
if (m_hiden) {
m_clock_sr = 0;
m_data_sr = ~0;
} else {
m_clock_sr = ~0;
m_data_sr = 0;
}
}
}
} else {
// Looking for AM
/// CRC is not updated because it can't be possibly enabled at this point
read_bit(false);
if ((m_hiden && !BIT(m_data_sr , 7)) ||
(!m_hiden && BIT(m_data_sr , 0))) {
// Got AM as soon as bits being shifted into DSR change value wrt synchronization bits
m_amdt = true;
// Finish the current byte
for (unsigned i = 0; i < 7; i++) {
read_bit(false);
}
attotime adjust{m_pll.ctime - machine().time()};
LOG_0(("Got AM @ %.6f, ctime=%.6f, adj=%.6f, D=%02x/C=%02x\n" , machine().time().as_double() , m_pll.ctime.as_double() , adjust.as_double() , m_data_sr , m_clock_sr));
// Disable half-bit timer & enable byte timer
timer.reset();
m_byte_timer->adjust(adjust);
return;
}
}
timer.adjust(m_pll.ctime - machine().time());
}
break;
default:
break;
}
}
void hp9895_device::ieee488_eoi(int state)
@ -160,6 +510,349 @@ WRITE16_MEMBER(hp9895_device::z80_m1_w)
}
}
WRITE8_MEMBER(hp9895_device::data_w)
{
LOG_0(("W DATA=%02x\n" , data));
// CPU stalls until next SDOK
m_cpu->suspend_until_trigger(1 , true);
m_data_sr = data;
m_clock_sr = m_clock_reg;
m_accdata = true;
}
WRITE8_MEMBER(hp9895_device::clock_w)
{
LOG_0(("W CLOCK=%02x\n" , data));
m_clock_reg = data;
}
WRITE8_MEMBER(hp9895_device::reset_w)
{
LOG_0(("W RESET=%02x\n" , data));
if (BIT(data , REG_RESET_TIMEOUT_START_BIT)) {
m_timeout = false;
m_timeout_timer->adjust(attotime::from_msec(TIMEOUT_MSEC));
}
if (BIT(data , REG_RESET_OVERUN_CLEAR_BIT)) {
m_overrun = false;
}
// TODO: PROGRES
}
WRITE8_MEMBER(hp9895_device::leds_w)
{
LOG(("W LEDS=%02x %c%c%c%c%c\n" , data , BIT(data , 4) ? '.' : '*' , BIT(data , 3) ? '.' : '*' , BIT(data , 2) ? '.' : '*' , BIT(data , 1) ? '.' : '*' , BIT(data , 0) ? '.' : '*'));
// TODO:
}
WRITE8_MEMBER(hp9895_device::cntl_w)
{
if (data != m_cntl_reg) {
LOG_0(("W CNTL=%02x -> %02x\n" , m_cntl_reg , data));
uint8_t old_cntl_reg = m_cntl_reg;
m_cntl_reg = data;
bool old_writon = BIT(old_cntl_reg , REG_CNTL_WRITON_BIT);
bool new_writon = BIT(m_cntl_reg , REG_CNTL_WRITON_BIT);
bool old_readon = BIT(old_cntl_reg , REG_CNTL_READON_BIT);
bool new_readon = BIT(m_cntl_reg , REG_CNTL_READON_BIT);
bool byte_timer_running = old_writon || m_amdt;
bool byte_timer_needed = new_writon || (new_readon && m_amdt);
if (!byte_timer_running && byte_timer_needed) {
LOG_0(("Enable byte tmr\n"));
attotime byte_period = get_half_bit_cell_period() * 16;
m_byte_timer->adjust(byte_period);
} else if (byte_timer_running && !byte_timer_needed) {
LOG_0(("Disable byte tmr\n"));
m_byte_timer->reset();
}
if (!old_writon && !old_readon && (new_writon || new_readon)) {
m_pll.set_clock(get_half_bit_cell_period());
}
if (!old_writon && new_writon) {
// Writing enabled
LOG_0(("Start writing..\n"));
m_pll.start_writing(machine().time());
m_wr_context = 0;
m_had_transition = false;
} else if (old_writon && !new_writon) {
// Writing disabled
LOG_0(("Stop writing..\n"));
m_pll.stop_writing(get_write_device() , machine().time());
}
if (!old_readon && new_readon) {
// Reading enabled
LOG_0(("Start reading..\n"));
m_pll.read_reset(machine().time());
m_sync_cnt = 0;
m_half_bit_timer->adjust(get_half_bit_cell_period());
} else if (old_readon && !new_readon) {
// Reading disabled
LOG_0(("Stop reading..\n"));
m_half_bit_timer->reset();
m_lckup = true;
m_amdt = false;
}
if (!new_readon && !new_writon) {
m_crcerr_syn = false;
BIT_CLR(m_cntl_reg, REG_CNTL_CRCON_BIT);
BIT_CLR(m_cntl_reg, REG_CNTL_CRCOUT_BIT);
preset_crc();
}
}
}
WRITE8_MEMBER(hp9895_device::drv_w)
{
LOG_0(("W DRV=%02x\n" , data));
m_mgnena = BIT(data , REG_DRV_MGNENA_BIT);
if (m_current_drive != nullptr) {
m_current_drive->stp_w(!BIT(data , REG_DRV_STEP_BIT));
m_current_drive->dir_w(!BIT(data , REG_DRV_MOVEIN_BIT));
// TODO: in use signal
m_current_drive->ss_w(BIT(data , REG_DRV_HEADSEL_BIT));
}
}
WRITE8_MEMBER(hp9895_device::xv_w)
{
LOG_0(("W XV=%02x\n" , data));
// Disk Changed flag is cleared when drive is ready and it is deselected
if (m_current_drive_idx < 2 && (data & xv_drive_masks[ m_current_drive_idx ]) == 0 && !m_current_drive->ready_r()) {
if (m_dskchg[ m_current_drive_idx ]) {
LOG(("Dskchg %u cleared\n" , m_current_drive_idx));
}
m_dskchg[ m_current_drive_idx ] = false;
}
m_current_drive = nullptr;
m_current_drive_idx = ~0;
for (unsigned i = 0; i < 2; i++) {
if (data & xv_drive_masks[ i ]) {
m_current_drive = m_drives[ i ]->get_device();
m_current_drive_idx = i;
break;
}
}
m_hiden = BIT(data , REG_XV_HIDEN_BIT);
}
READ8_MEMBER(hp9895_device::data_r)
{
m_clock_reg = m_clock_sr;
m_accdata = true;
LOG_0(("R DATA=%02x\n" , m_data_sr));
// CPU stalls until next SDOK
m_cpu->suspend_until_trigger(1 , true);
return m_data_sr;
}
READ8_MEMBER(hp9895_device::clock_r)
{
return m_clock_reg;
}
READ8_MEMBER(hp9895_device::drivstat_r)
{
uint8_t res = 0;
if (m_current_drive != nullptr) {
if (m_current_drive->idx_r()) {
BIT_SET(res , REG_DRIVSTAT_INDEX_BIT);
}
if (m_dskchg[ m_current_drive_idx ]) {
BIT_SET(res , REG_DRIVSTAT_DISCHNG_BIT);
}
if (!m_current_drive->trk00_r()) {
BIT_SET(res , REG_DRIVSTAT_TRACK0_BIT);
}
if (m_current_drive->wpt_r()) {
BIT_SET(res , REG_DRIVSTAT_WRPROT_BIT);
}
if (!m_current_drive->ready_r()) {
BIT_SET(res , REG_DRIVSTAT_READY_BIT);
}
if (!m_current_drive->twosid_r()) {
BIT_SET(res , REG_DRIVSTAT_TWOSIDE_BIT);
}
}
if (m_crcerr_syn) {
BIT_SET(res , REG_DRIVSTAT_CRCERR_BIT);
}
if (m_overrun) {
BIT_SET(res , REG_DRIVSTAT_OVERUN_BIT);
}
LOG_0(("R DRIVSTAT=%02x\n" , res));
return res;
}
READ8_MEMBER(hp9895_device::switches_r)
{
uint8_t res = get_switches2();
res |= m_switches->read();
return res;
}
READ8_MEMBER(hp9895_device::switches2_r)
{
return get_switches2();
}
void hp9895_device::floppy_ready_cb(floppy_image_device *floppy , int state)
{
#if 0
// DEBUG DEBUG DEBUG DEBUG
for (unsigned i = 0; i < 2; i++) {
if (floppy == m_drives[ i ]->get_device()) {
if (m_ready[ i ] != state) {
LOG(("Ready %u=%d\n" , i , state));
m_ready[ i ] = state;
}
break;
}
}
#endif
if (state) {
// Set Disk Changed flag when a drive is not ready
for (unsigned i = 0; i < 2; i++) {
if (floppy == m_drives[ i ]->get_device()) {
LOG(("Dskchg %u set\n" , i));
m_dskchg[ i ] = true;
break;
}
}
}
}
uint8_t hp9895_device::get_switches2(void) const
{
uint8_t res = 0;
if (m_timeout) {
BIT_SET(res, REG_SWITCHES_TIMEOUT_BIT);
}
if (m_amdt) {
BIT_SET(res, REG_SWITCHES_AMDT_BIT);
}
return res;
}
attotime hp9895_device::get_half_bit_cell_period(void) const
{
return attotime::from_hz((m_hiden ? HPMODE_BIT_FREQ : IBMMODE_BIT_FREQ) * 2);
}
floppy_image_device *hp9895_device::get_write_device(void) const
{
if (!BIT(m_cntl_reg , REG_CNTL_WRITDRV_BIT)) {
return nullptr;
} else {
return m_current_drive;
}
}
void hp9895_device::preset_crc(void)
{
m_crc = ~0;
}
void hp9895_device::update_crc(bool bit)
{
bool msb = BIT(m_crc , 15);
m_crc <<= 1;
if (bit ^ msb) {
m_crc ^= 0x1021;
}
}
bool hp9895_device::shift_sr(uint8_t& sr , bool input_bit)
{
bool res;
if (m_hiden) {
res = BIT(sr , 0);
sr >>= 1;
if (input_bit) {
BIT_SET(sr , 7);
}
} else {
res = BIT(sr , 7);
sr <<= 1;
if (input_bit) {
BIT_SET(sr , 0);
}
}
return res;
}
void hp9895_device::get_next_transition(const attotime& from_when , attotime& edge)
{
edge = attotime::never;
if (BIT(m_cntl_reg , REG_CNTL_WRITON_BIT)) {
// Loop back write transitions into reading data path
for (int idx = 0; idx < m_pll.write_position; idx++) {
if (m_pll.write_buffer[ idx ] >= from_when) {
edge = m_pll.write_buffer[ idx ];
break;
}
}
} else if (m_current_drive != nullptr) {
edge = m_current_drive->get_next_transition(from_when);
}
}
void hp9895_device::read_bit(bool crc_upd)
{
attotime edge;
attotime tm;
get_next_transition(m_pll.ctime, edge);
bool clock_bit = m_pll.feed_read_data(tm , edge , attotime::never);
get_next_transition(m_pll.ctime, edge);
bool data_bit = m_pll.feed_read_data(tm , edge , attotime::never);
shift_sr(m_clock_sr, clock_bit);
data_bit = shift_sr(m_data_sr, data_bit);
if (crc_upd &&
BIT(m_cntl_reg , REG_CNTL_CRCON_BIT) &&
!BIT(m_cntl_reg , REG_CNTL_CRCOUT_BIT)) {
update_crc(data_bit);
}
}
void hp9895_device::write_bit(bool data_bit , bool clock_bit)
{
if (m_hiden) {
// **** HP mode ****
// m_wr_context delays data bits by 2 bit cells
// Bit Content
// ============
// 2 Data @ t-2
// 1 Data @ t-1
// 0 Data @ t
m_wr_context = (m_wr_context << 1) | data_bit;
data_bit = BIT(m_wr_context , 2);
clock_bit = !data_bit && (clock_bit || !m_had_transition);
m_had_transition = data_bit || clock_bit;
}
// else... IBM mode, nothing to do
attotime dummy;
m_pll.write_next_bit(clock_bit , dummy , nullptr , attotime::never);
m_pll.write_next_bit(data_bit , dummy , nullptr , attotime::never);
}
ROM_START(hp9895)
ROM_REGION(0x2000 , "cpu" , 0)
ROM_LOAD("1818-1391a.bin" , 0 , 0x2000 , CRC(b50dbfb5) SHA1(96edf9af78be75fbad2a0245b8af43958ba32752))
@ -175,9 +868,20 @@ static ADDRESS_MAP_START(z80_io_map , AS_IO , 8 , hp9895_device)
ADDRESS_MAP_UNMAP_HIGH
ADDRESS_MAP_GLOBAL_MASK(0xff)
AM_RANGE(0x10 , 0x17) AM_DEVWRITE("phi" , phi_device , reg8_w) AM_READ(phi_reg_r)
// TODO: 60-67 range
AM_RANGE(0x60 , 0x60) AM_READWRITE(data_r , data_w)
AM_RANGE(0x61 , 0x61) AM_READWRITE(clock_r , clock_w)
AM_RANGE(0x62 , 0x62) AM_READWRITE(drivstat_r , reset_w)
AM_RANGE(0x63 , 0x63) AM_READWRITE(switches_r , leds_w)
AM_RANGE(0x64 , 0x64) AM_WRITE(cntl_w)
AM_RANGE(0x65 , 0x65) AM_WRITE(drv_w)
AM_RANGE(0x66 , 0x66) AM_WRITE(xv_w)
AM_RANGE(0x67 , 0x67) AM_READ(switches2_r)
ADDRESS_MAP_END
static SLOT_INTERFACE_START(hp9895_floppies)
SLOT_INTERFACE("8dsdd" , FLOPPY_8_DSDD)
SLOT_INTERFACE_END
static MACHINE_CONFIG_FRAGMENT(hp9895)
MCFG_CPU_ADD("cpu" , Z80 , 4000000)
MCFG_CPU_PROGRAM_MAP(z80_program_map)
@ -195,6 +899,11 @@ static MACHINE_CONFIG_FRAGMENT(hp9895)
MCFG_PHI_REN_WRITE_CB(WRITELINE(hp9895_device , phi_ren_w))
MCFG_PHI_DIO_READWRITE_CB(READ8(hp9895_device , phi_dio_r) , WRITE8(hp9895_device , phi_dio_w))
MCFG_PHI_INT_WRITE_CB(WRITELINE(hp9895_device , phi_int_w))
MCFG_FLOPPY_DRIVE_ADD("floppy0" , hp9895_floppies , "8dsdd" , floppy_image_device::default_floppy_formats)
MCFG_SLOT_FIXED(true)
MCFG_FLOPPY_DRIVE_ADD("floppy1" , hp9895_floppies , "8dsdd" , floppy_image_device::default_floppy_formats)
MCFG_SLOT_FIXED(true)
MACHINE_CONFIG_END
const tiny_rom_entry *hp9895_device::device_rom_region() const

View File

@ -17,6 +17,8 @@
#include "ieee488.h"
#include "cpu/z80/z80.h"
#include "machine/phi.h"
#include "imagedev/floppy.h"
#include "machine/fdc_pll.h"
class hp9895_device : public device_t,
public device_ieee488_interface
@ -26,9 +28,10 @@ public:
hp9895_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock);
// device-level overrides
//virtual ioport_constructor device_input_ports() const override;
virtual ioport_constructor device_input_ports() const override;
virtual void device_start() override;
virtual void device_reset() override;
virtual void device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr) override;
virtual const tiny_rom_entry *device_rom_region() const override;
virtual machine_config_constructor device_mconfig_additions() const override;
@ -63,11 +66,71 @@ public:
DECLARE_READ8_MEMBER(phi_reg_r);
DECLARE_WRITE16_MEMBER(z80_m1_w);
// Floppy interface
DECLARE_WRITE8_MEMBER(data_w);
DECLARE_WRITE8_MEMBER(clock_w);
DECLARE_WRITE8_MEMBER(reset_w);
DECLARE_WRITE8_MEMBER(leds_w);
DECLARE_WRITE8_MEMBER(cntl_w);
DECLARE_WRITE8_MEMBER(drv_w);
DECLARE_WRITE8_MEMBER(xv_w);
DECLARE_READ8_MEMBER(data_r);
DECLARE_READ8_MEMBER(clock_r);
DECLARE_READ8_MEMBER(drivstat_r);
DECLARE_READ8_MEMBER(switches_r);
DECLARE_READ8_MEMBER(switches2_r);
// Floppy drive interface
void floppy_ready_cb(floppy_image_device *floppy , int state);
private:
required_device<z80_device> m_cpu;
required_device<phi_device> m_phi;
required_device<floppy_connector> m_drives[ 2 ];
required_ioport m_switches;
bool m_cpu_irq;
floppy_image_device *m_current_drive;
unsigned m_current_drive_idx;
bool m_dskchg[ 2 ];
uint16_t m_crc; // U77
bool m_crcerr_syn;
bool m_overrun;
bool m_accdata;
bool m_timeout;
uint8_t m_cntl_reg; // U31
uint8_t m_clock_sr; // U22 & U4
uint8_t m_clock_reg; // U23 & U5
uint8_t m_data_sr; // U24 & U6
uint8_t m_wr_context;
bool m_had_transition;
bool m_lckup;
bool m_amdt;
uint8_t m_sync_cnt; // U28 & U73
bool m_hiden;
bool m_mgnena;
#if 0
// DEBUG DEBUG DEBUG DEBUG
int m_ready[ 2 ];
#endif
// Timers
emu_timer *m_timeout_timer;
emu_timer *m_byte_timer;
emu_timer *m_half_bit_timer;
// PLL
fdc_pll_t m_pll;
uint8_t get_switches2(void) const;
attotime get_half_bit_cell_period(void) const;
floppy_image_device *get_write_device(void) const;
void preset_crc(void);
void update_crc(bool bit);
bool shift_sr(uint8_t& sr , bool input_bit);
void get_next_transition(const attotime& from_when , attotime& edge);
void read_bit(bool crc_upd);
void write_bit(bool data_bit , bool clock_bit);
};
// device type definition

View File

@ -22,12 +22,17 @@ void fdc_pll_t::set_clock(const attotime &_period)
}
void fdc_pll_t::reset(const attotime &when)
{
read_reset(when);
write_position = 0;
write_start_time = attotime::never;
}
void fdc_pll_t::read_reset(const attotime &when)
{
ctime = when;
phase_adjust = attotime::zero;
freq_hist = 0;
write_position = 0;
write_start_time = attotime::never;
}
void fdc_pll_t::start_writing(const attotime &tm)
@ -55,8 +60,13 @@ void fdc_pll_t::commit(floppy_image_device *floppy, const attotime &tm)
int fdc_pll_t::get_next_bit(attotime &tm, floppy_image_device *floppy, const attotime &limit)
{
attotime edge = floppy ? floppy->get_next_transition(ctime) : attotime::never;
attotime edge = floppy ? floppy->get_next_transition(ctime) : attotime::never;
return feed_read_data(tm , edge , limit);
}
int fdc_pll_t::feed_read_data(attotime &tm, const attotime& edge, const attotime &limit)
{
attotime next = ctime + period + phase_adjust;
#if 0

View File

@ -21,7 +21,9 @@ public:
void set_clock(const attotime &period);
void reset(const attotime &when);
void read_reset(const attotime &when);
int get_next_bit(attotime &tm, floppy_image_device *floppy, const attotime &limit);
int feed_read_data(attotime &tm, const attotime& edge, const attotime &limit);
bool write_next_bit(bool bit, attotime &tm, floppy_image_device *floppy, const attotime &limit);
void start_writing(const attotime &tm);
void commit(floppy_image_device *floppy, const attotime &tm);

View File

@ -33,6 +33,8 @@
// Debugging
#define VERBOSE 1
#define LOG(x) do { if (VERBOSE) logerror x; } while (0)
#define VERBOSE_0 0
#define LOG_0(x) do { if (VERBOSE_0) logerror x; } while (0)
// Macros to clear/set single bits
#define BIT_MASK(n) (1U << (n))
@ -250,7 +252,7 @@ void phi_device::set_ext_signal(phi_488_signal_t signal , int state)
state = !state;
if (m_ext_signals[ signal ] != state) {
m_ext_signals[ signal ] = state;
LOG(("EXT EOI %d DAV %d NRFD %d NDAC %d IFC %d SRQ %d ATN %d REN %d\n" ,
LOG_0(("EXT EOI %d DAV %d NRFD %d NDAC %d IFC %d SRQ %d ATN %d REN %d\n" ,
m_ext_signals[ PHI_488_EOI ] ,
m_ext_signals[ PHI_488_DAV ] ,
m_ext_signals[ PHI_488_NRFD ] ,
@ -409,7 +411,7 @@ void phi_device::device_reset()
void phi_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
LOG(("tmr %d enabled %d\n" , id , timer.enabled()));
LOG_0(("tmr %d enabled %d\n" , id , timer.enabled()));
update_fsm();
}
@ -521,7 +523,7 @@ uint8_t phi_device::get_dio(void)
void phi_device::set_dio(uint8_t data)
{
if (data != m_dio) {
LOG(("DIO=%02x\n" , data));
LOG_0(("DIO=%02x\n" , data));
m_dio = data;
if (!m_loopback) {
m_dio_write_func(~data);
@ -542,7 +544,7 @@ void phi_device::set_signal(phi_488_signal_t signal , bool state)
{
if (state != m_signals[ signal ]) {
m_signals[ signal ] = state;
LOG(("INT EOI %d DAV %d NRFD %d NDAC %d IFC %d SRQ %d ATN %d REN %d\n" ,
LOG_0(("INT EOI %d DAV %d NRFD %d NDAC %d IFC %d SRQ %d ATN %d REN %d\n" ,
m_signals[ PHI_488_EOI ] ,
m_signals[ PHI_488_DAV ] ,
m_signals[ PHI_488_NRFD ] ,
@ -565,9 +567,16 @@ void phi_device::pon_msg(void)
m_t_spms = false;
m_l_state = PHI_L_LIDS;
m_sr_state = PHI_SR_NPRS;
m_pp_state = PHI_PP_PPIS;
m_pp_pacs = false;
m_ppr_msg = my_address();
uint8_t addr = my_address();
if (addr <= 7) {
// If address <= 7, PP is automatically enabled and configured for PPR = ~address
m_ppr_msg = addr ^ 7;
m_pp_state = PHI_PP_PPSS;
} else {
m_ppr_msg = 0;
m_pp_state = PHI_PP_PPIS;
}
m_s_sense = true;
m_c_state = PHI_C_CIDS;
m_be_counter = 0;
@ -610,10 +619,10 @@ void phi_device::update_fsm(void)
// TODO: RL FSM
// Loop until all changes settle
while (changed) {
LOG(("SH %d AH %d T %d SPMS %d L %d SR %d PP %d PACS %d PPR %u S %d C %d\n" ,
LOG_0(("SH %d AH %d T %d SPMS %d L %d SR %d PP %d PACS %d PPR %u S %d C %d\n" ,
m_sh_state , m_ah_state , m_t_state , m_t_spms , m_l_state , m_sr_state ,
m_pp_state , m_pp_pacs , m_ppr_msg , m_s_sense , m_c_state));
LOG(("O E/F=%d/%d I E/F=%d/%d\n" , m_fifo_out.empty() , m_fifo_out.full() , m_fifo_in.empty() , m_fifo_in.full()));
LOG_0(("O E/F=%d/%d I E/F=%d/%d\n" , m_fifo_out.empty() , m_fifo_out.full() , m_fifo_in.empty() , m_fifo_in.full()));
changed = false;
// SH FSM
@ -641,7 +650,7 @@ void phi_device::update_fsm(void)
if ((m_nba_origin = nba_msg(new_byte , new_eoi)) != NBA_NONE) {
m_sh_state = PHI_SH_SDYS;
m_sh_dly_timer->adjust(attotime::from_nsec(DELAY_T1));
LOG(("SH DLY enabled %d\n" , m_sh_dly_timer->enabled()));
LOG_0(("SH DLY enabled %d\n" , m_sh_dly_timer->enabled()));
}
break;
@ -653,6 +662,7 @@ void phi_device::update_fsm(void)
case PHI_SH_STRS:
if (!get_signal(PHI_488_NDAC)) {
LOG(("TX %02x/%d\n" , m_dio , m_signals[ PHI_488_EOI ]));
m_sh_state = PHI_SH_SGNS;
clear_nba((nba_origin_t)m_nba_origin);
}
@ -669,15 +679,13 @@ void phi_device::update_fsm(void)
// SH outputs
// EOI is controlled by SH & C FSMs
bool eoi_signal;
bool eoi_signal = false;
uint8_t dio_byte = 0;
set_signal(PHI_488_DAV , m_sh_state == PHI_SH_STRS);
if (m_sh_state == PHI_SH_SDYS || m_sh_state == PHI_SH_STRS) {
nba_msg(new_byte , new_eoi);
set_dio(new_byte);
dio_byte = new_byte;
eoi_signal = new_eoi;
} else {
set_dio(0);
eoi_signal = false;
}
// AH FSM
@ -883,8 +891,9 @@ void phi_device::update_fsm(void)
changed = true;
}
// PP outputs
if (m_pp_state == PHI_PP_PPAS && m_s_sense == !!BIT(m_reg_control , REG_CTRL_PP_RESPONSE_BIT) && m_ppr_msg <= 7) {
set_dio(1 << m_ppr_msg);
if (m_pp_state == PHI_PP_PPAS && m_s_sense == !!BIT(m_reg_control , REG_CTRL_PP_RESPONSE_BIT)) {
LOG(("PP %u\n" , m_ppr_msg));
dio_byte |= (1U << m_ppr_msg);
}
// C FSM
@ -988,6 +997,7 @@ void phi_device::update_fsm(void)
m_c_state == PHI_C_CAWS || m_c_state == PHI_C_CTRS);
eoi_signal = eoi_signal || m_c_state == PHI_C_CPWS || m_c_state == PHI_C_CPPS;
set_signal(PHI_488_EOI , eoi_signal);
set_dio(dio_byte);
}
// Update status register
@ -1307,11 +1317,11 @@ bool phi_device::byte_received(uint8_t byte , bool eoi)
if (m_l_state == PHI_L_LACS) {
if (m_fifo_in.full() || BIT(m_reg_int_cond , REG_INT_DEV_CLEAR_BIT)) {
// No room for received byte, stall handshake
LOG(("..stalled\n"));
LOG_0(("..stalled\n"));
return false;
} else {
m_fifo_in.enqueue(word);
LOG(("..OK\n"));
LOG_0(("..OK\n"));
if (m_t_state != PHI_T_TACS && m_t_state != PHI_T_ID3 &&
m_t_state != PHI_T_ID5 && m_t_state != PHI_T_SPAS) {
// If PHI didn't send this byte to itself, set data freeze
@ -1320,7 +1330,7 @@ bool phi_device::byte_received(uint8_t byte , bool eoi)
}
}
if (end_of_transfer) {
LOG(("End of byte transfer enable\n"));
LOG_0(("End of byte transfer enable\n"));
m_fifo_out.dequeue();
m_be_counter = 0;
} else {