sound/discrete.cpp: Fix more crashes, and modernise a little.

Reserve some space in another vector that it takes addresses to members
of (fixes lack of sound in dkong and dkongjr).

Removed dependence on auto_alloc and friends.  There's one more
problematic make_unique_clear now, but there are several fewer
auto_alloc family calls.
This commit is contained in:
Vas Crabb 2020-09-30 23:40:06 +10:00
parent cc8cd6c33b
commit 687dd20aeb
2 changed files with 113 additions and 128 deletions

View File

@ -90,7 +90,7 @@ DEFINE_DEVICE_TYPE(DISCRETE, discrete_sound_device, "discrete", "Discrete Sound"
struct output_buffer struct output_buffer
{ {
double *node_buf; std::unique_ptr<double []> node_buf;
const double *source; const double *source;
volatile double *ptr; volatile double *ptr;
int node_num; int node_num;
@ -107,15 +107,15 @@ class discrete_task
{ {
friend class discrete_device; friend class discrete_device;
public: public:
virtual ~discrete_task(void) { } virtual ~discrete_task() { }
inline void step_nodes(void); inline void step_nodes();
inline bool lock_threadid(int32_t threadid) inline bool lock_threadid(int32_t threadid)
{ {
int expected = -1; int expected = -1;
return m_threadid.compare_exchange_weak(expected, threadid, std::memory_order_release,std::memory_order_relaxed); return m_threadid.compare_exchange_weak(expected, threadid, std::memory_order_release,std::memory_order_relaxed);
} }
inline void unlock(void) { m_threadid = -1; } inline void unlock() { m_threadid = -1; }
//const linked_list_entry *list; //const linked_list_entry *list;
node_step_list_t step_list; node_step_list_t step_list;
@ -123,22 +123,20 @@ public:
/* list of source nodes */ /* list of source nodes */
std::vector<input_buffer> source_list; /* discrete_source_node */ std::vector<input_buffer> source_list; /* discrete_source_node */
int task_group; int task_group = 0;
discrete_task(discrete_device &pdev) discrete_task(discrete_device &pdev) : m_device(pdev), m_threadid(-1)
: task_group(0), m_device(pdev), m_threadid(-1), m_samples(0) {
{ // FIXME: the code expects to be able to take pointers to members of elements of this vector before it's filled
source_list.clear(); source_list.reserve(16);
step_list.clear();
m_buffers.clear();
} }
protected: protected:
static void *task_callback(void *param, int threadid); static void *task_callback(void *param, int threadid);
inline bool process(void); inline bool process();
void check(discrete_task *dest_task); void check(discrete_task &dest_task);
void prepare_for_queue(int samples); void prepare_for_queue(int samples);
std::vector<output_buffer> m_buffers; std::vector<output_buffer> m_buffers;
@ -146,8 +144,7 @@ protected:
private: private:
std::atomic<int32_t> m_threadid; std::atomic<int32_t> m_threadid;
volatile int m_samples; volatile int m_samples = 0;
}; };
@ -178,7 +175,7 @@ private:
* *
*************************************/ *************************************/
inline void discrete_task::step_nodes(void) inline void discrete_task::step_nodes()
{ {
for (input_buffer &sn : source_list) for (input_buffer &sn : source_list)
{ {
@ -216,7 +213,7 @@ void *discrete_task::task_callback(void *param, int threadid)
task_list_t *list = (task_list_t *) param; task_list_t *list = (task_list_t *) param;
do do
{ {
for (discrete_task *task : *list) for (const auto &task : *list)
{ {
/* try to lock */ /* try to lock */
if (task->lock_threadid(threadid)) if (task->lock_threadid(threadid))
@ -231,7 +228,7 @@ void *discrete_task::task_callback(void *param, int threadid)
return nullptr; return nullptr;
} }
bool discrete_task::process(void) bool discrete_task::process()
{ {
int samples = std::min(int(m_samples), MAX_SAMPLES_PER_TASK_SLICE); int samples = std::min(int(m_samples), MAX_SAMPLES_PER_TASK_SLICE);
@ -267,16 +264,16 @@ void discrete_task::prepare_for_queue(int samples)
m_samples = samples; m_samples = samples;
/* set up task buffers */ /* set up task buffers */
for (output_buffer &ob : m_buffers) for (output_buffer &ob : m_buffers)
ob.ptr = ob.node_buf; ob.ptr = ob.node_buf.get();
/* initialize sources */ /* initialize sources */
for (input_buffer &sn : source_list) for (input_buffer &sn : source_list)
{ {
sn.ptr = sn.linked_outbuf->node_buf; sn.ptr = sn.linked_outbuf->node_buf.get();
} }
} }
void discrete_task::check(discrete_task *dest_task) void discrete_task::check(discrete_task &dest_task)
{ {
// FIXME: this function takes addresses of elements of a vector that has items added later // FIXME: this function takes addresses of elements of a vector that has items added later
// 16 is enough for the systems in MAME, but the code should be fixed properly // 16 is enough for the systems in MAME, but the code should be fixed properly
@ -289,7 +286,7 @@ void discrete_task::check(discrete_task *dest_task)
{ {
discrete_base_node *task_node = node_entry->self; discrete_base_node *task_node = node_entry->self;
for (discrete_step_interface *step_entry : dest_task->step_list) for (discrete_step_interface *step_entry : dest_task.step_list)
{ {
discrete_base_node *dest_node = step_entry->self; discrete_base_node *dest_node = step_entry->self;
@ -302,7 +299,6 @@ void discrete_task::check(discrete_task *dest_task)
/* Fixme: sub nodes ! */ /* Fixme: sub nodes ! */
if (NODE_DEFAULT_NODE(task_node->block_node()) == NODE_DEFAULT_NODE(inputnode_num)) if (NODE_DEFAULT_NODE(task_node->block_node()) == NODE_DEFAULT_NODE(inputnode_num))
{ {
input_buffer source;
int found = -1; int found = -1;
output_buffer *pbuf = nullptr; output_buffer *pbuf = nullptr;
@ -319,28 +315,20 @@ void discrete_task::check(discrete_task *dest_task)
{ {
output_buffer buf; output_buffer buf;
buf.node_buf = auto_alloc_array(m_device.machine(), double, buf.node_buf = std::make_unique<double []>((task_node->sample_rate() + sound_manager::STREAMS_UPDATE_FREQUENCY) / sound_manager::STREAMS_UPDATE_FREQUENCY);
((task_node->sample_rate() + sound_manager::STREAMS_UPDATE_FREQUENCY) / sound_manager::STREAMS_UPDATE_FREQUENCY)); buf.ptr = buf.node_buf.get();
buf.ptr = buf.node_buf;
buf.source = dest_node->m_input[inputnum]; buf.source = dest_node->m_input[inputnum];
buf.node_num = inputnode_num; buf.node_num = inputnode_num;
//buf.node = device->discrete_find_node(inputnode); //buf.node = device->discrete_find_node(inputnode);
m_buffers.push_back(buf); m_buffers.push_back(std::move(buf));
pbuf = &m_buffers.back(); pbuf = &m_buffers.back();
} }
m_device.discrete_log("dso_task_start - buffering %d(%d) in task %p group %d referenced by %d group %d", NODE_INDEX(inputnode_num), NODE_CHILD_NODE_NUM(inputnode_num), this, task_group, dest_node->index(), dest_task->task_group); m_device.discrete_log("dso_task_start - buffering %d(%d) in task %p group %d referenced by %d group %d", NODE_INDEX(inputnode_num), NODE_CHILD_NODE_NUM(inputnode_num), this, task_group, dest_node->index(), dest_task.task_group);
/* register into source list */ /* register into source list */
//source = auto_alloc(device->machine(), discrete_source_node); dest_task.source_list.push_back(input_buffer{ nullptr, pbuf, 0.0 });
//source.task = this; // FIXME: taking address of element of vector before it's filled
//source.output_node = i; dest_node->m_input[inputnum] = &dest_task.source_list.back().buffer;
source.linked_outbuf = pbuf;
source.buffer = 0.0; /* please compiler */
source.ptr = nullptr;
dest_task->source_list.push_back(source);
/* point the input to a buffered location */
dest_node->m_input[inputnum] = &dest_task->source_list.back().buffer; // was copied! &source.buffer;
} }
} }
@ -369,7 +357,7 @@ discrete_base_node::discrete_base_node() :
} }
discrete_base_node::~discrete_base_node(void) discrete_base_node::~discrete_base_node()
{ {
/* currently noting */ /* currently noting */
} }
@ -393,7 +381,7 @@ void discrete_base_node::init(discrete_device *pdev, const discrete_block *xbloc
} }
} }
void discrete_base_node::save_state(void) void discrete_base_node::save_state()
{ {
if (m_block->node != NODE_SPECIAL) if (m_block->node != NODE_SPECIAL)
m_device->save_item(NAME(m_output), m_block->node); m_device->save_item(NAME(m_output), m_block->node);
@ -405,7 +393,7 @@ discrete_base_node *discrete_device::discrete_find_node(int node)
return m_indexed_node[NODE_INDEX(node)]; return m_indexed_node[NODE_INDEX(node)];
} }
void discrete_base_node::resolve_input_nodes(void) void discrete_base_node::resolve_input_nodes()
{ {
int inputnum; int inputnum;
@ -617,7 +605,7 @@ static uint64_t list_run_time(const node_list_t &list)
{ {
uint64_t total = 0; uint64_t total = 0;
for (discrete_base_node *node : list) for (const auto &node : list)
{ {
discrete_step_interface *step; discrete_step_interface *step;
if (node->interface(step)) if (node->interface(step))
@ -637,12 +625,11 @@ static uint64_t step_list_run_time(const node_step_list_t &list)
return total; return total;
} }
void discrete_device::display_profiling(void) void discrete_device::display_profiling()
{ {
int count; int count;
uint64_t total; uint64_t total;
uint64_t tresh; uint64_t tresh;
double tt;
/* calculate total time */ /* calculate total time */
total = list_run_time(m_node_list); total = list_run_time(m_node_list);
@ -651,7 +638,7 @@ void discrete_device::display_profiling(void)
osd_printf_info("Total Samples : %16d\n", m_total_samples); osd_printf_info("Total Samples : %16d\n", m_total_samples);
tresh = total / count; tresh = total / count;
osd_printf_info("Threshold (mean): %16d\n", tresh / m_total_samples); osd_printf_info("Threshold (mean): %16d\n", tresh / m_total_samples);
for (discrete_base_node *node : m_node_list) for (const auto &node : m_node_list)
{ {
discrete_step_interface *step; discrete_step_interface *step;
if (node->interface(step)) if (node->interface(step))
@ -660,9 +647,9 @@ void discrete_device::display_profiling(void)
} }
/* Task information */ /* Task information */
for (discrete_task *task : task_list) for (const auto &task : task_list)
{ {
tt = step_list_run_time(task->step_list); double tt = step_list_run_time(task->step_list);
osd_printf_info("Task(%d): %8.2f %15.2f\n", task->task_group, tt / double(total) * 100.0, tt / double(m_total_samples)); osd_printf_info("Task(%d): %8.2f %15.2f\n", task->task_group, tt / double(total) * 100.0, tt / double(m_total_samples));
} }
@ -682,15 +669,15 @@ void discrete_device::init_nodes(const sound_block_list_t &block_list)
{ {
discrete_task *task = nullptr; discrete_task *task = nullptr;
/* list tail pointers */ /* list tail pointers */
int has_tasks = 0; bool has_tasks = false;
/* check whether we have tasks ... */ /* check whether we have tasks ... */
if (USE_DISCRETE_TASKS) if (USE_DISCRETE_TASKS)
{ {
for (int i = 0; i < block_list.size(); i++) for (int i = 0; !has_tasks && (i < block_list.size()); i++)
{ {
if (block_list[i]->type == DSO_TASK_START) if (block_list[i]->type == DSO_TASK_START)
has_tasks = 1; has_tasks = true;
} }
} }
@ -699,21 +686,23 @@ void discrete_device::init_nodes(const sound_block_list_t &block_list)
/* make sure we have one simple task /* make sure we have one simple task
* No need to create a node since there are no dependencies. * No need to create a node since there are no dependencies.
*/ */
task = auto_alloc_clear(machine(), <discrete_task>(*this)); task_list.push_back(std::make_unique<discrete_task>(*this));
task_list.push_back(task); task = task_list.back().get();
} }
/* loop over all nodes */ /* loop over all nodes */
for (int i = 0; i < block_list.size(); i++) for (int i = 0; i < block_list.size(); i++)
{ {
const discrete_block *block = block_list[i]; const discrete_block &block = *block_list[i];
//discrete_base_node *node = block->factory->Create(this, block); // add to node list
discrete_base_node *node = block->factory(this, block); m_node_list.push_back(block.factory(*this, block));
/* keep track of special nodes */ discrete_base_node &node = *m_node_list.back();
if (block->node == NODE_SPECIAL)
if (block.node == NODE_SPECIAL)
{ {
switch(block->type) // keep track of special nodes
switch (block.type)
{ {
/* Output Node */ /* Output Node */
case DSO_OUTPUT: case DSO_OUTPUT:
@ -734,12 +723,12 @@ void discrete_device::init_nodes(const sound_block_list_t &block_list)
{ {
if (task != nullptr) if (task != nullptr)
fatalerror("init_nodes() - Nested DISCRETE_START_TASK.\n"); fatalerror("init_nodes() - Nested DISCRETE_START_TASK.\n");
task = auto_alloc_clear(machine(), <discrete_task>(*this)); task_list.push_back(std::make_unique<discrete_task>(*this));
task->task_group = block->initial[0]; task = task_list.back().get();
task->task_group = block.initial[0];
if (task->task_group < 0 || task->task_group >= DISCRETE_MAX_TASK_GROUPS) if (task->task_group < 0 || task->task_group >= DISCRETE_MAX_TASK_GROUPS)
fatalerror("discrete_dso_task: illegal task_group %d\n", task->task_group); fatalerror("discrete_dso_task: illegal task_group %d\n", task->task_group);
//logerror("task group %d\n", task->task_group); //logerror("task group %d\n", task->task_group);
task_list.push_back(task);
} }
break; break;
@ -755,37 +744,33 @@ void discrete_device::init_nodes(const sound_block_list_t &block_list)
fatalerror("init_nodes() - Failed, trying to create unknown special discrete node.\n"); fatalerror("init_nodes() - Failed, trying to create unknown special discrete node.\n");
} }
} }
/* otherwise, make sure we are not a duplicate, and put ourselves into the indexed list */
else else
{ {
if (m_indexed_node[NODE_INDEX(block->node)]) // otherwise, make sure we are not a duplicate, and put ourselves into the indexed list
fatalerror("init_nodes() - Duplicate entries for NODE_%02d\n", NODE_INDEX(block->node)); if (m_indexed_node[NODE_INDEX(block.node)])
m_indexed_node[NODE_INDEX(block->node)] = node; fatalerror("init_nodes() - Duplicate entries for NODE_%02d\n", NODE_INDEX(block.node));
m_indexed_node[NODE_INDEX(block.node)] = &node;
} }
/* add to node list */ // our running order just follows the order specified
m_node_list.push_back(node); // does the node step?
/* our running order just follows the order specified */
/* does the node step ? */
discrete_step_interface *step; discrete_step_interface *step;
if (node->interface(step)) if (node.interface(step))
{ {
/* do we belong to a task? */ /* do we belong to a task? */
if (task == nullptr) if (task == nullptr)
fatalerror("init_nodes() - found node outside of task: %s\n", node->module_name() ); fatalerror("init_nodes() - found node outside of task: %s\n", node.module_name());
else else
task->step_list.push_back(step); task->step_list.push_back(step);
} }
if (USE_DISCRETE_TASKS && block->type == DSO_TASK_END) if (USE_DISCRETE_TASKS && block.type == DSO_TASK_END)
{ {
task = nullptr; task = nullptr;
} }
/* and register save state */ /* and register save state */
node->save_state(); node.save_state();
} }
if (!has_tasks) if (!has_tasks)
@ -805,9 +790,9 @@ int discrete_device::same_module_index(const discrete_base_node &node)
{ {
int index = 0; int index = 0;
for (discrete_base_node *n : m_node_list) for (const auto &n : m_node_list)
{ {
if (n == &node) if (n.get() == &node)
return index; return index;
if (n->module_type() == node.module_type()) if (n->module_type() == node.module_type())
index++; index++;
@ -846,7 +831,7 @@ discrete_sound_device::discrete_sound_device(const machine_config &mconfig, cons
{ {
} }
discrete_device::~discrete_device(void) discrete_device::~discrete_device()
{ {
} }
@ -892,13 +877,13 @@ void discrete_device::device_start()
m_node_list.clear(); m_node_list.clear();
/* allocate memory to hold pointers to nodes by index */ /* allocate memory to hold pointers to nodes by index */
m_indexed_node = auto_alloc_array_clear(this->machine(), discrete_base_node *, DISCRETE_MAX_NODES); m_indexed_node = make_unique_clear<discrete_base_node * []>(DISCRETE_MAX_NODES);
/* initialize the node data */ /* initialize the node data */
init_nodes(block_list); init_nodes(block_list);
/* now go back and find pointers to all input nodes */ /* now go back and find pointers to all input nodes */
for (discrete_base_node *node : m_node_list) for (const auto &node : m_node_list)
{ {
node->resolve_input_nodes(); node->resolve_input_nodes();
} }
@ -907,18 +892,18 @@ void discrete_device::device_start()
m_queue = osd_work_queue_alloc(WORK_QUEUE_FLAG_MULTI | WORK_QUEUE_FLAG_HIGH_FREQ); m_queue = osd_work_queue_alloc(WORK_QUEUE_FLAG_MULTI | WORK_QUEUE_FLAG_HIGH_FREQ);
/* Process nodes which have a start func */ /* Process nodes which have a start func */
for (discrete_base_node *node : m_node_list) for (const auto &node : m_node_list)
{ {
node->start(); node->start();
} }
/* Now set up tasks */ /* Now set up tasks */
for (discrete_task *task : task_list) for (const auto &task : task_list)
{ {
for (discrete_task *dest_task : task_list) for (const auto &dest_task : task_list)
{ {
if (task->task_group > dest_task->task_group) if (task->task_group > dest_task->task_group)
dest_task->check(task); dest_task->check(*task);
} }
} }
} }
@ -937,7 +922,7 @@ void discrete_device::device_stop()
/* Process nodes which have a stop func */ /* Process nodes which have a stop func */
for (discrete_base_node *node : m_node_list) for (const auto &node : m_node_list)
{ {
node->stop(); node->stop();
} }
@ -964,10 +949,10 @@ void discrete_sound_device::device_start()
discrete_device::device_start(); discrete_device::device_start();
/* look for input stream nodes */ /* look for input stream nodes */
for (discrete_base_node *node : m_node_list) for (const auto &node : m_node_list)
{ {
/* if we are an stream input node, track that */ /* if we are an stream input node, track that */
discrete_dss_input_stream_node *input_stream = dynamic_cast<discrete_dss_input_stream_node *>(node); discrete_dss_input_stream_node *input_stream = dynamic_cast<discrete_dss_input_stream_node *>(node.get());
if (input_stream != nullptr) if (input_stream != nullptr)
{ {
m_input_stream_list.push_back(input_stream); m_input_stream_list.push_back(input_stream);
@ -1003,7 +988,7 @@ void discrete_device::device_reset()
update_to_current_time(); update_to_current_time();
/* loop over all nodes */ /* loop over all nodes */
for (discrete_base_node *node : m_node_list) for (const auto &node : m_node_list)
{ {
/* Fimxe : node_level */ /* Fimxe : node_level */
node->m_output[0] = 0; node->m_output[0] = 0;
@ -1032,7 +1017,7 @@ void discrete_device::process(int samples)
return; return;
/* Setup tasks */ /* Setup tasks */
for (discrete_task *task : task_list) for (const auto &task : task_list)
{ {
/* unlock the thread */ /* unlock the thread */
task->unlock(); task->unlock();
@ -1040,11 +1025,11 @@ void discrete_device::process(int samples)
task->prepare_for_queue(samples); task->prepare_for_queue(samples);
} }
for (discrete_task *task : task_list) for (const auto &task : task_list)
{ {
/* Fire a work item for each task */ /* Fire a work item for each task */
(void)task; (void)task;
osd_work_item_queue(m_queue, discrete_task::task_callback, (void *) &task_list, WORK_ITEM_FLAG_AUTO_RELEASE); osd_work_item_queue(m_queue, discrete_task::task_callback, (void *)&task_list, WORK_ITEM_FLAG_AUTO_RELEASE);
} }
osd_work_queue_wait(m_queue, osd_ticks_per_second()*10); osd_work_queue_wait(m_queue, osd_ticks_per_second()*10);

View File

@ -4106,9 +4106,9 @@ class discrete_task;
class discrete_base_node; class discrete_base_node;
class discrete_dss_input_stream_node; class discrete_dss_input_stream_node;
class discrete_device; class discrete_device;
typedef std::vector<discrete_base_node *> node_list_t; typedef std::vector<std::unique_ptr<discrete_base_node> > node_list_t;
typedef std::vector<discrete_dss_input_stream_node *> istream_node_list_t; typedef std::vector<discrete_dss_input_stream_node *> istream_node_list_t;
typedef std::vector<discrete_task *> task_list_t; typedef std::vector<std::unique_ptr<discrete_task> > task_list_t;
/************************************* /*************************************
@ -4128,7 +4128,7 @@ typedef std::vector<discrete_task *> task_list_t;
struct discrete_block struct discrete_block
{ {
int node; /* Output node number */ int node; /* Output node number */
discrete_base_node *(*factory)(discrete_device * pdev, const discrete_block *block); std::unique_ptr<discrete_base_node> (*factory)(discrete_device &pdev, const discrete_block &block);
int type; /* see defines below */ int type; /* see defines below */
int active_inputs; /* Number of active inputs on this node type */ int active_inputs; /* Number of active inputs on this node type */
int input_node[DISCRETE_MAX_INPUTS];/* input/control nodes */ int input_node[DISCRETE_MAX_INPUTS];/* input/control nodes */
@ -4150,7 +4150,7 @@ class discrete_step_interface
public: public:
virtual ~discrete_step_interface() { } virtual ~discrete_step_interface() { }
virtual void step(void) = 0; virtual void step() = 0;
osd_ticks_t run_time; osd_ticks_t run_time;
discrete_base_node * self; discrete_base_node * self;
}; };
@ -4196,7 +4196,7 @@ public:
uint8_t read(offs_t offset); uint8_t read(offs_t offset);
void write(offs_t offset, uint8_t data); void write(offs_t offset, uint8_t data);
virtual ~discrete_device(void); virtual ~discrete_device();
template<int DiscreteInput> template<int DiscreteInput>
DECLARE_WRITE_LINE_MEMBER(write_line) DECLARE_WRITE_LINE_MEMBER(write_line)
@ -4206,7 +4206,7 @@ public:
/* --------------------------------- */ /* --------------------------------- */
virtual void update_to_current_time(void) const { } virtual void update_to_current_time() const { }
/* process a number of samples */ /* process a number of samples */
void process(int samples); void process(int samples);
@ -4224,10 +4224,10 @@ public:
discrete_base_node *discrete_find_node(int node); discrete_base_node *discrete_find_node(int node);
/* are we profiling */ /* are we profiling */
inline int profiling(void) { return m_profiling; } inline int profiling() { return m_profiling; }
inline int sample_rate(void) { return m_sample_rate; } inline int sample_rate() { return m_sample_rate; }
inline double sample_time(void) { return m_sample_time; } inline double sample_time() { return m_sample_time; }
protected: protected:
@ -4255,11 +4255,11 @@ protected:
private: private:
void discrete_build_list(const discrete_block *intf, sound_block_list_t &block_list); void discrete_build_list(const discrete_block *intf, sound_block_list_t &block_list);
void discrete_sanity_check(const sound_block_list_t &block_list); void discrete_sanity_check(const sound_block_list_t &block_list);
void display_profiling(void); void display_profiling();
void init_nodes(const sound_block_list_t &block_list); void init_nodes(const sound_block_list_t &block_list);
/* internal node tracking */ /* internal node tracking */
discrete_base_node ** m_indexed_node; std::unique_ptr<discrete_base_node * []> m_indexed_node;
/* tasks */ /* tasks */
task_list_t task_list; /* discrete_task_context * */ task_list_t task_list; /* discrete_task_context * */
@ -4294,13 +4294,13 @@ public:
set_intf(intf); set_intf(intf);
} }
discrete_sound_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 0); discrete_sound_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 0);
virtual ~discrete_sound_device(void) { }; virtual ~discrete_sound_device() { };
/* --------------------------------- */ /* --------------------------------- */
virtual void update_to_current_time(void) const override { m_stream->update(); } virtual void update_to_current_time() const override { m_stream->update(); }
sound_stream *get_stream(void) { return m_stream; } sound_stream *get_stream() { return m_stream; }
protected: protected:
// device-level overrides // device-level overrides
@ -4336,13 +4336,14 @@ class discrete_base_node
friend class discrete_task; friend class discrete_task;
public: public:
virtual ~discrete_base_node();
virtual void reset(void) { } virtual void reset() { }
virtual void start(void) { } virtual void start() { }
virtual void stop(void) { } virtual void stop() { }
virtual void save_state(void); virtual void save_state();
virtual int max_output(void) { return 1; }; virtual int max_output() { return 1; };
inline bool interface(discrete_step_interface *&intf) const { intf = m_step_intf; return (intf != nullptr); } inline bool interface(discrete_step_interface *&intf) const { intf = m_step_intf; return (intf != nullptr); }
inline bool interface(discrete_input_interface *&intf) const { intf = m_input_intf; return (intf != nullptr); } inline bool interface(discrete_input_interface *&intf) const { intf = m_input_intf; return (intf != nullptr); }
@ -4355,36 +4356,35 @@ public:
inline void set_output(int n, double val) { m_output[n] = val; } inline void set_output(int n, double val) { m_output[n] = val; }
/* Return the node index, i.e. X from NODE(X) */ /* Return the node index, i.e. X from NODE(X) */
inline int index(void) { return NODE_INDEX(m_block->node); } inline int index() { return NODE_INDEX(m_block->node); }
/* Return the node number, i.e. NODE(X) */ /* Return the node number, i.e. NODE(X) */
inline int block_node(void) const { return m_block->node; } inline int block_node() const { return m_block->node; }
/* Custom function specific initialisation data */ /* Custom function specific initialisation data */
inline const void *custom_data(void) { return m_custom; } inline const void *custom_data() { return m_custom; }
inline int input_node(int inputnum) { return m_block->input_node[inputnum]; } inline int input_node(int inputnum) { return m_block->input_node[inputnum]; }
/* Number of active inputs on this node type */ /* Number of active inputs on this node type */
inline int active_inputs(void) { return m_active_inputs; } inline int active_inputs() { return m_active_inputs; }
/* Bit Flags. 1 in bit location means input_is_node */ /* Bit Flags. 1 in bit location means input_is_node */
inline int input_is_node(void) { return m_input_is_node; } inline int input_is_node() { return m_input_is_node; }
inline double sample_time(void) { return m_device->sample_time(); } inline double sample_time() { return m_device->sample_time(); }
inline int sample_rate(void) { return m_device->sample_rate(); } inline int sample_rate() { return m_device->sample_rate(); }
const char * module_name(void) { return m_block->mod_name; } const char * module_name() { return m_block->mod_name; }
inline int module_type(void) const { return m_block->type; } inline int module_type() const { return m_block->type; }
protected: protected:
discrete_base_node(); discrete_base_node();
virtual ~discrete_base_node();
/* finish node setup after allocation is complete */ /* finish node setup after allocation is complete */
void init(discrete_device * pdev, const discrete_block *block); void init(discrete_device * pdev, const discrete_block *block);
void resolve_input_nodes(void); void resolve_input_nodes();
double m_output[DISCRETE_MAX_OUTPUTS]; /* The node's last output value */ double m_output[DISCRETE_MAX_OUTPUTS]; /* The node's last output value */
const double * m_input[DISCRETE_MAX_INPUTS]; /* Addresses of Input values */ const double * m_input[DISCRETE_MAX_INPUTS]; /* Addresses of Input values */
@ -4406,7 +4406,7 @@ private:
class discrete_node_base_factory class discrete_node_base_factory
{ {
public: public:
virtual discrete_base_node *Create(discrete_device * pdev, const discrete_block *block) = 0; virtual std::unique_ptr<discrete_base_node> Create(discrete_device &pdev, const discrete_block &block) = 0;
virtual ~discrete_node_base_factory() {} virtual ~discrete_node_base_factory() {}
}; };
@ -4414,15 +4414,15 @@ template <class C>
class discrete_node_factory : public discrete_node_base_factory class discrete_node_factory : public discrete_node_base_factory
{ {
public: public:
discrete_base_node *Create(discrete_device * pdev, const discrete_block *block) override; std::unique_ptr<discrete_base_node> Create(discrete_device &pdev, const discrete_block &block) override;
}; };
template <class C> template <class C>
discrete_base_node * discrete_node_factory<C>::Create(discrete_device * pdev, const discrete_block *block) std::unique_ptr<discrete_base_node> discrete_node_factory<C>::Create(discrete_device &pdev, const discrete_block &block)
{ {
discrete_base_node *r = auto_alloc_clear(pdev->machine(), <C>()); auto r = make_unique_clear<C>();
r->init(pdev, block); r->init(&pdev, &block);
return r; return r;
} }
@ -4442,9 +4442,9 @@ discrete_base_node * discrete_node_factory<C>::Create(discrete_device * pdev, co
*************************************/ *************************************/
template <class C> template <class C>
discrete_base_node *discrete_create_node(discrete_device * pdev, const discrete_block *block) std::unique_ptr<discrete_base_node> discrete_create_node(discrete_device &pdev, const discrete_block &block)
{ {
return discrete_node_factory< C >().Create(pdev, block); return discrete_node_factory<C>().Create(pdev, block);
} }
#define DISCRETE_SOUND_EXTERN(name) extern const discrete_block name[] #define DISCRETE_SOUND_EXTERN(name) extern const discrete_block name[]