Merge pull request #207 from fulivi/hp64k_dev

New driver for hp 64000 development system
This commit is contained in:
Miodrag Milanović 2015-06-10 14:13:32 +02:00
commit 6ad1b32595
8 changed files with 1837 additions and 2 deletions

View File

@ -631,6 +631,22 @@ if (CPUS["SH4"]~=null or _OPTIONS["with-tools"]) then
table.insert(disasm_files , MAME_DIR .. "src/emu/cpu/sh4/sh4dasm.c")
end
--------------------------------------------------
-- HP Hybrid processor
---@src/emu/cpu/hphybrid/hphybrid.h,CPUS += HPHYBRID
--------------------------------------------------
if (CPUS["HPHYBRID"]~=null) then
files {
MAME_DIR .. "src/emu/cpu/hphybrid/hphybrid.c",
MAME_DIR .. "src/emu/cpu/hphybrid/hphybrid.h",
}
end
if (CPUS["HPHYBRID"]~=null or _OPTIONS["with-tools"]) then
table.insert(disasm_files , MAME_DIR .. "src/emu/cpu/hphybrid/hphybrid_dasm.c")
end
--------------------------------------------------
-- Hudsonsoft 6280
---@src/emu/cpu/h6280/h6280.h,CPUS += H6280

View File

@ -128,6 +128,7 @@ CPUS["UCOM4"] = true
CPUS["HMCS40"] = true
CPUS["E0C6200"] = true
CPUS["MELPS4"] = true
CPUS["HPHYBRID"] = true
--------------------------------------------------
-- specify available sound cores; some of these are
@ -1603,6 +1604,7 @@ files {
MAME_DIR .. "src/mess/drivers/hp9845.c",
MAME_DIR .. "src/mess/drivers/hp9k.c",
MAME_DIR .. "src/mess/drivers/hp9k_3xx.c",
MAME_DIR .. "src/mess/drivers/hp64k.c",
}
createMESSProjects(_target, _subtarget, "hec2hrp")

View File

@ -0,0 +1,925 @@
// license:BSD-3-Clause
// copyright-holders:F. Ulivi
//
// TODO:
// - DMA
#include "emu.h"
#include "debugger.h"
#include "hphybrid.h"
enum {
HPHYBRID_A,
HPHYBRID_B,
HPHYBRID_C,
HPHYBRID_D,
HPHYBRID_P,
HPHYBRID_R,
HPHYBRID_IV,
HPHYBRID_PA,
HPHYBRID_DMAPA,
HPHYBRID_DMAMA,
HPHYBRID_DMAC,
HPHYBRID_I
};
#define BIT_MASK(n) (1U << (n))
// Macros to clear/set single bits
#define BIT_CLR(w , n) ((w) &= ~BIT_MASK(n))
#define BIT_SET(w , n) ((w) |= BIT_MASK(n))
// Bits in m_flags
#define HPHYBRID_C_BIT 0 // Carry/extend
#define HPHYBRID_O_BIT 1 // Overflow
#define HPHYBRID_CB_BIT 2 // Cb
#define HPHYBRID_DB_BIT 3 // Db
#define HPHYBRID_INTEN_BIT 4 // Interrupt enable
#define HPHYBRID_DMAEN_BIT 5 // DMA enable
#define HPHYBRID_DMADIR_BIT 6 // DMA direction (1 = OUT)
#define HPHYBRID_HALT_BIT 7 // Halt flag
#define HPHYBRID_IRH_BIT 8 // IRH requested
#define HPHYBRID_IRL_BIT 9 // IRL requested
#define HPHYBRID_IRH_SVC_BIT 10 // IRH in service
#define HPHYBRID_IRL_SVC_BIT 11 // IRL in service
#define HPHYBRID_IV_MASK 0xfff0 // IV mask
#define CURRENT_PA (m_reg_PA[ 0 ])
#define HP_RESET_ADDR 0x0020
const device_type HP_5061_3011 = &device_creator<hp_5061_3011_cpu_device>;
hp_hybrid_cpu_device::hp_hybrid_cpu_device(const machine_config &mconfig, device_type type, const char *name, const char *tag, device_t *owner, UINT32 clock, const char *shortname)
: cpu_device(mconfig, type, name, tag, owner, clock, shortname, __FILE__),
m_program_config("program", ENDIANNESS_BIG, 16, 16, -1),
m_io_config("io", ENDIANNESS_BIG, 16, 6, -1)
{
}
void hp_hybrid_cpu_device::device_start()
{
m_reg_A = 0;
m_reg_B = 0;
m_reg_P = HP_RESET_ADDR;
m_reg_R = 0;
m_reg_C = 0;
m_reg_D = 0;
m_reg_IV = 0;
m_reg_PA[ 0 ] = 0;
m_reg_PA[ 1 ] = 0;
m_reg_PA[ 2 ] = 0;
m_flags = 0;
m_dmapa = 0;
m_dmama = 0;
m_dmac = 0;
m_reg_I = 0;
{
state_add(HPHYBRID_A, "A", m_reg_A);
state_add(HPHYBRID_B, "B", m_reg_B);
state_add(HPHYBRID_C, "C", m_reg_C);
state_add(HPHYBRID_D, "D", m_reg_D);
state_add(HPHYBRID_P, "P", m_reg_P);
state_add(STATE_GENPC, "GENPC", m_reg_P).noshow();
state_add(HPHYBRID_R, "R", m_reg_R);
state_add(STATE_GENSP, "GENSP", m_reg_R).noshow();
state_add(HPHYBRID_IV, "IV", m_reg_IV);
state_add(HPHYBRID_PA, "PA", m_reg_PA[ 0 ]);
state_add(STATE_GENFLAGS, "GENFLAGS", m_flags).noshow().formatstr("%9s");
state_add(HPHYBRID_DMAPA , "DMAPA" , m_dmapa).noshow();
state_add(HPHYBRID_DMAMA , "DMAMA" , m_dmama).noshow();
state_add(HPHYBRID_DMAC , "DMAC" , m_dmac).noshow();
state_add(HPHYBRID_I , "I" , m_reg_I).noshow();
}
m_program = &space(AS_PROGRAM);
m_direct = &m_program->direct();
m_io = &space(AS_IO);
save_item(NAME(m_reg_A));
save_item(NAME(m_reg_B));
save_item(NAME(m_reg_C));
save_item(NAME(m_reg_D));
save_item(NAME(m_reg_P));
save_item(NAME(m_reg_R));
save_item(NAME(m_reg_IV));
save_item(NAME(m_reg_PA[0]));
save_item(NAME(m_reg_PA[1]));
save_item(NAME(m_reg_PA[2]));
save_item(NAME(m_flags));
save_item(NAME(m_dmapa));
save_item(NAME(m_dmama));
save_item(NAME(m_dmac));
save_item(NAME(m_reg_I));
m_icountptr = &m_icount;
}
void hp_hybrid_cpu_device::device_reset()
{
m_reg_P = HP_RESET_ADDR;
m_reg_I = RM(m_reg_P);
m_flags = 0;
}
void hp_hybrid_cpu_device::execute_run()
{
do {
debugger_instruction_hook(this, m_reg_P);
// Check for interrupts
check_for_interrupts();
// TODO: check dma
m_reg_I = execute_one(m_reg_I);
} while (m_icount > 0);
}
void hp_hybrid_cpu_device::execute_set_input(int inputnum, int state)
{
if (inputnum < HPHYBRID_INT_LVLS) {
if (state) {
BIT_SET(m_flags , HPHYBRID_IRH_BIT + inputnum);
} else {
BIT_CLR(m_flags , HPHYBRID_IRH_BIT + inputnum);
}
}
}
/**
* Execute 1 instruction
*
* @param opcode Opcode to be executed
*
* @return Next opcode to be executed
*/
UINT16 hp_hybrid_cpu_device::execute_one(UINT16 opcode)
{
if ((opcode & 0x7fe0) == 0x7000) {
// EXE
m_icount -= 8;
return RM(opcode & 0x1f);
} else {
m_reg_P = execute_one_sub(opcode);
return RM(m_reg_P);
}
}
/**
* Execute 1 instruction (except EXE)
*
* @param opcode Opcode to be executed (no EXE instructions)
*
* @return new value of P register
*/
UINT16 hp_hybrid_cpu_device::execute_one_sub(UINT16 opcode)
{
UINT16 ea;
UINT16 tmp;
switch (opcode & 0x7800) {
case 0x0000:
// LDA
m_icount -= 13;
m_reg_A = RM(get_ea(opcode));
break;
case 0x0800:
// LDB
m_icount -= 13;
m_reg_B = RM(get_ea(opcode));
break;
case 0x1000:
// CPA
m_icount -= 16;
if (m_reg_A != RM(get_ea(opcode))) {
// Skip next instruction
return m_reg_P + 2;
}
break;
case 0x1800:
// CPB
m_icount -= 16;
if (m_reg_B != RM(get_ea(opcode))) {
// Skip next instruction
return m_reg_P + 2;
}
break;
case 0x2000:
// ADA
m_icount -= 13;
do_add(m_reg_A , RM(get_ea(opcode)));
break;
case 0x2800:
// ADB
m_icount -= 13;
do_add(m_reg_B , RM(get_ea(opcode)));
break;
case 0x3000:
// STA
m_icount -= 13;
WM(get_ea(opcode) , m_reg_A);
break;
case 0x3800:
// STB
m_icount -= 13;
WM(get_ea(opcode) , m_reg_B);
break;
case 0x4000:
// JSM
m_icount -= 17;
WM(++m_reg_R , m_reg_P);
return get_ea(opcode);
case 0x4800:
// ISZ
m_icount -= 19;
ea = get_ea(opcode);
tmp = RM(ea) + 1;
WM(ea , tmp);
if (tmp == 0) {
// Skip next instruction
return m_reg_P + 2;
}
break;
case 0x5000:
// AND
m_icount -= 13;
m_reg_A &= RM(get_ea(opcode));
break;
case 0x5800:
// DSZ
m_icount -= 19;
ea = get_ea(opcode);
tmp = RM(ea) - 1;
WM(ea , tmp);
if (tmp == 0) {
// Skip next instruction
return m_reg_P + 2;
}
break;
case 0x6000:
// IOR
m_icount -= 13;
m_reg_A |= RM(get_ea(opcode));
break;
case 0x6800:
// JMP
m_icount -= 8;
return get_ea(opcode);
default:
switch (opcode & 0xfec0) {
case 0x7400:
// RZA
// SZA
m_icount -= 14;
return get_skip_addr(opcode , m_reg_A == 0);
case 0x7440:
// RIA
// SIA
m_icount -= 14;
return get_skip_addr(opcode , m_reg_A++ == 0);
case 0x7480:
// SFS
// SFC
m_icount -= 14;
// TODO: read flag bit
return get_skip_addr(opcode , true);
case 0x7C00:
// RZB
// SZB
m_icount -= 14;
return get_skip_addr(opcode , m_reg_B == 0);
case 0x7C40:
// RIB
// SIB
m_icount -= 14;
return get_skip_addr(opcode , m_reg_B++ == 0);
case 0x7c80:
// SSS
// SSC
m_icount -= 14;
// TODO: read status bit
return get_skip_addr(opcode , true);
case 0x7cc0:
// SHS
// SHC
m_icount -= 14;
return get_skip_addr(opcode , !BIT(m_flags , HPHYBRID_HALT_BIT));
default:
switch (opcode & 0xfe00) {
case 0x7600:
// SLA
// RLA
m_icount -= 14;
return get_skip_addr_sc(opcode , m_reg_A , 0);
case 0x7e00:
// SLB
// RLB
m_icount -= 14;
return get_skip_addr_sc(opcode , m_reg_B , 0);
case 0xf400:
// SAP
// SAM
m_icount -= 14;
return get_skip_addr_sc(opcode , m_reg_A , 15);
case 0xf600:
// SOC
// SOS
m_icount -= 14;
return get_skip_addr_sc(opcode , m_flags , HPHYBRID_O_BIT);
case 0xfc00:
// SBP
// SBM
m_icount -= 14;
return get_skip_addr_sc(opcode , m_reg_B , 15);
case 0xfe00:
// SEC
// SES
m_icount -= 14;
return get_skip_addr_sc(opcode , m_flags , HPHYBRID_C_BIT);
default:
switch (opcode & 0xfff0) {
case 0xf100:
// AAR
tmp = (opcode & 0xf) + 1;
m_icount -= (9 + tmp);
// A shift by 16 positions is equivalent to a shift by 15
tmp = tmp > 15 ? 15 : tmp;
m_reg_A = ((m_reg_A ^ 0x8000) >> tmp) - (0x8000 >> tmp);
break;
case 0xf900:
// ABR
tmp = (opcode & 0xf) + 1;
m_icount -= (9 + tmp);
tmp = tmp > 15 ? 15 : tmp;
m_reg_B = ((m_reg_B ^ 0x8000) >> tmp) - (0x8000 >> tmp);
break;
case 0xf140:
// SAR
tmp = (opcode & 0xf) + 1;
m_icount -= (9 + tmp);
m_reg_A >>= tmp;
break;
case 0xf940:
// SBR
tmp = (opcode & 0xf) + 1;
m_icount -= (9 + tmp);
m_reg_B >>= tmp;
break;
case 0xf180:
// SAL
tmp = (opcode & 0xf) + 1;
m_icount -= (9 + tmp);
m_reg_A <<= tmp;
break;
case 0xf980:
// SBL
tmp = (opcode & 0xf) + 1;
m_icount -= (9 + tmp);
m_reg_B <<= tmp;
break;
case 0xf1c0:
// RAR
tmp = (opcode & 0xf) + 1;
m_icount -= (9 + tmp);
m_reg_A = (m_reg_A >> tmp) | (m_reg_A << (16 - tmp));
break;
case 0xf9c0:
// RBR
tmp = (opcode & 0xf) + 1;
m_icount -= (9 + tmp);
m_reg_B = (m_reg_B >> tmp) | (m_reg_B << (16 - tmp));
break;
default:
if ((opcode & 0xf760) == 0x7160) {
// Place/withdraw instructions
m_icount -= 23;
do_pw(opcode);
} else if ((opcode & 0xff80) == 0xf080) {
// RET
m_icount -= 16;
if (BIT(opcode , 6)) {
// Pop PA stack
if (BIT(m_flags , HPHYBRID_IRH_SVC_BIT)) {
BIT_CLR(m_flags , HPHYBRID_IRH_SVC_BIT);
memmove(&m_reg_PA[ 0 ] , &m_reg_PA[ 1 ] , HPHYBRID_INT_LVLS);
} else if (BIT(m_flags , HPHYBRID_IRL_SVC_BIT)) {
BIT_CLR(m_flags , HPHYBRID_IRL_SVC_BIT);
memmove(&m_reg_PA[ 0 ] , &m_reg_PA[ 1 ] , HPHYBRID_INT_LVLS);
}
}
tmp = RM(m_reg_R--) + (opcode & 0x1f);
return BIT(opcode , 5) ? tmp - 0x20 : tmp;
} else {
switch (opcode) {
case 0x7100:
// SDO
m_icount -= 12;
BIT_SET(m_flags , HPHYBRID_DMADIR_BIT);
break;
case 0x7108:
// SDI
m_icount -= 12;
BIT_CLR(m_flags , HPHYBRID_DMADIR_BIT);
break;
case 0x7110:
// EIR
m_icount -= 12;
BIT_SET(m_flags , HPHYBRID_INTEN_BIT);
break;
case 0x7118:
// DIR
m_icount -= 12;
BIT_CLR(m_flags , HPHYBRID_INTEN_BIT);
break;
case 0x7120:
// DMA
m_icount -= 12;
BIT_SET(m_flags , HPHYBRID_DMAEN_BIT);
break;
case 0x7138:
// DDR
m_icount -= 12;
BIT_CLR(m_flags , HPHYBRID_DMAEN_BIT);
break;
case 0x7140:
// DBL
m_icount -= 12;
BIT_CLR(m_flags , HPHYBRID_DB_BIT);
break;
case 0x7148:
// CBL
m_icount -= 12;
BIT_CLR(m_flags , HPHYBRID_CB_BIT);
break;
case 0x7150:
// DBU
m_icount -= 12;
BIT_SET(m_flags , HPHYBRID_DB_BIT);
break;
case 0x7158:
// CBU
m_icount -= 12;
BIT_SET(m_flags , HPHYBRID_CB_BIT);
break;
case 0xf020:
// TCA
m_icount -= 9;
m_reg_A = ~m_reg_A;
do_add(m_reg_A , 1);
break;
case 0xf060:
// CMA
m_icount -= 9;
m_reg_A = ~m_reg_A;
break;
case 0xf820:
// TCB
m_icount -= 9;
m_reg_B = ~m_reg_B;
do_add(m_reg_B , 1);
break;
case 0xf860:
// CMB
m_icount -= 9;
m_reg_B = ~m_reg_B;
break;
default:
// Unrecognized instructions: NOP
// Execution time is fictional
m_icount -= 6;
}
}
}
}
}
}
return m_reg_P + 1;
}
void hp_hybrid_cpu_device::state_string_export(const device_state_entry &entry, std::string &str)
{
if (entry.index() == STATE_GENFLAGS) {
strprintf(str, "%s %s %c %c",
BIT(m_flags , HPHYBRID_DB_BIT) ? "Db":"..",
BIT(m_flags , HPHYBRID_CB_BIT) ? "Cb":"..",
BIT(m_flags , HPHYBRID_O_BIT) ? 'O':'.',
BIT(m_flags , HPHYBRID_C_BIT) ? 'E':'.');
}
}
offs_t hp_hybrid_cpu_device::disasm_disassemble(char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, UINT32 options)
{
extern CPU_DISASSEMBLE(hp_hybrid);
return CPU_DISASSEMBLE_NAME(hp_hybrid)(this, buffer, pc, oprom, opram, options);
}
UINT16 hp_hybrid_cpu_device::get_ea(UINT16 opcode)
{
UINT16 base;
UINT16 off;
if (BIT(opcode , 10)) {
// Current page
base = m_reg_P;
} else {
// Base page
base = 0;
}
off = opcode & 0x3ff;
if (off & 0x200) {
off -= 0x400;
}
base += off;
if (BIT(opcode , 15)) {
// Indirect addressing
m_icount -= 6;
return RM(base);
} else {
// Direct addressing
return base;
}
}
void hp_hybrid_cpu_device::do_add(UINT16& addend1 , UINT16 addend2)
{
UINT32 tmp = addend1 + addend2;
if (BIT(tmp , 16)) {
// Carry
BIT_SET(m_flags , HPHYBRID_C_BIT);
}
if (BIT((tmp ^ addend1) & (tmp ^ addend2) , 15)) {
// Overflow
BIT_SET(m_flags , HPHYBRID_O_BIT);
}
addend1 = (UINT16)tmp;
}
UINT16 hp_hybrid_cpu_device::get_skip_addr(UINT16 opcode , bool condition) const
{
bool skip_val = BIT(opcode , 8) != 0;
if (condition == skip_val) {
UINT16 off = opcode & 0x1f;
if (BIT(opcode , 5)) {
off -= 0x20;
}
return m_reg_P + off;
} else {
return m_reg_P + 1;
}
}
UINT16 hp_hybrid_cpu_device::get_skip_addr_sc(UINT16 opcode , UINT16& v , unsigned n)
{
bool val = BIT(v , n);
if (BIT(opcode , 7)) {
if (BIT(opcode , 6)) {
BIT_SET(v , n);
} else {
BIT_CLR(v , n);
}
}
return get_skip_addr(opcode , val);
}
void hp_hybrid_cpu_device::do_pw(UINT16 opcode)
{
UINT16 tmp;
UINT16 reg_addr = opcode & 7;
UINT16 *ptr_reg;
UINT16 b_mask;
if (BIT(opcode , 3)) {
ptr_reg = &m_reg_D;
b_mask = BIT_MASK(HPHYBRID_DB_BIT);
} else {
ptr_reg = &m_reg_C;
b_mask = BIT_MASK(HPHYBRID_CB_BIT);
}
if (BIT(opcode , 4)) {
// Withdraw
if (BIT(opcode , 11)) {
// Byte
UINT32 tmp_addr = (UINT32)(*ptr_reg);
if (m_flags & b_mask) {
tmp_addr |= 0x10000;
}
tmp = RM((UINT16)(tmp_addr >> 1));
if (BIT(tmp_addr , 0)) {
tmp &= 0xff;
} else {
tmp >>= 8;
}
} else {
// Word
tmp = RM(*ptr_reg);
}
WM(reg_addr , tmp);
if (BIT(opcode , 7)) {
// Post-decrement
if ((*ptr_reg)-- == 0) {
m_flags ^= b_mask;
}
} else {
// Post-increment
if (++(*ptr_reg) == 0) {
m_flags ^= b_mask;
}
}
} else {
// Place
if (BIT(opcode , 7)) {
// Pre-decrement
if ((*ptr_reg)-- == 0) {
m_flags ^= b_mask;
}
} else {
// Pre-increment
if (++(*ptr_reg) == 0) {
m_flags ^= b_mask;
}
}
tmp = RM(reg_addr);
if (BIT(opcode , 11)) {
// Byte
UINT32 tmp_addr = (UINT32)(*ptr_reg);
if (m_flags & b_mask) {
tmp_addr |= 0x10000;
}
WMB(tmp_addr , (UINT8)tmp);
} else {
// Word
WM(*ptr_reg , tmp);
}
}
}
void hp_hybrid_cpu_device::check_for_interrupts(void)
{
if (!BIT(m_flags , HPHYBRID_INTEN_BIT) || BIT(m_flags , HPHYBRID_IRH_SVC_BIT)) {
return;
}
int irqline;
if (BIT(m_flags , HPHYBRID_IRH_BIT)) {
// Service high-level interrupt
BIT_SET(m_flags , HPHYBRID_IRH_SVC_BIT);
irqline = HPHYBRID_IRH;
} else if (BIT(m_flags , HPHYBRID_IRL_BIT) && !BIT(m_flags , HPHYBRID_IRL_SVC_BIT)) {
// Service low-level interrupt
BIT_SET(m_flags , HPHYBRID_IRL_SVC_BIT);
irqline = HPHYBRID_IRL;
} else {
return;
}
// Get interrupt vector in low byte
UINT8 vector = (UINT8)standard_irq_callback(irqline);
UINT8 new_PA;
// Get highest numbered 1
// Don't know what happens if vector is 0, here we assume bit 7 = 1
if (vector == 0) {
new_PA = 7;
} else {
for (new_PA = 7; new_PA && !BIT(vector , 7); new_PA--, vector <<= 1) {
}
}
if (irqline == HPHYBRID_IRH) {
BIT_SET(new_PA , 3);
}
// Push PA stack
memmove(&m_reg_PA[ 1 ] , &m_reg_PA[ 0 ] , HPHYBRID_INT_LVLS);
CURRENT_PA = new_PA;
// Is this correct? Patent @ pg 210 suggests that the whole interrupt recognition sequence
// lasts for 32 cycles (6 are already accounted for in get_ea for one indirection)
m_icount -= 26;
// Do a double-indirect JSM IV,I instruction
WM(++m_reg_R , m_reg_P);
m_reg_P = RM(get_ea(0xc008));
m_reg_I = RM(m_reg_P);
}
UINT16 hp_hybrid_cpu_device::RM(UINT16 addr)
{
UINT16 tmp;
if (addr <= HP_REG_LAST_ADDR) {
// Memory mapped registers
switch (addr) {
case HP_REG_A_ADDR:
return m_reg_A;
case HP_REG_B_ADDR:
return m_reg_B;
case HP_REG_P_ADDR:
return m_reg_P;
case HP_REG_R_ADDR:
return m_reg_R;
case HP_REG_R4_ADDR:
case HP_REG_R5_ADDR:
case HP_REG_R6_ADDR:
case HP_REG_R7_ADDR:
return RIO(CURRENT_PA , addr - HP_REG_R4_ADDR);
case HP_REG_IV_ADDR:
// Correct?
if (!BIT(m_flags , HPHYBRID_IRH_SVC_BIT) && !BIT(m_flags , HPHYBRID_IRL_SVC_BIT)) {
return m_reg_IV;
} else {
return m_reg_IV | CURRENT_PA;
}
case HP_REG_PA_ADDR:
return CURRENT_PA;
case HP_REG_DMAPA_ADDR:
tmp = m_dmapa & HP_REG_PA_MASK;
if (BIT(m_flags , HPHYBRID_CB_BIT)) {
BIT_SET(tmp , 15);
}
if (BIT(m_flags , HPHYBRID_DB_BIT)) {
BIT_SET(tmp , 14);
}
return tmp;
case HP_REG_DMAMA_ADDR:
return m_dmama;
case HP_REG_DMAC_ADDR:
return m_dmac;
case HP_REG_C_ADDR:
return m_reg_C;
case HP_REG_D_ADDR:
return m_reg_D;
default:
// Unknown registers are returned as 0
return 0;
}
} else {
return m_direct->read_decrypted_word((offs_t)addr << 1);
}
}
void hp_hybrid_cpu_device::WM(UINT16 addr , UINT16 v)
{
if (addr <= HP_REG_LAST_ADDR) {
// Memory mapped registers
switch (addr) {
case HP_REG_A_ADDR:
m_reg_A = v;
break;
case HP_REG_B_ADDR:
m_reg_B = v;
break;
case HP_REG_P_ADDR:
m_reg_P = v;
break;
case HP_REG_R_ADDR:
m_reg_R = v;
break;
case HP_REG_R4_ADDR:
case HP_REG_R5_ADDR:
case HP_REG_R6_ADDR:
case HP_REG_R7_ADDR:
WIO(CURRENT_PA , addr - HP_REG_R4_ADDR , v);
break;
case HP_REG_IV_ADDR:
m_reg_IV = v & HP_REG_IV_MASK;
break;
case HP_REG_PA_ADDR:
CURRENT_PA = v & HP_REG_PA_MASK;
break;
case HP_REG_DMAPA_ADDR:
m_dmapa = v & HP_REG_PA_MASK;
break;
case HP_REG_DMAMA_ADDR:
m_dmama = v;
break;
case HP_REG_DMAC_ADDR:
m_dmac = v;
break;
case HP_REG_C_ADDR:
m_reg_C = v;
break;
case HP_REG_D_ADDR:
m_reg_D = v;
break;
default:
// Unknown registers are silently discarded
break;
}
} else {
m_program->write_word((offs_t)addr << 1 , v);
}
}
void hp_hybrid_cpu_device::WMB(UINT32 addr , UINT8 v)
{
if (addr <= (HP_REG_LAST_ADDR * 2 + 1)) {
// Cannot write bytes to registers
} else {
m_program->write_byte(addr , v);
}
}
UINT16 hp_hybrid_cpu_device::RIO(UINT8 pa , UINT8 ic)
{
return m_io->read_word(HP_MAKE_IOADDR(pa, ic) << 1);
}
void hp_hybrid_cpu_device::WIO(UINT8 pa , UINT8 ic , UINT16 v)
{
m_io->write_word(HP_MAKE_IOADDR(pa, ic) << 1 , v);
}
hp_5061_3011_cpu_device::hp_5061_3011_cpu_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: hp_hybrid_cpu_device(mconfig, HP_5061_3011, "HP_5061_3011", tag, owner, clock, "5061-3011")
{
}

View File

@ -0,0 +1,143 @@
// license:BSD-3-Clause
// copyright-holders:F. Ulivi
//
// *****************************************
// Emulator for HP "hybrid" processor series
// *****************************************
//
// The HP hybrid processor series is composed of a few different models with different
// capabilities. The series was derived from HP's own 2116 processor by translating a
// discrete implementation of the 1960s into a multi-chip module (hence the "hybrid" name).
// This emulator currently supports the 5061-3011 version only.
//
// For this emulator I mainly relied on these sources:
// - http://www.hp9845.net/ website
// - HP manual "Assembly development ROM manual for the HP9845": this is the most precious
// and "enabling" resource of all
// - US Patent 4,180,854 describing the HP9845 system
// - Study of disassembly of firmware of HP64000 system
// - A lot of "educated" guessing
#ifndef _HPHYBRID_H_
#define _HPHYBRID_H_
// Input lines
#define HPHYBRID_IRH 0 // High-level interrupt
#define HPHYBRID_IRL 1 // Low-level interrupt
#define HPHYBRID_INT_LVLS 2 // Levels of interrupt
#define HPHYBRID_DMAR 2 // DMA request
#define HPHYBRID_HALT 3 // "Halt" input
#define HPHYBRID_STS 4 // "Status" input
#define HPHYBRID_FLG 5 // "Flag" input
// I/O addressing space (16-bit wide)
// Addresses into this space are composed as follows:
// b[5..2] = Peripheral address 0..15
// b[1..0] = Register address (IC) 0..3
#define HP_IOADDR_PA_SHIFT 2
#define HP_IOADDR_IC_SHIFT 0
// Compose an I/O address from PA & IC
#define HP_MAKE_IOADDR(pa , ic) (((pa) << HP_IOADDR_PA_SHIFT) | ((ic) << HP_IOADDR_IC_SHIFT))
// Addresses of memory mapped registers
#define HP_REG_A_ADDR 0x0000
#define HP_REG_B_ADDR 0x0001
#define HP_REG_P_ADDR 0x0002
#define HP_REG_R_ADDR 0x0003
#define HP_REG_R4_ADDR 0x0004
#define HP_REG_R5_ADDR 0x0005
#define HP_REG_R6_ADDR 0x0006
#define HP_REG_R7_ADDR 0x0007
#define HP_REG_IV_ADDR 0x0008
#define HP_REG_PA_ADDR 0x0009
#define HP_REG_DMAPA_ADDR 0x000B
#define HP_REG_DMAMA_ADDR 0x000C
#define HP_REG_DMAC_ADDR 0x000D
#define HP_REG_C_ADDR 0x000e
#define HP_REG_D_ADDR 0x000f
#define HP_REG_LAST_ADDR 0x001f
#define HP_REG_IV_MASK 0xfff0
#define HP_REG_PA_MASK 0x000f
class hp_hybrid_cpu_device : public cpu_device
{
public:
protected:
hp_hybrid_cpu_device(const machine_config &mconfig, device_type type, const char *name, const char *tag, device_t *owner, UINT32 clock, const char *shortname);
// device-level overrides
virtual void device_start();
virtual void device_reset();
// device_execute_interface overrides
virtual UINT32 execute_min_cycles() const { return 6; }
virtual UINT32 execute_max_cycles() const { return 25; }
virtual UINT32 execute_input_lines() const { return 2; }
virtual UINT32 execute_default_irq_vector() const { return 0xffff; }
virtual void execute_run();
virtual void execute_set_input(int inputnum, int state);
UINT16 execute_one(UINT16 opcode);
UINT16 execute_one_sub(UINT16 opcode);
// device_memory_interface overrides
virtual const address_space_config *memory_space_config(address_spacenum spacenum = AS_0) const { return (spacenum == AS_PROGRAM) ? &m_program_config : ( (spacenum == AS_IO) ? &m_io_config : NULL ); }
// device_state_interface overrides
void state_string_export(const device_state_entry &entry, std::string &str);
// device_disasm_interface overrides
virtual UINT32 disasm_min_opcode_bytes() const { return 2; }
virtual UINT32 disasm_max_opcode_bytes() const { return 2; }
virtual offs_t disasm_disassemble(char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, UINT32 options);
private:
address_space_config m_program_config;
address_space_config m_io_config;
address_space *m_program;
direct_read_data *m_direct;
address_space *m_io;
int m_icount;
// State of processor
UINT16 m_reg_A; // Register A
UINT16 m_reg_B; // Register B
UINT16 m_reg_P; // Register P
UINT16 m_reg_R; // Register R
UINT16 m_reg_C; // Register C
UINT16 m_reg_D; // Register D
UINT16 m_reg_IV; // Register IV
UINT8 m_reg_PA[ HPHYBRID_INT_LVLS + 1 ]; // Stack of register PA (4 bit-long)
UINT16 m_flags; // Flags (carry, overflow, cb, db, int en, dma en, dma dir)
UINT8 m_dmapa; // DMA peripheral address (4 bits)
UINT16 m_dmama; // DMA address
UINT16 m_dmac; // DMA counter
UINT16 m_reg_I; // Instruction register
UINT16 get_ea(UINT16 opcode);
void do_add(UINT16& addend1 , UINT16 addend2);
UINT16 get_skip_addr(UINT16 opcode , bool condition) const;
UINT16 get_skip_addr_sc(UINT16 opcode , UINT16& v , unsigned n);
void do_pw(UINT16 opcode);
void check_for_interrupts(void);
UINT16 RM(UINT16 addr);
void WM(UINT16 addr , UINT16 v);
void WMB(UINT32 addr , UINT8 v);
UINT16 RIO(UINT8 pa , UINT8 ic);
void WIO(UINT8 pa , UINT8 ic , UINT16 v);
};
class hp_5061_3011_cpu_device : public hp_hybrid_cpu_device
{
public:
hp_5061_3011_cpu_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock);
};
extern const device_type HP_5061_3011;
#endif /* _HPHYBRID_H_ */

View File

@ -0,0 +1,281 @@
// license:BSD-3-Clause
// copyright-holders:F. Ulivi
// ********************************************************************************
// * HP "hybrid" processor disassembler
// ********************************************************************************
#include "emu.h"
#include "debugger.h"
#include "hphybrid.h"
typedef void (*fn_dis_param)(char *buffer , offs_t pc , UINT16 opcode);
typedef struct {
UINT16 m_op_mask;
UINT16 m_opcode;
const char *m_mnemonic;
fn_dis_param m_param_fn;
UINT32 m_dasm_flags;
} dis_entry_t;
static void addr_2_str(char *buffer , UINT16 addr , bool indirect)
{
char *s = buffer + strlen(buffer);
s += sprintf(s , "$%04x" , addr);
switch (addr) {
case HP_REG_A_ADDR:
strcpy(s , "(A)");
break;
case HP_REG_B_ADDR:
strcpy(s , "(B)");
break;
case HP_REG_P_ADDR:
strcpy(s , "(P)");
break;
case HP_REG_R_ADDR:
strcpy(s , "(R)");
break;
case HP_REG_R4_ADDR:
strcpy(s , "(R4)");
break;
case HP_REG_R5_ADDR:
strcpy(s , "(R5)");
break;
case HP_REG_R6_ADDR:
strcpy(s , "(R6)");
break;
case HP_REG_R7_ADDR:
strcpy(s , "(R7)");
break;
case HP_REG_IV_ADDR:
strcpy(s , "(IV)");
break;
case HP_REG_PA_ADDR:
strcpy(s , "(PA)");
break;
case HP_REG_DMAPA_ADDR:
strcpy(s , "(DMAPA)");
break;
case HP_REG_DMAMA_ADDR:
strcpy(s , "(DMAMA)");
break;
case HP_REG_DMAC_ADDR:
strcpy(s , "(DMAC)");
break;
case HP_REG_C_ADDR:
strcpy(s , "(C)");
break;
case HP_REG_D_ADDR:
strcpy(s , "(D)");
break;
}
if (indirect) {
strcat(s , ",I");
}
}
static void param_none(char *buffer , offs_t pc , UINT16 opcode)
{
}
static void param_loc(char *buffer , offs_t pc , UINT16 opcode)
{
UINT16 base;
UINT16 off;
if (opcode & 0x0400) {
// Current page
base = pc;
} else {
// Base page
base = 0;
}
off = opcode & 0x3ff;
if (off & 0x200) {
off -= 0x400;
}
addr_2_str(buffer , base + off , (opcode & 0x8000) != 0);
}
static void param_addr32(char *buffer , offs_t pc , UINT16 opcode)
{
addr_2_str(buffer , opcode & 0x1f , (opcode & 0x8000) != 0);
}
static void param_skip(char *buffer , offs_t pc , UINT16 opcode)
{
UINT16 off = opcode & 0x3f;
if (off & 0x20) {
off -= 0x40;
}
addr_2_str(buffer , pc + off , false);
}
static void param_skip_sc(char *buffer , offs_t pc , UINT16 opcode)
{
param_skip(buffer, pc, opcode);
if (opcode & 0x80) {
if (opcode & 0x40) {
strcat(buffer , ",S");
} else {
strcat(buffer , ",C");
}
}
}
static void param_ret(char *buffer , offs_t pc , UINT16 opcode)
{
char *s = buffer + strlen(buffer);
int off = opcode & 0x3f;
if (off & 0x20) {
off -= 0x40;
}
s += sprintf(s , "%d" , off);
if (opcode & 0x40) {
strcpy(s , ",P");
}
}
static void param_n16(char *buffer , offs_t pc , UINT16 opcode)
{
char *s = buffer + strlen(buffer);
sprintf(s , "%u" , (opcode & 0xf) + 1);
}
static void param_reg_id(char *buffer , offs_t pc , UINT16 opcode)
{
addr_2_str(buffer, opcode & 7, false);
if (opcode & 0x80) {
strcat(buffer , ",D");
} else {
strcat(buffer , ",I");
}
}
static const dis_entry_t dis_table[] = {
// *** BPC Instructions ***
{0xffff , 0x0000 , "NOP" , param_none , 0 },
{0x7800 , 0x0000 , "LDA" , param_loc , 0 },
{0x7800 , 0x0800 , "LDB" , param_loc , 0 },
{0x7800 , 0x1000 , "CPA" , param_loc , 0 },
{0x7800 , 0x1800 , "CPB" , param_loc , 0 },
{0x7800 , 0x2000 , "ADA" , param_loc , 0 },
{0x7800 , 0x2800 , "ADB" , param_loc , 0 },
{0x7800 , 0x3000 , "STA" , param_loc , 0 },
{0x7800 , 0x3800 , "STB" , param_loc , 0 },
{0x7800 , 0x4000 , "JSM" , param_loc , DASMFLAG_STEP_OVER },
{0x7800 , 0x4800 , "ISZ" , param_loc , 0 },
{0x7800 , 0x5000 , "AND" , param_loc , 0 },
{0x7800 , 0x5800 , "DSZ" , param_loc , 0 },
{0x7800 , 0x6000 , "IOR" , param_loc , 0 },
{0x7800 , 0x6800 , "JMP" , param_loc , 0 },
{0x7fe0 , 0x7000 , "EXE" , param_addr32 , 0 },
{0xffc0 , 0x7400 , "RZA" , param_skip , 0 },
{0xffc0 , 0x7C00 , "RZB" , param_skip , 0 },
{0xffc0 , 0x7440 , "RIA" , param_skip , 0 },
{0xffc0 , 0x7C40 , "RIB" , param_skip , 0 },
{0xffc0 , 0x7500 , "SZA" , param_skip , 0 },
{0xffc0 , 0x7D00 , "SZB" , param_skip , 0 },
{0xffc0 , 0x7540 , "SIA" , param_skip , 0 },
{0xffc0 , 0x7D40 , "SIB" , param_skip , 0 },
{0xffc0 , 0x7480 , "SFS" , param_skip , 0 },
{0xffc0 , 0x7580 , "SFC" , param_skip , 0 },
{0xffc0 , 0x7c80 , "SSS" , param_skip , 0 },
{0xffc0 , 0x7d80 , "SSC" , param_skip , 0 },
{0xffc0 , 0x7cc0 , "SHS" , param_skip , 0 },
{0xffc0 , 0x7dc0 , "SHC" , param_skip , 0 },
{0xff00 , 0x7600 , "SLA" , param_skip_sc , 0 },
{0xff00 , 0x7e00 , "SLB" , param_skip_sc , 0 },
{0xff00 , 0x7700 , "RLA" , param_skip_sc , 0 },
{0xff00 , 0x7f00 , "RLB" , param_skip_sc , 0 },
{0xff00 , 0xf400 , "SAP" , param_skip_sc , 0 },
{0xff00 , 0xfc00 , "SBP" , param_skip_sc , 0 },
{0xff00 , 0xf500 , "SAM" , param_skip_sc , 0 },
{0xff00 , 0xfd00 , "SBM" , param_skip_sc , 0 },
{0xff00 , 0xf600 , "SOC" , param_skip_sc , 0 },
{0xff00 , 0xf700 , "SOS" , param_skip_sc , 0 },
{0xff00 , 0xfe00 , "SEC" , param_skip_sc , 0 },
{0xff00 , 0xff00 , "SES" , param_skip_sc , 0 },
{0xffff , 0xf020 , "TCA" , param_none , 0 },
{0xffff , 0xf820 , "TCB" , param_none , 0 },
{0xffff , 0xf060 , "CMA" , param_none , 0 },
{0xffff , 0xf860 , "CMB" , param_none , 0 },
{0xff80 , 0xf080 , "RET" , param_ret , DASMFLAG_STEP_OUT },
{0xfff0 , 0xf100 , "AAR" , param_n16 , 0 },
{0xfff0 , 0xf900 , "ABR" , param_n16 , 0 },
{0xffff , 0xf14f , "CLA" , param_none , 0 },
{0xfff0 , 0xf140 , "SAR" , param_n16 , 0 },
{0xffff , 0xf94f , "CLB" , param_none , 0 },
{0xfff0 , 0xf940 , "SBR" , param_n16 , 0 },
{0xfff0 , 0xf180 , "SAL" , param_n16 , 0 },
{0xfff0 , 0xf980 , "SBL" , param_n16 , 0 },
{0xfff0 , 0xf1c0 , "RAR" , param_n16 , 0 },
{0xfff0 , 0xf9c0 , "RBR" , param_n16 , 0 },
// *** IOC Instructions ***
{0xffff , 0x7100 , "SDO" , param_none , 0 },
{0xffff , 0x7108 , "SDI" , param_none , 0 },
{0xffff , 0x7110 , "EIR" , param_none , 0 },
{0xffff , 0x7118 , "DIR" , param_none , 0 },
{0xffff , 0x7120 , "DMA" , param_none , 0 },
{0xffff , 0x7128 , "PCM" , param_none , 0 },
{0xffff , 0x7138 , "DDR" , param_none , 0 },
{0xffff , 0x7140 , "DBL" , param_none , 0 },
{0xffff , 0x7148 , "CBL" , param_none , 0 },
{0xffff , 0x7150 , "DBU" , param_none , 0 },
{0xffff , 0x7158 , "CBU" , param_none , 0 },
{0xff78 , 0x7160 , "PWC" , param_reg_id , 0 },
{0xff78 , 0x7168 , "PWD" , param_reg_id , 0 },
{0xff78 , 0x7960 , "PBC" , param_reg_id , 0 },
{0xff78 , 0x7968 , "PBD" , param_reg_id , 0 },
{0xff78 , 0x7170 , "WWC" , param_reg_id , 0 },
{0xff78 , 0x7178 , "WWD" , param_reg_id , 0 },
{0xff78 , 0x7970 , "WBC" , param_reg_id , 0 },
{0xff78 , 0x7978 , "WBD" , param_reg_id , 0 },
// *** END ***
{0 , 0 , NULL , NULL , 0 }
};
CPU_DISASSEMBLE(hp_hybrid)
{
UINT16 opcode = ((UINT16)oprom[ 0 ] << 8) | oprom[ 1 ];
const dis_entry_t *p;
for (p = dis_table; p->m_op_mask; p++) {
if ((opcode & p->m_op_mask) == p->m_opcode) {
strcpy(buffer , p->m_mnemonic);
strcat(buffer , " ");
p->m_param_fn(buffer , pc , opcode);
return 1 | p->m_dasm_flags | DASMFLAG_SUPPORTED;
}
}
// Unknown opcode
strcpy(buffer , "???");
return 1 | DASMFLAG_SUPPORTED;
}

View File

@ -315,7 +315,7 @@ void i8275_device::device_timer(emu_timer &timer, device_timer_id id, int param,
int vsp = 0;
int rvv = 0;
UINT8 data = m_buffer[!m_buffer_dma][sx];
UINT8 data = (end_of_row || m_end_of_screen) ? 0 : m_buffer[!m_buffer_dma][sx];
if (data & 0x80)
{
@ -359,7 +359,7 @@ void i8275_device::device_timer(emu_timer &timer, device_timer_id id, int param,
m_end_of_screen = true;
break;
}
vsp = 1;
//vsp = 1;
}
else
{

View File

@ -1706,6 +1706,7 @@ hp9k340
hp9k370
hp9k380
hp9k382
hp64k
// SpectraVideo
svi318 // SVI-318 (PAL)

467
src/mess/drivers/hp64k.c Normal file
View File

@ -0,0 +1,467 @@
// license:BSD-3-Clause
// copyright-holders:F. Ulivi
//
// ***************************************
// Driver for HP 64000 development system
// ***************************************
//
// Documentation used for this driver:
// [1] HP, manual 64100-90910, dec 83 rev. - Model 64100A mainframe service manual
//
// TODO:
// - Slot selection mechanism & low 32KW RAM
// - Periodic interrupt
// - Beeper
// - Various DIP switches
// - Floppy I/F
// - RS232 I/F
#include "emu.h"
#include "cpu/hphybrid/hphybrid.h"
#include "video/i8275.h"
#define BIT_MASK(n) (1U << (n))
// Macros to clear/set single bits
#define BIT_CLR(w , n) ((w) &= ~BIT_MASK(n))
#define BIT_SET(w , n) ((w) |= BIT_MASK(n))
class hp64k_state : public driver_device
{
public:
hp64k_state(const machine_config &mconfig, device_type type, const char *tag);
//virtual void driver_start();
//virtual void machine_start();
virtual void video_start();
virtual void machine_reset();
UINT8 hp64k_crtc_filter(UINT8 data);
DECLARE_WRITE16_MEMBER(hp64k_crtc_w);
DECLARE_WRITE_LINE_MEMBER(hp64k_crtc_drq_w);
DECLARE_WRITE_LINE_MEMBER(hp64k_crtc_vrtc_w);
I8275_DRAW_CHARACTER_MEMBER(crtc_display_pixels);
DECLARE_READ16_MEMBER(hp64k_rear_sw_r);
IRQ_CALLBACK_MEMBER(hp64k_irq_callback);
void hp64k_update_irl(void);
DECLARE_WRITE16_MEMBER(hp64k_irl_mask_w);
TIMER_DEVICE_CALLBACK_MEMBER(hp64k_kb_scan);
DECLARE_READ16_MEMBER(hp64k_kb_r);
private:
required_device<hp_5061_3011_cpu_device> m_cpu;
required_device<i8275_device> m_crtc;
required_device<palette_device> m_palette;
required_ioport m_io_key0;
required_ioport m_io_key1;
required_ioport m_io_key2;
required_ioport m_io_key3;
// Character generator
const UINT8 *m_chargen;
UINT32 m_crtc_ptr;
bool m_crtc_drq;
bool m_vrtc;
// Interrupt handling
UINT8 m_irl_mask;
UINT8 m_irl_pending;
// State of keyboard
ioport_value m_kb_state[ 4 ];
UINT8 m_kb_row_col;
bool m_kb_scan_on;
bool m_kb_pressed;
};
static ADDRESS_MAP_START(cpu_mem_map , AS_PROGRAM , 16 , hp64k_state)
AM_RANGE(0x0000 , 0x3fff) AM_ROM
AM_RANGE(0x8000 , 0x8001) AM_WRITE(hp64k_crtc_w)
AM_RANGE(0x8002 , 0xffff) AM_RAM
ADDRESS_MAP_END
static ADDRESS_MAP_START(cpu_io_map , AS_IO , 16 , hp64k_state)
// PA = 0, IC = [0..3]
// Keyboard input
AM_RANGE(HP_MAKE_IOADDR(0 , 0) , HP_MAKE_IOADDR(0 , 3)) AM_READ(hp64k_kb_r)
// PA = 7, IC = 2
// Rear-panel switches
AM_RANGE(HP_MAKE_IOADDR(7 , 2) , HP_MAKE_IOADDR(7 , 2)) AM_READ(hp64k_rear_sw_r)
// PA = 12, IC = [0..3]
// Interrupt mask
AM_RANGE(HP_MAKE_IOADDR(12 , 0) , HP_MAKE_IOADDR(12 , 3)) AM_WRITE(hp64k_irl_mask_w)
ADDRESS_MAP_END
hp64k_state::hp64k_state(const machine_config &mconfig, device_type type, const char *tag)
: driver_device(mconfig , type , tag),
m_cpu(*this , "cpu"),
m_crtc(*this , "crtc"),
m_palette(*this , "palette"),
m_io_key0(*this , "KEY0"),
m_io_key1(*this , "KEY1"),
m_io_key2(*this , "KEY2"),
m_io_key3(*this , "KEY3")
{
}
void hp64k_state::video_start()
{
m_chargen = memregion("chargen")->base();
}
void hp64k_state::machine_reset()
{
m_crtc_drq = false;
m_vrtc = false;
m_crtc_ptr = 0;
m_irl_mask = 0;
m_irl_pending = 0;
memset(&m_kb_state[ 0 ] , 0 , sizeof(m_kb_state));
m_kb_row_col = 0;
m_kb_scan_on = true;
}
UINT8 hp64k_state::hp64k_crtc_filter(UINT8 data)
{
bool inv = (data & 0xe0) == 0xe0;
return inv ? (data & 0xf2) : data;
}
WRITE16_MEMBER(hp64k_state::hp64k_crtc_w)
{
m_crtc->write(space , offset == 0 , hp64k_crtc_filter((UINT8)data));
}
WRITE_LINE_MEMBER(hp64k_state::hp64k_crtc_drq_w)
{
bool crtc_drq = state != 0;
bool prev_crtc = m_crtc_drq;
m_crtc_drq = crtc_drq;
if (!prev_crtc && crtc_drq) {
address_space& prog_space = m_cpu->space(AS_PROGRAM);
UINT8 data = prog_space.read_byte(m_crtc_ptr);
m_crtc_ptr++;
m_crtc->dack_w(prog_space , 0 , hp64k_crtc_filter(data));
}
}
WRITE_LINE_MEMBER(hp64k_state::hp64k_crtc_vrtc_w)
{
bool vrtc = state != 0;
if (!m_vrtc && vrtc) {
m_crtc_ptr = 0xf9f0 << 1;
}
m_vrtc = vrtc;
}
I8275_DRAW_CHARACTER_MEMBER(hp64k_state::crtc_display_pixels)
{
const rgb_t *palette = m_palette->palette()->entry_list_raw();
UINT8 chargen_byte = m_chargen[ linecount | ((unsigned)charcode << 4) ];
bool lvid , livid;
UINT16 pixels_lvid , pixels_livid;
unsigned i;
if (vsp) {
pixels_lvid = pixels_livid = ~0;
} else if (lten) {
pixels_livid = ~0;
if (rvv) {
pixels_lvid = ~0;
} else {
pixels_lvid = 0;
}
} else if (rvv) {
pixels_lvid = ~0;
pixels_livid = (UINT16)chargen_byte << 1;
} else {
pixels_lvid = ~((UINT16)chargen_byte << 1);
pixels_livid = ~0;
}
for (i = 0; i < 9; i++) {
lvid = (pixels_lvid & (1U << (8 - i))) != 0;
livid = (pixels_livid & (1U << (8 - i))) != 0;
if (!lvid) {
// Normal brightness
bitmap.pix32(y , x + i) = palette[ 2 ];
} else if (livid) {
// Black
bitmap.pix32(y , x + i) = palette[ 0 ];
} else {
// Half brightness
bitmap.pix32(y , x + i) = palette[ 1 ];
}
}
}
READ16_MEMBER(hp64k_state::hp64k_rear_sw_r)
{
// TEST
return ~0;
}
IRQ_CALLBACK_MEMBER(hp64k_state::hp64k_irq_callback)
{
if (irqline == HPHYBRID_IRL) {
return 0xff00 | (m_irl_mask & m_irl_pending);
} else {
return ~0;
}
}
void hp64k_state::hp64k_update_irl(void)
{
m_cpu->set_input_line(HPHYBRID_IRL , (m_irl_mask & m_irl_pending) != 0);
}
WRITE16_MEMBER(hp64k_state::hp64k_irl_mask_w)
{
m_irl_mask = (UINT8)data;
hp64k_update_irl();
}
TIMER_DEVICE_CALLBACK_MEMBER(hp64k_state::hp64k_kb_scan)
{
if (m_kb_scan_on) {
unsigned i;
ioport_value input[ 4 ];
input[ 0 ] = m_io_key0->read();
input[ 1 ] = m_io_key1->read();
input[ 2 ] = m_io_key2->read();
input[ 3 ] = m_io_key3->read();
for (i = 0; i < 128; i++) {
if (++m_kb_row_col >= 128) {
m_kb_row_col = 0;
}
ioport_value mask = BIT_MASK(m_kb_row_col & 0x1f);
unsigned idx = m_kb_row_col >> 5;
if ((input[ idx ] ^ m_kb_state[ idx ]) & mask) {
// key changed state
m_kb_state[ idx ] ^= mask;
m_kb_pressed = (m_kb_state[ idx ] & mask) != 0;
m_kb_scan_on = false;
BIT_SET(m_irl_pending , 0);
hp64k_update_irl();
break;
}
}
}
}
READ16_MEMBER(hp64k_state::hp64k_kb_r)
{
UINT16 ret = 0xff00 | m_kb_row_col;
if (m_kb_pressed) {
BIT_SET(ret , 7);
}
m_kb_scan_on = true;
BIT_CLR(m_irl_pending , 0);
hp64k_update_irl();
return ret;
}
static INPUT_PORTS_START(hp64k)
// Keyboard is arranged in a 8 x 16 matrix. Of the 128 possible positions, only 77 are used.
// For key arrangement on the matrix, see [1] pg 334
// Keys are mapped on bit b of KEYn
// where b = (row & 1) << 4 + column, n = row >> 1
// column = [0..15]
// row = [0..7]
PORT_START("KEY0")
PORT_BIT(BIT_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LCONTROL) PORT_CHAR(UCHAR_SHIFT_2)
PORT_BIT(BIT_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_A) PORT_CHAR('a') PORT_CHAR('A')
PORT_BIT(BIT_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_W) PORT_CHAR('w') PORT_CHAR('W')
PORT_BIT(BIT_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_E) PORT_CHAR('e') PORT_CHAR('E')
PORT_BIT(BIT_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_R) PORT_CHAR('r') PORT_CHAR('R')
PORT_BIT(BIT_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_T) PORT_CHAR('t') PORT_CHAR('T')
PORT_BIT(BIT_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Y) PORT_CHAR('y') PORT_CHAR('Y')
PORT_BIT(BIT_MASK(7) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_U) PORT_CHAR('u') PORT_CHAR('U')
PORT_BIT(BIT_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_I) PORT_CHAR('i') PORT_CHAR('I')
PORT_BIT(BIT_MASK(9) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(10) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(11) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(12) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(13) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(14) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(15) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_TAB) PORT_CHAR('\t')
PORT_BIT(BIT_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Q) PORT_CHAR('q') PORT_CHAR('Q')
PORT_BIT(BIT_MASK(18) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(19) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(20) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(21) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(22) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHAR('\'')
PORT_BIT(BIT_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHAR('(')
PORT_BIT(BIT_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_9) PORT_CHAR('9') PORT_CHAR(')')
PORT_BIT(BIT_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_0) PORT_CHAR('0')
PORT_BIT(BIT_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS) PORT_CHAR('-') PORT_CHAR('=')
PORT_BIT(BIT_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_EQUALS) PORT_CHAR('^') PORT_CHAR('~')
PORT_BIT(BIT_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_TILDE) PORT_CHAR('\\') PORT_CHAR('|')
PORT_BIT(BIT_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_BACKSPACE) PORT_CHAR(8)
PORT_BIT(BIT_MASK(30) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(31) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_START("KEY1")
PORT_BIT(BIT_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHAR('!')
PORT_BIT(BIT_MASK(1) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHAR('"')
PORT_BIT(BIT_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHAR('#')
PORT_BIT(BIT_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHAR('$')
PORT_BIT(BIT_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHAR('%')
PORT_BIT(BIT_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHAR('&')
PORT_BIT(BIT_MASK(6) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(7) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(8) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(9) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(10) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(11) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F9) PORT_NAME("RECALL")
PORT_BIT(BIT_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F10) PORT_NAME("CLRLINE")
PORT_BIT(BIT_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F11) PORT_NAME("CAPS")
PORT_BIT(BIT_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F12) PORT_NAME("RESET")
PORT_BIT(BIT_MASK(16) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F1) PORT_NAME("SK1")
PORT_BIT(BIT_MASK(17) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F2) PORT_NAME("SK2")
PORT_BIT(BIT_MASK(18) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F3) PORT_NAME("SK3")
PORT_BIT(BIT_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F4) PORT_NAME("SK4")
PORT_BIT(BIT_MASK(21) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(22) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F5) PORT_NAME("SK5")
PORT_BIT(BIT_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F6) PORT_NAME("SK6")
PORT_BIT(BIT_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F7) PORT_NAME("SK7")
PORT_BIT(BIT_MASK(26) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F8) PORT_NAME("SK8")
PORT_BIT(BIT_MASK(28) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(29) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(30) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(31) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_START("KEY2")
PORT_BIT(BIT_MASK(0) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LSHIFT) PORT_CHAR(UCHAR_SHIFT_1)
PORT_BIT(BIT_MASK(1) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(2) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_S) PORT_CHAR('s') PORT_CHAR('S')
PORT_BIT(BIT_MASK(3) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_D) PORT_CHAR('d') PORT_CHAR('D')
PORT_BIT(BIT_MASK(4) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_F) PORT_CHAR('f') PORT_CHAR('F')
PORT_BIT(BIT_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_G) PORT_CHAR('g') PORT_CHAR('G')
PORT_BIT(BIT_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_H) PORT_CHAR('h') PORT_CHAR('H')
PORT_BIT(BIT_MASK(7) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(8) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_O) PORT_CHAR('o') PORT_CHAR('O')
PORT_BIT(BIT_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_P) PORT_CHAR('p') PORT_CHAR('P')
PORT_BIT(BIT_MASK(11) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(12) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(13) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_INSERT) PORT_NAME("INSCHAR")
PORT_BIT(BIT_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_DEL) PORT_NAME("DELCHAR")
PORT_BIT(BIT_MASK(16) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(17) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(18) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_Z) PORT_CHAR('z') PORT_CHAR('Z')
PORT_BIT(BIT_MASK(19) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_X) PORT_CHAR('x') PORT_CHAR('X')
PORT_BIT(BIT_MASK(20) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_C) PORT_CHAR('c') PORT_CHAR('C')
PORT_BIT(BIT_MASK(21) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(22) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_J) PORT_CHAR('j') PORT_CHAR('J')
PORT_BIT(BIT_MASK(24) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(25) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_OPENBRACE) PORT_CHAR('@') PORT_CHAR('`')
PORT_BIT(BIT_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_CLOSEBRACE) PORT_CHAR('[') PORT_CHAR('{')
PORT_BIT(BIT_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_BACKSLASH2) PORT_CHAR('_') PORT_CHAR(UCHAR_MAMEKEY(DEL))
PORT_BIT(BIT_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_HOME) PORT_NAME("ROLLUP")
PORT_BIT(BIT_MASK(30) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_UP) PORT_CHAR(UCHAR_MAMEKEY(UP))
PORT_BIT(BIT_MASK(31) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_PGDN) PORT_NAME("NEXTPG")
PORT_START("KEY3")
PORT_BIT(BIT_MASK(0) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(1) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(2) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(3) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(4) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(5) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_V) PORT_CHAR('v') PORT_CHAR('V')
PORT_BIT(BIT_MASK(6) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_B) PORT_CHAR('b') PORT_CHAR('B')
PORT_BIT(BIT_MASK(7) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(8) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_K) PORT_CHAR('k') PORT_CHAR('K')
PORT_BIT(BIT_MASK(9) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_L) PORT_CHAR('l') PORT_CHAR('L')
PORT_BIT(BIT_MASK(10) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COLON) PORT_CHAR(';') PORT_CHAR('+')
PORT_BIT(BIT_MASK(11) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_QUOTE) PORT_CHAR(':') PORT_CHAR('*')
PORT_BIT(BIT_MASK(12) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_BACKSLASH) PORT_CHAR(']') PORT_CHAR('}')
PORT_BIT(BIT_MASK(13) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_ENTER) PORT_CHAR(13)
PORT_BIT(BIT_MASK(14) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_LEFT) PORT_CHAR(UCHAR_MAMEKEY(LEFT))
PORT_BIT(BIT_MASK(15) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_RIGHT) PORT_CHAR(UCHAR_MAMEKEY(RIGHT))
PORT_BIT(BIT_MASK(16) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(17) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(18) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(19) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(20) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(21) , IP_ACTIVE_HIGH , IPT_UNUSED)
PORT_BIT(BIT_MASK(22) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SPACE) PORT_CHAR(' ')
PORT_BIT(BIT_MASK(23) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_N) PORT_CHAR('n') PORT_CHAR('N')
PORT_BIT(BIT_MASK(24) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_M) PORT_CHAR('m') PORT_CHAR('M')
PORT_BIT(BIT_MASK(25) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_COMMA) PORT_CHAR(',') PORT_CHAR('<')
PORT_BIT(BIT_MASK(26) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_STOP) PORT_CHAR('.') PORT_CHAR('>')
PORT_BIT(BIT_MASK(27) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH) PORT_CHAR('/') PORT_CHAR('?')
PORT_BIT(BIT_MASK(28) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_RSHIFT) PORT_CHAR(UCHAR_SHIFT_1)
PORT_BIT(BIT_MASK(29) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_END) PORT_NAME("ROLLDN")
PORT_BIT(BIT_MASK(30) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_DOWN) PORT_CHAR(UCHAR_MAMEKEY(DOWN))
PORT_BIT(BIT_MASK(31) , IP_ACTIVE_HIGH , IPT_KEYBOARD) PORT_CODE(KEYCODE_PGUP) PORT_NAME("PREVPG")
INPUT_PORTS_END
static MACHINE_CONFIG_START(hp64k , hp64k_state)
MCFG_CPU_ADD("cpu" , HP_5061_3011 , 6250000)
MCFG_CPU_PROGRAM_MAP(cpu_mem_map)
MCFG_CPU_IO_MAP(cpu_io_map)
MCFG_CPU_IRQ_ACKNOWLEDGE_DRIVER(hp64k_state , hp64k_irq_callback)
MCFG_QUANTUM_TIME(attotime::from_hz(100))
// Actual keyboard refresh rate should be between 1 and 2 kHz
MCFG_TIMER_DRIVER_ADD_PERIODIC("kb_timer" , hp64k_state , hp64k_kb_scan , attotime::from_hz(100))
// Clock = 25 MHz / 9 * (112/114)
MCFG_DEVICE_ADD("crtc" , I8275 , 2729045)
MCFG_I8275_CHARACTER_WIDTH(9)
MCFG_I8275_DRAW_CHARACTER_CALLBACK_OWNER(hp64k_state , crtc_display_pixels)
MCFG_I8275_DRQ_CALLBACK(WRITELINE(hp64k_state , hp64k_crtc_drq_w))
MCFG_I8275_VRTC_CALLBACK(WRITELINE(hp64k_state , hp64k_crtc_vrtc_w))
MCFG_SCREEN_ADD("screen" , RASTER)
MCFG_SCREEN_UPDATE_DEVICE("crtc" , i8275_device , screen_update)
MCFG_SCREEN_REFRESH_RATE(60)
MCFG_PALETTE_ADD_MONOCHROME_GREEN_HIGHLIGHT("palette")
MACHINE_CONFIG_END
ROM_START(hp64k)
ROM_REGION(0x8000 , "cpu" , ROMREGION_16BIT | ROMREGION_BE | ROMREGION_INVERT)
ROM_LOAD16_BYTE("64100_80022.bin" , 0x0000 , 0x1000 , CRC(38b2aae5) SHA1(bfd0f126bfaf3724dc501979ad2d46afc41913aa))
ROM_LOAD16_BYTE("64100_80020.bin" , 0x0001 , 0x1000 , CRC(ac01b436) SHA1(be1e827ea1393a95abb02a52ab5cc35dc2cd96e4))
ROM_LOAD16_BYTE("64100_80023.bin" , 0x2000 , 0x1000 , CRC(6b4bc2ce) SHA1(00e6c58ccae9640dc81cb3e92db90a8c69b02a93))
ROM_LOAD16_BYTE("64100_80021.bin" , 0x2001 , 0x1000 , CRC(74f9d33c) SHA1(543a845a992b0ceac3e0491acdfb178df0adeb1f))
ROM_LOAD16_BYTE("64100_80026.bin" , 0x4000 , 0x1000 , CRC(a74e834b) SHA1(a2ff9765628985d9bab4cb44ba23257a9b8d0965))
ROM_LOAD16_BYTE("64100_80024.bin" , 0x4001 , 0x1000 , CRC(2e15a1d2) SHA1(ce4330f8f8015a26c02f0965b95baf7dfd615512))
ROM_LOAD16_BYTE("64100_80027.bin" , 0x6000 , 0x1000 , CRC(b93c0e7a) SHA1(b239446d3d6e9d3dba6c0278b2771abe1623e1ad))
ROM_LOAD16_BYTE("64100_80025.bin" , 0x6001 , 0x1000 , CRC(e6353085) SHA1(48d78835c798f2caf6ee539057676d4f3c8a4df9))
ROM_REGION(0x800 , "chargen" , 0)
ROM_LOAD("1816_1496_82S191.bin" , 0 , 0x800 , CRC(32a52664) SHA1(8b2a49a32510103ff424e8481d5ed9887f609f2f))
ROM_END
/* YEAR NAME PARENT COMPAT MACHINE INPUT INIT COMPANY FULLNAME */
COMP( 1979, hp64k, 0, 0, hp64k, hp64k, driver_device, 0, "HP", "HP 64000" , GAME_NO_SOUND)