mu50: Add the db50xg roms. They may even be the correct ones

swp00: Add most of the AWM.  Missing the lpf and the meg.
This commit is contained in:
Olivier Galibert 2023-09-19 09:17:36 +02:00
parent cc628ee495
commit 6dea864283
5 changed files with 1047 additions and 38 deletions

View File

@ -117,7 +117,7 @@ uint8_t h8_intc_device::ier_r()
void h8_intc_device::ier_w(uint8_t data)
{
m_ier = data;
logerror("ier = %02x\n", data);
// logerror("ier = %02x\n", data);
update_irq_state();
}

View File

@ -19,13 +19,265 @@ void swp00_device::device_add_mconfig(machine_config &config)
{
}
const std::array<u32, 4> swp00_device::lfo_shape_centered_saw = { 0x00000000, 0x00000000, 0xfff00000, 0xfff00000 }; // --////--
const std::array<u32, 4> swp00_device::lfo_shape_centered_tri = { 0x00000000, 0x0007ffff, 0xfff7ffff, 0xfff00000 }; // --/\/\--
const std::array<u32, 4> swp00_device::lfo_shape_offset_saw = { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; // __////__
const std::array<u32, 4> swp00_device::lfo_shape_offset_tri = { 0x00000000, 0x00000000, 0x000fffff, 0x000fffff }; // __/\/\__
const std::array<s32, 16> swp00_device::panmap = {
0x000, 0x040, 0x080, 0x0c0,
0x100, 0x140, 0x180, 0x1c0,
0x200, 0x240, 0x280, 0x2c0,
0x300, 0x340, 0x380, 0xfff
};
bool swp00_device::istep(s32 &value, s32 limit, s32 step)
{
// fprintf(stderr, "istep(%x, %x, %x)\n", value, limit, step);
if(value < limit) {
value += step;
if(value >= limit) {
value = limit;
return true;
}
return false;
}
if(value > limit) {
value -= step;
if(value <= limit) {
value = limit;
return true;
}
return false;
}
return true;
}
s32 swp00_device::fpadd(s32 value, s32 step)
{
s32 e = value >> 24;
s32 m = value & 0xffffff;
m += step << e;
if(m & 0xfe000000)
return 0xfffffff;
while(m & 0x01000000) {
m <<= 1;
e ++;
}
if(e >= 16)
return 0xfffffff;
return (e << 24) | (m & 0xffffff);
}
s32 swp00_device::fpsub(s32 value, s32 step)
{
s32 e = value >> 24;
s32 m = (value & 0xffffff) | 0xfe000000;
m = e < 0xc ? m - (step << e) : (m >> (e - 0xb)) - (step << 0xb);
// fprintf(stderr, "%07x %05x -> %x %08x\n", value, step, e, m);
if(m >= 0)
return 0;
if(e >= 0xc)
e = 0xb;
while(m < 0xfe000000) {
if(!e)
return 0;
e --;
m >>= 1;
}
while(e != 0xf && (m >= 0xff000000)) {
e ++;
m <<= 1;
}
return (e << 24) | (m & 0xffffff);
}
bool swp00_device::fpstep(s32 &value, s32 limit, s32 step)
{
// fprintf(stderr, "fpstep(%x, %x, %x)\n", value, limit, step);
// value, limit and step are 4.24 but step has its exponent and
// top four bits zero
if(value == limit)
return true;
if(value < limit) {
value = fpadd(value, step);
if(value >= limit) {
value = limit;
return true;
}
return false;
}
value = fpsub(value, step);
if(value <= limit) {
value = limit;
return true;
}
return false;
}
s16 swp00_device::fpapply(s32 value, s16 sample)
{
if(value >= 0x10000000)
return 0;
return (sample - ((sample * ((value >> 9) & 0x7fff)) >> 16)) >> (value >> 24);
}
// Some tables we need. Maybe they're in roms inside the chip,
// maybe they're logic. Probably slightly inexact too, would need
// a complicated hardware setup to really test them.
const std::array<s32, 0x80> swp00_device::attack_linear_step = {
0x00027, 0x0002b, 0x0002f, 0x00033, 0x00037, 0x0003d, 0x00042, 0x00048,
0x0004d, 0x00056, 0x0005e, 0x00066, 0x0006f, 0x0007a, 0x00085, 0x00090,
0x0009b, 0x000ac, 0x000bd, 0x000cc, 0x000de, 0x000f4, 0x00109, 0x00120,
0x00135, 0x00158, 0x00179, 0x00199, 0x001bc, 0x001e7, 0x00214, 0x00240,
0x0026b, 0x002af, 0x002f2, 0x00332, 0x00377, 0x003d0, 0x0042c, 0x00480,
0x004dc, 0x0055e, 0x005e9, 0x0066e, 0x006f4, 0x007a4, 0x00857, 0x0090b,
0x009c3, 0x00acb, 0x00bd6, 0x00ce6, 0x00e00, 0x00f5e, 0x010d2, 0x01234,
0x0139e, 0x015d0, 0x017f3, 0x01a20, 0x01c4a, 0x01f52, 0x02232, 0x0250f,
0x027ff, 0x02c72, 0x03109, 0x0338b, 0x039c4, 0x04038, 0x04648, 0x04c84,
0x05262, 0x05c1c, 0x065af, 0x06f5c, 0x07895, 0x0866f, 0x09470, 0x0a19e,
0x0ae4c, 0x0c566, 0x0db8d, 0x0f00f, 0x10625, 0x12937, 0x14954, 0x16c17,
0x1886e, 0x1c71c, 0x20000, 0x239e1, 0x2647c, 0x2aaab, 0x2ecfc, 0x3241f,
0x35e51, 0x3a83b, 0x40000, 0x4325c, 0x47dc1, 0x4c8f9, 0x50505, 0x55555,
0x58160, 0x5d174, 0x60606, 0x62b2e, 0x67b24, 0x6a63c, 0x6d3a0, 0x6eb3e,
0x71c72, 0x73616, 0x75075, 0x76b98, 0x78788, 0x78788, 0x7a44c, 0x7a44c,
0x7a44c, 0x7a44c, 0x7a44c, 0x7a44c, 0x7a44c, 0x7a44c, 0x7a44c, 0x7a44c,
};
const std::array<s32, 0x20> swp00_device::decay_linear_step = {
0x15083, 0x17ad2, 0x1a41a, 0x1cbe7, 0x1f16d, 0x22ef1, 0x26a44, 0x2a1e4,
0x2da35, 0x34034, 0x3a197, 0x40000, 0x45b82, 0x4b809, 0x51833, 0x57262,
0x5d9f7, 0x6483f, 0x6b15c, 0x71c72, 0x77976, 0x7d119, 0x83127, 0x88889,
0x8d3dd, 0x939a8, 0x991f2, 0x9d89e, 0xa0a0a, 0xa57eb, 0xa72f0, 0xac769,
};
void swp00_device::device_start()
{
m_stream = stream_alloc(0, 2, 44100);
save_item(NAME(m_waverom_access));
save_item(NAME(m_waverom_val));
save_item(NAME(m_intreg));
save_item(NAME(m_fpreg));
save_item(NAME(m_lpf_info));
save_item(NAME(m_lpf_speed));
save_item(NAME(m_lfo_famod_depth));
save_item(NAME(m_rev_level));
save_item(NAME(m_dry_level));
save_item(NAME(m_cho_level));
save_item(NAME(m_var_level));
save_item(NAME(m_glo_level));
save_item(NAME(m_panning));
save_item(NAME(m_attack_speed));
save_item(NAME(m_attack_level));
save_item(NAME(m_decay_speed));
save_item(NAME(m_decay_level));
save_item(NAME(m_pitch));
save_item(NAME(m_sample_start));
save_item(NAME(m_sample_end));
save_item(NAME(m_sample_dec_and_format));
save_item(NAME(m_sample_address));
save_item(NAME(m_lfo_step));
save_item(NAME(m_lfo_pmod_depth));
save_item(NAME(m_sample_counter));
save_item(NAME(m_lfo_phase));
save_item(NAME(m_sample_pos));
save_item(NAME(m_sample_increment));
save_item(NAME(m_envelope_level));
save_item(NAME(m_glo_level_cur));
save_item(NAME(m_pan_l));
save_item(NAME(m_pan_r));
save_item(NAME(m_active));
save_item(NAME(m_decay));
save_item(NAME(m_decay_done));
for(int i=0; i != 128; i++) {
u32 v = 0;
switch(i >> 3) {
default: v = ((i & 7) + 8) << (1 + (i >> 3)); break;
case 0xb: v = ((i & 7) + 4) << 13; break;
case 0xc: v = ((i & 6) + 6) << 14; break;
case 0xd: v = ((i & 4) + 7) << 15; break;
case 0xe: v = 15 << 15; break;
case 0xf: v = 31 << 15; break;
}
m_global_step[i] = v;
}
// Log to linear 8-bits sample decompression. Statistics say
// that's what it should look like. Note that 0 can be encoded
// both as 0x00 and 0x80, and as it happens 0x80 is never used in
// these samples. Ends up with a 55dB dynamic range, to compare
// with 8bits 48dB, 12bits 72dB and 16bits 96dB.
// Rescale so that it's roughly 16 bits. Range ends up being +/- 78c0.
for(int i=0; i<32; i++) {
m_sample_log8[ i] = i << 0;
m_sample_log8[0x20|i] = (i << 1) + 0x21;
m_sample_log8[0x40|i] = (i << 2) + 0x62;
m_sample_log8[0x60|i] = (i << 3) + 0xe3;
}
for(int i=0; i<128; i++) {
s16 base = m_sample_log8[i] << 6;
m_sample_log8[i | 0x80] = - base;
m_sample_log8[i] = + base;
}
}
void swp00_device::device_reset()
{
m_waverom_access = 0;
m_waverom_val = 0;
std::fill(m_intreg.begin(), m_intreg.end(), 0);
std::fill(m_fpreg.begin(), m_fpreg.end(), 0);
std::fill(m_lpf_info.begin(), m_lpf_info.end(), 0);
std::fill(m_lpf_speed.begin(), m_lpf_speed.end(), 0);
std::fill(m_lfo_famod_depth.begin(), m_lfo_famod_depth.end(), 0);
std::fill(m_rev_level.begin(), m_rev_level.end(), 0);
std::fill(m_dry_level.begin(), m_dry_level.end(), 0);
std::fill(m_cho_level.begin(), m_cho_level.end(), 0);
std::fill(m_var_level.begin(), m_var_level.end(), 0);
std::fill(m_glo_level.begin(), m_glo_level.end(), 0);
std::fill(m_panning.begin(), m_panning.end(), 0);
std::fill(m_attack_speed.begin(), m_attack_speed.end(), 0);
std::fill(m_attack_level.begin(), m_attack_level.end(), 0);
std::fill(m_decay_speed.begin(), m_decay_speed.end(), 0);
std::fill(m_decay_level.begin(), m_decay_level.end(), 0);
std::fill(m_pitch.begin(), m_pitch.end(), 0);
std::fill(m_sample_start.begin(), m_sample_start.end(), 0);
std::fill(m_sample_end.begin(), m_sample_end.end(), 0);
std::fill(m_sample_dec_and_format.begin(), m_sample_dec_and_format.end(), 0);
std::fill(m_sample_address.begin(), m_sample_address.end(), 0);
std::fill(m_lfo_step.begin(), m_lfo_step.end(), 0);
std::fill(m_lfo_pmod_depth.begin(), m_lfo_pmod_depth.end(), 0);
std::fill(m_sample_counter.begin(), m_sample_counter.end(), 0);
std::fill(m_lfo_phase.begin(), m_lfo_phase.end(), 0);
std::fill(m_sample_pos.begin(), m_sample_pos.end(), 0);
std::fill(m_sample_increment.begin(), m_sample_increment.end(), 0);
std::fill(m_envelope_level.begin(), m_envelope_level.end(), 0);
std::fill(m_glo_level_cur.begin(), m_glo_level_cur.end(), 0);
std::fill(m_pan_l.begin(), m_pan_l.end(), 0);
std::fill(m_pan_r.begin(), m_pan_r.end(), 0);
std::fill(m_active.begin(), m_active.end(), false);
std::fill(m_decay.begin(), m_decay.end(), false);
std::fill(m_decay_done.begin(), m_decay_done.end(), false);
}
void swp00_device::rom_bank_pre_change()
@ -35,18 +287,505 @@ void swp00_device::rom_bank_pre_change()
void swp00_device::map(address_map &map)
{
map(0x0000, 0x7ff).rw(FUNC(swp00_device::snd_r), FUNC(swp00_device::snd_w));
map(0x000, 0x7ff).rw(FUNC(swp00_device::snd_r), FUNC(swp00_device::snd_w));
rchan(map, 0x0a).rw(FUNC(swp00_device::sample_start_r<1>), FUNC(swp00_device::sample_start_w<1>));
rchan(map, 0x0b).rw(FUNC(swp00_device::sample_start_r<0>), FUNC(swp00_device::sample_start_w<0>));
rchan(map, 0x20).rw(FUNC(swp00_device::lpf_info_r<1>), FUNC(swp00_device::lpf_info_w<1>));
rchan(map, 0x21).rw(FUNC(swp00_device::lpf_info_r<0>), FUNC(swp00_device::lpf_info_w<0>));
rchan(map, 0x22).rw(FUNC(swp00_device::lpf_speed_r), FUNC(swp00_device::lpf_speed_w));
rchan(map, 0x23).rw(FUNC(swp00_device::lfo_famod_depth_r), FUNC(swp00_device::lfo_famod_depth_w));
rchan(map, 0x24).rw(FUNC(swp00_device::lfo_step_r), FUNC(swp00_device::lfo_step_w));
rchan(map, 0x25).rw(FUNC(swp00_device::lfo_pmod_depth_r), FUNC(swp00_device::lfo_pmod_depth_w));
rchan(map, 0x26).rw(FUNC(swp00_device::attack_speed_r), FUNC(swp00_device::attack_speed_w));
rchan(map, 0x27).rw(FUNC(swp00_device::attack_level_r), FUNC(swp00_device::attack_level_w));
rchan(map, 0x28).rw(FUNC(swp00_device::decay_speed_r), FUNC(swp00_device::decay_speed_w));
rchan(map, 0x29).rw(FUNC(swp00_device::decay_level_r), FUNC(swp00_device::decay_level_w));
rchan(map, 0x2a).rw(FUNC(swp00_device::rev_level_r), FUNC(swp00_device::rev_level_w));
rchan(map, 0x2b).rw(FUNC(swp00_device::dry_level_r), FUNC(swp00_device::dry_level_w));
rchan(map, 0x2c).rw(FUNC(swp00_device::cho_level_r), FUNC(swp00_device::cho_level_w));
rchan(map, 0x2d).rw(FUNC(swp00_device::var_level_r), FUNC(swp00_device::var_level_w));
rchan(map, 0x2e).rw(FUNC(swp00_device::glo_level_r), FUNC(swp00_device::glo_level_w));
rchan(map, 0x2f).rw(FUNC(swp00_device::panning_r), FUNC(swp00_device::panning_w));
rchan(map, 0x30).rw(FUNC(swp00_device::sample_dec_and_format_r), FUNC(swp00_device::sample_dec_and_format_w));
rchan(map, 0x31).rw(FUNC(swp00_device::sample_address_r<2>), FUNC(swp00_device::sample_address_w<2>));
rchan(map, 0x32).rw(FUNC(swp00_device::sample_address_r<1>), FUNC(swp00_device::sample_address_w<1>));
rchan(map, 0x33).rw(FUNC(swp00_device::sample_address_r<0>), FUNC(swp00_device::sample_address_w<0>));
rchan(map, 0x34).rw(FUNC(swp00_device::pitch_r<1>), FUNC(swp00_device::pitch_w<1>));
rchan(map, 0x35).rw(FUNC(swp00_device::pitch_r<0>), FUNC(swp00_device::pitch_w<0>));
rchan(map, 0x36).rw(FUNC(swp00_device::sample_end_r<1>), FUNC(swp00_device::sample_end_w<1>));
rchan(map, 0x37).rw(FUNC(swp00_device::sample_end_r<0>), FUNC(swp00_device::sample_end_w<0>));
rany(map, 0x00, 0x02).rw(FUNC(swp00_device::waverom_access_r), FUNC(swp00_device::waverom_access_w));
rany(map, 0x00, 0x03).r(FUNC(swp00_device::waverom_val_r));
rany(map, 0x00, 0x08).w(FUNC(swp00_device::keyon_w<3>));
rany(map, 0x00, 0x09).w(FUNC(swp00_device::keyon_w<2>));
rany(map, 0x00, 0x0a).w(FUNC(swp00_device::keyon_w<1>));
rany(map, 0x00, 0x0b).w(FUNC(swp00_device::keyon_w<0>));
map(0x001, 0x001).rw(FUNC(swp00_device::state_r), FUNC(swp00_device::state_adr_w));
map(0x180, 0x1ff).rw(FUNC(swp00_device::intreg_r), FUNC(swp00_device::intreg_w));
map(0x200, 0x3ff).rw(FUNC(swp00_device::fpreg_r), FUNC(swp00_device::fpreg_w));
}
static u8 rr[0x20*0x20];
// Voice control
template<int sel> void swp00_device::lpf_info_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
u16 old = m_lpf_info[chan];
m_lpf_info[chan] = (m_lpf_info[chan] & ~(0xff << (8*sel))) | (data << (8*sel));
if(!chan)
m_lpf_info[chan] = 0xf34;
if(m_lpf_info[chan] != old) {
if(!sel)
logerror("lpf_info[%02x] = %04x\n", chan, m_lpf_info[chan]);
}
}
template<int sel> u8 swp00_device::lpf_info_r(offs_t offset)
{
int chan = offset >> 1;
return m_lpf_info[chan] >> (8*sel);
}
void swp00_device::lpf_speed_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_lpf_speed[chan] == data)
return;
m_lpf_speed[chan] = data;
logerror("lpf_speed[%02x] = %02x\n", chan, m_lpf_speed[chan]);
}
u8 swp00_device::lpf_speed_r(offs_t offset)
{
int chan = offset >> 1;
return m_lpf_speed[chan];
}
void swp00_device::lfo_famod_depth_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_lfo_famod_depth[chan] == data)
return;
m_lfo_famod_depth[chan] = data;
logerror("lfo_famod_depth[%02x] = %02x\n", chan, m_lfo_famod_depth[chan]);
}
u8 swp00_device::lfo_famod_depth_r(offs_t offset)
{
int chan = offset >> 1;
return m_lfo_famod_depth[chan];
}
void swp00_device::rev_level_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_rev_level[chan] == data)
return;
m_rev_level[chan] = data;
logerror("rev_level[%02x] = %02x\n", chan, m_rev_level[chan]);
}
u8 swp00_device::rev_level_r(offs_t offset)
{
int chan = offset >> 1;
return m_rev_level[chan];
}
void swp00_device::dry_level_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_dry_level[chan] == data)
return;
m_dry_level[chan] = data;
logerror("dry_level[%02x] = %02x\n", chan, m_dry_level[chan]);
}
u8 swp00_device::dry_level_r(offs_t offset)
{
int chan = offset >> 1;
return m_dry_level[chan];
}
void swp00_device::cho_level_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_cho_level[chan] == data)
return;
m_cho_level[chan] = data;
logerror("cho_level[%02x] = %02x\n", chan, m_cho_level[chan]);
}
u8 swp00_device::cho_level_r(offs_t offset)
{
int chan = offset >> 1;
return m_cho_level[chan];
}
void swp00_device::var_level_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_var_level[chan] == data)
return;
m_var_level[chan] = data;
logerror("var_level[%02x] = %02x\n", chan, m_var_level[chan]);
}
u8 swp00_device::var_level_r(offs_t offset)
{
int chan = offset >> 1;
return m_var_level[chan];
}
void swp00_device::glo_level_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_glo_level[chan] == data)
return;
m_glo_level[chan] = data;
logerror("glo_level[%02x] = %02x\n", chan, m_glo_level[chan]);
}
u8 swp00_device::glo_level_r(offs_t offset)
{
int chan = offset >> 1;
return m_glo_level[chan];
}
void swp00_device::panning_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_panning[chan] == data)
return;
m_panning[chan] = data;
logerror("panning[%02x] = %02x\n", chan, m_panning[chan]);
}
u8 swp00_device::panning_r(offs_t offset)
{
int chan = offset >> 1;
return m_panning[chan];
}
void swp00_device::attack_speed_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_attack_speed[chan] == data)
return;
m_attack_speed[chan] = data;
logerror("attack_speed[%02x] = %02x\n", chan, m_attack_speed[chan]);
}
u8 swp00_device::attack_speed_r(offs_t offset)
{
int chan = offset >> 1;
return m_attack_speed[chan];
}
void swp00_device::attack_level_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_attack_level[chan] == data)
return;
m_attack_level[chan] = data;
logerror("attack_level[%02x] = %02x\n", chan, m_attack_level[chan]);
}
u8 swp00_device::attack_level_r(offs_t offset)
{
int chan = offset >> 1;
return m_attack_level[chan];
}
void swp00_device::decay_speed_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_decay_speed[chan] == data)
return;
m_decay_speed[chan] = data;
if(data & 0x80)
m_decay[chan] = true;
logerror("decay_speed[%02x] = %02x\n", chan, m_decay_speed[chan]);
}
u8 swp00_device::decay_speed_r(offs_t offset)
{
int chan = offset >> 1;
return m_decay_speed[chan];
}
void swp00_device::decay_level_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_decay_level[chan] == data)
return;
m_decay_level[chan] = data;
logerror("decay_level[%02x] = %02x\n", chan, m_decay_level[chan]);
}
u8 swp00_device::decay_level_r(offs_t offset)
{
int chan = offset >> 1;
return m_decay_level[chan];
}
template<int sel> void swp00_device::pitch_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
u16 old = m_pitch[chan];
m_pitch[chan] = (m_pitch[chan] & ~(0xff << (8*sel))) | (data << (8*sel));
if(m_pitch[chan] != old) {
if(!sel)
logerror("pitch[%02x] = %04x\n", chan, m_pitch[chan]);
}
}
template<int sel> u8 swp00_device::pitch_r(offs_t offset)
{
int chan = offset >> 1;
return m_pitch[chan] >> (8*sel);
}
template<int sel> void swp00_device::sample_start_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
m_sample_start[chan] = (m_sample_start[chan] & ~(0xff << (8*sel))) | (data << (8*sel));
if(!sel)
logerror("sample_start[%02x] = %04x\n", chan, m_sample_start[chan]);
}
template<int sel> u8 swp00_device::sample_start_r(offs_t offset)
{
int chan = offset >> 1;
return m_sample_start[chan] >> (8*sel);
}
template<int sel> void swp00_device::sample_end_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
m_sample_end[chan] = (m_sample_end[chan] & ~(0xff << (8*sel))) | (data << (8*sel));
if(!sel)
logerror("sample_end[%02x] = %04x\n", chan, m_sample_end[chan]);
}
template<int sel> u8 swp00_device::sample_end_r(offs_t offset)
{
int chan = offset >> 1;
return m_sample_end[chan] >> (8*sel);
}
void swp00_device::sample_dec_and_format_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
m_sample_dec_and_format[chan] = data;
logerror("sample_dec_and_format[%02x] = %02x\n", chan, m_sample_dec_and_format[chan]);
}
u8 swp00_device::sample_dec_and_format_r(offs_t offset)
{
int chan = offset >> 1;
return m_sample_dec_and_format[chan];
}
template<int sel> void swp00_device::sample_address_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
m_sample_address[chan] = (m_sample_address[chan] & ~(0xff << (8*sel))) | (data << (8*sel));
if(!sel || 1)
logerror("sample_address[%02x] = %04x\n", chan, m_sample_address[chan]);
}
template<int sel> u8 swp00_device::sample_address_r(offs_t offset)
{
int chan = offset >> 1;
return m_sample_address[chan] >> (8*sel);
}
void swp00_device::lfo_step_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_lfo_step[chan] == data)
return;
m_lfo_step[chan] = data;
logerror("lfo_step[%02x] = %02x\n", chan, m_lfo_step[chan]);
}
u8 swp00_device::lfo_step_r(offs_t offset)
{
int chan = offset >> 1;
return m_lfo_step[chan];
}
void swp00_device::lfo_pmod_depth_w(offs_t offset, u8 data)
{
int chan = offset >> 1;
if(m_lfo_pmod_depth[chan] == data)
return;
m_lfo_pmod_depth[chan] = data;
logerror("lfo_pmod_depth[%02x] = %02x\n", chan, m_lfo_pmod_depth[chan]);
}
u8 swp00_device::lfo_pmod_depth_r(offs_t offset)
{
int chan = offset >> 1;
return m_lfo_pmod_depth[chan];
}
void swp00_device::keyon(int chan)
{
m_stream->update();
logerror("keyon %02x a=%02x/%02x d=%02x/%02x\n", chan, m_attack_speed[chan], m_attack_level[chan], m_decay_speed[chan], m_decay_level[chan]);
m_sample_counter[chan] = 0;
m_lfo_phase[chan] = 0;
m_sample_pos[chan] = -m_sample_start[chan] << 15;
m_active[chan] = true;
m_decay[chan] = false;
m_decay_done[chan] = false;
m_glo_level_cur[chan] = m_glo_level[chan] << 4;
m_pan_l[chan] = panmap[m_panning[chan] >> 4];
m_pan_r[chan] = panmap[m_panning[chan] & 15];
if(m_decay_speed[chan] & 0x80) {
m_envelope_level[chan] = 0;
m_decay[chan] = true;
} else if((m_attack_speed[chan] & 0x80) || m_attack_level[chan])
m_envelope_level[chan] = m_attack_level[chan] << 20;
else
m_envelope_level[chan] = 0x8000000;
}
template<int sel> void swp00_device::keyon_w(u8 data)
{
for(int i=0; i < 8; i++)
if(BIT(data, i))
keyon(8*sel+i);
}
void swp00_device::intreg_w(offs_t offset, u8 data)
{
if(offset & 1)
m_intreg[offset >> 1] = (m_intreg[offset >> 1] & 0xff00) | data;
else
m_intreg[offset >> 1] = (m_intreg[offset >> 1] & 0x00ff) | (data << 8);
if(0)
if(offset & 1)
logerror("intreg[%02x] = %04x\n", offset >> 1, m_intreg[offset >> 1]);
}
u8 swp00_device::intreg_r(offs_t offset)
{
if(offset & 1)
return m_intreg[offset >> 1];
else
return m_intreg[offset >> 1] >> 8;
}
void swp00_device::fpreg_w(offs_t offset, u8 data)
{
if(offset & 1)
m_fpreg[offset >> 1] = (m_fpreg[offset >> 1] & 0xff00) | data;
else
m_fpreg[offset >> 1] = (m_fpreg[offset >> 1] & 0x00ff) | (data << 8);
if(0)
if(offset & 1)
logerror("fpreg[%03x] = %04x\n", offset >> 1, m_fpreg[offset >> 1]);
}
u8 swp00_device::fpreg_r(offs_t offset)
{
if(offset & 1)
return m_fpreg[offset >> 1];
else
return m_fpreg[offset >> 1] >> 8;
}
void swp00_device::waverom_access_w(u8 data)
{
m_waverom_access = data;
}
u8 swp00_device::waverom_access_r()
{
return 0x00; // non-zero = busy reading the rom
}
u8 swp00_device::waverom_val_r()
{
u8 val = read_byte(m_sample_address[0x1f]);
logerror("waverom read adr=%08x -> %02x\n", m_sample_address[0x1f], val);
m_sample_address[0x1f] = (m_sample_address[0x1f] + 1) & 0xffffff;
return val;
}
// Counters state access
u8 swp00_device::state_r()
{
m_stream->update();
// logerror("state_r %x.%02x\n", m_state_adr >> 5, m_state_adr & 0x1f);
int chan = m_state_adr & 0x1f;
switch(m_state_adr & 0xe0) {
case 0x00: // filter c2 value
return 0;
case 0x60: // global level
return (m_glo_level_cur[chan] >> 6) | ((m_glo_level_cur[chan] == (m_glo_level[chan] << 4)) ? 0x80 : 0x00);
case 0x80: // panning l
return (m_pan_l[chan] >> 6) | ((m_pan_l[chan] == panmap[m_panning[chan] >> 4]) ? 0x80 : 0x00);
case 0xa0: // panning r
return (m_pan_r[chan] >> 6) | ((m_pan_r[chan] == panmap[m_panning[chan] & 15]) ? 0x80 : 0x00);
case 0x40: { // Envelope state
if(!m_active[chan])
return 0xff;
u8 vol;
if(m_decay[chan] || m_attack_level[chan] || (m_attack_speed[chan] & 0x80))
vol = m_envelope_level[chan] >> 22;
else
vol = 0;
if(m_decay_done[chan])
vol |= 0x40;
if(m_decay[chan])
vol |= 0x80;
return vol;
}
}
logerror("state %02x unsupported\n");
return 0;
}
void swp00_device::state_adr_w(u8 data)
{
m_state_adr = data;
}
// Catch-all
static u8 rr[0x20*0x40];
u8 swp00_device::snd_r(offs_t offset)
{
if(0) {
int chan = (offset >> 6) & 0x3f;
int slot = offset & 0x3f;
if(1) {
int chan = (offset >> 1) & 0x1f;
int slot = ((offset >> 5) & 0x3e) | (offset & 1);
std::string preg = "-";
#if 0
if(slot >= 0x21 && slot <= 0x2b && (slot & 1))
preg = util::string_format("fp%03x", (slot-0x21)/2 + 6*chan);
else if(slot == 0x30 || slot == 0x31)
@ -54,25 +793,23 @@ u8 swp00_device::snd_r(offs_t offset)
else if(slot == 0x0e || slot == 0x0f)
preg = util::string_format("ct%02x", (slot-0x0e) + 2*chan);
else
#endif
preg = util::string_format("%02x.%02x", chan, slot);
logerror("snd_r [%04x %04x] %-5s, %04x\n", offset, offset*2, preg, rr[offset]);
if(offset != 1)
logerror("snd_r [%03x] %-5s, %02x\n", offset, preg, rr[offset]);
}
if(0 && offset == 0x080f)
machine().debug_break();
if(offset == 0x080f)
return 0;
return rr[offset];
}
void swp00_device::snd_w(offs_t offset, u8 data)
{
if(rr[offset] == data)
return;
// if(rr[offset] == data)
// return;
rr[offset] = data;
int chan = (offset >> 6) & 0x1f;
int slot = offset & 0x3f;
int chan = (offset >> 1) & 0x1f;
int slot = ((offset >> 5) & 0x3e) | (offset & 1);
std::string preg = "-";
#if 0
@ -90,7 +827,10 @@ void swp00_device::snd_w(offs_t offset, u8 data)
#endif
preg = util::string_format("%02x.%02x", chan, slot);
logerror("snd_w [%04x %04x] %-5s, %02x\n", offset, offset*2, preg, data);
if(offset == 1)
return;
logerror("snd_w [%03x] %-5s, %02x\n", offset, preg, data);
}
@ -99,6 +839,146 @@ void swp00_device::snd_w(offs_t offset, u8 data)
void swp00_device::sound_stream_update(sound_stream &stream, std::vector<read_stream_view> const &inputs, std::vector<write_stream_view> &outputs)
{
outputs[0].fill(0);
outputs[1].fill(0);
for(int i=0; i != outputs[0].samples(); i++) {
s32 dry_l = 0, dry_r = 0;
s32 rev = 0;
s32 cho_l = 0, cho_r = 0;
s32 var_l = 0, var_r = 0;
for(int chan = 0; chan != 32; chan++) {
if(!m_active[chan])
continue;
u32 lfo_phase = m_lfo_phase[chan] >> 7;
s32 lfo_p_phase = lfo_phase ^ (m_lfo_step[chan] & 0x40 ? lfo_shape_centered_tri : lfo_shape_centered_saw)[lfo_phase >> 18];
s32 lfo_fa_phase = lfo_phase ^ (m_lfo_step[chan] & 0x40 ? lfo_shape_offset_tri : lfo_shape_offset_saw )[lfo_phase >> 18];
u32 filter_shift;
if(m_lfo_step[chan] & 0x40) {
filter_shift = 4;
} else {
filter_shift = 5;
}
(void)filter_shift;
s16 val0, val1;
u32 base_address = m_sample_address[chan];
s32 spos = m_sample_pos[chan] >> 15;
switch(m_sample_dec_and_format[chan] >> 6) {
case 0: { // 16-bits linear
offs_t adr = base_address + (spos << 1);
val0 = read_word(adr);
val1 = read_word(adr+1);
break;
}
case 1: { // 12-bits linear
offs_t adr = base_address + (spos >> 2)*6;
switch(spos & 3) {
case 0: { // .abc .... ....
u16 w0 = read_word(adr);
u16 w1 = read_word(adr+2);
val0 = (w0 & 0x0fff) << 4;
val1 = ((w0 & 0xf000) >> 8) | ((w1 & 0x00ff) << 8);
break;
}
case 1: { // C... ..AB ....
u16 w0 = read_word(adr);
u16 w1 = read_word(adr+2);
u16 w2 = read_word(adr+4);
val0 = ((w0 & 0xf000) >> 8) | ((w1 & 0x00ff) << 8);
val1 = ((w1 & 0xff00) >> 4) | ((w2 & 0x000f) << 12);
break;
}
case 2: { // .... bc.. ...a
u16 w1 = read_word(adr+2);
u16 w2 = read_word(adr+4);
val0 = ((w1 & 0xff00) >> 4) | ((w2 & 0x000f) << 12);
val1 = w2 & 0xfff0;
break;
}
case 3: { // .... .... ABC.
u16 w2 = read_word(adr+4);
u16 w3 = read_word(adr+6);
val0 = w2 & 0xfff0;
val1 = (w3 & 0x0fff) << 4;
break;
}
}
break;
}
case 2: // 8-bits linear
val0 = (read_byte(base_address + spos) << 8);
val1 = (read_byte(base_address + spos + 1) << 8);
break;
case 3: // 8-bits logarithmic
val0 = m_sample_log8[read_byte(base_address + spos)];
val1 = m_sample_log8[read_byte(base_address + spos + 1)];
break;
}
s32 mul = m_sample_pos[chan] & 0x7fff;
s32 sample = (val1 * mul + val0 * (0x8000 - mul)) >> 15;
s32 envelope_level;
if(m_decay[chan] || m_attack_level[chan] || (m_attack_speed[chan] & 0x80))
envelope_level = m_envelope_level[chan];
else
envelope_level = 0;
s32 tremolo_level = (lfo_fa_phase * (m_lfo_famod_depth[chan] & 0x1f)) << ((m_lfo_step[chan] & 0x40) ? 3 : 2);
dry_l += fpapply(envelope_level + (m_glo_level_cur[chan] << 16) + tremolo_level + (m_dry_level[chan] << 20) + (m_pan_l[chan] << 16), sample);
dry_r += fpapply(envelope_level + (m_glo_level_cur[chan] << 16) + tremolo_level + (m_dry_level[chan] << 20) + (m_pan_r[chan] << 16), sample);
rev += fpapply(envelope_level + (m_glo_level_cur[chan] << 16) + tremolo_level + (m_rev_level[chan] << 20), sample);
cho_l += fpapply(envelope_level + (m_glo_level_cur[chan] << 16) + tremolo_level + (m_cho_level[chan] << 20) + (m_pan_l[chan] << 16), sample);
cho_r += fpapply(envelope_level + (m_glo_level_cur[chan] << 16) + tremolo_level + (m_cho_level[chan] << 20) + (m_pan_r[chan] << 16), sample);
var_l += fpapply(envelope_level + (m_glo_level_cur[chan] << 16) + tremolo_level + (m_var_level[chan] << 20) + (m_pan_l[chan] << 16), sample);
var_r += fpapply(envelope_level + (m_glo_level_cur[chan] << 16) + tremolo_level + (m_var_level[chan] << 20) + (m_pan_r[chan] << 16), sample);
m_lfo_phase[chan] = (m_lfo_phase[chan] + m_global_step[0x20 + (m_lfo_step[chan] & 0x3f)]) & 0x7ffffff;
u32 sample_increment = ((m_pitch[chan] & 0xfff) << (8 + (s16(m_pitch[chan]) >> 12))) >> 4;
m_sample_pos[chan] += (sample_increment * (0x800 + ((lfo_p_phase * m_lfo_pmod_depth[chan]) >> (m_lfo_step[chan] & 0x40 ? 18 : 19)))) >> 11;
if((m_sample_pos[chan] >> 15) >= m_sample_end[chan]) {
if(!m_sample_end[chan])
m_active[chan] = false;
else {
do
m_sample_pos[chan] -= (m_sample_end[chan] << 15) | ((m_sample_dec_and_format[chan] & 0x3f) << 9);
while((m_sample_pos[chan] >> 15) >= m_sample_end[chan]);
}
}
istep(m_glo_level_cur[chan], m_glo_level[chan] << 4, 1);
istep(m_pan_l[chan], panmap[m_panning[chan] >> 4], 1);
istep(m_pan_r[chan], panmap[m_panning[chan] & 15], 1);
if(m_decay[chan]) {
if((m_decay_speed[chan] & 0x60) == 0x60)
m_decay_done[chan] = fpstep(m_envelope_level[chan], m_decay_level[chan] << 20, decay_linear_step[m_decay_speed[chan] & 0x1f]);
else
m_decay_done[chan] = istep(m_envelope_level[chan], m_decay_level[chan] << 20, m_global_step[m_decay_speed[chan]] << 1);
if(m_envelope_level[chan] & 0x8000000)
m_active[chan] = false;
} else if(m_attack_speed[chan] & 0x80)
m_decay[chan] = fpstep(m_envelope_level[chan], 0, attack_linear_step[m_attack_speed[chan] & 0x7f]);
else
m_decay[chan] = istep(m_envelope_level[chan], 0, m_global_step[m_attack_speed[chan]] << 1);
m_sample_counter[chan] = (m_sample_counter[chan] + 1) & 0x7f;
}
outputs[0].put_int(i, dry_l, 32768);
outputs[1].put_int(i, dry_r, 32768);
(void)rev;
(void)cho_l;
(void)cho_r;
(void)var_l;
(void)var_r;
}
}

View File

@ -11,7 +11,7 @@
#include "meg.h"
#include "dirom.h"
class swp00_device : public device_t, public device_sound_interface, public device_rom_interface<25+2, 2, 0, ENDIANNESS_LITTLE>
class swp00_device : public device_t, public device_sound_interface, public device_rom_interface<24, 0, 0, ENDIANNESS_LITTLE>
{
public:
swp00_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 33868800);
@ -30,18 +30,136 @@ private:
sound_stream *m_stream;
static const std::array<s32, 0x80> attack_linear_step;
static const std::array<s32, 0x20> decay_linear_step;
static const std::array<s32, 16> panmap;
std::array<s32, 0x80> m_global_step;
std::array<s16, 0x100> m_sample_log8;
static const std::array<u32, 4> lfo_shape_centered_saw;
static const std::array<u32, 4> lfo_shape_centered_tri;
static const std::array<u32, 4> lfo_shape_offset_saw;
static const std::array<u32, 4> lfo_shape_offset_tri;
std::array<u16, 0x40> m_intreg;
std::array<u16, 0x300> m_fpreg;
std::array<u16, 0x20> m_lpf_info;
std::array<u8, 0x20> m_lpf_speed;
std::array<u8, 0x20> m_lfo_famod_depth;
std::array<u8, 0x20> m_rev_level;
std::array<u8, 0x20> m_dry_level;
std::array<u8, 0x20> m_cho_level;
std::array<u8, 0x20> m_var_level;
std::array<u8, 0x20> m_glo_level;
std::array<u8, 0x20> m_panning;
std::array<u8, 0x20> m_attack_speed;
std::array<u8, 0x20> m_attack_level;
std::array<u8, 0x20> m_decay_speed;
std::array<u8, 0x20> m_decay_level;
std::array<u16, 0x20> m_pitch;
std::array<u16, 0x20> m_sample_start;
std::array<u16, 0x20> m_sample_end;
std::array<u8, 0x20> m_sample_dec_and_format;
std::array<u32, 0x20> m_sample_address;
std::array<u8, 0x20> m_lfo_step;
std::array<u8, 0x20> m_lfo_pmod_depth;
std::array<u8, 0x20> m_sample_counter;
std::array<u32, 0x20> m_lfo_phase;
std::array<s32, 0x20> m_sample_pos;
std::array<u32, 0x20> m_sample_increment;
std::array<s32, 0x20> m_envelope_level;
std::array<s32, 0x20> m_glo_level_cur;
std::array<s32, 0x20> m_pan_l;
std::array<s32, 0x20> m_pan_r;
std::array<bool, 0x20> m_active, m_decay, m_decay_done;
u16 m_waverom_val;
u8 m_waverom_access;
u8 m_state_adr;
// Voice control
template<int sel> void lpf_info_w(offs_t offset, u8 data);
template<int sel> u8 lpf_info_r(offs_t offset);
void lpf_speed_w(offs_t offset, u8 data);
u8 lpf_speed_r(offs_t offset);
void lfo_famod_depth_w(offs_t offset, u8 data);
u8 lfo_famod_depth_r(offs_t offset);
void rev_level_w(offs_t offset, u8 data);
u8 rev_level_r(offs_t offset);
void dry_level_w(offs_t offset, u8 data);
u8 dry_level_r(offs_t offset);
void cho_level_w(offs_t offset, u8 data);
u8 cho_level_r(offs_t offset);
void var_level_w(offs_t offset, u8 data);
u8 var_level_r(offs_t offset);
void glo_level_w(offs_t offset, u8 data);
u8 glo_level_r(offs_t offset);
void panning_w(offs_t offset, u8 data);
u8 panning_r(offs_t offset);
void attack_speed_w(offs_t offset, u8 data);
u8 attack_speed_r(offs_t offset);
void attack_level_w(offs_t offset, u8 data);
u8 attack_level_r(offs_t offset);
void decay_speed_w(offs_t offset, u8 data);
u8 decay_speed_r(offs_t offset);
void decay_level_w(offs_t offset, u8 data);
u8 decay_level_r(offs_t offset);
template<int sel> void pitch_w(offs_t offset, u8 data);
template<int sel> u8 pitch_r(offs_t offset);
template<int sel> void sample_start_w(offs_t offset, u8 data);
template<int sel> u8 sample_start_r(offs_t offset);
template<int sel> void sample_end_w(offs_t offset, u8 data);
template<int sel> u8 sample_end_r(offs_t offset);
void sample_dec_and_format_w(offs_t offset, u8 data);
u8 sample_dec_and_format_r(offs_t offset);
template<int sel> void sample_address_w(offs_t offset, u8 data);
template<int sel> u8 sample_address_r(offs_t offset);
void lfo_step_w(offs_t offset, u8 data);
u8 lfo_step_r(offs_t offset);
void lfo_pmod_depth_w(offs_t offset, u8 data);
u8 lfo_pmod_depth_r(offs_t offset);
// Internal state access
u8 state_r();
void state_adr_w(u8 data);
// MEG variables
void intreg_w(offs_t offset, u8 data);
u8 intreg_r(offs_t offset);
void fpreg_w(offs_t offset, u8 data);
u8 fpreg_r(offs_t offset);
// Control registers
void keyon(int chan);
template<int sel> void keyon_w(u8 data);
void waverom_access_w(u8 data);
u8 waverom_access_r();
u8 waverom_val_r();
// Generic catch-all
u8 snd_r(offs_t offset);
void snd_w(offs_t offset, u8 data);
inline auto &rchan(address_map &map, int idx) {
return map(idx*2, idx*2+1).select(0x7c0);
inline auto &rany(address_map &map, int chan, int idx) {
int slot = (chan << 6) | idx;
return map(slot, slot);
}
inline auto &rctrl(address_map &map, int idx) {
int slot = 0x20*(idx >> 1) | 0xe | (idx & 1);
return map(slot*2, slot*2+1);
inline auto &rchan(address_map &map, int idx) {
int slot = ((idx & 0x3e) << 5) | (idx & 1);
return map(slot, slot).select(0x3e);
}
// Other methods
static bool istep(s32 &value, s32 limit, s32 step);
static bool fpstep(s32 &value, s32 limit, s32 step);
static s32 fpadd(s32 value, s32 step);
static s32 fpsub(s32 value, s32 step);
static s16 fpapply(s32 value, s16 sample);
};
DECLARE_DEVICE_TYPE(SWP00, swp00_device)

View File

@ -35,7 +35,7 @@ static int scount = 0;
Names we'll use in th rest of the text:
- reg(y, x) is the register at address 2*(y*0x40 + x)
- ch<nn> is reg(channel, xx) for a given AWG2 channel
- ch<nn> is reg(channel, nn) for a given AWG2 channel
- sy<nn> is reg(nn/2, 0xe + (nn % 2))
- fp<nnn> is reg(nn/6, 0x21 + 2*(nn % 6))
- of<nn> is reg(nn/2, 0x30 + (nn % 2))

View File

@ -95,6 +95,7 @@ private:
void mu50_map(address_map &map);
virtual void machine_start() override;
virtual void machine_reset() override;
};
void mu50_state::machine_start()
@ -102,11 +103,17 @@ void mu50_state::machine_start()
cur_p6 = cur_pa = cur_pb = cur_pc = 0xff;
}
void mu50_state::machine_reset()
{
// Active-low, wired to gnd
m_mu50cpu->set_input_line(0, ASSERT_LINE);
}
void mu50_state::mu50_map(address_map &map)
{
map(0x000000, 0x07ffff).rom().region("mu50cpu", 0);
map(0x200000, 0x20ffff).ram(); // 64K work RAM
map(0x400000, 0x400fff).m(m_swp00, FUNC(swp00_device::map)).umask16(0xff00);
map(0x400000, 0x4007ff).m(m_swp00, FUNC(swp00_device::map));
}
// Analog input right (not sent to the swp)
@ -124,7 +131,12 @@ u16 mu50_state::adc_al_r()
// Put the host switch to pure midi
u16 mu50_state::adc_midisw_r()
{
return 0;
// -> 20948a
// 000-0bf: midi
// 0c0-1ff: pc2
// 200-37f: pc1
// 380-3ff: mac
return 0x000;
}
// Battery level
@ -202,7 +214,7 @@ u16 mu50_state::pc_r()
void mu50_state::mu50(machine_config &config)
{
H83003(config, m_mu50cpu, 12_MHz_XTAL);
H83003(config, m_mu50cpu, 10_MHz_XTAL);
m_mu50cpu->set_addrmap(AS_PROGRAM, &mu50_state::mu50_map);
m_mu50cpu->read_adc<0>().set(FUNC(mu50_state::adc_ar_r));
m_mu50cpu->read_adc<1>().set_constant(0);
@ -221,6 +233,9 @@ void mu50_state::mu50(machine_config &config)
m_mu50cpu->read_portc().set(FUNC(mu50_state::pc_r));
m_mu50cpu->write_portc().set(FUNC(mu50_state::pc_w));
m_mu50cpu->read_port7().set_constant(0);
m_mu50cpu->read_port9().set_constant(0);
MULCD(config, m_lcd);
SPEAKER(config, "lspeaker").front_left();
@ -230,17 +245,13 @@ void mu50_state::mu50(machine_config &config)
m_swp00->add_route(0, "lspeaker", 1.0);
m_swp00->add_route(1, "rspeaker", 1.0);
auto &mdin_a(MIDI_PORT(config, "mdin_a"));
midiin_slot(mdin_a);
mdin_a.rxd_handler().set(m_mu50cpu, FUNC(h83003_device::sci_rx_w<1>));
auto &mdin_b(MIDI_PORT(config, "mdin_b"));
midiin_slot(mdin_b);
mdin_b.rxd_handler().set(m_mu50cpu, FUNC(h83003_device::sci_rx_w<0>));
auto &mdin(MIDI_PORT(config, "mdin"));
midiin_slot(mdin);
mdin.rxd_handler().set(m_mu50cpu, FUNC(h83003_device::sci_rx_w<1>));
auto &mdout(MIDI_PORT(config, "mdout"));
midiout_slot(mdout);
m_mu50cpu->write_sci_tx<0>().set(mdout, FUNC(midi_port_device::write_txd));
m_mu50cpu->write_sci_tx<1>().set(mdout, FUNC(midi_port_device::write_txd));
}
ROM_START( mu50 )
@ -248,8 +259,8 @@ ROM_START( mu50 )
ROM_LOAD16_WORD_SWAP( "yamaha_mu50.bin", 0x000000, 0x080000, CRC(507168ad) SHA1(58c41f10d292cac35ef0e8f93029fbc4685df586) )
ROM_REGION( 0x400000, "swp00", ROMREGION_ERASE00 )
ROM_LOAD( "xq057b00.ic18", 0x000000, 0x200000, NO_DUMP)
ROM_LOAD( "xq058b00.ic18", 0x200000, 0x200000, NO_DUMP)
ROM_LOAD( "xq730b0.ic9", 0x000000, 0x200000, CRC(d4adbc7e) SHA1(32f653c7644d060f5a6d63a435ae3a7412386d92) BAD_DUMP) // Use the db50xg roms for now
ROM_LOAD( "xq731b0.ic10", 0x200000, 0x200000, CRC(7b68f475) SHA1(adf68689b4842ec5bc9b0ea1bb99cf66d2dec4de) BAD_DUMP) // Note that they may be identical to the mu50 ones
ROM_END
} // anonymous namespace