netlist: Improved PPMF target support and test coverage. (#9752)

This addresses most of the issues described in #8590.

* Fixed standalone Visual Studio 2019 builds, including support for clang toolchain.
* Added static stub to PMF to support MSVC ABI.
* Better aligned ppmf syntax with MAME's delegate syntax.
* Add tests/test_ppmf*.cpp testing examples given in #8590.

Also worked around issues some versions of Apple clang have with 5aaae19230.
This commit is contained in:
couriersud 2022-05-15 12:03:54 +02:00 committed by GitHub
parent 3da1e6f2b7
commit 74728bc4d4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 834 additions and 319 deletions

View File

@ -7,6 +7,12 @@ buildVS/x64/*
buildVS/.vs/*
nltool
nlwav
nltool.html
nltool.js
nltool.wasm
nlwav.html
nlwav.js
nlwav.wasm
# Windows executables
*.exe

View File

@ -53,6 +53,9 @@ TIDY_FLAGSX += -modernize-use-nodiscard,
#TIDY_FLAGSX += -cppcoreguidelines-prefer-member-initializer,
#TIDY_FLAGSX += -modernize-use-transparent-functors,
TIDY_FLAGSX += -readability-function-cognitive-complexity,
TIDY_FLAGSX += -readability-uppercase-literal-suffix
#TIDY_FLAGSX += -cppcoreguidelines-avoid-non-const-global-variables
space :=
@ -271,6 +274,9 @@ native:
gcc9:
$(MAKE) CC=g++-9 LD=g++-9 CEXTRAFLAGS="-march=native -Wall -pedantic -Wpedantic -fext-numeric-literals -Wsign-compare -Wextra" EXTRALIBS="-lquadmath"
emsdk:
emmake $(MAKE) CC=emcc LD=emcc CEXTRAFLAGS="-fexceptions" LDEXTRAFLAGS="-fexceptions --emrun" OBJ=obj/emsdk EXESUFFIX=.html
clang:
#$(MAKE) CC=clang++-11 LD=clang++-11 OBJ=obj/clang CEXTRAFLAGS="-march=native -msse4.2 -Weverything -Wall -pedantic -Wpedantic -Wunused-private-field -Wno-padded -Wno-unused-template -Wno-missing-variable-declarations -Wno-float-equal -Wconversion -Wno-c++98-compat -Wno-c++98-compat-pedantic -Wno-format-nonliteral -Wno-exit-time-destructors"
$(MAKE) CC=clang++-13 LD=clang++-13 OBJ=obj/clang CEXTRAFLAGS="-march=native \
@ -281,6 +287,8 @@ clang:
-Wmissing-variable-declarations -Wno-float-equal -Wconversion \
-Wno-c++98-compat -Wno-c++98-compat-pedantic -Wformat-nonliteral \
-Wno-exit-time-destructors -Winconsistent-missing-destructor-override \
-Wno-embedded-directive \
-Wno-undefined-reinterpret-cast \
-Wunreachable-code \
-Wmissing-prototypes"
@ -295,6 +303,7 @@ clang-libc:
-Wmissing-variable-declarations -Wno-float-equal -Wconversion \
-Wno-c++98-compat -Wno-c++98-compat-pedantic -Wformat-nonliteral \
-Wno-exit-time-destructors -Winconsistent-missing-destructor-override \
-Wno-undefined-reinterpret-cast \
-Wunreachable-code \
-Wmissing-prototypes" \
LDEXTRAFLAGS=-stdlib=libc++

View File

@ -104,6 +104,12 @@
<Optimization>Full</Optimization>
<FavorSizeOrSpeed>Speed</FavorSizeOrSpeed>
<AdditionalOptions>/bigobj</AdditionalOptions>
<LanguageStandard>stdcpp17</LanguageStandard>
</ClCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<LanguageStandard>stdcpp17</LanguageStandard>
</ClCompile>
</ItemDefinitionGroup>
<ItemGroup>

View File

@ -102,6 +102,7 @@
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<LanguageStandard>stdcpp17</LanguageStandard>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@ -136,6 +137,7 @@
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(SolutionDir)..\..\;$(SolutionDir)..\</AdditionalIncludeDirectories>
<LanguageStandard>stdcpp17</LanguageStandard>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@ -150,6 +152,9 @@
<AdditionalOptions Condition="'$(Configuration)|$(Platform)'=='Release|x64'">/bigobj</AdditionalOptions>
</ClCompile>
<ClCompile Include="..\tests\test_pfunction.cpp" />
<ClCompile Include="..\tests\test_pmfp.cpp" />
<ClCompile Include="..\tests\test_pmfp_multibase.cpp" />
<ClCompile Include="..\tests\test_pstring.cpp" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="netlistlib.vcxproj">

View File

@ -21,5 +21,14 @@
<ClCompile Include="..\tests\test_pfunction.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\tests\test_pmfp.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\tests\test_pstring.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\tests\test_pmfp_multibase.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
</Project>

View File

@ -102,6 +102,7 @@
<PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<AdditionalIncludeDirectories>$(SolutionDir)..\..\;$(SolutionDir)..\</AdditionalIncludeDirectories>
<LanguageStandard>stdcpp17</LanguageStandard>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@ -132,6 +133,7 @@
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<LanguageStandard>stdcpp17</LanguageStandard>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>

View File

@ -48,7 +48,7 @@ namespace netlist
{
gsl_Expects(m_active_outputs >= 1);
if (m_activate && m_hint_deactivate)
if (!m_activate.isnull() && m_hint_deactivate)
if (--m_active_outputs == 0)
{
m_activate(false); //dec_active();
@ -78,7 +78,7 @@ namespace netlist
}
protected:
using activate_delegate = plib::pmfp<void, bool>;
using activate_delegate = plib::pmfp<void (bool)>;
activate_delegate m_activate;

View File

@ -48,8 +48,8 @@ namespace netlist::detail
public:
using entry_t = plib::pqentry_t<netlist_time_ext, O *>;
using base_queue = timed_queue<entry_t, false>;
using id_delegate = plib::pmfp<std::size_t, const O *>;
using obj_delegate = plib::pmfp<O *, std::size_t>;
using id_delegate = plib::pmfp<std::size_t (const O *)>;
using obj_delegate = plib::pmfp<O * (std::size_t)>;
explicit queue_base(std::size_t size, id_delegate get_id, obj_delegate get_obj)
: timed_queue<plib::pqentry_t<netlist_time_ext, O *>, false>(size)

View File

@ -209,8 +209,6 @@ namespace netlist
ENTRY(PHAS_OPENMP)
ENTRY(PUSE_OPENMP)
ENTRY(PUSE_FLOAT128)
ENTRY(PPMF_TYPE)
ENTRY(PHAS_PMF_INTERNAL)
ENTRY_EX(config::use_mempool::value)
ENTRY_EX(config::use_queue_stats::value)
ENTRY(NL_USE_COPY_INSTEAD_OF_REFERENCE)
@ -258,7 +256,7 @@ namespace netlist
ENTRY_EX(sizeof(plib::plog_level))
ENTRY_EX(sizeof(nldelegate))
ENTRY(PPMF_TYPE)
ENTRY(PPMF_FORCE_TYPE)
ENTRY(PHAS_PMF_INTERNAL)
#undef ENTRY

View File

@ -206,7 +206,7 @@ namespace netlist
std::size_t id() const { return m_id; }
private:
using setter_t = plib::pmfp<void,nl_fptype>;
using setter_t = plib::pmfp<void (nl_fptype)>;
template <typename S>
void setter(nl_fptype v)

View File

@ -1685,7 +1685,7 @@ void setup_t::prepare_to_run()
for (auto &n : m_nlstate.nets())
{
for (auto & term : m_nlstate.core_terms(*n))
if (!term->delegate())
if (term->delegate().isnull())
{
log().fatal(MF_DELEGATE_NOT_SET_1(term->name()));
throw nl_exception(MF_DELEGATE_NOT_SET_1(term->name()));

View File

@ -166,9 +166,9 @@ namespace netlist
/// \brief Delegate type for device notification.
///
using nldelegate = plib::pmfp<void>;
using nldelegate_ts = plib::pmfp<void, timestep_type, nl_fptype>;
using nldelegate_dyn = plib::pmfp<void>;
using nldelegate = plib::pmfp<void ()>;
using nldelegate_ts = plib::pmfp<void (timestep_type, nl_fptype)>;
using nldelegate_dyn = plib::pmfp<void ()>;
namespace detail {

View File

@ -412,7 +412,7 @@ namespace plib {
};
using plog_delegate = plib::pmfp<void, plog_level, const pstring &>;
using plog_delegate = plib::pmfp<void (plog_level, const pstring &)>;
template <plog_level::E L, bool build_enabled = true>
class plog_channel : public pfmt_writer_t<plog_channel<L, build_enabled>, build_enabled>

View File

@ -163,7 +163,7 @@ namespace plib
pmatrix2d_vrl(const pmatrix2d_vrl &) = default;
pmatrix2d_vrl &operator=(const pmatrix2d_vrl &) = default;
pmatrix2d_vrl(pmatrix2d_vrl &&) noexcept = default;
pmatrix2d_vrl &operator=(pmatrix2d_vrl &&) noexcept = default;
pmatrix2d_vrl &operator=(pmatrix2d_vrl &&) noexcept(!compile_info::clang_apple_noexcept_issue::value) = default;
~pmatrix2d_vrl() = default;

View File

@ -8,7 +8,7 @@
/// \file ppmf.h
///
///
/// PMF_TYPE_GNUC_PMF
/// PMF_TYPE_PMF
/// Use standard pointer to member function syntax C++11
///
/// PMF_TYPE_GNUC_PMF_CONV
@ -16,20 +16,16 @@
/// This is not standard compliant and needs
/// -Wno-pmf-conversions to compile.
///
/// PMF_TYPE_INTERNAL
/// PMF_TYPE_INTERNAL_*
/// Use the same approach as MAME for deriving the function pointer.
/// This is compiler-dependent as well
///
/// Benchmarks for ./nltool -c run -f src/mame/machine/nl_pong.cpp -t 10 -n pong_fast
/// Benchmarks for ./nltool -c run -t 10 -n pongf src/mame/machine/nl_pongf.cpp
///
/// PMF_TYPE_INTERNAL: 215% 215%
/// PMF_TYPE_GNUC_PMF: 163% 196%
/// PMF_TYPE_GNUC_PMF_CONV: 215% 215%
/// PMF_TYPE_INTERNAL: 215% 215% 564% 580%
/// PMF_TYPE_GNUC_PMF: 163% 196% 516% 490%
/// PMF_TYPE_GNUC_PMF_CONV: 215% 215% 560% 575%
///
/// The whole exercise was done to avoid virtual calls. In prior versions of
/// netlist, the INTERNAL and GNUC_PMF_CONV approach provided significant improvement.
/// Since than, "hot" was removed from functions declared as virtual.
/// This may explain that the recent benchmarks show no difference at all.
///
#include "pconfig.h"
@ -37,67 +33,29 @@
#include <algorithm>
#include <cstdint> // uintptr_t
#include <type_traits>
#include <utility>
//============================================================
// Macro magic
//============================================================
//#define PPMF_TYPE 2
//#define PPMF_FORCE_TYPE 0
#define PPMF_TYPE_PMF 0
#define PPMF_TYPE_GNUC_PMF_CONV 1
#define PPMF_TYPE_INTERNAL 2
// FIXME: Remove this macro madmess latest after September, 2020
// FIXME: Do we still need to support MINGW <= 4.6?
#if defined(__clang__) && defined(__i386__) && defined(_WIN32)
#define PHAS_PMF_INTERNAL 0
#elif defined(__GNUC__) || defined(__clang__)
// does not work in versions over 4.7.x of 32bit MINGW
#if defined(__MINGW32__) && !defined(__x86_64) && defined(__i386__) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)))
#define PHAS_PMF_INTERNAL 0
#elif defined(__MINGW32__) && !defined(__x86_64) && defined(__i386__)
#define PHAS_PMF_INTERNAL 1
#define MEMBER_ABI _thiscall
#elif defined(__arm__) || defined(__ARMEL__) || defined(__aarch64__) || defined(__MIPSEL__) || defined(__mips_isa_rev) || defined(__mips64) || defined(__EMSCRIPTEN__)
#define PHAS_PMF_INTERNAL 2
#else
#define PHAS_PMF_INTERNAL 1
#endif
#elif defined(_MSC_VER) && defined (_M_X64)
#define PHAS_PMF_INTERNAL 3
#else
#define PHAS_PMF_INTERNAL 0
#endif
#ifndef MEMBER_ABI
#define MEMBER_ABI
#endif
#ifndef PPMF_TYPE
#if (PHAS_PMF_INTERNAL > 0)
#define PPMF_TYPE PPMF_TYPE_INTERNAL
#else
#define PPMF_TYPE PPMF_TYPE_PMF
#endif
#else
#if (PPMF_TYPE == PPMF_TYPE_INTERNAL)
#if (PHAS_PMF_INTERNAL == 0)
#error "Internal type not supported"
#endif
#else
#undef PHAS_PMF_INTERNAL
#define PHAS_PMF_INTERNAL 0
#undef MEMBER_ABI
#define MEMBER_ABI
#endif
#endif
#define PPMF_TYPE_PMF 0
#define PPMF_TYPE_GNUC_PMF_CONV 1
#define PPMF_TYPE_INTERNAL_ITANIUM 2
#define PPMF_TYPE_INTERNAL_ARM 3
#define PPMF_TYPE_INTERNAL_MSC 4
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpmf-conversions"
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#ifndef PPMF_FORCE_TYPE
#define PPMF_FORCE_TYPE -1
#endif
namespace plib {
@ -106,28 +64,34 @@ namespace plib {
{
using ci = compile_info;
enum { value =
(PPMF_FORCE_TYPE >= 0) ? PPMF_FORCE_TYPE :
(ci::type() == ci_compiler::CLANG && !ci::m64()
&& ci::os() == ci_os::WINDOWS) ? 0 :
(ci::mingw() && !ci::m64() && ci::version() >= 407) ? 0 :
(ci::mingw() && !ci::m64()) ? 1 :
&& ci::os() == ci_os::WINDOWS) ? PPMF_TYPE_PMF :
(ci::mingw() && !ci::m64() && ci::version() >= 407) ? PPMF_TYPE_PMF :
(ci::mingw() && !ci::m64()) ? PPMF_TYPE_PMF : // Dropped support for mingw32 < 407 PPMF_TYPE_INTERNAL_ITANIUM :
((ci::type() == ci_compiler::CLANG || ci::type() == ci_compiler::GCC)
&& (ci::arch() == ci_arch::MIPS
|| ci::arch() == ci_arch::ARM
|| ci::os() == ci_os::EMSCRIPTEN)) ? 2 :
(ci::type() == ci_compiler::CLANG || ci::type() == ci_compiler::GCC) ? 1 :
(ci::type() == ci_compiler::MSC && ci::m64()) ? 3 :
0
|| ci::os() == ci_os::EMSCRIPTEN)) ? PPMF_TYPE_INTERNAL_ARM :
(ci::type() == ci_compiler::MSC && ci::m64()) ? PPMF_TYPE_INTERNAL_MSC :
(ci::type() == ci_compiler::CLANG || ci::type() == ci_compiler::GCC) ? PPMF_TYPE_INTERNAL_ITANIUM :
PPMF_TYPE_PMF
};
};
// FIXME: on supported platforms we should consider using GNU PMF extensions
// if no internal solution exists
static_assert(!(compile_info::type() == ci_compiler::CLANG && (PPMF_FORCE_TYPE) == (PPMF_TYPE_GNUC_PMF_CONV)), "clang does not support PPMF_TYPE_GNUC_PMF_CONV");
static_assert(!(compile_info::type() == ci_compiler::NVCC && (PPMF_FORCE_TYPE) == (PPMF_TYPE_GNUC_PMF_CONV)), "nvcc does not support PPMF_TYPE_GNUC_PMF_CONV");
using ppmf_type = std::integral_constant<int, (ppmf_internal::value > 0 ? PPMF_TYPE_INTERNAL : PPMF_TYPE_PMF)>;
template<typename R, typename... Targs>
struct mfp_traits
{
template<typename C> using specific_member_function = R (C::*)(Targs...);
template<typename C> using const_specific_member_function = R (C::*)(Targs...) const;
template<typename C> using member_static_ref = R (*)(C &, Targs...);
template<typename C> using member_static_ptr = R (*)(C *, Targs...);
};
// check against previous implementation
static_assert(ppmf_internal::value == PHAS_PMF_INTERNAL, "internal mismatch");
static_assert(ppmf_type::value == PPMF_TYPE, "type mismatch");
class mfp_generic_class;
///
/// \brief Used to derive a pointer to a member function.
@ -135,16 +99,18 @@ namespace plib {
/// The following class was derived from the MAME delegate.h code.
///
template <int PMFINTERNAL>
class mfp_raw
class mfp_raw;
template <>
class mfp_raw<PPMF_TYPE_INTERNAL_ITANIUM>
{
public:
// construct from any member function pointer
class generic_class;
using generic_function = void (*)();
template<typename MemberFunctionType>
mfp_raw(MemberFunctionType mftp)
: m_function(0), m_this_delta(0), m_dummy1(0), m_dummy2(0), m_size(sizeof(mfp_raw))
: m_function(0), m_this_delta(0)
{
static_assert(sizeof(*this) >= sizeof(MemberFunctionType), "size mismatch");
*reinterpret_cast<MemberFunctionType *>(this) = mftp; // NOLINT
@ -153,60 +119,72 @@ namespace plib {
//private:
// extract the generic function and adjust the object pointer
void convert_to_generic(generic_function &func, generic_class *&object) const
void convert_to_generic(generic_function &func, mfp_generic_class *&object) const
{
if (PMFINTERNAL == 1)
{
// apply the "this" delta to the object first
// NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult,cppcoreguidelines-pro-type-reinterpret-cast)
generic_class *o_p_delta = reinterpret_cast<generic_class *>(reinterpret_cast<std::uint8_t *>(object) + m_this_delta);
// apply the "this" delta to the object first
// NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult,cppcoreguidelines-pro-type-reinterpret-cast)
auto *o_p_delta = reinterpret_cast<mfp_generic_class *>(reinterpret_cast<std::uint8_t *>(object) + m_this_delta);
// if the low bit of the vtable index is clear, then it is just a raw function pointer
if ((m_function & 1) == 0)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
func = reinterpret_cast<generic_function>(m_function);
}
else
{
// otherwise, it is the byte index into the vtable where the actual function lives
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
std::uint8_t *vtable_base = *reinterpret_cast<std::uint8_t **>(o_p_delta);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
func = *reinterpret_cast<generic_function *>(vtable_base + m_function - 1);
}
object = o_p_delta;
}
else if (PMFINTERNAL == 2)
// if the low bit of the vtable index is clear, then it is just a raw function pointer
if ((m_function & 1) == 0)
{
if ((m_this_delta & 1) == 0)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
object = reinterpret_cast<generic_class *>(reinterpret_cast<std::uint8_t *>(object) + m_this_delta);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
func = reinterpret_cast<generic_function>(m_function);
}
else
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
object = reinterpret_cast<generic_class *>(reinterpret_cast<std::uint8_t *>(object));
// otherwise, it is the byte index into the vtable where the actual function lives
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
std::uint8_t *vtable_base = *reinterpret_cast<std::uint8_t **>(object);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
func = *reinterpret_cast<generic_function *>(vtable_base + m_function + m_this_delta - 1);
}
}
else if (PMFINTERNAL == 3)
{
const int SINGLE_MEMFUNCPTR_SIZE = sizeof(void (generic_class::*)());
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
// NOLINTNEXTLINE(performance-no-int-to-ptr,cppcoreguidelines-pro-type-reinterpret-cast)
func = reinterpret_cast<generic_function>(m_function);
if (m_size == SINGLE_MEMFUNCPTR_SIZE + sizeof(int))
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
object = reinterpret_cast<generic_class *>(reinterpret_cast<std::uint8_t *>(object) + m_this_delta);
}
else
{
// otherwise, it is the byte index into the vtable where the actual function lives
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
std::uint8_t *vtable_base = *reinterpret_cast<std::uint8_t **>(o_p_delta);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
func = *reinterpret_cast<generic_function *>(vtable_base + m_function - 1);
}
object = o_p_delta;
}
// actual state
uintptr_t m_function; // first item can be one of two things:
// if even, it's a pointer to the function
// if odd, it's the byte offset into the vtable
ptrdiff_t m_this_delta; // delta to apply to the 'this' pointer
};
template <>
class mfp_raw<PPMF_TYPE_INTERNAL_ARM>
{
public:
// construct from any member function pointer
using generic_function = void (*)();
template<typename MemberFunctionType>
mfp_raw(MemberFunctionType mftp)
: m_function(0), m_this_delta(0)
{
static_assert(sizeof(*this) >= sizeof(MemberFunctionType), "size mismatch");
*reinterpret_cast<MemberFunctionType *>(this) = mftp; // NOLINT
}
//private:
// extract the generic function and adjust the object pointer
void convert_to_generic(generic_function &func, mfp_generic_class *&object) const
{
if ((m_this_delta & 1) == 0)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
object = reinterpret_cast<mfp_generic_class *>(reinterpret_cast<std::uint8_t *>(object) + (m_this_delta >> 1));
// NOLINTNEXTLINE(performance-no-int-to-ptr,cppcoreguidelines-pro-type-reinterpret-cast)
func = reinterpret_cast<generic_function>(m_function);
}
else
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
object = reinterpret_cast<mfp_generic_class *>(reinterpret_cast<std::uint8_t *>(object));
// otherwise, it is the byte index into the vtable where the actual function lives
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
std::uint8_t *vtable_base = *reinterpret_cast<std::uint8_t **>(object);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
func = *reinterpret_cast<generic_function *>(vtable_base + m_function + m_this_delta - 1);
}
}
@ -214,167 +192,250 @@ namespace plib {
uintptr_t m_function; // first item can be one of two things:
// if even, it's a pointer to the function
// if odd, it's the byte offset into the vtable
int m_this_delta; // delta to apply to the 'this' pointer
int m_dummy1; // only used for visual studio x64
int m_dummy2;
int m_size;
ptrdiff_t m_this_delta; // delta to apply to the 'this' pointer
};
template<int PMFTYPE, int PMFINTERNAL, typename R, typename... Targs>
template <>
class mfp_raw<PPMF_TYPE_INTERNAL_MSC>
{
public:
// construct from any member function pointer
using generic_function = void (*)();
struct unknown_base_equiv { generic_function fptr; int thisdisp, vptrdisp, vtdisp; };
struct single_base_equiv { generic_function fptr; };
template<typename MemberFunctionType>
mfp_raw(MemberFunctionType mftp)
: m_function(0), m_this_delta(0), m_vptr_offs(0), m_vt_index(0), m_size(0)
{
static_assert(sizeof(*this) >= sizeof(MemberFunctionType), "size mismatch");
*reinterpret_cast<MemberFunctionType *>(this) = mftp; // NOLINT
m_size = sizeof(mftp); //NOLINT
}
//private:
// extract the generic function and adjust the object pointer
void convert_to_generic(generic_function &func, mfp_generic_class *&object) const
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto *byteptr = reinterpret_cast<std::uint8_t *>(object);
// test for pointer to member function cast across virtual inheritance relationship
if ((sizeof(unknown_base_equiv) == m_size) && m_vt_index)
{
// add offset from "this" pointer to location of vptr, and add offset to virtual base from vtable
byteptr += m_vptr_offs;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
std::uint8_t const *const vptr = *reinterpret_cast<std::uint8_t const *const *>(byteptr);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
byteptr += *reinterpret_cast<int const *>(vptr + m_vt_index);
}
// add "this" pointer displacement if present in the pointer to member function
if (sizeof(single_base_equiv) < m_size)
byteptr += m_this_delta;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
object = reinterpret_cast<mfp_generic_class *>(byteptr);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast,performance-no-int-to-ptr)
auto const *funcx = reinterpret_cast<std::uint8_t const *>(m_function);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast,performance-no-int-to-ptr)
func = reinterpret_cast<generic_function>(std::uintptr_t(funcx));
}
// actual state
uintptr_t m_function; // first item can be one of two things:
// if even, it's a pointer to the function
// if odd, it's the byte offset into the vtable
int m_this_delta; // delta to apply to the 'this' pointer
int m_vptr_offs; // only used for visual studio x64
int m_vt_index;
unsigned m_size;
};
template<int PMFINTERNAL, typename R, typename... Targs>
struct mfp_helper
{
static_assert(PMFTYPE == 2 && PMFINTERNAL >= 1 && PMFINTERNAL <=3, "Invalid PMF type");
protected:
static_assert(PMFINTERNAL >= PPMF_TYPE_INTERNAL_ITANIUM && PMFINTERNAL <= PPMF_TYPE_INTERNAL_MSC, "Invalid PMF type");
using traits = mfp_traits<R, Targs...>;
using generic_member_function = typename traits::template specific_member_function<mfp_generic_class>;
using generic_member_abi_function = typename traits::template member_static_ptr<mfp_generic_class>;
using raw_type = mfp_raw<PMFINTERNAL>;
using generic_function_storage = typename raw_type::generic_function;
using generic_class = typename raw_type::generic_class;
template <class C>
using specific_member_function = R (C::*)(Targs...);
template <class C>
using const_specific_member_function = R (C::*)(Targs...) const;
using generic_member_function = specific_member_function<generic_class>;
template <class C>
using member_abi_function = MEMBER_ABI R (*)(C *obj, Targs... args);
template<typename FunctionType, typename MemberFunctionType, typename ObjectType>
static std::pair<FunctionType, ObjectType *> get(MemberFunctionType mftp, ObjectType *object)
mfp_helper()
: m_obj(nullptr)
{
raw_type mfpo(mftp);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto *s = reinterpret_cast<std::uint8_t *>(&m_resolved);
std::fill(s, s + sizeof(m_resolved), 0);
}
template<typename O, typename F>
void bind(O *object, F *mftp)
{
typename traits::template specific_member_function<O> pFunc;
static_assert(sizeof(pFunc) >= sizeof(F), "size error");
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
//*reinterpret_cast<F *>(&pFunc) = *mftp;
reinterpret_copy(*mftp, pFunc);
raw_type mfpo(pFunc);
generic_function_storage rfunc(nullptr);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto *robject = reinterpret_cast<generic_class *>(object);
auto *robject = reinterpret_cast<mfp_generic_class *>(object);
mfpo.convert_to_generic(rfunc, robject);
reinterpret_copy(rfunc, this->m_resolved);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return std::make_pair(reinterpret_cast<FunctionType>(rfunc), reinterpret_cast<ObjectType *>(robject));
m_obj = reinterpret_cast<mfp_generic_class *>(robject);
}
template<typename O>
static R call(const member_abi_function<O> *func, O *obj, Targs&&... args) noexcept(true)
R call(Targs&&... args) const noexcept(true)
{
return (*func)(obj, std::forward<Targs>(args)...);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
const auto* func = reinterpret_cast<const generic_member_abi_function *>(&m_resolved);
return (*func)(m_obj, std::forward<Targs>(args)...);
}
generic_function_storage m_resolved;
mfp_generic_class *m_obj;
};
template<typename R, typename... Targs>
struct mfp_helper<PPMF_TYPE_PMF, 0, R, Targs...>
struct mfp_helper<PPMF_TYPE_PMF, R, Targs...>
{
template <class C>
using specific_member_function = R (C::*)(Targs...);
protected:
using traits = mfp_traits<R, Targs...>;
using generic_member_function = typename traits::template specific_member_function<mfp_generic_class>;
template <class C>
using const_specific_member_function = R (C::*)(Targs...) const;
using member_abi_function = typename traits::template specific_member_function<C>;
class generic_class;
using generic_member_function = specific_member_function<generic_class>;
template <class C>
using member_abi_function = specific_member_function<C>;
using generic_function_storage = generic_member_function;
template<typename FunctionType, typename MemberFunctionType, typename ObjectType>
static std::pair<FunctionType, ObjectType *> get(MemberFunctionType mftp, ObjectType *object)
mfp_helper()
: m_obj(nullptr)
, m_stub(nullptr)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return std::make_pair(reinterpret_cast<FunctionType>(mftp), reinterpret_cast<ObjectType *>(object));
auto *s = reinterpret_cast<std::uint8_t *>(&m_resolved);
std::fill(s, s + sizeof(m_resolved), 0);
}
template<typename O>
static R call(const member_abi_function<O> *func, O *obj, Targs&&... args) noexcept(true)
template<typename O, typename F>
void bind(O *object, F *mftp)
{
reinterpret_copy(*mftp, this->m_resolved);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
m_obj = reinterpret_cast<mfp_generic_class *>(object);
m_stub = &stub<O>;
}
R call(Targs&&... args) const noexcept(true)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto* func = reinterpret_cast<const generic_member_function *>(&m_resolved);
return (*m_stub)(func, m_obj, std::forward<Targs>(args)...);
}
generic_member_function m_resolved;
mfp_generic_class *m_obj;
R (*m_stub)(const generic_member_function *funci, mfp_generic_class *obji, Targs&&... args);
private:
template<typename O>
static R stub(const generic_member_function *funci, mfp_generic_class *obji, Targs&&... args) noexcept(true)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto *obj = reinterpret_cast<O *>(obji);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto *func = reinterpret_cast<const member_abi_function<O> *>(funci);
return (obj->*(*func))(std::forward<Targs>(args)...);
}
};
#if NVCCBUILD == 0
template<typename R, typename... Targs>
struct mfp_helper<PPMF_TYPE_GNUC_PMF_CONV, 0, R, Targs...>
struct mfp_helper<PPMF_TYPE_GNUC_PMF_CONV, R, Targs...>
{
template <class C>
using specific_member_function = R (C::*)(Targs...);
protected:
using traits = mfp_traits<R, Targs...>;
template <class C>
using const_specific_member_function = R (C::*)(Targs...) const;
using member_abi_function = typename traits::template member_static_ptr<C>;
class generic_class;
using generic_member_function = specific_member_function<generic_class>;
template <class C>
using member_abi_function = MEMBER_ABI R (*)(C *obj, Targs... args);
using generic_function_storage = void (*)();
template<typename FunctionType, typename MemberFunctionType, typename ObjectType>
static std::pair<FunctionType, ObjectType *> get(MemberFunctionType mftp, ObjectType *object)
mfp_helper()
: m_obj(nullptr)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return std::make_pair(reinterpret_cast<FunctionType>(object->*mftp), reinterpret_cast<ObjectType *>(object));
auto *s = reinterpret_cast<std::uint8_t *>(&m_resolved);
std::fill(s, s + sizeof(m_resolved), 0);
}
template<typename O>
static R call(const member_abi_function<O> *func, O *obj, Targs&&... args) noexcept(true)
{
return (*func)(obj, std::forward<Targs>(args)...);
}
};
template<int PMFTYPE, int PMFINTERNAL, typename R, typename... Targs>
class pmfp_base
template<typename O, typename F>
void bind(O *object, F *mftp)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
member_abi_function<O> t = reinterpret_cast<member_abi_function<O>>(object->*(*mftp));
reinterpret_copy(t, this->m_resolved);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
m_obj = reinterpret_cast<mfp_generic_class *>(object);
}
R call(Targs&&... args) const noexcept(true)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto* func = reinterpret_cast<const member_abi_function<mfp_generic_class> *>(&m_resolved);
return (*func)(m_obj, std::forward<Targs>(args)...);
}
member_abi_function<mfp_generic_class> m_resolved;
mfp_generic_class *m_obj;
};
#endif
template <int PMFINTERNAL, typename R, typename... Targs>
using pmfp_helper_select = std::conditional<
std::is_void_v<R> ||
std::is_scalar_v<R> ||
std::is_reference_v<R> || PMFINTERNAL != PPMF_TYPE_INTERNAL_MSC,
mfp_helper<PMFINTERNAL, R, Targs...>, mfp_helper<PPMF_TYPE_PMF, R, Targs...>>;
template<int PMFINTERNAL, typename SIGNATURE> class pmfp_base;
template<int PMFINTERNAL, typename R, typename... Targs>
class pmfp_base<PMFINTERNAL, R (Targs...)> : public pmfp_helper_select<PMFINTERNAL, R, Targs...>::type
{
public:
using helper = mfp_helper<PMFTYPE, PMFINTERNAL, R, Targs...>;
using helper = typename pmfp_helper_select<PMFINTERNAL, R, Targs...>::type;
template <class C>
using specific_member_function = typename helper::template specific_member_function<C>;
template <class C>
using const_specific_member_function = typename helper::template const_specific_member_function<C>;
using generic_class = typename helper::generic_class;
using generic_member_function = typename helper::generic_member_function;
template <class C>
using member_abi_function = typename helper::template member_abi_function<C>;
using generic_function_storage = typename helper::generic_function_storage;
using traits = mfp_traits<R, Targs...>;
pmfp_base()
: m_obj(nullptr)
: helper()
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto *s = reinterpret_cast<std::uint8_t *>(&m_resolved);
std::fill(s, s + sizeof(m_resolved), 0);
}
template<typename O>
pmfp_base(specific_member_function<O> mftp, O *object)
: m_obj(nullptr)
template<typename O, typename P>
pmfp_base(typename traits::template specific_member_function<O> mftp, P *object)
: helper()
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto *s = reinterpret_cast<std::uint8_t *>(&m_resolved);
std::fill(s, s + sizeof(m_resolved), 0);
bind<specific_member_function<O>>(object, &mftp);
this->bind(static_cast<O*>(object), &mftp);
}
template<typename O>
pmfp_base(const_specific_member_function<O> mftp, O *object)
: m_obj(nullptr)
template<typename O, typename P>
pmfp_base(typename traits::template const_specific_member_function<O> mftp, P *object)
: helper()
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto *s = reinterpret_cast<std::uint8_t *>(&m_resolved);
std::fill(s, s + sizeof(m_resolved), 0);
bind<const_specific_member_function<O>>(object, &mftp);
this->bind(static_cast<O*>(object), &mftp);
}
generic_class *object() const noexcept { return m_obj; }
bool has_object() const noexcept { return m_obj != nullptr; }
mfp_generic_class *object() const noexcept { return this->m_obj; }
template<typename O>
void set(specific_member_function<O> mftp, O *object)
void set(typename traits::template specific_member_function<O> mftp, O *object)
{
bind<specific_member_function<O>>(object, &mftp);
this->bind(object, &mftp);
}
R operator()(Targs... args) const noexcept(true)
@ -382,48 +443,17 @@ namespace plib {
return this->call(std::forward<Targs>(args)...);
}
operator bool() const noexcept { return m_resolved != nullptr; }
bool isnull() const noexcept { return this->m_resolved == nullptr; }
explicit operator bool() const noexcept { return !isnull(); }
bool has_object() const noexcept { return this->m_obj != nullptr; }
bool operator==(const pmfp_base &rhs) const { return this->m_resolved == rhs.m_resolved; }
bool operator!=(const pmfp_base &rhs) const { return !(*this == rhs); }
private:
template<typename SPC, typename O, typename MF>
void bind(O * object, MF *fraw)
{
SPC pFunc;
static_assert(sizeof(pFunc) >= sizeof(MF), "size error");
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
*reinterpret_cast<MF *>(&pFunc) = *fraw;
auto r = helper::template get<member_abi_function<O>>(pFunc, object);
static_assert(sizeof(m_resolved) >= sizeof(r.first), "size mismatch 1");
static_assert(sizeof(m_resolved) >= sizeof(member_abi_function<O>), "size mismatch 2");
//*reinterpret_cast<member_abi_function<O> *>(&m_resolved) = r.first;
reinterpret_copy(r.first, m_resolved);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
m_obj = reinterpret_cast<generic_class *>(r.second);
}
template<typename O>
R call(O *obj, Targs&&... args) const noexcept(true)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return helper::call(reinterpret_cast<member_abi_function<O> *>(&m_resolved),
obj, std::forward<Targs>(args)...);
}
R call(Targs&&... args) const noexcept(true)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return helper::call(reinterpret_cast<const member_abi_function<generic_class> *>(&m_resolved),
m_obj, std::forward<Targs>(args)...);
}
generic_function_storage m_resolved;
generic_class *m_obj;
};
template<typename R, typename... Targs>
using pmfp = pmfp_base<ppmf_type::value, ppmf_internal::value, R, Targs...>;
template<typename Signature>
using pmfp = pmfp_base<ppmf_internal::value, Signature>;
///
/// \brief Class to support delegate late binding
@ -437,8 +467,8 @@ namespace plib {
///
/// // After full construction ...
///
/// auto dele = a(this);
/// dele(pstring("Hello World!"));
/// auto delegate_obj = a(this);
/// delegate_obj(pstring("Hello World!"));
///
template<typename T>
class late_pmfp
@ -446,41 +476,33 @@ namespace plib {
public:
using return_type = T;
template <class C>
using specific_member_function = typename return_type::template specific_member_function<C>; // noexcept(true) --> c++-17
using generic_member_function = typename return_type::generic_member_function;
class generic_class;
using static_creator = return_type (*)(const generic_member_function *, generic_class *);
late_pmfp() = default;
using traits = typename return_type::traits;
using generic_member_function = typename traits::template specific_member_function<mfp_generic_class>;
using static_creator = return_type (*)(const generic_member_function *, mfp_generic_class *);
template<typename O>
late_pmfp(specific_member_function<O> mftp)
late_pmfp(typename traits::template specific_member_function<O> mftp)
: m_creator(creator<O>)
{
static_assert(sizeof(m_raw) >= sizeof(specific_member_function<O>), "size issue");
static_assert(sizeof(m_raw) >= sizeof(typename traits::template specific_member_function<O>), "size issue");
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
*reinterpret_cast<specific_member_function<O> *>(&m_raw) = mftp;
*reinterpret_cast<typename traits::template specific_member_function<O> *>(&m_raw) = mftp;
}
template<typename O>
return_type operator()(O *object) const
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return m_creator(&m_raw, reinterpret_cast<generic_class *>(object));
return m_creator(&m_raw, reinterpret_cast<mfp_generic_class *>(object));
}
private:
template <typename O>
static return_type creator(const generic_member_function *raw, generic_class *obj)
static return_type creator(const generic_member_function *raw, mfp_generic_class *obj)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto p = reinterpret_cast<const specific_member_function<O> *>(raw);
auto p = reinterpret_cast<const typename traits::template specific_member_function<O> *>(raw);
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
auto o = reinterpret_cast<O *>(obj);
return return_type(*p, o);

View File

@ -22,7 +22,6 @@
#endif
#endif
// noexcept on move operator -> issue with macosx clang
#define PCOPYASSIGNMOVE(name, def) \
PCOPYASSIGN(name, def) \
PMOVEASSIGN(name, def)
@ -32,8 +31,8 @@
name &operator=(const name &) = def;
#define PMOVEASSIGN(name, def) \
name(name &&) /*noexcept*/ = def; \
name &operator=(name &&) /*noexcept*/ = def;
name(name &&) noexcept = def; \
name &operator=(name &&) noexcept = def;
#if defined(EMSCRIPTEN)
#undef EMSCRIPTEN
@ -82,7 +81,8 @@ namespace plib
UNKNOWN,
CLANG,
GCC,
MSC
MSC,
NVCC
};
enum class ci_os
@ -101,18 +101,19 @@ namespace plib
UNKNOWN,
X86,
ARM,
MIPS
MIPS,
IA64
};
struct compile_info
{
#ifdef _WIN32
using win32 = std::integral_constant<bool, true>;
#ifdef UNICODE
using unicode = std::integral_constant<bool, true>;
#else
using unicode = std::integral_constant<bool, false>;
#endif
#ifdef UNICODE
using unicode = std::integral_constant<bool, true>;
#else
using unicode = std::integral_constant<bool, false>;
#endif
#else
using win32 = std::integral_constant<bool, false>;
using unicode = std::integral_constant<bool, true>;
@ -130,15 +131,18 @@ namespace plib
static constexpr int128_type int128_max() { return int128_type(); }
static constexpr uint128_type uint128_max() { return uint128_type(); }
#endif
#ifdef __clang__
#if (NVCCBUILD > 0)
using type = std::integral_constant<ci_compiler, ci_compiler::NVCC>;
using version = std::integral_constant<int, NVCCBUILD>;
#elif defined(_MSC_VER)
using type = std::integral_constant<ci_compiler, ci_compiler::MSC>;
using version = std::integral_constant<int, _MSC_VER>;
#elif defined(__clang__)
using type = std::integral_constant<ci_compiler, ci_compiler::CLANG>;
using version = std::integral_constant<int, (__clang_major__) * 100 + (__clang_minor__)>;
#elif defined(__GNUC__)
using type = std::integral_constant<ci_compiler, ci_compiler::GCC>;
using version = std::integral_constant<int, (__GNUC__) * 100 + (__GNUC_MINOR__)>;
#elif defined(_MSC_VER)
using type = std::integral_constant<ci_compiler, ci_compiler::MSC>;
using version = std::integral_constant<int, _MSC_VER>;
#else
using type = std::integral_constant<ci_compiler, ci_compiler::UNKNOWN>;
using version = std::integral_constant<int, 0>;
@ -174,6 +178,8 @@ namespace plib
using arch = std::integral_constant<ci_arch, ci_arch::ARM>;
#elif defined(__MIPSEL__) || defined(__mips_isa_rev) || defined(__mips64)
using arch = std::integral_constant<ci_arch, ci_arch::MIPS>;
#elif defined(__ia64__)
using arch = std::integral_constant<ci_arch, ci_arch::IA64>;
#else
using arch = std::integral_constant<ci_arch, ci_arch::UNKNOWN>;
#endif
@ -182,6 +188,11 @@ namespace plib
#else
using mingw = std::integral_constant<bool, false>;
#endif
#if defined(__APPLE__)
using clang_apple_noexcept_issue = std::integral_constant<bool, version::value < 1100>;
#else
using clang_apple_noexcept_issue = std::integral_constant<bool, false>;
#endif
};
} // namespace plib
@ -314,6 +325,22 @@ namespace plib
std::copy(sp, sp + sizeof(S), dp);
}
/// \brief Test if type R has a stream operator << defined
///
/// has_ostram_operator<std::ostream, int>:: value should be true
///
/// \tparam LEFT Stream type
/// \tparam RIGHT Type to check for operator overload
template<class LEFT, class RIGHT>
struct has_ostream_operator_impl {
template<class V> static auto test(V*) -> decltype(std::declval<LEFT &>() << std::declval<V>());
template<typename> static auto test(...) -> std::false_type;
//static constexpr const bool value = std::is_same<LEFT &, decltype(test<RIGHT>(0))>::value;
using type = typename std::is_same<LEFT &, decltype(test<RIGHT>(nullptr))>::type;
};
template<class LEFT, class RIGHT>
struct has_ostream_operator : has_ostream_operator_impl<LEFT, RIGHT>::type {};
} // namespace plib

View File

@ -177,7 +177,7 @@ private:
class log_processor
{
public:
using callback_type = plib::pmfp<void, std::size_t, double, double>;
using callback_type = plib::pmfp<void (std::size_t, double, double)>;
struct elem
{
@ -256,7 +256,7 @@ private:
struct aggregator
{
using callback_type = plib::pmfp<void, std::size_t, double, double>;
using callback_type = plib::pmfp<void (std::size_t, double, double)>;
aggregator(std::size_t channels, double quantum, callback_type cb)
: m_channels(channels)
@ -299,7 +299,7 @@ private:
struct filter_hp
{
using callback_type = plib::pmfp<void, std::size_t, double, double>;
using callback_type = plib::pmfp<void (std::size_t, double, double)>;
filter_hp(double freq, bool boost, std::size_t channels, callback_type cb)
: m_cb(cb)
@ -335,7 +335,7 @@ private:
struct filter_lp
{
using callback_type = plib::pmfp<void, std::size_t, double, double>;
using callback_type = plib::pmfp<void (std::size_t, double, double)>;
filter_lp(double freq, std::size_t channels, callback_type cb)
: m_cb(cb)

View File

@ -0,0 +1,71 @@
// license:BSD-3-Clause
// copyright-holders:Couriersud
///
/// \file test_pmfp.cpp
///
/// tests for plib::pmfp
///
#include "plib/ptests.h"
#include "plib/pexception.h"
#include "plib/ppmf.h"
#include <utility>
#include <memory>
/// plib::late_pmfp<plib::pmfp<void, pstring>> a(&nld_7493::printer);
/// // Store the a object somewhere
///
/// // After full construction ...
///
/// auto dele = a(this);
/// dele(pstring("Hello World!"));
class test_late_pmfp : public plib::testing::Test
{
protected:
class Ta
{
public:
void ap(int &r) { r = ax; }
int ax;
};
};
PTEST_F(test_late_pmfp, late_pmfp)
{
plib::late_pmfp<plib::pmfp<void (int &)>> late(&Ta::ap);
Ta a;
a.ax = 1;
auto mfp(late(&a));
int r(0);
mfp(r);
PEXPECT_TRUE(r == 1);
}
PTEST(test_compile, compile)
{
plib::pmfp_base<PPMF_TYPE_PMF, void(int)> mfp_PPMF_TYPE_PMF;
plib::pmfp_base<PPMF_TYPE_INTERNAL_ITANIUM, void(int)> mfp_PPMF_TYPE_INTERNAL_ITANIUM;
plib::pmfp_base<PPMF_TYPE_INTERNAL_ARM, void(int)> mfp_PPMF_TYPE_INTERNAL_ARM;
plib::pmfp_base<PPMF_TYPE_INTERNAL_MSC, void(int)> mfp_PPMF_TYPE_INTERNAL_MSC;
PEXPECT_TRUE(mfp_PPMF_TYPE_PMF.isnull());
PEXPECT_TRUE(mfp_PPMF_TYPE_INTERNAL_ITANIUM.isnull());
PEXPECT_TRUE(mfp_PPMF_TYPE_INTERNAL_ARM.isnull());
PEXPECT_TRUE(mfp_PPMF_TYPE_INTERNAL_MSC.isnull());
#if defined(__GNUC__) && !defined(__clang__) && (NVCCBUILD == 0)
plib::pmfp_base<PPMF_TYPE_GNUC_PMF_CONV, void(int)> mfp_PPMF_TYPE_GNUC_PMF_CONV;
PEXPECT_TRUE(mfp_PPMF_TYPE_GNUC_PMF_CONV.isnull());
#else
PEXPECT_NE("PPMF_TYPE_GNUC_PMF_CONV not supported on this build", "");
#endif
#if defined(__EMSCRIPTEN__)
PEXPECT_EQ(plib::ppmf_internal::value,PPMF_TYPE_INTERNAL_ARM);
#endif
}

View File

@ -0,0 +1,360 @@
// license:BSD-3-Clause
// copyright-holders:Couriersud
///
/// \file test_pmfp_multibase.cpp
///
/// tests for plib::pmfp
///
#include "plib/ptypes.h"
#include "plib/pexception.h"
#include "plib/ppmf.h"
#include <utility>
#include <memory>
#include <type_traits>
#include <typeinfo>
#include <iostream>
template <class F, class S>
typename std::enable_if_t<!plib::has_ostream_operator<std::basic_ostream<char>, std::pair<F, S>>::value, std::basic_ostream<char>&>
operator << (std::basic_ostream<char>& os, const std::pair<F, S> &p)
{
os << "{ " << p.first << ", " << p.second << " }";
return os;
}
#include "plib/ptests.h"
template <class T>
typename std::enable_if_t<!plib::has_ostream_operator<std::basic_ostream<char>, T>::value, std::basic_ostream<char>&>
operator << (std::basic_ostream<char>& os, const T &p)
{
plib::unused_var(p);
os << std::string(typeid(T).name());
return os;
}
class pmfp_test_complex_return : public plib::testing::Test
{
protected:
using ret_t = std::pair<void *, int>;
//using test_delegate1 = plib::pmfp<ret_t (int, int)>;
using test_delegate = plib::pmfp<ret_t ()>;
class a
{
public:
ret_t ap() { return ret_t(static_cast<void *>(this), ax); }
int ax;
};
class b
{
public:
ret_t bp() { return ret_t(static_cast<void *>(this), bx); }
int bx;
};
class multibase : public a, public b
{
public:
};
class vtb
{
public:
virtual ~vtb() = default;
virtual ret_t vp1() { return ret_t(static_cast<void *>(this), 1); }
virtual ret_t vp2() { return ret_t(static_cast<void *>(this), 2); }
};
class vti1 : public vtb
{
public:
virtual ret_t vp1() override { return ret_t(static_cast<void *>(this), 3); }
virtual ret_t vp2() override { return ret_t(static_cast<void *>(this), 4); }
};
class vti2 : public a, public vtb
{
public:
virtual ret_t vp1() override { return ret_t(static_cast<void *>(this), 13); }
virtual ret_t vp2() override { return ret_t(static_cast<void *>(this), 14); }
};
class forward;
test_delegate make_forward_delegate(ret_t (forward::*func)(), forward *obj)
{
return test_delegate(func, obj);
}
class vb
{
public:
ret_t xp() { return ret_t(static_cast<void *>(this), x); }
int x=10;
};
class vd1 : public virtual vb
{
public:
ret_t yp() { return ret_t(static_cast<void *>(this), y); }
int y;
};
class vd2 : public virtual vb
{
public:
ret_t zp() { return ret_t(static_cast<void *>(this), z); }
int z;
};
class forward : public vd1, public vd2
{
public:
};
};
class pmfp_test_simple_return : public plib::testing::Test
{
protected:
using ret_t = std::pair<void *, int>;
//using test_delegate1 = plib::pmfp<ret_t (int, int)>;
using test_delegate = plib::pmfp<void (ret_t &)>;
class a
{
public:
void ap(ret_t &r) { r = ret_t(static_cast<void *>(this), ax); }
int ax;
};
class b
{
public:
void bp(ret_t &r) { r = ret_t(static_cast<void *>(this), bx); }
int bx;
};
class multibase : public a, public b
{
public:
};
class vtb
{
public:
virtual ~vtb() = default;
virtual void vp1(ret_t &r) { r = ret_t(static_cast<void *>(this), 1); }
virtual void vp2(ret_t &r) { r = ret_t(static_cast<void *>(this), 2); }
};
class vti1 : public vtb
{
public:
virtual void vp1(ret_t &r) override { r = ret_t(static_cast<void *>(this), 3); }
virtual void vp2(ret_t &r) override { r = ret_t(static_cast<void *>(this), 4); }
};
class vti2 : public a, public vtb
{
public:
virtual void vp1(ret_t &r) override { r = ret_t(static_cast<void *>(this), 13); }
virtual void vp2(ret_t &r) override { r = ret_t(static_cast<void *>(this), 14); }
};
class forward;
test_delegate make_forward_delegate(void (forward::*func)(ret_t &), forward *obj)
{
return test_delegate(func, obj);
}
class vb
{
public:
void xp(ret_t &r) { r = ret_t(static_cast<void *>(this), x); }
int x=10;
};
class vd1 : public virtual vb
{
public:
void yp(ret_t &r) { r = ret_t(static_cast<void *>(this), y); }
int y;
};
class vd2 : public virtual vb
{
public:
void zp(ret_t &r) { r = ret_t(static_cast<void *>(this), z); }
int z;
};
class forward : public vd1, public vd2
{
public:
};
};
PTEST_F(pmfp_test_complex_return, multibase_test)
{
multibase obj;
obj.ax = 1;
obj.bx = 2;
test_delegate f(&multibase::ap, &obj);
test_delegate g(&multibase::bp, &obj);
// a=0x63fbf8
// b=0x63fbfc
// a=0x63fbf8(1)
// b=0x63fbfc(2)
// b=0x63fbfc(2)
// b=0x63fbfc(2)
PEXPECT_EQ(f(), ret_t(static_cast<void *>(static_cast<a *>(&obj)), 1));
auto g_ret = g();
PEXPECT_EQ(g_ret, ret_t(static_cast<void *>(static_cast<b *>(&obj)), 2));
test_delegate h = g;
PEXPECT_EQ(g_ret, h());
f = g;
PEXPECT_EQ(g_ret, f());
//vti1=0xdf6fb0.vp1
//vti1=0xdf6fb0.vp2
std::unique_ptr<vtb> ptr;
ptr.reset(new vti1);
f = test_delegate(&vtb::vp1, ptr.get());
auto f1_ret = f();
f = test_delegate(&vtb::vp2, ptr.get());
auto f2_ret = f();
PEXPECT_EQ(f1_ret.first, f2_ret.first);
PEXPECT_EQ(f1_ret.second, 3);
PEXPECT_EQ(f2_ret.second, 4);
// vti2=0xdf6d50.vp1
// vti2=0xdf6d50.vp2
ptr.reset(new vti2);
f = test_delegate(&vtb::vp1, ptr.get());
f1_ret = f();
f = test_delegate(&vtb::vp2, ptr.get());
f2_ret = f();
PEXPECT_EQ(f1_ret.first, f2_ret.first);
PEXPECT_EQ(f1_ret.second, 13);
PEXPECT_EQ(f2_ret.second, 14);
//vb=0x63fafc
//vd1=0x63fae0
//vd2=0x63faf0
//vd1=0x63fae0(8)
//vd2=0x63faf0(9)
forward obj2;
obj2.x = 7;
obj2.y = 8;
obj2.z = 9;
PEXPECT_NE(static_cast<void *>(static_cast<vb *>(&obj2)), static_cast<void *>(static_cast<vd1 *>(&obj2)));
PEXPECT_NE(static_cast<void *>(static_cast<vb *>(&obj2)), static_cast<void *>(static_cast<vd2 *>(&obj2)));
#if defined(_MSC_VER) && !defined(__clang__)
f = make_forward_delegate(&forward::xp, &obj2);
PEXPECT_TRUE(f().second == 7);
std::cout << f().second << " " << obj2.xp().second << "\n";
#endif
f = make_forward_delegate(&forward::yp, &obj2);
PEXPECT_EQ(f().second, 8);
f = make_forward_delegate(&forward::zp, &obj2);
PEXPECT_EQ(f().second, 9);
}
PTEST_F(pmfp_test_simple_return, multibase_test)
{
multibase obj;
obj.ax = 1;
obj.bx = 2;
test_delegate f(&multibase::ap, &obj);
test_delegate g(&multibase::bp, &obj);
// a=0x63fbf8
// b=0x63fbfc
// a=0x63fbf8(1)
// b=0x63fbfc(2)
// b=0x63fbfc(2)
// b=0x63fbfc(2)
ret_t fr;
f(fr);
PEXPECT_EQ(fr, ret_t(static_cast<void *>(static_cast<a *>(&obj)), 1));
ret_t gr;
g(gr);
PEXPECT_EQ(gr, ret_t(static_cast<void *>(static_cast<b *>(&obj)), 2));
//PEXPECT_EQ(f, g);
test_delegate h = g;
ret_t hr;
h(hr);
PEXPECT_EQ(gr, hr);
f = g;
f(fr);
PEXPECT_EQ(gr, fr);
//vti1=0xdf6fb0.vp1
//vti1=0xdf6fb0.vp2
std::unique_ptr<vtb> ptr;
ptr.reset(new vti1);
f = test_delegate(&vtb::vp1, ptr.get());
ret_t f1_ret;
f(f1_ret);
f = test_delegate(&vtb::vp2, ptr.get());
ret_t f2_ret;
f(f2_ret);
PEXPECT_EQ(f1_ret.first, f2_ret.first);
PEXPECT_EQ(f1_ret.second, 3);
PEXPECT_EQ(f2_ret.second, 4);
// vti2=0xdf6d50.vp1
// vti2=0xdf6d50.vp2
ptr.reset(new vti2);
f = test_delegate(&vtb::vp1, ptr.get());
f(f1_ret);
f = test_delegate(&vtb::vp2, ptr.get());
f(f2_ret);
PEXPECT_EQ(f1_ret.first, f2_ret.first);
PEXPECT_EQ(f1_ret.second, 13);
PEXPECT_EQ(f2_ret.second, 14);
//vb=0x63fafc
//vd1=0x63fae0
//vd2=0x63faf0
//vd1=0x63fae0(8)
//vd2=0x63faf0(9)
forward obj2;
obj2.x = 7;
obj2.y = 8;
obj2.z = 9;
PEXPECT_NE(static_cast<void *>(static_cast<vb *>(&obj2)), static_cast<void *>(static_cast<vd1 *>(&obj2)));
PEXPECT_NE(static_cast<void *>(static_cast<vb *>(&obj2)), static_cast<void *>(static_cast<vd2 *>(&obj2)));
#if defined(_MSC_VER) && !defined(__clang__)
f = make_forward_delegate(&forward::xp, &obj2);
f(fr);
PEXPECT_TRUE(fr.second == 7);
std::cout << fr.second << "\n";
#endif
f = make_forward_delegate(&forward::yp, &obj2);
f(fr);
PEXPECT_EQ(fr.second, 8);
f = make_forward_delegate(&forward::zp, &obj2);
f(fr);
PEXPECT_EQ(fr.second, 9);
}