sun4 updates:

- Preliminary counter/timer support [R. Belmont]
- Support both 8 and 16 context variants of sun4c arch [R. Belmont]
- Added SPARCStation 1+ ROM [Al Kossow]
This commit is contained in:
arbee 2016-07-04 21:18:46 -04:00
parent 9f415edfe0
commit 81c3d47a6c
2 changed files with 230 additions and 109 deletions

View File

@ -381,17 +381,17 @@
21/11/2011 Skeleton driver.
20/06/2016 Much less skeletony.
4/60 ROM notes:
ffe809fc: call to print "Sizing Memory" to the UART
ffe80a70: call to "Setting up RAM for monitor" that goes wrong
ffe80210: testing memory
ffe80274: loop that goes wobbly and fails
ffe80dc4: switch off boot mode, MMU maps ROM to copy in RAM from here on
ffe82000: start of FORTH (?) interpreter once decompressed
text in decmopressed area claims to be FORTH-83 FCode, but the opcodes
do not match the documented OpenFirmware FCode ones at all.
ffe80a70: call to "Setting up RAM for monitor" that goes wrong
ffe80210: testing memory
ffe80274: loop that goes wobbly and fails
ffe80dc4: switch off boot mode, MMU maps ROM to copy in RAM from here on
ffe82000: start of FORTH (?) interpreter once decompressed
text in decompressed area claims to be FORTH-83 FCode, but the opcodes
do not match the documented OpenFirmware FCode ones at all.
****************************************************************************/
@ -414,26 +414,26 @@
#define RS232A_TAG "rs232a"
#define RS232B_TAG "rs232b"
#define ENA_NOTBOOT (0x80)
#define ENA_SDVMA (0x20)
#define ENA_CACHE (0x10)
#define ENA_RESET (0x04)
#define ENA_DIAG (0x01)
#define ENA_NOTBOOT (0x80)
#define ENA_SDVMA (0x20)
#define ENA_CACHE (0x10)
#define ENA_RESET (0x04)
#define ENA_DIAG (0x01)
// page table entry constants
#define PM_VALID (0x80000000) // page is valid
#define PM_WRITEMASK (0x40000000) // writable?
#define PM_SYSMASK (0x20000000) // system use only?
#define PM_CACHE (0x10000000) // cachable?
#define PM_TYPEMASK (0x0c000000) // type mask
#define PM_ACCESSED (0x02000000) // accessed flag
#define PM_MODIFIED (0x01000000) // modified flag
#define PM_VALID (0x80000000) // page is valid
#define PM_WRITEMASK (0x40000000) // writable?
#define PM_SYSMASK (0x20000000) // system use only?
#define PM_CACHE (0x10000000) // cachable?
#define PM_TYPEMASK (0x0c000000) // type mask
#define PM_ACCESSED (0x02000000) // accessed flag
#define PM_MODIFIED (0x01000000) // modified flag
namespace
{
const sparc_disassembler::asi_desc_map::value_type sun4_asi_desc[] = {
{ 0x10, { nullptr, "Flush I-Cache (Segment)" } },
{ 0x11, { nullptr, "Flush I-Cache (Page)" } },
{ 0x10, { nullptr, "Flush I-Cache (Segment)" } },
{ 0x11, { nullptr, "Flush I-Cache (Page)" } },
{ 0x02, { nullptr, "System Space" } }, { 0x12, { nullptr, "Flush I-Cache (Context)" } },
{ 0x03, { nullptr, "Segment Map" } }, { 0x13, { nullptr, "Flush I-Cache (User)" } },
{ 0x04, { nullptr, "Page Map" } }, { 0x14, { nullptr, "Flush D-Cache (Segment)" } },
@ -451,16 +451,16 @@ const sparc_disassembler::asi_desc_map::value_type sun4_asi_desc[] = {
};
/* TODO: make SPARCstation-1 a different machine type so it can load its own ASI descriptions - it's a subset of Sun4
const sparc_disassembler::asi_desc_map::value_type sun4c_asi_desc[] = {
{ 0x02, { nullptr, "System Space" } },
{ 0x03, { nullptr, "Segment Map" } },
{ 0x04, { nullptr, "Page Map" } },
{ 0x08, { nullptr, "User Instruction" } },
{ 0x09, { nullptr, "Supervisor Instruction" } },
{ 0x0a, { nullptr, "User Data" } },
{ 0x0b, { nullptr, "Supervisor Data" } },
{ 0x0c, { nullptr, "Flush Cache (Segment)" } },
{ 0x0d, { nullptr, "Flush Cache (Page)" } },
{ 0x0e, { nullptr, "Flush Cache (Context)" } }
{ 0x02, { nullptr, "System Space" } },
{ 0x03, { nullptr, "Segment Map" } },
{ 0x04, { nullptr, "Page Map" } },
{ 0x08, { nullptr, "User Instruction" } },
{ 0x09, { nullptr, "Supervisor Instruction" } },
{ 0x0a, { nullptr, "User Data" } },
{ 0x0b, { nullptr, "Supervisor Data" } },
{ 0x0c, { nullptr, "Flush Cache (Segment)" } },
{ 0x0d, { nullptr, "Flush Cache (Page)" } },
{ 0x0e, { nullptr, "Flush Cache (Context)" } }
};
*/
}
@ -484,6 +484,10 @@ public:
virtual void machine_reset() override;
virtual void machine_start() override;
virtual void device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr) override;
static const device_timer_id TIMER_0 = 0;
static const device_timer_id TIMER_1 = 1;
DECLARE_READ32_MEMBER( sun4_mmu_r );
DECLARE_WRITE32_MEMBER( sun4_mmu_w );
@ -491,7 +495,14 @@ public:
DECLARE_WRITE32_MEMBER( ram_w );
DECLARE_READ32_MEMBER( ss1_sl0_id );
DECLARE_READ32_MEMBER( ss1_sl3_id );
DECLARE_READ32_MEMBER( timer_r );
DECLARE_WRITE32_MEMBER( timer_w );
DECLARE_READ8_MEMBER( irq_r );
DECLARE_WRITE8_MEMBER( irq_w );
DECLARE_DRIVER_INIT(sun4c);
DECLARE_DRIVER_INIT(ss2);
protected:
required_device<mb86901_device> m_maincpu;
required_device<z80scc_device> m_scc1;
@ -503,13 +514,19 @@ protected:
UINT32 m_context;
UINT8 m_system_enable;
UINT32 m_buserror[4];
UINT32 m_counter[4];
private:
UINT32 *m_ram_ptr;
UINT8 m_segmap[8][4096];
UINT32 m_pagemap[8192];
UINT8 m_segmap[16][4096];
UINT32 m_pagemap[16384];
UINT32 m_ram_size, m_ram_size_words;
UINT8 m_ctx_mask; // SS2 is sun4c but has 16 contexts; most have 8
UINT8 m_pmeg_mask; // SS2 is sun4c but has 16384 PTEs; most have 8192
UINT8 m_irq_reg; // IRQ control
emu_timer *m_c0_timer, *m_c1_timer;
void l2p_command(int ref, int params, const char **param);
};
@ -520,19 +537,20 @@ READ32_MEMBER( sun4_state::sun4_mmu_r )
// make debugger fetches emulate supervisor program for best compatibility with boot PROM execution
if (space.debugger_access()) asi = 9;
// supervisor program fetches in boot state are special
if ((!(m_system_enable & ENA_NOTBOOT)) && (asi == 9))
{
return m_rom_ptr[offset & 0x1ffff];
}
switch (asi)
{
case 2: // system space
case 2: // system space
switch (offset >> 26)
{
{
case 3: // context reg
if (mem_mask == 0x00ff0000) return m_context<<16;
return m_context<<24;
case 4: // system enable reg
@ -549,13 +567,13 @@ READ32_MEMBER( sun4_state::sun4_mmu_r )
case 9: // (d-)cache data
logerror("sun4: read dcache data @ %x, PC = %x\n", offset, m_maincpu->pc());
return 0xffffffff;
case 0xf: // UART bypass
case 0xf: // UART bypass
//printf("read UART bypass @ %x mask %08x\n", offset<<2, mem_mask);
switch (offset & 3)
{
case 0: if (mem_mask == 0xff000000) return m_scc1->cb_r(space, offset)<<24; else return m_scc1->db_r(space, offset)<<8; break;
case 1: if (mem_mask == 0xff000000) return m_scc1->ca_r(space, offset)<<24; else return m_scc1->da_r(space, offset)<<8; break;
case 0: if (mem_mask == 0xff000000) return m_scc2->cb_r(space, offset)<<24; else return m_scc2->db_r(space, offset)<<8; break;
case 1: if (mem_mask == 0xff000000) return m_scc2->ca_r(space, offset)<<24; else return m_scc2->da_r(space, offset)<<8; break;
}
return 0xffffffff;
@ -565,61 +583,61 @@ READ32_MEMBER( sun4_state::sun4_mmu_r )
return 0;
}
break;
case 3: // segment map
//printf("sun4: read segment map @ %x (entry %d, mem_mask %08x, PC=%x)\n", offset << 2, (offset>>16) & 0xfff, mem_mask, m_maincpu->pc());
case 3: // segment map
//printf("sun4: read segment map @ %x (ctx %d entry %d, mem_mask %08x, PC=%x)\n", offset << 2, m_context & m_ctx_mask, (offset>>16) & 0xfff, mem_mask, m_maincpu->pc());
if (mem_mask == 0xffff0000)
{
return m_segmap[m_context][(offset>>16) & 0xfff]<<16;
return m_segmap[m_context & m_ctx_mask][(offset>>16) & 0xfff]<<16;
}
else if (mem_mask == 0xff000000)
{
return m_segmap[m_context][(offset>>16) & 0xfff]<<24;
return m_segmap[m_context & m_ctx_mask][(offset>>16) & 0xfff]<<24;
}
else
else
{
// printf("sun4: read segment map w/unk mask %08x\n", mem_mask);
// printf("sun4: read segment map w/unk mask %08x\n", mem_mask);
}
return 0x0;
case 4: // page map
page = m_segmap[m_context & 7][(offset >> 16) & 0xfff] << 6;
page = (m_segmap[m_context & m_ctx_mask][(offset >> 16) & 0xfff] & m_pmeg_mask) << 6;
page += (offset >> 10) & 0x3f;
//printf("sun4: read page map @ %x (entry %d, mem_mask %08x, PC=%x)\n", offset << 2, page, mem_mask, m_maincpu->pc());
//printf("sun4: read page map @ %x (entry %d, seg %d, PMEG %d, mem_mask %08x, PC=%x)\n", offset << 2, page, (offset >> 16) & 0xfff, m_segmap[m_context & m_ctx_mask][(offset >> 16) & 0xfff] & m_pmeg_mask, mem_mask, m_maincpu->pc());
return m_pagemap[page];
break;
case 8:
case 9:
case 10:
case 11:
{
// it's translation time
UINT8 pmeg = m_segmap[m_context & 7][(offset >> 16) & 0xfff];
UINT8 pmeg = m_segmap[m_context & m_ctx_mask][(offset >> 16) & 0xfff] & m_pmeg_mask;
UINT32 entry = (pmeg << 6) + ((offset >> 10) & 0x3f);
if (m_pagemap[entry] & PM_VALID)
{
m_pagemap[entry] |= PM_ACCESSED;
UINT32 tmp = (m_pagemap[entry] & 0xffff) << 10;
tmp |= (offset & 0x3ff);
//printf("sun4: read translated vaddr %08x to phys %08x type %d, PTE %08x, PC=%x\n", offset<<2, tmp<<2, (m_pagemap[entry]>>26) & 3, m_pagemap[entry], m_maincpu->pc());
switch ((m_pagemap[entry] >> 26) & 3)
{
case 0: // type 0 space
case 0: // type 0 space
return m_type0space->read32(space, tmp, mem_mask);
case 1: // type 1 space
// magic EPROM bypass
if ((tmp >= (0x6000000>>2)) && (tmp <= (0x6ffffff>>2)))
{
return m_rom_ptr[offset & 0x1ffff];
return m_rom_ptr[offset & 0x1ffff];
}
//printf("Read type 1 @ VA %08x, phys %08x\n", offset<<2, tmp<<2);
return m_type1space->read32(space, tmp, mem_mask);
default:
printf("sun4: access to memory type not defined in sun4c\n");
return 0;
@ -631,19 +649,19 @@ READ32_MEMBER( sun4_state::sun4_mmu_r )
{
printf("sun4: INVALID PTE entry %d %08x accessed! vaddr=%x PC=%x\n", entry, m_pagemap[entry], offset <<2, m_maincpu->pc());
//m_maincpu->trap(SPARC_DATA_ACCESS_EXCEPTION);
//m_buserror[0] = 0x88; // read, invalid PTE
//m_buserror[0] = 0x88; // read, invalid PTE
//m_buserror[1] = offset<<2;
}
return 0;
}
}
}
break;
default:
if (!space.debugger_access()) printf("sun4: ASI %d unhandled read @ %x (PC=%x)\n", asi, offset<<2, m_maincpu->pc());
return 0;
}
printf("sun4: read asi %d byte offset %x, PC = %x\n", asi, offset << 2, m_maincpu->pc());
return 0;
@ -668,6 +686,7 @@ WRITE32_MEMBER( sun4_state::sun4_mmu_w )
case 4: // system enable reg
m_system_enable = data>>24;
printf("%08x to system enable, mask %08x\n", data, mem_mask);
return;
case 8: // cache tags
@ -677,13 +696,13 @@ WRITE32_MEMBER( sun4_state::sun4_mmu_w )
case 9: // cache data
logerror("sun4: %08x to cache data @ %x, PC = %x\n", data, offset, m_maincpu->pc());
return;
case 0xf: // UART bypass
//printf("%08x to UART @ %d, mask %08x\n", data, offset & 3, mem_mask);
case 0xf: // UART bypass
//printf("%08x to UART bypass @ %x, mask %08x\n", data, offset<<2, mem_mask);
switch (offset & 3)
{
case 0: if (mem_mask == 0xff000000) m_scc1->cb_w(space, offset, data>>24); else m_scc1->db_w(space, offset, data>>8); break;
case 1: if (mem_mask == 0xff000000) m_scc1->ca_w(space, offset, data>>24); else { m_scc1->da_w(space, offset, data>>8); printf("%c", data>>8); } break;
case 0: if (mem_mask == 0xff000000) m_scc2->cb_w(space, offset, data>>24); else m_scc2->db_w(space, offset, data>>8); break;
case 1: if (mem_mask == 0xff000000) m_scc2->ca_w(space, offset, data>>24); else { m_scc2->da_w(space, offset, data>>8); printf("%c", data>>8); } break;
}
return;
@ -697,47 +716,47 @@ WRITE32_MEMBER( sun4_state::sun4_mmu_w )
{
UINT8 segdata = 0;
//printf("segment write, mask %08x, PC=%x\n", mem_mask, m_maincpu->pc());
if (mem_mask == 0xffff0000) segdata = (data >> 16) & 0x7f;
else if (mem_mask == 0xff000000) segdata = (data >> 24) & 0x7f;
if (mem_mask == 0xffff0000) segdata = (data >> 16) & 0xff;
else if (mem_mask == 0xff000000) segdata = (data >> 24) & 0xff;
else logerror("sun4: writing segment map with unknown mask %08x, PC=%x\n", mem_mask, m_maincpu->pc());
//printf("sun4: %08x to segment map @ %x (entry %d, mem_mask %08x, PC=%x)\n", segdata, offset << 2, (offset>>16) & 0xfff, mem_mask, m_maincpu->pc());
m_segmap[m_context & 7][(offset>>16) & 0xfff] = segdata; // only 7 bits of the segment are necessary
//printf("sun4: %08x to segment map @ %x (ctx %d entry %d, mem_mask %08x, PC=%x)\n", segdata, offset << 2, m_context, (offset>>16) & 0xfff, mem_mask, m_maincpu->pc());
m_segmap[m_context & m_ctx_mask][(offset>>16) & 0xfff] = segdata; // only 7 bits of the segment are necessary
}
return;
case 4: // page map
page = m_segmap[m_context & 7][(offset >> 16) & 0xfff] << 6; // get the PMEG
page += (offset >> 10) & 0x3f; // add the offset
page = (m_segmap[m_context & m_ctx_mask][(offset >> 16) & 0xfff] & m_pmeg_mask) << 6; // get the PMEG
page += (offset >> 10) & 0x3f; // add the offset
//printf("sun4: %08x to page map @ %x (entry %d, mem_mask %08x, PC=%x)\n", data, offset << 2, page, mem_mask, m_maincpu->pc());
COMBINE_DATA(&m_pagemap[page]);
m_pagemap[page] &= 0xff00ffff; // these 8 bits are cleared when written and tested as such
m_pagemap[page] &= 0xff00ffff; // these 8 bits are cleared when written and tested as such
return;
case 8:
case 9:
case 10:
case 11:
// it's translation time
UINT8 pmeg = m_segmap[m_context & 7][(offset >> 16) & 0xfff];
UINT8 pmeg = m_segmap[m_context & 7][(offset >> 16) & 0xfff] & m_pmeg_mask;
UINT32 entry = (pmeg << 6) + ((offset >> 10) & 0x3f);
if (m_pagemap[entry] & PM_VALID)
{
m_pagemap[entry] |= PM_ACCESSED;
UINT32 tmp = (m_pagemap[entry] & 0xffff) << 10;
tmp |= (offset & 0x3ff);
//printf("sun4: write translated vaddr %08x to phys %08x type %d, PTE %08x, PC=%x\n", offset<<2, tmp<<2, (m_pagemap[entry]>>26) & 3, m_pagemap[entry], m_maincpu->pc());
switch ((m_pagemap[entry] >> 26) & 3)
{
case 0: // type 0
case 0: // type 0
m_type0space->write32(space, tmp, data, mem_mask);
return;
case 1: // type 1
//printf("write device space @ %x\n", tmp<<1);
//printf("write device space @ %x\n", tmp<<1);
m_type1space->write32(space, tmp, data, mem_mask);
return;
default:
@ -749,26 +768,26 @@ WRITE32_MEMBER( sun4_state::sun4_mmu_w )
{
printf("sun4: INVALID PTE entry %d %08x accessed! vaddr=%x PC=%x\n", entry, m_pagemap[entry], offset <<2, m_maincpu->pc());
//m_maincpu->trap(SPARC_DATA_ACCESS_EXCEPTION);
//m_buserror[0] = 0x8; // invalid PTE
//m_buserror[0] = 0x8; // invalid PTE
//m_buserror[1] = offset<<2;
return;
}
break;
}
printf("sun4: %08x to asi %d byte offset %x, PC = %x, mask = %08x\n", data, asi, offset << 2, m_maincpu->pc(), mem_mask);
}
void sun4_state::l2p_command(int ref, int params, const char **param)
{
{
UINT64 addr, offset;
if (!machine().debugger().commands().validate_number_parameter(param[0], &addr)) return;
addr &= 0xffffffff;
offset = addr >> 2;
UINT8 pmeg = m_segmap[m_context & 7][(offset >> 16) & 0xfff];
UINT32 entry = (pmeg << 6) + ((offset >> 10) & 0x3f);
UINT32 tmp = (m_pagemap[entry] & 0xffff) << 10;
@ -797,6 +816,8 @@ void sun4_state::machine_reset()
{
m_context = 0;
m_system_enable = 0;
m_irq_reg = 0;
memset(m_counter, 0, sizeof(m_counter));
}
void sun4_state::machine_start()
@ -804,13 +825,19 @@ void sun4_state::machine_start()
m_rom_ptr = (UINT32 *)m_rom->base();
m_ram_ptr = (UINT32 *)m_ram->pointer();
m_ram_size = m_ram->size();
m_ram_size_words = m_ram_size >> 2;
m_ram_size_words = m_ram_size >> 2;
if (machine().debug_flags & DEBUG_FLAG_ENABLED)
{
using namespace std::placeholders;
machine().debugger().console().register_command("l2p", CMDFLAG_NONE, 0, 1, 1, std::bind(&sun4_state::l2p_command, this, _1, _2, _3));
}
// allocate timers for the built-in two channel timer
m_c0_timer = timer_alloc(TIMER_0);
m_c1_timer = timer_alloc(TIMER_1);
m_c0_timer->adjust(attotime::never);
m_c1_timer->adjust(attotime::never);
}
READ32_MEMBER( sun4_state::ram_r )
@ -866,10 +893,10 @@ WRITE32_MEMBER( sun4_state::ram_w )
m_parregs[0] |= 0x0f<<24;
break;
}
// indicate parity interrupt
m_parregs[0] |= 0x80000000;
// and can we take that now?
if (m_parregs[0] & 0x40000000)
{
@ -881,7 +908,7 @@ WRITE32_MEMBER( sun4_state::ram_w )
//if ((offset<<2) == 0xfb2000) printf("write %08x to %08x, mask %08x, PC=%x\n", data, offset<<2, mem_mask, m_maincpu->pc());
if (offset < m_ram_size_words)
if (offset < m_ram_size_words)
{
COMBINE_DATA(&m_ram_ptr[offset]);
return;
@ -896,11 +923,80 @@ static ADDRESS_MAP_START(type1space_map, AS_PROGRAM, 32, sun4_state)
AM_RANGE(0x00000000, 0x0000000f) AM_DEVREADWRITE8(SCC1_TAG, z80scc_device, ba_cd_inv_r, ba_cd_inv_w, 0xff00ff00)
AM_RANGE(0x01000000, 0x0100000f) AM_DEVREADWRITE8(SCC2_TAG, z80scc_device, ba_cd_inv_r, ba_cd_inv_w, 0xff00ff00)
AM_RANGE(0x02000000, 0x020007ff) AM_DEVREADWRITE8(TIMEKEEPER_TAG, timekeeper_device, read, write, 0xffffffff)
AM_RANGE(0x06000000, 0x0607ffff) AM_ROM AM_REGION("user1", 0)
AM_RANGE(0x08000000, 0x08000003) AM_READ(ss1_sl0_id) // slot 0 contains SCSI/DMA/Ethernet
AM_RANGE(0x0e000000, 0x0e000003) AM_READ(ss1_sl3_id) // slot 3 contains video board
AM_RANGE(0x03000000, 0x0300000f) AM_READWRITE(timer_r, timer_w)
AM_RANGE(0x05000000, 0x05000003) AM_READWRITE8(irq_r, irq_w, 0xffffffff)
AM_RANGE(0x06000000, 0x0607ffff) AM_ROM AM_REGION("user1", 0)
AM_RANGE(0x08000000, 0x08000003) AM_READ(ss1_sl0_id) // slot 0 contains SCSI/DMA/Ethernet
AM_RANGE(0x0e000000, 0x0e000003) AM_READ(ss1_sl3_id) // slot 3 contains video board
ADDRESS_MAP_END
READ8_MEMBER( sun4_state::irq_r )
{
return m_irq_reg;
}
WRITE8_MEMBER( sun4_state::irq_w )
{
printf("%02x to IRQ\n", data);
m_irq_reg = data;
}
void sun4_state::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
switch (id)
{
case TIMER_0:
printf("Timer 0 expired\n");
m_counter[0] = 0x80000000 | (1 << 10);
m_counter[1] |= 0x80000000;
m_c0_timer->adjust(attotime::never);
if ((m_irq_reg & 0x21) == 0x21)
{
//m_maincpu->trap(SPARC_INT10);
printf("Taking INT10\n");
}
break;
case TIMER_1:
m_counter[2] = 0x80000000 | (1 << 10);
m_counter[3] |= 0x80000000;
m_c0_timer->adjust(attotime::never);
if ((m_irq_reg & 0x81) == 0x81)
{
//m_maincpu->trap(SPARC_INT14);
}
break;
}
}
READ32_MEMBER( sun4_state::timer_r )
{
printf("Read timer @ %x, mask %08x\n", offset, mem_mask);
return m_counter[offset];
}
WRITE32_MEMBER( sun4_state::timer_w )
{
printf("%08x to timer @ %x, mask %08x\n", data, offset<<2, mem_mask);
COMBINE_DATA(&m_counter[offset]);
// writing limit 0?
if (offset == 1)
{
int period = (m_counter[1] >> 10) & 0x1fffff;
printf("Setting limit 1 period to %d us\n", period);
m_c0_timer->adjust(attotime::from_usec(period));
}
// writing limit 1?
if (offset == 3)
{
int period = (m_counter[3] >> 10) & 0x1fffff;
m_c1_timer->adjust(attotime::from_usec(period));
}
}
// indicate 4/60 SCSI/DMA/Ethernet card exists
READ32_MEMBER( sun4_state::ss1_sl0_id )
{
@ -931,7 +1027,7 @@ static MACHINE_CONFIG_START( sun4, sun4_state )
MCFG_ADDRESS_MAP_BANK_ENDIANNESS(ENDIANNESS_BIG)
MCFG_ADDRESS_MAP_BANK_DATABUS_WIDTH(32)
MCFG_ADDRESS_MAP_BANK_STRIDE(0x80000000)
// MMU Type 1 device space
MCFG_DEVICE_ADD("type1", ADDRESS_MAP_BANK, 0)
MCFG_DEVICE_PROGRAM_MAP(type1space_map)
@ -1094,6 +1190,12 @@ ROM_START( sun4_60 )
ROM_LOAD( "ss1v29.rom", 0x0000, 0x20000, CRC(e3f103a9) SHA1(5e95835f1090ea94859bd005757f0e7b5e86181b))
ROM_END
// SPARCstation 1+ (Sun 4/65)
ROM_START( sun4_65 )
ROM_REGION32_BE( 0x80000, "user1", ROMREGION_ERASEFF )
ROM_LOAD( "525-1108-05_1.3_ver_4.bin", 0x000000, 0x020000, CRC(67f1b3e2) SHA1(276ec5ca1dcbdfa202120560f55d52036720f87d) )
ROM_END
// SPARCstation 2 (Sun 4/75)
ROM_START( sun4_75 )
ROM_REGION32_BE( 0x80000, "user1", ROMREGION_ERASEFF )
@ -1120,14 +1222,32 @@ ROM_START( sun_s20 )
ROMX_LOAD( "ss10-20_v2.25r.rom", 0x0000, 0x80000, CRC(105ba132) SHA1(58530e88369d1d26ab11475c7884205f2299d255), ROM_BIOS(2))
ROM_END
DRIVER_INIT_MEMBER(sun4_state, sun4c)
{
m_ctx_mask = 0x7;
m_pmeg_mask = 0x7f;
}
DRIVER_INIT_MEMBER(sun4_state, ss2)
{
m_ctx_mask = 0xf;
m_pmeg_mask = 0xff;
}
/* Driver */
/* YEAR NAME PARENT COMPAT MACHINE INPUT INIT COMPANY FULLNAME FLAGS */
COMP( 1987, sun4_300, 0, 0, sun4, sun4, driver_device, 0, "Sun Microsystems", "Sun 4/3x0", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1990, sun4_40, sun4_300,0, sun4, sun4, driver_device, 0, "Sun Microsystems", "SPARCstation IPC (Sun 4/40)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1991, sun4_50, sun4_300,0, sun4, sun4, driver_device, 0, "Sun Microsystems", "SPARCstation IPX (Sun 4/50)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 199?, sun4_20, sun4_300,0, sun4, sun4, driver_device, 0, "Sun Microsystems", "SPARCstation SLC (Sun 4/20)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1989, sun4_60, sun4_300,0, sun4, sun4, driver_device, 0, "Sun Microsystems", "SPARCstation 1 (Sun 4/60)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1990, sun4_75, sun4_300,0, sun4, sun4, driver_device, 0, "Sun Microsystems", "SPARCstation 2 (Sun 4/75)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1992, sun_s10, sun4_300,0, sun4, sun4, driver_device, 0, "Sun Microsystems", "SPARCstation 10 (Sun S10)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1994, sun_s20, sun4_300,0, sun4, sun4, driver_device, 0, "Sun Microsystems", "SPARCstation 20", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
// sun4
COMP( 1987, sun4_300, 0, 0, sun4, sun4, sun4_state, sun4c, "Sun Microsystems", "Sun 4/3x0", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
// sun4c
COMP( 1990, sun4_40, sun4_300,0, sun4, sun4, sun4_state, sun4c, "Sun Microsystems", "SPARCstation IPC (Sun 4/40)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1991, sun4_50, sun4_300,0, sun4, sun4, sun4_state, sun4c, "Sun Microsystems", "SPARCstation IPX (Sun 4/50)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 199?, sun4_20, sun4_300,0, sun4, sun4, sun4_state, sun4c, "Sun Microsystems", "SPARCstation SLC (Sun 4/20)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1989, sun4_60, sun4_300,0, sun4, sun4, sun4_state, sun4c, "Sun Microsystems", "SPARCstation 1 (Sun 4/60)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1990, sun4_65, sun4_300,0, sun4, sun4, sun4_state, sun4c, "Sun Microsystems", "SPARCstation 1+ (Sun 4/65)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1990, sun4_75, sun4_300,0, sun4, sun4, sun4_state, ss2, "Sun Microsystems", "SPARCstation 2 (Sun 4/75)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
// sun4m
COMP( 1992, sun_s10, sun4_300,0, sun4, sun4, sun4_state, sun4c, "Sun Microsystems", "SPARCstation 10 (Sun S10)", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)
COMP( 1994, sun_s20, sun4_300,0, sun4, sun4, sun4_state, sun4c, "Sun Microsystems", "SPARCstation 20", MACHINE_NOT_WORKING | MACHINE_NO_SOUND)

View File

@ -34045,6 +34045,7 @@ sun4_300 //
sun4_40 //
sun4_50 //
sun4_60 //
sun4_65 //
sun4_75 //
@source:suna16.cpp