Add MDCR support for P2000t (#7215)

This adds support for the mini digital cassette recorder that can be
found inside a P2000t. This implementation is based on documentation
that can be found in https://github.com/p2000t/documentation.

In memory of NPM Jansen, who taught me all the magic of bits and bytes.
This commit is contained in:
Erwin Jansen 2020-09-17 01:39:48 -07:00 committed by GitHub
parent 8d7d01caef
commit 9a0c63f673
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 915 additions and 54 deletions

View File

@ -1409,6 +1409,19 @@ if (FORMATS["IBMXDF_DSK"]~=null or _OPTIONS["with-tools"]) then
}
end
--------------------------------------------------
--
--@src/lib/formats/adam_cas.h,FORMATS["ADAM_CAS"] = true
--------------------------------------------------
if (FORMATS["P2000T_CAS"]~=null or _OPTIONS["with-tools"]) then
files {
MAME_DIR.. "src/lib/formats/p2000t_cas.cpp",
MAME_DIR.. "src/lib/formats/p2000t_cas.h",
}
end
--------------------------------------------------
--
--@src/lib/formats/p6001_cas.h,FORMATS["P6001_CAS"] = true

View File

@ -883,6 +883,7 @@ BUSES["NSCSI"] = true
BUSES["NUBUS"] = true
BUSES["O2"] = true
BUSES["ORICEXT"] = true
BUSES["P2000"] = true
BUSES["PASOPIA"] = true
BUSES["PC1512"] = true
BUSES["PCE"] = true
@ -3225,6 +3226,7 @@ files {
MAME_DIR .. "src/mame/drivers/p2000t.cpp",
MAME_DIR .. "src/mame/includes/p2000t.h",
MAME_DIR .. "src/mame/machine/p2000t.cpp",
MAME_DIR .. "src/mame/machine/p2000t_mdcr.cpp",
MAME_DIR .. "src/mame/video/p2000t.cpp",
MAME_DIR .. "src/mame/drivers/vg5k.cpp",
}

View File

@ -0,0 +1,321 @@
// license:BSD-3-Clause
// copyright-holders:Curt Coder
#include <cassert>
#include "cassimg.h"
#include "p2000t_cas.h"
#include <ostream>
// This code will reproduce the timing of a P2000 mini cassette tape.
constexpr double P2000_CLOCK_PERIOD = 0.000084;
constexpr double P2000_BOT_GAP = 1;
constexpr double P2000_BOB_GAP = 0.515;
constexpr double P2000_MARK_GAP = 0.085;
constexpr double P2000_END_GAP = 0.155;
constexpr double P2000_EOT_GAP = 1.8;
constexpr int P2000_HIGH = 0x7FFFFFFF;
constexpr int P2000_LOW = -1 * 0x7FFFFFFF;
#define CHR(x) \
err = (x); \
if (err != cassette_image::error::SUCCESS) \
return err;
/*
Here's a description on how the P2000t stores data on tape.
## Tape Format
Each track (or side) of a cassette is divided into 40 block of information. A
file may comprise between 1 and 40 blocks, depending on its length.
## Blocks, Gaps, Marks and Records
At the start of the tape is an area of clear (erased) tape, the BOT (beginning
of tape) gap; to read pas this gap takes approximately 1 second. After this, the
first block starts, followed directly by the second, third and so on. After the
last block on the track comes the EOT (end of tape) gap; if all 40 blocks on the
tracks are used, this area of erased tape has a length equivalent to 1.8 seconds
of reading time.
| BOT | BLOCK 1 | BLOCK 2 | BLOCK ... | EOT |
### BLOCK
Each tape block is made up of five sections of tape:
| START GAP | MARK | MARK GAP | DATA RECORD | END GAP |
- Start gap: A section of erased tape separating the start of one block from the
end of the previous block. This takes approx. 515ms to read over.
- Mark: Four bytes of recorded information (described below)
- Mark Gap: A section of erased tape separating the mark from the data record;
length about 85ms.
- Data Record: 1056 bytes of recorded data (described below)
- End Gap: A section of erased tape of around 155 ms.
### MARK
The mark is made up of four bytes with the following bit patterns:
- preamble syncronization pattern (0xAA)
- 0000 0000 (0x00)
- 0000 0000 (0x00)
- postamble syncronization pattern (0xAA)
The function of the synchronisation byte is to make sure the RDC clock is set
properly.
### DATA RECORD
The data record contains the information which has been written onto the tape.
It compromises five sections:
| sync byte | header | data | check sum | post sync |
- sync byte: Preamble synchronisation pattern 0xAA
- header: 32 bytes which specify the contents and type of the data section. (See below)
- data section: 1024 bytes of information.
- checksum: 2 bytes that contain checksum
- post sync: 0xAA
### HEADER
See the struct declaration below for details on what is contained.
### DATA
The data section consists of 1024 bytes written in serial form, least
significant byte first.
### Checksum
The checksum is only calculated for the header and data section. The algorithm
is not documented, an implementation can be found below.
*/
// Specifies the type of data stored in the tape block
enum P2000_File_Type : uint8_t
{
Basic = 'B',
Program = 'P',
Viewdata = 'V',
WordProcessing = 'W',
Other = 'O',
};
// Represents the internal code for data, differrent codes are used in different countries
// only relevant when P2000_File_Type is Program.
enum P2000_Data_Type : uint8_t
{
German = 'D',
Swedish = 'S',
Dutch_English = 'U',
};
// This is the 32 byte header definition used by the P2000, it is mainly
// here for documentation.
struct P2000T_Header
{
// Starting address in ram where data should go. This address is supplied by
// the application program when calling the monitor cassette routine to write
// the data on cassette in the first place.
uint16_t data_transfer_address;
// Total # of bytes which make up the file (can be spread over many blocks).
// The monitor uses this to determine how many blocks to read.
uint16_t file_length;
// # bytes in this record that are actually used. For example if this is 256
// only 256 bytes will be loaded in ram
uint16_t data_section_length;
// The eight character file name identifies the file to which the record
// belongs; it will be the same in all records making up the file. Each record
// except the first is considered an extension.
char file_name[8];
// Addition file extension.
char ext[3];
// This file type specifies the type of data stored.
P2000_File_Type file_type;
// Code and region information.
P2000_Data_Type data_code;
// Start address where program should start. (if type = Program)
uint16_t start_addr;
// Address in ram where the program should load (if type = Program)
uint16_t load_addr;
// Unused.
char reserved[8];
// Record number (i.e. which block)
uint8_t rec_nr;
};
std::ostream &operator<<(std::ostream &os, P2000T_Header const &hdr)
{
return os << "File: " << std::string(hdr.file_name, 8) << '.'
<< std::string(hdr.ext, 3) << " " << hdr.file_length;
}
static cassette_image::error p2000t_cas_identify(cassette_image *cass, struct CassetteOptions *opts)
{
opts->bits_per_sample = 32;
opts->channels = 1;
opts->sample_frequency = 44100;
return cassette_image::error::SUCCESS;
}
uint16_t rotr16a(uint16_t x, uint16_t n)
{
return (x >> n) | (x << (16 - n));
}
void update_chksum(uint16_t *de, bool bit)
{
// Reverse engineered from monitor.rom
// code is at: [0x07ac, 0x07c5]
uint8_t e = *de & 0xff;
uint8_t d = (*de >> 8) & 0xff;
e = e ^ (bit ? 1 : 0);
if (e & 0x01)
{
e = e ^ 2;
d = d ^ 0x40;
}
else
{
d = d ^ 0x00;
}
*de = rotr16a((d << 8) | e, 1);
}
/*
A transition on a clock boundary from low to high is a 1.
A transition on a clock boundary from high to low is a 0
An intermediate transition halfway between the clock boundary
can occur when there are consecutive 0s or 1s. See the example
below where the clock is marked by a |
1 0 1 1 0 0
RDA: _|----|____|--__|----|__--|__--
RDC: _|-___|-___|-___|-___|-___|-___
^ ^
|-- clock signal |-- intermediate transition.
This signal can be written by a simple algorithm where the first bit
is always false (transition to low, half clock). Now only one bit is needed
to determine what the next partial clock should look like.
This works because we are always guaranteed that a block starts with 0xAA,
and hence will ALWAYS find a signal like this on tape: _-- (low, high, high)
after a gap. This is guaranteed when the tape is moving forward as well as
backwards.
*/
cassette_image::error p2000t_put_bit(cassette_image *cass, double *time_index, bool bit)
{
const int channel = 0;
cassette_image::error err = cassette_image::error::SUCCESS;
CHR(cassette_put_sample(cass, channel, *time_index, P2000_CLOCK_PERIOD, bit ? P2000_HIGH : P2000_LOW));
*time_index += P2000_CLOCK_PERIOD;
CHR(cassette_put_sample(cass, channel, *time_index, P2000_CLOCK_PERIOD, bit ? P2000_LOW : P2000_HIGH));
*time_index += P2000_CLOCK_PERIOD;
return err;
}
// Store byte of data, updating the checksum
cassette_image::error p2000t_put_byte(cassette_image *cass, double *time_index, uint16_t *chksum, uint8_t byte)
{
cassette_image::error err = cassette_image::error::SUCCESS;
for (int i = 0; i < 8 && err == cassette_image::error::SUCCESS; i++)
{
update_chksum(chksum, util::BIT(byte, i));
CHR(p2000t_put_bit(cass, time_index, util::BIT(byte, i)));
}
return err;
}
// Store a sequence of bytes, updating the checksum
cassette_image::error p2000t_put_bytes(cassette_image *cass, double *time_index, uint16_t *chksum, const uint8_t *bytes, const uint16_t cByte)
{
cassette_image::error err = cassette_image::error::SUCCESS;
for (int i = 0; i < cByte && err == cassette_image::error::SUCCESS; i++)
{
CHR(p2000t_put_byte(cass, time_index, chksum, bytes[i]));
}
return err;
}
// Insert time seconds of silence.
cassette_image::error p2000t_silence(cassette_image *cassette,
double *time_index,
double time)
{
auto err = cassette_put_sample(cassette, 0, *time_index, time, 0);
*time_index += time;
return err;
}
static cassette_image::error p2000t_cas_load(cassette_image *cassette)
{
cassette_image::error err = cassette_image::error::SUCCESS;
uint64_t image_size = cassette_image_size(cassette);
constexpr int CAS_BLOCK = 1280;
/*
The cas format is pretty simple. it consists of a sequence of blocks,
where a block consists of the following:
[0-256] P2000 memory address 0x6000 - 0x6100
.... Nonsense (keyboard status etc.)
0x30 P200T_Header
0x50
... Nonsense..
[0-1024] Data block
This means that one block gets stored in 1280 bytes.
*/
if (image_size % CAS_BLOCK != 0)
{
return cassette_image::error::INVALID_IMAGE;
}
uint8_t block[CAS_BLOCK];
constexpr uint8_t BLOCK_MARK[4] = { 0xAA, 0x00, 0x00, 0xAA };
auto blocks = image_size / CAS_BLOCK;
double time_idx = 0;
// Beginning of tape marker
CHR(p2000t_silence(cassette, &time_idx, P2000_BOT_GAP));
for (int i = 0; i < blocks; i++)
{
uint16_t crc = 0, unused = 0;
cassette_image_read(cassette, &block, CAS_BLOCK * i, CAS_BLOCK);
// Insert sync header.. 0xAA, 0x00, 0x00, 0xAA
CHR(p2000t_silence(cassette, &time_idx, P2000_BOB_GAP));
CHR(p2000t_put_bytes(cassette, &time_idx, &unused, BLOCK_MARK, ARRAY_LENGTH(BLOCK_MARK)));
CHR(p2000t_silence(cassette, &time_idx, P2000_MARK_GAP));
// Insert data block
CHR(p2000t_put_byte(cassette, &time_idx, &unused, 0xAA));
CHR(p2000t_put_bytes(cassette, &time_idx, &crc, block + 0x30, 32));
CHR(p2000t_put_bytes(cassette, &time_idx, &crc, block + 256, 1024));
CHR(p2000t_put_bytes(cassette, &time_idx, &unused, ( uint8_t * )&crc, 2));
CHR(p2000t_put_byte(cassette, &time_idx, &unused, 0xAA));
// Block finished.
CHR(p2000t_silence(cassette, &time_idx, P2000_END_GAP));
}
// End of tape marker
return p2000t_silence(cassette, &time_idx, P2000_EOT_GAP);
}
static const struct CassetteFormat p2000t_cas = {
"cas", p2000t_cas_identify, p2000t_cas_load, nullptr /* no save */
};
CASSETTE_FORMATLIST_START(p2000t_cassette_formats)
CASSETTE_FORMAT(p2000t_cas)
CASSETTE_FORMATLIST_END

View File

@ -0,0 +1,19 @@
// license:BSD-3-Clause
// copyright-holders:Erwin Jansen
/*********************************************************************
p2000t_cas.h
Format code for P2000t .cas cassette files.
*********************************************************************/
#ifndef MAME_FORMATS_P2000T_CAS_H
#define MAME_FORMATS_P2000T_CAS_H
#pragma once
#include "cassimg.h"
CASSETTE_FORMATLIST_EXTERN(p2000t_cassette_formats);
#endif // MAME_FORMATS_P2000T_CAS_H

View File

@ -245,6 +245,9 @@ void p2000t_state::p2000t(machine_config &config)
/* sound hardware */
SPEAKER(config, "mono").front_center();
SPEAKER_SOUND(config, m_speaker).add_route(ALL_OUTPUTS, "mono", 0.25);
/* the mini cassette driver */
MDCR(config, m_mdcr, 0);
}

View File

@ -14,6 +14,7 @@
#include "cpu/z80/z80.h"
#include "sound/spkrdev.h"
#include "video/saa5050.h"
#include "machine/p2000t_mdcr.h"
#include "emupal.h"
@ -25,6 +26,7 @@ public:
, m_videoram(*this, "videoram")
, m_maincpu(*this, "maincpu")
, m_speaker(*this, "speaker")
, m_mdcr(*this, "mdcr")
, m_keyboard(*this, "KEY.%u", 0)
{
}
@ -52,6 +54,8 @@ protected:
required_device<cpu_device> m_maincpu;
required_device<speaker_sound_device> m_speaker;
// Only the P2000t has this device.
optional_device<mdcr_device> m_mdcr;
private:
required_ioport_array<10> m_keyboard;

View File

@ -46,15 +46,12 @@ uint8_t p2000t_state::p2000t_port_000f_r(offs_t offset)
{
if (m_port_101f & P2000M_101F_KEYINT)
{
return (
m_keyboard[0]->read() & m_keyboard[1]->read() &
m_keyboard[2]->read() & m_keyboard[3]->read() &
m_keyboard[4]->read() & m_keyboard[5]->read() &
m_keyboard[6]->read() & m_keyboard[7]->read() &
m_keyboard[8]->read() & m_keyboard[9]->read());
return (m_keyboard[0]->read() & m_keyboard[1]->read() & m_keyboard[2]->read()
& m_keyboard[3]->read() & m_keyboard[4]->read() & m_keyboard[5]->read()
& m_keyboard[6]->read() & m_keyboard[7]->read() & m_keyboard[8]->read()
& m_keyboard[9]->read());
}
else
if (offset < 10)
else if (offset < 10)
{
return m_keyboard[offset]->read();
}
@ -62,22 +59,29 @@ uint8_t p2000t_state::p2000t_port_000f_r(offs_t offset)
return 0xff;
}
/*
Input port 0x2x
bit 0 - Printer input
bit 1 - Printer ready
bit 2 - Strap N (daisy/matrix)
bit 3 - Cassette write enabled
bit 4 - Cassette in position
bit 5 - Begin/end of tape
bit 6 - Cassette read clock
bit 3 - Cassette write enabled, 0 = Write enabled
bit 4 - Cassette in position, 0 = Cassette in position
bit 5 - Begin/end of tape 0 = Beginning or End of tap
bit 6 - Cassette read clock Flips when a bit is available.
bit 7 - Cassette read data
Note: bit 6 & 7 are swapped when the cassette is moving in reverse.
*/
uint8_t p2000t_state::p2000t_port_202f_r()
{
return (0xff);
uint8_t data = 0x00;
data |= !m_mdcr->wen() << 3;
data |= !m_mdcr->cip() << 4;
data |= !m_mdcr->bet() << 5;
data |= m_mdcr->rdc() << 6;
data |= !m_mdcr->rda() << 7;
return data;
}
@ -96,6 +100,10 @@ uint8_t p2000t_state::p2000t_port_202f_r()
void p2000t_state::p2000t_port_101f_w(uint8_t data)
{
m_port_101f = data;
m_mdcr->wda(BIT(data, 0));
m_mdcr->wdc(BIT(data, 1));
m_mdcr->rev(BIT(data, 2));
m_mdcr->fwd(BIT(data, 3));
}
/*
@ -110,10 +118,7 @@ void p2000t_state::p2000t_port_101f_w(uint8_t data)
bit 6 - \
bit 7 - Video disable (0 = enabled)
*/
void p2000t_state::p2000t_port_303f_w(uint8_t data)
{
m_port_303f = data;
}
void p2000t_state::p2000t_port_303f_w(uint8_t data) { m_port_303f = data; }
/*
Beeper 0x5x
@ -127,10 +132,7 @@ void p2000t_state::p2000t_port_303f_w(uint8_t data)
bit 6 - Unused
bit 7 - Unused
*/
void p2000t_state::p2000t_port_505f_w(uint8_t data)
{
m_speaker->level_w(BIT(data, 0));
}
void p2000t_state::p2000t_port_505f_w(uint8_t data) { m_speaker->level_w(BIT(data, 0)); }
/*
DISAS 0x7x (P2000M only)
@ -148,10 +150,7 @@ void p2000t_state::p2000t_port_505f_w(uint8_t data)
video refresh is disabled when the CPU accesses video memory
*/
void p2000t_state::p2000t_port_707f_w(uint8_t data)
{
m_port_707f = data;
}
void p2000t_state::p2000t_port_707f_w(uint8_t data) { m_port_707f = data; }
void p2000t_state::p2000t_port_888b_w(uint8_t data) {}
void p2000t_state::p2000t_port_8c90_w(uint8_t data) {}

View File

@ -0,0 +1,321 @@
// license:BSD-3-Clause
// copyright-holders:Erwin Jansen
/**********************************************************************
Philips P2000T Mini Digital Cassette Recorder emulation
**********************************************************************/
#include "emu.h"
#include "p2000t_mdcr.h"
#include "formats/p2000t_cas.h"
DEFINE_DEVICE_TYPE(MDCR, mdcr_device, "mdcr", "Philips Mini DCR")
READ_LINE_MEMBER(mdcr_device::rdc)
{
// According to mdcr spec there is cross talk on the wires when writing,
// hence the clock signal is always false when writing.
if (m_recording)
return false;
return m_fwd ? m_rdc : m_rda;
}
READ_LINE_MEMBER(mdcr_device::rda)
{
return m_fwd ? m_rda : m_rdc;
}
READ_LINE_MEMBER(mdcr_device::bet)
{
return tape_start_or_end();
}
READ_LINE_MEMBER(mdcr_device::cip)
{
return true;
}
READ_LINE_MEMBER(mdcr_device::wen)
{
return true;
}
WRITE_LINE_MEMBER(mdcr_device::rev)
{
m_rev = state;
if (m_rev)
{
rewind();
}
if (!m_rev && !m_fwd)
{
stop();
}
}
WRITE_LINE_MEMBER(mdcr_device::fwd)
{
m_fwd = state;
if (m_fwd)
{
forward();
}
if (!m_rev && !m_fwd)
{
stop();
}
}
WRITE_LINE_MEMBER(mdcr_device::wda)
{
m_wda = state;
}
WRITE_LINE_MEMBER(mdcr_device::wdc)
{
if (state)
{
write_bit(m_wda);
};
}
void mdcr_device::device_add_mconfig(machine_config &config)
{
CASSETTE(config, m_cassette);
m_cassette->set_default_state(CASSETTE_STOPPED | CASSETTE_MOTOR_DISABLED |
CASSETTE_SPEAKER_MUTED);
m_cassette->set_interface("p2000_cass");
m_cassette->set_formats(p2000t_cassette_formats);
}
mdcr_device::mdcr_device(machine_config const &mconfig, char const *tag, device_t *owner, uint32_t clock)
: device_t(mconfig, MDCR, tag, owner, clock)
, m_cassette(*this, "cassette")
, m_read_timer(nullptr)
{
}
void mdcr_device::device_start()
{
m_read_timer = timer_alloc();
m_read_timer->adjust(attotime::from_hz(44100), 0, attotime::from_hz(44100));
save_item(NAME(m_fwd));
save_item(NAME(m_rev));
save_item(NAME(m_rdc));
save_item(NAME(m_rda));
save_item(NAME(m_wda));
save_item(NAME(m_recording));
save_item(NAME(m_fwd_pulse_time));
save_item(NAME(m_last_tape_time));
save_item(NAME(m_save_tape_time));
// Phase decoder
save_item(STRUCT_MEMBER(m_phase_decoder, m_last_signal));
save_item(STRUCT_MEMBER(m_phase_decoder, m_needs_sync));
save_item(STRUCT_MEMBER(m_phase_decoder, m_bit_queue));
save_item(STRUCT_MEMBER(m_phase_decoder, m_bit_place));
save_item(STRUCT_MEMBER(m_phase_decoder, m_current_clock));
save_item(STRUCT_MEMBER(m_phase_decoder, m_clock_period));
}
void mdcr_device::device_pre_save()
{
m_save_tape_time = m_cassette->get_position();
}
void mdcr_device::device_post_load()
{
m_cassette->seek(m_save_tape_time, SEEK_SET);
}
void mdcr_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
if (!m_recording && m_cassette->motor_on())
{
// Account for moving backwards.
auto delay = abs(m_cassette->get_position() - m_last_tape_time);
// Decode the signal using the fake phase decode circuit
bool newBit = m_phase_decoder.signal((m_cassette->input() > +0.04), delay);
if (newBit)
{
// Flip rdc
m_rdc = !m_rdc;
m_rda = m_phase_decoder.pull_bit();
}
}
m_last_tape_time = m_cassette->get_position();
}
void mdcr_device::write_bit(bool bit)
{
m_recording = true;
m_cassette->change_state(CASSETTE_RECORD, CASSETTE_MASK_UISTATE);
m_cassette->output(bit ? +1.0 : -1.0);
m_phase_decoder.reset();
}
void mdcr_device::rewind()
{
m_fwd = false;
m_recording = false;
m_cassette->set_motor(true);
m_cassette->change_state(CASSETTE_PLAY, CASSETTE_MASK_UISTATE);
m_cassette->go_reverse();
}
void mdcr_device::forward()
{
// A pulse of 1us < T < 20 usec should reset the phase decoder.
// See mdcr spec for details.
constexpr double RESET_PULSE_TIMING = 2.00e-05;
auto now = machine().time().as_double();
auto pulse_delay = now - m_fwd_pulse_time;
m_fwd_pulse_time = now;
if (pulse_delay < RESET_PULSE_TIMING)
{
m_phase_decoder.reset();
}
m_fwd = true;
m_cassette->set_motor(true);
m_cassette->change_state(m_recording ? CASSETTE_RECORD : CASSETTE_PLAY,
CASSETTE_MASK_UISTATE);
m_cassette->go_forward();
}
void mdcr_device::stop()
{
m_cassette->change_state(CASSETTE_PLAY, CASSETTE_MASK_UISTATE);
m_cassette->set_motor(false);
}
bool mdcr_device::tape_start_or_end()
{
auto pos = m_cassette->get_position();
return m_cassette->motor_on() &&
(pos <= 0 || pos >= m_cassette->get_length());
}
void p2000_mdcr_devices(device_slot_interface &device)
{
device.option_add("mdcr", MDCR);
}
//
// phase_decoder
//
mdcr_device::phase_decoder::phase_decoder(double tolerance)
: m_tolerance(tolerance)
{
reset();
}
bool mdcr_device::phase_decoder::pull_bit()
{
if (m_bit_place == 0)
return false;
auto res = BIT(m_bit_queue, 0);
m_bit_place--;
m_bit_queue >>= 1;
return res;
}
bool mdcr_device::phase_decoder::signal(bool state, double delay)
{
m_current_clock += delay;
if (state == m_last_signal)
{
if (m_needs_sync == 0 && m_current_clock > m_clock_period &&
!within_tolerance(m_current_clock, m_clock_period))
{
// We might be at the last bit in a sequence, meaning we
// are only getting the reference signal for a while.
// so we produce one last clock signal.
reset();
return true;
}
return false;
}
// A transition happened!
m_last_signal = state;
if (m_needs_sync > 0)
{
// We have not yet determined our clock period.
return sync_signal(state);
}
// We are within bounds of the current clock
if (within_tolerance(m_current_clock, m_clock_period))
{
add_bit(state);
return true;
};
// We went out of sync, our clock is wayyy out of bounds.
if (m_current_clock > m_clock_period)
reset();
// We are likely halfway in our clock signal..
return false;
};
void mdcr_device::phase_decoder::reset()
{
m_last_signal = false;
m_current_clock = {};
m_clock_period = {};
m_needs_sync = SYNCBITS;
}
void mdcr_device::phase_decoder::add_bit(bool bit)
{
if (bit)
m_bit_queue |= bit << m_bit_place;
else
m_bit_queue &= ~(bit << m_bit_place);
if (m_bit_place <= QUEUE_DELAY)
m_bit_place++;
m_current_clock = {};
}
bool mdcr_device::phase_decoder::sync_signal(bool state)
{
m_needs_sync--;
if (m_needs_sync == SYNCBITS - 1)
{
// We can only synchronize when we go up
// on the first bit.
if (state)
add_bit(true);
return false;
}
if (m_clock_period != 0 && !within_tolerance(m_current_clock, m_clock_period))
{
// Clock is way off!
reset();
return false;
}
// We've derived a clock period, we will use the average.
auto div = SYNCBITS - m_needs_sync - 1;
m_clock_period = ((div - 1) * m_clock_period + m_current_clock) / div;
add_bit(state);
return true;
}
// y * (1 - tolerance) < x < y * (1 + tolerance)
bool mdcr_device::phase_decoder::within_tolerance(double x, double y)
{
assert(m_tolerance > 0 && m_tolerance < 1);
return (y * (1 - m_tolerance)) < x && x < (y * (1 + m_tolerance));
}

View File

@ -0,0 +1,177 @@
// license:BSD-3-Clause
// copyright-holders:Erwin Jansen
/**********************************************************************
Philips P2000t Mini Digital Cassette Recorder Emulation
**********************************************************************
+12V 1 8 !WCD
OV (signal) 2 9 !REV
OV (power) 3 A !FWD
GND 4 B RDC
!WDA 6 C !RDA
!BET 7 D !CIP
E !WEN
**********************************************************************/
#ifndef MAME_MACHINE_P2000T_MDCR_H
#define MAME_MACHINE_P2000T_MDCR_H
#pragma once
#include "imagedev/cassette.h"
/// \brief Models a MCR220 Micro Cassette Recorder
///
/// Detailed documentation on the device can be found in this repository:
/// https://github.com/p2000t/documentation/tree/master/hardware
///
/// This device was built in the P2000t and was used as tape storage.
/// It used mini-cassettes that were also used in dictation devices.
/// The P2000t completely controls this device without user intervention.
class mdcr_device : public device_t
{
public:
mdcr_device(machine_config const &mconfig, char const *tag, device_t *owner, uint32_t clock);
/// \brief The read clock, switches state when a bit is available.
///
/// This is the read clock. The read clock is a flip flop that switches
/// whenever a new bit is available on rda. The original flips every 167us
/// This system flips at 154 / 176 usec, which is within the tolerance for
/// the rom and system diagnostics.
///
/// Note that rdc & rda are flipped when the tape is moving in reverse.
DECLARE_READ_LINE_MEMBER(rdc);
/// The current active data bit.
DECLARE_READ_LINE_MEMBER(rda);
/// False indicates we have reached end/beginning of tape
DECLARE_READ_LINE_MEMBER(bet);
/// False if a cassette is in place.
DECLARE_READ_LINE_MEMBER(cip);
/// False when the cassette is write enabled.
DECLARE_READ_LINE_MEMBER(wen);
/// True if we should activate the reverse motor.
DECLARE_WRITE_LINE_MEMBER(rev);
/// True if we should activate the forward motor.
/// Note: A quick pulse (<20usec) will reset the phase decoder.
DECLARE_WRITE_LINE_MEMBER(fwd);
/// The bit to write to tape. Make sure to set wda after wdc.
DECLARE_WRITE_LINE_MEMBER(wda);
/// True if the current wda should be written to tape.
DECLARE_WRITE_LINE_MEMBER(wdc);
protected:
virtual void device_start() override;
virtual void device_pre_save() override;
virtual void device_post_load() override;
virtual void device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr) override;
virtual void device_add_mconfig(machine_config &config) override;
private:
/// \brief A Phase Decoder used in a Philips MDCR220 Mini Cassette Recorder
///
/// A phase decoder is capable of converting a signal stream into a
/// a series of bits that go together with a clock signal. This phase
/// decoder is conform to what you would find in an Philips MDCR220
///
/// Signals are converted into bits whenever the line signal
/// changes from low to high and vice versa on a clock signal.
///
/// A transition on a clock boundary from low to high is a 1.
/// A transition on a clock boundary from high to low is a 0
/// An intermediate transition halfway between the clock boundary
/// can occur when there are consecutive 0s or 1s. See the example
/// below where the clock is marked by a |
///
/// 1 0 1 1 0 0
/// RDA: _|----|____|--__|----|__--|__--
/// RDC: _|-___|-___|-___|-___|-___|-___
/// ^ ^
/// |-- clock signal |-- intermediate transition.
///
/// This particular phase decoder expects a signal of
/// 1010 1010 which is used to derive the clock T.
/// after a reset.
class phase_decoder
{
using time_in_seconds = double;
public:
/// Creates a phase decoder with the given tolerance.
phase_decoder(double tolerance = 0.15);
/// Pulls the bit out of the queue.
bool pull_bit();
/// Returns true if a new bit can be read, you can now pull the bit.
bool signal(bool state, double delay);
/// Reset the clock state, the system will now need to resynchronize on 0xAA.
void reset();
private:
// add a bit and reset the current clock.
void add_bit(bool bit);
// tries to sync up the signal and calculate the clockperiod.
bool sync_signal(bool state);
// y * (1 - tolerance) < x < y * (1 + tolerance)
bool within_tolerance(double x, double y);
double m_tolerance;
static constexpr int SYNCBITS = 7;
static constexpr int QUEUE_DELAY = 2;
public:
// Needed for save state.
bool m_last_signal{ false };
int m_needs_sync{ SYNCBITS };
uint8_t m_bit_queue{ 0 };
uint8_t m_bit_place{ 0 };
time_in_seconds m_current_clock{ 0 };
time_in_seconds m_clock_period{ 0 };
};
void write_bit(bool bit);
void rewind();
void forward();
void stop();
bool tape_start_or_end();
bool m_fwd{ false };
bool m_rev{ false };
bool m_rdc{ false };
bool m_rda{ false };
bool m_wda{ false };
bool m_recording{ false };
double m_fwd_pulse_time{ 0 };
double m_last_tape_time{ 0 };
double m_save_tape_time{ 0 };
required_device<cassette_image_device> m_cassette;
phase_decoder m_phase_decoder;
// timers
emu_timer *m_read_timer;
};
DECLARE_DEVICE_TYPE(MDCR, mdcr_device)
#endif // MAME_MACHINE_P2000T_MDCR_H

View File

@ -38,6 +38,7 @@
#include "formats/mz_cas.h"
#include "formats/orao_cas.h"
#include "formats/oric_tap.h"
#include "formats/p2000t_cas.h"
#include "formats/p6001_cas.h"
#include "formats/phc25_cas.h"
#include "formats/pmd_cas.h"
@ -90,6 +91,7 @@ const struct SupportedCassetteFormats formats[] = {
{"mz", mz700_cassette_formats ,"Sharp MZ-700"},
{"orao", orao_cassette_formats ,"PEL Varazdin Orao"},
{"oric", oric_cassette_formats ,"Tangerine Oric"},
{"p2000t", p2000t_cassette_formats ,"Philips P2000T"},
{"pc6001", pc6001_cassette_formats ,"NEC PC-6001"},
{"phc25", phc25_cassette_formats ,"Sanyo PHC-25"},
{"pmd85", pmd85_cassette_formats ,"Tesla PMD-85"},