New machines added as MACHINE_NOT_WORKING

-----------------------------------------
Yamaha MU-80 [R. Belmont, O. Galibert]
This commit is contained in:
arbee 2019-03-06 21:10:49 -05:00
parent aeba8b4168
commit 9a98942660
2 changed files with 157 additions and 6 deletions

View File

@ -2,16 +2,19 @@
// copyright-holders:R. Belmont, Olivier Galibert
/*************************************************************************************
Yamaha MU-100 : 32-voice polyphonic/multitimbral General MIDI/GS/XG tone module
Yamaha MU-80 and MU-100 : 32-voice polyphonic/multitimbral General MIDI/GS/XG tone modules
Preliminary driver by R. Belmont and O. Galibert
CPU: Hitachi H8S/2655 (HD6432655F), strapped for mode 4 (24-bit address, 16-bit data, no internal ROM)
MU100 CPU: Hitachi H8S/2655 (HD6432655F), strapped for mode 4 (24-bit address, 16-bit data, no internal ROM)
Sound ASIC: Yamaha XS725A0/SWP30
RAM: 1 MSM51008 (1 meg * 1 bit = 128KBytes)
MU80 CPU: Hitachi H8/3002 (HD6413D02F16), strapped for mode 4, with a 12 MHz oscillator
Sound ASICs: 2x Yamaha YMM275-F/SWP20 + 2x YMM279-F/SWD wave decoders + HD62908 "MEG" effects processor
I/O ports from service manual:
Port 1:
Port 1 (MU100) / Port B (MU80)
0 - LCD data, SW data, LED 1
1 - LCD data, SW data, LED 2
2 - LCD data, SW data, LED 3
@ -47,11 +50,21 @@
6 - NC
7 - (in) Plug detection for A/D input
Port A:
Port A (MU100):
5 - (in) Off Line Detection
6 - (out) Signal for rotary encoder (REB)
7 - (out) Signal for rotary encoder (REA)
Port A (MU80):
0 -
1 - LCD control RS
2 -
3 - (same as sws on MU100) LED,SW Strobe data latch
4 - (same as swd on MU100) SW data read control
5 - LCD control E
6 - LCD control RW
7 -
Port F:
0 - (out) (sws) LED,SW Strobe data latch
1 - (out) (swd) SW data read control
@ -118,6 +131,7 @@
#include "bus/midi/midiinport.h"
#include "bus/midi/midioutport.h"
#include "cpu/h8/h83002.h"
#include "cpu/h8/h8s2655.h"
#include "video/hd44780.h"
#include "sound/swp30.h"
@ -155,12 +169,14 @@ public:
mu100_state(const machine_config &mconfig, device_type type, const char *tag)
: driver_device(mconfig, type, tag)
, m_maincpu(*this, "maincpu")
, m_mu80cpu(*this, "mu80cpu")
, m_swp30(*this, "swp30")
, m_lcd(*this, "lcd")
, m_ioport_p7(*this, "P7")
, m_ioport_p8(*this, "P8")
{ }
void mu80(machine_config &config);
void mu100(machine_config &config);
void regs_s1_write_tap(offs_t address, u16 data, u16 mem_mask);
@ -252,13 +268,20 @@ private:
P2_LCD_ENABLE = 0x04
};
required_device<h8s2655_device> m_maincpu;
enum {
PA_LCD_RS = 0x02,
PA_LCD_ENABLE = 0x20,
PA_LCD_RW = 0x40
};
optional_device<h8s2655_device> m_maincpu;
optional_device<h83002_device> m_mu80cpu;
required_device<swp30_device> m_swp30;
required_device<hd44780_device> m_lcd;
required_ioport m_ioport_p7;
required_ioport m_ioport_p8;
u8 cur_p1, cur_p2, cur_p3, cur_p5, cur_p6, cur_pa, cur_pf, cur_pg;
u8 cur_p1, cur_p2, cur_p3, cur_p5, cur_p6, cur_pa, cur_pb, cur_pf, cur_pg;
u8 cur_ic32;
float contrast;
@ -276,6 +299,12 @@ private:
u16 p6_r();
void pa_w(u16 data);
u16 pa_r();
void pb_w(u16 data);
u16 pb_r();
void pa_w_mu80(u16 data);
u16 pa_r_mu80();
void pb_w_mu80(u16 data);
u16 pb_r_mu80();
void pf_w(u16 data);
void pg_w(u16 data);
@ -284,6 +313,8 @@ private:
virtual void machine_start() override;
void mu100_iomap(address_map &map);
void mu100_map(address_map &map);
void mu80_iomap(address_map &map);
void mu80_map(address_map &map);
void swp30_map(address_map &map);
};
@ -508,6 +539,12 @@ u32 mu100_state::screen_update(screen_device &screen, bitmap_rgb32 &bitmap, cons
return 0;
}
void mu100_state::mu80_map(address_map &map)
{
map(0x000000, 0x07ffff).rom().region("mu80cpu", 0);
map(0x200000, 0x20ffff).ram(); // 64K work RAM
}
void mu100_state::mu100_map(address_map &map)
{
map(0x000000, 0x1fffff).rom().region("maincpu", 0);
@ -644,6 +681,69 @@ void mu100_state::pg_w(u16 data)
logerror("pbsel3 %d\n", data & 1);
}
void mu100_state::pb_w_mu80(u16 data)
{
cur_pb = data;
}
u16 mu100_state::pb_r_mu80()
{
if((cur_pa & PA_LCD_ENABLE)) {
if(cur_pa & PA_LCD_RW)
{
if(cur_pa & PA_LCD_RS)
return m_lcd->data_read();
else
return m_lcd->control_read();
} else
return 0x00;
}
if(!(cur_pa & 0x10)) {
u8 val = 0xff;
if(!(cur_ic32 & 0x20))
val &= m_ioport_p7->read();
if(!(cur_ic32 & 0x40))
val &= m_ioport_p8->read();
return val;
}
return cur_pa;
}
void mu100_state::pa_w_mu80(u16 data)
{
data ^= PA_LCD_ENABLE;
if(!(cur_pa & PA_LCD_ENABLE) && (data & PA_LCD_ENABLE)) {
if(!(cur_pa & PA_LCD_RW)) {
if(cur_pa & PA_LCD_RS)
m_lcd->data_write(cur_pb);
else
m_lcd->control_write(cur_pb);
}
}
if(!(cur_pa & 0x08) && (data & 0x08))
cur_ic32 = cur_pb;
cur_pa = data;
}
u16 mu100_state::pa_r_mu80()
{
return cur_pa;
}
void mu100_state::mu80_iomap(address_map &map)
{
map(h8_device::PORT_A, h8_device::PORT_A).rw(FUNC(mu100_state::pa_r_mu80), FUNC(mu100_state::pa_w_mu80));
map(h8_device::PORT_B, h8_device::PORT_B).rw(FUNC(mu100_state::pb_r_mu80), FUNC(mu100_state::pb_w_mu80));
map(h8_device::ADC_0, h8_device::ADC_0).r(FUNC(mu100_state::adc0_r));
map(h8_device::ADC_2, h8_device::ADC_2).r(FUNC(mu100_state::adc2_r));
map(h8_device::ADC_4, h8_device::ADC_4).r(FUNC(mu100_state::adc4_r));
map(h8_device::ADC_6, h8_device::ADC_6).r(FUNC(mu100_state::adc6_r));
map(h8_device::ADC_7, h8_device::ADC_7).r(FUNC(mu100_state::adc7_r));
}
void mu100_state::mu100_iomap(address_map &map)
{
map(h8_device::PORT_1, h8_device::PORT_1).rw(FUNC(mu100_state::p1_r), FUNC(mu100_state::p1_w));
@ -705,6 +805,43 @@ void mu100_state::mu100(machine_config &config)
m_maincpu->subdevice<h8_sci_device>("sci0")->tx_handler().set(mdout, FUNC(midi_port_device::write_txd));
}
void mu100_state::mu80(machine_config &config)
{
H83002(config, m_mu80cpu, 12_MHz_XTAL);
m_mu80cpu->set_addrmap(AS_PROGRAM, &mu100_state::mu80_map);
m_mu80cpu->set_addrmap(AS_IO, &mu100_state::mu80_iomap);
HD44780(config, m_lcd);
m_lcd->set_lcd_size(4, 20);
auto &screen = SCREEN(config, "screen", SCREEN_TYPE_LCD);
screen.set_refresh_hz(50);
screen.set_vblank_time(ATTOSECONDS_IN_USEC(2500)); /* not accurate, asynchronous updating anyway */
screen.set_screen_update(FUNC(mu100_state::screen_update));
screen.set_size(900, 241);
screen.set_visarea(0, 899, 0, 240);
SPEAKER(config, "lspeaker").front_left();
SPEAKER(config, "rspeaker").front_right();
SWP30(config, m_swp30);
m_swp30->set_addrmap(0, &mu100_state::swp30_map);
m_swp30->add_route(0, "lspeaker", 1.0);
m_swp30->add_route(1, "rspeaker", 1.0);
auto &mdin_a(MIDI_PORT(config, "mdin_a"));
midiin_slot(mdin_a);
mdin_a.rxd_handler().set("mu80cpu:sci1", FUNC(h8_sci_device::rx_w));
auto &mdin_b(MIDI_PORT(config, "mdin_b"));
midiin_slot(mdin_b);
mdin_b.rxd_handler().set("mu80cpu:sci0", FUNC(h8_sci_device::rx_w));
auto &mdout(MIDI_PORT(config, "mdout"));
midiout_slot(mdout);
m_mu80cpu->subdevice<h8_sci_device>("sci0")->tx_handler().set(mdout, FUNC(midi_port_device::write_txd));
}
#define ROM_LOAD16_WORD_SWAP_BIOS(bios,name,offset,length,hash) \
ROMX_LOAD(name, offset, length, hash, ROM_GROUPWORD | ROM_REVERSE | ROM_BIOS(bios))
@ -749,5 +886,18 @@ ROM_START( mu100r )
ROM_LOAD( "mu100-font.bin", 0x0000, 0x1000, BAD_DUMP CRC(a7d6c1d6) SHA1(9f0398d678bdf607cb34d83ee535f3b7fcc97c41) )
ROM_END
ROM_START( mu80 )
ROM_REGION( 0x80000, "mu80cpu", 0 )
ROM_LOAD16_WORD_SWAP( "yamaha_mu80.bin", 0x000000, 0x080000, CRC(c31074c0) SHA1(a11bd4523cd8ff1e1744078c3b4c18112b73c61e) )
ROM_REGION( 0x1800000, "swp30", ROMREGION_ERASE00 )
ROM_REGION( 0x1000, "lcd", 0)
// Hand made, 3 characters unused
ROM_LOAD( "mu100-font.bin", 0x0000, 0x1000, BAD_DUMP CRC(a7d6c1d6) SHA1(9f0398d678bdf607cb34d83ee535f3b7fcc97c41) )
ROM_END
CONS( 1997, mu100, 0, 0, mu100, mu100, mu100_state, empty_init, "Yamaha", "MU100", MACHINE_NOT_WORKING )
CONS( 1997, mu100r, mu100, 0, mu100, mu100, mu100r_state, empty_init, "Yamaha", "MU100 Rackable version", MACHINE_NOT_WORKING )
CONS( 1994, mu80, mu100, 0, mu80, mu100, mu100_state, empty_init, "Yamaha", "MU80", MACHINE_NOT_WORKING )

View File

@ -40025,6 +40025,7 @@ yiear // GX407 (c) 1985
yiear2 // GX407 (c) 1985
@source:ymmu100.cpp
mu80 // 1994 MU-80
mu100 // 1997 MU-100
mu100r // 1997 MU-100 Rackable version