machine/sun4c_mmu.cpp: Removed non-functional cache emulation. (#10788) [Ryan Holtz]

sun4_60 can install and boot SunOS 4.1.4 again.
This commit is contained in:
MooglyGuy 2023-01-05 09:59:26 +01:00 committed by GitHub
parent 94b1e168b2
commit 9d34edf37c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 244 additions and 566 deletions

View File

@ -32,23 +32,19 @@ DEFINE_DEVICE_TYPE(SUN4C_MMU, sun4c_mmu_device, "sun4c_mmu", "Sun 4c MMU")
#define LOG_TYPE1_TIMEOUT (1U << 12)
#define LOG_UNKNOWN_SPACE (1U << 13)
#define LOG_WRITE_PROTECT (1U << 14)
#define LOG_READ_PROTECT (1U << 15)
#define LOG_PARITY (1U << 16)
#define LOG_ALL_ASI (1U << 17) // WARNING: Heavy!
#define LOG_UNKNOWN_ASI (1U << 18)
#define LOG_SEGMENT_FLUSH (1U << 19)
#define LOG_PAGE_FLUSH (1U << 20)
#define LOG_CONTEXT_FLUSH (1U << 21)
#define LOG_CACHE_FILLS (1U << 22)
#define LOG_PAGE_ENTRIES (1U << 23)
#if SUN4CMMU_LOG_MEM_ACCESSES
static FILE* s_mem_log = nullptr;
#endif
#define LOG_SEGMENT_FLUSH (1U << 15)
#define LOG_PAGE_FLUSH (1U << 16)
#define LOG_CONTEXT_FLUSH (1U << 17)
#define LOG_ALL_FLUSH (1U << 18)
#define LOG_UART (1U << 19)
#define LOG_PARITY (1U << 20)
#define LOG_ALL_ASI (1U << 21) // WARNING: Heavy!
#define VERBOSE (0)
#include "logmacro.h"
#define PRINT_UART_DATA (0)
sun4_mmu_base_device::sun4_mmu_base_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock)
: device_t(mconfig, type, tag, owner, clock)
, m_cpu(*this, finder_base::DUMMY_TAG)
@ -81,20 +77,8 @@ sun4c_mmu_device::sun4c_mmu_device(const machine_config &mconfig, const char *ta
{
}
void sun4_mmu_base_device::device_stop()
{
#if SUN4CMMU_LOG_MEM_ACCESSES
fclose(s_mem_log);
#endif
}
void sun4_mmu_base_device::device_start()
{
#if SUN4CMMU_LOG_MEM_ACCESSES
s_mem_log = fopen("sun4c_mem.bin", "wb");
m_fpos = 0;
#endif
m_type1_r.resolve_safe(0xffffffff);
m_type1_w.resolve_safe();
@ -152,29 +136,10 @@ void sun4_mmu_base_device::device_start()
using namespace std::placeholders;
machine().debugger().console().register_command("l2p", CMDFLAG_NONE, 1, 1, std::bind(&sun4_mmu_base_device::l2p_command, this, _1));
}
m_cache_word_size = m_cache_line_size >> 2;
m_cache_tag_shift = 0;
while ((m_cache_word_size & (1 << m_cache_tag_shift)) == 0)
{
m_cache_tag_shift++;
}
m_cache_vaddr_shift = 14;
m_cache_tag_id_mask = 0xfffc;
m_cache_tag_id_shift = 12;//13 + (m_cache_tag_shift - 2);
m_cache_tag_mask = m_cache_mask >> m_cache_tag_shift;
printf("m_cache_tag_shift %d\n", m_cache_tag_shift);
printf("m_page_mask %08x\n", m_page_mask);
printf("m_seg_entry_shift %08x\n", m_seg_entry_shift);
printf("m_seg_entry_mask %08x\n", m_seg_entry_mask);
printf("m_page_entry_mask %08x\n", m_page_entry_mask);
printf("m_cache_mask %08x\n", m_cache_mask);
}
void sun4_mmu_base_device::device_reset()
{
m_log_mem = false;
m_rom_ptr = (uint32_t *)m_rom->base();
m_ram_ptr = (uint32_t *)m_ram->pointer();
m_ram_size = m_ram->size();
@ -209,8 +174,12 @@ void sun4_mmu_base_device::device_reset()
m_curr_segmap_masked = &m_segmap_masked[0][0];
m_system_enable = 0;
m_fetch_bootrom = true;
m_type1_offset = 0;
m_parity_err_reg = 0;
m_memory_err_reg = 0;
m_parity_err = 0;
memset(m_buserr, 0, sizeof(uint32_t) * 16);
memset(m_buserr, 0, sizeof(uint32_t) * 4);
for (int i = 0; i < 16; i++)
{
memset(&m_segmap[i][0], 0, 4096);
@ -226,7 +195,7 @@ TIMER_CALLBACK_MEMBER(sun4_mmu_base_device::reset_off_tick)
m_cpu->set_input_line(SPARC_RESET, CLEAR_LINE);
}
uint32_t sun4_mmu_base_device::fetch_insn(const bool supervisor, uint32_t offset)
uint32_t sun4_mmu_base_device::fetch_insn(const bool supervisor, const uint32_t offset)
{
if (supervisor)
return insn_data_r<SUPER_INSN>(offset, 0xffffffff);
@ -234,199 +203,58 @@ uint32_t sun4_mmu_base_device::fetch_insn(const bool supervisor, uint32_t offset
return insn_data_r<USER_INSN>(offset, 0xffffffff);
}
void sun4_mmu_base_device::segment_flush_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
// Do nothing for now
LOGMASKED(LOG_SEGMENT_FLUSH, "%s: segment_flush_w %08x & %08x: %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
}
void sun4_mmu_base_device::page_flush_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
// Do nothing for now
LOGMASKED(LOG_PAGE_FLUSH, "%s: page_flush_w %08x & %08x: %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
}
void sun4_mmu_base_device::context_flush_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
// Do nothing for now
LOGMASKED(LOG_CONTEXT_FLUSH, "%s: context_flush_w %08x & %08x: %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
}
void sun4_mmu_base_device::hw_segment_flush_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
for (uint32_t i = 0x0000; i < (0x1000 >> (m_cache_tag_shift + 2)); i++)
{
segment_flush_w(offset | (i << m_cache_tag_shift), data, mem_mask);
}
// Do nothing for now
LOGMASKED(LOG_SEGMENT_FLUSH, "%s: segment_flush_w %08x & %08x: %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
}
void sun4_mmu_base_device::hw_page_flush_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
for (uint32_t i = 0x0000; i < (0x1000 >> (m_cache_tag_shift + 2)); i++)
{
page_flush_w(offset | (i << m_cache_tag_shift), data, mem_mask);
}
// Do nothing for now
LOGMASKED(LOG_PAGE_FLUSH, "%s: page_flush_w %08x & %08x: %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
}
void sun4_mmu_base_device::hw_context_flush_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
for (uint32_t i = 0x0000; i < (0x1000 >> (m_cache_tag_shift + 2)); i++)
{
context_flush_w(offset | (i << m_cache_tag_shift), data, mem_mask);
}
// Do nothing for now
LOGMASKED(LOG_CONTEXT_FLUSH, "%s: context_flush_w %08x & %08x: %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
}
void sun4_mmu_base_device::hw_flush_all_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
for (uint32_t i = 0x0000; i < (0x1000 >> (m_cache_tag_shift + 2)); i++)
{
const uint32_t vaddr = offset | (i << m_cache_tag_shift);
const uint32_t tag_addr = vaddr_to_cache_line(vaddr);
m_cachetags[tag_addr] &= ~(1 << 19);
}
}
uint32_t sun4_mmu_base_device::parity_r(uint32_t offset, uint32_t mem_mask)
{
if (offset == 0)
{
const uint32_t data = m_parity_err_reg;
LOGMASKED(LOG_PARITY, "%s: parity_err_reg read: %08x & %08x\n", machine().describe_context(), m_parity_err_reg, mem_mask);
m_parity_err_reg &= ~0xcf;
return data;
}
else if (offset == 1)
{
LOGMASKED(LOG_PARITY, "%s: memory_err_reg read: %08x & %08x\n", machine().describe_context(), m_memory_err_reg, mem_mask);
return m_memory_err_reg;
}
return 0;
}
void sun4_mmu_base_device::parity_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
if (offset == 0)
{
LOGMASKED(LOG_PARITY, "%s: parity_err_reg write: %08x & %08x\n", machine().describe_context(), data, mem_mask);
COMBINE_DATA(&m_parity_err_reg);
}
else
{
LOGMASKED(LOG_PARITY, "%s: memory_err_reg write: %08x & %08x\n", machine().describe_context(), data, mem_mask);
COMBINE_DATA(&m_memory_err_reg);
}
}
void sun4_mmu_base_device::segment_flush_w(uint32_t vaddr, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_SEGMENT_FLUSH, "%s: segment_flush_w %08x\n", machine().describe_context(), vaddr);
const uint32_t tag_addr = vaddr_to_cache_line(vaddr);
const uint32_t tag = m_cachetags[tag_addr];
if ((tag & (1 << 19)) != 0 && ((tag >> 22) & m_ctx_mask) == m_context_masked)
{
// Unshifted
// 00SS|SSSS|SSSS|SSPP|PPPP|BBBB|BBBB|BBBB
// 00TT|TTTT|TTTT|TTTT|LLLL|LLLL|LLLL|bbbb
//
// 00ss|ssss|ssss|ss--|LLLL|LLLL|LLLL|----
// Shifted
// SSSS|SSSS|SSSS|PPPP|PPBB|BBBB|BBBB
// TTTT|TTTT|TTTT|TTLL|LLLL|LLLL|LLww
//
// ssss|ssss|ssss|--LL|LLLL|LLLL|LL--
const uint32_t tag_id = (tag >> 4) & m_cache_tag_mask;
if (tag_id == ((vaddr >> 16) & 0xfff))
{
m_cachetags[tag_addr] &= ~(1 << 19);
LOGMASKED(LOG_SEGMENT_FLUSH, "flushing line with tag %08x from vaddr %08x\n", tag, vaddr << 2);
}
}
}
void sun4_mmu_base_device::context_flush_w(uint32_t vaddr, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_CONTEXT_FLUSH, "%s: context_flush_w %08x\n", machine().describe_context(), vaddr << 2);
const uint32_t tag_addr = vaddr_to_cache_line(vaddr);
const uint32_t tag = m_cachetags[tag_addr];
if ((tag & (1 << 19)) != 0)
{
LOGMASKED(LOG_CONTEXT_FLUSH, "tag is valid: %08x (%d vs. %d)\n", tag, ((tag >> 22) & m_ctx_mask), m_context_masked);
if (((tag >> 22) & m_ctx_mask) == m_context_masked && !BIT(tag, 20))
{
const uint32_t tag_id = (tag >> 2) & m_cache_tag_mask;
if (tag_id == ((vaddr >> 14) & 0xfff))
{
LOGMASKED(LOG_CONTEXT_FLUSH, "flushing line with tag %08x from vaddr %08x\n", tag, vaddr << 2);
m_cachetags[tag_addr] &= ~(1 << 19);
}
}
}
}
void sun4_mmu_base_device::page_flush_w(uint32_t vaddr, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_PAGE_FLUSH, "%s: page_flush_w %08x\n", machine().describe_context(), vaddr << 2);
const uint32_t tag_addr = vaddr_to_cache_line(vaddr);
const uint32_t tag = m_cachetags[tag_addr];
if ((tag & (1 << 19)) != 0 && ((tag >> 22) & m_ctx_mask) == m_context_masked)
{
// Unshifted
// 00SS|SSSS|SSSS|SSPP|PPPP|BBBB|BBBB|BBBB
// 00TT|TTTT|TTTT|TTTT|LLLL|LLLL|LLLL|bbbb
//
// 00pp|pppp|pppp|pppp|pppp|LLLL|LLLL|---- ff1dc000
// 1111|1111|0001|1101|1100|0000|0000|---- 0000fc70
// Shifted
// SSSS|SSSS|SSSS|PPPP|PPBB|BBBB|BBBB
// TTTT|TTTT|TTTT|TTLL|LLLL|LLLL|LLww
//
// pppp|pppp|pppp|pppp|ppLL|LLLL|LL--
const uint32_t tag_id = tag & m_cache_tag_id_mask;
LOGMASKED(LOG_PAGE_FLUSH, "tag is valid: %08x (%04x vs. %04x)\n", tag, tag_id, (vaddr >> (m_cache_tag_id_shift + 2)) & 0x3fff);
if (tag_id == ((vaddr >> m_cache_tag_id_shift) & 0xfffc))
{
m_cachetags[tag_addr] &= ~(1 << 19);
LOGMASKED(LOG_PAGE_FLUSH, "flushing line with tag %08x from vaddr %08x\n", tag, vaddr << 2);
}
}
// Do nothing for now
LOGMASKED(LOG_ALL_FLUSH, "%s: hw_flush_all_w %08x = %08x: %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
}
uint32_t sun4_mmu_base_device::context_reg_r(uint32_t offset, uint32_t mem_mask)
{
if (mem_mask == 0x00ff0000)
{
LOGMASKED(LOG_CONTEXT, "sun4c_mmu: read context %08x & %08x = %08x\n", offset << 2, mem_mask, m_context<<16);
return m_context<<16;
}
LOGMASKED(LOG_CONTEXT, "sun4c_mmu: read context %08x & %08x = %08x\n", offset << 2, mem_mask, m_context<<24);
return m_context<<24;
}
uint32_t sun4_mmu_base_device::system_enable_r(uint32_t offset, uint32_t mem_mask)
{
LOGMASKED(LOG_SYSTEM_ENABLE, "sun4c_mmu: read system enable %08x & %08x = %08x\n", offset << 2, mem_mask, m_system_enable<<24);
return m_system_enable<<24;
}
uint32_t sun4_mmu_base_device::bus_error_r(uint32_t offset, uint32_t mem_mask)
{
const uint32_t ret = m_buserr[offset & 0xf];
LOGMASKED(LOG_BUSERROR, "sun4c_mmu: read buserror %08x & %08x = %08x, PC=%x\n", 0x60000000 | (offset << 2), mem_mask, ret, m_cpu->pc());
m_buserr[offset & 0xf] = 0; // clear on reading
return ret;
}
uint32_t sun4_mmu_base_device::cache_tag_r(uint32_t offset, uint32_t mem_mask)
{
LOGMASKED(LOG_CACHE_TAGS, "%s: sun4c_mmu: read dcache tags @ %x, %08x\n", machine().describe_context(), offset << 2, m_cachetags[vaddr_to_cache_line(offset)]);
return m_cachetags[vaddr_to_cache_line(offset)];
}
uint32_t sun4_mmu_base_device::cache_data_r(uint32_t offset, uint32_t mem_mask)
{
LOGMASKED(LOG_CACHE_DATA, "%s: sun4c_mmu: read dcache data @ %x, PC = %x\n", machine().describe_context(), offset << 2, m_cpu->pc());
return m_cachedata[offset & 0x3fff];
}
uint32_t sun4_mmu_base_device::uart_r(uint32_t offset, uint32_t mem_mask)
{
switch (offset & 3)
{
case 0: if (mem_mask == 0xff000000) return m_scc->cb_r(0)<<24; else return m_scc->db_r(0)<<8; break;
case 1: if (mem_mask == 0xff000000) return m_scc->ca_r(0)<<24; else return m_scc->da_r(0)<<8; break;
}
return 0xffffffff;
const uint32_t data = m_context << (mem_mask == 0x00ff0000 ? 16 : 24);
LOGMASKED(LOG_CONTEXT, "%s: context_reg_r %08x & %08x: %08x\n", machine().describe_context(), offset << 2, mem_mask, data);
return data;
}
void sun4_mmu_base_device::context_reg_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_CONTEXT, "write context = %08x & %08x\n", data, mem_mask);
LOGMASKED(LOG_CONTEXT, "%s: context_reg_w: %08x = %08x & %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
m_context = data >> 24;
m_context_masked = m_context & m_ctx_mask;
m_cache_context = m_context & m_ctx_mask;
@ -434,9 +262,16 @@ void sun4_mmu_base_device::context_reg_w(uint32_t offset, uint32_t data, uint32_
m_curr_segmap_masked = &m_segmap_masked[m_context_masked][0];
}
uint32_t sun4_mmu_base_device::system_enable_r(uint32_t offset, uint32_t mem_mask)
{
const uint32_t data = m_system_enable << 24;
LOGMASKED(LOG_SYSTEM_ENABLE, "%s: system_enable_r %08x & %08x: %08x\n", machine().describe_context(), offset << 2, mem_mask, data);
return data;
}
void sun4_mmu_base_device::system_enable_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_SYSTEM_ENABLE, "write system enable = %08x & %08x\n", data, mem_mask);
LOGMASKED(LOG_SYSTEM_ENABLE, "%s: system_enable_w: %08x = %08x & %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
m_system_enable = data >> 24;
m_fetch_bootrom = !(m_system_enable & ENA_NOTBOOT);
@ -453,64 +288,132 @@ void sun4_mmu_base_device::system_enable_w(uint32_t offset, uint32_t data, uint3
}
}
uint32_t sun4_mmu_base_device::bus_error_r(uint32_t offset, uint32_t mem_mask)
{
const uint32_t data = m_buserr[offset & 0xf];
LOGMASKED(LOG_BUSERROR, "%s: bus_error_r %08x & %08x: %08x\n", machine().describe_context(), 0x60000000 | (offset << 2), mem_mask, data);
m_buserr[offset & 0xf] = 0; // clear on reading
return data;
}
void sun4_mmu_base_device::bus_error_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
const uint32_t masked_offset = offset & 0xf;
LOGMASKED(LOG_BUSERROR, "write bus error %08x = %08x & %08x\n", offset << 2, data, mem_mask);
LOGMASKED(LOG_BUSERROR, "%s: bus_error_w: %08x = %08x & %08x\n", machine().describe_context(), 0x60000000 | (offset << 2), data, mem_mask);
if (masked_offset == 0)
m_buserr[0] = (data & 0x000000ff) | 0x00008000;
else
m_buserr[masked_offset] = data;
else if (masked_offset == 1)
m_buserr[1] = data;
else if (masked_offset == 2)
m_buserr[2] = data & 0x000000b0;
else if (masked_offset == 3)
m_buserr[3] = (data & 0x3fffffff) | ((data & 0x20000000) << 1) | ((data & 0x20000000) << 2);
}
uint32_t sun4_mmu_base_device::cache_tag_r(uint32_t offset, uint32_t mem_mask)
{
const uint32_t data = m_cachetags[offset & m_cache_mask];
LOGMASKED(LOG_CACHE_TAGS, "%s: cache_tag_r %08x & %08x: %08x\n", machine().describe_context(), offset, mem_mask, data);
return data;
}
void sun4_mmu_base_device::cache_tag_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_CACHE_TAGS, "%s: write dcache tags %08x = %08x & %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
m_cachetags[vaddr_to_cache_line(offset)] = data & 0x03f8fffc;
LOGMASKED(LOG_CACHE_TAGS, "%s: cache_tag_w: %08x = %08x & %08x\n", machine().describe_context(), offset, data, mem_mask);
m_cachetags[offset & m_cache_mask] = data & 0x03f8fffc;
}
uint32_t sun4_mmu_base_device::cache_data_r(uint32_t offset, uint32_t mem_mask)
{
const uint32_t data = m_cachedata[offset & m_cache_mask];
LOGMASKED(LOG_CACHE_DATA, "%s: cache_data_r %08x & %08x: %08x\n", machine().describe_context(), offset, mem_mask, data);
return data;
}
void sun4_mmu_base_device::cache_data_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_CACHE_DATA, "write cache data %08x = %08x & %08x\n", offset << 2, data, mem_mask);
COMBINE_DATA(&m_cachedata[offset & 0x3fff]);
m_cachetags[vaddr_to_cache_line(offset)] &= ~(1 << 19);
LOGMASKED(LOG_CACHE_DATA, "%s: cache_data_w: %08x = %08x & %08x\n", machine().describe_context(), offset, data, mem_mask);
m_cachedata[offset & m_cache_mask] = data | (1 << 19);
}
uint32_t sun4_mmu_base_device::uart_r(uint32_t offset, uint32_t mem_mask)
{
uint32_t data = 0xffffffff;
switch (offset & 3)
{
case 0:
if (mem_mask == 0xff000000)
data = m_scc->cb_r(0) << 24;
else
data = m_scc->db_r(0) << 8;
break;
case 1:
if (mem_mask == 0xff000000)
data = m_scc->ca_r(0) << 24;
else
data = m_scc->da_r(0) << 8;
break;
}
LOGMASKED(LOG_UART, "%s: uart_r %08x & %08x: %08x\n", machine().describe_context(), offset, mem_mask, data);
return data;
}
void sun4_mmu_base_device::uart_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_UART, "%s: uart_w: %08x = %08x & %08x\n", machine().describe_context(), offset, data, mem_mask);
switch (offset & 3)
{
case 0: if (mem_mask == 0xff000000) m_scc->cb_w(0, data>>24); else m_scc->db_w(0, data>>8); break;
case 1: if (mem_mask == 0xff000000) m_scc->ca_w(0, data>>24); else { m_scc->da_w(0, data>>8); logerror("%c\n", data>>8); printf("%c", data>>8); } break;
case 0:
if (mem_mask == 0xff000000)
m_scc->cb_w(0, data >> 24);
else
m_scc->db_w(0, data >> 8);
return;
case 1:
if (mem_mask == 0xff000000)
m_scc->ca_w(0, data >> 24);
else
{
m_scc->da_w(0, data >> 8);
if (PRINT_UART_DATA)
{
printf("%c", data >> 8);
}
}
return;
}
}
uint32_t sun4_mmu_base_device::segment_map_r(uint32_t offset, uint32_t mem_mask)
{
uint32_t ret = 0;
uint32_t data = 0;
if (mem_mask == 0xffff0000)
ret = m_curr_segmap[(offset>>16) & 0xfff]<<16;
data = m_curr_segmap[(offset >> 16) & 0xfff] << 16;
else if (mem_mask == 0xff000000)
ret = m_curr_segmap[(offset>>16) & 0xfff]<<24;
data = m_curr_segmap[(offset >> 16) & 0xfff] << 24;
else if (mem_mask == 0xffffffff)
ret = m_curr_segmap[(offset>>16) & 0xfff];
data = m_curr_segmap[(offset >> 16) & 0xfff];
else
LOGMASKED(LOG_UNKNOWN_SEGMENT, "read segment map w/ unknown mask %08x & %08x\n", offset << 2, mem_mask);
LOGMASKED(LOG_SEGMENT_MAP, "read segment map %08x & %08x = %08x\n", offset << 2, mem_mask, ret);
return ret;
LOGMASKED(LOG_UNKNOWN_SEGMENT, "%s: segment_map_r: %08x & %08x (unknown mask)\n", machine().describe_context(), offset << 2, mem_mask);
LOGMASKED(LOG_SEGMENT_MAP, "%s: segment_map_r: %08x & %08x: %08x\n", machine().describe_context(), offset << 2, mem_mask, data);
return data;
}
void sun4_mmu_base_device::segment_map_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
LOGMASKED(LOG_SEGMENT_MAP, "write segment map %08x = %08x & %08x\n", offset << 2, data, mem_mask);
LOGMASKED(LOG_SEGMENT_MAP, "%s: segment_map_w: %08x = %08x & %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
uint8_t segdata = 0;
if (mem_mask == 0xffff0000) segdata = (data >> 16) & 0xff;
else if (mem_mask == 0xff000000) segdata = (data >> 24) & 0xff;
else if (mem_mask == 0xffffffff) segdata = data & 0xff;
else LOGMASKED(LOG_UNKNOWN_SEGMENT, "write segment map w/ unknown mask %08x = %08x & %08x, PC=%08x\n", offset << 2, data, mem_mask, m_cpu->pc());
if (mem_mask == 0xffff0000)
segdata = (data >> 16) & 0xff;
else if (mem_mask == 0xff000000)
segdata = (data >> 24) & 0xff;
else if (mem_mask == 0xffffffff)
segdata = data & 0xff;
else
LOGMASKED(LOG_UNKNOWN_SEGMENT, "%s: segment_map_w: %08x = %08x & %08x (unknown mask)\n", machine().describe_context(), offset << 2, data, mem_mask);
const uint32_t seg = (offset>>16) & 0xfff;
const uint32_t seg = (offset >> 16) & 0xfff;
m_curr_segmap[seg] = segdata;
m_curr_segmap_masked[seg] = (segdata & m_pmeg_mask) << 6;
}
@ -518,30 +421,30 @@ void sun4_mmu_base_device::segment_map_w(uint32_t offset, uint32_t data, uint32_
uint32_t sun4_mmu_base_device::page_map_r(uint32_t offset, uint32_t mem_mask)
{
const uint32_t page = m_curr_segmap_masked[(offset >> 16) & 0xfff] | ((offset >> m_seg_entry_shift) & m_seg_entry_mask);
const uint32_t ret = page_entry_to_uint(page);
LOGMASKED(LOG_PAGE_MAP, "read page map %08x & %08x (%x) = %08x\n", offset << 2, mem_mask, page, ret);
return ret;
const uint32_t data = page_entry_to_uint(page);
LOGMASKED(LOG_PAGE_MAP, "%s: page_map_r: %08x (%x) & %08x: %08x\n", machine().describe_context(), offset << 2, page, mem_mask, data);
return data;
}
void sun4_mmu_base_device::page_map_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
uint32_t page = m_curr_segmap_masked[(offset >> 16) & 0xfff] | ((offset >> m_seg_entry_shift) & m_seg_entry_mask);
LOGMASKED(LOG_PAGE_MAP, "write page map %08x (%x) = %08x & %08x\n", offset << 2, page, data, mem_mask);
const uint32_t page = m_curr_segmap_masked[(offset >> 16) & 0xfff] | ((offset >> m_seg_entry_shift) & m_seg_entry_mask);
LOGMASKED(LOG_PAGE_MAP, "%s: page_map_w: %08x (%x) = %08x & %08x\n", offset << 2, page, data, mem_mask);
merge_page_entry(page, data, mem_mask);
m_page_valid[page] = m_pagemap[page].valid;
}
void sun4_mmu_base_device::type0_timeout_r(uint32_t offset)
void sun4_mmu_base_device::type0_timeout_r(const uint32_t offset)
{
LOGMASKED(LOG_TYPE0_TIMEOUT, "type 0 read timeout %08x, PC=%08x\n", offset << 2, m_cpu->pc());
LOGMASKED(LOG_TYPE0_TIMEOUT, "%s: type0_timeout_r (%08x)\n", machine().describe_context(), offset << 2);
m_buserr[0] = 0x20; // read timeout
m_buserr[1] = 0x04000000 + (offset << 2);
m_host->set_mae();
}
void sun4_mmu_base_device::type0_timeout_w(uint32_t offset)
void sun4_mmu_base_device::type0_timeout_w(const uint32_t offset)
{
LOGMASKED(LOG_TYPE0_TIMEOUT, "type 0 write timeout %08x, PC=%08x\n", offset << 2, m_cpu->pc());
LOGMASKED(LOG_TYPE0_TIMEOUT, "%s: type0_timeout_w (%08x)\n", machine().describe_context(), offset << 2);
m_buserr[0] = 0x8020; // write timeout
m_buserr[1] = 0x04000000 + (offset << 2);
m_host->set_mae();
@ -549,7 +452,7 @@ void sun4_mmu_base_device::type0_timeout_w(uint32_t offset)
uint32_t sun4_mmu_base_device::type1_timeout_r(uint32_t offset)
{
LOGMASKED(LOG_TYPE1_TIMEOUT, "type 1 read timeout %08x, PC=%08x\n", offset << 2, m_cpu->pc());
LOGMASKED(LOG_TYPE1_TIMEOUT, "%s: type1_timeout_r (%08x)\n", machine().describe_context(), offset << 2);
m_buserr[2] = 0x20; // read timeout
m_buserr[3] = m_type1_offset << 2;
return 0;
@ -557,11 +460,42 @@ uint32_t sun4_mmu_base_device::type1_timeout_r(uint32_t offset)
void sun4_mmu_base_device::type1_timeout_w(uint32_t offset, uint32_t data)
{
LOGMASKED(LOG_TYPE1_TIMEOUT, "type 1 write timeout %08x = %08x, PC=%08x\n", offset << 2, data, m_cpu->pc());
LOGMASKED(LOG_TYPE1_TIMEOUT, "%s: type1_timeout_w (%08x)\n", machine().describe_context(), offset << 2);
m_buserr[2] = 0x120; // write timeout
m_buserr[3] = m_type1_offset << 2;
}
uint32_t sun4_mmu_base_device::parity_r(uint32_t offset, uint32_t mem_mask)
{
uint32_t data = 0;
if (offset == 0)
{
data = m_parity_err_reg;
LOGMASKED(LOG_PARITY, "%s: parity_r (parity error register): %08x & %08x: %08x\n", machine().describe_context(), offset << 2, mem_mask, data);
m_parity_err_reg &= ~0xcf;
}
else if (offset == 1)
{
data = m_memory_err_reg;
LOGMASKED(LOG_PARITY, "%s: parity_r (memory error register): %08x & %08x: %08x\n", machine().describe_context(), offset << 2, mem_mask, data);
}
return data;
}
void sun4_mmu_base_device::parity_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
{
if (offset == 0)
{
LOGMASKED(LOG_PARITY, "%s: parity_w (parity error register): %08x = %08x & %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
COMBINE_DATA(&m_parity_err_reg);
}
else
{
LOGMASKED(LOG_PARITY, "%s: parity_w (memory error register): %08x = %08x & %08x\n", machine().describe_context(), offset << 2, data, mem_mask);
COMBINE_DATA(&m_memory_err_reg);
}
}
uint32_t sun4_mmu_base_device::page_entry_to_uint(uint32_t index)
{
const page_entry &pe = m_pagemap[index];
@ -580,92 +514,6 @@ void sun4_mmu_base_device::merge_page_entry(uint32_t index, uint32_t data, uint3
pe.accessed = new_value & PM_ACCESSED;
pe.modified = new_value & PM_MODIFIED;
pe.page = (new_value & m_page_entry_mask) << m_seg_entry_shift;
pe.raw = new_value;
pe.index = index;
LOGMASKED(LOG_PAGE_ENTRIES, "page entry %05x: data %08x, sanity %08x, mem_mask %08x, valid %d, write %d, super %d, cached %d\n", index, new_value, page_entry_to_uint(index), mem_mask, pe.valid ? 1 : 0, pe.writable ? 1 : 0, pe.supervisor ? 1 : 0, pe.uncached ? 0 : 1);
}
uint32_t sun4_mmu_base_device::vaddr_to_cache_line(uint32_t vaddr)
{
return (vaddr >> m_cache_tag_shift) & m_cache_tag_mask;
}
void sun4_mmu_base_device::cache_fill(page_entry &entry, uint32_t vaddr, uint32_t paddr, uint32_t entry_index)
{
const uint32_t cache_line = vaddr_to_cache_line(vaddr);
m_cachetags[cache_line] = (1 << 19);
m_cachetags[cache_line] |= entry.supervisor ? (1 << 20) : (0 << 20);
m_cachetags[cache_line] |= entry.writable ? (1 << 21) : (0 << 21);
m_cachetags[cache_line] |= (vaddr >> m_cache_tag_id_shift) & m_cache_tag_id_mask;
m_cachetags[cache_line] |= (m_context_masked) << 22;
const uint32_t cache_line_start = cache_line << m_cache_tag_shift;
const uint32_t mem_line_mask = (1 << m_cache_tag_shift) - 1;
const uint32_t mem_line_start = paddr & ~mem_line_mask;
if (paddr < m_populated_ram_words)
{
LOGMASKED(LOG_CACHE_FILLS, "Filling cache line %04x (%08x) with data from paddr %08x, vaddr %08x, cache_line %04x, mem_line %08x, tag entry %04x\n",
cache_line, 0x80000000 | (cache_line << m_cache_tag_shift), paddr << 2, vaddr << 2, cache_line_start << 2, mem_line_start << 2,
(m_cachetags[cache_line] >> m_cache_line_size) & (0xfffc >> m_cache_tag_shift));
LOGMASKED(LOG_CACHE_FILLS, "Tag: %08x, valid %d, super %d, write %d, ctx %d\n", m_cachetags[cache_line], BIT(m_cachetags[cache_line], 19),
BIT(m_cachetags[cache_line], 20), BIT(m_cachetags[cache_line], 21), (m_cachetags[cache_line] >> 22) & 7);
LOGMASKED(LOG_CACHE_FILLS, "Entry %05x: raw: %08x, valid %d, super %d, write %d, cache %d\n", entry_index, page_entry_to_uint(entry_index),
entry.valid ? 1 : 0, entry.supervisor ? 1 : 0, entry.writable ? 1 : 0, entry.uncached ? 0 : 1);
memcpy(&m_cachedata[cache_line_start], m_ram_ptr + mem_line_start, sizeof(uint32_t) * m_cache_word_size);
}
else
{
LOGMASKED(LOG_CACHE_FILLS, "Unable to fill cache line, paddr %08x exceeds populated RAM range\n", paddr << 2);
}
}
template bool sun4_mmu_base_device::cache_fetch<sun4_mmu_base_device::USER_INSN>(page_entry &entry, uint32_t vaddr, uint32_t paddr, uint32_t &cached_data, uint32_t entry_index);
template bool sun4_mmu_base_device::cache_fetch<sun4_mmu_base_device::USER_DATA>(page_entry &entry, uint32_t vaddr, uint32_t paddr, uint32_t &cached_data, uint32_t entry_index);
template bool sun4_mmu_base_device::cache_fetch<sun4_mmu_base_device::SUPER_INSN>(page_entry &entry, uint32_t vaddr, uint32_t paddr, uint32_t &cached_data, uint32_t entry_index);
template bool sun4_mmu_base_device::cache_fetch<sun4_mmu_base_device::SUPER_DATA>(page_entry &entry, uint32_t vaddr, uint32_t paddr, uint32_t &cached_data, uint32_t entry_index);
template <sun4_mmu_base_device::insn_data_mode MODE>
bool sun4_mmu_base_device::cache_fetch(page_entry &entry, uint32_t vaddr, uint32_t paddr, uint32_t &cached_data, uint32_t entry_index)
{
const uint32_t cache_line = vaddr_to_cache_line(vaddr);
const uint32_t tag = m_cachetags[cache_line];
if (!(tag & (1 << 19)))
{
// If the current tag is invalid, bail if the corresponding entry is invalid
if (!entry.valid)
{
return false;
}
cache_fill(entry, vaddr, paddr, entry_index);
cached_data = m_cachedata[vaddr & 0x3fff];
return true;
}
else if ((tag & m_cache_tag_id_mask) == ((vaddr >> m_cache_tag_id_shift) & m_cache_tag_id_mask))
{
// If the current tag is valid and the tag IDs match, fetch from the cache
if ((MODE >> 1) == USER_MODE)
{
// If we're in user mode and the context does not match, this is a miss
if (((tag >> 22) & m_ctx_mask) != m_context_masked && (tag & (1 << 20)))
{
return false;
}
}
cached_data = m_cachedata[vaddr & 0x3fff];
return true;
}
else if (!entry.valid)
{
// If the current tag is valid, the tag IDs don't match, and the memory entry is invalid, miss
return false;
}
else
{
// If the current tag is valid, the tag IDs don't match, and the memory entry is valid, it's a miss
cache_fill(entry, vaddr, paddr, entry_index);
cached_data = m_cachedata[vaddr & 0x3fff];
return true;
}
}
template uint32_t sun4_mmu_base_device::insn_data_r<sun4_mmu_base_device::USER_INSN>(const uint32_t, const uint32_t);
@ -674,122 +522,47 @@ template uint32_t sun4_mmu_base_device::insn_data_r<sun4_mmu_base_device::USER_D
template uint32_t sun4_mmu_base_device::insn_data_r<sun4_mmu_base_device::SUPER_DATA>(const uint32_t, const uint32_t);
template <sun4_mmu_base_device::insn_data_mode MODE>
uint32_t sun4_mmu_base_device::insn_data_r(uint32_t offset, uint32_t mem_mask)
uint32_t sun4_mmu_base_device::insn_data_r(const uint32_t offset, const uint32_t mem_mask)
{
// supervisor program fetches in boot state are special
if (MODE == SUPER_INSN && m_fetch_bootrom)
{
if (!machine().side_effects_disabled())
m_cpu->eat_cycles(50); // !?
return m_rom_ptr[offset & 0x1ffff];
}
// it's translation time
const uint32_t pmeg = m_curr_segmap_masked[(offset >> 16) & 0xfff];// & m_pmeg_mask;
const uint32_t entry_index = pmeg | ((offset >> m_seg_entry_shift) & m_seg_entry_mask);
page_entry &entry = m_pagemap[entry_index];
uint32_t cached_data = 0;
if (entry.valid)
if (m_page_valid[entry_index])
{
const uint32_t paddr = entry.page | (offset & m_page_mask);
page_entry &entry = m_pagemap[entry_index];
entry.accessed = PM_ACCESSED;
{
uint32_t tag_entry = vaddr_to_cache_line(offset);
uint32_t tag = m_cachetags[tag_entry];
bool user_mode = ((MODE >> 1) == USER_MODE);
bool cache_hit = (tag & m_cache_tag_id_mask) == ((offset >> m_cache_tag_id_shift) & m_cache_tag_id_mask);
bool cacheable = entry.type == 0 && !entry.uncached;
bool check_cache = cacheable && cache_hit && (m_system_enable & ENA_CACHE);
bool cache_valid = BIT(tag, 19);
bool cache_protected = user_mode && BIT(tag, 20) && (((m_cachetags[tag_entry] >> 22) & m_ctx_mask) != m_context_masked);
if (check_cache && cache_valid && cache_protected)
{
LOGMASKED(LOG_READ_PROTECT, "%s: read protect error with PTE %04x (%08x), %08x & %08x\n", machine().describe_context(),
entry_index, page_entry_to_uint(entry_index), offset << 2, mem_mask);
LOGMASKED(LOG_WRITE_PROTECT, "%s: tag %08x, line %04x, writable %d, check %d, valid %d, super %d, tag ctx %d, ctx reg %d\n",
machine().describe_context(), m_cachetags[tag_entry], tag_entry, BIT(m_cachetags[tag_entry], 21), check_cache ? 1 : 0, cache_valid ? 1 : 0,
BIT(m_cachetags[tag_entry], 20), (m_cachetags[tag_entry] >> 22) & 7, m_context_masked);
LOGMASKED(LOG_WRITE_PROTECT, "%s: entry cached %d, entry writable %d, entry super %d\n",
machine().describe_context(), entry.uncached ? 0 : 1, entry.writable ? 1 : 0, entry.supervisor ? 1 : 0);
LOGMASKED(LOG_WRITE_PROTECT, "%s: pmeg %08x, seg entry %08x\n", machine().describe_context(), pmeg, ((offset >> m_seg_entry_shift) & m_seg_entry_mask));
m_buserr[0] |= 0x0040; // read protection error
m_buserr[1] = offset << 2;
m_host->set_mae();
m_cachetags[tag_entry] &= ~(1 << 19);
return 0;
}
}
const uint32_t tmp = entry.page | (offset & m_page_mask);
switch (entry.type)
{
case 0: // type 0 space
if (paddr < m_populated_ram_words)
if (tmp < m_populated_ram_words)
{
if (BIT(m_parity_err_reg, 4) && m_parity_err)
{
LOGMASKED(LOG_PARITY, "%s: ram read with parity %08x: %08x & %08x\n", machine().describe_context(), m_parity_err_reg, offset, mem_mask);
m_parity_err_reg |= m_parity_err;
if (BIT(m_parity_err_reg, 7))
{
m_parity_err_reg |= (1 << 6);
}
uint8_t boffs = 0;
if (ACCESSING_BITS_24_31)
boffs = 0;
else if (ACCESSING_BITS_16_23)
boffs = 1;
else if (ACCESSING_BITS_8_15)
boffs = 2;
else if (ACCESSING_BITS_0_7)
boffs = 3;
m_parity_err_reg |= (1 << 7);
m_parity_err = 0;
m_buserr[0] = 0x8; // Read cycle, memory error
m_buserr[1] = (offset << 2) | boffs;
m_host->set_mae();
}
const uint32_t set = (paddr >> 22) & 3;
const uint32_t set = (tmp >> 22) & 3;
const uint32_t addr_mask = m_ram_set_mask[set];
const uint32_t masked_addr = m_ram_set_base[set] + (paddr & addr_mask);
if (!entry.uncached && (m_system_enable & ENA_CACHE))
{
if (cache_fetch<MODE>(entry, offset, masked_addr, cached_data, entry_index))
{
#if SUN4CMMU_LOG_MEM_ACCESSES
uint32_t value = masked_addr | 0x80000000;
fwrite(&value, 1, 4, s_mem_log);
fwrite(&cached_data, 1, 4, s_mem_log);
m_fpos += 8;
#endif
return cached_data;
}
}
#if SUN4CMMU_LOG_MEM_ACCESSES
uint32_t value = masked_addr | 0x80000000;
fwrite(&value, 1, 4, s_mem_log);
fwrite(&m_ram_ptr[masked_addr], 1, 4, s_mem_log);
m_fpos += 8;
#endif
const uint32_t masked_addr = m_ram_set_base[set] + (tmp & addr_mask);
return m_ram_ptr[masked_addr];
}
else if (paddr >= 0x4000000 >> 2 && paddr < 0x10000000 >> 2)
else if (tmp >= 0x4000000 >> 2 && tmp < 0x10000000 >> 2)
{
type0_timeout_r(paddr);
type0_timeout_r(tmp);
}
return ~0;
case 1: // type 1 space
m_type1_offset = offset;
return m_type1_r(paddr, mem_mask);
return m_type1_r(tmp, mem_mask);
default:
LOGMASKED(LOG_UNKNOWN_SPACE, "read unknown space type %d, %08x & %08x, PC=%08x\n", entry.type, paddr << 2, mem_mask, m_cpu->pc());
LOGMASKED(LOG_UNKNOWN_SPACE, "read unknown space type %d, %08x & %08x, PC=%08x\n", entry.type, tmp << 2, mem_mask, m_cpu->pc());
m_host->set_mae();
m_buserr[0] = 0x20;
m_buserr[1] = offset << 2;
@ -800,10 +573,6 @@ uint32_t sun4_mmu_base_device::insn_data_r(uint32_t offset, uint32_t mem_mask)
{
if (!machine().side_effects_disabled())
{
if ((m_system_enable & ENA_CACHE) && cache_fetch<MODE>(entry, offset, 0, cached_data, entry_index))
{
return cached_data;
}
LOGMASKED(LOG_INVALID_PTE, "read invalid PTE %d (%08x), %08x & %08x, PC=%08x\n", entry_index, page_entry_to_uint(entry_index), offset << 2, mem_mask, m_cpu->pc());
m_host->set_mae();
m_buserr[0] |= 0x80; // invalid PTE
@ -835,7 +604,7 @@ template void sun4_mmu_base_device::insn_data_w<sun4_mmu_base_device::USER_DATA>
template void sun4_mmu_base_device::insn_data_w<sun4_mmu_base_device::SUPER_DATA>(const uint32_t, const uint32_t, const uint32_t);
template <sun4_mmu_base_device::insn_data_mode MODE>
void sun4_mmu_base_device::insn_data_w(uint32_t offset, uint32_t data, uint32_t mem_mask)
void sun4_mmu_base_device::insn_data_w(const uint32_t offset, const uint32_t data, const uint32_t mem_mask)
{
// it's translation time
const uint32_t pmeg = m_curr_segmap_masked[(offset >> 16) & 0xfff];// & m_pmeg_mask;
@ -844,104 +613,43 @@ void sun4_mmu_base_device::insn_data_w(uint32_t offset, uint32_t data, uint32_t
if (m_page_valid[entry_index])
{
page_entry &entry = m_pagemap[entry_index];
const uint32_t paddr = entry.page | (offset & m_page_mask);
if ((!entry.writable) || (entry.supervisor && MODE != SUPER_DATA && MODE != SUPER_INSN))
{
uint32_t tag_entry = vaddr_to_cache_line(offset);
uint32_t tag = m_cachetags[tag_entry];
bool user_mode = (MODE >> 1) == USER_MODE;
bool cacheable = entry.type == 0 && !entry.uncached;
bool check_cache = cacheable && (m_system_enable & ENA_CACHE);
bool cache_valid = BIT(tag, 19);
bool cache_hit = (tag & m_cache_tag_id_mask) == ((offset >> m_cache_tag_id_shift) & m_cache_tag_id_mask);
bool cache_writable = BIT(tag, 21);
bool cache_protected = user_mode && BIT(tag, 20) && (((tag >> 22) & m_ctx_mask) != m_context_masked);
if (cacheable && (!cache_valid || !cache_hit || !cache_writable || cache_protected))
{
m_cachetags[tag_entry] &= ~(1 << 19);
}
if ((check_cache && cache_hit && cache_valid && (!cache_writable || cache_protected)) ||
(!check_cache && (!entry.writable || (user_mode && entry.supervisor))))
{
LOGMASKED(LOG_WRITE_PROTECT, "%s: write protect error with PTE %04x (%08x), %08x = %08x & %08x, mode %c\n", machine().describe_context(),
entry_index, page_entry_to_uint(entry_index), offset << 2, data, mem_mask, user_mode ? 'U' : 'S');
LOGMASKED(LOG_WRITE_PROTECT, "%s: tag %08x, line %04x, writable %d, check %d, valid %d, super %d, tag ctx %d, ctx reg %d\n",
machine().describe_context(), m_cachetags[tag_entry], tag_entry, BIT(m_cachetags[tag_entry], 21), check_cache ? 1 : 0, cache_valid ? 1 : 0,
BIT(m_cachetags[tag_entry], 20), (m_cachetags[tag_entry] >> 22) & 7, m_context_masked);
LOGMASKED(LOG_WRITE_PROTECT, "%s: entry cached %d, entry writable %d, entry super %d\n",
machine().describe_context(), entry.uncached ? 0 : 1, entry.writable ? 1 : 0, entry.supervisor ? 1 : 0);
LOGMASKED(LOG_WRITE_PROTECT, "%s: pmeg %08x, seg entry %08x\n", machine().describe_context(), pmeg, ((offset >> m_seg_entry_shift) & m_seg_entry_mask));
m_buserr[0] |= 0x8040; // write protection error
m_buserr[1] = offset << 2;
m_host->set_mae();
return;
}
LOGMASKED(LOG_WRITE_PROTECT, "write protect error with PTE %d (%08x), %08x = %08x & %08x, PC=%08x\n", entry_index, page_entry_to_uint(entry_index), offset << 2, data, mem_mask, m_cpu->pc());
m_buserr[0] |= 0x8040; // write, protection error
m_buserr[1] = offset << 2;
m_host->set_mae();
return;
}
entry.accessed = PM_ACCESSED;
entry.modified = PM_MODIFIED;
const uint32_t tmp = entry.page | (offset & m_page_mask);
switch (entry.type)
{
case 0: // type 0
if (paddr < m_populated_ram_words)
if (tmp < m_populated_ram_words)
{
if (BIT(m_parity_err_reg, 5))
{
LOGMASKED(LOG_PARITY, "%s: ram write with parity %08x: %08x = %08x & %08x\n", machine().describe_context(), m_parity_err_reg,
offset, data, mem_mask);
if (ACCESSING_BITS_24_31)
m_parity_err |= (1 << 0);
if (ACCESSING_BITS_16_23)
m_parity_err |= (1 << 1);
if (ACCESSING_BITS_8_15)
m_parity_err |= (1 << 2);
if (ACCESSING_BITS_0_7)
m_parity_err |= (1 << 3);
}
const uint32_t set = (paddr >> 22) & 3;
const uint32_t set = (tmp >> 22) & 3;
const uint32_t addr_mask = m_ram_set_mask[set];
const uint32_t masked_addr = m_ram_set_base[set] + (paddr & addr_mask);
if (!entry.uncached && (m_system_enable & ENA_CACHE))
{
const uint32_t cache_entry = vaddr_to_cache_line(offset);
const uint32_t tag = m_cachetags[cache_entry];
if (tag & (1 << 19))
{
if ((m_cachetags[cache_entry] & m_cache_tag_id_mask) == ((offset >> m_cache_tag_id_shift) & m_cache_tag_id_mask))
{
COMBINE_DATA(&m_cachedata[offset & 0x3fff]);
}
else
{
//m_cachetags[cache_entry] &= ~(1 << 19);
//cache_fill(entry, offset, masked_addr, entry_index);
//COMBINE_DATA(&m_cachedata[offset & 0x3fff]);
}
}
}
const uint32_t masked_addr = m_ram_set_base[set] + (tmp & addr_mask);
COMBINE_DATA((m_ram_ptr + masked_addr));
#if SUN4CMMU_LOG_MEM_ACCESSES
fwrite(&masked_addr, 1, 4, s_mem_log);
fwrite(&m_ram_ptr[masked_addr], 1, 4, s_mem_log);
m_fpos += 8;
#endif
}
else if (paddr >= 0x4000000 >> 2 && paddr < 0x10000000 >> 2)
else if (tmp >= 0x4000000 >> 2 && tmp < 0x10000000 >> 2)
{
type0_timeout_w(paddr);
type0_timeout_w(tmp);
}
return;
case 1: // type 1
m_type1_offset = offset;
m_type1_w(paddr, data, mem_mask);
m_type1_w(tmp, data, mem_mask);
return;
default:
LOGMASKED(LOG_UNKNOWN_SPACE, "write unknown space type %d, %08x = %08x & %08x, PC=%08x\n", entry.type, paddr << 2, data, mem_mask, m_cpu->pc());
LOGMASKED(LOG_UNKNOWN_SPACE, "write unknown space type %d, %08x = %08x & %08x, PC=%08x\n", entry.type, tmp << 2, data, mem_mask, m_cpu->pc());
m_host->set_mae();
m_buserr[0] = 0x8020;
m_buserr[1] = offset << 2;
@ -972,15 +680,6 @@ void sun4_mmu_base_device::insn_data_w(uint32_t offset, uint32_t data, uint32_t
}
}
bool sun4_mmu_base_device::translate(uint32_t &addr)
{
const uint32_t pmeg = m_curr_segmap_masked[(addr >> 16) & 0xfff];// & m_pmeg_mask;
const uint32_t entry_index = pmeg | ((addr >> m_seg_entry_shift) & m_seg_entry_mask);
const page_entry &entry = m_pagemap[entry_index];
addr = entry.page | (addr & m_page_mask);
return entry.valid;
}
void sun4_mmu_base_device::l2p_command(const std::vector<std::string_view> &params)
{
uint64_t addr, offset;
@ -990,17 +689,22 @@ void sun4_mmu_base_device::l2p_command(const std::vector<std::string_view> &para
addr &= 0xffffffff;
offset = addr >> 2;
uint8_t pmeg = m_curr_segmap_masked[(addr >> 18) & 0xfff];
uint32_t entry_index = pmeg | ((offset >> m_seg_entry_shift) & m_seg_entry_mask);
uint32_t paddr = m_pagemap[entry_index].page | (offset & m_page_mask);
uint32_t entry_value = page_entry_to_uint(entry_index);
uint8_t pmeg = 0;
uint32_t entry_index = 0, tmp = 0;
uint32_t entry_value = 0;
pmeg = m_curr_segmap_masked[(offset >> 16) & 0xfff];
entry_index = pmeg | ((offset >> m_seg_entry_shift) & m_seg_entry_mask);
tmp = m_pagemap[entry_index].page | (offset & m_page_mask);
entry_value = page_entry_to_uint(entry_index);
if (m_page_valid[entry_index])
{
machine().debugger().console().printf("logical %08x => phys %08x, type %d (pmeg %d, entry %d PTE %08x)\n", addr, paddr << 2, m_pagemap[entry_index].type, pmeg, entry_index, entry_value);
machine().debugger().console().printf("logical %08x => phys %08x, type %d (pmeg %d, entry %d PTE %08x)\n", addr, tmp << 2, m_pagemap[entry_index].type, pmeg, entry_index, entry_value);
}
else
{
machine().debugger().console().printf("logical %08x points to an invalid PTE! (pmeg %d, entry %d PTE %08x)\n", addr, paddr << 2, pmeg, entry_index, entry_value);
machine().debugger().console().printf("logical %08x points to an invalid PTE! (pmeg %d, entry %d PTE %08x)\n", addr, tmp << 2, pmeg, entry_index, entry_value);
}
}

View File

@ -15,8 +15,6 @@
#include "machine/ram.h"
#include "machine/z80scc.h"
#define SUN4CMMU_LOG_MEM_ACCESSES (0)
class sun4_mmu_base_device : public device_t, public sparc_mmu_interface
{
public:
@ -39,7 +37,6 @@ public:
template <typename T> void set_ram(T &&ram_tag) { m_ram.set_tag(std::forward<T>(ram_tag)); }
template <typename T> void set_rom(T &&rom_tag) { m_rom.set_tag(std::forward<T>(rom_tag)); }
template <typename T> void set_scc(T &&scc_tag) { m_scc.set_tag(std::forward<T>(scc_tag)); }
void set_cache_line_size(uint32_t line_size) { m_cache_line_size = line_size; }
auto type1_r() { return m_type1_r.bind(); }
auto type1_w() { return m_type1_w.bind(); }
@ -51,31 +48,26 @@ public:
void set_seg_entry_mask(uint32_t seg_entry_mask) { m_seg_entry_mask = seg_entry_mask; }
void set_page_entry_mask(uint32_t page_entry_mask) { m_page_entry_mask = page_entry_mask; }
void set_cache_mask(uint32_t cache_mask) { m_cache_mask = cache_mask; }
enum perm_mode
{
USER_MODE,
SUPER_MODE
};
void set_cache_line_size(uint32_t cache_line_size) { m_cache_line_size = cache_line_size; }
enum insn_data_mode
{
USER_INSN,
USER_DATA,
SUPER_INSN,
USER_DATA,
SUPER_DATA
};
template <insn_data_mode MODE> uint32_t insn_data_r(uint32_t offset, uint32_t mem_mask);
template <insn_data_mode MODE> void insn_data_w(uint32_t offset, uint32_t data, uint32_t mem_mask);
template <insn_data_mode MODE> uint32_t insn_data_r(const uint32_t offset, const uint32_t mem_mask);
template <insn_data_mode MODE> void insn_data_w(const uint32_t offset, const uint32_t data, const uint32_t mem_mask);
uint32_t type1_timeout_r(uint32_t offset);
void type1_timeout_w(uint32_t offset, uint32_t data);
uint32_t parity_r(uint32_t offset, uint32_t mem_mask);
void parity_w(uint32_t offset, uint32_t data, uint32_t mem_mask);
// sparc_mmu_device overrides
uint32_t fetch_insn(const bool supervisor, uint32_t offset) override;
// sparc_mmu_interface overrides
uint32_t fetch_insn(const bool supervisor, const uint32_t offset) override;
void set_host(sparc_mmu_host_interface *host) override { m_host = host; }
uint32_t context_reg_r(uint32_t offset, uint32_t mem_mask);
@ -107,38 +99,17 @@ public:
protected:
sun4_mmu_base_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock);
struct page_entry
{
uint32_t index;
uint32_t raw;
uint32_t valid;
uint32_t writable;
uint32_t supervisor;
uint32_t uncached;
uint32_t accessed;
uint32_t modified;
uint32_t page;
uint8_t type;
uint8_t pad[3];
};
virtual void device_start() override;
virtual void device_reset() override;
virtual void device_stop() override;
TIMER_CALLBACK_MEMBER(reset_off_tick);
uint32_t page_entry_to_uint(uint32_t index);
void merge_page_entry(uint32_t index, uint32_t data, uint32_t mem_mask);
template <insn_data_mode MODE> bool cache_fetch(page_entry &entry, uint32_t vaddr, uint32_t paddr, uint32_t &cached_data, uint32_t entry_index);
void cache_fill(page_entry &entry, uint32_t vaddr, uint32_t paddr, uint32_t entry_index);
void type0_timeout_r(const uint32_t offset);
void type0_timeout_w(const uint32_t offset);
bool translate(uint32_t &addr);
void l2p_command(const std::vector<std::string_view> &params);
uint32_t vaddr_to_cache_line(uint32_t vaddr);
enum
{
@ -159,6 +130,19 @@ protected:
PM_MODIFIED = 0x01000000 // modified flag
};
struct page_entry
{
uint32_t valid;
uint32_t writable;
uint32_t supervisor;
uint32_t uncached;
uint32_t accessed;
uint32_t modified;
uint32_t page;
uint8_t type;
uint8_t pad[3];
};
required_device<cpu_device> m_cpu;
required_device<ram_device> m_ram;
required_memory_region m_rom;
@ -185,7 +169,7 @@ protected:
uint32_t m_cache_context;
uint8_t m_system_enable;
bool m_fetch_bootrom;
uint32_t m_buserr[16];
uint32_t m_buserr[4];
uint32_t m_type1_offset;
uint32_t m_parity_err_reg;
uint32_t m_memory_err_reg;
@ -205,21 +189,11 @@ protected:
uint32_t m_seg_entry_mask;
uint32_t m_page_entry_mask;
uint32_t m_cache_mask;
uint32_t m_cache_tag_mask;
uint32_t m_cache_line_size;
uint32_t m_cache_word_size;
uint32_t m_cache_tag_shift;
uint32_t m_cache_tag_id_mask;
uint32_t m_cache_tag_id_shift;
uint32_t m_cache_vaddr_shift;
uint32_t m_ram_set_mask[4]; // Used for mirroring within 4 megabyte sets
uint32_t m_ram_set_base[4];
uint32_t m_populated_ram_words;
#if SUN4CMMU_LOG_MEM_ACCESSES
uint64_t m_fpos;
#endif
emu_timer *m_reset_timer;
bool m_log_mem;
};
class sun4_mmu_device : public sun4_mmu_base_device