Merge pull request #4431 from cam900/scsp_tag

scsp.cpp : Use shorter type values, Remove hardcoded tags, Unnecessar…
This commit is contained in:
R. Belmont 2019-03-31 12:19:05 -04:00 committed by GitHub
commit bd598d6ca5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 191 additions and 203 deletions

View File

@ -36,12 +36,12 @@
#include <algorithm>
static constexpr int32_t clip16(int x) { return std::min(32767, std::max(-32768, x)); }
static constexpr int32_t clip18(int x) { return std::min(131071, std::max(-131072, x)); }
static constexpr s32 clip16(int x) { return std::min(32767, std::max(-32768, x)); }
static constexpr s32 clip18(int x) { return std::min(131071, std::max(-131072, x)); }
#define SHIFT 12
#define LFO_SHIFT 8
#define FIX(v) ((uint32_t) ((float) (1 << SHIFT) * (v)))
#define FIX(v) ((u32) ((float) (1 << SHIFT) * (v)))
#define EG_SHIFT 16
@ -145,14 +145,13 @@ static const float SDLT[8] = {-1000000.0f,-36.0f,-30.0f,-24.0f,-18.0f,-12.0f,-6.
DEFINE_DEVICE_TYPE(SCSP, scsp_device, "scsp", "Yamaha YMF292-F SCSP")
scsp_device::scsp_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
scsp_device::scsp_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock)
: device_t(mconfig, SCSP, tag, owner, clock),
device_sound_interface(mconfig, *this),
device_rom_interface(mconfig, *this, 20, ENDIANNESS_BIG, 16),
m_irq_cb(*this),
m_main_irq_cb(*this),
m_BUFPTR(0),
m_Master(0),
m_stream(nullptr),
m_IrqTimA(0),
m_IrqTimBC(0),
@ -331,10 +330,10 @@ void scsp_device::sound_stream_update(sound_stream &stream, stream_sample_t **in
DoMasterSamples(samples);
}
uint8_t scsp_device::DecodeSCI(uint8_t irq)
u8 scsp_device::DecodeSCI(u8 irq)
{
uint8_t SCI = 0;
uint8_t v;
u8 SCI = 0;
u8 v;
v = (SCILV0() & (1 << irq)) ? 1 : 0;
SCI |= v;
v = (SCILV1() & (1 << irq)) ? 1 : 0;
@ -346,8 +345,8 @@ uint8_t scsp_device::DecodeSCI(uint8_t irq)
void scsp_device::CheckPendingIRQ()
{
uint32_t pend = m_udata.data[0x20/2];
uint32_t en = m_udata.data[0x1e/2];
u32 pend = m_udata.data[0x20/2];
u32 en = m_udata.data[0x1e/2];
if (m_MidiW != m_MidiR)
{
m_udata.data[0x20/2] |= 8;
@ -384,7 +383,7 @@ void scsp_device::CheckPendingIRQ()
m_irq_cb((offs_t)0, CLEAR_LINE);
}
void scsp_device::MainCheckPendingIRQ(uint16_t irq_type)
void scsp_device::MainCheckPendingIRQ(u16 irq_type)
{
m_mcipd |= irq_type;
@ -398,7 +397,7 @@ void scsp_device::MainCheckPendingIRQ(uint16_t irq_type)
void scsp_device::ResetInterrupts()
{
uint32_t reset = m_udata.data[0x22/2];
u32 reset = m_udata.data[0x22/2];
if (reset & 0x40)
{
@ -416,7 +415,7 @@ void scsp_device::ResetInterrupts()
CheckPendingIRQ();
}
TIMER_CALLBACK_MEMBER( scsp_device::timerA_cb )
TIMER_CALLBACK_MEMBER(scsp_device::timerA_cb)
{
m_TimCnt[0] = 0xFFFF;
m_udata.data[0x20/2] |= 0x40;
@ -427,7 +426,7 @@ TIMER_CALLBACK_MEMBER( scsp_device::timerA_cb )
MainCheckPendingIRQ(0x40);
}
TIMER_CALLBACK_MEMBER( scsp_device::timerB_cb )
TIMER_CALLBACK_MEMBER(scsp_device::timerB_cb)
{
m_TimCnt[1] = 0xFFFF;
m_udata.data[0x20/2] |= 0x80;
@ -437,7 +436,7 @@ TIMER_CALLBACK_MEMBER( scsp_device::timerB_cb )
CheckPendingIRQ();
}
TIMER_CALLBACK_MEMBER( scsp_device::timerC_cb )
TIMER_CALLBACK_MEMBER(scsp_device::timerC_cb)
{
m_TimCnt[2] = 0xFFFF;
m_udata.data[0x20/2] |= 0x100;
@ -527,10 +526,10 @@ int scsp_device::EG_Update(SCSP_SLOT *slot)
return (slot->EG.volume >> EG_SHIFT) << (SHIFT - 10);
}
uint32_t scsp_device::Step(SCSP_SLOT *slot)
u32 scsp_device::Step(SCSP_SLOT *slot)
{
int octave = (OCT(slot) ^ 8) - 8 + SHIFT - 10;
uint32_t Fn = FNS(slot) + (1 << 10);
u32 Fn = FNS(slot) + (1 << 10);
if (octave >= 0)
{
Fn <<= octave;
@ -592,16 +591,6 @@ void scsp_device::init()
m_MidiR=m_MidiW = 0;
m_MidiOutR = m_MidiOutW = 0;
// get SCSP RAM
if (strcmp(tag(), ":scsp") == 0 || strcmp(tag(), ":scsp1") == 0)
{
m_Master = 1;
}
else
{
m_Master = 0;
}
m_DSP.space = &this->space();
m_timerA = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(scsp_device::timerA_cb), this));
m_timerB = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(scsp_device::timerB_cb), this));
@ -611,7 +600,7 @@ void scsp_device::init()
{
float envDB = ((float)(3 * (i - 0x3ff))) / 32.0f;
float scale = (float)(1 << SHIFT);
m_EG_TABLE[i] = (int32_t)(powf(10.0f, envDB / 20.0f) * scale);
m_EG_TABLE[i] = (s32)(powf(10.0f, envDB / 20.0f) * scale);
}
for (i = 0; i < 0x10000; ++i)
@ -787,14 +776,14 @@ void scsp_device::UpdateReg(int reg)
break;
case 0x18:
case 0x19:
if (m_Master)
if (!m_irq_cb.isnull())
{
m_TimPris[0] = 1 << ((m_udata.data[0x18/2] >> 8) & 0x7);
m_TimCnt[0] = (m_udata.data[0x18/2] & 0xff) << 8;
if ((m_udata.data[0x18/2] & 0xff) != 255)
{
uint32_t time = (clock() / m_TimPris[0]) / (255 - (m_udata.data[0x18/2] & 0xff));
u32 time = (clock() / m_TimPris[0]) / (255 - (m_udata.data[0x18/2] & 0xff));
if (time)
{
m_timerA->adjust(attotime::from_ticks(512, time));
@ -804,14 +793,14 @@ void scsp_device::UpdateReg(int reg)
break;
case 0x1a:
case 0x1b:
if (m_Master)
if (!m_irq_cb.isnull())
{
m_TimPris[1] = 1 << ((m_udata.data[0x1A/2] >> 8) & 0x7);
m_TimCnt[1] = (m_udata.data[0x1A/2] & 0xff) << 8;
if ((m_udata.data[0x1A/2] & 0xff) != 255)
{
uint32_t time = (clock() / m_TimPris[1]) / (255 - (m_udata.data[0x1A/2] & 0xff));
u32 time = (clock() / m_TimPris[1]) / (255 - (m_udata.data[0x1A/2] & 0xff));
if (time)
{
m_timerB->adjust(attotime::from_ticks(512, time));
@ -821,14 +810,14 @@ void scsp_device::UpdateReg(int reg)
break;
case 0x1C:
case 0x1D:
if (m_Master)
if (!m_irq_cb.isnull())
{
m_TimPris[2] = 1 << ((m_udata.data[0x1C/2] >> 8) & 0x7);
m_TimCnt[2] = (m_udata.data[0x1C/2] & 0xff) << 8;
if ((m_udata.data[0x1C/2] & 0xff) != 255)
{
uint32_t time = (clock() / m_TimPris[2]) / (255 - (m_udata.data[0x1C/2] & 0xff));
u32 time = (clock() / m_TimPris[2]) / (255 - (m_udata.data[0x1C/2] & 0xff));
if (time)
{
m_timerC->adjust(attotime::from_ticks(512, time));
@ -838,7 +827,7 @@ void scsp_device::UpdateReg(int reg)
break;
case 0x1e: // SCIEB
case 0x1f:
if (m_Master)
if (!m_irq_cb.isnull())
{
CheckPendingIRQ();
@ -848,7 +837,7 @@ void scsp_device::UpdateReg(int reg)
break;
case 0x20: // SCIPD
case 0x21:
if (m_Master)
if (!m_irq_cb.isnull())
{
if (m_udata.data[0x1e/2] & m_udata.data[0x20/2] & 0x20)
popmessage("SCSP SCIPD write %04x, contact MAMEdev",m_udata.data[0x20/2]);
@ -857,7 +846,7 @@ void scsp_device::UpdateReg(int reg)
case 0x22: //SCIRE
case 0x23:
if (m_Master)
if (!m_irq_cb.isnull())
{
m_udata.data[0x20/2] &= ~m_udata.data[0x22/2];
ResetInterrupts();
@ -884,7 +873,7 @@ void scsp_device::UpdateReg(int reg)
case 0x27:
case 0x28:
case 0x29:
if (m_Master)
if (!m_irq_cb.isnull())
{
m_IrqTimA = DecodeSCI(SCITMA);
m_IrqTimBC = DecodeSCI(SCITMB);
@ -924,7 +913,7 @@ void scsp_device::UpdateRegR(int reg)
case 4:
case 5:
{
uint16_t v = m_udata.data[0x4/2];
u16 v = m_udata.data[0x4/2];
v &= 0xff00;
v |= m_MidiStack[m_MidiR];
m_irq_cb(m_IrqMidi, CLEAR_LINE); // cancel the IRQ
@ -942,11 +931,11 @@ void scsp_device::UpdateRegR(int reg)
{
// MSLC | CA |SGC|EG
// f e d c b a 9 8 7 6 5 4 3 2 1 0
uint8_t MSLC = (m_udata.data[0x8/2] >> 11) & 0x1f;
u8 MSLC = (m_udata.data[0x8/2] >> 11) & 0x1f;
SCSP_SLOT *slot = m_Slots + MSLC;
uint32_t SGC = (slot->EG.state) & 3;
uint32_t CA = (slot->cur_addr >> (SHIFT + 12)) & 0xf;
uint32_t EG = (0x1f - (slot->EG.volume >> (EG_SHIFT + 5))) & 0x1f;
u32 SGC = (slot->EG.state) & 3;
u32 CA = (slot->cur_addr >> (SHIFT + 12)) & 0xf;
u32 EG = (0x1f - (slot->EG.volume >> (EG_SHIFT + 5))) & 0x1f;
/* note: according to the manual MSLC is write only, CA, SGC and EG read only. */
m_udata.data[0x8/2] = /*(MSLC << 11) |*/ (CA << 7) | (SGC << 5) | EG;
}
@ -976,21 +965,21 @@ void scsp_device::UpdateRegR(int reg)
}
}
void scsp_device::w16(uint32_t addr, uint16_t val)
void scsp_device::w16(u32 addr, u16 val)
{
addr &= 0xffff;
if (addr < 0x400)
{
int slot = addr / 0x20;
addr &= 0x1f;
*((uint16_t *) (m_Slots[slot].udata.datab + (addr))) = val;
*((u16 *) (m_Slots[slot].udata.datab + (addr))) = val;
UpdateSlotReg(slot, addr & 0x1f);
}
else if (addr < 0x600)
{
if (addr < 0x430)
{
*((uint16_t *) (m_udata.datab + ((addr & 0x3f)))) = val;
*((u16 *) (m_udata.datab + ((addr & 0x3f)))) = val;
UpdateReg(addr & 0x3f);
}
}
@ -1000,11 +989,11 @@ void scsp_device::w16(uint32_t addr, uint16_t val)
{
//DSP
if (addr < 0x780) //COEF
*((uint16_t *) (m_DSP.COEF + (addr - 0x700) / 2)) = val;
*((u16 *) (m_DSP.COEF + (addr - 0x700) / 2)) = val;
else if (addr < 0x7c0)
*((uint16_t *) (m_DSP.MADRS + (addr - 0x780) / 2)) = val;
*((u16 *) (m_DSP.MADRS + (addr - 0x780) / 2)) = val;
else if (addr < 0x800) // MADRS is mirrored twice
*((uint16_t *) (m_DSP.MADRS + (addr - 0x7c0) / 2)) = val;
*((u16 *) (m_DSP.MADRS + (addr - 0x7c0) / 2)) = val;
else if (addr < 0xC00)
{
*((uint16_t *) (m_DSP.MPRO + (addr - 0x800) / 2)) = val;
@ -1017,23 +1006,23 @@ void scsp_device::w16(uint32_t addr, uint16_t val)
}
}
uint16_t scsp_device::r16(uint32_t addr)
u16 scsp_device::r16(u32 addr)
{
uint16_t v = 0;
u16 v = 0;
addr &= 0xffff;
if (addr < 0x400)
{
int slot = addr / 0x20;
addr &= 0x1f;
UpdateSlotRegR(slot, addr & 0x1f);
v = *((uint16_t *) (m_Slots[slot].udata.datab + (addr)));
v = *((u16 *) (m_Slots[slot].udata.datab + (addr)));
}
else if (addr < 0x600)
{
if (addr < 0x430)
{
UpdateRegR(addr & 0x3f);
v = *((uint16_t *) (m_udata.datab + ((addr & 0x3f))));
v = *((u16 *) (m_udata.datab + ((addr & 0x3f))));
}
}
else if (addr < 0x700)
@ -1042,13 +1031,13 @@ uint16_t scsp_device::r16(uint32_t addr)
{
//DSP
if (addr < 0x780) //COEF
v= *((uint16_t *) (m_DSP.COEF + (addr - 0x700) / 2));
v= *((u16 *) (m_DSP.COEF + (addr - 0x700) / 2));
else if (addr < 0x7c0)
v= *((uint16_t *) (m_DSP.MADRS + (addr - 0x780) / 2));
v= *((u16 *) (m_DSP.MADRS + (addr - 0x780) / 2));
else if (addr < 0x800)
v= *((uint16_t *) (m_DSP.MADRS + (addr - 0x7c0) / 2));
v= *((u16 *) (m_DSP.MADRS + (addr - 0x7c0) / 2));
else if (addr < 0xC00)
v= *((uint16_t *) (m_DSP.MPRO + (addr - 0x800) / 2));
v= *((u16 *) (m_DSP.MPRO + (addr - 0x800) / 2));
else if (addr < 0xE00)
{
if (addr & 2)
@ -1071,7 +1060,7 @@ uint16_t scsp_device::r16(uint32_t addr)
v = m_DSP.MIXS[(addr >> 2) & 0xf] >> 16;
}
else if (addr < 0xEE0)
v = *((uint16_t *) (m_DSP.EFREG + (addr - 0xec0) / 2));
v = *((u16 *) (m_DSP.EFREG + (addr - 0xec0) / 2));
else
{
/**!
@ -1112,14 +1101,14 @@ uint16_t scsp_device::r16(uint32_t addr)
*/
logerror("SCSP: Reading from EXTS register %08x\n", addr);
if (addr < 0xEE4)
v = *((uint16_t *) (m_DSP.EXTS + (addr - 0xee0) / 2));
v = *((u16 *) (m_DSP.EXTS + (addr - 0xee0) / 2));
}
}
return v;
}
inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
inline s32 scsp_device::UpdateSlot(SCSP_SLOT *slot)
{
if (SSCTL(slot) == 3) // manual says cannot be used
{
@ -1127,11 +1116,11 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
return 0;
}
int32_t sample = 0; // NB: Shouldn't be necessary, but GCC 8.2.1 claims otherwise.
s32 sample = 0; // NB: Shouldn't be necessary, but GCC 8.2.1 claims otherwise.
int step = slot->step;
uint32_t addr1, addr2, addr_select; // current and next sample addresses
uint32_t *addr[2] = {&addr1, &addr2}; // used for linear interpolation
uint32_t *slot_addr[2] = {&(slot->cur_addr), &(slot->nxt_addr)}; //
u32 addr1, addr2, addr_select; // current and next sample addresses
u32 *addr[2] = {&addr1, &addr2}; // used for linear interpolation
u32 *slot_addr[2] = {&(slot->cur_addr), &(slot->nxt_addr)}; //
if (PLFOS(slot) != 0)
{
@ -1152,7 +1141,7 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
if (MDL(slot) != 0 || MDXSL(slot) != 0 || MDYSL(slot) != 0)
{
int32_t smp = (m_RINGBUF[(m_BUFPTR + MDXSL(slot)) & 63] + m_RINGBUF[(m_BUFPTR + MDYSL(slot)) & 63]) / 2;
s32 smp = (m_RINGBUF[(m_BUFPTR + MDXSL(slot)) & 63] + m_RINGBUF[(m_BUFPTR + MDYSL(slot)) & 63]) / 2;
smp <<= 0xA; // associate cycle with 1024
smp >>= 0x1A - MDL(slot); // ex. for MDL=0xF, sample range corresponds to +/- 64 pi (32=2^5 cycles) so shift by 11 (16-5 == 0x1A-0xF)
@ -1167,30 +1156,30 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
{
int8_t p1 = read_byte(SA(slot) + addr1);
int8_t p2 = read_byte(SA(slot) + addr2);
int32_t s;
int32_t fpart=slot->cur_addr & ((1 << SHIFT) - 1);
s32 s;
s32 fpart=slot->cur_addr & ((1 << SHIFT) - 1);
s = (int) (p1 << 8) * ((1 << SHIFT) - fpart) + (int) (p2 << 8) * fpart;
sample = (s >> SHIFT);
}
else //16 bit signed (endianness?)
{
int16_t p1 = read_word(SA(slot) + addr1);
int16_t p2 = read_word(SA(slot) + addr2);
int32_t s;
int32_t fpart = slot->cur_addr & ((1 << SHIFT) - 1);
s16 p1 = read_word(SA(slot) + addr1);
s16 p2 = read_word(SA(slot) + addr2);
s32 s;
s32 fpart = slot->cur_addr & ((1 << SHIFT) - 1);
s = (int)(p1) * ((1 << SHIFT) - fpart) + (int)(p2) * fpart;
sample = (s >> SHIFT);
}
}
else if (SSCTL(slot) == 1) // Internally generated data (Noise)
sample = (int16_t)(machine().rand() & 0xffff); // Unknown algorithm
sample = (s16)(machine().rand() & 0xffff); // Unknown algorithm
else if (SSCTL(slot) >= 2) // Internally generated data (All 0)
sample = 0;
if (SBCTL(slot) & 0x1)
sample ^= 0x7FFF;
if (SBCTL(slot) & 0x2)
sample = (int16_t)(sample ^ 0x8000);
sample = (s16)(sample ^ 0x8000);
if (slot->Backwards)
slot->cur_addr -= step;
@ -1209,7 +1198,7 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
for (addr_select = 0; addr_select < 2; addr_select++)
{
int32_t rem_addr;
s32 rem_addr;
switch (LPCTL(slot))
{
case 0: //no loop
@ -1274,12 +1263,12 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
{
if (!SDIR(slot))
{
uint16_t Enc = ((TL(slot)) << 0x0) | (0x7 << 0xd);
u16 Enc = ((TL(slot)) << 0x0) | (0x7 << 0xd);
*m_RBUFDST = (sample * m_LPANTABLE[Enc]) >> (SHIFT + 1);
}
else
{
uint16_t Enc = (0 << 0x0) | (0x7 << 0xd);
u16 Enc = (0 << 0x0) | (0x7 << 0xd);
*m_RBUFDST = (sample * m_LPANTABLE[Enc]) >> (SHIFT + 1);
}
}
@ -1299,7 +1288,7 @@ void scsp_device::DoMasterSamples(int nsamples)
for (int s = 0; s < nsamples; ++s)
{
int32_t smpl = 0, smpr = 0;
s32 smpl = 0, smpr = 0;
for (int sl = 0; sl < 32; ++sl)
{
@ -1311,9 +1300,9 @@ void scsp_device::DoMasterSamples(int nsamples)
if (m_Slots[sl].active)
{
SCSP_SLOT *slot = m_Slots + sl;
uint16_t Enc;
u16 Enc;
int32_t sample = UpdateSlot(slot);
s32 sample = UpdateSlot(slot);
Enc = ((TL(slot)) << 0x0) | ((IMXL(slot)) << 0xd);
m_DSP.SetSample((sample*m_LPANTABLE[Enc]) >> (SHIFT-2), ISEL(slot), IMXL(slot));
@ -1342,7 +1331,7 @@ void scsp_device::DoMasterSamples(int nsamples)
SCSP_SLOT *slot = m_Slots + i;
if (EFSDL(slot))
{
uint16_t Enc = ((EFPAN(slot)) << 0x8) | ((EFSDL(slot)) << 0xd);
u16 Enc = ((EFPAN(slot)) << 0x8) | ((EFSDL(slot)) << 0xd);
smpl += (m_DSP.EFREG[i] * m_LPANTABLE[Enc]) >> SHIFT;
smpr += (m_DSP.EFREG[i] * m_RPANTABLE[Enc]) >> SHIFT;
}
@ -1354,7 +1343,7 @@ void scsp_device::DoMasterSamples(int nsamples)
if (EFSDL(slot))
{
m_DSP.EXTS[i] = exts[i][s];
uint16_t Enc = ((EFPAN(slot)) << 0x8) | ((EFSDL(slot)) << 0xd);
u16 Enc = ((EFPAN(slot)) << 0x8) | ((EFSDL(slot)) << 0xd);
smpl += (m_DSP.EXTS[i] * m_LPANTABLE[Enc]) >> SHIFT;
smpr += (m_DSP.EXTS[i] * m_RPANTABLE[Enc]) >> SHIFT;
}
@ -1379,7 +1368,7 @@ void scsp_device::DoMasterSamples(int nsamples)
/* TODO: this needs to be timer-ized */
void scsp_device::exec_dma()
{
static uint16_t tmp_dma[3];
static u16 tmp_dma[3];
int i;
logerror("SCSP: DMA transfer START\n"
@ -1411,7 +1400,7 @@ void scsp_device::exec_dma()
{
for (i = 0; i < m_dma.dtlg; i += 2)
{
uint16_t tmp;
u16 tmp;
tmp = r16(m_dma.drga);
this->space().write_word(m_dma.dmea, tmp);
m_dma.dmea += 2;
@ -1434,7 +1423,7 @@ void scsp_device::exec_dma()
{
for (i = 0; i < m_dma.dtlg; i += 2)
{
uint16_t tmp = read_word(m_dma.dmea);
u16 tmp = read_word(m_dma.dmea);
w16(m_dma.drga, tmp);
m_dma.dmea += 2;
m_dma.drga += 2;
@ -1468,17 +1457,17 @@ int IRQCB(void *param)
#endif
READ16_MEMBER( scsp_device::read )
READ16_MEMBER(scsp_device::read)
{
m_stream->update();
return r16(offset * 2);
}
WRITE16_MEMBER( scsp_device::write )
WRITE16_MEMBER(scsp_device::write)
{
m_stream->update();
uint16_t tmp = r16(offset * 2);
u16 tmp = r16(offset * 2);
COMBINE_DATA(&tmp);
w16(offset * 2, tmp);
}
@ -1493,9 +1482,9 @@ void scsp_device::midi_in(u8 data)
CheckPendingIRQ();
}
READ16_MEMBER( scsp_device::midi_out_r )
READ16_MEMBER(scsp_device::midi_out_r)
{
uint8_t val;
u8 val;
val = m_MidiStack[m_MidiR++];
m_MidiR &= 31;
@ -1504,7 +1493,7 @@ READ16_MEMBER( scsp_device::midi_out_r )
//LFO handling
#define LFIX(v) ((uint32_t) ((float) (1 << LFO_SHIFT) * (v)))
#define LFIX(v) ((u32) ((float) (1 << LFO_SHIFT) * (v)))
//Convert DB to multiply amplitude
#define DB(v) LFIX(powf(10.0f, v / 20.0f))
@ -1590,7 +1579,7 @@ void scsp_device::LFO_Init()
}
}
int32_t scsp_device::PLFO_Step(SCSP_LFO_t *LFO)
s32 scsp_device::PLFO_Step(SCSP_LFO_t *LFO)
{
int p;
LFO->phase += LFO->phase_step;
@ -1602,7 +1591,7 @@ int32_t scsp_device::PLFO_Step(SCSP_LFO_t *LFO)
return p << (SHIFT - LFO_SHIFT);
}
int32_t scsp_device::ALFO_Step(SCSP_LFO_t *LFO)
s32 scsp_device::ALFO_Step(SCSP_LFO_t *LFO)
{
int p;
LFO->phase += LFO->phase_step;
@ -1614,10 +1603,10 @@ int32_t scsp_device::ALFO_Step(SCSP_LFO_t *LFO)
return p << (SHIFT - LFO_SHIFT);
}
void scsp_device::LFO_ComputeStep(SCSP_LFO_t *LFO,uint32_t LFOF,uint32_t LFOWS,uint32_t LFOS,int ALFO)
void scsp_device::LFO_ComputeStep(SCSP_LFO_t *LFO,u32 LFOF,u32 LFOWS,u32 LFOS,int ALFO)
{
float step = (float) LFOFreq[LFOF] * 256.0f / 44100.0f;
LFO->phase_step = (uint32_t) ((float) (1 << LFO_SHIFT) * step);
LFO->phase_step = (u32) ((float) (1 << LFO_SHIFT) * step);
if (ALFO)
{
switch (LFOWS)

View File

@ -20,20 +20,20 @@ class scsp_device : public device_t,
public device_rom_interface
{
public:
static constexpr feature_type imperfect_features() { return feature::SOUND; } // DSP incorrections, etc
static constexpr feature_type imperfect_features() { return feature::SOUND; } // DSP / EG incorrections, etc
scsp_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 22'579'200);
scsp_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock = 22'579'200);
auto irq_cb() { return m_irq_cb.bind(); }
auto main_irq_cb() { return m_main_irq_cb.bind(); }
// SCSP register access
DECLARE_READ16_MEMBER( read );
DECLARE_WRITE16_MEMBER( write );
DECLARE_READ16_MEMBER(read);
DECLARE_WRITE16_MEMBER(write);
// MIDI I/O access (used for comms on Model 2/3)
void midi_in(u8 data);
DECLARE_READ16_MEMBER( midi_out_r );
DECLARE_READ16_MEMBER(midi_out_r);
protected:
// device-level overrides
@ -61,14 +61,14 @@ private:
int RR; //Release
int DL; //Decay level
uint8_t EGHOLD;
uint8_t LPLINK;
u8 EGHOLD;
u8 LPLINK;
};
struct SCSP_LFO_t
{
uint16_t phase;
uint32_t phase_step;
u16 phase;
u32 phase_step;
int *table;
int *scale;
};
@ -77,20 +77,20 @@ private:
{
union
{
uint16_t data[0x10]; //only 0x1a bytes used
uint8_t datab[0x20];
u16 data[0x10]; //only 0x1a bytes used
u8 datab[0x20];
} udata;
uint8_t Backwards; //the wave is playing backwards
uint8_t active; //this slot is currently playing
uint32_t cur_addr; //current play address (24.8)
uint32_t nxt_addr; //next play address
uint32_t step; //pitch step (24.8)
u8 Backwards; //the wave is playing backwards
u8 active; //this slot is currently playing
u32 cur_addr; //current play address (24.8)
u32 nxt_addr; //next play address
u32 step; //pitch step (24.8)
SCSP_EG_t EG; //Envelope
SCSP_LFO_t PLFO; //Phase LFO
SCSP_LFO_t ALFO; //Amplitude LFO
int slot;
int16_t Prev; //Previous sample (for interpolation)
s16 Prev; //Previous sample (for interpolation)
};
devcb_write8 m_irq_cb; /* irq callback */
@ -98,29 +98,28 @@ private:
union
{
uint16_t data[0x30/2];
uint8_t datab[0x30];
u16 data[0x30/2];
u8 datab[0x30];
} m_udata;
SCSP_SLOT m_Slots[32];
int16_t m_RINGBUF[128];
uint8_t m_BUFPTR;
s16 m_RINGBUF[128];
u8 m_BUFPTR;
#if SCSP_FM_DELAY
int16_t m_DELAYBUF[SCSP_FM_DELAY];
uint8_t m_DELAYPTR;
s16 m_DELAYBUF[SCSP_FM_DELAY];
u8 m_DELAYPTR;
#endif
char m_Master;
sound_stream * m_stream;
uint32_t m_IrqTimA;
uint32_t m_IrqTimBC;
uint32_t m_IrqMidi;
u32 m_IrqTimA;
u32 m_IrqTimBC;
u32 m_IrqMidi;
uint8_t m_MidiOutW, m_MidiOutR;
uint8_t m_MidiStack[32];
uint8_t m_MidiW, m_MidiR;
u8 m_MidiOutW, m_MidiOutR;
u8 m_MidiStack[32];
u8 m_MidiW, m_MidiR;
int32_t m_EG_TABLE[0x400];
s32 m_EG_TABLE[0x400];
int m_LPANTABLE[0x10000];
int m_RPANTABLE[0x10000];
@ -134,15 +133,15 @@ private:
// DMA stuff
struct
{
uint32_t dmea;
uint16_t drga;
uint16_t dtlg;
uint8_t dgate;
uint8_t ddir;
u32 dmea;
u16 drga;
u16 dtlg;
u8 dgate;
u8 ddir;
} m_dma;
uint16_t m_mcieb;
uint16_t m_mcipd;
u16 m_mcieb;
u16 m_mcipd;
int m_ARTABLE[64], m_DRTABLE[64];
@ -155,7 +154,7 @@ private:
int m_length;
int16_t *m_RBUFDST; //this points to where the sample will be stored in the RingBuf
s16 *m_RBUFDST; //this points to where the sample will be stored in the RingBuf
//LFO
int m_PLFO_TRI[256], m_PLFO_SQR[256], m_PLFO_SAW[256], m_PLFO_NOI[256];
@ -164,18 +163,18 @@ private:
int m_ASCALES[8][256];
void exec_dma(); /*state DMA transfer function*/
uint8_t DecodeSCI(uint8_t irq);
u8 DecodeSCI(u8 irq);
void CheckPendingIRQ();
void MainCheckPendingIRQ(uint16_t irq_type);
void MainCheckPendingIRQ(u16 irq_type);
void ResetInterrupts();
TIMER_CALLBACK_MEMBER( timerA_cb );
TIMER_CALLBACK_MEMBER( timerB_cb );
TIMER_CALLBACK_MEMBER( timerC_cb );
TIMER_CALLBACK_MEMBER(timerA_cb);
TIMER_CALLBACK_MEMBER(timerB_cb);
TIMER_CALLBACK_MEMBER(timerC_cb);
int Get_AR(int base, int R);
int Get_DR(int base, int R);
void Compute_EG(SCSP_SLOT *slot);
int EG_Update(SCSP_SLOT *slot);
uint32_t Step(SCSP_SLOT *slot);
u32 Step(SCSP_SLOT *slot);
void Compute_LFO(SCSP_SLOT *slot);
void StartSlot(SCSP_SLOT *slot);
void StopSlot(SCSP_SLOT *slot, int keyoff);
@ -184,16 +183,16 @@ private:
void UpdateReg(int reg);
void UpdateSlotRegR(int slot, int reg);
void UpdateRegR(int reg);
void w16(uint32_t addr, uint16_t val);
uint16_t r16(uint32_t addr);
inline int32_t UpdateSlot(SCSP_SLOT *slot);
void w16(u32 addr, u16 val);
u16 r16(u32 addr);
inline s32 UpdateSlot(SCSP_SLOT *slot);
void DoMasterSamples(int nsamples);
//LFO
void LFO_Init();
int32_t PLFO_Step(SCSP_LFO_t *LFO);
int32_t ALFO_Step(SCSP_LFO_t *LFO);
void LFO_ComputeStep(SCSP_LFO_t *LFO, uint32_t LFOF, uint32_t LFOWS, uint32_t LFOS, int ALFO);
s32 PLFO_Step(SCSP_LFO_t *LFO);
s32 ALFO_Step(SCSP_LFO_t *LFO);
void LFO_ComputeStep(SCSP_LFO_t *LFO, u32 LFOF, u32 LFOWS, u32 LFOS, int ALFO);
};
DECLARE_DEVICE_TYPE(SCSP, scsp_device)

View File

@ -8,10 +8,10 @@
namespace {
uint16_t PACK(int32_t val)
u16 PACK(s32 val)
{
int const sign = BIT(val, 23);
uint32_t temp = (val ^ (val << 1)) & 0xFFFFFF;
u32 temp = (val ^ (val << 1)) & 0xFFFFFF;
int exponent = 0;
for (int k = 0; k < 12; k++)
{
@ -29,15 +29,15 @@ uint16_t PACK(int32_t val)
val |= sign << 15;
val |= exponent << 11;
return uint16_t(val);
return u16(val);
}
static int32_t UNPACK(uint16_t val)
static s32 UNPACK(u16 val)
{
int const sign = BIT(val, 15);
int exponent = (val >> 11) & 0xF;
int const mantissa = val & 0x7FF;
int32_t uval = mantissa << 11;
s32 uval = mantissa << 11;
if (exponent > 11)
{
exponent = 11;
@ -79,48 +79,48 @@ void SCSPDSP::Step()
f=fopen("dsp.txt","wt");
#endif
int32_t ACC = 0; //26 bit
int32_t MEMVAL = 0;
int32_t FRC_REG = 0; //13 bit
int32_t Y_REG = 0; //24 bit
uint32_t ADRS_REG = 0; //13 bit
s32 ACC = 0; //26 bit
s32 MEMVAL = 0;
s32 FRC_REG = 0; //13 bit
s32 Y_REG = 0; //24 bit
u32 ADRS_REG = 0; //13 bit
for (int step = 0; step < /*128*/LastStep; ++step)
{
uint16_t *const IPtr = MPRO + (step * 4);
u16 *const IPtr = MPRO + (step * 4);
//if (!IPtr[0] && !IPtr[1] && !IPtr[2] && !IPtr[3])
//break;
uint32_t const TRA = (IPtr[0] >> 8) & 0x7F;
uint32_t const TWT = (IPtr[0] >> 7) & 0x01;
uint32_t const TWA = (IPtr[0] >> 0) & 0x7F;
u32 const TRA = (IPtr[0] >> 8) & 0x7F;
u32 const TWT = (IPtr[0] >> 7) & 0x01;
u32 const TWA = (IPtr[0] >> 0) & 0x7F;
uint32_t const XSEL = (IPtr[1] >> 15) & 0x01;
uint32_t const YSEL = (IPtr[1] >> 13) & 0x03;
uint32_t const IRA = (IPtr[1] >> 6) & 0x3F;
uint32_t const IWT = (IPtr[1] >> 5) & 0x01;
uint32_t const IWA = (IPtr[1] >> 0) & 0x1F;
u32 const XSEL = (IPtr[1] >> 15) & 0x01;
u32 const YSEL = (IPtr[1] >> 13) & 0x03;
u32 const IRA = (IPtr[1] >> 6) & 0x3F;
u32 const IWT = (IPtr[1] >> 5) & 0x01;
u32 const IWA = (IPtr[1] >> 0) & 0x1F;
uint32_t const TABLE = (IPtr[2] >> 15) & 0x01;
uint32_t const MWT = (IPtr[2] >> 14) & 0x01;
uint32_t const MRD = (IPtr[2] >> 13) & 0x01;
uint32_t const EWT = (IPtr[2] >> 12) & 0x01;
uint32_t const EWA = (IPtr[2] >> 8) & 0x0F;
uint32_t const ADRL = (IPtr[2] >> 7) & 0x01;
uint32_t const FRCL = (IPtr[2] >> 6) & 0x01;
uint32_t const SHIFT = (IPtr[2] >> 4) & 0x03;
uint32_t const YRL = (IPtr[2] >> 3) & 0x01;
uint32_t const NEGB = (IPtr[2] >> 2) & 0x01;
uint32_t const ZERO = (IPtr[2] >> 1) & 0x01;
uint32_t const BSEL = (IPtr[2] >> 0) & 0x01;
u32 const TABLE = (IPtr[2] >> 15) & 0x01;
u32 const MWT = (IPtr[2] >> 14) & 0x01;
u32 const MRD = (IPtr[2] >> 13) & 0x01;
u32 const EWT = (IPtr[2] >> 12) & 0x01;
u32 const EWA = (IPtr[2] >> 8) & 0x0F;
u32 const ADRL = (IPtr[2] >> 7) & 0x01;
u32 const FRCL = (IPtr[2] >> 6) & 0x01;
u32 const SHIFT = (IPtr[2] >> 4) & 0x03;
u32 const YRL = (IPtr[2] >> 3) & 0x01;
u32 const NEGB = (IPtr[2] >> 2) & 0x01;
u32 const ZERO = (IPtr[2] >> 1) & 0x01;
u32 const BSEL = (IPtr[2] >> 0) & 0x01;
uint32_t const NOFL = (IPtr[3] >> 15) & 0x01; //????
uint32_t const COEF = (IPtr[3] >> 9) & 0x3f;
u32 const NOFL = (IPtr[3] >> 15) & 0x01; //????
u32 const COEF = (IPtr[3] >> 9) & 0x3f;
uint32_t const MASA = (IPtr[3] >> 2) & 0x1f; //???
uint32_t const ADREB = (IPtr[3] >> 1) & 0x01;
uint32_t const NXADR = (IPtr[3] >> 0) & 0x01;
u32 const MASA = (IPtr[3] >> 2) & 0x1f; //???
u32 const ADREB = (IPtr[3] >> 1) & 0x01;
u32 const NXADR = (IPtr[3] >> 0) & 0x01;
//operations are done at 24 bit precision
#if 0
@ -154,7 +154,7 @@ void SCSPDSP::Step()
//INPUTS RW
// colmns97 hits this
//assert(IRA < 0x32);
int32_t INPUTS; // 24-bit
s32 INPUTS; // 24-bit
if (IRA <= 0x1f)
INPUTS = MEMS[IRA];
else if (IRA <= 0x2F)
@ -177,7 +177,7 @@ void SCSPDSP::Step()
}
//Operand sel
int32_t B; // 26-bit
s32 B; // 26-bit
if (!ZERO)
{
if (BSEL)
@ -196,7 +196,7 @@ void SCSPDSP::Step()
else
B = 0;
int32_t X; // 24-bit
s32 X; // 24-bit
if (XSEL)
X = INPUTS;
else
@ -208,7 +208,7 @@ void SCSPDSP::Step()
//X |= 0xFF000000;
}
int32_t Y = 0; //13 bit
s32 Y = 0; //13 bit
if (YSEL == 0)
Y = FRC_REG;
else if (YSEL == 1)
@ -222,11 +222,11 @@ void SCSPDSP::Step()
Y_REG = INPUTS;
//Shifter
int32_t SHIFTED = 0; //24 bit
s32 SHIFTED = 0; //24 bit
if (SHIFT == 0)
SHIFTED = std::max<int32_t>(std::min<int32_t>(ACC, 0x007FFFFF), -0x00800000);
SHIFTED = std::max<s32>(std::min<s32>(ACC, 0x007FFFFF), -0x00800000);
else if (SHIFT == 1)
SHIFTED = std::max<int32_t>(std::min<int32_t>(ACC * 2, 0x007FFFFF), -0x00800000);
SHIFTED = std::max<s32>(std::min<s32>(ACC * 2, 0x007FFFFF), -0x00800000);
else if (SHIFT == 2)
{
SHIFTED = ACC * 2;
@ -269,7 +269,7 @@ void SCSPDSP::Step()
if (MRD || MWT)
//if (0)
{
uint32_t ADDR = MADRS[MASA];
u32 ADDR = MADRS[MASA];
if (!TABLE)
ADDR += DEC;
if (ADREB)
@ -315,7 +315,7 @@ void SCSPDSP::Step()
//fclose(f);
}
void SCSPDSP::SetSample(int32_t sample, int SEL, int MXL)
void SCSPDSP::SetSample(s32 sample, int SEL, int MXL)
{
//MIXS[SEL] += sample << (MXL + 1)/*7*/;
MIXS[SEL] += sample;
@ -329,7 +329,7 @@ void SCSPDSP::Start()
int i;
for (i = 127; i >= 0; --i)
{
uint16_t const *const IPtr = MPRO + (i * 4);
u16 const *const IPtr = MPRO + (i * 4);
if (IPtr[0] || IPtr[1] || IPtr[2] || IPtr[3])
break;
}

View File

@ -10,30 +10,30 @@ struct SCSPDSP
{
//Config
address_space *space;
uint32_t RBP; //Ring buf pointer
uint32_t RBL; //Delay ram (Ring buffer) size in words
u32 RBP; //Ring buf pointer
u32 RBL; //Delay ram (Ring buffer) size in words
//context
int16_t COEF[64]; //16 bit signed
uint16_t MADRS[32]; //offsets (in words), 16 bit
uint16_t MPRO[128*4]; //128 steps 64 bit
int32_t TEMP[128]; //TEMP regs,24 bit signed
int32_t MEMS[32]; //MEMS regs,24 bit signed
uint32_t DEC;
s16 COEF[64]; //16 bit signed
u16 MADRS[32]; //offsets (in words), 16 bit
u16 MPRO[128*4]; //128 steps 64 bit
s32 TEMP[128]; //TEMP regs,24 bit signed
s32 MEMS[32]; //MEMS regs,24 bit signed
u32 DEC;
//input
int32_t MIXS[16]; //MIXS, 24 bit signed
int16_t EXTS[2]; //External inputs (CDDA) 16 bit signed
s32 MIXS[16]; //MIXS, 24 bit signed
s16 EXTS[2]; //External inputs (CDDA) 16 bit signed
//output
int16_t EFREG[16]; //EFREG, 16 bit signed
s16 EFREG[16]; //EFREG, 16 bit signed
bool Stopped;
int LastStep;
void Init();
void SetSample(int32_t sample, int32_t SEL, int32_t MXL);
void SetSample(s32 sample, s32 SEL, s32 MXL);
void Step();
void Start();
};