Merge pull request #4431 from cam900/scsp_tag

scsp.cpp : Use shorter type values, Remove hardcoded tags, Unnecessar…
This commit is contained in:
R. Belmont 2019-03-31 12:19:05 -04:00 committed by GitHub
commit bd598d6ca5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 191 additions and 203 deletions

View File

@ -36,12 +36,12 @@
#include <algorithm> #include <algorithm>
static constexpr int32_t clip16(int x) { return std::min(32767, std::max(-32768, x)); } static constexpr s32 clip16(int x) { return std::min(32767, std::max(-32768, x)); }
static constexpr int32_t clip18(int x) { return std::min(131071, std::max(-131072, x)); } static constexpr s32 clip18(int x) { return std::min(131071, std::max(-131072, x)); }
#define SHIFT 12 #define SHIFT 12
#define LFO_SHIFT 8 #define LFO_SHIFT 8
#define FIX(v) ((uint32_t) ((float) (1 << SHIFT) * (v))) #define FIX(v) ((u32) ((float) (1 << SHIFT) * (v)))
#define EG_SHIFT 16 #define EG_SHIFT 16
@ -145,14 +145,13 @@ static const float SDLT[8] = {-1000000.0f,-36.0f,-30.0f,-24.0f,-18.0f,-12.0f,-6.
DEFINE_DEVICE_TYPE(SCSP, scsp_device, "scsp", "Yamaha YMF292-F SCSP") DEFINE_DEVICE_TYPE(SCSP, scsp_device, "scsp", "Yamaha YMF292-F SCSP")
scsp_device::scsp_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) scsp_device::scsp_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock)
: device_t(mconfig, SCSP, tag, owner, clock), : device_t(mconfig, SCSP, tag, owner, clock),
device_sound_interface(mconfig, *this), device_sound_interface(mconfig, *this),
device_rom_interface(mconfig, *this, 20, ENDIANNESS_BIG, 16), device_rom_interface(mconfig, *this, 20, ENDIANNESS_BIG, 16),
m_irq_cb(*this), m_irq_cb(*this),
m_main_irq_cb(*this), m_main_irq_cb(*this),
m_BUFPTR(0), m_BUFPTR(0),
m_Master(0),
m_stream(nullptr), m_stream(nullptr),
m_IrqTimA(0), m_IrqTimA(0),
m_IrqTimBC(0), m_IrqTimBC(0),
@ -331,10 +330,10 @@ void scsp_device::sound_stream_update(sound_stream &stream, stream_sample_t **in
DoMasterSamples(samples); DoMasterSamples(samples);
} }
uint8_t scsp_device::DecodeSCI(uint8_t irq) u8 scsp_device::DecodeSCI(u8 irq)
{ {
uint8_t SCI = 0; u8 SCI = 0;
uint8_t v; u8 v;
v = (SCILV0() & (1 << irq)) ? 1 : 0; v = (SCILV0() & (1 << irq)) ? 1 : 0;
SCI |= v; SCI |= v;
v = (SCILV1() & (1 << irq)) ? 1 : 0; v = (SCILV1() & (1 << irq)) ? 1 : 0;
@ -346,8 +345,8 @@ uint8_t scsp_device::DecodeSCI(uint8_t irq)
void scsp_device::CheckPendingIRQ() void scsp_device::CheckPendingIRQ()
{ {
uint32_t pend = m_udata.data[0x20/2]; u32 pend = m_udata.data[0x20/2];
uint32_t en = m_udata.data[0x1e/2]; u32 en = m_udata.data[0x1e/2];
if (m_MidiW != m_MidiR) if (m_MidiW != m_MidiR)
{ {
m_udata.data[0x20/2] |= 8; m_udata.data[0x20/2] |= 8;
@ -384,7 +383,7 @@ void scsp_device::CheckPendingIRQ()
m_irq_cb((offs_t)0, CLEAR_LINE); m_irq_cb((offs_t)0, CLEAR_LINE);
} }
void scsp_device::MainCheckPendingIRQ(uint16_t irq_type) void scsp_device::MainCheckPendingIRQ(u16 irq_type)
{ {
m_mcipd |= irq_type; m_mcipd |= irq_type;
@ -398,7 +397,7 @@ void scsp_device::MainCheckPendingIRQ(uint16_t irq_type)
void scsp_device::ResetInterrupts() void scsp_device::ResetInterrupts()
{ {
uint32_t reset = m_udata.data[0x22/2]; u32 reset = m_udata.data[0x22/2];
if (reset & 0x40) if (reset & 0x40)
{ {
@ -416,7 +415,7 @@ void scsp_device::ResetInterrupts()
CheckPendingIRQ(); CheckPendingIRQ();
} }
TIMER_CALLBACK_MEMBER( scsp_device::timerA_cb ) TIMER_CALLBACK_MEMBER(scsp_device::timerA_cb)
{ {
m_TimCnt[0] = 0xFFFF; m_TimCnt[0] = 0xFFFF;
m_udata.data[0x20/2] |= 0x40; m_udata.data[0x20/2] |= 0x40;
@ -427,7 +426,7 @@ TIMER_CALLBACK_MEMBER( scsp_device::timerA_cb )
MainCheckPendingIRQ(0x40); MainCheckPendingIRQ(0x40);
} }
TIMER_CALLBACK_MEMBER( scsp_device::timerB_cb ) TIMER_CALLBACK_MEMBER(scsp_device::timerB_cb)
{ {
m_TimCnt[1] = 0xFFFF; m_TimCnt[1] = 0xFFFF;
m_udata.data[0x20/2] |= 0x80; m_udata.data[0x20/2] |= 0x80;
@ -437,7 +436,7 @@ TIMER_CALLBACK_MEMBER( scsp_device::timerB_cb )
CheckPendingIRQ(); CheckPendingIRQ();
} }
TIMER_CALLBACK_MEMBER( scsp_device::timerC_cb ) TIMER_CALLBACK_MEMBER(scsp_device::timerC_cb)
{ {
m_TimCnt[2] = 0xFFFF; m_TimCnt[2] = 0xFFFF;
m_udata.data[0x20/2] |= 0x100; m_udata.data[0x20/2] |= 0x100;
@ -527,10 +526,10 @@ int scsp_device::EG_Update(SCSP_SLOT *slot)
return (slot->EG.volume >> EG_SHIFT) << (SHIFT - 10); return (slot->EG.volume >> EG_SHIFT) << (SHIFT - 10);
} }
uint32_t scsp_device::Step(SCSP_SLOT *slot) u32 scsp_device::Step(SCSP_SLOT *slot)
{ {
int octave = (OCT(slot) ^ 8) - 8 + SHIFT - 10; int octave = (OCT(slot) ^ 8) - 8 + SHIFT - 10;
uint32_t Fn = FNS(slot) + (1 << 10); u32 Fn = FNS(slot) + (1 << 10);
if (octave >= 0) if (octave >= 0)
{ {
Fn <<= octave; Fn <<= octave;
@ -592,16 +591,6 @@ void scsp_device::init()
m_MidiR=m_MidiW = 0; m_MidiR=m_MidiW = 0;
m_MidiOutR = m_MidiOutW = 0; m_MidiOutR = m_MidiOutW = 0;
// get SCSP RAM
if (strcmp(tag(), ":scsp") == 0 || strcmp(tag(), ":scsp1") == 0)
{
m_Master = 1;
}
else
{
m_Master = 0;
}
m_DSP.space = &this->space(); m_DSP.space = &this->space();
m_timerA = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(scsp_device::timerA_cb), this)); m_timerA = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(scsp_device::timerA_cb), this));
m_timerB = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(scsp_device::timerB_cb), this)); m_timerB = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(scsp_device::timerB_cb), this));
@ -611,7 +600,7 @@ void scsp_device::init()
{ {
float envDB = ((float)(3 * (i - 0x3ff))) / 32.0f; float envDB = ((float)(3 * (i - 0x3ff))) / 32.0f;
float scale = (float)(1 << SHIFT); float scale = (float)(1 << SHIFT);
m_EG_TABLE[i] = (int32_t)(powf(10.0f, envDB / 20.0f) * scale); m_EG_TABLE[i] = (s32)(powf(10.0f, envDB / 20.0f) * scale);
} }
for (i = 0; i < 0x10000; ++i) for (i = 0; i < 0x10000; ++i)
@ -787,14 +776,14 @@ void scsp_device::UpdateReg(int reg)
break; break;
case 0x18: case 0x18:
case 0x19: case 0x19:
if (m_Master) if (!m_irq_cb.isnull())
{ {
m_TimPris[0] = 1 << ((m_udata.data[0x18/2] >> 8) & 0x7); m_TimPris[0] = 1 << ((m_udata.data[0x18/2] >> 8) & 0x7);
m_TimCnt[0] = (m_udata.data[0x18/2] & 0xff) << 8; m_TimCnt[0] = (m_udata.data[0x18/2] & 0xff) << 8;
if ((m_udata.data[0x18/2] & 0xff) != 255) if ((m_udata.data[0x18/2] & 0xff) != 255)
{ {
uint32_t time = (clock() / m_TimPris[0]) / (255 - (m_udata.data[0x18/2] & 0xff)); u32 time = (clock() / m_TimPris[0]) / (255 - (m_udata.data[0x18/2] & 0xff));
if (time) if (time)
{ {
m_timerA->adjust(attotime::from_ticks(512, time)); m_timerA->adjust(attotime::from_ticks(512, time));
@ -804,14 +793,14 @@ void scsp_device::UpdateReg(int reg)
break; break;
case 0x1a: case 0x1a:
case 0x1b: case 0x1b:
if (m_Master) if (!m_irq_cb.isnull())
{ {
m_TimPris[1] = 1 << ((m_udata.data[0x1A/2] >> 8) & 0x7); m_TimPris[1] = 1 << ((m_udata.data[0x1A/2] >> 8) & 0x7);
m_TimCnt[1] = (m_udata.data[0x1A/2] & 0xff) << 8; m_TimCnt[1] = (m_udata.data[0x1A/2] & 0xff) << 8;
if ((m_udata.data[0x1A/2] & 0xff) != 255) if ((m_udata.data[0x1A/2] & 0xff) != 255)
{ {
uint32_t time = (clock() / m_TimPris[1]) / (255 - (m_udata.data[0x1A/2] & 0xff)); u32 time = (clock() / m_TimPris[1]) / (255 - (m_udata.data[0x1A/2] & 0xff));
if (time) if (time)
{ {
m_timerB->adjust(attotime::from_ticks(512, time)); m_timerB->adjust(attotime::from_ticks(512, time));
@ -821,14 +810,14 @@ void scsp_device::UpdateReg(int reg)
break; break;
case 0x1C: case 0x1C:
case 0x1D: case 0x1D:
if (m_Master) if (!m_irq_cb.isnull())
{ {
m_TimPris[2] = 1 << ((m_udata.data[0x1C/2] >> 8) & 0x7); m_TimPris[2] = 1 << ((m_udata.data[0x1C/2] >> 8) & 0x7);
m_TimCnt[2] = (m_udata.data[0x1C/2] & 0xff) << 8; m_TimCnt[2] = (m_udata.data[0x1C/2] & 0xff) << 8;
if ((m_udata.data[0x1C/2] & 0xff) != 255) if ((m_udata.data[0x1C/2] & 0xff) != 255)
{ {
uint32_t time = (clock() / m_TimPris[2]) / (255 - (m_udata.data[0x1C/2] & 0xff)); u32 time = (clock() / m_TimPris[2]) / (255 - (m_udata.data[0x1C/2] & 0xff));
if (time) if (time)
{ {
m_timerC->adjust(attotime::from_ticks(512, time)); m_timerC->adjust(attotime::from_ticks(512, time));
@ -838,7 +827,7 @@ void scsp_device::UpdateReg(int reg)
break; break;
case 0x1e: // SCIEB case 0x1e: // SCIEB
case 0x1f: case 0x1f:
if (m_Master) if (!m_irq_cb.isnull())
{ {
CheckPendingIRQ(); CheckPendingIRQ();
@ -848,7 +837,7 @@ void scsp_device::UpdateReg(int reg)
break; break;
case 0x20: // SCIPD case 0x20: // SCIPD
case 0x21: case 0x21:
if (m_Master) if (!m_irq_cb.isnull())
{ {
if (m_udata.data[0x1e/2] & m_udata.data[0x20/2] & 0x20) if (m_udata.data[0x1e/2] & m_udata.data[0x20/2] & 0x20)
popmessage("SCSP SCIPD write %04x, contact MAMEdev",m_udata.data[0x20/2]); popmessage("SCSP SCIPD write %04x, contact MAMEdev",m_udata.data[0x20/2]);
@ -857,7 +846,7 @@ void scsp_device::UpdateReg(int reg)
case 0x22: //SCIRE case 0x22: //SCIRE
case 0x23: case 0x23:
if (m_Master) if (!m_irq_cb.isnull())
{ {
m_udata.data[0x20/2] &= ~m_udata.data[0x22/2]; m_udata.data[0x20/2] &= ~m_udata.data[0x22/2];
ResetInterrupts(); ResetInterrupts();
@ -884,7 +873,7 @@ void scsp_device::UpdateReg(int reg)
case 0x27: case 0x27:
case 0x28: case 0x28:
case 0x29: case 0x29:
if (m_Master) if (!m_irq_cb.isnull())
{ {
m_IrqTimA = DecodeSCI(SCITMA); m_IrqTimA = DecodeSCI(SCITMA);
m_IrqTimBC = DecodeSCI(SCITMB); m_IrqTimBC = DecodeSCI(SCITMB);
@ -924,7 +913,7 @@ void scsp_device::UpdateRegR(int reg)
case 4: case 4:
case 5: case 5:
{ {
uint16_t v = m_udata.data[0x4/2]; u16 v = m_udata.data[0x4/2];
v &= 0xff00; v &= 0xff00;
v |= m_MidiStack[m_MidiR]; v |= m_MidiStack[m_MidiR];
m_irq_cb(m_IrqMidi, CLEAR_LINE); // cancel the IRQ m_irq_cb(m_IrqMidi, CLEAR_LINE); // cancel the IRQ
@ -942,11 +931,11 @@ void scsp_device::UpdateRegR(int reg)
{ {
// MSLC | CA |SGC|EG // MSLC | CA |SGC|EG
// f e d c b a 9 8 7 6 5 4 3 2 1 0 // f e d c b a 9 8 7 6 5 4 3 2 1 0
uint8_t MSLC = (m_udata.data[0x8/2] >> 11) & 0x1f; u8 MSLC = (m_udata.data[0x8/2] >> 11) & 0x1f;
SCSP_SLOT *slot = m_Slots + MSLC; SCSP_SLOT *slot = m_Slots + MSLC;
uint32_t SGC = (slot->EG.state) & 3; u32 SGC = (slot->EG.state) & 3;
uint32_t CA = (slot->cur_addr >> (SHIFT + 12)) & 0xf; u32 CA = (slot->cur_addr >> (SHIFT + 12)) & 0xf;
uint32_t EG = (0x1f - (slot->EG.volume >> (EG_SHIFT + 5))) & 0x1f; u32 EG = (0x1f - (slot->EG.volume >> (EG_SHIFT + 5))) & 0x1f;
/* note: according to the manual MSLC is write only, CA, SGC and EG read only. */ /* note: according to the manual MSLC is write only, CA, SGC and EG read only. */
m_udata.data[0x8/2] = /*(MSLC << 11) |*/ (CA << 7) | (SGC << 5) | EG; m_udata.data[0x8/2] = /*(MSLC << 11) |*/ (CA << 7) | (SGC << 5) | EG;
} }
@ -976,21 +965,21 @@ void scsp_device::UpdateRegR(int reg)
} }
} }
void scsp_device::w16(uint32_t addr, uint16_t val) void scsp_device::w16(u32 addr, u16 val)
{ {
addr &= 0xffff; addr &= 0xffff;
if (addr < 0x400) if (addr < 0x400)
{ {
int slot = addr / 0x20; int slot = addr / 0x20;
addr &= 0x1f; addr &= 0x1f;
*((uint16_t *) (m_Slots[slot].udata.datab + (addr))) = val; *((u16 *) (m_Slots[slot].udata.datab + (addr))) = val;
UpdateSlotReg(slot, addr & 0x1f); UpdateSlotReg(slot, addr & 0x1f);
} }
else if (addr < 0x600) else if (addr < 0x600)
{ {
if (addr < 0x430) if (addr < 0x430)
{ {
*((uint16_t *) (m_udata.datab + ((addr & 0x3f)))) = val; *((u16 *) (m_udata.datab + ((addr & 0x3f)))) = val;
UpdateReg(addr & 0x3f); UpdateReg(addr & 0x3f);
} }
} }
@ -1000,11 +989,11 @@ void scsp_device::w16(uint32_t addr, uint16_t val)
{ {
//DSP //DSP
if (addr < 0x780) //COEF if (addr < 0x780) //COEF
*((uint16_t *) (m_DSP.COEF + (addr - 0x700) / 2)) = val; *((u16 *) (m_DSP.COEF + (addr - 0x700) / 2)) = val;
else if (addr < 0x7c0) else if (addr < 0x7c0)
*((uint16_t *) (m_DSP.MADRS + (addr - 0x780) / 2)) = val; *((u16 *) (m_DSP.MADRS + (addr - 0x780) / 2)) = val;
else if (addr < 0x800) // MADRS is mirrored twice else if (addr < 0x800) // MADRS is mirrored twice
*((uint16_t *) (m_DSP.MADRS + (addr - 0x7c0) / 2)) = val; *((u16 *) (m_DSP.MADRS + (addr - 0x7c0) / 2)) = val;
else if (addr < 0xC00) else if (addr < 0xC00)
{ {
*((uint16_t *) (m_DSP.MPRO + (addr - 0x800) / 2)) = val; *((uint16_t *) (m_DSP.MPRO + (addr - 0x800) / 2)) = val;
@ -1017,23 +1006,23 @@ void scsp_device::w16(uint32_t addr, uint16_t val)
} }
} }
uint16_t scsp_device::r16(uint32_t addr) u16 scsp_device::r16(u32 addr)
{ {
uint16_t v = 0; u16 v = 0;
addr &= 0xffff; addr &= 0xffff;
if (addr < 0x400) if (addr < 0x400)
{ {
int slot = addr / 0x20; int slot = addr / 0x20;
addr &= 0x1f; addr &= 0x1f;
UpdateSlotRegR(slot, addr & 0x1f); UpdateSlotRegR(slot, addr & 0x1f);
v = *((uint16_t *) (m_Slots[slot].udata.datab + (addr))); v = *((u16 *) (m_Slots[slot].udata.datab + (addr)));
} }
else if (addr < 0x600) else if (addr < 0x600)
{ {
if (addr < 0x430) if (addr < 0x430)
{ {
UpdateRegR(addr & 0x3f); UpdateRegR(addr & 0x3f);
v = *((uint16_t *) (m_udata.datab + ((addr & 0x3f)))); v = *((u16 *) (m_udata.datab + ((addr & 0x3f))));
} }
} }
else if (addr < 0x700) else if (addr < 0x700)
@ -1042,13 +1031,13 @@ uint16_t scsp_device::r16(uint32_t addr)
{ {
//DSP //DSP
if (addr < 0x780) //COEF if (addr < 0x780) //COEF
v= *((uint16_t *) (m_DSP.COEF + (addr - 0x700) / 2)); v= *((u16 *) (m_DSP.COEF + (addr - 0x700) / 2));
else if (addr < 0x7c0) else if (addr < 0x7c0)
v= *((uint16_t *) (m_DSP.MADRS + (addr - 0x780) / 2)); v= *((u16 *) (m_DSP.MADRS + (addr - 0x780) / 2));
else if (addr < 0x800) else if (addr < 0x800)
v= *((uint16_t *) (m_DSP.MADRS + (addr - 0x7c0) / 2)); v= *((u16 *) (m_DSP.MADRS + (addr - 0x7c0) / 2));
else if (addr < 0xC00) else if (addr < 0xC00)
v= *((uint16_t *) (m_DSP.MPRO + (addr - 0x800) / 2)); v= *((u16 *) (m_DSP.MPRO + (addr - 0x800) / 2));
else if (addr < 0xE00) else if (addr < 0xE00)
{ {
if (addr & 2) if (addr & 2)
@ -1071,7 +1060,7 @@ uint16_t scsp_device::r16(uint32_t addr)
v = m_DSP.MIXS[(addr >> 2) & 0xf] >> 16; v = m_DSP.MIXS[(addr >> 2) & 0xf] >> 16;
} }
else if (addr < 0xEE0) else if (addr < 0xEE0)
v = *((uint16_t *) (m_DSP.EFREG + (addr - 0xec0) / 2)); v = *((u16 *) (m_DSP.EFREG + (addr - 0xec0) / 2));
else else
{ {
/**! /**!
@ -1112,14 +1101,14 @@ uint16_t scsp_device::r16(uint32_t addr)
*/ */
logerror("SCSP: Reading from EXTS register %08x\n", addr); logerror("SCSP: Reading from EXTS register %08x\n", addr);
if (addr < 0xEE4) if (addr < 0xEE4)
v = *((uint16_t *) (m_DSP.EXTS + (addr - 0xee0) / 2)); v = *((u16 *) (m_DSP.EXTS + (addr - 0xee0) / 2));
} }
} }
return v; return v;
} }
inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot) inline s32 scsp_device::UpdateSlot(SCSP_SLOT *slot)
{ {
if (SSCTL(slot) == 3) // manual says cannot be used if (SSCTL(slot) == 3) // manual says cannot be used
{ {
@ -1127,11 +1116,11 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
return 0; return 0;
} }
int32_t sample = 0; // NB: Shouldn't be necessary, but GCC 8.2.1 claims otherwise. s32 sample = 0; // NB: Shouldn't be necessary, but GCC 8.2.1 claims otherwise.
int step = slot->step; int step = slot->step;
uint32_t addr1, addr2, addr_select; // current and next sample addresses u32 addr1, addr2, addr_select; // current and next sample addresses
uint32_t *addr[2] = {&addr1, &addr2}; // used for linear interpolation u32 *addr[2] = {&addr1, &addr2}; // used for linear interpolation
uint32_t *slot_addr[2] = {&(slot->cur_addr), &(slot->nxt_addr)}; // u32 *slot_addr[2] = {&(slot->cur_addr), &(slot->nxt_addr)}; //
if (PLFOS(slot) != 0) if (PLFOS(slot) != 0)
{ {
@ -1152,7 +1141,7 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
if (MDL(slot) != 0 || MDXSL(slot) != 0 || MDYSL(slot) != 0) if (MDL(slot) != 0 || MDXSL(slot) != 0 || MDYSL(slot) != 0)
{ {
int32_t smp = (m_RINGBUF[(m_BUFPTR + MDXSL(slot)) & 63] + m_RINGBUF[(m_BUFPTR + MDYSL(slot)) & 63]) / 2; s32 smp = (m_RINGBUF[(m_BUFPTR + MDXSL(slot)) & 63] + m_RINGBUF[(m_BUFPTR + MDYSL(slot)) & 63]) / 2;
smp <<= 0xA; // associate cycle with 1024 smp <<= 0xA; // associate cycle with 1024
smp >>= 0x1A - MDL(slot); // ex. for MDL=0xF, sample range corresponds to +/- 64 pi (32=2^5 cycles) so shift by 11 (16-5 == 0x1A-0xF) smp >>= 0x1A - MDL(slot); // ex. for MDL=0xF, sample range corresponds to +/- 64 pi (32=2^5 cycles) so shift by 11 (16-5 == 0x1A-0xF)
@ -1167,30 +1156,30 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
{ {
int8_t p1 = read_byte(SA(slot) + addr1); int8_t p1 = read_byte(SA(slot) + addr1);
int8_t p2 = read_byte(SA(slot) + addr2); int8_t p2 = read_byte(SA(slot) + addr2);
int32_t s; s32 s;
int32_t fpart=slot->cur_addr & ((1 << SHIFT) - 1); s32 fpart=slot->cur_addr & ((1 << SHIFT) - 1);
s = (int) (p1 << 8) * ((1 << SHIFT) - fpart) + (int) (p2 << 8) * fpart; s = (int) (p1 << 8) * ((1 << SHIFT) - fpart) + (int) (p2 << 8) * fpart;
sample = (s >> SHIFT); sample = (s >> SHIFT);
} }
else //16 bit signed (endianness?) else //16 bit signed (endianness?)
{ {
int16_t p1 = read_word(SA(slot) + addr1); s16 p1 = read_word(SA(slot) + addr1);
int16_t p2 = read_word(SA(slot) + addr2); s16 p2 = read_word(SA(slot) + addr2);
int32_t s; s32 s;
int32_t fpart = slot->cur_addr & ((1 << SHIFT) - 1); s32 fpart = slot->cur_addr & ((1 << SHIFT) - 1);
s = (int)(p1) * ((1 << SHIFT) - fpart) + (int)(p2) * fpart; s = (int)(p1) * ((1 << SHIFT) - fpart) + (int)(p2) * fpart;
sample = (s >> SHIFT); sample = (s >> SHIFT);
} }
} }
else if (SSCTL(slot) == 1) // Internally generated data (Noise) else if (SSCTL(slot) == 1) // Internally generated data (Noise)
sample = (int16_t)(machine().rand() & 0xffff); // Unknown algorithm sample = (s16)(machine().rand() & 0xffff); // Unknown algorithm
else if (SSCTL(slot) >= 2) // Internally generated data (All 0) else if (SSCTL(slot) >= 2) // Internally generated data (All 0)
sample = 0; sample = 0;
if (SBCTL(slot) & 0x1) if (SBCTL(slot) & 0x1)
sample ^= 0x7FFF; sample ^= 0x7FFF;
if (SBCTL(slot) & 0x2) if (SBCTL(slot) & 0x2)
sample = (int16_t)(sample ^ 0x8000); sample = (s16)(sample ^ 0x8000);
if (slot->Backwards) if (slot->Backwards)
slot->cur_addr -= step; slot->cur_addr -= step;
@ -1209,7 +1198,7 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
for (addr_select = 0; addr_select < 2; addr_select++) for (addr_select = 0; addr_select < 2; addr_select++)
{ {
int32_t rem_addr; s32 rem_addr;
switch (LPCTL(slot)) switch (LPCTL(slot))
{ {
case 0: //no loop case 0: //no loop
@ -1274,12 +1263,12 @@ inline int32_t scsp_device::UpdateSlot(SCSP_SLOT *slot)
{ {
if (!SDIR(slot)) if (!SDIR(slot))
{ {
uint16_t Enc = ((TL(slot)) << 0x0) | (0x7 << 0xd); u16 Enc = ((TL(slot)) << 0x0) | (0x7 << 0xd);
*m_RBUFDST = (sample * m_LPANTABLE[Enc]) >> (SHIFT + 1); *m_RBUFDST = (sample * m_LPANTABLE[Enc]) >> (SHIFT + 1);
} }
else else
{ {
uint16_t Enc = (0 << 0x0) | (0x7 << 0xd); u16 Enc = (0 << 0x0) | (0x7 << 0xd);
*m_RBUFDST = (sample * m_LPANTABLE[Enc]) >> (SHIFT + 1); *m_RBUFDST = (sample * m_LPANTABLE[Enc]) >> (SHIFT + 1);
} }
} }
@ -1299,7 +1288,7 @@ void scsp_device::DoMasterSamples(int nsamples)
for (int s = 0; s < nsamples; ++s) for (int s = 0; s < nsamples; ++s)
{ {
int32_t smpl = 0, smpr = 0; s32 smpl = 0, smpr = 0;
for (int sl = 0; sl < 32; ++sl) for (int sl = 0; sl < 32; ++sl)
{ {
@ -1311,9 +1300,9 @@ void scsp_device::DoMasterSamples(int nsamples)
if (m_Slots[sl].active) if (m_Slots[sl].active)
{ {
SCSP_SLOT *slot = m_Slots + sl; SCSP_SLOT *slot = m_Slots + sl;
uint16_t Enc; u16 Enc;
int32_t sample = UpdateSlot(slot); s32 sample = UpdateSlot(slot);
Enc = ((TL(slot)) << 0x0) | ((IMXL(slot)) << 0xd); Enc = ((TL(slot)) << 0x0) | ((IMXL(slot)) << 0xd);
m_DSP.SetSample((sample*m_LPANTABLE[Enc]) >> (SHIFT-2), ISEL(slot), IMXL(slot)); m_DSP.SetSample((sample*m_LPANTABLE[Enc]) >> (SHIFT-2), ISEL(slot), IMXL(slot));
@ -1342,7 +1331,7 @@ void scsp_device::DoMasterSamples(int nsamples)
SCSP_SLOT *slot = m_Slots + i; SCSP_SLOT *slot = m_Slots + i;
if (EFSDL(slot)) if (EFSDL(slot))
{ {
uint16_t Enc = ((EFPAN(slot)) << 0x8) | ((EFSDL(slot)) << 0xd); u16 Enc = ((EFPAN(slot)) << 0x8) | ((EFSDL(slot)) << 0xd);
smpl += (m_DSP.EFREG[i] * m_LPANTABLE[Enc]) >> SHIFT; smpl += (m_DSP.EFREG[i] * m_LPANTABLE[Enc]) >> SHIFT;
smpr += (m_DSP.EFREG[i] * m_RPANTABLE[Enc]) >> SHIFT; smpr += (m_DSP.EFREG[i] * m_RPANTABLE[Enc]) >> SHIFT;
} }
@ -1354,7 +1343,7 @@ void scsp_device::DoMasterSamples(int nsamples)
if (EFSDL(slot)) if (EFSDL(slot))
{ {
m_DSP.EXTS[i] = exts[i][s]; m_DSP.EXTS[i] = exts[i][s];
uint16_t Enc = ((EFPAN(slot)) << 0x8) | ((EFSDL(slot)) << 0xd); u16 Enc = ((EFPAN(slot)) << 0x8) | ((EFSDL(slot)) << 0xd);
smpl += (m_DSP.EXTS[i] * m_LPANTABLE[Enc]) >> SHIFT; smpl += (m_DSP.EXTS[i] * m_LPANTABLE[Enc]) >> SHIFT;
smpr += (m_DSP.EXTS[i] * m_RPANTABLE[Enc]) >> SHIFT; smpr += (m_DSP.EXTS[i] * m_RPANTABLE[Enc]) >> SHIFT;
} }
@ -1379,7 +1368,7 @@ void scsp_device::DoMasterSamples(int nsamples)
/* TODO: this needs to be timer-ized */ /* TODO: this needs to be timer-ized */
void scsp_device::exec_dma() void scsp_device::exec_dma()
{ {
static uint16_t tmp_dma[3]; static u16 tmp_dma[3];
int i; int i;
logerror("SCSP: DMA transfer START\n" logerror("SCSP: DMA transfer START\n"
@ -1411,7 +1400,7 @@ void scsp_device::exec_dma()
{ {
for (i = 0; i < m_dma.dtlg; i += 2) for (i = 0; i < m_dma.dtlg; i += 2)
{ {
uint16_t tmp; u16 tmp;
tmp = r16(m_dma.drga); tmp = r16(m_dma.drga);
this->space().write_word(m_dma.dmea, tmp); this->space().write_word(m_dma.dmea, tmp);
m_dma.dmea += 2; m_dma.dmea += 2;
@ -1434,7 +1423,7 @@ void scsp_device::exec_dma()
{ {
for (i = 0; i < m_dma.dtlg; i += 2) for (i = 0; i < m_dma.dtlg; i += 2)
{ {
uint16_t tmp = read_word(m_dma.dmea); u16 tmp = read_word(m_dma.dmea);
w16(m_dma.drga, tmp); w16(m_dma.drga, tmp);
m_dma.dmea += 2; m_dma.dmea += 2;
m_dma.drga += 2; m_dma.drga += 2;
@ -1468,17 +1457,17 @@ int IRQCB(void *param)
#endif #endif
READ16_MEMBER( scsp_device::read ) READ16_MEMBER(scsp_device::read)
{ {
m_stream->update(); m_stream->update();
return r16(offset * 2); return r16(offset * 2);
} }
WRITE16_MEMBER( scsp_device::write ) WRITE16_MEMBER(scsp_device::write)
{ {
m_stream->update(); m_stream->update();
uint16_t tmp = r16(offset * 2); u16 tmp = r16(offset * 2);
COMBINE_DATA(&tmp); COMBINE_DATA(&tmp);
w16(offset * 2, tmp); w16(offset * 2, tmp);
} }
@ -1493,9 +1482,9 @@ void scsp_device::midi_in(u8 data)
CheckPendingIRQ(); CheckPendingIRQ();
} }
READ16_MEMBER( scsp_device::midi_out_r ) READ16_MEMBER(scsp_device::midi_out_r)
{ {
uint8_t val; u8 val;
val = m_MidiStack[m_MidiR++]; val = m_MidiStack[m_MidiR++];
m_MidiR &= 31; m_MidiR &= 31;
@ -1504,7 +1493,7 @@ READ16_MEMBER( scsp_device::midi_out_r )
//LFO handling //LFO handling
#define LFIX(v) ((uint32_t) ((float) (1 << LFO_SHIFT) * (v))) #define LFIX(v) ((u32) ((float) (1 << LFO_SHIFT) * (v)))
//Convert DB to multiply amplitude //Convert DB to multiply amplitude
#define DB(v) LFIX(powf(10.0f, v / 20.0f)) #define DB(v) LFIX(powf(10.0f, v / 20.0f))
@ -1590,7 +1579,7 @@ void scsp_device::LFO_Init()
} }
} }
int32_t scsp_device::PLFO_Step(SCSP_LFO_t *LFO) s32 scsp_device::PLFO_Step(SCSP_LFO_t *LFO)
{ {
int p; int p;
LFO->phase += LFO->phase_step; LFO->phase += LFO->phase_step;
@ -1602,7 +1591,7 @@ int32_t scsp_device::PLFO_Step(SCSP_LFO_t *LFO)
return p << (SHIFT - LFO_SHIFT); return p << (SHIFT - LFO_SHIFT);
} }
int32_t scsp_device::ALFO_Step(SCSP_LFO_t *LFO) s32 scsp_device::ALFO_Step(SCSP_LFO_t *LFO)
{ {
int p; int p;
LFO->phase += LFO->phase_step; LFO->phase += LFO->phase_step;
@ -1614,10 +1603,10 @@ int32_t scsp_device::ALFO_Step(SCSP_LFO_t *LFO)
return p << (SHIFT - LFO_SHIFT); return p << (SHIFT - LFO_SHIFT);
} }
void scsp_device::LFO_ComputeStep(SCSP_LFO_t *LFO,uint32_t LFOF,uint32_t LFOWS,uint32_t LFOS,int ALFO) void scsp_device::LFO_ComputeStep(SCSP_LFO_t *LFO,u32 LFOF,u32 LFOWS,u32 LFOS,int ALFO)
{ {
float step = (float) LFOFreq[LFOF] * 256.0f / 44100.0f; float step = (float) LFOFreq[LFOF] * 256.0f / 44100.0f;
LFO->phase_step = (uint32_t) ((float) (1 << LFO_SHIFT) * step); LFO->phase_step = (u32) ((float) (1 << LFO_SHIFT) * step);
if (ALFO) if (ALFO)
{ {
switch (LFOWS) switch (LFOWS)

View File

@ -20,20 +20,20 @@ class scsp_device : public device_t,
public device_rom_interface public device_rom_interface
{ {
public: public:
static constexpr feature_type imperfect_features() { return feature::SOUND; } // DSP incorrections, etc static constexpr feature_type imperfect_features() { return feature::SOUND; } // DSP / EG incorrections, etc
scsp_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 22'579'200); scsp_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock = 22'579'200);
auto irq_cb() { return m_irq_cb.bind(); } auto irq_cb() { return m_irq_cb.bind(); }
auto main_irq_cb() { return m_main_irq_cb.bind(); } auto main_irq_cb() { return m_main_irq_cb.bind(); }
// SCSP register access // SCSP register access
DECLARE_READ16_MEMBER( read ); DECLARE_READ16_MEMBER(read);
DECLARE_WRITE16_MEMBER( write ); DECLARE_WRITE16_MEMBER(write);
// MIDI I/O access (used for comms on Model 2/3) // MIDI I/O access (used for comms on Model 2/3)
void midi_in(u8 data); void midi_in(u8 data);
DECLARE_READ16_MEMBER( midi_out_r ); DECLARE_READ16_MEMBER(midi_out_r);
protected: protected:
// device-level overrides // device-level overrides
@ -61,14 +61,14 @@ private:
int RR; //Release int RR; //Release
int DL; //Decay level int DL; //Decay level
uint8_t EGHOLD; u8 EGHOLD;
uint8_t LPLINK; u8 LPLINK;
}; };
struct SCSP_LFO_t struct SCSP_LFO_t
{ {
uint16_t phase; u16 phase;
uint32_t phase_step; u32 phase_step;
int *table; int *table;
int *scale; int *scale;
}; };
@ -77,20 +77,20 @@ private:
{ {
union union
{ {
uint16_t data[0x10]; //only 0x1a bytes used u16 data[0x10]; //only 0x1a bytes used
uint8_t datab[0x20]; u8 datab[0x20];
} udata; } udata;
uint8_t Backwards; //the wave is playing backwards u8 Backwards; //the wave is playing backwards
uint8_t active; //this slot is currently playing u8 active; //this slot is currently playing
uint32_t cur_addr; //current play address (24.8) u32 cur_addr; //current play address (24.8)
uint32_t nxt_addr; //next play address u32 nxt_addr; //next play address
uint32_t step; //pitch step (24.8) u32 step; //pitch step (24.8)
SCSP_EG_t EG; //Envelope SCSP_EG_t EG; //Envelope
SCSP_LFO_t PLFO; //Phase LFO SCSP_LFO_t PLFO; //Phase LFO
SCSP_LFO_t ALFO; //Amplitude LFO SCSP_LFO_t ALFO; //Amplitude LFO
int slot; int slot;
int16_t Prev; //Previous sample (for interpolation) s16 Prev; //Previous sample (for interpolation)
}; };
devcb_write8 m_irq_cb; /* irq callback */ devcb_write8 m_irq_cb; /* irq callback */
@ -98,29 +98,28 @@ private:
union union
{ {
uint16_t data[0x30/2]; u16 data[0x30/2];
uint8_t datab[0x30]; u8 datab[0x30];
} m_udata; } m_udata;
SCSP_SLOT m_Slots[32]; SCSP_SLOT m_Slots[32];
int16_t m_RINGBUF[128]; s16 m_RINGBUF[128];
uint8_t m_BUFPTR; u8 m_BUFPTR;
#if SCSP_FM_DELAY #if SCSP_FM_DELAY
int16_t m_DELAYBUF[SCSP_FM_DELAY]; s16 m_DELAYBUF[SCSP_FM_DELAY];
uint8_t m_DELAYPTR; u8 m_DELAYPTR;
#endif #endif
char m_Master;
sound_stream * m_stream; sound_stream * m_stream;
uint32_t m_IrqTimA; u32 m_IrqTimA;
uint32_t m_IrqTimBC; u32 m_IrqTimBC;
uint32_t m_IrqMidi; u32 m_IrqMidi;
uint8_t m_MidiOutW, m_MidiOutR; u8 m_MidiOutW, m_MidiOutR;
uint8_t m_MidiStack[32]; u8 m_MidiStack[32];
uint8_t m_MidiW, m_MidiR; u8 m_MidiW, m_MidiR;
int32_t m_EG_TABLE[0x400]; s32 m_EG_TABLE[0x400];
int m_LPANTABLE[0x10000]; int m_LPANTABLE[0x10000];
int m_RPANTABLE[0x10000]; int m_RPANTABLE[0x10000];
@ -134,15 +133,15 @@ private:
// DMA stuff // DMA stuff
struct struct
{ {
uint32_t dmea; u32 dmea;
uint16_t drga; u16 drga;
uint16_t dtlg; u16 dtlg;
uint8_t dgate; u8 dgate;
uint8_t ddir; u8 ddir;
} m_dma; } m_dma;
uint16_t m_mcieb; u16 m_mcieb;
uint16_t m_mcipd; u16 m_mcipd;
int m_ARTABLE[64], m_DRTABLE[64]; int m_ARTABLE[64], m_DRTABLE[64];
@ -155,7 +154,7 @@ private:
int m_length; int m_length;
int16_t *m_RBUFDST; //this points to where the sample will be stored in the RingBuf s16 *m_RBUFDST; //this points to where the sample will be stored in the RingBuf
//LFO //LFO
int m_PLFO_TRI[256], m_PLFO_SQR[256], m_PLFO_SAW[256], m_PLFO_NOI[256]; int m_PLFO_TRI[256], m_PLFO_SQR[256], m_PLFO_SAW[256], m_PLFO_NOI[256];
@ -164,18 +163,18 @@ private:
int m_ASCALES[8][256]; int m_ASCALES[8][256];
void exec_dma(); /*state DMA transfer function*/ void exec_dma(); /*state DMA transfer function*/
uint8_t DecodeSCI(uint8_t irq); u8 DecodeSCI(u8 irq);
void CheckPendingIRQ(); void CheckPendingIRQ();
void MainCheckPendingIRQ(uint16_t irq_type); void MainCheckPendingIRQ(u16 irq_type);
void ResetInterrupts(); void ResetInterrupts();
TIMER_CALLBACK_MEMBER( timerA_cb ); TIMER_CALLBACK_MEMBER(timerA_cb);
TIMER_CALLBACK_MEMBER( timerB_cb ); TIMER_CALLBACK_MEMBER(timerB_cb);
TIMER_CALLBACK_MEMBER( timerC_cb ); TIMER_CALLBACK_MEMBER(timerC_cb);
int Get_AR(int base, int R); int Get_AR(int base, int R);
int Get_DR(int base, int R); int Get_DR(int base, int R);
void Compute_EG(SCSP_SLOT *slot); void Compute_EG(SCSP_SLOT *slot);
int EG_Update(SCSP_SLOT *slot); int EG_Update(SCSP_SLOT *slot);
uint32_t Step(SCSP_SLOT *slot); u32 Step(SCSP_SLOT *slot);
void Compute_LFO(SCSP_SLOT *slot); void Compute_LFO(SCSP_SLOT *slot);
void StartSlot(SCSP_SLOT *slot); void StartSlot(SCSP_SLOT *slot);
void StopSlot(SCSP_SLOT *slot, int keyoff); void StopSlot(SCSP_SLOT *slot, int keyoff);
@ -184,16 +183,16 @@ private:
void UpdateReg(int reg); void UpdateReg(int reg);
void UpdateSlotRegR(int slot, int reg); void UpdateSlotRegR(int slot, int reg);
void UpdateRegR(int reg); void UpdateRegR(int reg);
void w16(uint32_t addr, uint16_t val); void w16(u32 addr, u16 val);
uint16_t r16(uint32_t addr); u16 r16(u32 addr);
inline int32_t UpdateSlot(SCSP_SLOT *slot); inline s32 UpdateSlot(SCSP_SLOT *slot);
void DoMasterSamples(int nsamples); void DoMasterSamples(int nsamples);
//LFO //LFO
void LFO_Init(); void LFO_Init();
int32_t PLFO_Step(SCSP_LFO_t *LFO); s32 PLFO_Step(SCSP_LFO_t *LFO);
int32_t ALFO_Step(SCSP_LFO_t *LFO); s32 ALFO_Step(SCSP_LFO_t *LFO);
void LFO_ComputeStep(SCSP_LFO_t *LFO, uint32_t LFOF, uint32_t LFOWS, uint32_t LFOS, int ALFO); void LFO_ComputeStep(SCSP_LFO_t *LFO, u32 LFOF, u32 LFOWS, u32 LFOS, int ALFO);
}; };
DECLARE_DEVICE_TYPE(SCSP, scsp_device) DECLARE_DEVICE_TYPE(SCSP, scsp_device)

View File

@ -8,10 +8,10 @@
namespace { namespace {
uint16_t PACK(int32_t val) u16 PACK(s32 val)
{ {
int const sign = BIT(val, 23); int const sign = BIT(val, 23);
uint32_t temp = (val ^ (val << 1)) & 0xFFFFFF; u32 temp = (val ^ (val << 1)) & 0xFFFFFF;
int exponent = 0; int exponent = 0;
for (int k = 0; k < 12; k++) for (int k = 0; k < 12; k++)
{ {
@ -29,15 +29,15 @@ uint16_t PACK(int32_t val)
val |= sign << 15; val |= sign << 15;
val |= exponent << 11; val |= exponent << 11;
return uint16_t(val); return u16(val);
} }
static int32_t UNPACK(uint16_t val) static s32 UNPACK(u16 val)
{ {
int const sign = BIT(val, 15); int const sign = BIT(val, 15);
int exponent = (val >> 11) & 0xF; int exponent = (val >> 11) & 0xF;
int const mantissa = val & 0x7FF; int const mantissa = val & 0x7FF;
int32_t uval = mantissa << 11; s32 uval = mantissa << 11;
if (exponent > 11) if (exponent > 11)
{ {
exponent = 11; exponent = 11;
@ -79,48 +79,48 @@ void SCSPDSP::Step()
f=fopen("dsp.txt","wt"); f=fopen("dsp.txt","wt");
#endif #endif
int32_t ACC = 0; //26 bit s32 ACC = 0; //26 bit
int32_t MEMVAL = 0; s32 MEMVAL = 0;
int32_t FRC_REG = 0; //13 bit s32 FRC_REG = 0; //13 bit
int32_t Y_REG = 0; //24 bit s32 Y_REG = 0; //24 bit
uint32_t ADRS_REG = 0; //13 bit u32 ADRS_REG = 0; //13 bit
for (int step = 0; step < /*128*/LastStep; ++step) for (int step = 0; step < /*128*/LastStep; ++step)
{ {
uint16_t *const IPtr = MPRO + (step * 4); u16 *const IPtr = MPRO + (step * 4);
//if (!IPtr[0] && !IPtr[1] && !IPtr[2] && !IPtr[3]) //if (!IPtr[0] && !IPtr[1] && !IPtr[2] && !IPtr[3])
//break; //break;
uint32_t const TRA = (IPtr[0] >> 8) & 0x7F; u32 const TRA = (IPtr[0] >> 8) & 0x7F;
uint32_t const TWT = (IPtr[0] >> 7) & 0x01; u32 const TWT = (IPtr[0] >> 7) & 0x01;
uint32_t const TWA = (IPtr[0] >> 0) & 0x7F; u32 const TWA = (IPtr[0] >> 0) & 0x7F;
uint32_t const XSEL = (IPtr[1] >> 15) & 0x01; u32 const XSEL = (IPtr[1] >> 15) & 0x01;
uint32_t const YSEL = (IPtr[1] >> 13) & 0x03; u32 const YSEL = (IPtr[1] >> 13) & 0x03;
uint32_t const IRA = (IPtr[1] >> 6) & 0x3F; u32 const IRA = (IPtr[1] >> 6) & 0x3F;
uint32_t const IWT = (IPtr[1] >> 5) & 0x01; u32 const IWT = (IPtr[1] >> 5) & 0x01;
uint32_t const IWA = (IPtr[1] >> 0) & 0x1F; u32 const IWA = (IPtr[1] >> 0) & 0x1F;
uint32_t const TABLE = (IPtr[2] >> 15) & 0x01; u32 const TABLE = (IPtr[2] >> 15) & 0x01;
uint32_t const MWT = (IPtr[2] >> 14) & 0x01; u32 const MWT = (IPtr[2] >> 14) & 0x01;
uint32_t const MRD = (IPtr[2] >> 13) & 0x01; u32 const MRD = (IPtr[2] >> 13) & 0x01;
uint32_t const EWT = (IPtr[2] >> 12) & 0x01; u32 const EWT = (IPtr[2] >> 12) & 0x01;
uint32_t const EWA = (IPtr[2] >> 8) & 0x0F; u32 const EWA = (IPtr[2] >> 8) & 0x0F;
uint32_t const ADRL = (IPtr[2] >> 7) & 0x01; u32 const ADRL = (IPtr[2] >> 7) & 0x01;
uint32_t const FRCL = (IPtr[2] >> 6) & 0x01; u32 const FRCL = (IPtr[2] >> 6) & 0x01;
uint32_t const SHIFT = (IPtr[2] >> 4) & 0x03; u32 const SHIFT = (IPtr[2] >> 4) & 0x03;
uint32_t const YRL = (IPtr[2] >> 3) & 0x01; u32 const YRL = (IPtr[2] >> 3) & 0x01;
uint32_t const NEGB = (IPtr[2] >> 2) & 0x01; u32 const NEGB = (IPtr[2] >> 2) & 0x01;
uint32_t const ZERO = (IPtr[2] >> 1) & 0x01; u32 const ZERO = (IPtr[2] >> 1) & 0x01;
uint32_t const BSEL = (IPtr[2] >> 0) & 0x01; u32 const BSEL = (IPtr[2] >> 0) & 0x01;
uint32_t const NOFL = (IPtr[3] >> 15) & 0x01; //???? u32 const NOFL = (IPtr[3] >> 15) & 0x01; //????
uint32_t const COEF = (IPtr[3] >> 9) & 0x3f; u32 const COEF = (IPtr[3] >> 9) & 0x3f;
uint32_t const MASA = (IPtr[3] >> 2) & 0x1f; //??? u32 const MASA = (IPtr[3] >> 2) & 0x1f; //???
uint32_t const ADREB = (IPtr[3] >> 1) & 0x01; u32 const ADREB = (IPtr[3] >> 1) & 0x01;
uint32_t const NXADR = (IPtr[3] >> 0) & 0x01; u32 const NXADR = (IPtr[3] >> 0) & 0x01;
//operations are done at 24 bit precision //operations are done at 24 bit precision
#if 0 #if 0
@ -154,7 +154,7 @@ void SCSPDSP::Step()
//INPUTS RW //INPUTS RW
// colmns97 hits this // colmns97 hits this
//assert(IRA < 0x32); //assert(IRA < 0x32);
int32_t INPUTS; // 24-bit s32 INPUTS; // 24-bit
if (IRA <= 0x1f) if (IRA <= 0x1f)
INPUTS = MEMS[IRA]; INPUTS = MEMS[IRA];
else if (IRA <= 0x2F) else if (IRA <= 0x2F)
@ -177,7 +177,7 @@ void SCSPDSP::Step()
} }
//Operand sel //Operand sel
int32_t B; // 26-bit s32 B; // 26-bit
if (!ZERO) if (!ZERO)
{ {
if (BSEL) if (BSEL)
@ -196,7 +196,7 @@ void SCSPDSP::Step()
else else
B = 0; B = 0;
int32_t X; // 24-bit s32 X; // 24-bit
if (XSEL) if (XSEL)
X = INPUTS; X = INPUTS;
else else
@ -208,7 +208,7 @@ void SCSPDSP::Step()
//X |= 0xFF000000; //X |= 0xFF000000;
} }
int32_t Y = 0; //13 bit s32 Y = 0; //13 bit
if (YSEL == 0) if (YSEL == 0)
Y = FRC_REG; Y = FRC_REG;
else if (YSEL == 1) else if (YSEL == 1)
@ -222,11 +222,11 @@ void SCSPDSP::Step()
Y_REG = INPUTS; Y_REG = INPUTS;
//Shifter //Shifter
int32_t SHIFTED = 0; //24 bit s32 SHIFTED = 0; //24 bit
if (SHIFT == 0) if (SHIFT == 0)
SHIFTED = std::max<int32_t>(std::min<int32_t>(ACC, 0x007FFFFF), -0x00800000); SHIFTED = std::max<s32>(std::min<s32>(ACC, 0x007FFFFF), -0x00800000);
else if (SHIFT == 1) else if (SHIFT == 1)
SHIFTED = std::max<int32_t>(std::min<int32_t>(ACC * 2, 0x007FFFFF), -0x00800000); SHIFTED = std::max<s32>(std::min<s32>(ACC * 2, 0x007FFFFF), -0x00800000);
else if (SHIFT == 2) else if (SHIFT == 2)
{ {
SHIFTED = ACC * 2; SHIFTED = ACC * 2;
@ -269,7 +269,7 @@ void SCSPDSP::Step()
if (MRD || MWT) if (MRD || MWT)
//if (0) //if (0)
{ {
uint32_t ADDR = MADRS[MASA]; u32 ADDR = MADRS[MASA];
if (!TABLE) if (!TABLE)
ADDR += DEC; ADDR += DEC;
if (ADREB) if (ADREB)
@ -315,7 +315,7 @@ void SCSPDSP::Step()
//fclose(f); //fclose(f);
} }
void SCSPDSP::SetSample(int32_t sample, int SEL, int MXL) void SCSPDSP::SetSample(s32 sample, int SEL, int MXL)
{ {
//MIXS[SEL] += sample << (MXL + 1)/*7*/; //MIXS[SEL] += sample << (MXL + 1)/*7*/;
MIXS[SEL] += sample; MIXS[SEL] += sample;
@ -329,7 +329,7 @@ void SCSPDSP::Start()
int i; int i;
for (i = 127; i >= 0; --i) for (i = 127; i >= 0; --i)
{ {
uint16_t const *const IPtr = MPRO + (i * 4); u16 const *const IPtr = MPRO + (i * 4);
if (IPtr[0] || IPtr[1] || IPtr[2] || IPtr[3]) if (IPtr[0] || IPtr[1] || IPtr[2] || IPtr[3])
break; break;
} }

View File

@ -10,30 +10,30 @@ struct SCSPDSP
{ {
//Config //Config
address_space *space; address_space *space;
uint32_t RBP; //Ring buf pointer u32 RBP; //Ring buf pointer
uint32_t RBL; //Delay ram (Ring buffer) size in words u32 RBL; //Delay ram (Ring buffer) size in words
//context //context
int16_t COEF[64]; //16 bit signed s16 COEF[64]; //16 bit signed
uint16_t MADRS[32]; //offsets (in words), 16 bit u16 MADRS[32]; //offsets (in words), 16 bit
uint16_t MPRO[128*4]; //128 steps 64 bit u16 MPRO[128*4]; //128 steps 64 bit
int32_t TEMP[128]; //TEMP regs,24 bit signed s32 TEMP[128]; //TEMP regs,24 bit signed
int32_t MEMS[32]; //MEMS regs,24 bit signed s32 MEMS[32]; //MEMS regs,24 bit signed
uint32_t DEC; u32 DEC;
//input //input
int32_t MIXS[16]; //MIXS, 24 bit signed s32 MIXS[16]; //MIXS, 24 bit signed
int16_t EXTS[2]; //External inputs (CDDA) 16 bit signed s16 EXTS[2]; //External inputs (CDDA) 16 bit signed
//output //output
int16_t EFREG[16]; //EFREG, 16 bit signed s16 EFREG[16]; //EFREG, 16 bit signed
bool Stopped; bool Stopped;
int LastStep; int LastStep;
void Init(); void Init();
void SetSample(int32_t sample, int32_t SEL, int32_t MXL); void SetSample(s32 sample, s32 SEL, s32 MXL);
void Step(); void Step();
void Start(); void Start();
}; };