mirror of
https://github.com/holub/mame
synced 2025-06-04 03:46:29 +03:00
Remove shaders that I didn't mean to commit, nw
This commit is contained in:
parent
1604863c07
commit
bef4466f12
@ -1,236 +0,0 @@
|
||||
//
|
||||
// PUBLIC DOMAIN CRT STYLED SCAN-LINE SHADER
|
||||
//
|
||||
// by Timothy Lottes
|
||||
//
|
||||
// This is more along the style of a really good CGA arcade monitor.
|
||||
// With RGB inputs instead of NTSC.
|
||||
// The shadow mask example has the mask rotated 90 degrees for less chromatic aberration.
|
||||
//
|
||||
// Left it unoptimized to show the theory behind the algorithm.
|
||||
//
|
||||
// It is an example what I personally would want as a display option for pixel art games.
|
||||
// Please take and use, change, or whatever.
|
||||
|
||||
//Comment these out to disable the corresponding effect.
|
||||
//#define VERTICAL //rotates shadow mask effect to fix vertical games on landscape monitors
|
||||
//#define CURVATURE //Screen curvature effect.
|
||||
#define YUV //Tint and Saturation adjustments. You adjust the settings in Lottes_CRT.vsh now...
|
||||
#define GAMMA_CONTRAST_BOOST //Expands contrast and makes image brighter but causes clipping.
|
||||
#define BLOOM //enables a bloom effect
|
||||
//#define MASK_APERTURE_GRILL //Only uncomment one of the MASK patterns at a time...
|
||||
#define MASK_TV
|
||||
//#define MASK_VGA
|
||||
//#define ORIGINAL_SCANLINES //Enable to use the original scanlines.
|
||||
//#define ORIGINAL_HARDPIX //Enable to use the original hardPix calculation.
|
||||
|
||||
//Normal MAME GLSL Uniforms
|
||||
uniform sampler2D color_texture;
|
||||
uniform vec2 color_texture_sz; // size of color_texture
|
||||
uniform vec2 color_texture_pow2_sz; // size of color texture rounded up to power of 2
|
||||
uniform vec2 screen_texture_sz; // size of output resolution
|
||||
uniform vec2 screen_texture_pow2_sz; // size of output resolution rounded up to power of 2
|
||||
|
||||
//CRT Filter Variables
|
||||
const float hardScan=-20.0; //-8,-12,-16, etc to make scalines more prominent.
|
||||
const vec2 warp=vec2(1.0/64.0,1.0/48.0); //adjusts the warp filter (curvature).
|
||||
const float maskDark=0.4; //Sets how dark a "dark subpixel" is in the aperture pattern.
|
||||
const float maskLight=1.5; //Sets how dark a "bright subpixel" is in the aperture pattern.
|
||||
const float hardPix=-6.0; //-1,-2,-4, etc to make the upscaling sharper.
|
||||
const float hardBloomScan=-2.5;
|
||||
const float hardBloomPix=-1.75;
|
||||
const float bloomAmount=1.0/12.0; //Lower this if there is too much bloom!
|
||||
const float blackClip = 0.02;
|
||||
const float brightMult = 1.2;
|
||||
const float maskStrength = 0.6; //This sets the strength of the shadow mask effect
|
||||
const vec3 gammaBoost = vec3(1.0/1.15, 1.0/1.15, 1.0/1.15);
|
||||
varying vec3 YUVr;
|
||||
varying vec3 YUVg;
|
||||
varying vec3 YUVb;
|
||||
|
||||
//CRT Filter Functions
|
||||
|
||||
// sRGB to Linear.
|
||||
// Assuing using sRGB typed textures this should not be needed.
|
||||
float ToLinear1(float c){return(c<=0.04045)?c/12.92:pow((c+0.055)/1.055,2.4);}
|
||||
vec3 ToLinear(vec3 c){return vec3(ToLinear1(c.r),ToLinear1(c.g),ToLinear1(c.b));}
|
||||
|
||||
// Linear to sRGB.
|
||||
// Assuing using sRGB typed textures this should not be needed.
|
||||
float ToSrgb1(float c){return(c<0.0031308?c*12.92:1.055*pow(c,0.41666)-0.055);}
|
||||
vec3 ToSrgb(vec3 c){return vec3(ToSrgb1(c.r),ToSrgb1(c.g),ToSrgb1(c.b));}
|
||||
|
||||
// Nearest emulated sample given floating point position and texel offset.
|
||||
// Also zero's off screen.
|
||||
vec3 Fetch(vec2 pos,vec2 off){
|
||||
pos=(floor(pos*color_texture_pow2_sz+off)+0.5)/color_texture_pow2_sz;
|
||||
//if(max(abs(pos.x-0.5),abs(pos.y-0.5))>0.5)return vec3(0.0,0.0,0.0);
|
||||
return ToLinear(texture2D(color_texture,pos.xy).rgb);}
|
||||
|
||||
// Distance in emulated pixels to nearest texel.
|
||||
vec2 Dist(vec2 pos){pos=pos*color_texture_pow2_sz;return -((pos-floor(pos))-vec2(0.5));}
|
||||
|
||||
// 1D Gaussian.
|
||||
float Gaus(float pos,float scale){return exp2(scale*pos*pos);}
|
||||
|
||||
// 3-tap Gaussian filter along horz line.
|
||||
vec3 Horz3(vec2 pos,float off){
|
||||
vec3 b=Fetch(pos,vec2(-1.0,off));
|
||||
vec3 c=Fetch(pos,vec2( 0.0,off));
|
||||
vec3 d=Fetch(pos,vec2( 1.0,off));
|
||||
float dst=Dist(pos).x;
|
||||
// Convert distance to weight.
|
||||
#ifdef ORIGINAL_HARDPIX
|
||||
float scale=hardPix;
|
||||
#else
|
||||
float scale=hardPix * max(0.2, 1.5-color_texture_sz.x/512.0);
|
||||
#endif
|
||||
float wb=Gaus(dst-1.0,scale);
|
||||
float wc=Gaus(dst+0.0,scale);
|
||||
float wd=Gaus(dst+1.0,scale);
|
||||
// Return filtered sample.
|
||||
return (b*wb+c*wc+d*wd)/(wb+wc+wd);}
|
||||
|
||||
// 5-tap Gaussian filter along horz line.
|
||||
vec3 Horz5(vec2 pos,float off){
|
||||
vec3 a=Fetch(pos,vec2(-2.0,off));
|
||||
vec3 b=Fetch(pos,vec2(-1.0,off));
|
||||
vec3 c=Fetch(pos,vec2( 0.0,off));
|
||||
vec3 d=Fetch(pos,vec2( 1.0,off));
|
||||
vec3 e=Fetch(pos,vec2( 2.0,off));
|
||||
float dst=Dist(pos).x;
|
||||
// Convert distance to weight.
|
||||
#ifdef ORIGINAL_HARDPIX
|
||||
float scale=hardPix;
|
||||
#else
|
||||
float scale=hardPix * max(0.2, 1.5-color_texture_sz.x/512.0);
|
||||
#endif
|
||||
float wa=Gaus(dst-2.0,scale);
|
||||
float wb=Gaus(dst-1.0,scale);
|
||||
float wc=Gaus(dst+0.0,scale);
|
||||
float wd=Gaus(dst+1.0,scale);
|
||||
float we=Gaus(dst+2.0,scale);
|
||||
// Return filtered sample.
|
||||
return (a*wa+b*wb+c*wc+d*wd+e*we)/(wa+wb+wc+wd+we);}
|
||||
|
||||
vec3 Horz7(vec2 pos,float off){
|
||||
vec3 a=Fetch(pos,vec2(-3.0,off));
|
||||
vec3 b=Fetch(pos,vec2(-2.0,off));
|
||||
vec3 c=Fetch(pos,vec2(-1.0,off));
|
||||
vec3 d=Fetch(pos,vec2( 0.0,off));
|
||||
vec3 e=Fetch(pos,vec2( 1.0,off));
|
||||
vec3 f=Fetch(pos,vec2( 2.0,off));
|
||||
vec3 g=Fetch(pos,vec2( 3.0,off));
|
||||
float dst=Dist(pos).x;
|
||||
// Convert distance to weight.
|
||||
float scale=hardBloomPix* max(0.5, 1.5-color_texture_sz.x/512.0);
|
||||
float wa=Gaus(dst-3.0,scale);
|
||||
float wb=Gaus(dst-2.0,scale);
|
||||
float wc=Gaus(dst-1.0,scale);
|
||||
float wd=Gaus(dst+0.0,scale);
|
||||
float we=Gaus(dst+1.0,scale);
|
||||
float wf=Gaus(dst+2.0,scale);
|
||||
float wg=Gaus(dst+3.0,scale);
|
||||
// Return filtered sample.
|
||||
return (a*wa+b*wb+c*wc+d*wd+e*we+f*wf+g*wg)/(wa+wb+wc+wd+we+wf+wg);}
|
||||
|
||||
// Return scanline weight.
|
||||
float Scan(vec2 pos,float off){
|
||||
float dst=Dist(pos).y;
|
||||
#ifdef ORIGINAL_SCANLINES
|
||||
return Gaus(dst+off,hardScan);}
|
||||
#else
|
||||
vec3 col=Fetch(pos,vec2(0.0));
|
||||
return Gaus(dst+off,hardScan/(dot(col,col)*0.25+1.0));} //Modified to make scanline respond to pixel brightness
|
||||
#endif
|
||||
|
||||
// Return scanline weight for bloom.
|
||||
float BloomScan(vec2 pos,float off){
|
||||
float dst=Dist(pos).y;
|
||||
return Gaus(dst+off,hardBloomScan);}
|
||||
|
||||
// Allow nearest three lines to effect pixel.
|
||||
vec3 Tri(vec2 pos){
|
||||
vec3 a=Horz3(pos,-1.0);
|
||||
vec3 b=Horz5(pos, 0.0);
|
||||
vec3 c=Horz3(pos, 1.0);
|
||||
float wa=Scan(pos,-1.0);
|
||||
float wb=Scan(pos, 0.0);
|
||||
float wc=Scan(pos, 1.0);
|
||||
return a*wa+b*wb+c*wc;}
|
||||
|
||||
// Small bloom.
|
||||
vec3 Bloom(vec2 pos){
|
||||
vec3 a=Horz5(pos,-2.0);
|
||||
vec3 b=Horz7(pos,-1.0);
|
||||
vec3 c=Horz7(pos, 0.0);
|
||||
vec3 d=Horz7(pos, 1.0);
|
||||
vec3 e=Horz5(pos, 2.0);
|
||||
float wa=BloomScan(pos,-2.0);
|
||||
float wb=BloomScan(pos,-1.0);
|
||||
float wc=BloomScan(pos, 0.0);
|
||||
float wd=BloomScan(pos, 1.0);
|
||||
float we=BloomScan(pos, 2.0);
|
||||
return a*wa+b*wb+c*wc+d*wd+e*we;}
|
||||
|
||||
// Distortion of scanlines, and end of screen alpha.
|
||||
vec2 Warp(vec2 pos){
|
||||
pos=pos*2.0-1.0;
|
||||
pos*=vec2(1.0+(pos.y*pos.y)*warp.x,1.0+(pos.x*pos.x)*warp.y);
|
||||
return pos*0.5+0.5;}
|
||||
|
||||
// Shadow mask.
|
||||
|
||||
vec3 Mask(vec2 pos){
|
||||
#ifdef VERTICAL
|
||||
pos.xy=pos.yx;
|
||||
#endif
|
||||
#ifdef MASK_VGA
|
||||
pos.x+=pos.y*3.0;
|
||||
vec3 mask=vec3(maskDark,maskDark,maskDark);
|
||||
pos.x=fract(pos.x/6.0);
|
||||
if(pos.x<0.333)mask.r=maskLight;
|
||||
else if(pos.x<0.666)mask.g=maskLight;
|
||||
else mask.b=maskLight;
|
||||
#endif
|
||||
#ifdef MASK_TV
|
||||
float line=maskLight;
|
||||
float odd=0.0;
|
||||
if(fract(pos.x/6.0)<0.5)odd=1.0;
|
||||
if(fract((pos.y+odd)/2.0)<0.5)line=maskDark;
|
||||
pos.x=fract(pos.x/3.0);
|
||||
vec3 mask=vec3(maskDark,maskDark,maskDark);
|
||||
if(pos.x<0.333)mask.r=maskLight;
|
||||
else if(pos.x<0.666)mask.g=maskLight;
|
||||
else mask.b=maskLight;
|
||||
mask*=line;
|
||||
#endif
|
||||
#ifdef MASK_APERTURE_GRILL
|
||||
pos.x=fract(pos.x/3.0);
|
||||
vec3 mask=vec3(maskDark,maskDark,maskDark);
|
||||
if(pos.x<0.333)mask.r=maskLight;
|
||||
else if(pos.x<0.666)mask.g=maskLight;
|
||||
else mask.b=maskLight;
|
||||
#endif
|
||||
return mask;}
|
||||
|
||||
void main(void){
|
||||
#ifdef CURVATURE
|
||||
vec2 pos=Warp(gl_TexCoord[0].xy);
|
||||
#else
|
||||
vec2 pos=gl_TexCoord[0].xy;
|
||||
#endif
|
||||
gl_FragColor.a=texture2D(color_texture,pos.xy).a;
|
||||
gl_FragColor.rgb=Tri(pos)*mix(vec3(1.0),Mask(gl_FragCoord.xy),maskStrength);
|
||||
#ifdef BLOOM
|
||||
gl_FragColor.rgb+=Bloom(pos)*bloomAmount;
|
||||
#endif
|
||||
#ifdef YUV
|
||||
gl_FragColor.rgb = vec3(dot(YUVr,gl_FragColor.rgb),dot(YUVg,gl_FragColor.rgb),dot(YUVb,gl_FragColor.rgb));
|
||||
gl_FragColor.rgb=clamp(gl_FragColor.rgb,0.0,1.0);
|
||||
#endif
|
||||
#ifdef GAMMA_CONTRAST_BOOST
|
||||
gl_FragColor.rgb=brightMult*pow(gl_FragColor.rgb,gammaBoost )-vec3(blackClip);
|
||||
#endif
|
||||
gl_FragColor.rgb=clamp(ToSrgb(gl_FragColor.rgb),0.0,1.0);
|
||||
}
|
@ -1,236 +0,0 @@
|
||||
//
|
||||
// PUBLIC DOMAIN CRT STYLED SCAN-LINE SHADER
|
||||
//
|
||||
// by Timothy Lottes
|
||||
//
|
||||
// This is more along the style of a really good CGA arcade monitor.
|
||||
// With RGB inputs instead of NTSC.
|
||||
// The shadow mask example has the mask rotated 90 degrees for less chromatic aberration.
|
||||
//
|
||||
// Left it unoptimized to show the theory behind the algorithm.
|
||||
//
|
||||
// It is an example what I personally would want as a display option for pixel art games.
|
||||
// Please take and use, change, or whatever.
|
||||
|
||||
//Comment these out to disable the corresponding effect.
|
||||
#define VERTICAL //rotates shadow mask effect to fix vertical games on landscape monitors
|
||||
#define CURVATURE //Screen curvature effect.
|
||||
#define YUV //Tint and Saturation adjustments. You adjust the settings in Lottes_CRT.vsh now...
|
||||
#define GAMMA_CONTRAST_BOOST //Expands contrast and makes image brighter but causes clipping.
|
||||
#define BLOOM //enables a bloom effect
|
||||
//#define MASK_APERTURE_GRILL //Only uncomment one of the MASK patterns at a time...
|
||||
#define MASK_TV
|
||||
//#define MASK_VGA
|
||||
//#define ORIGINAL_SCANLINES //Enable to use the original scanlines.
|
||||
//#define ORIGINAL_HARDPIX //Enable to use the original hardPix calculation.
|
||||
|
||||
//Normal MAME GLSL Uniforms
|
||||
uniform sampler2D color_texture;
|
||||
uniform vec2 color_texture_sz; // size of color_texture
|
||||
uniform vec2 color_texture_pow2_sz; // size of color texture rounded up to power of 2
|
||||
uniform vec2 screen_texture_sz; // size of output resolution
|
||||
uniform vec2 screen_texture_pow2_sz; // size of output resolution rounded up to power of 2
|
||||
|
||||
//CRT Filter Variables
|
||||
const float hardScan=-20.0; //-8,-12,-16, etc to make scalines more prominent.
|
||||
const vec2 warp=vec2(1.0/64.0,1.0/48.0); //adjusts the warp filter (curvature).
|
||||
const float maskDark=0.4; //Sets how dark a "dark subpixel" is in the aperture pattern.
|
||||
const float maskLight=1.5; //Sets how dark a "bright subpixel" is in the aperture pattern.
|
||||
const float hardPix=-5.0; //-1,-2,-4, etc to make the upscaling sharper.
|
||||
const float hardBloomScan=-2.5;
|
||||
const float hardBloomPix=-1.75;
|
||||
const float bloomAmount=1.0/12.0; //Lower this if there is too much bloom!
|
||||
const float blackClip = 0.02;
|
||||
const float brightMult = 1.2;
|
||||
const float maskStrength = 0.6; //This sets the strength of the shadow mask effect
|
||||
const vec3 gammaBoost = vec3(1.0/1.15, 1.0/1.15, 1.0/1.15);
|
||||
varying vec3 YUVr;
|
||||
varying vec3 YUVg;
|
||||
varying vec3 YUVb;
|
||||
|
||||
//CRT Filter Functions
|
||||
|
||||
// sRGB to Linear.
|
||||
// Assuing using sRGB typed textures this should not be needed.
|
||||
float ToLinear1(float c){return(c<=0.04045)?c/12.92:pow((c+0.055)/1.055,2.4);}
|
||||
vec3 ToLinear(vec3 c){return vec3(ToLinear1(c.r),ToLinear1(c.g),ToLinear1(c.b));}
|
||||
|
||||
// Linear to sRGB.
|
||||
// Assuing using sRGB typed textures this should not be needed.
|
||||
float ToSrgb1(float c){return(c<0.0031308?c*12.92:1.055*pow(c,0.41666)-0.055);}
|
||||
vec3 ToSrgb(vec3 c){return vec3(ToSrgb1(c.r),ToSrgb1(c.g),ToSrgb1(c.b));}
|
||||
|
||||
// Nearest emulated sample given floating point position and texel offset.
|
||||
// Also zero's off screen.
|
||||
vec3 Fetch(vec2 pos,vec2 off){
|
||||
pos=(floor(pos*color_texture_pow2_sz+off)+0.5)/color_texture_pow2_sz;
|
||||
//if(max(abs(pos.x-0.5),abs(pos.y-0.5))>0.5)return vec3(0.0,0.0,0.0);
|
||||
return ToLinear(texture2D(color_texture,pos.xy).rgb);}
|
||||
|
||||
// Distance in emulated pixels to nearest texel.
|
||||
vec2 Dist(vec2 pos){pos=pos*color_texture_pow2_sz;return -((pos-floor(pos))-vec2(0.5));}
|
||||
|
||||
// 1D Gaussian.
|
||||
float Gaus(float pos,float scale){return exp2(scale*pos*pos);}
|
||||
|
||||
// 3-tap Gaussian filter along horz line.
|
||||
vec3 Horz3(vec2 pos,float off){
|
||||
vec3 b=Fetch(pos,vec2(-1.0,off));
|
||||
vec3 c=Fetch(pos,vec2( 0.0,off));
|
||||
vec3 d=Fetch(pos,vec2( 1.0,off));
|
||||
float dst=Dist(pos).x;
|
||||
// Convert distance to weight.
|
||||
#ifdef ORIGINAL_HARDPIX
|
||||
float scale=hardPix;
|
||||
#else
|
||||
float scale=hardPix * max(0.2, 1.5-color_texture_sz.x/512.0);
|
||||
#endif
|
||||
float wb=Gaus(dst-1.0,scale);
|
||||
float wc=Gaus(dst+0.0,scale);
|
||||
float wd=Gaus(dst+1.0,scale);
|
||||
// Return filtered sample.
|
||||
return (b*wb+c*wc+d*wd)/(wb+wc+wd);}
|
||||
|
||||
// 5-tap Gaussian filter along horz line.
|
||||
vec3 Horz5(vec2 pos,float off){
|
||||
vec3 a=Fetch(pos,vec2(-2.0,off));
|
||||
vec3 b=Fetch(pos,vec2(-1.0,off));
|
||||
vec3 c=Fetch(pos,vec2( 0.0,off));
|
||||
vec3 d=Fetch(pos,vec2( 1.0,off));
|
||||
vec3 e=Fetch(pos,vec2( 2.0,off));
|
||||
float dst=Dist(pos).x;
|
||||
// Convert distance to weight.
|
||||
#ifdef ORIGINAL_HARDPIX
|
||||
float scale=hardPix;
|
||||
#else
|
||||
float scale=hardPix * max(0.2, 1.5-color_texture_sz.x/512.0);
|
||||
#endif
|
||||
float wa=Gaus(dst-2.0,scale);
|
||||
float wb=Gaus(dst-1.0,scale);
|
||||
float wc=Gaus(dst+0.0,scale);
|
||||
float wd=Gaus(dst+1.0,scale);
|
||||
float we=Gaus(dst+2.0,scale);
|
||||
// Return filtered sample.
|
||||
return (a*wa+b*wb+c*wc+d*wd+e*we)/(wa+wb+wc+wd+we);}
|
||||
|
||||
vec3 Horz7(vec2 pos,float off){
|
||||
vec3 a=Fetch(pos,vec2(-3.0,off));
|
||||
vec3 b=Fetch(pos,vec2(-2.0,off));
|
||||
vec3 c=Fetch(pos,vec2(-1.0,off));
|
||||
vec3 d=Fetch(pos,vec2( 0.0,off));
|
||||
vec3 e=Fetch(pos,vec2( 1.0,off));
|
||||
vec3 f=Fetch(pos,vec2( 2.0,off));
|
||||
vec3 g=Fetch(pos,vec2( 3.0,off));
|
||||
float dst=Dist(pos).x;
|
||||
// Convert distance to weight.
|
||||
float scale=hardBloomPix* max(0.5, 1.5-color_texture_sz.x/512.0);
|
||||
float wa=Gaus(dst-3.0,scale);
|
||||
float wb=Gaus(dst-2.0,scale);
|
||||
float wc=Gaus(dst-1.0,scale);
|
||||
float wd=Gaus(dst+0.0,scale);
|
||||
float we=Gaus(dst+1.0,scale);
|
||||
float wf=Gaus(dst+2.0,scale);
|
||||
float wg=Gaus(dst+3.0,scale);
|
||||
// Return filtered sample.
|
||||
return (a*wa+b*wb+c*wc+d*wd+e*we+f*wf+g*wg)/(wa+wb+wc+wd+we+wf+wg);}
|
||||
|
||||
// Return scanline weight.
|
||||
float Scan(vec2 pos,float off){
|
||||
float dst=Dist(pos).y;
|
||||
#ifdef ORIGINAL_SCANLINES
|
||||
return Gaus(dst+off,hardScan);}
|
||||
#else
|
||||
vec3 col=Fetch(pos,vec2(0.0));
|
||||
return Gaus(dst+off,hardScan/(dot(col,col)*0.25+1.0));} //Modified to make scanline respond to pixel brightness
|
||||
#endif
|
||||
|
||||
// Return scanline weight for bloom.
|
||||
float BloomScan(vec2 pos,float off){
|
||||
float dst=Dist(pos).y;
|
||||
return Gaus(dst+off,hardBloomScan);}
|
||||
|
||||
// Allow nearest three lines to effect pixel.
|
||||
vec3 Tri(vec2 pos){
|
||||
vec3 a=Horz3(pos,-1.0);
|
||||
vec3 b=Horz5(pos, 0.0);
|
||||
vec3 c=Horz3(pos, 1.0);
|
||||
float wa=Scan(pos,-1.0);
|
||||
float wb=Scan(pos, 0.0);
|
||||
float wc=Scan(pos, 1.0);
|
||||
return a*wa+b*wb+c*wc;}
|
||||
|
||||
// Small bloom.
|
||||
vec3 Bloom(vec2 pos){
|
||||
vec3 a=Horz5(pos,-2.0);
|
||||
vec3 b=Horz7(pos,-1.0);
|
||||
vec3 c=Horz7(pos, 0.0);
|
||||
vec3 d=Horz7(pos, 1.0);
|
||||
vec3 e=Horz5(pos, 2.0);
|
||||
float wa=BloomScan(pos,-2.0);
|
||||
float wb=BloomScan(pos,-1.0);
|
||||
float wc=BloomScan(pos, 0.0);
|
||||
float wd=BloomScan(pos, 1.0);
|
||||
float we=BloomScan(pos, 2.0);
|
||||
return a*wa+b*wb+c*wc+d*wd+e*we;}
|
||||
|
||||
// Distortion of scanlines, and end of screen alpha.
|
||||
vec2 Warp(vec2 pos){
|
||||
pos=pos*2.0-1.0;
|
||||
pos*=vec2(1.0+(pos.y*pos.y)*warp.x,1.0+(pos.x*pos.x)*warp.y);
|
||||
return pos*0.5+0.5;}
|
||||
|
||||
// Shadow mask.
|
||||
|
||||
vec3 Mask(vec2 pos){
|
||||
#ifdef VERTICAL
|
||||
pos.xy=pos.yx;
|
||||
#endif
|
||||
#ifdef MASK_VGA
|
||||
pos.x+=pos.y*3.0;
|
||||
vec3 mask=vec3(maskDark,maskDark,maskDark);
|
||||
pos.x=fract(pos.x/6.0);
|
||||
if(pos.x<0.333)mask.r=maskLight;
|
||||
else if(pos.x<0.666)mask.g=maskLight;
|
||||
else mask.b=maskLight;
|
||||
#endif
|
||||
#ifdef MASK_TV
|
||||
float line=maskLight;
|
||||
float odd=0.0;
|
||||
if(fract(pos.x/6.0)<0.5)odd=1.0;
|
||||
if(fract((pos.y+odd)/2.0)<0.5)line=maskDark;
|
||||
pos.x=fract(pos.x/3.0);
|
||||
vec3 mask=vec3(maskDark,maskDark,maskDark);
|
||||
if(pos.x<0.333)mask.r=maskLight;
|
||||
else if(pos.x<0.666)mask.g=maskLight;
|
||||
else mask.b=maskLight;
|
||||
mask*=line;
|
||||
#endif
|
||||
#ifdef MASK_APERTURE_GRILL
|
||||
pos.x=fract(pos.x/3.0);
|
||||
vec3 mask=vec3(maskDark,maskDark,maskDark);
|
||||
if(pos.x<0.333)mask.r=maskLight;
|
||||
else if(pos.x<0.666)mask.g=maskLight;
|
||||
else mask.b=maskLight;
|
||||
#endif
|
||||
return mask;}
|
||||
|
||||
void main(void){
|
||||
#ifdef CURVATURE
|
||||
vec2 pos=Warp(gl_TexCoord[0].xy);
|
||||
#else
|
||||
vec2 pos=gl_TexCoord[0].xy;
|
||||
#endif
|
||||
gl_FragColor.a=texture2D(color_texture,pos.xy).a;
|
||||
gl_FragColor.rgb=Tri(pos)*mix(vec3(1.0),Mask(gl_FragCoord.xy),maskStrength);
|
||||
#ifdef BLOOM
|
||||
gl_FragColor.rgb+=Bloom(pos)*bloomAmount;
|
||||
#endif
|
||||
#ifdef YUV
|
||||
gl_FragColor.rgb = vec3(dot(YUVr,gl_FragColor.rgb),dot(YUVg,gl_FragColor.rgb),dot(YUVb,gl_FragColor.rgb));
|
||||
gl_FragColor.rgb=clamp(gl_FragColor.rgb,0.0,1.0);
|
||||
#endif
|
||||
#ifdef GAMMA_CONTRAST_BOOST
|
||||
gl_FragColor.rgb=brightMult*pow(gl_FragColor.rgb,gammaBoost )-vec3(blackClip);
|
||||
#endif
|
||||
gl_FragColor.rgb=clamp(ToSrgb(gl_FragColor.rgb),0.0,1.0);
|
||||
}
|
@ -1,9 +0,0 @@
|
||||
vec4 v_color0 : COLOR0 = vec4(1.0, 0.0, 0.0, 1.0);
|
||||
vec2 v_texcoord0 : TEXCOORD0 = vec2(0.0, 0.0);
|
||||
vec2 v_texcoord1 : TEXCOORD1 = vec2(0.0, 0.0);
|
||||
vec2 v_texcoord2 : TEXCOORD2 = vec2(0.0, 0.0);
|
||||
vec2 v_texcoord3 : TEXCOORD3 = vec2(0.0, 0.0);
|
||||
|
||||
vec3 a_position : POSITION;
|
||||
vec4 a_color0 : COLOR0;
|
||||
vec2 a_texcoord0 : TEXCOORD0;
|
@ -1,26 +0,0 @@
|
||||
varying float saturation;
|
||||
varying float tint;
|
||||
varying float U; //U and W are for the tint/saturation calculations
|
||||
varying float W;
|
||||
varying vec3 YUVr;
|
||||
varying vec3 YUVg;
|
||||
varying vec3 YUVb;
|
||||
#define PI 3.141592653589
|
||||
|
||||
void main()
|
||||
{
|
||||
//gl_TexCoord[0] = gl_MultiTexCoord0;
|
||||
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
|
||||
gl_Position = ftransform();
|
||||
|
||||
//Had to move the YUV calculations to the vertex shader for space
|
||||
saturation = 1.1; // 1.0 is normal saturation. Increase as needed.
|
||||
tint = 0.0; //0.0 is 0.0 degrees of Tint. Adjust as needed.
|
||||
U = cos(tint*PI/180.0);
|
||||
W = sin(tint*PI/180.0);
|
||||
YUVr=vec3(0.701*saturation*U+0.16774*saturation*W+0.299,0.587-0.32931*saturation*W-0.587*saturation*U,-0.497*saturation*W-0.114*saturation*U+0.114);
|
||||
YUVg=vec3(-0.3281*saturation*W-0.299*saturation*U+0.299,0.413*saturation*U+0.03547*saturation*W+0.587,0.114+0.29265*saturation*W-0.114*saturation*U);
|
||||
YUVb=vec3(0.299+1.24955*saturation*W-0.299*saturation*U,-1.04634*saturation*W-0.587*saturation*U+0.587,0.886*saturation*U-0.20321*saturation*W+0.114);
|
||||
}
|
||||
|
||||
|
@ -1,26 +0,0 @@
|
||||
varying float saturation;
|
||||
varying float tint;
|
||||
varying float U; //U and W are for the tint/saturation calculations
|
||||
varying float W;
|
||||
varying vec3 YUVr;
|
||||
varying vec3 YUVg;
|
||||
varying vec3 YUVb;
|
||||
#define PI 3.141592653589
|
||||
|
||||
void main()
|
||||
{
|
||||
//gl_TexCoord[0] = gl_MultiTexCoord0;
|
||||
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
|
||||
gl_Position = ftransform();
|
||||
|
||||
//Had to move the YUV calculations to the vertex shader for space
|
||||
saturation = 1.1; // 1.0 is normal saturation. Increase as needed.
|
||||
tint = 0.0; //0.0 is 0.0 degrees of Tint. Adjust as needed.
|
||||
U = cos(tint*PI/180.0);
|
||||
W = sin(tint*PI/180.0);
|
||||
YUVr=vec3(0.701*saturation*U+0.16774*saturation*W+0.299,0.587-0.32931*saturation*W-0.587*saturation*U,-0.497*saturation*W-0.114*saturation*U+0.114);
|
||||
YUVg=vec3(-0.3281*saturation*W-0.299*saturation*U+0.299,0.413*saturation*U+0.03547*saturation*W+0.587,0.114+0.29265*saturation*W-0.114*saturation*U);
|
||||
YUVb=vec3(0.299+1.24955*saturation*W-0.299*saturation*U,-1.04634*saturation*W-0.587*saturation*U+0.587,0.886*saturation*U-0.20321*saturation*W+0.114);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user