tms9900: Modernized logging, fixed LDCR/STCR handling of reg indirect/auto-inc mode (*Rx+)

This commit is contained in:
Michael Zapf 2019-04-05 01:04:40 +02:00
parent 7dc12c21ed
commit c8dee62d29
2 changed files with 118 additions and 116 deletions

View File

@ -96,15 +96,6 @@
for some time set by a timer. This is done, for example, by circuits like for some time set by a timer. This is done, for example, by circuits like
GROMs or speech synthesis processors (TMS52xx). GROMs or speech synthesis processors (TMS52xx).
TODO:
- Fine-tune cycles
- State save
- HOLD state should be tested; I don't have test cases yet
Previous implementation with valuable info inside:
https://github.com/mamedev/mame/blob/677ec78eb50decdc40fad3d30daa3560feaff3cc/src/devices/cpu/tms9900/99xxcore.h
Michael Zapf, June 2012 Michael Zapf, June 2012
*/ */
@ -133,44 +124,31 @@ enum
The following defines can be set to 0 or 1 to disable or enable certain The following defines can be set to 0 or 1 to disable or enable certain
output in the log. output in the log.
*/ */
// Emulation setup #define LOG_OP (1U<<1) // Current instruction
#define TRACE_SETUP 0 #define LOG_EXEC (1U<<2) // Address of current instruction
#define LOG_CYCLES (1U<<4) // Cycles
#define LOG_WARN (1U<<5) // Illegal operation or other condition
#define LOG_MEM (1U<<6) // Memory access
#define LOG_CONTEXT (1U<<7) // Context switch
#define LOG_INT (1U<<8) // Interrupts
#define LOG_READY (1U<<9) // READY line input
#define LOG_CLOCK (1U<<10) // Clock pulses
#define LOG_ADDRESSBUS (1U<<11) // Address bus operation
#define LOG_STATUS (1U<<12) // Status register
#define LOG_CRU (1U<<13) // CRU operations
#define LOG_WAIT (1U<<15) // Wait states
#define LOG_HOLD (1U<<16) // Hold states
#define LOG_IDLE (1U<<17) // Idle states
#define LOG_EMU (1U<<18) // Emulation details
#define LOG_MICRO (1U<<19) // Microinstruction processing
#define LOG_INTD (1U<<20) // Interrupts (detailed phases)
#define LOG_LOAD (1U<<21) // LOAD interrupt
#define LOG_DETAIL (1U<<31) // Increased detail
// Emulation details // Minimum log should be warnings
#define TRACE_EMU 0 #define VERBOSE ( LOG_GENERAL | LOG_WARN )
// Location and command #include "logmacro.h"
#define TRACE_EXEC 0
// Memory operation
#define TRACE_MEM 0
// Address bus operation
#define TRACE_ADDRESSBUS 0
// Cycle count
#define TRACE_CYCLES 0
// Clock ticks
#define TRACE_CLOCK 0
// Wait states
#define TRACE_WAIT 0
// Interrupts
#define TRACE_INT 0
// CRU operation
#define TRACE_CRU 0
// Status register
#define TRACE_STATUS 0
// ALU details
#define TRACE_ALU 0
// Microinstruction level
#define TRACE_MICRO 0
/**************************************************************************** /****************************************************************************
Common constructor for TMS9900 and TMS9980A Common constructor for TMS9900 and TMS9980A
@ -264,6 +242,7 @@ void tms99xx_device::device_start()
save_item(NAME(m_mem_phase)); save_item(NAME(m_mem_phase));
save_item(NAME(m_load_state)); save_item(NAME(m_load_state));
save_item(NAME(m_irq_state)); save_item(NAME(m_irq_state));
save_item(NAME(m_log_interrupt));
save_item(NAME(m_reset)); save_item(NAME(m_reset));
save_item(NAME(m_irq_level)); save_item(NAME(m_irq_level));
// save_item(NAME(m_first_cycle)); // only for log output // save_item(NAME(m_first_cycle)); // only for log output
@ -320,12 +299,13 @@ void tms99xx_device::resolve_lines()
*/ */
void tms99xx_device::device_reset() void tms99xx_device::device_reset()
{ {
if (TRACE_EMU) logerror("Device reset by emulator\n"); LOGMASKED(LOG_EMU, "Device reset by emulator\n");
m_reset = true; m_reset = true;
m_check_ready = false; m_check_ready = false;
m_wait_state = false; m_wait_state = false;
ST = 0; ST = 0;
m_irq_state = false; m_irq_state = false;
m_log_interrupt = false; // only for debugging
} }
char const *const tms99xx_device::s_statename[20] = char const *const tms99xx_device::s_statename[20] =
@ -1110,7 +1090,7 @@ void tms99xx_device::build_command_lookup_table()
{ {
inst = &s_command[i]; inst = &s_command[i];
table = m_command_lookup_table.get(); table = m_command_lookup_table.get();
if (TRACE_SETUP) logerror("=== opcode=%04x, len=%d\n", inst->opcode, format_mask_len[inst->format]); LOGMASKED(LOG_EMU, "=== opcode=%04x, len=%d\n", inst->opcode, format_mask_len[inst->format]);
bitcount = 4; bitcount = 4;
opcode = inst->opcode; opcode = inst->opcode;
cmdindex = (opcode>>12) & 0x000f; cmdindex = (opcode>>12) & 0x000f;
@ -1120,7 +1100,7 @@ void tms99xx_device::build_command_lookup_table()
// Descend // Descend
if (table[cmdindex].next_digit == nullptr) if (table[cmdindex].next_digit == nullptr)
{ {
if (TRACE_SETUP) logerror("create new table at bitcount=%d for index=%d\n", bitcount, cmdindex); LOGMASKED(LOG_EMU, "create new table at bitcount=%d for index=%d\n", bitcount, cmdindex);
table[cmdindex].next_digit = std::make_unique<lookup_entry[]>(16); table[cmdindex].next_digit = std::make_unique<lookup_entry[]>(16);
for (int j=0; j < 16; j++) for (int j=0; j < 16; j++)
{ {
@ -1130,7 +1110,7 @@ void tms99xx_device::build_command_lookup_table()
} }
else else
{ {
if (TRACE_SETUP) logerror("found a table at bitcount=%d\n", bitcount); LOGMASKED(LOG_EMU, "found a table at bitcount=%d\n", bitcount);
} }
table = table[cmdindex].next_digit.get(); table = table[cmdindex].next_digit.get();
@ -1138,17 +1118,17 @@ void tms99xx_device::build_command_lookup_table()
bitcount = bitcount+4; bitcount = bitcount+4;
opcode <<= 4; opcode <<= 4;
cmdindex = (opcode>>12) & 0x000f; cmdindex = (opcode>>12) & 0x000f;
if (TRACE_SETUP) logerror("next index=%x\n", cmdindex); LOGMASKED(LOG_EMU, "next index=%x\n", cmdindex);
} }
if (TRACE_SETUP) logerror("bitcount=%d\n", bitcount); LOGMASKED(LOG_EMU, "bitcount=%d\n", bitcount);
// We are at the target level // We are at the target level
// Need to fill in the same entry for all values in the bitcount // Need to fill in the same entry for all values in the bitcount
// (if a command needs 10 bits we have to copy it four // (if a command needs 10 bits we have to copy it four
// times for all combinations with 12 bits) // times for all combinations with 12 bits)
for (int j=0; j < (1<<(bitcount-format_mask_len[inst->format])); j++) for (int j=0; j < (1<<(bitcount-format_mask_len[inst->format])); j++)
{ {
if (TRACE_SETUP) logerror("opcode=%04x at position %d\n", inst->opcode, cmdindex+j); LOGMASKED(LOG_EMU, "opcode=%04x at position %d\n", inst->opcode, cmdindex+j);
table[cmdindex+j].index = i; table[cmdindex+j].index = i;
} }
i++; i++;
@ -1197,7 +1177,7 @@ void tms99xx_device::execute_run()
{ {
if (m_reset) service_interrupt(); if (m_reset) service_interrupt();
if (TRACE_EMU) logerror("calling execute_run for %d cycles\n", m_icount); LOGMASKED(LOG_EMU, "calling execute_run for %d cycles\n", m_icount);
do do
{ {
// Only when last instruction has completed // Only when last instruction has completed
@ -1205,7 +1185,6 @@ void tms99xx_device::execute_run()
{ {
if (m_load_state) if (m_load_state)
{ {
logerror("LOAD interrupt\n");
m_irq_level = LOAD_INT; m_irq_level = LOAD_INT;
m_irq_state = false; m_irq_state = false;
service_interrupt(); service_interrupt();
@ -1223,7 +1202,7 @@ void tms99xx_device::execute_run()
if (m_program_index == NOPRG && m_idle_state) if (m_program_index == NOPRG && m_idle_state)
{ {
if (TRACE_WAIT) logerror("idle state\n"); LOGMASKED(LOG_IDLE, "IDLE state\n");
pulse_clock(1); pulse_clock(1);
if (!m_external_operation.isnull()) if (!m_external_operation.isnull())
{ {
@ -1247,7 +1226,7 @@ void tms99xx_device::execute_run()
program[MPC] != MEMORY_READ && program[MPC] != MEMORY_WRITE && program[MPC] != MEMORY_READ && program[MPC] != MEMORY_WRITE &&
program[MPC] != REG_READ && program[MPC] != REG_WRITE))) program[MPC] != REG_READ && program[MPC] != REG_WRITE)))
{ {
if (TRACE_WAIT) logerror("hold\n"); LOGMASKED(LOG_HOLD, "HOLD state\n");
if (!m_hold_acknowledged) acknowledge_hold(); if (!m_hold_acknowledged) acknowledge_hold();
pulse_clock(1); pulse_clock(1);
} }
@ -1258,7 +1237,7 @@ void tms99xx_device::execute_run()
{ {
// We are in a wait state // We are in a wait state
set_wait_state(true); set_wait_state(true);
if (TRACE_WAIT) logerror("wait\n"); LOGMASKED(LOG_WAIT, "wait state\n");
// The clock output should be used to change the state of an outer // The clock output should be used to change the state of an outer
// device which operates the READY line // device which operates the READY line
pulse_clock(1); pulse_clock(1);
@ -1270,7 +1249,7 @@ void tms99xx_device::execute_run()
// If we don't have a microprogram, acquire the next instruction // If we don't have a microprogram, acquire the next instruction
uint8_t op = (m_program_index==NOPRG)? IAQ : program[MPC]; uint8_t op = (m_program_index==NOPRG)? IAQ : program[MPC];
if (TRACE_MICRO) logerror("MPC = %d, op = %d\n", MPC, op); LOGMASKED(LOG_MICRO, "MPC = %d, op = %d\n", MPC, op);
// Call the operation of the microprogram // Call the operation of the microprogram
(this->*s_microoperation[op])(); (this->*s_microoperation[op])();
// If we have multiple passes (as in the TMS9980) // If we have multiple passes (as in the TMS9980)
@ -1286,7 +1265,7 @@ void tms99xx_device::execute_run()
} }
} }
} while (m_icount>0 && !m_reset); } while (m_icount>0 && !m_reset);
if (TRACE_EMU) logerror("cycles expired; will return soon.\n"); LOGMASKED(LOG_EMU, "cycles expired; will return soon.\n");
} }
/**************************************************************************/ /**************************************************************************/
@ -1305,7 +1284,7 @@ void tms99xx_device::execute_set_input(int irqline, int state)
if (irqline == INT_9900_LOAD) if (irqline == INT_9900_LOAD)
{ {
m_load_state = (state==ASSERT_LINE); m_load_state = (state==ASSERT_LINE);
m_irq_level = -1; m_irq_level = LOAD_INT;
m_reset = false; m_reset = false;
} }
else else
@ -1314,11 +1293,11 @@ void tms99xx_device::execute_set_input(int irqline, int state)
if (state==ASSERT_LINE) if (state==ASSERT_LINE)
{ {
m_irq_level = get_intlevel(state); m_irq_level = get_intlevel(state);
if (TRACE_INT) logerror("/INT asserted, level=%d, ST=%04x\n", m_irq_level, ST); LOGMASKED(LOG_INT, "/INT asserted, level=%d, ST=%04x\n", m_irq_level, ST);
} }
else else
{ {
if (TRACE_INT) logerror("/INT cleared\n"); LOGMASKED(LOG_INT, "/INT cleared\n");
} }
} }
} }
@ -1343,13 +1322,14 @@ void tms99xx_device::service_interrupt()
m_state = 0; m_state = 0;
if (!m_dbin_line.isnull()) m_dbin_line(ASSERT_LINE);
// If reset, we just start with execution, otherwise we put the MPC // If reset, we just start with execution, otherwise we put the MPC
// on the first microinstruction, which also means that the main loop shall // on the first microinstruction, which also means that the main loop shall
// leave it where it is. So we pretend we have another pass to do. // leave it where it is. So we pretend we have another pass to do.
m_pass = m_reset? 1 : 2; m_pass = m_reset? 1 : 2;
// just for debugging purposes
if (!m_reset) m_log_interrupt = true;
if (m_reset) if (m_reset)
{ {
m_irq_level = RESET_INT; m_irq_level = RESET_INT;
@ -1365,15 +1345,14 @@ void tms99xx_device::service_interrupt()
m_mem_phase = 1; m_mem_phase = 1;
m_reset = false; m_reset = false;
LOG("** RESET triggered\n");
} }
if (TRACE_INT) else
{ {
switch (m_irq_level) if (m_irq_level==LOAD_INT)
{ LOGMASKED(LOG_LOAD, "** LOAD interrupt triggered\n");
case RESET_INT: logerror("**** triggered a RESET interrupt\n"); break; else
case LOAD_INT: logerror("**** triggered a LOAD (NMI) interrupt\n"); break; LOGMASKED(LOG_INTD, "** Interrupt on level %d\n", m_irq_level);
default: logerror("** triggered an interrupt on level %d\n", m_irq_level); break;
}
} }
MPC = 0; MPC = 0;
@ -1391,11 +1370,8 @@ void tms99xx_device::pulse_clock(int count)
m_ready = m_ready_bufd; // get the latched READY state m_ready = m_ready_bufd; // get the latched READY state
if (!m_clock_out_line.isnull()) m_clock_out_line(CLEAR_LINE); if (!m_clock_out_line.isnull()) m_clock_out_line(CLEAR_LINE);
m_icount--; // This is the only location where we count down the cycles. m_icount--; // This is the only location where we count down the cycles.
if (TRACE_CLOCK) if (m_check_ready) LOGMASKED(LOG_CLOCK, "pulse_clock, READY=%d\n", m_ready? 1:0);
{ else LOGMASKED(LOG_CLOCK, "pulse_clock\n");
if (m_check_ready) logerror("pulse_clock, READY=%d\n", m_ready? 1:0);
else logerror("pulse_clock\n");
}
} }
} }
@ -1427,7 +1403,20 @@ inline void tms99xx_device::acknowledge_hold()
*/ */
void tms99xx_device::set_ready(int state) void tms99xx_device::set_ready(int state)
{ {
m_ready_bufd = (state==ASSERT_LINE); bool newready = (state==ASSERT_LINE);
if (newready != m_ready_bufd)
{
if (m_reset)
{
LOGMASKED(LOG_WARN, "Ignoring READY=%d change due to pending RESET\n", state);
}
else
{
m_ready_bufd = newready;
LOGMASKED(LOG_READY, "set READY = %d\n", m_ready_bufd? 1 : 0);
}
}
} }
void tms99xx_device::abort_operation() void tms99xx_device::abort_operation()
@ -1464,7 +1453,7 @@ void tms99xx_device::decode(uint16_t inst)
while (!complete) while (!complete)
{ {
ix = (opcode >> 12) & 0x000f; ix = (opcode >> 12) & 0x000f;
if (TRACE_MICRO) logerror("Check next hex digit of instruction %x\n", ix); LOGMASKED(LOG_MICRO, "Check next hex digit of instruction %x\n", ix);
if (table[ix].next_digit != nullptr) if (table[ix].next_digit != nullptr)
{ {
table = table[ix].next_digit.get(); table = table[ix].next_digit.get();
@ -1476,7 +1465,7 @@ void tms99xx_device::decode(uint16_t inst)
if (m_program_index == NOPRG) if (m_program_index == NOPRG)
{ {
// not found // not found
logerror("Address %04x: Illegal opcode %04x\n", PC, inst); LOGMASKED(LOG_WARN, "** %04x: Illegal opcode %04x\n", PC, inst);
IR = 0; IR = 0;
// This will cause another instruction acquisition in the next machine cycle // This will cause another instruction acquisition in the next machine cycle
// with an asserted IAQ line (can be used to indicate this illegal opcode detection). // with an asserted IAQ line (can be used to indicate this illegal opcode detection).
@ -1486,11 +1475,13 @@ void tms99xx_device::decode(uint16_t inst)
const tms_instruction decoded = s_command[m_program_index]; const tms_instruction decoded = s_command[m_program_index];
MPC = -1; MPC = -1;
m_command = decoded.id; m_command = decoded.id;
if (TRACE_MICRO) logerror("Command decoded as id %d, %s, base opcode %04x\n", m_command, opname[m_command], decoded.opcode); LOGMASKED(LOG_OP, "=== %04x: Op=%04x (%s)\n", PC, IR, opname[m_command]);
// Byte operations are either format 1 with the byte flag set // Byte operations are either format 1 with the byte flag set
// or format 4 (CRU multi bit operations) with 1-8 bits to transfer. // or format 4 (CRU multi bit operations) with 1-8 bits to transfer.
// Used by the data derivation sequence.
m_byteop = ((decoded.format==1 && ((IR & 0x1000)!=0)) m_byteop = ((decoded.format==1 && ((IR & 0x1000)!=0))
|| (decoded.format==4 && (((IR >> 6)&0x000f) > 0) && (((IR >> 6)&0x000f) > 9))); || (decoded.format==4 && (((IR >> 6)&0x000f) > 0) && (((IR >> 6)&0x000f) < 9)));
} }
m_pass = 1; m_pass = 1;
} }
@ -1514,7 +1505,13 @@ void tms99xx_device::acquire_instruction()
if (m_mem_phase == 1) if (m_mem_phase == 1)
{ {
decode(m_current_value); decode(m_current_value);
if (TRACE_EXEC) logerror("%04x: %04x (%s)\n", PC, IR, opname[m_command]);
// Mark logged address as interrupt service
if (m_log_interrupt)
LOGMASKED(LOG_EXEC, "i%04x\n", PC);
else
LOGMASKED(LOG_EXEC, "%04x\n", PC);
debugger_instruction_hook(PC); debugger_instruction_hook(PC);
PC = (PC + 2) & 0xfffe & m_prgaddr_mask; PC = (PC + 2) & 0xfffe & m_prgaddr_mask;
// IAQ will be cleared in the main loop // IAQ will be cleared in the main loop
@ -1539,7 +1536,7 @@ void tms99xx_device::mem_read()
m_check_ready = true; m_check_ready = true;
m_mem_phase = 2; m_mem_phase = 2;
m_pass = 2; m_pass = 2;
if (TRACE_ADDRESSBUS) logerror("set address (r) %04x\n", m_address); LOGMASKED(LOG_ADDRESSBUS, "set address (r) %04x\n", m_address);
pulse_clock(1); // Concludes the first cycle pulse_clock(1); // Concludes the first cycle
// If READY has been found to be low, the CPU will now stay in the wait state loop // If READY has been found to be low, the CPU will now stay in the wait state loop
@ -1551,7 +1548,7 @@ void tms99xx_device::mem_read()
pulse_clock(1); pulse_clock(1);
if (!m_dbin_line.isnull()) m_dbin_line(CLEAR_LINE); if (!m_dbin_line.isnull()) m_dbin_line(CLEAR_LINE);
m_mem_phase = 1; // reset to phase 1 m_mem_phase = 1; // reset to phase 1
if (TRACE_MEM) logerror("mem r %04x -> %04x\n", m_address, m_current_value); LOGMASKED(LOG_MEM, "mem r %04x -> %04x\n", m_address, m_current_value);
} }
} }
@ -1561,10 +1558,10 @@ void tms99xx_device::mem_write()
{ {
if (!m_dbin_line.isnull()) m_dbin_line(CLEAR_LINE); if (!m_dbin_line.isnull()) m_dbin_line(CLEAR_LINE);
// When writing, the data bus is asserted immediately after the address bus // When writing, the data bus is asserted immediately after the address bus
if (TRACE_ADDRESSBUS) logerror("set address (w) %04x\n", m_address); LOGMASKED(LOG_ADDRESSBUS, "set address (w) %04x\n", m_address);
if (m_setaddr) if (m_setaddr)
m_setaddr->write_word(CLEAR_LINE, m_address & m_prgaddr_mask & 0xfffe); m_setaddr->write_word(CLEAR_LINE, m_address & m_prgaddr_mask & 0xfffe);
if (TRACE_MEM) logerror("mem w %04x <- %04x\n", m_address, m_current_value); LOGMASKED(LOG_MEM, "mem w %04x <- %04x\n", m_address, m_current_value);
m_prgspace->write_word(m_address & m_prgaddr_mask & 0xfffe, m_current_value); m_prgspace->write_word(m_address & m_prgaddr_mask & 0xfffe, m_current_value);
m_check_ready = true; m_check_ready = true;
m_mem_phase = 2; m_mem_phase = 2;
@ -1660,7 +1657,7 @@ void tms99xx_device::cru_input_operation()
if (cruin) if (cruin)
value |= 1 << i; value |= 1 << i;
if (TRACE_CRU) logerror("CRU input operation, address %04x, value %d\n", cruaddr, cruin ? 1 : 0); LOGMASKED(LOG_CRU, "CRU input operation, address %04x, value %d\n", cruaddr, cruin ? 1 : 0);
// Increment the CRU address // Increment the CRU address
cruaddr = (cruaddr + 2) & m_cruaddr_mask; cruaddr = (cruaddr + 2) & m_cruaddr_mask;
@ -1680,7 +1677,7 @@ void tms99xx_device::cru_output_operation()
// Write m_count bits from cru_address // Write m_count bits from cru_address
for (int i = 0; i < m_count; i++) for (int i = 0; i < m_count; i++)
{ {
if (TRACE_CRU) logerror("CRU output operation, address %04x, value %d\n", cruaddr, BIT(value, 0)); LOGMASKED(LOG_CRU, "CRU output operation, address %04x, value %d\n", cruaddr, BIT(value, 0));
// Write one bit at a time // Write one bit at a time
m_cru->write_byte(cruaddr, BIT(value, 0)); m_cru->write_byte(cruaddr, BIT(value, 0));
@ -1706,13 +1703,13 @@ void tms99xx_device::return_from_subprogram()
void tms99xx_device::command_completed() void tms99xx_device::command_completed()
{ {
// Pseudo state at the end of the current instruction cycle sequence // Pseudo state at the end of the current instruction cycle sequence
if (TRACE_CYCLES) if (LOG_CYCLES & VERBOSE)
{ {
logerror("------"); logerror("+++ Instruction %04x (%s) completed", IR, opname[m_command]);
int cycles = m_first_cycle - m_icount; int cycles = m_first_cycle - m_icount;
// Avoid nonsense values due to expired and resumed main loop // Avoid nonsense values due to expired and resumed main loop
if (cycles > 0 && cycles < 10000) logerror(" %d cycles", cycles); if (cycles > 0 && cycles < 10000) logerror(", %d cycles", cycles);
logerror("\n"); logerror("+++\n");
} }
m_program_index = NOPRG; m_program_index = NOPRG;
} }
@ -1773,7 +1770,7 @@ inline void tms99xx_device::compare_and_set_lae(uint16_t value1, uint16_t value2
set_status_bit(ST_EQ, value1 == value2); set_status_bit(ST_EQ, value1 == value2);
set_status_bit(ST_LH, value1 > value2); set_status_bit(ST_LH, value1 > value2);
set_status_bit(ST_AGT, (int16_t)value1 > (int16_t)value2); set_status_bit(ST_AGT, (int16_t)value1 > (int16_t)value2);
if (TRACE_STATUS) logerror("ST = %04x (val1=%04x, val2=%04x)\n", ST, value1, value2); LOGMASKED(LOG_STATUS, "ST = %04x (val1=%04x, val2=%04x)\n", ST, value1, value2);
} }
/************************************************************************** /**************************************************************************
@ -2010,7 +2007,7 @@ void tms99xx_device::alu_f3()
compare_and_set_lae(m_current_value, 0); compare_and_set_lae(m_current_value, 0);
} }
} }
if (TRACE_STATUS) logerror("ST = %04x\n", ST); LOGMASKED(LOG_STATUS, "ST = %04x\n", ST);
break; break;
} }
@ -2029,7 +2026,6 @@ void tms99xx_device::alu_multiply()
m_address = ((IR >> 5) & 0x001e) + WP; m_address = ((IR >> 5) & 0x001e) + WP;
break; break;
case 1: // After reading the register (multiplier) case 1: // After reading the register (multiplier)
if (TRACE_ALU) logerror("Multiply %04x by %04x\n", m_current_value, m_source_value);
result = (m_source_value & 0x0000ffff) * (m_current_value & 0x0000ffff); result = (m_source_value & 0x0000ffff) * (m_current_value & 0x0000ffff);
m_current_value = (result >> 16) & 0xffff; m_current_value = (result >> 16) & 0xffff;
m_value_copy = result & 0xffff; m_value_copy = result & 0xffff;
@ -2078,12 +2074,8 @@ void tms99xx_device::alu_divide()
// Create full word and perform division // Create full word and perform division
uval32 = (m_value_copy << 16) | m_current_value; uval32 = (m_value_copy << 16) | m_current_value;
if (TRACE_ALU) logerror("Dividing %08x by %04x\n", uval32, m_source_value);
m_current_value = uval32 / m_source_value; m_current_value = uval32 / m_source_value;
m_value_copy = uval32 % m_source_value; m_value_copy = uval32 % m_source_value;
if (TRACE_ALU) logerror("Quotient %04x, remainder %04x\n", m_current_value, m_value_copy);
m_address = m_address_copy; m_address = m_address_copy;
// The number of ALU cycles depends on the number of steps in // The number of ALU cycles depends on the number of steps in
@ -2108,7 +2100,7 @@ void tms99xx_device::alu_divide()
// Prepare to write the remainder // Prepare to write the remainder
m_current_value = m_value_copy; m_current_value = m_value_copy;
m_address = m_address + 2; m_address = m_address + 2;
if (TRACE_STATUS) logerror("ST = %04x (div)\n", ST); LOGMASKED(LOG_STATUS, "ST = %04x (div)\n", ST);
break; break;
} }
pulse_clock(2); pulse_clock(2);
@ -2260,13 +2252,12 @@ void tms99xx_device::alu_abs()
void tms99xx_device::alu_x() void tms99xx_device::alu_x()
{ {
if (TRACE_ALU) logerror("Substituting current command by %04x\n", m_current_value);
decode(m_current_value); decode(m_current_value);
pulse_clock(2); pulse_clock(2);
} }
/* /*
Also used by other microprograms Used by B and BL
*/ */
void tms99xx_device::alu_b() void tms99xx_device::alu_b()
{ {
@ -2280,7 +2271,6 @@ void tms99xx_device::alu_b()
m_current_value = PC; m_current_value = PC;
PC = m_address & m_prgaddr_mask & 0xfffe; PC = m_address & m_prgaddr_mask & 0xfffe;
m_address = WP + 22; m_address = WP + 22;
if (TRACE_ALU) logerror("Set new PC = %04x\n", PC);
pulse_clock(2); pulse_clock(2);
} }
@ -2308,7 +2298,7 @@ void tms99xx_device::alu_blwp()
break; break;
case 4: case 4:
PC = m_current_value & m_prgaddr_mask & 0xfffe; PC = m_current_value & m_prgaddr_mask & 0xfffe;
if (TRACE_ALU) logerror("tms9900: Context switch complete; WP=%04x, PC=%04x, ST=%04x\n", WP, PC, ST); LOGMASKED(LOG_CONTEXT, "Context switch (blwp): WP=%04x, PC=%04x, ST=%04x\n", WP, PC, ST);
break; break;
} }
pulse_clock(2); pulse_clock(2);
@ -2350,7 +2340,7 @@ void tms99xx_device::alu_ldcr()
} }
m_cru_address = m_current_value; m_cru_address = m_current_value;
m_value = value; m_value = value;
if (TRACE_CRU) logerror("Load CRU address %04x (%d bits), value = %04x\n", m_cru_address, m_count, m_value); LOGMASKED(LOG_CRU, "Load CRU address %04x (%d bits), value = %04x\n", m_cru_address, m_count, m_value);
} }
m_state++; m_state++;
pulse_clock(2); pulse_clock(2);
@ -2382,7 +2372,7 @@ void tms99xx_device::alu_stcr()
value = m_value & 0xffff; value = m_value & 0xffff;
if (m_count < 9) if (m_count < 9)
{ {
if (TRACE_CRU) logerror("Store CRU at %04x (%d bits) in %04x, result = %02x\n", m_cru_address, m_count, m_source_address, value); LOGMASKED(LOG_CRU, "Store CRU at %04x (%d bits) in %04x, result = %02x\n", m_cru_address, m_count, m_source_address, value);
set_status_parity((uint8_t)(value & 0xff)); set_status_parity((uint8_t)(value & 0xff));
compare_and_set_lae(value<<8, 0); compare_and_set_lae(value<<8, 0);
if (m_source_even) if (m_source_even)
@ -2394,7 +2384,7 @@ void tms99xx_device::alu_stcr()
} }
else else
{ {
if (TRACE_CRU) logerror("Store CRU at %04x (%d bits) in %04x, result = %04x\n", m_cru_address, m_count, m_source_address, value); LOGMASKED(LOG_CRU, "Store CRU at %04x (%d bits) in %04x, result = %04x\n", m_cru_address, m_count, m_source_address, value);
m_current_value = value; m_current_value = value;
compare_and_set_lae(value, 0); compare_and_set_lae(value, 0);
pulse_clock(2*(5 + (16-m_count))); pulse_clock(2*(5 + (16-m_count)));
@ -2440,7 +2430,7 @@ void tms99xx_device::alu_tb()
break; break;
case 2: case 2:
set_status_bit(ST_EQ, m_value!=0); set_status_bit(ST_EQ, m_value!=0);
if (TRACE_STATUS) logerror("ST = %04x\n", ST); LOGMASKED(LOG_STATUS, "ST = %04x\n", ST);
break; break;
} }
m_state++; m_state++;
@ -2498,11 +2488,11 @@ void tms99xx_device::alu_jmp()
} }
if (!cond) if (!cond)
{ {
if (TRACE_ALU) logerror("Jump condition false\n"); LOGMASKED(LOG_DETAIL, "Jump condition false\n");
MPC+=1; // skip next ALU call MPC+=1; // skip next ALU call
} }
else else
if (TRACE_ALU) logerror("Jump condition true\n"); LOGMASKED(LOG_DETAIL, "Jump condition true\n");
} }
else else
{ {
@ -2544,7 +2534,7 @@ void tms99xx_device::alu_shift()
} }
else else
{ {
if (TRACE_ALU) logerror("Shift operation gets count from R0\n"); LOGMASKED(LOG_DETAIL, "Shift operation gets count from R0\n");
pulse_clock(2); pulse_clock(2);
} }
pulse_clock(2); pulse_clock(2);
@ -2594,7 +2584,7 @@ void tms99xx_device::alu_shift()
if (check_ov) set_status_bit(ST_OV, overflow); // only SLA if (check_ov) set_status_bit(ST_OV, overflow); // only SLA
compare_and_set_lae(m_current_value, 0); compare_and_set_lae(m_current_value, 0);
m_address = m_address_saved; // Register address m_address = m_address_saved; // Register address
if (TRACE_STATUS) logerror("ST = %04x (val=%04x)\n", ST, m_current_value); LOGMASKED(LOG_STATUS, "ST = %04x (val=%04x)\n", ST, m_current_value);
break; break;
} }
m_state++; m_state++;
@ -2645,7 +2635,7 @@ void tms99xx_device::alu_lwpi()
void tms99xx_device::alu_limi() void tms99xx_device::alu_limi()
{ {
ST = (ST & 0xfff0) | (m_current_value & 0x000f); ST = (ST & 0xfff0) | (m_current_value & 0x000f);
if (TRACE_STATUS) logerror("ST = %04x\n", ST); LOGMASKED(LOG_STATUS, "ST = %04x\n", ST);
pulse_clock(2); pulse_clock(2);
} }
@ -2693,6 +2683,9 @@ void tms99xx_device::alu_rtwp()
case 3: case 3:
WP = m_current_value & m_prgaddr_mask & 0xfffe; WP = m_current_value & m_prgaddr_mask & 0xfffe;
pulse_clock(2); pulse_clock(2);
// Just for debugging purposes
m_log_interrupt = false;
LOGMASKED(LOG_CONTEXT, "Context switch (rtwp): WP=%04x, PC=%04x, ST=%04x\n", WP, PC, ST);
break; break;
} }
m_state++; m_state++;
@ -2701,7 +2694,6 @@ void tms99xx_device::alu_rtwp()
void tms99xx_device::alu_int() void tms99xx_device::alu_int()
{ {
if (TRACE_EMU) logerror("INT state %d; irq_level %d\n", m_state, m_irq_level);
switch (m_state) switch (m_state)
{ {
case 0: case 0:
@ -2715,6 +2707,7 @@ void tms99xx_device::alu_int()
if (m_irq_level == LOAD_INT) m_address = 0xfffc; // will be truncated for TMS9980 if (m_irq_level == LOAD_INT) m_address = 0xfffc; // will be truncated for TMS9980
else else
{ {
LOGMASKED(LOG_INTD, "interrupt service (0): Prepare to read vector\n");
m_address = (m_irq_level << 2); m_address = (m_irq_level << 2);
} }
} }
@ -2725,18 +2718,21 @@ void tms99xx_device::alu_int()
WP = m_current_value & m_prgaddr_mask & 0xfffe; // new WP WP = m_current_value & m_prgaddr_mask & 0xfffe; // new WP
m_current_value = ST; m_current_value = ST;
m_address = (WP + 30) & m_prgaddr_mask; m_address = (WP + 30) & m_prgaddr_mask;
LOGMASKED(LOG_INTD, "interrupt service (1): Read new WP = %04x, save ST to %04x\n", WP, m_address);
break; break;
case 2: case 2:
m_current_value = PC; m_current_value = PC;
m_address = (WP + 28) & m_prgaddr_mask; m_address = (WP + 28) & m_prgaddr_mask;
LOGMASKED(LOG_INTD, "interrupt service (2): Save PC to %04x\n", m_address);
break; break;
case 3: case 3:
m_current_value = m_value_copy; // old WP m_current_value = m_value_copy; // old WP
m_address = (WP + 26) & m_prgaddr_mask; m_address = (WP + 26) & m_prgaddr_mask;
LOGMASKED(LOG_INTD, "interrupt service (3): Save WP to %04x\n", m_address);
break; break;
case 4: case 4:
m_address = (m_address_copy + 2) & 0xfffe & m_prgaddr_mask; m_address = (m_address_copy + 2) & 0xfffe & m_prgaddr_mask;
if (TRACE_ALU) logerror("read from %04x\n", m_address); LOGMASKED(LOG_INTD, "interrupt service (4): Read PC from %04x\n", m_address);
break; break;
case 5: case 5:
PC = m_current_value & m_prgaddr_mask & 0xfffe; PC = m_current_value & m_prgaddr_mask & 0xfffe;
@ -2744,6 +2740,10 @@ void tms99xx_device::alu_int()
{ {
ST = (ST & 0xfff0) | (m_irq_level - 1); ST = (ST & 0xfff0) | (m_irq_level - 1);
} }
if (m_irq_level == LOAD_INT)
LOGMASKED(LOG_LOAD, "Context switch (LOAD): WP=%04x, PC=%04x, ST=%04x\n", WP, PC, ST);
else
LOGMASKED(LOG_CONTEXT, "Context switch (int): WP=%04x, PC=%04x, ST=%04x\n", WP, PC, ST);
break; break;
} }
m_state++; m_state++;

View File

@ -298,7 +298,6 @@ private:
void alu_abs(void); void alu_abs(void);
void alu_x(void); void alu_x(void);
void alu_b(void); void alu_b(void);
//void alu_bl(void);
void alu_blwp(void); void alu_blwp(void);
void alu_ldcr(void); void alu_ldcr(void);
void alu_stcr(void); void alu_stcr(void);
@ -331,6 +330,9 @@ private:
// Index of the interrupt program // Index of the interrupt program
int m_interrupt_mp_index; int m_interrupt_mp_index;
// For debugging only
bool m_log_interrupt;
// State of the micro-operation. Needed for repeated ALU calls. // State of the micro-operation. Needed for repeated ALU calls.
int m_state; int m_state;