- Added Ebers-Moll BJT model. Currently only for NPN.
- Fixed convergence issue in the solver.
- Accuracy for Ebers-Moll must be better than 1e-5 to not generate nano-second spikes.
  Typical sound applications should be able to run with less since the spikes are
  not audible.
This commit is contained in:
Couriersud 2014-01-06 14:39:15 +00:00
parent 45d9761cad
commit f7856a8654
8 changed files with 346 additions and 94 deletions

View File

@ -244,6 +244,8 @@ void netlist_factory::initialize()
ENTRY(D, NETDEV_D)
ENTRY(VCVS, NETDEV_VCVS)
ENTRY(VCCS, NETDEV_VCCS)
ENTRY(QPNP_EB, NETDEV_QPNP_EB)
ENTRY(QNPN_EB, NETDEV_QNPN_EB)
ENTRY(QPNP_switch, NETDEV_QPNP)
ENTRY(QNPN_switch, NETDEV_QNPN)
ENTRY(ttl_const, NETDEV_TTL_CONST)

View File

@ -34,7 +34,9 @@ ATTR_COLD void netlist_matrix_solver_t::setup(netlist_net_t::list_t &nets, NETLI
if (!m_steps.contains(&p->netdev()))
m_steps.add(&p->netdev());
break;
case netlist_device_t::DIODE:
case netlist_device_t::BJT_EB:
printf("Found ebers moll\n");
case netlist_device_t::DIODE:
//case netlist_device_t::VCVS:
//case netlist_device_t::BJT_SWITCH:
if (!m_dynamic.contains(&p->netdev()))
@ -82,28 +84,15 @@ ATTR_HOT inline void netlist_matrix_solver_t::update_inputs()
}
ATTR_HOT inline bool netlist_matrix_solver_t::solve()
ATTR_HOT inline int netlist_matrix_solver_t::solve_non_dynamic()
{
bool resched;
// FIXME: There may be situations where we *could* need more than one iteration for dynamic elements
bool resched;
int resched_cnt = (is_dynamic() ? /* 0 */ 1 : 1);
int resched_cnt = 0;
ATTR_UNUSED netlist_net_t *last_resched_net = NULL;
do {
resched = false;
/* update all non-linear devices */
for (dev_list_t::entry_t *p = m_dynamic.first(); p != NULL; p = m_dynamic.next(p))
switch (p->object()->family())
{
case netlist_device_t::DIODE:
static_cast<NETLIB_NAME(D) *>(p->object())->update_terminals();
break;
default:
p->object()->update_terminals();
break;
}
for (netlist_net_t::list_t::entry_t *pn = m_nets.first(); pn != NULL; pn = m_nets.next(pn))
{
@ -140,7 +129,46 @@ ATTR_HOT inline bool netlist_matrix_solver_t::solve()
//NL_VERBOSE_OUT(("New: %lld %f %f\n", netlist().time().as_raw(), netlist().time().as_double(), new_val));
}
resched_cnt++;
} while ((resched && (resched_cnt < m_resched_loops)) || (resched_cnt <= 1));
} while (resched && (resched_cnt < m_resched_loops / 2 ));
return resched_cnt;
}
ATTR_HOT inline bool netlist_matrix_solver_t::solve()
{
bool resched = false;
// FIXME: There may be situations where we *could* need more than one iteration for dynamic elements
int resched_cnt = 0;
ATTR_UNUSED netlist_net_t *last_resched_net = NULL;
if (is_dynamic())
{
int this_resched;
do
{
/* update all non-linear devices */
for (dev_list_t::entry_t *p = m_dynamic.first(); p != NULL; p = m_dynamic.next(p))
switch (p->object()->family())
{
case netlist_device_t::DIODE:
static_cast<NETLIB_NAME(D) *>(p->object())->update_terminals();
break;
default:
p->object()->update_terminals();
break;
}
this_resched = solve_non_dynamic();
resched_cnt += this_resched;
} while (this_resched > 1 && resched_cnt < m_resched_loops);
}
else
{
resched_cnt = solve_non_dynamic();
}
if (resched_cnt >= m_resched_loops)
resched = true;
if (!resched)
update_inputs();
@ -199,7 +227,8 @@ NETLIB_START(solver)
register_param("FREQ", m_freq, 48000.0);
m_inc = netlist_time::from_hz(m_freq.Value());
register_param("ACCURACY", m_accuracy, 1e-3);
//register_param("ACCURACY", m_accuracy, 1e-3);
register_param("ACCURACY", m_accuracy, 1e-6);
register_param("CONVERG", m_convergence, 0.3);
register_param("RESCHED_LOOPS", m_resched_loops, 15);

View File

@ -32,6 +32,7 @@ public:
// return true if a reschedule is needed ...
ATTR_HOT bool solve();
ATTR_HOT int solve_non_dynamic();
ATTR_HOT void step(const netlist_time delta);
ATTR_HOT void update_inputs();

View File

@ -250,6 +250,60 @@ template NETLIB_START(QBJT_switch<NETLIB_NAME(Q)::BJT_PNP>);
template NETLIB_UPDATE_PARAM(QBJT_switch<NETLIB_NAME(Q)::BJT_NPN>);
template NETLIB_UPDATE_PARAM(QBJT_switch<NETLIB_NAME(Q)::BJT_PNP>);
// ----------------------------------------------------------------------------------------
// nld_Q - Ebers Moll
// ----------------------------------------------------------------------------------------
template <NETLIB_NAME(Q)::q_type _type>
NETLIB_START(QBJT_EB<_type>)
{
NETLIB_NAME(Q)::start();
register_terminal("B", m_D_BE.m_tt.m_P); // Anode
register_terminal("E", m_D_BE.m_tt.m_N); // Cathode
register_terminal("_B1", m_D_BC.m_tt.m_P); // Anode
register_terminal("C", m_D_BC.m_tt.m_N); // Cathode
register_terminal("_B2", m_I_BE.m_P);
register_terminal("_E2", m_I_BE.m_N);
register_terminal("_B3", m_I_BC.m_P);
register_terminal("_C1", m_I_BC.m_N);
setup().connect(m_D_BE.m_tt.m_P, m_D_BC.m_tt.m_P);
setup().connect(m_D_BE.m_tt.m_P, m_I_BE.m_P);
setup().connect(m_D_BE.m_tt.m_P, m_I_BC.m_P);
setup().connect(m_D_BE.m_tt.m_N, m_I_BE.m_N);
setup().connect(m_D_BC.m_tt.m_N, m_I_BC.m_N);
}
template <NETLIB_NAME(Q)::q_type _type>
NETLIB_UPDATE_PARAM(QBJT_EB<_type>)
{
double IS = m_model.dValue("IS", 1e-15);
double BF = m_model.dValue("BF", 100);
double NF = m_model.dValue("NF", 1);
double BR = m_model.dValue("BR", 1);
double NR = m_model.dValue("NR", 1);
//double VJE = m_model.dValue("VJE", 0.75);
m_alpha_f = BF / (1.0 + BF);
m_alpha_r = BR / (1.0 + BR);
m_D_BE.set_param(IS / m_alpha_f, NF);
m_D_BC.set_param(IS / m_alpha_r, NR);
}
template NETLIB_START(QBJT_EB<NETLIB_NAME(Q)::BJT_NPN>);
template NETLIB_START(QBJT_EB<NETLIB_NAME(Q)::BJT_PNP>);
template NETLIB_UPDATE_PARAM(QBJT_EB<NETLIB_NAME(Q)::BJT_NPN>);
template NETLIB_UPDATE_PARAM(QBJT_EB<NETLIB_NAME(Q)::BJT_PNP>);
// ----------------------------------------------------------------------------------------
// nld_VCCS
// ----------------------------------------------------------------------------------------

View File

@ -65,6 +65,15 @@
NET_REGISTER_DEV(QNPN_switch, _name) \
NETDEV_PARAMI(_name, model, # _model)
#define NETDEV_QPNP_EB(_name, _model) \
NET_REGISTER_DEV(QPNP_EB, _name) \
NETDEV_PARAMI(_name, model, # _model)
#define NETDEV_QNPN_EB(_name, _model) \
NET_REGISTER_DEV(QNPN_switch, _name) \
NETDEV_PARAMI(_name, model, # _model)
// ----------------------------------------------------------------------------------------
// Implementation
// ----------------------------------------------------------------------------------------
@ -252,6 +261,52 @@ protected:
};
// ----------------------------------------------------------------------------------------
// nld_Q - Base classes
// ----------------------------------------------------------------------------------------
// Have a common start for transistors
class NETLIB_NAME(Q) : public netlist_device_t
{
public:
enum q_type {
BJT_NPN,
BJT_PNP
};
ATTR_COLD NETLIB_NAME(Q)(const q_type atype, const family_t afamily)
: netlist_device_t(afamily)
, m_qtype(atype) { }
inline q_type qtype() const { return m_qtype; }
inline bool is_qtype(q_type atype) const { return m_qtype == atype; }
protected:
ATTR_COLD virtual void start();
ATTR_HOT ATTR_ALIGN void update();
netlist_param_model_t m_model;
private:
q_type m_qtype;
};
class NETLIB_NAME(QBJT) : public NETLIB_NAME(Q)
{
public:
ATTR_COLD NETLIB_NAME(QBJT)(const q_type atype, const family_t afamily)
: NETLIB_NAME(Q)(atype, afamily) { }
protected:
private:
};
// ----------------------------------------------------------------------------------------
// nld_QBJT_switch
// ----------------------------------------------------------------------------------------
/*
* + - C
* B ----VVV----+ |
@ -265,94 +320,56 @@ protected:
* E
*/
// Have a common start for transistors
class NETLIB_NAME(Q) : public netlist_device_t
{
public:
enum q_type {
BJT_NPN,
BJT_PNP
};
ATTR_COLD NETLIB_NAME(Q)(const q_type atype, const family_t afamily)
: netlist_device_t(afamily)
, m_qtype(atype) { }
inline q_type qtype() const { return m_qtype; }
inline bool is_qtype(q_type atype) const { return m_qtype == atype; }
protected:
ATTR_COLD virtual void start();
ATTR_HOT ATTR_ALIGN void update();
netlist_param_model_t m_model;
private:
q_type m_qtype;
};
class NETLIB_NAME(QBJT) : public NETLIB_NAME(Q)
{
public:
ATTR_COLD NETLIB_NAME(QBJT)(const q_type atype, const family_t afamily)
: NETLIB_NAME(Q)(atype, afamily) { }
protected:
private:
};
//NETLIB_NAME(Q) nld_Q::q_type
template <NETLIB_NAME(Q)::q_type _type>
class NETLIB_NAME(QBJT_switch) : public NETLIB_NAME(QBJT)
{
public:
ATTR_COLD NETLIB_NAME(QBJT_switch)()
: NETLIB_NAME(QBJT)(_type, BJT_SWITCH), m_gB(NETLIST_GMIN), m_gC(NETLIST_GMIN), m_V(0.0), m_state_on(0) { }
ATTR_COLD NETLIB_NAME(QBJT_switch)()
: NETLIB_NAME(QBJT)(_type, BJT_SWITCH), m_gB(NETLIST_GMIN), m_gC(NETLIST_GMIN), m_V(0.0), m_state_on(0) { }
NETLIB_UPDATEI()
{
double vE = INPANALOG(m_EV);
double vB = INPANALOG(m_BV);
double m = (_type == BJT_NPN) ? 1 : -1;
NETLIB_UPDATEI()
{
double vE = INPANALOG(m_EV);
double vB = INPANALOG(m_BV);
double m = (_type == BJT_NPN) ? 1 : -1;
int new_state = ((vB - vE) * m > m_V ) ? 1 : 0;
if (m_state_on ^ new_state)
{
double gb = m_gB;
double gc = m_gC;
double v = m_V * m;
if (!new_state )
{
// not conducting
gb = NETLIST_GMIN;
v = 0;
gc = NETLIST_GMIN;
}
m_RB.set(gb, v, 0.0);
m_RC.set(gc, 0.0, 0.0);
m_state_on = new_state;
m_RB.update_dev();
m_RC.update_dev();
}
int new_state = ((vB - vE) * m > m_V ) ? 1 : 0;
if (m_state_on ^ new_state)
{
double gb = m_gB;
double gc = m_gC;
double v = m_V * m;
if (!new_state )
{
// not conducting
gb = NETLIST_GMIN;
v = 0;
gc = NETLIST_GMIN;
}
m_RB.set(gb, v, 0.0);
m_RC.set(gc, 0.0, 0.0);
m_state_on = new_state;
m_RB.update_dev();
m_RC.update_dev();
}
}
}
NETLIB_NAME(R) m_RB;
NETLIB_NAME(R) m_RC;
NETLIB_NAME(R) m_RB;
NETLIB_NAME(R) m_RC;
netlist_analog_input_t m_BV;
netlist_analog_input_t m_EV;
netlist_analog_input_t m_BV;
netlist_analog_input_t m_EV;
protected:
ATTR_COLD virtual void start();
ATTR_HOT void update_param();
ATTR_COLD virtual void start();
ATTR_HOT void update_param();
double m_gB; // base conductance / switch on
double m_gC; // collector conductance / switch on
double m_V; // internal voltage source
UINT8 m_state_on;
double m_gB; // base conductance / switch on
double m_gC; // collector conductance / switch on
double m_V; // internal voltage source
UINT8 m_state_on;
private:
};
@ -360,6 +377,148 @@ private:
typedef NETLIB_NAME(QBJT_switch)<NETLIB_NAME(Q)::BJT_PNP> NETLIB_NAME(QPNP_switch);
typedef NETLIB_NAME(QBJT_switch)<NETLIB_NAME(Q)::BJT_NPN> NETLIB_NAME(QNPN_switch);
// ----------------------------------------------------------------------------------------
// nld_QBJT_EB
// ----------------------------------------------------------------------------------------
struct generic_diode
{
generic_diode() : m_tt(netlist_object_t::ANALOG) {}
ATTR_HOT inline void update_diode()
{
//FIXME: Optimize cutoff case
const double nVd = m_tt.m_P.net().Q_Analog()- m_tt.m_N.net().Q_Analog();
double G;
if (nVd < -5.0 * m_Vt)
{
m_Vd = nVd;
G = NETLIST_GMIN;
m_Id = - m_Is;
}
else if (nVd < m_Vcrit)
{
m_Vd = nVd;
const double eVDVt = exp(m_Vd * m_VtInv);
m_Id = m_Is * (eVDVt - 1.0);
G = m_Is * m_VtInv * eVDVt;
}
else
{
#if defined(_MSC_VER) && _MSC_VER < 1800
m_Vd = m_Vd + log((nVd - m_Vd) * m_VtInv + 1.0) * m_Vt;
#else
m_Vd = m_Vd + log1p((nVd - m_Vd) * m_VtInv) * m_Vt;
#endif
const double eVDVt = exp(m_Vd * m_VtInv);
m_Id = m_Is * (eVDVt - 1.0);
G = m_Is * m_VtInv * eVDVt;
}
double I = (m_Id - m_Vd * G);
m_tt.set(G, 0.0, I);
//printf("nVd %f m_Vd %f Vcrit %f\n", nVd, m_Vd, m_Vcrit);
}
void set_param(const double Is, const double n)
{
m_Is = Is;
m_n = n;
m_Vt = 0.0258 * m_n;
m_Vcrit = m_Vt * log(m_Vt / m_Is / sqrt(2.0));
m_VtInv = 1.0 / m_Vt;
m_Vd = 0.7;
}
ATTR_HOT inline double I() { return m_Id; }
nld_twoterm m_tt;
private:
double m_Id;
double m_Vt;
double m_Is;
double m_n;
double m_VtInv;
double m_Vcrit;
double m_Vd;
};
template <NETLIB_NAME(Q)::q_type _type>
class NETLIB_NAME(QBJT_EB) : public NETLIB_NAME(QBJT)
{
public:
ATTR_COLD NETLIB_NAME(QBJT_EB)()
: NETLIB_NAME(QBJT)(_type, BJT_EB),
m_I_BC(netlist_object_t::ANALOG),
m_I_BE(netlist_object_t::ANALOG)
{ }
NETLIB_UPDATE_TERMINALS()
{
m_D_BE.update_diode();
m_D_BC.update_diode();
m_I_BC.set(0.0, 0.0, - m_alpha_f * m_D_BE.I());
m_I_BE.set(0.0, 0.0, - m_alpha_r * m_D_BC.I());
}
protected:
ATTR_COLD virtual void start();
ATTR_HOT void update_param();
generic_diode m_D_BE;
generic_diode m_D_BC;
nld_twoterm m_I_BC;
nld_twoterm m_I_BE;
double m_alpha_f;
double m_alpha_r;
private:
};
typedef NETLIB_NAME(QBJT_EB)<NETLIB_NAME(Q)::BJT_PNP> NETLIB_NAME(QPNP_EB);
typedef NETLIB_NAME(QBJT_EB)<NETLIB_NAME(Q)::BJT_NPN> NETLIB_NAME(QNPN_EB);
// ----------------------------------------------------------------------------------------
// nld_CCCS
// ----------------------------------------------------------------------------------------
/*
* Current controlled current source
*
* IP ---+ +------> OP
* | |
* RI I
* RI => G => I IOut = (V(IP)-V(IN)) / RI * G
* RI I
* | |
* IN ---+ +------< ON
*
* G=1 ==> 1A ==> 1A
*
* RI = 1
*
* FIXME: This needs extremely high levels of accuracy to work
* With the current default of 1mv we can only measure
* currents of 1mA. Therefore not yet implemented.
*
*/
// ----------------------------------------------------------------------------------------
// nld_VCCS
// ----------------------------------------------------------------------------------------

View File

@ -272,6 +272,7 @@ public:
BJT_SWITCH = 7, // BJT(Switch)
VCVS = 8, // Voltage controlled voltage source
VCCS = 9, // Voltage controlled voltage source
BJT_EB = 10, // BJT(Ebers-Moll)
};
ATTR_COLD netlist_object_t(const type_t atype, const family_t afamily);

View File

@ -65,6 +65,10 @@ void netlist_parser::parse(const char *buf)
else if (n == "NETDEV_QNPN")
netdev_device(n, "model", true);
else if (n == "NETDEV_QPNP")
netdev_device(n, "model", true);
else if (n == "NETDEV_QNPN_EB")
netdev_device(n, "model", true);
else if (n == "NETDEV_QPNP_EB")
netdev_device(n, "model", true);
else if ((n == "NETDEV_TTL_CONST") || (n == "NETDEV_ANALOG_CONST"))
netdev_const(n);

View File

@ -84,6 +84,8 @@ enum input_changed_enum
static NETLIST_START(pong_schematics)
NETDEV_SOLVER(Solver)
NETDEV_PARAM(Solver.FREQ, 48000)
NETDEV_PARAM(Solver.ACCURACY, 1e-4) // works and is sufficient
NETDEV_ANALOG_CONST(V5, 5)
NETDEV_TTL_CONST(high, 1)