Introduced an 'util::arbitrary_clock' template class, to represent a clock that "knows" when the epoch starts (#2010)

* Introduced an 'util::arbitrary_clock' template class, to represent a clock that "knows" when the epoch starts

Also:
  - Converted the NTFS filetime code to use util::arbitrary_clock
  - Converted the Mac datetime code to use util::atribrary_clock

This is in preparation for a bigger change to Imgtool where I eliminate usage of time_t
This commit is contained in:
npwoods 2017-04-05 21:39:00 -04:00 committed by Vas Crabb
parent ee19701c2c
commit f809f0e08d
5 changed files with 282 additions and 55 deletions

View File

@ -58,39 +58,6 @@ uint32_t bcd_2_dec(uint32_t a)
/***************************************************************************
GREGORIAN CALENDAR HELPERS
***************************************************************************/
int gregorian_is_leap_year(int year)
{
return !((year % 100) ? (year % 4) : (year % 400));
}
/* months are one counted */
/**
* @fn int gregorian_days_in_month(int month, int year)
*
* @brief Gregorian days in month.
*
* @param month The month.
* @param year The year.
*
* @return An int.
*/
int gregorian_days_in_month(int month, int year)
{
assert(month >= 1 && month <= 12);
int days[] = { 31,28,31,30,31,30,31,31,30,31,30,31 };
days[1] += gregorian_is_leap_year(year) ? 1 : 0;
return days[month-1];
}
/***************************************************************************
MISC
***************************************************************************/

View File

@ -29,8 +29,48 @@ uint32_t bcd_2_dec(uint32_t a);
GREGORIAN CALENDAR HELPERS
***************************************************************************/
int gregorian_is_leap_year(int year);
int gregorian_days_in_month(int month, int year);
constexpr bool gregorian_is_leap_year(int year)
{
return !((year % 100) ? (year % 4) : (year % 400));
}
//-------------------------------------------------
// gregorian_days_in_month - given a year and a one-counted
// month, return the amount of days in that month
//-------------------------------------------------
inline int gregorian_days_in_month(int month, int year)
{
int result;
switch (month)
{
case 4: case 6:
case 9: case 11:
// Thirty days have September, April, June, and November.
result = 30;
break;
case 1: case 3:
case 5: case 7:
case 8: case 10:
case 12:
// All the rest have Thirty One
result = 31;
break;
case 2:
// No exceptions, but save one: Twenty Eight hath February
// in fine, and each leap year Twenty Nine
result = gregorian_is_leap_year(year) ? 29 : 28;
break;
default:
throw false;
}
return result;
}
/***************************************************************************

View File

@ -14,47 +14,48 @@
namespace util {
namespace {
/***************************************************************************
PROTOTYPES
***************************************************************************/
util::ntfs_duration calculate_ntfs_offset();
static std::chrono::system_clock::duration calculate_system_clock_adjustment();
/***************************************************************************
GLOBAL VARIABLES
***************************************************************************/
util::ntfs_duration f_ntfs_offset(calculate_ntfs_offset());
std::chrono::system_clock::duration system_clock_adjustment(calculate_system_clock_adjustment());
/***************************************************************************
IMPLEMENTATION
***************************************************************************/
util::ntfs_duration calculate_ntfs_offset()
static std::chrono::system_clock::duration calculate_system_clock_adjustment()
{
constexpr auto days_in_year(365);
constexpr auto days_in_four_years((days_in_year * 4) + 1);
constexpr auto days_in_century((days_in_four_years * 25) - 1);
constexpr auto days_in_four_centuries((days_in_century * 4) + 1);
constexpr ntfs_duration day(std::chrono::hours(24));
constexpr ntfs_duration year(day * days_in_year);
constexpr ntfs_duration four_years(day * days_in_four_years);
constexpr ntfs_duration century(day * days_in_century);
constexpr ntfs_duration four_centuries(day * days_in_four_centuries);
// can't use std::chrono::system_clock::duration here, out of fear of integer overflow
typedef std::chrono::duration<std::int64_t, std::ratio<1, 1> > int64_second_duration;
constexpr int64_second_duration day(std::chrono::hours(24));
constexpr int64_second_duration year(day * days_in_year);
constexpr int64_second_duration four_years(day * days_in_four_years);
constexpr int64_second_duration century(day * days_in_century);
constexpr int64_second_duration four_centuries(day * days_in_four_centuries);
std::time_t const zero(0);
std::tm const epoch(*std::gmtime(&zero));
ntfs_duration result(day * epoch.tm_yday);
std::chrono::system_clock::duration result(day * epoch.tm_yday);
result += std::chrono::hours(epoch.tm_hour);
result += std::chrono::minutes(epoch.tm_min);
result += std::chrono::seconds(epoch.tm_sec);
int years(1900 - 1601 + epoch.tm_year);
int years(1900 - 1970 + epoch.tm_year);
result += four_centuries * (years / 400);
years %= 400;
result += century * (years / 100);
@ -63,11 +64,9 @@ util::ntfs_duration calculate_ntfs_offset()
years %= 4;
result += year * years;
return result;
return result - std::chrono::system_clock::from_time_t(0).time_since_epoch();
}
} // anonymous namespace
// -------------------------------------------------
@ -76,7 +75,9 @@ util::ntfs_duration calculate_ntfs_offset()
std::chrono::system_clock::time_point system_clock_time_point_from_ntfs_duration(ntfs_duration d)
{
return std::chrono::system_clock::from_time_t(0) + std::chrono::duration_cast<std::chrono::system_clock::duration>(d - f_ntfs_offset);
typedef arbitrary_clock<std::uint64_t, 1601, 1, 1, 0, 0, 0, std::ratio<1, 10000000 > > ntfs_clock;
const std::chrono::time_point<ntfs_clock> tp(d);
return ntfs_clock::to_system_clock(tp);
}
} // namespace util

View File

@ -14,11 +14,19 @@
#pragma once
#include "osdcore.h"
#include "coreutil.h"
#include <chrono>
namespace util {
/***************************************************************************
GLOBAL VARIABLES
***************************************************************************/
extern std::chrono::system_clock::duration system_clock_adjustment;
/***************************************************************************
TYPE DEFINITIONS
***************************************************************************/
@ -26,6 +34,212 @@ namespace util {
typedef std::chrono::duration<std::uint64_t, std::ratio<1, 10000000> > ntfs_duration;
//---------------------------------------------------------
// arbitrary_clock - an std::chrono clock that "knows" the
// date of the epoch's begining
//---------------------------------------------------------
template<typename Rep, int Y, int M, int D, int H, int N, int S, typename Ratio>
class arbitrary_clock
{
public:
typedef Rep rep;
typedef Ratio period;
typedef std::chrono::duration<rep, period> duration;
typedef std::chrono::time_point<arbitrary_clock> time_point;
static constexpr int base_year = Y;
static constexpr int base_month = M;
static constexpr int base_day = D;
static constexpr int base_hour = H;
static constexpr int base_minute = N;
static constexpr int base_second = S;
//---------------------------------------------------------
// from_arbitrary_time_point - converts an arbitrary_clock
// with a different scale to this arbitrary_clock's scale
//---------------------------------------------------------
template<typename Rep2, int Y2, int M2, int D2, int H2, int N2, int S2, typename Ratio2>
static time_point from_arbitrary_time_point(const std::chrono::time_point<arbitrary_clock<Rep2, Y2, M2, D2, H2, N2, S2, Ratio2> > &tp)
{
const int64_t our_absolute_day = absolute_day(Y, M, D);
const int64_t their_absolute_day = absolute_day(Y2, M2, D2);
const auto our_fract_day = std::chrono::hours(H) + std::chrono::minutes(N) + std::chrono::seconds(S);
const auto their_fract_day = std::chrono::hours(H2) + std::chrono::minutes(N2) + std::chrono::seconds(S2);
const std::chrono::duration<Rep, Ratio> adjustment(std::chrono::hours(24) * (their_absolute_day - our_absolute_day) + (their_fract_day - our_fract_day));
const duration result_duration = std::chrono::duration_cast<duration>(tp.time_since_epoch() + adjustment);
return time_point(result_duration);
}
//---------------------------------------------------------
// to_arbitrary_time_point - converts an arbitrary_clock
// of this scale to one of different scale
//---------------------------------------------------------
template<typename Rep2, int Y2, int M2, int D2, int H2, int N2, int S2, typename Ratio2>
static std::chrono::time_point<arbitrary_clock<Rep2, Y2, M2, D2, H2, N2, S2, Ratio2> > to_arbitrary_time_point(const time_point &tp)
{
return arbitrary_clock<Rep2, Y2, M2, D2, H2, N2, S2, Ratio2>::from_arbitrary_time_point(tp);
}
//---------------------------------------------------------
// to_tm - formats a structure of type 'struct tm'
//---------------------------------------------------------
static struct tm to_tm(const time_point &tp)
{
std::chrono::time_point<tm_conversion_clock> normalized_tp = to_arbitrary_time_point<
std::int64_t,
tm_conversion_clock::base_year,
tm_conversion_clock::base_month,
tm_conversion_clock::base_day,
tm_conversion_clock::base_hour,
tm_conversion_clock::base_minute,
tm_conversion_clock::base_second,
tm_conversion_clock::period>(tp);
return internal_to_tm(normalized_tp.time_since_epoch());
}
//---------------------------------------------------------
// to_system_clock - converts to a system_clock time_point
//---------------------------------------------------------
static std::chrono::time_point<std::chrono::system_clock> to_system_clock(const time_point &tp)
{
auto normalized_tp = to_arbitrary_time_point<
std::int64_t,
system_conversion_clock::base_year,
system_conversion_clock::base_month,
system_conversion_clock::base_day,
system_conversion_clock::base_hour,
system_conversion_clock::base_minute,
system_conversion_clock::base_second,
system_conversion_clock::period>(tp);
return std::chrono::time_point<std::chrono::system_clock>(normalized_tp.time_since_epoch() + system_clock_adjustment);
}
//---------------------------------------------------------
// from_system_clock - converts from a system_clock time_point
//---------------------------------------------------------
static time_point from_system_clock(const std::chrono::time_point<std::chrono::system_clock> &tp)
{
std::chrono::time_point<system_conversion_clock> normalized_tp(tp.time_since_epoch() - system_clock_adjustment);
return from_arbitrary_time_point(normalized_tp);
}
private:
// By positioning the base year at 1601, we can ensure that:
//
// * years with leap years are at the end of every quadyear
// * quadyears without leap years are at the end of every century
// * centuries where the last quadyear has a leap year at the end are at the
// end of every quadcentury
typedef arbitrary_clock<std::int64_t, 1601, 1, 1, 0, 0, 0, std::ratio<1, 1> > tm_conversion_clock;
//---------------------------------------------------------
// internal_to_tm - formats a structure of type 'struct tm'
// based on a normalized clock
//---------------------------------------------------------
static struct tm internal_to_tm(std::chrono::duration<std::int64_t, std::ratio<1, 1> > duration)
{
constexpr int days_in_year(365);
constexpr int days_in_four_years((days_in_year * 4) + 1);
constexpr int days_in_century((days_in_four_years * 25) - 1);
constexpr int days_in_four_centuries((days_in_century * 4) + 1);
constexpr tm_conversion_clock::duration day(std::chrono::hours(24));
constexpr tm_conversion_clock::duration year(day * days_in_year);
constexpr tm_conversion_clock::duration four_years(day * days_in_four_years);
constexpr tm_conversion_clock::duration century(day * days_in_century);
constexpr tm_conversion_clock::duration four_centuries(day * days_in_four_centuries);
// figure out the day of week (note that 0 is Sunday, but January 1st 1601 is
// a Monday, so we have to adjust by one day)
const int day_of_week = int((duration + std::chrono::hours(24)) / day % 7);
// figure out the year
const int four_centuries_count = int(duration / four_centuries);
duration -= four_centuries_count * four_centuries;
const int century_count = std::min(int(duration / century), 3);
duration -= century_count * century;
const int four_years_count = std::min(int(duration / four_years), 25);
duration -= four_years_count * four_years;
const int year_count = int(duration / year);
duration -= year_count * year;
const int actual_year = tm_conversion_clock::base_year + four_centuries_count * 400 + century_count * 100 + four_years_count * 4 + year_count;
// figure out the day in the year
const int day_in_year = int(duration / day);
duration -= day_in_year * day;
// figure out the month
int month, day_in_month = day_in_year;
for (month = 0; month < 12; month++)
{
int days_in_this_month = gregorian_days_in_month(month + 1, actual_year);
if (day_in_month < days_in_this_month)
break;
day_in_month -= days_in_this_month;
}
if (month >= 12)
throw false;
// figure out the time
const int hour = int(duration / std::chrono::hours(1));
duration -= std::chrono::hours(hour);
const int minute = int(duration / std::chrono::minutes(1));
duration -= std::chrono::minutes(minute);
const int second = int(duration / std::chrono::seconds(1));
duration -= std::chrono::seconds(second);
// populate the result and return
struct tm result;
memset(&result, 0, sizeof(result));
result.tm_year = actual_year - 1900;
result.tm_mon = month;
result.tm_mday = day_in_month + 1;
result.tm_yday = day_in_year;
result.tm_sec = second;
result.tm_min = minute;
result.tm_hour = hour;
result.tm_wday = day_of_week;
return result;
}
typedef arbitrary_clock<std::int64_t, 1970, 1, 1, 0, 0, 0, std::chrono::system_clock::period > system_conversion_clock;
//-------------------------------------------------
// absolute_day - returns the absolute day count
// for the specified year/month/day
//-------------------------------------------------
static int64_t absolute_day(int year, int month, int day)
{
// first factor the year
int64_t result = (year - 1) * 365;
result += (year - 1) / 4;
result -= (year - 1) / 100;
result += (year - 1) / 400;
// then the month
for (int i = 1; i < month; i++)
result += gregorian_days_in_month(i, year);
// then the day
result += day - 1;
return result;
}
};
/***************************************************************************
INLINE FUNCTIONS
***************************************************************************/

View File

@ -2,7 +2,7 @@
// copyright-holders:Raphael Nabet
/****************************************************************************
macutil.c
macutil.cpp
Imgtool Utility code for manipulating certain Apple/Mac data structures
and conventions
@ -10,20 +10,25 @@
*****************************************************************************/
#include "macutil.h"
#include "timeconv.h"
typedef util::arbitrary_clock<std::uint32_t, 1904, 1, 1, 0, 0, 0, std::ratio<1, 1> > classic_mac_clock;
time_t mac_crack_time(uint32_t t)
{
/* not sure if this is correct... */
return t - (((1970 - 1904) * 365) + 17) * 24 * 60 * 60;
classic_mac_clock::duration d(t);
std::chrono::time_point<std::chrono::system_clock> tp = classic_mac_clock::to_system_clock(std::chrono::time_point<classic_mac_clock>(d));
return std::chrono::system_clock::to_time_t(tp);
}
uint32_t mac_setup_time(time_t t)
{
/* not sure if this is correct... */
return t + (((1970 - 1904) * 365) + 17) * 24 * 60 * 60;
auto system_time_point = std::chrono::system_clock::from_time_t(t);
auto mac_time_point = classic_mac_clock::from_system_clock(system_time_point);
return mac_time_point.time_since_epoch().count();
}