Low-level input upgrade. Classes now exist for input_codes, input_items,
input_devices, and input_seqs. Also created an input_manager class to
hold machine-global state and made it accessible via machine.input().
Expanded the device index range (0-255, up from 0-16), and the OSD can
now specify the device index explicitly if they can better keep the
indexes from varying run-to-run. [Aaron Giles]
Note that I've built and run SDL on Windows, but not all the code paths
were exercised. If you use mice/joysticks extensively double-check them
to be sure it all still works as expected.
This is mainly an OSD and core change. The only thing impacting drivers
is if they query for specific keys for debugging. The following S&Rs
took care of most of that:
S: input_code_pressed( *)\(( *)([^, ]+) *, *
R: \3\.input\(\)\.code_pressed\1\(\2
S: input_code_pressed_once( *)\(( *)([^, ]+) *, *
R: \3\.input\(\)\.code_pressed_once\1\(\2
Remove the old tokenizing helpers. Add basic classes for ports, fields,
settings, and dip locations as a first step. These will be fully cleaned
up later. Added machine() method to field to hide all the necessary
indirection. Changed custom/changed handlers into generic read/write
handlers, and added wrappers to convert them to device read/write
lines. [Aaron Giles]
- non-device timer callbacks
- machine state changing callbacks
- configuration callbacks
- per-screen VBLANK callbacks
- DRC backend callbacks
For the timer case only, I added wrappers for the old-style functions.
Over time, drivers should switch to device timers instead, reducing the
number of timers that are directly allocated through the scheduler.
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
meant adding a machine() accessor but it's worth it for consistency.
This will allow future changes from reference to pointer to happen
transparently for devices. [Aaron Giles]
Simple S&R:
m_machine( *[^ (!=;])
machine()\1
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
to private member variables with accessors:
machine->m_respool ==> machine->respool()
machine->config ==> machine->config()
machine->gamedrv ==> machine->system()
machine->m_regionlist ==> machine->first_region()
machine->sample_rate ==> machine->sample_rate()
Also converted internal lists to use simple_list.
functionality in favor of alternate mechanisms. Errors are
now reported via an astring rather than via callbacks. Every
option must now specify a type (command, integer, float, string,
boolean, etc). Command behavior has changed so that only one
command is permitted. [Aaron Giles]
Changed fileio system to accept just a raw searchpath instead of
an options/option name combination. [Aaron Giles]
Created emu_options class dervied from core_options which wraps
core emulator options. Added mechanisms to cleanly change the
system name and add/remove system-specific options, versus the
old way using callbacks. Also added read accessors for all the
options, to ensure consistency in how parameters are handled.
Changed most core systems to access emu_options instead of
core_options. Also changed machine->options() to return emu_options.
[Aaron Giles]
Created cli_options class derived from emu_options which adds the
command-line specific options. Updated clifront code to leverage
the new class and the new core behaviors. cli_execute() now accepts
a cli_options object when called. [Aaron Giles]
Updated both SDL and Windows to have their own options classes,
derived from cli_options, which add the OSD-specific options on
top of everything else. Added accessors for all the options so
that queries are strongly typed and simplified. [Aaron Giles]
Out of whatsnew: I've surely screwed up some stuff, though I have
smoke tested a bunch of things. Let me know if you hit anything odd.
Also I know this change will impact the WINUI stuff, please let me
know if there are issues. All the functionality necessary should
still be present. If it's not obvious, please talk to me before
adding stuff to the core_options class.
Screen update function is now per screen device
(it was before but was attached to machine driver)
MCFG_VIDEO_UPDATE -> MCFG_SCREEN_UPDATE
MCFG_VIDEO_EOF -> MCFG_SCREEN_EOF
EOF is now executed for all screens, so for all existing it
is defined just for one screen. This part will be updated in future.
Note that there are now screen_update and screen_eof virtual functions
for "modern" drivers which are called same as they did before.
All drivers are updated and in places where update function was separated per
screen I did name separate function.
This change will enable us to put screen definition fully into device.
to pass a core_options object to the constructor, along with
a search path. This required pushing either a running_machine
or a core_options through some code that wasn't previously
ready to handle it. emu_files can be reused over multiple
open/close sessions, and a lot of core code cleaned up
nicely as things were converted to them.
Also created a file_enumerator class for iterating over files
in a searchpath. This replaces the old mame_openpath functions.
Changed machine->options() to return a reference.
Removed public nvram_open() and fixed jchan/kaneko16 to
stop directly saving NVRAM.
Removed most of the mame_options() calls; this will soon go
away entirely, so don't add any more.
Added core_options to device_validity_check() so they can be
used to validate things.
are still intact. The new state_manager class has templatized methods
for saving the various types, and through template specialization can
save more complex system types cleanly (like bitmaps and attotimes).
Added new mechanism to detect proper state save types. This is much
more strict and there will likely be some games/devices that fatalerror
at startup until they are remedied. Spot checking has caught the more
common situations.
The new state_manager is embedded directly in the running_machine,
allowing objects to register state saving in their constructors now.
Added NAME() macro which is a generalization of FUNC() and can be
used to wrap variables that are registered when directly using the
new methods as opposed to the previous macros. For example:
machine->state().save_item(NAME(global_item))
Added methods in the device_t class that implicitly register state
against the current device, making for a cleaner interface.
Just a couple of required regexes for now:
state_save_register_postload( *)\(( *)([^,;]+), *
\3->state().register_postload\1\(\2
state_save_register_presave( *)\(( *)([^,;]+), *
\3->state().register_presave\1\(\2
timers into the scheduler. Retain TIMER devices as a separate wrapper
in timer.c/.h. Inline wrappers are currently provided for all timer
operations; a future update will bulk clean these up.
Rather than using macros which hide generation of a string-ified name
for callback functions, the new methods require passing both a function
pointer plus a name string. A new macro FUNC() can be used to output
both, and another macro MFUNC() can be used to output a stub-wrapped
class member as a callback.
Also added a time() method on the machine, so that machine->time() gives
the current emulated time. A wrapper for timer_get_time is currently
provided but will be bulk replaced in the future.
For this update, convert all classic timer_alloc, timer_set,
timer_pulse, and timer_call_after_resynch calls into method calls on
the scheduler.
For new device timers, added methods to the device_t class that make
creating and managing these much simpler. Modern devices were updated
to use these.
Here are the regexes used; some manual cleanup (compiler-caught) will
be needed since regex doesn't handle nested parentheses cleanly
1. Convert timer_call_after_resynch calls
timer_call_after_resynch( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().synchronize\1\(\2FUNC(\6), \5, \4\)
2. Clean up trailing 0, NULL parameters
(synchronize[^;]+), 0, NULL\)
\1)
3. Clean up trailing NULL parameters
(synchronize[^;]+), NULL\)
\1)
4. Clean up completely empty parameter lists
synchronize\(FUNC\(NULL\)\)
synchronize()
5. Convert timer_set calls
timer_set( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_set\1\(\2\4, FUNC(\7), \6, \5\)
6. Clean up trailing 0, NULL parameters
(timer_set[^;]+), 0, NULL\)
\1)
7. Clean up trailing NULL parameters
(timer_set[^;]+), NULL\)
\1)
8. Convert timer_set calls
timer_pulse( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_pulse\1\(\2\4, FUNC(\7), \6, \5\)
9. Clean up trailing 0, NULL parameters
(timer_pulse[^;]+), 0, NULL\)
\1)
10. Clean up trailing NULL parameters
(timer_pulse[^;]+), NULL\)
\1)
11. Convert timer_alloc calls
timer_alloc( *)\(( *)([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_alloc\1\(\2FUNC(\4), \5\)
12. Clean up trailing NULL parameters
(timer_alloc[^;]+), NULL\)
\1)
13. Clean up trailing 0 parameters
(timer_alloc[^;]+), 0\)
\1)
14. Fix oddities introduced
\&m_machine->scheduler()
m_machine.scheduler()
into one file, and separated the speaker device into its own file.
Generalized the concept of dynamically assigned inputs and re-wired the
speaker to work this way, so it is now treated just like any other
sound device. Added methods to the device_sound_interface for controlling
output gain and mapping device inputs/outputs to stream inputs/outputs.
Also made the sound_stream_update() method pure virtual, so all modern
sound devices must use the new mechanism for stream updates.
Primary changes outside of the core are:
stream_update(stream) == stream->update()
stream_create(device,...) == machine->sound().stream_alloc(*device,...)
sound_global_enable(machine,enable) == machine->sound().system_enable(enable)
Beyond this, the patterns are relatively obvious for the remaining calls.
module osdepend.c with default empty implementations. Changed
mame_execute() and cli_execute() to accept a reference to an
osd_interface which is provided by the caller.
Updated SDL and Windows OSD to create an osd_interface-derived
class and moved their OSD callbacks to be members.
broadly used.
Added memory interface to the intelfsh device so you can access/view the
data in the debugger and via the standard memory interfaces. Removed the
old memory() method in favor of new functions read_raw()/write_raw() which
do direct reads/writes of the data.
Cleaned up CPS3 No-CD sets to break up the "ROMs" into individual flash
pieces which are automatically loaded by the intelfsh device on initialization.
Also split the MACHINE_CONFIG to only populate the number of SIMMs actually
present for each game, as documented in the top of the file. And replaced
the NVRAM_HANDLER with an NVRAM device.
have no core use, they are simply there for the convenience of drivers.
Now that drivers are required to have devices, the data should move there.
[Atari Ace]
---------- Forwarded message ----------
From: Atari Ace <atari_ace@frontier.com>
Date: Sun, Sep 5, 2010 at 4:45 PM
Subject: [patch] Eliminate generic.videoramm generic.videoram_size
To: submit@mamedev.org
Cc: atariace@hotmail.com
Hi mamedev,
This set of patches removes generic.videoram and
generic.videoram_size. These generics have no core use, they are
simply there for the convenience of drivers. Now that drivers are
required to have devices, the data should move there.
The first patch sets the stage for the rest of the patch. It includes
several changes.
1. It replaces all the uses of generic.videoram_size with appropriate
constants.
2. It eliminates the write handlers from pc_video.c. These are
unused in MAME and MESS appears to have a private copy.
3. It splits some drivers:
a. It separates mcr68 from the mcr driver, mostly by dividing
machine/mcr.c.
b. It separates naughtyb from the phoenix driver by introducing an
audio/pleiads.h include.
c. It replaces video/system1.h with includes/system1.h.
4. It fixes some videoram related bugs.
a. balsente, mole didn't need videoram.
b. sbowling has a dangling reference to videoram from an earlier
driver_data conversion
5. It expands some namcona functions to multiple lines so that later
scripted-edits look sensible.
The second patch is generated by vram01_1.pl. It introduces videoram
local variables in function that use videoram read-only and removes
AM_SIZE_GENERIC(videoram).
The third patch is generated by vram01_2.pl. It replaces all
occurances of generic.videoram with state->videoram,
introducing/modifying driver_device classes as needed.
The fourth patch then actually removes the generics, and fixes one
issue the scripts didn't handle.
~aa
work just like required_device<> and optional_device<> for retrieving a
pointer by tag from an address space that specifies AM_SHARE("tag").
Also added templates required_shared_size<> and optional_shared_size<>
for retrieving the size of the AM_SHARE region.
Created a new generic NVRAM device. It can be configured to default to
0-fill, 1-fill, random-fill, or custom fill. In all cases, a same-named
memory region overrides the default fill. The address range where the
NVRAM can be found is now identified by an AM_SHARE() region of the
same tag as the NVRAM device. Drivers can also explicitly configure a
separately-allocated NVRAM region via nvram_device::set_base().
Replaced all instances of MDRV_NVRAM_HANDLER(generic_*) with
MDRV_NVRAM_ADD_*("nvram"). Replaced all AM_BASE_GENERIC/AM_SIZE_GENERIC(nvram)
with AM_SHARE("nvram"). For all remaining drivers that referenced the
generic.nvram directly, changed them to hold a required_shared_ptr<UINTx>
to the NVRAM in their driver state, and use that instead. Removed
nvram and nvram_size from the generic_ptrs.
recently-introduced find_devices() method.
There are two new template classes optional_device<> and required_device<>.
Use these to declare the device pointers in the class. The only difference
between the two is that required will fatalerror if the device is not found.
These new classes are "pass-through" so m_oki can be passed anywhere an
okim6295_device would work, and you can use m_oki->x to reference methods
or variables.
Each of these new classes needs to be specified in the initializer,
passing a reference to the driver_device object and the device tag. So,
for example:
class example_state : public driver_device
{
public:
example_state(running_machine &machine, const driver_device_config_base &config)
: driver_device(machine, config),
m_maincpu(*this, "maincpu"),
m_oki(*this, "oki") { }
required_device<okim6295_device> m_oki;
optional_device<cpu_device> m_maincpu;
};
Given that, the driver_device will auto-populate each device with a
pointer to the device prior to calling any of the initialization methods.
device interface. This means all ROMs are now exposed via devices,
and thus the process of enumerating ROMs gets simpler.
Changed all instances of temporarily allocating machine_config objects
to just put them on the stack for simplicity, letting the destructor
handle the cleanup work automatically.
Changed machine_config constructor to take a game_driver, from which
the machine_config constructor is obtained. This also means the
resulting machine_config holds a reference to the game_driver.
Changed running_machine constructor to no longer take a game_driver,
since the game_driver is now obtainable via the machine_config.
class with a new driver_device class, which is the base class for all
driver_data objects now. The new driver devices are added as the
first device in the device list, with a tag of "root"; all other
devices are now owned by the driver device.
Moved core callbacks (machine_start/_reset, sound_start/_reset,
video_start/_reset/_eof/_update, and palette_init) into device
configuration parameters on these new devices. The driver_device
base class overrides device_start(), ensures all other devices have
been started, and then calls, in order, the following overridable
methods:
find_devices() - new, used to locate devices prior to DRIVER_INIT
DRIVER_INIT function from the game driver
palette_init() - by default calls the MDRV_PALETTE_INIT function
driver_start() - new
machine_start() - by default calls the MDRV_MACHINE_START function
sound_start() - by default calls the MDRV_SOUND_START function
video_start() - by default calls the MDRV_VIDEO_START function
Similarly, the driver_device class overrides device_reset() and then
calls these methods in order:
driver_reset() - new
machine_reset() - by default calls the MDRV_MACHINE_RESET function
sound_reset() - by default calls the MDRV_SOUND_RESET function
video_reset() - by default calls the MDRV_VIDEO_RESET function
To accommodate these changes, initialization order is slightly
altered from before. The tilemap, video, sound, and debug systems
are now initialized prior to the devices' start. And the user
callbacks for DRIVER_INIT, PALETTE_INIT, MACHINE_START, SOUND_START,
and VIDEO_START are all called back-to-back. The net effect should
be similar, however.
Added methods (optional_device and required_device) to the new
driver_device class to find devices, intended to be used from the
find_devices() callback. See harddriv.h and beathead.h for examples
of usage.
Changed device_t::subtag to only prepend a prefix if the device is
not the 'root' device, in order to keep compatibility with existing
tag searching.
Changed device startup to actively reorder devices when they report
missing dependencies. This ensures that the reset functions get
called in the same order that the start functions did.
Bulk updated drivers as follows:
First removed the old static alloc function from the driver_data_t:
S: [ \t]*static driver_device \*alloc *\( *running_machine *\&machine *\) *\{ *return auto_alloc_clear *\( *\&machine *, *[a-zA-Z0-9_]+_state *\( *machine *\) *\); *\}[\r\n]*
R:
Then switched from driver_data_t to driver_device:
S: driver_data_t
R: driver_device
Then changed the constructors to pass the correct parameters:
S: ([a-zA-Z0-9_]+)_state *\( *running_machine *\&machine *\)([\r\n\t ]+): *driver_device *\( *machine *\)
R: \1_state\(running_machine \&machine, const driver_device_config_base \&config\)\2: driver_device\(machine, config\)
1. Renamed MACHINE_DRIVER_* to MACHINE_CONFIG_* to match the name
of the object it actually describes. The MDRV_* prefix may
eventually be bulk updated at some point, but not now.
2. MACHINE_CONFIG_START() now takes a driver_data_t-derived
class as a required second parameter. This means that
MDRV_DRIVER_DATA() is no longer required, and every "root"
machine config *must* specify a driver data class (or driver_data_t
itself if the driver has not yet been updated to use driver data).
3. New MACHINE_CONFIG_DERIVED() macro defines a machine_config
that is derived from another machine_config. This takes the place
of the very typical MACHINE_DRIVER_START()/MDRV_IMPORT_FROM()
combination.
4. New MACHINE_CONFIG_FRAGMENT() macro defines a partial
machine_config that can only be included in another "root"
machine_config. This is also used for machine_configs that are
specified as part of a device.
5. Changed MDRV_IMPORT_FROM() to MDRV_FRAGMENT_ADD() to more
accurately describe what is happening.
6. Added asserts to the above three macros to ensure they are
properly used.
Updated all machine drivers to use the new macros. Search & replace
lists below cover 99% of the changes, with just a few manual fixups.
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*MDRV_DRIVER_DATA\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*/\* driver data \*/[\r\n\t ]*MDRV_DRIVER_DATA\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*MDRV_IMPORT_FROM\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_DERIVED\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*/\* basic machine hardware \*/[\r\n\t ]*MDRV_IMPORT_FROM\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_DERIVED\( \1, \2 \)\r\n\r\n\t/\* basic machine hardware \*/
For all files outside of mame/drivers....
S: MACHINE_DRIVER_START
R: MACHINE_CONFIG_FRAGMENT in all non-drivers
For all files within mame/drivers....
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, driver_data_t \)
S: MDRV_IMPORT_FROM
R: MDRV_FRAGMENT_ADD
S: MACHINE_DRIVER_END
R: MACHINE_CONFIG_END
S: MACHINE_DRIVER_NAME
R: MACHINE_CONFIG_NAME
S: MACHINE_DRIVER_EXTERN
R: MACHINE_CONFIG_EXTERN
Final step: run mame -valid and fix the incorrect macros at the lines
where the asserts show up.
machine_start
machine_reset
sound_start
sound_reset
palette_init
video_start
video_reset
video_update
video_eof
The default implementations of these call through the machine
configuration's functions as before. However, if a driver_data_t
overrides them, it will be called instead.
Also added virtual functions for pre_save() and post_load(),
which can be overridden to implement machine driver-specific
pre-save/post-load functionality instead of registering with
the save state system.
Updated beathead to use these new virtual functions instead of
specifying callbacks in the MACHINE_DRIVER.
supporting cleaner implementations of drivers in the explicitly OO world.
Expect a follow-on of several more changes to clean up from this one, which
deliberately tried to avoid touching much driver code.
Converted address_space to a class, and moved most members behind accessor
methods, apart from space->machine and space->cpu. Removed external references
to 8le/8be/16le/16be/32le/32be/64le/64be. All external access is now done via
virtual functions read_byte()/read_word()/etc. Moved differentiation between
the endianness and the bus width internal to memory.c, and also added a new
axis to support small/large address spaces, which allows for faster lookups
on spaces smaller than 18 bits.
Provided methods for most global memory operations within the new address_space
class. These will be bulk converted in a future update, but for now there are
inline wrappers to hide this change from existing callers.
Created new module delegate.h which implements C++ delegates in a form that
works for MAME. Details are in the opening comment. Delegates allow member
functions of certain classes to be used as callbacks, which will hopefully
be the beginning of the end of fetching the driver_data field in most
callbacks. All classes that host delegates must derive from bindable_object.
Today, all devices and driver_data do implicitly via their base class.
Defined delegates for read/write handlers. The new delegates are always
passed an address_space reference, along with offset, data, and mask. Delegates
can refer to methods either in the driver_data class or in a device class.
To specify a callback in an address map, just use AM_READ_MEMBER(class, member).
In fact, all existing AM_ macros that take read/write handlers can now accept
delegates in their place. Delegates that are specified in an address map are
proto-delegates which have no object; they are bound to their object when
the corresponding address_space is created.
Added machine->m_nonspecific_space which can be passed as the required
address_space parameter to the new read/write methods in legacy situations
where the space is not provided. Eventually this can go away but we will
need it for a while yet.
Added methods to the new address_space class to dynamically install delegates
just like you can dynamically install handlers today. Delegates installed this
way must be pre-bound to their object.
Moved beathead's read/write handlers into members of beathead_state as an
example of using the new delegates. This provides examples of both static (via
an address_map) and dynamic (via install_handler calls) mapping using delegates.
Added read/write member functions to okim6295_device as an example of using
delegates to call devices. Updated audio/williams.c as a single example of
calling the device via its member function callbacks. These will be bulk
updated in a future update, and the old global callbacks removed.
Changed the DIRECT_UPDATE_CALLBACKs into delegates as well. Updated all users
to the new function format. Added methods on direct_read_data for configuring the
parameters in a standard way to make the implementation clearer.
Created a simple_list template container class for managing the common
singly-linked lists we use all over in the project.
Many other internal changes in memory.c, mostly involving restructuring the code
into proper classes.
Defined new class driver_data_t, which all driver_data classes must
derive from. Updated all class definitions to inherit from the new
class, and to call it in the constructor. Also changed the alloc()
signature to return a driver_data_t pointer instead of a void *.
Renamed and hid machine->driver_data as machine->m_driver_data.
Added a new templatized method machine->driver_data<class> which returns
a properly downcast'ed version of the driver data. Updated all code
which looked like this:
mydriver_state *state = (mydriver_state *)machine->driver_data;
to this:
mydriver_state *state = machine->driver_data<mydriver_state>();
The new function does a downcast<> which in debug builds dynamically
verifies that you're actually casting to the right type.
Changed atarigen_state to be a base class from which all the related
Atari drivers derive their state from.
For MESS: this was mostly a bulk search/replace, in 4 steps in
src/mame:
1. Add ": public driver_data_t" to each driver state class definition:
Search: (class [a-z0-9_]+_state)$
Replace: \1 : public driver_data_t
2. Change the static alloc function to return a driver_data_t *:
Search: static void \*alloc\(
Replace: static driver_data_t \*alloc\(
3. Change the constructor to initialize driver_data_t:
Search: ([a-z0-9_]+_state\(running_machine \&machine\)) { }
Replace: \1\r\n\t\t: driver_data_t(machine) { }
4. Replace the state fetchers to use the new templatized function:
Search: \(([a-z0-9_]+_state) \*\)(.*)machine->driver_data
Replace: \2machine->driver_data<\1>()
running_machine definition and implementation.
Moved global machine-level operations and accessors into methods on the
running_machine class. For the most part, this doesn't affect drivers
except for a few occasional bits:
mame_get_phase() == machine->phase()
add_reset_callback() == machine->add_notifier(MACHINE_NOTIFY_RESET, ...)
add_exit_callback() == machine->add_notifier(MACHINE_NOTIFY_EXIT, ...)
mame_get_base_datetime() == machine->base_datetime()
mame_get_current_datetime() == machine->current_datetime()
Cleaned up the region_info class, removing most global region accessors
except for memory_region() and memory_region_length(). Again, this doesn't
generally affect drivers.