// license:BSD-3-Clause // copyright-holders:Ryan Holtz /***************************************************************************** AMD Am79C90 CMOS Local Area Network Controller for Ethernet (C-LANCE) TODO: - Communication with the outside world - Error handling - Clocks *****************************************************************************/ #include "emu.h" #include "am79c90.h" DEFINE_DEVICE_TYPE(AM79C90, am79c90_device, "am79c90", "Am79C90 LANCE Ethernet Controller") am79c90_device::am79c90_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : device_t(mconfig, AM79C90, tag, owner, clock) , m_receive_timer(nullptr) //, m_receive_poll_timer(nullptr) , m_transmit_timer(nullptr) , m_transmit_poll_timer(nullptr) , m_irq_out_cb(*this) , m_dma_out_cb(*this) , m_dma_in_cb(*this) { } void am79c90_device::device_start() { m_irq_out_cb.resolve_safe(); m_dma_out_cb.resolve_safe(); // TODO: Should be read/write16! m_dma_in_cb.resolve_safe(0); m_transmit_poll_timer = timer_alloc(TIMER_TRANSMIT_POLL); m_transmit_poll_timer->adjust(attotime::never); m_transmit_timer = timer_alloc(TIMER_TRANSMIT); m_transmit_timer->adjust(attotime::never); m_receive_timer = timer_alloc(TIMER_RECEIVE); m_receive_timer->adjust(attotime::never); save_item(NAME(m_curr_transmit_desc.m_tmd01)); save_item(NAME(m_curr_transmit_desc.m_tmd23)); save_item(NAME(m_next_transmit_desc.m_tmd01)); save_item(NAME(m_next_transmit_desc.m_tmd23)); save_item(NAME(m_curr_recv_desc.m_tmd01)); save_item(NAME(m_curr_recv_desc.m_tmd23)); save_item(NAME(m_next_recv_desc.m_tmd01)); save_item(NAME(m_next_recv_desc.m_tmd23)); save_item(NAME(m_rap)); save_item(NAME(m_csr)); save_item(NAME(m_mode)); save_item(NAME(m_logical_addr_filter)); save_item(NAME(m_physical_addr)); save_item(NAME(m_recv_message_count)); save_item(NAME(m_recv_ring_addr)); save_item(NAME(m_recv_buf_addr)); save_item(NAME(m_recv_buf_count)); save_item(NAME(m_recv_ring_length)); save_item(NAME(m_recv_ring_pos)); save_item(NAME(m_recv_fifo)); save_item(NAME(m_recv_fifo_write)); save_item(NAME(m_recv_fifo_read)); save_item(NAME(m_receiving)); save_item(NAME(m_transmit_ring_addr)); save_item(NAME(m_transmit_buf_addr)); save_item(NAME(m_transmit_buf_count)); save_item(NAME(m_transmit_ring_length)); save_item(NAME(m_transmit_ring_pos)); save_item(NAME(m_transmit_fifo)); save_item(NAME(m_transmit_fifo_write)); save_item(NAME(m_transmit_fifo_read)); save_item(NAME(m_transmitting)); } void am79c90_device::device_reset() { memset(&m_curr_transmit_desc, 0, sizeof(ring_descriptor)); memset(&m_next_transmit_desc, 0, sizeof(ring_descriptor)); memset(&m_curr_recv_desc, 0, sizeof(ring_descriptor)); memset(&m_next_recv_desc, 0, sizeof(ring_descriptor)); m_rap = 0; memset(m_csr, 0, sizeof(uint16_t) * 4); m_csr[0] = CSR0_STOP; m_mode = 0; m_logical_addr_filter = 0; m_physical_addr = 0; m_recv_message_count = 0; m_recv_ring_addr = 0; m_recv_buf_addr = 0; m_recv_buf_count = 0; m_recv_ring_length = 0; m_recv_ring_pos = 0; memset(m_recv_fifo, 0, sizeof(uint32_t) * ARRAY_LENGTH(m_recv_fifo)); m_recv_fifo_write = 0; m_recv_fifo_read = 0; m_receiving = false; m_transmit_ring_addr = 0; m_transmit_buf_addr = 0; m_transmit_buf_count = 0; m_transmit_ring_length = 0; m_transmit_ring_pos = 0; memset(m_transmit_fifo, 0, sizeof(uint32_t) * ARRAY_LENGTH(m_transmit_fifo)); m_transmit_fifo_write = 0; m_transmit_fifo_read = 0; m_transmitting = false; } void am79c90_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr) { switch (id) { case TIMER_TRANSMIT_POLL: poll_transmit(); break; case TIMER_TRANSMIT: transmit(); break; case TIMER_RECEIVE: receive(); break; } } void am79c90_device::fetch_transmit_descriptor() { const uint32_t next_addr = (m_transmit_ring_addr >> 2) + (m_transmit_ring_pos << 1); ring_descriptor &next = m_next_transmit_desc; next.m_tmd01 = m_dma_in_cb(next_addr, ~0); next.m_tmd23 = m_dma_in_cb(next_addr + 1, ~0); } void am79c90_device::fetch_receive_descriptor() { const uint32_t next_addr = (m_recv_ring_addr >> 2) + (m_recv_ring_pos << 1); ring_descriptor &next = m_next_recv_desc; next.m_rmd01 = m_dma_in_cb(next_addr, ~0); next.m_rmd23 = m_dma_in_cb(next_addr + 1, ~0); } void am79c90_device::recv_fifo_push(uint32_t value) { // TODO: Poll for the FIFO at 1.6ms, don't instantly start receiving! // "...If the C-LANCE does not own it, it will poll the ring once every 1.6ms until // it owns it." logerror("%s: LANCE pushing %08x onto receive FIFO\n", machine().describe_context(), value); if (!m_receiving && !(m_mode & MODE_LOOP)) { begin_receiving(); } if (m_recv_fifo_write >= ARRAY_LENGTH(m_recv_fifo)) { logerror("%s: LANCE can't push onto receive FIFO, %d >= %d\n", machine().describe_context(), value, m_recv_fifo_write, ARRAY_LENGTH(m_recv_fifo)); // TODO: Do something return; } m_recv_fifo[m_recv_fifo_write] = value; m_recv_fifo_write++; if (m_recv_fifo_write == ARRAY_LENGTH(m_recv_fifo)) { // TODO: Do something } } void am79c90_device::begin_receiving() { fetch_receive_descriptor(); m_curr_recv_desc = m_next_recv_desc; ring_descriptor &curr = m_curr_recv_desc; if (curr.m_rmd01 & RMD1_OWN) { logerror("%s: LANCE owns the current buffer, activating receive timer, RMD0123 is %08x %08x\n", machine().describe_context(), curr.m_rmd01, curr.m_rmd23); m_receiving = true; m_recv_buf_addr = (((curr.m_rmd01 << 16) | (curr.m_rmd01 >> 16)) & 0x00ffffff) | 0xff000000; const int32_t rmd2 = (int16_t)(curr.m_rmd23 >> 16); m_recv_buf_count = (uint16_t)((-rmd2) & 0x00000fff); if (m_recv_buf_count == 0) m_recv_buf_count = 0x1000; if (m_mode & MODE_LOOP) { m_recv_buf_count = (m_mode & MODE_DTCR) ? 32 : 36; } if (curr.m_rmd01 & RMD1_STP) { m_recv_message_count = 0; } m_receive_timer->adjust(attotime::from_hz(10'000'000), 0, attotime::from_hz(10'000'000)); } else { logerror("%s: LANCE does not own the current buffer, deactivating receive timer\n", machine().describe_context()); m_receiving = false; m_receive_timer->adjust(attotime::never); } } void am79c90_device::receive() { const uint32_t received_value = (m_recv_fifo_write == 0) ? 0 : m_recv_fifo[m_recv_fifo_read]; m_recv_fifo_read++; if (m_recv_fifo_read >= m_recv_fifo_write) { m_recv_fifo_read = 0; m_recv_fifo_write = 0; } if (m_recv_buf_count >= 4) { logerror("%s: LANCE receiving %08x to address %08x, remaining %d\n", machine().describe_context(), received_value, m_recv_buf_addr, m_recv_buf_count - 4); m_dma_out_cb(m_recv_buf_addr >> 2, received_value, ~0); m_recv_buf_addr += 4; m_recv_message_count += 4; m_recv_buf_count -= 4; } else { const uint32_t mask = 0xffffffff << (m_recv_buf_count << 3); logerror("%s: LANCE receiving %08x & %08x to address %08x, remaining %d\n", machine().describe_context(), received_value, mask, m_recv_buf_addr, 0); m_dma_out_cb(m_recv_buf_addr >> 2, received_value, mask); m_recv_buf_addr += m_recv_buf_count; m_recv_message_count += m_recv_buf_count; m_recv_buf_count = 0; } if (m_recv_buf_count == 0) { logerror("%s: LANCE has completed receiving a buffer, clearing OWN bit and advancing receive ring position\n", machine().describe_context()); ring_descriptor &curr = m_curr_recv_desc; curr.m_rmd01 &= ~RMD1_OWN; const uint32_t addr = (m_recv_ring_addr >> 2) + (m_recv_ring_pos << 1); logerror("%s: LANCE is writing new RMD01: %08x\n", machine().describe_context(), curr.m_rmd01); m_dma_out_cb(addr, curr.m_rmd01, ~0); if (curr.m_rmd01 & TMD1_ENP) { curr.m_rmd23 &= 0xfffff000; if (m_recv_message_count != 0x1000) { curr.m_rmd23 |= m_recv_message_count & 0xfff; } m_dma_out_cb(addr + 1, curr.m_rmd23, ~0); logerror("%s: LANCE has completed receiving a message, total message length %d bytes, new RMD23 %08x\n", machine().describe_context(), m_recv_message_count, curr.m_rmd23); } m_recv_ring_pos++; m_recv_ring_pos &= m_recv_ring_length - 1; if (!(m_mode & MODE_LOOP)) { begin_receiving(); } else { logerror("%s: LANCE loopback test receive finished, setting RINT and stopping timer.\n", machine().describe_context()); m_csr[0] |= CSR0_RINT; update_interrupts(); m_receiving = false; m_receive_timer->adjust(attotime::never); } } } void am79c90_device::transmit() { logerror("%s: LANCE transmit, fetching from %08x\n", machine().describe_context(), m_transmit_buf_addr >> 2); uint32_t transmit_value = 0; const bool dtcr = m_mode & MODE_DTCR; if (m_transmit_buf_count > 4 || dtcr) { transmit_value = m_dma_in_cb(m_transmit_buf_addr >> 2, ~0); if (!dtcr) { m_crc32.append(&transmit_value, sizeof(uint32_t)); } } else { transmit_value = (uint32_t)m_crc32.finish(); } const bool loopback = (m_mode & MODE_LOOP); if (loopback) { // TODO: Differentiate between internal and external loopback recv_fifo_push(transmit_value); } else { // TODO: Send data to an actual network interface and/or our real transmit FIFO } if (m_transmit_buf_count >= 4) { m_transmit_buf_addr += 4; m_transmit_buf_count -= 4; } else { m_transmit_buf_addr += m_transmit_buf_count; m_transmit_buf_count = 0; } if (m_transmit_buf_count == 0) { const uint32_t base_addr = (m_transmit_ring_addr >> 2) + (m_transmit_ring_pos << 1); ring_descriptor &curr = m_curr_transmit_desc; curr.m_tmd01 &= ~TMD1_OWN; m_dma_out_cb(base_addr, curr.m_tmd01, ~0); if (!(curr.m_tmd01 & TMD1_ENP)) { fetch_transmit_descriptor(); m_curr_transmit_desc = m_next_transmit_desc; if (!(curr.m_tmd01 & TMD1_OWN)) { logerror("%s: LANCE is done transmitting a buffer of this descriptor ring, next ring unowned, resuming polling.\n", machine().describe_context()); m_transmitting = false; m_transmit_timer->adjust(attotime::never); m_transmit_poll_timer->adjust(attotime::from_usec(1600), 0, attotime::from_usec(1600)); } else { logerror("%s: LANCE is done transmitting a buffer of this descriptor ring, preparing to transmit next buffer.\n", machine().describe_context()); prepare_transmit_buf(); } } else { logerror("%s: LANCE is done transmitting the last buffer of this descriptor ring, raising TINT and resuming polling.\n", machine().describe_context()); if (m_mode & MODE_LOOP) { begin_receiving(); } m_csr[0] |= CSR0_TINT; update_interrupts(); m_transmitting = false; m_transmit_timer->adjust(attotime::never); m_transmit_poll_timer->adjust(attotime::from_usec(1600), 0, attotime::from_usec(1600)); } } } void am79c90_device::prepare_transmit_buf() { ring_descriptor &curr = m_curr_transmit_desc; m_transmit_buf_addr = ((curr.m_tmd01 << 16) | ((curr.m_tmd01 >> 16) & 0x00ffffff)) | 0xff000000; const int32_t tmd2 = (int16_t)(curr.m_tmd23 >> 16); m_transmit_buf_count = (uint16_t)((-tmd2) & 0x00000fff); if (m_transmit_buf_count == 0) m_transmit_buf_count = 0x1000; if (!(m_mode & MODE_DTCR)) { m_transmit_buf_count += 4; } logerror("%s: LANCE: Valid transmit descriptors found, preparing to transmit %d bytes\n", machine().describe_context(), m_transmit_buf_count); } void am79c90_device::poll_transmit() { ring_descriptor &curr = m_curr_transmit_desc; const uint32_t base_addr = (m_transmit_ring_addr >> 2) + (m_transmit_ring_pos << 1); //logerror("%s: LANCE polling for packets from %08x\n", machine().describe_context(), base_addr); curr.m_tmd01 = m_dma_in_cb(base_addr, ~0); const uint16_t tmd1 = (uint16_t)curr.m_tmd01; if (!(tmd1 & TMD1_OWN)) return; if (!(tmd1 & TMD1_STP) && !m_transmitting) { // "The STP bit must be set in the first buffer of the packet, or the C-LANCE will skip over this // descriptor and poll the next descriptor(s) until the OWN and STP bits are set." m_transmit_ring_pos++; m_transmit_ring_pos &= m_transmit_ring_length - 1; logerror("%s: LANCE: No STP on this entry and not transmitting, skipping to next entry\n", machine().describe_context()); return; } //logerror("%s: LANCE: Starting transmitting\n", machine().describe_context()); m_transmit_poll_timer->adjust(attotime::never); m_transmitting = true; m_crc32.reset(); // TMD0's value is retrieved from the value fetched above, but per the AMD Am79C90 manual, page 30: // "The C-LANCE will read TMD0 and TMD2 to get the rest of the buffer address and the buffer byte count // when it owns the descriptor. Each of these memory reads is done separately with a new arbitration // cycle for each transfer." m_dma_in_cb(base_addr, ~0); curr.m_tmd23 = m_dma_in_cb(base_addr + 1, ~0); m_transmit_ring_pos++; m_transmit_ring_pos &= m_transmit_ring_length - 1; if (!(tmd1 & TMD1_ENP)) { logerror("%s: LANCE: No EOP on this entry, caching next entry and checking ownership\n", machine().describe_context()); // "BUFFER ERROR is set by the C-LANCE during transmission when the C-LANCE does not find the ENP // flag in the current buffer and does not own the next buffer." fetch_transmit_descriptor(); ring_descriptor &next = m_next_transmit_desc; if (!((next.m_tmd01 >> 16) & TMD1_OWN)) { logerror("%s: LANCE: No EOP on this entry, but we don't own the next one; setting BUFF\n", machine().describe_context()); curr.m_tmd23 |= TMD3_BUFF; m_dma_out_cb(base_addr + 1, curr.m_tmd23, ~0); m_csr[0] &= ~CSR0_TXON; m_transmitting = false; return; } } prepare_transmit_buf(); m_transmit_timer->adjust(attotime::from_hz(10'000'000), 0, attotime::from_hz(10'000'000)); } void am79c90_device::update_interrupts() { if (m_csr[0] & CSR0_ANY_INTR) { m_csr[0] |= CSR0_INTR; } else { m_csr[0] &= ~CSR0_INTR; } m_irq_out_cb((m_csr[0] & CSR0_INTR) ? 1 : 0); } READ16_MEMBER(am79c90_device::regs_r) { uint16_t ret = 0; if (offset) { ret = m_rap; logerror("%s: lance_r: RAP = %04x\n", machine().describe_context(), ret); } else { ret = m_csr[m_rap]; logerror("%s: lance_r: CSR%d = %04x\n", machine().describe_context(), m_rap, ret); } return ret; } WRITE16_MEMBER(am79c90_device::regs_w) { if (offset) { logerror("%s: lance_r: RAP = %d\n", machine().describe_context(), data & 3); m_rap = data & 3; } else { logerror("%s: lance_w: CSR%d = %04x\n", machine().describe_context(), m_rap, data); switch (m_rap) { case 0: // Control/Status m_csr[0] &= ~(data & (CSR0_ANY_ERR | CSR0_IDON)); if (m_csr[0] & CSR0_ANY_ERR) m_csr[0] |= CSR0_ERR; else m_csr[0] &= ~CSR0_ERR; if (data & CSR0_STOP) { data &= ~(CSR0_RXON | CSR0_TXON | CSR0_TDMD | CSR0_STRT | CSR0_INIT); m_csr[0] &= ~(CSR0_IDON | CSR0_RXON | CSR0_TXON | CSR0_TDMD | CSR0_STRT | CSR0_INIT); m_csr[0] |= CSR0_STOP; m_csr[3] = 0; m_receive_timer->adjust(attotime::never); m_transmit_timer->adjust(attotime::never); m_transmit_poll_timer->adjust(attotime::never); } if (data & CSR0_INIT) { uint32_t init_addr = 0xff000000 | m_csr[1] | (m_csr[2] << 16); uint16_t init_block[12]; logerror("%s: LANCE Init block:\n", machine().describe_context()); for (uint32_t i = 0; i < 6; i++) { uint32_t value = m_dma_in_cb((init_addr >> 2) + i, ~0); init_block[i*2 + 0] = (uint16_t)(value >> 16); init_block[i*2 + 1] = (uint16_t)value; logerror("%s: IADR +%02d: %04x\n", machine().describe_context(), i*4, init_block[i*2 + 0]); logerror("%s: IADR +%02d: %04x\n", machine().describe_context(), i*4 + 2, init_block[i*2 + 1]); } m_mode = init_block[0]; m_physical_addr = ((uint64_t)init_block[3] << 32) | ((uint64_t)init_block[2] << 16) | (uint64_t)init_block[1]; m_logical_addr_filter = ((uint64_t)init_block[7] << 48) | ((uint64_t)init_block[6] << 32) | ((uint64_t)init_block[5] << 16) | (uint64_t)init_block[4]; m_recv_ring_addr = (((uint32_t)init_block[9] << 16) | (uint32_t)init_block[8]) & 0x00fffff8; m_recv_ring_addr |= 0xff000000; m_transmit_ring_addr = (((uint32_t)init_block[11] << 16) | (uint32_t)init_block[10]) & 0x00fffff8; m_transmit_ring_addr |= 0xff000000; m_recv_ring_length = 1 << ((init_block[9] >> 13) & 7); m_transmit_ring_length = 1 << ((init_block[11] >> 13) & 7); m_transmit_ring_pos = 0; m_recv_ring_pos = 0; logerror("%s: Mode: %04x\n", machine().describe_context(), m_mode); logerror("%s: Physical Address: %08x%08x\n", machine().describe_context(), (uint32_t)(m_physical_addr >> 32), (uint32_t)m_physical_addr); logerror("%s: Logical Address Filter: %08x%08x\n", machine().describe_context(), (uint32_t)(m_logical_addr_filter >> 32), (uint32_t)m_logical_addr_filter); logerror("%s: Receive Ring Address: %08x\n", machine().describe_context(), m_recv_ring_addr); logerror("%s: Receive Ring Length: %04x\n", machine().describe_context(), m_recv_ring_length); logerror("%s: Transmit Ring Address: %08x\n", machine().describe_context(), m_transmit_ring_addr); logerror("%s: Transmit Ring Length: %04x\n", machine().describe_context(), m_transmit_ring_length); m_csr[0] &= ~CSR0_STOP; m_csr[0] |= CSR0_IDON | CSR0_INIT | CSR0_TXON | CSR0_RXON; m_receive_timer->adjust(attotime::never); m_transmit_timer->adjust(attotime::never); m_transmit_poll_timer->adjust(attotime::never); } if (data & CSR0_STRT) { m_csr[0] &= ~CSR0_STOP; if (m_mode & MODE_DRX) m_csr[0] &= ~CSR0_RXON; if (m_mode & MODE_DTX) m_csr[0] &= ~CSR0_TXON; if (m_csr[0] & CSR0_TXON) m_transmit_poll_timer->adjust(attotime::from_usec(1600), 0, attotime::from_usec(1600)); } update_interrupts(); if (data & CSR0_TDMD) { // TODO: Handle transmit demand } break; case 1: // Least significant 15 bits of the Initialization Block m_csr[1] = data & 0xfffe; break; case 2: // Most significant 8 bits of the Initialization Block m_csr[2] = data & 0x00ff; break; case 3: // Bus master interface m_csr[3] = data & 0x0007; break; } } }