/*************************************************************************** TMS34010: Portable Texas Instruments TMS34010 emulator Copyright (C) Alex Pasadyn/Zsolt Vasvari 1998 Parts based on code by Aaron Giles ***************************************************************************/ /*************************************************************************** MISC MACROS ***************************************************************************/ #define ZEXTEND(val,width) if (width) (val) &= ((UINT32)0xffffffff >> (32 - (width))) #define SEXTEND(val,width) if (width) (val) = (INT32)((val) << (32 - (width))) >> (32 - (width)) #define SXYTOL(val) ((((INT16)(val).y * state.convsp) + ((INT16)(val).x << state.pixelshift)) + OFFSET) #define DXYTOL(val) ((((INT16)(val).y * state.convdp) + ((INT16)(val).x << state.pixelshift)) + OFFSET) #define MXYTOL(val) ((((INT16)(val).y * state.convmp) + ((INT16)(val).x << state.pixelshift)) + OFFSET) #define COUNT_CYCLES(x) tms34010_ICount -= x #define COUNT_UNKNOWN_CYCLES(x) COUNT_CYCLES(x) #define CORRECT_ODD_PC(x) do { if (PC & 0x0f) logerror("%s to PC=%08X\n", x, PC); PC &= ~0x0f; } while (0) /*************************************************************************** FLAG HANDLING MACROS ***************************************************************************/ #define SIGN(val) ((val) & 0x80000000) #define CLR_Z state.st &= ~STBIT_Z #define CLR_V state.st &= ~STBIT_V #define CLR_C state.st &= ~STBIT_C #define CLR_N state.st &= ~STBIT_N #define CLR_NZ state.st &= ~(STBIT_N | STBIT_Z) #define CLR_CZ state.st &= ~(STBIT_C | STBIT_Z) #define CLR_ZV state.st &= ~(STBIT_Z | STBIT_V) #define CLR_NZV state.st &= ~(STBIT_N | STBIT_Z | STBIT_V) #define CLR_NCZ state.st &= ~(STBIT_N | STBIT_C | STBIT_Z) #define CLR_NCZV state.st &= ~(STBIT_N | STBIT_C | STBIT_Z | STBIT_V) #define SET_V_BIT_LO(val,bit) state.st |= ((val) << (28 - (bit))) & STBIT_V #define SET_V_BIT_HI(val,bit) state.st |= ((val) >> ((bit) - 28)) & STBIT_V #define SET_V_LOG(val) state.st |= (val) << 28 #define SET_Z_BIT_LO(val,bit) state.st |= ((val) << (29 - (bit))) & STBIT_Z #define SET_Z_BIT_HI(val,bit) state.st |= ((val) >> ((bit) - 29)) & STBIT_Z #define SET_Z_LOG(val) state.st |= (val) << 29 #define SET_C_BIT_LO(val,bit) state.st |= ((val) << (30 - (bit))) & STBIT_C #define SET_C_BIT_HI(val,bit) state.st |= ((val) >> ((bit) - 30)) & STBIT_C #define SET_C_LOG(val) state.st |= (val) << 30 #define SET_N_BIT(val,bit) state.st |= ((val) << (31 - (bit))) & STBIT_N #define SET_N_LOG(val) state.st |= (val) << 31 #define SET_Z_VAL(val) SET_Z_LOG((val) == 0) #define SET_N_VAL(val) SET_N_BIT(val, 31) #define SET_NZ_VAL(val) SET_Z_VAL(val); SET_N_VAL(val) #define SET_V_SUB(a,b,r) SET_V_BIT_HI(((a) ^ (b)) & ((a) ^ (r)), 31) #define SET_V_ADD(a,b,r) SET_V_BIT_HI(~((a) ^ (b)) & ((a) ^ (r)), 31) #define SET_C_SUB(a,b) SET_C_LOG((UINT32)(b) > (UINT32)(a)) #define SET_C_ADD(a,b) SET_C_LOG((UINT32)~(a) < (UINT32)(b)) #define SET_NZV_SUB(a,b,r) SET_NZ_VAL(r); SET_V_SUB(a,b,r) #define SET_NZCV_SUB(a,b,r) SET_NZV_SUB(a,b,r); SET_C_SUB(a,b) #define SET_NZCV_ADD(a,b,r) SET_NZ_VAL(r); SET_V_ADD(a,b,r); SET_C_ADD(a,b) static const UINT8 fw_inc[32] = { 32,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31 }; /*************************************************************************** UNIMPLEMENTED INSTRUCTION ***************************************************************************/ static void unimpl(void) { /* kludge for Super High Impact -- this doesn't seem to cause */ /* an illegal opcode exception */ if (cpu_readop16(TOBYTE(PC - 0x10)) == 0x0007) return; /* 9 Ball Shootout calls to FFDF7468, expecting it */ /* to execute the next instruction from FFDF7470 */ /* but the instruction at FFDF7460 is an 0x0001 */ if (cpu_readop16(TOBYTE(PC - 0x10)) == 0x0001) return; PUSH(PC); PUSH(GET_ST()); RESET_ST(); PC = RLONG(0xfffffc20); change_pc(TOBYTE(PC)); COUNT_UNKNOWN_CYCLES(16); /* extra check to prevent bad things */ if (PC == 0 || opcode_table[cpu_readop16(TOBYTE(PC)) >> 4] == unimpl) { cpunum_set_input_line(cpu_getactivecpu(), INPUT_LINE_HALT, ASSERT_LINE); DEBUGGER_BREAK; } } /*************************************************************************** X/Y OPERATIONS ***************************************************************************/ #define ADD_XY(R) \ { \ XY a = R##REG_XY(SRCREG); \ XY *b = &R##REG_XY(DSTREG); \ CLR_NCZV; \ b->x += a.x; \ b->y += a.y; \ SET_N_LOG(b->x == 0); \ SET_C_BIT_LO(b->y, 15); \ SET_Z_LOG(b->y == 0); \ SET_V_BIT_LO(b->x, 15); \ COUNT_CYCLES(1); \ } static void add_xy_a(void) { ADD_XY(A); } static void add_xy_b(void) { ADD_XY(B); } #define SUB_XY(R) \ { \ XY a = R##REG_XY(SRCREG); \ XY *b = &R##REG_XY(DSTREG); \ CLR_NCZV; \ SET_N_LOG(a.x == b->x); \ SET_C_LOG(a.y > b->y); \ SET_Z_LOG(a.y == b->y); \ SET_V_LOG(a.x > b->x); \ b->x -= a.x; \ b->y -= a.y; \ COUNT_CYCLES(1); \ } static void sub_xy_a(void) { SUB_XY(A); } static void sub_xy_b(void) { SUB_XY(B); } #define CMP_XY(R) \ { \ INT16 res; \ XY a = R##REG_XY(DSTREG); \ XY b = R##REG_XY(SRCREG); \ CLR_NCZV; \ res = a.x-b.x; \ SET_N_LOG(res == 0); \ SET_V_BIT_LO(res, 15); \ res = a.y-b.y; \ SET_Z_LOG(res == 0); \ SET_C_BIT_LO(res, 15); \ COUNT_CYCLES(1); \ } static void cmp_xy_a(void) { CMP_XY(A); } static void cmp_xy_b(void) { CMP_XY(B); } #define CPW(R) \ { \ INT32 res = 0; \ INT16 x = R##REG_X(SRCREG); \ INT16 y = R##REG_Y(SRCREG); \ \ CLR_V; \ res |= ((WSTART_X > x) ? 0x20 : 0); \ res |= ((x > WEND_X) ? 0x40 : 0); \ res |= ((WSTART_Y > y) ? 0x80 : 0); \ res |= ((y > WEND_Y) ? 0x100 : 0); \ R##REG(DSTREG) = res; \ SET_V_LOG(res != 0); \ COUNT_CYCLES(1); \ } static void cpw_a(void) { CPW(A); } static void cpw_b(void) { CPW(B); } #define CVXYL(R) \ { \ R##REG(DSTREG) = DXYTOL(R##REG_XY(SRCREG)); \ COUNT_CYCLES(3); \ } static void cvxyl_a(void) { CVXYL(A); } static void cvxyl_b(void) { CVXYL(B); } #define MOVX(R) \ { \ R##REG(DSTREG) = (R##REG(DSTREG) & 0xffff0000) | (UINT16)R##REG(SRCREG); \ COUNT_CYCLES(1); \ } static void movx_a(void) { MOVX(A); } static void movx_b(void) { MOVX(B); } #define MOVY(R) \ { \ R##REG(DSTREG) = (R##REG(SRCREG) & 0xffff0000) | (UINT16)R##REG(DSTREG); \ COUNT_CYCLES(1); \ } static void movy_a(void) { MOVY(A); } static void movy_b(void) { MOVY(B); } /*************************************************************************** PIXEL TRANSFER OPERATIONS ***************************************************************************/ #define PIXT_RI(R) \ { \ WPIXEL(R##REG(DSTREG),R##REG(SRCREG)); \ COUNT_UNKNOWN_CYCLES(2); \ } static void pixt_ri_a(void) { PIXT_RI(A); } static void pixt_ri_b(void) { PIXT_RI(B); } #define PIXT_RIXY(R) \ { \ if (WINDOW_CHECKING != 0) \ { \ CLR_V; \ if (R##REG_X(DSTREG) < WSTART_X || R##REG_X(DSTREG) > WEND_X || \ R##REG_Y(DSTREG) < WSTART_Y || R##REG_Y(DSTREG) > WEND_Y) \ { \ SET_V_LOG(1); \ goto skip; \ } \ if (WINDOW_CHECKING == 1) goto skip; \ } \ WPIXEL(DXYTOL(R##REG_XY(DSTREG)),R##REG(SRCREG)); \ skip: \ COUNT_UNKNOWN_CYCLES(4); \ } static void pixt_rixy_a(void) { PIXT_RIXY(A); } static void pixt_rixy_b(void) { PIXT_RIXY(B); } #define PIXT_IR(R) \ { \ INT32 temp = RPIXEL(R##REG(SRCREG)); \ CLR_V; \ R##REG(DSTREG) = temp; \ SET_V_LOG(temp != 0); \ COUNT_CYCLES(4); \ } static void pixt_ir_a(void) { PIXT_IR(A); } static void pixt_ir_b(void) { PIXT_IR(B); } #define PIXT_II(R) \ { \ WPIXEL(R##REG(DSTREG),RPIXEL(R##REG(SRCREG))); \ COUNT_UNKNOWN_CYCLES(4); \ } static void pixt_ii_a(void) { PIXT_II(A); } static void pixt_ii_b(void) { PIXT_II(B); } #define PIXT_IXYR(R) \ { \ INT32 temp = RPIXEL(SXYTOL(R##REG_XY(SRCREG))); \ CLR_V; \ R##REG(DSTREG) = temp; \ SET_V_LOG(temp != 0); \ COUNT_CYCLES(6); \ } static void pixt_ixyr_a(void) { PIXT_IXYR(A); } static void pixt_ixyr_b(void) { PIXT_IXYR(B); } #define PIXT_IXYIXY(R) \ { \ if (WINDOW_CHECKING != 0) \ { \ CLR_V; \ if (R##REG_X(DSTREG) < WSTART_X || R##REG_X(DSTREG) > WEND_X || \ R##REG_Y(DSTREG) < WSTART_Y || R##REG_Y(DSTREG) > WEND_Y) \ { \ SET_V_LOG(1); \ goto skip; \ } \ if (WINDOW_CHECKING == 1) goto skip; \ } \ WPIXEL(DXYTOL(R##REG_XY(DSTREG)),RPIXEL(SXYTOL(R##REG_XY(SRCREG)))); \ skip: \ COUNT_UNKNOWN_CYCLES(7); \ } static void pixt_ixyixy_a(void) { PIXT_IXYIXY(A); } static void pixt_ixyixy_b(void) { PIXT_IXYIXY(B); } #define DRAV(R) \ { \ if (WINDOW_CHECKING != 0) \ { \ CLR_V; \ if (R##REG_X(DSTREG) < WSTART_X || R##REG_X(DSTREG) > WEND_X || \ R##REG_Y(DSTREG) < WSTART_Y || R##REG_Y(DSTREG) > WEND_Y) \ { \ SET_V_LOG(1); \ goto skip; \ } \ if (WINDOW_CHECKING == 1) goto skip; \ } \ WPIXEL(DXYTOL(R##REG_XY(DSTREG)),COLOR1); \ skip: \ R##REG_X(DSTREG) += R##REG_X(SRCREG); \ R##REG_Y(DSTREG) += R##REG_Y(SRCREG); \ COUNT_UNKNOWN_CYCLES(4); \ } static void drav_a(void) { DRAV(A); } static void drav_b(void) { DRAV(B); } /*************************************************************************** ARITHMETIC OPERATIONS ***************************************************************************/ #define ABS(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 r = 0 - *rd; \ CLR_NZV; \ if (r > 0) *rd = r; \ SET_NZ_VAL(r); \ SET_V_LOG(r == (INT32)0x80000000); \ COUNT_CYCLES(1); \ } static void abs_a(void) { ABS(A); } static void abs_b(void) { ABS(B); } #define ADD(R) \ { \ INT32 a = R##REG(SRCREG); \ INT32 *rd = &R##REG(DSTREG); \ INT32 b = *rd; \ INT32 r = a + b; \ CLR_NCZV; \ *rd = r; \ SET_NZCV_ADD(a,b,r); \ COUNT_CYCLES(1); \ } static void add_a(void) { ADD(A); } static void add_b(void) { ADD(B); } #define ADDC(R) \ { \ /* I'm not sure to which side the carry is added to, should */ \ /* verify it against the examples */ \ INT32 a = R##REG(SRCREG); \ INT32 *rd = &R##REG(DSTREG); \ INT32 b = *rd; \ INT32 r = a + b + (C_FLAG ? 1 : 0); \ CLR_NCZV; \ *rd = r; \ SET_NZCV_ADD(a,b,r); \ COUNT_CYCLES(1); \ } static void addc_a(void) { ADDC(A); } static void addc_b(void) { ADDC(B); } #define ADDI_W(R) \ { \ INT32 a = PARAM_WORD(); \ INT32 *rd = &R##REG(DSTREG); \ INT32 b = *rd; \ INT32 r = a + b; \ CLR_NCZV; \ *rd = r; \ SET_NZCV_ADD(a,b,r); \ COUNT_CYCLES(2); \ } static void addi_w_a(void) { ADDI_W(A); } static void addi_w_b(void) { ADDI_W(B); } #define ADDI_L(R) \ { \ INT32 a = PARAM_LONG(); \ INT32 *rd = &R##REG(DSTREG); \ INT32 b = *rd; \ INT32 r = a + b; \ CLR_NCZV; \ *rd = r; \ SET_NZCV_ADD(a,b,r); \ COUNT_CYCLES(3); \ } static void addi_l_a(void) { ADDI_L(A); } static void addi_l_b(void) { ADDI_L(B); } #define ADDK(R) \ { \ INT32 a = fw_inc[PARAM_K]; \ INT32 *rd = &R##REG(DSTREG); \ INT32 b = *rd; \ INT32 r = a + b; \ CLR_NCZV; \ *rd = r; \ SET_NZCV_ADD(a,b,r); \ COUNT_CYCLES(1); \ } static void addk_a(void) { ADDK(A); } static void addk_b(void) { ADDK(B); } #define AND(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ *rd &= R##REG(SRCREG); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(1); \ } static void and_a(void) { AND(A); } static void and_b(void) { AND(B); } #define ANDI(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ *rd &= ~PARAM_LONG(); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(3); \ } static void andi_a(void) { ANDI(A); } static void andi_b(void) { ANDI(B); } #define ANDN(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ *rd &= ~R##REG(SRCREG); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(1); \ } static void andn_a(void) { ANDN(A); } static void andn_b(void) { ANDN(B); } #define BTST_K(R) \ { \ int bit = 31 - PARAM_K; \ CLR_Z; \ if (bit <= 29) \ SET_Z_BIT_LO(~R##REG(DSTREG), bit); \ else \ SET_Z_BIT_HI(~R##REG(DSTREG), bit); \ COUNT_CYCLES(1); \ } static void btst_k_a(void) { BTST_K(A); } static void btst_k_b(void) { BTST_K(B); } #define BTST_R(R) \ { \ int bit = R##REG(SRCREG) & 0x1f; \ CLR_Z; \ if (bit <= 29) \ SET_Z_BIT_LO(~R##REG(DSTREG), bit); \ else \ SET_Z_BIT_HI(~R##REG(DSTREG), bit); \ COUNT_CYCLES(2); \ } static void btst_r_a(void) { BTST_R(A); } static void btst_r_b(void) { BTST_R(B); } static void clrc(void) { CLR_C; COUNT_CYCLES(1); } #define CMP(R) \ { \ INT32 *rs = &R##REG(SRCREG); \ INT32 *rd = &R##REG(DSTREG); \ INT32 r = *rd - *rs; \ CLR_NCZV; \ SET_NZCV_SUB(*rd,*rs,r); \ COUNT_CYCLES(1); \ } static void cmp_a(void) { CMP(A); } static void cmp_b(void) { CMP(B); } #define CMPI_W(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 t = (INT16)~PARAM_WORD(); \ INT32 r = *rd - t; \ CLR_NCZV; \ SET_NZCV_SUB(*rd,t,r); \ COUNT_CYCLES(2); \ } static void cmpi_w_a(void) { CMPI_W(A); } static void cmpi_w_b(void) { CMPI_W(B); } #define CMPI_L(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 t = ~PARAM_LONG(); \ INT32 r = *rd - t; \ CLR_NCZV; \ SET_NZCV_SUB(*rd,t,r); \ COUNT_CYCLES(3); \ } static void cmpi_l_a(void) { CMPI_L(A); } static void cmpi_l_b(void) { CMPI_L(B); } static void dint(void) { state.st &= ~STBIT_IE; COUNT_CYCLES(3); } #define DIVS(R) \ { \ INT32 *rs = &R##REG(SRCREG); \ INT32 *rd1 = &R##REG(DSTREG); \ CLR_NZV; \ if (!(DSTREG & 1)) \ { \ if (!*rs) \ { \ SET_V_LOG(1); \ } \ else \ { \ INT32 *rd2 = &R##REG(DSTREG+1); \ INT64 dividend = COMBINE_64_32_32(*rd1, *rd2); \ INT64 quotient = DIV_64_64_32(dividend, *rs); \ INT32 remainder = MOD_32_64_32(dividend, *rs); \ UINT32 signbits = (INT32)quotient >> 31; \ if (HI32_32_64(quotient) != signbits) \ { \ SET_V_LOG(1); \ } \ else \ { \ *rd1 = quotient; \ *rd2 = remainder; \ SET_NZ_VAL(*rd1); \ } \ } \ COUNT_CYCLES(40); \ } \ else \ { \ if (!*rs) \ { \ SET_V_LOG(1); \ } \ else \ { \ *rd1 /= *rs; \ SET_NZ_VAL(*rd1); \ } \ COUNT_CYCLES(39); \ } \ } static void divs_a(void) { DIVS(A); } static void divs_b(void) { DIVS(B); } #define DIVU(R) \ { \ INT32 *rs = &R##REG(SRCREG); \ INT32 *rd1 = &R##REG(DSTREG); \ CLR_ZV; \ if (!(DSTREG & 1)) \ { \ if (!*rs) \ { \ SET_V_LOG(1); \ } \ else \ { \ INT32 *rd2 = &R##REG(DSTREG+1); \ UINT64 dividend = COMBINE_U64_U32_U32(*rd1, *rd2); \ UINT64 quotient = DIV_U64_U64_U32(dividend, *rs); \ UINT32 remainder = MOD_U32_U64_U32(dividend, *rs); \ if (HI32_U32_U64(quotient) != 0) \ { \ SET_V_LOG(1); \ } \ else \ { \ *rd1 = quotient; \ *rd2 = remainder; \ SET_Z_VAL(*rd1); \ } \ } \ } \ else \ { \ if (!*rs) \ { \ SET_V_LOG(1); \ } \ else \ { \ *rd1 = (UINT32)*rd1 / (UINT32)*rs; \ SET_Z_VAL(*rd1); \ } \ } \ COUNT_CYCLES(37); \ } static void divu_a(void) { DIVU(A); } static void divu_b(void) { DIVU(B); } static void eint(void) { state.st |= STBIT_IE; check_interrupt(); COUNT_CYCLES(3); } #define EXGF(F,R) \ { \ UINT8 shift = F ? 6 : 0; \ INT32 *rd = &R##REG(DSTREG); \ UINT32 temp = (state.st >> shift) & 0x3f; \ state.st &= ~(0x3f << shift); \ state.st |= (*rd & 0x3f) << shift; \ *rd = temp; \ COUNT_CYCLES(1); \ } static void exgf0_a(void) { EXGF(0,A); } static void exgf0_b(void) { EXGF(0,B); } static void exgf1_a(void) { EXGF(1,A); } static void exgf1_b(void) { EXGF(1,B); } #define LMO(R) \ { \ UINT32 res = 0; \ UINT32 rs = R##REG(SRCREG); \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ SET_Z_VAL(rs); \ if (rs) \ { \ while (!(rs & 0x80000000)) \ { \ res++; \ rs <<= 1; \ } \ } \ *rd = res; \ COUNT_CYCLES(1); \ } static void lmo_a(void) { LMO(A); } static void lmo_b(void) { LMO(B); } #define MMFM(R) \ { \ INT32 i; \ UINT16 l = (UINT16) PARAM_WORD(); \ COUNT_CYCLES(3); \ { \ INT32 rd = DSTREG; \ for (i = 15; i >= 0 ; i--) \ { \ if (l & 0x8000) \ { \ R##REG(i) = RLONG(R##REG(rd)); \ R##REG(rd) += 0x20; \ COUNT_CYCLES(4); \ } \ l <<= 1; \ } \ } \ } static void mmfm_a(void) { MMFM(A); } static void mmfm_b(void) { MMFM(B); } #define MMTM(R) \ { \ UINT32 i; \ UINT16 l = (UINT16) PARAM_WORD(); \ COUNT_CYCLES(2); \ { \ INT32 rd = DSTREG; \ if (state.is_34020) \ { \ CLR_N; \ SET_N_VAL(R##REG(rd) ^ 0x80000000); \ } \ for (i = 0; i < 16; i++) \ { \ if (l & 0x8000) \ { \ R##REG(rd) -= 0x20; \ WLONG(R##REG(rd),R##REG(i)); \ COUNT_CYCLES(4); \ } \ l <<= 1; \ } \ } \ } static void mmtm_a(void) { MMTM(A); } static void mmtm_b(void) { MMTM(B); } #define MODS(R) \ { \ INT32 *rs = &R##REG(SRCREG); \ INT32 *rd = &R##REG(DSTREG); \ CLR_NZV; \ if (*rs != 0) \ { \ *rd %= *rs; \ SET_NZ_VAL(*rd); \ } \ else \ SET_V_LOG(1); \ COUNT_CYCLES(40); \ } static void mods_a(void) { MODS(A); } static void mods_b(void) { MODS(B); } #define MODU(R) \ { \ INT32 *rs = &R##REG(SRCREG); \ INT32 *rd = &R##REG(DSTREG); \ CLR_ZV; \ if (*rs != 0) \ { \ *rd = (UINT32)*rd % (UINT32)*rs; \ SET_Z_VAL(*rd); \ } \ else \ SET_V_LOG(1); \ COUNT_CYCLES(35); \ } static void modu_a(void) { MODU(A); } static void modu_b(void) { MODU(B); } #define MPYS(R) \ { \ INT32 *rd1 = &R##REG(DSTREG); \ INT32 m1 = R##REG(SRCREG); \ INT64 product; \ \ SEXTEND(m1, FW(1)); \ CLR_NZ; \ product = MUL_64_32_32(m1, *rd1); \ SET_Z_LOG(product == 0); \ SET_N_BIT(product >> 32, 31); \ \ *rd1 = HI32_32_64(product); \ R##REG(DSTREG|1) = LO32_32_64(product); \ \ COUNT_CYCLES(20); \ } static void mpys_a(void) { MPYS(A); } static void mpys_b(void) { MPYS(B); } #define MPYU(R) \ { \ INT32 *rd1 = &R##REG(DSTREG); \ UINT32 m1 = R##REG(SRCREG); \ UINT64 product; \ \ ZEXTEND(m1, FW(1)); \ CLR_Z; \ product = MUL_U64_U32_U32(m1, *rd1); \ SET_Z_LOG(product == 0); \ \ *rd1 = HI32_32_64(product); \ R##REG(DSTREG|1) = LO32_32_64(product); \ \ COUNT_CYCLES(21); \ } static void mpyu_a(void) { MPYU(A); } static void mpyu_b(void) { MPYU(B); } #define NEG(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 r = 0 - *rd; \ CLR_NCZV; \ SET_NZCV_SUB(0,*rd,r); \ *rd = r; \ COUNT_CYCLES(1); \ } static void neg_a(void) { NEG(A); } static void neg_b(void) { NEG(B); } #define NEGB(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 t = *rd + (C_FLAG ? 1 : 0); \ INT32 r = 0 - t; \ CLR_NCZV; \ SET_NZCV_SUB(0,t,r); \ *rd = r; \ COUNT_CYCLES(1); \ } static void negb_a(void) { NEGB(A); } static void negb_b(void) { NEGB(B); } static void nop(void) { COUNT_CYCLES(1); } #define NOT(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ *rd = ~(*rd); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(1); \ } static void not_a(void) { NOT(A); } static void not_b(void) { NOT(B); } #define OR(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ *rd |= R##REG(SRCREG); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(1); \ } static void or_a(void) { OR(A); } static void or_b(void) { OR(B); } #define ORI(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ *rd |= PARAM_LONG(); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(3); \ } static void ori_a(void) { ORI(A); } static void ori_b(void) { ORI(B); } static void setc(void) { SET_C_LOG(1); COUNT_CYCLES(1); } #define SETF(F) \ { \ UINT8 shift = F ? 6 : 0; \ state.st &= ~(0x3f << shift); \ state.st |= (state.op & 0x3f) << shift; \ COUNT_CYCLES(1+F); \ } static void setf0(void) { SETF(0); } static void setf1(void) { SETF(1); } #define SEXT(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_NZ; \ SEXTEND(*rd,FW(F)); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(3); \ } static void sext0_a(void) { SEXT(0,A); } static void sext0_b(void) { SEXT(0,B); } static void sext1_a(void) { SEXT(1,A); } static void sext1_b(void) { SEXT(1,B); } #define RL(R,K) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 res = *rd; \ INT32 k = (K); \ CLR_CZ; \ if (k) \ { \ res<<=(k-1); \ SET_C_BIT_HI(res, 31); \ res<<=1; \ res |= (((UINT32)*rd)>>((-k)&0x1f)); \ *rd = res; \ } \ SET_Z_VAL(res); \ COUNT_CYCLES(1); \ } static void rl_k_a(void) { RL(A,PARAM_K); } static void rl_k_b(void) { RL(B,PARAM_K); } static void rl_r_a(void) { RL(A,AREG(SRCREG)&0x1f); } static void rl_r_b(void) { RL(B,BREG(SRCREG)&0x1f); } #define SLA(R,K) \ { \ INT32 *rd = &R##REG(DSTREG); \ UINT32 res = *rd; \ INT32 k = K; \ CLR_NCZV; \ if (k) \ { \ UINT32 mask = (0xffffffff<<(31-k))&0x7fffffff; \ UINT32 res2 = SIGN(res) ? res^mask : res; \ SET_V_LOG((res2 & mask) != 0); \ \ res<<=(k-1); \ SET_C_BIT_HI(res, 31); \ res<<=1; \ *rd = res; \ } \ SET_NZ_VAL(res); \ COUNT_CYCLES(3); \ } static void sla_k_a(void) { SLA(A,PARAM_K); } static void sla_k_b(void) { SLA(B,PARAM_K); } static void sla_r_a(void) { SLA(A,AREG(SRCREG)&0x1f); } static void sla_r_b(void) { SLA(B,BREG(SRCREG)&0x1f); } #define SLL(R,K) \ { \ INT32 *rd = &R##REG(DSTREG); \ UINT32 res = *rd; \ INT32 k = K; \ CLR_CZ; \ if (k) \ { \ res<<=(k-1); \ SET_C_BIT_HI(res, 31); \ res<<=1; \ *rd = res; \ } \ SET_Z_VAL(res); \ COUNT_CYCLES(1); \ } static void sll_k_a(void) { SLL(A,PARAM_K); } static void sll_k_b(void) { SLL(B,PARAM_K); } static void sll_r_a(void) { SLL(A,AREG(SRCREG)&0x1f); } static void sll_r_b(void) { SLL(B,BREG(SRCREG)&0x1f); } #define SRA(R,K) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 res = *rd; \ INT32 k = (-(K)) & 0x1f; \ CLR_NCZ; \ if (k) \ { \ res>>=(k-1); \ SET_C_BIT_LO(res, 0); \ res>>=1; \ *rd = res; \ } \ SET_NZ_VAL(res); \ COUNT_CYCLES(1); \ } static void sra_k_a(void) { SRA(A,PARAM_K); } static void sra_k_b(void) { SRA(B,PARAM_K); } static void sra_r_a(void) { SRA(A,AREG(SRCREG)); } static void sra_r_b(void) { SRA(B,BREG(SRCREG)); } #define SRL(R,K) \ { \ INT32 *rd = &R##REG(DSTREG); \ UINT32 res = *rd; \ INT32 k = (-(K)) & 0x1f; \ CLR_CZ; \ if (k) \ { \ res>>=(k-1); \ SET_C_BIT_LO(res, 0); \ res>>=1; \ *rd = res; \ } \ SET_Z_VAL(res); \ COUNT_CYCLES(1); \ } static void srl_k_a(void) { SRL(A,PARAM_K); } static void srl_k_b(void) { SRL(B,PARAM_K); } static void srl_r_a(void) { SRL(A,AREG(SRCREG)); } static void srl_r_b(void) { SRL(B,BREG(SRCREG)); } #define SUB(R) \ { \ INT32 *rs = &R##REG(SRCREG); \ INT32 *rd = &R##REG(DSTREG); \ INT32 r = *rd - *rs; \ CLR_NCZV; \ SET_NZCV_SUB(*rd,*rs,r); \ *rd = r; \ COUNT_CYCLES(1); \ } static void sub_a(void) { SUB(A); } static void sub_b(void) { SUB(B); } #define SUBB(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 t = R##REG(SRCREG); \ INT32 r = *rd - t - (C_FLAG ? 1 : 0); \ CLR_NCZV; \ SET_NZCV_SUB(*rd,t,r); \ *rd = r; \ COUNT_CYCLES(1); \ } static void subb_a(void) { SUBB(A); } static void subb_b(void) { SUBB(B); } #define SUBI_W(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 r; \ INT32 t = ~PARAM_WORD(); \ CLR_NCZV; \ r = *rd - t; \ SET_NZCV_SUB(*rd,t,r); \ *rd = r; \ COUNT_CYCLES(2); \ } static void subi_w_a(void) { SUBI_W(A); } static void subi_w_b(void) { SUBI_W(B); } #define SUBI_L(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 t = ~PARAM_LONG(); \ INT32 r = *rd - t; \ CLR_NCZV; \ SET_NZCV_SUB(*rd,t,r); \ *rd = r; \ COUNT_CYCLES(3); \ } static void subi_l_a(void) { SUBI_L(A); } static void subi_l_b(void) { SUBI_L(B); } #define SUBK(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 t = fw_inc[PARAM_K]; \ INT32 r = *rd - t; \ CLR_NCZV; \ SET_NZCV_SUB(*rd,t,r); \ *rd = r; \ COUNT_CYCLES(1); \ } static void subk_a(void) { SUBK(A); } static void subk_b(void) { SUBK(B); } #define XOR(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ *rd ^= R##REG(SRCREG); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(1); \ } static void xor_a(void) { XOR(A); } static void xor_b(void) { XOR(B); } #define XORI(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ *rd ^= PARAM_LONG(); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(3); \ } static void xori_a(void) { XORI(A); } static void xori_b(void) { XORI(B); } #define ZEXT(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ ZEXTEND(*rd,FW(F)); \ SET_Z_VAL(*rd); \ COUNT_CYCLES(1); \ } static void zext0_a(void) { ZEXT(0,A); } static void zext0_b(void) { ZEXT(0,B); } static void zext1_a(void) { ZEXT(1,A); } static void zext1_b(void) { ZEXT(1,B); } /*************************************************************************** MOVE INSTRUCTIONS ***************************************************************************/ #define MOVI_W(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_NZV; \ *rd=PARAM_WORD(); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(2); \ } static void movi_w_a(void) { MOVI_W(A); } static void movi_w_b(void) { MOVI_W(B); } #define MOVI_L(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_NZV; \ *rd=PARAM_LONG(); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(3); \ } static void movi_l_a(void) { MOVI_L(A); } static void movi_l_b(void) { MOVI_L(B); } #define MOVK(R) \ { \ INT32 k = PARAM_K; if (!k) k = 32; \ R##REG(DSTREG) = k; \ COUNT_CYCLES(1); \ } static void movk_a(void) { MOVK(A); } static void movk_b(void) { MOVK(B); } #define MOVB_RN(R) \ { \ WBYTE(R##REG(DSTREG),R##REG(SRCREG)); \ COUNT_CYCLES(1); \ } static void movb_rn_a(void) { MOVB_RN(A); } static void movb_rn_b(void) { MOVB_RN(B); } #define MOVB_NR(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_NZV; \ *rd = (INT8)RBYTE(R##REG(SRCREG)); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(3); \ } static void movb_nr_a(void) { MOVB_NR(A); } static void movb_nr_b(void) { MOVB_NR(B); } #define MOVB_NN(R) \ { \ WBYTE(R##REG(DSTREG),(UINT32)(UINT8)RBYTE(R##REG(SRCREG))); \ COUNT_CYCLES(3); \ } static void movb_nn_a(void) { MOVB_NN(A); } static void movb_nn_b(void) { MOVB_NN(B); } #define MOVB_R_NO(R) \ { \ INT32 o = PARAM_WORD(); \ WBYTE(R##REG(DSTREG)+o,R##REG(SRCREG)); \ COUNT_CYCLES(3); \ } static void movb_r_no_a(void) { MOVB_R_NO(A); } static void movb_r_no_b(void) { MOVB_R_NO(B); } #define MOVB_NO_R(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 o = PARAM_WORD(); \ CLR_NZV; \ *rd = (INT8)RBYTE(R##REG(SRCREG)+o); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(5); \ } static void movb_no_r_a(void) { MOVB_NO_R(A); } static void movb_no_r_b(void) { MOVB_NO_R(B); } #define MOVB_NO_NO(R) \ { \ INT32 o1 = PARAM_WORD(); \ INT32 o2 = PARAM_WORD(); \ WBYTE(R##REG(DSTREG)+o2,(UINT32)(UINT8)RBYTE(R##REG(SRCREG)+o1)); \ COUNT_CYCLES(5); \ } static void movb_no_no_a(void) { MOVB_NO_NO(A); } static void movb_no_no_b(void) { MOVB_NO_NO(B); } #define MOVB_RA(R) \ { \ WBYTE(PARAM_LONG(),R##REG(DSTREG)); \ COUNT_CYCLES(1); \ } static void movb_ra_a(void) { MOVB_RA(A); } static void movb_ra_b(void) { MOVB_RA(B); } #define MOVB_AR(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_NZV; \ *rd = (INT8)RBYTE(PARAM_LONG()); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(5); \ } static void movb_ar_a(void) { MOVB_AR(A); } static void movb_ar_b(void) { MOVB_AR(B); } static void movb_aa(void) { UINT32 bitaddrs=PARAM_LONG(); WBYTE(PARAM_LONG(),(UINT32)(UINT8)RBYTE(bitaddrs)); COUNT_CYCLES(6); } #define MOVE_RR(RS,RD) \ { \ INT32 *rd = &RD##REG(DSTREG); \ CLR_NZV; \ *rd = RS##REG(SRCREG); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(1); \ } static void move_rr_a (void) { MOVE_RR(A,A); } static void move_rr_b (void) { MOVE_RR(B,B); } static void move_rr_ax(void) { MOVE_RR(A,B); } static void move_rr_bx(void) { MOVE_RR(B,A); } #define MOVE_RN(F,R) \ { \ WFIELD##F(R##REG(DSTREG),R##REG(SRCREG)); \ COUNT_CYCLES(1); \ } static void move0_rn_a (void) { MOVE_RN(0,A); } static void move0_rn_b (void) { MOVE_RN(0,B); } static void move1_rn_a (void) { MOVE_RN(1,A); } static void move1_rn_b (void) { MOVE_RN(1,B); } #define MOVE_R_DN(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ *rd-=fw_inc[FW(F)]; \ WFIELD##F(*rd,R##REG(SRCREG)); \ COUNT_CYCLES(2); \ } static void move0_r_dn_a (void) { MOVE_R_DN(0,A); } static void move0_r_dn_b (void) { MOVE_R_DN(0,B); } static void move1_r_dn_a (void) { MOVE_R_DN(1,A); } static void move1_r_dn_b (void) { MOVE_R_DN(1,B); } #define MOVE_R_NI(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ WFIELD##F(*rd,R##REG(SRCREG)); \ *rd+=fw_inc[FW(F)]; \ COUNT_CYCLES(1); \ } static void move0_r_ni_a (void) { MOVE_R_NI(0,A); } static void move0_r_ni_b (void) { MOVE_R_NI(0,B); } static void move1_r_ni_a (void) { MOVE_R_NI(1,A); } static void move1_r_ni_b (void) { MOVE_R_NI(1,B); } #define MOVE_NR(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_NZV; \ *rd = RFIELD##F(R##REG(SRCREG)); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(3); \ } static void move0_nr_a (void) { MOVE_NR(0,A); } static void move0_nr_b (void) { MOVE_NR(0,B); } static void move1_nr_a (void) { MOVE_NR(1,A); } static void move1_nr_b (void) { MOVE_NR(1,B); } #define MOVE_DN_R(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 *rs = &R##REG(SRCREG); \ CLR_NZV; \ *rs-=fw_inc[FW(F)]; \ *rd = RFIELD##F(*rs); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(4); \ } static void move0_dn_r_a (void) { MOVE_DN_R(0,A); } static void move0_dn_r_b (void) { MOVE_DN_R(0,B); } static void move1_dn_r_a (void) { MOVE_DN_R(1,A); } static void move1_dn_r_b (void) { MOVE_DN_R(1,B); } #define MOVE_NI_R(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 *rs = &R##REG(SRCREG); \ INT32 data = RFIELD##F(*rs); \ CLR_NZV; \ *rs+=fw_inc[FW(F)]; \ *rd = data; \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(3); \ } static void move0_ni_r_a (void) { MOVE_NI_R(0,A); } static void move0_ni_r_b (void) { MOVE_NI_R(0,B); } static void move1_ni_r_a (void) { MOVE_NI_R(1,A); } static void move1_ni_r_b (void) { MOVE_NI_R(1,B); } #define MOVE_NN(F,R) \ { \ WFIELD##F(R##REG(DSTREG),RFIELD##F(R##REG(SRCREG))); \ COUNT_CYCLES(3); \ } static void move0_nn_a (void) { MOVE_NN(0,A); } static void move0_nn_b (void) { MOVE_NN(0,B); } static void move1_nn_a (void) { MOVE_NN(1,A); } static void move1_nn_b (void) { MOVE_NN(1,B); } #define MOVE_DN_DN(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 *rs = &R##REG(SRCREG); \ INT32 data; \ *rs-=fw_inc[FW(F)]; \ data = RFIELD##F(*rs); \ *rd-=fw_inc[FW(F)]; \ WFIELD##F(*rd,data); \ COUNT_CYCLES(4); \ } static void move0_dn_dn_a (void) { MOVE_DN_DN(0,A); } static void move0_dn_dn_b (void) { MOVE_DN_DN(0,B); } static void move1_dn_dn_a (void) { MOVE_DN_DN(1,A); } static void move1_dn_dn_b (void) { MOVE_DN_DN(1,B); } #define MOVE_NI_NI(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 *rs = &R##REG(SRCREG); \ INT32 data = RFIELD##F(*rs); \ *rs+=fw_inc[FW(F)]; \ WFIELD##F(*rd,data); \ *rd+=fw_inc[FW(F)]; \ COUNT_CYCLES(4); \ } static void move0_ni_ni_a (void) { MOVE_NI_NI(0,A); } static void move0_ni_ni_b (void) { MOVE_NI_NI(0,B); } static void move1_ni_ni_a (void) { MOVE_NI_NI(1,A); } static void move1_ni_ni_b (void) { MOVE_NI_NI(1,B); } #define MOVE_R_NO(F,R) \ { \ INT32 o = PARAM_WORD(); \ WFIELD##F(R##REG(DSTREG)+o,R##REG(SRCREG)); \ COUNT_CYCLES(3); \ } static void move0_r_no_a (void) { MOVE_R_NO(0,A); } static void move0_r_no_b (void) { MOVE_R_NO(0,B); } static void move1_r_no_a (void) { MOVE_R_NO(1,A); } static void move1_r_no_b (void) { MOVE_R_NO(1,B); } #define MOVE_NO_R(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 o = PARAM_WORD(); \ CLR_NZV; \ *rd = RFIELD##F(R##REG(SRCREG)+o); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(5); \ } static void move0_no_r_a (void) { MOVE_NO_R(0,A); } static void move0_no_r_b (void) { MOVE_NO_R(0,B); } static void move1_no_r_a (void) { MOVE_NO_R(1,A); } static void move1_no_r_b (void) { MOVE_NO_R(1,B); } #define MOVE_NO_NI(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 o = PARAM_WORD(); \ INT32 data = RFIELD##F(R##REG(SRCREG)+o); \ WFIELD##F(*rd,data); \ *rd+=fw_inc[FW(F)]; \ COUNT_CYCLES(5); \ } static void move0_no_ni_a (void) { MOVE_NO_NI(0,A); } static void move0_no_ni_b (void) { MOVE_NO_NI(0,B); } static void move1_no_ni_a (void) { MOVE_NO_NI(1,A); } static void move1_no_ni_b (void) { MOVE_NO_NI(1,B); } #define MOVE_NO_NO(F,R) \ { \ INT32 o1 = PARAM_WORD(); \ INT32 o2 = PARAM_WORD(); \ INT32 data = RFIELD##F(R##REG(SRCREG)+o1); \ WFIELD##F(R##REG(DSTREG)+o2,data); \ COUNT_CYCLES(5); \ } static void move0_no_no_a (void) { MOVE_NO_NO(0,A); } static void move0_no_no_b (void) { MOVE_NO_NO(0,B); } static void move1_no_no_a (void) { MOVE_NO_NO(1,A); } static void move1_no_no_b (void) { MOVE_NO_NO(1,B); } #define MOVE_RA(F,R) \ { \ WFIELD##F(PARAM_LONG(),R##REG(DSTREG)); \ COUNT_CYCLES(3); \ } static void move0_ra_a (void) { MOVE_RA(0,A); } static void move0_ra_b (void) { MOVE_RA(0,B); } static void move1_ra_a (void) { MOVE_RA(1,A); } static void move1_ra_b (void) { MOVE_RA(1,B); } #define MOVE_AR(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ CLR_NZV; \ *rd = RFIELD##F(PARAM_LONG()); \ SET_NZ_VAL(*rd); \ COUNT_CYCLES(5); \ } static void move0_ar_a (void) { MOVE_AR(0,A); } static void move0_ar_b (void) { MOVE_AR(0,B); } static void move1_ar_a (void) { MOVE_AR(1,A); } static void move1_ar_b (void) { MOVE_AR(1,B); } #define MOVE_A_NI(F,R) \ { \ INT32 *rd = &R##REG(DSTREG); \ WFIELD##F(*rd,RFIELD##F(PARAM_LONG())); \ *rd+=fw_inc[FW(F)]; \ COUNT_CYCLES(5); \ } static void move0_a_ni_a (void) { MOVE_A_NI(0,A); } static void move0_a_ni_b (void) { MOVE_A_NI(0,B); } static void move1_a_ni_a (void) { MOVE_A_NI(1,A); } static void move1_a_ni_b (void) { MOVE_A_NI(1,B); } #define MOVE_AA(F) \ { \ UINT32 bitaddrs=PARAM_LONG(); \ WFIELD##F(PARAM_LONG(),RFIELD##F(bitaddrs)); \ COUNT_CYCLES(7); \ } static void move0_aa (void) { MOVE_AA(0); } static void move1_aa (void) { MOVE_AA(1); } /*************************************************************************** PROGRAM CONTROL INSTRUCTIONS ***************************************************************************/ #define CALL(R) \ { \ PUSH(PC); \ PC = R##REG(DSTREG); \ CORRECT_ODD_PC("CALL"); \ change_pc(TOBYTE(PC)); \ COUNT_CYCLES(3); \ } static void call_a (void) { CALL(A); } static void call_b (void) { CALL(B); } static void callr(void) { PUSH(PC+0x10); PC += (PARAM_WORD_NO_INC()<<4)+0x10; COUNT_CYCLES(3); } static void calla(void) { PUSH(PC+0x20); PC = PARAM_LONG_NO_INC(); CORRECT_ODD_PC("CALLA"); change_pc(TOBYTE(PC)); COUNT_CYCLES(4); } #define DSJ(R) \ { \ if (--R##REG(DSTREG)) \ { \ PC += (PARAM_WORD_NO_INC()<<4)+0x10; \ COUNT_CYCLES(3); \ } \ else \ { \ SKIP_WORD; \ COUNT_CYCLES(2); \ } \ } static void dsj_a (void) { DSJ(A); } static void dsj_b (void) { DSJ(B); } #define DSJEQ(R) \ { \ if (Z_FLAG) \ { \ if (--R##REG(DSTREG)) \ { \ PC += (PARAM_WORD_NO_INC()<<4)+0x10; \ COUNT_CYCLES(3); \ } \ else \ { \ SKIP_WORD; \ COUNT_CYCLES(2); \ } \ } \ else \ { \ SKIP_WORD; \ COUNT_CYCLES(2); \ } \ } static void dsjeq_a (void) { DSJEQ(A); } static void dsjeq_b (void) { DSJEQ(B); } #define DSJNE(R) \ { \ if (!Z_FLAG) \ { \ if (--R##REG(DSTREG)) \ { \ PC += (PARAM_WORD_NO_INC()<<4)+0x10; \ COUNT_CYCLES(3); \ } \ else \ { \ SKIP_WORD; \ COUNT_CYCLES(2); \ } \ } \ else \ { \ SKIP_WORD; \ COUNT_CYCLES(2); \ } \ } static void dsjne_a (void) { DSJNE(A); } static void dsjne_b (void) { DSJNE(B); } #define DSJS(R) \ { \ if (state.op & 0x0400) \ { \ if (--R##REG(DSTREG)) \ { \ PC -= ((PARAM_K)<<4); \ COUNT_CYCLES(2); \ } \ else \ COUNT_CYCLES(3); \ } \ else \ { \ if (--R##REG(DSTREG)) \ { \ PC += ((PARAM_K)<<4); \ COUNT_CYCLES(2); \ } \ else \ COUNT_CYCLES(3); \ } \ } static void dsjs_a (void) { DSJS(A); } static void dsjs_b (void) { DSJS(B); } static void emu(void) { /* in RUN state, this instruction is a NOP */ COUNT_CYCLES(6); } #define EXGPC(R) \ { \ INT32 *rd = &R##REG(DSTREG); \ INT32 temppc = *rd; \ *rd = PC; \ PC = temppc; \ CORRECT_ODD_PC("EXGPC"); \ change_pc(TOBYTE(PC)); \ COUNT_CYCLES(2); \ } static void exgpc_a (void) { EXGPC(A); } static void exgpc_b (void) { EXGPC(B); } #define GETPC(R) \ { \ R##REG(DSTREG) = PC; \ COUNT_CYCLES(1); \ } static void getpc_a (void) { GETPC(A); } static void getpc_b (void) { GETPC(B); } #define GETST(R) \ { \ R##REG(DSTREG) = GET_ST(); \ COUNT_CYCLES(1); \ } static void getst_a (void) { GETST(A); } static void getst_b (void) { GETST(B); } #define j_xx_8(TAKE) \ { \ if (DSTREG) \ { \ if (TAKE) \ { \ PC += (PARAM_REL8 << 4); \ COUNT_CYCLES(2); \ } \ else \ COUNT_CYCLES(1); \ } \ else \ { \ if (TAKE) \ { \ PC = PARAM_LONG_NO_INC(); \ CORRECT_ODD_PC("J_XX_8"); \ change_pc(TOBYTE(PC)); \ COUNT_CYCLES(3); \ } \ else \ { \ SKIP_LONG; \ COUNT_CYCLES(4); \ } \ } \ } #define j_xx_0(TAKE) \ { \ if (DSTREG) \ { \ if (TAKE) \ { \ PC += (PARAM_REL8 << 4); \ COUNT_CYCLES(2); \ } \ else \ COUNT_CYCLES(1); \ } \ else \ { \ if (TAKE) \ { \ PC += (PARAM_WORD_NO_INC()<<4)+0x10; \ COUNT_CYCLES(3); \ } \ else \ { \ SKIP_WORD; \ COUNT_CYCLES(2); \ } \ } \ } #define j_xx_x(TAKE) \ { \ if (TAKE) \ { \ PC += (PARAM_REL8 << 4); \ COUNT_CYCLES(2); \ } \ else \ COUNT_CYCLES(1); \ } static void j_UC_0(void) { j_xx_0(1); } static void j_UC_8(void) { j_xx_8(1); } static void j_UC_x(void) { j_xx_x(1); } static void j_P_0(void) { j_xx_0(!N_FLAG && !Z_FLAG); } static void j_P_8(void) { j_xx_8(!N_FLAG && !Z_FLAG); } static void j_P_x(void) { j_xx_x(!N_FLAG && !Z_FLAG); } static void j_LS_0(void) { j_xx_0(C_FLAG || Z_FLAG); } static void j_LS_8(void) { j_xx_8(C_FLAG || Z_FLAG); } static void j_LS_x(void) { j_xx_x(C_FLAG || Z_FLAG); } static void j_HI_0(void) { j_xx_0(!C_FLAG && !Z_FLAG); } static void j_HI_8(void) { j_xx_8(!C_FLAG && !Z_FLAG); } static void j_HI_x(void) { j_xx_x(!C_FLAG && !Z_FLAG); } static void j_LT_0(void) { j_xx_0((N_FLAG && !V_FLAG) || (!N_FLAG && V_FLAG)); } static void j_LT_8(void) { j_xx_8((N_FLAG && !V_FLAG) || (!N_FLAG && V_FLAG)); } static void j_LT_x(void) { j_xx_x((N_FLAG && !V_FLAG) || (!N_FLAG && V_FLAG)); } static void j_GE_0(void) { j_xx_0((N_FLAG && V_FLAG) || (!N_FLAG && !V_FLAG)); } static void j_GE_8(void) { j_xx_8((N_FLAG && V_FLAG) || (!N_FLAG && !V_FLAG)); } static void j_GE_x(void) { j_xx_x((N_FLAG && V_FLAG) || (!N_FLAG && !V_FLAG)); } static void j_LE_0(void) { j_xx_0((N_FLAG && !V_FLAG) || (!N_FLAG && V_FLAG) || Z_FLAG); } static void j_LE_8(void) { j_xx_8((N_FLAG && !V_FLAG) || (!N_FLAG && V_FLAG) || Z_FLAG); } static void j_LE_x(void) { j_xx_x((N_FLAG && !V_FLAG) || (!N_FLAG && V_FLAG) || Z_FLAG); } static void j_GT_0(void) { j_xx_0((N_FLAG && V_FLAG && !Z_FLAG) || (!N_FLAG && !V_FLAG && !Z_FLAG)); } static void j_GT_8(void) { j_xx_8((N_FLAG && V_FLAG && !Z_FLAG) || (!N_FLAG && !V_FLAG && !Z_FLAG)); } static void j_GT_x(void) { j_xx_x((N_FLAG && V_FLAG && !Z_FLAG) || (!N_FLAG && !V_FLAG && !Z_FLAG)); } static void j_C_0(void) { j_xx_0(C_FLAG); } static void j_C_8(void) { j_xx_8(C_FLAG); } static void j_C_x(void) { j_xx_x(C_FLAG); } static void j_NC_0(void) { j_xx_0(!C_FLAG); } static void j_NC_8(void) { j_xx_8(!C_FLAG); } static void j_NC_x(void) { j_xx_x(!C_FLAG); } static void j_EQ_0(void) { j_xx_0(Z_FLAG); } static void j_EQ_8(void) { j_xx_8(Z_FLAG); } static void j_EQ_x(void) { j_xx_x(Z_FLAG); } static void j_NE_0(void) { j_xx_0(!Z_FLAG); } static void j_NE_8(void) { j_xx_8(!Z_FLAG); } static void j_NE_x(void) { j_xx_x(!Z_FLAG); } static void j_V_0(void) { j_xx_0(V_FLAG); } static void j_V_8(void) { j_xx_8(V_FLAG); } static void j_V_x(void) { j_xx_x(V_FLAG); } static void j_NV_0(void) { j_xx_0(!V_FLAG); } static void j_NV_8(void) { j_xx_8(!V_FLAG); } static void j_NV_x(void) { j_xx_x(!V_FLAG); } static void j_N_0(void) { j_xx_0(N_FLAG); } static void j_N_8(void) { j_xx_8(N_FLAG); } static void j_N_x(void) { j_xx_x(N_FLAG); } static void j_NN_0(void) { j_xx_0(!N_FLAG); } static void j_NN_8(void) { j_xx_8(!N_FLAG); } static void j_NN_x(void) { j_xx_x(!N_FLAG); } #define JUMP(R) \ { \ PC = R##REG(DSTREG); \ CORRECT_ODD_PC("JUMP"); \ change_pc(TOBYTE(PC)); \ COUNT_CYCLES(2); \ } static void jump_a (void) { JUMP(A); } static void jump_b (void) { JUMP(B); } static void popst(void) { SET_ST(POP()); COUNT_CYCLES(8); } static void pushst(void) { PUSH(GET_ST()); COUNT_CYCLES(2); } #define PUTST(R) \ { \ SET_ST(R##REG(DSTREG)); \ COUNT_CYCLES(3); \ } static void putst_a (void) { PUTST(A); } static void putst_b (void) { PUTST(B); } static void reti(void) { INT32 st = POP(); PC = POP(); CORRECT_ODD_PC("RETI"); change_pc(TOBYTE(PC)); SET_ST(st); COUNT_CYCLES(11); } static void rets(void) { UINT32 offs; PC = POP(); CORRECT_ODD_PC("RETS"); change_pc(TOBYTE(PC)); offs = PARAM_N; if (offs) { SP+=(offs<<4); } COUNT_CYCLES(7); } #define REV(R) \ { \ R##REG(DSTREG) = 0x0008; \ COUNT_CYCLES(1); \ } static void rev_a (void) { REV(A); } static void rev_b (void) { REV(B); } static void trap(void) { UINT32 t = PARAM_N; if (t) { PUSH(PC); PUSH(GET_ST()); } RESET_ST(); PC = RLONG(0xffffffe0-(t<<5)); CORRECT_ODD_PC("TRAP"); change_pc(TOBYTE(PC)); COUNT_CYCLES(16); } /*************************************************************************** 34020 INSTRUCTIONS ***************************************************************************/ /************************************ New 34020 ops: 0000 1100 000R dddd = ADDXYI IL,Rd iiii iiii iiii iiii iiii iiii iiii iiii 0000 0000 1111 00SD = BLMOVE S,D 0000 0110 0000 0000 = CEXEC S,c,ID,L cccc cccc S000 0000 iiic cccc cccc cccc 1101 1000 0ccc cccS = CEXEC S,c,ID iiic cccc cccc cccc 0000 1000 1111 0010 = CLIP 0000 0110 011R dddd = CMOVCG Rd1,Rd2,S,c,ID cccc cccc S00R dddd iiic cccc cccc cccc 0000 0110 101R dddd = CMOVCM *Rd+,n,S,c,ID cccc cccc S00n nnnn iiic cccc cccc cccc 0000 0110 110R dddd = CMOVCM -*Rd,n,S,c,ID cccc cccc S00n nnnn iiic cccc cccc cccc 0000 0110 0110 0000 = CMOVCS c,ID cccc cccc 0000 0001 iiic cccc cccc cccc 0000 0110 001R ssss = CMOVGC Rs,c,ID cccc cccc 0000 0000 iiic cccc cccc cccc 0000 0110 010R ssss = CMOVGC Rs1,Rs2,S,c,ID cccc cccc S00R ssss iiic cccc cccc cccc 0000 0110 100n nnnn = CMOVMC *Rs+,n,S,c,ID cccc cccc S00R ssss iiic cccc cccc cccc 0000 1000 001n nnnn = CMOVMC -*Rs,n,S,c,ID cccc cccc S00R ssss iiic cccc cccc cccc 0000 0110 111R dddd = CMOVMC *Rs+,Rd,S,c,ID cccc cccc S00R ssss iiic cccc cccc cccc 0011 01kk kkkR dddd = CMPK k,Rd 0000 1010 100R dddd = CVDXYL Rd 0000 1010 011R dddd = CVMXYL Rd 1110 101s sssR dddd = CVSXYL Rs,Rd 0000 0010 101R dddd = EXGPS Rd 1101 1110 Z001 1010 = FLINE Z 0000 1010 1011 1011 = FPIXEQ 0000 1010 1101 1011 = FPIXNE 0000 0010 110R dddd = GETPS Rd 0000 0000 0100 0000 = IDLE 0000 1100 0101 0111 = LINIT 0000 0000 1000 0000 = MWAIT 0000 1010 0011 0111 = PFILL XY 0000 1110 0001 0111 = PIXBLT L,M,L 0000 1000 0110 0000 = RETM 0111 101s sssR dddd = RMO Rs,Rd 0000 0010 100R dddd = RPIX Rd 0000 0010 0111 0011 = SETCDP 0000 0010 1111 1011 = SETCMP 0000 0010 0101 0001 = SETCSP 0111 111s sssR dddd = SWAPF *Rs,Rd,0 0000 1110 1111 1010 = TFILL XY 0000 1000 0000 1111 = TRAPL 0000 1000 0101 0111 = VBLT B,L 0000 1010 0101 0111 = VFILL L 0000 1010 0000 0000 = VLCOL ************************************/ #define ADD_XYI(R) \ { \ UINT32 a = PARAM_LONG(); \ XY *b = &R##REG_XY(DSTREG); \ CLR_NCZV; \ b->x += (INT16)(a & 0xffff); \ b->y += ((INT32)a >> 16); \ SET_N_LOG(b->x == 0); \ SET_C_BIT_LO(b->y, 15); \ SET_Z_LOG(b->y == 0); \ SET_V_BIT_LO(b->x, 15); \ COUNT_CYCLES(1); \ } static void addxyi_a(void) { if (!state.is_34020) { unimpl(); return; } ADD_XYI(A); } static void addxyi_b(void) { if (!state.is_34020) { unimpl(); return; } ADD_XYI(B); } static void blmove(void) { offs_t src = BREG(0); offs_t dst = BREG(2); offs_t bits = BREG(7); if (!state.is_34020) { unimpl(); return; } /* src and dst are aligned */ if (!(src & 0x0f) && !(dst & 0x0f)) { while (bits >= 16 && tms34010_ICount > 0) { TMS34010_WRMEM_WORD(TOBYTE(dst), TMS34010_RDMEM_WORD(TOBYTE(src))); src += 0x10; dst += 0x10; bits -= 0x10; tms34010_ICount -= 2; } if (bits != 0 && tms34010_ICount > 0) { (*tms34010_wfield_functions[bits])(dst, (*tms34010_rfield_functions[bits])(src)); dst += bits; src += bits; bits = 0; tms34010_ICount -= 2; } } /* src is aligned, dst is not */ else if (!(src & 0x0f)) { logerror("020:BLMOVE with aligned src and unaligned dst\n"); } /* dst is aligned, src is not */ else if (!(dst & 0x0f)) { logerror("020:BLMOVE with unaligned src and aligned dst\n"); } /* neither are aligned */ else { logerror("020:BLMOVE with completely unaligned src and dst\n"); } /* update the final results */ BREG(0) = src; BREG(2) = dst; BREG(7) = bits; /* if we're not done yet, back up the PC */ if (bits != 0) PC -= 0x10; } static void cexec_l(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cexec_l\n"); } static void cexec_s(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cexec_s\n"); } static void clip(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:clip\n"); } static void cmovcg_a(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovcg_a\n"); } static void cmovcg_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovcg_b\n"); } static void cmovcm_f(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovcm_f\n"); } static void cmovcm_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovcm_b\n"); } static void cmovgc_a(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovgc_a\n"); } static void cmovgc_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovgc_b\n"); } static void cmovgc_a_s(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovgc_a_s\n"); } static void cmovgc_b_s(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovgc_b_s\n"); } static void cmovmc_f(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovmc_f\n"); } static void cmovmc_f_va(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovmc_f_va\n"); } static void cmovmc_f_vb(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovmc_f_vb\n"); } static void cmovmc_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cmovmc_b\n"); } #define CMPK(R) \ { \ INT32 r; \ INT32 *rd = &R##REG(DSTREG); \ INT32 t = PARAM_K; if (!t) t = 32; \ CLR_NCZV; \ r = *rd - t; \ SET_NZCV_SUB(*rd,t,r); \ COUNT_CYCLES(1); \ } static void cmp_k_a(void) { if (!state.is_34020) { unimpl(); return; } CMPK(A); } static void cmp_k_b(void) { if (!state.is_34020) { unimpl(); return; } CMPK(B); } static void cvdxyl_a(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cvdxyl_a\n"); } static void cvdxyl_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cvdxyl_b\n"); } static void cvmxyl_a(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cvmxyl_a\n"); } static void cvmxyl_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cvmxyl_b\n"); } static void cvsxyl_a(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cvsxyl_a\n"); } static void cvsxyl_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:cvsxyl_b\n"); } static void exgps_a(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:exgps_a\n"); } static void exgps_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:exgps_b\n"); } static void fline(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:fline\n"); } static void fpixeq(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:fpixeq\n"); } static void fpixne(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:fpixne\n"); } static void getps_a(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:getps_a\n"); } static void getps_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:getps_b\n"); } static void idle(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:idle\n"); } static void linit(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:linit\n"); } static void mwait(void) { if (!state.is_34020) { unimpl(); return; } } static void pfill_xy(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:pfill_xy\n"); } static void pixblt_l_m_l(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:pixblt_l_m_l\n"); } static void retm(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:retm\n"); } #define RMO(R) \ { \ UINT32 res = 0; \ UINT32 rs = R##REG(SRCREG); \ INT32 *rd = &R##REG(DSTREG); \ CLR_Z; \ SET_Z_VAL(rs); \ if (rs) \ { \ while (!(rs & 0x00000001)) \ { \ res++; \ rs >>= 1; \ } \ } \ *rd = res; \ COUNT_CYCLES(1); \ } static void rmo_a(void) { RMO(A); } static void rmo_b(void) { RMO(B); } #define RPIX(R) \ { \ UINT32 v = R##REG(DSTREG); \ switch (state.pixelshift) \ { \ case 0: \ v = (v & 1) ? 0xffffffff : 0x00000000;\ COUNT_CYCLES(8); \ break; \ case 1: \ v &= 3; \ v |= v << 2; \ v |= v << 4; \ v |= v << 8; \ v |= v << 16; \ COUNT_CYCLES(7); \ break; \ case 2: \ v &= 0x0f; \ v |= v << 4; \ v |= v << 8; \ v |= v << 16; \ COUNT_CYCLES(6); \ break; \ case 3: \ v &= 0xff; \ v |= v << 8; \ v |= v << 16; \ COUNT_CYCLES(5); \ break; \ case 4: \ v &= 0xffff; \ v |= v << 16; \ COUNT_CYCLES(4); \ break; \ case 5: \ COUNT_CYCLES(2); \ break; \ } \ R##REG(DSTREG) = v; \ } static void rpix_a(void) { if (!state.is_34020) { unimpl(); return; } RPIX(A); } static void rpix_b(void) { if (!state.is_34020) { unimpl(); return; } RPIX(B); } static void setcdp(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:setcdp\n"); } static void setcmp(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:setcmp\n"); } static void setcsp(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:setcsp\n"); } static void swapf_a(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:swapf_a\n"); } static void swapf_b(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:swapf_b\n"); } static void tfill_xy(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:tfill_xy\n"); } static void trapl(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:trapl\n"); } static void vblt_b_l(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:vblt_b_l\n"); } static void vfill_l(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:vfill_l\n"); } static void vlcol(void) { if (!state.is_34020) { unimpl(); return; } logerror("020:vlcol\n"); }