mame/3rdparty/softfloat3/bochs_ext/fyl2x.c
arbee 6957c46998 cpu/m68000: Updated 680x0 FPU to Softfloat 3 from 2. (MT5411 and MT8793). [R. Belmont]
- Update to Softloat 3 from 2
- FREM and FMOD now generate the quotient bits in FPSR, required by Apple's SANE to do sin/cos/tan properly.
- FMOVE of a float to a Dx integer register generates the exception status bits, fixing square roots in SANE
- Rewrote how FMOVEM instructions are decoded and executed, fixing issues including skipping too few or too many
  opcode bytes and causing serious weird behavior.
- FPU instructions all now have more realistic cycle timings for a 68881.
- All FPU instructions now generate exception bits in FPSR.

3rdparty/softfloat3: Updates [R. Belmont]
- Softfloat3 was always being built for a big-endian host, causing incorrect math on LE x64 and AArch64 machines.
- Fixed up Softfloat3 to build properly as part of MAME and up-ported the Bochs extensions.  In latest Bochs, they
  were only partially up-ported and Softfloat3 had been hacked up to be more like 2; here they're fixed to work
  with stock Softfloat3.
2024-05-27 20:40:42 -04:00

410 lines
13 KiB
C

/*============================================================================
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
floating point emulation.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*============================================================================
* Written for Bochs (x86 achitecture simulator) by
* Stanislav Shwartsman [sshwarts at sourceforge net]
* ==========================================================================*/
#define FLOAT128
#include "../build/MAME/platform.h"
#include "../source/include/internals.h"
#include "../source/include/softfloat.h"
#include "fpu_constant.h"
#include "softfloat-extra.h"
#include "softfloat-helpers.h"
#include "softfloat-specialize.h"
static const extFloat80_t floatx80_one = packFloatx80(0, 0x3fff, uint64_t(0x8000000000000000));
static const extFloat80_t floatx80_ln_2 = packFloatx80(0, 0x3ffe, 0xb17217f7d1cf79acU);
static const extFloat80_t floatx80_log10_2 = packFloatx80(0, 0x3ffd, 0x9a209a84fbcff798U);
static const float128_t float128_one =
packFloat128(uint64_t(0x3fff000000000000), uint64_t(0x0000000000000000));
static const float128_t float128_two =
packFloat128(uint64_t(0x4000000000000000), uint64_t(0x0000000000000000));
static const float128_t float128_ln2inv2 =
packFloat128(uint64_t(0x400071547652b82f), uint64_t(0xe1777d0ffda0d23a));
#define SQRT2_HALF_SIG uint64_t(0xb504f333f9de6484)
extern float128_t OddPoly(float128_t x, const float128_t *arr, int n);
#define L2_ARR_SIZE 9
static float128_t ln_arr[L2_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 1 */
PACK_FLOAT_128(0x3ffd555555555555, 0x5555555555555555), /* 3 */
PACK_FLOAT_128(0x3ffc999999999999, 0x999999999999999a), /* 5 */
PACK_FLOAT_128(0x3ffc249249249249, 0x2492492492492492), /* 7 */
PACK_FLOAT_128(0x3ffbc71c71c71c71, 0xc71c71c71c71c71c), /* 9 */
PACK_FLOAT_128(0x3ffb745d1745d174, 0x5d1745d1745d1746), /* 11 */
PACK_FLOAT_128(0x3ffb3b13b13b13b1, 0x3b13b13b13b13b14), /* 13 */
PACK_FLOAT_128(0x3ffb111111111111, 0x1111111111111111), /* 15 */
PACK_FLOAT_128(0x3ffae1e1e1e1e1e1, 0xe1e1e1e1e1e1e1e2) /* 17 */
};
static float128_t poly_ln(float128_t x1)
{
/*
//
// 3 5 7 9 11 13 15
// 1+u u u u u u u u
// 1/2 ln --- ~ u + --- + --- + --- + --- + ---- + ---- + ---- =
// 1-u 3 5 7 9 11 13 15
//
// 2 4 6 8 10 12 14
// u u u u u u u
// = u * [ 1 + --- + --- + --- + --- + ---- + ---- + ---- ] =
// 3 5 7 9 11 13 15
//
// 3 3
// -- 4k -- 4k+2
// p(u) = > C * u q(u) = > C * u
// -- 2k -- 2k+1
// k=0 k=0
//
// 1+u 2
// 1/2 ln --- ~ u * [ p(u) + u * q(u) ]
// 1-u
//
*/
return OddPoly(x1, (const float128_t*) ln_arr, L2_ARR_SIZE);
}
/* required sqrt(2)/2 < x < sqrt(2) */
static float128_t poly_l2(float128_t x)
{
/* using float128 for approximation */
float128_t x_p1 = f128_add(x, float128_one);
float128_t x_m1 = f128_sub(x, float128_one);
x = f128_div(x_m1, x_p1);
x = poly_ln(x);
x = f128_mul(x, float128_ln2inv2);
return x;
}
static float128_t poly_l2p1(float128_t x)
{
/* using float128 for approximation */
float128_t x_plus2 = f128_add(x, float128_two);
x = f128_div(x, x_plus2);
x = poly_ln(x);
x = f128_mul(x, float128_ln2inv2);
return x;
}
// =================================================
// FYL2X Compute y * log (x)
// 2
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
// ln(x)
// log (x) = -------, ln (x*y) = ln(x) + ln(y)
// 2 ln(2)
//
// 2. ----------------------------------------------------------
// 1+u x-1
// ln (x) = ln -----, when u = -----
// 1-u x+1
//
// 3. ----------------------------------------------------------
// 3 5 7 2n+1
// 1+u u u u u
// ln ----- = 2 [ u + --- + --- + --- + ... + ------ + ... ]
// 1-u 3 5 7 2n+1
//
extFloat80_t extFloat80_fyl2x(extFloat80_t a, extFloat80_t b)
{
// handle unsupported extended double-precision floating encodings
if (extF80_isUnsupported(a) || extF80_isUnsupported(b)) {
invalid:
softfloat_exceptionFlags |= softfloat_flag_invalid;
return floatx80_default_nan;
}
uint64_t aSig = extF80_fraction(a);
int32_t aExp = extF80_exp(a);
int aSign = extF80_sign(a);
uint64_t bSig = extF80_fraction(b);
int32_t bExp = extF80_exp(b);
int bSign = extF80_sign(b);
int zSign = bSign ^ 1;
if (aExp == 0x7FFF) {
if ((aSig<<1) || ((bExp == 0x7FFF) && (bSig<<1))) {
const uint128 nan = softfloat_propagateNaNExtF80UI(a.signExp, aSig, b.signExp, bSig);
extFloat80_t rv;
rv.signExp = nan.v64;
rv.signif = nan.v0;
return rv;
}
if (aSign) goto invalid;
else {
if (! bExp) {
if (! bSig) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
}
return packFloatx80(bSign, 0x7FFF, uint64_t(0x8000000000000000));
}
}
if (bExp == 0x7FFF) {
if (bSig << 1) {
const uint128 nan = softfloat_propagateNaNExtF80UI(a.signExp, aSig, b.signExp, bSig);
extFloat80_t rv;
rv.signExp = nan.v64;
rv.signif = nan.v0;
return rv;
}
if (aSign && (uint64_t)(aExp | aSig)) goto invalid;
if (aSig && ! aExp)
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
if (aExp < 0x3FFF)
{
return packFloatx80(zSign, 0x7FFF, uint64_t(0x8000000000000000));
}
if (aExp == 0x3FFF && ! (aSig<<1)) goto invalid;
return packFloatx80(bSign, 0x7FFF, uint64_t(0x8000000000000000));
}
if (! aExp) {
if (! aSig) {
if ((bExp | bSig) == 0) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // divide by zero
return packFloatx80(zSign, 0x7FFF, uint64_t(0x8000000000000000));
}
if (aSign) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
struct exp32_sig64 normExpSig = softfloat_normSubnormalExtF80Sig(aSig);
aExp = normExpSig.exp + 1;
aSig = normExpSig.sig;
}
if (aSign) goto invalid;
if (! bExp) {
if (! bSig) {
if (aExp < 0x3FFF) return packFloatx80(zSign, 0, 0);
return packFloatx80(bSign, 0, 0);
}
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
struct exp32_sig64 normExpSig = softfloat_normSubnormalExtF80Sig(bSig);
bExp = normExpSig.exp + 1;
bSig = normExpSig.sig;
}
if (aExp == 0x3FFF && ! (aSig<<1))
return packFloatx80(bSign, 0, 0);
softfloat_exceptionFlags |= softfloat_flag_inexact;
int ExpDiff = aExp - 0x3FFF;
aExp = 0;
if (aSig >= SQRT2_HALF_SIG) {
ExpDiff++;
aExp--;
}
/* ******************************** */
/* using float128 for approximation */
/* ******************************** */
float128_t b128 = softfloat_normRoundPackToF128(bSign, bExp-0x10, bSig, 0);
uint64_t zSig0, zSig1;
shortShift128Right(aSig<<1, 0, 16, &zSig0, &zSig1);
float128_t x = packFloat128(0, aExp+0x3FFF, zSig0, zSig1);
x = poly_l2(x);
x = f128_add(x, i32_to_f128(ExpDiff));
x = f128_mul(x, b128);
return f128_to_extF80(x);
}
// =================================================
// FYL2XP1 Compute y * log (x + 1)
// 2
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
// ln(x)
// log (x) = -------
// 2 ln(2)
//
// 2. ----------------------------------------------------------
// 1+u x
// ln (x+1) = ln -----, when u = -----
// 1-u x+2
//
// 3. ----------------------------------------------------------
// 3 5 7 2n+1
// 1+u u u u u
// ln ----- = 2 [ u + --- + --- + --- + ... + ------ + ... ]
// 1-u 3 5 7 2n+1
//
extFloat80_t extFloat80_fyl2xp1(extFloat80_t a, extFloat80_t b)
{
int32_t aExp, bExp;
uint64_t aSig, bSig, zSig0, zSig1, zSig2;
int aSign, bSign;
// handle unsupported extended double-precision floating encodings
if (extF80_isUnsupported(a) || extF80_isUnsupported(b)) {
invalid:
softfloat_exceptionFlags |= softfloat_flag_invalid;
return floatx80_default_nan;
}
aSig = extF80_fraction(a);
aExp = extF80_exp(a);
aSign = extF80_sign(a);
bSig = extF80_fraction(b);
bExp = extF80_exp(b);
bSign = extF80_sign(b);
int zSign = aSign ^ bSign;
if (aExp == 0x7FFF) {
if ((aSig<<1) != 0 || ((bExp == 0x7FFF) && (bSig<<1) != 0)) {
const uint128 nan = softfloat_propagateNaNExtF80UI(a.signExp, aSig, b.signExp, bSig);
extFloat80_t rv;
rv.signExp = nan.v64;
rv.signif = nan.v0;
return rv;
}
if (aSign) goto invalid;
else {
if (! bExp) {
if (! bSig) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
}
return packFloatx80(bSign, 0x7FFF, uint64_t(0x8000000000000000));
}
}
if (bExp == 0x7FFF)
{
if (bSig << 1) {
const uint128 nan = softfloat_propagateNaNExtF80UI(a.signExp, aSig, b.signExp, bSig);
extFloat80_t rv;
rv.signExp = nan.v64;
rv.signif = nan.v0;
return rv;
}
if (! aExp) {
if (! aSig) goto invalid;
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
}
return packFloatx80(zSign, 0x7FFF, uint64_t(0x8000000000000000));
}
if (! aExp) {
if (! aSig) {
if (bSig && ! bExp)
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
return packFloatx80(zSign, 0, 0);
}
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
struct exp32_sig64 normExpSig = softfloat_normSubnormalExtF80Sig(aSig);
aExp = normExpSig.exp + 1;
aSig = normExpSig.sig;
}
if (! bExp) {
if (! bSig) return packFloatx80(zSign, 0, 0);
softfloat_exceptionFlags |= softfloat_flag_invalid; // actually denormal
struct exp32_sig64 normExpSig = softfloat_normSubnormalExtF80Sig(bSig);
bExp = normExpSig.exp + 1;
bSig = normExpSig.sig;
}
softfloat_exceptionFlags |= softfloat_flag_inexact;
if (aSign && aExp >= 0x3FFF)
return a;
if (aExp >= 0x3FFC) // big argument
{
return extFloat80_fyl2x(extF80_add(a, floatx80_one), b);
}
// handle tiny argument
if (aExp < FLOATX80_EXP_BIAS-70)
{
// first order approximation, return (a*b)/ln(2)
int32_t zExp = aExp + FLOAT_LN2INV_EXP - 0x3FFE;
mul128By64To192(FLOAT_LN2INV_HI, FLOAT_LN2INV_LO, aSig, &zSig0, &zSig1, &zSig2);
if (0 < (int64_t) zSig0) {
shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1);
--zExp;
}
zExp = zExp + bExp - 0x3FFE;
mul128By64To192(zSig0, zSig1, bSig, &zSig0, &zSig1, &zSig2);
if (0 < (int64_t) zSig0) {
shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1);
--zExp;
}
return softfloat_roundPackToExtF80(aSign ^ bSign, zExp, zSig0, zSig1, 80);
}
/* ******************************** */
/* using float128 for approximation */
/* ******************************** */
float128_t b128 = softfloat_normRoundPackToF128(bSign, bExp-0x10, bSig, 0);
shortShift128Right(aSig<<1, 0, 16, &zSig0, &zSig1);
float128_t x = packFloat128(aSign, aExp, zSig0, zSig1);
x = poly_l2p1(x);
x = f128_mul(x, b128);
return f128_to_extF80(x);
}
extFloat80_t extFloat80_lognp1(extFloat80_t a)
{
return extFloat80_fyl2x(a, floatx80_ln_2);
}
extFloat80_t extFloat80_logn(extFloat80_t a)
{
return extFloat80_fyl2x(a, floatx80_ln_2);
}
extFloat80_t extFloat80_log2(extFloat80_t a)
{
return extFloat80_fyl2x(a, floatx80_one);
}
extFloat80_t extFloat80_log10(extFloat80_t a)
{
return extFloat80_fyl2x(a, floatx80_log10_2);
}