mame/3rdparty/bimg/src/image.cpp
2023-09-08 05:14:35 +10:00

5959 lines
210 KiB
C++

/*
* Copyright 2011-2022 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bimg/blob/master/LICENSE
*/
#include "bimg_p.h"
#include <bx/hash.h>
#include <astcenc.h>
#include <bx/debug.h>
namespace bimg
{
static const ImageBlockInfo s_imageBlockInfo[] =
{
// +--------------------------------------------- bits per pixel
// | +----------------------------------------- block width
// | | +-------------------------------------- block height
// | | | +---------------------------------- block size
// | | | | +------------------------------- min blocks x
// | | | | | +---------------------------- min blocks y
// | | | | | | +------------------------ depth bits
// | | | | | | | +--------------------- stencil bits
// | | | | | | | | +---+---+---+----- r, g, b, a bits
// | | | | | | | | r g b a +-- encoding type
// | | | | | | | | | | | | |
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC1
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC2
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC3
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC4
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC5
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // BC6H
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC7
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC1
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2A
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2A1
{ 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC12
{ 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC14
{ 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC12A
{ 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC14A
{ 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC22
{ 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC24
{ 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ATC
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ATCE
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ATCI
{ 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC4x4
{ 6, 5, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC5x4
{ 6, 5, 5, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC5x5
{ 4, 6, 5, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC6x5
{ 4, 6, 6, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC6x6
{ 4, 8, 5, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC8x5
{ 3, 8, 6, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC8x6
{ 2, 8, 8, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC8x8
{ 3, 10, 5, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC10x5
{ 2, 10, 6, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC10x6
{ 2, 10, 8, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC10x8
{ 1, 10,10, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC10x10
{ 1, 12,10, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC12x10
{ 1, 12,12, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC12x12
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Count) }, // Unknown
{ 1, 8, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R1
{ 8, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 8, uint8_t(bx::EncodingType::Unorm) }, // A8
{ 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R8
{ 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R8I
{ 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R8U
{ 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // R8S
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R16
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R16I
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R16U
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // R16F
{ 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // R16S
{ 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R32I
{ 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R32U
{ 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // R32F
{ 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // RG8
{ 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG8I
{ 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG8U
{ 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // RG8S
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // RG16
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG16I
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG16U
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Float) }, // RG16F
{ 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // RG16S
{ 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG32I
{ 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG32U
{ 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Float) }, // RG32F
{ 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Unorm) }, // RGB8
{ 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Int ) }, // RGB8I
{ 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Uint ) }, // RGB8U
{ 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Snorm) }, // RGB8S
{ 32, 1, 1, 4, 1, 1, 0, 0, 9, 9, 9, 5, uint8_t(bx::EncodingType::Float) }, // RGB9E5F
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Unorm) }, // BGRA8
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Unorm) }, // RGBA8
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Int ) }, // RGBA8I
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Uint ) }, // RGBA8U
{ 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Snorm) }, // RGBA8S
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Unorm) }, // RGBA16
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Int ) }, // RGBA16I
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Uint ) }, // RGBA16U
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Float) }, // RGBA16F
{ 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Snorm) }, // RGBA16S
{ 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Int ) }, // RGBA32I
{ 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Uint ) }, // RGBA32U
{ 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Float) }, // RGBA32F
{ 16, 1, 1, 2, 1, 1, 0, 0, 5, 6, 5, 0, uint8_t(bx::EncodingType::Unorm) }, // B5G6R5
{ 16, 1, 1, 2, 1, 1, 0, 0, 5, 6, 5, 0, uint8_t(bx::EncodingType::Unorm) }, // R5G6B5
{ 16, 1, 1, 2, 1, 1, 0, 0, 4, 4, 4, 4, uint8_t(bx::EncodingType::Unorm) }, // BGRA4
{ 16, 1, 1, 2, 1, 1, 0, 0, 4, 4, 4, 4, uint8_t(bx::EncodingType::Unorm) }, // RGBA4
{ 16, 1, 1, 2, 1, 1, 0, 0, 5, 5, 5, 1, uint8_t(bx::EncodingType::Unorm) }, // BGR5A1
{ 16, 1, 1, 2, 1, 1, 0, 0, 5, 5, 5, 1, uint8_t(bx::EncodingType::Unorm) }, // RGB5A1
{ 32, 1, 1, 4, 1, 1, 0, 0, 10, 10, 10, 2, uint8_t(bx::EncodingType::Unorm) }, // RGB10A2
{ 32, 1, 1, 4, 1, 1, 0, 0, 11, 11, 10, 0, uint8_t(bx::EncodingType::Unorm) }, // RG11B10F
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Count) }, // UnknownDepth
{ 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D16
{ 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D24
{ 32, 1, 1, 4, 1, 1, 24, 8, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D24S8
{ 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D32
{ 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D16F
{ 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D24F
{ 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D32F
{ 8, 1, 1, 1, 1, 1, 0, 8, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_imageBlockInfo) );
static const char* s_textureFormatName[] =
{
"BC1", // BC1
"BC2", // BC2
"BC3", // BC3
"BC4", // BC4
"BC5", // BC5
"BC6H", // BC6H
"BC7", // BC7
"ETC1", // ETC1
"ETC2", // ETC2
"ETC2A", // ETC2A
"ETC2A1", // ETC2A1
"PTC12", // PTC12
"PTC14", // PTC14
"PTC12A", // PTC12A
"PTC14A", // PTC14A
"PTC22", // PTC22
"PTC24", // PTC24
"ATC", // ATC
"ATCE", // ATCE
"ATCI", // ATCI
"ASTC4x4", // ASTC4x4
"ASTC5x4", // ASTC5x4
"ASTC5x5", // ASTC5x5
"ASTC6x5", // ASTC6x5
"ASTC6x6", // ASTC6x6
"ASTC8x5", // ASTC8x5
"ASTC8x6", // ASTC8x6
"ASTC8x8", // ASTC8x8
"ASTC10x5", // ASTC10x5
"ASTC10x6", // ASTC10x6
"ASTC10x8", // ASTC10x8
"ASTC10x10", // ASTC10x10
"ASTC12x10", // ASTC12x10
"ASTC12x12", // ASTC12x12
"<unknown>", // Unknown
"R1", // R1
"A8", // A8
"R8", // R8
"R8I", // R8I
"R8U", // R8U
"R8S", // R8S
"R16", // R16
"R16I", // R16I
"R16U", // R16U
"R16F", // R16F
"R16S", // R16S
"R32I", // R32I
"R32U", // R32U
"R32F", // R32F
"RG8", // RG8
"RG8I", // RG8I
"RG8U", // RG8U
"RG8S", // RG8S
"RG16", // RG16
"RG16I", // RG16I
"RG16U", // RG16U
"RG16F", // RG16F
"RG16S", // RG16S
"RG32I", // RG32I
"RG32U", // RG32U
"RG32F", // RG32F
"RGB8", // RGB8
"RGB8I", // RGB8I
"RGB8U", // RGB8U
"RGB8S", // RGB8S
"RGB9E5", // RGB9E5F
"BGRA8", // BGRA8
"RGBA8", // RGBA8
"RGBA8I", // RGBA8I
"RGBA8U", // RGBA8U
"RGBA8S", // RGBA8S
"RGBA16", // RGBA16
"RGBA16I", // RGBA16I
"RGBA16U", // RGBA16U
"RGBA16F", // RGBA16F
"RGBA16S", // RGBA16S
"RGBA32I", // RGBA32I
"RGBA32U", // RGBA32U
"RGBA32F", // RGBA32F
"B5G6R5", // B5G6R5
"R5G6B5", // R5G6B5
"BGRA4", // BGRA4
"RGBA4", // RGBA4
"BGR5A1", // BGR5A1
"RGB5A1", // RGB5A1
"RGB10A2", // RGB10A2
"RG11B10F", // RG11B10F
"<unknown>", // UnknownDepth
"D16", // D16
"D24", // D24
"D24S8", // D24S8
"D32", // D32
"D16F", // D16F
"D24F", // D24F
"D32F", // D32F
"D0S8", // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormatName) );
bool isCompressed(TextureFormat::Enum _format)
{
return _format < TextureFormat::Unknown;
}
bool isColor(TextureFormat::Enum _format)
{
return _format > TextureFormat::Unknown
&& _format < TextureFormat::UnknownDepth
;
}
bool isDepth(TextureFormat::Enum _format)
{
return _format > TextureFormat::UnknownDepth
&& _format < TextureFormat::Count
;
}
bool isValid(TextureFormat::Enum _format)
{
return _format != TextureFormat::Unknown
&& _format != TextureFormat::UnknownDepth
&& _format != TextureFormat::Count
;
}
bool isFloat(TextureFormat::Enum _format)
{
return uint8_t(bx::EncodingType::Float) == s_imageBlockInfo[_format].encoding;
}
uint8_t getBitsPerPixel(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format].bitsPerPixel;
}
const ImageBlockInfo& getBlockInfo(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format];
}
uint8_t getBlockSize(TextureFormat::Enum _format)
{
return s_imageBlockInfo[_format].blockSize;
}
const char* getName(TextureFormat::Enum _format)
{
if (_format >= TextureFormat::Count)
{
return "Unknown?!";
}
return s_textureFormatName[_format];
}
TextureFormat::Enum getFormat(const char* _name)
{
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
const TextureFormat::Enum fmt = TextureFormat::Enum(ii);
if (isValid(fmt) )
{
if (0 == bx::strCmpI(s_textureFormatName[ii], _name) )
{
return fmt;
}
}
}
return TextureFormat::Unknown;
}
uint8_t imageGetNumMips(TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth)
{
const ImageBlockInfo& blockInfo = getBlockInfo(_format);
const uint16_t blockWidth = blockInfo.blockWidth;
const uint16_t blockHeight = blockInfo.blockHeight;
const uint16_t minBlockX = blockInfo.minBlockX;
const uint16_t minBlockY = blockInfo.minBlockY;
_width = bx::max<uint16_t>(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth )*blockWidth);
_height = bx::max<uint16_t>(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
_depth = bx::max<uint16_t>(1, _depth);
uint8_t numMips = calcNumMips(true, _width, _height, _depth);
return numMips;
}
uint32_t imageGetSize(TextureInfo* _info, uint16_t _width, uint16_t _height, uint16_t _depth, bool _cubeMap, bool _hasMips, uint16_t _numLayers, TextureFormat::Enum _format)
{
const ImageBlockInfo& blockInfo = getBlockInfo(_format);
const uint8_t bpp = blockInfo.bitsPerPixel;
const uint16_t blockWidth = blockInfo.blockWidth;
const uint16_t blockHeight = blockInfo.blockHeight;
const uint16_t minBlockX = blockInfo.minBlockX;
const uint16_t minBlockY = blockInfo.minBlockY;
const uint8_t blockSize = blockInfo.blockSize;
_width = bx::max<uint16_t>(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth);
_height = bx::max<uint16_t>(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
_depth = bx::max<uint16_t>(1, _depth);
const uint8_t numMips = calcNumMips(_hasMips, _width, _height, _depth);
const uint32_t sides = _cubeMap ? 6 : 1;
uint32_t width = _width;
uint32_t height = _height;
uint32_t depth = _depth;
uint32_t size = 0;
for (uint32_t lod = 0; lod < numMips; ++lod)
{
width = bx::max<uint32_t>(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::max<uint32_t>(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::max<uint32_t>(1, depth);
size += uint32_t(uint64_t(width/blockWidth * height/blockHeight * depth)*blockSize * sides);
width >>= 1;
height >>= 1;
depth >>= 1;
}
size *= _numLayers;
if (NULL != _info)
{
_info->format = _format;
_info->width = _width;
_info->height = _height;
_info->depth = _depth;
_info->numMips = numMips;
_info->numLayers = _numLayers;
_info->cubeMap = _cubeMap;
_info->storageSize = size;
_info->bitsPerPixel = bpp;
}
return size;
}
BX_NO_INLINE void imageSolid(void* _dst, uint32_t _width, uint32_t _height, uint32_t _solid)
{
uint32_t* dst = (uint32_t*)_dst;
for (uint32_t ii = 0, num = _width*_height; ii < num; ++ii)
{
*dst++ = _solid;
}
}
BX_NO_INLINE void imageCheckerboard(void* _dst, uint32_t _width, uint32_t _height, uint32_t _step, uint32_t _0, uint32_t _1)
{
uint32_t* dst = (uint32_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
uint32_t abgr = ( (xx/_step)&1) ^ ( (yy/_step)&1) ? _1 : _0;
*dst++ = abgr;
}
}
}
void imageRgba8Downsample2x2Ref(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, uint32_t _dstPitch, const void* _src)
{
const uint32_t dstWidth = _width/2;
const uint32_t dstHeight = _height/2;
if (0 == dstWidth
|| 0 == dstHeight)
{
return;
}
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t zz = 0; zz < _depth; ++zz)
{
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
{
uint8_t* dst = (uint8_t*)_dst + _dstPitch*yy;
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 8, dst += 4)
{
float rr = bx::toLinear(rgba[ 0]);
float gg = bx::toLinear(rgba[ 1]);
float bb = bx::toLinear(rgba[ 2]);
float aa = rgba[ 3];
rr += bx::toLinear(rgba[ 4]);
gg += bx::toLinear(rgba[ 5]);
bb += bx::toLinear(rgba[ 6]);
aa += rgba[ 7];
rr += bx::toLinear(rgba[_srcPitch+0]);
gg += bx::toLinear(rgba[_srcPitch+1]);
bb += bx::toLinear(rgba[_srcPitch+2]);
aa += rgba[_srcPitch+3];
rr += bx::toLinear(rgba[_srcPitch+4]);
gg += bx::toLinear(rgba[_srcPitch+5]);
bb += bx::toLinear(rgba[_srcPitch+6]);
aa += rgba[_srcPitch+7];
rr *= 0.25f;
gg *= 0.25f;
bb *= 0.25f;
aa *= 0.25f;
rr = bx::toGamma(rr);
gg = bx::toGamma(gg);
bb = bx::toGamma(bb);
dst[0] = (uint8_t)rr;
dst[1] = (uint8_t)gg;
dst[2] = (uint8_t)bb;
dst[3] = (uint8_t)aa;
}
}
}
}
BX_SIMD_INLINE bx::simd128_t simd_to_linear(bx::simd128_t _a)
{
using namespace bx;
const simd128_t f12_92 = simd_ld(12.92f, 12.92f, 12.92f, 1.0f);
const simd128_t f0_055 = simd_ld(0.055f, 0.055f, 0.055f, 0.0f);
const simd128_t f1_055 = simd_ld(1.055f, 1.055f, 1.055f, 1.0f);
const simd128_t f2_4 = simd_ld(2.4f, 2.4f, 2.4f, 1.0f);
const simd128_t f0_04045 = simd_ld(0.04045f, 0.04045f, 0.04045f, 0.0f);
const simd128_t lo = simd_div(_a, f12_92);
const simd128_t tmp0 = simd_add(_a, f0_055);
const simd128_t tmp1 = simd_div(tmp0, f1_055);
const simd128_t hi = simd_pow(tmp1, f2_4);
const simd128_t mask = simd_cmple(_a, f0_04045);
const simd128_t result = simd_selb(mask, hi, lo);
return result;
}
BX_SIMD_INLINE bx::simd128_t simd_to_gamma(bx::simd128_t _a)
{
using namespace bx;
const simd128_t f12_92 = simd_ld(12.92f, 12.92f, 12.92f, 1.0f);
const simd128_t f0_055 = simd_ld(0.055f, 0.055f, 0.055f, 0.0f);
const simd128_t f1_055 = simd_ld(1.055f, 1.055f, 1.055f, 1.0f);
const simd128_t f1o2_4 = simd_ld(1.0f/2.4f, 1.0f/2.4f, 1.0f/2.4f, 1.0f);
const simd128_t f0_0031308 = simd_ld(0.0031308f, 0.0031308f, 0.0031308f, 0.0f);
const simd128_t lo = simd_mul(_a, f12_92);
const simd128_t absa = simd_abs(_a);
const simd128_t tmp0 = simd_pow(absa, f1o2_4);
const simd128_t tmp1 = simd_mul(tmp0, f1_055);
const simd128_t hi = simd_sub(tmp1, f0_055);
const simd128_t mask = simd_cmple(_a, f0_0031308);
const simd128_t result = simd_selb(mask, hi, lo);
return result;
}
void imageRgba8Downsample2x2(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, uint32_t _dstPitch, const void* _src)
{
const uint32_t dstWidth = _width/2;
const uint32_t dstHeight = _height/2;
if (0 == dstWidth
|| 0 == dstHeight)
{
return;
}
const uint8_t* src = (const uint8_t*)_src;
using namespace bx;
const simd128_t unpack = simd_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f);
const simd128_t pack = simd_ld(1.0f, 256.0f*0.5f, 65536.0f, 16777216.0f*0.5f);
const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000);
const simd128_t pmask = simd_ild(0xff, 0x7f80, 0xff0000, 0x7f800000);
const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000);
const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f);
const simd128_t quater = simd_splat(0.25f);
for (uint32_t zz = 0; zz < _depth; ++zz)
{
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
{
uint8_t* dst = (uint8_t*)_dst + _dstPitch*yy;
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 8, dst += 4)
{
const simd128_t abgr0 = simd_splat(rgba);
const simd128_t abgr1 = simd_splat(rgba+4);
const simd128_t abgr2 = simd_splat(rgba+_srcPitch);
const simd128_t abgr3 = simd_splat(rgba+_srcPitch+4);
const simd128_t abgr0m = simd_and(abgr0, umask);
const simd128_t abgr1m = simd_and(abgr1, umask);
const simd128_t abgr2m = simd_and(abgr2, umask);
const simd128_t abgr3m = simd_and(abgr3, umask);
const simd128_t abgr0x = simd_xor(abgr0m, wflip);
const simd128_t abgr1x = simd_xor(abgr1m, wflip);
const simd128_t abgr2x = simd_xor(abgr2m, wflip);
const simd128_t abgr3x = simd_xor(abgr3m, wflip);
const simd128_t abgr0f = simd_itof(abgr0x);
const simd128_t abgr1f = simd_itof(abgr1x);
const simd128_t abgr2f = simd_itof(abgr2x);
const simd128_t abgr3f = simd_itof(abgr3x);
const simd128_t abgr0c = simd_add(abgr0f, wadd);
const simd128_t abgr1c = simd_add(abgr1f, wadd);
const simd128_t abgr2c = simd_add(abgr2f, wadd);
const simd128_t abgr3c = simd_add(abgr3f, wadd);
const simd128_t abgr0n = simd_mul(abgr0c, unpack);
const simd128_t abgr1n = simd_mul(abgr1c, unpack);
const simd128_t abgr2n = simd_mul(abgr2c, unpack);
const simd128_t abgr3n = simd_mul(abgr3c, unpack);
const simd128_t abgr0l = simd_to_linear(abgr0n);
const simd128_t abgr1l = simd_to_linear(abgr1n);
const simd128_t abgr2l = simd_to_linear(abgr2n);
const simd128_t abgr3l = simd_to_linear(abgr3n);
const simd128_t sum0 = simd_add(abgr0l, abgr1l);
const simd128_t sum1 = simd_add(abgr2l, abgr3l);
const simd128_t sum2 = simd_add(sum0, sum1);
const simd128_t avg0 = simd_mul(sum2, quater);
const simd128_t avg1 = simd_to_gamma(avg0);
const simd128_t avg2 = simd_mul(avg1, pack);
const simd128_t ftoi0 = simd_ftoi(avg2);
const simd128_t ftoi1 = simd_and(ftoi0, pmask);
const simd128_t zwxy = simd_swiz_zwxy(ftoi1);
const simd128_t tmp0 = simd_or(ftoi1, zwxy);
const simd128_t yyyy = simd_swiz_yyyy(tmp0);
const simd128_t tmp1 = simd_iadd(yyyy, yyyy);
const simd128_t result = simd_or(tmp0, tmp1);
simd_stx(dst, result);
}
}
}
}
void imageRgba32fToLinear(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
{
uint8_t* dst = ( uint8_t*)_dst;
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t zz = 0; zz < _depth; ++zz)
{
for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _width*16)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
const uint32_t offset = xx * 16;
float* fd = ( float*)(dst + offset);
const float* fs = (const float*)(src + offset);
fd[0] = bx::toLinear(fs[0]);
fd[1] = bx::toLinear(fs[1]);
fd[2] = bx::toLinear(fs[2]);
fd[3] = fs[3];
}
}
}
}
void imageRgba32fToLinear(ImageContainer* _imageContainer)
{
const uint16_t numSides = _imageContainer->m_numLayers * (_imageContainer->m_cubeMap ? 6 : 1);
for (uint16_t side = 0; side < numSides; ++side)
{
ImageMip mip;
imageGetRawData(*_imageContainer, side, 0, _imageContainer->m_data, _imageContainer->m_size, mip);
const uint32_t pitch = _imageContainer->m_width*16;
const uint32_t slice = _imageContainer->m_height*pitch;
for (uint32_t zz = 0, depth = _imageContainer->m_depth; zz < depth; ++zz)
{
const uint32_t srcDataStep = uint32_t(bx::floor(zz * _imageContainer->m_depth / float(depth) ) );
const uint8_t* srcData = &mip.m_data[srcDataStep*slice];
imageRgba32fToLinear(const_cast<uint8_t*>(srcData), mip.m_width, mip.m_height, 1, pitch, srcData);
}
}
}
void imageRgba32fToGamma(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
{
uint8_t* dst = ( uint8_t*)_dst;
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t zz = 0; zz < _depth; ++zz)
{
for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _width*16)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
const uint32_t offset = xx * 16;
float* fd = ( float*)(dst + offset);
const float* fs = (const float*)(src + offset);
fd[0] = bx::toGamma(fs[0]);
fd[1] = bx::toGamma(fs[1]);
fd[2] = bx::toGamma(fs[2]);
fd[3] = fs[3];
}
}
}
}
void imageRgba32fToGamma(ImageContainer* _imageContainer)
{
const uint16_t numSides = _imageContainer->m_numLayers * (_imageContainer->m_cubeMap ? 6 : 1);
for (uint16_t side = 0; side < numSides; ++side)
{
ImageMip mip;
imageGetRawData(*_imageContainer, side, 0, _imageContainer->m_data, _imageContainer->m_size, mip);
const uint32_t pitch = _imageContainer->m_width*16;
const uint32_t slice = _imageContainer->m_height*pitch;
for (uint32_t zz = 0, depth = _imageContainer->m_depth; zz < depth; ++zz)
{
const uint32_t srcDataStep = uint32_t(bx::floor(zz * _imageContainer->m_depth / float(depth) ) );
const uint8_t* srcData = &mip.m_data[srcDataStep*slice];
imageRgba32fToGamma(const_cast<uint8_t*>(srcData), mip.m_width, mip.m_height, 1, pitch, srcData);
}
}
}
void imageRgba32fLinearDownsample2x2Ref(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
{
const uint32_t dstWidth = _width/2;
const uint32_t dstHeight = _height/2;
const uint32_t dstDepth = _depth/2;
if (0 == dstWidth
|| 0 == dstHeight)
{
return;
}
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
if (0 == dstDepth)
{
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
{
const float* rgba0 = (const float*)&src[0];
const float* rgba1 = (const float*)&src[_srcPitch];
for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16)
{
float xyz[4];
xyz[0] = rgba0[0];
xyz[1] = rgba0[1];
xyz[2] = rgba0[2];
xyz[3] = rgba0[3];
xyz[0] += rgba0[4];
xyz[1] += rgba0[5];
xyz[2] += rgba0[6];
xyz[3] += rgba0[7];
xyz[0] += rgba1[0];
xyz[1] += rgba1[1];
xyz[2] += rgba1[2];
xyz[3] += rgba1[3];
xyz[0] += rgba1[4];
xyz[1] += rgba1[5];
xyz[2] += rgba1[6];
xyz[3] += rgba1[7];
xyz[0] *= 1.0f/4.0f;
xyz[1] *= 1.0f/4.0f;
xyz[2] *= 1.0f/4.0f;
xyz[3] *= 1.0f/4.0f;
bx::packRgba32F(dst, xyz);
}
}
}
else
{
const uint32_t slicePitch = _srcPitch*_height;
for (uint32_t zz = 0; zz < dstDepth; ++zz, src += slicePitch)
{
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
{
const float* rgba0 = (const float*)&src[0];
const float* rgba1 = (const float*)&src[_srcPitch];
const float* rgba2 = (const float*)&src[slicePitch];
const float* rgba3 = (const float*)&src[slicePitch+_srcPitch];
for (uint32_t xx = 0
; xx < dstWidth
; ++xx, rgba0 += 8, rgba1 += 8, rgba2 += 8, rgba3 += 8, dst += 16
)
{
float xyz[4];
xyz[0] = rgba0[0];
xyz[1] = rgba0[1];
xyz[2] = rgba0[2];
xyz[3] = rgba0[3];
xyz[0] += rgba0[4];
xyz[1] += rgba0[5];
xyz[2] += rgba0[6];
xyz[3] += rgba0[7];
xyz[0] += rgba1[0];
xyz[1] += rgba1[1];
xyz[2] += rgba1[2];
xyz[3] += rgba1[3];
xyz[0] += rgba1[4];
xyz[1] += rgba1[5];
xyz[2] += rgba1[6];
xyz[3] += rgba1[7];
xyz[0] += rgba2[0];
xyz[1] += rgba2[1];
xyz[2] += rgba2[2];
xyz[3] += rgba2[3];
xyz[0] += rgba2[4];
xyz[1] += rgba2[5];
xyz[2] += rgba2[6];
xyz[3] += rgba2[7];
xyz[0] += rgba3[0];
xyz[1] += rgba3[1];
xyz[2] += rgba3[2];
xyz[3] += rgba3[3];
xyz[0] += rgba3[4];
xyz[1] += rgba3[5];
xyz[2] += rgba3[6];
xyz[3] += rgba3[7];
xyz[0] *= 1.0f/8.0f;
xyz[1] *= 1.0f/8.0f;
xyz[2] *= 1.0f/8.0f;
xyz[3] *= 1.0f/8.0f;
bx::packRgba32F(dst, xyz);
}
}
}
}
}
void imageRgba32fLinearDownsample2x2(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
{
imageRgba32fLinearDownsample2x2Ref(_dst, _width, _height, _depth, _srcPitch, _src);
}
void imageRgba32fDownsample2x2Ref(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
{
const uint32_t dstWidth = _width/2;
const uint32_t dstHeight = _height/2;
const uint32_t dstDepth = _depth/2;
if (0 == dstWidth
|| 0 == dstHeight)
{
return;
}
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
if (0 == dstDepth)
{
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
{
const float* rgba0 = (const float*)&src[0];
const float* rgba1 = (const float*)&src[_srcPitch];
for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16)
{
float xyz[4];
xyz[0] = bx::toLinear(rgba0[0]);
xyz[1] = bx::toLinear(rgba0[1]);
xyz[2] = bx::toLinear(rgba0[2]);
xyz[3] = rgba0[3];
xyz[0] += bx::toLinear(rgba0[4]);
xyz[1] += bx::toLinear(rgba0[5]);
xyz[2] += bx::toLinear(rgba0[6]);
xyz[3] += rgba0[7];
xyz[0] += bx::toLinear(rgba1[0]);
xyz[1] += bx::toLinear(rgba1[1]);
xyz[2] += bx::toLinear(rgba1[2]);
xyz[3] += rgba1[3];
xyz[0] += bx::toLinear(rgba1[4]);
xyz[1] += bx::toLinear(rgba1[5]);
xyz[2] += bx::toLinear(rgba1[6]);
xyz[3] += rgba1[7];
xyz[0] = bx::toGamma(xyz[0]/4.0f);
xyz[1] = bx::toGamma(xyz[1]/4.0f);
xyz[2] = bx::toGamma(xyz[2]/4.0f);
xyz[3] = xyz[3]/4.0f;
bx::packRgba32F(dst, xyz);
}
}
}
else
{
const uint32_t slicePitch = _srcPitch*_height;
for (uint32_t zz = 0; zz < dstDepth; ++zz, src += slicePitch)
{
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
{
const float* rgba0 = (const float*)&src[0];
const float* rgba1 = (const float*)&src[_srcPitch];
const float* rgba2 = (const float*)&src[slicePitch];
const float* rgba3 = (const float*)&src[slicePitch+_srcPitch];
for (uint32_t xx = 0
; xx < dstWidth
; ++xx, rgba0 += 8, rgba1 += 8, rgba2 += 8, rgba3 += 8, dst += 16
)
{
float xyz[4];
xyz[0] = bx::toLinear(rgba0[0]);
xyz[1] = bx::toLinear(rgba0[1]);
xyz[2] = bx::toLinear(rgba0[2]);
xyz[3] = rgba0[3];
xyz[0] += bx::toLinear(rgba0[4]);
xyz[1] += bx::toLinear(rgba0[5]);
xyz[2] += bx::toLinear(rgba0[6]);
xyz[3] += rgba0[7];
xyz[0] += bx::toLinear(rgba1[0]);
xyz[1] += bx::toLinear(rgba1[1]);
xyz[2] += bx::toLinear(rgba1[2]);
xyz[3] += rgba1[3];
xyz[0] += bx::toLinear(rgba1[4]);
xyz[1] += bx::toLinear(rgba1[5]);
xyz[2] += bx::toLinear(rgba1[6]);
xyz[3] += rgba1[7];
xyz[0] += bx::toLinear(rgba2[0]);
xyz[1] += bx::toLinear(rgba2[1]);
xyz[2] += bx::toLinear(rgba2[2]);
xyz[3] += rgba2[3];
xyz[0] += bx::toLinear(rgba2[4]);
xyz[1] += bx::toLinear(rgba2[5]);
xyz[2] += bx::toLinear(rgba2[6]);
xyz[3] += rgba2[7];
xyz[0] += bx::toLinear(rgba3[0]);
xyz[1] += bx::toLinear(rgba3[1]);
xyz[2] += bx::toLinear(rgba3[2]);
xyz[3] += rgba3[3];
xyz[0] += bx::toLinear(rgba3[4]);
xyz[1] += bx::toLinear(rgba3[5]);
xyz[2] += bx::toLinear(rgba3[6]);
xyz[3] += rgba3[7];
xyz[0] = bx::toGamma(xyz[0]/8.0f);
xyz[1] = bx::toGamma(xyz[1]/8.0f);
xyz[2] = bx::toGamma(xyz[2]/8.0f);
xyz[3] = xyz[3]/8.0f;
bx::packRgba32F(dst, xyz);
}
}
}
}
}
void imageRgba32fDownsample2x2(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
{
imageRgba32fDownsample2x2Ref(_dst, _width, _height, _depth, _srcPitch, _src);
}
void imageRgba32fDownsample2x2NormalMapRef(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, uint32_t _dstPitch, const void* _src)
{
const uint32_t dstWidth = _width/2;
const uint32_t dstHeight = _height/2;
if (0 == dstWidth
|| 0 == dstHeight)
{
return;
}
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
{
const float* rgba0 = (const float*)&src[0];
const float* rgba1 = (const float*)&src[_srcPitch];
uint8_t* dst = (uint8_t*)_dst + _dstPitch*yy;
for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16)
{
float xyz[3];
xyz[0] = rgba0[0];
xyz[1] = rgba0[1];
xyz[2] = rgba0[2];
xyz[0] += rgba0[4];
xyz[1] += rgba0[5];
xyz[2] += rgba0[6];
xyz[0] += rgba1[0];
xyz[1] += rgba1[1];
xyz[2] += rgba1[2];
xyz[0] += rgba1[4];
xyz[1] += rgba1[5];
xyz[2] += rgba1[6];
bx::store(dst, bx::normalize(bx::load<bx::Vec3>(xyz) ) );
}
}
}
void imageRgba32fDownsample2x2NormalMap(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, uint32_t _dstPitch, const void* _src)
{
imageRgba32fDownsample2x2NormalMapRef(_dst, _width, _height, _srcPitch, _dstPitch, _src);
}
void imageSwizzleBgra8Ref(void* _dst, uint32_t _dstPitch, uint32_t _width, uint32_t _height, const void* _src, uint32_t _srcPitch)
{
const uint8_t* srcData = (uint8_t*) _src;
uint8_t* dstData = (uint8_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy, srcData += _srcPitch, dstData += _dstPitch)
{
const uint8_t* src = srcData;
uint8_t* dst = dstData;
for (uint32_t xx = 0; xx < _width; ++xx, src += 4, dst += 4)
{
uint8_t rr = src[0];
uint8_t gg = src[1];
uint8_t bb = src[2];
uint8_t aa = src[3];
dst[0] = bb;
dst[1] = gg;
dst[2] = rr;
dst[3] = aa;
}
}
}
void imageSwizzleBgra8(void* _dst, uint32_t _dstPitch, uint32_t _width, uint32_t _height, const void* _src, uint32_t _srcPitch)
{
// Test can we do four 4-byte pixels at the time.
if (0 != (_width&0x3)
|| _width < 4
|| !bx::isAligned(_src, 16)
|| !bx::isAligned(_dst, 16) )
{
BX_WARN(false, "Image swizzle is taking slow path.");
BX_WARN(bx::isAligned(_src, 16), "Source %p is not 16-byte aligned.", _src);
BX_WARN(bx::isAligned(_dst, 16), "Destination %p is not 16-byte aligned.", _dst);
BX_WARN(_width < 4, "Image width must be multiple of 4 (width %d).", _width);
imageSwizzleBgra8Ref(_dst, _dstPitch, _width, _height, _src, _srcPitch);
return;
}
using namespace bx;
const simd128_t mf0f0 = simd_isplat(0xff00ff00);
const simd128_t m0f0f = simd_isplat(0x00ff00ff);
const uint32_t width = _width/4;
const uint8_t* srcData = (uint8_t*) _src;
uint8_t* dstData = (uint8_t*)_dst;
for (uint32_t yy = 0; yy < _height; ++yy, srcData += _srcPitch, dstData += _dstPitch)
{
const uint8_t* src = srcData;
uint8_t* dst = dstData;
for (uint32_t xx = 0; xx < width; ++xx, src += 16, dst += 16)
{
const simd128_t tabgr = simd_ld(src);
const simd128_t t00ab = simd_srl(tabgr, 16);
const simd128_t tgr00 = simd_sll(tabgr, 16);
const simd128_t tgrab = simd_or(t00ab, tgr00);
const simd128_t ta0g0 = simd_and(tabgr, mf0f0);
const simd128_t t0r0b = simd_and(tgrab, m0f0f);
const simd128_t targb = simd_or(ta0g0, t0r0b);
simd_st(dst, targb);
}
}
}
void imageCopy(void* _dst, uint32_t _height, uint32_t _srcPitch, uint32_t _depth, const void* _src, uint32_t _dstPitch)
{
const uint32_t pitch = bx::uint32_min(_srcPitch, _dstPitch);
const uint8_t* src = (uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t zz = 0; zz < _depth; ++zz, src += _srcPitch*_height, dst += _dstPitch*_height)
{
bx::memCopy(dst, _dstPitch, src, _srcPitch, pitch, _height);
}
}
void imageCopy(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _bpp, uint32_t _srcPitch, const void* _src)
{
const uint32_t dstPitch = _width*_bpp/8;
imageCopy(_dst, _height, _srcPitch, _depth, _src, dstPitch);
}
struct PackUnpack
{
PackFn pack;
UnpackFn unpack;
};
static const PackUnpack s_packUnpack[] =
{
{ NULL, NULL }, // BC1
{ NULL, NULL }, // BC2
{ NULL, NULL }, // BC3
{ NULL, NULL }, // BC4
{ NULL, NULL }, // BC5
{ NULL, NULL }, // BC6H
{ NULL, NULL }, // BC7
{ NULL, NULL }, // ETC1
{ NULL, NULL }, // ETC2
{ NULL, NULL }, // ETC2A
{ NULL, NULL }, // ETC2A1
{ NULL, NULL }, // PTC12
{ NULL, NULL }, // PTC14
{ NULL, NULL }, // PTC12A
{ NULL, NULL }, // PTC14A
{ NULL, NULL }, // PTC22
{ NULL, NULL }, // PTC24
{ NULL, NULL }, // ATC
{ NULL, NULL }, // ATCE
{ NULL, NULL }, // ATCI
{ NULL, NULL }, // ASTC4x4
{ NULL, NULL }, // ASTC5x4
{ NULL, NULL }, // ASTC5x5
{ NULL, NULL }, // ASTC6x5
{ NULL, NULL }, // ASTC6x6
{ NULL, NULL }, // ASTC8x5
{ NULL, NULL }, // ASTC8x6
{ NULL, NULL }, // ASTC8x8
{ NULL, NULL }, // ASTC10x5
{ NULL, NULL }, // ASTC10x6
{ NULL, NULL }, // ASTC10x8
{ NULL, NULL }, // ASTC10x10
{ NULL, NULL }, // ASTC12x10
{ NULL, NULL }, // ASTC12x12
{ NULL, NULL }, // Unknown
{ NULL, NULL }, // R1
{ bx::packA8, bx::unpackA8 }, // A8
{ bx::packR8, bx::unpackR8 }, // R8
{ bx::packR8I, bx::unpackR8I }, // R8I
{ bx::packR8U, bx::unpackR8U }, // R8U
{ bx::packR8S, bx::unpackR8S }, // R8S
{ bx::packR16, bx::unpackR16 }, // R16
{ bx::packR16I, bx::unpackR16I }, // R16I
{ bx::packR16U, bx::unpackR16U }, // R16U
{ bx::packR16F, bx::unpackR16F }, // R16F
{ bx::packR16S, bx::unpackR16S }, // R16S
{ bx::packR32I, bx::unpackR32I }, // R32I
{ bx::packR32U, bx::unpackR32U }, // R32U
{ bx::packR32F, bx::unpackR32F }, // R32F
{ bx::packRg8, bx::unpackRg8 }, // RG8
{ bx::packRg8I, bx::unpackRg8I }, // RG8I
{ bx::packRg8U, bx::unpackRg8U }, // RG8U
{ bx::packRg8S, bx::unpackRg8S }, // RG8S
{ bx::packRg16, bx::unpackRg16 }, // RG16
{ bx::packRg16I, bx::unpackRg16I }, // RG16I
{ bx::packRg16U, bx::unpackRg16U }, // RG16U
{ bx::packRg16F, bx::unpackRg16F }, // RG16F
{ bx::packRg16S, bx::unpackRg16S }, // RG16S
{ bx::packRg32I, bx::unpackRg32I }, // RG32I
{ bx::packRg32U, bx::unpackRg32U }, // RG32U
{ bx::packRg32F, bx::unpackRg32F }, // RG32F
{ bx::packRgb8, bx::unpackRgb8 }, // RGB8
{ bx::packRgb8S, bx::unpackRgb8S }, // RGB8S
{ bx::packRgb8I, bx::unpackRgb8I }, // RGB8I
{ bx::packRgb8U, bx::unpackRgb8U }, // RGB8U
{ bx::packRgb9E5F, bx::unpackRgb9E5F }, // RGB9E5F
{ bx::packBgra8, bx::unpackBgra8 }, // BGRA8
{ bx::packRgba8, bx::unpackRgba8 }, // RGBA8
{ bx::packRgba8I, bx::unpackRgba8I }, // RGBA8I
{ bx::packRgba8U, bx::unpackRgba8U }, // RGBA8U
{ bx::packRgba8S, bx::unpackRgba8S }, // RGBA8S
{ bx::packRgba16, bx::unpackRgba16 }, // RGBA16
{ bx::packRgba16I, bx::unpackRgba16I }, // RGBA16I
{ bx::packRgba16U, bx::unpackRgba16U }, // RGBA16U
{ bx::packRgba16F, bx::unpackRgba16F }, // RGBA16F
{ bx::packRgba16S, bx::unpackRgba16S }, // RGBA16S
{ bx::packRgba32I, bx::unpackRgba32I }, // RGBA32I
{ bx::packRgba32U, bx::unpackRgba32U }, // RGBA32U
{ bx::packRgba32F, bx::unpackRgba32F }, // RGBA32F
{ bx::packB5G6R5, bx::unpackB5G6R5 }, // B5G6R5
{ bx::packR5G6B5, bx::unpackR5G6B5 }, // R5G6B5
{ bx::packBgra4, bx::unpackBgra4 }, // BGRA4
{ bx::packRgba4, bx::unpackRgba4 }, // RGBA4
{ bx::packBgr5a1, bx::unpackBgr5a1 }, // BGR5A1
{ bx::packRgb5a1, bx::unpackRgb5a1 }, // RGB5A1
{ bx::packRgb10A2, bx::unpackRgb10A2 }, // RGB10A2
{ bx::packRG11B10F, bx::unpackRG11B10F }, // RG11B10F
{ NULL, NULL }, // UnknownDepth
{ bx::packR16, bx::unpackR16 }, // D16
{ bx::packR24, bx::unpackR24 }, // D24
{ bx::packR24G8, bx::unpackR24G8 }, // D24S8
{ NULL, NULL }, // D32
{ bx::packR16F, bx::unpackR16F }, // D16F
{ NULL, NULL }, // D24F
{ bx::packR32F, bx::unpackR32F }, // D32F
{ bx::packR8, bx::unpackR8 }, // D0S8
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_packUnpack) );
PackFn getPack(TextureFormat::Enum _format)
{
return s_packUnpack[_format].pack;
}
UnpackFn getUnpack(TextureFormat::Enum _format)
{
return s_packUnpack[_format].unpack;
}
bool imageConvert(TextureFormat::Enum _dstFormat, TextureFormat::Enum _srcFormat)
{
UnpackFn unpack = s_packUnpack[_srcFormat].unpack;
PackFn pack = s_packUnpack[_dstFormat].pack;
return NULL != pack
&& NULL != unpack
;
}
void imageConvert(void* _dst, uint32_t _bpp, PackFn _pack, const void* _src, UnpackFn _unpack, uint32_t _size)
{
const uint8_t* src = (uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
const uint32_t size = _size * 8 / _bpp;
for (uint32_t ii = 0; ii < size; ++ii)
{
float rgba[4];
_unpack(rgba, &src[ii*_bpp/8]);
_pack(&dst[ii*_bpp/8], rgba);
}
}
void imageConvert(void* _dst, uint32_t _dstBpp, PackFn _pack, const void* _src, uint32_t _srcBpp, UnpackFn _unpack, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, uint32_t _dstPitch)
{
const uint8_t* src = (uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
for (uint32_t zz = 0; zz < _depth; ++zz)
{
for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _dstPitch)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
float rgba[4];
_unpack(rgba, &src[xx*_srcBpp/8]);
_pack(&dst[xx*_dstBpp/8], rgba);
}
}
}
}
bool imageConvert(bx::AllocatorI* _allocator, void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, uint32_t _dstPitch)
{
UnpackFn unpack = s_packUnpack[_srcFormat].unpack;
PackFn pack = s_packUnpack[_dstFormat].pack;
if (NULL == pack
|| NULL == unpack)
{
switch (_dstFormat)
{
case TextureFormat::RGBA8:
imageDecodeToRgba8(_allocator, _dst, _src, _width, _height, _width*4, _srcFormat);
return true;
case TextureFormat::BGRA8:
imageDecodeToBgra8(_allocator, _dst, _src, _width, _height, _width*4, _srcFormat);
return true;
case TextureFormat::RGBA32F:
imageDecodeToRgba32f(_allocator, _dst, _src, _width, _height, 1, _width*16, _srcFormat);
return true;
default:
break;
}
return false;
}
const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
const uint32_t dstBpp = s_imageBlockInfo[_dstFormat].bitsPerPixel;
imageConvert(_dst, dstBpp, pack, _src, srcBpp, unpack, _width, _height, _depth, _srcPitch, _dstPitch);
return true;
}
bool imageConvert(bx::AllocatorI* _allocator, void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height, uint32_t _depth)
{
const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
if (_dstFormat == _srcFormat)
{
bx::memCopy(_dst, _src, _width*_height*_depth*(srcBpp/8) );
return true;
}
const uint32_t dstBpp = s_imageBlockInfo[_dstFormat].bitsPerPixel;
const uint32_t dstPitch = _width * dstBpp / 8;
return imageConvert(_allocator, _dst, _dstFormat, _src, _srcFormat, _width, _height, _depth, _width*srcBpp/8, dstPitch);
}
ImageContainer* imageConvert(bx::AllocatorI* _allocator, TextureFormat::Enum _dstFormat, const ImageContainer& _input, bool _convertMips)
{
ImageContainer* output = imageAlloc(_allocator
, _dstFormat
, uint16_t(_input.m_width)
, uint16_t(_input.m_height)
, uint16_t(_input.m_depth)
, _input.m_numLayers
, _input.m_cubeMap
, _convertMips && 1 < _input.m_numMips
);
const uint16_t numSides = _input.m_numLayers * (_input.m_cubeMap ? 6 : 1);
for (uint16_t side = 0; side < numSides; ++side)
{
for (uint8_t lod = 0, num = _convertMips ? _input.m_numMips : 1; lod < num; ++lod)
{
ImageMip mip;
if (imageGetRawData(_input, side, lod, _input.m_data, _input.m_size, mip) )
{
ImageMip dstMip;
imageGetRawData(*output, side, lod, output->m_data, output->m_size, dstMip);
uint8_t* dstData = const_cast<uint8_t*>(dstMip.m_data);
bool ok = imageConvert(
_allocator
, dstData
, _dstFormat
, mip.m_data
, mip.m_format
, mip.m_width
, mip.m_height
, mip.m_depth
);
BX_ASSERT(ok, "Conversion from %s to %s failed!"
, getName(_input.m_format)
, getName(output->m_format)
);
BX_UNUSED(ok);
}
}
}
return output;
}
typedef bool (*ParseFn)(ImageContainer&, bx::ReaderSeekerI*, bx::Error*);
template<uint32_t magicT, ParseFn parseFnT>
ImageContainer* imageParseT(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err)
{
bx::MemoryReader reader(_src, _size);
uint32_t magic;
bx::read(&reader, magic, bx::ErrorIgnore{});
ImageContainer imageContainer;
if (magicT != magic)
{
return NULL;
}
if (!parseFnT(imageContainer, &reader, _err) )
{
return NULL;
}
ImageContainer* output = imageAlloc(_allocator
, imageContainer.m_format
, uint16_t(imageContainer.m_width)
, uint16_t(imageContainer.m_height)
, uint16_t(imageContainer.m_depth)
, imageContainer.m_numLayers
, imageContainer.m_cubeMap
, 1 < imageContainer.m_numMips
);
const uint16_t numSides = imageContainer.m_numLayers * (imageContainer.m_cubeMap ? 6 : 1);
for (uint16_t side = 0; side < numSides; ++side)
{
for (uint8_t lod = 0, num = imageContainer.m_numMips; lod < num; ++lod)
{
ImageMip dstMip;
if (imageGetRawData(*output, side, lod, output->m_data, output->m_size, dstMip) )
{
ImageMip mip;
if (imageGetRawData(imageContainer, side, lod, _src, _size, mip) )
{
uint8_t* dstData = const_cast<uint8_t*>(dstMip.m_data);
bx::memCopy(dstData, mip.m_data, mip.m_size);
}
}
}
}
return output;
}
static uint8_t bitRangeConvert(uint32_t _in, uint32_t _from, uint32_t _to)
{
using namespace bx;
uint32_t tmp0 = uint32_sll(1, _to);
uint32_t tmp1 = uint32_sll(1, _from);
uint32_t tmp2 = uint32_dec(tmp0);
uint32_t tmp3 = uint32_dec(tmp1);
uint32_t tmp4 = uint32_mul(_in, tmp2);
uint32_t tmp5 = uint32_add(tmp3, tmp4);
uint32_t tmp6 = uint32_srl(tmp5, _from);
uint32_t tmp7 = uint32_add(tmp5, tmp6);
uint32_t result = uint32_srl(tmp7, _from);
return uint8_t(result);
}
static void decodeBlockDxt(uint8_t _dst[16*4], const uint8_t _src[8])
{
if (!BX_ENABLED(BIMG_DECODE_BC2 || BIMG_DECODE_BC3) )
{
return;
}
uint8_t colors[4*3];
uint32_t c0 = _src[0] | (_src[1] << 8);
colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
uint32_t c1 = _src[2] | (_src[3] << 8);
colors[3] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[4] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[5] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[6] = (2*colors[0] + colors[3]) / 3;
colors[7] = (2*colors[1] + colors[4]) / 3;
colors[8] = (2*colors[2] + colors[5]) / 3;
colors[ 9] = (colors[0] + 2*colors[3]) / 3;
colors[10] = (colors[1] + 2*colors[4]) / 3;
colors[11] = (colors[2] + 2*colors[5]) / 3;
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 3;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
}
}
static void decodeBlockDxt1(uint8_t _dst[16*4], const uint8_t _src[8])
{
if (!BX_ENABLED(BIMG_DECODE_BC1 || BIMG_DECODE_BC2 || BIMG_DECODE_BC3) )
{
return;
}
uint8_t colors[4*4];
uint32_t c0 = _src[0] | (_src[1] << 8);
colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
colors[3] = 255;
uint32_t c1 = _src[2] | (_src[3] << 8);
colors[4] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[5] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[6] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[7] = 255;
if (c0 > c1)
{
colors[ 8] = (2*colors[0] + colors[4]) / 3;
colors[ 9] = (2*colors[1] + colors[5]) / 3;
colors[10] = (2*colors[2] + colors[6]) / 3;
colors[11] = 255;
colors[12] = (colors[0] + 2*colors[4]) / 3;
colors[13] = (colors[1] + 2*colors[5]) / 3;
colors[14] = (colors[2] + 2*colors[6]) / 3;
colors[15] = 255;
}
else
{
colors[ 8] = (colors[0] + colors[4]) / 2;
colors[ 9] = (colors[1] + colors[5]) / 2;
colors[10] = (colors[2] + colors[6]) / 2;
colors[11] = 255;
colors[12] = 0;
colors[13] = 0;
colors[14] = 0;
colors[15] = 0;
}
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
_dst[ii+3] = colors[idx+3];
}
}
static void decodeBlockDxt23A(uint8_t _dst[16*4], const uint8_t _src[8])
{
if (!BX_ENABLED(BIMG_DECODE_BC2) )
{
return;
}
for (uint32_t ii = 0, next = 0; ii < 16*4; ii += 4, next += 4)
{
uint32_t c0 = (_src[next>>3] >> (next&7) ) & 0xf;
_dst[ii] = bitRangeConvert(c0, 4, 8);
}
}
static void decodeBlockDxt45A(uint8_t _dst[16*4], const uint8_t _src[8])
{
if (!BX_ENABLED(BIMG_DECODE_BC3 || BIMG_DECODE_BC4 || BIMG_DECODE_BC5) )
{
return;
}
uint8_t alpha[8];
alpha[0] = _src[0];
alpha[1] = _src[1];
if (alpha[0] > alpha[1])
{
alpha[2] = (6*alpha[0] + 1*alpha[1]) / 7;
alpha[3] = (5*alpha[0] + 2*alpha[1]) / 7;
alpha[4] = (4*alpha[0] + 3*alpha[1]) / 7;
alpha[5] = (3*alpha[0] + 4*alpha[1]) / 7;
alpha[6] = (2*alpha[0] + 5*alpha[1]) / 7;
alpha[7] = (1*alpha[0] + 6*alpha[1]) / 7;
}
else
{
alpha[2] = (4*alpha[0] + 1*alpha[1]) / 5;
alpha[3] = (3*alpha[0] + 2*alpha[1]) / 5;
alpha[4] = (2*alpha[0] + 3*alpha[1]) / 5;
alpha[5] = (1*alpha[0] + 4*alpha[1]) / 5;
alpha[6] = 0;
alpha[7] = 255;
}
uint32_t idx0 = _src[2];
uint32_t idx1 = _src[5];
idx0 |= uint32_t(_src[3])<<8;
idx1 |= uint32_t(_src[6])<<8;
idx0 |= uint32_t(_src[4])<<16;
idx1 |= uint32_t(_src[7])<<16;
for (uint32_t ii = 0; ii < 8*4; ii += 4)
{
_dst[ii] = alpha[idx0&7];
_dst[ii+32] = alpha[idx1&7];
idx0 >>= 3;
idx1 >>= 3;
}
}
// BC6H, BC7
//
// Reference(s):
// - https://web.archive.org/web/20181126035446/https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_texture_compression_bptc.txt
// - https://web.archive.org/web/20181126035538/https://docs.microsoft.com/en-us/windows/desktop/direct3d11/bc6h-format
//
static const uint16_t s_bptcP2[] =
{ // 3210 0000000000 1111111111 2222222222 3333333333
0xcccc, // 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
0x8888, // 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
0xeeee, // 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
0xecc8, // 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1
0xc880, // 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1
0xfeec, // 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1
0xfec8, // 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1
0xec80, // 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1
0xc800, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1
0xffec, // 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0xfe80, // 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1
0xe800, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1
0xffe8, // 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0xff00, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
0xfff0, // 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0xf000, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1
0xf710, // 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1
0x008e, // 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
0x7100, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0
0x08ce, // 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0
0x008c, // 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
0x7310, // 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0
0x3100, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0
0x8cce, // 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
0x088c, // 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0
0x3110, // 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0
0x6666, // 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0
0x366c, // 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0
0x17e8, // 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0
0x0ff0, // 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0
0x718e, // 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0
0x399c, // 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0
0xaaaa, // 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
0xf0f0, // 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1
0x5a5a, // 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0
0x33cc, // 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0
0x3c3c, // 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0
0x55aa, // 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0
0x9696, // 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1
0xa55a, // 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1
0x73ce, // 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0
0x13c8, // 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0
0x324c, // 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0
0x3bdc, // 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0
0x6996, // 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
0xc33c, // 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1
0x9966, // 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1
0x0660, // 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0
0x0272, // 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0
0x04e4, // 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0
0x4e40, // 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0
0x2720, // 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0
0xc936, // 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1
0x936c, // 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1
0x39c6, // 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0
0x639c, // 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0
0x9336, // 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1
0x9cc6, // 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1
0x817e, // 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1
0xe718, // 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1
0xccf0, // 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
0x0fcc, // 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0
0x7744, // 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
0xee22, // 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1
};
static const uint32_t s_bptcP3[] =
{ // 76543210 0000 1111 2222 3333 4444 5555 6666 7777
0xaa685050, // 0, 0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 1, 2, 2, 2, 2
0x6a5a5040, // 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1
0x5a5a4200, // 0, 0, 0, 0, 2, 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, 1
0x5450a0a8, // 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 1, 1, 1
0xa5a50000, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2
0xa0a05050, // 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 2, 2
0x5555a0a0, // 0, 0, 2, 2, 0, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
0x5a5a5050, // 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1
0xaa550000, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
0xaa555500, // 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2
0xaaaa5500, // 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2
0x90909090, // 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2
0x94949494, // 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2
0xa4a4a4a4, // 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2
0xa9a59450, // 0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2
0x2a0a4250, // 0, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0, 2, 2, 2, 0
0xa5945040, // 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 2
0x0a425054, // 0, 1, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0
0xa5a5a500, // 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2
0x55a0a0a0, // 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 1, 1, 1, 1
0xa8a85454, // 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 2, 2
0x6a6a4040, // 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 1, 2, 2, 2, 1
0xa4a45000, // 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 2, 2
0x1a1a0500, // 0, 0, 0, 0, 1, 1, 0, 0, 2, 2, 1, 0, 2, 2, 1, 0
0x0050a4a4, // 0, 1, 2, 2, 0, 1, 2, 2, 0, 0, 1, 1, 0, 0, 0, 0
0xaaa59090, // 0, 0, 1, 2, 0, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2
0x14696914, // 0, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 1, 0
0x69691400, // 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1
0xa08585a0, // 0, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 2, 2
0xaa821414, // 0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 2, 2, 2, 2
0x50a4a450, // 0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 2, 2, 0, 0, 1, 1
0x6a5a0200, // 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 1, 1, 2, 2, 2, 1
0xa9a58000, // 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 2, 2, 2
0x5090a0a8, // 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 1, 1
0xa8a09050, // 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 2, 2, 2
0x24242424, // 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0
0x00aa5500, // 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0
0x24924924, // 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0
0x24499224, // 0, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 0
0x50a50a50, // 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1
0x500aa550, // 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1
0xaaaa4444, // 0, 1, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2
0x66660000, // 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1
0xa5a0a5a0, // 0, 0, 2, 2, 1, 1, 2, 2, 0, 0, 2, 2, 1, 1, 2, 2
0x50a050a0, // 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1
0x69286928, // 0, 2, 2, 0, 1, 2, 2, 1, 0, 2, 2, 0, 1, 2, 2, 1
0x44aaaa44, // 0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 0, 1
0x66666600, // 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
0xaa444444, // 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2
0x54a854a8, // 0, 2, 2, 2, 0, 1, 1, 1, 0, 2, 2, 2, 0, 1, 1, 1
0x95809580, // 0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 2, 1, 1, 1, 2
0x96969600, // 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2
0xa85454a8, // 0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2
0x80959580, // 0, 0, 0, 2, 1, 1, 1, 2, 1, 1, 1, 2, 0, 0, 0, 2
0xaa141414, // 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 2, 2
0x96960000, // 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 1, 2
0xaaaa1414, // 0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2
0xa05050a0, // 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2
0xa0a5a5a0, // 0, 0, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 2, 2
0x96000000, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2
0x40804080, // 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1
0xa9a8a9a8, // 0, 2, 2, 2, 1, 2, 2, 2, 0, 2, 2, 2, 1, 2, 2, 2
0xaaaaaa44, // 0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0x2a4a5254, // 0, 1, 1, 1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 2, 2, 0
};
static const uint8_t s_bptcA2[] =
{
15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15,
15, 2, 8, 2, 2, 8, 8, 15,
2, 8, 2, 2, 8, 8, 2, 2,
15, 15, 6, 8, 2, 8, 15, 15,
2, 8, 2, 2, 2, 15, 15, 6,
6, 2, 6, 8, 15, 15, 2, 2,
15, 15, 15, 15, 15, 2, 2, 15,
};
static const uint8_t s_bptcA3[2][64] =
{
{
3, 3, 15, 15, 8, 3, 15, 15,
8, 8, 6, 6, 6, 5, 3, 3,
3, 3, 8, 15, 3, 3, 6, 10,
5, 8, 8, 6, 8, 5, 15, 15,
8, 15, 3, 5, 6, 10, 8, 15,
15, 3, 15, 5, 15, 15, 15, 15,
3, 15, 5, 5, 5, 8, 5, 10,
5, 10, 8, 13, 15, 12, 3, 3,
},
{
15, 8, 8, 3, 15, 15, 3, 8,
15, 15, 15, 15, 15, 15, 15, 8,
15, 8, 15, 3, 15, 8, 15, 8,
3, 15, 6, 10, 15, 15, 10, 8,
15, 3, 15, 10, 10, 8, 9, 10,
6, 15, 8, 15, 3, 6, 6, 8,
15, 3, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 3, 15, 15, 8,
},
};
static const uint8_t s_bptcFactors[3][16] =
{
{ 0, 21, 43, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 9, 18, 27, 37, 46, 55, 64, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 4, 9, 13, 17, 21, 26, 30, 34, 38, 43, 47, 51, 55, 60, 64 },
};
struct BitReader
{
BitReader(const uint8_t* _data, uint16_t _bitPos = 0)
: m_data(_data)
, m_bitPos(_bitPos)
{
}
uint16_t read(uint8_t _numBits)
{
const uint16_t pos = m_bitPos / 8;
const uint16_t shift = m_bitPos & 7;
uint32_t data = 0;
bx::memCopy(&data, &m_data[pos], bx::min(4, 16-pos) );
m_bitPos += _numBits;
return uint16_t( (data >> shift) & ( (1 << _numBits)-1) );
}
uint16_t peek(uint16_t _offset, uint8_t _numBits)
{
const uint16_t bitPos = m_bitPos + _offset;
const uint16_t shift = bitPos & 7;
uint16_t pos = bitPos / 8;
uint32_t data = 0;
bx::memCopy(&data, &m_data[pos], bx::min(4, 16-pos) );
return uint8_t( (data >> shift) & ( (1 << _numBits)-1) );
}
const uint8_t* m_data;
uint16_t m_bitPos;
};
static uint16_t bc6hUnquantize(uint16_t _value, bool _signed, uint8_t _endpointBits)
{
const uint16_t maxValue = 1<<(_endpointBits-1);
if (_signed)
{
if (_endpointBits >= 16)
{
return _value;
}
const bool sign = !!(_value & 0x8000);
_value &= 0x7fff;
uint16_t unq;
if (0 == _value)
{
unq = 0;
}
else if (_value >= maxValue-1)
{
unq = 0x7fff;
}
else
{
unq = ( (_value<<15) + 0x4000) >> (_endpointBits-1);
}
return sign ? -unq : unq;
}
if (_endpointBits >= 15)
{
return _value;
}
if (0 == _value)
{
return 0;
}
if (_value == maxValue)
{
return UINT16_MAX;
}
return ( (_value<<15) + 0x4000) >> (_endpointBits-1);
}
static uint16_t bc6hUnquantizeFinal(uint16_t _value, bool _signed)
{
if (_signed)
{
const uint16_t sign = _value & 0x8000;
_value &= 0x7fff;
return ( (_value * 31) >> 5) | sign;
}
return (_value * 31) >> 6;
}
static uint16_t signExtend(uint16_t _value, uint8_t _numBits)
{
const uint16_t mask = 1 << (_numBits - 1);
const uint16_t result = (_value ^ mask) - mask;
return result;
}
struct Bc6hModeInfo
{
uint8_t transformed;
uint8_t partitionBits;
uint8_t endpointBits;
uint8_t deltaBits[3];
};
static const Bc6hModeInfo s_bc6hModeInfo[] =
{ // +--------------------------- transformed
// | +------------------------ partition bits
// | | +--------------------- endpoint bits
// | | | +-------------- delta bits
{ 1, 5, 10, { 5, 5, 5 } }, // 00 2-bits
{ 1, 5, 7, { 6, 6, 6 } }, // 01
{ 1, 5, 11, { 5, 4, 4 } }, // 00010 5-bits
{ 0, 0, 10, { 10, 10, 10 } }, // 00011
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 1, 5, 11, { 4, 5, 4 } }, // 00110
{ 1, 0, 11, { 9, 9, 9 } }, // 00010
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 1, 5, 11, { 4, 4, 5 } }, // 00010
{ 1, 0, 12, { 8, 8, 8 } }, // 00010
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 1, 5, 9, { 5, 5, 5 } }, // 00010
{ 1, 0, 16, { 4, 4, 4 } }, // 00010
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 1, 5, 8, { 6, 5, 5 } }, // 00010
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 1, 5, 8, { 5, 6, 5 } }, // 00010
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 1, 5, 8, { 5, 5, 6 } }, // 00010
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 0, 0, { 0, 0, 0 } }, // -
{ 0, 5, 6, { 6, 6, 6 } }, // 00010
{ 0, 0, 0, { 0, 0, 0 } }, // -
};
static void decodeBlockBc6h(uint16_t _dst[16*3], const uint8_t _src[16], bool _signed)
{
if (!BX_ENABLED(BIMG_DECODE_BC6) )
{
return;
}
uint8_t src[16];
bx::memCopy(src, _src, 16);
BitReader bit(src);
uint8_t mode = uint8_t(bit.read(2));
uint16_t epR[4] = { /* rw, rx, ry, rz */ };
uint16_t epG[4] = { /* gw, gx, gy, gz */ };
uint16_t epB[4] = { /* bw, bx, by, bz */ };
if (mode & 2)
{
// 5-bit mode
mode |= bit.read(3) << 2;
if (0 == s_bc6hModeInfo[mode].endpointBits)
{
bx::memSet(_dst, 0, 16*3*2);
return;
}
switch (mode)
{
case 2:
epR[0] |= bit.read(10) << 0;
epG[0] |= bit.read(10) << 0;
epB[0] |= bit.read(10) << 0;
epR[1] |= bit.read( 5) << 0;
epR[0] |= bit.read( 1) << 10;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 4) << 0;
epG[0] |= bit.read( 1) << 10;
epB[3] |= bit.read( 1) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 4) << 0;
epB[0] |= bit.read( 1) << 10;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 2;
epR[3] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 3;
break;
case 3:
epR[0] |= bit.read(10) << 0;
epG[0] |= bit.read(10) << 0;
epB[0] |= bit.read(10) << 0;
epR[1] |= bit.read(10) << 0;
epG[1] |= bit.read(10) << 0;
epB[1] |= bit.read(10) << 0;
break;
case 6:
epR[0] |= bit.read(10) << 0;
epG[0] |= bit.read(10) << 0;
epB[0] |= bit.read(10) << 0;
epR[1] |= bit.read( 4) << 0;
epR[0] |= bit.read( 1) << 10;
epG[3] |= bit.read( 1) << 4;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 5) << 0;
epG[0] |= bit.read( 1) << 10;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 4) << 0;
epB[0] |= bit.read( 1) << 10;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 4) << 0;
epB[3] |= bit.read( 1) << 0;
epB[3] |= bit.read( 1) << 2;
epR[3] |= bit.read( 4) << 0;
epG[2] |= bit.read( 1) << 4;
epB[3] |= bit.read( 1) << 3;
break;
case 7:
epR[0] |= bit.read(10) << 0;
epG[0] |= bit.read(10) << 0;
epB[0] |= bit.read(10) << 0;
epR[1] |= bit.read( 9) << 0;
epR[0] |= bit.read( 1) << 10;
epG[1] |= bit.read( 9) << 0;
epG[0] |= bit.read( 1) << 10;
epB[1] |= bit.read( 9) << 0;
epB[0] |= bit.read( 1) << 10;
break;
case 10:
epR[0] |= bit.read(10) << 0;
epG[0] |= bit.read(10) << 0;
epB[0] |= bit.read(10) << 0;
epR[1] |= bit.read( 4) << 0;
epR[0] |= bit.read( 1) << 10;
epB[2] |= bit.read( 1) << 4;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 4) << 0;
epG[0] |= bit.read( 1) << 10;
epB[3] |= bit.read( 1) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 5) << 0;
epB[0] |= bit.read( 1) << 10;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 4) << 0;
epB[3] |= bit.read( 1) << 1;
epB[3] |= bit.read( 1) << 2;
epR[3] |= bit.read( 4) << 0;
epB[3] |= bit.read( 1) << 4;
epB[3] |= bit.read( 1) << 3;
break;
case 11:
epR[0] |= bit.read(10) << 0;
epG[0] |= bit.read(10) << 0;
epB[0] |= bit.read(10) << 0;
epR[1] |= bit.read( 8) << 0;
epR[0] |= bit.read( 1) << 11;
epR[0] |= bit.read( 1) << 10;
epG[1] |= bit.read( 8) << 0;
epG[0] |= bit.read( 1) << 11;
epG[0] |= bit.read( 1) << 10;
epB[1] |= bit.read( 8) << 0;
epB[0] |= bit.read( 1) << 11;
epB[0] |= bit.read( 1) << 10;
break;
case 14:
epR[0] |= bit.read( 9) << 0;
epB[2] |= bit.read( 1) << 4;
epG[0] |= bit.read( 9) << 0;
epG[2] |= bit.read( 1) << 4;
epB[0] |= bit.read( 9) << 0;
epB[3] |= bit.read( 1) << 4;
epR[1] |= bit.read( 5) << 0;
epG[3] |= bit.read( 1) << 4;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 2;
epR[3] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 3;
break;
case 15:
epR[0] |= bit.read(10) << 0;
epG[0] |= bit.read(10) << 0;
epB[0] |= bit.read(10) << 0;
epR[1] |= bit.read( 4) << 0;
epR[0] |= bit.read( 1) << 15;
epR[0] |= bit.read( 1) << 14;
epR[0] |= bit.read( 1) << 13;
epR[0] |= bit.read( 1) << 12;
epR[0] |= bit.read( 1) << 11;
epR[0] |= bit.read( 1) << 10;
epG[1] |= bit.read( 4) << 0;
epG[0] |= bit.read( 1) << 15;
epG[0] |= bit.read( 1) << 14;
epG[0] |= bit.read( 1) << 13;
epG[0] |= bit.read( 1) << 12;
epG[0] |= bit.read( 1) << 11;
epG[0] |= bit.read( 1) << 10;
epB[1] |= bit.read( 4) << 0;
epB[0] |= bit.read( 1) << 15;
epB[0] |= bit.read( 1) << 14;
epB[0] |= bit.read( 1) << 13;
epB[0] |= bit.read( 1) << 12;
epB[0] |= bit.read( 1) << 11;
epB[0] |= bit.read( 1) << 10;
break;
case 18:
epR[0] |= bit.read( 8) << 0;
epG[3] |= bit.read( 1) << 4;
epB[2] |= bit.read( 1) << 4;
epG[0] |= bit.read( 8) << 0;
epB[3] |= bit.read( 1) << 2;
epG[2] |= bit.read( 1) << 4;
epB[0] |= bit.read( 8) << 0;
epB[3] |= bit.read( 1) << 3;
epB[3] |= bit.read( 1) << 4;
epR[1] |= bit.read( 6) << 0;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 6) << 0;
epR[3] |= bit.read( 6) << 0;
break;
case 22:
epR[0] |= bit.read( 8) << 0;
epB[3] |= bit.read( 1) << 0;
epB[2] |= bit.read( 1) << 4;
epG[0] |= bit.read( 8) << 0;
epG[2] |= bit.read( 1) << 5;
epG[2] |= bit.read( 1) << 4;
epB[0] |= bit.read( 8) << 0;
epG[3] |= bit.read( 1) << 5;
epB[3] |= bit.read( 1) << 4;
epR[1] |= bit.read( 5) << 0;
epG[3] |= bit.read( 1) << 4;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 6) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 2;
epR[3] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 3;
break;
case 26:
epR[0] |= bit.read( 8) << 0;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 1) << 4;
epG[0] |= bit.read( 8) << 0;
epB[2] |= bit.read( 1) << 5;
epG[2] |= bit.read( 1) << 4;
epB[0] |= bit.read( 8) << 0;
epB[3] |= bit.read( 1) << 5;
epB[3] |= bit.read( 1) << 4;
epR[1] |= bit.read( 5) << 0;
epG[3] |= bit.read( 1) << 4;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 6) << 0;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 2;
epR[3] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 3;
break;
case 30:
epR[0] |= bit.read( 6) << 0;
epG[3] |= bit.read( 1) << 4;
epB[3] |= bit.read( 1) << 0;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 1) << 4;
epG[0] |= bit.read( 6) << 0;
epG[2] |= bit.read( 1) << 5;
epB[2] |= bit.read( 1) << 5;
epB[3] |= bit.read( 1) << 2;
epG[2] |= bit.read( 1) << 4;
epB[0] |= bit.read( 6) << 0;
epG[3] |= bit.read( 1) << 5;
epB[3] |= bit.read( 1) << 3;
epB[3] |= bit.read( 1) << 5;
epB[3] |= bit.read( 1) << 4;
epR[1] |= bit.read( 6) << 0;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 6) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 6) << 0;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 6) << 0;
epR[3] |= bit.read( 6) << 0;
break;
default:
break;
}
}
else
{
switch (mode)
{
case 0:
epG[2] |= bit.read( 1) << 4;
epB[2] |= bit.read( 1) << 4;
epB[3] |= bit.read( 1) << 4;
epR[0] |= bit.read(10) << 0;
epG[0] |= bit.read(10) << 0;
epB[0] |= bit.read(10) << 0;
epR[1] |= bit.read( 5) << 0;
epG[3] |= bit.read( 1) << 4;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 2;
epR[3] |= bit.read( 5) << 0;
epB[3] |= bit.read( 1) << 3;
break;
case 1:
epG[2] |= bit.read( 1) << 5;
epG[3] |= bit.read( 1) << 4;
epG[3] |= bit.read( 1) << 5;
epR[0] |= bit.read( 7) << 0;
epB[3] |= bit.read( 1) << 0;
epB[3] |= bit.read( 1) << 1;
epB[2] |= bit.read( 1) << 4;
epG[0] |= bit.read( 7) << 0;
epB[2] |= bit.read( 1) << 5;
epB[3] |= bit.read( 1) << 2;
epG[2] |= bit.read( 1) << 4;
epB[0] |= bit.read( 7) << 0;
epB[3] |= bit.read( 1) << 3;
epB[3] |= bit.read( 1) << 5;
epB[3] |= bit.read( 1) << 4;
epR[1] |= bit.read( 6) << 0;
epG[2] |= bit.read( 4) << 0;
epG[1] |= bit.read( 6) << 0;
epG[3] |= bit.read( 4) << 0;
epB[1] |= bit.read( 6) << 0;
epB[2] |= bit.read( 4) << 0;
epR[2] |= bit.read( 6) << 0;
epR[3] |= bit.read( 6) << 0;
break;
default:
break;
}
}
const Bc6hModeInfo mi = s_bc6hModeInfo[mode];
if (_signed)
{
epR[0] = signExtend(epR[0], mi.endpointBits);
epG[0] = signExtend(epG[0], mi.endpointBits);
epB[0] = signExtend(epB[0], mi.endpointBits);
}
const uint8_t numSubsets = !!mi.partitionBits + 1;
for (uint8_t ii = 1, num = numSubsets*2; ii < num; ++ii)
{
if (_signed
|| mi.transformed)
{
epR[ii] = signExtend(epR[ii], mi.deltaBits[0]);
epG[ii] = signExtend(epG[ii], mi.deltaBits[1]);
epB[ii] = signExtend(epB[ii], mi.deltaBits[2]);
}
if (mi.transformed)
{
const uint16_t mask = (1<<mi.endpointBits) - 1;
epR[ii] = (epR[ii] + epR[0]) & mask;
epG[ii] = (epG[ii] + epG[0]) & mask;
epB[ii] = (epB[ii] + epB[0]) & mask;
if (_signed)
{
epR[ii] = signExtend(epR[ii], mi.endpointBits);
epG[ii] = signExtend(epG[ii], mi.endpointBits);
epB[ii] = signExtend(epB[ii], mi.endpointBits);
}
}
}
for (uint8_t ii = 0, num = numSubsets*2; ii < num; ++ii)
{
epR[ii] = bc6hUnquantize(epR[ii], _signed, mi.endpointBits);
epG[ii] = bc6hUnquantize(epG[ii], _signed, mi.endpointBits);
epB[ii] = bc6hUnquantize(epB[ii], _signed, mi.endpointBits);
}
const uint8_t partitionSetIdx = uint8_t(mi.partitionBits ? bit.read(5) : 0);
const uint8_t indexBits = mi.partitionBits ? 3 : 4;
const uint8_t* factors = s_bptcFactors[indexBits-2];
for (uint8_t yy = 0; yy < 4; ++yy)
{
for (uint8_t xx = 0; xx < 4; ++xx)
{
const uint8_t idx = yy*4+xx;
uint8_t subsetIndex = 0;
uint8_t indexAnchor = 0;
if (0 != mi.partitionBits)
{
subsetIndex = (s_bptcP2[partitionSetIdx] >> idx) & 1;
indexAnchor = subsetIndex ? s_bptcA2[partitionSetIdx] : 0;
}
const uint8_t anchor = idx == indexAnchor;
const uint8_t num = indexBits - anchor;
const uint8_t index = (uint8_t)bit.read(num);
const uint8_t fc = factors[index];
const uint8_t fca = 64 - fc;
const uint8_t fcb = fc;
subsetIndex *= 2;
uint16_t rr = bc6hUnquantizeFinal( (epR[subsetIndex]*fca + epR[subsetIndex + 1]*fcb + 32) >> 6, _signed);
uint16_t gg = bc6hUnquantizeFinal( (epG[subsetIndex]*fca + epG[subsetIndex + 1]*fcb + 32) >> 6, _signed);
uint16_t bb = bc6hUnquantizeFinal( (epB[subsetIndex]*fca + epB[subsetIndex + 1]*fcb + 32) >> 6, _signed);
uint16_t* rgba = &_dst[idx*3];
rgba[0] = rr;
rgba[1] = gg;
rgba[2] = bb;
}
}
}
static void decodeBlockBc6h(float _dst[16*4], const uint8_t _src[16])
{
if (!BX_ENABLED(BIMG_DECODE_BC6) )
{
return;
}
uint16_t tmp[16*3];
decodeBlockBc6h(tmp, _src, true);
for (uint32_t ii = 0; ii < 16; ++ii)
{
_dst[ii*4+0] = bx::halfToFloat(tmp[ii*3+0]);
_dst[ii*4+1] = bx::halfToFloat(tmp[ii*3+1]);
_dst[ii*4+2] = bx::halfToFloat(tmp[ii*3+2]);
_dst[ii*4+3] = 1.0f;
}
}
struct Bc7ModeInfo
{
uint8_t numSubsets;
uint8_t partitionBits;
uint8_t rotationBits;
uint8_t indexSelectionBits;
uint8_t colorBits;
uint8_t alphaBits;
uint8_t endpointPBits;
uint8_t sharedPBits;
uint8_t indexBits[2];
};
static const Bc7ModeInfo s_bp7ModeInfo[] =
{ // +---------------------------- num subsets
// | +------------------------- partition bits
// | | +---------------------- rotation bits
// | | | +------------------- index selection bits
// | | | | +---------------- color bits
// | | | | | +------------- alpha bits
// | | | | | | +---------- endpoint P-bits
// | | | | | | | +------- shared P-bits
// | | | | | | | | +-- 2x index bits
{ 3, 4, 0, 0, 4, 0, 1, 0, { 3, 0 } }, // 0
{ 2, 6, 0, 0, 6, 0, 0, 1, { 3, 0 } }, // 1
{ 3, 6, 0, 0, 5, 0, 0, 0, { 2, 0 } }, // 2
{ 2, 6, 0, 0, 7, 0, 1, 0, { 2, 0 } }, // 3
{ 1, 0, 2, 1, 5, 6, 0, 0, { 2, 3 } }, // 4
{ 1, 0, 2, 0, 7, 8, 0, 0, { 2, 2 } }, // 5
{ 1, 0, 0, 0, 7, 7, 1, 0, { 4, 0 } }, // 6
{ 2, 6, 0, 0, 5, 5, 1, 0, { 2, 0 } }, // 7
};
static void decodeBlockBc7(uint8_t _dst[16*4], const uint8_t _src[16])
{
if (!BX_ENABLED(BIMG_DECODE_BC7) )
{
return;
}
BitReader bit(_src);
uint8_t mode = 0;
for (; mode < 8 && 0 == bit.read(1); ++mode)
{
}
if (mode == 8)
{
bx::memSet(_dst, 0, 16*4);
return;
}
const Bc7ModeInfo& mi = s_bp7ModeInfo[mode];
const uint8_t modePBits = 0 != mi.endpointPBits
? mi.endpointPBits
: mi.sharedPBits
;
const uint8_t partitionSetIdx = uint8_t(bit.read(mi.partitionBits) );
const uint8_t rotationMode = uint8_t(bit.read(mi.rotationBits) );
const uint8_t indexSelectionMode = uint8_t(bit.read(mi.indexSelectionBits) );
uint8_t epR[6];
uint8_t epG[6];
uint8_t epB[6];
uint8_t epA[6];
for (uint8_t ii = 0; ii < mi.numSubsets; ++ii)
{
epR[ii*2+0] = uint8_t(bit.read(mi.colorBits) << modePBits);
epR[ii*2+1] = uint8_t(bit.read(mi.colorBits) << modePBits);
}
for (uint8_t ii = 0; ii < mi.numSubsets; ++ii)
{
epG[ii*2+0] = uint8_t(bit.read(mi.colorBits) << modePBits);
epG[ii*2+1] = uint8_t(bit.read(mi.colorBits) << modePBits);
}
for (uint8_t ii = 0; ii < mi.numSubsets; ++ii)
{
epB[ii*2+0] = uint8_t(bit.read(mi.colorBits) << modePBits);
epB[ii*2+1] = uint8_t(bit.read(mi.colorBits) << modePBits);
}
if (mi.alphaBits)
{
for (uint8_t ii = 0; ii < mi.numSubsets; ++ii)
{
epA[ii*2+0] = uint8_t(bit.read(mi.alphaBits) << modePBits);
epA[ii*2+1] = uint8_t(bit.read(mi.alphaBits) << modePBits);
}
}
else
{
bx::memSet(epA, 0xff, 6);
}
if (0 != modePBits)
{
for (uint8_t ii = 0; ii < mi.numSubsets; ++ii)
{
const uint8_t pda = uint8_t( bit.read(modePBits) );
const uint8_t pdb = uint8_t(0 == mi.sharedPBits ? bit.read(modePBits) : pda);
epR[ii*2+0] |= pda;
epR[ii*2+1] |= pdb;
epG[ii*2+0] |= pda;
epG[ii*2+1] |= pdb;
epB[ii*2+0] |= pda;
epB[ii*2+1] |= pdb;
epA[ii*2+0] |= pda;
epA[ii*2+1] |= pdb;
}
}
const uint8_t colorBits = mi.colorBits + modePBits;
for (uint8_t ii = 0; ii < mi.numSubsets; ++ii)
{
epR[ii*2+0] = bitRangeConvert(epR[ii*2+0], colorBits, 8);
epR[ii*2+1] = bitRangeConvert(epR[ii*2+1], colorBits, 8);
epG[ii*2+0] = bitRangeConvert(epG[ii*2+0], colorBits, 8);
epG[ii*2+1] = bitRangeConvert(epG[ii*2+1], colorBits, 8);
epB[ii*2+0] = bitRangeConvert(epB[ii*2+0], colorBits, 8);
epB[ii*2+1] = bitRangeConvert(epB[ii*2+1], colorBits, 8);
}
if (mi.alphaBits)
{
const uint8_t alphaBits = mi.alphaBits + modePBits;
for (uint8_t ii = 0; ii < mi.numSubsets; ++ii)
{
epA[ii*2+0] = bitRangeConvert(epA[ii*2+0], alphaBits, 8);
epA[ii*2+1] = bitRangeConvert(epA[ii*2+1], alphaBits, 8);
}
}
const bool hasIndexBits1 = 0 != mi.indexBits[1];
const uint8_t* factors[] =
{
s_bptcFactors[mi.indexBits[0]-2],
hasIndexBits1 ? s_bptcFactors[mi.indexBits[1]-2] : factors[0],
};
uint16_t offset[2] =
{
0,
uint16_t(mi.numSubsets*(16*mi.indexBits[0]-1) ),
};
for (uint8_t yy = 0; yy < 4; ++yy)
{
for (uint8_t xx = 0; xx < 4; ++xx)
{
const uint8_t idx = yy*4+xx;
uint8_t subsetIndex = 0;
uint8_t indexAnchor = 0;
switch (mi.numSubsets)
{
case 2:
subsetIndex = (s_bptcP2[partitionSetIdx] >> idx) & 1;
indexAnchor = 0 != subsetIndex ? s_bptcA2[partitionSetIdx] : 0;
break;
case 3:
subsetIndex = (s_bptcP3[partitionSetIdx] >> (2*idx) ) & 3;
indexAnchor = 0 != subsetIndex ? s_bptcA3[subsetIndex-1][partitionSetIdx] : 0;
break;
default:
break;
}
const uint8_t anchor = idx == indexAnchor;
const uint8_t num[2] =
{
uint8_t( mi.indexBits[0] - anchor ),
uint8_t(hasIndexBits1 ? mi.indexBits[1] - anchor : 0),
};
const uint8_t index[2] =
{
(uint8_t)bit.peek(offset[0], num[0]),
hasIndexBits1 ? (uint8_t)bit.peek(offset[1], num[1]) : index[0],
};
offset[0] += num[0];
offset[1] += num[1];
const uint8_t fc = factors[ indexSelectionMode][index[ indexSelectionMode] ];
const uint8_t fa = factors[!indexSelectionMode][index[!indexSelectionMode] ];
const uint8_t fca = 64 - fc;
const uint8_t fcb = fc;
const uint8_t faa = 64 - fa;
const uint8_t fab = fa;
subsetIndex *= 2;
uint8_t rr = uint8_t(uint16_t(epR[subsetIndex]*fca + epR[subsetIndex + 1]*fcb + 32) >> 6);
uint8_t gg = uint8_t(uint16_t(epG[subsetIndex]*fca + epG[subsetIndex + 1]*fcb + 32) >> 6);
uint8_t bb = uint8_t(uint16_t(epB[subsetIndex]*fca + epB[subsetIndex + 1]*fcb + 32) >> 6);
uint8_t aa = uint8_t(uint16_t(epA[subsetIndex]*faa + epA[subsetIndex + 1]*fab + 32) >> 6);
switch (rotationMode)
{
case 1: bx::swap(aa, rr); break;
case 2: bx::swap(aa, gg); break;
case 3: bx::swap(aa, bb); break;
default: break;
};
uint8_t* bgra = &_dst[idx*4];
bgra[0] = bb;
bgra[1] = gg;
bgra[2] = rr;
bgra[3] = aa;
}
}
}
// ATC
//
static void decodeBlockATC(uint8_t _dst[16*4], const uint8_t _src[8])
{
if (!BX_ENABLED(BIMG_DECODE_ATC) )
{
return;
}
uint8_t colors[4*4];
uint32_t c0 = _src[0] | (_src[1] << 8);
uint32_t c1 = _src[2] | (_src[3] << 8);
if (0 == (c0 & 0x8000) )
{
colors[ 0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[ 1] = bitRangeConvert( (c0>> 5)&0x1f, 5, 8);
colors[ 2] = bitRangeConvert( (c0>>10)&0x1f, 5, 8);
colors[12] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[13] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[14] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[ 4] = (2 * colors[0] + colors[12]) / 3;
colors[ 5] = (2 * colors[1] + colors[13]) / 3;
colors[ 6] = (2 * colors[2] + colors[14]) / 3;
colors[ 8] = (colors[0] + 2 * colors[12]) / 3;
colors[ 9] = (colors[1] + 2 * colors[13]) / 3;
colors[10] = (colors[2] + 2 * colors[14]) / 3;
}
else
{
colors[ 0] = 0;
colors[ 1] = 0;
colors[ 2] = 0;
colors[ 8] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
colors[ 9] = bitRangeConvert( (c0>> 5)&0x1f, 5, 8);
colors[10] = bitRangeConvert( (c0>>10)&0x1f, 5, 8);
colors[12] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
colors[13] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
colors[14] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
colors[ 4] = colors[ 8] - colors[12] / 4;
colors[ 5] = colors[ 9] - colors[13] / 4;
colors[ 6] = colors[10] - colors[14] / 4;
}
for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
{
int32_t idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4;
_dst[ii+0] = colors[idx+0];
_dst[ii+1] = colors[idx+1];
_dst[ii+2] = colors[idx+2];
_dst[ii+3] = colors[idx+3];
}
}
static const int32_t s_etc1Mod[8][4] =
{
{ 2, 8, -2, -8 },
{ 5, 17, -5, -17 },
{ 9, 29, -9, -29 },
{ 13, 42, -13, -42 },
{ 18, 60, -18, -60 },
{ 24, 80, -24, -80 },
{ 33, 106, -33, -106 },
{ 47, 183, -47, -183 },
};
static const uint8_t s_etc2Mod[] = { 3, 6, 11, 16, 23, 32, 41, 64 };
static uint8_t uint8_sat(int32_t _a)
{
using namespace bx;
const uint32_t min = uint32_imin(_a, 255);
const uint32_t result = uint32_imax(min, 0);
return (uint8_t)result;
}
static uint8_t uint8_satadd(int32_t _a, int32_t _b)
{
const int32_t add = _a + _b;
return uint8_sat(add);
}
static void decodeBlockEtc2ModeT(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t rgb[16];
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// ...rr.rrggggbbbbrrrrggggbbbbDD.Dmmmmmmmmmmmmmmmmllllllllllllllll
// ^ ^ ^ ^ ^
// +-- c0 +-- c1 | +-- msb +-- lsb
// +-- dist
rgb[ 0] = ( (_src[0] >> 1) & 0xc)
| (_src[0] & 0x3)
;
rgb[ 1] = _src[1] >> 4;
rgb[ 2] = _src[1] & 0xf;
rgb[ 8] = _src[2] >> 4;
rgb[ 9] = _src[2] & 0xf;
rgb[10] = _src[3] >> 4;
rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8);
rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8);
rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8);
rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8);
rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8);
rgb[10] = bitRangeConvert(rgb[10], 4, 8);
uint8_t dist = ((_src[3] >> 1) & 0x6) | (_src[3] & 0x1);
int32_t mod = s_etc2Mod[dist];
rgb[ 4] = uint8_satadd(rgb[ 8], mod);
rgb[ 5] = uint8_satadd(rgb[ 9], mod);
rgb[ 6] = uint8_satadd(rgb[10], mod);
rgb[12] = uint8_satadd(rgb[ 8], -mod);
rgb[13] = uint8_satadd(rgb[ 9], -mod);
rgb[14] = uint8_satadd(rgb[10], -mod);
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const uint32_t pal = (lsbi | msbi)<<2;
_dst[idx + 0] = rgb[pal+2];
_dst[idx + 1] = rgb[pal+1];
_dst[idx + 2] = rgb[pal+0];
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
static void decodeBlockEtc2ModeH(uint8_t _dst[16*4], const uint8_t _src[8])
{
uint8_t rgb[16];
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// .rrrrggg...gb.bbbrrrrggggbbbbD.Dmmmmmmmmmmmmmmmmllllllllllllllll
// ^ ^ ^ ^ ^
// +-- c0 +-- c1 | +-- msb +-- lsb
// +-- dist
rgb[ 0] = (_src[0] >> 3) & 0xf;
rgb[ 1] = ( (_src[0] << 1) & 0xe)
| ( (_src[1] >> 4) & 0x1)
;
rgb[ 2] = (_src[1] & 0x8)
| ( (_src[1] << 1) & 0x6)
| (_src[2] >> 7)
;
rgb[ 8] = (_src[2] >> 3) & 0xf;
rgb[ 9] = ( (_src[2] << 1) & 0xe)
| (_src[3] >> 7)
;
rgb[10] = (_src[3] >> 3) & 0xf;
rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8);
rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8);
rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8);
rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8);
rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8);
rgb[10] = bitRangeConvert(rgb[10], 4, 8);
uint32_t col0 = uint32_t(rgb[0]<<16) | uint32_t(rgb[1]<<8) | uint32_t(rgb[ 2]);
uint32_t col1 = uint32_t(rgb[8]<<16) | uint32_t(rgb[9]<<8) | uint32_t(rgb[10]);
uint8_t dist = (_src[3] & 0x4) | ((_src[3]<<1)&0x2) | (col0 >= col1);
int32_t mod = s_etc2Mod[dist];
rgb[ 4] = uint8_satadd(rgb[ 0], -mod);
rgb[ 5] = uint8_satadd(rgb[ 1], -mod);
rgb[ 6] = uint8_satadd(rgb[ 2], -mod);
rgb[ 0] = uint8_satadd(rgb[ 0], mod);
rgb[ 1] = uint8_satadd(rgb[ 1], mod);
rgb[ 2] = uint8_satadd(rgb[ 2], mod);
rgb[12] = uint8_satadd(rgb[ 8], -mod);
rgb[13] = uint8_satadd(rgb[ 9], -mod);
rgb[14] = uint8_satadd(rgb[10], -mod);
rgb[ 8] = uint8_satadd(rgb[ 8], mod);
rgb[ 9] = uint8_satadd(rgb[ 9], mod);
rgb[10] = uint8_satadd(rgb[10], mod);
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const uint32_t pal = (lsbi | msbi)<<2;
_dst[idx + 0] = rgb[pal+2];
_dst[idx + 1] = rgb[pal+1];
_dst[idx + 2] = rgb[pal+0];
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
static void decodeBlockEtc2ModePlanar(uint8_t _dst[16*4], const uint8_t _src[8])
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// .rrrrrrg.ggggggb...bb.bbbrrrrr.rgggggggbbbbbbrrrrrrgggggggbbbbbb
// ^ ^ ^
// +-- c0 +-- cH +-- cV
uint8_t c0[3];
uint8_t cH[3];
uint8_t cV[3];
c0[0] = (_src[0] >> 1) & 0x3f;
c0[1] = ( (_src[0] & 1) << 6)
| ( (_src[1] >> 1) & 0x3f)
;
c0[2] = ( (_src[1] & 1) << 5)
| ( (_src[2] & 0x18) )
| ( (_src[2] << 1) & 6)
| ( (_src[3] >> 7) )
;
cH[0] = ( (_src[3] >> 1) & 0x3e)
| (_src[3] & 1)
;
cH[1] = _src[4] >> 1;
cH[2] = ( (_src[4] & 1) << 5)
| (_src[5] >> 3)
;
cV[0] = ( (_src[5] & 0x7) << 3)
| (_src[6] >> 5)
;
cV[1] = ( (_src[6] & 0x1f) << 2)
| (_src[7] >> 5)
;
cV[2] = _src[7] & 0x3f;
c0[0] = bitRangeConvert(c0[0], 6, 8);
c0[1] = bitRangeConvert(c0[1], 7, 8);
c0[2] = bitRangeConvert(c0[2], 6, 8);
cH[0] = bitRangeConvert(cH[0], 6, 8);
cH[1] = bitRangeConvert(cH[1], 7, 8);
cH[2] = bitRangeConvert(cH[2], 6, 8);
cV[0] = bitRangeConvert(cV[0], 6, 8);
cV[1] = bitRangeConvert(cV[1], 7, 8);
cV[2] = bitRangeConvert(cV[2], 6, 8);
int16_t dy[3];
dy[0] = cV[0] - c0[0];
dy[1] = cV[1] - c0[1];
dy[2] = cV[2] - c0[2];
int16_t sx[3];
sx[0] = int16_t(c0[0])<<2;
sx[1] = int16_t(c0[1])<<2;
sx[2] = int16_t(c0[2])<<2;
int16_t ex[3];
ex[0] = int16_t(cH[0])<<2;
ex[1] = int16_t(cH[1])<<2;
ex[2] = int16_t(cH[2])<<2;
for (int32_t vv = 0; vv < 4; ++vv)
{
int16_t dx[3];
dx[0] = (ex[0] - sx[0])>>2;
dx[1] = (ex[1] - sx[1])>>2;
dx[2] = (ex[2] - sx[2])>>2;
for (int32_t hh = 0; hh < 4; ++hh)
{
const uint32_t idx = (vv<<4) + (hh<<2);
_dst[idx + 0] = uint8_sat( (sx[2] + dx[2]*hh)>>2);
_dst[idx + 1] = uint8_sat( (sx[1] + dx[1]*hh)>>2);
_dst[idx + 2] = uint8_sat( (sx[0] + dx[0]*hh)>>2);
_dst[idx + 3] = 255;
}
sx[0] += dy[0];
sx[1] += dy[1];
sx[2] += dy[2];
ex[0] += dy[0];
ex[1] += dy[1];
ex[2] += dy[2];
}
}
static void decodeBlockEtc12(uint8_t _dst[16*4], const uint8_t _src[8])
{
if (!BX_ENABLED(BIMG_DECODE_ETC1 || BIMG_DECODE_ETC2) )
{
return;
}
bool flipBit = 0 != (_src[3] & 0x1);
bool diffBit = 0 != (_src[3] & 0x2);
uint8_t rgb[8];
if (diffBit)
{
rgb[0] = _src[0] >> 3;
rgb[1] = _src[1] >> 3;
rgb[2] = _src[2] >> 3;
int8_t diff[3];
diff[0] = int8_t( (_src[0] & 0x7)<<5)>>5;
diff[1] = int8_t( (_src[1] & 0x7)<<5)>>5;
diff[2] = int8_t( (_src[2] & 0x7)<<5)>>5;
int8_t rr = rgb[0] + diff[0];
int8_t gg = rgb[1] + diff[1];
int8_t bb = rgb[2] + diff[2];
// Etc2 3-modes
if (rr < 0 || rr > 31)
{
decodeBlockEtc2ModeT(_dst, _src);
return;
}
if (gg < 0 || gg > 31)
{
decodeBlockEtc2ModeH(_dst, _src);
return;
}
if (bb < 0 || bb > 31)
{
decodeBlockEtc2ModePlanar(_dst, _src);
return;
}
// Etc1
rgb[0] = bitRangeConvert(rgb[0], 5, 8);
rgb[1] = bitRangeConvert(rgb[1], 5, 8);
rgb[2] = bitRangeConvert(rgb[2], 5, 8);
rgb[4] = bitRangeConvert(rr, 5, 8);
rgb[5] = bitRangeConvert(gg, 5, 8);
rgb[6] = bitRangeConvert(bb, 5, 8);
}
else
{
rgb[0] = _src[0] >> 4;
rgb[1] = _src[1] >> 4;
rgb[2] = _src[2] >> 4;
rgb[4] = _src[0] & 0xf;
rgb[5] = _src[1] & 0xf;
rgb[6] = _src[2] & 0xf;
rgb[0] = bitRangeConvert(rgb[0], 4, 8);
rgb[1] = bitRangeConvert(rgb[1], 4, 8);
rgb[2] = bitRangeConvert(rgb[2], 4, 8);
rgb[4] = bitRangeConvert(rgb[4], 4, 8);
rgb[5] = bitRangeConvert(rgb[5], 4, 8);
rgb[6] = bitRangeConvert(rgb[6], 4, 8);
}
uint32_t table[2];
table[0] = (_src[3] >> 5) & 0x7;
table[1] = (_src[3] >> 2) & 0x7;
uint32_t indexMsb = (_src[4]<<8) | _src[5];
uint32_t indexLsb = (_src[6]<<8) | _src[7];
if (flipBit)
{
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t block = (ii>>1)&1;
const uint32_t color = block<<2;
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi];
_dst[idx + 0] = uint8_satadd(rgb[color+2], mod);
_dst[idx + 1] = uint8_satadd(rgb[color+1], mod);
_dst[idx + 2] = uint8_satadd(rgb[color+0], mod);
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
else
{
for (uint32_t ii = 0; ii < 16; ++ii)
{
const uint32_t block = ii>>3;
const uint32_t color = block<<2;
const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
const uint32_t lsbi = indexLsb & 1;
const uint32_t msbi = (indexMsb & 1)<<1;
const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi];
_dst[idx + 0] = uint8_satadd(rgb[color+2], mod);
_dst[idx + 1] = uint8_satadd(rgb[color+1], mod);
_dst[idx + 2] = uint8_satadd(rgb[color+0], mod);
_dst[idx + 3] = 255;
indexLsb >>= 1;
indexMsb >>= 1;
}
}
}
static const int8_t s_etc2aMod[16][8] =
{
{ -3, -6, -9, -15, 2, 5, 8, 14 },
{ -3, -7, -10, -13, 2, 6, 9, 12 },
{ -2, -5, -8, -13, 1, 4, 7, 12 },
{ -2, -4, -6, -13, 1, 3, 5, 12 },
{ -3, -6, -8, -12, 2, 5, 7, 11 },
{ -3, -7, -9, -11, 2, 6, 8, 10 },
{ -4, -7, -8, -11, 3, 6, 7, 10 },
{ -3, -5, -8, -11, 2, 4, 7, 10 },
{ -2, -6, -8, -10, 1, 5, 7, 9 },
{ -2, -5, -8, -10, 1, 4, 7, 9 },
{ -2, -4, -8, -10, 1, 3, 7, 9 },
{ -2, -5, -7, -10, 1, 4, 6, 9 },
{ -3, -4, -7, -10, 2, 3, 6, 9 },
{ -1, -2, -3, -10, 0, 1, 2, 9 },
{ -4, -6, -8, -9, 3, 5, 7, 8 },
{ -3, -5, -7, -9, 2, 4, 6, 8 }
};
void decodeBlockEtc2Alpha(uint8_t _dst[16 * 4], const uint8_t _src[8])
{
if (!BX_ENABLED(BIMG_DECODE_ETC2))
{
return;
}
const int32_t bc = _src[0];
const int8_t *modTable = s_etc2aMod[_src[1] & 0x0f];
const int32_t mult = (_src[1] & 0xf0) >> 4;
const uint64_t indices = ((uint64_t)_src[2] << 40)
| ((uint64_t)_src[3] << 32)
| ((uint64_t)_src[4] << 24)
| ((uint64_t)_src[5] << 16)
| ((uint64_t)_src[6] << 8)
| _src[7];
for (int ii = 0; ii < 16; ii++) {
const uint32_t idx = (ii & 0xc) | ((ii & 0x3) << 4);
const int32_t mod = modTable[(indices >> (45 - ii * 3)) & 0x7];
_dst[idx + 3] = uint8_satadd(bc, mod*mult);
}
}
static const uint8_t s_pvrtcFactors[16][4] =
{
{ 4, 4, 4, 4 },
{ 2, 6, 2, 6 },
{ 8, 0, 8, 0 },
{ 6, 2, 6, 2 },
{ 2, 2, 6, 6 },
{ 1, 3, 3, 9 },
{ 4, 0, 12, 0 },
{ 3, 1, 9, 3 },
{ 8, 8, 0, 0 },
{ 4, 12, 0, 0 },
{ 16, 0, 0, 0 },
{ 12, 4, 0, 0 },
{ 6, 6, 2, 2 },
{ 3, 9, 1, 3 },
{ 12, 0, 4, 0 },
{ 9, 3, 3, 1 },
};
static const uint8_t s_pvrtcWeights[8][4] =
{
{ 8, 0, 8, 0 },
{ 5, 3, 5, 3 },
{ 3, 5, 3, 5 },
{ 0, 8, 0, 8 },
{ 8, 0, 8, 0 },
{ 4, 4, 4, 4 },
{ 4, 4, 4, 4 },
{ 0, 8, 0, 8 },
};
uint32_t morton2d(uint32_t _x, uint32_t _y)
{
using namespace bx;
const uint32_t tmpx = uint32_part1by1(_x);
const uint32_t xbits = uint32_sll(tmpx, 1);
const uint32_t ybits = uint32_part1by1(_y);
const uint32_t result = uint32_or(xbits, ybits);
return result;
}
uint32_t getColor(const uint8_t _src[8])
{
return 0
| _src[7]<<24
| _src[6]<<16
| _src[5]<<8
| _src[4]
;
}
static void decodeBlockPtc14RgbAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor)
{
if (0 != (_block & (1<<15) ) )
{
*_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor;
}
}
static void decodeBlockPtc14RgbAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor)
{
if (0 != (_block & (1<<31) ) )
{
*_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor;
}
}
static void decodeBlockPtc14(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height)
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp
// ^ ^^ ^^ ^
// +-- modulation data |+- B color |+- A color |
// +-- B opaque +-- A opaque |
// alpha punchthrough --+
const uint8_t* bc = &_src[morton2d(_x, _y) * 8];
uint32_t mod = 0
| bc[3]<<24
| bc[2]<<16
| bc[1]<<8
| bc[0]
;
const bool punchthrough = !!(bc[7] & 1);
const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough];
const uint8_t* factorTable = s_pvrtcFactors[0];
for (int yy = 0; yy < 4; ++yy)
{
const uint32_t yOffset = (yy < 2) ? -1 : 0;
const uint32_t y0 = (_y + yOffset) % _height;
const uint32_t y1 = (y0 + 1) % _height;
for (int xx = 0; xx < 4; ++xx)
{
const uint32_t xOffset = (xx < 2) ? -1 : 0;
const uint32_t x0 = (_x + xOffset) % _width;
const uint32_t x1 = (x0 + 1) % _width;
const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]);
const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]);
const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]);
const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]);
const uint8_t f0 = factorTable[0];
const uint8_t f1 = factorTable[1];
const uint8_t f2 = factorTable[2];
const uint8_t f3 = factorTable[3];
uint32_t ar = 0, ag = 0, ab = 0;
decodeBlockPtc14RgbAddA(bc0, &ar, &ag, &ab, f0);
decodeBlockPtc14RgbAddA(bc1, &ar, &ag, &ab, f1);
decodeBlockPtc14RgbAddA(bc2, &ar, &ag, &ab, f2);
decodeBlockPtc14RgbAddA(bc3, &ar, &ag, &ab, f3);
uint32_t br = 0, bg = 0, bb = 0;
decodeBlockPtc14RgbAddB(bc0, &br, &bg, &bb, f0);
decodeBlockPtc14RgbAddB(bc1, &br, &bg, &bb, f1);
decodeBlockPtc14RgbAddB(bc2, &br, &bg, &bb, f2);
decodeBlockPtc14RgbAddB(bc3, &br, &bg, &bb, f3);
const uint8_t* weight = &weightTable[(mod & 3)*4];
const uint8_t wa = weight[0];
const uint8_t wb = weight[1];
_dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7);
_dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7);
_dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7);
_dst[(yy*4 + xx)*4+3] = 255;
mod >>= 2;
factorTable += 4;
}
}
}
static void decodeBlockPtc14ARgbaAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor)
{
if (0 != (_block & (1<<15) ) )
{
*_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor;
*_a += 255 * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor;
*_a += bitRangeConvert( (_block >> 12) & 0x7, 3, 8) * _factor;
}
}
static void decodeBlockPtc14ARgbaAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor)
{
if (0 != (_block & (1<<31) ) )
{
*_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor;
*_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor;
*_a += 255 * _factor;
}
else
{
*_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor;
*_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor;
*_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor;
*_a += bitRangeConvert( (_block >> 28) & 0x7, 3, 8) * _factor;
}
}
static void decodeBlockPtc14A(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height)
{
// 0 1 2 3 4 5 6 7
// 7654321076543210765432107654321076543210765432107654321076543210
// mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp
// ^ ^^ ^^ ^
// +-- modulation data |+- B color |+- A color |
// +-- B opaque +-- A opaque |
// alpha punchthrough --+
const uint8_t* bc = &_src[morton2d(_x, _y) * 8];
uint32_t mod = 0
| bc[3]<<24
| bc[2]<<16
| bc[1]<<8
| bc[0]
;
const bool punchthrough = !!(bc[7] & 1);
const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough];
const uint8_t* factorTable = s_pvrtcFactors[0];
for (int yy = 0; yy < 4; ++yy)
{
const uint32_t yOffset = (yy < 2) ? -1 : 0;
const uint32_t y0 = (_y + yOffset) % _height;
const uint32_t y1 = (y0 + 1) % _height;
for (int xx = 0; xx < 4; ++xx)
{
const uint32_t xOffset = (xx < 2) ? -1 : 0;
const uint32_t x0 = (_x + xOffset) % _width;
const uint32_t x1 = (x0 + 1) % _width;
const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]);
const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]);
const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]);
const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]);
const uint8_t f0 = factorTable[0];
const uint8_t f1 = factorTable[1];
const uint8_t f2 = factorTable[2];
const uint8_t f3 = factorTable[3];
uint32_t ar = 0, ag = 0, ab = 0, aa = 0;
decodeBlockPtc14ARgbaAddA(bc0, &ar, &ag, &ab, &aa, f0);
decodeBlockPtc14ARgbaAddA(bc1, &ar, &ag, &ab, &aa, f1);
decodeBlockPtc14ARgbaAddA(bc2, &ar, &ag, &ab, &aa, f2);
decodeBlockPtc14ARgbaAddA(bc3, &ar, &ag, &ab, &aa, f3);
uint32_t br = 0, bg = 0, bb = 0, ba = 0;
decodeBlockPtc14ARgbaAddB(bc0, &br, &bg, &bb, &ba, f0);
decodeBlockPtc14ARgbaAddB(bc1, &br, &bg, &bb, &ba, f1);
decodeBlockPtc14ARgbaAddB(bc2, &br, &bg, &bb, &ba, f2);
decodeBlockPtc14ARgbaAddB(bc3, &br, &bg, &bb, &ba, f3);
const uint8_t* weight = &weightTable[(mod & 3)*4];
const uint8_t wa = weight[0];
const uint8_t wb = weight[1];
const uint8_t wc = weight[2];
const uint8_t wd = weight[3];
_dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7);
_dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7);
_dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7);
_dst[(yy*4 + xx)*4+3] = uint8_t( (aa * wc + ba * wd) >> 7);
mod >>= 2;
factorTable += 4;
}
}
}
ImageContainer* imageAlloc(bx::AllocatorI* _allocator, TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth, uint16_t _numLayers, bool _cubeMap, bool _hasMips, const void* _data)
{
const ImageBlockInfo& blockInfo = getBlockInfo(_format);
const uint16_t blockWidth = blockInfo.blockWidth;
const uint16_t blockHeight = blockInfo.blockHeight;
const uint16_t minBlockX = blockInfo.minBlockX;
const uint16_t minBlockY = blockInfo.minBlockY;
_width = bx::max<uint16_t>(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth);
_height = bx::max<uint16_t>(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
_depth = bx::max<uint16_t>(1, _depth);
_numLayers = bx::max<uint16_t>(1, _numLayers);
const uint8_t numMips = _hasMips ? imageGetNumMips(_format, _width, _height, _depth) : 1;
uint32_t size = imageGetSize(NULL, _width, _height, _depth, _cubeMap, _hasMips, _numLayers, _format);
ImageContainer* imageContainer = (ImageContainer*)BX_ALIGNED_ALLOC(_allocator, size + bx::alignUp(sizeof(ImageContainer), 16), 16);
imageContainer->m_allocator = _allocator;
imageContainer->m_data = bx::alignPtr(imageContainer + 1, 0, 16);
imageContainer->m_format = _format;
imageContainer->m_orientation = Orientation::R0;
imageContainer->m_size = size;
imageContainer->m_offset = 0;
imageContainer->m_width = _width;
imageContainer->m_height = _height;
imageContainer->m_depth = _depth;
imageContainer->m_numLayers = _numLayers;
imageContainer->m_numMips = numMips;
imageContainer->m_hasAlpha = false;
imageContainer->m_cubeMap = _cubeMap;
imageContainer->m_ktx = false;
imageContainer->m_pvr3 = false;
imageContainer->m_ktxLE = false;
imageContainer->m_srgb = false;
if (NULL != _data)
{
bx::memCopy(imageContainer->m_data, _data, imageContainer->m_size);
}
return imageContainer;
}
void imageFree(ImageContainer* _imageContainer)
{
BX_ALIGNED_FREE(_imageContainer->m_allocator, _imageContainer, 16);
}
// DDS
#define DDS_MAGIC BX_MAKEFOURCC('D', 'D', 'S', ' ')
#define DDS_HEADER_SIZE 124
#define DDS_DXT1 BX_MAKEFOURCC('D', 'X', 'T', '1')
#define DDS_DXT2 BX_MAKEFOURCC('D', 'X', 'T', '2')
#define DDS_DXT3 BX_MAKEFOURCC('D', 'X', 'T', '3')
#define DDS_DXT4 BX_MAKEFOURCC('D', 'X', 'T', '4')
#define DDS_DXT5 BX_MAKEFOURCC('D', 'X', 'T', '5')
#define DDS_ATI1 BX_MAKEFOURCC('A', 'T', 'I', '1')
#define DDS_BC4U BX_MAKEFOURCC('B', 'C', '4', 'U')
#define DDS_ATI2 BX_MAKEFOURCC('A', 'T', 'I', '2')
#define DDS_BC5U BX_MAKEFOURCC('B', 'C', '5', 'U')
#define DDS_DX10 BX_MAKEFOURCC('D', 'X', '1', '0')
#define DDS_ETC1 BX_MAKEFOURCC('E', 'T', 'C', '1')
#define DDS_ETC2 BX_MAKEFOURCC('E', 'T', 'C', '2')
#define DDS_ET2A BX_MAKEFOURCC('E', 'T', '2', 'A')
#define DDS_PTC2 BX_MAKEFOURCC('P', 'T', 'C', '2')
#define DDS_PTC4 BX_MAKEFOURCC('P', 'T', 'C', '4')
#define DDS_ATC BX_MAKEFOURCC('A', 'T', 'C', ' ')
#define DDS_ATCE BX_MAKEFOURCC('A', 'T', 'C', 'E')
#define DDS_ATCI BX_MAKEFOURCC('A', 'T', 'C', 'I')
#define DDS_ASTC4x4 BX_MAKEFOURCC('A', 'S', '4', '4')
#define DDS_ASTC5x4 BX_MAKEFOURCC('A', 'S', '5', '4')
#define DDS_ASTC5x5 BX_MAKEFOURCC('A', 'S', '5', '5')
#define DDS_ASTC6x5 BX_MAKEFOURCC('A', 'S', '6', '5')
#define DDS_ASTC6x6 BX_MAKEFOURCC('A', 'S', '6', '6')
#define DDS_ASTC8x5 BX_MAKEFOURCC('A', 'S', '8', '5')
#define DDS_ASTC8x6 BX_MAKEFOURCC('A', 'S', '8', '6')
#define DDS_ASTC8x8 BX_MAKEFOURCC('A', 'S', '8', '8')
#define DDS_ASTC10x5 BX_MAKEFOURCC('A', 'S', ':', '5')
#define DDS_ASTC10x6 BX_MAKEFOURCC('A', 'S', ':', '6')
#define DDS_ASTC10x8 BX_MAKEFOURCC('A', 'S', ':', '8')
#define DDS_ASTC10x10 BX_MAKEFOURCC('A', 'S', ':', ':')
#define DDS_ASTC12x10 BX_MAKEFOURCC('A', 'S', '<', ':')
#define DDS_ASTC12x12 BX_MAKEFOURCC('A', 'S', '<', '<')
#define DDS_R8G8B8 20
#define DDS_A8R8G8B8 21
#define DDS_R5G6B5 23
#define DDS_A1R5G5B5 25
#define DDS_A4R4G4B4 26
#define DDS_A2B10G10R10 31
#define DDS_G16R16 34
#define DDS_A2R10G10B10 35
#define DDS_A16B16G16R16 36
#define DDS_A8L8 51
#define DDS_R16F 111
#define DDS_G16R16F 112
#define DDS_A16B16G16R16F 113
#define DDS_R32F 114
#define DDS_G32R32F 115
#define DDS_A32B32G32R32F 116
#define DDS_FORMAT_R32G32B32A32_FLOAT 2
#define DDS_FORMAT_R32G32B32A32_UINT 3
#define DDS_FORMAT_R16G16B16A16_FLOAT 10
#define DDS_FORMAT_R16G16B16A16_UNORM 11
#define DDS_FORMAT_R16G16B16A16_UINT 12
#define DDS_FORMAT_R32G32_FLOAT 16
#define DDS_FORMAT_R32G32_UINT 17
#define DDS_FORMAT_R10G10B10A2_UNORM 24
#define DDS_FORMAT_R11G11B10_FLOAT 26
#define DDS_FORMAT_R8G8B8A8_UNORM 28
#define DDS_FORMAT_R8G8B8A8_UNORM_SRGB 29
#define DDS_FORMAT_R16G16_FLOAT 34
#define DDS_FORMAT_R16G16_UNORM 35
#define DDS_FORMAT_R32_FLOAT 41
#define DDS_FORMAT_R32_UINT 42
#define DDS_FORMAT_R8G8_UNORM 49
#define DDS_FORMAT_R16_FLOAT 54
#define DDS_FORMAT_R16_UNORM 56
#define DDS_FORMAT_R8_UNORM 61
#define DDS_FORMAT_R1_UNORM 66
#define DDS_FORMAT_BC1_UNORM 71
#define DDS_FORMAT_BC1_UNORM_SRGB 72
#define DDS_FORMAT_BC2_UNORM 74
#define DDS_FORMAT_BC2_UNORM_SRGB 75
#define DDS_FORMAT_BC3_UNORM 77
#define DDS_FORMAT_BC3_UNORM_SRGB 78
#define DDS_FORMAT_BC4_UNORM 80
#define DDS_FORMAT_BC5_UNORM 83
#define DDS_FORMAT_B5G6R5_UNORM 85
#define DDS_FORMAT_B5G5R5A1_UNORM 86
#define DDS_FORMAT_B8G8R8A8_UNORM 87
#define DDS_FORMAT_B8G8R8A8_UNORM_SRGB 91
#define DDS_FORMAT_BC6H_SF16 96
#define DDS_FORMAT_BC7_UNORM 98
#define DDS_FORMAT_BC7_UNORM_SRGB 99
#define DDS_FORMAT_B4G4R4A4_UNORM 115
#define DDS_DX10_DIMENSION_TEXTURE2D 3
#define DDS_DX10_DIMENSION_TEXTURE3D 4
#define DDS_DX10_MISC_TEXTURECUBE 4
#define DDSD_CAPS 0x00000001
#define DDSD_HEIGHT 0x00000002
#define DDSD_WIDTH 0x00000004
#define DDSD_PITCH 0x00000008
#define DDSD_PIXELFORMAT 0x00001000
#define DDSD_MIPMAPCOUNT 0x00020000
#define DDSD_LINEARSIZE 0x00080000
#define DDSD_DEPTH 0x00800000
#define DDPF_ALPHAPIXELS 0x00000001
#define DDPF_ALPHA 0x00000002
#define DDPF_FOURCC 0x00000004
#define DDPF_INDEXED 0x00000020
#define DDPF_RGB 0x00000040
#define DDPF_YUV 0x00000200
#define DDPF_LUMINANCE 0x00020000
#define DDPF_BUMPDUDV 0x00080000
#define DDSCAPS_COMPLEX 0x00000008
#define DDSCAPS_TEXTURE 0x00001000
#define DDSCAPS_MIPMAP 0x00400000
#define DDSCAPS2_VOLUME 0x00200000
#define DDSCAPS2_CUBEMAP 0x00000200
#define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400
#define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800
#define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000
#define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000
#define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000
#define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000
#define DSCAPS2_CUBEMAP_ALLSIDES (0 \
| DDSCAPS2_CUBEMAP_POSITIVEX \
| DDSCAPS2_CUBEMAP_NEGATIVEX \
| DDSCAPS2_CUBEMAP_POSITIVEY \
| DDSCAPS2_CUBEMAP_NEGATIVEY \
| DDSCAPS2_CUBEMAP_POSITIVEZ \
| DDSCAPS2_CUBEMAP_NEGATIVEZ \
)
struct TranslateDdsFormat
{
uint32_t m_format;
TextureFormat::Enum m_textureFormat;
bool m_srgb;
};
static const TranslateDdsFormat s_translateDdsFourccFormat[] =
{
{ DDS_DXT1, TextureFormat::BC1, false },
{ DDS_DXT2, TextureFormat::BC2, false },
{ DDS_DXT3, TextureFormat::BC2, false },
{ DDS_DXT4, TextureFormat::BC3, false },
{ DDS_DXT5, TextureFormat::BC3, false },
{ DDS_ATI1, TextureFormat::BC4, false },
{ DDS_BC4U, TextureFormat::BC4, false },
{ DDS_ATI2, TextureFormat::BC5, false },
{ DDS_BC5U, TextureFormat::BC5, false },
{ DDS_ETC1, TextureFormat::ETC1, false },
{ DDS_ETC2, TextureFormat::ETC2, false },
{ DDS_ET2A, TextureFormat::ETC2A, false },
{ DDS_PTC2, TextureFormat::PTC12A, false },
{ DDS_PTC4, TextureFormat::PTC14A, false },
{ DDS_ATC , TextureFormat::ATC, false },
{ DDS_ATCE, TextureFormat::ATCE, false },
{ DDS_ATCI, TextureFormat::ATCI, false },
{ DDS_ASTC4x4, TextureFormat::ASTC4x4, false },
{ DDS_ASTC5x4, TextureFormat::ASTC5x4, false },
{ DDS_ASTC5x5, TextureFormat::ASTC5x5, false },
{ DDS_ASTC6x5, TextureFormat::ASTC6x5, false },
{ DDS_ASTC6x6, TextureFormat::ASTC6x6, false },
{ DDS_ASTC8x5, TextureFormat::ASTC8x5, false },
{ DDS_ASTC8x6, TextureFormat::ASTC8x6, false },
{ DDS_ASTC8x8, TextureFormat::ASTC8x8, false },
{ DDS_ASTC10x5, TextureFormat::ASTC10x5, false },
{ DDS_ASTC10x6, TextureFormat::ASTC10x6, false },
{ DDS_ASTC10x8, TextureFormat::ASTC10x8, false },
{ DDS_ASTC10x10, TextureFormat::ASTC10x10,false },
{ DDS_ASTC12x10, TextureFormat::ASTC12x10,false },
{ DDS_ASTC12x12, TextureFormat::ASTC12x12,false },
{ DDS_A16B16G16R16, TextureFormat::RGBA16, false },
{ DDS_A16B16G16R16F, TextureFormat::RGBA16F, false },
{ DDPF_RGB|DDPF_ALPHAPIXELS, TextureFormat::BGRA8, false },
{ DDPF_INDEXED, TextureFormat::R8, false },
{ DDPF_LUMINANCE, TextureFormat::R8, false },
{ DDPF_ALPHA, TextureFormat::R8, false },
{ DDS_R16F, TextureFormat::R16F, false },
{ DDS_R32F, TextureFormat::R32F, false },
{ DDS_A8L8, TextureFormat::RG8, false },
{ DDS_G16R16, TextureFormat::RG16, false },
{ DDS_G16R16F, TextureFormat::RG16F, false },
{ DDS_G32R32F, TextureFormat::RG32F, false },
{ DDS_R8G8B8, TextureFormat::RGB8, false },
{ DDS_A8R8G8B8, TextureFormat::BGRA8, false },
{ DDS_A16B16G16R16, TextureFormat::RGBA16, false },
{ DDS_A16B16G16R16F, TextureFormat::RGBA16F, false },
{ DDS_A32B32G32R32F, TextureFormat::RGBA32F, false },
{ DDS_R5G6B5, TextureFormat::B5G6R5, false },
{ DDS_R5G6B5, TextureFormat::R5G6B5, false },
{ DDS_A4R4G4B4, TextureFormat::BGRA4, false },
{ DDS_A4R4G4B4, TextureFormat::RGBA4, false },
{ DDS_A1R5G5B5, TextureFormat::BGR5A1, false },
{ DDS_A1R5G5B5, TextureFormat::RGB5A1, false },
{ DDS_A2B10G10R10, TextureFormat::RGB10A2, false },
};
static const TranslateDdsFormat s_translateDxgiFormat[] =
{
{ DDS_FORMAT_BC1_UNORM, TextureFormat::BC1, false },
{ DDS_FORMAT_BC1_UNORM_SRGB, TextureFormat::BC1, true },
{ DDS_FORMAT_BC2_UNORM, TextureFormat::BC2, false },
{ DDS_FORMAT_BC2_UNORM_SRGB, TextureFormat::BC2, true },
{ DDS_FORMAT_BC3_UNORM, TextureFormat::BC3, false },
{ DDS_FORMAT_BC3_UNORM_SRGB, TextureFormat::BC3, true },
{ DDS_FORMAT_BC4_UNORM, TextureFormat::BC4, false },
{ DDS_FORMAT_BC5_UNORM, TextureFormat::BC5, false },
{ DDS_FORMAT_BC6H_SF16, TextureFormat::BC6H, false },
{ DDS_FORMAT_BC7_UNORM, TextureFormat::BC7, false },
{ DDS_FORMAT_BC7_UNORM_SRGB, TextureFormat::BC7, true },
{ DDS_FORMAT_R1_UNORM, TextureFormat::R1, false },
{ DDS_FORMAT_R8_UNORM, TextureFormat::R8, false },
{ DDS_FORMAT_R16_UNORM, TextureFormat::R16, false },
{ DDS_FORMAT_R16_FLOAT, TextureFormat::R16F, false },
{ DDS_FORMAT_R32_UINT, TextureFormat::R32U, false },
{ DDS_FORMAT_R32_FLOAT, TextureFormat::R32F, false },
{ DDS_FORMAT_R8G8_UNORM, TextureFormat::RG8, false },
{ DDS_FORMAT_R16G16_UNORM, TextureFormat::RG16, false },
{ DDS_FORMAT_R16G16_FLOAT, TextureFormat::RG16F, false },
{ DDS_FORMAT_R32G32_UINT, TextureFormat::RG32U, false },
{ DDS_FORMAT_R32G32_FLOAT, TextureFormat::RG32F, false },
{ DDS_FORMAT_B8G8R8A8_UNORM, TextureFormat::BGRA8, false },
{ DDS_FORMAT_B8G8R8A8_UNORM_SRGB, TextureFormat::BGRA8, true },
{ DDS_FORMAT_R8G8B8A8_UNORM, TextureFormat::RGBA8, false },
{ DDS_FORMAT_R8G8B8A8_UNORM_SRGB, TextureFormat::RGBA8, true },
{ DDS_FORMAT_R16G16B16A16_UNORM, TextureFormat::RGBA16, false },
{ DDS_FORMAT_R16G16B16A16_FLOAT, TextureFormat::RGBA16F, false },
{ DDS_FORMAT_R32G32B32A32_UINT, TextureFormat::RGBA32U, false },
{ DDS_FORMAT_R32G32B32A32_FLOAT, TextureFormat::RGBA32F, false },
{ DDS_FORMAT_B5G6R5_UNORM, TextureFormat::B5G6R5, false },
{ DDS_FORMAT_B5G6R5_UNORM, TextureFormat::R5G6B5, false },
{ DDS_FORMAT_B4G4R4A4_UNORM, TextureFormat::BGRA4, false },
{ DDS_FORMAT_B4G4R4A4_UNORM, TextureFormat::RGBA4, false },
{ DDS_FORMAT_B5G5R5A1_UNORM, TextureFormat::BGR5A1, false },
{ DDS_FORMAT_B5G5R5A1_UNORM, TextureFormat::RGB5A1, false },
{ DDS_FORMAT_R10G10B10A2_UNORM, TextureFormat::RGB10A2, false },
{ DDS_FORMAT_R11G11B10_FLOAT, TextureFormat::RG11B10F, false },
};
struct TranslateDdsPixelFormat
{
uint32_t m_bitCount;
uint32_t m_flags;
uint32_t m_bitmask[4];
TextureFormat::Enum m_textureFormat;
};
static const TranslateDdsPixelFormat s_translateDdsPixelFormat[] =
{
{ 8, DDPF_LUMINANCE, { 0x000000ff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R8 },
{ 16, DDPF_BUMPDUDV, { 0x000000ff, 0x0000ff00, 0x00000000, 0x00000000 }, TextureFormat::RG8S },
{ 16, DDPF_RGB, { 0x0000ffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R16U },
{ 16, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x0000000f, 0x000000f0, 0x00000f00, 0x0000f000 }, TextureFormat::BGRA4 },
{ 16, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00000f00, 0x000000f0, 0x0000000f, 0x0000f000 }, TextureFormat::RGBA4 },
{ 16, DDPF_RGB, { 0x0000001f, 0x000007e0, 0x0000f800, 0x00000000 }, TextureFormat::B5G6R5 },
{ 16, DDPF_RGB, { 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000 }, TextureFormat::R5G6B5 },
{ 16, DDPF_RGB, { 0x0000001f, 0x000003e0, 0x00007c00, 0x00008000 }, TextureFormat::BGR5A1 },
{ 16, DDPF_RGB, { 0x00007c00, 0x000003e0, 0x0000001f, 0x00008000 }, TextureFormat::RGB5A1 },
{ 24, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::RGB8 },
{ 24, DDPF_RGB, { 0x000000ff, 0x0000ff00, 0x00ff0000, 0x00000000 }, TextureFormat::RGB8 },
{ 32, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 },
{ 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 }, TextureFormat::RGBA8 },
{ 32, DDPF_BUMPDUDV, { 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 }, TextureFormat::RGBA8S },
{ 32, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 },
{ 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 }, // D3DFMT_A8R8G8B8
{ 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 }, // D3DFMT_X8R8G8B8
{ 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x000003ff, 0x000ffc00, 0x3ff00000, 0xc0000000 }, TextureFormat::RGB10A2 },
{ 32, DDPF_RGB, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16 },
{ 32, DDPF_BUMPDUDV, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16S },
{ 32, DDPF_RGB, { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R32U },
};
bool imageParseDds(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
int32_t total = 0;
uint32_t headerSize;
total += bx::read(_reader, headerSize, _err);
if (!_err->isOk()
|| headerSize < DDS_HEADER_SIZE)
{
BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Invalid header size.");
return false;
}
uint32_t flags;
total += bx::read(_reader, flags, _err);
if (!_err->isOk() )
{
return false;
}
if ( (flags & (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) != (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) )
{
BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Invalid flags.");
return false;
}
uint32_t height;
total += bx::read(_reader, height, _err);
uint32_t width;
total += bx::read(_reader, width, _err);
uint32_t pitch;
total += bx::read(_reader, pitch, _err);
uint32_t depth;
total += bx::read(_reader, depth, _err);
uint32_t mips;
total += bx::read(_reader, mips, _err);
bx::skip(_reader, 44); // reserved
total += 44;
uint32_t pixelFormatSize;
total += bx::read(_reader, pixelFormatSize, _err);
uint32_t pixelFlags;
total += bx::read(_reader, pixelFlags, _err);
uint32_t fourcc;
total += bx::read(_reader, fourcc, _err);
uint32_t bitCount;
total += bx::read(_reader, bitCount, _err);
uint32_t bitmask[4];
total += bx::read(_reader, bitmask, sizeof(bitmask), _err);
uint32_t caps[4];
total += bx::read(_reader, caps, _err);
bx::skip(_reader, 4);
total += 4; // reserved
if (!_err->isOk() )
{
return false;
}
uint32_t dxgiFormat = 0;
uint32_t arraySize = 1;
if (DDPF_FOURCC == (pixelFlags & DDPF_FOURCC)
&& DDS_DX10 == fourcc)
{
total += bx::read(_reader, dxgiFormat, _err);
uint32_t dims;
total += bx::read(_reader, dims, _err);
uint32_t miscFlags;
total += bx::read(_reader, miscFlags, _err);
total += bx::read(_reader, arraySize, _err);
uint32_t miscFlags2;
total += bx::read(_reader, miscFlags2, _err);
}
BX_UNUSED(total);
if (!_err->isOk() )
{
return false;
}
if ( (caps[0] & DDSCAPS_TEXTURE) == 0)
{
BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Unsupported caps.");
return false;
}
bool cubeMap = 0 != (caps[1] & DDSCAPS2_CUBEMAP);
if (cubeMap)
{
if ( (caps[1] & DSCAPS2_CUBEMAP_ALLSIDES) != DSCAPS2_CUBEMAP_ALLSIDES)
{
// partial cube map is not supported.
BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Incomplete cubemap.");
return false;
}
}
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = pixelFlags & DDPF_ALPHAPIXELS;
bool srgb = false;
if (dxgiFormat == 0)
{
if (DDPF_FOURCC == (pixelFlags & DDPF_FOURCC) )
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFourccFormat); ++ii)
{
if (s_translateDdsFourccFormat[ii].m_format == fourcc)
{
format = s_translateDdsFourccFormat[ii].m_textureFormat;
break;
}
}
}
else
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii)
{
const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ii];
if (pf.m_bitCount == bitCount
&& pf.m_flags == pixelFlags
&& pf.m_bitmask[0] == bitmask[0]
&& pf.m_bitmask[1] == bitmask[1]
&& pf.m_bitmask[2] == bitmask[2]
&& pf.m_bitmask[3] == bitmask[3])
{
format = pf.m_textureFormat;
break;
}
}
}
}
else
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii)
{
if (s_translateDxgiFormat[ii].m_format == dxgiFormat)
{
format = s_translateDxgiFormat[ii].m_textureFormat;
srgb = s_translateDxgiFormat[ii].m_srgb;
break;
}
}
}
if (TextureFormat::Unknown == format)
{
BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Unknown texture format.");
return false;
}
_imageContainer.m_allocator = NULL;
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)bx::seek(_reader);
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = format;
_imageContainer.m_orientation = Orientation::R0;
_imageContainer.m_numLayers = uint16_t(arraySize);
_imageContainer.m_numMips = uint8_t( (caps[0] & DDSCAPS_MIPMAP) ? mips : 1);
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = cubeMap;
_imageContainer.m_ktx = false;
_imageContainer.m_ktxLE = false;
_imageContainer.m_pvr3 = false;
_imageContainer.m_srgb = srgb;
return true;
}
ImageContainer* imageParseDds(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err)
{
return imageParseT<DDS_MAGIC, imageParseDds>(_allocator, _src, _size, _err);
}
// KTX
#define KTX_MAGIC BX_MAKEFOURCC(0xAB, 'K', 'T', 'X')
#define KTX_HEADER_SIZE 64
#define KTX_ETC1_RGB8_OES 0x8D64
#define KTX_COMPRESSED_R11_EAC 0x9270
#define KTX_COMPRESSED_SIGNED_R11_EAC 0x9271
#define KTX_COMPRESSED_RG11_EAC 0x9272
#define KTX_COMPRESSED_SIGNED_RG11_EAC 0x9273
#define KTX_COMPRESSED_RGB8_ETC2 0x9274
#define KTX_COMPRESSED_SRGB8_ETC2 0x9275
#define KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276
#define KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277
#define KTX_COMPRESSED_RGBA8_ETC2_EAC 0x9278
#define KTX_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279
#define KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG 0x9137
#define KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG 0x9138
#define KTX_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
#define KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT 0x8C4D
#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT 0x8C4E
#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT 0x8C4F
#define KTX_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
#define KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72
#define KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB 0x8E8C
#define KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB 0x8E8D
#define KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB 0x8E8E
#define KTX_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB 0x8E8F
#define KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54
#define KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55
#define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56
#define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57
#define KTX_ATC_RGB_AMD 0x8C92
#define KTX_ATC_RGBA_EXPLICIT_ALPHA_AMD 0x8C93
#define KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD 0x87EE
#define KTX_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93B0
#define KTX_COMPRESSED_RGBA_ASTC_5x4_KHR 0x93B1
#define KTX_COMPRESSED_RGBA_ASTC_5x5_KHR 0x93B2
#define KTX_COMPRESSED_RGBA_ASTC_6x5_KHR 0x93B3
#define KTX_COMPRESSED_RGBA_ASTC_6x6_KHR 0x93B4
#define KTX_COMPRESSED_RGBA_ASTC_8x5_KHR 0x93B5
#define KTX_COMPRESSED_RGBA_ASTC_8x6_KHR 0x93B6
#define KTX_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93B7
#define KTX_COMPRESSED_RGBA_ASTC_10x5_KHR 0x93B8
#define KTX_COMPRESSED_RGBA_ASTC_10x6_KHR 0x93B9
#define KTX_COMPRESSED_RGBA_ASTC_10x8_KHR 0x93BA
#define KTX_COMPRESSED_RGBA_ASTC_10x10_KHR 0x93BB
#define KTX_COMPRESSED_RGBA_ASTC_12x10_KHR 0x93BC
#define KTX_COMPRESSED_RGBA_ASTC_12x12_KHR 0x93BD
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR 0x93D0
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR 0x93D1
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR 0x93D2
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR 0x93D3
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR 0x93D4
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR 0x93D5
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR 0x93D6
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR 0x93D7
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR 0x93D8
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR 0x93D9
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR 0x93DA
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR 0x93DB
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR 0x93DC
#define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR 0x93DD
#define KTX_A8 0x803C
#define KTX_R8 0x8229
#define KTX_R16 0x822A
#define KTX_RG8 0x822B
#define KTX_RG16 0x822C
#define KTX_R16F 0x822D
#define KTX_R32F 0x822E
#define KTX_RG16F 0x822F
#define KTX_RG32F 0x8230
#define KTX_RGBA8 0x8058
#define KTX_RGBA16 0x805B
#define KTX_RGBA16F 0x881A
#define KTX_R32UI 0x8236
#define KTX_RG32UI 0x823C
#define KTX_RGBA32UI 0x8D70
#define KTX_RGBA32F 0x8814
#define KTX_RGB565 0x8D62
#define KTX_RGBA4 0x8056
#define KTX_RGB5_A1 0x8057
#define KTX_RGB10_A2 0x8059
#define KTX_R8I 0x8231
#define KTX_R8UI 0x8232
#define KTX_R16I 0x8233
#define KTX_R16UI 0x8234
#define KTX_R32I 0x8235
#define KTX_R32UI 0x8236
#define KTX_RG8I 0x8237
#define KTX_RG8UI 0x8238
#define KTX_RG16I 0x8239
#define KTX_RG16UI 0x823A
#define KTX_RG32I 0x823B
#define KTX_RG32UI 0x823C
#define KTX_R8_SNORM 0x8F94
#define KTX_RG8_SNORM 0x8F95
#define KTX_RGB8_SNORM 0x8F96
#define KTX_RGBA8_SNORM 0x8F97
#define KTX_R16_SNORM 0x8F98
#define KTX_RG16_SNORM 0x8F99
#define KTX_RGB16_SNORM 0x8F9A
#define KTX_RGBA16_SNORM 0x8F9B
#define KTX_SRGB8 0x8C41
#define KTX_SRGB8_ALPHA8 0x8C43
#define KTX_RGBA32UI 0x8D70
#define KTX_RGB32UI 0x8D71
#define KTX_RGBA16UI 0x8D76
#define KTX_RGB16UI 0x8D77
#define KTX_RGBA8UI 0x8D7C
#define KTX_RGB8UI 0x8D7D
#define KTX_RGBA32I 0x8D82
#define KTX_RGB32I 0x8D83
#define KTX_RGBA16I 0x8D88
#define KTX_RGB16I 0x8D89
#define KTX_RGBA8I 0x8D8E
#define KTX_RGB8 0x8051
#define KTX_RGB8I 0x8D8F
#define KTX_RGB9_E5 0x8C3D
#define KTX_R11F_G11F_B10F 0x8C3A
#define KTX_ZERO 0
#define KTX_RED 0x1903
#define KTX_ALPHA 0x1906
#define KTX_RGB 0x1907
#define KTX_RGBA 0x1908
#define KTX_BGRA 0x80E1
#define KTX_RG 0x8227
#define KTX_BYTE 0x1400
#define KTX_UNSIGNED_BYTE 0x1401
#define KTX_SHORT 0x1402
#define KTX_UNSIGNED_SHORT 0x1403
#define KTX_INT 0x1404
#define KTX_UNSIGNED_INT 0x1405
#define KTX_FLOAT 0x1406
#define KTX_HALF_FLOAT 0x140B
#define KTX_UNSIGNED_INT_5_9_9_9_REV 0x8C3E
#define KTX_UNSIGNED_SHORT_5_6_5 0x8363
#define KTX_UNSIGNED_SHORT_4_4_4_4 0x8033
#define KTX_UNSIGNED_SHORT_5_5_5_1 0x8034
#define KTX_UNSIGNED_INT_2_10_10_10_REV 0x8368
#define KTX_UNSIGNED_INT_10F_11F_11F_REV 0x8C3B
struct KtxFormatInfo
{
uint32_t m_internalFmt;
uint32_t m_internalFmtSrgb;
uint32_t m_fmt;
uint32_t m_type;
};
static const KtxFormatInfo s_translateKtxFormat[] =
{
{ KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_ZERO, }, // BC1
{ KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_ZERO, }, // BC2
{ KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_ZERO, }, // BC3
{ KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, }, // BC4
{ KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, }, // BC5
{ KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, }, // BC6H
{ KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, }, // BC7
{ KTX_ETC1_RGB8_OES, KTX_ZERO, KTX_ETC1_RGB8_OES, KTX_ZERO, }, // ETC1
{ KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, }, // ETC2
{ KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_COMPRESSED_SRGB8_ETC2, KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_ZERO, }, // ETC2A
{ KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_ZERO, }, // ETC2A1
{ KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12
{ KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14
{ KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12A
{ KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14A
{ KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, }, // PTC22
{ KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, }, // PTC24
{ KTX_ATC_RGB_AMD, KTX_ZERO, KTX_ATC_RGB_AMD, KTX_ZERO, }, // ATC
{ KTX_ATC_RGBA_EXPLICIT_ALPHA_AMD, KTX_ZERO, KTX_ATC_RGBA_EXPLICIT_ALPHA_AMD, KTX_ZERO, }, // ATCE
{ KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD, KTX_ZERO, KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD, KTX_ZERO, }, // ATCI
{ KTX_COMPRESSED_RGBA_ASTC_4x4_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR, KTX_COMPRESSED_RGBA_ASTC_4x4_KHR, KTX_ZERO, }, // ASTC4x4
{ KTX_COMPRESSED_RGBA_ASTC_5x4_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR, KTX_COMPRESSED_RGBA_ASTC_5x4_KHR, KTX_ZERO, }, // ASTC5x4
{ KTX_COMPRESSED_RGBA_ASTC_5x5_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR, KTX_COMPRESSED_RGBA_ASTC_5x5_KHR, KTX_ZERO, }, // ASTC5x5
{ KTX_COMPRESSED_RGBA_ASTC_6x5_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR, KTX_COMPRESSED_RGBA_ASTC_6x5_KHR, KTX_ZERO, }, // ASTC6x5
{ KTX_COMPRESSED_RGBA_ASTC_6x6_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR, KTX_COMPRESSED_RGBA_ASTC_6x6_KHR, KTX_ZERO, }, // ASTC6x6
{ KTX_COMPRESSED_RGBA_ASTC_8x5_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR, KTX_COMPRESSED_RGBA_ASTC_8x5_KHR, KTX_ZERO, }, // ASTC8x5
{ KTX_COMPRESSED_RGBA_ASTC_8x6_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR, KTX_COMPRESSED_RGBA_ASTC_8x6_KHR, KTX_ZERO, }, // ASTC8x6
{ KTX_COMPRESSED_RGBA_ASTC_8x8_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR, KTX_COMPRESSED_RGBA_ASTC_8x8_KHR, KTX_ZERO, }, // ASTC8x8
{ KTX_COMPRESSED_RGBA_ASTC_10x5_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR, KTX_COMPRESSED_RGBA_ASTC_10x5_KHR, KTX_ZERO, }, // ASTC10x5
{ KTX_COMPRESSED_RGBA_ASTC_10x6_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR, KTX_COMPRESSED_RGBA_ASTC_10x6_KHR, KTX_ZERO, }, // ASTC10x6
{ KTX_COMPRESSED_RGBA_ASTC_10x8_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR, KTX_COMPRESSED_RGBA_ASTC_10x8_KHR, KTX_ZERO, }, // ASTC10x8
{ KTX_COMPRESSED_RGBA_ASTC_10x10_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR, KTX_COMPRESSED_RGBA_ASTC_10x10_KHR, KTX_ZERO, }, // ASTC10x10
{ KTX_COMPRESSED_RGBA_ASTC_12x10_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR, KTX_COMPRESSED_RGBA_ASTC_12x10_KHR, KTX_ZERO, }, // ASTC12x10
{ KTX_COMPRESSED_RGBA_ASTC_12x12_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR, KTX_COMPRESSED_RGBA_ASTC_12x12_KHR, KTX_ZERO, }, // ASTC12x12
{ KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // Unknown
{ KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // R1
{ KTX_ALPHA, KTX_ZERO, KTX_ALPHA, KTX_UNSIGNED_BYTE, }, // A8
{ KTX_R8, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8
{ KTX_R8I, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S
{ KTX_R8UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8S
{ KTX_R8_SNORM, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S
{ KTX_R16, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16
{ KTX_R16I, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16I
{ KTX_R16UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16U
{ KTX_R16F, KTX_ZERO, KTX_RED, KTX_HALF_FLOAT, }, // R16F
{ KTX_R16_SNORM, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16S
{ KTX_R32I, KTX_ZERO, KTX_RED, KTX_INT, }, // R32I
{ KTX_R32UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_INT, }, // R32U
{ KTX_R32F, KTX_ZERO, KTX_RED, KTX_FLOAT, }, // R32F
{ KTX_RG8, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8
{ KTX_RG8I, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8I
{ KTX_RG8UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8U
{ KTX_RG8_SNORM, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8S
{ KTX_RG16, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16
{ KTX_RG16I, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16
{ KTX_RG16UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16
{ KTX_RG16F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG16F
{ KTX_RG16_SNORM, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16S
{ KTX_RG32I, KTX_ZERO, KTX_RG, KTX_INT, }, // RG32I
{ KTX_RG32UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_INT, }, // RG32U
{ KTX_RG32F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG32F
{ KTX_RGB8, KTX_SRGB8, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8
{ KTX_RGB8I, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8I
{ KTX_RGB8UI, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8U
{ KTX_RGB8_SNORM, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8S
{ KTX_RGB9_E5, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_5_9_9_9_REV, }, // RGB9E5F
{ KTX_BGRA, KTX_SRGB8_ALPHA8, KTX_BGRA, KTX_UNSIGNED_BYTE, }, // BGRA8
{ KTX_RGBA8, KTX_SRGB8_ALPHA8, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8
{ KTX_RGBA8I, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8I
{ KTX_RGBA8UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8U
{ KTX_RGBA8_SNORM, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8S
{ KTX_RGBA16, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16
{ KTX_RGBA16I, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16I
{ KTX_RGBA16UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16U
{ KTX_RGBA16F, KTX_ZERO, KTX_RGBA, KTX_HALF_FLOAT, }, // RGBA16F
{ KTX_RGBA16_SNORM, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16S
{ KTX_RGBA32I, KTX_ZERO, KTX_RGBA, KTX_INT, }, // RGBA32I
{ KTX_RGBA32UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT, }, // RGBA32U
{ KTX_RGBA32F, KTX_ZERO, KTX_RGBA, KTX_FLOAT, }, // RGBA32F
{ KTX_RGB565, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_SHORT_5_6_5, }, // B5G6R5
{ KTX_RGB565, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_SHORT_5_6_5, }, // R5G6B5
{ KTX_RGBA4, KTX_ZERO, KTX_BGRA, KTX_UNSIGNED_SHORT_4_4_4_4, }, // BGRA4
{ KTX_RGBA4, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_4_4_4_4, }, // RGBA4
{ KTX_RGB5_A1, KTX_ZERO, KTX_BGRA, KTX_UNSIGNED_SHORT_5_5_5_1, }, // BGR5A1
{ KTX_RGB5_A1, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_5_5_5_1, }, // RGB5A1
{ KTX_RGB10_A2, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT_2_10_10_10_REV, }, // RGB10A2
{ KTX_R11F_G11F_B10F, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_10F_11F_11F_REV, }, // RG11B10F
};
BX_STATIC_ASSERT(TextureFormat::UnknownDepth == BX_COUNTOF(s_translateKtxFormat) );
struct KtxFormatInfo2
{
uint32_t m_internalFmt;
TextureFormat::Enum m_format;
};
static const KtxFormatInfo2 s_translateKtxFormat2[] =
{
{ KTX_A8, TextureFormat::A8 },
{ KTX_RED, TextureFormat::R8 },
{ KTX_RGB, TextureFormat::RGB8 },
{ KTX_RGBA, TextureFormat::RGBA8 },
{ KTX_COMPRESSED_RGB_S3TC_DXT1_EXT, TextureFormat::BC1 },
};
bool imageParseKtx(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
uint8_t identifier[8];
bx::read(_reader, identifier, _err);
if (identifier[1] != '1'
&& identifier[2] != '1')
{
BX_ERROR_SET(_err, BIMG_ERROR, "KTX: Unrecognized version.");
return false;
}
uint32_t endianness;
bx::read(_reader, endianness, _err);
bool fromLittleEndian = 0x04030201 == endianness;
uint32_t glType;
bx::readHE(_reader, glType, fromLittleEndian, _err);
uint32_t glTypeSize;
bx::readHE(_reader, glTypeSize, fromLittleEndian, _err);
uint32_t glFormat;
bx::readHE(_reader, glFormat, fromLittleEndian, _err);
uint32_t glInternalFormat;
bx::readHE(_reader, glInternalFormat, fromLittleEndian, _err);
uint32_t glBaseInternalFormat;
bx::readHE(_reader, glBaseInternalFormat, fromLittleEndian, _err);
uint32_t width;
bx::readHE(_reader, width, fromLittleEndian, _err);
uint32_t height;
bx::readHE(_reader, height, fromLittleEndian, _err);
uint32_t depth;
bx::readHE(_reader, depth, fromLittleEndian, _err);
uint32_t numberOfArrayElements;
bx::readHE(_reader, numberOfArrayElements, fromLittleEndian, _err);
uint32_t numFaces;
bx::readHE(_reader, numFaces, fromLittleEndian, _err);
uint32_t numMips;
bx::readHE(_reader, numMips, fromLittleEndian, _err);
uint32_t metaDataSize;
bx::readHE(_reader, metaDataSize, fromLittleEndian, _err);
if (!_err->isOk() )
{
return false;
}
// skip meta garbage...
int64_t offset = bx::skip(_reader, metaDataSize);
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = false;
bool srgb = false;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat); ++ii)
{
if (s_translateKtxFormat[ii].m_internalFmt == glInternalFormat)
{
format = TextureFormat::Enum(ii);
break;
}
if (s_translateKtxFormat[ii].m_internalFmtSrgb == glInternalFormat
&& s_translateKtxFormat[ii].m_fmt == glBaseInternalFormat)
{
format = TextureFormat::Enum(ii);
srgb = true;
break;
}
}
if (TextureFormat::Unknown == format)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat2); ++ii)
{
if (s_translateKtxFormat2[ii].m_internalFmt == glInternalFormat)
{
format = s_translateKtxFormat2[ii].m_format;
break;
}
}
}
_imageContainer.m_allocator = NULL;
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)offset;
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = format;
_imageContainer.m_orientation = Orientation::R0;
_imageContainer.m_numLayers = uint16_t(bx::max<uint32_t>(numberOfArrayElements, 1) );
_imageContainer.m_numMips = uint8_t(bx::max<uint32_t>(numMips, 1) );
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = numFaces > 1;
_imageContainer.m_ktx = true;
_imageContainer.m_ktxLE = fromLittleEndian;
_imageContainer.m_pvr3 = false;
_imageContainer.m_srgb = srgb;
if (TextureFormat::Unknown == format)
{
BX_ERROR_SET(_err, BIMG_ERROR, "KTX: Unrecognized image format.");
return false;
}
return true;
}
ImageContainer* imageParseKtx(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err)
{
return imageParseT<KTX_MAGIC, imageParseKtx>(_allocator, _src, _size, _err);
}
// PVR3
#define PVR3_MAKE8CC(_a, _b, _c, _d, _e, _f, _g, _h) (uint64_t(BX_MAKEFOURCC(_a, _b, _c, _d) ) | (uint64_t(BX_MAKEFOURCC(_e, _f, _g, _h) )<<32) )
#define PVR3_MAGIC BX_MAKEFOURCC('P', 'V', 'R', 3)
#define PVR3_HEADER_SIZE 52
#define PVR3_PVRTC1_2BPP_RGB 0
#define PVR3_PVRTC1_2BPP_RGBA 1
#define PVR3_PVRTC1_4BPP_RGB 2
#define PVR3_PVRTC1_4BPP_RGBA 3
#define PVR3_PVRTC2_2BPP_RGBA 4
#define PVR3_PVRTC2_4BPP_RGBA 5
#define PVR3_ETC1 6
#define PVR3_DXT1 7
#define PVR3_DXT2 8
#define PVR3_DXT3 9
#define PVR3_DXT4 10
#define PVR3_DXT5 11
#define PVR3_BC4 12
#define PVR3_BC5 13
#define PVR3_R8 PVR3_MAKE8CC('r', 0, 0, 0, 8, 0, 0, 0)
#define PVR3_R16 PVR3_MAKE8CC('r', 0, 0, 0, 16, 0, 0, 0)
#define PVR3_R32 PVR3_MAKE8CC('r', 0, 0, 0, 32, 0, 0, 0)
#define PVR3_RG8 PVR3_MAKE8CC('r', 'g', 0, 0, 8, 8, 0, 0)
#define PVR3_RG16 PVR3_MAKE8CC('r', 'g', 0, 0, 16, 16, 0, 0)
#define PVR3_RG32 PVR3_MAKE8CC('r', 'g', 0, 0, 32, 32, 0, 0)
#define PVR3_BGRA8 PVR3_MAKE8CC('b', 'g', 'r', 'a', 8, 8, 8, 8)
#define PVR3_RGBA16 PVR3_MAKE8CC('r', 'g', 'b', 'a', 16, 16, 16, 16)
#define PVR3_RGBA32 PVR3_MAKE8CC('r', 'g', 'b', 'a', 32, 32, 32, 32)
#define PVR3_BGR565 PVR3_MAKE8CC('b', 'g', 'r', 0, 5, 6, 5, 0)
#define PVR3_RGB565 PVR3_MAKE8CC('r', 'g', 'b', 0, 5, 6, 5, 0)
#define PVR3_BGRA4 PVR3_MAKE8CC('b', 'g', 'r', 'a', 4, 4, 4, 4)
#define PVR3_RGBA4 PVR3_MAKE8CC('r', 'g', 'b', 'a', 4, 4, 4, 4)
#define PVR3_BGRA51 PVR3_MAKE8CC('b', 'g', 'r', 'a', 5, 5, 5, 1)
#define PVR3_RGBA51 PVR3_MAKE8CC('r', 'g', 'b', 'a', 5, 5, 5, 1)
#define PVR3_RGB10A2 PVR3_MAKE8CC('r', 'g', 'b', 'a', 10, 10, 10, 2)
#define PVR3_CHANNEL_TYPE_ANY UINT32_MAX
#define PVR3_CHANNEL_TYPE_FLOAT UINT32_C(12)
struct TranslatePvr3Format
{
uint64_t m_format;
uint32_t m_channelTypeMask;
TextureFormat::Enum m_textureFormat;
};
static const TranslatePvr3Format s_translatePvr3Format[] =
{
{ PVR3_PVRTC1_2BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12 },
{ PVR3_PVRTC1_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12A },
{ PVR3_PVRTC1_4BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14 },
{ PVR3_PVRTC1_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14A },
{ PVR3_PVRTC2_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC22 },
{ PVR3_PVRTC2_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC24 },
{ PVR3_ETC1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::ETC1 },
{ PVR3_DXT1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC1 },
{ PVR3_DXT2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 },
{ PVR3_DXT3, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 },
{ PVR3_DXT4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 },
{ PVR3_DXT5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 },
{ PVR3_BC4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC4 },
{ PVR3_BC5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC5 },
{ PVR3_R8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R8 },
{ PVR3_R16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R16U },
{ PVR3_R16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R16F },
{ PVR3_R32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R32U },
{ PVR3_R32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R32F },
{ PVR3_RG8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG8 },
{ PVR3_RG16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 },
{ PVR3_RG16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG16F },
{ PVR3_RG32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 },
{ PVR3_RG32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG32F },
{ PVR3_BGRA8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGRA8 },
{ PVR3_RGBA16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA16 },
{ PVR3_RGBA16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA16F },
{ PVR3_RGBA32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA32U },
{ PVR3_RGBA32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA32F },
{ PVR3_RGB565, PVR3_CHANNEL_TYPE_ANY, TextureFormat::B5G6R5 },
{ PVR3_RGB565, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R5G6B5 },
{ PVR3_BGRA4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGRA4 },
{ PVR3_RGBA4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA4 },
{ PVR3_BGRA51, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGR5A1 },
{ PVR3_RGBA51, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB5A1 },
{ PVR3_RGB10A2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB10A2 },
};
bool imageParsePvr3(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
uint32_t flags;
bx::read(_reader, flags, _err);
uint64_t pixelFormat;
bx::read(_reader, pixelFormat, _err);
uint32_t colorSpace;
bx::read(_reader, colorSpace, _err); // 0 - linearRGB, 1 - sRGB
uint32_t channelType;
bx::read(_reader, channelType, _err);
uint32_t height;
bx::read(_reader, height, _err);
uint32_t width;
bx::read(_reader, width, _err);
uint32_t depth;
bx::read(_reader, depth, _err);
uint32_t numSurfaces;
bx::read(_reader, numSurfaces, _err);
uint32_t numFaces;
bx::read(_reader, numFaces, _err);
uint32_t numMips;
bx::read(_reader, numMips, _err);
uint32_t metaDataSize;
bx::read(_reader, metaDataSize, _err);
if (!_err->isOk() )
{
return false;
}
// skip meta garbage...
int64_t offset = bx::skip(_reader, metaDataSize);
TextureFormat::Enum format = TextureFormat::Unknown;
bool hasAlpha = false;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translatePvr3Format); ++ii)
{
if (s_translatePvr3Format[ii].m_format == pixelFormat
&& channelType == (s_translatePvr3Format[ii].m_channelTypeMask & channelType) )
{
format = s_translatePvr3Format[ii].m_textureFormat;
break;
}
}
_imageContainer.m_allocator = NULL;
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
_imageContainer.m_offset = (uint32_t)offset;
_imageContainer.m_width = width;
_imageContainer.m_height = height;
_imageContainer.m_depth = depth;
_imageContainer.m_format = format;
_imageContainer.m_orientation = Orientation::R0;
_imageContainer.m_numLayers = 1;
_imageContainer.m_numMips = uint8_t(bx::max<uint32_t>(numMips, 1) );
_imageContainer.m_hasAlpha = hasAlpha;
_imageContainer.m_cubeMap = numFaces > 1;
_imageContainer.m_ktx = false;
_imageContainer.m_ktxLE = false;
_imageContainer.m_pvr3 = true;
_imageContainer.m_srgb = colorSpace > 0;
return TextureFormat::Unknown != format;
}
ImageContainer* imageParsePvr3(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err)
{
return imageParseT<PVR3_MAGIC, imageParsePvr3>(_allocator, _src, _size, _err);
}
bool imageParse(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
uint32_t magic;
bx::read(_reader, magic, _err);
if (DDS_MAGIC == magic)
{
return imageParseDds(_imageContainer, _reader, _err);
}
else if (KTX_MAGIC == magic)
{
return imageParseKtx(_imageContainer, _reader, _err);
}
else if (PVR3_MAGIC == magic)
{
return imageParsePvr3(_imageContainer, _reader, _err);
}
else if (BIMG_CHUNK_MAGIC_GNF == magic)
{
return imageParseGnf(_imageContainer, _reader, _err);
}
else if (BIMG_CHUNK_MAGIC_TEX == magic)
{
TextureCreate tc;
bx::read(_reader, tc, _err);
_imageContainer.m_format = tc.m_format;
_imageContainer.m_orientation = Orientation::R0;
_imageContainer.m_offset = UINT32_MAX;
_imageContainer.m_allocator = NULL;
if (NULL == tc.m_mem)
{
_imageContainer.m_data = NULL;
_imageContainer.m_size = 0;
}
else
{
_imageContainer.m_data = tc.m_mem->data;
_imageContainer.m_size = tc.m_mem->size;
}
_imageContainer.m_width = tc.m_width;
_imageContainer.m_height = tc.m_height;
_imageContainer.m_depth = tc.m_depth;
_imageContainer.m_numLayers = tc.m_numLayers;
_imageContainer.m_numMips = tc.m_numMips;
_imageContainer.m_hasAlpha = false;
_imageContainer.m_cubeMap = tc.m_cubeMap;
_imageContainer.m_ktx = false;
_imageContainer.m_ktxLE = false;
_imageContainer.m_pvr3 = false;
_imageContainer.m_srgb = false;
return _err->isOk();
}
BX_TRACE("Unrecognized image format (magic: 0x%08x)!", magic);
BX_ERROR_SET(_err, BIMG_ERROR, "Unrecognized image format.");
return false;
}
bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
bx::MemoryReader reader(_data, _size);
return imageParse(_imageContainer, &reader, _err);
}
void imageDecodeToR8(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _dstPitch, TextureFormat::Enum _srcFormat)
{
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
const uint32_t srcPitch = _width*srcBpp/8;
for (uint32_t zz = 0; zz < _depth; ++zz, src += _height*srcPitch, dst += _height*_dstPitch)
{
if (isCompressed(_srcFormat))
{
uint32_t size = imageGetSize(NULL, uint16_t(_width), uint16_t(_height), 0, false, false, 1, TextureFormat::RGBA8);
void* temp = BX_ALLOC(_allocator, size);
imageDecodeToRgba8(_allocator, temp, _src, _width, _height, _width*4, _srcFormat);
imageConvert(_allocator, dst, TextureFormat::R8, temp, TextureFormat::RGBA8, _width, _height, 1, _width*4, _dstPitch);
BX_FREE(_allocator, temp);
}
else
{
imageConvert(_allocator, dst, TextureFormat::R8, src, _srcFormat, _width, _height, 1, srcPitch, _dstPitch);
}
}
}
void imageDecodeToBgra8(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _dstPitch, TextureFormat::Enum _srcFormat)
{
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
uint32_t width = _width/4;
uint32_t height = _height/4;
uint8_t temp[16*4];
switch (_srcFormat)
{
case TextureFormat::BC1:
if (BX_ENABLED(BIMG_DECODE_BC1) )
{
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt1(temp, src);
src += 8;
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
}
else
{
BX_WARN(false, "BC1 decoder is disabled (BIMG_DECODE_BC1).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
case TextureFormat::BC2:
if (BX_ENABLED(BIMG_DECODE_BC2) )
{
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt23A(temp+3, src);
src += 8;
decodeBlockDxt(temp, src);
src += 8;
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
}
else
{
BX_WARN(false, "BC2 decoder is disabled (BIMG_DECODE_BC2).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
case TextureFormat::BC3:
if (BX_ENABLED(BIMG_DECODE_BC3) )
{
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp+3, src);
src += 8;
decodeBlockDxt(temp, src);
src += 8;
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
}
else
{
BX_WARN(false, "BC3 decoder is disabled (BIMG_DECODE_BC3).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
case TextureFormat::BC4:
if (BX_ENABLED(BIMG_DECODE_BC4) )
{
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp, src);
src += 8;
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
}
else
{
BX_WARN(false, "BC4 decoder is disabled (BIMG_DECODE_BC4).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
case TextureFormat::BC5:
if (BX_ENABLED(BIMG_DECODE_BC5) )
{
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp+2, src);
src += 8;
decodeBlockDxt45A(temp+1, src);
src += 8;
for (uint32_t ii = 0; ii < 16; ++ii)
{
float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f;
float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f;
float nz = bx::sqrt(1.0f - nx*nx - ny*ny);
temp[ii*4+0] = uint8_t( (nz + 1.0f)*255.0f/2.0f);
temp[ii*4+3] = 0;
}
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
}
else
{
BX_WARN(false, "BC5 decoder is disabled (BIMG_DECODE_BC5).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
case TextureFormat::BC6H:
if (BX_ENABLED(BIMG_DECODE_BC6) )
{
ImageContainer* rgba32f = imageAlloc(_allocator
, TextureFormat::RGBA32F
, uint16_t(_width)
, uint16_t(_height)
, uint16_t(1)
, 1
, false
, false
);
imageDecodeToRgba32f(_allocator, rgba32f->m_data, _src, _width, _height, 1, _width*16, _srcFormat);
imageConvert(_allocator, _dst, TextureFormat::BGRA8, rgba32f->m_data, TextureFormat::RGBA32F, _width, _height, 1, _width*16, _dstPitch);
imageFree(rgba32f);
}
else
{
BX_WARN(false, "BC6 decoder is disabled (BIMG_DECODE_BC6).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
case TextureFormat::BC7:
if (BX_ENABLED(BIMG_DECODE_BC7) )
{
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockBc7(temp, src);
src += 16;
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
}
else
{
BX_WARN(false, "BC7 decoder is disabled (BIMG_DECODE_BC7).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
case TextureFormat::ETC1:
case TextureFormat::ETC2:
if (BX_ENABLED(BIMG_DECODE_ETC1 || BIMG_DECODE_ETC2) )
{
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockEtc12(temp, src);
src += 8;
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
}
else
{
BX_WARN(false, "ETC1/ETC2 decoder is disabled (BIMG_DECODE_ETC1/ETC2).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
case TextureFormat::ETC2A:
if (BX_ENABLED(BIMG_DECODE_ETC2))
{
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockEtc12(temp, src + 8);
decodeBlockEtc2Alpha(temp, src);
src += 16;
uint8_t* block = &dst[yy*_dstPitch * 4 + xx * 16];
bx::memCopy(&block[0 * _dstPitch], &temp[0], 16);
bx::memCopy(&block[1 * _dstPitch], &temp[16], 16);
bx::memCopy(&block[2 * _dstPitch], &temp[32], 16);
bx::memCopy(&block[3 * _dstPitch], &temp[48], 16);
}
}
}
else
{
BX_WARN(false, "ETC2 decoder is disabled (BIMG_DECODE_ETC2).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00));
}
break;
case TextureFormat::ETC2A1:
BX_WARN(false, "ETC2A1 decoder is not implemented.");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff0000) );
break;
case TextureFormat::PTC12:
BX_WARN(false, "PTC12 decoder is not implemented.");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff00ff) );
break;
case TextureFormat::PTC12A:
BX_WARN(false, "PTC12A decoder is not implemented.");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00) );
break;
case TextureFormat::PTC14:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockPtc14(temp, src, xx, yy, width, height);
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
break;
case TextureFormat::PTC14A:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockPtc14A(temp, src, xx, yy, width, height);
uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
break;
case TextureFormat::PTC22:
BX_WARN(false, "PTC22 decoder is not implemented.");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff00ff00), UINT32_C(0xff0000ff) );
break;
case TextureFormat::PTC24:
BX_WARN(false, "PTC24 decoder is not implemented.");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffffff) );
break;
case TextureFormat::ATC:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockATC(temp, src);
src += 8;
uint8_t* block = &dst[(yy*_dstPitch+xx*4)*4];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
break;
case TextureFormat::ATCE:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt23A(temp+3, src);
src += 8;
decodeBlockATC(temp, src);
src += 8;
uint8_t* block = &dst[(yy*_dstPitch+xx*4)*4];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
break;
case TextureFormat::ATCI:
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
decodeBlockDxt45A(temp+3, src);
src += 8;
decodeBlockATC(temp, src);
src += 8;
uint8_t* block = &dst[(yy*_dstPitch+xx*4)*4];
bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
}
}
break;
case TextureFormat::ASTC4x4:
case TextureFormat::ASTC5x4:
case TextureFormat::ASTC5x5:
case TextureFormat::ASTC6x5:
case TextureFormat::ASTC6x6:
case TextureFormat::ASTC8x5:
case TextureFormat::ASTC8x6:
case TextureFormat::ASTC8x8:
case TextureFormat::ASTC10x5:
case TextureFormat::ASTC10x6:
case TextureFormat::ASTC10x8:
case TextureFormat::ASTC10x10:
case TextureFormat::ASTC12x10:
case TextureFormat::ASTC12x12:
imageDecodeToRgba8(_allocator, _dst, _src, _width, _height, _dstPitch, _srcFormat);
imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _dst, _dstPitch);
break;
case TextureFormat::RGBA8:
{
const uint32_t srcPitch = _width * 4;
imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _src, srcPitch);
}
break;
case TextureFormat::BGRA8:
{
const uint32_t srcPitch = _width * 4;
const uint32_t size = bx::uint32_min(srcPitch, _dstPitch);
bx::memCopy(_dst, _dstPitch, _src, srcPitch, size, _height);
}
break;
default:
{
const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
const uint32_t srcPitch = _width * srcBpp / 8;
if (!imageConvert(_allocator, _dst, TextureFormat::BGRA8, _src, _srcFormat, _width, _height, 1, srcPitch, _dstPitch) )
{
// Failed to convert, just make ugly red-yellow checkerboard texture.
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xffff0000), UINT32_C(0xffffff00) );
}
}
break;
}
}
void imageDecodeToRgba8(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _dstPitch, TextureFormat::Enum _srcFormat)
{
switch (_srcFormat)
{
case TextureFormat::RGBA8:
{
const uint32_t srcPitch = _width * 4;
const uint32_t size = bx::uint32_min(srcPitch, _dstPitch);
bx::memCopy(_dst, _dstPitch, _src, srcPitch, size, _height);
}
break;
case TextureFormat::BGRA8:
{
const uint32_t srcPitch = _width * 4;
imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _src, srcPitch);
}
break;
case TextureFormat::ASTC4x4:
case TextureFormat::ASTC5x4:
case TextureFormat::ASTC5x5:
case TextureFormat::ASTC6x5:
case TextureFormat::ASTC6x6:
case TextureFormat::ASTC8x5:
case TextureFormat::ASTC8x6:
case TextureFormat::ASTC8x8:
case TextureFormat::ASTC10x5:
case TextureFormat::ASTC10x6:
case TextureFormat::ASTC10x8:
case TextureFormat::ASTC10x10:
case TextureFormat::ASTC12x10:
case TextureFormat::ASTC12x12:
if (BX_ENABLED(BIMG_DECODE_ASTC) )
{
const bimg::ImageBlockInfo& astcBlockInfo = bimg::getBlockInfo(_srcFormat);
astcenc_config config{};
astcenc_error status = astcenc_config_init(
ASTCENC_PRF_LDR
, astcBlockInfo.blockWidth
, astcBlockInfo.blockHeight
, 1
, ASTCENC_PRE_MEDIUM
, ASTCENC_FLG_DECOMPRESS_ONLY
, &config
);
if (status != ASTCENC_SUCCESS)
{
BX_TRACE("astc error in config init %s", astcenc_get_error_string(status));
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00) );
break;
}
astcenc_context* context;
status = astcenc_context_alloc(&config, 1, &context);
if (status != ASTCENC_SUCCESS)
{
BX_TRACE("astc error in context alloc %s", astcenc_get_error_string(status));
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00) );
break;
}
//Put image data into an astcenc_image
astcenc_image image{};
image.dim_x = _width;
image.dim_y = _height;
image.dim_z = 1;
image.data_type = ASTCENC_TYPE_U8;
image.data = &_dst;
const uint32_t size = imageGetSize(NULL, uint16_t(_width), uint16_t(_height), 0, false, false, 1, _srcFormat);
static const astcenc_swizzle swizzle
{ //0123/rgba swizzle corresponds to ASTC_RGBA
ASTCENC_SWZ_R,
ASTCENC_SWZ_G,
ASTCENC_SWZ_B,
ASTCENC_SWZ_A,
};
status = astcenc_decompress_image(
context
, (const uint8_t*)_src
, size
, &image
, &swizzle
, 0
);
if (status != ASTCENC_SUCCESS)
{
BX_TRACE("astc error in compress image %s", astcenc_get_error_string(status));
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00) );
astcenc_context_free(context);
break;
}
astcenc_context_free(context);
}
else
{
BX_WARN(false, "ASTC decoder is disabled (BIMG_DECODE_ASTC).");
imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
}
break;
default:
{
const uint32_t srcPitch = _width * 4;
imageDecodeToBgra8(_allocator, _dst, _src, _width, _height, _dstPitch, _srcFormat);
imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _dst, srcPitch);
}
break;
}
}
void imageRgba8ToRgba32fRef(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src)
{
const uint32_t dstWidth = _width;
const uint32_t dstHeight = _height;
if (0 == dstWidth
|| 0 == dstHeight)
{
return;
}
float* dst = (float*)_dst;
const uint8_t* src = (const uint8_t*)_src;
for (uint32_t yy = 0, ystep = _srcPitch; yy < dstHeight; ++yy, src += ystep)
{
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 4, dst += 4)
{
dst[0] = bx::toLinear(rgba[0]);
dst[1] = bx::toLinear(rgba[1]);
dst[2] = bx::toLinear(rgba[2]);
dst[3] = rgba[3];
}
}
}
void imageRgba8ToRgba32f(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src)
{
const uint32_t dstWidth = _width;
const uint32_t dstHeight = _height;
if (0 == dstWidth
|| 0 == dstHeight)
{
return;
}
float* dst = (float*)_dst;
const uint8_t* src = (const uint8_t*)_src;
using namespace bx;
const simd128_t unpack = simd_ld(1.0f/256.0f, 1.0f/256.0f/256.0f, 1.0f/65536.0f/256.0f, 1.0f/16777216.0f/256.0f);
const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000);
const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000);
const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f);
for (uint32_t yy = 0, ystep = _srcPitch; yy < dstHeight; ++yy, src += ystep)
{
const uint8_t* rgba = src;
for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 4, dst += 4)
{
const simd128_t abgr0 = simd_splat(rgba);
const simd128_t abgr0m = simd_and(abgr0, umask);
const simd128_t abgr0x = simd_xor(abgr0m, wflip);
const simd128_t abgr0f = simd_itof(abgr0x);
const simd128_t abgr0c = simd_add(abgr0f, wadd);
const simd128_t abgr0n = simd_mul(abgr0c, unpack);
simd_st(dst, abgr0n);
}
}
}
void imageDecodeToRgba32f(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _dstPitch, TextureFormat::Enum _srcFormat)
{
const uint8_t* src = (const uint8_t*)_src;
uint8_t* dst = (uint8_t*)_dst;
const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
const uint32_t srcPitch = _width*srcBpp/8;
for (uint32_t zz = 0; zz < _depth; ++zz, src += _height*srcPitch, dst += _height*_dstPitch)
{
switch (_srcFormat)
{
case TextureFormat::BC5:
{
uint32_t width = _width/4;
uint32_t height = _height/4;
const uint8_t* srcData = src;
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
uint8_t temp[16*4];
decodeBlockDxt45A(temp+2, srcData);
srcData += 8;
decodeBlockDxt45A(temp+1, srcData);
srcData += 8;
for (uint32_t ii = 0; ii < 16; ++ii)
{
float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f;
float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f;
float nz = bx::sqrt(1.0f - nx*nx - ny*ny);
const uint32_t offset = (yy*4 + ii/4)*_width*16 + (xx*4 + ii%4)*16;
float* block = (float*)&dst[offset];
block[0] = nx;
block[1] = ny;
block[2] = nz;
block[3] = 0.0f;
}
}
}
}
break;
case TextureFormat::BC6H:
{
uint32_t width = _width/4;
uint32_t height = _height/4;
const uint8_t* srcData = src;
for (uint32_t yy = 0; yy < height; ++yy)
{
for (uint32_t xx = 0; xx < width; ++xx)
{
float tmp[16*4];
decodeBlockBc6h(tmp, srcData);
srcData += 16;
uint8_t* block = (uint8_t*)&dst[yy*_dstPitch*4 + xx*64];
bx::memCopy(&block[0*_dstPitch], &tmp[ 0], 64);
bx::memCopy(&block[1*_dstPitch], &tmp[16], 64);
bx::memCopy(&block[2*_dstPitch], &tmp[32], 64);
bx::memCopy(&block[3*_dstPitch], &tmp[48], 64);
}
}
}
break;
case TextureFormat::RGBA32F:
bx::memCopy(dst, src, _dstPitch*_height);
break;
default:
if (isCompressed(_srcFormat) )
{
uint32_t size = imageGetSize(NULL, uint16_t(_width), uint16_t(_height), 0, false, false, 1, TextureFormat::RGBA8);
void* temp = BX_ALLOC(_allocator, size);
imageDecodeToRgba8(_allocator, temp, src, _width, _height, _width*4, _srcFormat);
imageRgba8ToRgba32f(dst, _width, _height, _width*4, temp);
BX_FREE(_allocator, temp);
}
else
{
imageConvert(_allocator, dst, TextureFormat::RGBA32F, src, _srcFormat, _width, _height, 1, srcPitch, _dstPitch);
}
break;
}
}
}
bool imageGetRawData(const ImageContainer& _imageContainer, uint16_t _side, uint8_t _lod, const void* _data, uint32_t _size, ImageMip& _mip)
{
uint32_t offset = _imageContainer.m_offset;
TextureFormat::Enum format = TextureFormat::Enum(_imageContainer.m_format);
bool hasAlpha = _imageContainer.m_hasAlpha;
const ImageBlockInfo& blockInfo = s_imageBlockInfo[format];
const uint8_t bpp = blockInfo.bitsPerPixel;
const uint32_t blockSize = blockInfo.blockSize;
const uint32_t blockWidth = blockInfo.blockWidth;
const uint32_t blockHeight = blockInfo.blockHeight;
const uint32_t minBlockX = blockInfo.minBlockX;
const uint32_t minBlockY = blockInfo.minBlockY;
if (UINT32_MAX == _imageContainer.m_offset)
{
if (NULL == _imageContainer.m_data)
{
return false;
}
offset = 0;
_data = _imageContainer.m_data;
_size = _imageContainer.m_size;
}
const uint8_t* data = (const uint8_t*)_data;
const uint16_t numSides = _imageContainer.m_numLayers * (_imageContainer.m_cubeMap ? 6 : 1);
if (_imageContainer.m_ktx || _imageContainer.m_pvr3)
{
uint32_t width = _imageContainer.m_width;
uint32_t height = _imageContainer.m_height;
uint32_t depth = _imageContainer.m_depth;
for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod)
{
width = bx::max<uint32_t>(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::max<uint32_t>(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::max<uint32_t>(1, depth);
const uint32_t mipSize = width/blockWidth * height/blockHeight * depth * blockSize;
if (_imageContainer.m_ktx)
{
const uint32_t size = mipSize * numSides;
uint32_t imageSize = bx::toHostEndian(*(const uint32_t*)&data[offset], _imageContainer.m_ktxLE);
BX_ASSERT(size == imageSize, "KTX: Image size mismatch %d (expected %d).", size, imageSize);
BX_UNUSED(size, imageSize);
offset += sizeof(uint32_t);
}
for (uint16_t side = 0; side < numSides; ++side)
{
BX_ASSERT(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size);
if (side == _side
&& lod == _lod)
{
_mip.m_width = width;
_mip.m_height = height;
_mip.m_depth = depth;
_mip.m_blockSize = blockSize;
_mip.m_size = mipSize;
_mip.m_data = &data[offset];
_mip.m_bpp = bpp;
_mip.m_format = format;
_mip.m_hasAlpha = hasAlpha;
return true;
}
offset += mipSize;
BX_UNUSED(_size);
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
else
{
for (uint16_t side = 0; side < numSides; ++side)
{
uint32_t width = _imageContainer.m_width;
uint32_t height = _imageContainer.m_height;
uint32_t depth = _imageContainer.m_depth;
for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod)
{
BX_ASSERT(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size);
width = bx::max<uint32_t>(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::max<uint32_t>(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::max<uint32_t>(1, depth);
uint32_t mipSize = width/blockWidth * height/blockHeight * depth * blockSize;
if (side == _side
&& lod == _lod)
{
_mip.m_width = width;
_mip.m_height = height;
_mip.m_depth = depth;
_mip.m_blockSize = blockSize;
_mip.m_size = mipSize;
_mip.m_data = &data[offset];
_mip.m_bpp = bpp;
_mip.m_format = format;
_mip.m_hasAlpha = hasAlpha;
return true;
}
offset += mipSize;
BX_UNUSED(_size);
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
}
return false;
}
int32_t imageWriteTga(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, bool _grayscale, bool _yflip, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
uint8_t type = _grayscale ? 3 : 2;
uint8_t bpp = _grayscale ? 8 : 32;
uint8_t header[18] = {};
header[ 2] = type;
header[12] = _width &0xff;
header[13] = (_width >>8)&0xff;
header[14] = _height &0xff;
header[15] = (_height>>8)&0xff;
header[16] = bpp;
header[17] = 32;
int32_t total = 0;
total += bx::write(_writer, header, sizeof(header), _err);
uint32_t dstPitch = _width*bpp/8;
if (_yflip)
{
const uint8_t* data = (const uint8_t*)_src + _srcPitch*_height - _srcPitch;
for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy)
{
total += bx::write(_writer, data, dstPitch, _err);
data -= _srcPitch;
}
}
else if (_srcPitch == dstPitch)
{
total += bx::write(_writer, _src, _height*_srcPitch, _err);
}
else
{
const uint8_t* data = (const uint8_t*)_src;
for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy)
{
total += bx::write(_writer, data, dstPitch, _err);
data += _srcPitch;
}
}
return total;
}
template<typename Ty>
class HashWriter : public bx::WriterI
{
public:
HashWriter(bx::WriterI* _writer)
: m_writer(_writer)
{
begin();
}
void begin()
{
m_hash.begin();
}
uint32_t end()
{
return m_hash.end();
}
virtual int32_t write(const void* _data, int32_t _size, bx::Error* _err) override
{
m_hash.add(_data, _size);
return m_writer->write(_data, _size, _err);
}
private:
Ty m_hash;
bx::WriterI* m_writer;
};
int32_t imageWritePng(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, TextureFormat::Enum _format, bool _yflip, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
switch (_format)
{
case TextureFormat::R8:
case TextureFormat::RGBA8:
case TextureFormat::BGRA8:
break;
default:
BX_ERROR_SET(_err, BIMG_ERROR, "PNG: Unsupported texture format.");
return 0;
}
const bool grayscale = TextureFormat::R8 == _format;
const bool bgra = TextureFormat::BGRA8 == _format;
int32_t total = 0;
total += bx::write(_writer, "\x89PNG\r\n\x1a\n", _err);
total += bx::write(_writer, bx::toBigEndian<uint32_t>(13), _err);
HashWriter<bx::HashCrc32> writerC(_writer);
total += bx::write(&writerC, "IHDR", _err);
total += bx::write(&writerC, bx::toBigEndian(_width), _err);
total += bx::write(&writerC, bx::toBigEndian(_height), _err);
total += bx::write(&writerC, "\x08\x06", _err);
total += bx::writeRep(&writerC, 0, 3, _err);
total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err);
const uint32_t bpp = grayscale ? 8 : 32;
const uint32_t stride = _width*bpp/8;
const uint16_t zlen = bx::toLittleEndian<uint16_t>(uint16_t(stride + 1) );
const uint16_t zlenC = bx::toLittleEndian<uint16_t>(~zlen);
total += bx::write(_writer, bx::toBigEndian<uint32_t>(_height*(stride+6)+6), _err);
writerC.begin();
total += bx::write(&writerC, "IDAT", _err);
total += bx::write(&writerC, "\x78\x9c", _err);
const uint8_t* data = (const uint8_t*)_src;
int32_t step = int32_t(_srcPitch);
if (_yflip)
{
data += _srcPitch*_height - _srcPitch;
step = -step;
}
HashWriter<bx::HashAdler32> writerA(&writerC);
for (uint32_t ii = 0; ii < _height && _err->isOk(); ++ii)
{
total += bx::write(&writerC, uint8_t(ii == _height-1 ? 1 : 0), _err);
total += bx::write(&writerC, zlen, _err);
total += bx::write(&writerC, zlenC, _err);
total += bx::write(&writerA, uint8_t(0), _err);
if (bgra)
{
for (uint32_t xx = 0; xx < _width; ++xx)
{
const uint8_t* texel = &data[xx*4];
const uint8_t bb = texel[0];
const uint8_t gg = texel[1];
const uint8_t rr = texel[2];
const uint8_t aa = texel[3];
total += bx::write(&writerA, rr, _err);
total += bx::write(&writerA, gg, _err);
total += bx::write(&writerA, bb, _err);
total += bx::write(&writerA, aa, _err);
}
}
else
{
total += bx::write(&writerA, data, stride, _err);
}
data += step;
}
total += bx::write(&writerC, bx::toBigEndian(writerA.end() ), _err);
total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err);
total += bx::write(&writerC, uint32_t(0), _err);
writerC.begin();
total += bx::write(&writerC, "IEND", _err);
total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err);
return total;
}
int32_t imageWriteExr(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, TextureFormat::Enum _format, bool _yflip, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
const uint32_t bpp = getBitsPerPixel(_format);
uint32_t bytesPerChannel = 0;
switch (_format)
{
case TextureFormat::RGBA16F:
bytesPerChannel = 2;
break;
default:
BX_ERROR_SET(_err, BIMG_ERROR, "EXR: Unsupported texture format.");
return 0;
}
int32_t total = 0;
total += bx::write(_writer, "v/1\x01", _err);
total += bx::writeLE(_writer, uint32_t(2), _err);
total += bx::write(_writer, "channels", _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "chlist", _err);
total += bx::write(_writer, '\0', _err);
total += bx::writeLE(_writer, uint32_t(18*4+1), _err);
const uint8_t cdata[] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 };
// Order is always ABGR order because Photoshop and GIMP ignore these fields and
// assume it's in ABGR order.
total += bx::write(_writer, 'A', _err);
total += bx::write(_writer, cdata, BX_COUNTOF(cdata), _err);
total += bx::write(_writer, 'B', _err);
total += bx::write(_writer, cdata, BX_COUNTOF(cdata), _err);
total += bx::write(_writer, 'G', _err);
total += bx::write(_writer, cdata, BX_COUNTOF(cdata), _err);
total += bx::write(_writer, 'R', _err);
total += bx::write(_writer, cdata, BX_COUNTOF(cdata), _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "compression", _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "compression", _err);
total += bx::write(_writer, '\0', _err);
total += bx::writeLE(_writer, uint32_t(1), _err);
total += bx::write(_writer, '\0', _err); // no compression
total += bx::write(_writer, "dataWindow", _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "box2i", _err);
total += bx::write(_writer, '\0', _err);
total += bx::writeLE(_writer, uint32_t(16), _err);
total += bx::writeRep(_writer, '\0', 8, _err);
total += bx::writeLE(_writer, _width-1, _err);
total += bx::writeLE(_writer, _height-1, _err);
total += bx::write(_writer, "displayWindow", _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "box2i", _err);
total += bx::write(_writer, '\0', _err);
total += bx::writeLE(_writer, uint32_t(16), _err);
total += bx::writeRep(_writer, '\0', 8, _err);
total += bx::writeLE(_writer, _width-1, _err);
total += bx::writeLE(_writer, _height-1, _err);
total += bx::write(_writer, "lineOrder", _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "lineOrder", _err);
total += bx::write(_writer, '\0', _err);
total += bx::writeLE(_writer, uint32_t(1), _err);
total += bx::write(_writer, _yflip, _err);
total += bx::write(_writer, "pixelAspectRatio", _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "float", _err);
total += bx::write(_writer, '\0', _err);
total += bx::writeLE(_writer, uint32_t(4), _err);
total += bx::writeLE(_writer, 1.0f, _err);
total += bx::write(_writer, "screenWindowCenter", _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "v2f", _err);
total += bx::write(_writer, '\0', _err);
total += bx::writeLE(_writer, uint32_t(8), _err);
total += bx::writeRep(_writer, '\0', 8, _err);
total += bx::write(_writer, "screenWindowWidth", _err);
total += bx::write(_writer, '\0', _err);
total += bx::write(_writer, "float", _err);
total += bx::write(_writer, '\0', _err);
total += bx::writeLE(_writer, uint32_t(4), _err);
total += bx::writeLE(_writer, 1.0f, _err);
total += bx::write(_writer, '\0', _err);
const uint32_t exrStride = _width*bpp/8;
uint64_t offset = 0;
for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy)
{
total += bx::writeLE(_writer, (offset), _err);
offset += exrStride + 8 /* offset */;
}
const uint8_t* data = (const uint8_t*)_src;
for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy)
{
total += bx::writeLE(_writer, yy, _err);
total += bx::writeLE(_writer, exrStride, _err);
for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx)
{
total += bx::write(_writer, &data[xx*bpp/8+3*bytesPerChannel], bytesPerChannel, _err);
}
for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx)
{
total += bx::write(_writer, &data[xx*bpp/8+2*bytesPerChannel], bytesPerChannel, _err);
}
for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx)
{
total += bx::write(_writer, &data[xx*bpp/8+1*bytesPerChannel], bytesPerChannel, _err);
}
for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx)
{
total += bx::write(_writer, &data[xx*bpp/8+0*bytesPerChannel], bytesPerChannel, _err);
}
data += _srcPitch;
}
return total;
}
int32_t imageWriteHdr(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, TextureFormat::Enum _format, bool _yflip, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
int32_t total = 0;
total += bx::write(_writer, "#?RADIANCE\n" , _err);
total += bx::write(_writer, "FORMAT=32-bit_rle_rgbe\n" , _err);
total += bx::write(_writer, '\n' , _err);
total += bx::write(_writer, _err, "%cY %d +X %d\n", _yflip ? '+' : '-', _height, _width);
UnpackFn unpack = getUnpack(_format);
const uint32_t bpp = getBitsPerPixel(_format);
const uint8_t* data = (const uint8_t*)_src;
for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy)
{
for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx)
{
float rgba[4];
unpack(rgba, &data[xx*bpp/8]);
const float maxVal = bx::max(rgba[0], rgba[1], rgba[2]);
const float exp = bx::ceil(bx::log2(maxVal) );
const float toRgb8 = 255.0f * 1.0f/bx::ldexp(1.0f, int(exp) );
uint8_t rgbe[4];
rgbe[0] = uint8_t(rgba[0] * toRgb8);
rgbe[1] = uint8_t(rgba[1] * toRgb8);
rgbe[2] = uint8_t(rgba[2] * toRgb8);
rgbe[3] = uint8_t(exp+128.0f);
total += bx::write(_writer, rgbe, 4, _err);
}
data += _srcPitch;
}
return total;
}
static int32_t imageWriteDdsHeader(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, uint32_t _numLayers, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
uint32_t ddspf = UINT32_MAX;
uint32_t dxgiFormat = UINT32_MAX;
uint32_t fourccFormat = UINT32_MAX;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii)
{
if (s_translateDdsPixelFormat[ii].m_textureFormat == _format)
{
ddspf = ii;
break;
}
}
if (UINT32_MAX == ddspf)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii)
{
if (s_translateDxgiFormat[ii].m_textureFormat == _format)
{
dxgiFormat = s_translateDxgiFormat[ii].m_format;
break;
}
}
}
if (UINT32_MAX == ddspf && UINT32_MAX == dxgiFormat)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFourccFormat); ++ii)
{
if (s_translateDdsFourccFormat[ii].m_textureFormat == _format)
{
fourccFormat = s_translateDdsFourccFormat[ii].m_format;
break;
}
}
}
if (UINT32_MAX == ddspf
&& UINT32_MAX == dxgiFormat
&& UINT32_MAX == fourccFormat)
{
BX_ERROR_SET(_err, BIMG_ERROR, "DDS: output format not supported.");
return 0;
}
const uint32_t bpp = getBitsPerPixel(_format);
uint32_t total = 0;
total += bx::write(_writer, uint32_t(DDS_MAGIC), _err);
uint32_t headerStart = total;
total += bx::write(_writer, uint32_t(DDS_HEADER_SIZE), _err);
total += bx::write(_writer, uint32_t(0
| DDSD_HEIGHT
| DDSD_WIDTH
| DDSD_PIXELFORMAT
| DDSD_CAPS
| (1 < _depth ? DDSD_DEPTH : 0)
| (1 < _numMips ? DDSD_MIPMAPCOUNT : 0)
| (isCompressed(_format) ? DDSD_LINEARSIZE : DDSD_PITCH)
)
, _err
);
const uint32_t pitchOrLinearSize = isCompressed(_format)
? _width*_height*bpp/8
: _width*bpp/8
;
total += bx::write(_writer, _height, _err);
total += bx::write(_writer, _width, _err);
total += bx::write(_writer, pitchOrLinearSize, _err);
total += bx::write(_writer, _depth, _err);
total += bx::write(_writer, uint32_t(_numMips), _err);
total += bx::writeRep(_writer, 0, 44, _err); // reserved1
if (UINT32_MAX != ddspf)
{
const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ddspf];
total += bx::write(_writer, uint32_t(8*sizeof(uint32_t) ), _err); // pixelFormatSize
total += bx::write(_writer, pf.m_flags, _err);
total += bx::write(_writer, uint32_t(0), _err);
total += bx::write(_writer, pf.m_bitCount, _err);
total += bx::write(_writer, pf.m_bitmask, _err);
}
else
{
total += bx::write(_writer, uint32_t(8*sizeof(uint32_t) ), _err); // pixelFormatSize
total += bx::write(_writer, uint32_t(DDPF_FOURCC), _err);
if (UINT32_MAX != fourccFormat)
{
total += bx::write(_writer, fourccFormat, _err);
}
else
{
total += bx::write(_writer, uint32_t(DDS_DX10), _err);
}
total += bx::write(_writer, uint32_t(0), _err); // bitCount
total += bx::writeRep(_writer, 0, 4*sizeof(uint32_t), _err); // bitmask
}
uint32_t caps[4] =
{
uint32_t(DDSCAPS_TEXTURE | (1 < _numMips ? DDSCAPS_COMPLEX|DDSCAPS_MIPMAP : 0) ),
uint32_t(_cubeMap ? DDSCAPS2_CUBEMAP|DSCAPS2_CUBEMAP_ALLSIDES : 0),
0,
0,
};
total += bx::write(_writer, caps, sizeof(caps), _err);
total += bx::writeRep(_writer, 0, 4, _err); // reserved2
BX_WARN(total-headerStart == DDS_HEADER_SIZE
, "DDS: Failed to write header size %d (expected: %d)."
, total-headerStart
, DDS_HEADER_SIZE
);
if (UINT32_MAX != dxgiFormat)
{
total += bx::write(_writer, dxgiFormat, _err);
total += bx::write(_writer, uint32_t(1 < _depth ? DDS_DX10_DIMENSION_TEXTURE3D : DDS_DX10_DIMENSION_TEXTURE2D), _err); // dims
total += bx::write(_writer, uint32_t(_cubeMap ? DDS_DX10_MISC_TEXTURECUBE : 0), _err); // miscFlags
total += bx::write(_writer, uint32_t(_numLayers), _err); // arraySize
total += bx::write(_writer, uint32_t(0), _err); // miscFlags2
BX_WARN(total-headerStart == DDS_HEADER_SIZE+20
, "DDS: Failed to write header size %d (expected: %d)."
, total-headerStart
, DDS_HEADER_SIZE+20
);
BX_UNUSED(headerStart);
}
return total;
}
int32_t imageWriteDds(bx::WriterI* _writer, ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
int32_t total = 0;
total += imageWriteDdsHeader(_writer
, TextureFormat::Enum(_imageContainer.m_format)
, _imageContainer.m_cubeMap
, _imageContainer.m_width
, _imageContainer.m_height
, _imageContainer.m_depth
, _imageContainer.m_numMips
, _imageContainer.m_numLayers
, _err
);
if (!_err->isOk() )
{
return total;
}
for (uint8_t side = 0, numSides = _imageContainer.m_numLayers * (_imageContainer.m_cubeMap ? 6 : 1); side < numSides && _err->isOk(); ++side)
{
for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num && _err->isOk(); ++lod)
{
ImageMip mip;
if (imageGetRawData(_imageContainer, side, lod, _data, _size, mip) )
{
total += bx::write(_writer, mip.m_data, mip.m_size, _err);
}
}
}
return total;
}
static int32_t imageWriteKtxHeader(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, uint32_t _numLayers, bool _srgb, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
const KtxFormatInfo& tfi = s_translateKtxFormat[_format];
uint32_t internalFmt = tfi.m_internalFmt;
if (_srgb && tfi.m_internalFmtSrgb != KTX_ZERO) {
internalFmt = tfi.m_internalFmtSrgb;
}
int32_t total = 0;
total += bx::write(_writer, "\xabKTX 11\xbb\r\n\x1a\n", 12, _err);
total += bx::write(_writer, uint32_t(0x04030201), _err);
total += bx::write(_writer, uint32_t(0), _err); // glType
total += bx::write(_writer, uint32_t(1), _err); // glTypeSize
total += bx::write(_writer, uint32_t(0), _err); // glFormat
total += bx::write(_writer, internalFmt, _err); // glInternalFormat
total += bx::write(_writer, tfi.m_fmt, _err); // glBaseInternalFormat
total += bx::write(_writer, _width, _err);
total += bx::write(_writer, _height, _err);
total += bx::write(_writer, _depth, _err);
total += bx::write(_writer, _numLayers, _err); // numberOfArrayElements
total += bx::write(_writer, _cubeMap ? uint32_t(6) : uint32_t(0), _err);
total += bx::write(_writer, uint32_t(_numMips), _err);
total += bx::write(_writer, uint32_t(0), _err); // Meta-data size.
BX_WARN(total == 64, "KTX: Failed to write header size %d (expected: %d).", total, 64);
return total;
}
int32_t imageWriteKtx(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, uint32_t _numLayers, bool _srgb, const void* _src, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
int32_t total = 0;
total += imageWriteKtxHeader(_writer, _format, _cubeMap, _width, _height, _depth, _numMips, _numLayers, _srgb, _err);
if (!_err->isOk() )
{
return total;
}
const ImageBlockInfo& blockInfo = s_imageBlockInfo[_format];
const uint32_t blockWidth = blockInfo.blockWidth;
const uint32_t blockHeight = blockInfo.blockHeight;
const uint32_t minBlockX = blockInfo.minBlockX;
const uint32_t minBlockY = blockInfo.minBlockY;
const uint8_t blockSize = blockInfo.blockSize;
const uint8_t* src = (const uint8_t*)_src;
const uint32_t numLayers = bx::max<uint32_t>(_numLayers, 1);
const uint32_t numSides = _cubeMap ? 6 : 1;
uint32_t width = _width;
uint32_t height = _height;
uint32_t depth = _depth;
for (uint8_t lod = 0; lod < _numMips && _err->isOk(); ++lod)
{
width = bx::max<uint32_t>(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
height = bx::max<uint32_t>(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
depth = bx::max<uint32_t>(1, depth);
const uint32_t mipSize = width/blockWidth * height/blockHeight * depth * blockSize;
const uint32_t size = mipSize * numLayers * numSides;
total += bx::write(_writer, size, _err);
for (uint32_t layer = 0; layer < numLayers && _err->isOk(); ++layer)
{
for (uint8_t side = 0; side < numSides && _err->isOk(); ++side)
{
total += bx::write(_writer, src, mipSize, _err);
src += mipSize;
}
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
return total;
}
int32_t imageWriteKtx(bx::WriterI* _writer, ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err)
{
BX_ERROR_SCOPE(_err);
int32_t total = 0;
total += imageWriteKtxHeader(_writer
, TextureFormat::Enum(_imageContainer.m_format)
, _imageContainer.m_cubeMap
, _imageContainer.m_width
, _imageContainer.m_height
, _imageContainer.m_depth
, _imageContainer.m_numMips
, _imageContainer.m_numLayers
, _imageContainer.m_srgb
, _err
);
if (!_err->isOk() )
{
return total;
}
const uint32_t numMips = _imageContainer.m_numMips;
const uint32_t numLayers = bx::max<uint32_t>(_imageContainer.m_numLayers, 1);
const uint32_t numSides = _imageContainer.m_cubeMap ? 6 : 1;
for (uint8_t lod = 0; lod < numMips && _err->isOk(); ++lod)
{
ImageMip mip;
imageGetRawData(_imageContainer, 0, lod, _data, _size, mip);
const uint32_t size = mip.m_size*numSides*numLayers;
total += bx::write(_writer, size, _err);
for (uint32_t layer = 0; layer < numLayers && _err->isOk(); ++layer)
{
for (uint8_t side = 0; side < numSides && _err->isOk(); ++side)
{
if (imageGetRawData(_imageContainer, uint16_t(layer*numSides + side), lod, _data, _size, mip) )
{
total += bx::write(_writer, mip.m_data, mip.m_size, _err);
}
}
}
}
return total;
}
} // namespace bimg