mame/src/emu/sound/asc.c
Aaron Giles 0e627f1a54 Convert emu_timers to objects. Move implementation and management of
timers into the scheduler. Retain TIMER devices as a separate wrapper
in timer.c/.h. Inline wrappers are currently provided for all timer
operations; a future update will bulk clean these up.

Rather than using macros which hide generation of a string-ified name
for callback functions, the new methods require passing both a function
pointer plus a name string. A new macro FUNC() can be used to output
both, and another macro MFUNC() can be used to output a stub-wrapped
class member as a callback.

Also added a time() method on the machine, so that machine->time() gives
the current emulated time. A wrapper for timer_get_time is currently
provided but will be bulk replaced in the future.

For this update, convert all classic timer_alloc, timer_set, 
timer_pulse, and timer_call_after_resynch calls into method calls on 
the scheduler. 

For new device timers, added methods to the device_t class that make 
creating and managing these much simpler. Modern devices were updated
to use these.

Here are the regexes used; some manual cleanup (compiler-caught) will
be needed since regex doesn't handle nested parentheses cleanly

1. Convert timer_call_after_resynch calls
timer_call_after_resynch( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().synchronize\1\(\2FUNC(\6), \5, \4\)

2. Clean up trailing 0, NULL parameters
(synchronize[^;]+), 0, NULL\)
\1)

3. Clean up trailing NULL parameters
(synchronize[^;]+), NULL\)
\1)

4. Clean up completely empty parameter lists
synchronize\(FUNC\(NULL\)\)
synchronize()

5. Convert timer_set calls
timer_set( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_set\1\(\2\4, FUNC(\7), \6, \5\)

6. Clean up trailing 0, NULL parameters
(timer_set[^;]+), 0, NULL\)
\1)

7. Clean up trailing NULL parameters
(timer_set[^;]+), NULL\)
\1)

8. Convert timer_set calls
timer_pulse( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_pulse\1\(\2\4, FUNC(\7), \6, \5\)

9. Clean up trailing 0, NULL parameters
(timer_pulse[^;]+), 0, NULL\)
\1)

10. Clean up trailing NULL parameters
(timer_pulse[^;]+), NULL\)
\1)

11. Convert timer_alloc calls
timer_alloc( *)\(( *)([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_alloc\1\(\2FUNC(\4), \5\)

12. Clean up trailing NULL parameters
(timer_alloc[^;]+), NULL\)
\1)

13. Clean up trailing 0 parameters
(timer_alloc[^;]+), 0\)
\1)

14. Fix oddities introduced
\&m_machine->scheduler()
m_machine.scheduler()
2011-02-06 07:15:01 +00:00

655 lines
15 KiB
C

/***************************************************************************
asc.c
Apple Sound Chip (ASC) 344S0063
Enhanced Apple Sound Chip (EASC) 343S1063
Emulation by R. Belmont
Registers:
0x800: VERSION
0x801: MODE (1=FIFO mode, 2=wavetable mode)
0x802: CONTROL (bit 0=analog or PWM output, 1=stereo/mono, 7=processing time exceeded)
0x803: FIFO MODE (bit 7=clear FIFO, bit 1="non-ROM companding", bit 0="ROM companding")
0x804: FIFO IRQ STATUS (bit 0=ch A 1/2 full, 1=ch A full, 2=ch B 1/2 full, 3=ch B full)
0x805: WAVETABLE CONTROL (bits 0-3 wavetables 0-3 start)
0x806: VOLUME (bits 2-4 = 3 bit internal ASC volume, bits 5-7 = volume control sent to Sony sound chip)
0x807: CLOCK RATE (0 = Mac 22257 Hz, 1 = undefined, 2 = 22050 Hz, 3 = 44100 Hz)
0x80a: PLAY REC A
0x80f: TEST (bits 6-7 = digital test, bits 4-5 = analog test)
0x810: WAVETABLE 0 PHASE (big-endian 9.15 fixed-point, only 24 bits valid)
0x814: WAVETABLE 0 INCREMENT (big-endian 9.15 fixed-point, only 24 bits valid)
0x818: WAVETABLE 1 PHASE
0x81C: WAVETABLE 1 INCREMENT
0x820: WAVETABLE 2 PHASE
0x824: WAVETABLE 2 INCREMENT
0x828: WAVETABLE 3 PHASE
0x82C: WAVETABLE 3 INCREMENT
***************************************************************************/
#include "emu.h"
#include "asc.h"
//**************************************************************************
// GLOBAL VARIABLES
//**************************************************************************
const device_type ASC = asc_device_config::static_alloc_device_config;
//**************************************************************************
// DEVICE CONFIGURATION
//**************************************************************************
//-------------------------------------------------
// static_set_type - configuration helper to set
// the chip type
//-------------------------------------------------
void asc_device_config::static_set_type(device_config *device, int type)
{
asc_device_config *asc = downcast<asc_device_config *>(device);
asc->m_type = type;
}
//-------------------------------------------------
// static_set_type - configuration helper to set
// the IRQ callback
//-------------------------------------------------
void asc_device_config::static_set_irqf(device_config *device, void (*irqf)(device_t *device, int state))
{
asc_device_config *asc = downcast<asc_device_config *>(device);
asc->m_irq_func = irqf;
}
//-------------------------------------------------
// asc_device_config - constructor
//-------------------------------------------------
asc_device_config::asc_device_config(const machine_config &mconfig, const char *tag, const device_config *owner, UINT32 clock)
: device_config(mconfig, static_alloc_device_config, "ASC", tag, owner, clock),
device_config_sound_interface(mconfig, *this)
{
}
//-------------------------------------------------
// static_alloc_device_config - allocate a new
// configuration object
//-------------------------------------------------
device_config *asc_device_config::static_alloc_device_config(const machine_config &mconfig, const char *tag, const device_config *owner, UINT32 clock)
{
return global_alloc(asc_device_config(mconfig, tag, owner, clock));
}
//-------------------------------------------------
// alloc_device - allocate a new device object
//-------------------------------------------------
device_t *asc_device_config::alloc_device(running_machine &machine) const
{
return auto_alloc(&machine, asc_device(machine, *this));
}
//**************************************************************************
// LIVE DEVICE
//**************************************************************************
// does nothing, this timer exists only to make MAME sync itself at our audio rate
static TIMER_CALLBACK( sync_timer_cb )
{
asc_device *pDevice = (asc_device *)ptr;
pDevice->m_stream->update();
}
//-------------------------------------------------
// asc_device - constructor
//-------------------------------------------------
asc_device::asc_device(running_machine &_machine, const asc_device_config &config)
: device_t(_machine, config),
device_sound_interface(_machine, config, *this),
m_config(config),
m_chip_type(m_config.m_type),
m_irq_cb(m_config.m_irq_func)
{
}
//-------------------------------------------------
// device_start - device-specific startup
//-------------------------------------------------
void asc_device::device_start()
{
// create the stream
m_stream = m_machine.sound().stream_alloc(*this, 0, 2, 22257, this);
memset(m_regs, 0, sizeof(m_regs));
m_sync_timer = this->machine->scheduler().timer_alloc(FUNC(sync_timer_cb), this);
state_save_register_device_item(this, 0, m_fifo_a_rdptr);
state_save_register_device_item(this, 0, m_fifo_b_rdptr);
state_save_register_device_item(this, 0, m_fifo_a_wrptr);
state_save_register_device_item(this, 0, m_fifo_b_wrptr);
state_save_register_device_item(this, 0, m_fifo_cap_a);
state_save_register_device_item(this, 0, m_fifo_cap_b);
state_save_register_device_item_array(this, 0, m_fifo_a);
state_save_register_device_item_array(this, 0, m_fifo_b);
state_save_register_device_item_array(this, 0, m_regs);
state_save_register_device_item_array(this, 0, m_phase);
state_save_register_device_item_array(this, 0, m_incr);
}
//-------------------------------------------------
// device_reset - device-specific reset
//-------------------------------------------------
void asc_device::device_reset()
{
m_stream->update();
memset(m_regs, 0, sizeof(m_regs));
memset(m_fifo_a, 0, sizeof(m_fifo_a));
memset(m_fifo_b, 0, sizeof(m_fifo_b));
memset(m_phase, 0, sizeof(m_phase));
memset(m_incr, 0, sizeof(m_incr));
m_fifo_a_rdptr = m_fifo_b_rdptr = 0;
m_fifo_a_wrptr = m_fifo_b_wrptr = 0;
m_fifo_cap_a = m_fifo_cap_b = 0;
}
//-------------------------------------------------
// sound_stream_update - handle update requests for
// our sound stream
//-------------------------------------------------
void asc_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples)
{
stream_sample_t *outL, *outR;
int i, ch;
static UINT32 wtoffs[2] = { 0, 0x200 };
outL = outputs[0];
outR = outputs[1];
switch (m_regs[R_MODE-0x800] & 3)
{
case 0: // chip off
for (i = 0; i < samples; i++)
{
outL[i] = outR[i] = 0;
}
break;
case 1: // FIFO mode
for (i = 0; i < samples; i++)
{
INT8 smpll, smplr;
smpll = (INT8)m_fifo_a[m_fifo_a_rdptr]^0x80;
smplr = (INT8)m_fifo_b[m_fifo_b_rdptr]^0x80;
// don't advance the sample pointer if there are no more samples
if (m_fifo_cap_a)
{
m_fifo_a_rdptr++;
m_fifo_a_rdptr &= 0x3ff;
m_fifo_cap_a--;
}
if (m_fifo_cap_b)
{
m_fifo_b_rdptr++;
m_fifo_b_rdptr &= 0x3ff;
m_fifo_cap_b--;
}
switch (m_chip_type)
{
case ASC_TYPE_SONORA:
if (m_fifo_cap_a < 0x200)
{
m_regs[R_FIFOSTAT-0x800] |= 0x4; // fifo less than half full
m_regs[R_FIFOSTAT-0x800] |= 0x8; // just pass the damn test
if (m_irq_cb)
{
m_irq_cb(this, 1);
}
}
break;
default:
if (m_fifo_cap_a == 0x1ff)
{
m_regs[R_FIFOSTAT-0x800] |= 1; // fifo A half-empty
if (m_irq_cb)
{
m_irq_cb(this, 1);
}
}
else if (m_fifo_cap_a == 0x1) // fifo A fully empty
{
m_regs[R_FIFOSTAT-0x800] |= 2; // fifo A empty
if (m_irq_cb)
{
m_irq_cb(this, 1);
}
}
if (m_fifo_cap_b == 0x1ff)
{
m_regs[R_FIFOSTAT-0x800] |= 4; // fifo B half-empty
if (m_irq_cb)
{
m_irq_cb(this, 1);
}
}
else if (m_fifo_cap_b == 0x1) // fifo B fully empty
{
m_regs[R_FIFOSTAT-0x800] |= 8; // fifo B empty
if (m_irq_cb)
{
m_irq_cb(this, 1);
}
}
break;
}
outL[i] = smpll * 64;
outR[i] = smplr * 64;
}
break;
case 2: // wavetable mode
for (i = 0; i < samples; i++)
{
INT32 mixL, mixR;
INT8 smpl;
mixL = mixR = 0;
// update channel pointers
for (ch = 0; ch < 4; ch++)
{
m_phase[ch] += m_incr[ch];
if (ch < 2)
{
smpl = (INT8)m_fifo_a[((m_phase[ch]>>15)&0x1ff) + wtoffs[ch&1]];
}
else
{
smpl = (INT8)m_fifo_b[((m_phase[ch]>>15)&0x1ff) + wtoffs[ch&1]];
}
smpl ^= 0x80;
mixL += smpl*256;
mixR += smpl*256;
}
outL[i] = mixL>>2;
outR[i] = mixR>>2;
}
break;
}
// printf("rdA %04x rdB %04x wrA %04x wrB %04x (capA %04x B %04x)\n", m_fifo_a_rdptr, m_fifo_b_rdptr, m_fifo_a_wrptr, m_fifo_b_wrptr, m_fifo_cap_a, m_fifo_cap_b);
}
//-------------------------------------------------
// read - read from the chip's registers and internal RAM
//-------------------------------------------------
READ8_MEMBER( asc_device::read )
{
UINT8 rv;
// printf("ASC: read at %x\n", offset);
// not sure what actually happens when the CPU reads the FIFO...
if (offset < 0x400)
{
return m_fifo_a[offset];
}
else if (offset < 0x800)
{
return m_fifo_b[offset-0x400];
}
else
{
m_stream->update();
switch (offset)
{
case R_VERSION:
switch (m_chip_type)
{
case ASC_TYPE_ASC:
return 0;
case ASC_TYPE_V8:
case ASC_TYPE_EAGLE:
case ASC_TYPE_SPICE:
case ASC_TYPE_VASP:
return 0xe8;
case ASC_TYPE_SONORA:
return 0xbc;
default: // return the actual register value
break;
}
break;
case R_MODE:
switch (m_chip_type)
{
case ASC_TYPE_V8:
case ASC_TYPE_EAGLE:
case ASC_TYPE_SPICE:
case ASC_TYPE_VASP:
return 1;
default:
break;
}
break;
case R_CONTROL:
switch (m_chip_type)
{
case ASC_TYPE_V8:
case ASC_TYPE_EAGLE:
case ASC_TYPE_SPICE:
case ASC_TYPE_VASP:
return 1;
default:
break;
}
break;
case R_FIFOSTAT:
if (m_chip_type == ASC_TYPE_V8)
{
rv = 3;
}
else
{
rv = m_regs[R_FIFOSTAT-0x800];
}
// printf("Read FIFO stat = %02x\n", rv);
// reading this register clears all bits
m_regs[R_FIFOSTAT-0x800] = 0;
// reading this clears interrupts
if (m_irq_cb)
{
m_irq_cb(this, 0);
}
return rv;
break;
default:
break;
}
}
// WT inc/phase registers - rebuild from "live" copies"
if ((offset >= 0x810) && (offset <= 0x82f))
{
m_regs[0x11] = m_phase[0]>>16;
m_regs[0x12] = m_phase[0]>>8;
m_regs[0x13] = m_phase[0];
m_regs[0x15] = m_incr[0]>>16;
m_regs[0x16] = m_incr[0]>>8;
m_regs[0x17] = m_incr[0];
m_regs[0x19] = m_phase[1]>>16;
m_regs[0x1a] = m_phase[1]>>8;
m_regs[0x1b] = m_phase[1];
m_regs[0x1d] = m_incr[1]>>16;
m_regs[0x1e] = m_incr[1]>>8;
m_regs[0x1f] = m_incr[1];
m_regs[0x21] = m_phase[2]>>16;
m_regs[0x22] = m_phase[2]>>8;
m_regs[0x23] = m_phase[2];
m_regs[0x25] = m_incr[2]>>16;
m_regs[0x26] = m_incr[2]>>8;
m_regs[0x27] = m_incr[2];
m_regs[0x29] = m_phase[3]>>16;
m_regs[0x2a] = m_phase[3]>>8;
m_regs[0x2b] = m_phase[3];
m_regs[0x2d] = m_incr[3]>>16;
m_regs[0x2e] = m_incr[3]>>8;
m_regs[0x2f] = m_incr[3];
}
return m_regs[offset-0x800];
}
//-------------------------------------------------
// write - write to the chip's registers and internal RAM
//-------------------------------------------------
WRITE8_MEMBER( asc_device::write )
{
// printf("ASC: write %02x to %x\n", data, offset);
if (offset < 0x400)
{
if (m_regs[R_MODE-0x800] == 1)
{
m_fifo_a[m_fifo_a_wrptr++] = data;
m_fifo_cap_a++;
if (m_fifo_cap_a == 0x3ff)
{
m_regs[R_FIFOSTAT-0x800] |= 2; // fifo A full
}
m_fifo_a_wrptr &= 0x3ff;
}
else
{
m_fifo_a[offset] = data;
}
}
else if (offset < 0x800)
{
if (m_regs[R_MODE-0x800] == 1)
{
m_fifo_b[m_fifo_b_wrptr++] = data;
m_fifo_cap_b++;
if (m_fifo_cap_b == 0x3ff)
{
m_regs[R_FIFOSTAT-0x800] |= 8; // fifo B full
}
m_fifo_b_wrptr &= 0x3ff;
}
else
{
m_fifo_b[offset-0x400] = data;
}
}
else
{
// printf("ASC: %02x to %x (was %x)\n", data, offset, m_regs[offset-0x800]);
m_stream->update();
switch (offset)
{
case R_MODE:
data &= 3; // only bits 0 and 1 can be written
if (data != m_regs[R_MODE-0x800])
{
m_fifo_a_rdptr = m_fifo_b_rdptr = 0;
m_fifo_a_wrptr = m_fifo_b_wrptr = 0;
m_fifo_cap_a = m_fifo_cap_b = 0;
if (data != 0)
{
timer_adjust_periodic(m_sync_timer, attotime::zero, 0, attotime::from_hz(22257/4));
}
else
{
timer_adjust_oneshot(m_sync_timer, attotime::never, 0);
}
}
break;
case R_FIFOMODE:
if (data & 0x80)
{
m_fifo_a_rdptr = m_fifo_b_rdptr = 0;
m_fifo_a_wrptr = m_fifo_b_wrptr = 0;
m_fifo_cap_a = m_fifo_cap_b = 0;
}
break;
case R_WTCONTROL:
// printf("One-shot wavetable %02x\n", data);
break;
case 0x811:
m_phase[0] &= 0x00ffff;
m_phase[0] |= data<<16;
break;
case 0x812:
m_phase[0] &= 0xff00ff;
m_phase[0] |= data<<8;
break;
case 0x813:
m_phase[0] &= 0xffff00;
m_phase[0] |= data;
break;
case 0x815:
m_incr[0] &= 0x00ffff;
m_incr[0] |= data<<16;
break;
case 0x816:
m_incr[0] &= 0xff00ff;
m_incr[0] |= data<<8;
break;
case 0x817:
m_incr[0] &= 0xffff00;
m_incr[0] |= data;
break;
case 0x819:
m_phase[1] &= 0x00ffff;
m_phase[1] |= data<<16;
break;
case 0x81a:
m_phase[1] &= 0xff00ff;
m_phase[1] |= data<<8;
break;
case 0x81b:
m_phase[1] &= 0xffff00;
m_phase[1] |= data;
break;
case 0x81d:
m_incr[1] &= 0x00ffff;
m_incr[1] |= data<<16;
break;
case 0x81e:
m_incr[1] &= 0xff00ff;
m_incr[1] |= data<<8;
break;
case 0x81f:
m_incr[1] &= 0xffff00;
m_incr[1] |= data;
break;
case 0x821:
m_phase[2] &= 0x00ffff;
m_phase[2] |= data<<16;
break;
case 0x822:
m_phase[2] &= 0xff00ff;
m_phase[2] |= data<<8;
break;
case 0x823:
m_phase[2] &= 0xffff00;
m_phase[2] |= data;
break;
case 0x825:
m_incr[2] &= 0x00ffff;
m_incr[2] |= data<<16;
break;
case 0x826:
m_incr[2] &= 0xff00ff;
m_incr[2] |= data<<8;
break;
case 0x827:
m_incr[2] &= 0xffff00;
m_incr[2] |= data;
break;
case 0x829:
m_phase[3] &= 0x00ffff;
m_phase[3] |= data<<16;
break;
case 0x82a:
m_phase[3] &= 0xff00ff;
m_phase[3] |= data<<8;
break;
case 0x82b:
m_phase[3] &= 0xffff00;
m_phase[3] |= data;
break;
case 0x82d:
m_incr[3] &= 0x00ffff;
m_incr[3] |= data<<16;
break;
case 0x82e:
m_incr[3] &= 0xff00ff;
m_incr[3] |= data<<8;
break;
case 0x82f:
m_incr[3] &= 0xffff00;
m_incr[3] |= data;
break;
}
m_regs[offset-0x800] = data;
}
}