mirror of
https://github.com/holub/mame
synced 2025-05-21 21:29:15 +03:00
773 lines
23 KiB
C
773 lines
23 KiB
C
/***************************************************************************
|
|
|
|
rendutil.c
|
|
|
|
Core rendering utilities.
|
|
|
|
Copyright Nicola Salmoria and the MAME Team.
|
|
Visit http://mamedev.org for licensing and usage restrictions.
|
|
|
|
***************************************************************************/
|
|
|
|
#include "render.h"
|
|
#include "rendutil.h"
|
|
#include "png.h"
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
FUNCTION PROTOTYPES
|
|
***************************************************************************/
|
|
|
|
/* utilities */
|
|
static void resample_argb_bitmap_average(UINT32 *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const UINT32 *source, UINT32 srowpixels, UINT32 swidth, UINT32 sheight, const render_color *color, UINT32 dx, UINT32 dy);
|
|
static void resample_argb_bitmap_bilinear(UINT32 *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const UINT32 *source, UINT32 srowpixels, UINT32 swidth, UINT32 sheight, const render_color *color, UINT32 dx, UINT32 dy);
|
|
static void copy_png_to_bitmap(bitmap_t *bitmap, const png_info *png, int *hasalpha);
|
|
static void copy_png_alpha_to_bitmap(bitmap_t *bitmap, const png_info *png, int *hasalpha);
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
INLINE FUNCTIONS
|
|
***************************************************************************/
|
|
|
|
/*-------------------------------------------------
|
|
compute_brightness - compute the effective
|
|
brightness for an RGB pixel
|
|
-------------------------------------------------*/
|
|
|
|
INLINE UINT8 compute_brightness(rgb_t rgb)
|
|
{
|
|
return (RGB_RED(rgb) * 222 + RGB_GREEN(rgb) * 707 + RGB_BLUE(rgb) * 71) / 1000;
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
RENDER UTILITIES
|
|
***************************************************************************/
|
|
|
|
/*-------------------------------------------------
|
|
render_resample_argb_bitmap_hq - perform a high
|
|
quality resampling of a texture
|
|
-------------------------------------------------*/
|
|
|
|
void render_resample_argb_bitmap_hq(void *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const bitmap_t *source, const rectangle *orig_sbounds, const render_color *color)
|
|
{
|
|
UINT32 swidth, sheight;
|
|
const UINT32 *sbase;
|
|
rectangle sbounds;
|
|
UINT32 dx, dy;
|
|
|
|
if (dwidth == 0 || dheight == 0)
|
|
return;
|
|
|
|
/* compute the real source bounds */
|
|
if (orig_sbounds != NULL)
|
|
sbounds = *orig_sbounds;
|
|
else
|
|
{
|
|
sbounds.min_x = sbounds.min_y = 0;
|
|
sbounds.max_x = source->width;
|
|
sbounds.max_y = source->height;
|
|
}
|
|
|
|
/* adjust the source base */
|
|
sbase = (const UINT32 *)source->base + sbounds.min_y * source->rowpixels + sbounds.min_x;
|
|
|
|
/* determine the steppings */
|
|
swidth = sbounds.max_x - sbounds.min_x;
|
|
sheight = sbounds.max_y - sbounds.min_y;
|
|
dx = (swidth << 12) / dwidth;
|
|
dy = (sheight << 12) / dheight;
|
|
|
|
/* if the source is higher res than the target, use full averaging */
|
|
if (dx > 0x1000 || dy > 0x1000)
|
|
resample_argb_bitmap_average(dest, drowpixels, dwidth, dheight, sbase, source->rowpixels, swidth, sheight, color, dx, dy);
|
|
else
|
|
resample_argb_bitmap_bilinear(dest, drowpixels, dwidth, dheight, sbase, source->rowpixels, swidth, sheight, color, dx, dy);
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------
|
|
resample_argb_bitmap_average - resample a texture
|
|
by performing a true weighted average over
|
|
all contributing pixels
|
|
-------------------------------------------------*/
|
|
|
|
static void resample_argb_bitmap_average(UINT32 *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const UINT32 *source, UINT32 srowpixels, UINT32 swidth, UINT32 sheight, const render_color *color, UINT32 dx, UINT32 dy)
|
|
{
|
|
UINT64 sumscale = (UINT64)dx * (UINT64)dy;
|
|
UINT32 r, g, b, a;
|
|
UINT32 x, y;
|
|
|
|
/* precompute premultiplied R/G/B/A factors */
|
|
r = color->r * color->a * 256.0;
|
|
g = color->g * color->a * 256.0;
|
|
b = color->b * color->a * 256.0;
|
|
a = color->a * 256.0;
|
|
|
|
/* loop over the target vertically */
|
|
for (y = 0; y < dheight; y++)
|
|
{
|
|
UINT32 starty = y * dy;
|
|
|
|
/* loop over the target horizontally */
|
|
for (x = 0; x < dwidth; x++)
|
|
{
|
|
UINT64 sumr = 0, sumg = 0, sumb = 0, suma = 0;
|
|
UINT32 startx = x * dx;
|
|
UINT32 xchunk, ychunk;
|
|
UINT32 curx, cury;
|
|
|
|
UINT32 yremaining = dy;
|
|
|
|
/* accumulate all source pixels that contribute to this pixel */
|
|
for (cury = starty; yremaining; cury += ychunk)
|
|
{
|
|
UINT32 xremaining = dx;
|
|
|
|
/* determine the Y contribution, clamping to the amount remaining */
|
|
ychunk = 0x1000 - (cury & 0xfff);
|
|
if (ychunk > yremaining)
|
|
ychunk = yremaining;
|
|
yremaining -= ychunk;
|
|
|
|
/* loop over all source pixels in the X direction */
|
|
for (curx = startx; xremaining; curx += xchunk)
|
|
{
|
|
UINT32 factor;
|
|
UINT32 pix;
|
|
|
|
/* determine the X contribution, clamping to the amount remaining */
|
|
xchunk = 0x1000 - (curx & 0xfff);
|
|
if (xchunk > xremaining)
|
|
xchunk = xremaining;
|
|
xremaining -= xchunk;
|
|
|
|
/* total contribution = x * y */
|
|
factor = xchunk * ychunk;
|
|
|
|
/* fetch the source pixel */
|
|
pix = source[(cury >> 12) * srowpixels + (curx >> 12)];
|
|
|
|
/* accumulate the RGBA values */
|
|
sumr += factor * RGB_RED(pix);
|
|
sumg += factor * RGB_GREEN(pix);
|
|
sumb += factor * RGB_BLUE(pix);
|
|
suma += factor * RGB_ALPHA(pix);
|
|
}
|
|
}
|
|
|
|
/* apply scaling */
|
|
suma = (suma / sumscale) * a / 256;
|
|
sumr = (sumr / sumscale) * r / 256;
|
|
sumg = (sumg / sumscale) * g / 256;
|
|
sumb = (sumb / sumscale) * b / 256;
|
|
|
|
/* if we're translucent, add in the destination pixel contribution */
|
|
if (a < 256)
|
|
{
|
|
UINT32 dpix = dest[y * drowpixels + x];
|
|
suma += RGB_ALPHA(dpix) * (256 - a);
|
|
sumr += RGB_RED(dpix) * (256 - a);
|
|
sumg += RGB_GREEN(dpix) * (256 - a);
|
|
sumb += RGB_BLUE(dpix) * (256 - a);
|
|
}
|
|
|
|
/* store the target pixel, dividing the RGBA values by the overall scale factor */
|
|
dest[y * drowpixels + x] = MAKE_ARGB(suma, sumr, sumg, sumb);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------
|
|
resample_argb_bitmap_bilinear - perform texture
|
|
sampling via a bilinear filter
|
|
-------------------------------------------------*/
|
|
|
|
static void resample_argb_bitmap_bilinear(UINT32 *dest, UINT32 drowpixels, UINT32 dwidth, UINT32 dheight, const UINT32 *source, UINT32 srowpixels, UINT32 swidth, UINT32 sheight, const render_color *color, UINT32 dx, UINT32 dy)
|
|
{
|
|
UINT32 maxx = swidth << 12, maxy = sheight << 12;
|
|
UINT32 r, g, b, a;
|
|
UINT32 x, y;
|
|
|
|
/* precompute premultiplied R/G/B/A factors */
|
|
r = color->r * color->a * 256.0;
|
|
g = color->g * color->a * 256.0;
|
|
b = color->b * color->a * 256.0;
|
|
a = color->a * 256.0;
|
|
|
|
/* loop over the target vertically */
|
|
for (y = 0; y < dheight; y++)
|
|
{
|
|
UINT32 starty = y * dy;
|
|
|
|
/* loop over the target horizontally */
|
|
for (x = 0; x < dwidth; x++)
|
|
{
|
|
UINT32 startx = x * dx;
|
|
UINT32 pix0, pix1, pix2, pix3;
|
|
UINT32 sumr, sumg, sumb, suma;
|
|
UINT32 nextx, nexty;
|
|
UINT32 curx, cury;
|
|
UINT32 factor;
|
|
|
|
/* adjust start to the center; note that this math will tend to produce */
|
|
/* negative results on the first pixel, which is why we clamp below */
|
|
curx = startx + dx / 2 - 0x800;
|
|
cury = starty + dy / 2 - 0x800;
|
|
|
|
/* compute the neighboring pixel */
|
|
nextx = curx + 0x1000;
|
|
nexty = cury + 0x1000;
|
|
|
|
/* fetch the four relevant pixels */
|
|
pix0 = pix1 = pix2 = pix3 = 0;
|
|
if ((INT32)cury >= 0 && cury < maxy && (INT32)curx >= 0 && curx < maxx)
|
|
pix0 = source[(cury >> 12) * srowpixels + (curx >> 12)];
|
|
if ((INT32)cury >= 0 && cury < maxy && (INT32)nextx >= 0 && nextx < maxx)
|
|
pix1 = source[(cury >> 12) * srowpixels + (nextx >> 12)];
|
|
if ((INT32)nexty >= 0 && nexty < maxy && (INT32)curx >= 0 && curx < maxx)
|
|
pix2 = source[(nexty >> 12) * srowpixels + (curx >> 12)];
|
|
if ((INT32)nexty >= 0 && nexty < maxy && (INT32)nextx >= 0 && nextx < maxx)
|
|
pix3 = source[(nexty >> 12) * srowpixels + (nextx >> 12)];
|
|
|
|
/* compute the x/y scaling factors */
|
|
curx &= 0xfff;
|
|
cury &= 0xfff;
|
|
|
|
/* contributions from pixel 0 (top,left) */
|
|
factor = (0x1000 - curx) * (0x1000 - cury);
|
|
sumr = factor * RGB_RED(pix0);
|
|
sumg = factor * RGB_GREEN(pix0);
|
|
sumb = factor * RGB_BLUE(pix0);
|
|
suma = factor * RGB_ALPHA(pix0);
|
|
|
|
/* contributions from pixel 1 (top,right) */
|
|
factor = curx * (0x1000 - cury);
|
|
sumr += factor * RGB_RED(pix1);
|
|
sumg += factor * RGB_GREEN(pix1);
|
|
sumb += factor * RGB_BLUE(pix1);
|
|
suma += factor * RGB_ALPHA(pix1);
|
|
|
|
/* contributions from pixel 2 (bottom,left) */
|
|
factor = (0x1000 - curx) * cury;
|
|
sumr += factor * RGB_RED(pix2);
|
|
sumg += factor * RGB_GREEN(pix2);
|
|
sumb += factor * RGB_BLUE(pix2);
|
|
suma += factor * RGB_ALPHA(pix2);
|
|
|
|
/* contributions from pixel 3 (bottom,right) */
|
|
factor = curx * cury;
|
|
sumr += factor * RGB_RED(pix3);
|
|
sumg += factor * RGB_GREEN(pix3);
|
|
sumb += factor * RGB_BLUE(pix3);
|
|
suma += factor * RGB_ALPHA(pix3);
|
|
|
|
/* apply scaling */
|
|
suma = (suma >> 24) * a / 256;
|
|
sumr = (sumr >> 24) * r / 256;
|
|
sumg = (sumg >> 24) * g / 256;
|
|
sumb = (sumb >> 24) * b / 256;
|
|
|
|
/* if we're translucent, add in the destination pixel contribution */
|
|
if (a < 256)
|
|
{
|
|
UINT32 dpix = dest[y * drowpixels + x];
|
|
suma += RGB_ALPHA(dpix) * (256 - a);
|
|
sumr += RGB_RED(dpix) * (256 - a);
|
|
sumg += RGB_GREEN(dpix) * (256 - a);
|
|
sumb += RGB_BLUE(dpix) * (256 - a);
|
|
}
|
|
|
|
/* store the target pixel, dividing the RGBA values by the overall scale factor */
|
|
dest[y * drowpixels + x] = MAKE_ARGB(suma, sumr, sumg, sumb);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------
|
|
render_clip_line - clip a line to a rectangle
|
|
-------------------------------------------------*/
|
|
|
|
int render_clip_line(render_bounds *bounds, const render_bounds *clip)
|
|
{
|
|
/* loop until we get a final result */
|
|
while (1)
|
|
{
|
|
UINT8 code0 = 0, code1 = 0;
|
|
UINT8 thiscode;
|
|
float x, y;
|
|
|
|
/* compute Cohen Sutherland bits for first coordinate */
|
|
if (bounds->y0 > clip->y1)
|
|
code0 |= 1;
|
|
if (bounds->y0 < clip->y0)
|
|
code0 |= 2;
|
|
if (bounds->x0 > clip->x1)
|
|
code0 |= 4;
|
|
if (bounds->x0 < clip->x0)
|
|
code0 |= 8;
|
|
|
|
/* compute Cohen Sutherland bits for second coordinate */
|
|
if (bounds->y1 > clip->y1)
|
|
code1 |= 1;
|
|
if (bounds->y1 < clip->y0)
|
|
code1 |= 2;
|
|
if (bounds->x1 > clip->x1)
|
|
code1 |= 4;
|
|
if (bounds->x1 < clip->x0)
|
|
code1 |= 8;
|
|
|
|
/* trivial accept: just return FALSE */
|
|
if ((code0 | code1) == 0)
|
|
return FALSE;
|
|
|
|
/* trivial reject: just return TRUE */
|
|
if ((code0 & code1) != 0)
|
|
return TRUE;
|
|
|
|
/* fix one of the OOB cases */
|
|
thiscode = code0 ? code0 : code1;
|
|
|
|
/* off the bottom */
|
|
if (thiscode & 1)
|
|
{
|
|
x = bounds->x0 + (bounds->x1 - bounds->x0) * (clip->y1 - bounds->y0) / (bounds->y1 - bounds->y0);
|
|
y = clip->y1;
|
|
}
|
|
|
|
/* off the top */
|
|
else if (thiscode & 2)
|
|
{
|
|
x = bounds->x0 + (bounds->x1 - bounds->x0) * (clip->y0 - bounds->y0) / (bounds->y1 - bounds->y0);
|
|
y = clip->y0;
|
|
}
|
|
|
|
/* off the right */
|
|
else if (thiscode & 4)
|
|
{
|
|
y = bounds->y0 + (bounds->y1 - bounds->y0) * (clip->x1 - bounds->x0) / (bounds->x1 - bounds->x0);
|
|
x = clip->x1;
|
|
}
|
|
|
|
/* off the left */
|
|
else
|
|
{
|
|
y = bounds->y0 + (bounds->y1 - bounds->y0) * (clip->x0 - bounds->x0) / (bounds->x1 - bounds->x0);
|
|
x = clip->x0;
|
|
}
|
|
|
|
/* fix the appropriate coordinate */
|
|
if (thiscode == code0)
|
|
{
|
|
bounds->x0 = x;
|
|
bounds->y0 = y;
|
|
}
|
|
else
|
|
{
|
|
bounds->x1 = x;
|
|
bounds->y1 = y;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------
|
|
render_clip_quad - clip a quad to a rectangle
|
|
-------------------------------------------------*/
|
|
|
|
int render_clip_quad(render_bounds *bounds, const render_bounds *clip, render_quad_texuv *texcoords)
|
|
{
|
|
/* ensure our assumptions about the bounds are correct */
|
|
assert(bounds->x0 <= bounds->x1);
|
|
assert(bounds->y0 <= bounds->y1);
|
|
|
|
/* trivial reject */
|
|
if (bounds->y1 < clip->y0)
|
|
return TRUE;
|
|
if (bounds->y0 > clip->y1)
|
|
return TRUE;
|
|
if (bounds->x1 < clip->x0)
|
|
return TRUE;
|
|
if (bounds->x0 > clip->x1)
|
|
return TRUE;
|
|
|
|
/* clip top (x0,y0)-(x1,y1) */
|
|
if (bounds->y0 < clip->y0)
|
|
{
|
|
float frac = (clip->y0 - bounds->y0) / (bounds->y1 - bounds->y0);
|
|
bounds->y0 = clip->y0;
|
|
if (texcoords != NULL)
|
|
{
|
|
texcoords->tl.u += (texcoords->bl.u - texcoords->tl.u) * frac;
|
|
texcoords->tl.v += (texcoords->bl.v - texcoords->tl.v) * frac;
|
|
texcoords->tr.u += (texcoords->br.u - texcoords->tr.u) * frac;
|
|
texcoords->tr.v += (texcoords->br.v - texcoords->tr.v) * frac;
|
|
}
|
|
}
|
|
|
|
/* clip bottom (x3,y3)-(x2,y2) */
|
|
if (bounds->y1 > clip->y1)
|
|
{
|
|
float frac = (bounds->y1 - clip->y1) / (bounds->y1 - bounds->y0);
|
|
bounds->y1 = clip->y1;
|
|
if (texcoords != NULL)
|
|
{
|
|
texcoords->bl.u -= (texcoords->bl.u - texcoords->tl.u) * frac;
|
|
texcoords->bl.v -= (texcoords->bl.v - texcoords->tl.v) * frac;
|
|
texcoords->br.u -= (texcoords->br.u - texcoords->tr.u) * frac;
|
|
texcoords->br.v -= (texcoords->br.v - texcoords->tr.v) * frac;
|
|
}
|
|
}
|
|
|
|
/* clip left (x0,y0)-(x3,y3) */
|
|
if (bounds->x0 < clip->x0)
|
|
{
|
|
float frac = (clip->x0 - bounds->x0) / (bounds->x1 - bounds->x0);
|
|
bounds->x0 = clip->x0;
|
|
if (texcoords != NULL)
|
|
{
|
|
texcoords->tl.u += (texcoords->tr.u - texcoords->tl.u) * frac;
|
|
texcoords->tl.v += (texcoords->tr.v - texcoords->tl.v) * frac;
|
|
texcoords->bl.u += (texcoords->br.u - texcoords->bl.u) * frac;
|
|
texcoords->bl.v += (texcoords->br.v - texcoords->bl.v) * frac;
|
|
}
|
|
}
|
|
|
|
/* clip right (x1,y1)-(x2,y2) */
|
|
if (bounds->x1 > clip->x1)
|
|
{
|
|
float frac = (bounds->x1 - clip->x1) / (bounds->x1 - bounds->x0);
|
|
bounds->x1 = clip->x1;
|
|
if (texcoords != NULL)
|
|
{
|
|
texcoords->tr.u -= (texcoords->tr.u - texcoords->tl.u) * frac;
|
|
texcoords->tr.v -= (texcoords->tr.v - texcoords->tl.v) * frac;
|
|
texcoords->br.u -= (texcoords->br.u - texcoords->bl.u) * frac;
|
|
texcoords->br.v -= (texcoords->br.v - texcoords->bl.v) * frac;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------
|
|
render_line_to_quad - convert a line and a
|
|
width to four points
|
|
-------------------------------------------------*/
|
|
|
|
void render_line_to_quad(const render_bounds *bounds, float width, render_bounds *bounds0, render_bounds *bounds1)
|
|
{
|
|
render_bounds modbounds = *bounds;
|
|
float unitx, unity;
|
|
|
|
/*
|
|
High-level logic -- due to math optimizations, this info is lost below.
|
|
|
|
Imagine a thick line of width (w), drawn from (p0) to (p1), with a unit
|
|
vector (u) indicating the direction from (p0) to (p1).
|
|
|
|
B C
|
|
+---------------- ... ------------------+
|
|
| ^ |
|
|
| | |
|
|
| | |
|
|
* (p0) ------------> (w)| * (p1)
|
|
| (u) | |
|
|
| | |
|
|
| v |
|
|
+---------------- ... ------------------+
|
|
A D
|
|
|
|
To convert this into a quad, we need to compute the four points A, B, C
|
|
and D.
|
|
|
|
Starting with point A. We first multiply the unit vector by 0.5w and then
|
|
rotate the result 90 degrees. Thus, we have:
|
|
|
|
A.x = p0.x + 0.5 * w * u.x * cos(90) - 0.5 * w * u.y * sin(90)
|
|
A.y = p0.y + 0.5 * w * u.x * sin(90) + 0.5 * w * u.y * cos(90)
|
|
|
|
Conveniently, sin(90) = 1, and cos(90) = 0, so this simplifies to:
|
|
|
|
A.x = p0.x - 0.5 * w * u.y
|
|
A.y = p0.y + 0.5 * w * u.x
|
|
|
|
Working clockwise around the polygon, the same fallout happens all around as
|
|
we rotate the unit vector by -90 (B), -90 (C), and 90 (D) degrees:
|
|
|
|
B.x = p0.x + 0.5 * w * u.y
|
|
B.y = p0.y - 0.5 * w * u.x
|
|
|
|
C.x = p1.x - 0.5 * w * u.y
|
|
C.y = p1.y + 0.5 * w * u.x
|
|
|
|
D.x = p1.x + 0.5 * w * u.y
|
|
D.y = p1.y - 0.5 * w * u.x
|
|
*/
|
|
|
|
/* we only care about the half-width */
|
|
width *= 0.5f;
|
|
|
|
/* compute a vector from point 0 to point 1 */
|
|
unitx = modbounds.x1 - modbounds.x0;
|
|
unity = modbounds.y1 - modbounds.y0;
|
|
|
|
/* points just use a +1/+1 unit vector; this gives a nice diamond pattern */
|
|
if (unitx == 0 && unity == 0)
|
|
{
|
|
unitx = unity = 0.70710678f * width;
|
|
modbounds.x0 -= 0.5f * unitx;
|
|
modbounds.y0 -= 0.5f * unity;
|
|
modbounds.x1 += 0.5f * unitx;
|
|
modbounds.y1 += 0.5f * unity;
|
|
}
|
|
|
|
/* lines need to be divided by their length */
|
|
else
|
|
{
|
|
/* prescale unitx and unity by the half-width */
|
|
float invlength = width / sqrt(unitx * unitx + unity * unity);
|
|
unitx *= invlength;
|
|
unity *= invlength;
|
|
}
|
|
|
|
/* rotate the unit vector by 90 degrees and add to point 0 */
|
|
bounds0->x0 = modbounds.x0 - unity;
|
|
bounds0->y0 = modbounds.y0 + unitx;
|
|
|
|
/* rotate the unit vector by -90 degrees and add to point 0 */
|
|
bounds0->x1 = modbounds.x0 + unity;
|
|
bounds0->y1 = modbounds.y0 - unitx;
|
|
|
|
/* rotate the unit vector by 90 degrees and add to point 1 */
|
|
bounds1->x0 = modbounds.x1 - unity;
|
|
bounds1->y0 = modbounds.y1 + unitx;
|
|
|
|
/* rotate the unit vector by -09 degrees and add to point 1 */
|
|
bounds1->x1 = modbounds.x1 + unity;
|
|
bounds1->y1 = modbounds.y1 - unitx;
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------
|
|
render_load_png - load a PNG file into a
|
|
bitmap_t
|
|
-------------------------------------------------*/
|
|
|
|
bitmap_t *render_load_png(const char *dirname, const char *filename, bitmap_t *alphadest, int *hasalpha)
|
|
{
|
|
bitmap_t *bitmap = NULL;
|
|
file_error filerr;
|
|
mame_file *file;
|
|
png_info png;
|
|
astring *fname;
|
|
png_error result;
|
|
|
|
/* open the file */
|
|
if (dirname == NULL)
|
|
fname = astring_dupc(filename);
|
|
else
|
|
fname = astring_assemble_3(astring_alloc(), dirname, PATH_SEPARATOR, filename);
|
|
filerr = mame_fopen(SEARCHPATH_ARTWORK, astring_c(fname), OPEN_FLAG_READ, &file);
|
|
astring_free(fname);
|
|
if (filerr != FILERR_NONE)
|
|
return NULL;
|
|
|
|
/* read the PNG data */
|
|
result = png_read_file(mame_core_file(file), &png);
|
|
mame_fclose(file);
|
|
if (result != PNGERR_NONE)
|
|
return NULL;
|
|
|
|
/* verify we can handle this PNG */
|
|
if (png.bit_depth > 8)
|
|
{
|
|
logerror("%s: Unsupported bit depth %d (8 bit max)\n", filename, png.bit_depth);
|
|
png_free(&png);
|
|
return NULL;
|
|
}
|
|
if (png.interlace_method != 0)
|
|
{
|
|
logerror("%s: Interlace unsupported\n", filename);
|
|
png_free(&png);
|
|
return NULL;
|
|
}
|
|
if (png.color_type != 0 && png.color_type != 3 && png.color_type != 2 && png.color_type != 6)
|
|
{
|
|
logerror("%s: Unsupported color type %d\n", filename, png.color_type);
|
|
png_free(&png);
|
|
return NULL;
|
|
}
|
|
|
|
/* if less than 8 bits, upsample */
|
|
png_expand_buffer_8bit(&png);
|
|
|
|
/* non-alpha case */
|
|
if (alphadest == NULL)
|
|
{
|
|
bitmap = bitmap_alloc(png.width, png.height, BITMAP_FORMAT_ARGB32);
|
|
if (bitmap != NULL)
|
|
copy_png_to_bitmap(bitmap, &png, hasalpha);
|
|
}
|
|
|
|
/* alpha case */
|
|
else
|
|
{
|
|
if (png.width == alphadest->width && png.height == alphadest->height)
|
|
{
|
|
bitmap = alphadest;
|
|
copy_png_alpha_to_bitmap(bitmap, &png, hasalpha);
|
|
}
|
|
}
|
|
|
|
/* free PNG data */
|
|
png_free(&png);
|
|
return bitmap;
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------
|
|
copy_png_to_bitmap - copy the PNG data to a
|
|
bitmap
|
|
-------------------------------------------------*/
|
|
|
|
static void copy_png_to_bitmap(bitmap_t *bitmap, const png_info *png, int *hasalpha)
|
|
{
|
|
UINT8 accumalpha = 0xff;
|
|
UINT8 *src;
|
|
int x, y;
|
|
|
|
/* handle 8bpp palettized case */
|
|
if (png->color_type == 3)
|
|
{
|
|
/* loop over width/height */
|
|
src = png->image;
|
|
for (y = 0; y < png->height; y++)
|
|
for (x = 0; x < png->width; x++, src++)
|
|
{
|
|
/* determine alpha and expand to 32bpp */
|
|
UINT8 alpha = (*src < png->num_trans) ? png->trans[*src] : 0xff;
|
|
accumalpha &= alpha;
|
|
*BITMAP_ADDR32(bitmap, y, x) = MAKE_ARGB(alpha, png->palette[*src * 3], png->palette[*src * 3 + 1], png->palette[*src * 3 + 2]);
|
|
}
|
|
}
|
|
|
|
/* handle 8bpp grayscale case */
|
|
else if (png->color_type == 0)
|
|
{
|
|
/* loop over width/height */
|
|
src = png->image;
|
|
for (y = 0; y < png->height; y++)
|
|
for (x = 0; x < png->width; x++, src++)
|
|
*BITMAP_ADDR32(bitmap, y, x) = MAKE_ARGB(0xff, *src, *src, *src);
|
|
}
|
|
|
|
/* handle 32bpp non-alpha case */
|
|
else if (png->color_type == 2)
|
|
{
|
|
/* loop over width/height */
|
|
src = png->image;
|
|
for (y = 0; y < png->height; y++)
|
|
for (x = 0; x < png->width; x++, src += 3)
|
|
*BITMAP_ADDR32(bitmap, y, x) = MAKE_ARGB(0xff, src[0], src[1], src[2]);
|
|
}
|
|
|
|
/* handle 32bpp alpha case */
|
|
else
|
|
{
|
|
/* loop over width/height */
|
|
src = png->image;
|
|
for (y = 0; y < png->height; y++)
|
|
for (x = 0; x < png->width; x++, src += 4)
|
|
{
|
|
accumalpha &= src[3];
|
|
*BITMAP_ADDR32(bitmap, y, x) = MAKE_ARGB(src[3], src[0], src[1], src[2]);
|
|
}
|
|
}
|
|
|
|
/* set the hasalpha flag */
|
|
if (hasalpha != NULL)
|
|
*hasalpha = (accumalpha != 0xff);
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------
|
|
copy_png_alpha_to_bitmap - copy the PNG data
|
|
to the alpha channel of a bitmap
|
|
-------------------------------------------------*/
|
|
|
|
static void copy_png_alpha_to_bitmap(bitmap_t *bitmap, const png_info *png, int *hasalpha)
|
|
{
|
|
UINT8 accumalpha = 0xff;
|
|
UINT8 *src;
|
|
int x, y;
|
|
|
|
/* handle 8bpp palettized case */
|
|
if (png->color_type == 3)
|
|
{
|
|
/* loop over width/height */
|
|
src = png->image;
|
|
for (y = 0; y < png->height; y++)
|
|
for (x = 0; x < png->width; x++, src++)
|
|
{
|
|
rgb_t pixel = *BITMAP_ADDR32(bitmap, y, x);
|
|
UINT8 alpha = compute_brightness(MAKE_RGB(png->palette[*src * 3], png->palette[*src * 3 + 1], png->palette[*src * 3 + 2]));
|
|
accumalpha &= alpha;
|
|
*BITMAP_ADDR32(bitmap, y, x) = MAKE_ARGB(alpha, RGB_RED(pixel), RGB_GREEN(pixel), RGB_BLUE(pixel));
|
|
}
|
|
}
|
|
|
|
/* handle 8bpp grayscale case */
|
|
else if (png->color_type == 0)
|
|
{
|
|
/* loop over width/height */
|
|
src = png->image;
|
|
for (y = 0; y < png->height; y++)
|
|
for (x = 0; x < png->width; x++, src++)
|
|
{
|
|
rgb_t pixel = *BITMAP_ADDR32(bitmap, y, x);
|
|
accumalpha &= *src;
|
|
*BITMAP_ADDR32(bitmap, y, x) = MAKE_ARGB(*src, RGB_RED(pixel), RGB_GREEN(pixel), RGB_BLUE(pixel));
|
|
}
|
|
}
|
|
|
|
/* handle 32bpp non-alpha case */
|
|
else if (png->color_type == 2)
|
|
{
|
|
/* loop over width/height */
|
|
src = png->image;
|
|
for (y = 0; y < png->height; y++)
|
|
for (x = 0; x < png->width; x++, src += 3)
|
|
{
|
|
rgb_t pixel = *BITMAP_ADDR32(bitmap, y, x);
|
|
UINT8 alpha = compute_brightness(MAKE_RGB(src[0], src[1], src[2]));
|
|
accumalpha &= alpha;
|
|
*BITMAP_ADDR32(bitmap, y, x) = MAKE_ARGB(alpha, RGB_RED(pixel), RGB_GREEN(pixel), RGB_BLUE(pixel));
|
|
}
|
|
}
|
|
|
|
/* handle 32bpp alpha case */
|
|
else
|
|
{
|
|
/* loop over width/height */
|
|
src = png->image;
|
|
for (y = 0; y < png->height; y++)
|
|
for (x = 0; x < png->width; x++, src += 4)
|
|
{
|
|
rgb_t pixel = *BITMAP_ADDR32(bitmap, y, x);
|
|
UINT8 alpha = compute_brightness(MAKE_RGB(src[0], src[1], src[2]));
|
|
accumalpha &= alpha;
|
|
*BITMAP_ADDR32(bitmap, y, x) = MAKE_ARGB(alpha, RGB_RED(pixel), RGB_GREEN(pixel), RGB_BLUE(pixel));
|
|
}
|
|
}
|
|
|
|
/* set the hasalpha flag */
|
|
if (hasalpha != NULL)
|
|
*hasalpha = (accumalpha != 0xff);
|
|
}
|