mame/src/mess/drivers/ip20.c
2013-05-23 04:38:53 +00:00

640 lines
18 KiB
C

/*********************************************************************\
*
* SGI IP20 IRIS Indigo workstation
*
* Skeleton Driver
*
* Todo: Everything
*
* Note: Machine uses R4400, not R4600
*
* Memory map:
*
* 1fa00000 - 1fa02047 Memory Controller
* 1fb80000 - 1fb9a7ff HPC1 CHIP0
* 1fc00000 - 1fc7ffff BIOS
*
\*********************************************************************/
#include "emu.h"
#include "cpu/mips/mips3.h"
#include "machine/8530scc.h"
#include "machine/sgi.h"
#include "machine/eeprom.h"
#include "machine/scsibus.h"
#include "machine/scsicd.h"
#include "machine/wd33c93.h"
struct HPC_t
{
UINT8 nMiscStatus;
UINT32 nParBufPtr;
UINT32 nLocalIOReg0Mask;
UINT32 nLocalIOReg1Mask;
UINT32 nVMEIntMask0;
UINT32 nVMEIntMask1;
UINT32 nSCSI0Descriptor;
UINT32 nSCSI0DMACtrl;
};
struct RTC_t
{
UINT8 nRAM[32];
UINT8 nTemp;
};
class ip20_state : public driver_device
{
public:
enum
{
TIMER_RTC
};
ip20_state(const machine_config &mconfig, device_type type, const char *tag)
: driver_device(mconfig, type, tag),
m_wd33c93(*this, "scsi:wd33c93"),
m_scc(*this, "scc"),
m_eeprom(*this, "eeprom"),
m_maincpu(*this, "maincpu") { }
HPC_t m_HPC;
RTC_t m_RTC;
DECLARE_READ32_MEMBER(hpc_r);
DECLARE_WRITE32_MEMBER(hpc_w);
DECLARE_READ32_MEMBER(int_r);
DECLARE_WRITE32_MEMBER(int_w);
DECLARE_WRITE_LINE_MEMBER(scsi_irq);
DECLARE_DRIVER_INIT(ip204415);
virtual void machine_start();
virtual void video_start();
UINT32 screen_update_ip204415(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect);
TIMER_CALLBACK_MEMBER(ip20_timer_rtc);
required_device<wd33c93_device> m_wd33c93;
required_device<scc8530_t> m_scc;
required_device<eeprom_device> m_eeprom;
inline void ATTR_PRINTF(3,4) verboselog(int n_level, const char *s_fmt, ... );
required_device<cpu_device> m_maincpu;
protected:
virtual void device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr);
};
#define VERBOSE_LEVEL ( 2 )
inline void ATTR_PRINTF(3,4) ip20_state::verboselog(int n_level, const char *s_fmt, ... )
{
if( VERBOSE_LEVEL >= n_level )
{
va_list v;
char buf[ 32768 ];
va_start( v, s_fmt );
vsprintf( buf, s_fmt, v );
va_end( v );
logerror( "%08x: %s", m_maincpu->pc(), buf );
}
}
void ip20_state::video_start()
{
}
UINT32 ip20_state::screen_update_ip204415(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
return 0;
}
static const eeprom_interface eeprom_interface_93C56 =
{
7, // address bits 7
16, // data bits 16
"*110x", // read 110x aaaaaaaa
"*101x", // write 101x aaaaaaaa dddddddd
"*111x", // erase 111x aaaaaaaa
"*10000xxxxxxx", // lock 100x 00xxxx
"*10011xxxxxxx", // unlock 100x 11xxxx
};
#define RTC_DAYOFWEEK state->m_RTC.nRAM[0x0e]
#define RTC_YEAR state->m_RTC.nRAM[0x0b]
#define RTC_MONTH state->m_RTC.nRAM[0x0a]
#define RTC_DAY state->m_RTC.nRAM[0x09]
#define RTC_HOUR state->m_RTC.nRAM[0x08]
#define RTC_MINUTE state->m_RTC.nRAM[0x07]
#define RTC_SECOND state->m_RTC.nRAM[0x06]
#define RTC_HUNDREDTH state->m_RTC.nRAM[0x05]
READ32_MEMBER(ip20_state::hpc_r)
{
offset <<= 2;
if( offset >= 0x0e00 && offset <= 0x0e7c )
{
verboselog(2, "RTC RAM[0x%02x] Read: %02x\n", ( offset - 0xe00 ) >> 2, m_RTC.nRAM[ ( offset - 0xe00 ) >> 2 ] );
return m_RTC.nRAM[ ( offset - 0xe00 ) >> 2 ];
}
switch( offset )
{
case 0x05c:
verboselog(2, "HPC Unknown Read: %08x (%08x) (returning 0x000000a5 as kludge)\n", 0x1fb80000 + offset, mem_mask );
return 0x0000a500;
case 0x00ac:
verboselog(2, "HPC Parallel Buffer Pointer Read: %08x (%08x)\n", m_HPC.nParBufPtr, mem_mask );
return m_HPC.nParBufPtr;
case 0x00c0:
verboselog(2, "HPC Endianness Read: %08x (%08x)\n", 0x0000001f, mem_mask );
return 0x0000001f;
case 0x0120:
if (ACCESSING_BITS_8_15)
{
return ( m_wd33c93->read( space, 0 ) << 8 );
}
else
{
return 0;
}
case 0x0124:
if (ACCESSING_BITS_8_15)
{
return ( m_wd33c93->read( space, 1 ) << 8 );
}
else
{
return 0;
}
case 0x01b0:
verboselog(2, "HPC Misc. Status Read: %08x (%08x)\n", m_HPC.nMiscStatus, mem_mask );
return m_HPC.nMiscStatus;
case 0x01bc:
// verboselog(machine, 2, "HPC CPU Serial EEPROM Read\n" );
return m_eeprom->read_bit() << 4;
case 0x01c4:
verboselog(2, "HPC Local IO Register 0 Mask Read: %08x (%08x)\n", m_HPC.nLocalIOReg0Mask, mem_mask );
return m_HPC.nLocalIOReg0Mask;
case 0x01cc:
verboselog(2, "HPC Local IO Register 1 Mask Read: %08x (%08x)\n", m_HPC.nLocalIOReg0Mask, mem_mask );
return m_HPC.nLocalIOReg1Mask;
case 0x01d4:
verboselog(2, "HPC VME Interrupt Mask 0 Read: %08x (%08x)\n", m_HPC.nLocalIOReg0Mask, mem_mask );
return m_HPC.nVMEIntMask0;
case 0x01d8:
verboselog(2, "HPC VME Interrupt Mask 1 Read: %08x (%08x)\n", m_HPC.nLocalIOReg0Mask, mem_mask );
return m_HPC.nVMEIntMask1;
case 0x0d00:
verboselog(2, "HPC DUART0 Channel B Control Read\n" );
// return 0x00000004;
return 0x7c; //m_scc->reg_r(space, 0);
case 0x0d04:
verboselog(2, "HPC DUART0 Channel B Data Read\n" );
// return 0;
return m_scc->reg_r(space, 2);
case 0x0d08:
verboselog(2, "HPC DUART0 Channel A Control Read (%08x)\n", mem_mask );
// return 0x40;
return 0x7c; //m_scc->reg_r(space, 1);
case 0x0d0c:
verboselog(2, "HPC DUART0 Channel A Data Read\n" );
// return 0;
return m_scc->reg_r(space, 3);
case 0x0d10:
// verboselog(machine, 2, "HPC DUART1 Channel B Control Read\n" );
return 0x00000004;
case 0x0d14:
verboselog(2, "HPC DUART1 Channel B Data Read\n" );
return 0;
case 0x0d18:
verboselog(2, "HPC DUART1 Channel A Control Read\n" );
return 0;
case 0x0d1c:
verboselog(2, "HPC DUART1 Channel A Data Read\n" );
return 0;
case 0x0d20:
verboselog(2, "HPC DUART2 Channel B Control Read\n" );
return 0x00000004;
case 0x0d24:
verboselog(2, "HPC DUART2 Channel B Data Read\n" );
return 0;
case 0x0d28:
verboselog(2, "HPC DUART2 Channel A Control Read\n" );
return 0;
case 0x0d2c:
verboselog(2, "HPC DUART2 Channel A Data Read\n" );
return 0;
case 0x0d30:
verboselog(2, "HPC DUART3 Channel B Control Read\n" );
return 0x00000004;
case 0x0d34:
verboselog(2, "HPC DUART3 Channel B Data Read\n" );
return 0;
case 0x0d38:
verboselog(2, "HPC DUART3 Channel A Control Read\n" );
return 0;
case 0x0d3c:
verboselog(2, "HPC DUART3 Channel A Data Read\n" );
return 0;
}
verboselog(0, "Unmapped HPC read: 0x%08x (%08x)\n", 0x1fb80000 + offset, mem_mask );
return 0;
}
WRITE32_MEMBER(ip20_state::hpc_w)
{
offset <<= 2;
if( offset >= 0x0e00 && offset <= 0x0e7c )
{
verboselog(2, "RTC RAM[0x%02x] Write: %02x\n", ( offset - 0xe00 ) >> 2, data & 0x000000ff );
m_RTC.nRAM[ ( offset - 0xe00 ) >> 2 ] = data & 0x000000ff;
switch( ( offset - 0xe00 ) >> 2 )
{
case 0:
break;
case 4:
if( !( m_RTC.nRAM[0x00] & 0x80 ) )
{
if( data & 0x80 )
{
m_RTC.nRAM[0x19] = m_RTC.nRAM[0x06]; //RTC_SECOND;
m_RTC.nRAM[0x1a] = m_RTC.nRAM[0x07]; //RTC_MINUTE;
m_RTC.nRAM[0x1b] = m_RTC.nRAM[0x08]; //RTC_HOUR;
m_RTC.nRAM[0x1c] = m_RTC.nRAM[0x09]; //RTC_DAY;
m_RTC.nRAM[0x1d] = m_RTC.nRAM[0x0a]; //RTC_MONTH;
}
}
break;
}
return;
}
switch( offset )
{
case 0x0090: // SCSI0 next descriptor pointer
m_HPC.nSCSI0Descriptor = data;
break;
case 0x0094: // SCSI0 control flags
m_HPC.nSCSI0DMACtrl = data;
#if 0
if (data & 0x80)
{
UINT32 next;
mame_printf_info("DMA activated for SCSI0\n");
mame_printf_info("Descriptor block:\n");
mame_printf_info("CTL: %08x BUFPTR: %08x DESCPTR %08x\n",
program_read_dword(m_HPC.nSCSI0Descriptor), program_read_dword(m_HPC.nSCSI0Descriptor+4),
program_read_dword(m_HPC.nSCSI0Descriptor+8));
next = program_read_dword(m_HPC.nSCSI0Descriptor+8);
mame_printf_info("CTL: %08x BUFPTR: %08x DESCPTR %08x\n",
program_read_dword(next), program_read_dword(next+4),
program_read_dword(next+8));
}
#endif
break;
case 0x00ac:
verboselog(2, "HPC Parallel Buffer Pointer Write: %08x (%08x)\n", data, mem_mask );
m_HPC.nParBufPtr = data;
break;
case 0x0120:
if (ACCESSING_BITS_8_15)
{
verboselog(2, "HPC SCSI Controller Register Write: %08x\n", ( data >> 8 ) & 0x000000ff );
m_wd33c93->write( space, 0, ( data >> 8 ) & 0x000000ff );
}
else
{
return;
}
break;
case 0x0124:
if (ACCESSING_BITS_8_15)
{
verboselog(2, "HPC SCSI Controller Data Write: %08x\n", ( data >> 8 ) & 0x000000ff );
m_wd33c93->write( space, 1, ( data >> 8 ) & 0x000000ff );
}
else
{
return;
}
break;
case 0x01b0:
verboselog(2, "HPC Misc. Status Write: %08x (%08x)\n", data, mem_mask );
if( data & 0x00000001 )
{
verboselog(2, " Force DSP hard reset\n" );
}
if( data & 0x00000002 )
{
verboselog(2, " Force IRQA\n" );
}
if( data & 0x00000004 )
{
verboselog(2, " Set IRQA polarity high\n" );
}
else
{
verboselog(2, " Set IRQA polarity low\n" );
}
if( data & 0x00000008 )
{
verboselog(2, " SRAM size: 32K\n" );
}
else
{
verboselog(2, " SRAM size: 8K\n" );
}
m_HPC.nMiscStatus = data;
break;
case 0x01bc:
// verboselog(machine, 2, "HPC CPU Serial EEPROM Write: %08x (%08x)\n", data, mem_mask );
if( data & 0x00000001 )
{
verboselog(2, " CPU board LED on\n" );
}
m_eeprom->write_bit((data & 0x00000008) ? 1 : 0 );
m_eeprom->set_cs_line((data & 0x00000002) ? ASSERT_LINE : CLEAR_LINE );
m_eeprom->set_clock_line((data & 0x00000004) ? CLEAR_LINE : ASSERT_LINE );
break;
case 0x01c4:
verboselog(2, "HPC Local IO Register 0 Mask Write: %08x (%08x)\n", data, mem_mask );
m_HPC.nLocalIOReg0Mask = data;
break;
case 0x01cc:
verboselog(2, "HPC Local IO Register 1 Mask Write: %08x (%08x)\n", data, mem_mask );
m_HPC.nLocalIOReg1Mask = data;
break;
case 0x01d4:
verboselog(2, "HPC VME Interrupt Mask 0 Write: %08x (%08x)\n", data, mem_mask );
m_HPC.nVMEIntMask0 = data;
break;
case 0x01d8:
verboselog(2, "HPC VME Interrupt Mask 1 Write: %08x (%08x)\n", data, mem_mask );
m_HPC.nVMEIntMask1 = data;
break;
case 0x0d00:
verboselog(2, "HPC DUART0 Channel B Control Write: %08x (%08x)\n", data, mem_mask );
m_scc->reg_w(space, 0, data);
break;
case 0x0d04:
verboselog(2, "HPC DUART0 Channel B Data Write: %08x (%08x)\n", data, mem_mask );
m_scc->reg_w(space, 2, data);
break;
case 0x0d08:
verboselog(2, "HPC DUART0 Channel A Control Write: %08x (%08x)\n", data, mem_mask );
m_scc->reg_w(space, 1, data);
break;
case 0x0d0c:
verboselog(2, "HPC DUART0 Channel A Data Write: %08x (%08x)\n", data, mem_mask );
m_scc->reg_w(space, 3, data);
break;
case 0x0d10:
if( ( data & 0x000000ff ) >= 0x00000020 )
{
// verboselog(2, "HPC DUART1 Channel B Control Write: %08x (%08x) %c\n", data, mem_mask, data & 0x000000ff );
//mame_printf_info( "%c", data & 0x000000ff );
}
else
{
// verboselog(2, "HPC DUART1 Channel B Control Write: %08x (%08x)\n", data, mem_mask );
}
break;
case 0x0d14:
if( ( data & 0x000000ff ) >= 0x00000020 || ( data & 0x000000ff ) == 0x0d || ( data & 0x000000ff ) == 0x0a )
{
verboselog(2, "HPC DUART1 Channel B Data Write: %08x (%08x) %c\n", data, mem_mask, data & 0x000000ff );
mame_printf_info( "%c", data & 0x000000ff );
}
else
{
verboselog(2, "HPC DUART1 Channel B Data Write: %08x (%08x)\n", data, mem_mask );
}
break;
case 0x0d18:
mame_printf_info("HPC DUART1 Channel A Control Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d1c:
verboselog(2, "HPC DUART1 Channel A Data Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d20:
mame_printf_info("HPC DUART2 Channel B Control Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d24:
verboselog(2, "HPC DUART2 Channel B Data Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d28:
mame_printf_info("HPC DUART2 Channel A Control Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d2c:
verboselog(2, "HPC DUART2 Channel A Data Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d30:
mame_printf_info("HPC DUART3 Channel B Control Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d34:
verboselog(2, "HPC DUART3 Channel B Data Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d38:
mame_printf_info("HPC DUART3 Channel A Control Write: %08x (%08x)\n", data, mem_mask );
break;
case 0x0d3c:
verboselog(2, "HPC DUART3 Channel A Data Write: %08x (%08x)\n", data, mem_mask );
break;
default:
mame_printf_info("Unmapped HPC write: 0x%08x (%08x): %08x\n", 0x1fb80000 + offset, mem_mask, data);
break;
}
}
// INT/INT2/INT3 interrupt controllers
READ32_MEMBER(ip20_state::int_r)
{
mame_printf_info("INT: read @ ofs %x (mask %x) (PC=%x)\n", offset, mem_mask, space.device().safe_pc());
return 0;
}
WRITE32_MEMBER(ip20_state::int_w)
{
mame_printf_info("INT: write %x to ofs %x (mask %x) (PC=%x)\n", data, offset, mem_mask, space.device().safe_pc());
}
static ADDRESS_MAP_START( ip204415_map, AS_PROGRAM, 32, ip20_state )
AM_RANGE( 0x00000000, 0x001fffff ) AM_RAM AM_SHARE("share10")
AM_RANGE( 0x08000000, 0x08ffffff ) AM_RAM AM_SHARE("share5")
AM_RANGE( 0x09000000, 0x097fffff ) AM_RAM AM_SHARE("share6")
AM_RANGE( 0x0a000000, 0x0a7fffff ) AM_RAM AM_SHARE("share7")
AM_RANGE( 0x0c000000, 0x0c7fffff ) AM_RAM AM_SHARE("share8")
AM_RANGE( 0x10000000, 0x107fffff ) AM_RAM AM_SHARE("share9")
AM_RANGE( 0x18000000, 0x187fffff ) AM_RAM AM_SHARE("share1")
AM_RANGE( 0x1fa00000, 0x1fa1ffff ) AM_READWRITE_LEGACY(sgi_mc_r, sgi_mc_w )
AM_RANGE( 0x1fb80000, 0x1fb8ffff ) AM_READWRITE(hpc_r, hpc_w )
AM_RANGE( 0x1fbd9000, 0x1fbd903f ) AM_READWRITE(int_r, int_w )
AM_RANGE( 0x1fc00000, 0x1fc7ffff ) AM_ROM AM_SHARE("share2") AM_REGION( "user1", 0 )
AM_RANGE( 0x80000000, 0x801fffff ) AM_RAM AM_SHARE("share10")
AM_RANGE( 0x88000000, 0x88ffffff ) AM_RAM AM_SHARE("share5")
AM_RANGE( 0xa0000000, 0xa01fffff ) AM_RAM AM_SHARE("share10")
AM_RANGE( 0xa8000000, 0xa8ffffff ) AM_RAM AM_SHARE("share5")
AM_RANGE( 0xa9000000, 0xa97fffff ) AM_RAM AM_SHARE("share6")
AM_RANGE( 0xaa000000, 0xaa7fffff ) AM_RAM AM_SHARE("share7")
AM_RANGE( 0xac000000, 0xac7fffff ) AM_RAM AM_SHARE("share8")
AM_RANGE( 0xb0000000, 0xb07fffff ) AM_RAM AM_SHARE("share9")
AM_RANGE( 0xb8000000, 0xb87fffff ) AM_RAM AM_SHARE("share1")
AM_RANGE( 0xbfa00000, 0xbfa1ffff ) AM_READWRITE_LEGACY(sgi_mc_r, sgi_mc_w )
AM_RANGE( 0xbfb80000, 0xbfb8ffff ) AM_READWRITE(hpc_r, hpc_w )
AM_RANGE( 0xbfbd9000, 0xbfbd903f ) AM_READWRITE(int_r, int_w )
AM_RANGE( 0xbfc00000, 0xbfc7ffff ) AM_ROM AM_SHARE("share2") /* BIOS Mirror */
ADDRESS_MAP_END
WRITE_LINE_MEMBER(ip20_state::scsi_irq)
{
}
static const struct WD33C93interface wd33c93_intf =
{
DEVCB_DRIVER_LINE_MEMBER(ip20_state,scsi_irq) /* command completion IRQ */
};
DRIVER_INIT_MEMBER(ip20_state,ip204415)
{
}
void ip20_state::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
switch (id)
{
case TIMER_RTC:
ip20_timer_rtc(ptr, param);
break;
default:
assert_always(FALSE, "Unknown id in ip20_state::device_timer");
}
}
TIMER_CALLBACK_MEMBER(ip20_state::ip20_timer_rtc)
{
ip20_state *state = machine().driver_data<ip20_state>();
// update RTC every 10 milliseconds
m_RTC.nTemp++;
if (m_RTC.nTemp >= 10)
{
m_RTC.nTemp = 0;
RTC_HUNDREDTH++;
if( ( RTC_HUNDREDTH & 0x0f ) == 0x0a )
{
RTC_HUNDREDTH -= 0x0a;
RTC_HUNDREDTH += 0x10;
if( ( RTC_HUNDREDTH & 0xa0 ) == 0xa0 )
{
RTC_HUNDREDTH = 0;
RTC_SECOND++;
if( ( RTC_SECOND & 0x0f ) == 0x0a )
{
RTC_SECOND -= 0x0a;
RTC_SECOND += 0x10;
if( RTC_SECOND == 0x60 )
{
RTC_SECOND = 0;
RTC_MINUTE++;
if( ( RTC_MINUTE & 0x0f ) == 0x0a )
{
RTC_MINUTE -= 0x0a;
RTC_MINUTE += 0x10;
if( RTC_MINUTE == 0x60 )
{
RTC_MINUTE = 0;
RTC_HOUR++;
if( ( RTC_HOUR & 0x0f ) == 0x0a )
{
RTC_HOUR -= 0x0a;
RTC_HOUR += 0x10;
if( RTC_HOUR == 0x24 )
{
RTC_HOUR = 0;
RTC_DAY++;
}
}
}
}
}
}
}
}
}
timer_set(attotime::from_msec(1), TIMER_RTC);
}
void ip20_state::machine_start()
{
sgi_mc_init(machine());
m_HPC.nMiscStatus = 0;
m_HPC.nParBufPtr = 0;
m_HPC.nLocalIOReg0Mask = 0;
m_HPC.nLocalIOReg1Mask = 0;
m_HPC.nVMEIntMask0 = 0;
m_HPC.nVMEIntMask1 = 0;
m_RTC.nTemp = 0;
timer_set(attotime::from_msec(1), TIMER_RTC);
}
static INPUT_PORTS_START( ip204415 )
PORT_START("unused")
PORT_BIT ( 0xff, IP_ACTIVE_HIGH, IPT_UNUSED )
INPUT_PORTS_END
static const mips3_config config =
{
32768, /* code cache size */
32768 /* data cache size */
};
static MACHINE_CONFIG_START( ip204415, ip20_state )
MCFG_CPU_ADD( "maincpu", R4600BE, 50000000*3 )
MCFG_CPU_CONFIG( config )
MCFG_CPU_PROGRAM_MAP( ip204415_map)
/* video hardware */
MCFG_SCREEN_ADD("screen", RASTER)
MCFG_SCREEN_REFRESH_RATE( 60 )
MCFG_SCREEN_VBLANK_TIME(ATTOSECONDS_IN_USEC(2500)) /* not accurate */
MCFG_SCREEN_SIZE(800, 600)
MCFG_SCREEN_VISIBLE_AREA(0, 799, 0, 599)
MCFG_SCREEN_UPDATE_DRIVER(ip20_state, screen_update_ip204415)
MCFG_PALETTE_LENGTH(65536)
MCFG_SPEAKER_STANDARD_MONO("mono")
MCFG_SCC8530_ADD("scc", 7000000, line_cb_t())
MCFG_SCSIBUS_ADD("scsi")
MCFG_SCSIDEV_ADD("scsi:cdrom", SCSICD, SCSI_ID_6)
MCFG_WD33C93_ADD("scsi:wd33c93", wd33c93_intf)
MCFG_SOUND_MODIFY( "scsi:cdrom:cdda" )
MCFG_SOUND_ROUTE(ALL_OUTPUTS, "^^^mono", 1.0)
MCFG_EEPROM_ADD("eeprom", eeprom_interface_93C56)
MACHINE_CONFIG_END
ROM_START( ip204415 )
ROM_REGION( 0x80000, "user1", 0 )
ROM_LOAD( "ip204415.bin", 0x000000, 0x080000, CRC(940d960e) SHA1(596aba530b53a147985ff3f6f853471ce48c866c) )
ROM_END
/* YEAR NAME PARENT COMPAT MACHINE INPUT INIT COMPANY FULLNAME */
COMP( 1993, ip204415, 0, 0, ip204415, ip204415, ip20_state, ip204415, "Silicon Graphics Inc", "IRIS Indigo (R4400, 150MHz)", GAME_NOT_WORKING | GAME_NO_SOUND )