mame/src/mess/drivers/ti99_4p.c
2013-04-17 08:30:36 +00:00

927 lines
28 KiB
C

/****************************************************************************
SNUG SGCPU (a.k.a. 99/4p) system
This system is a reimplementation of the old ti99/4a console. It is known
both as the 99/4p ("peripheral box", since the system is a card to be
inserted in the peripheral box, instead of a self contained console), and
as the SGCPU ("Second Generation CPU", which was originally the name used
in TI documentation to refer to either (or both) TI99/5 and TI99/8
projects).
The SGCPU was designed and built by the SNUG (System 99 Users Group),
namely by Michael Becker for the hardware part and Harald Glaab for the
software part. It has no relationship with TI.
The card is architectured around a 16-bit bus (vs. an 8-bit bus in every
other TI99 system). It includes 64kb of ROM, including a GPL interpreter,
an internal DSR ROM which contains system-specific code, part of the TI
extended Basic interpreter, and up to 1Mbyte of RAM. It still includes a
16-bit to 8-bit multiplexer in order to support extension cards designed
for TI99/4a, but it can support 16-bit cards, too. It does not include
GROMs, video or sound: instead, it relies on the HSGPL and EVPC cards to
do the job.
IMPORTANT: The SGCPU card relies on a properly set up HSGPL flash memory
card; without, it will immediately lock up. It is impossible to set it up
from here (a bootstrap problem; you cannot start without the HSGPL).
The best chance is to start a ti99_4ev with a plugged-in HSGPL
and go through the setup process there. Copy the nvram files of the hsgpl into this
driver's nvram subdirectory. The contents will be directly usable for the SGCPU.
Michael Zapf
February 2012: Rewritten as class
*****************************************************************************/
#include "emu.h"
#include "cpu/tms9900/tms9900.h"
#include "sound/wave.h"
#include "sound/dac.h"
#include "machine/tms9901.h"
#include "machine/ti99/peribox.h"
#include "imagedev/cassette.h"
#include "machine/ti99/videowrp.h"
#include "machine/ti99/peribox.h"
#include "machine/ti99/joyport.h"
#define TMS9901_TAG "tms9901"
#define SGCPU_TAG "sgcpu"
#define SAMSMEM_TAG "samsmem"
#define PADMEM_TAG "padmem"
#define VERBOSE 1
#define LOG logerror
class ti99_4p_state : public driver_device
{
public:
ti99_4p_state(const machine_config &mconfig, device_type type, const char *tag)
: driver_device(mconfig, type, tag),
m_cassette(*this, "cassette") { }
DECLARE_WRITE_LINE_MEMBER( console_ready );
DECLARE_WRITE_LINE_MEMBER( console_ready_dmux );
DECLARE_WRITE_LINE_MEMBER( extint );
DECLARE_WRITE_LINE_MEMBER( notconnected );
DECLARE_READ8_MEMBER( interrupt_level );
DECLARE_READ16_MEMBER( memread );
DECLARE_WRITE16_MEMBER( memwrite );
DECLARE_READ16_MEMBER( samsmem_read );
DECLARE_WRITE16_MEMBER( samsmem_write );
DECLARE_WRITE8_MEMBER(external_operation);
DECLARE_WRITE_LINE_MEMBER( clock_out );
void clock_in(int clock);
// CRU (Communication Register Unit) handling
DECLARE_READ8_MEMBER( cruread );
DECLARE_WRITE8_MEMBER( cruwrite );
DECLARE_READ8_MEMBER( read_by_9901 );
DECLARE_WRITE_LINE_MEMBER(keyC0);
DECLARE_WRITE_LINE_MEMBER(keyC1);
DECLARE_WRITE_LINE_MEMBER(keyC2);
DECLARE_WRITE_LINE_MEMBER(cs_motor);
DECLARE_WRITE_LINE_MEMBER(audio_gate);
DECLARE_WRITE_LINE_MEMBER(cassette_output);
DECLARE_WRITE8_MEMBER(tms9901_interrupt);
DECLARE_WRITE_LINE_MEMBER(handset_ack);
DECLARE_WRITE_LINE_MEMBER(alphaW);
virtual void machine_start();
DECLARE_MACHINE_RESET(ti99_4p);
TIMER_DEVICE_CALLBACK_MEMBER(sgcpu_hblank_interrupt);
DECLARE_WRITE_LINE_MEMBER(set_tms9901_INT2_from_v9938);
tms9900_device* m_cpu;
tms9901_device* m_tms9901;
ti_sound_system_device* m_sound;
ti_exp_video_device* m_video;
required_device<cassette_image_device> m_cassette;
peribox_device* m_peribox;
joyport_device* m_joyport;
// Pointer to ROM0
UINT16 *m_rom0;
// Pointer to DSR ROM
UINT16 *m_dsr;
// Pointer to ROM6, first bank
UINT16 *m_rom6a;
// Pointer to ROM6, second bank
UINT16 *m_rom6b;
// AMS RAM (1 Mib)
UINT16 *m_ram;
// Scratch pad ram (1 KiB)
UINT16 *m_scratchpad;
// First joystick. 6 for TI-99/4A
int m_firstjoy;
// READY line
int m_ready_line, m_ready_line_dmux;
private:
DECLARE_READ16_MEMBER( datamux_read );
DECLARE_WRITE16_MEMBER( datamux_write );
void set_keyboard_column(int number, int data);
int m_keyboard_column;
int m_check_alphalock;
// True if SGCPU DSR is enabled
bool m_internal_dsr;
// True if SGCPU rom6 is enabled
bool m_internal_rom6;
// Offset to the ROM6 bank.
int m_rom6_bank;
// Wait states
int m_waitcount;
// TRUE when mapper is active
bool m_map_mode;
// TRUE when mapper registers are accessible
bool m_access_mapper;
UINT8 m_lowbyte;
UINT8 m_highbyte;
UINT8 m_latch;
// Mapper registers
UINT8 m_mapper[16];
int m_ready_prev; // for debugging purposes only
};
static ADDRESS_MAP_START(memmap, AS_PROGRAM, 16, ti99_4p_state)
AM_RANGE(0x0000, 0xffff) AM_READWRITE( memread, memwrite )
ADDRESS_MAP_END
static ADDRESS_MAP_START(cru_map, AS_IO, 8, ti99_4p_state)
AM_RANGE(0x0000, 0x003f) AM_DEVREAD(TMS9901_TAG, tms9901_device, read)
AM_RANGE(0x0000, 0x01ff) AM_READ( cruread )
AM_RANGE(0x0000, 0x01ff) AM_DEVWRITE(TMS9901_TAG, tms9901_device, write)
AM_RANGE(0x0000, 0x0fff) AM_WRITE( cruwrite )
ADDRESS_MAP_END
/*
Input ports, used by machine code for TI keyboard and joystick emulation.
Since the keyboard microcontroller is not emulated, we use the TI99/4a 48-key keyboard,
plus two optional joysticks.
*/
static INPUT_PORTS_START(ti99_4p)
/* 4 ports for keyboard and joystick */
PORT_START("COL0") // col 0
PORT_BIT(0x88, IP_ACTIVE_LOW, IPT_UNUSED)
/* The original control key is located on the left, but we accept the right control key as well */
PORT_BIT(0x40, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("CTRL") PORT_CODE(KEYCODE_LCONTROL) PORT_CODE(KEYCODE_RCONTROL)
/* TI99/4a has a second shift key which maps the same */
PORT_BIT(0x20, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_LSHIFT) PORT_CODE(KEYCODE_RSHIFT) PORT_CHAR(UCHAR_SHIFT_1)
/* The original function key is located on the right, but we accept the left alt key as well */
PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("FCTN") PORT_CODE(KEYCODE_RALT) PORT_CODE(KEYCODE_LALT) PORT_CHAR(UCHAR_SHIFT_2)
PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_ENTER) PORT_CHAR(13)
PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_SPACE) PORT_CHAR(' ')
PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("= + QUIT") PORT_CODE(KEYCODE_EQUALS) PORT_CHAR('=') PORT_CHAR('+') PORT_CHAR(UCHAR_MAMEKEY(F12))
PORT_START("COL1") // col 1
PORT_BIT(0x80, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_X) PORT_CHAR('x') PORT_CHAR('X') PORT_CHAR(UCHAR_MAMEKEY(DOWN))
PORT_BIT(0x40, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_W) PORT_CHAR('w') PORT_CHAR('W') PORT_CHAR('~')
PORT_BIT(0x20, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_S) PORT_CHAR('s') PORT_CHAR('S') PORT_CHAR(UCHAR_MAMEKEY(LEFT))
PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHAR('@') PORT_CHAR(UCHAR_MAMEKEY(F2))
PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("9 ( BACK") PORT_CODE(KEYCODE_9) PORT_CHAR('9') PORT_CHAR('(') PORT_CHAR(UCHAR_MAMEKEY(F9))
PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_O) PORT_CHAR('o') PORT_CHAR('O') PORT_CHAR('\'')
PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_L) PORT_CHAR('l') PORT_CHAR('L')
PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_STOP) PORT_CHAR('.') PORT_CHAR('>')
PORT_START("COL2") // col 2
PORT_BIT(0x80, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_C) PORT_CHAR('c') PORT_CHAR('C') PORT_CHAR('`')
PORT_BIT(0x40, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_E) PORT_CHAR('e') PORT_CHAR('E') PORT_CHAR(UCHAR_MAMEKEY(UP))
PORT_BIT(0x20, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_D) PORT_CHAR('d') PORT_CHAR('D') PORT_CHAR(UCHAR_MAMEKEY(RIGHT))
PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("3 # ERASE") PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHAR('#') PORT_CHAR(UCHAR_MAMEKEY(F3))
PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("8 * REDO") PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHAR('*') PORT_CHAR(UCHAR_MAMEKEY(F8))
PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_I) PORT_CHAR('i') PORT_CHAR('I') PORT_CHAR('?')
PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_K) PORT_CHAR('k') PORT_CHAR('K')
PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_COMMA) PORT_CHAR(',') PORT_CHAR('<')
PORT_START("COL3") // col 3
PORT_BIT(0x80, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_V) PORT_CHAR('v') PORT_CHAR('V')
PORT_BIT(0x40, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_R) PORT_CHAR('r') PORT_CHAR('R') PORT_CHAR('[')
PORT_BIT(0x20, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_F) PORT_CHAR('f') PORT_CHAR('F') PORT_CHAR('{')
PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("4 $ CLEAR") PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHAR('$') PORT_CHAR(UCHAR_MAMEKEY(F4))
PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("7 & AID") PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHAR('&') PORT_CHAR(UCHAR_MAMEKEY(F7))
PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_U) PORT_CHAR('u') PORT_CHAR('U') PORT_CHAR('_')
PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_J) PORT_CHAR('j') PORT_CHAR('J')
PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_M) PORT_CHAR('m') PORT_CHAR('M')
PORT_START("COL4") // col 4
PORT_BIT(0x80, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_B) PORT_CHAR('b') PORT_CHAR('B')
PORT_BIT(0x40, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_T) PORT_CHAR('t') PORT_CHAR('T') PORT_CHAR(']')
PORT_BIT(0x20, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_G) PORT_CHAR('g') PORT_CHAR('G') PORT_CHAR('}')
PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("5 % BEGIN") PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHAR('%') PORT_CHAR(UCHAR_MAMEKEY(F5))
PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("6 ^ PROC'D") PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHAR('^') PORT_CHAR(UCHAR_MAMEKEY(F6))
PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_Y) PORT_CHAR('y') PORT_CHAR('Y')
PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_H) PORT_CHAR('h') PORT_CHAR('H')
PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_N) PORT_CHAR('n') PORT_CHAR('N')
PORT_START("COL5") // col 5
PORT_BIT(0x80, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_Z) PORT_CHAR('z') PORT_CHAR('Z') PORT_CHAR('\\')
PORT_BIT(0x40, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_Q) PORT_CHAR('q') PORT_CHAR('Q')
PORT_BIT(0x20, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_A) PORT_CHAR('a') PORT_CHAR('A') PORT_CHAR('|')
PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHAR('!') PORT_CHAR(UCHAR_MAMEKEY(DEL))
PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_0) PORT_CHAR('0') PORT_CHAR(')') PORT_CHAR(UCHAR_MAMEKEY(F10))
PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_P) PORT_CHAR('p') PORT_CHAR('P') PORT_CHAR('\"')
PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_COLON) PORT_CHAR(';') PORT_CHAR(':')
PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH) PORT_CHAR('/') PORT_CHAR('-')
PORT_START("ALPHA") /* one more port for Alpha line */
PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Alpha Lock") PORT_CODE(KEYCODE_CAPSLOCK) PORT_TOGGLE
INPUT_PORTS_END
/*
Memory access
*/
READ16_MEMBER( ti99_4p_state::memread )
{
int addroff = offset << 1;
if (m_rom0 == NULL) return 0; // premature access
UINT16 zone = addroff & 0xe000;
UINT16 value = 0;
if (zone==0x0000)
{
// ROM0
value = m_rom0[(addroff & 0x1fff)>>1];
return value;
}
if (zone==0x2000 || zone==0xa000 || zone==0xc000 || zone==0xe000)
{
value = samsmem_read(space, offset, mem_mask);
return value;
}
if (zone==0x4000)
{
if (m_internal_dsr)
{
value = m_dsr[(addroff & 0x1fff)>>1];
return value;
}
else
{
if (m_access_mapper && ((addroff & 0xffe0)==0x4000))
{
value = m_mapper[offset & 0x000f]<<8;
return value;
}
}
}
if (zone==0x6000 && m_internal_rom6)
{
if (m_rom6_bank==0)
value = m_rom6a[(addroff & 0x1fff)>>1];
else
value = m_rom6b[(addroff & 0x1fff)>>1];
return value;
}
// Scratch pad RAM and sound
// speech is in peribox
// groms are in hsgpl in peribox
if (zone==0x8000)
{
if ((addroff & 0xfff0)==0x8400) // cannot read from sound
{
value = 0;
return value;
}
if ((addroff & 0xfc00)==0x8000)
{
value = m_scratchpad[(addroff & 0x03ff)>>1];
return value;
}
// Video: 8800, 8802
if ((addroff & 0xfffd)==0x8800)
{
value = m_video->read16(space, offset, mem_mask);
return value;
}
}
// If we are here, check the peribox via the datamux
// catch-all for unmapped zones
value = datamux_read(space, offset, mem_mask);
return value;
}
WRITE16_MEMBER( ti99_4p_state::memwrite )
{
// m_cpu->adjust_icount(-4);
int addroff = offset << 1;
UINT16 zone = addroff & 0xe000;
if (zone==0x0000)
{
// ROM0
if (VERBOSE>4) LOG("sgcpu: ignoring ROM write access at %04x\n", addroff);
return;
}
if (zone==0x2000 || zone==0xa000 || zone==0xc000 || zone==0xe000)
{
samsmem_write(space, offset, data, mem_mask);
return;
}
if (zone==0x4000)
{
if (m_internal_dsr)
{
if (VERBOSE>4) LOG("sgcpu: ignoring DSR write access at %04x\n", addroff);
return;
}
else
{
if (m_access_mapper && ((addroff & 0xffe0)==0x4000))
{
m_mapper[offset & 0x000f] = data;
return;
}
}
}
if (zone==0x6000 && m_internal_rom6)
{
m_rom6_bank = offset & 0x0001;
return;
}
// Scratch pad RAM and sound
// speech is in peribox
// groms are in hsgpl in peribox
if (zone==0x8000)
{
if ((addroff & 0xfff0)==0x8400) //sound write
{
m_sound->write(space, 0, (data >> 8) & 0xff);
return;
}
if ((addroff & 0xfc00)==0x8000)
{
m_scratchpad[(addroff & 0x03ff)>>1] = data;
return;
}
// Video: 8C00, 8C02
if ((addroff & 0xfffd)==0x8c00)
{
m_video->write16(space, offset, data, mem_mask);
return;
}
}
// If we are here, check the peribox via the datamux
// catch-all for unmapped zones
datamux_write(space, offset, data, mem_mask);
}
/***************************************************************************
Internal datamux; similar to TI-99/4A. However, here we have just
one device, the peripheral box, so it is much simpler.
***************************************************************************/
/*
The datamux is connected to the clock line in order to operate
the wait state counter.
*/
void ti99_4p_state::clock_in(int clock)
{
if (clock==ASSERT_LINE && m_waitcount!=0)
{
m_waitcount--;
if (m_waitcount==0) console_ready_dmux(ASSERT_LINE);
}
}
READ16_MEMBER( ti99_4p_state::datamux_read )
{
UINT8 hbyte = 0;
UINT16 addroff = (offset << 1);
m_peribox->readz(space, addroff+1, &m_latch, mem_mask);
m_lowbyte = m_latch;
m_peribox->readz(space, addroff, &hbyte, mem_mask);
m_highbyte = hbyte;
// use the latch and the currently read byte and put it on the 16bit bus
// printf("read address = %04x, value = %04x, memmask = %4x\n", addroff, (hbyte<<8) | sgcpu->latch, mem_mask);
// Insert four wait states and let CPU enter wait state
m_waitcount = 6;
console_ready_dmux(CLEAR_LINE);
return (hbyte<<8) | m_latch ;
}
/*
Write access.
TODO: use the 16-bit expansion in the box for suitable cards
*/
WRITE16_MEMBER( ti99_4p_state::datamux_write )
{
UINT16 addroff = (offset << 1);
// printf("write address = %04x, value = %04x, memmask = %4x\n", addroff, data, mem_mask);
// read more about the datamux in datamux.c
// Write to the PEB
m_peribox->write(space, addroff+1, data & 0xff);
// Write to the PEB
m_peribox->write(space, addroff, (data>>8) & 0xff);
// Insert four wait states and let CPU enter wait state
m_waitcount = 6;
console_ready_dmux(CLEAR_LINE);
}
/***************************************************************************
CRU interface
***************************************************************************/
#define MAP_CRU_BASE 0x0f00
#define SAMS_CRU_BASE 0x1e00
/*
CRU write
*/
WRITE8_MEMBER( ti99_4p_state::cruwrite )
{
int addroff = offset<<1;
if ((addroff & 0xff00)==MAP_CRU_BASE)
{
if ((addroff & 0x000e)==0) m_internal_dsr = data;
if ((addroff & 0x000e)==2) m_internal_rom6 = data;
if ((addroff & 0x000e)==4) m_peribox->senila((data!=0)? ASSERT_LINE : CLEAR_LINE);
if ((addroff & 0x000e)==6) m_peribox->senilb((data!=0)? ASSERT_LINE : CLEAR_LINE);
// TODO: more CRU bits? 8=Fast timing / a=KBENA
return;
}
if ((addroff & 0xff00)==SAMS_CRU_BASE)
{
if ((addroff & 0x000e)==0) m_access_mapper = data;
if ((addroff & 0x000e)==2) m_map_mode = data;
return;
}
// No match - pass to peribox
m_peribox->cruwrite(addroff, data);
}
READ8_MEMBER( ti99_4p_state::cruread )
{
UINT8 value = 0;
m_peribox->crureadz(offset<<4, &value);
return value;
}
/***************************************************************************
AMS Memory implementation
***************************************************************************/
/*
Memory read. The SAMS card has two address areas: The memory is at locations
0x2000-0x3fff and 0xa000-0xffff, and the mapper area is at 0x4000-0x401e
(only even addresses).
*/
READ16_MEMBER( ti99_4p_state::samsmem_read )
{
UINT32 address = 0;
int addroff = offset << 1;
// select memory expansion
if (m_map_mode)
address = (m_mapper[(addroff>>12) & 0x000f] << 12) + (addroff & 0x0fff);
else // transparent mode
address = addroff;
return m_ram[address>>1];
}
/*
Memory write
*/
WRITE16_MEMBER( ti99_4p_state::samsmem_write )
{
UINT32 address = 0;
int addroff = offset << 1;
// select memory expansion
if (m_map_mode)
address = (m_mapper[(addroff>>12) & 0x000f] << 12) + (addroff & 0x0fff);
else // transparent mode
address = addroff;
m_ram[address>>1] = data;
}
/***************************************************************************
Keyboard/tape control
****************************************************************************/
static const char *const column[] = { "COL0", "COL1", "COL2", "COL3", "COL4", "COL5" };
READ8_MEMBER( ti99_4p_state::read_by_9901 )
{
int answer=0;
switch (offset & 0x03)
{
case TMS9901_CB_INT7:
// Read pins INT3*-INT7* of TI99's 9901.
// bit 1: INT1 status (interrupt; not set at this place)
// bit 2: INT2 status (interrupt; not set at this place)
// bit 3-7: keyboard status bits 0 to 4
//
// |K|K|K|K|K|I2|I1|C|
//
if (m_keyboard_column >= m_firstjoy) // joy 1 and 2
{
answer = m_joyport->read_port();
}
else
{
answer = ioport(column[m_keyboard_column])->read();
}
if (m_check_alphalock)
{
answer &= ~(ioport("ALPHA")->read());
}
answer = (answer << 3) & 0xf8;
break;
case TMS9901_INT8_INT15:
// Read pins INT8*-INT15* of TI99's 9901.
// bit 0-2: keyboard status bits 5 to 7
// bit 3: tape input mirror
// bit 5-7: weird, not emulated
// |1|1|1|1|0|K|K|K|
if (m_keyboard_column >= m_firstjoy) answer = 0x07;
else answer = ((ioport(column[m_keyboard_column])->read())>>5) & 0x07;
answer |= 0xf0;
break;
case TMS9901_P0_P7:
break;
case TMS9901_P8_P15:
// Read pins P8-P15 of TI99's 9901.
// bit 26: high
// bit 27: tape input
answer = 4;
if (m_cassette->input() > 0) answer |= 8;
break;
}
return answer;
}
/*
WRITE key column select (P2-P4)
*/
void ti99_4p_state::set_keyboard_column(int number, int data)
{
if (data!=0) m_keyboard_column |= 1 << number;
else m_keyboard_column &= ~(1 << number);
if (m_keyboard_column >= m_firstjoy)
{
m_joyport->write_port(m_keyboard_column - m_firstjoy + 1);
}
}
WRITE_LINE_MEMBER( ti99_4p_state::keyC0 )
{
set_keyboard_column(0, state);
}
WRITE_LINE_MEMBER( ti99_4p_state::keyC1 )
{
set_keyboard_column(1, state);
}
WRITE_LINE_MEMBER( ti99_4p_state::keyC2 )
{
set_keyboard_column(2, state);
}
/*
WRITE alpha lock line (P5)
*/
WRITE_LINE_MEMBER( ti99_4p_state::alphaW )
{
m_check_alphalock = (state==0);
}
/*
command CS1 (only) tape unit motor (P6)
*/
WRITE_LINE_MEMBER( ti99_4p_state::cs_motor )
{
m_cassette->change_state((state!=0)? CASSETTE_MOTOR_ENABLED : CASSETTE_MOTOR_DISABLED,CASSETTE_MASK_MOTOR);
}
/*
audio gate (P8)
Set to 1 before using tape: this enables the mixing of tape input sound
with computer sound.
We do not really need to emulate this as the tape recorder generates sound
on its own.
*/
WRITE_LINE_MEMBER( ti99_4p_state::audio_gate )
{
}
/*
tape output (P9)
*/
WRITE_LINE_MEMBER( ti99_4p_state::cassette_output )
{
m_cassette->output((state!=0)? +1 : -1);
}
/* TMS9901 setup. The callback functions pass a reference to the TMS9901 as device. */
const tms9901_interface tms9901_wiring_sgcpu =
{
TMS9901_INT1 | TMS9901_INT2 | TMS9901_INTC, /* only input pins whose state is always known */
// read handler
DEVCB_DRIVER_MEMBER(ti99_4p_state, read_by_9901),
{ // write handlers
DEVCB_NULL,
DEVCB_NULL,
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, keyC0),
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, keyC1),
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, keyC2),
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, alphaW),
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, cs_motor),
DEVCB_NULL,
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, audio_gate),
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, cassette_output),
DEVCB_NULL,
DEVCB_NULL,
DEVCB_NULL,
DEVCB_NULL,
DEVCB_NULL,
DEVCB_NULL
},
/* interrupt handler */
DEVCB_DRIVER_MEMBER(ti99_4p_state, tms9901_interrupt)
};
/***************************************************************************
Control lines
****************************************************************************/
/*
We may have lots of devices pulling down this line; so we should use a AND
gate to do it right. On the other hand, when READY is down, there is just
no chance to make another device pull down the same line; the CPU just
won't access any other device in this time.
*/
WRITE_LINE_MEMBER( ti99_4p_state::console_ready )
{
m_ready_line = state;
int combined = (m_ready_line == ASSERT_LINE && m_ready_line_dmux == ASSERT_LINE)? ASSERT_LINE : CLEAR_LINE;
if (VERBOSE>6)
{
if (m_ready_prev != combined) LOG("ti99_4p: READY level = %d\n", combined);
}
m_ready_prev = combined;
m_cpu->set_ready(combined);
}
/*
The exception of the above rule. Memory access over the datamux also operates
the READY line, and the datamux raises READY depending on the clock pulse.
So we must make sure this does not interfere.
*/
WRITE_LINE_MEMBER( ti99_4p_state::console_ready_dmux )
{
m_ready_line_dmux = state;
int combined = (m_ready_line == ASSERT_LINE && m_ready_line_dmux == ASSERT_LINE)? ASSERT_LINE : CLEAR_LINE;
if (VERBOSE>7)
{
if (m_ready_prev != combined) LOG("ti99_4p: READY dmux level = %d\n", state);
}
m_ready_prev = combined;
m_cpu->set_ready(combined);
}
WRITE_LINE_MEMBER( ti99_4p_state::extint )
{
if (VERBOSE>6) LOG("ti99_4p: EXTINT level = %02x\n", state);
if (m_tms9901 != NULL)
m_tms9901->set_single_int(1, state);
}
WRITE_LINE_MEMBER( ti99_4p_state::notconnected )
{
if (VERBOSE>6) LOG("ti99_4p: Setting a not connected line ... ignored\n");
}
/*
Clock line from the CPU. Used to control wait state generation.
*/
WRITE_LINE_MEMBER( ti99_4p_state::clock_out )
{
clock_in(state);
}
WRITE8_MEMBER( ti99_4p_state::tms9901_interrupt )
{
// offset contains the interrupt level (0-15)
// However, the TI board just ignores that level and hardwires it to 1
// See below (interrupt_level)
m_cpu->set_input_line(INPUT_LINE_99XX_INTREQ, data);
}
READ8_MEMBER( ti99_4p_state::interrupt_level )
{
// On the TI-99 systems these IC lines are not used; the input lines
// at the CPU are hardwired to level 1.
return 1;
}
WRITE8_MEMBER( ti99_4p_state::external_operation )
{
static const char* extop[8] = { "inv1", "inv2", "IDLE", "RSET", "inv3", "CKON", "CKOF", "LREX" };
if (VERBOSE>1) LOG("External operation %s not implemented on the SGCPU board\n", extop[offset]);
}
/*****************************************************************************/
static PERIBOX_CONFIG( peribox_conf )
{
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, extint), // INTA
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, notconnected), // INTB
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, console_ready), // READY
0x70000 // Address bus prefix (AMA/AMB/AMC)
};
static TMS99xx_CONFIG( sgcpu_cpuconf )
{
DEVCB_DRIVER_MEMBER(ti99_4p_state, external_operation),
DEVCB_DRIVER_MEMBER(ti99_4p_state, interrupt_level),
DEVCB_NULL, // Instruction acquisition
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, clock_out),
DEVCB_NULL, // wait
DEVCB_NULL // Hold acknowledge
};
void ti99_4p_state::machine_start()
{
m_cpu = static_cast<tms9900_device*>(machine().device("maincpu"));
m_peribox = static_cast<peribox_device*>(machine().device(PERIBOX_TAG));
m_sound = static_cast<ti_sound_system_device*>(machine().device(TISOUND_TAG));
m_video = static_cast<ti_exp_video_device*>(machine().device(VIDEO_SYSTEM_TAG));
m_tms9901 = static_cast<tms9901_device*>(machine().device(TMS9901_TAG));
m_joyport = static_cast<joyport_device*>(machine().device(JOYPORT_TAG));
m_ram = (UINT16*)(*memregion(SAMSMEM_TAG));
m_scratchpad = (UINT16*)(*memregion(PADMEM_TAG));
m_peribox->senila(CLEAR_LINE);
m_peribox->senilb(CLEAR_LINE);
m_firstjoy = 6;
m_ready_line = m_ready_line_dmux = ASSERT_LINE;
UINT16 *rom = (UINT16*)(*memregion("maincpu"));
m_rom0 = rom + 0x2000;
m_dsr = rom + 0x6000;
m_rom6a = rom + 0x3000;
m_rom6b = rom + 0x7000;
}
/*
set the state of int2 (called by the v9938)
*/
WRITE_LINE_MEMBER(ti99_4p_state::set_tms9901_INT2_from_v9938)
{
m_tms9901->set_single_int(2, state);
}
static TI_SOUND_CONFIG( sound_conf )
{
DEVCB_DRIVER_LINE_MEMBER(ti99_4p_state, console_ready) // READY
};
static JOYPORT_CONFIG( joyport4a_60 )
{
DEVCB_NULL,
60
};
/*
Reset the machine.
*/
MACHINE_RESET_MEMBER(ti99_4p_state,ti99_4p)
{
m_tms9901->set_single_int(12, 0);
m_cpu->set_ready(ASSERT_LINE);
m_cpu->set_hold(CLEAR_LINE);
}
TIMER_DEVICE_CALLBACK_MEMBER(ti99_4p_state::sgcpu_hblank_interrupt)
{
machine().device<v9938_device>(VDP_TAG)->interrupt();
}
/*
Machine description.
*/
static MACHINE_CONFIG_START( ti99_4p_60hz, ti99_4p_state )
/* basic machine hardware */
/* TMS9900 CPU @ 3.0 MHz */
MCFG_TMS99xx_ADD("maincpu", TMS9900, 3000000, memmap, cru_map, sgcpu_cpuconf)
/* video hardware */
// Although we should have a 60 Hz screen rate, we have to set it to 30 here.
// The reason is that that the number of screen lines is counted twice for the
// interlace mode, but in non-interlace modes only half of the lines are
// painted. Accordingly, the full set of lines is refreshed at 30 Hz,
// not 60 Hz. This should be fixed in the v9938 emulation.
MCFG_TI_V9938_ADD(VIDEO_SYSTEM_TAG, 30, SCREEN_TAG, 2500, 512+32, (212+28)*2, ti99_4p_state, set_tms9901_INT2_from_v9938)
MCFG_TIMER_DRIVER_ADD_SCANLINE("scantimer", ti99_4p_state, sgcpu_hblank_interrupt, SCREEN_TAG, 0, 1)
// tms9901
MCFG_TMS9901_ADD(TMS9901_TAG, tms9901_wiring_sgcpu, 3000000)
// Peripheral expansion box (SGCPU composition)
MCFG_PERIBOX_SG_ADD( PERIBOX_TAG, peribox_conf )
// sound hardware
MCFG_TI_SOUND_94624_ADD( TISOUND_TAG, sound_conf )
// Cassette drives
MCFG_SPEAKER_STANDARD_MONO("cass_out")
MCFG_CASSETTE_ADD( "cassette", default_cassette_interface )
MCFG_SOUND_WAVE_ADD(WAVE_TAG, "cassette")
MCFG_SOUND_ROUTE(ALL_OUTPUTS, "cass_out", 0.25)
// Joystick port
MCFG_TI_JOYPORT4A_ADD( JOYPORT_TAG, joyport4a_60 )
MACHINE_CONFIG_END
ROM_START(ti99_4p)
/*CPU memory space*/
ROM_REGION16_BE(0x10000, "maincpu", 0)
ROM_LOAD16_BYTE("sgcpu_hb.bin", 0x0000, 0x8000, CRC(aa100730) SHA1(35e585b2dcd3f2a0005bebb15ede6c5b8c787366) ) /* system ROMs */
ROM_LOAD16_BYTE("sgcpu_lb.bin", 0x0001, 0x8000, CRC(2a5dc818) SHA1(dec141fe2eea0b930859cbe1ebd715ac29fa8ecb) ) /* system ROMs */
ROM_REGION16_BE(0x080000, SAMSMEM_TAG, 0)
ROM_FILL(0x000000, 0x080000, 0x0000)
ROM_REGION16_BE(0x0400, PADMEM_TAG, 0)
ROM_FILL(0x000000, 0x0400, 0x0000)
ROM_END
/* YEAR NAME PARENT COMPAT MACHINE INPUT INIT COMPANY FULLNAME */
COMP( 1996, ti99_4p, 0, 0, ti99_4p_60hz, ti99_4p, driver_device, 0, "System 99 Users Group", "SGCPU (a.k.a. 99/4P)" , 0 )