mame/src/devices/cpu/dsp56k/dsp56pcu.cpp
2017-05-15 17:38:50 +02:00

489 lines
19 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Andrew Gardner
#include "emu.h"
#include "dsp56pcu.h"
#include "dsp56mem.h"
namespace DSP56K
{
/* ************************************************************************* */
/* Status Register */
/* ************************************************************************* */
/* MR CCR */
/* |-------------------------------------| |-------------------------------| */
/* | LF | FV | * | * | S1 | S0 | I1 | I0 | | S | L | E | U | N | Z | V | C | */
/* |-------------------------------------| |-------------------------------| */
/* */
/* ************************************************************************* */
uint8_t LF_bit(const dsp56k_core* cpustate) { return (SR & 0x8000) >> 15; }
uint8_t FV_bit(const dsp56k_core* cpustate) { return (SR & 0x4000) >> 14; }
// uint8_t S_bits(const dsp56k_core* cpustate) { return (SR & 0x0c00) >> 10; }
uint8_t I_bits(const dsp56k_core* cpustate) { return (SR & 0x0300) >> 8; }
uint8_t S_bit (const dsp56k_core* cpustate) { return (SR & 0x0080) >> 7; }
uint8_t L_bit (const dsp56k_core* cpustate) { return (SR & 0x0040) >> 6; }
uint8_t E_bit (const dsp56k_core* cpustate) { return (SR & 0x0020) >> 5; }
uint8_t U_bit (const dsp56k_core* cpustate) { return (SR & 0x0010) >> 4; }
uint8_t N_bit (const dsp56k_core* cpustate) { return (SR & 0x0008) >> 3; }
uint8_t Z_bit (const dsp56k_core* cpustate) { return (SR & 0x0004) >> 2; }
uint8_t V_bit (const dsp56k_core* cpustate) { return (SR & 0x0002) >> 1; }
uint8_t C_bit (const dsp56k_core* cpustate) { return (SR & 0x0001) >> 0; }
/* MR setters */
void LF_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x8000); else (SR &= (~0x8000)); }
void FV_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x4000); else (SR &= (~0x4000)); }
void S_bits_set(dsp56k_core* cpustate, uint8_t value) { value = value & 0x03; SR &= ~(0x0c00); SR |= (value << 10); }
void I_bits_set(dsp56k_core* cpustate, uint8_t value) { value = value & 0x03; SR &= ~(0x0300); SR |= (value << 8); }
/* CCR setters */
void S_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x0080); else (SR &= (~0x0080)); }
void L_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x0040); else (SR &= (~0x0040)); }
void E_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x0020); else (SR &= (~0x0020)); }
void U_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x0010); else (SR &= (~0x0010)); }
void N_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x0008); else (SR &= (~0x0008)); }
void Z_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x0004); else (SR &= (~0x0004)); }
void V_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x0002); else (SR &= (~0x0002)); }
void C_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (SR |= 0x0001); else (SR &= (~0x0001)); }
/* ************************************************************************* */
/* Operating Mode Register */
/* ************************************************************************* */
/* */
/* |---------------------------------------------------------------------| */
/* | * | * | * | * | * | * | * | * | CD | SD | R | SA | * | MC | MB | MA | */
/* |---------------------------------------------------------------------| */
/* */
/* ************************************************************************* */
// uint8_t CD_bit(const dsp56k_core* cpustate) { return ((OMR & 0x0080) != 0); }
// uint8_t SD_bit(const dsp56k_core* cpustate) { return ((OMR & 0x0040) != 0); }
// uint8_t R_bit(const dsp56k_core* cpustate) { return ((OMR & 0x0020) != 0); }
// uint8_t SA_bit(const dsp56k_core* cpustate) { return ((OMR & 0x0010) != 0); }
// uint8_t MC_bit(const dsp56k_core* cpustate) { return ((OMR & 0x0004) != 0); }
uint8_t MB_bit(const dsp56k_core* cpustate) { return ((OMR & 0x0002) != 0); }
uint8_t MA_bit(const dsp56k_core* cpustate) { return ((OMR & 0x0001) != 0); }
void CD_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (OMR |= 0x0080); else (OMR &= (~0x0080)); }
void SD_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (OMR |= 0x0040); else (OMR &= (~0x0040)); }
void R_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (OMR |= 0x0020); else (OMR &= (~0x0020)); }
void SA_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (OMR |= 0x0010); else (OMR &= (~0x0010)); }
void MC_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (OMR |= 0x0004); else (OMR &= (~0x0004)); }
void MB_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (OMR |= 0x0002); else (OMR &= (~0x0002)); }
void MA_bit_set(dsp56k_core* cpustate, uint8_t value) { if (value) (OMR |= 0x0001); else (OMR &= (~0x0001)); }
uint8_t dsp56k_operating_mode(const dsp56k_core* cpustate)
{
return ((MB_bit(cpustate) << 1) | MA_bit(cpustate));
}
/* ************************************************************************* */
/* Stack Pointer */
/* ************************************************************************* */
/* */
/* |---------------------------------------------------------------------| */
/* | * | * | * | * | * | * | * | * | * | * | UF | SE | P3 | P2 | P1 | P0 | */
/* |---------------------------------------------------------------------| */
/* */
/* ************************************************************************* */
uint8_t UF_bit(const dsp56k_core* cpustate) { return ((SP & 0x0020) != 0); }
uint8_t SE_bit(const dsp56k_core* cpustate) { return ((SP & 0x0010) != 0); }
//void UF_bit_set(dsp56k_core* cpustate, uint8_t value) {};
//void SE_bit_set(dsp56k_core* cpustate, uint8_t value) {};
/***************************************************************************
INITIALIZATION AND RESET
***************************************************************************/
void pcu_init(dsp56k_core* cpustate, device_t *device)
{
/* Init the irq table */
dsp56k_irq_table_init();
/* save states - dsp56k_pcu members */
device->save_item(NAME(cpustate->PCU.pc));
device->save_item(NAME(cpustate->PCU.la));
device->save_item(NAME(cpustate->PCU.lc));
device->save_item(NAME(cpustate->PCU.sr));
device->save_item(NAME(cpustate->PCU.omr));
device->save_item(NAME(cpustate->PCU.sp));
device->save_item(NAME(cpustate->PCU.ss));
device->save_item(NAME(cpustate->PCU.pending_interrupts));
device->save_item(NAME(cpustate->PCU.reset_vector));
}
void pcu_reset(dsp56k_core* cpustate)
{
int i;
/* When reset is deasserted, set MA, MB, and MC from MODA, MODB, and MODC lines. */
MA_bit_set(cpustate, cpustate->modA_state);
MB_bit_set(cpustate, cpustate->modB_state);
MC_bit_set(cpustate, cpustate->modC_state);
/* Reset based on the operating mode. */
switch(dsp56k_operating_mode(cpustate))
{
case 0x00:
cpustate->device->logerror("Dsp56k in Special Bootstrap Mode 1\n");
/* HACK - We don't need to put the bootstrap mode on here since */
/* we'll simulate it entirely in this function */
cpustate->bootstrap_mode = BOOTSTRAP_OFF;
/* HACK - Simply copy over 0x1000 bytes of data located at program memory 0xc000. */
/* This, in actuality, is handled with the internal boot ROM. */
for (i = 0; i < 0x800; i++)
{
uint32_t mem_offset = (0xc000<<1) + (i<<1); /* TODO: TEST */
/* TODO - DO I HAVE TO FLIP THIS WORD? */
/* P:$c000 -> Internal P:$0000 low byte */
/* P:$c001 -> Internal P:$0000 high byte */
/* ... */
/* P:$cffe -> Internal P:$07ff low byte */
/* P:$cfff -> Internal P:$07ff high byte */
uint8_t mem_value_low = cpustate->program->read_byte(mem_offset); /* TODO: IS THIS READING RIGHT? */
uint8_t mem_value_high = cpustate->program->read_byte(mem_offset);
cpustate->program_ram[i] = (mem_value_high << 8) | mem_value_low;
}
/* HACK - Set the PC to 0x0000 as per the boot ROM. */
PC = 0x0000;
/* HACK - All done! Set the Operating Mode to 2 as per the boot ROM. */
MB_bit_set(cpustate, 1);
MA_bit_set(cpustate, 0);
cpustate->PCU.reset_vector = 0xe000;
break;
case 0x01:
cpustate->device->logerror("Dsp56k in Special Bootstrap Mode 2\n");
/* HACK - Turn bootstrap mode on. This hijacks the CPU execute loop and lets */
/* Either the host interface or the SSIO interface suck in all the data */
/* they need. Once they've had their fill, they turn bootstrap mode off */
/* and the CPU begins execution at 0x0000; */
/* HACK - Read bit 15 at 0xc000 to see if we're working with the SSIO or host interface. */
if (cpustate->program->read_word(0xc000<<1) & 0x8000)
{
cpustate->bootstrap_mode = BOOTSTRAP_SSIX;
cpustate->device->logerror("DSP56k : Currently in (hacked) bootstrap mode - reading from SSIx.\n");
}
else
{
cpustate->bootstrap_mode = BOOTSTRAP_HI;
cpustate->device->logerror("DSP56k : Currently in (hacked) bootstrap mode - reading from Host Interface.\n");
}
/* HACK - Set the PC to 0x0000 as per the boot ROM. */
PC = 0x0000;
/* HACK - Not done yet, but set the Operating Mode to 2 in preparation. */
MB_bit_set(cpustate, 1);
MA_bit_set(cpustate, 0);
cpustate->PCU.reset_vector = 0xe000;
break;
case 0x02:
cpustate->device->logerror("Dsp56k in Normal Expanded Mode\n");
PC = 0xe000;
cpustate->PCU.reset_vector = 0xe000;
break;
case 0x03:
cpustate->device->logerror("Dsp56k in Development Expanded Mode\n");
/* TODO: Disable internal ROM, etc. Likely a tricky thing for MAME? */
PC = 0x0000;
cpustate->PCU.reset_vector = 0x0000;
break;
}
/* Set registers properly */
/* 1-17 Clear Interrupt Priority Register (IPR) */
IPR = 0x0000;
/* FM.5-4 */
I_bits_set(cpustate, 0x03);
S_bits_set(cpustate, 0);
L_bit_set(cpustate, 0);
S_bit_set(cpustate, 0);
FV_bit_set(cpustate, 0);
/* FM.7-25 */
E_bit_set(cpustate, 0);
U_bit_set(cpustate, 0);
N_bit_set(cpustate, 0);
V_bit_set(cpustate, 0);
Z_bit_set(cpustate, 0);
/* FM.5-4+ */
C_bit_set(cpustate, 0);
LF_bit_set(cpustate, 0);
SP = 0x0000;
/* FM.5-14 (OMR) */
SA_bit_set(cpustate, 0);
R_bit_set(cpustate, 0);
SD_bit_set(cpustate, 0);
CD_bit_set(cpustate, 0);
/* Clear out the pending interrupt list */
dsp56k_clear_pending_interrupts(cpustate);
}
/***************************************************************************
INTERRUPT HANDLING
***************************************************************************/
struct dsp56k_irq_data
{
uint16_t irq_vector;
char irq_source[128];
};
dsp56k_irq_data dsp56k_interrupt_sources[32];
/* TODO: Figure out how to switch on level versus edge-triggered. */
void pcu_service_interrupts(dsp56k_core* cpustate)
{
int i;
/* Count list of pending interrupts */
int num_servicable = dsp56k_count_pending_interrupts(cpustate);
if (num_servicable == 0)
return;
/* Sort list according to priority */
dsp56k_sort_pending_interrupts(cpustate, num_servicable);
/* Service each interrupt in order */
/* TODO: This just *can't* be right :) */
for (i = 0; i < num_servicable; i++)
{
const int interrupt_index = cpustate->PCU.pending_interrupts[i];
/* Get the priority of the interrupt - a return value of -1 means disabled! */
int8_t priority = dsp56k_get_irq_priority(cpustate, interrupt_index);
/* 1-12 Make sure you're not masked out against the Interrupt Mask Bits (disabled is handled for free here) */
if (priority >= I_bits(cpustate))
{
/* TODO: Implement long interrupts & fast interrupts correctly! */
/* Right now they are handled in the JSR & BSR ops. SupahLame. */
/* Are you anything but the Host Command interrupt? */
if (interrupt_index != 22)
{
/* Execute a normal interrupt */
PC = dsp56k_interrupt_sources[interrupt_index].irq_vector;
}
else
{
/* The host command input has a floating vector. */
const uint16_t irq_vector = HV_bits(cpustate) << 1;
PC = irq_vector;
/* TODO: 5-9 5-11 Gotta' Clear HC (HCP gets it too) when taking this exception! */
HC_bit_set(cpustate, 0);
}
}
}
dsp56k_clear_pending_interrupts(cpustate);
}
/* Register an interrupt */
void dsp56k_add_pending_interrupt(dsp56k_core* cpustate, const char* name)
{
int i;
int irq_index = dsp56k_get_irq_index_by_tag(name);
for (i = 0; i < 32; i++)
{
if (cpustate->PCU.pending_interrupts[i] == -1)
{
cpustate->PCU.pending_interrupts[i] = irq_index;
break;
}
}
}
/* Utility function to construct IRQ table */
void dsp56k_set_irq_source(uint8_t irq_num, uint16_t iv, const char* source)
{
dsp56k_interrupt_sources[irq_num].irq_vector = iv;
strcpy(dsp56k_interrupt_sources[irq_num].irq_source, source);
}
/* Construct a table containing pertient IRQ information */
void dsp56k_irq_table_init(void)
{
/* 1-14 + 1-18 */
/* TODO: Cull host command stuff appropriately */
/* array index . vector . token */
dsp56k_set_irq_source(0, 0x0000, "Hardware RESET");
dsp56k_set_irq_source(1, 0x0002, "Illegal Instruction");
dsp56k_set_irq_source(2, 0x0004, "Stack Error");
dsp56k_set_irq_source(3, 0x0006, "Reserved");
dsp56k_set_irq_source(4, 0x0008, "SWI");
dsp56k_set_irq_source(5, 0x000a, "IRQA");
dsp56k_set_irq_source(6, 0x000c, "IRQB");
dsp56k_set_irq_source(7, 0x000e, "Reserved");
dsp56k_set_irq_source(8, 0x0010, "SSI0 Receive Data with Exception");
dsp56k_set_irq_source(9, 0x0012, "SSI0 Receive Data");
dsp56k_set_irq_source(10, 0x0014, "SSI0 Transmit Data with Exception");
dsp56k_set_irq_source(11, 0x0016, "SSI0 Transmit Data");
dsp56k_set_irq_source(12, 0x0018, "SSI1 Receive Data with Exception");
dsp56k_set_irq_source(13, 0x001a, "SSI1 Receive Data");
dsp56k_set_irq_source(14, 0x001c, "SSI1 Transmit Data with Exception");
dsp56k_set_irq_source(15, 0x001e, "SSI1 Transmit Data");
dsp56k_set_irq_source(16, 0x0020, "Timer Overflow");
dsp56k_set_irq_source(17, 0x0022, "Timer Compare");
dsp56k_set_irq_source(18, 0x0024, "Host DMA Receive Data");
dsp56k_set_irq_source(19, 0x0026, "Host DMA Transmit Data");
dsp56k_set_irq_source(20, 0x0028, "Host Receive Data");
dsp56k_set_irq_source(21, 0x002a, "Host Transmit Data");
dsp56k_set_irq_source(22, 0x002c, "Host Command"); /* Default vector for the host command */
dsp56k_set_irq_source(23, 0x002e, "Codec Receive/Transmit");
dsp56k_set_irq_source(24, 0x0030, "Host Command 1");
dsp56k_set_irq_source(25, 0x0032, "Host Command 2");
dsp56k_set_irq_source(26, 0x0034, "Host Command 3");
dsp56k_set_irq_source(27, 0x0036, "Host Command 4");
dsp56k_set_irq_source(28, 0x0038, "Host Command 5");
dsp56k_set_irq_source(29, 0x003a, "Host Command 6");
dsp56k_set_irq_source(30, 0x003c, "Host Command 7");
dsp56k_set_irq_source(31, 0x003e, "Host Command 8");
}
/* Clear all entries from the pending table */
void dsp56k_clear_pending_interrupts(dsp56k_core* cpustate)
{
int i;
for (i = 0; i < 32; i++)
{
cpustate->PCU.pending_interrupts[i] = -1;
}
}
/* Recover number of pending irqs */
int dsp56k_count_pending_interrupts(dsp56k_core* cpustate)
{
int numI = 0;
while (cpustate->PCU.pending_interrupts[numI] != -1)
{
numI++;
}
return numI;
}
/* Sort the pending irqs by priority */
void dsp56k_sort_pending_interrupts(dsp56k_core* cpustate, int num)
{
int i, j;
/* We're going to be sorting the priorities */
int priority_list[32];
for (i = 0; i < num; i++)
{
priority_list[i] = dsp56k_get_irq_priority(cpustate, cpustate->PCU.pending_interrupts[i]);
}
/* Bubble sort should be good enough for us */
for (i = 0; i < num; i++)
{
for(j = 0; j < num-1; j++)
{
if (priority_list[j] > priority_list[j+1])
{
int holder;
/* Swap priorities */
holder = priority_list[j+1];
priority_list[j+1] = priority_list[j];
priority_list[j] = holder;
/* Swap irq indices. */
holder = cpustate->PCU.pending_interrupts[j+1];
cpustate->PCU.pending_interrupts[j+1] = cpustate->PCU.pending_interrupts[j];
cpustate->PCU.pending_interrupts[j] = holder;
}
}
}
/* TODO: 1-17 Now sort each of the priority levels within their categories. */
}
/* Given an index into the irq table, return the interrupt's current priority */
int8_t dsp56k_get_irq_priority(dsp56k_core* cpustate, int index)
{
/* 1-12 */
switch (index)
{
/* Non-maskable */
case 0: return 3; /* Hardware RESET */
case 1: return 3; /* Illegal Instruction */
case 2: return 3; /* Stack Error */
case 3: return 3; /* Reserved */
case 4: return 3; /* SWI */
/* Poll the IPR for these guys. */
case 5: return irqa_ipl(cpustate); /* IRQA */
case 6: return irqb_ipl(cpustate); /* IRQB */
case 7: return -1; /* Reserved */
case 8: return ssi0_ipl(cpustate); /* SSI0 Receive Data with Exception */
case 9: return ssi0_ipl(cpustate); /* SSI0 Receive Data */
case 10: return ssi0_ipl(cpustate); /* SSI0 Transmit Data with Exception */
case 11: return ssi0_ipl(cpustate); /* SSI0 Transmit Data */
case 12: return ssi1_ipl(cpustate); /* SSI1 Receive Data with Exception */
case 13: return ssi1_ipl(cpustate); /* SSI1 Receive Data */
case 14: return ssi1_ipl(cpustate); /* SSI1 Transmit Data with Exception */
case 15: return ssi1_ipl(cpustate); /* SSI1 Transmit Data */
case 16: return tm_ipl(cpustate); /* Timer Overflow */
case 17: return tm_ipl(cpustate); /* Timer Compare */
case 18: return host_ipl(cpustate); /* Host DMA Receive Data */
case 19: return host_ipl(cpustate); /* Host DMA Transmit Data */
case 20: return host_ipl(cpustate); /* Host Receive Data */
case 21: return host_ipl(cpustate); /* Host Transmit Data */
case 22: return host_ipl(cpustate); /* Host Command 0 (Default) */
case 23: return codec_ipl(cpustate); /* Codec Receive/Transmit */
case 24: return host_ipl(cpustate); /* Host Command 1 // TODO: Are all host ipl's the same? */
case 25: return host_ipl(cpustate); /* Host Command 2 */
case 26: return host_ipl(cpustate); /* Host Command 3 */
case 27: return host_ipl(cpustate); /* Host Command 4 */
case 28: return host_ipl(cpustate); /* Host Command 5 */
case 29: return host_ipl(cpustate); /* Host Command 6 */
case 30: return host_ipl(cpustate); /* Host Command 7 */
case 31: return host_ipl(cpustate); /* Host Command 8 */
default: break;
}
return -1;
}
/* Given an IRQ name, return its index in the irq table */
int dsp56k_get_irq_index_by_tag(const char* tag)
{
int i;
for (i = 0; i < 32; i++)
{
if (strcmp(tag, dsp56k_interrupt_sources[i].irq_source) == 0)
{
return i;
}
}
fatalerror("DSP56K ERROR : IRQ TAG specified incorrectly (get_vector_by_tag) : %s.\n", tag);
// never executed
//return -1;
}
} // namespace DSP56K