mame/src/emu/ioport.cpp
Vas Crabb 2498f2b7cf Miscellaneous fixes and refactoring:
ui/analogipt.cpp: Fixed bar graph display for fields with ranges
that wrap through zero.

emu/inputdev.cpp: Separateed analog axis deadzone and switch threshold
settings, reduced default deadzone, and fixed a potential division by
zero if the deadzone and saturation settings are equal.

emu/ioport.cpp: Fixed behaviour of absolute analog fields where range
passes through zero - it previously only worked for specific
combinations of mask, minimum and default.  Removed a workaround from
universal/getaway.cpp that is no longer necessary.

emu/input.cpp: Fixed unintuitive behaviour when an absolute field is
assigned an OR combination of a relative control folled by an absolute
control (e.g. Mouse X or Joy 1 LSX).  Also fixed reading axis input
sequences where an axis code is followed by a switch code (these can
only be produced by manually editing configuration files, not through
MAME's UI), and fixed the returned type when multiple relative axes sum
to zero.

osd/modules/input_dinput.cpp: Fixed hat switches being stuck in up
position when input is suspended in the background

taito/taitoio_yoke.cpp: Give throttle control a distinct type, and don't
auto-centre.

osd: Added option to select MIDI provider module (currently only
PortMidi and the dummy module are available).  Also put various things
in namespaces, and fixed builds including SDL sound module with native
Windows OSD.

emu/validity.cpp: Added check to catch I/O port fields using UI input
types.

emu/inpttype.ipp: Renamed inputs that were causing confusion.  "Bill"
and "Track" were causing confusion for translators and hence likely
causing confusion for many users, especially those who are not native
English speakers.  "Track" as an abbreviation for "Trackball" was
frequently being mistranslated, e.g. in the sense of a CD track
selection button or even in the sense of a railway track.  There's no
reason to abbreviate it.  "Bill" in the US English sense as a banknote
is too ambiguous and was causing confusion for translators.  It's better
to use the less ambiguous "Banknote".  Corrected Greek translations of
"Trackball".

Don't run GitHub Actions on issue template changes.
2023-01-28 08:16:53 +11:00

4027 lines
121 KiB
C++

// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************
ioport.cpp
Input/output port handling.
****************************************************************************
Theory of operation
------------
OSD controls
------------
There are three types of controls that the OSD can provide as potential
input devices: digital controls, absolute analog controls, and relative
analog controls.
Digital controls have only two states: on or off. They are generally
mapped to buttons and digital joystick directions (like a gamepad or a
joystick hat). The OSD layer must return either 0 (off) or 1 (on) for
these types of controls.
Absolute analog controls are analog in the sense that they return a
range of values depending on how much a given control is moved, but they
are physically bounded. This means that there is a minimum and maximum
limit to how far the control can be moved. They are generally mapped to
analog joystick axes, lightguns, most PC steering wheels, and pedals.
The OSD layer must determine the minimum and maximum range of each
analog device and scale that to a value between -65536 and +65536
representing the position of the control. -65536 generally refers to
the topmost or leftmost position, while +65536 refers to the bottommost
or rightmost position. Note that pedals are a special case here, the
OSD layer needs to return half axis as full -65536 to + 65536 range.
Relative analog controls are analog as well, but are not physically
bounded. They can be moved continually in one direction without limit.
They are generally mapped to trackballs and mice. Because they are
unbounded, the OSD layer can only return delta values since the last
read. Because of this, it is difficult to scale appropriately. For
MAME's purposes, when mapping a mouse devices to a relative analog
control, one pixel of movement should correspond to 512 units. Other
analog control types should be scaled to return values of a similar
magnitude. Like absolute analog controls, negative values refer to
upward or leftward movement, while positive values refer to downward
or rightward movement.
-------------
Game controls
-------------
Similarly, the types of controls used by arcade games fall into the same
three categories: digital, absolute analog, and relative analog. The
tricky part is how to map any arbitrary type of OSD control to an
arbitrary type of game control.
Digital controls: used for game buttons and standard 4/8-way joysticks,
as well as many other types of game controls. Mapping an OSD digital
control to a game's OSD control is trivial. For OSD analog controls,
the MAME core does not directly support mapping any OSD analog devices
to digital controls. However, the OSD layer is free to enumerate digital
equivalents for analog devices. For example, each analog axis in the
Windows OSD code enumerates to two digital controls, one for the
negative direction (up/left) and one for the position direction
(down/right). When these "digital" inputs are queried, the OSD layer
checks the axis position against the center, adding in a dead zone,
and returns 0 or 1 to indicate its position.
Absolute analog controls: used for analog joysticks, lightguns, pedals,
and wheel controls. Mapping an OSD absolute analog control to this type
is easy. OSD relative analog controls can be mapped here as well by
accumulating the deltas and bounding the results. OSD digital controls
are mapped to these types of controls in pairs, one for a decrement and
one for an increment, but apart from that, operate the same as the OSD
relative analog controls by accumulating deltas and applying bounds.
The speed of the digital delta is user-configurable per analog input.
In addition, most absolute analog control types have an autocentering
feature that is activated when using the digital increment/decrement
sequences, which returns the control back to the center at a user-
controllable speed if no digital sequences are pressed.
Relative analog controls: used for trackballs and dial controls. Again,
mapping an OSD relative analog control to this type is straightforward.
OSD absolute analog controls can't map directly to these, but if the OSD
layer provides a digital equivalent for each direction, it can be done.
OSD digital controls map just like they do for absolute analog controls,
except that the accumulated deltas are not bounded, but rather wrap.
***************************************************************************/
#include "emu.h"
#include "config.h"
#include "emuopts.h"
#include "fileio.h"
#include "inputdev.h"
#include "natkeyboard.h"
#include "profiler.h"
#include "ui/uimain.h"
#include "util/corestr.h"
#include "util/ioprocsfilter.h"
#include "util/language.h"
#include "util/unicode.h"
#include "util/xmlfile.h"
#include "osdepend.h"
#include <cctype>
#include <ctime>
namespace {
// temporary: set this to 1 to enable the originally defined behavior that
// a field specified via PORT_MODIFY which intersects a previously-defined
// field completely wipes out the previous definition
#define INPUT_PORT_OVERRIDE_FULLY_NUKES_PREVIOUS 1
//**************************************************************************
// CONSTANTS
//**************************************************************************
const int SPACE_COUNT = 3;
//**************************************************************************
// INLINE FUNCTIONS
//**************************************************************************
//-------------------------------------------------
// compute_scale -- compute an 8.24 scale value
// from a numerator and a denominator
//-------------------------------------------------
inline s64 compute_scale(s32 num, s32 den)
{
return (s64(num) << 24) / den;
}
//-------------------------------------------------
// recip_scale -- compute an 8.24 reciprocal of
// an 8.24 scale value
//-------------------------------------------------
inline s64 recip_scale(s64 scale)
{
return (s64(1) << 48) / scale;
}
//-------------------------------------------------
// apply_scale -- apply an 8.24 scale value to
// a 32-bit value
//-------------------------------------------------
inline s32 apply_scale(s32 value, s64 scale)
{
return (s64(value) * scale) / (1 << 24);
}
//-------------------------------------------------
// compute_shift -- get shift required to right-
// align an I/O port field value
//-------------------------------------------------
inline u8 compute_shift(ioport_value mask)
{
u8 result = 0U;
while (mask && !BIT(mask, 0))
{
mask >>= 1;
++result;
}
return result;
}
//**************************************************************************
// COMMON SHARED STRINGS
//**************************************************************************
const struct
{
u32 id;
const char *string;
} input_port_default_strings[] =
{
{ INPUT_STRING_Off, "Off" },
{ INPUT_STRING_On, "On" },
{ INPUT_STRING_No, "No" },
{ INPUT_STRING_Yes, "Yes" },
{ INPUT_STRING_Lives, "Lives" },
{ INPUT_STRING_Bonus_Life, "Bonus Life" },
{ INPUT_STRING_Difficulty, "Difficulty" },
{ INPUT_STRING_Demo_Sounds, "Demo Sounds" },
{ INPUT_STRING_Coinage, "Coinage" },
{ INPUT_STRING_Coin_A, "Coin A" },
{ INPUT_STRING_Coin_B, "Coin B" },
{ INPUT_STRING_9C_1C, "9 Coins/1 Credit" },
{ INPUT_STRING_8C_1C, "8 Coins/1 Credit" },
{ INPUT_STRING_7C_1C, "7 Coins/1 Credit" },
{ INPUT_STRING_6C_1C, "6 Coins/1 Credit" },
{ INPUT_STRING_5C_1C, "5 Coins/1 Credit" },
{ INPUT_STRING_4C_1C, "4 Coins/1 Credit" },
{ INPUT_STRING_3C_1C, "3 Coins/1 Credit" },
{ INPUT_STRING_8C_3C, "8 Coins/3 Credits" },
{ INPUT_STRING_4C_2C, "4 Coins/2 Credits" },
{ INPUT_STRING_5C_2C, "5 Coins/2 Credits" },
{ INPUT_STRING_2C_1C, "2 Coins/1 Credit" },
{ INPUT_STRING_5C_3C, "5 Coins/3 Credits" },
{ INPUT_STRING_3C_2C, "3 Coins/2 Credits" },
{ INPUT_STRING_4C_3C, "4 Coins/3 Credits" },
{ INPUT_STRING_4C_4C, "4 Coins/4 Credits" },
{ INPUT_STRING_3C_3C, "3 Coins/3 Credits" },
{ INPUT_STRING_2C_2C, "2 Coins/2 Credits" },
{ INPUT_STRING_1C_1C, "1 Coin/1 Credit" },
{ INPUT_STRING_3C_5C, "3 Coins/5 Credits" },
{ INPUT_STRING_4C_5C, "4 Coins/5 Credits" },
{ INPUT_STRING_3C_4C, "3 Coins/4 Credits" },
{ INPUT_STRING_2C_3C, "2 Coins/3 Credits" },
{ INPUT_STRING_4C_7C, "4 Coins/7 Credits" },
{ INPUT_STRING_2C_4C, "2 Coins/4 Credits" },
{ INPUT_STRING_1C_2C, "1 Coin/2 Credits" },
{ INPUT_STRING_2C_5C, "2 Coins/5 Credits" },
{ INPUT_STRING_2C_6C, "2 Coins/6 Credits" },
{ INPUT_STRING_1C_3C, "1 Coin/3 Credits" },
{ INPUT_STRING_2C_7C, "2 Coins/7 Credits" },
{ INPUT_STRING_2C_8C, "2 Coins/8 Credits" },
{ INPUT_STRING_1C_4C, "1 Coin/4 Credits" },
{ INPUT_STRING_1C_5C, "1 Coin/5 Credits" },
{ INPUT_STRING_1C_6C, "1 Coin/6 Credits" },
{ INPUT_STRING_1C_7C, "1 Coin/7 Credits" },
{ INPUT_STRING_1C_8C, "1 Coin/8 Credits" },
{ INPUT_STRING_1C_9C, "1 Coin/9 Credits" },
{ INPUT_STRING_Free_Play, "Free Play" },
{ INPUT_STRING_Cabinet, "Cabinet" },
{ INPUT_STRING_Upright, "Upright" },
{ INPUT_STRING_Cocktail, "Cocktail" },
{ INPUT_STRING_Flip_Screen, "Flip Screen" },
{ INPUT_STRING_Service_Mode, "Service Mode" },
{ INPUT_STRING_Pause, "Pause" },
{ INPUT_STRING_Test, "Test" },
{ INPUT_STRING_Tilt, "Tilt" },
{ INPUT_STRING_Version, "Version" },
{ INPUT_STRING_Region, "Region" },
{ INPUT_STRING_International, "International" },
{ INPUT_STRING_Japan, "Japan" },
{ INPUT_STRING_USA, "USA" },
{ INPUT_STRING_Europe, "Europe" },
{ INPUT_STRING_Asia, "Asia" },
{ INPUT_STRING_China, "China" },
{ INPUT_STRING_Hong_Kong, "Hong Kong" },
{ INPUT_STRING_Korea, "Korea" },
{ INPUT_STRING_Southeast_Asia, "Southeast Asia" },
{ INPUT_STRING_Taiwan, "Taiwan" },
{ INPUT_STRING_World, "World" },
{ INPUT_STRING_Language, "Language" },
{ INPUT_STRING_English, "English" },
{ INPUT_STRING_Japanese, "Japanese" },
{ INPUT_STRING_Chinese, "Chinese" },
{ INPUT_STRING_French, "French" },
{ INPUT_STRING_German, "German" },
{ INPUT_STRING_Italian, "Italian" },
{ INPUT_STRING_Korean, "Korean" },
{ INPUT_STRING_Spanish, "Spanish" },
{ INPUT_STRING_Very_Easy, "Very Easy" },
{ INPUT_STRING_Easiest, "Easiest" },
{ INPUT_STRING_Easier, "Easier" },
{ INPUT_STRING_Easy, "Easy" },
{ INPUT_STRING_Medium_Easy, "Medium Easy" },
{ INPUT_STRING_Normal, "Normal" },
{ INPUT_STRING_Medium, "Medium" },
{ INPUT_STRING_Medium_Hard, "Medium Hard" },
{ INPUT_STRING_Hard, "Hard" },
{ INPUT_STRING_Harder, "Harder" },
{ INPUT_STRING_Hardest, "Hardest" },
{ INPUT_STRING_Very_Hard, "Very Hard" },
{ INPUT_STRING_Medium_Difficult, "Medium Difficult" },
{ INPUT_STRING_Difficult, "Difficult" },
{ INPUT_STRING_Very_Difficult, "Very Difficult" },
{ INPUT_STRING_Very_Low, "Very Low" },
{ INPUT_STRING_Low, "Low" },
{ INPUT_STRING_High, "High" },
{ INPUT_STRING_Higher, "Higher" },
{ INPUT_STRING_Highest, "Highest" },
{ INPUT_STRING_Very_High, "Very High" },
{ INPUT_STRING_Players, "Players" },
{ INPUT_STRING_Controls, "Controls" },
{ INPUT_STRING_Dual, "Dual" },
{ INPUT_STRING_Single, "Single" },
{ INPUT_STRING_Game_Time, "Game Time" },
{ INPUT_STRING_Continue_Price, "Continue Price" },
{ INPUT_STRING_Controller, "Controller" },
{ INPUT_STRING_Light_Gun, "Light Gun" },
{ INPUT_STRING_Joystick, "Joystick" },
{ INPUT_STRING_Trackball, "Trackball" },
{ INPUT_STRING_Continues, "Continues" },
{ INPUT_STRING_Allow_Continue, "Allow Continue" },
{ INPUT_STRING_Level_Select, "Level Select" },
{ INPUT_STRING_Infinite, "Infinite" },
{ INPUT_STRING_Stereo, "Stereo" },
{ INPUT_STRING_Mono, "Mono" },
{ INPUT_STRING_Unused, "Unused" },
{ INPUT_STRING_Unknown, "Unknown" },
{ INPUT_STRING_Standard, "Standard" },
{ INPUT_STRING_Reverse, "Reverse" },
{ INPUT_STRING_Alternate, "Alternate" },
{ INPUT_STRING_None, "None" },
};
inline bool input_seq_good(running_machine &machine, input_seq const &seq)
{
if (INPUT_CODE_INVALID == seq[0])
return false;
else if (seq.empty())
return true;
else
return input_seq::end_code != machine.input().seq_clean(seq)[0];
}
std::string substitute_player(std::string_view name, u8 player)
{
using util::lang_translate;
std::string result;
while (!name.empty())
{
auto const found = name.find('%');
if ((std::string_view::npos == found) || (name.length() == found + 1))
{
result.append(name);
break;
}
switch (name[found + 1])
{
case '%':
result.append(name.substr(0, found + 1));
break;
case 'p':
result.append(name.substr(0, found));
result.append(util::string_format(_("input-name", "P%1$u"), player + 1));
break;
default:
result.append(name.substr(0, found + 2));
}
name.remove_prefix(found + 2);
}
return result;
}
// ======================> inp_header
// header at the front of INP files
class inp_header
{
public:
// parameters
static constexpr unsigned MAJVERSION = 3;
static constexpr unsigned MINVERSION = 0;
bool read(emu_file &f)
{
return f.read(m_data, sizeof(m_data)) == sizeof(m_data);
}
bool write(emu_file &f) const
{
return f.write(m_data, sizeof(m_data)) == sizeof(m_data);
}
bool check_magic() const
{
return 0 == std::memcmp(MAGIC, m_data + OFFS_MAGIC, OFFS_BASETIME - OFFS_MAGIC);
}
u64 get_basetime() const
{
return
(u64(m_data[OFFS_BASETIME + 0]) << (0 * 8)) |
(u64(m_data[OFFS_BASETIME + 1]) << (1 * 8)) |
(u64(m_data[OFFS_BASETIME + 2]) << (2 * 8)) |
(u64(m_data[OFFS_BASETIME + 3]) << (3 * 8)) |
(u64(m_data[OFFS_BASETIME + 4]) << (4 * 8)) |
(u64(m_data[OFFS_BASETIME + 5]) << (5 * 8)) |
(u64(m_data[OFFS_BASETIME + 6]) << (6 * 8)) |
(u64(m_data[OFFS_BASETIME + 7]) << (7 * 8));
}
unsigned get_majversion() const
{
return m_data[OFFS_MAJVERSION];
}
unsigned get_minversion() const
{
return m_data[OFFS_MINVERSION];
}
std::string get_sysname() const
{
return get_string<OFFS_SYSNAME, OFFS_APPDESC>();
}
std::string get_appdesc() const
{
return get_string<OFFS_APPDESC, OFFS_END>();
}
void set_magic()
{
std::memcpy(m_data + OFFS_MAGIC, MAGIC, OFFS_BASETIME - OFFS_MAGIC);
}
void set_basetime(u64 time)
{
m_data[OFFS_BASETIME + 0] = u8((time >> (0 * 8)) & 0x00ff);
m_data[OFFS_BASETIME + 1] = u8((time >> (1 * 8)) & 0x00ff);
m_data[OFFS_BASETIME + 2] = u8((time >> (2 * 8)) & 0x00ff);
m_data[OFFS_BASETIME + 3] = u8((time >> (3 * 8)) & 0x00ff);
m_data[OFFS_BASETIME + 4] = u8((time >> (4 * 8)) & 0x00ff);
m_data[OFFS_BASETIME + 5] = u8((time >> (5 * 8)) & 0x00ff);
m_data[OFFS_BASETIME + 6] = u8((time >> (6 * 8)) & 0x00ff);
m_data[OFFS_BASETIME + 7] = u8((time >> (7 * 8)) & 0x00ff);
}
void set_version()
{
m_data[OFFS_MAJVERSION] = MAJVERSION;
m_data[OFFS_MINVERSION] = MINVERSION;
}
void set_sysname(std::string const &name)
{
set_string<OFFS_SYSNAME, OFFS_APPDESC>(name);
}
void set_appdesc(std::string const &desc)
{
set_string<OFFS_APPDESC, OFFS_END>(desc);
}
private:
template <std::size_t BEGIN, std::size_t END> void set_string(std::string const &str)
{
std::size_t const used = (std::min<std::size_t>)(str.size() + 1, END - BEGIN);
std::memcpy(m_data + BEGIN, str.c_str(), used);
if ((END - BEGIN) > used)
std::memset(m_data + BEGIN + used, 0, (END - BEGIN) - used);
}
template <std::size_t BEGIN, std::size_t END> std::string get_string() const
{
char const *const begin = reinterpret_cast<char const *>(m_data + BEGIN);
return std::string(begin, std::find(begin, reinterpret_cast<char const *>(m_data + END), '\0'));
}
static constexpr std::size_t OFFS_MAGIC = 0x00; // 0x08 bytes
static constexpr std::size_t OFFS_BASETIME = 0x08; // 0x08 bytes (little-endian binary integer)
static constexpr std::size_t OFFS_MAJVERSION = 0x10; // 0x01 bytes (binary integer)
static constexpr std::size_t OFFS_MINVERSION = 0x11; // 0x01 bytes (binary integer)
// 0x02 bytes reserved
static constexpr std::size_t OFFS_SYSNAME = 0x14; // 0x0c bytes (ASCII)
static constexpr std::size_t OFFS_APPDESC = 0x20; // 0x20 bytes (ASCII)
static constexpr std::size_t OFFS_END = 0x40;
static u8 const MAGIC[OFFS_BASETIME - OFFS_MAGIC];
u8 m_data[OFFS_END];
};
} // anonymous namespace
// XML attributes for the different types
const char *const ioport_manager::seqtypestrings[] = { "standard", "increment", "decrement" };
u8 const inp_header::MAGIC[inp_header::OFFS_BASETIME - inp_header::OFFS_MAGIC] = { 'M', 'A', 'M', 'E', 'I', 'N', 'P', 0 };
//**************************************************************************
// BUILT-IN CORE MAPPINGS
//**************************************************************************
#include "inpttype.ipp"
//**************************************************************************
// PORT CONFIGURATIONS
//**************************************************************************
//**************************************************************************
// I/O PORT LIST
//**************************************************************************
//-------------------------------------------------
// append - append the given device's input ports
// to the current list
//-------------------------------------------------
void ioport_list::append(device_t &device, std::string &errorbuf)
{
// no constructor, no list
ioport_constructor constructor = device.input_ports();
if (constructor == nullptr)
return;
// reset error buffer
errorbuf.clear();
// detokenize into the list
(*constructor)(device, *this, errorbuf);
// collapse fields and sort the list
for (auto &port : *this)
port.second->collapse_fields(errorbuf);
}
//**************************************************************************
// INPUT TYPE ENTRY
//**************************************************************************
//-------------------------------------------------
// input_type_entry - constructors
//-------------------------------------------------
input_type_entry::input_type_entry(ioport_type type, ioport_group group, int player, const char *token, const char *name, input_seq standard) noexcept
: m_type(type),
m_group(group),
m_player(player),
m_token(token),
m_name(name)
{
m_defseq[SEQ_TYPE_STANDARD] = m_seq[SEQ_TYPE_STANDARD] = standard;
}
input_type_entry::input_type_entry(ioport_type type, ioport_group group, int player, const char *token, const char *name, input_seq standard, input_seq decrement, input_seq increment) noexcept
: m_type(type),
m_group(group),
m_player(player),
m_token(token),
m_name(name)
{
m_defseq[SEQ_TYPE_STANDARD] = m_seq[SEQ_TYPE_STANDARD] = standard;
m_defseq[SEQ_TYPE_INCREMENT] = m_seq[SEQ_TYPE_INCREMENT] = increment;
m_defseq[SEQ_TYPE_DECREMENT] = m_seq[SEQ_TYPE_DECREMENT] = decrement;
}
//-------------------------------------------------
// name - gets the display name for the input
// type
//-------------------------------------------------
std::string input_type_entry::name() const
{
using util::lang_translate;
if (!m_name)
return std::string();
else if ((group() < IPG_PLAYER1) || (group() > IPG_PLAYER10))
return _("input-name", m_name);
else
return substitute_player(_("input-name", m_name), player());
}
//-------------------------------------------------
// replace_code - replace all instances of
// oldcodewith newcode in all sequences
//-------------------------------------------------
void input_type_entry::replace_code(input_code oldcode, input_code newcode) noexcept
{
for (input_seq &seq : m_seq)
seq.replace(oldcode, newcode);
}
//-------------------------------------------------
// configure_osd - set the token and name of an
// OSD entry
//-------------------------------------------------
void input_type_entry::configure_osd(const char *token, const char *name) noexcept
{
assert(m_type >= IPT_OSD_1 && m_type <= IPT_OSD_16);
m_token = token;
m_name = name;
}
//-------------------------------------------------
// restore_default_seq - restores the sequence
// from the default
//-------------------------------------------------
void input_type_entry::restore_default_seq() noexcept
{
m_seq = m_defseq;
}
//**************************************************************************
// DIGITAL JOYSTICKS
//**************************************************************************
//-------------------------------------------------
// digital_joystick - constructor
//-------------------------------------------------
digital_joystick::digital_joystick(int player, int number)
: m_player(player),
m_number(number),
m_current(0),
m_current4way(0),
m_previous(0)
{
}
//-------------------------------------------------
// set_axis - configure a single axis of a
// digital joystick
//-------------------------------------------------
digital_joystick::direction_t digital_joystick::add_axis(ioport_field &field)
{
direction_t direction = direction_t((field.type() - (IPT_DIGITAL_JOYSTICK_FIRST + 1)) % 4);
m_field[direction].emplace_front(field);
return direction;
}
//-------------------------------------------------
// frame_update - update the state of digital
// joysticks prior to accumulating the results
// in a port
//-------------------------------------------------
void digital_joystick::frame_update()
{
// remember previous state and reset current state
m_previous = m_current;
m_current = 0;
// read all the associated ports
running_machine *machine = nullptr;
for (direction_t direction = JOYDIR_UP; direction < JOYDIR_COUNT; ++direction)
for (const std::reference_wrapper<ioport_field> &i : m_field[direction])
{
machine = &i.get().machine();
if (machine->input().seq_pressed(i.get().seq(SEQ_TYPE_STANDARD)))
m_current |= 1 << direction;
}
// lock out opposing directions (left + right or up + down)
if ((m_current & (UP_BIT | DOWN_BIT)) == (UP_BIT | DOWN_BIT))
m_current &= ~(UP_BIT | DOWN_BIT);
if ((m_current & (LEFT_BIT | RIGHT_BIT)) == (LEFT_BIT | RIGHT_BIT))
m_current &= ~(LEFT_BIT | RIGHT_BIT);
// only update 4-way case if joystick has moved
if (m_current != m_previous)
{
m_current4way = m_current;
//
// If joystick is pointing at a diagonal, acknowledge that the player moved
// the joystick by favoring a direction change. This minimizes frustration
// and maximizes responsiveness.
//
// For example, if you are holding "left" then switch to "up" (where both left
// and up are briefly pressed at the same time), we'll transition immediately
// to "up."
//
// Zero any switches that didn't change from the previous to current state.
//
if ((m_current4way & (UP_BIT | DOWN_BIT)) &&
(m_current4way & (LEFT_BIT | RIGHT_BIT)))
{
m_current4way ^= m_current4way & m_previous;
}
//
// If we are still pointing at a diagonal, we are in an indeterminant state.
//
// This could happen if the player moved the joystick from the idle position directly
// to a diagonal, or from one diagonal directly to an extreme diagonal.
//
// The chances of this happening with a keyboard are slim, but we still need to
// constrain this case. Let's pick the horizontal axis.
//
if ((m_current4way & (UP_BIT | DOWN_BIT)) &&
(m_current4way & (LEFT_BIT | RIGHT_BIT)))
{
m_current4way &= ~(UP_BIT | DOWN_BIT);
}
}
}
//**************************************************************************
// I/O PORT CONDITION
//**************************************************************************
//-------------------------------------------------
// eval - evaluate condition
//-------------------------------------------------
bool ioport_condition::eval() const
{
// always condition is always true
if (m_condition == ALWAYS)
return true;
// otherwise, read the referenced port and switch off the condition type
ioport_value const condvalue = m_port->read();
switch (m_condition)
{
case ALWAYS: return true;
case EQUALS: return ((condvalue & m_mask) == m_value);
case NOTEQUALS: return ((condvalue & m_mask) != m_value);
case GREATERTHAN: return ((condvalue & m_mask) > m_value);
case NOTGREATERTHAN: return ((condvalue & m_mask) <= m_value);
case LESSTHAN: return ((condvalue & m_mask) < m_value);
case NOTLESSTHAN: return ((condvalue & m_mask) >= m_value);
}
return true;
}
//-------------------------------------------------
// initialize - create the live state
//-------------------------------------------------
void ioport_condition::initialize(device_t &device)
{
if (m_tag != nullptr)
m_port = device.ioport(m_tag);
}
//**************************************************************************
// I/O PORT SETTING
//**************************************************************************
//-------------------------------------------------
// ioport_setting - constructor
//-------------------------------------------------
ioport_setting::ioport_setting(ioport_field &field, ioport_value _value, const char *_name)
: m_field(field),
m_value(_value),
m_name(_name)
{
}
//**************************************************************************
// I/O PORT DIP LOCATION
//**************************************************************************
//-------------------------------------------------
// ioport_diplocation - constructor
//-------------------------------------------------
ioport_diplocation::ioport_diplocation(const char *name, u8 swnum, bool invert)
: m_name(name),
m_number(swnum),
m_invert(invert)
{
}
//**************************************************************************
// I/O PORT FIELD
//**************************************************************************
//-------------------------------------------------
// ioport_field - constructor
//-------------------------------------------------
ioport_field::ioport_field(ioport_port &port, ioport_type type, ioport_value defvalue, ioport_value maskbits, const char *name)
: m_next(nullptr),
m_port(port),
m_modcount(port.modcount()),
m_mask(maskbits),
m_defvalue(defvalue & maskbits),
m_type(type),
m_player(0),
m_flags(0),
m_impulse(0),
m_name(name),
m_read(port.device()),
m_write(port.device()),
m_write_param(0),
m_digital_value(false),
m_min(0),
m_max(maskbits),
m_sensitivity(0),
m_delta(0),
m_centerdelta(0),
m_crosshair_axis(CROSSHAIR_AXIS_NONE),
m_crosshair_scale(1.0),
m_crosshair_offset(0),
m_crosshair_altaxis(0),
m_crosshair_mapper(port.device()),
m_full_turn_count(0),
m_remap_table(nullptr),
m_way(0)
{
// reset sequences and chars
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
m_seq[seqtype].set_default();
for (int i = 0; i < std::size(m_chars); i++)
std::fill(std::begin(m_chars[i]), std::end(m_chars[i]), char32_t(0));
// for DIP switches and configs, look for a default value from the owner
if (type == IPT_DIPSWITCH || type == IPT_CONFIG)
{
const input_device_default *def = device().input_ports_defaults();
if (def != nullptr)
{
const char *fulltag = port.tag();
for ( ; def->tag != nullptr; def++)
if (device().subtag(def->tag) == fulltag && def->mask == m_mask)
m_defvalue = def->defvalue & m_mask;
}
m_flags |= FIELD_FLAG_TOGGLE;
}
}
//-------------------------------------------------
// ~ioport_field - destructor
//-------------------------------------------------
ioport_field::~ioport_field()
{
}
//-------------------------------------------------
// set_value - programmatically set field value
//-------------------------------------------------
void ioport_field::set_value(ioport_value value)
{
if (is_analog())
live().analog->set_value(s32(value));
else
m_digital_value = value != 0;
}
//-------------------------------------------------
// clear_value - clear programmatic override
//-------------------------------------------------
void ioport_field::clear_value()
{
if (is_analog())
live().analog->clear_value();
else
m_digital_value = false;
}
//-------------------------------------------------
// name - return the field name for a given input
// field (this must never return nullptr)
//-------------------------------------------------
std::string ioport_field::name() const
{
using util::lang_translate;
// if we have an overridden name, use that
if (m_live && !m_live->name.empty())
return m_live->name;
// if no specific name, use the generic name for the type
if (!m_name)
return manager().type_name(m_type, m_player);
// return name for non-controller fields as-is
ioport_group const group = manager().type_group(m_type, m_player);
if ((group < IPG_PLAYER1) || (group > IPG_PLAYER10))
return m_name;
// substitute the player number in if necessary
return substitute_player(m_name, m_player);
}
//-------------------------------------------------
// seq - return the live input sequence for the
// given input field
//-------------------------------------------------
const input_seq &ioport_field::seq(input_seq_type seqtype) const noexcept
{
// if the sequence is not the special default code, return it
if (m_live && !m_live->seq[seqtype].is_default())
return m_live->seq[seqtype];
// otherwise return the default sequence
return defseq(seqtype);
}
//-------------------------------------------------
// defseq - return the default input sequence for
// the given input field
//-------------------------------------------------
const input_seq &ioport_field::defseq(input_seq_type seqtype) const noexcept
{
// if the sequence is the special default code, return the expanded default value
if (m_seq[seqtype].is_default())
return manager().type_seq(m_type, m_player, seqtype);
// otherwise, return the sequence as-is
return m_seq[seqtype];
}
//-------------------------------------------------
// set_defseq - dynamically alter the default
// input sequence for the given input field
//-------------------------------------------------
void ioport_field::set_defseq(input_seq_type seqtype, const input_seq &newseq)
{
// set the new sequence
m_seq[seqtype] = newseq;
}
//-------------------------------------------------
// type_class - return the type class for this
// field
//-------------------------------------------------
ioport_type_class ioport_field::type_class() const noexcept
{
// inputs associated with specific players
ioport_group const group = manager().type_group(m_type, m_player);
if ((group >= IPG_PLAYER1) && (group <= IPG_PLAYER10))
return INPUT_CLASS_CONTROLLER;
// keys (names derived from character codes)
if (m_type == IPT_KEYPAD || m_type == IPT_KEYBOARD)
return INPUT_CLASS_KEYBOARD;
// configuration settings (specific names required)
if (m_type == IPT_CONFIG)
return INPUT_CLASS_CONFIG;
// DIP switches (specific names required)
if (m_type == IPT_DIPSWITCH)
return INPUT_CLASS_DIPSWITCH;
// miscellaneous non-player inputs (named and user-mappable)
if (group == IPG_OTHER || (group == IPG_INVALID && m_name != nullptr))
return INPUT_CLASS_MISC;
// internal inputs (these may be anonymous)
return INPUT_CLASS_INTERNAL;
}
//-------------------------------------------------
// keyboard_codes - accesses a particular keyboard
// code list
//-------------------------------------------------
std::vector<char32_t> ioport_field::keyboard_codes(int which) const
{
if (which >= std::size(m_chars))
throw emu_fatalerror("Tried to access keyboard_code with out-of-range index %d\n", which);
std::vector<char32_t> result;
for (int i = 0; i < std::size(m_chars[which]) && m_chars[which][i] != 0; i++)
result.push_back(m_chars[which][i]);
return result;
}
//-------------------------------------------------
// key_name - returns the name of a specific key
//-------------------------------------------------
std::string ioport_field::key_name(int which) const
{
std::vector<char32_t> codes = keyboard_codes(which);
char32_t ch = codes.empty() ? 0 : codes[0];
// attempt to get the string from the character info table
switch (ch)
{
case 8: return "Backspace";
case 9: return "Tab";
case 12: return "Clear";
case 13: return "Enter";
case 27: return "Esc";
case 32: return "Space";
case UCHAR_SHIFT_1: return "Shift";
case UCHAR_SHIFT_2: return "Ctrl";
case UCHAR_MAMEKEY(ESC): return "Esc";
case UCHAR_MAMEKEY(INSERT): return "Insert";
case UCHAR_MAMEKEY(DEL): return "Delete";
case UCHAR_MAMEKEY(HOME): return "Home";
case UCHAR_MAMEKEY(END): return "End";
case UCHAR_MAMEKEY(PGUP): return "Page Up";
case UCHAR_MAMEKEY(PGDN): return "Page Down";
case UCHAR_MAMEKEY(LEFT): return "Cursor Left";
case UCHAR_MAMEKEY(RIGHT): return "Cursor Right";
case UCHAR_MAMEKEY(UP): return "Cursor Up";
case UCHAR_MAMEKEY(DOWN): return "Cursor Down";
case UCHAR_MAMEKEY(SLASH_PAD): return "Keypad /";
case UCHAR_MAMEKEY(ASTERISK): return "Keypad *";
case UCHAR_MAMEKEY(MINUS_PAD): return "Keypad -";
case UCHAR_MAMEKEY(PLUS_PAD): return "Keypad +";
case UCHAR_MAMEKEY(DEL_PAD): return "Keypad .";
case UCHAR_MAMEKEY(ENTER_PAD): return "Keypad Enter";
case UCHAR_MAMEKEY(BS_PAD): return "Keypad Backspace";
case UCHAR_MAMEKEY(TAB_PAD): return "Keypad Tab";
case UCHAR_MAMEKEY(00_PAD): return "Keypad 00";
case UCHAR_MAMEKEY(000_PAD): return "Keypad 000";
case UCHAR_MAMEKEY(COMMA_PAD): return "Keypad ,";
case UCHAR_MAMEKEY(EQUALS_PAD): return "Keypad =";
case UCHAR_MAMEKEY(PRTSCR): return "Print Screen";
case UCHAR_MAMEKEY(PAUSE): return "Pause";
case UCHAR_MAMEKEY(LSHIFT): return "Left Shift";
case UCHAR_MAMEKEY(RSHIFT): return "Right Shift";
case UCHAR_MAMEKEY(LCONTROL): return "Left Ctrl";
case UCHAR_MAMEKEY(RCONTROL): return "Right Ctrl";
case UCHAR_MAMEKEY(LALT): return "Left Alt";
case UCHAR_MAMEKEY(RALT): return "Right Alt";
case UCHAR_MAMEKEY(SCRLOCK): return "Scroll Lock";
case UCHAR_MAMEKEY(NUMLOCK): return "Num Lock";
case UCHAR_MAMEKEY(CAPSLOCK): return "Caps Lock";
case UCHAR_MAMEKEY(LWIN): return "Left Win";
case UCHAR_MAMEKEY(RWIN): return "Right Win";
case UCHAR_MAMEKEY(MENU): return "Menu";
case UCHAR_MAMEKEY(CANCEL): return "Break";
default: break;
}
// handle function keys
if (ch >= UCHAR_MAMEKEY(F1) && ch <= UCHAR_MAMEKEY(F20))
return util::string_format("F%d", ch - UCHAR_MAMEKEY(F1) + 1);
// handle 0-9 on numeric keypad
if (ch >= UCHAR_MAMEKEY(0_PAD) && ch <= UCHAR_MAMEKEY(9_PAD))
return util::string_format("Keypad %d", ch - UCHAR_MAMEKEY(0_PAD));
// if that doesn't work, convert to UTF-8
if (ch > 0x7F || isprint(ch))
return utf8_from_uchar(ch);
// otherwise, opt for question marks
return "???";
}
//-------------------------------------------------
// get_user_settings - return the current
// settings for the given input field
//-------------------------------------------------
void ioport_field::get_user_settings(user_settings &settings) const
{
// zap the entire structure
settings = user_settings();
// copy the basics
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
{
settings.seq[seqtype] = seq(seqtype);
if (m_live)
settings.cfg[seqtype] = m_live->cfg[seqtype];
}
// if there's a list of settings or we're an adjuster, copy the current value
if (!m_settinglist.empty() || m_type == IPT_ADJUSTER)
settings.value = m_live->value;
if (m_live->analog != nullptr)
{
// if there's analog data, extract the analog settings
settings.sensitivity = m_live->analog->sensitivity();
settings.delta = m_live->analog->delta();
settings.centerdelta = m_live->analog->centerdelta();
settings.reverse = m_live->analog->reverse();
}
else
{
// non-analog settings
settings.toggle = m_live->toggle;
}
}
//-------------------------------------------------
// set_user_settings - modify the current
// settings for the given input field
//-------------------------------------------------
void ioport_field::set_user_settings(const user_settings &settings)
{
// copy the basics
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
{
if (settings.seq[seqtype].is_default())
m_live->seq[seqtype].set_default();
else
m_live->seq[seqtype] = settings.seq[seqtype];
m_live->cfg[seqtype] = settings.cfg[seqtype];
}
// if there's a list of settings or we're an adjuster, copy the current value
if (!m_settinglist.empty() || m_type == IPT_ADJUSTER)
m_live->value = settings.value;
if (m_live->analog)
{
// if there's analog data, extract the analog settings
m_live->analog->m_sensitivity = settings.sensitivity;
m_live->analog->m_delta = settings.delta;
m_live->analog->m_centerdelta = settings.centerdelta;
m_live->analog->m_reverse = settings.reverse;
}
else
{
// non-analog settings
m_live->toggle = settings.toggle;
}
}
//-------------------------------------------------
// setting_name - return the expanded setting
// name for a field
//-------------------------------------------------
const char *ioport_field::setting_name() const
{
// only makes sense if we have settings
assert(!m_settinglist.empty());
// scan the list of settings looking for a match on the current value
for (ioport_setting const &setting : m_settinglist)
if (setting.enabled())
if (setting.value() == m_live->value)
return setting.name();
return "INVALID";
}
//-------------------------------------------------
// has_previous_setting - return true if the
// given field has a "previous" setting
//-------------------------------------------------
bool ioport_field::has_previous_setting() const
{
// only makes sense if we have settings
assert(!m_settinglist.empty());
// scan the list of settings looking for a match on the current value
for (ioport_setting const &setting : m_settinglist)
if (setting.enabled())
return (setting.value() != m_live->value);
return false;
}
//-------------------------------------------------
// select_previous_setting - select the previous
// item for a DIP switch or configuration field
//-------------------------------------------------
void ioport_field::select_previous_setting()
{
// only makes sense if we have settings
assert(!m_settinglist.empty());
// scan the list of settings looking for a match on the current value
auto prevsetting = m_settinglist.end();
bool found_match = false;
for (auto setting = m_settinglist.begin(); m_settinglist.end() != setting; ++setting)
{
if (setting->enabled())
{
if (setting->value() == m_live->value)
{
found_match = true;
if (m_settinglist.end() != prevsetting)
break;
}
prevsetting = setting;
}
}
// if we didn't find a matching value, select the first
if (!found_match)
{
prevsetting = m_settinglist.begin();
while ((m_settinglist.end() != prevsetting) && !prevsetting->enabled())
++prevsetting;
}
// update the value to the previous one
if (m_settinglist.end() != prevsetting)
m_live->value = prevsetting->value();
}
//-------------------------------------------------
// has_next_setting - return true if the given
// field has a "next" setting
//-------------------------------------------------
bool ioport_field::has_next_setting() const
{
// only makes sense if we have settings
assert(!m_settinglist.empty());
// scan the list of settings looking for a match on the current value
bool found = false;
for (ioport_setting const &setting : m_settinglist)
{
if (setting.enabled())
{
if (found)
return true;
if (setting.value() == m_live->value)
found = true;
}
}
return false;
}
//-------------------------------------------------
// select_next_setting - select the next item for
// a DIP switch or configuration field
//-------------------------------------------------
void ioport_field::select_next_setting()
{
// only makes sense if we have settings
assert(!m_settinglist.empty());
// scan the list of settings looking for a match on the current value
auto setting = m_settinglist.begin();
while ((m_settinglist.end() != setting) && (!setting->enabled() || (setting->value() != m_live->value)))
++setting;
// if we found one, scan forward for the next valid one
auto nextsetting = setting;
if (m_settinglist.end() != nextsetting)
{
++nextsetting;
while ((m_settinglist.end() != nextsetting) && !nextsetting->enabled())
++nextsetting;
}
// if we hit the end, search from the beginning
if (m_settinglist.end() == nextsetting)
{
nextsetting = m_settinglist.begin();
while ((m_settinglist.end() != nextsetting) && !nextsetting->enabled())
++nextsetting;
}
// update the value to the previous one
if (m_settinglist.end() != nextsetting)
m_live->value = nextsetting->value();
}
//-------------------------------------------------
// frame_update_digital - get the state of a
// digital field
//-------------------------------------------------
void ioport_field::frame_update(ioport_value &result)
{
// skip if not enabled
if (!enabled())
return;
// handle analog inputs first
if (m_live->analog != nullptr)
{
m_live->analog->frame_update(machine());
return;
}
// if UI is active, ignore digital inputs
if (machine().ui().is_menu_active())
return;
// if user input is locked out here, bail
if (m_live->lockout)
{
// use just the digital value
if (m_digital_value)
result |= m_mask;
return;
}
// if the state changed, look for switch down/switch up
bool curstate = m_digital_value || machine().input().seq_pressed(seq());
bool changed = false;
if (curstate != m_live->last)
{
m_live->last = curstate;
changed = true;
}
// coin impulse option
int effective_impulse = m_impulse;
int impulse_option_val = machine().options().coin_impulse();
if (impulse_option_val != 0)
{
if (impulse_option_val < 0)
effective_impulse = 0;
else if ((m_type >= IPT_COIN1 && m_type <= IPT_COIN12) || m_impulse != 0)
effective_impulse = impulse_option_val;
}
// if this is a switch-down event, handle impulse and toggle
if (changed && curstate)
{
// impulse controls: reset the impulse counter
if (effective_impulse != 0 && m_live->impulse == 0)
m_live->impulse = effective_impulse;
// toggle controls: flip the toggle state or advance to the next setting
if (m_live->toggle)
{
if (m_settinglist.empty())
m_live->value ^= m_mask;
else
select_next_setting();
}
}
// update the current state with the impulse state
if (effective_impulse != 0)
{
curstate = (m_live->impulse != 0);
if (curstate)
m_live->impulse--;
}
// for toggle switches, the current value is folded into the port's default value
// so we always return false here
if (m_live->toggle)
curstate = false;
// additional logic to restrict digital joysticks
if (curstate && !m_digital_value && m_live->joystick != nullptr && m_way != 16 && !machine().options().joystick_contradictory())
{
u8 mask = (m_way == 4) ? m_live->joystick->current4way() : m_live->joystick->current();
if (!(mask & (1 << m_live->joydir)))
curstate = false;
}
// skip locked-out coin inputs
if (curstate && m_type >= IPT_COIN1 && m_type <= IPT_COIN12 && machine().bookkeeping().coin_lockout_get_state(m_type - IPT_COIN1))
{
bool verbose = machine().options().verbose();
#ifdef MAME_DEBUG
verbose = true;
#endif
if (machine().options().coin_lockout())
{
if (verbose)
machine().ui().popup_time(3, "Coinlock disabled %s.", name());
curstate = false;
}
else
if (verbose)
machine().ui().popup_time(3, "Coinlock disabled, but broken through %s.", name());
}
// if we're active, set the appropriate bits in the digital state
if (curstate)
result |= m_mask;
}
//-------------------------------------------------
// crosshair_read - compute the crosshair
// position
//-------------------------------------------------
float ioport_field::crosshair_read() const
{
float value = m_live->analog->crosshair_read();
// apply the scale and offset
if (m_crosshair_scale < 0)
value = -(1.0f - value) * m_crosshair_scale;
else
value *= m_crosshair_scale;
value += m_crosshair_offset;
// apply custom mapping if necessary
if (!m_crosshair_mapper.isnull())
value = m_crosshair_mapper(value);
return value;
}
//-------------------------------------------------
// expand_diplocation - expand a string-based
// DIP location into a linked list of
// descriptions
//-------------------------------------------------
void ioport_field::expand_diplocation(const char *location, std::string &errorbuf)
{
// if nothing present, bail
if (!location)
return;
m_diploclist.clear();
// parse the string
std::string name; // Don't move this variable inside the loop, lastname's lifetime depends on it being outside
const char *lastname = nullptr;
const char *curentry = location;
int entries = 0;
while (*curentry != 0)
{
// find the end of this entry
const char *comma = strchr(curentry, ',');
if (comma == nullptr)
comma = curentry + strlen(curentry);
// extract it to tempbuf
std::string tempstr(curentry, comma - curentry);
// first extract the switch name if present
const char *number = tempstr.c_str();
const char *colon = strchr(tempstr.c_str(), ':');
if (colon != nullptr)
{
// allocate and copy the name if it is present
lastname = name.assign(number, colon - number).c_str();
number = colon + 1;
}
else
{
// otherwise, just copy the last name
if (lastname == nullptr)
{
errorbuf.append(string_format("Switch location '%s' missing switch name!\n", location));
lastname = (char *)"UNK";
}
name.assign(lastname);
}
// if the number is preceded by a '!' it's active high
bool invert = false;
if (*number == '!')
{
invert = true;
number++;
}
// now scan the switch number
int swnum = -1;
if (sscanf(number, "%d", &swnum) != 1)
errorbuf.append(string_format("Switch location '%s' has invalid format!\n", location));
// allocate a new entry
m_diploclist.emplace_back(name.c_str(), swnum, invert);
entries++;
// advance to the next item
curentry = comma;
if (*curentry != 0)
curentry++;
}
// then verify the number of bits in the mask matches
ioport_value temp;
int bits;
for (bits = 0, temp = m_mask; temp != 0 && bits < 32; bits++)
temp &= temp - 1;
if (bits != entries)
errorbuf.append(string_format("Switch location '%s' does not describe enough bits for mask %X\n", location, m_mask));
}
//-------------------------------------------------
// init_live_state - create live state structures
//-------------------------------------------------
void ioport_field::init_live_state(analog_field *analog)
{
// resolve callbacks
m_read.resolve();
m_write.resolve();
m_crosshair_mapper.resolve();
// allocate live state
m_live = std::make_unique<ioport_field_live>(*this, analog);
m_condition.initialize(device());
for (ioport_setting &setting : m_settinglist)
setting.condition().initialize(setting.device());
}
//**************************************************************************
// I/O PORT FIELD LIVE
//**************************************************************************
//-------------------------------------------------
// ioport_field_live - constructor
//-------------------------------------------------
ioport_field_live::ioport_field_live(ioport_field &field, analog_field *analog)
: analog(analog),
joystick(nullptr),
value(field.defvalue()),
impulse(0),
last(0),
toggle(field.toggle()),
joydir(digital_joystick::JOYDIR_COUNT),
lockout(false)
{
// fill in the basic values
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
seq[seqtype] = field.defseq_unresolved(seqtype);
// if this is a digital joystick field, make a note of it
if (field.is_digital_joystick())
{
joystick = &field.manager().digjoystick(field.player(), (field.type() - (IPT_DIGITAL_JOYSTICK_FIRST + 1)) / 4);
joydir = joystick->add_axis(field);
}
// Name keyboard key names
if (field.type_class() == INPUT_CLASS_KEYBOARD && field.specific_name() == nullptr)
{
// loop through each character on the field
for (int which = 0; which < (1 << (UCHAR_SHIFT_END - UCHAR_SHIFT_BEGIN + 1)); which++)
{
std::vector<char32_t> const codes = field.keyboard_codes(which);
if (codes.empty())
break;
name.append(string_format("%-*s ", std::max(SPACE_COUNT - 1, 0), field.key_name(which)));
}
// trim extra spaces
name = strtrimspace(name);
// special case
if (name.empty())
name.assign("Unnamed Key");
}
}
//**************************************************************************
// I/O PORT
//**************************************************************************
//-------------------------------------------------
// ioport_port - constructor
//-------------------------------------------------
ioport_port::ioport_port(device_t &owner, const char *tag)
: m_next(nullptr),
m_device(owner),
m_tag(tag),
m_modcount(0),
m_active(0)
{
}
//-------------------------------------------------
// ~ioport_port - destructor
//-------------------------------------------------
ioport_port::~ioport_port()
{
}
//-------------------------------------------------
// machine - return a reference to the running
// machine
//-------------------------------------------------
running_machine &ioport_port::machine() const
{
return m_device.machine();
}
//-------------------------------------------------
// manager - return a reference to the
// ioport_manager on the running machine
//-------------------------------------------------
ioport_manager &ioport_port::manager() const
{
return machine().ioport();
}
//-------------------------------------------------
// field - return a pointer to the first field
// that intersects the given mask
//-------------------------------------------------
ioport_field *ioport_port::field(ioport_value mask) const
{
// if we got the port, look for the field
for (ioport_field &field : fields())
if ((field.mask() & mask) != 0 && field.enabled())
return &field;
return nullptr;
}
//-------------------------------------------------
// read - return the value of an I/O port
//-------------------------------------------------
ioport_value ioport_port::read()
{
if (!manager().safe_to_read())
throw emu_fatalerror("Input ports cannot be read at init time!");
// start with the digital state
ioport_value result = m_live->digital;
// insert dynamic read values
for (dynamic_field &dynfield : m_live->readlist)
dynfield.read(result);
// apply active high/low state to digital and dynamic read inputs
result ^= m_live->defvalue;
// insert analog portions
for (analog_field &analog : m_live->analoglist)
analog.read(result);
return result;
}
//-------------------------------------------------
// write - write a value to a port
//-------------------------------------------------
void ioport_port::write(ioport_value data, ioport_value mem_mask)
{
// call device line write handlers
COMBINE_DATA(&m_live->outputvalue);
for (dynamic_field &dynfield : m_live->writelist)
if (dynfield.field().type() == IPT_OUTPUT)
dynfield.write(m_live->outputvalue ^ dynfield.field().defvalue());
}
//-------------------------------------------------
// frame_update - once/frame update
//-------------------------------------------------
void ioport_port::frame_update()
{
// start with 0 values for the digital bits
m_live->digital = 0;
// now loop back and modify based on the inputs
for (ioport_field &field : m_fieldlist)
field.frame_update(m_live->digital);
}
//-------------------------------------------------
// collapse_fields - remove any fields that are
// wholly overlapped by other fields
//-------------------------------------------------
void ioport_port::collapse_fields(std::string &errorbuf)
{
ioport_value maskbits = 0;
int lastmodcount = -1;
// remove the whole list and start from scratch
ioport_field *field = m_fieldlist.detach_all();
while (field != nullptr)
{
// if this modcount doesn't match, reset
if (field->modcount() != lastmodcount)
{
lastmodcount = field->modcount();
maskbits = 0;
}
// reinsert this field
ioport_field *current = field;
field = field->next();
insert_field(*current, maskbits, errorbuf);
}
}
//-------------------------------------------------
// insert_field - insert a new field, checking
// for errors
//-------------------------------------------------
void ioport_port::insert_field(ioport_field &newfield, ioport_value &disallowedbits, std::string &errorbuf)
{
// verify against the disallowed bits, but only if we are condition-free
if (newfield.condition().none())
{
if ((newfield.mask() & disallowedbits) != 0)
errorbuf.append(string_format("INPUT_TOKEN_FIELD specifies duplicate port bits (port=%s mask=%X)\n", tag(), newfield.mask()));
disallowedbits |= newfield.mask();
}
// first modify/nuke any entries that intersect our maskbits
ioport_field *nextfield;
for (ioport_field *field = m_fieldlist.first(); field != nullptr; field = nextfield)
{
nextfield = field->next();
if ((field->mask() & newfield.mask()) != 0 &&
(newfield.condition().none() || field->condition().none() || field->condition() == newfield.condition()))
{
// reduce the mask of the field we found
field->reduce_mask(newfield.mask());
// if the new entry fully overrides the previous one, we nuke
if (INPUT_PORT_OVERRIDE_FULLY_NUKES_PREVIOUS || field->mask() == 0)
m_fieldlist.remove(*field);
}
}
// make a mask of just the low bit
ioport_value lowbit = (newfield.mask() ^ (newfield.mask() - 1)) & newfield.mask();
// scan forward to find where to insert ourselves
ioport_field *field;
for (field = m_fieldlist.first(); field != nullptr; field = field->next())
if (field->mask() > lowbit)
break;
// insert it into the list
m_fieldlist.insert_before(newfield, field);
}
//-------------------------------------------------
// init_live_state - create the live state
//-------------------------------------------------
void ioport_port::init_live_state()
{
m_live = std::make_unique<ioport_port_live>(*this);
}
//-------------------------------------------------
// update_defvalue - force an update to the input
// port values based on current conditions
//-------------------------------------------------
void ioport_port::update_defvalue(bool flush_defaults)
{
// only clear on the first pass
if (flush_defaults)
m_live->defvalue = 0;
// recompute the default value for the entire port
for (ioport_field &field : m_fieldlist)
if (field.enabled())
m_live->defvalue = (m_live->defvalue & ~field.mask()) | (field.live().value & field.mask());
}
//**************************************************************************
// I/O PORT LIVE STATE
//**************************************************************************
//-------------------------------------------------
// ioport_port_live - constructor
//-------------------------------------------------
ioport_port_live::ioport_port_live(ioport_port &port)
: defvalue(0),
digital(0),
outputvalue(0)
{
// iterate over fields
for (ioport_field &field : port.fields())
{
// allocate analog state if it's analog
analog_field *analog = nullptr;
if (field.is_analog())
analog = &analoglist.emplace_back(field);
// allocate a dynamic field for reading
if (field.has_dynamic_read())
readlist.emplace_back(field);
// allocate a dynamic field for writing
if (field.has_dynamic_write())
writelist.emplace_back(field);
// let the field initialize its live state
field.init_live_state(analog);
}
}
//**************************************************************************
// I/O PORT MANAGER
//**************************************************************************
//-------------------------------------------------
// ioport_manager - constructor
//-------------------------------------------------
ioport_manager::ioport_manager(running_machine &machine)
: m_machine(machine)
, m_safe_to_read(false)
, m_last_frame_time(attotime::zero)
, m_last_delta_nsec(0)
, m_playback_accumulated_speed(0)
, m_playback_accumulated_frames(0)
, m_deselected_card_config()
{
for (auto &entries : m_type_to_entry)
std::fill(std::begin(entries), std::end(entries), nullptr);
}
//-------------------------------------------------
// initialize - walk the configured ports and
// create live state information
//-------------------------------------------------
time_t ioport_manager::initialize()
{
// add an exit callback and a frame callback
machine().add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(&ioport_manager::exit, this));
machine().add_notifier(MACHINE_NOTIFY_FRAME, machine_notify_delegate(&ioport_manager::frame_update_callback, this));
// initialize the default port info from the OSD
init_port_types();
// if we have a token list, proceed
device_enumerator iter(machine().root_device());
for (device_t &device : iter)
{
std::string errors;
m_portlist.append(device, errors);
if (!errors.empty())
osd_printf_error("Input port errors:\n%s", errors);
}
// renumber player numbers for controller ports
int player_offset = 0;
for (device_t &device : iter)
{
int players = 0;
for (auto &port : m_portlist)
{
if (&port.second->device() == &device)
{
for (ioport_field &field : port.second->fields())
{
if (field.type_class() == INPUT_CLASS_CONTROLLER)
{
if (players < field.player() + 1)
players = field.player() + 1;
field.set_player(field.player() + player_offset);
}
}
}
}
player_offset += players;
}
// allocate live structures to mirror the configuration
for (auto &port : m_portlist)
port.second->init_live_state();
// handle autoselection of devices
init_autoselect_devices(IPT_AD_STICK_X, IPT_AD_STICK_Y, IPT_AD_STICK_Z, OPTION_ADSTICK_DEVICE, "analog joystick");
init_autoselect_devices(IPT_PADDLE, IPT_PADDLE_V, 0, OPTION_PADDLE_DEVICE, "paddle");
init_autoselect_devices(IPT_PEDAL, IPT_PEDAL2, IPT_PEDAL3, OPTION_PEDAL_DEVICE, "pedal");
init_autoselect_devices(IPT_LIGHTGUN_X, IPT_LIGHTGUN_Y, 0, OPTION_LIGHTGUN_DEVICE, "lightgun");
init_autoselect_devices(IPT_POSITIONAL, IPT_POSITIONAL_V, 0, OPTION_POSITIONAL_DEVICE, "positional");
init_autoselect_devices(IPT_DIAL, IPT_DIAL_V, 0, OPTION_DIAL_DEVICE, "dial");
init_autoselect_devices(IPT_TRACKBALL_X, IPT_TRACKBALL_Y, 0, OPTION_TRACKBALL_DEVICE, "trackball");
init_autoselect_devices(IPT_MOUSE_X, IPT_MOUSE_Y, 0, OPTION_MOUSE_DEVICE, "mouse");
// look for 4-way diagonal joysticks and change the default map if we find any
const char *joystick_map_default = machine().options().joystick_map();
if (joystick_map_default[0] == 0 || strcmp(joystick_map_default, "auto") == 0)
for (auto &port : m_portlist)
for (ioport_field const &field : port.second->fields())
if (field.live().joystick != nullptr && field.rotated())
{
input_class_joystick &devclass = downcast<input_class_joystick &>(machine().input().device_class(DEVICE_CLASS_JOYSTICK));
devclass.set_global_joystick_map(input_class_joystick::map_4way_diagonal);
break;
}
// register callbacks for when we load configurations
machine().configuration().config_register(
"input",
configuration_manager::load_delegate(&ioport_manager::load_config, this),
configuration_manager::save_delegate(&ioport_manager::save_config, this));
// open playback and record files if specified
time_t basetime = playback_init();
record_init();
return basetime;
}
//-------------------------------------------------
// init_port_types - initialize the default
// type list
//-------------------------------------------------
void ioport_manager::init_port_types()
{
// convert the array into a list of type states that can be modified
emplace_core_types(m_typelist);
// ask the OSD to customize the list
machine().osd().customize_input_type_list(m_typelist);
// now iterate over the OSD-modified types
for (input_type_entry &curtype : m_typelist)
{
// first copy all the OSD-updated sequences into our current state
curtype.restore_default_seq();
// also make a lookup table mapping type/player to the appropriate type list entry
m_type_to_entry[curtype.type()][curtype.player()] = &curtype;
}
}
//-------------------------------------------------
// init_autoselect_devices - autoselect a single
// device based on the input port list passed
// in and the corresponding option
//-------------------------------------------------
void ioport_manager::init_autoselect_devices(int type1, int type2, int type3, const char *option, const char *ananame)
{
// if nothing specified, ignore the option
const char *stemp = machine().options().value(option);
if (stemp[0] == 0 || strcmp(stemp, "none") == 0)
return;
// extract valid strings
input_class *autoenable_class = nullptr;
for (input_device_class devclass = DEVICE_CLASS_FIRST_VALID; devclass <= DEVICE_CLASS_LAST_VALID; ++devclass)
if (strcmp(stemp, machine().input().device_class(devclass).name()) == 0)
{
autoenable_class = &machine().input().device_class(devclass);
break;
}
if (autoenable_class == nullptr)
{
osd_printf_error("Invalid %s value %s; reverting to keyboard\n", option, stemp);
autoenable_class = &machine().input().device_class(DEVICE_CLASS_KEYBOARD);
}
// only scan the list if we haven't already enabled this class of control
if (!autoenable_class->enabled())
for (auto &port : m_portlist)
for (ioport_field const &field : port.second->fields())
// if this port type is in use, apply the autoselect criteria
if ((type1 != 0 && field.type() == type1) || (type2 != 0 && field.type() == type2) || (type3 != 0 && field.type() == type3))
{
osd_printf_verbose("Input: Autoenabling %s due to presence of a %s\n", autoenable_class->name(), ananame);
autoenable_class->enable();
break;
}
}
//-------------------------------------------------
// exit - exit callback to ensure we clean up
// and close our files
//-------------------------------------------------
void ioport_manager::exit()
{
// close any playback or recording files
playback_end();
record_end();
}
//-------------------------------------------------
// ~ioport_manager - destructor
//-------------------------------------------------
ioport_manager::~ioport_manager()
{
}
//-------------------------------------------------
// type_name - return the name for the given
// type/player
//-------------------------------------------------
std::string ioport_manager::type_name(ioport_type type, u8 player) const
{
using util::lang_translate;
// if we have a machine, use the live state and quick lookup
input_type_entry const *const entry = m_type_to_entry[type][player];
if (entry)
{
std::string name = entry->name();
if (!name.empty())
return name;
}
// if we find nothing, return a default string (not a null pointer)
return _("input-name", "???");
}
//-------------------------------------------------
// type_group - return the group for the given
// type/player
//-------------------------------------------------
ioport_group ioport_manager::type_group(ioport_type type, int player) const noexcept
{
input_type_entry *entry = m_type_to_entry[type][player];
if (entry != nullptr)
return entry->group();
// if we find nothing, return an invalid group
return IPG_INVALID;
}
//-------------------------------------------------
// type_seq - return the input sequence for the
// given type/player
//-------------------------------------------------
const input_seq &ioport_manager::type_seq(ioport_type type, int player, input_seq_type seqtype) const noexcept
{
assert(type >= 0 && type < IPT_COUNT);
assert(player >= 0 && player < MAX_PLAYERS);
// if we have a machine, use the live state and quick lookup
input_type_entry *entry = m_type_to_entry[type][player];
if (entry != nullptr)
return entry->seq(seqtype);
// if we find nothing, return an empty sequence
return input_seq::empty_seq;
}
//-------------------------------------------------
// set_type_seq - change the input sequence for
// the given type/player
//-------------------------------------------------
void ioport_manager::set_type_seq(ioport_type type, int player, input_seq_type seqtype, const input_seq &newseq) noexcept
{
input_type_entry *const entry = m_type_to_entry[type][player];
if (entry)
{
if (newseq.is_default())
{
entry->set_seq(seqtype, entry->defseq(seqtype));
entry->set_cfg(seqtype, "");
}
else
{
entry->set_seq(seqtype, newseq);
if (!newseq.length())
entry->set_cfg(seqtype, "NONE");
else
entry->set_cfg(seqtype, machine().input().seq_to_tokens(newseq));
}
}
}
//-------------------------------------------------
// type_pressed - return true if the sequence for
// the given input type/player is pressed
//-------------------------------------------------
bool ioport_manager::type_pressed(ioport_type type, int player)
{
return machine().input().seq_pressed(type_seq(type, player));
}
//-------------------------------------------------
// type_class_present - return true if the given
// ioport_type_class exists in at least one port
//-------------------------------------------------
bool ioport_manager::type_class_present(ioport_type_class inputclass) const noexcept
{
for (auto &port : m_portlist)
for (ioport_field const &field : port.second->fields())
if (field.type_class() == inputclass)
return true;
return false;
}
//-------------------------------------------------
// count_players - counts the number of active
// players
//-------------------------------------------------
int ioport_manager::count_players() const noexcept
{
int max_player = 0;
for (auto &port : m_portlist)
for (ioport_field const &field : port.second->fields())
if (field.type_class() == INPUT_CLASS_CONTROLLER && max_player <= field.player() + 1)
max_player = field.player() + 1;
return max_player;
}
//-------------------------------------------------
// frame_update - core logic for per-frame input
// port updating
//-------------------------------------------------
digital_joystick &ioport_manager::digjoystick(int player, int number)
{
// find it in the list
for (digital_joystick &joystick : m_joystick_list)
if (joystick.player() == player && joystick.number() == number)
return joystick;
// create a new one
return m_joystick_list.emplace_back(player, number);
}
//-------------------------------------------------
// frame_update - callback for once/frame updating
//-------------------------------------------------
void ioport_manager::frame_update_callback()
{
// if we're paused, don't do anything
if (!machine().paused())
frame_update();
}
//-------------------------------------------------
// frame_update_internal - core logic for
// per-frame input port updating
//-------------------------------------------------
void ioport_manager::frame_update()
{
g_profiler.start(PROFILER_INPUT);
// record/playback information about the current frame
attotime curtime = machine().time();
playback_frame(curtime);
record_frame(curtime);
// track the duration of the previous frame
m_last_delta_nsec = (curtime - m_last_frame_time).as_attoseconds() / ATTOSECONDS_PER_NANOSECOND;
m_last_frame_time = curtime;
// update the digital joysticks
for (digital_joystick &joystick : m_joystick_list)
joystick.frame_update();
// compute default values for all the ports
// two passes to catch conditionals properly
for (auto &port : m_portlist)
port.second->update_defvalue(true);
for (auto &port : m_portlist)
port.second->update_defvalue(false);
// loop over all input ports
for (auto &port : m_portlist)
{
port.second->frame_update();
// handle playback/record
playback_port(*port.second.get());
record_port(*port.second.get());
// call device line write handlers
ioport_value newvalue = port.second->read();
for (dynamic_field &dynfield : port.second->live().writelist)
if (dynfield.field().type() != IPT_OUTPUT)
dynfield.write(newvalue);
}
g_profiler.stop();
}
//-------------------------------------------------
// frame_interpolate - interpolate between two
// values based on the time between frames
//-------------------------------------------------
s32 ioport_manager::frame_interpolate(s32 oldval, s32 newval)
{
// if no last delta, just use new value
if (m_last_delta_nsec == 0)
return newval;
// otherwise, interpolate
attoseconds_t nsec_since_last = (machine().time() - m_last_frame_time).as_attoseconds() / ATTOSECONDS_PER_NANOSECOND;
return oldval + (s64(newval - oldval) * nsec_since_last / m_last_delta_nsec);
}
//-------------------------------------------------
// load_config - callback to extract configuration
// data from the XML nodes
//-------------------------------------------------
void ioport_manager::load_config(config_type cfg_type, config_level cfg_level, util::xml::data_node const *parentnode)
{
// in the completion phase, we finish the initialization with the final ports
if (cfg_type == config_type::FINAL)
{
m_safe_to_read = true;
frame_update();
}
// early exit if no data to parse
if (!parentnode)
return;
// load device map table for controller configs only
if (cfg_type == config_type::CONTROLLER)
{
// iterate over all the remap nodes
load_remap_table(*parentnode);
input_manager::devicemap_table devicemap;
for (util::xml::data_node const *mapdevice_node = parentnode->get_child("mapdevice"); mapdevice_node != nullptr; mapdevice_node = mapdevice_node->get_next_sibling("mapdevice"))
{
char const *const devicename = mapdevice_node->get_attribute_string("device", nullptr);
char const *const controllername = mapdevice_node->get_attribute_string("controller", nullptr);
if (devicename && controllername)
devicemap.emplace(devicename, controllername);
}
// map device to controller if we have a device map
if (!devicemap.empty())
machine().input().map_device_to_controller(devicemap);
}
// iterate over all the port nodes
for (util::xml::data_node const *portnode = parentnode->get_child("port"); portnode; portnode = portnode->get_next_sibling("port"))
{
// get the basic port info from the attributes
int player;
int type = token_to_input_type(portnode->get_attribute_string("type", ""), player);
// initialize sequences to invalid defaults
std::pair<input_seq, char const *> newseq[SEQ_TYPE_TOTAL];
for (auto &seq : newseq)
{
seq.first.set(INPUT_CODE_INVALID);
seq.second = "";
}
// loop over new sequences
for (util::xml::data_node const *seqnode = portnode->get_child("newseq"); seqnode; seqnode = seqnode->get_next_sibling("newseq"))
{
// with a valid type, parse out the new sequence
input_seq_type seqtype = token_to_seq_type(seqnode->get_attribute_string("type", ""));
if ((seqtype != -1) && seqnode->get_value())
{
if (!strcmp(seqnode->get_value(), "NONE"))
newseq[seqtype].first.reset();
else
machine().input().seq_from_tokens(newseq[seqtype].first, seqnode->get_value());
if (config_type::CONTROLLER != cfg_type)
newseq[seqtype].second = seqnode->get_value();
}
}
// load into the appropriate place for the config type/level
if (config_type::SYSTEM == cfg_type)
load_system_config(*portnode, type, player, newseq);
else if ((config_type::CONTROLLER == cfg_type) && (config_level::DEFAULT != cfg_level))
load_controller_config(*portnode, type, player, newseq);
else
load_default_config(type, player, newseq);
}
// after applying the controller config, push that back into the backup, since that is
// what we will diff against
if (cfg_type == config_type::CONTROLLER)
for (input_type_entry &entry : m_typelist)
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
entry.defseq(seqtype) = entry.seq(seqtype);
// load keyboard enable/disable state
if (cfg_type == config_type::SYSTEM)
{
std::vector<bool> kbd_enable_set;
bool keyboard_enabled = false, missing_enabled = false;
natural_keyboard &natkbd = machine().natkeyboard();
for (util::xml::data_node const *kbdnode = parentnode->get_child("keyboard"); kbdnode; kbdnode = kbdnode->get_next_sibling("keyboard"))
{
char const *const tag = kbdnode->get_attribute_string("tag", nullptr);
int const enabled = kbdnode->get_attribute_int("enabled", -1);
if (tag && (0 <= enabled))
{
size_t i;
for (i = 0; natkbd.keyboard_count() > i; ++i)
{
if (!strcmp(natkbd.keyboard_device(i).tag(), tag))
{
if (kbd_enable_set.empty())
kbd_enable_set.resize(natkbd.keyboard_count(), false);
kbd_enable_set[i] = true;
if (enabled)
{
if (!natkbd.keyboard_is_keypad(i))
keyboard_enabled = true;
natkbd.enable_keyboard(i);
}
else
{
natkbd.disable_keyboard(i);
}
break;
}
}
missing_enabled = missing_enabled || (enabled && (natkbd.keyboard_count() <= i));
}
}
// if keyboard enable configuration was loaded, patch it up for principle of least surprise
if (!kbd_enable_set.empty())
{
for (size_t i = 0; natkbd.keyboard_count() > i; ++i)
{
if (!natkbd.keyboard_is_keypad(i))
{
if (!keyboard_enabled && missing_enabled)
{
natkbd.enable_keyboard(i);
keyboard_enabled = true;
}
else if (!kbd_enable_set[i])
{
if (keyboard_enabled)
natkbd.disable_keyboard(i);
else
natkbd.enable_keyboard(i);
keyboard_enabled = true;
}
}
}
}
}
}
//-------------------------------------------------
// load_remap_table - extract and apply the
// global remapping table
//-------------------------------------------------
void ioport_manager::load_remap_table(util::xml::data_node const &parentnode)
{
// count items first so we can allocate
int count = 0;
for (util::xml::data_node const *remapnode = parentnode.get_child("remap"); remapnode != nullptr; remapnode = remapnode->get_next_sibling("remap"))
count++;
// if we have some, deal with them
if (count > 0)
{
// allocate tables
std::vector<input_code> oldtable(count);
std::vector<input_code> newtable(count);
// build up the remap table
count = 0;
for (util::xml::data_node const *remapnode = parentnode.get_child("remap"); remapnode != nullptr; remapnode = remapnode->get_next_sibling("remap"))
{
input_code origcode = machine().input().code_from_token(remapnode->get_attribute_string("origcode", ""));
input_code newcode = machine().input().code_from_token(remapnode->get_attribute_string("newcode", ""));
if (origcode != INPUT_CODE_INVALID && newcode != INPUT_CODE_INVALID)
{
oldtable[count] = origcode;
newtable[count] = newcode;
count++;
}
}
// loop over the remapping table, then over default ports, replacing old with new
for (int remapnum = 0; remapnum < count; remapnum++)
for (input_type_entry &entry : m_typelist)
entry.replace_code(oldtable[remapnum], newtable[remapnum]);
}
}
//-------------------------------------------------
// load_default_config - apply input settings
// to defaults for all systems
//-------------------------------------------------
bool ioport_manager::load_default_config(
int type,
int player,
const std::pair<input_seq, char const *> (&newseq)[SEQ_TYPE_TOTAL])
{
// find a matching port in the list
for (input_type_entry &entry : m_typelist)
{
if (entry.type() == type && entry.player() == player)
{
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
{
if (input_seq_good(machine(), newseq[seqtype].first))
entry.set_seq(seqtype, newseq[seqtype].first);
entry.set_cfg(seqtype, newseq[seqtype].second);
}
return true;
}
}
return false;
}
//-------------------------------------------------
// load_controller_config - apply controler
// profile settings to defaults
//-------------------------------------------------
bool ioport_manager::load_controller_config(
util::xml::data_node const &portnode,
int type,
int player,
const std::pair<input_seq, char const *> (&newseq)[SEQ_TYPE_TOTAL])
{
// without a tag, apply to the defaults for all systems
char const *const tag = portnode.get_attribute_string("tag", nullptr);
if (!tag)
return load_default_config(type, player, newseq);
// ensure the port actually exists
auto const port(m_portlist.find(tag));
if (m_portlist.end() == port)
return false;
ioport_value const mask = portnode.get_attribute_int("mask", 0);
if (!mask)
return false;
// find the matching field
ioport_value const defvalue = portnode.get_attribute_int("defvalue", 0);
for (ioport_field &field : port->second->fields())
{
// find the matching mask and default value
if (field.type() == type && field.player() == player &&
field.mask() == mask && (field.defvalue() & mask) == (defvalue & mask))
{
// if a sequence was specified, override the developer-specified default for the field
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
{
if (input_seq_good(machine(), newseq[seqtype].first))
{
field.live().seq[seqtype] = newseq[seqtype].first;
field.set_defseq(seqtype, newseq[seqtype].first);
}
}
// fetch configurable attributes
if (!field.live().analog)
{
// for non-analog fields
// can't practically set value here
// fetch yes/no for toggle setting
char const *const togstring = portnode.get_attribute_string("toggle", nullptr);
if (togstring && !strcmp(togstring, "yes"))
{
field.live().toggle = true;
field.m_flags |= ioport_field::FIELD_FLAG_TOGGLE;
}
else if (togstring && !strcmp(togstring, "no"))
{
field.live().toggle = false;
field.m_flags &= ~ioport_field::FIELD_FLAG_TOGGLE;
}
}
else
{
// for analog fields
#if 0 // changing this stuff causes issues because of the way it's tied up with the analog_field object
// get base attributes
field.live().analog->m_delta = field.m_delta = portnode.get_attribute_int("keydelta", field.delta());
field.live().analog->m_centerdelta = field.m_centerdelta = portnode.get_attribute_int("centerdelta", field.centerdelta());
field.live().analog->m_sensitivity = field.m_sensitivity = portnode.get_attribute_int("sensitivity", field.sensitivity());
// fetch yes/no for reverse setting
char const *const revstring = portnode.get_attribute_string("reverse", nullptr);
if (revstring && !strcmp(revstring, "yes"))
{
field.live().analog->m_reverse = true;
field.m_flags |= ioport_field::ANALOG_FLAG_REVERSE;
}
else if (revstring && !strcmp(revstring, "no"))
{
field.live().analog->m_reverse = false;
field.m_flags &= ~ioport_field::ANALOG_FLAG_REVERSE;
}
#endif
}
// successfully applied
return true;
}
}
// no matching field
return false;
}
//-------------------------------------------------
// load_system_config - apply saved input
// configuration for the current system
//-------------------------------------------------
void ioport_manager::load_system_config(
util::xml::data_node const &portnode,
int type,
int player,
const std::pair<input_seq, char const *> (&newseq)[SEQ_TYPE_TOTAL])
{
// system-specific configuration should always apply by port/field
char const *const tag = portnode.get_attribute_string("tag", nullptr);
ioport_value const mask = portnode.get_attribute_int("mask", 0);
ioport_value const defvalue = portnode.get_attribute_int("defvalue", 0);
if (!tag || !mask)
return;
// find the port we want
auto const port(m_portlist.find(tag));
if (m_portlist.end() != port)
{
for (ioport_field &field : port->second->fields())
{
// find the matching mask and default value
if (field.type() == type && field.player() == player &&
field.mask() == mask && (field.defvalue() & mask) == (defvalue & mask))
{
// if a sequence was specified, copy it in
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
{
if (input_seq_good(machine(), newseq[seqtype].first))
field.live().seq[seqtype] = newseq[seqtype].first;
field.live().cfg[seqtype] = newseq[seqtype].second;
}
// fetch configurable attributes
if (!field.live().analog)
{
// for non-analog fields
// fetch the value
field.live().value = portnode.get_attribute_int("value", field.defvalue());
// fetch yes/no for toggle setting
char const *const togstring = portnode.get_attribute_string("toggle", nullptr);
if (togstring && !strcmp(togstring, "yes"))
field.live().toggle = true;
else if (togstring && !strcmp(togstring, "no"))
field.live().toggle = false;
}
else
{
// for analog fields
// get base attributes
field.live().analog->m_delta = portnode.get_attribute_int("keydelta", field.delta());
field.live().analog->m_centerdelta = portnode.get_attribute_int("centerdelta", field.centerdelta());
field.live().analog->m_sensitivity = portnode.get_attribute_int("sensitivity", field.sensitivity());
// fetch yes/no for reverse setting
char const *const revstring = portnode.get_attribute_string("reverse", nullptr);
if (revstring && !strcmp(revstring, "yes"))
field.live().analog->m_reverse = true;
else if (revstring && !strcmp(revstring, "no"))
field.live().analog->m_reverse = false;
}
break;
}
}
}
else
{
// see if this belongs to a slot card that isn't inserted
std::string_view parent_tag(tag);
auto pos(parent_tag.rfind(':'));
if (pos && (std::string_view::npos != pos))
{
parent_tag = parent_tag.substr(0, pos);
if (!machine().root_device().subdevice(parent_tag))
{
for (pos = parent_tag.rfind(':'); pos && (std::string_view::npos != pos); pos = parent_tag.rfind(':'))
{
std::string_view const child_tag(parent_tag.substr(pos + 1));
parent_tag = parent_tag.substr(0, pos);
device_t const *const parent_device(machine().root_device().subdevice(parent_tag));
if (parent_device)
{
device_slot_interface const *slot;
if (parent_device->interface(slot) && (slot->option_list().find(std::string(child_tag)) != slot->option_list().end()))
{
if (!m_deselected_card_config)
m_deselected_card_config = util::xml::file::create();
portnode.copy_into(*m_deselected_card_config);
}
break;
}
}
}
}
}
}
//**************************************************************************
// SETTINGS SAVE
//**************************************************************************
//-------------------------------------------------
// save_config - config callback for saving input
// port configuration
//-------------------------------------------------
void ioport_manager::save_config(config_type cfg_type, util::xml::data_node *parentnode)
{
// if no parentnode, ignore
if (!parentnode)
return;
// default ports save differently
if (cfg_type == config_type::DEFAULT)
save_default_inputs(*parentnode);
else if (cfg_type == config_type::SYSTEM)
save_game_inputs(*parentnode);
}
//-------------------------------------------------
// save_this_input_field_type - determine if the
// given port type is worth saving
//-------------------------------------------------
bool ioport_manager::save_this_input_field_type(ioport_type type)
{
switch (type)
{
case IPT_UNUSED:
case IPT_END:
case IPT_PORT:
case IPT_UNKNOWN:
return false;
default:
break;
}
return true;
}
//-------------------------------------------------
// save_default_inputs - add nodes for any default
// mappings that have changed
//-------------------------------------------------
void ioport_manager::save_default_inputs(util::xml::data_node &parentnode)
{
// iterate over ports
for (input_type_entry &entry : m_typelist)
{
// only save if this port is a type we save
if (save_this_input_field_type(entry.type()))
{
// see if any of the sequences have changed
input_seq_type seqtype;
for (seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
if (!entry.cfg(seqtype).empty())
break;
// if so, we need to add a node
if (seqtype < SEQ_TYPE_TOTAL)
{
// add a new port node
util::xml::data_node *const portnode = parentnode.add_child("port", nullptr);
if (portnode)
{
// add the port information and attributes
portnode->set_attribute("type", input_type_to_token(entry.type(), entry.player()).c_str());
// add only the sequences that have changed from the defaults
for (input_seq_type type = SEQ_TYPE_STANDARD; type < SEQ_TYPE_TOTAL; ++type)
{
if (!entry.cfg(type).empty())
{
util::xml::data_node *const seqnode = portnode->add_child("newseq", entry.cfg(type).c_str());
if (seqnode)
seqnode->set_attribute("type", seqtypestrings[type]);
}
}
}
}
}
}
}
//-------------------------------------------------
// save_game_inputs - add nodes for any game
// mappings that have changed
//-------------------------------------------------
void ioport_manager::save_game_inputs(util::xml::data_node &parentnode)
{
// save keyboard enable/disable state
natural_keyboard &natkbd = machine().natkeyboard();
for (size_t i = 0; natkbd.keyboard_count() > i; ++i)
{
util::xml::data_node *const kbdnode = parentnode.add_child("keyboard", nullptr);
kbdnode->set_attribute("tag", natkbd.keyboard_device(i).tag());
kbdnode->set_attribute_int("enabled", natkbd.keyboard_enabled(i));
}
// iterate over ports
for (auto &port : m_portlist)
for (ioport_field const &field : port.second->fields())
if (save_this_input_field_type(field.type()))
{
// determine if we changed
bool changed = false;
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; (seqtype < SEQ_TYPE_TOTAL) && !changed; ++seqtype)
changed = !field.live().cfg[seqtype].empty();
if (!field.is_analog())
{
// non-analog changes
changed = changed || ((field.live().value & field.mask()) != (field.defvalue() & field.mask()));
changed = changed || (field.live().toggle != field.toggle());
}
else
{
// analog changes
changed = changed || (field.live().analog->m_delta != field.delta());
changed = changed || (field.live().analog->m_centerdelta != field.centerdelta());
changed = changed || (field.live().analog->m_sensitivity != field.sensitivity());
changed = changed || (field.live().analog->m_reverse != field.analog_reverse());
}
// if we did change, add a new node
if (changed)
{
// add a new port node
util::xml::data_node *const portnode = parentnode.add_child("port", nullptr);
if (portnode)
{
// add the identifying information and attributes
portnode->set_attribute("tag", port.second->tag());
portnode->set_attribute("type", input_type_to_token(field.type(), field.player()).c_str());
portnode->set_attribute_int("mask", field.mask());
portnode->set_attribute_int("defvalue", field.defvalue() & field.mask());
// add sequences if changed
for (input_seq_type seqtype = SEQ_TYPE_STANDARD; seqtype < SEQ_TYPE_TOTAL; ++seqtype)
{
if (!field.live().cfg[seqtype].empty())
{
util::xml::data_node *const seqnode = portnode->add_child("newseq", field.live().cfg[seqtype].c_str());
if (seqnode)
seqnode->set_attribute("type", seqtypestrings[seqtype]);
}
}
if (!field.is_analog())
{
// write out non-analog changes
if ((field.live().value & field.mask()) != (field.defvalue() & field.mask()))
portnode->set_attribute_int("value", field.live().value & field.mask());
if (field.live().toggle != field.toggle())
portnode->set_attribute("toggle", field.live().toggle ? "yes" : "no");
}
else
{
// write out analog changes
if (field.live().analog->m_delta != field.delta())
portnode->set_attribute_int("keydelta", field.live().analog->m_delta);
if (field.live().analog->m_centerdelta != field.centerdelta())
portnode->set_attribute_int("centerdelta", field.live().analog->m_centerdelta);
if (field.live().analog->m_sensitivity != field.sensitivity())
portnode->set_attribute_int("sensitivity", field.live().analog->m_sensitivity);
if (field.live().analog->m_reverse != field.analog_reverse())
portnode->set_attribute("reverse", field.live().analog->m_reverse ? "yes" : "no");
}
}
}
}
// preserve configuration for deselected slot cards
if (m_deselected_card_config)
{
for (util::xml::data_node const *node = m_deselected_card_config->get_first_child(); node; node = node->get_next_sibling())
node->copy_into(parentnode);
}
}
//**************************************************************************
// INPUT PLAYBACK
//**************************************************************************
//-------------------------------------------------
// playback_read - read a value from the playback
// file
//-------------------------------------------------
template<typename Type>
Type ioport_manager::playback_read(Type &result)
{
// protect against nullptr handles if previous reads fail
if (!m_playback_stream)
return result = Type(0);
// read the value; if we fail, end playback
size_t read;
m_playback_stream->read(&result, sizeof(result), read);
if (sizeof(result) != read)
{
playback_end("End of file");
return result = Type(0);
}
// normalize byte order
if (sizeof(result) == 8)
result = little_endianize_int64(result);
else if (sizeof(result) == 4)
result = little_endianize_int32(result);
else if (sizeof(result) == 2)
result = little_endianize_int16(result);
return result;
}
template<>
bool ioport_manager::playback_read<bool>(bool &result)
{
u8 temp;
playback_read(temp);
return result = bool(temp);
}
//-------------------------------------------------
// playback_init - initialize INP playback
//-------------------------------------------------
time_t ioport_manager::playback_init()
{
// if no file, nothing to do
const char *filename = machine().options().playback();
if (filename[0] == 0)
return 0;
// open the playback file
m_playback_file = std::make_unique<emu_file>(machine().options().input_directory(), OPEN_FLAG_READ);
std::error_condition const filerr = m_playback_file->open(filename);
// return an explicit error if file isn't found in given path
if (filerr == std::errc::no_such_file_or_directory)
fatalerror("Input file %s not found\n",filename);
// TODO: bail out any other error laconically for now
if (filerr)
fatalerror("Failed to open file %s for playback (%s:%d %s)\n", filename, filerr.category().name(), filerr.value(), filerr.message());
// read the header and verify that it is a modern version; if not, print an error
inp_header header;
if (!header.read(*m_playback_file))
fatalerror("Input file is corrupt or invalid (missing header)\n");
if (!header.check_magic())
fatalerror("Input file invalid or in an older, unsupported format\n");
if (header.get_majversion() != inp_header::MAJVERSION)
fatalerror("Input file format version mismatch\n");
// output info to console
osd_printf_info("Input file: %s\n", filename);
osd_printf_info("INP version %u.%u\n", header.get_majversion(), header.get_minversion());
time_t basetime = header.get_basetime();
osd_printf_info("Created %s\n", ctime(&basetime));
osd_printf_info("Recorded using %s\n", header.get_appdesc());
// verify the header against the current game
std::string const sysname = header.get_sysname();
if (sysname != machine().system().name)
osd_printf_info("Input file is for machine '%s', not for current machine '%s'\n", sysname, machine().system().name);
// enable compression
m_playback_stream = util::zlib_read(*m_playback_file, 16386);
return basetime;
}
//-------------------------------------------------
// playback_end - end INP playback
//-------------------------------------------------
void ioport_manager::playback_end(const char *message)
{
// only applies if we have a live file
if (m_playback_stream)
{
// close the file
m_playback_stream.reset();
m_playback_file.reset();
// pop a message
if (message != nullptr)
machine().popmessage("Playback Ended\nReason: %s", message);
// display speed stats
if (m_playback_accumulated_speed > 0)
m_playback_accumulated_speed /= m_playback_accumulated_frames;
osd_printf_info("Total playback frames: %d\n", u32(m_playback_accumulated_frames));
osd_printf_info("Average recorded speed: %d%%\n", u32((m_playback_accumulated_speed * 200 + 1) >> 21));
// close the program at the end of inp file playback
if (machine().options().exit_after_playback())
{
osd_printf_info("Exiting MAME now...\n");
machine().schedule_exit();
}
}
}
//-------------------------------------------------
// playback_frame - start of frame callback for
// playback
//-------------------------------------------------
void ioport_manager::playback_frame(const attotime &curtime)
{
// if playing back, fetch the information and verify
if (m_playback_stream)
{
// first the absolute time
seconds_t seconds_temp;
attoseconds_t attoseconds_temp;
playback_read(seconds_temp);
playback_read(attoseconds_temp);
attotime readtime(seconds_temp, attoseconds_temp);
if (readtime != curtime)
playback_end("Out of sync");
// then the speed
u32 curspeed;
m_playback_accumulated_speed += playback_read(curspeed);
m_playback_accumulated_frames++;
}
}
//-------------------------------------------------
// playback_port - per-port callback for playback
//-------------------------------------------------
void ioport_manager::playback_port(ioport_port &port)
{
// if playing back, fetch information about this port
if (m_playback_stream)
{
// read the default value and the digital state
playback_read(port.live().defvalue);
playback_read(port.live().digital);
// loop over analog ports and save their data
for (analog_field &analog : port.live().analoglist)
{
// read current and previous values
playback_read(analog.m_accum);
playback_read(analog.m_previous);
// read configuration information
playback_read(analog.m_sensitivity);
playback_read(analog.m_reverse);
}
}
}
//-------------------------------------------------
// record_write - write a value to the record file
//-------------------------------------------------
template<typename Type>
void ioport_manager::record_write(Type value)
{
// protect against nullptr handles if previous reads fail
if (!m_record_stream)
return;
// normalize byte order
if (sizeof(value) == 8)
value = little_endianize_int64(value);
else if (sizeof(value) == 4)
value = little_endianize_int32(value);
else if (sizeof(value) == 2)
value = little_endianize_int16(value);
// write the value; if we fail, end recording
size_t written;
if (m_record_stream->write(&value, sizeof(value), written) || (sizeof(value) != written))
record_end("Out of space");
}
template<>
void ioport_manager::record_write<bool>(bool value)
{
u8 byte = u8(value);
record_write(byte);
}
//-------------------------------------------------
// record_init - initialize INP recording
//-------------------------------------------------
void ioport_manager::record_init()
{
// if no file, nothing to do
const char *filename = machine().options().record();
if (filename[0] == 0)
return;
// open the record file
m_record_file = std::make_unique<emu_file>(machine().options().input_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS);
std::error_condition const filerr = m_record_file->open(filename);
if (filerr)
throw emu_fatalerror("ioport_manager::record_init: Failed to open file for recording (%s:%d %s)", filerr.category().name(), filerr.value(), filerr.message());
// get the base time
system_time systime;
machine().base_datetime(systime);
// fill in the header
inp_header header;
header.set_magic();
header.set_basetime(systime.time);
header.set_version();
header.set_sysname(machine().system().name);
header.set_appdesc(util::string_format("%s %s", emulator_info::get_appname(), emulator_info::get_build_version()));
// write it
header.write(*m_record_file);
// enable compression
m_record_stream = util::zlib_write(*m_record_file, 6, 16384);
}
//-------------------------------------------------
// record_end - end INP recording
//-------------------------------------------------
void ioport_manager::record_end(const char *message)
{
// only applies if we have a live file
if (m_record_stream)
{
// close the file
m_record_stream.reset(); // TODO: check for errors flushing the last compressed block before doing this
m_record_file.reset();
// pop a message
if (message != nullptr)
machine().popmessage("Recording Ended\nReason: %s", message);
}
}
//-------------------------------------------------
// record_frame - start of frame callback for
// recording
//-------------------------------------------------
void ioport_manager::record_frame(const attotime &curtime)
{
// if recording, record information about the current frame
if (m_record_stream)
{
// first the absolute time
record_write(curtime.seconds());
record_write(curtime.attoseconds());
// then the current speed
record_write(u32(machine().video().speed_percent() * double(1 << 20)));
}
}
//-------------------------------------------------
// record_port - per-port callback for record
//-------------------------------------------------
void ioport_manager::record_port(ioport_port &port)
{
// if recording, store information about this port
if (m_record_stream)
{
// store the default value and digital state
record_write(port.live().defvalue);
record_write(port.live().digital);
// loop over analog ports and save their data
for (analog_field &analog : port.live().analoglist)
{
// store current and previous values
record_write(analog.m_accum);
record_write(analog.m_previous);
// store configuration information
record_write(analog.m_sensitivity);
record_write(analog.m_reverse);
}
}
}
//**************************************************************************
// I/O PORT CONFIGURER
//**************************************************************************
//-------------------------------------------------
// ioport_configurer - constructor
//-------------------------------------------------
ioport_configurer::ioport_configurer(device_t &owner, ioport_list &portlist, std::string &errorbuf)
: m_owner(owner),
m_portlist(portlist),
m_errorbuf(errorbuf),
m_curport(nullptr),
m_curfield(nullptr),
m_cursetting(nullptr)
{
}
//-------------------------------------------------
// string_from_token - convert an
// ioport_token to a default string
//-------------------------------------------------
const char *ioport_configurer::string_from_token(const char *string)
{
// 0 is an invalid index
if (string == nullptr)
return nullptr;
// if the index is greater than the count, assume it to be a pointer
if (uintptr_t(string) >= INPUT_STRING_COUNT)
return string;
#if false // Set true, If you want to take care missing-token or wrong-sorting
// otherwise, scan the list for a matching string and return it
for (int index = 0; index < std::size(input_port_default_strings); index++)
if (input_port_default_strings[index].id == uintptr_t(string))
return input_port_default_strings[index].string;
return "(Unknown Default)";
#else
return input_port_default_strings[uintptr_t(string)-1].string;
#endif
}
//-------------------------------------------------
// port_alloc - allocate a new port
//-------------------------------------------------
ioport_configurer& ioport_configurer::port_alloc(const char *tag)
{
// create the full tag
std::string fulltag = m_owner.subtag(tag);
// add it to the list, and reset current field/setting
if (m_portlist.count(fulltag) != 0) throw tag_add_exception(fulltag.c_str());
m_portlist.emplace(std::make_pair(fulltag, std::make_unique<ioport_port>(m_owner, fulltag.c_str())));
m_curport = m_portlist.find(fulltag)->second.get();
m_curfield = nullptr;
m_cursetting = nullptr;
return *this;
}
//-------------------------------------------------
// port_modify - find an existing port and
// modify it
//-------------------------------------------------
ioport_configurer& ioport_configurer::port_modify(const char *tag)
{
// create the full tag
std::string fulltag = m_owner.subtag(tag);
// find the existing port
m_curport = m_portlist.find(fulltag)->second.get();
if (m_curport == nullptr)
throw emu_fatalerror("Requested to modify nonexistent port '%s'", fulltag);
// bump the modification count, and reset current field/setting
m_curport->m_modcount++;
m_curfield = nullptr;
m_cursetting = nullptr;
return *this;
}
//-------------------------------------------------
// field_alloc - allocate a new field
//-------------------------------------------------
ioport_configurer& ioport_configurer::field_alloc(ioport_type type, ioport_value defval, ioport_value mask, const char *name)
{
// make sure we have a port
if (m_curport == nullptr)
throw emu_fatalerror("alloc_field called with no active port (mask=%X defval=%X)\n", mask, defval);
// append the field
if (type != IPT_UNKNOWN && type != IPT_UNUSED)
m_curport->m_active |= mask;
m_curfield = &m_curport->m_fieldlist.append(*new ioport_field(*m_curport, type, defval, mask, string_from_token(name)));
// reset the current setting
m_cursetting = nullptr;
return *this;
}
//-------------------------------------------------
// field_add_char - add a character to a field
//-------------------------------------------------
ioport_configurer& ioport_configurer::field_add_char(std::initializer_list<char32_t> charlist)
{
for (int index = 0; index < std::size(m_curfield->m_chars); index++)
if (m_curfield->m_chars[index][0] == 0)
{
const size_t char_count = std::size(m_curfield->m_chars[index]);
assert(charlist.size() > 0 && charlist.size() <= char_count);
for (size_t i = 0; i < char_count; i++)
m_curfield->m_chars[index][i] = i < charlist.size() ? *(charlist.begin() + i) : 0;
return *this;
}
std::ostringstream s;
bool is_first = true;
for (char32_t ch : charlist)
{
util::stream_format(s, "%s%d", is_first ? "" : ",", (int)ch);
is_first = false;
}
throw emu_fatalerror("PORT_CHAR(%s) could not be added - maximum amount exceeded\n", s.str());
}
//-------------------------------------------------
// field_add_code - add a character to a field
//-------------------------------------------------
ioport_configurer& ioport_configurer::field_add_code(input_seq_type which, input_code code)
{
m_curfield->m_seq[which] |= code;
return *this;
}
//-------------------------------------------------
// setting_alloc - allocate a new setting
//-------------------------------------------------
ioport_configurer& ioport_configurer::setting_alloc(ioport_value value, const char *name)
{
// make sure we have a field
if (!m_curfield)
throw emu_fatalerror("alloc_setting called with no active field (value=%X name=%s)\n", value, name);
// append a new setting
m_cursetting = &m_curfield->m_settinglist.emplace_back(*m_curfield, value & m_curfield->mask(), string_from_token(name));
return *this;
}
//-------------------------------------------------
// set_condition - set the condition for either
// the current setting or field
//-------------------------------------------------
ioport_configurer& ioport_configurer::set_condition(ioport_condition::condition_t condition, const char *tag, ioport_value mask, ioport_value value)
{
ioport_condition &target = m_cursetting ? m_cursetting->condition() : m_curfield->condition();
target.set(condition, tag, mask, value);
return *this;
}
//-------------------------------------------------
// onoff_alloc - allocate an on/off DIP switch
//-------------------------------------------------
ioport_configurer& ioport_configurer::onoff_alloc(const char *name, ioport_value defval, ioport_value mask, const char *diplocation)
{
// allocate a field normally
field_alloc(IPT_DIPSWITCH, defval, mask, name);
// expand the diplocation
if (diplocation != nullptr)
field_set_diplocation(diplocation);
// allocate settings
setting_alloc(defval & mask, DEF_STR(Off));
setting_alloc(~defval & mask, DEF_STR(On));
// clear cursettings set by setting_alloc
m_cursetting = nullptr;
return *this;
}
/***************************************************************************
MISCELLANEOUS
***************************************************************************/
//-------------------------------------------------
// dynamic_field - constructor
//-------------------------------------------------
dynamic_field::dynamic_field(ioport_field &field)
: m_field(field)
, m_shift(0)
, m_oldval(field.defvalue())
{
// fill in the data
for (ioport_value mask = field.mask(); !(mask & 1); mask >>= 1)
m_shift++;
m_oldval >>= m_shift;
}
//-------------------------------------------------
// read - read the updated value and merge it
// into the target
//-------------------------------------------------
void dynamic_field::read(ioport_value &result)
{
// skip if not enabled
if (m_field.enabled())
{
// call the callback to read a new value
ioport_value newval = m_field.m_read();
m_oldval = newval;
// merge in the bits (don't invert yet, as all digitals are inverted together)
result = (result & ~m_field.mask()) | ((newval << m_shift) & m_field.mask());
}
}
//-------------------------------------------------
// write - track a change to a value and call
// the write callback if there's something new
//-------------------------------------------------
void dynamic_field::write(ioport_value newval)
{
// skip if not enabled
if (m_field.enabled())
{
// if the bits have changed, call the handler
newval = (newval & m_field.mask()) >> m_shift;
if (m_oldval != newval)
{
m_field.m_write(m_field, m_field.m_write_param, m_oldval, newval);
m_oldval = newval;
}
}
}
//-------------------------------------------------
// analog_field - constructor
//-------------------------------------------------
analog_field::analog_field(ioport_field &field)
: m_field(field)
, m_shift(compute_shift(field.mask()))
, m_adjdefvalue((field.defvalue() & field.mask()) >> m_shift)
, m_adjmin((field.minval() & field.mask()) >> m_shift)
, m_adjmax((field.maxval() & field.mask()) >> m_shift)
, m_adjoverride((field.defvalue() & field.mask()) >> m_shift)
, m_sensitivity(field.sensitivity())
, m_reverse(field.analog_reverse())
, m_delta(field.delta())
, m_centerdelta(field.centerdelta())
, m_accum(0)
, m_previous(0)
, m_previousanalog(0)
, m_minimum(osd::INPUT_ABSOLUTE_MIN)
, m_maximum(osd::INPUT_ABSOLUTE_MAX)
, m_center(0)
, m_reverse_val(0)
, m_scalepos(0)
, m_scaleneg(0)
, m_keyscalepos(0)
, m_keyscaleneg(0)
, m_positionalscale(0)
, m_absolute(false)
, m_wraps(false)
, m_autocenter(false)
, m_single_scale(false)
, m_interpolate(false)
, m_lastdigital(false)
, m_use_adjoverride(false)
{
// set basic parameters based on the configured type
switch (field.type())
{
// paddles and analog joysticks are absolute and autocenter
case IPT_AD_STICK_X:
case IPT_AD_STICK_Y:
case IPT_AD_STICK_Z:
case IPT_PADDLE:
case IPT_PADDLE_V:
m_absolute = true;
m_autocenter = true;
m_interpolate = !field.analog_reset();
break;
// pedals start at and autocenter to the min range
case IPT_PEDAL:
case IPT_PEDAL2:
case IPT_PEDAL3:
m_center = osd::INPUT_ABSOLUTE_MIN;
m_accum = apply_inverse_sensitivity(m_center);
m_absolute = true;
m_autocenter = true;
m_interpolate = !field.analog_reset();
break;
// lightguns are absolute as well, but don't autocenter and don't interpolate their values
case IPT_LIGHTGUN_X:
case IPT_LIGHTGUN_Y:
m_absolute = true;
m_autocenter = false;
m_interpolate = false;
break;
// positional devices are absolute, but can also wrap like relative devices
// set each position to be 512 units
case IPT_POSITIONAL:
case IPT_POSITIONAL_V:
m_positionalscale = compute_scale(field.maxval(), osd::INPUT_ABSOLUTE_MAX - osd::INPUT_ABSOLUTE_MIN);
m_adjmin = 0;
m_adjmax = field.maxval() - 1;
m_wraps = field.analog_wraps();
m_autocenter = !m_wraps;
break;
// dials, mice and trackballs are relative devices
// these have fixed "min" and "max" values based on how many bits are in the port
// in addition, we set the wrap around min/max values to 512 * the min/max values
// this takes into account the mapping that one mouse unit ~= 512 analog units
case IPT_DIAL:
case IPT_DIAL_V:
case IPT_TRACKBALL_X:
case IPT_TRACKBALL_Y:
case IPT_MOUSE_X:
case IPT_MOUSE_Y:
m_absolute = false;
m_wraps = true;
m_interpolate = !field.analog_reset();
break;
default:
fatalerror("Unknown analog port type -- don't know if it is absolute or not\n");
}
if (m_absolute)
{
// further processing for absolute controls
// if the default value is pegged at the min or max, use a single scale value for the whole axis
m_single_scale = (m_adjdefvalue == m_adjmin) || (m_adjdefvalue == m_adjmax);
// if not "single scale", compute separate scales for each side of the default
if (!m_single_scale)
{
// unsigned, potentially passing through zero
m_scalepos = compute_scale(
(m_adjmax - m_adjdefvalue) & (field.mask() >> m_shift),
osd::INPUT_ABSOLUTE_MAX);
m_scaleneg = compute_scale(
(m_adjdefvalue - m_adjmin) & (field.mask() >> m_shift),
-osd::INPUT_ABSOLUTE_MIN);
// reverse point is at center
m_reverse_val = 0;
}
else
{
// single axis that increases from default
m_scalepos = compute_scale(m_adjmax - m_adjmin, osd::INPUT_ABSOLUTE_MAX - osd::INPUT_ABSOLUTE_MIN);
// make the scaling the same for easier coding when we need to scale
m_scaleneg = m_scalepos;
// reverse point is at max
m_reverse_val = m_maximum;
}
}
else
{
// relative and positional controls all map directly with a 512x scale factor
// The relative code is set up to allow specifying PORT_MINMAX and default values.
// The validity checks are purposely set up to not allow you to use anything other
// a default of 0 and PORT_MINMAX(0,mask). This is in case the need arises to use
// this feature in the future. Keeping the code in does not hurt anything.
if (m_adjmin > m_adjmax)
// adjust for signed
m_adjmin = -m_adjmin;
if (m_wraps)
m_adjmax++;
m_minimum = (m_adjmin - m_adjdefvalue) * osd::INPUT_RELATIVE_PER_PIXEL;
m_maximum = (m_adjmax - m_adjdefvalue) * osd::INPUT_RELATIVE_PER_PIXEL;
// make the scaling the same for easier coding when we need to scale
m_scaleneg = m_scalepos = compute_scale(1, osd::INPUT_RELATIVE_PER_PIXEL);
if (m_field.analog_reset())
{
// delta values reverse from center
m_reverse_val = 0;
}
else
{
// positional controls reverse from their max range
m_reverse_val = m_maximum + m_minimum;
// relative controls reverse from 1 past their max range
if (m_wraps)
{
// FIXME: positional needs -1, using osd::INPUT_RELATIVE_PER_PIXEL skips a position (and reads outside the table array)
if (field.type() == IPT_POSITIONAL || field.type() == IPT_POSITIONAL_V)
m_reverse_val--;
else
m_reverse_val -= osd::INPUT_RELATIVE_PER_PIXEL;
}
}
}
// compute scale for keypresses
m_keyscalepos = recip_scale(m_scalepos);
m_keyscaleneg = recip_scale(m_scaleneg);
}
//-------------------------------------------------
// apply_min_max - clamp the given input value to
// the appropriate min/max for the analog control
//-------------------------------------------------
inline s32 analog_field::apply_min_max(s32 value) const
{
// take the analog minimum and maximum values and apply the inverse of the
// sensitivity so that we can clamp against them before applying sensitivity
s32 adjmin = apply_inverse_sensitivity(m_minimum);
s32 adjmax = apply_inverse_sensitivity(m_maximum);
// clamp to the bounds absolutely
if (value > adjmax)
value = adjmax;
else if (value < adjmin)
value = adjmin;
return value;
}
//-------------------------------------------------
// apply_sensitivity - apply a sensitivity
// adjustment for a current value
//-------------------------------------------------
inline s32 analog_field::apply_sensitivity(s32 value) const
{
return lround((s64(value) * m_sensitivity) / 100.0);
}
//-------------------------------------------------
// apply_inverse_sensitivity - reverse-apply the
// sensitivity adjustment for a current value
//-------------------------------------------------
inline s32 analog_field::apply_inverse_sensitivity(s32 value) const
{
return s32((s64(value) * 100) / m_sensitivity);
}
//-------------------------------------------------
// apply_settings - return the value of an
// analog input
//-------------------------------------------------
s32 analog_field::apply_settings(s32 value) const
{
// apply the min/max and then the sensitivity
if (!m_wraps)
value = apply_min_max(value);
value = apply_sensitivity(value);
// apply reversal if needed
if (m_reverse)
value = m_reverse_val - value;
else if (m_single_scale)
// it's a pedal or the default value is equal to min/max
// so we need to adjust the center to the minimum
value -= osd::INPUT_ABSOLUTE_MIN;
// map differently for positive and negative values
if (value >= 0)
value = apply_scale(value, m_scalepos);
else
value = apply_scale(value, m_scaleneg);
value += m_adjdefvalue;
// for relative devices, wrap around when we go past the edge
// (this is done last to prevent rounding errors)
if (m_wraps)
{
s32 range = m_adjmax - m_adjmin;
// rolls to other end when 1 position past end.
value = (value - m_adjmin) % range;
if (value < 0)
value += range;
value += m_adjmin;
}
return value;
}
//-------------------------------------------------
// set_value - override the value that will be
// read from the field
//-------------------------------------------------
void analog_field::set_value(s32 value)
{
m_use_adjoverride = true;
m_adjoverride = std::clamp(value, m_adjmin, m_adjmax);
}
//-------------------------------------------------
// clear_value - clear programmatic override
//-------------------------------------------------
void analog_field::clear_value()
{
m_use_adjoverride = false;
m_adjoverride = m_adjdefvalue;
}
//-------------------------------------------------
// frame_update - update the internals of a
// single analog field periodically
//-------------------------------------------------
void analog_field::frame_update(running_machine &machine)
{
// clamp the previous value to the min/max range
if (!m_wraps)
m_accum = apply_min_max(m_accum);
// remember the previous value in case we need to interpolate
m_previous = m_accum;
// get the new raw analog value and its type
input_item_class itemclass;
s32 rawvalue = machine.input().seq_axis_value(m_field.seq(SEQ_TYPE_STANDARD), itemclass);
// if we got an absolute input, it overrides everything else
if (itemclass == ITEM_CLASS_ABSOLUTE)
{
if (!m_absolute && !m_positionalscale)
{
// if port is relative, we use the value to simulate the speed of relative movement
// sensitivity adjustment is allowed for this mode
if (rawvalue)
{
if (m_field.analog_reset())
m_accum = rawvalue / 8;
else
m_accum += rawvalue / 8;
// do not bother with other control types if the analog data is changing
m_lastdigital = false;
return;
}
}
else if (m_previousanalog != rawvalue)
{
// only update if analog value changed
m_previousanalog = rawvalue;
// apply the inverse of the sensitivity to the raw value so that
// it will still cover the full min->max range requested after
// we apply the sensitivity adjustment
if (m_absolute || m_field.analog_reset())
{
// if port is absolute, then just return the absolute data supplied
m_accum = apply_inverse_sensitivity(rawvalue);
}
else
{
assert(m_positionalscale); // only way to get here due to previous if
// if port is positional, we will take the full analog control and divide it
// into positions, that way as the control is moved full scale,
// it moves through all the positions
rawvalue = apply_scale(rawvalue - osd::INPUT_ABSOLUTE_MIN, m_positionalscale) * osd::INPUT_RELATIVE_PER_PIXEL + m_minimum;
// clamp the high value so it does not roll over
rawvalue = std::min(rawvalue, m_maximum);
m_accum = apply_inverse_sensitivity(rawvalue);
}
// do not bother with other control types if the analog data is changing
m_lastdigital = false;
return;
}
}
// if we got it from a relative device, use that as the starting delta
// also note that the last input was not a digital one
s32 delta = 0;
if (itemclass == ITEM_CLASS_RELATIVE && rawvalue)
{
delta = rawvalue;
m_lastdigital = false;
}
s64 keyscale = (m_accum >= 0) ? m_keyscalepos : m_keyscaleneg;
// if the decrement code sequence is pressed, add the key delta to
// the accumulated delta; also note that the last input was a digital one
bool keypressed = false;
if (machine.input().seq_pressed(m_field.seq(SEQ_TYPE_DECREMENT)))
{
keypressed = true;
if (m_delta != 0)
delta -= apply_scale(m_delta, keyscale);
else if (!m_lastdigital)
// decrement only once when first pressed
delta -= apply_scale(1, keyscale);
m_lastdigital = true;
}
// same for the increment code sequence
if (machine.input().seq_pressed(m_field.seq(SEQ_TYPE_INCREMENT)))
{
keypressed = true;
if (m_delta)
delta += apply_scale(m_delta, keyscale);
else if (!m_lastdigital)
// increment only once when first pressed
delta += apply_scale(1, keyscale);
m_lastdigital = true;
}
// if resetting is requested, clear the accumulated position to 0 before
// applying the deltas so that we only return this frame's delta
// note that centering only works for relative controls
// no need to check if absolute here because it is checked by the validity tests
if (m_field.analog_reset())
m_accum = 0;
// apply the delta to the accumulated value
m_accum += delta;
// if our last movement was due to a digital input, and if this control
// type autocenters, and if neither the increment nor the decrement seq
// was pressed, apply autocentering
if (m_autocenter)
{
s32 center = apply_inverse_sensitivity(m_center);
if (m_lastdigital && !keypressed)
{
if (m_accum >= center)
{
// autocenter from positive values
m_accum -= apply_scale(m_centerdelta, m_keyscalepos);
if (m_accum < center)
{
m_accum = center;
m_lastdigital = false;
}
}
else
{
// autocenter from negative values
m_accum += apply_scale(m_centerdelta, m_keyscaleneg);
if (m_accum > center)
{
m_accum = center;
m_lastdigital = false;
}
}
}
}
else if (!keypressed)
m_lastdigital = false;
}
//-------------------------------------------------
// read - read the current value and insert into
// the provided ioport_value
//-------------------------------------------------
void analog_field::read(ioport_value &result)
{
// do nothing if we're not enabled
if (!m_field.enabled())
return;
// if set programmatically, only use the override value
if (m_use_adjoverride)
{
result = m_adjoverride;
return;
}
// start with the raw value
s32 value = m_accum;
// interpolate if appropriate and if time has passed since the last update
if (m_interpolate)
value = manager().frame_interpolate(m_previous, m_accum);
// apply standard analog settings
value = apply_settings(value);
// remap the value if needed
if (m_field.remap_table() != nullptr)
value = m_field.remap_table()[value];
// invert bits if needed
if (m_field.analog_invert())
value = ~value;
// insert into the port
result = (result & ~m_field.mask()) | ((value << m_shift) & m_field.mask());
}
//-------------------------------------------------
// crosshair_read - read a value for crosshairs,
// scaled between 0 and 1
//-------------------------------------------------
float analog_field::crosshair_read()
{
s32 rawvalue = apply_settings(m_accum) & (m_field.mask() >> m_shift);
return float(rawvalue - m_adjmin) / float(m_adjmax - m_adjmin);
}
/***************************************************************************
TOKENIZATION HELPERS
***************************************************************************/
//-------------------------------------------------
// token_to_input_type - convert a string token
// to an input field type and player
//-------------------------------------------------
ioport_type ioport_manager::token_to_input_type(const char *string, int &player) const
{
// check for our failsafe case first
int ipnum;
if (sscanf(string, "TYPE_OTHER(%d,%d)", &ipnum, &player) == 2)
return ioport_type(ipnum);
// find the token in the list
for (const input_type_entry &entry : m_typelist)
if (entry.token() != nullptr && !strcmp(entry.token(), string))
{
player = entry.player();
return entry.type();
}
// if we fail, return IPT_UNKNOWN
player = 0;
return IPT_UNKNOWN;
}
//-------------------------------------------------
// input_type_to_token - convert an input field
// type and player to a string token
//-------------------------------------------------
std::string ioport_manager::input_type_to_token(ioport_type type, int player)
{
// look up the port and return the token
input_type_entry *entry = m_type_to_entry[type][player];
if (entry != nullptr)
return std::string(entry->token());
// if that fails, carry on
return string_format("TYPE_OTHER(%d,%d)", type, player);
}
//-------------------------------------------------
// token_to_seq_type - convert a string to
// a sequence type
//-------------------------------------------------
input_seq_type ioport_manager::token_to_seq_type(const char *string)
{
// look up the string in the table of possible sequence types and return the index
for (int seqindex = 0; seqindex < std::size(seqtypestrings); seqindex++)
if (!core_stricmp(string, seqtypestrings[seqindex]))
return input_seq_type(seqindex);
return SEQ_TYPE_INVALID;
}