mirror of
https://github.com/holub/mame
synced 2025-10-08 01:28:00 +03:00

Rewrote mat_cr_t to include data as well. Fixed some bitrot in other parts. Simplified solver creation. (nw)
337 lines
8.0 KiB
C++
337 lines
8.0 KiB
C++
// license:GPL-2.0+
|
|
// copyright-holders:Couriersud
|
|
/*
|
|
* nld_ms_direct.h
|
|
*
|
|
*
|
|
* Sherman-Morrison Solver
|
|
*
|
|
* Computes the updated inverse of A given that the change in A is
|
|
*
|
|
* A <- A + (u x v) u,v vectors
|
|
*
|
|
* In this specific implementation, u is a unit vector specifying the row which
|
|
* changed. Thus v contains the changed column.
|
|
*
|
|
* Than z = A^-1 u , w = transpose(A^-1) v , lambda = v z
|
|
*
|
|
* A^-1 <- 1.0 / (1.0 + lambda) * (z x w)
|
|
*
|
|
* The approach is iterative and applied for each row changed.
|
|
*
|
|
* The performance for a typical circuit like kidniki compared to Gaussian
|
|
* elimination is poor:
|
|
*
|
|
* a) The code needs to be run for each row change.
|
|
* b) The inverse of A typically is fully occupied.
|
|
*
|
|
* It may have advantages for circuits with a high number of elements and only
|
|
* few dynamic/active components.
|
|
*
|
|
*/
|
|
|
|
#ifndef NLD_MS_SM_H_
|
|
#define NLD_MS_SM_H_
|
|
|
|
#include <algorithm>
|
|
|
|
#include "solver/nld_solver.h"
|
|
#include "solver/nld_matrix_solver.h"
|
|
#include "solver/vector_base.h"
|
|
|
|
namespace netlist
|
|
{
|
|
namespace devices
|
|
{
|
|
//#define nl_ext_double _float128 // slow, very slow
|
|
//#define nl_ext_double long double // slightly slower
|
|
#define nl_ext_double nl_double
|
|
|
|
template <std::size_t m_N, std::size_t storage_N>
|
|
class matrix_solver_sm_t: public matrix_solver_t
|
|
{
|
|
friend class matrix_solver_t;
|
|
|
|
public:
|
|
|
|
matrix_solver_sm_t(netlist_t &anetlist, const pstring &name,
|
|
const solver_parameters_t *params, const std::size_t size);
|
|
|
|
virtual ~matrix_solver_sm_t();
|
|
|
|
virtual void vsetup(analog_net_t::list_t &nets) override;
|
|
virtual void reset() override { matrix_solver_t::reset(); }
|
|
|
|
protected:
|
|
virtual unsigned vsolve_non_dynamic(const bool newton_raphson) override;
|
|
unsigned solve_non_dynamic(const bool newton_raphson);
|
|
|
|
constexpr std::size_t N() const { return (m_N == 0) ? m_dim : m_N; }
|
|
|
|
void LE_invert();
|
|
|
|
template <typename T>
|
|
void LE_compute_x(T * RESTRICT x);
|
|
|
|
|
|
template <typename T1, typename T2>
|
|
inline nl_ext_double &A(const T1 &r, const T2 &c) { return m_A[r][c]; }
|
|
template <typename T1, typename T2>
|
|
inline nl_ext_double &W(const T1 &r, const T2 &c) { return m_W[r][c]; }
|
|
template <typename T1, typename T2>
|
|
inline nl_ext_double &Ainv(const T1 &r, const T2 &c) { return m_Ainv[r][c]; }
|
|
template <typename T1>
|
|
inline nl_ext_double &RHS(const T1 &r) { return m_RHS[r]; }
|
|
|
|
|
|
template <typename T1, typename T2>
|
|
inline nl_ext_double &lA(const T1 &r, const T2 &c) { return m_lA[r][c]; }
|
|
template <typename T1, typename T2>
|
|
inline nl_ext_double &lAinv(const T1 &r, const T2 &c) { return m_lAinv[r][c]; }
|
|
|
|
nl_double m_last_RHS[storage_N]; // right hand side - contains currents
|
|
|
|
private:
|
|
static const std::size_t m_pitch = ((( storage_N) + 7) / 8) * 8;
|
|
nl_ext_double m_A[storage_N][m_pitch];
|
|
nl_ext_double m_Ainv[storage_N][m_pitch];
|
|
nl_ext_double m_W[storage_N][m_pitch];
|
|
nl_ext_double m_RHS[storage_N]; // right hand side - contains currents
|
|
|
|
nl_ext_double m_lA[storage_N][m_pitch];
|
|
nl_ext_double m_lAinv[storage_N][m_pitch];
|
|
|
|
//nl_ext_double m_RHSx[storage_N];
|
|
|
|
const std::size_t m_dim;
|
|
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
// matrix_solver_direct
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
template <std::size_t m_N, std::size_t storage_N>
|
|
matrix_solver_sm_t<m_N, storage_N>::~matrix_solver_sm_t()
|
|
{
|
|
#if (NL_USE_DYNAMIC_ALLOCATION)
|
|
plib::pfree_array(m_A);
|
|
#endif
|
|
}
|
|
|
|
template <std::size_t m_N, std::size_t storage_N>
|
|
void matrix_solver_sm_t<m_N, storage_N>::vsetup(analog_net_t::list_t &nets)
|
|
{
|
|
matrix_solver_t::setup_base(nets);
|
|
|
|
netlist().save(*this, m_last_RHS, "m_last_RHS");
|
|
|
|
for (unsigned k = 0; k < N(); k++)
|
|
netlist().save(*this, RHS(k), plib::pfmt("RHS.{1}")(k));
|
|
}
|
|
|
|
|
|
|
|
template <std::size_t m_N, std::size_t storage_N>
|
|
void matrix_solver_sm_t<m_N, storage_N>::LE_invert()
|
|
{
|
|
const std::size_t kN = N();
|
|
|
|
for (std::size_t i = 0; i < kN; i++)
|
|
{
|
|
for (std::size_t j = 0; j < kN; j++)
|
|
{
|
|
W(i,j) = lA(i,j) = A(i,j);
|
|
Ainv(i,j) = 0.0;
|
|
}
|
|
Ainv(i,i) = 1.0;
|
|
}
|
|
/* down */
|
|
for (std::size_t i = 0; i < kN; i++)
|
|
{
|
|
/* FIXME: Singular matrix? */
|
|
const nl_double f = 1.0 / W(i,i);
|
|
const auto * RESTRICT const p = m_terms[i]->m_nzrd.data();
|
|
const std::size_t e = m_terms[i]->m_nzrd.size();
|
|
|
|
/* Eliminate column i from row j */
|
|
|
|
const auto * RESTRICT const pb = m_terms[i]->m_nzbd.data();
|
|
const std::size_t eb = m_terms[i]->m_nzbd.size();
|
|
for (std::size_t jb = 0; jb < eb; jb++)
|
|
{
|
|
const unsigned j = pb[jb];
|
|
const nl_double f1 = - W(j,i) * f;
|
|
if (f1 != 0.0)
|
|
{
|
|
for (std::size_t k = 0; k < e; k++)
|
|
W(j,p[k]) += W(i,p[k]) * f1;
|
|
for (std::size_t k = 0; k <= i; k ++)
|
|
Ainv(j,k) += Ainv(i,k) * f1;
|
|
}
|
|
}
|
|
}
|
|
/* up */
|
|
for (std::size_t i = kN; i-- > 0; )
|
|
{
|
|
/* FIXME: Singular matrix? */
|
|
const nl_double f = 1.0 / W(i,i);
|
|
for (std::size_t j = i; j-- > 0; )
|
|
{
|
|
const nl_double f1 = - W(j,i) * f;
|
|
if (f1 != 0.0)
|
|
{
|
|
for (std::size_t k = i; k < kN; k++)
|
|
W(j,k) += W(i,k) * f1;
|
|
for (std::size_t k = 0; k < kN; k++)
|
|
Ainv(j,k) += Ainv(i,k) * f1;
|
|
}
|
|
}
|
|
for (std::size_t k = 0; k < kN; k++)
|
|
{
|
|
Ainv(i,k) *= f;
|
|
lAinv(i,k) = Ainv(i,k);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <std::size_t m_N, std::size_t storage_N>
|
|
template <typename T>
|
|
void matrix_solver_sm_t<m_N, storage_N>::LE_compute_x(
|
|
T * RESTRICT x)
|
|
{
|
|
const std::size_t kN = N();
|
|
|
|
for (std::size_t i=0; i<kN; i++)
|
|
x[i] = 0.0;
|
|
|
|
for (std::size_t k=0; k<kN; k++)
|
|
{
|
|
const nl_double f = RHS(k);
|
|
|
|
for (std::size_t i=0; i<kN; i++)
|
|
x[i] += Ainv(i,k) * f;
|
|
}
|
|
}
|
|
|
|
|
|
template <std::size_t m_N, std::size_t storage_N>
|
|
unsigned matrix_solver_sm_t<m_N, storage_N>::solve_non_dynamic(const bool newton_raphson)
|
|
{
|
|
static const bool incremental = true;
|
|
static unsigned cnt = 0;
|
|
const auto iN = N();
|
|
|
|
nl_double new_V[storage_N]; // = { 0.0 };
|
|
|
|
if (0 || ((cnt % 200) == 0))
|
|
{
|
|
/* complete calculation */
|
|
this->LE_invert();
|
|
}
|
|
else
|
|
{
|
|
if (!incremental)
|
|
{
|
|
for (unsigned row = 0; row < iN; row ++)
|
|
for (unsigned k = 0; k < iN; k++)
|
|
Ainv(row,k) = lAinv(row, k);
|
|
}
|
|
for (unsigned row = 0; row < iN; row ++)
|
|
{
|
|
nl_double v[m_pitch] = {0};
|
|
unsigned cols[m_pitch];
|
|
unsigned colcount = 0;
|
|
|
|
auto &nz = m_terms[row]->m_nz;
|
|
for (auto & col : nz)
|
|
{
|
|
v[col] = A(row,col) - lA(row,col);
|
|
if (incremental)
|
|
lA(row,col) = A(row,col);
|
|
if (v[col] != 0.0)
|
|
cols[colcount++] = col;
|
|
}
|
|
|
|
if (colcount > 0)
|
|
{
|
|
nl_double lamba = 0.0;
|
|
nl_double w[m_pitch] = {0};
|
|
nl_double z[m_pitch];
|
|
/* compute w and lamba */
|
|
for (unsigned i = 0; i < iN; i++)
|
|
z[i] = Ainv(i, row); /* u is row'th column */
|
|
|
|
for (unsigned j = 0; j < colcount; j++)
|
|
lamba += v[cols[j]] * z[cols[j]];
|
|
|
|
for (unsigned j=0; j<colcount; j++)
|
|
{
|
|
auto col = cols[j];
|
|
auto f = v[col];
|
|
for (unsigned k = 0; k < iN; k++)
|
|
w[k] += Ainv(col,k) * f; /* Transpose(Ainv) * v */
|
|
}
|
|
|
|
lamba = -1.0 / (1.0 + lamba);
|
|
for (unsigned i=0; i<iN; i++)
|
|
{
|
|
const nl_double f = lamba * z[i];
|
|
if (f != 0.0)
|
|
for (unsigned k = 0; k < iN; k++)
|
|
Ainv(i,k) += f * w[k];
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
cnt++;
|
|
|
|
this->LE_compute_x(new_V);
|
|
|
|
if (newton_raphson)
|
|
{
|
|
nl_double err = delta(new_V);
|
|
|
|
store(new_V);
|
|
|
|
return (err > this->m_params.m_accuracy) ? 2 : 1;
|
|
}
|
|
else
|
|
{
|
|
store(new_V);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
template <std::size_t m_N, std::size_t storage_N>
|
|
inline unsigned matrix_solver_sm_t<m_N, storage_N>::vsolve_non_dynamic(const bool newton_raphson)
|
|
{
|
|
build_LE_A<matrix_solver_sm_t>();
|
|
build_LE_RHS<matrix_solver_sm_t>();
|
|
|
|
for (std::size_t i=0, iN=N(); i < iN; i++)
|
|
m_last_RHS[i] = RHS(i);
|
|
|
|
this->m_stat_calculations++;
|
|
return this->solve_non_dynamic(newton_raphson);
|
|
}
|
|
|
|
template <std::size_t m_N, std::size_t storage_N>
|
|
matrix_solver_sm_t<m_N, storage_N>::matrix_solver_sm_t(netlist_t &anetlist, const pstring &name,
|
|
const solver_parameters_t *params, const std::size_t size)
|
|
: matrix_solver_t(anetlist, name, NOSORT, params)
|
|
, m_dim(size)
|
|
{
|
|
for (std::size_t k = 0; k < N(); k++)
|
|
{
|
|
m_last_RHS[k] = 0.0;
|
|
}
|
|
}
|
|
|
|
} //namespace devices
|
|
} // namespace netlist
|
|
|
|
#endif /* NLD_MS_DIRECT_H_ */
|