mame/src/lib/formats/cassimg.c
Oliver Stöneberg 2849b81c5d removed unnecessary assert.h includes (nw)
including global one for Visual Studio
2015-03-20 11:36:49 +01:00

999 lines
25 KiB
C

/*********************************************************************
cassimg.c
Cassette tape image abstraction code
*********************************************************************/
#include <string.h>
#include "imageutl.h"
#include "cassimg.h"
/* debugging parameters */
#define LOG_PUT_SAMPLES 0
#define DUMP_CASSETTES 0
#define SAMPLES_PER_BLOCK 0x40000
#define CASSETTE_FLAG_DIRTY 0x10000
CASSETTE_FORMATLIST_START(cassette_default_formats)
CASSETTE_FORMATLIST_END
/*********************************************************************
helper code
*********************************************************************/
static double map_double(double d, UINT64 low, UINT64 high, UINT64 value)
{
#if defined(_MSC_VER) && (_MSC_VER <= 1200)
/* casting unsigned __int64 to double is not supported on VC6 or before */
return d * (INT64)(value - low) / (INT64)(high - low);
#else
return d * (value - low) / (high - low);
#endif
}
static size_t waveform_bytes_per_sample(int waveform_flags)
{
return (size_t) (1 << ((waveform_flags & 0x06) / 2));
}
/*********************************************************************
extrapolation and interpolation
*********************************************************************/
static INT32 extrapolate8(INT8 value)
{
return ((INT32) value) << 24;
}
static INT32 extrapolate16(INT16 value)
{
return ((INT32) value) << 16;
}
static INT8 interpolate8(INT32 value)
{
return (INT8) (value >> 24);
}
static INT16 interpolate16(INT32 value)
{
return (INT16) (value >> 16);
}
/*********************************************************************
initialization and termination
*********************************************************************/
static cassette_image *cassette_init(const struct CassetteFormat *format, void *file, const struct io_procs *procs, int flags)
{
cassette_image *cassette;
cassette = global_alloc_clear(cassette_image);
cassette->format = format;
cassette->io.file = file;
cassette->io.procs = procs;
cassette->flags = flags;
return cassette;
}
static void cassette_finishinit(casserr_t err, cassette_image *cassette, cassette_image **outcassette)
{
if (cassette && (err || !outcassette))
{
cassette_close(cassette);
cassette = NULL;
}
if (outcassette)
*outcassette = cassette;
}
static int good_format(const struct CassetteFormat *format, const char *extension, int flags)
{
if (extension && !image_find_extension(format->extensions, extension))
return FALSE;
if (((flags & CASSETTE_FLAG_READONLY) == 0) && !format->save)
return FALSE;
return TRUE;
}
casserr_t cassette_open_choices(void *file, const struct io_procs *procs, const char *extension,
const struct CassetteFormat *const *formats, int flags, cassette_image **outcassette)
{
casserr_t err;
cassette_image *cassette;
const struct CassetteFormat *format;
struct CassetteOptions opts = {0, };
int i;
/* if not specified, use the dummy arguments */
if (!formats)
formats = cassette_default_formats;
/* create the cassette object */
cassette = cassette_init(NULL, file, procs, flags);
if (!cassette)
{
err = CASSETTE_ERROR_OUTOFMEMORY;
goto done;
}
/* identify the image */
format = NULL;
for (i = 0; !format && formats[i]; i++)
{
if (good_format(formats[i], extension, flags))
{
format = formats[i];
memset(&opts, 0, sizeof(opts));
err = format->identify(cassette, &opts);
if (err == CASSETTE_ERROR_INVALIDIMAGE)
format = NULL;
else if (err)
goto done;
}
}
/* have we found a proper format */
if (!format)
{
err = CASSETTE_ERROR_INVALIDIMAGE;
goto done;
}
cassette->format = format;
/* read the options */
cassette->channels = opts.channels;
cassette->sample_frequency = opts.sample_frequency;
/* load the image */
err = format->load(cassette);
if (err)
goto done;
/* success */
cassette->flags &= ~CASSETTE_FLAG_DIRTY;
err = CASSETTE_ERROR_SUCCESS;
done:
cassette_finishinit(err, cassette, outcassette);
return err;
}
casserr_t cassette_open(void *file, const struct io_procs *procs,
const struct CassetteFormat *format, int flags, cassette_image **outcassette)
{
const struct CassetteFormat *formats[2];
formats[0] = format;
formats[1] = NULL;
return cassette_open_choices(file, procs, NULL, formats, flags, outcassette);
}
casserr_t cassette_create(void *file, const struct io_procs *procs, const struct CassetteFormat *format,
const struct CassetteOptions *opts, int flags, cassette_image **outcassette)
{
casserr_t err;
cassette_image *cassette;
static const struct CassetteOptions default_options = { 1, 16, 44100 };
/* cannot create to a read only image */
if (flags & CASSETTE_FLAG_READONLY)
return CASSETTE_ERROR_INVALIDIMAGE;
/* is this a good format? */
if (!good_format(format, NULL, flags))
return CASSETTE_ERROR_INVALIDIMAGE;
/* normalize arguments */
if (!opts)
opts = &default_options;
/* create the cassette object */
cassette = cassette_init(format, file, procs, flags);
if (!cassette)
{
err = CASSETTE_ERROR_OUTOFMEMORY;
goto done;
}
/* read the options */
cassette->channels = opts->channels;
cassette->sample_frequency = opts->sample_frequency;
err = CASSETTE_ERROR_SUCCESS;
done:
cassette_finishinit(err, cassette, outcassette);
return err;
}
static casserr_t cassette_perform_save(cassette_image *cassette)
{
struct CassetteInfo info;
cassette_get_info(cassette, &info);
return cassette->format->save(cassette, &info);
}
casserr_t cassette_save(cassette_image *cassette)
{
casserr_t err;
if (!cassette->format || !cassette->format->save)
return CASSETTE_ERROR_UNSUPPORTED;
err = cassette_perform_save(cassette);
if (err)
return err;
cassette->flags &= ~CASSETTE_FLAG_DIRTY;
return CASSETTE_ERROR_SUCCESS;
}
void cassette_get_info(cassette_image *cassette, struct CassetteInfo *info)
{
memset(info, 0, sizeof(*info));
info->channels = cassette->channels;
info->sample_count = cassette->sample_count;
info->sample_frequency = cassette->sample_frequency;
info->bits_per_sample = (int) waveform_bytes_per_sample(cassette->flags) * 8;
}
void cassette_close(cassette_image *cassette)
{
if (cassette)
{
if ((cassette->flags & CASSETTE_FLAG_DIRTY) && (cassette->flags & CASSETTE_FLAG_SAVEONEXIT))
cassette_save(cassette);
for (int i = 0; i < cassette->blocks.count(); i++)
global_free(cassette->blocks[i]);
global_free(cassette);
}
}
void cassette_change(cassette_image *cassette, void *file, const struct io_procs *procs, const struct CassetteFormat *format, int flags)
{
if ((flags & CASSETTE_FLAG_READONLY) == 0)
flags |= CASSETTE_FLAG_DIRTY;
cassette->io.file = file;
cassette->io.procs = procs;
cassette->format = format;
cassette->flags = flags;
}
/*********************************************************************
calls for accessing the raw cassette image
*********************************************************************/
void cassette_image_read(cassette_image *cassette, void *buffer, UINT64 offset, size_t length)
{
io_generic_read(&cassette->io, buffer, offset, length);
}
void cassette_image_write(cassette_image *cassette, const void *buffer, UINT64 offset, size_t length)
{
io_generic_write(&cassette->io, buffer, offset, length);
}
UINT64 cassette_image_size(cassette_image *cassette)
{
return io_generic_size(&cassette->io);
}
/*********************************************************************
waveform accesses
*********************************************************************/
struct manipulation_ranges
{
int channel_first;
int channel_last;
size_t sample_first;
size_t sample_last;
};
static size_t my_round(double d)
{
size_t result;
d += 0.5;
result = (size_t) d;
return result;
}
static casserr_t compute_manipulation_ranges(cassette_image *cassette, int channel,
double time_index, double sample_period, struct manipulation_ranges *ranges)
{
if (channel < 0)
{
ranges->channel_first = 0;
ranges->channel_last = cassette->channels - 1;
}
else
{
ranges->channel_first = channel;
ranges->channel_last = channel;
}
ranges->sample_first = my_round(time_index * cassette->sample_frequency);
ranges->sample_last = my_round((time_index + sample_period) * cassette->sample_frequency);
if (ranges->sample_last > ranges->sample_first)
ranges->sample_last--;
return CASSETTE_ERROR_SUCCESS;
}
static casserr_t lookup_sample(cassette_image *cassette, int channel, size_t sample, INT32 **ptr)
{
*ptr = NULL;
size_t sample_blocknum = (sample / SAMPLES_PER_BLOCK) * cassette->channels + channel;
size_t sample_index = sample % SAMPLES_PER_BLOCK;
/* is this block beyond the edge of our waveform? */
if (sample_blocknum >= cassette->blocks.count())
cassette->blocks.resize_keep_and_clear_new(sample_blocknum + 1);
if (cassette->blocks[sample_blocknum] == NULL)
cassette->blocks[sample_blocknum] = global_alloc(sample_block);
sample_block &block = *cassette->blocks[sample_blocknum];
/* is this sample access off the current block? */
if (sample_index >= block.count())
block.resize_keep_and_clear_new(SAMPLES_PER_BLOCK);
*ptr = &block[sample_index];
return CASSETTE_ERROR_SUCCESS;
}
/*********************************************************************
waveform accesses
*********************************************************************/
casserr_t cassette_get_samples(cassette_image *cassette, int channel,
double time_index, double sample_period, size_t sample_count, size_t sample_bytes,
void *samples, int waveform_flags)
{
casserr_t err;
struct manipulation_ranges ranges;
size_t sample_index;
size_t cassette_sample_index;
UINT8 *dest_ptr;
const INT32 *source_ptr;
double d;
INT16 word;
INT32 dword;
INT64 sum;
assert(cassette);
err = compute_manipulation_ranges(cassette, channel, time_index, sample_period, &ranges);
if (err)
return err;
for (sample_index = 0; sample_index < sample_count; sample_index++)
{
sum = 0;
for (channel = ranges.channel_first; channel <= ranges.channel_last; channel++)
{
/* find the sample that we are putting */
d = map_double(ranges.sample_last + 1 - ranges.sample_first, 0, sample_count, sample_index) + ranges.sample_first;
cassette_sample_index = (size_t) d;
err = lookup_sample(cassette, channel, cassette_sample_index, (INT32 **) &source_ptr);
if (err)
return err;
sum += *source_ptr;
}
/* average out the samples */
sum /= (ranges.channel_last + 1 - ranges.channel_first);
/* and write out the result */
dest_ptr = (UINT8*)samples;
dest_ptr += waveform_bytes_per_sample(waveform_flags) * sample_index * cassette->channels;
switch(waveform_bytes_per_sample(waveform_flags))
{
case 1:
*((INT8 *) dest_ptr) = interpolate8(sum);
break;
case 2:
word = interpolate16(sum);
if (waveform_flags & CASSETTE_WAVEFORM_ENDIAN_FLIP)
word = FLIPENDIAN_INT16(word);
*((INT16 *) dest_ptr) = word;
break;
case 4:
dword = sum;
if (waveform_flags & CASSETTE_WAVEFORM_ENDIAN_FLIP)
dword = FLIPENDIAN_INT32(dword);
*((INT32 *) dest_ptr) = dword;
break;
}
}
return CASSETTE_ERROR_SUCCESS;
}
casserr_t cassette_put_samples(cassette_image *cassette, int channel,
double time_index, double sample_period, size_t sample_count, size_t sample_bytes,
const void *samples, int waveform_flags)
{
casserr_t err;
struct manipulation_ranges ranges;
size_t sample_index;
INT32 *dest_ptr;
INT32 dest_value;
INT16 word;
INT32 dword;
const UINT8 *source_ptr;
double d;
if (!cassette)
return CASSETTE_ERROR_SUCCESS;
if (sample_period == 0)
return CASSETTE_ERROR_SUCCESS;
err = compute_manipulation_ranges(cassette, channel, time_index, sample_period, &ranges);
if (err)
return err;
if (cassette->sample_count < ranges.sample_last+1)
cassette->sample_count = ranges.sample_last + 1;
cassette->flags |= CASSETTE_FLAG_DIRTY;
if (LOG_PUT_SAMPLES)
{
LOG_FORMATS("cassette_put_samples(): Putting samples TIME=[%2.6g..%2.6g] INDEX=[%i..%i]\n",
time_index, time_index + sample_period,
(int)ranges.sample_first, (int)ranges.sample_last);
}
for (sample_index = ranges.sample_first; sample_index <= ranges.sample_last; sample_index++)
{
/* figure out the source pointer */
d = map_double(sample_count, ranges.sample_first, ranges.sample_last + 1, sample_index);
source_ptr = (const UINT8*)samples;
source_ptr += ((size_t) d) * sample_bytes;
/* compute the value that we are writing */
switch(waveform_bytes_per_sample(waveform_flags)) {
case 1:
if (waveform_flags & CASSETTE_WAVEFORM_UNSIGNED)
dest_value = extrapolate8((INT8)(*source_ptr - 128));
else
dest_value = extrapolate8(*((INT8 *) source_ptr));
break;
case 2:
word = *((INT16 *) source_ptr);
if (waveform_flags & CASSETTE_WAVEFORM_ENDIAN_FLIP)
word = FLIPENDIAN_INT16(word);
dest_value = extrapolate16(word);
break;
case 4:
dword = *((INT32 *) source_ptr);
if (waveform_flags & CASSETTE_WAVEFORM_ENDIAN_FLIP)
dword = FLIPENDIAN_INT32(dword);
dest_value = dword;
break;
default:
return CASSETTE_ERROR_INTERNAL;
}
for (channel = ranges.channel_first; channel <= ranges.channel_last; channel++)
{
/* find the sample that we are putting */
err = lookup_sample(cassette, channel, sample_index, &dest_ptr);
if (err)
return err;
*dest_ptr = dest_value;
}
}
return CASSETTE_ERROR_SUCCESS;
}
casserr_t cassette_get_sample(cassette_image *cassette, int channel,
double time_index, double sample_period, INT32 *sample)
{
return cassette_get_samples(cassette, channel, time_index,
sample_period, 1, 0, sample, CASSETTE_WAVEFORM_32BIT);
}
casserr_t cassette_put_sample(cassette_image *cassette, int channel,
double time_index, double sample_period, INT32 sample)
{
return cassette_put_samples(cassette, channel, time_index,
sample_period, 1, 0, &sample, CASSETTE_WAVEFORM_32BIT);
}
/*********************************************************************
waveform accesses to/from the raw image
*********************************************************************/
casserr_t cassette_read_samples(cassette_image *cassette, int channels, double time_index,
double sample_period, size_t sample_count, UINT64 offset, int waveform_flags)
{
casserr_t err;
size_t chunk_sample_count;
size_t bytes_per_sample;
size_t sample_bytes;
size_t samples_loaded = 0;
double chunk_time_index;
double chunk_sample_period;
int channel;
UINT8 buffer[8192];
bytes_per_sample = waveform_bytes_per_sample(waveform_flags);
sample_bytes = bytes_per_sample * channels;
while(samples_loaded < sample_count)
{
chunk_sample_count = MIN(sizeof(buffer) / sample_bytes, (sample_count - samples_loaded));
chunk_sample_period = map_double(sample_period, 0, sample_count, chunk_sample_count);
chunk_time_index = time_index + map_double(sample_period, 0, sample_count, samples_loaded);
cassette_image_read(cassette, buffer, offset, chunk_sample_count * sample_bytes);
for (channel = 0; channel < channels; channel++)
{
err = cassette_put_samples(cassette, channel, chunk_time_index, chunk_sample_period,
chunk_sample_count, sample_bytes, &buffer[channel * bytes_per_sample], waveform_flags);
if (err)
return err;
}
offset += chunk_sample_count * sample_bytes;
samples_loaded += chunk_sample_count;
}
return CASSETTE_ERROR_SUCCESS;
}
casserr_t cassette_write_samples(cassette_image *cassette, int channels, double time_index,
double sample_period, size_t sample_count, UINT64 offset, int waveform_flags)
{
casserr_t err;
size_t chunk_sample_count;
size_t bytes_per_sample;
size_t sample_bytes;
size_t samples_saved = 0;
double chunk_time_index;
double chunk_sample_period;
int channel;
UINT8 buffer[8192];
bytes_per_sample = waveform_bytes_per_sample(waveform_flags);
sample_bytes = bytes_per_sample * channels;
while(samples_saved < sample_count)
{
chunk_sample_count = MIN(sizeof(buffer) / sample_bytes, (sample_count - samples_saved));
chunk_sample_period = map_double(sample_period, 0, sample_count, chunk_sample_count);
chunk_time_index = time_index + map_double(sample_period, 0, sample_count, samples_saved);
for (channel = 0; channel < channels; channel++)
{
err = cassette_get_samples(cassette, channel, chunk_time_index, chunk_sample_period,
chunk_sample_count, sample_bytes, &buffer[channel * bytes_per_sample], waveform_flags);
if (err)
return err;
}
cassette_image_write(cassette, buffer, offset, chunk_sample_count * sample_bytes);
offset += chunk_sample_count * sample_bytes;
samples_saved += chunk_sample_count;
}
return CASSETTE_ERROR_SUCCESS;
}
/*********************************************************************
waveform accesses to/from the raw image
*********************************************************************/
static const INT8 *choose_wave(const struct CassetteModulation *modulation, size_t *wave_bytes_length)
{
static const INT8 square_wave[] = { -128, 127 };
static const INT8 sine_wave[] = { 0, 48, 89, 117, 127, 117, 89, 48, 0, -48, -89, -117, -127, -117, -89, -48 };
if (modulation->flags & CASSETTE_MODULATION_SINEWAVE)
{
*wave_bytes_length = ARRAY_LENGTH(sine_wave);
return sine_wave;
}
else
{
*wave_bytes_length = ARRAY_LENGTH(square_wave);
return square_wave;
}
}
casserr_t cassette_modulation_identify(cassette_image *cassette, const struct CassetteModulation *modulation,
struct CassetteOptions *opts)
{
size_t wave_bytes_length;
choose_wave(modulation, &wave_bytes_length);
opts->bits_per_sample = 8;
opts->channels = 1;
opts->sample_frequency = (UINT32) (MAX(modulation->zero_frequency_high, modulation->one_frequency_high) * wave_bytes_length * 2);
return CASSETTE_ERROR_SUCCESS;
}
casserr_t cassette_put_modulated_data(cassette_image *cassette, int channel, double time_index,
const void *data, size_t data_length, const struct CassetteModulation *modulation,
double *time_displacement)
{
casserr_t err;
const UINT8 *data_bytes = (const UINT8 *)data;
const INT8 *wave_bytes;
size_t wave_bytes_length;
double total_displacement = 0.0;
double pulse_period;
double pulse_frequency;
UINT8 b;
int i;
wave_bytes = choose_wave(modulation, &wave_bytes_length);
while(data_length--)
{
b = *(data_bytes++);
for (i = 0; i < 8; i++)
{
pulse_frequency = (b & (1 << i)) ? modulation->one_frequency_cannonical : modulation->zero_frequency_cannonical;
pulse_period = 1 / pulse_frequency;
err = cassette_put_samples(cassette, 0, time_index, pulse_period, wave_bytes_length, 1, wave_bytes, CASSETTE_WAVEFORM_8BIT);
if (err)
goto done;
time_index += pulse_period;
total_displacement += pulse_period;
}
}
err = CASSETTE_ERROR_SUCCESS;
done:
if (time_displacement)
*time_displacement = total_displacement;
return err;
}
casserr_t cassette_put_modulated_filler(cassette_image *cassette, int channel, double time_index,
UINT8 filler, size_t filler_length, const struct CassetteModulation *modulation,
double *time_displacement)
{
casserr_t err;
double delta;
double total_displacement = 0.0;
while(filler_length--)
{
err = cassette_put_modulated_data(cassette, channel, time_index, &filler, 1, modulation, &delta);
if (err)
return err;
total_displacement += delta;
time_index += delta;
}
if (time_displacement)
*time_displacement = total_displacement;
return CASSETTE_ERROR_SUCCESS;
}
casserr_t cassette_read_modulated_data(cassette_image *cassette, int channel, double time_index,
UINT64 offset, UINT64 length, const struct CassetteModulation *modulation,
double *time_displacement)
{
casserr_t err;
UINT8 buffer_stack[1024];
UINT8 *buffer;
UINT8 *alloc_buffer = NULL;
double delta;
double total_displacement = 0.0;
size_t this_length;
size_t buffer_length;
if (length <= sizeof(buffer_stack))
{
buffer = buffer_stack;
buffer_length = sizeof(buffer_stack);
}
else
{
buffer_length = MIN(length, 100000);
alloc_buffer = (UINT8*)malloc(buffer_length);
if (!alloc_buffer)
{
err = CASSETTE_ERROR_OUTOFMEMORY;
goto done;
}
buffer = alloc_buffer;
}
while(length > 0)
{
this_length = (size_t) MIN(length, buffer_length);
cassette_image_read(cassette, buffer, offset, this_length);
err = cassette_put_modulated_data(cassette, channel, time_index, buffer, this_length, modulation, &delta);
if (err)
goto done;
total_displacement += delta;
time_index += delta;
length -= this_length;
}
if (time_displacement)
*time_displacement = total_displacement;
err = CASSETTE_ERROR_SUCCESS;
done:
if (alloc_buffer)
free(alloc_buffer);
return err;
}
casserr_t cassette_put_modulated_data_bit(cassette_image *cassette, int channel, double time_index,
UINT8 data, const struct CassetteModulation *modulation,
double *time_displacement)
{
casserr_t err;
const INT8 *wave_bytes;
size_t wave_bytes_length;
double total_displacement = 0.0;
double pulse_period;
double pulse_frequency;
wave_bytes = choose_wave(modulation, &wave_bytes_length);
pulse_frequency = (data) ? modulation->one_frequency_cannonical : modulation->zero_frequency_cannonical;
pulse_period = 1 / pulse_frequency;
err = cassette_put_samples(cassette, 0, time_index, pulse_period, wave_bytes_length, 1, wave_bytes, CASSETTE_WAVEFORM_8BIT);
if (err)
goto done;
time_index += pulse_period;
total_displacement += pulse_period;
err = CASSETTE_ERROR_SUCCESS;
done:
if (time_displacement)
*time_displacement = total_displacement;
return err;
}
/*********************************************************************
waveform accesses to/from the raw image
*********************************************************************/
casserr_t cassette_legacy_identify(cassette_image *cassette, struct CassetteOptions *opts,
const struct CassetteLegacyWaveFiller *legacy_args)
{
opts->channels = 1;
opts->bits_per_sample = 16;
opts->sample_frequency = legacy_args->sample_frequency;
return CASSETTE_ERROR_SUCCESS;
}
casserr_t cassette_legacy_construct(cassette_image *cassette,
const struct CassetteLegacyWaveFiller *legacy_args)
{
casserr_t err;
int length;
int sample_count;
dynamic_buffer bytes;
dynamic_buffer chunk;
dynamic_array<INT16> samples;
int pos = 0;
UINT64 offset = 0;
UINT64 size;
struct CassetteLegacyWaveFiller args;
/* sanity check the args */
assert(legacy_args->header_samples >= -1);
assert(legacy_args->trailer_samples >= 0);
assert(legacy_args->fill_wave);
size = cassette_image_size(cassette);
/* normalize the args */
args = *legacy_args;
if (args.chunk_size == 0)
args.chunk_size = 1;
else if (args.chunk_size < 0)
args.chunk_size = cassette_image_size(cassette);
if (args.sample_frequency == 0)
args.sample_frequency = 11025;
/* allocate a buffer for the binary data */
chunk.resize(args.chunk_size);
/* determine number of samples */
if (args.chunk_sample_calc)
{
if (size > 0x7FFFFFFF)
{
err = CASSETTE_ERROR_OUTOFMEMORY;
goto done;
}
bytes.resize(size);
cassette_image_read(cassette, bytes, 0, size);
sample_count = args.chunk_sample_calc(bytes, (int)size);
if (args.header_samples < 0)
args.header_samples = sample_count;
}
else
{
sample_count = ((size + args.chunk_size - 1) / args.chunk_size)
* args.chunk_samples;
}
sample_count += args.header_samples + args.trailer_samples;
/* allocate a buffer for the completed samples */
samples.resize(sample_count);
/* if there has to be a header */
if (args.header_samples > 0)
{
length = args.fill_wave(samples + pos, sample_count - pos, CODE_HEADER);
if (length < 0)
{
err = CASSETTE_ERROR_INVALIDIMAGE;
goto done;
}
pos += length;
}
/* convert the file data to samples */
while((pos < sample_count) && (offset < size))
{
cassette_image_read(cassette, chunk, offset, args.chunk_size);
offset += args.chunk_size;
length = args.fill_wave(samples + pos, sample_count - pos, chunk);
if (length < 0)
{
err = CASSETTE_ERROR_INVALIDIMAGE;
goto done;
}
pos += length;
if (length == 0)
break;
}
/* if there has to be a trailer */
if (args.trailer_samples > 0)
{
length = args.fill_wave(samples + pos, sample_count - pos, CODE_TRAILER);
if (length < 0)
{
err = CASSETTE_ERROR_INVALIDIMAGE;
goto done;
}
pos += length;
}
/* specify the wave */
err = cassette_put_samples(cassette, 0, 0.0, ((double) pos) / args.sample_frequency,
pos, 2, samples, CASSETTE_WAVEFORM_16BIT);
if (err)
goto done;
/* success! */
err = CASSETTE_ERROR_SUCCESS;
#if DUMP_CASSETTES
cassette_dump(cassette, "C:\\TEMP\\CASDUMP.WAV");
#endif
done:
return err;
}
/*********************************************************************
cassette_dump
A debugging call to dump a cassette image to a disk based wave file
*********************************************************************/
void cassette_dump(cassette_image *image, const char *filename)
{
FILE *f;
struct io_generic saved_io;
const struct CassetteFormat *saved_format;
f = fopen(filename, "wb");
if (!f)
return;
memcpy(&saved_io, &image->io, sizeof(saved_io));
saved_format = image->format;
image->io.file = f;
image->io.procs = &stdio_ioprocs_noclose;
image->format = &wavfile_format;
cassette_perform_save(image);
memcpy(&image->io, &saved_io, sizeof(saved_io));
image->format = saved_format;
fclose(f);
}