mame/src/emu/cpu/rsp/rspfe.c
Ryan Holtz 2e65d4a968 RSP recompiler improvements / optimizations: [Harmony]
- Split SATURATE_ACCUM into a signed and unsigned version to reduce stack usage.
 - Corrected an issue with the 0h variants of VMRG, VAND, VNAND, VOR, VNOR, VXOR and VNXOR.
 - Slightly optimized unaligned reads and writes
 - Optimized unaligned dword reads
 - Corrected an issue where badly-written RSP programs could jump to invalid addresses
2009-12-18 23:14:19 +00:00

309 lines
8.3 KiB
C

/***************************************************************************
rspfe.c
Front-end for RSP recompiler
Copyright the MESS team
Released for general non-commercial use under the MAME license
Visit http://mamedev.org for licensing and usage restrictions.
***************************************************************************/
#include <stddef.h>
#include "cpuintrf.h"
#include "rspfe.h"
#include "rsp.h"
/***************************************************************************
FUNCTION PROTOTYPES
***************************************************************************/
static int describe_instruction_special(rsp_state *rsp, UINT32 op, opcode_desc *desc);
static int describe_instruction_regimm(rsp_state *rsp, UINT32 op, opcode_desc *desc);
static int describe_instruction_cop0(rsp_state *rsp, UINT32 op, opcode_desc *desc);
static int describe_instruction_cop2(rsp_state *rsp, UINT32 op, opcode_desc *desc);
/***************************************************************************
INSTRUCTION PARSERS
***************************************************************************/
/*-------------------------------------------------
describe_instruction - build a description
of a single instruction
-------------------------------------------------*/
int rspfe_describe(void *param, opcode_desc *desc, const opcode_desc *prev)
{
rsp_state *rsp = (rsp_state *)param;
UINT32 op, opswitch;
/* fetch the opcode */
op = desc->opptr.l[0] = memory_decrypted_read_dword(rsp->program, desc->physpc | 0x1000);
/* all instructions are 4 bytes and default to a single cycle each */
desc->length = 4;
desc->cycles = 1;
/* parse the instruction */
opswitch = op >> 26;
switch (opswitch)
{
case 0x00: /* SPECIAL */
return describe_instruction_special(rsp, op, desc);
case 0x01: /* REGIMM */
return describe_instruction_regimm(rsp, op, desc);
case 0x10: /* COP0 */
return describe_instruction_cop0(rsp, op, desc);
case 0x12: /* COP2 */
return describe_instruction_cop2(rsp, op, desc);
case 0x02: /* J */
desc->flags |= OPFLAG_IS_UNCONDITIONAL_BRANCH | OPFLAG_END_SEQUENCE;
desc->targetpc = ((LIMMVAL << 2) & 0x00000fff) | 0x1000;
desc->delayslots = 1;
return TRUE;
case 0x03: /* JAL */
desc->regout[0] |= REGFLAG_R(31);
desc->flags |= OPFLAG_IS_UNCONDITIONAL_BRANCH | OPFLAG_END_SEQUENCE;
desc->targetpc = ((LIMMVAL << 2) & 0x00000fff) | 0x1000;
desc->delayslots = 1;
return TRUE;
case 0x04: /* BEQ */
case 0x05: /* BNE */
if ((opswitch == 0x04 || opswitch == 0x14) && RSREG == RTREG)
desc->flags |= OPFLAG_IS_UNCONDITIONAL_BRANCH | OPFLAG_END_SEQUENCE;
else
{
desc->regin[0] |= REGFLAG_R(RSREG) | REGFLAG_R(RTREG);
desc->flags |= OPFLAG_IS_CONDITIONAL_BRANCH;
}
desc->targetpc = ((desc->pc + 4 + (SIMMVAL << 2)) & 0x00000fff) | 0x1000;
desc->delayslots = 1;
desc->skipslots = (opswitch & 0x10) ? 1 : 0;
return TRUE;
case 0x06: /* BLEZ */
case 0x07: /* BGTZ */
if ((opswitch == 0x06 || opswitch == 0x16) && RSREG == 0)
desc->flags |= OPFLAG_IS_UNCONDITIONAL_BRANCH | OPFLAG_END_SEQUENCE;
else
{
desc->regin[0] |= REGFLAG_R(RSREG);
desc->flags |= OPFLAG_IS_CONDITIONAL_BRANCH;
}
desc->targetpc = ((desc->pc + 4 + (SIMMVAL << 2)) & 0x00000fff) | 0x1000;
desc->delayslots = 1;
desc->skipslots = (opswitch & 0x10) ? 1 : 0;
return TRUE;
case 0x08: /* ADDI */
desc->regin[0] |= REGFLAG_R(RSREG);
desc->regout[0] |= REGFLAG_R(RTREG);
return TRUE;
case 0x09: /* ADDIU */
case 0x0a: /* SLTI */
case 0x0b: /* SLTIU */
case 0x0c: /* ANDI */
case 0x0d: /* ORI */
case 0x0e: /* XORI */
desc->regin[0] |= REGFLAG_R(RSREG);
desc->regout[0] |= REGFLAG_R(RTREG);
return TRUE;
case 0x0f: /* LUI */
desc->regout[0] |= REGFLAG_R(RTREG);
return TRUE;
case 0x20: /* LB */
case 0x21: /* LH */
case 0x23: /* LW */
case 0x24: /* LBU */
case 0x25: /* LHU */
case 0x27: /* LWU */
desc->regin[0] |= REGFLAG_R(RSREG);
desc->regout[0] |= REGFLAG_R(RTREG);
desc->flags |= OPFLAG_READS_MEMORY;
return TRUE;
case 0x28: /* SB */
case 0x29: /* SH */
case 0x2b: /* SW */
desc->regin[0] |= REGFLAG_R(RSREG) | REGFLAG_R(RTREG);
desc->flags |= OPFLAG_WRITES_MEMORY;
return TRUE;
case 0x32: /* LWC2 */
desc->regin[0] |= REGFLAG_R(RSREG);
desc->flags |= OPFLAG_READS_MEMORY;
return TRUE;
case 0x3a: /* SWC2 */
desc->regin[0] |= REGFLAG_R(RSREG);
desc->flags |= OPFLAG_WRITES_MEMORY;
return TRUE;
}
return FALSE;
}
/*-------------------------------------------------
describe_instruction_special - build a
description of a single instruction in the
'special' group
-------------------------------------------------*/
static int describe_instruction_special(rsp_state *rsp, UINT32 op, opcode_desc *desc)
{
switch (op & 63)
{
case 0x00: /* SLL */
case 0x02: /* SRL */
case 0x03: /* SRA */
desc->regin[0] |= REGFLAG_R(RTREG);
desc->regout[0] |= REGFLAG_R(RDREG);
return TRUE;
case 0x04: /* SLLV */
case 0x06: /* SRLV */
case 0x07: /* SRAV */
case 0x21: /* ADDU */
case 0x23: /* SUBU */
case 0x24: /* AND */
case 0x25: /* OR */
case 0x26: /* XOR */
case 0x27: /* NOR */
case 0x2a: /* SLT */
case 0x2b: /* SLTU */
desc->regin[0] |= REGFLAG_R(RSREG) | REGFLAG_R(RTREG);
desc->regout[0] |= REGFLAG_R(RDREG);
return TRUE;
case 0x20: /* ADD */
case 0x22: /* SUB */
desc->regin[0] |= REGFLAG_R(RSREG) | REGFLAG_R(RTREG);
desc->regout[0] |= REGFLAG_R(RDREG);
return TRUE;
case 0x08: /* JR */
desc->regin[0] |= REGFLAG_R(RSREG);
desc->flags |= OPFLAG_IS_UNCONDITIONAL_BRANCH | OPFLAG_END_SEQUENCE;
desc->targetpc = BRANCH_TARGET_DYNAMIC;
desc->delayslots = 1;
return TRUE;
case 0x09: /* JALR */
desc->regin[0] |= REGFLAG_R(RSREG);
desc->regout[0] |= REGFLAG_R(RDREG);
desc->flags |= OPFLAG_IS_UNCONDITIONAL_BRANCH | OPFLAG_END_SEQUENCE;
desc->targetpc = BRANCH_TARGET_DYNAMIC;
desc->delayslots = 1;
return TRUE;
case 0x0d: /* BREAK */
desc->flags |= OPFLAG_END_SEQUENCE;
desc->targetpc = BRANCH_TARGET_DYNAMIC;
return TRUE;
}
return FALSE;
}
/*-------------------------------------------------
describe_instruction_regimm - build a
description of a single instruction in the
'regimm' group
-------------------------------------------------*/
static int describe_instruction_regimm(rsp_state *rsp, UINT32 op, opcode_desc *desc)
{
switch (RTREG)
{
case 0x00: /* BLTZ */
case 0x01: /* BGEZ */
if (RTREG == 0x01 && RSREG == 0)
desc->flags |= OPFLAG_IS_UNCONDITIONAL_BRANCH | OPFLAG_END_SEQUENCE;
else
{
desc->regin[0] |= REGFLAG_R(RSREG);
desc->flags |= OPFLAG_IS_CONDITIONAL_BRANCH;
}
desc->targetpc = ((desc->pc + 4 + (SIMMVAL << 2)) & 0x00000fff) | 0x1000;
desc->delayslots = 1;
desc->skipslots = (RTREG & 0x02) ? 1 : 0;
return TRUE;
case 0x10: /* BLTZAL */
case 0x11: /* BGEZAL */
if (RTREG == 0x11 && RSREG == 0)
desc->flags |= OPFLAG_IS_UNCONDITIONAL_BRANCH | OPFLAG_END_SEQUENCE;
else
{
desc->regin[0] |= REGFLAG_R(RSREG);
desc->flags |= OPFLAG_IS_CONDITIONAL_BRANCH;
}
desc->regout[0] |= REGFLAG_R(31);
desc->targetpc = ((desc->pc + 4 + (SIMMVAL << 2)) & 0x00000fff) | 0x1000;
desc->delayslots = 1;
desc->skipslots = (RTREG & 0x02) ? 1 : 0;
return TRUE;
}
return FALSE;
}
/*-------------------------------------------------
describe_instruction_cop0 - build a
description of a single instruction in the
COP0 group
-------------------------------------------------*/
static int describe_instruction_cop0(rsp_state *rsp, UINT32 op, opcode_desc *desc)
{
switch (RSREG)
{
case 0x00: /* MFCz */
desc->regout[0] |= REGFLAG_R(RTREG);
return TRUE;
case 0x04: /* MTCz */
desc->regin[0] |= REGFLAG_R(RTREG);
return TRUE;
}
return FALSE;
}
/*-------------------------------------------------
describe_instruction_cop2 - build a
description of a single instruction in the
COP2 group
-------------------------------------------------*/
static int describe_instruction_cop2(rsp_state *rsp, UINT32 op, opcode_desc *desc)
{
switch (RSREG)
{
case 0x00: /* MFCz */
case 0x02: /* CFCz */
desc->regout[0] |= REGFLAG_R(RTREG);
return TRUE;
case 0x04: /* MTCz */
case 0x06: /* CTCz */
desc->regin[0] |= REGFLAG_R(RTREG);
return TRUE;
}
return FALSE;
}