mame/src/lib/netlist/analog/nld_mosfet.cpp
2019-03-31 22:34:06 +02:00

601 lines
20 KiB
C++

// license:GPL-2.0+
// copyright-holders:Couriersud
/*
* nld_mosfet.cpp
*
* Formulas in here based on the following Sources:
*
* https://www.imperial.ac.uk/pls/portallive/docs/1/7292573.PDF
* http://www3.imperial.ac.uk/pls/portallive/docs/1/56133736.PDF
* https://people.rit.edu/lffeee/SPICE_MOSFET_Model_Intro.pdf
* https://people.rit.edu/lffeee/SPICE.pdf
* http://web.mit.edu/course/6/6.012/SPR98/www/lectures/S98_Lecture10.pdf
* http://homepages.rpi.edu/~sawyes/Models_review.pdf
* http://jaco.ec.t.kanazawa-u.ac.jp/edu/mix/pdf/3.pdf
*
* Farid N. Naim, Circuit Simulation (Wiley-IEEE Press, 2010).
* Stefan Jahn, Michael Margraf, Vincent Habchi and Raimund Jacob, "Qucs Technical Papers" (2007)
*
*/
#include "netlist/solver/nld_solver.h"
#include "netlist/nl_setup.h"
#include "nlid_twoterm.h"
#include <cmath>
#define BODY_CONNECTED_TO_SOURCE (1)
namespace netlist
{
namespace analog
{
using constants = plib::constants<nl_double>;
// -----------------------------------------------------------------------------
// nld_FET - Base classes
// -----------------------------------------------------------------------------
/*! Class representing the nmos/pmos model paramers.
*
* This is the model representation of the nmos model.
*
* Netlist has an additional parameter caller CAPMOD:
*
* CAPMOD=0: Capacitance model disabled
* CAPMOD=2: Meyer capacitance model
*
* Typically, SPICE uses the following parameters. A "Y" in the first
* column indicates that the parameter is actually used in netlist.
*
* | NL? |Name | Description|Units |Default |Example |
* |:---:|------|-----------------------------------------------------------------------|-------|---------:|----------------:|
* | Y |Vto | Zero-bias threshold voltage | V | 0 | 1 |
* | Y |Kp | Transconductance parameter | A/V² | 0.00002 | 0.00003 |
* | Y |Gamma | Bulk threshold parameter | V^½ | 0 | 0.37 |
* | Y |Phi | Surface inversion potential | V | 0.6 | 0.65 |
* | Y |Lambda| Channel-length modulation (level 1 and 2 only) | 1/V | 0 | 0.02 |
* | |Rd | Drain ohmic resistance |W|0|1|
* | |Rs | Source ohmic resistance |W|0|1|
* | |Cbd | Zero-bias B-D junction capacitance |F|0|20f|
* | |Cbs | Zero-bias B-S junction capacitance |F|0|20f|
* | Y |Is | Bulk junction saturation current |A|0.00000000000001|1E-015|
* | Y |N | Bulk diode emission coefficient |-|1|*
* | |Pb | Bulk junction potential |V|0.8|0.87|8|
* | Y |Cgso | Gate-source overlap capacitance per meter channel width |F/m|0|0.00000000004|
* | Y |Cgdo | Gate-drain overlap capacitance per meter channel width |F/m|0|0.00000000004|*
* | Y |Cgbo | Gate-bulk overlap capacitance per meter channel width |F/m|0|0.0000000002|*
* | |Rsh | Drain and source diffusion sheet resistance |W|0|10|*
* | |Cj | Zero-bias bulk junction bottom capacitance per square meter of junction area|F/m²|0|0.0002|*
* | |Mj | Bulk junction bottom grading coefficient |-|0.5|0.5|*
* | |Cjsw | Zero-bias bulk junction sidewall capacitance per meter of junction perimeter|F/m|0|1p|*
* | |Mjsw | Bulk junction sidewall grading coefficient |-|.50 level 1 .33 level 2,3||
* | |Js | Bulk junction saturation current per square-meter of junction area|A/m|0|0.00000001|
* | Y |Tox | Oxide thickness |m|0.0000001|0.0000001|
* | Y |Nsub | Substrate doping |1/cm³|0|4000000000000000|
* | |Nss | Surface state density |1/cm²|0|10000000000|
* | |Nfs | Fast surface state |1/cm²|0|10000000000|*
* | |TPG | Type of gate material: +1 opp. to substrate -1 same as substrate 0 Al gate|-|1|
* | |Xj | Metallurgical junction depth |m|0|1µ|*
* | Y |Ld | Lateral diffusion |m|0|0.8µ|
* | Y |Uo | Surface mobility |cm²/V/s|600|700|
* | |Ucrit | Critical field for mobility degradation (level 2 only) |V/cm|10000|10000|
* | |Uexp | Critical field exponent in mobility degradation (level 2 only) |-|0|0.1|
* | |Utra | Transverse field coefficient (level 2 only) |-|0|0.3|*
* | |Vmax | Maximum carrier drift velocity (levels 2 & 3 only) |m/s|0|50000|
* | |Neff | Total channel-charge exponent (level 2 only) |-|1|5|
* | |Kf | Flicker noise coefficient |-|0|1E-026|
* | |Af | Flicker noise exponent |-|1|1.2|
* | |Fc | Coefficient for forward-bias depletion capacitance formula |-|0.5|
* | |Delta | Width effect on threshold voltage(levels 2 and 3) |-|0|1|
* | |Theta | Mobility modulation (level 3 only) |-|0|0.1|
* | |Eta | Static feedback (level 3 only) |-|0|1|
* | |Kappa | Saturation field (level 3 only) |0.2|0.5|
* | |Tnom | Parameter measurement temperature |ºC|27|50||
* | Y |L | Length scaling |-|100e-6||
* | Y |W | Width scaling |-|100e-6||
* */
class fet_model_t : public param_model_t
{
public:
fet_model_t(device_t &device, const pstring &name, const pstring &val)
: param_model_t(device, name, val)
, m_VTO(*this, "VTO")
, m_N(*this, "N")
, m_ISS(*this, "IS") // Haven't seen a model using ISS / ISD
, m_ISD(*this, "IS")
, m_LD(*this, "LD")
, m_L(*this, "L")
, m_W(*this, "W")
, m_TOX(*this, "TOX")
, m_KP(*this, "KP")
, m_UO(*this, "UO")
, m_PHI(*this, "PHI")
, m_NSUB(*this, "NSUB")
, m_GAMMA(*this, "GAMMA")
, m_LAMBDA(*this, "LAMBDA")
, m_RD(*this, "RD")
, m_RS(*this, "RS")
, m_CGSO(*this, "CGSO")
, m_CGDO(*this, "CGDO")
, m_CGBO(*this, "CGBO")
, m_CAPMOD(*this, "CAPMOD")
{}
value_t m_VTO; //!< Threshold voltage [V]
value_t m_N; //!< Bulk diode emission coefficient
value_t m_ISS; //!< Body diode saturation current
value_t m_ISD; //!< Body diode saturation current
value_t m_LD; //!< Lateral diffusion [m]
value_t m_L; //!< Length scaling
value_t m_W; //!< Width scaling
value_t m_TOX; //!< Oxide thickness
value_t m_KP; //!< Transconductance parameter [A/V²]
value_t m_UO; //!< Surface mobility [cm²/V/s]
value_t m_PHI; //!< Surface inversion potential [V]
value_t m_NSUB; //!< Substrate doping [1/cm³]
value_t m_GAMMA; //!< Bulk threshold parameter [V^½]
value_t m_LAMBDA; //!< Channel-length modulation [1/V]
value_t m_RD; //!< Drain ohmic resistance
value_t m_RS; //!< Source ohmic resistance
value_t m_CGSO; //!< Gate-source overlap capacitance per meter channel width
value_t m_CGDO; //!< Gate-drain overlap capacitance per meter channel width
value_t m_CGBO; //!< Gate-bulk overlap capacitance per meter channel width
value_base_t<int> m_CAPMOD; //!< Capacitance model (0=no model 2=Meyer)
};
// Have a common start for mosfets
NETLIB_OBJECT(FET)
{
public:
enum q_type {
FET_NMOS,
FET_PMOS
};
NETLIB_CONSTRUCTOR(FET)
, m_model(*this, "MODEL", "NMOS")
, m_qtype(FET_NMOS)
{
}
NETLIB_IS_DYNAMIC(true)
//NETLIB_RESETI();
NETLIB_UPDATEI() { }
q_type qtype() const { return m_qtype; }
bool is_qtype(q_type atype) const { return m_qtype == atype; }
void set_qtype(q_type atype) { m_qtype = atype; }
protected:
fet_model_t m_model;
private:
q_type m_qtype;
};
// -----------------------------------------------------------------------------
// nld_QBJT_EB
// -----------------------------------------------------------------------------
NETLIB_OBJECT_DERIVED(MOSFET, FET)
{
public:
NETLIB_CONSTRUCTOR_DERIVED(MOSFET, FET)
, m_DG(*this, "m_DG", true)
, m_SG(*this, "m_SG", true)
, m_SD(*this, "m_SD", true)
, m_D_BD(*this, "m_D_BD")
#if (!BODY_CONNECTED_TO_SOURCE)
, m_D_BS(*this, "m_D_BS")
#endif
, m_cap_gb(*this, "m_cap_gb")
, m_cap_gs(*this, "m_cap_gs")
, m_cap_gd(*this, "m_cap_gd")
, m_phi(0.0)
, m_gamma(0.0)
, m_vto(0.0)
, m_beta(0.0)
, m_lambda(0.0)
, m_Leff(0.0)
, m_CoxWL(0.0)
, m_polarity(qtype() == FET_NMOS ? 1.0 : -1.0)
, m_Cgb(0.0)
, m_Cgs(0.0)
, m_Cgd(0.0)
, m_capmod(2)
, m_Vgs(*this, "m_Vgs", 0.0)
, m_Vgd(*this, "m_Vgd", 0.0)
{
register_subalias("S", m_SG.m_P); // Source
register_subalias("G", m_SG.m_N); // Gate
register_subalias("D", m_DG.m_P); // Drain
connect(m_SG.m_P, m_SD.m_P);
connect(m_SG.m_N, m_DG.m_N);
connect(m_DG.m_P, m_SD.m_N);
set_qtype((m_model.type() == "NMOS_DEFAULT") ? FET_NMOS : FET_PMOS);
m_polarity = qtype() == FET_NMOS ? 1.0 : -1.0;
m_capmod = m_model.m_CAPMOD;
// printf("capmod %d %g %g\n", m_capmod, (double)m_model.m_VTO, m_polarity);
nl_assert_always(m_capmod == 0 || m_capmod == 2, "Error: CAPMODEL invalid value for " + m_model.name());
/*
* From http://ltwiki.org/LTspiceHelp/LTspiceHelp/M_MOSFET.htm :
*
* VTO, KP, LAMBDA, PHI and GAMMA. These parameters are computed
* if the process parameters(NSUB, TOX,...) are given, but
* user-specified values always override.
*
* But couldn't find a formula for lambda anywhere
*
*/
m_lambda = m_model.m_LAMBDA; // FIXME: m_lambda only set once
// calculate effective channel length
m_Leff = m_model.m_L - 2 * m_model.m_LD;
nl_assert_always(m_Leff > 0.0, "Effective Lateral diffusion would be negative for model " + m_model.name());
nl_double Cox = (m_model.m_TOX > 0.0) ? (constants::eps_SiO2() * constants::eps_0() / m_model.m_TOX) : 0.0;
// calculate DC transconductance coefficient
if (m_model.m_KP > 0)
m_beta = m_model.m_KP * m_model.m_W / m_Leff;
else if (Cox > 0 && m_model.m_UO > 0)
m_beta = m_model.m_UO * 1e-4 * Cox * m_model.m_W / m_Leff;
else
m_beta = 2e-5 * m_model.m_W / m_Leff;
//FIXME::UT can disappear
const double Vt = constants::T0() * constants::k_b() / constants::Q_e();
// calculate surface potential if not given
if (m_model.m_PHI > 0.0)
m_phi = m_model.m_PHI;
else if (m_model.m_NSUB > 0.0)
{
nl_assert_always(m_model.m_NSUB * 1e6 >= constants::NiSi(), "Error calculating phi for model " + m_model.name());
m_phi = 2 * Vt * std::log (m_model.m_NSUB * 1e6 / constants::NiSi());
}
else
m_phi = 0.6;
// calculate bulk threshold if not given
if (m_model.m_GAMMA > 0.0)
m_gamma = m_model.m_GAMMA;
else
{
if (Cox > 0.0 && m_model.m_NSUB > 0)
m_gamma = std::sqrt (2.0 * constants::Q_e() * constants::eps_Si() * constants::eps_0() * m_model.m_NSUB * 1e6) / Cox;
else
m_gamma = 0.0;
}
m_vto = m_model.m_VTO;
nl_assert_always(m_vto != 0.0, "Threshold voltage not specified for " + m_model.name());
/* FIXME: VTO if missing may be calculated from TPG, NSS and temperature. Usually models
* specify VTO so skip this here.
*/
m_CoxWL = Cox * m_model.m_W * m_Leff;
//printf("Cox: %g\n", m_Cox);
}
NETLIB_IS_TIMESTEP(true || m_capmod != 0)
NETLIB_TIMESTEPI()
{
if (m_capmod != 0)
{
//const nl_double Ugd = -m_DG.deltaV() * m_polarity; // Gate - Drain
//const nl_double Ugs = -m_SG.deltaV() * m_polarity; // Gate - Source
const nl_double Ugd = m_Vgd; // Gate - Drain
const nl_double Ugs = m_Vgs; // Gate - Source
const nl_double Ubs = 0.0; // Bulk - Source == 0 if connected
const nl_double Ugb = Ugs - Ubs;
m_cap_gb.timestep(m_Cgb, Ugb, step);
m_cap_gs.timestep(m_Cgs, Ugs, step);
m_cap_gd.timestep(m_Cgd, Ugd, step);
}
}
protected:
NETLIB_RESETI()
{
NETLIB_NAME(FET)::reset();
// Bulk diodes
m_D_BD.set_param(m_model.m_ISD, m_model.m_N, exec().gmin(), constants::T0());
#if (!BODY_CONNECTED_TO_SOURCE)
m_D_BS.set_param(m_model.m_ISS, m_model.m_N, exec().gmin(), constants::T0());
#endif
}
NETLIB_UPDATEI();
NETLIB_UPDATE_PARAMI();
NETLIB_UPDATE_TERMINALSI();
private:
nld_twoterm m_DG;
nld_twoterm m_SG;
nld_twoterm m_SD;
generic_diode<diode_e::MOS> m_D_BD;
#if (!BODY_CONNECTED_TO_SOURCE)
generic_diode<diode_e::MOS> m_D_BS;
#endif
generic_capacitor<capacitor_e::VARIABLE_CAPACITY> m_cap_gb;
generic_capacitor<capacitor_e::VARIABLE_CAPACITY> m_cap_gs;
generic_capacitor<capacitor_e::VARIABLE_CAPACITY> m_cap_gd;
nl_double m_phi;
nl_double m_gamma;
nl_double m_vto;
nl_double m_beta;
nl_double m_lambda;
/* used in capacitance calculation */
nl_double m_Leff;
nl_double m_CoxWL;
nl_double m_polarity;
/* capacitance values */
nl_double m_Cgb;
nl_double m_Cgs;
nl_double m_Cgd;
int m_capmod;
state_var<nl_double> m_Vgs;
state_var<nl_double> m_Vgd;
void set_cap(generic_capacitor<capacitor_e::VARIABLE_CAPACITY> cap,
nl_double capval, nl_double V,
nl_double &g11, nl_double &g12, nl_double &g21, nl_double &g22,
nl_double &I1, nl_double &I2)
{
const nl_double I = cap.Ieq(capval, V) * m_polarity;
const nl_double G = cap.G(capval);
g11 += G; g12 -= G; g21 -= G; g22 += G;
I1 -= I; I2 += I;
//printf("Cap: %g\n", capval);
}
void calculate_caps(nl_double Vgs, nl_double Vgd, nl_double Vth,
nl_double &Cgs, nl_double &Cgd, nl_double &Cgb)
{
nl_double Vctrl = Vgs - Vth * m_polarity;
// Cut off - now further differentiated into 3 different formulas
// Accumulation
if (Vctrl <= -m_phi)
{
Cgb = m_CoxWL;
Cgs = 0.0;
Cgd = 0.0;
}
else if (Vctrl <= -m_phi / 2.0)
{
Cgb = -Vctrl * m_CoxWL / m_phi;
Cgs = 0.0;
Cgd = 0.0;
}
// Depletion
else if (Vctrl <= 0)
{
Cgb = -Vctrl * m_CoxWL / m_phi;
Cgs = Vctrl * m_CoxWL * (4.0 / 3.0) / m_phi + (2.0 / 3.0) * m_CoxWL;
Cgd = 0.0;
}
else
{
const nl_double Vdsat = Vctrl;
const nl_double Vds = Vgs - Vgd;
// saturation
if (Vdsat <= Vds)
{
Cgb = 0;
Cgs = (2.0 / 3.0) * m_CoxWL;
Cgd = 0;
}
else
{
// linear
const nl_double Sqr1 = std::pow(Vdsat - Vds, 2);
const nl_double Sqr2 = std::pow(2.0 * Vdsat - Vds, 2);
Cgb = 0;
Cgs = m_CoxWL * (1.0 - Sqr1 / Sqr2) * (2.0 / 3.0);
Cgd = m_CoxWL * (1.0 - Vdsat * Vdsat / Sqr2) * (2.0 / 3.0);
}
}
}
};
// ----------------------------------------------------------------------------------------
// MOSFET
// ----------------------------------------------------------------------------------------
NETLIB_UPDATE(MOSFET)
{
if (!m_SG.m_P.net().isRailNet())
m_SG.m_P.solve_now(); // Basis
else if (!m_SG.m_N.net().isRailNet())
m_SG.m_N.solve_now(); // Emitter
else
m_DG.m_N.solve_now(); // Collector
}
NETLIB_UPDATE_TERMINALS(MOSFET)
{
nl_double Vgd = -m_DG.deltaV() * m_polarity; // Gate - Drain
nl_double Vgs = -m_SG.deltaV() * m_polarity; // Gate - Source
// limit step sizes
const nl_double k = 3.5; // see "Circuit Simulation", page 185
nl_double d = (Vgs - m_Vgs);
Vgs = m_Vgs + 1.0/k * (d < 0 ? -1.0 : 1.0) * std::log1p(k * std::abs(d));
d = (Vgd - m_Vgd);
Vgd = m_Vgd + 1.0/k * (d < 0 ? -1.0 : 1.0) * std::log1p(k * std::abs(d));
m_Vgs = Vgs;
m_Vgd = Vgd;
const nl_double Vbs = 0.0; // Bulk - Source == 0 if connected
//const nl_double Vbd = m_SD.deltaV() * m_polarity; // Bulk - Drain = Source - Drain
const nl_double Vds = Vgs - Vgd;
const nl_double Vbd = -Vds; // Bulk - Drain = Source - Drain
#if (!BODY_CONNECTED_TO_SOURCE)
m_D_BS.update_diode(Vbs);
#endif
m_D_BD.update_diode(Vbd);
// Are we in forward mode ?
// in backward mode, just swap source and drain
const bool is_forward = Vds >= 0;
// calculate Vth
const nl_double Vbulk = is_forward ? Vbs : Vbd;
const nl_double phi_m_Vbulk = (m_phi > Vbulk) ? std::sqrt(m_phi - Vbulk) : 0.0;
const nl_double Vth = m_vto * m_polarity + m_gamma * (phi_m_Vbulk - std::sqrt(m_phi));
const nl_double Vctrl = (is_forward ? Vgs : Vgd) - Vth;
nl_double Ids, gm, gds, gmb;
const nl_double absVds = std::abs(Vds);
if (Vctrl <= 0.0)
{
// cutoff region
Ids = 0.0;
gm = 0.0;
gds = 0.0;
gmb = 0.0;
}
else
{
const nl_double beta = m_beta * (1.0 + m_lambda * absVds);
if (Vctrl <= absVds)
{
// saturation region
Ids = beta * Vctrl * Vctrl / 2.0;
gm = beta * Vctrl;
gds = m_lambda * m_beta * Vctrl * Vctrl / 2.0;
}
else
{
// linear region
Ids = beta * absVds * (Vctrl - absVds / 2);
gm = beta * absVds;
gds = beta * (Vctrl - absVds) + m_lambda * m_beta * absVds * (Vctrl - absVds / 2.0);
}
// backgate transconductance
const nl_double bgtc = (phi_m_Vbulk != 0.0) ? (m_gamma / phi_m_Vbulk / 2.0) : 0.0;
gmb = gm * bgtc;
}
// FIXME: these are needed to compute capacitance
// nl_double Udsat = pol * std::max (Utst, 0.0);
// Uon = pol * Vth;
// compute bulk diode equivalent currents
const nl_double IeqBD = m_D_BD.Ieq();
const nl_double gbd = m_D_BD.G();
#if (!BODY_CONNECTED_TO_SOURCE)
const nl_double IeqBS = m_D_BS.Ieq();
const nl_double gbs = m_D_BS.G();
#else
const nl_double IeqBS = 0.0;
const nl_double gbs = 0.0;
#endif
// exchange controlling nodes if necessary
const nl_double gsource = is_forward ? (gm + gmb) : 0;
const nl_double gdrain = is_forward ? 0.0 : (gm + gmb);
const nl_double IeqDS = (is_forward) ?
Ids - gm * Vgs - gmb * Vbs - gds * Vds
: -Ids - gm * Vgd - gmb * Vbd - gds * Vds;
// IG = 0
nl_double IG = 0.0;
nl_double ID = (+IeqBD - IeqDS) * m_polarity;
nl_double IS = (+IeqBS + IeqDS) * m_polarity;
nl_double IB = (-IeqBD - IeqBS) * m_polarity;
nl_double gGG = 0.0;
nl_double gGD = 0.0;
nl_double gGS = 0.0;
nl_double gGB = 0.0;
nl_double gDG = gm;
nl_double gDD = gds + gbd - gdrain;
const nl_double gDS = -gds - gsource;
const nl_double gDB = gmb - gbd;
nl_double gSG = -gm;
const nl_double gSD = -gds + gdrain;
nl_double gSS = gbs + gds + gsource;
const nl_double gSB = -gbs - gmb;
nl_double gBG = 0.0;
const nl_double gBD = -gbd;
const nl_double gBS = -gbs;
nl_double gBB = gbs + gbd;
if (m_capmod != 0)
{
const nl_double Vgb = Vgs - Vbs;
if (is_forward)
calculate_caps(Vgs, Vgd, Vth, m_Cgs, m_Cgd, m_Cgb);
else
calculate_caps(Vgd, Vgs, Vth, m_Cgd, m_Cgs, m_Cgb);
set_cap(m_cap_gb, m_Cgb + m_model.m_CGBO * m_Leff, Vgb, gGG, gGB, gBG, gBB, IG, IB);
set_cap(m_cap_gs, m_Cgs + m_model.m_CGSO * m_model.m_W, Vgs, gGG, gGS, gSG, gSS, IG, IS);
set_cap(m_cap_gd, m_Cgd + m_model.m_CGDO * m_model.m_W, Vgd, gGG, gGD, gDG, gDD, IG, ID);
}
// Source connected to body, Diode S-B shorted!
const nl_double gSSBB = gSS + gBB + gBS + gSB;
// S G
m_SG.set_mat( gSSBB, gSG + gBG, +(IS + IB), // S
gGS + gGB, gGG, IG ); // G
// D G
m_DG.set_mat( gDD, gDG, +ID, // D
gGD, 0.0, 0.0 ); // G
// S D
m_SD.set_mat( 0.0, gSD + gBD, 0.0, // S
gDS + gDB, 0.0, 0.0); // D
}
NETLIB_UPDATE_PARAM(MOSFET)
{
}
} // namespace analog
namespace devices {
NETLIB_DEVICE_IMPL_NS(analog, MOSFET, "MOSFET", "MODEL")
} // namespace devices
} // namespace netlist