mame/src/lib/netlist/plib/prandom.h
2020-06-01 19:59:54 +02:00

234 lines
4.8 KiB
C++

// license:GPL-2.0+
// copyright-holders:Couriersud
#ifndef PRANDOM_H_
#define PRANDOM_H_
///
/// \file pmath.h
///
#include "pconfig.h"
#include "pmath.h"
#include "ptypes.h"
//#include <algorithm>
//#include <cmath>
//#include <type_traits>
#include <array>
namespace plib
{
/// \brief Mersenne Twister implementation which is state saveable
///
/// This is a Mersenne Twister implementation which is state saveable.
/// It has been written following this wikipedia entry:
///
/// https://en.wikipedia.org/wiki/Mersenne_Twister
///
/// The implementation has basic support for the interface described here
///
/// https://en.cppreference.com/w/cpp/numeric/random/mersenne_twister_engine
///
/// so that it can be used with the C++11 random environment
///
template<typename T,
std::size_t w, std::size_t N, std::size_t m, std::size_t r,
T a,
std::size_t u, T d,
std::size_t s, T b,
std::size_t t, T c,
std::size_t l, T f>
class mersenne_twister_t
{
public:
mersenne_twister_t()
: m_p(N)
{
seed(5489);
}
static constexpr T min() noexcept { return static_cast<T>(0); }
static constexpr T max() noexcept { return ~T(0) >> (sizeof(T)*8 - w); }
template <typename ST>
void save_state(ST &st)
{
st.save_item(m_p, "index");
st.save_item(m_mt, "mt");
}
void seed(T val) noexcept
{
const T lowest_w(~T(0) >> (sizeof(T)*8 - w));
m_p = N;
m_mt[0] = val;
for (std::size_t i=1; i< N; i++)
m_mt[i] = (f * (m_mt[i-1] ^ (m_mt[i-1] >> (w-2))) + i) & lowest_w;
}
T operator()() noexcept
{
const T lowest_w(~T(0) >> (sizeof(T)*8 - w));
if (m_p >= N)
twist();
T y = m_mt[m_p++];
y = y ^ ((y >> u) & d);
y = y ^ ((y << s) & b);
y = y ^ ((y << t) & c);
y = y ^ (y >> l);
return y & lowest_w;
}
void discard(std::size_t v) noexcept
{
if (v > N - m_p)
{
v -= N - m_p;
twist();
}
while (v > N)
{
v -= N;
twist();
}
m_p += v;
}
private:
void twist()
{
const T lowest_w(~T(0) >> (sizeof(T)*8 - w));
const T lower_mask((static_cast<T>(1) << r) - 1); // That is, the binary number of r 1's
const T upper_mask((~lower_mask) & lowest_w);
for (std::size_t i=0; i<N; i++)
{
const T x((m_mt[i] & upper_mask) + (m_mt[(i+1) % N] & lower_mask));
const T xA((x >> 1) ^ ((x & 1) ? a : 0));
m_mt[i] = m_mt[(i + m) % N] ^ xA;
}
m_p = 0;
}
std::size_t m_p;
std::array<T, N> m_mt;
};
template <typename FT, typename T>
FT normalize_uniform(T &p, FT m = constants<FT>::one(), FT b = constants<FT>::zero())
{
const auto mmin(static_cast<FT>(p.min()));
const auto mmax(static_cast<FT>(p.max()));
// -> 0 to a
return (static_cast<FT>(p())- mmin) / (mmax - mmin) * m - b;
}
template<typename FT>
class uniform_distribution_t
{
public:
uniform_distribution_t(FT dev)
: m_stddev(dev) { }
template <typename P>
FT operator()(P &p) noexcept
{
// get -1 to 1
return normalize_uniform(p, constants<FT>::two(), constants<FT>::one())
* constants<FT>::sqrt3() * m_stddev;
}
template <typename ST>
void save_state(ST &st)
{
plib::unused_var(st);
/* no state to save */
}
private:
FT m_stddev;
};
template<typename FT>
class normal_distribution_t
{
public:
normal_distribution_t(FT dev)
: m_p(m_buf.size()), m_stddev(dev) { }
// Donald Knuth, Algorithm P (Polar method)
template <typename P>
FT operator()(P &p) noexcept
{
if (m_p >= m_buf.size())
fill(p);
return m_buf[m_p++];
}
template <typename ST>
void save_state(ST &st)
{
st.save_item(m_p, "m_p");
st.save_item(m_buf, "m_buf");
}
private:
template <typename P>
void fill(P &p) noexcept
{
for (std::size_t i = 0; i < m_buf.size(); i += 2)
{
FT s;
FT v1;
FT v2;
do
{
v1 = normalize_uniform(p, constants<FT>::two(), constants<FT>::one()); // [-1..1[
v2 = normalize_uniform(p, constants<FT>::two(), constants<FT>::one()); // [-1..1[
s = v1 * v1 + v2 * v2;
} while (s >= constants<FT>::one());
if (s == constants<FT>::zero())
{
m_buf[i] = s;
m_buf[i+1] = s;
}
else
{
// last value without error for log(s)/s
// double: 1.000000e-305
// float: 9.999999e-37
// FIXME: with 128 bit randoms log(s)/w will fail 1/(2^128) ~ 2.9e-39
const auto m(m_stddev * plib::sqrt(-constants<FT>::two() * plib::log(s)/s));
m_buf[i] = /*mean+*/ m * v1;
m_buf[i+1] = /*mean+*/ m * v2;
}
}
m_p = 0;
}
std::array<FT, 256> m_buf;
std::size_t m_p;
FT m_stddev;
};
using mt19937_64 = mersenne_twister_t<
uint_fast64_t,
64, 312, 156, 31,
0xb5026f5aa96619e9ULL,
29, 0x5555555555555555ULL,
17, 0x71d67fffeda60000ULL,
37, 0xfff7eee000000000ULL,
43,
6364136223846793005ULL>;
} // namespace plib
#endif // PRANDOM_H_