mame/src/emu/cpu/i86/i186.c
2013-12-26 21:47:41 +00:00

1687 lines
46 KiB
C

// Peripheral code from rmnimbus driver by Phill Harvey-Smith which is
// based on the Leland sound driver by Aaron Giles and Paul Leaman
#include "i186.h"
#include "debugger.h"
#include "i86inline.h"
#define LATCH_INTS 1
#define LOG_PORTS 0
#define LOG_INTERRUPTS 0
#define LOG_INTERRUPTS_EXT 0
#define LOG_TIMER 0
#define LOG_OPTIMIZATION 0
#define LOG_DMA 0
#define CPU_RESUME_TRIGGER 7123
/* external int priority masks */
#define EXTINT_CTRL_PRI_MASK 0x07
#define EXTINT_CTRL_MSK 0x08
#define EXTINT_CTRL_LTM 0x10
#define EXTINT_CTRL_CASCADE 0x20
#define EXTINT_CTRL_SFNM 0x40
/* DMA control register */
#define DEST_MIO 0x8000
#define DEST_DECREMENT 0x4000
#define DEST_INCREMENT 0x2000
#define DEST_NO_CHANGE (DEST_DECREMENT | DEST_INCREMENT)
#define DEST_INCDEC_MASK (DEST_DECREMENT | DEST_INCREMENT)
#define SRC_MIO 0X1000
#define SRC_DECREMENT 0x0800
#define SRC_INCREMENT 0x0400
#define SRC_NO_CHANGE (SRC_DECREMENT | SRC_INCREMENT)
#define SRC_INCDEC_MASK (SRC_DECREMENT | SRC_INCREMENT)
#define TERMINATE_ON_ZERO 0x0200
#define INTERRUPT_ON_ZERO 0x0100
#define SYNC_MASK 0x00C0
#define SYNC_SOURCE 0x0040
#define SYNC_DEST 0x0080
#define CHANNEL_PRIORITY 0x0020
#define TIMER_DRQ 0x0010
#define CHG_NOCHG 0x0004
#define ST_STOP 0x0002
#define BYTE_WORD 0x0001
/* these come from the Intel 80186 datasheet */
const UINT8 i80186_cpu_device::m_i80186_timing[] =
{
45,28, /* exception, IRET */
0, 2, 4, 3, /* INTs */
2, /* segment overrides */
2, 2, 3, /* flag operations */
8, 7,19,15, /* arithmetic adjusts */
4, 4, /* decimal adjusts */
2, 4, /* sign extension */
2,18, 6, 2, 6,11, /* misc */
14,14,14, /* direct JMPs */
11,17,26, /* indirect JMPs */
15,23, /* direct CALLs */
13,19,38, /* indirect CALLs */
16,22,18,25, /* returns */
4,13, 5,15, /* conditional JMPs */
6,16, 6,16, /* loops */
10,10, 8, 8, /* port reads */
9, 9, 7, 7, /* port writes */
2, 9,12, /* move, 8-bit */
3,12, /* move, 8-bit immediate */
2, 9,12, /* move, 16-bit */
4,13, /* move, 16-bit immediate */
8, 8, 9, 9, /* move, AL/AX memory */
2,11, 2,11, /* move, segment registers */
4,17, /* exchange, 8-bit */
4,17, 3, /* exchange, 16-bit */
10,16, 9, 9, /* pushes */
10,20, 8, 8, /* pops */
3,10,10, /* ALU ops, 8-bit */
4,16,10, /* ALU ops, 8-bit immediate */
3,10,10, /* ALU ops, 16-bit */
4,16,10, /* ALU ops, 16-bit immediate */
4,16,10, /* ALU ops, 16-bit w/8-bit immediate */
26,35,32,41, /* MUL */
25,34,31,40, /* IMUL */
29,38,35,44, /* DIV */
44,53,50,59, /* IDIV */
3, 3,15,15, /* INC/DEC */
3, 3,10,10, /* NEG/NOT */
2, 5, 1, /* reg shift/rotate */
15,17, 1, /* m8 shift/rotate */
15,17, 1, /* m16 shift/rotate */
22, 5,22, /* CMPS 8-bit */
22, 5,22, /* CMPS 16-bit */
15, 5,15, /* SCAS 8-bit */
15, 5,15, /* SCAS 16-bit */
12, 6,11, /* LODS 8-bit */
12, 6,11, /* LODS 16-bit */
10, 6, 9, /* STOS 8-bit */
10, 6, 9, /* STOS 16-bit */
14, 8, 8, /* MOVS 8-bit */
14, 8, 8, /* MOVS 16-bit */
14, 8, 8, /* (80186) INS 8-bit */
14, 8, 8, /* (80186) INS 16-bit */
14, 8, 8, /* (80186) OUTS 8-bit */
14, 8, 8, /* (80186) OUTS 16-bit */
14,68,83, /* (80186) PUSH immediate, PUSHA/POPA */
22,29, /* (80186) IMUL immediate 8-bit */
25,32, /* (80186) IMUL immediate 16-bit */
15,25,4,16, 8, /* (80186) ENTER/LEAVE */
33, /* (80186) BOUND */
};
const device_type I80186 = &device_creator<i80186_cpu_device>;
const device_type I80188 = &device_creator<i80188_cpu_device>;
i80188_cpu_device::i80188_cpu_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: i80186_cpu_device(mconfig, I80188, "I80188", tag, owner, clock, "i80188", __FILE__, 8)
{
memcpy(m_timing, m_i80186_timing, sizeof(m_i80186_timing));
m_fetch_xor = 0;
}
i80186_cpu_device::i80186_cpu_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: i8086_common_cpu_device(mconfig, I80186, "I80186", tag, owner, clock, "i80186", __FILE__)
, m_program_config("program", ENDIANNESS_LITTLE, 16, 20, 0)
, m_io_config("io", ENDIANNESS_LITTLE, 16, 16, 0)
, m_read_slave_ack_func(*this)
, m_out_chip_select_func(*this)
, m_out_tmrout0_func(*this)
, m_out_tmrout1_func(*this)
{
memcpy(m_timing, m_i80186_timing, sizeof(m_i80186_timing));
m_fetch_xor = BYTE_XOR_LE(0);
}
i80186_cpu_device::i80186_cpu_device(const machine_config &mconfig, device_type type, const char *name, const char *tag, device_t *owner, UINT32 clock, const char *shortname, const char *source, int data_bus_size)
: i8086_common_cpu_device(mconfig, type, name, tag, owner, clock, shortname, source)
, m_program_config("program", ENDIANNESS_LITTLE, data_bus_size, 20, 0)
, m_io_config("io", ENDIANNESS_LITTLE, data_bus_size, 16, 0)
, m_read_slave_ack_func(*this)
, m_out_chip_select_func(*this)
, m_out_tmrout0_func(*this)
, m_out_tmrout1_func(*this)
{
}
UINT8 i80186_cpu_device::fetch_op()
{
UINT8 data;
data = m_direct->read_decrypted_byte(pc(), m_fetch_xor);
m_ip++;
return data;
}
UINT8 i80186_cpu_device::fetch()
{
UINT8 data;
data = m_direct->read_raw_byte(pc(), m_fetch_xor);
m_ip++;
return data;
}
void i80186_cpu_device::execute_run()
{
while(m_icount > 0 )
{
if ( m_seg_prefix_next )
{
m_seg_prefix = true;
m_seg_prefix_next = false;
}
else
{
m_prev_ip = m_ip;
m_seg_prefix = false;
/* Dispatch IRQ */
if ( m_pending_irq && m_no_interrupt == 0 )
{
if ( m_pending_irq & NMI_IRQ )
{
interrupt(2);
m_pending_irq &= ~NMI_IRQ;
m_halt = false;
}
else if ( m_IF )
{
/* the actual vector is retrieved after pushing flags */
/* and clearing the IF */
interrupt(-1);
m_halt = false;
}
}
if(m_halt)
{
m_icount = 0;
return;
}
/* No interrupt allowed between last instruction and this one */
if ( m_no_interrupt )
{
m_no_interrupt--;
}
/* trap should allow one instruction to be executed */
if ( m_fire_trap )
{
if ( m_fire_trap >= 2 )
{
interrupt(1);
m_fire_trap = 0;
}
else
{
m_fire_trap++;
}
}
}
debugger_instruction_hook( this, pc() );
UINT8 op = fetch_op();
switch(op)
{
case 0x60: // i_pusha
{
UINT32 tmp = m_regs.w[SP];
PUSH(m_regs.w[AX]);
PUSH(m_regs.w[CX]);
PUSH(m_regs.w[DX]);
PUSH(m_regs.w[BX]);
PUSH(tmp);
PUSH(m_regs.w[BP]);
PUSH(m_regs.w[SI]);
PUSH(m_regs.w[DI]);
CLK(PUSHA);
}
break;
case 0x61: // i_popa
m_regs.w[DI] = POP();
m_regs.w[SI] = POP();
m_regs.w[BP] = POP();
POP();
m_regs.w[BX] = POP();
m_regs.w[DX] = POP();
m_regs.w[CX] = POP();
m_regs.w[AX] = POP();
CLK(POPA);
break;
case 0x62: // i_bound
{
UINT32 low,high,tmp;
m_modrm = fetch();
low = GetRMWord();
high = GetnextRMWord();
tmp = RegWord();
if (tmp<low || tmp>high)
interrupt(5);
CLK(BOUND);
logerror("%s: %06x: bound %04x high %04x low %04x tmp\n", tag(), pc(), high, low, tmp);
}
break;
case 0x68: // i_push_d16
PUSH( fetch_word() );
CLK(PUSH_IMM);
break;
case 0x69: // i_imul_d16
{
UINT32 tmp;
DEF_r16w();
tmp = fetch_word();
m_dst = (INT32)((INT16)m_src)*(INT32)((INT16)tmp);
m_CarryVal = m_OverVal = (((INT32)m_dst) >> 15 != 0) && (((INT32)m_dst) >> 15 != -1);
RegWord(m_dst);
CLKM(IMUL_RRI16, IMUL_RMI16);
}
break;
case 0x6a: // i_push_d8
PUSH( (UINT16)((INT16)((INT8)fetch())) );
CLK(PUSH_IMM);
break;
case 0x6b: // i_imul_d8
{
UINT32 src2;
DEF_r16w();
src2= (UINT16)((INT16)((INT8)fetch()));
m_dst = (INT32)((INT16)m_src)*(INT32)((INT16)src2);
m_CarryVal = m_OverVal = (((INT32)m_dst) >> 15 != 0) && (((INT32)m_dst) >> 15 != -1);
RegWord(m_dst);
CLKM(IMUL_RRI8, IMUL_RMI8);
}
break;
case 0x6c: // i_insb
i_insb();
break;
case 0x6d: // i_insw
i_insw();
break;
case 0x6e: // i_outsb
i_outsb();
break;
case 0x6f: // i_outsw
i_outsw();
break;
case 0x8e: // i_mov_sregw
m_modrm = fetch();
m_src = GetRMWord();
CLKM(MOV_SR,MOV_SM);
switch (m_modrm & 0x38)
{
case 0x00: /* mov es,ew */
m_sregs[ES] = m_src;
break;
case 0x10: /* mov ss,ew */
m_sregs[SS] = m_src;
m_no_interrupt = 1;
break;
case 0x18: /* mov ds,ew */
m_sregs[DS] = m_src;
break;
default:
logerror("%s: %06x: Mov Sreg - Invalid register\n", tag(), pc());
m_ip = m_prev_ip;
interrupt(6);
}
break;
case 0xc0: // i_rotshft_bd8
{
UINT8 c;
m_modrm = fetch();
m_src = GetRMByte();
m_dst = m_src;
c = fetch() & 0x1f;
CLKM(ROT_REG_BASE,ROT_M8_BASE);
m_icount -= m_timing[ROT_REG_BIT] * c;
if (c)
{
switch ( m_modrm & 0x38 )
{
case 0x00: do { ROL_BYTE(); c--; } while (c>0); PutbackRMByte(m_dst); break;
case 0x08: do { ROR_BYTE(); c--; } while (c>0); PutbackRMByte(m_dst); break;
case 0x10: do { ROLC_BYTE(); c--; } while (c>0); PutbackRMByte(m_dst); break;
case 0x18: do { RORC_BYTE(); c--; } while (c>0); PutbackRMByte(m_dst); break;
case 0x30:
case 0x20: SHL_BYTE(c); break;
case 0x28: SHR_BYTE(c); break;
case 0x38: SHRA_BYTE(c); break;
}
}
}
break;
case 0xc1: // i_rotshft_wd8
{
UINT8 c;
m_modrm = fetch();
m_src = GetRMWord();
m_dst = m_src;
c = fetch() & 0x1f;
CLKM(ROT_REG_BASE,ROT_M16_BASE);
m_icount -= m_timing[ROT_REG_BIT] * c;
if (c)
{
switch ( m_modrm & 0x38 )
{
case 0x00: do { ROL_WORD(); c--; } while (c>0); PutbackRMWord(m_dst); break;
case 0x08: do { ROR_WORD(); c--; } while (c>0); PutbackRMWord(m_dst); break;
case 0x10: do { ROLC_WORD(); c--; } while (c>0); PutbackRMWord(m_dst); break;
case 0x18: do { RORC_WORD(); c--; } while (c>0); PutbackRMWord(m_dst); break;
case 0x30:
case 0x20: SHL_WORD(c); break;
case 0x28: SHR_WORD(c); break;
case 0x38: SHRA_WORD(c); break;
}
}
}
break;
case 0xc8: // i_enter
{
UINT16 nb = fetch();
UINT32 level;
nb |= fetch() << 8;
level = fetch();
CLK(!level ? ENTER0 : (level == 1) ? ENTER1 : ENTER_BASE);
if(level > 1)
m_icount -= level * m_timing[ENTER_COUNT];
PUSH(m_regs.w[BP]);
m_regs.w[BP] = m_regs.w[SP];
m_regs.w[SP] -= nb;
for (int i=1; i<level; i++)
{
PUSH( GetMemW(SS,m_regs.w[BP] - i*2) );
}
if (level)
{
PUSH(m_regs.w[BP]);
}
}
break;
case 0xc9: // i_leave
m_regs.w[SP] = m_regs.w[BP];
m_regs.w[BP] = POP();
CLK(LEAVE);
break;
case 0xd2: // i_rotshft_bcl
{
UINT8 c;
m_modrm = fetch();
m_src = GetRMByte();
m_dst = m_src;
c = m_regs.b[CL] & 0x1f;
CLKM(ROT_REG_BASE,ROT_M16_BASE);
m_icount -= m_timing[ROT_REG_BIT] * c;
if (c)
{
switch ( m_modrm & 0x38 )
{
case 0x00: do { ROL_BYTE(); c--; } while (c>0); PutbackRMByte(m_dst); break;
case 0x08: do { ROR_BYTE(); c--; } while (c>0); PutbackRMByte(m_dst); break;
case 0x10: do { ROLC_BYTE(); c--; } while (c>0); PutbackRMByte(m_dst); break;
case 0x18: do { RORC_BYTE(); c--; } while (c>0); PutbackRMByte(m_dst); break;
case 0x30:
case 0x20: SHL_BYTE(c); break;
case 0x28: SHR_BYTE(c); break;
case 0x38: SHRA_BYTE(c); break;
}
}
}
break;
case 0xd3: // i_rotshft_wcl
{
UINT8 c;
m_modrm = fetch();
m_src = GetRMWord();
m_dst = m_src;
c = m_regs.b[CL] & 0x1f;
CLKM(ROT_REG_BASE,ROT_M16_BASE);
m_icount -= m_timing[ROT_REG_BIT] * c;
if (c)
{
switch ( m_modrm & 0x38 )
{
case 0x00: do { ROL_WORD(); c--; } while (c>0); PutbackRMWord(m_dst); break;
case 0x08: do { ROR_WORD(); c--; } while (c>0); PutbackRMWord(m_dst); break;
case 0x10: do { ROLC_WORD(); c--; } while (c>0); PutbackRMWord(m_dst); break;
case 0x18: do { RORC_WORD(); c--; } while (c>0); PutbackRMWord(m_dst); break;
case 0x30:
case 0x20: SHL_WORD(c); break;
case 0x28: SHR_WORD(c); break;
case 0x38: SHRA_WORD(c); break;
}
}
}
break;
case 0xd8: // i_esc
case 0xd9:
case 0xda:
case 0xdb:
case 0xdc:
case 0xdd:
case 0xde:
case 0xdf:
if(m_reloc & 0x8000)
{
m_ip = m_prev_ip;
interrupt(7);
break;
}
m_modrm = fetch();
GetRMByte();
CLK(NOP);
// The 80187 has the FSTSW AX instruction
if((m_modrm == 0xe0) && (op == 0xdf))
m_regs.w[AX] = 0xffff; // FPU not present
break;
case 0xf2: // i_repne
case 0xf3:
{
bool pass = false;
UINT8 next = repx_op();
UINT16 c = m_regs.w[CX];
switch (next)
{
case 0x6c: CLK(OVERRIDE); if (c) do { i_insb(); c--; } while (c>0 && m_icount>0); m_regs.w[CX]=c; m_seg_prefix = false; m_seg_prefix_next = false; break;
case 0x6d: CLK(OVERRIDE); if (c) do { i_insw(); c--; } while (c>0 && m_icount>0); m_regs.w[CX]=c; m_seg_prefix = false; m_seg_prefix_next = false; break;
case 0x6e: CLK(OVERRIDE); if (c) do { i_outsb(); c--; } while (c>0 && m_icount>0); m_regs.w[CX]=c; m_seg_prefix = false; m_seg_prefix_next = false; break;
case 0x6f: CLK(OVERRIDE); if (c) do { i_outsw(); c--; } while (c>0 && m_icount>0); m_regs.w[CX]=c; m_seg_prefix = false; m_seg_prefix_next = false; break;
default:
// Decrement IP and pass on
m_ip -= 1 + (m_seg_prefix_next ? 1 : 0);
pass = true;
}
if(!pass)
{
if(c)
m_ip = m_prev_ip;
break;
}
}
default:
if(!common_op(op))
{
m_icount -= 10; // UD fault timing?
logerror("%s: %06x: Invalid Opcode %02x\n", tag(), pc(), op);
m_ip = m_prev_ip;
interrupt(6); // 80186 has #UD
break;
}
}
}
}
void i80186_cpu_device::device_start()
{
i8086_common_cpu_device::device_start();
state_add( I8086_ES, "ES", m_sregs[ES] ).callimport().callexport().formatstr("%04X");
state_add( I8086_CS, "CS", m_sregs[CS] ).callimport().callexport().formatstr("%04X");
state_add( I8086_SS, "SS", m_sregs[SS] ).callimport().callexport().formatstr("%04X");
state_add( I8086_DS, "DS", m_sregs[DS] ).callimport().callexport().formatstr("%04X");
state_add( I8086_VECTOR, "V", m_int_vector).callimport().callexport().formatstr("%02X");
state_add(STATE_GENPC, "curpc", m_pc).callimport().callexport().formatstr("%05X");
save_item(NAME(m_timer[0].control));
save_item(NAME(m_timer[0].maxA));
save_item(NAME(m_timer[0].maxB));
save_item(NAME(m_timer[0].active_count));
save_item(NAME(m_timer[0].count));
save_item(NAME(m_timer[0].time_timer_active));
save_item(NAME(m_timer[0].last_time));
save_item(NAME(m_timer[1].control));
save_item(NAME(m_timer[1].maxA));
save_item(NAME(m_timer[1].maxB));
save_item(NAME(m_timer[1].active_count));
save_item(NAME(m_timer[1].count));
save_item(NAME(m_timer[1].time_timer_active));
save_item(NAME(m_timer[1].last_time));
save_item(NAME(m_timer[2].control));
save_item(NAME(m_timer[2].maxA));
save_item(NAME(m_timer[2].count));
save_item(NAME(m_timer[2].time_timer_active));
save_item(NAME(m_timer[2].last_time));
save_item(NAME(m_dma[0].source));
save_item(NAME(m_dma[0].dest));
save_item(NAME(m_dma[0].count));
save_item(NAME(m_dma[0].control));
save_item(NAME(m_dma[1].source));
save_item(NAME(m_dma[1].dest));
save_item(NAME(m_dma[1].count));
save_item(NAME(m_dma[1].control));
save_item(NAME(m_intr.pending));
save_item(NAME(m_intr.ack_mask));
save_item(NAME(m_intr.priority_mask));
save_item(NAME(m_intr.in_service));
save_item(NAME(m_intr.request));
save_item(NAME(m_intr.status));
save_item(NAME(m_intr.poll_status));
save_item(NAME(m_intr.timer));
save_item(NAME(m_intr.dma));
save_item(NAME(m_intr.ext));
save_item(NAME(m_mem.lower));
save_item(NAME(m_mem.upper));
save_item(NAME(m_mem.middle));
save_item(NAME(m_mem.middle_size));
save_item(NAME(m_mem.peripheral));
save_item(NAME(m_reloc));
m_timer[0].int_timer = timer_alloc(TIMER_INT0);
m_timer[1].int_timer = timer_alloc(TIMER_INT1);
m_timer[2].int_timer = timer_alloc(TIMER_INT2);
m_timer[0].time_timer = timer_alloc(TIMER_TIME0);
m_timer[1].time_timer = timer_alloc(TIMER_TIME1);
m_timer[2].time_timer = timer_alloc(TIMER_TIME2);
m_dma[0].finish_timer = timer_alloc(TIMER_DMA0);
m_dma[1].finish_timer = timer_alloc(TIMER_DMA1);
m_out_tmrout0_func.resolve_safe();
m_out_tmrout1_func.resolve_safe();
m_read_slave_ack_func.resolve_safe(0);
m_out_chip_select_func.resolve_safe();
}
void i80186_cpu_device::device_reset()
{
i8086_common_cpu_device::device_reset();
/* reset the interrupt state */
m_intr.priority_mask = 0x0007;
m_intr.timer = 0x000f;
m_intr.dma[0] = 0x000f;
m_intr.dma[1] = 0x000f;
m_intr.ext[0] = 0x000f;
m_intr.ext[1] = 0x000f;
m_intr.ext[2] = 0x000f;
m_intr.ext[3] = 0x000f;
m_intr.in_service = 0x0000;
m_intr.pending = 0x0000;
m_intr.ack_mask = 0x0000;
m_intr.request = 0x0000;
m_intr.status = 0x0000;
m_intr.poll_status = 0x0000;
m_reloc = 0x20ff;
m_dma[0].drq_delay = false;
m_dma[1].drq_delay = false;
m_dma[0].drq_state = false;
m_dma[1].drq_state = false;
m_timer[0].control = 0;
m_timer[1].control = 0;
m_timer[2].control = 0;
set_irq_acknowledge_callback(device_irq_acknowledge_delegate(FUNC(i80186_cpu_device::int_callback),this));
}
UINT8 i80186_cpu_device::read_port_byte(UINT16 port)
{
if(!(m_reloc & 0x1000) && (port >> 8) == (m_reloc & 0xff))
{
UINT16 ret = internal_port_r(*m_io, (port >> 1) - ((m_reloc & 0xff) << 7), (port & 1) ? 0xff00 : 0x00ff);
return (port & 1) ? (ret >> 8) : (ret & 0xff);
}
return m_io->read_byte(port);
}
UINT16 i80186_cpu_device::read_port_word(UINT16 port)
{
if(!(m_reloc & 0x1000) && (port >> 8) == (m_reloc & 0xff))
{
if(port & 1)
{
UINT8 low = read_port_byte(port);
return read_port_byte(port + 1) << 8 | low;
}
return internal_port_r(*m_io, (port >> 1) - ((m_reloc & 0xff) << 7));
}
return m_io->read_word_unaligned(port);
}
void i80186_cpu_device::write_port_byte(UINT16 port, UINT8 data)
{
if(!(m_reloc & 0x1000) && (port >> 8) == (m_reloc & 0xff))
internal_port_w(*m_io, (port >> 1) - ((m_reloc & 0xff) << 7), (port & 1) ? (data << 8) : data, (port & 1) ? 0xff00 : 0x00ff);
else
m_io->write_byte(port, data);
}
void i80186_cpu_device::write_port_word(UINT16 port, UINT16 data)
{
if(!(m_reloc & 0x1000) && (port >> 8) == (m_reloc & 0xff))
{
if(port & 1)
{
write_port_byte(port, data & 0xff);
write_port_byte(port + 1, data >> 8);
}
else
internal_port_w(*m_io, (port >> 1) - ((m_reloc & 0xff) << 7), data);
}
else
m_io->write_word_unaligned(port, data);
}
/*************************************
*
* 80186 interrupt controller
*
*************************************/
IRQ_CALLBACK_MEMBER(i80186_cpu_device::int_callback)
{
UINT8 vector;
UINT16 old;
UINT16 oldreq;
if (LOG_INTERRUPTS)
logerror("(%f) **** Acknowledged interrupt vector %02X\n", machine().time().as_double(), m_intr.poll_status & 0x1f);
/* clear the interrupt */
set_input_line(0, CLEAR_LINE);
m_intr.pending = 0;
oldreq=m_intr.request;
/* clear the request and set the in-service bit */
#if LATCH_INTS
m_intr.request &= ~m_intr.ack_mask;
#else
m_intr.request &= ~(m_intr.ack_mask & 0x0f);
#endif
if((LOG_INTERRUPTS) && (m_intr.request!=oldreq))
logerror("intr.request changed from %02X to %02X\n",oldreq,m_intr.request);
old=m_intr.in_service;
m_intr.in_service |= m_intr.ack_mask;
if((LOG_INTERRUPTS) && (m_intr.in_service!=old))
logerror("intr.in_service changed from %02X to %02X\n",old,m_intr.in_service);
if (m_intr.ack_mask == 0x0001)
{
switch (m_intr.poll_status & 0x1f)
{
case 0x08: m_intr.status &= ~0x01; break;
case 0x12: m_intr.status &= ~0x02; break;
case 0x13: m_intr.status &= ~0x04; break;
}
}
m_intr.ack_mask = 0;
/* a request no longer pending */
m_intr.poll_status &= ~0x8000;
/* return the vector */
switch(m_intr.poll_status & 0x1F)
{
case 0x0C : vector=(m_intr.ext[0] & EXTINT_CTRL_CASCADE) ? m_read_slave_ack_func(0) : (m_intr.poll_status & 0x1f); break;
case 0x0D : vector=(m_intr.ext[1] & EXTINT_CTRL_CASCADE) ? m_read_slave_ack_func(1) : (m_intr.poll_status & 0x1f); break;
default :
vector=m_intr.poll_status & 0x1f; break;
}
if (LOG_INTERRUPTS)
{
logerror("intr.ext[0]=%04X intr.ext[1]=%04X\n",m_intr.ext[0],m_intr.ext[1]);
logerror("Int %02X Calling vector %02X\n",m_intr.poll_status,vector);
}
return vector;
}
void i80186_cpu_device::update_interrupt_state()
{
int new_vector = 0;
int Priority;
int IntNo;
if (LOG_INTERRUPTS)
logerror("update_interrupt_status: req=%04X stat=%04X serv=%04X priority_mask=%4X\n", m_intr.request, m_intr.status, m_intr.in_service, m_intr.priority_mask);
/* loop over priorities */
for (Priority = 0; Priority <= m_intr.priority_mask; Priority++)
{
/* note: by checking 4 bits, we also verify that the mask is off */
if ((m_intr.timer & 0x0F) == Priority)
{
/* if we're already servicing something at this level, don't generate anything new */
if (m_intr.in_service & 0x01)
return;
/* if there's something pending, generate an interrupt */
if (m_intr.status & 0x07)
{
if (m_intr.status & 1)
new_vector = 0x08;
else if (m_intr.status & 2)
new_vector = 0x12;
else if (m_intr.status & 4)
new_vector = 0x13;
else
logerror("Invalid timer interrupt!\n");
/* set the clear mask and generate the int */
m_intr.ack_mask = 0x0001;
goto generate_int;
}
}
/* check DMA interrupts */
for (IntNo = 0; IntNo < 2; IntNo++)
if ((m_intr.dma[IntNo] & 0x0F) == Priority)
{
/* if we're already servicing something at this level, don't generate anything new */
if (m_intr.in_service & (0x04 << IntNo))
return;
/* if there's something pending, generate an interrupt */
if (m_intr.request & (0x04 << IntNo))
{
new_vector = 0x0a + IntNo;
/* set the clear mask and generate the int */
m_intr.ack_mask = 0x0004 << IntNo;
goto generate_int;
}
}
/* check external interrupts */
for (IntNo = 0; IntNo < 4; IntNo++)
if ((m_intr.ext[IntNo] & 0x0F) == Priority)
{
if (LOG_INTERRUPTS)
logerror("Int%d priority=%d\n",IntNo,Priority);
/* if we're already servicing something at this level, don't generate anything new */
if ((m_intr.in_service & (0x10 << IntNo)) && !(m_intr.ext[IntNo] & EXTINT_CTRL_SFNM))
return;
/* if there's something pending, generate an interrupt */
if (m_intr.request & (0x10 << IntNo))
{
/* otherwise, generate an interrupt for this request */
new_vector = 0x0c + IntNo;
/* set the clear mask and generate the int */
m_intr.ack_mask = 0x0010 << IntNo;
goto generate_int;
}
}
}
return;
generate_int:
/* generate the appropriate interrupt */
m_intr.poll_status = 0x8000 | new_vector;
if (!m_intr.pending)
set_input_line(0, ASSERT_LINE);
m_intr.pending = 1;
machine().scheduler().trigger(CPU_RESUME_TRIGGER);
if (LOG_OPTIMIZATION) logerror(" - trigger due to interrupt pending\n");
if (LOG_INTERRUPTS) logerror("(%f) **** Requesting interrupt vector %02X\n", machine().time().as_double(), new_vector);
}
void i80186_cpu_device::handle_eoi(int data)
{
int Priority;
int IntNo;
int handled=0;
/* specific case */
if (!(data & 0x8000))
{
/* turn off the appropriate in-service bit */
switch (data & 0x1f)
{
case 0x08: m_intr.in_service &= ~0x01; break;
case 0x12: m_intr.in_service &= ~0x01; break;
case 0x13: m_intr.in_service &= ~0x01; break;
case 0x0a: m_intr.in_service &= ~0x04; break;
case 0x0b: m_intr.in_service &= ~0x08; break;
case 0x0c: m_intr.in_service &= ~0x10; break;
case 0x0d: m_intr.in_service &= ~0x20; break;
case 0x0e: m_intr.in_service &= ~0x40; break;
case 0x0f: m_intr.in_service &= ~0x80; break;
default: logerror("%05X:ERROR - 80186 EOI with unknown vector %02X\n", pc(), data & 0x1f);
}
if (LOG_INTERRUPTS) logerror("(%f) **** Got EOI for vector %02X\n", machine().time().as_double(), data & 0x1f);
}
/* non-specific case */
else
{
/* loop over priorities */
for (Priority = 0; ((Priority <= 7) && !handled); Priority++)
{
/* check for in-service timers */
if ((m_intr.timer & 0x07) == Priority && (m_intr.in_service & 0x01))
{
m_intr.in_service &= ~0x01;
if (LOG_INTERRUPTS) logerror("(%f) **** Got EOI for timer\n", machine().time().as_double());
handled=1;
}
/* check for in-service DMA interrupts */
for (IntNo = 0; ((IntNo < 2) && !handled) ; IntNo++)
if ((m_intr.dma[IntNo] & 0x07) == Priority && (m_intr.in_service & (0x04 << IntNo)))
{
m_intr.in_service &= ~(0x04 << IntNo);
if (LOG_INTERRUPTS) logerror("(%f) **** Got EOI for DMA%d\n", machine().time().as_double(), IntNo);
handled=1;
}
/* check external interrupts */
for (IntNo = 0; ((IntNo < 4) && !handled) ; IntNo++)
if ((m_intr.ext[IntNo] & 0x07) == Priority && (m_intr.in_service & (0x10 << IntNo)))
{
m_intr.in_service &= ~(0x10 << IntNo);
if (LOG_INTERRUPTS) logerror("(%f) **** Got EOI for INT%d\n", machine().time().as_double(), IntNo);
handled=1;
}
}
}
}
/* Trigger an external interrupt, optionally supplying the vector to take */
void i80186_cpu_device::external_int(UINT16 intno, int state, UINT8 vector)
{
if (LOG_INTERRUPTS_EXT) logerror("generating external int %02X, vector %02X\n",intno,vector);
if(!state)
return;
// Turn on the requested request bit and handle interrupt
m_intr.request |= (0x010 << intno);
update_interrupt_state();
}
/*************************************
*
* 80186 internal timers
*
*************************************/
void i80186_cpu_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
switch(id)
{
case TIMER_INT0:
case TIMER_INT1:
case TIMER_INT2:
{
int which = param;
struct timer_state *t = &m_timer[which];
if (LOG_TIMER) logerror("Hit interrupt callback for timer %d\n", which);
/* set the max count bit */
t->control |= 0x0020;
/* request an interrupt */
if (t->control & 0x2000)
{
m_intr.status |= 0x01 << which;
update_interrupt_state();
if (LOG_TIMER) logerror(" Generating timer interrupt\n");
}
if(which == 2)
{
if((m_dma[0].control & (TIMER_DRQ | ST_STOP)) == TIMER_DRQ)
drq_callback(0);
if((m_dma[1].control & (TIMER_DRQ | ST_STOP)) == TIMER_DRQ)
drq_callback(1);
if((m_timer[0].control & 0x800c) == 0x8008)
inc_timer(0);
if((m_timer[1].control & 0x800c) == 0x8008)
inc_timer(1);
}
else
{
if(!(t->control & 2))
{
if(which)
m_out_tmrout1_func(1);
else
m_out_tmrout0_func(1);
}
else
{
if(which)
m_out_tmrout1_func(t->active_count);
else
m_out_tmrout0_func(t->active_count);
}
}
/* if we're continuous, reset */
if (t->control & 0x0001)
{
int count;
if((t->control & 2) && (which != 2))
{
count = t->active_count ? t->maxA : t->maxB;
t->active_count = !t->active_count;
}
else
count = t->maxA;
count = count ? count : 0x10000;
t->int_timer->adjust((attotime::from_hz(clock()/8) * count), which);
if (LOG_TIMER) logerror(" Repriming interrupt\n");
}
else
t->int_timer->adjust(attotime::never, which);
break;
}
case TIMER_DMA0:
case TIMER_DMA1:
{
int which = param;
struct dma_state *d = &m_dma[which];
d->drq_delay = false;
if(d->drq_state)
drq_callback(which);
break;
}
case TIMER_TIME0:
case TIMER_TIME1:
case TIMER_TIME2:
default:
break;
}
}
void i80186_cpu_device::internal_timer_sync(int which)
{
struct timer_state *t = &m_timer[which];
/* if we have a timing timer running, adjust the count */
if (t->time_timer_active && !(t->control & 0x0c))
{
t->last_time = t->time_timer->elapsed();
}
}
void i80186_cpu_device::inc_timer(int which)
{
struct timer_state *t = &m_timer[which];
t->count++;
if(t->control & 2)
{
if(t->count == (t->active_count ? t->maxB : t->maxA))
device_timer(*t->int_timer, which, which, NULL);
}
else if(t->count == t->maxA)
device_timer(*t->int_timer, which, which, NULL);
}
void i80186_cpu_device::internal_timer_update(int which,int new_count,int new_maxA,int new_maxB,int new_control)
{
struct timer_state *t = &m_timer[which];
int update_int_timer = 0;
if (LOG_TIMER)
logerror("internal_timer_update: %d, new_count=%d, new_maxA=%d, new_maxB=%d,new_control=%d\n",which,new_count,new_maxA,new_maxB,new_control);
/* if we have a new count and we're on, update things */
if (new_count != -1)
{
if (t->control & 0x8000)
{
internal_timer_sync(which);
update_int_timer = 1;
}
t->count = new_count;
}
/* if we have a new max and we're on, update things */
if (new_maxA != -1 && new_maxA != t->maxA)
{
if (t->control & 0x8000)
{
internal_timer_sync(which);
update_int_timer = 1;
}
t->maxA = new_maxA;
if (new_maxA == 0)
{
new_maxA = 0x10000;
}
}
/* if we have a new max and we're on, update things */
if (new_maxB != -1 && new_maxB != t->maxB)
{
if (t->control & 0x8000)
{
internal_timer_sync(which);
update_int_timer = 1;
}
t->maxB = new_maxB;
if (new_maxB == 0)
{
new_maxB = 0x10000;
}
}
/* handle control changes */
if (new_control != -1)
{
int diff;
UINT16 resbits = (which == 2) ? 0x1fde : 0x1fc0;
/* merge back in the bits we don't modify */
new_control = (new_control & ~resbits) | (t->control & resbits);
/* handle the /INH bit */
if (!(new_control & 0x4000))
new_control = (new_control & ~0x8000) | (t->control & 0x8000);
new_control &= ~0x4000;
/* check for control bits we don't handle */
diff = new_control ^ t->control;
if (diff & 0x0010)
logerror("%05X:ERROR! -unsupported timer mode %04X\n", pc(), new_control);
/* if we have real changes, update things */
if (diff != 0)
{
/* if we're going off, make sure our timers are gone */
if ((diff & 0x8000) && !(new_control & 0x8000))
{
/* compute the final count */
internal_timer_sync(which);
/* nuke the timer and force the interrupt timer to be recomputed */
t->time_timer->adjust(attotime::never, which);
t->time_timer_active = 0;
update_int_timer = 1;
}
/* if we're going on, start the timers running except with external clock or prescale */
else if ((diff & 0x8000) && (new_control & 0x8000) && !(new_control & 0xc))
{
/* start the timing */
t->time_timer->adjust(attotime::never, which);
t->time_timer_active = 1;
update_int_timer = 1;
}
/* if something about the interrupt timer changed, force an update */
if (!(diff & 0x8000) && (diff & 0x2000))
{
internal_timer_sync(which);
update_int_timer = 1;
}
}
/* set the new control register */
t->control = new_control;
}
/* update the interrupt timer */
if (update_int_timer)
{
t->active_count = 0;
if ((t->control & 0x8000) && !(t->control & 4))
{
int diff = t->maxA - t->count;
if (diff <= 0)
diff += 0x10000;
t->int_timer->adjust(attotime::from_hz(clock()/8) * diff, which);
if (LOG_TIMER) logerror("Set interrupt timer for %d\n", which);
}
else
{
t->int_timer->adjust(attotime::never, which);
}
}
}
/*************************************
*
* 80186 internal DMA
*
*************************************/
void i80186_cpu_device::update_dma_control(int which, int new_control)
{
struct dma_state *d = &m_dma[which];
int diff;
/* handle the CHG bit */
if (!(new_control & CHG_NOCHG))
new_control = (new_control & ~ST_STOP) | (d->control & ST_STOP);
new_control &= ~CHG_NOCHG;
/* check for control bits we don't handle */
diff = new_control ^ d->control;
if ((LOG_DMA) && (diff & 0x6811))
logerror("%05X:ERROR! - unsupported DMA mode %04X\n", pc(), new_control);
if (LOG_DMA) logerror("Initiated DMA %d - count = %04X, source = %04X, dest = %04X\n", which, d->count, d->source, d->dest);
/* set the new control register */
d->control = new_control;
}
void i80186_cpu_device::drq_callback(int which)
{
struct dma_state *dma = &m_dma[which];
UINT16 dma_word;
UINT8 dma_byte;
UINT8 incdec_size;
if(dma->drq_delay)
return;
if (LOG_DMA>1)
logerror("Control=%04X, src=%05X, dest=%05X, count=%04X\n",dma->control,dma->source,dma->dest,dma->count);
if(!(dma->control & ST_STOP))
{
if(LOG_DMA)
logerror("%05X:ERROR! - drq%d with dma channel stopped\n", pc(), which);
return;
}
address_space *dest_space = (dma->control & DEST_MIO) ? m_program : m_io;
address_space *src_space = (dma->control & SRC_MIO) ? m_program : m_io;
// Do the transfer, 80188 is incapable of word transfers
if((dma->control & BYTE_WORD) && (m_program->data_width() == 16))
{
dma_word=src_space->read_word(dma->source);
dest_space->write_word(dma->dest,dma_word);
incdec_size=2;
}
else
{
dma_byte=src_space->read_byte(dma->source);
dest_space->write_byte(dma->dest,dma_byte);
incdec_size=1;
}
// Increment or Decrement destination and source pointers as needed
switch (dma->control & DEST_INCDEC_MASK)
{
case DEST_DECREMENT:
dma->dest -= incdec_size;
break;
case DEST_INCREMENT:
dma->dest += incdec_size;
break;
}
switch (dma->control & SRC_INCDEC_MASK)
{
case SRC_DECREMENT:
dma->source -= incdec_size;
break;
case SRC_INCREMENT:
dma->source += incdec_size;
break;
}
// decrement count
dma->count -= 1;
// Terminate if count is zero, and terminate flag set
if((dma->control & TERMINATE_ON_ZERO) && (dma->count==0))
{
dma->control &= ~ST_STOP;
if (LOG_DMA) logerror("DMA terminated\n");
}
// Interrupt if count is zero, and interrupt flag set
if((dma->control & INTERRUPT_ON_ZERO) && (dma->count==0))
{
if (LOG_DMA>1) logerror("DMA%d - requesting interrupt: count = %04X, source = %04X\n", which, dma->count, dma->source);
m_intr.request |= 0x04 << which;
update_interrupt_state();
}
// dma->finish_timer->adjust(attotime::from_hz(clock()/8), 0);
// dma->drq_delay = true;
}
READ16_MEMBER(i80186_cpu_device::internal_port_r)
{
int temp, which;
switch (offset)
{
case 0x11:
logerror("%05X:ERROR - read from 80186 EOI\n", pc());
break;
case 0x12:
if (LOG_PORTS) logerror("%05X:read 80186 interrupt poll\n", pc());
if (m_intr.poll_status & 0x8000)
int_callback(*this, 0);
return m_intr.poll_status;
case 0x13:
if (LOG_PORTS) logerror("%05X:read 80186 interrupt poll status\n", pc());
return m_intr.poll_status;
case 0x14:
if (LOG_PORTS) logerror("%05X:read 80186 interrupt mask\n", pc());
temp = (m_intr.timer >> 3) & 0x01;
temp |= (m_intr.dma[0] >> 1) & 0x04;
temp |= (m_intr.dma[1] >> 0) & 0x08;
temp |= (m_intr.ext[0] << 1) & 0x10;
temp |= (m_intr.ext[1] << 2) & 0x20;
temp |= (m_intr.ext[2] << 3) & 0x40;
temp |= (m_intr.ext[3] << 4) & 0x80;
return temp;
case 0x15:
if (LOG_PORTS) logerror("%05X:read 80186 interrupt priority mask\n", pc());
return m_intr.priority_mask;
case 0x16:
if (LOG_PORTS) logerror("%05X:read 80186 interrupt in-service\n", pc());
return m_intr.in_service;
case 0x17:
if (LOG_PORTS) logerror("%05X:read 80186 interrupt request\n", pc());
temp = m_intr.request & ~0x0001;
if (m_intr.status & 0x0007)
temp |= 1;
return temp;
case 0x18:
if (LOG_PORTS) logerror("%05X:read 80186 interrupt status\n", pc());
return m_intr.status;
case 0x19:
if (LOG_PORTS) logerror("%05X:read 80186 timer interrupt control\n", pc());
return m_intr.timer;
case 0x1a:
if (LOG_PORTS) logerror("%05X:read 80186 DMA 0 interrupt control\n", pc());
return m_intr.dma[0];
case 0x1b:
if (LOG_PORTS) logerror("%05X:read 80186 DMA 1 interrupt control\n", pc());
return m_intr.dma[1];
case 0x1c:
if (LOG_PORTS) logerror("%05X:read 80186 INT 0 interrupt control\n", pc());
return m_intr.ext[0];
case 0x1d:
if (LOG_PORTS) logerror("%05X:read 80186 INT 1 interrupt control\n", pc());
return m_intr.ext[1];
case 0x1e:
if (LOG_PORTS) logerror("%05X:read 80186 INT 2 interrupt control\n", pc());
return m_intr.ext[2];
case 0x1f:
if (LOG_PORTS) logerror("%05X:read 80186 INT 3 interrupt control\n", pc());
return m_intr.ext[3];
case 0x28:
case 0x2c:
case 0x30:
if (LOG_PORTS) logerror("%05X:read 80186 Timer %d count\n", pc(), (offset - 0x28) / 4);
which = (offset - 0x28) / 4;
if (!(offset & 1))
internal_timer_sync(which);
return m_timer[which].count;
case 0x29:
case 0x2d:
case 0x31:
if (LOG_PORTS) logerror("%05X:read 80186 Timer %d max A\n", pc(), (offset - 0x29) / 4);
which = (offset - 0x29) / 4;
return m_timer[which].maxA;
case 0x2a:
case 0x2e:
logerror("%05X:read 80186 Timer %d max B\n", pc(), (offset - 0x2a) / 4);
which = (offset - 0x2a) / 4;
return m_timer[which].maxB;
case 0x2b:
case 0x2f:
case 0x33:
if (LOG_PORTS) logerror("%05X:read 80186 Timer %d control\n", pc(), (offset - 0x2b) / 4);
which = (offset - 0x2b) / 4;
return m_timer[which].control;
case 0x50:
if (LOG_PORTS) logerror("%05X:read 80186 upper chip select\n", pc());
return m_mem.upper;
case 0x51:
if (LOG_PORTS) logerror("%05X:read 80186 lower chip select\n", pc());
return m_mem.lower;
case 0x52:
if (LOG_PORTS) logerror("%05X:read 80186 peripheral chip select\n", pc());
return m_mem.peripheral;
case 0x53:
if (LOG_PORTS) logerror("%05X:read 80186 middle chip select\n", pc());
return m_mem.middle;
case 0x54:
if (LOG_PORTS) logerror("%05X:read 80186 middle P chip select\n", pc());
return m_mem.middle_size;
case 0x60:
case 0x68:
if (LOG_PORTS) logerror("%05X:read 80186 DMA%d lower source address\n", pc(), (offset - 0x60) / 8);
which = (offset - 0x60) / 8;
return m_dma[which].source;
case 0x61:
case 0x69:
if (LOG_PORTS) logerror("%05X:read 80186 DMA%d upper source address\n", pc(), (offset - 0x61) / 8);
which = (offset - 0x61) / 8;
return m_dma[which].source >> 16;
case 0x62:
case 0x6a:
if (LOG_PORTS) logerror("%05X:read 80186 DMA%d lower dest address\n", pc(), (offset - 0x62) / 8);
which = (offset - 0x62) / 8;
return m_dma[which].dest;
case 0x63:
case 0x6b:
if (LOG_PORTS) logerror("%05X:read 80186 DMA%d upper dest address\n", pc(), (offset - 0x63) / 8);
which = (offset - 0x63) / 8;
return m_dma[which].dest >> 16;
case 0x64:
case 0x6c:
if (LOG_PORTS) logerror("%05X:read 80186 DMA%d transfer count\n", pc(), (offset - 0x64) / 8);
which = (offset - 0x64) / 8;
return m_dma[which].count;
case 0x65:
case 0x6d:
if (LOG_PORTS) logerror("%05X:read 80186 DMA%d control\n", pc(), (offset - 0x65) / 8);
which = (offset - 0x65) / 8;
return m_dma[which].control;
case 0x7f:
return m_reloc;
default:
logerror("%05X:read 80186 port %02X\n", pc(), offset);
break;
}
return 0x00;
}
/*************************************
*
* 80186 internal I/O writes
*
*************************************/
WRITE16_MEMBER(i80186_cpu_device::internal_port_w)
{
int which;
switch (offset)
{
case 0x11:
if (LOG_PORTS) logerror("%05X:80186 EOI = %04X\n", pc(), data);
handle_eoi(0x8000);
update_interrupt_state();
break;
case 0x12:
logerror("%05X:ERROR - write to 80186 interrupt poll = %04X\n", pc(), data);
break;
case 0x13:
logerror("%05X:ERROR - write to 80186 interrupt poll status = %04X\n", pc(), data);
break;
case 0x14:
if (LOG_PORTS) logerror("%05X:80186 interrupt mask = %04X\n", pc(), data);
m_intr.timer = (m_intr.timer & ~0x08) | ((data << 3) & 0x08);
m_intr.dma[0] = (m_intr.dma[0] & ~0x08) | ((data << 1) & 0x08);
m_intr.dma[1] = (m_intr.dma[1] & ~0x08) | ((data << 0) & 0x08);
m_intr.ext[0] = (m_intr.ext[0] & ~0x08) | ((data >> 1) & 0x08);
m_intr.ext[1] = (m_intr.ext[1] & ~0x08) | ((data >> 2) & 0x08);
m_intr.ext[2] = (m_intr.ext[2] & ~0x08) | ((data >> 3) & 0x08);
m_intr.ext[3] = (m_intr.ext[3] & ~0x08) | ((data >> 4) & 0x08);
update_interrupt_state();
break;
case 0x15:
if (LOG_PORTS) logerror("%05X:80186 interrupt priority mask = %04X\n", pc(), data);
m_intr.priority_mask = data & 0x0007;
update_interrupt_state();
break;
case 0x16:
if (LOG_PORTS) logerror("%05X:80186 interrupt in-service = %04X\n", pc(), data);
m_intr.in_service = data & 0x00ff;
update_interrupt_state();
break;
case 0x17:
if (LOG_PORTS) logerror("%05X:80186 interrupt request = %04X\n", pc(), data);
m_intr.request = (m_intr.request & ~0x00c0) | (data & 0x00c0);
update_interrupt_state();
break;
case 0x18:
if (LOG_PORTS) logerror("%05X:WARNING - wrote to 80186 interrupt status = %04X\n", pc(), data);
m_intr.status = (m_intr.status & ~0x8007) | (data & 0x8007);
update_interrupt_state();
break;
case 0x19:
if (LOG_PORTS) logerror("%05X:80186 timer interrupt contol = %04X\n", pc(), data);
m_intr.timer = data & 0x000f;
break;
case 0x1a:
if (LOG_PORTS) logerror("%05X:80186 DMA 0 interrupt control = %04X\n", pc(), data);
m_intr.dma[0] = data & 0x000f;
break;
case 0x1b:
if (LOG_PORTS) logerror("%05X:80186 DMA 1 interrupt control = %04X\n", pc(), data);
m_intr.dma[1] = data & 0x000f;
break;
case 0x1c:
if (LOG_PORTS) logerror("%05X:80186 INT 0 interrupt control = %04X\n", pc(), data);
m_intr.ext[0] = data & 0x007f;
break;
case 0x1d:
if (LOG_PORTS) logerror("%05X:80186 INT 1 interrupt control = %04X\n", pc(), data);
m_intr.ext[1] = data & 0x007f;
break;
case 0x1e:
if (LOG_PORTS) logerror("%05X:80186 INT 2 interrupt control = %04X\n", pc(), data);
m_intr.ext[2] = data & 0x001f;
break;
case 0x1f:
if (LOG_PORTS) logerror("%05X:80186 INT 3 interrupt control = %04X\n", pc(), data);
m_intr.ext[3] = data & 0x001f;
break;
case 0x28:
case 0x2c:
case 0x30:
if (LOG_PORTS) logerror("%05X:80186 Timer %d count = %04X\n", pc(), (offset - 0x28) / 4, data);
which = (offset - 0x28) / 4;
internal_timer_update(which, data, -1, -1, -1);
break;
case 0x29:
case 0x2d:
case 0x31:
if (LOG_PORTS) logerror("%05X:80186 Timer %d max A = %04X\n", pc(), (offset - 0x29) / 4, data);
which = (offset - 0x29) / 4;
internal_timer_update(which, -1, data, -1, -1);
break;
case 0x2a:
case 0x2e:
if (LOG_PORTS) logerror("%05X:80186 Timer %d max B = %04X\n", pc(), (offset - 0x2a) / 4, data);
which = (offset - 0x2a) / 4;
internal_timer_update(which, -1, -1, data, -1);
break;
case 0x2b:
case 0x2f:
case 0x33:
if (LOG_PORTS) logerror("%05X:80186 Timer %d control = %04X\n", pc(), (offset - 0x2b) / 4, data);
which = (offset - 0x2b) / 4;
internal_timer_update(which, -1, -1, -1, data);
break;
case 0x50:
if (LOG_PORTS) logerror("%05X:80186 upper chip select = %04X\n", pc(), data);
m_mem.upper = data | 0xc038;
m_out_chip_select_func(0, m_mem.upper, 0xffff);
break;
case 0x51:
if (LOG_PORTS) logerror("%05X:80186 lower chip select = %04X\n", pc(), data);
m_mem.lower = (data & 0x3fff) | 0x0038;
m_out_chip_select_func(1, m_mem.lower, 0xffff);
break;
case 0x52:
if (LOG_PORTS) logerror("%05X:80186 peripheral chip select = %04X\n", pc(), data);
m_mem.peripheral = data | 0x0038;
m_out_chip_select_func(2, m_mem.peripheral, 0xffff);
break;
case 0x53:
if (LOG_PORTS) logerror("%05X:80186 middle chip select = %04X\n", pc(), data);
m_mem.middle = data | 0x01f8;
m_out_chip_select_func(3, m_mem.middle, 0xffff);
break;
case 0x54:
if (LOG_PORTS) logerror("%05X:80186 middle P chip select = %04X\n", pc(), data);
m_mem.middle_size = data | 0x8038;
m_out_chip_select_func(4, m_mem.middle_size, 0xffff);
break;
case 0x60:
case 0x68:
if (LOG_PORTS) logerror("%05X:80186 DMA%d lower source address = %04X\n", pc(), (offset - 0x60) / 8, data);
which = (offset - 0x60) / 8;
m_dma[which].source = (m_dma[which].source & ~0x0ffff) | (data & 0x0ffff);
break;
case 0x61:
case 0x69:
if (LOG_PORTS) logerror("%05X:80186 DMA%d upper source address = %04X\n", pc(), (offset - 0x61) / 8, data);
which = (offset - 0x61) / 8;
m_dma[which].source = (m_dma[which].source & ~0xf0000) | ((data << 16) & 0xf0000);
break;
case 0x62:
case 0x6a:
if (LOG_PORTS) logerror("%05X:80186 DMA%d lower dest address = %04X\n", pc(), (offset - 0x62) / 8, data);
which = (offset - 0x62) / 8;
m_dma[which].dest = (m_dma[which].dest & ~0x0ffff) | (data & 0x0ffff);
break;
case 0x63:
case 0x6b:
if (LOG_PORTS) logerror("%05X:80186 DMA%d upper dest address = %04X\n", pc(), (offset - 0x63) / 8, data);
which = (offset - 0x63) / 8;
m_dma[which].dest = (m_dma[which].dest & ~0xf0000) | ((data << 16) & 0xf0000);
break;
case 0x64:
case 0x6c:
if (LOG_PORTS) logerror("%05X:80186 DMA%d transfer count = %04X\n", pc(), (offset - 0x64) / 8, data);
which = (offset - 0x64) / 8;
m_dma[which].count = data;
break;
case 0x65:
case 0x6d:
if (LOG_PORTS) logerror("%05X:80186 DMA%d control = %04X\n", pc(), (offset - 0x65) / 8, data);
which = (offset - 0x65) / 8;
update_dma_control(which, data);
break;
case 0x7f:
if (LOG_PORTS) logerror("%05X:80186 relocation register = %04X\n", pc(), data);
if((data & 0x1fff) != (m_reloc & 0x1fff))
{
UINT32 newmap = (data & 0xfff) << 8;
UINT32 oldmap = (m_reloc & 0xfff) << 8;
if(!(data & 0x1000) || ((data & 0x1000) && (m_reloc & 0x1000)))
m_program->unmap_readwrite(oldmap, oldmap + 0xff);
if(data & 0x1000) // TODO: make work with 80188 if needed
m_program->install_readwrite_handler(newmap, newmap + 0xff, read16_delegate(FUNC(i80186_cpu_device::internal_port_r), this), write16_delegate(FUNC(i80186_cpu_device::internal_port_w), this));
}
m_reloc = data;
break;
default:
logerror("%05X:80186 port %02X = %04X\n", pc(), offset, data);
break;
}
}